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PREFACE

The present work consists of several independent studies and papers, all pertaining to the definition
of the thermodynamic gain of Rotating Detonation Combustors (RDCs). These papers are integrated
into an overarching evaluation of the experimental “pressure gain,” or increase in total pressure
across the combustor, frequently promised when discussing RDCs. There are theoretical and
experimental explorations of said “pressure gain” and the list below highlights several critical
points from each chapter that connect the entire story of “pressure gain”.

• Chapter 1: Introduction to the RDC concept, including a historical investigation into how
they became known as pressure gain devices, and the prerequisite thermodynamic background
into the potential gain.

• Chapter 2: The impact of the flow non-uniformity on defining a singular value of pres-
sure gain is addressed by theoretically considering different averaging procedures. The
experimental methods to measure pressure gain are contrasted with the theoretical analysis,
highlighting the deficiencies in the experimental techniques.

• Chapter 3: The work shifts into the experimental portion despite the concerns listed in
Chapter 2, which describes the experimental setup and geometry. Specifically, the thrust
stand needed to estimate total pressure is detailed.

• Chapter 4 & 5: A detailed uncertainty analysis into the experimental method for measuring
“pressure gain” using thrust is given. The required assumptions and the overall experimental
method result in large uncertainties, thereby limiting the precision of the measurement.

• Chapter 6: The length of an experimental RDC was varied to induce changes to speed,
strength, and number of detonation waves. These changes were then compared to the
measured pressure gains to demonstrate that the experimental pressure gain is effectively
insensitive to the details of the detonation wave(s).

• Chapter 7: Despite the significant uncertainties presented in Chapters 4 and 5 and the
insensitivity to the detonation wave(s) in Chapter 6, a measurable difference in the pressure
gain was observed as the inlet was modified to augment backflow and blockage. An increase

v



in backflow/blockage results in a significant decrease in “pressure gain”, illustrating that the
experimental “pressure gain” can measure large-scale changes to the flow.

• Chapter 8: Conclusions and final remarks/discussion on the usefulness of “pressure gain”
as performance metric of RDCs.
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ABSTRACT

Detonation-based combustors are attractive for potential increases in thermodynamic efficiency,
leading to improved thrust or work production. Fundamentally, a detonation produces less entropy
at the flame front. Rotating detonation combustors (RDCs) are designed to provide this gain
in a compact form. However, experimentally evaluating this is challenging due to the unsteady,
non-uniform, and complex flow within RDCs along with being incapable of measuring entropy.
Thus, in the RDC literature, the thermodynamic gain is equated to an increase in total pressure
globally across the RDC, termed “pressure gain” (PG). The RDC community widely accepts PG as
a preferred performance metric. This work comprehensively evaluates experimental measurements
of this global PG metric.

One must average the non-uniform exit flow to define a singular exit total pressure for an RDC.
Experimentally, this is done through the Equivalent Available Pressure (EAP) methodology. This
work demonstrates that the EAP is equivalent to area-averaging and does not conserve the exiting
flow’s momentum, energy, or entropy. Additionally, the concept of PG is not unique, as shown
by applying various averaging methods to high-fidelity, three-dimensional RDC simulations. For
instance, the average total pressure varies by 10-20% depending on the assumed outlet state and
whether one uses the RDC for work or thrust production. Perhaps even more importantly, the
EAP significantly under predicts, by 2.5-38%, the other average total pressures. Therefore, the
experimental PG has limitations from a theoretical perspective.

Nevertheless, the EAP method of experimentally measuring PG is adapted and applied to an
axial-air inlet RDC with a nozzle, with 𝐴8/𝐴3.1 = 2.31. A parametric study of air mass fluxes,
from 193 kg s−1 m−2 to 773 kg s−1 m−2, and equivalence ratios, from 0.6 to 1.2, of hydrogen/air
chemistry was investigated. No positive PG was measured, with the best performance being a total
pressure loss of 20%. A detailed uncertainty analysis reveals that the experimental PG method
is prone to significant experimental uncertainties, such as resolving the base drag acting upon the
bluff nozzle. When combined, the uncertainties in the PG result are ±6%, a 30% relative change of
the measured -20%. Such precision limitations pose practical challenges for future demonstrations
of a definitive positive PG. Additionally, further improvements to the accuracy and precision of
EAP and PG come from evaluating the area-averaged exit Mach number using a static pressure
measurement.
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This work also varied the combustor length from 79 mm to 137 mm, to induce significant changes
to the properties of the detonation wave(s). The PG only changed by at most 5% despite the wave
speed changing by 38%. Furthermore, the changes in PG are less than the uncertainty; thus,
the PG is invariant to such changes. Conversely, a change to the injection geometry investigated
in this work exhibited a measurable decrease in PG (greater than 6%), which is attributed to an
augmentation of the backflow in the system from intentionally worsening the injector diodicity.
Overall, there are many competing physics within a RDC (e.g., wave strength, backflow, secondary
combustion, secondary waves, etc.), and the global PG has different sensitivities to the individual
processes, limiting the metric’s usefulness. Ultimately, while PG can readily assess the impact
of inlet performance on the overall performance of RDC, the concerns about not conserving any
thermodynamic quantity, high experimental uncertainty, and insensitivity to several key features of
the RDC flowfield limits PG as an all-inclusive performance metric.
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CHAPTER 1

Introduction

1.1 Motivation

Detonation-based devices, such as a Rotating Detonation Engine (RDE) or a Rotating Detonation
Combustor (RDC), are attractive technologies for overcoming the efficiency plateau that shackles
modern-day combustion devices. Modern-day gas turbine engines are marvels of engineering that
have achieved exceptional levels of efficiency, reaching up to 65%. However, the iterative increases
in efficiency have grown less and less significant; such deflagrative devices have efficiencies that
have reached an asymptotic value due to sizing and material considerations. Research into RDCs
holds promise for a step-change in efficiency by several percent [4]. Such efficiency increases
are imperative as the need for increasingly better performance from combustion devices (either
energy generation or propulsive applications) to meet sustainability goals outgrows the possible
efficiencies that the traditional, constant-pressure devices are capable of.

A RDC achieves this thermodynamic gain through an unsteady combustion front, producing
less entropy for the same heat input than the traditional deflagration. The archetypal RDC design
is geometrically simple, composed of two concentric cylinders. A fuel/oxidizer injection system
continuously feeds fresh reactants into the annular gap between the cylinders, called the combustion
or detonation chamber. As the fuel and oxidizer mix in the combustion chamber and travel axially
through the combustor, one or more detonation waves consume the fresh mixture as it continuously
rotates in the circumferential direction at a frequency of several kHz, resulting in quasi-steady
exhaust conditions [18]. This process is self-sustaining as the passage of the detonation wave
modulates the passive reactant injection, which recovers before providing a fresh mixture to the next
passage of the wave. The high-temperature and pressure products from the detonation(s) are then
exhausted axially to produce either work or thrust. While accurate, this concise description belies
the complexity of the flowfield, which is intrinsically three-dimensional, unsteady, compressible,
viscous, reactive, and has high heat fluxes and pressures, making measurements challenging.
Additionally, all these phenomena couple together across multiple scales that are not yet fully
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understood. The ongoing research in this field seeks to understand the complex flowfield and to
demonstrate whether there is a tangible benefit to utilizing such a device in a practical setting,
which is the focus here.

Demonstrating the purported increase in thermodynamic efficiency quantitatively experimen-
tally has proven challenging. One such challenge arises from the difficulties in directly measuring
the thermodynamic state (pressure, temperature, and velocity) at the exit of the RDC. Another
challenge arises from the spatio-temporal non-uniformity of the flow around the annulus in the
RDC. This non-uniformity is caused by the unsteady, albeit periodic, propagation of the detonation
wave about the annulus. In contrast, deflagrative combustors typically have a uniform and steady
flow throughout the combustor. A figure of merit that captures the non-uniformity of RDCs while
allowing for direct comparisons to deflagration devices is desirable in quantifying and demonstrat-
ing the usefulness of such devices. The label of Pressure Gain Combustion (PGC) has been given
to RDCs; thus, the current figure of merit compares an “average” total pressure at the outlet to the
incoming total pressure. An increase in the total pressure, which is a surrogate measure of entropy,
would then demonstrate a benefit over deflagrative devices with a total pressure loss of several
percent. The definition, measurement, and validity of this global total pressure ratio, or Pressure
Gain (PG), as the figure of merit for RDCs is the motivation of this work.

1.2 Detonation Waves

As the name suggests, the combustion within RDCs are detonation waves instead of the traditional
deflagration. A detonation wave is the least well-known of the combustion modes, and it has
had limited application in a broad engineering setting compared to the other combustion modes
(explosions and deflagrations). In total, there are three categories for the combustion of a premixed
mixture:

1. Explosion: reactions occur nearly instantaneously and simultaneously throughout the mixture
without a wavefront.

2. Deflagration: a combustion wave propagating at subsonic speeds.

3. Detonation: a combustion wave propagating at supersonic speeds.

While explosion calls to mind militaristic applications, the most commonly encountered explosion is
within the internal combustion engine. After the compression stroke, the fuel/air mixture is ignited,
with the piston maintaining a nearly constant volume during ignition. Meanwhile, deflagration
covers a range of devices, including but not limited to jet engines, rocket engines, and gas turbines
for power generation. While all of these applications are not premixed, the speeds at which chemical
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(a) (b)

Figure 1.1: One-dimensional representation of infinitely thin detonation wave in a) lab and b) wave
frame of reference.

reactions occur are relatively slow. These are well-known and have seen extensive use in wide
applications.

Nevertheless, for reasons discussed later in this section, detonation-based propulsion or energy
conversion devices are of great interest for potential efficiency gains. The remainder of this section
is to provide the background theory of detonation waves and their associated physics. Then, in the
following section, Section 1.3, the source of interest in detonations, which comes in the form of an
observable benefit in thermodynamic cycle analysis, is explored in detail.

1.2.1 One-Dimensional Theory

While the overall structure of detonation waves is complex and three-dimensional, one-dimensional
theory is applied to gain insight into the processes as it presents an idealized version of detonation
waves. Chapman [19] and Jouguet [20] were the first to apply one-dimensional theory to detona-
tions, leading to the development of Chapman-Jougeut (CJ) theory, named after them. A Control
Volume (CV) approach is adopted, which encompasses the upstream, unburnt state ( 1 ) and the
downstream, burnt state ( 2 ). A visual of the CV in the laboratory frame of reference is given in
Figure 1.1a, while the same CV in the wave frame of reference is given in Figure 1.1b. The wave
frame of reference is adopted to simplify the following analysis. The variable 𝐷 is the propagation
velocity of the detonation wave. Further simplifications occur by assuming the following: [15]

1. The flow is steady (in the wave frame) and one-dimensional, with no area changes.

2. States 1 and 2 are uniform with no gradients in composition or properties.

3. The detonation wave front is a discontinuous plane where all variations in flow properties
occur. Thus, infinitely fast chemical reactions are implicitly assumed.
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4. The working gas is a Calorically Perfect Gas (CPG). That is to say that the perfect gas law
is the appropriate equation of state for the gases, and both specific heats are constant and
remain unchanged through the detonation.

5. Viscous and other body forces are negligible and are neglected.

6. There is no heat transfer to the wall.

With the assumptions and simplifications discussed above, the integral form of the conservation
of mass reduces to the following,

𝜌1𝑢1𝐴1 = 𝜌2𝑢2𝐴2 (1.1)

where 𝜌 denotes density, 𝑢 denotes velocity, and 𝐴 denotes area. The areas were assumed to be
constant and equal (𝐴2 = 𝐴1); thus, the Eqn. 1.1 states that the mass flow rate per unit mass, i.e.,
the mass flux ( ¤𝑚′′), is a constant.

¤𝑚′′ = 𝜌𝑢 = const. (1.2)

Likewise, the integral form of the conservation of momentum reduces to,

𝑝1 + 𝜌1𝑢
2
1 = 𝑝2 + 𝜌2𝑢

2
2 (1.3)

where 𝑝 denotes pressure. Finally, the integral form of the conservation of energy becomes,

𝑐𝑝𝑇1 +
1
2
𝑢2

1 + 𝑞 = 𝑐𝑝𝑇2 +
1
2
𝑢2

2 (1.4)

where 𝑐𝑝 indicates the specific heat at constant pressure, 𝑇 indicates temperature, and 𝑞 is the
specific (per unit mass) heat added to the CV from the chemical reactions. Recall that despite the
chemical reactions within the detonation wave, the specific heat (𝑐𝑝) does not change between the
states under the CPG assumption. Likewise, the CPG assumption leads to the equation of state
being the perfect gas law.

𝑝 = 𝜌𝑅𝑇 (1.5)

The gas constant, 𝑅, is defined as the universal gas constant divided by the mean molecular weight
of the mixture.

There are five unknowns in this description: 𝑢1, 𝑢2, 𝜌2, 𝑇2, and 𝑝2. However, the conservation
equations and state equation total four unique relationships, thereby making the problem under-
defined. An additional constraint based on physical processes is required to address the under-
defined problem.

Determining the additional constraint starts by finding the simultaneous solution of the con-
servation of mass and momentum equations. Plugging Eqn. 1.1 into Eqn. 1.3, and re-arranging
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results in the following,

𝑝2 − 𝑝1
𝜈2 − 𝜈1

= −𝜌2
2𝑢

2
2 (1.6)

= −
(
¤𝑚′′)2 (1.7)

where 𝜈 denotes specific volume (1/𝜌). This relationship is referred to as the Rayleigh line since for
a given mass flux and initial condition (𝑝1 and 𝜌1), Eqn. 1.6 is a linear line when plotted on a p-𝜈
diagram. The slope of the line is equivalent to the square of the mass flux through the combustion
event.

𝑝2 =
(
¤𝑚′′)2 (𝜈1 − 𝜈2) + 𝑝2 (1.8)

Any physical processes, subject to the assumptions made, would follow this relationship. However,
the Rayleigh line is insufficient in providing the additional constraint since it does not provide a
unique solution.

The energy equation used in conjunction with the Rayleigh line can provide the desired unique
solution; however, it is advantageous to transform Eqn. 1.4 to be a function of pressure and specific
volume similar to the Rayleigh line. Invoking the perfect gas law, Eqn. 1.5, the temperature
dependence is removed to get the following intermediate result after some re-arranging.

𝑐𝑝

𝑅
(𝑝2𝜈2 − 𝑝1𝜈1) −

1
2

(
𝑢2

1 − 𝑢2
2

)
= 𝑞 (1.9)

Recall that for a CPG, the specific heat at constant pressure is related to the gas constant and the
ratio of specific heats (𝛾).

𝑐𝑝 =
𝛾

𝛾 − 1
𝑅 (1.10)

The Rayleigh line equation, Eqn. 1.6, then replaces the velocity squared terms in Eqn. 1.9. Doing
so incorporates solving the mass and momentum equation simultaneously with the energy equation.
Thus, combining the modified energy equation with the Rayleigh line and the definition of 𝑐𝑝 gives
the final result, the Hugoniot curve.

𝛾

𝛾 − 1
(𝑝2𝜈2 − 𝑝1𝜈1) −

1
2
(𝑝2 − 𝑝1) (𝜈1 + 𝜈2) = 𝑞 (1.11)

The Hugoniot curve gives the possible solutions to the energy, momentum, and state equations in
the 𝑝-𝜈 plane for a given amount of added heat, 𝑞, to some initial state.

Figure 1.2, a 𝑝-𝜈 diagram, shows the Rayleigh line and the Hugoniot curve for an arbitrary
mass flux, added heat, and initial conditions. The initial conditions ( 1 ) are point A; all possible
Rayleigh lines must pass through this point. Non-physical results result from solutions that cannot
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Figure 1.2: A 𝑝-𝜈 diagram with Hugoniot curve and Rayleigh lines; the different combustion
regimes are labeled.

simultaneously satisfy the Rayleigh line and the Hugoniot curve. For instance, an infinite mass flux
would result in a vertical Rayleigh line originating from point A, while zero mass flux would result
in a horizontal Rayleigh line. These scenarios give points B and C, respectively. A Rayleigh line
can not pass through A and intersect with the Hugoniot curve between points B and C due to the
negative slope and negative mass fluxes being impossible, see Eqn. 1.6. Therefore, the solutions
region between points B and C is completely inaccessible.

The possible physical solutions are then further separated into a region where the combustion
causes the pressure to increase and a region where the pressure causes the pressure to decrease.
These are classified as detonation and deflagration, respectively. Two additional points of interest
are defined to characterize these combustion regimes further. The Hugoniot curve is a hyperbola.
Thus, two tangent Rayleigh lines exist, further segmenting the Hugoniot curve. The upper tangent
point is point D, while the lower tangent point is point E. These points are the upper and lower CJ
points. Chapman recognized that at the point of tangency, the slope of the Hugoniot curve must
be equal to that of the Rayleigh curve. Chapman [19] demonstrated using Gibb’s relation that the
slope of the Hugoniot curve at these points is,

𝑇2

[
𝑑𝑠2
𝑑𝜈2

]
D
=

1
2
(𝜈1 − 𝜈2)

(
𝑝2 − 𝑝1
𝜈1 − 𝜈2

+
[
𝑑𝑝2
𝑑𝜈2

]
D

)
(1.12)

where 𝑠 denotes the specific entropy. However, the slope must also be equivalent to the Rayleigh
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line. Differentiating the Rayleigh line, Eqn. 1.8, gives,[
𝑑𝑝2
𝑑𝜈2

]
D
= −𝜌2

2𝑢
2
2 (1.13)

=
𝑝2 − 𝑝1
𝜈2 − 𝜈1

(1.14)

For both Eqns. 1.12 and 1.14 to be true, 𝑑𝑠2/𝑑𝜈2 must be zero at the CJ point. Thus, an isentrope
is tangent to the Rayleigh line and Hugoniot curve at the CJ point [21]. From this, Eqn. 1.14 then
reduces to the following. [(

𝑑𝑝2
𝑑𝜈2

)
𝑠

]
D
= −𝜌2𝑢

2
2 (1.15)

The subscript “s” is appended to the derivative to indicate that the derivative is evaluated at constant
entropy. A similar process can done for point E, and Glassman details the proof of this [22].

Now recall the definition of the speed of sound (𝑎),

𝑎2
2 =

(
𝜕𝑝2
𝜕𝜌2

)
𝑠

(1.16)

= − 1
𝜌2

2

(
𝜕𝑝2
𝜕𝜈2

)
𝑠

(1.17)

After combining Eqns. 1.15 and 1.17, it is found that the post-combustion velocities at the CJ
points are the local speed of sound.

𝑢2,CJ = 𝑎2 (1.18)

The sonic velocity in the post-combustion state is a crucial result from CJ theory.
With the CJ points, further segmentation of the Hugoniot curve in Figure 1.2 is possible, and

these are summarized in Tab. 1.1. The region of the Hugoniot curve between C-E is called weak
deflagration. In this regime, 𝑝2 is greater than the lower CJ pressure (𝑝CJ,E), thus, 𝑢2 < 𝑎2.
Thus, for weak deflagration, the burnt gas travels at subsonic speeds. The burned gas velocity
would become supersonic for a further reduction in pressure from point E. This regime is called
strong deflagration. Since heat addition in a constant area without viscosity and turbulence cannot
accelerate subsonic flow to supersonic flow, strong deflagration is deemed physically impossible
to achieve. Thus, only weak deflagration is possible. With deflagration causing an acceleration of
the flow away from the flame front, deflagration is a subsonic flame front with a small pressure
decrease.

Likewise, the region above the upper CJ point (point D) is referred to as strong detonation,
while the region below the CJ point, between D and B, is referred to as weak detonation. Jougeut
[20] argued that strong detonation, while physically achievable, is unstable and only exists in a
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Region of Hugoniot Curve Classification Possible? Burned Gas Velocity
Above D Strong Detonation Transient Subsonic

D C-J Detonation Yes Sonic
D-B Weak Detonation No Supersonic
B-C Inacessible No N/A
C-E Weak Deflagration Yes Subsonic
E C-J Deflagration Yes Sonic

Below E Strong Deflagration No Supersonic

Table 1.1: Description of location notation in air-breathing engines.

transient state. In the case of strong detonation, the velocity behind the wave would be subsonic.
If a rarefaction wave were to form in this post-combustion state, the subsonic speeds would enable
this wave to propagate to the flame front. Several realistic processes, including heat loss, friction,
turbulence, etc, could cause the rarefaction wave. The wave would cause the pressure to decrease
and approach the CJ pressure. This process would repeat until the detonation wave decays to
the CJ condition. Once at the CJ state, the sonic speeds post-combustion would isolate the
flame front from downstream perturbations. Overall, strong detonations are observable in reality,
but they exist as a transient state and will eventually decay to a CJ detonation without external
forcing. Additional information about the structure of the detonation wave is required to assess the
possibility of weak detonation waves. The following section will discuss that the Zel’dovich-von
Neuman-Döring (ZND) model prohibits weak detonations from existing.

In the ZND model, only the CJ detonations are physically possible and stable. Thus, the
condition of sonic burnt gas velocity, Eqn. 1.18, provides a constraint to the conservation of mass,
momentum, and energy in such a manner that a unique solution for 2 exists for a given 1 . Thus,
in the CJ theory, the properties of the detonation wave are uniquely determined by the upstream
mixture and state. An iterative approach is required to solve for this state, and in this work,
NASA Chemical Equilibrium Applications [23] was used to perform such calculations. Thus, it
is now possible to determine the change in properties caused by detonation. Table 1.2 provides
representative values for the velocity and thermodynamic variables for detonations and contrasts
them with deflagration. Detonations propagate into the fresh mixture at supersonic speeds, with the
post-combustion gases traveling at sonic speeds. Unlike deflagration, the static pressure increases
across detonations, and detonations achieve higher overall static temperatures. The increase in
static pressure and temperature is particularly interesting for improving efficiency, as discussed in
Section 1.4.
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Quantity Detonation Deflagration
𝑢1/𝑎1 5-10 0.0001-0.03
𝑢2/𝑢1 0.4-0.7 4-16
𝑝2/𝑝1 13-55 0.98-0.976
𝑇2/𝑇1 8-21 4-16
𝜌2/𝜌2 1.4-2.6 0.006-0.25

Table 1.2: Representative values of change in velocity and thermodynamic properties for detonation
and deflagration [15].

1.2.2 Zel’dovich-von Neuman-Döring Model

The above one-dimensional analysis assumed that the detonation wave is infinitely thin by having
infinitely fast chemistry. However, finite-rate chemistry, indicative of reality, thickens the com-
bustion region. A model of a one-dimensional but finite-width detonation wave was proposed
independently by Zel’dovich [24], von Neumann [25], and Döring [26] in the 1940s. This model is
named ZND model after them, and it serves as the most common representation of the detonation
wave structure.

The explicit assumptions that are made for the ZND model are as follows: [21]

1. The flow is one-dimensional and steady in the shock-frame.

2. The shock is a jump discontinuity such that transport effects within the shock are negligible,
and the shock is infinitely thin.

3. The reaction rate before the shock is zero and is finite after the shock. Additionally, only the
forward reactions occur.

4. Except for the chemical composition, the thermodynamic variables are in local thermal equi-
librium at every point. The relaxation of the internal modes after the shock is instantaneous.

A graphical representation of the ZND model is in Figure 1.3, which qualitatively shows the rise
and fall of thermodynamic properties throughout the different regions within the detonation wave.
Note that Figure 1.3a is in the moving shock frame, and this is the frame where the detonation is
steady. The ZND model describes a detonation wave as a discontinuous planar shock front that
compresses and heats the mixture before the finite rate chemistry begins. As shock waves are
several molecular mean-free paths thick, it is improbable for chemical reactions to occur within the
shock. The post-shock state is the von-Neumann state, and the changes in properties are comparable
to those across a normal shock. Following the shock, there is an induction region/zone as there
is a delay time before the elevated temperature and pressure cause auto-ignition of the mixture.
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(a) (b)

Figure 1.3: a) The detonation structure according to ZND theory with notional changes in pressure,
temperature, specific volume, and Mach number in wave frame. b) Notional changes of total
pressure in both wave and lab frames.

The induction region’s temperature, pressure, and density remain effectively constant. Heat release
from the chemical reactions occurs over a finite region in space/time, aptly named the reaction
region. As the exothermic reactions progress, the temperature, specific volume, and Mach number
in the wave frame increase while the pressure and density decrease within the reaction region as
the distance from the shock increases. However, the heat release occurs at a pressure (blue line)
significantly larger than the starting pressure in Figure 1.3a, which is advantageous since entropy
production is less at elevated pressures. Eventually, the flow reaches the sonic plane, and the
properties at this plane match those defined in the above CJ theory. The thickness of the different
regions depends upon the reactivity of the mixture. The detonation wave is thus defined to be the
distance between the leading shock and the sonic plane.

Much of the discussion of this work focuses on total pressure; thus, Figure 1.3b gives the total
pressure across the detonation wave. In the wave frame of reference (red line), the detonation
wave is a steady process; therefore, the total pressure decreases across the shock and from the
heat addition between the induction zone and sonic plane. However, when the detonation wave is
observed in the lab frame of reference (blue line) propagating into a quiescent mixture, the total
pressure increases across the wave (i.e., above the dashed gray line). The total pressure increase is
due to the detonation wave being an unsteady process in the lab frame, which induces a velocity
behind the wave. The heat release between the induction zone and the sonic plane still decreases the
total pressure, but overall, the detonation wave causes a local increase in total pressure. The term
pressure gain combustion (PGC) is often used to describe detonation waves due to this increase in
total pressure across the unsteady combustion front.
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Figure 1.4: A p-𝜈 diagram including the Von-Neumann spike present in the ZND model.

As mentioned previously, the ZND model also prohibits the existence of weak detonations. The
ZND model in a 𝑝-𝜈 diagram, Figure 1.4, is considered to demonstrate this. The initial state is
point A, the upper CJ point is point D, and the bounds of the weak detonation region is point B
to be consistent with Figure 1.2. The second, blue Hugoniot curve is the adiabatic curve (𝑞 = 0),
which gives the jump conditions across a normal shock. The von-Nueman spike is located on this
curve and is point V. A Rayleigh line connects A and V to ensure the solution is physical. This
Rayleigh line intersects the Hugoniot curve twice, with the points labeled X and Y for the strong
and weak detonation solutions. Recall that the fluid particles would first go to point V; thus, the
initial trajectory is from A to V. Once at V, the pressure would decrease to X as heat release occurs,
resulting in a strong detonation solution. For the weak detonation solution, point Y, to be achieved,
additional energy is required to go from X to Y. However, all the energy was released going from
V to X, making it impossible to reach Y. Therefore, it is impossible to have weak detonations if
the detonation wave is a shock followed by chemical reactions. Alternatively, the velocity must be
subsonic in the wave frame after the assumed shock front within the detonation wave. Then, the
heat release within the reaction zone can only accelerate the flow to sonic speeds in this frame.
Thus, the supersonic post-combustion speeds required for weak detonations are impossible, thereby
eliminating the possibility of weak detonations in the ZND model. In the case presented in Figure
1.4, a strong detonation would occur, but since these are unstable, the wave would gradually slow
until the CJ velocity. This analysis again reaffirms that in most instances, the CJ state uniquely
defines detonations for a given mixture and is the most appropriate state to compare observed
detonations to.
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(a) (b)

Figure 1.5: Two-dimensional representation of detonation front consisting of triple point interac-
tions of Mach stems and incident waves. Reproduced from a) Liu and Zhang [1] and b) Porowski
and Teodorczyk [2].

1.2.3 Three-Dimensional Structure of Detonations

In reality, the structure of a detonation wave is much more three-dimensional and complex than
what the ZND model describes. Experimental observations show that a detonation consists of
many intersecting shocks interacting along the wave’s surface instead of a planar wave, giving it
a wrinkly or corrugated appearance [27]. This two-dimensional visualization is shown in Figure
1.5a, reproduced from Liu and Zhang [1]. The two-dimensional visualization is the projection of
the three-dimensional phenomenon onto a single plane. The leading shock front consists of incident
shocks and Mach stems that interact and give off transverse waves that trail the leading front. The
intersection points of these shocks are the triple points, and the leading front typically consists of
multiple such triple points. The transverse waves given off at the triple points propagate at the
acoustic speed of the post-combustion state and eventually collide with one another downstream of
the shock front. After a triple point interaction, a local high-pressure region with a thin reaction
region generates a new Mach stem. The previous Mach stem decays in strength, thereby becoming
the incident shock that interacts with the Mach stem. This interchange occurs in a cyclical pattern,
causing the detonation surface to be dynamic and vary in time. The local speed of the front varies
in time as a part of this dynamic structure, as evidenced by the curvature of the Mach stems, which
suggests they are locally propagating faster than the incident shocks. Nevertheless, the time-average
speed closely matches the CJ speed from one-dimensional analysis.

Due to this periodic behavior, the trajectory of the triple points in space forms a fish-like
or cell-like structure. While this is indicated in Figure 1.5a, it is more clearly seen in Figure
1.5b, reproduced from Porowski and Teodorczyk [2], as the dashed lines. The detonation cells
are commonly observed on soot foils in experiment [28], and the resulting structures are called
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detonation cells. It is important to note that, in general, the chemical reactions are complete within
one of these cells [27]. The size and distribution of the cells depend on the mixture, although the
bounding geometry may impact the formation of these cells.

Current theory believes regular detonation cells are necessary for the continued propagation of a
detonation wave. In particular, the detonation cell width (𝜆), the distance between the triple points
orthogonal to the direction of wave propagation, has been shown to be a critical length scale in
determining the limit of wave propagation. For instance, the ratio between the tube diameter of a
detonation tube and the detonation cell size determines whether the detonation becomes planar and
can continuously propagate. Knystautas et al. empirically found that the critical tube diameter was
13 times the cell size, and diameters smaller than this critical value cause the detonation to fail as
the heat release and shock become decoupled [29]. Likewise, Bykovskii theorized that there exists
some relationship between the cell size and geometric parameters of the RDC [30] that influences
the operability and stability of a RDC. However, a conclusive demonstration of this is still absent
from the literature. Some studies have looked at the detonation structure as it passes around a
confined curve that is more representative of the geometries of a RDC since the wave becomes
curved and diffraction of the transverse waves occurs along the walls [31, 32]. However, there
is currently no established means of predicting continuous detonative operation of a RDC, nor is
there a well-described mechanism that causes detonations to fail or not establish within a RDC. In
contrast to detonation tubes, there is likely a balance between the local structure of the detonation
wave and the macroscopic processes involved with mixing, injection, bulk flow, etc., that prevents
the analysis of RDCs from being solely in terms of cell size. Regardless, it is highly probable
that the three-dimensional structure of the detonation wave within a RDC is of great importance,
although the current work does not investigate this.

1.3 Thermodynamic Benefit of Detonation

Instead of comparing detonation to deflagration in isolation, an integrated thermodynamic cycle
approach better demonstrates the benefit of detonation waves. Recall that the ultimate goal of a
detonation-based thermodynamic cycle is to supplant the Brayton (deflagration) cycle in current
devices commonly used in many aerospace applications. When considering the thermodynamic
benefit of detonations, three thermodynamic cycles are compared:

1. Brayton cycle: The ideal Brayton cycle consists of an isentropic compression, an isobaric
combustion (heat addition), and finally, an isentropic expansion. The isobaric combustion is
in the form of deflagration.

2. Fickett-Jacobs (FJ) cycle: Describes the thermodynamic cycle of a propagating detonation
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wave. The ideal FJ also consists of isentropic compression, combustion, and isentropic ex-
pansion like the Brayton cycle; however, the combustion consists of a propagating detonation
wave instead of the isobaric deflagration. In the model, two pistons bound the detonation
wave, and the displacement of the pistons produces the extracted work. The FJ cycle is named
after Jacobs, who originated the concept [33], and after Fickett, who, with Davis, expounded
upon the concept [21]. The work of Wintenberger and Shepherd popularized the term, and
they give a more detailed description [4].

3. Humprhey cycle: The ideal Humphrey cycle is typically also considered when discussing the
FJ cycle due to it resulting in similar results to the FJ cycle [34]. The ideal Humphrey is, once
again, comprised of isentropic compression, combustion, and isentropic expansion like the
Brayton cycle; however, the combustion is isochoric (constant volume) instead of isobaric.

These three different cycles are plotted on the left in Figure 1.6, reproduced from Xie et al. [3], in
the 𝑝-𝜈 space, where 𝜈 is the specific volume.

The thermal efficiency of the cycle is the net work output for a given heat input.

𝜂th =
𝑤net
𝑞in

(1.19)

In the case of Figure 1.6, all the cycles are shown with the same heat input. The net work output is
the area encapsulated by the closed thermodynamic cycle,

𝑤net =

∮
𝑝d𝜈 (1.20)

Therefore, if the FJ cycle is more efficient than the Brayton cycle, it is from the additional extractable
work due to the elevated pressure, 𝑝3.5 > 𝑝3. Recall that this elevated pressure is a consequence of
the supersonic flame front.

On the right side of Figure 1.6, the same cycles are plotted in 𝑇-𝑠 space instead (i.e., a Mollier
diagram). Instead of seeing the elevated pressure, the elevated temperature and overall lower
entropy of the FJ cycle are readily observable. Again, the different cycles had the same amount of
heat input. Therefore, for the same supplied energy input, the lower final entropy directly results in
more usable energy that can be extracted, thereby increasing efficiency. In this way, the𝑇-𝑠 diagram
more clearly shows the improved thermal efficiency of the FJ cycle over the 𝑝-𝜈 diagram. Thus, it
is most appropriate to say that the actual “gain” or benefit of using detonation in a thermodynamic
cycle is less entropy production.

One work performed by Kailasantah showed ideal cycle efficiencies of 27%, 47%, and 49% for
the Brayton, Humphrey, and FJ cycles, respectively [35]. Kailasantah performed those idealized
calculations by assuming an adiabatic compression from 1 atm to 3 atm before the heat release
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Figure 1.6: Sample left) 𝑝-𝜈 and right) 𝑇-𝑠 diagrams of the Brayton (isobaric), Humphrey (iso-
choric), and Fickett-Jacobs (detonation) cycles. Figure reproduced from [3].

and then having the same amount of heat addition for each of the three cycles. An isentropic
expansion down to 1 atm was assumed to occur after the heat release. The similarity between the
FJ and Humphrey cycles is evident, as is the increase in the efficiency of FJ over the Brayton cycle.
The exact percentages of the cycle will depend on various factors such as the initial conditions,
compression ratio, fuel-oxidizer chemistry, equivalence ratio of the mixture, and practical losses.
For instance, Kindracki and Wolanski computed the thermal efficiency of the FJ cycle to be 59.3%,
53.2%, and 61.4% for hydrogen-air, methane-air, and acetylene-air combustion at a compression
ratio (𝜋𝑐) of 5 [18]. Meanwhile, the Brayton cycle at the same conditions had respective thermal
efficiencies of 36.9%, 31.4%, and 36.9%.

Wintenberger and Shepherd performed similar efficiency calculations for stoichiometric
propane-air mixtures at standard temperature and pressure but with varying compression ratios
(𝜋𝑐) [4]. The results from that study are reproduced in the figure on the left in Figure 1.7. For
every compression ratio, the FJ cycle had a greater thermal efficiency, which is a direct result of
the lower entropy generation throughout the thermodynamic cycle through the pre-compression
that the detonation wave provides. However, the gap between the Brayton and FJ cycles narrows
with an increasing compression ratio. When the thermal efficiency is instead plotted against the
peak combustion pressures, as is the case of the left figure in Figure 1.7, the Brayton cycle is
observed to be more efficient than the FJ cycle. This result is essentially a byproduct of needing
less compression ratio (𝜋𝑐) to achieve high pressure in the FJ cycle compared to the Brayton cycle.
Thus, depending on the design constants, there may be instances where the Brayton cycle may still
be favorable. Still, regardless, there are clear potential advantages to using the FJ cycle.

The FJ cycle analysis described above all originally pertained to Pulsed Detonation Engine
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Figure 1.7: Ideal thermal efficiency of the different cycles for different left) compression ratios and
right) combustion pressure. Figure reproduced from [4].

(PDE)s since PDEs more closely follow the traditional planar detonation wave propagating through
a quiescent mixture. In the lab frame, the detonation wave propagation is unsteady, resulting in a
local gain in kinetic energy immediately following the detonation wave (i.e., the CJ state). Due to
this kinetic energy gain, the total enthalpy of the products at the CJ state exceeds the combination
of the total enthalpy of the reactants and the chemical energy released. In the above cycle analysis,
the work/thrust was computed from this local CJ state, thereby giving the favorable comparisons
detailed above. However, such analysis is disingenuous as the CJ is a temporary local state trailed
by expansion waves. In the case of a PDE, the expansion waves are to satisfy the wall boundary
condition of zero velocity. For RDCs, the expansion waves arise from the boundary between the
detonation wave and inert gases [36].

Zel’dovich theorized that since the total energy (chemical, kinetic, and thermal) cannot exceed
the initial amount, the additional kinetic energy comes from work exerted on the fluid by the fluid
to keep the detonation wave propagating [37, 38]. In other words, not all the energy in the CJ state
can provide external work since sustaining the CJ state requires using some of the energy. Thus,
the promised thermodynamic gains may be overly optimistic, although Zel’dovich noted that the
detonation process is still more efficient than a constant volume explosion [37].

Dyer and Kaemming considered this by modifying the cycle analysis by limiting the total
enthalpy increase to equal the heat added [5]. Figure 1.8 is a reproduction of their modified 𝑇-𝑠
diagram, where the 𝑇 on the y-axis denotes total temperature in their notation. They assumed that
the expansion process trailing the detonation wave is isentropic. Therefore, the known CJ entropy,
𝑠4, combined with the possible total enthalpy given by the gray band, to calculate 4′ , which is
the state they claim the system can extract work from. Even accounting for nozzle losses, dashed
purple line, less entropy is produced through the detonation cycle than the Brayton cycle (RJ in
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Figure 1.8: Energy conserved 𝑇-𝑠 diagram of detonation cycle analysis. Figure reproduced from
[5].

Figure 1.8). Again, lower entropy for the same heat input would increase thermodynamic efficiency,
although Dyer and Kaemming did not directly make that calculation [5].

Overall, while some of the initial modeling efforts may have overestimated the efficiency gains
by extracting work from the CJ state, Dyer and Kaemming demonstrated that gains are still possible.
Even if the potential gain is only several percent, this several percent will still mark a step-change in
technological development as current devices have effectively reached the limit of the Brayton cycle
efficiency due to sizing and material considerations. Finally, to reiterate, the cycle modeling here
is for PDEs, and no equivalent work for RDEs is in the literature. The lack of similar analysis for
RDEs is mainly due to the increased complexity of no longer having easily defined thermodynamic
states. Nevertheless, it has been assumed in the literature the detonations in RDEs transfer the same
thermodynamic gains as the FJ cycle discussed here.

1.4 Combustor Performance Metrics

From the prior discussion, detonation waves theoretically increase the thermal efficiency of a
thermodynamic cycle; however, thermal efficiency only applies to the entire engine, i.e., RDEs.
In the case of the RDC considered throughout this work, component level performance metrics
are the most appropriate considering this work studies the combustor isolated from up- and down-
stream components. In the context of a traditional combustor, two such metrics are prevalent: the
combustion efficiency and total pressure ratio across the combustor. Combustion efficiency will be
briefly addressed in this section, while the total pressure ratio is the focus of the remainder of the
work.
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1.4.1 Combustion Efficiency

The purpose of a combustor is to release energy, in the form of heat, from the chemical bonds of
the reactants. Any unreacted mixture, therefore, serves as a loss on account of the reduction of
thermal energy added to the flow. The combustion efficiency is the ratio of the actual change in
total enthalpy over the ideal change in total enthalpy across the combustor. If the pre-combustor
state is 3 and the post-combustor state is 4 , the combustion efficiency, 𝜂𝑐, can be expressed as,

𝜂𝑐 =
( ¤𝑚a + ¤𝑚f)ℎt4 − ¤𝑚aℎt3

¤𝑚fℎPR
(1.21)

Where ℎPR is the thermal energy released per unit mass of added fuel. Although combustion
efficiency is a crucial performance metric, it is also challenging to measure experimentally as it
requires either measurements of the gas composition at the exit or measurements of the temperature
and velocity to get the total enthalpy.

1.4.2 Total Pressure Ratio

The second parameter typically used to quantify the performance of a gas turbine combustor is
the total pressure ratio across the device (𝜋b). Again, if the pre-combustor state is 3 and the
post-combustor state is 4 , this ratio is expressed as,

𝜋b =
𝑝t4
𝑝t3

(1.22)

The quantity called Pressure Gain (PG) will be referenced extensively throughout this work. The
PG is defined to be the increase in total pressure across the device relative to the incoming total
pressure. As such, the relationship between PG and the total pressure ratio (𝜋𝑏) is as follows.

PG = 𝜋b − 1 (1.23)

This work focuses on either the reduction of the total pressure loss or, ideally, an increase in total
pressure across the combustor. As such, a discussion of why total pressure is the quantity of interest
is warranted. From an end-to-end perspective, a performance metric, such as thrust, specific thrust,
thermodynamic efficiency, etc., may seem preferable to the total pressure ratio. However, as will
be demonstrated later, the total pressure is used as a surrogate measurement of the irreversibility
(entropy generation) of the processes that occur within the combustor.

By defining the CV around the combustor to be rigid and fixed in space relative to the combustor,
no work is imparted on the fluid by the viscous shear acting along the walls since the displacement
of the control surface is zero. Thus, the integral energy equation contains no frictional (irreversible)
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terms, making the total enthalpy independent of how the flow stagnates (i.e., reversibly or irre-
versibly). Therefore, the change in total enthalpy (temperature) from adding heat is equal solely to
the amount of heat added with no dependence on whether that heat was added irreversibly, as in
the case of combustion.

The same is not valid for the total pressure. The familiar formulation of total pressure,

𝑝t = 𝑝

(
1 + 𝛾 − 1

2
𝑀2

)𝛾/(𝛾−1)
(1.24)

is explicitly defined when the flow is isentropically (e.g. reversibly and adiabatically) brought to
rest. The resulting total pressure would be different than Eqn. 1.24 if the flow did not isentropically
stagnate. The dependency on the process of stagnation originates from Gibb’s equation. If the flow
in 1 is slowed to rest adiabatically, but irreversibly to 2 such that 2 is the stagnation state, Gibb’s
equation becomes,

𝑠2 − 𝑠1 = 𝑐𝑝 ln
𝑇t2
𝑇t1

− 𝑅 ln
𝑝t2
𝑝t1

≥ 0 (1.25)

𝑝t2
𝑝t1

≤ 1 (1.26)

Therefore, for the final pressure at 2 to be equivalent to the pressure defined in Eqn. 1.24, the
process must be isentropic. Thus, increasing entropy would directly decrease the total pressure for
non-reacting flows, given a stagnation temperature. This link to the entropy is the main reason for
focusing on total pressure. A side benefit of total pressure is that it fully defines the thermodynamic
state in conjunction with a total temperature and static pressure measurement.

1.4.3 Total Pressure and Irreversible Processes

In traditional combustors, the total pressure always decreases across the combustor. For steady,
quasi-one-dimensional flow with heat addition and viscous forces but no chemical reactions, the
conservation of momentum and energy equations, along with Gibb’s equation, results in the
following formula for the change in total pressure,

𝑑𝑝t
𝑝t

=
−𝛾𝑀2

2

(
𝑑𝑇t
𝑇t

+ 𝐶f
𝑐

𝐴
𝑑𝑥

)
(1.27)

where 𝑐 is the circumference of the volume and 𝐶f is the friction coefficient, which accounts for
shear forces acting along the walls. Oates presents a detailed derivation of the above equation [39].
Note that in a steady combustor, the total pressure cannot increase across the combustor without
violating the Second Law of Thermodynamics.

Therefore, the total pressure decreases due to the combustion at a finite Mach number and
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viscous losses. The former is unavoidable, as adding energy to a steady system will always reduce
the total pressure, e.g., Rayleigh flow. The latter is from friction along the wall and turbulence
losses. In reality, the losses due to turbulence in gas turbine engines are typically an order of
magnitude greater than those from the heat addition [40]. However, this may be due to the low
Mach numbers within the combustor. In total, the irreversibilities within the engine decrease
the exhaust kinetic energy for the same total enthalpy as more energy transfers into the internal
structure of the molecules. In turn, the reduction of the kinetic energy reduces thrust production
and the amount of extractable work. Using entropy to define the irreversibilities would be more
advantageous since it is a thermodynamic state variable independent of the frame of reference,
unlike stagnation/total properties; however, experimental entropy measurements are impossible.
Thus, total pressure measurements are the best alternatives for RDCs at the time of writing.

1.5 Literature Review

With the background of detonations established and a brief exploration of the theoretical perfor-
mance gain they promise, an overview of existing literature on Rotating Detonation Combustors
(RDCs) is presented.

1.5.1 Rotating Detonation Combustor Overview

On the left in Figure 1.9 provides a visual aid of the general features of a RDC, with the figures
reproduced from [6, 7]. As in Figure 1.9, the most common version of a RDC is an annular
channel formed by two concentric cylinders. Fresh fuel and oxidizer are constantly and passively
injected into the annular gap at the base of the annular channel from one or more plena, depending
on whether the device is premixed [41, 42] or non-premixed, like most experimental RDCs [43].
Various fuel/oxidizer injection geometries have been tested, including discrete and continuous
injection elements [44, 45, 46, 47, 48]. Passive injection here directly refers to the lack of valves for
either reactant. Once the reactants are within the annular channel, turbulent mixing occurs before
the continuously propagating detonation wave(s) consumes the mixture. The detonation wave(s)
is the coalescence of the reactions initiated by a single ignition event, after which the detonation
becomes self-sustaining. The ignition process is poorly understood, although Deflagration-to-
Detonation (DTD) appears to occur within the channel. As alluded to previously, there are a
significant number of studies into different injector geometries since they must provide adequate
mixing at the short time scales between detonation waves (under a millisecond). Finally, the high
pressure and temperature products or burnt gases post-detonation wave then expand through a
nozzle to either produce work when integrated with a turbine or to produce thrust if exhausted to
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Figure 1.9: Schematic representation of a) annular RDC and b) unwrapped RDC flowfield with
primary flow features. Figure reproduced from [6] and [7].

ambient. Overall, the bulk fluid motion through the RDC is in the axial direction, i.e., upwards in
Figure 1.9. However, the circumferential propagation of the detonation wave(s) may induce some
local swirl [49, 50, 51].

It is often easier to consider the flowfield in an “unwrapped” sense or along the 𝜃 plane at a
fixed 𝑟. Figure 1.9 also contains a simplified representation of the unwrapped flowfield on the right.
Once again, the bulk of the flow is axially upwards in this figure, starting from the upstream plenum
(light blue). For simplicity, in this figure, the reactants are premixed in the plenum; non-premixed
configurations would consist of two separate plenums and injection elements. The fresh reactants
(dark blue shading) terminate at the detonation wave, which moves from left to right. Immediately
after the detonation wave is a region of high-pressure products that prevents fresh fuel reactants
from being injected [52], and flow reversal or backflow can occur depending on the severity of the
pressure gradient. While not shown, an expansion wave trails the detonation wave [36] that lowers
the pressure until the injectors can recover and inject fresh reactants into the channel again. A
contact surface (a) separates the fresh reactants from the combustion products. The height of the
detonation wave is dependent upon the fill region and the response time of the injectors. At the
intersection of contact surface (a) and the top of the detonation, a downstream propagating oblique
shock forms to handle the discrepancy between the higher pressure gases behind the detonation
wave and the gases that bound the detonation [36]. A new contact surface (b) forms to differentiate
between the products that have or have not interacted with the oblique shock. All the while, the
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Figure 1.10: In descending order: pressure, temperature, and equivalence ratio of RDC flowfield
from an unwrapped three-dimensional simulation. Figure reproduced from [8].

fluid is being expanded in the axial direction to be exhausted from the exit (top). While not shown
in Figure 1.9, a similar oblique shock and contact surface can form at the bottom of the detonation,
which propagates upstream into the plenum [53, 54, 55].

The flowfield for non-premixed RDCs is similar but typically has additional flow features.
Namely, if either the fuel or oxidizer injectors recover faster than the other, there would be a buffer
region of pure fuel or oxidizer. Such a bugger region would introduce two contact surfaces, one
that separates the pure fuel or oxidizer from the products and another that separates the pure fuel
or oxidizer from the mixture that starts after both injectors have recovered [45, 56]. Figure 1.10,
which contains the unwrapped results from a high-fidelity, three-dimensional Direct Numerical
Simulation (DNS) simulation from Sato et al. [8]., illustrates the existence of said buffer region.
The pressure, temperature, and local equivalence ratio are shown in Figure 1.10, and the wave
moves from left to right. There is an increase in complexity when the simplified flowfield of
Figure 1.9 is compared to Figure 1.10, although Figure 1.10 is likely more indicative of physical
experiments. The spatial variations intrinsic to the RDC flowfield complicate interpreting point
measurements and defining an average state across the annulus at a given axial (vertical) location.
The latter is particularly significant to this work, as discussed later in Chapter 2.
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Figure 1.11: Schematic representation of differences between a) annular and b) disk RDC. Figure
reproduced from [9].

1.5.1.1 Alternative Designs

Although this work exclusively utilizes the traditional cylindrical annulus design discussed above,
several variations of RDCs that serve as alternatives to the traditional cylindrical annulus have
also been explored. The commonality between all the designs is the continuous, circumferential
propagation of detonation waves, and all seek to gain the thermodynamic benefit of using the
detonation wave. Non-circular annular designs have been tested, with the most common shape
being the “racetrack” design, which consists of two semi-circles connected by linear sections
[57, 58, 59]. At this point, such devices are constructed solely for use within laboratories instead
of with practical applications in mind. This design’s primary feature is having optical access to the
linear section, which is well suited for planar-laser diagnostics [60]. The hollow cylinder design is
another variation of the RDC concept, and it is quite similar to the cylindrical annulus, except no
inner body confines the detonation wave(s) [61, 62, 63]. This variation has garnered extra interest
from the rocket community since the resulting shape resembles traditional rocket combustors.
Nevertheless, both the air-breathing and rocket communities may be interested in further research
as the hollow geometry removes the inner body’s additional weight and the need for cooling said
inner body.

The final variation considered thus far in the literature is the radial disk [9, 64]. Figure 1.11,
reproduced from Huff et al. [9], highlights the differences from the radial/disk RDC. The overall
flow is still constrained to a slot (like an annulus); however, whereas the other designs have the bulk
motion in the axial direction, the reactants are injected radially inwards towards the center of the
device. The detonation wave still rotates in the circumferential direction within the chamber (i.e.,
in and out of page in Figure 1.11), consuming the mixture. The hot products are then turned in the
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axial direction and exhausted axially. Overall, the form factor of the disk RDCs reduces to leverage
the high energy density for potential use in compact auxiliary power generation applications when
integrated with a radial turbine. Overall, the methodologies presented and developed in this work
are also applicable to such alternative designs, as the results from this work are irrespective of the
particular design since the general concept of the RDC remains intact across the designs.

1.5.2 History of Detonation Engines

Now that a general description of RDCs has been established, a brief history of their development
is presented. Detonation engines are frequently touted as using pressure gain combustion (PGC);
thus, a brief history of the term PGC is given in parallel to the history of RDCs. As will be
discussed, the original concept of RDCs did not discuss an increase in total pressure across the
device (PGC); therefore, tracking the evolution of term PGC will provide insight as to when RDCs
adopted the moniker.

1.5.2.1 Pressure Gain Combustion

As shown in the previous section, in a steady combustion system, the total pressure must decrease
due to the laws of thermodynamics. However, if an unsteady combustion process is used and
constrained (i.e., detonation or constant volume), it is theorized that an increase in total pressure is
possible. This unsteady combustion process is now referred to as PGC since,

𝜋𝑏 > 1 (1.28)

PG > 0 (1.29)

By this definition, reciprocating engines constitute PGC as combustion after the piston strokes
are approximately at constant volume [65]; however, reciprocating engines are impractical for
aerospace applications due to physical complexity (moving parts) and being ill-suited to produce
thrust. However, the reciprocating engine is not the only conceived constant volume device. One
of the earliest designs for a gas turbine, the explosion gas turbine, made around 1908 by Holzwarth,
made use of constant volume combustion [66]; thus, the concept of trying to integrate PGC into
gas turbines dates back over a century predating the concept of the modern gas turbine. Due to
the materials and cooling processes at the time, the developers of the gas turbine dropped the
concept in favor of the Brayton cycle, which allowed for more work given the limited combustor
temperature/pressure (refer back to Figure 1.7).

A valveless version of the explosion gas turbine, a pulse combustor, was discussed by Porter in
1958 as having the potential for pressure gain [67]. Porter was one of the literature’s first direct
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mentions of pressure gain. The pulse combustor has seen on-and-off research since, though there
are some active groups to this day [68, 69, 70, 71]. Perhaps most important to this current work was
the work done by Kentfield on pulse combustors in the 1960-1980s [72, 73, 65], since the popularity
of the term PGC can be seemingly directly traced back to Kentfield and his collaborators. At the
time, little work looked into detonation engines (discussed in the following section); therefore,
for nearly two decades, PGC almost exclusively referred to constant volume combustion. The
exclusivity of PGC changed in 1988 as Kentfield, recognizing the work of Helman et al. on early
versions of PDEs [74], began to classify unsteady, pulsed detonation waves as PGC well [65] based
on the ZND structure in the lab frame (see Figure 1.3b).

1.5.2.2 Detonation Engines

The earliest recorded works in harnessing unsteady detonation wave propagation for propulsion
were by Voitsekhovsky in 1960 at the Moscow Institute of Physics and Technology [75] and
Nicholls in 1957 at the University of Michigan [76]. Nicholls noted the similarity between rotating
detonation waves and circumferentially rotating combustion instabilities observed in rockets at the
time and theorized that the pressure rises could be potentially harnessed [77]. The term PGC did
not appear at the time. However, Nicholls theorized that rotating detonations may offer a potential
increase in specific impulse for rocket combustors [76] or alter the scaling parameters of rocket
combustor [77]. However, due to being unsuccessful at maintaining a continuously propagating
rotating detonation wave (operation) and concerns over heat management, research into RDCs
seemingly stopped in the US after the 1960s. After a brief lull, Bykovskii and his research group at
Lavrentyev Institute of Hydrodynamics in the USSR recommenced the research into RDCs starting
around 1980 [78] and has continued even to the time of writing. It was this group that demonstrated
continuous and stable rotating (spinning) detonation waves of gas-gas [79] and liquid-gas mixtures
[80]. Additionally, various geometries were considered, including the now pervasive annular
geometry [81] and design parameters being introduced [30]. Overall, while Bykovskii may not
have originated the RDE concept, his vast body of collective work forms the foundation of the
RDE literature as a whole from which more modern studies build. Importantly, Bykovskii never
mentioned an increase in total pressure (i.e., PGC) as the benefit of RDEs.

A resurgence in interest in detonation engines in the US occurred in the mid-1980s [74] through
the 2000s with the rise in popularity of the PDE [82, 83, 84, 85]. A PDE consists of a long tube
closed at one and open at the other. Fuel and oxidizer mix within the chamber after being injected
from the closed end. The mechanical valves controlling the injectors close once the chamber is
adequately filled and mixed. Afterward, ignition occurs, thereby producing a detonation. The
wave propagates along the length of the tube before exhausting through the open end. The induced
velocity produces thrust through the open end. A trailing expansion wave stagnates the flow within
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the tube after some time to satisfy the wall boundary condition; thus, the system must purge the
hot products before the following firing sequence. The PDE can be considered an extension of the
pulse-jet concept with the caveat that pulse-jet combustion is deflagrative instead of detonative. The
PDE was the first detonation-based engine that earned the label of PGC as the unsteady detonation
wave and subsequent expansion are in the same direction as the bulk motion [65, 86]. Additionally,
as discussed in the previous section, much of the thermodynamic modeling efforts demonstrated
that the FJ cycle theorized in PDEs closely matched the Humphrey cycle [34, 4, 35, 5] further
connecting PDEs to the constant-volume that originally constituted PGC.

Overall, the research into PDEs culminated with a flight demonstration of Long-EZ aircraft
propelled by a PDE in 2008 [87]. But, while there was promise and significant progress in PDEs,
there remained substantial technological challenges and limitations [88, 38]. Each pulsed detonation
wave required a distinct ignition event and transition, necessitating the continuous provision of
activation energy to the system. The re-filling cycle, ignition, and purging sequences, which
require physical valves, are limited to approximately 50 Hz firing rates, making the thrust unsteady.
Specific length requirements exist to successfully undergo the DTD transition, preventing the device
from being compact. The continuous propagation of detonation wave(s) in RDEs mitigate many,
if not all, of these problems [38]. As such, around 2010, much of the detonation engine research
transitioned to RDEs [89, 90, 91] where the focus remains. Interestingly, in 2006, before the switch
to RDEs, Bykovskii published an extensive review of his work on continuous rotating detonations,
which included geometric scaling parameters and demonstrations of a variety of mixtures [30], in
a Western journal which may have influenced the return to RDE concept which had otherwise been
dormant in the US since the 1960s.

By the point that the research focus shifted away from PDEs to RDEs, the concept of unsteady
detonation wave propagation and PGC had become intertwined [92, 93]. Thus, even though the
unsteady wave propagation was no longer in the same direction as the bulk flow, RDEs were still
regarded as PGC devices [91], mainly as a remnant of the previous PDE research.

1.5.3 Non-Ideal Detonation Waves and Flow Features

In the theoretical description of detonation waves presented earlier in this chapter, the CJ point
uniquely determined the properties of the detonation wave. Furthermore, the homogenous mixture
that the detonation wave propagates into uniquely determines the CJ point. Experiments have
confirmed that the ZND theory is a reasonable model of experimental planar waves that travel
through a perfect mixture of fuel and oxidizer. However, the detonation wave(s) observed in RDCs
are radically different than those predicted by the one-dimensional theory. For instance, the most
wave-speeds are typically around 60-80% the ideal CJ velocity (𝑢CJ) [43, 11]. Occasionally, even
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Figure 1.12: OH chemiluminescence highlighting contact burning (CB) and auto-ignition kernels
(white circle). The detonation wave is a the right edge of the image and moves to the left. Figure
reproduced from [10].

slower waves, around 50% 𝑢CJ, arise. These slow speeds are approximately the same as the sound
speed in the products. Furthermore, the static pressure ratios across the detonation waves are
typically 10-30% of CJ values [43, 11]. While there are some concerns that piezoelectric pressure
sensors cannot resolve the sharp pressure rise due to finite response times, the detonation wave(s)
are still far from the ideal waves used in modeling.

There are a variety of factors that likely contribute to the decrement in wave properties. Unlike
the one-dimensional analysis, detonations propagating through a curved annulus are inherently two-
dimensional. In particular, the curvature of the bounding walls can impact the transverse waves that
compose the detonation cells by either causing wave reflections or generating additional transverse
waves, thereby affecting the stability and structure of the wave [38, 94, 95]. Practical RDCs injects
the fuel and/or oxidizer through discrete elements [43, 96], leading to an inhomogeneous mixture
before the wave arrival, unlike the assumptions in ideal CJ theory. The inhomogeneous mixture
leads to reactant stratification [97, 95] along with incomplete mixing and mixture leakage [98, 99].
Additionally, if the fuel and oxidizer injectors’ response times are mismatched, pure oxidizer and
fuel buffer regions can form [45, 56]. Many of these factors likely culminate in the increase in wave
thickness relative to the ZND model [100, 101], further differentiating the observed detonation
wave(s) from those predicted by theory.

On top of thicker, slower, and weaker detonation waves, experiments have also observed de-
flagration within the RDC [10, 99, 11] and computations [101, 102]. Ultimately, RDCs seek to
leverage detonation over deflagration. Thus, this secondary combustion (deflagration) is undesir-
able since it would produce more entropy than the detonation waves. This deflagration appears as
auto-ignition kernels throughout the flowfield or as burning along the contact surface of fresh reac-
tants [10]. Chacon and Gamba visually identified this deflagration in an optically accessible RDC
based on the image reproduced in Figure 1.12 [10]. The white circles highlight the auto-ignition
kernels labeled parasitic combustion (PC), while the pink line highlights contact burning (CB).
Secondary combustion is classified as either parasitic or commensal combustion, depending on
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Figure 1.13: Representative phase-averaged cycle of OH* emission detailing the different combus-
tion regions. Figure adapted from [11].

whether it occurs before (parasitic) or after (commensal) the detonation wave [10, 58]. The terms
“parasitic” and “commensal” come from biology and describe the relationship each classification
of deflagration has with the primary detonation wave [58]. Recirculation regions are theorized to
be one of the mechanisms that support parasitic combustion [58]. The recirculation regions within
the combustor can temporarily trap hot products, which can feed thermal energy to fresh reactants,
causing auto-ignition. Meanwhile, incomplete mixing and mixture leakage are theorized to cause
commensal combustion [58]. The unreacted pocket of the mixture passes through the detonation
wave and then combusts later. Using point-wise, temporally resolved OH* chemiluminescence
measurements, Feleo et al. were able to experimentally estimate the heat release breakdown across
an averaged detonation cycle as visualized in Figure 1.13 [103]. The same study presented a corre-
lation between increased amounts of secondary combustion and the velocity and pressure deficits
of the detonation wave(s) [11]. In particular, the parasitic combustion is especially detrimental to
the propagation of the detonation wave(s) [104, 105, 58].

Overall, the non-ideal detonation waves result from the combination of all of the discussed flow
features [96], complicating the traditional understanding of the RDC flowfield. This discussion was
not all-inclusive, as there are potentially more unexplored and uncharacterized phenomena since the
complexities of the RDC flowfield are not fully understood. The extent of such research is beyond
the scope of this work. Nevertheless, the discussion of the non-idealities is critical as they are
detrimental to the global performance of RDCs according to the prevailing theories. Several efforts
have incorporated secondary combustion, parasitic and commensal, in thermodynamic modeling
of detonations and RDCs [104, 105, 58]. In particular, multiple studies have demonstrated that
parasitic combustion has a significant impact on the pressure ratio across the detonation wave
[104, 58] and on specific impulse [105]. Directly demonstrating the impact of the non-idealities
requires suppressing the mechanisms that support them (e.g., suppressing secondary combustion);
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Figure 1.14: Pathlines through time-averaged RDC flowfield, where the color gives changes in
stagnation enthalpy. Figure adapted from [12].

however, the entire flow field would become altered, including the detonation wave(s), since the
resulting flowfield depends on all the individual processes [58]. Thus, it is impossible to isolate
whatever changes to performance may arise after the suppression of the non-ideal phenomenon due
to the other changes. Nevertheless, when considering the global performance of RDCs, these local
processes likely need to be considered as loss mechanisms that could lower said global performance,
especially since the detonation waves are not as ideal as those in PDEs.

1.5.4 Non-Uniform Exit Flow

The flowfield within a RDC is fundamentally three-dimensional. However, assuming that the
properties’ variations are minimal in the radial direction from the small channel width, the flowfield
can be simplified to two dimensions [106, 107]. However, the variations in the circumferential
direction at a given axial location can not be easily reduced to a singular value as would be typically
done in the quasi-one-dimensional analysis techniques for deflagrative combustors [108]. There are
two ways of considering the variations in the thermodynamic states. First, consider an instantaneous
snap-shot of the RDC flowfield, like the simulation presented in Figure 1.10. At any moment in
time, the velocity, temperature, pressure, etc., are all non-uniform across the exit plane, i.e., around
the annulus. Therefore, defining a singular thermodynamic state that accurately captures all the
information around the annulus is not possible [108].

Non-uniform exit flow can also be explored by considering pathlines or particle tracking through
RDC simulations [109, 110, 90]. The work of Nordeen et al. is an example of this work [109, 110],
who tracked the thermodynamic properties in a two-dimensional simulation produced by Schwer
and Kailasanath [90] along discrete pathlines. The pathlines are shown in Figure 1.14, reproduced
from [12], as light blue lines through the flowfield, where the color gives the stagnation enthalpy.
Again, the non-uniformity at a given axial location (Y) is evident. Meanwhile, Figure 1.15, also
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Figure 1.15: The variations of stagnation enthalpy and entropy along the different pathlines at the
exit of the RDC. Figure adapted from [12].

reproduced from [12], shows the corresponding stagnation enthalpy (ℎs)-entropy diagram that tracks
the properties from those pathlines. The pathlines were applied to the flowfield after the flowfield
as time-averaged. Based upon the spread in the lines (each giving the path of a fluid particle),
the exiting fluid particles each have a unique thermodynamic state. The processes that a fluid
particle experiences while traveling through a RDC depend on the injection site of the fluid particle
into the RDC. In addition to the detonation wave and expansion after the wave, some particles
interact with the downstream propagating oblique shock wave. The shock wave produces more
entropy as the particles pass through it, further differentiating the final state of these particles from
those that did not interact with the oblique shock wave. Such differences would be exacerbated by
secondary combustion as the different particles may undergo varying combinations of deflagration
and detonation, further complicating wanting to define a single representative thermodynamic cycle
[111]. Finally, in addition to not matching one another, none of the individual pathlines matched
the theorized thermodynamic cycle associated with the ZND structure, which is problematic from
a modeling perspective [109, 111]. Overall, addressing the non-uniformity of the flow is crucial to
generating a unique, combustor-specific performance metric, as will be explored in further detail
in Chapter 2.

1.5.5 Performance Measurements

One of the critical challenges RDC literature is currently facing is quantitatively demonstrating the
purported thermodynamic benefit. Ideally, the RDC performance metric can be readily compared to
the baseline of a comparable deflagrative combustor to demonstrate an increase in that performance
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metric. As mentioned previously, such comparisons are complicated because the exit flow is spa-
tially non-uniform about the annulus and unsteady, contrasting the steady and uniform combustion
of deflagrative devices. Kaemming and Paxson proposed that the best global performance metric
for comparison is defining a pressure gain, which the community has broadly accepted. Pressure
gain here refers to an increase in total pressure across the RDC, similar to the total pressure ratio
used in traditional combustors. If this total pressure is greater than the incoming feed/supply
pressure [112], then a thermodynamic gain is considered to have been achieved. Conceptually, this
likely originated from the preconceived notion that RDCs are fundamentally PGC devices.

In the same introductory work, Kaemming and Paxson theorized that a quantity called Equivalent
Available Pressure (EAP) can estimate the total pressure at the exit of a RDC. EAP is defined as the
total pressure that a homogeneous flow would have to achieve the same thrust produced by the RDC
if it isentropically expanded down to ambient pressure [113]. Thus, direct comparisons of the non-
uniform RDC and the uniform deflagration-based combustor are better enabled. An experimental
version of EAP was derived based on gross thrust measurements and some assumptions about
the exit velocity. Said thrust measurements would inherently capture the details of the non-
uniform flow along the exit plane. In theory, EAP encapsulates many of the losses that may
occur through the system (e.g., viscous, non-isentropic heat addition, etc.) while being agnostic
to how the losses in total pressure occurred. The number of experimental studies that have
characterized the pressure gain through the EAP has dramatically increased over the past several
years [114, 115, 116, 117, 118, 13, 119]. Additional work has looked at alternative methods of
computing the total pressure, such as utilizing Kiel probes [13, 14] and using area-Mach relations
with static pressure measurements [114, 120, 121]. Thus far, all reported pressure gains (relative
to plenum pressure) have been negative and significantly less than the values generated from two-
dimensional simulations [14, 113]. That said, specific geometries have shown single-digit percent
pressure losses [118, 121, 48], suggesting an achievable positive pressure gain with further design
iterations. In particular, a recent work by Brophy and Thoeny reported effectively no pressure loss,
though information was limited in the work [48].

In the effort to measure the performance of the combustor independent of the nozzle when mea-
suring the PG, a truncated, purely converging nozzle is typically recommended since it eliminates
the impact of the nozzle efficiency on the expansion process [113]. However, the lack of a diverging
portion can cause a pressure mismatch at the exit plane. The flow will experience a rapid expansion
around the corner of the nozzle, which will, in turn, create an expanded recirculation region an-
chored around the nozzle [122], creating an effective drag force. Accounting for this drag force is
necessary for computing the gross thrust from a load cell measurement of the total force produced
by the device, making this a necessary correction to compute the EAP and PG. A study by Walters
et al highlighted the importance since the contribution to the gross thrust from the base drag can
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range from 10-40%. [119]. The common practice is installing flush-mounted pressure transducers
on aft-facing surfaces at specific locations. The measurements are then numerically integrated to
get the base drag. These pressure measurements are taken at various radial locations while several
studies had multiple circumferential locations [114, 119, 123, 124]; however, none of those works
addressed the effect of any possible circumferential variations on the integrated value of base drag.
In most studies, the numerical integration is performed by assuming an axis-symmetric profile
and summing over the area-weighted pressures [115]. Such numerical integration is a Newton-
Cotes integration method. Fievioshn et al. proposed an alternative numerical integration method
(Gauss-Kronrod) to minimize the number of necessary pressure measurements while maintaining
low numerical error [116]. By assuming the radial pressure distribution is continuous, axisym-
metric, and follows a monic polynomial, Fievioshn et al. measured the base drag with only five
measurements, which is less than what employed by others [114]. More importantly, through the
Kronrod extension, the integration error is estimated [116, 125], an often overlooked uncertainty
source. However, Fievioshn et al. did not make the comparisons, at the time, to the more common
Newton-Cotes integration.

Based on current measurements, the pressure gain of an experimental RDC will likely be on the
order of several percent [118, 121, 126]. Thus, the margin of error for a definitive demonstration
of pressure gain will have to be small. As estimated by EAP, the experimental pressure gain is
a conservative metric due to assuming choked flow at the exit [113]. By being conservative, an
experimentally observed positive pressure gain value is considered sufficient to demonstrate an
actual gain. However, this reasoning needs to pay more attention to the significant experimental
uncertainties in these measurements, which may add additional ambiguity. Reporting uncertainties
in mass flow rates, gross thrust measurements, and specific impulse occurs in the RDE literature
[115, 119, 127]. Typically, the propagation of the uncertainties follows the guidelines given by
the ISO “Guide to Expression of Uncertainty in Measurement” [128]. Still, a demonstration of
the propagation of uncertainties in the calibration through the EAP methodology does not exist in
the literature. Fievisohn et al. provided an overview of possible sources of uncertainty in EAP
to recap the lessons learned by utilizing the method [129]. Some of these sources are controlled
through experimental design, such as different instrumentation and numerical integration techniques
for accurate base drag measurements [116]. Other considerations were practical considerations,
namely the unknown gas properties and possible subsonic Mach number [129]. While again,
Fievisohn et al. presented some sensitivity analysis, they did not give a rigorous method of
propagating all sources of error into the final pressure gain measurement. Overall, the minimal
studies focused on the base drag on the nozzle have left a hole in the literature in assessing the
experimental measurement of EAP and PG in terms of its overall precision/uncertainty.
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1.5.6 Influence of Geometric Parameters on Performance

Several geometric parameters defining the RDC flow path have been varied in the literature to
minimize pressure losses, including the inlet throat area, exit area, and detonation channel width.
Many studies have observed that having more open (larger area) inlet throats results in better
performance [13, 14, 114, 121, 116]. The prevailing hypothesis is that the total pressure drop
across the inlet would decrease with the larger area due to lower flow speeds and less turbulent
losses. Lower flow speeds are achievable by lowering the mass flux through the inlet; thus, larger
areas reduce the mass flux for a given mass flow rate, theoretically improving performance. One
demonstration of the link between the inlet losses and PG was given by Brophy and Theony [48].
In their work, they mitigated regions of possible separation during the area convergence in the inlet,
thereby reducing the total pressure loss across the inlet and subsequently observing the PG grew
less negative [48]. Overall, this is likely analogous to the loss in dynamic pressure discussed in gas
turbine combustors, and more optimized inlets would ideally minimize the loss across the inlet.

Similar to the inlet area, many studies have extensively investigated the relationship between the
exit area constriction and PG [13, 14, 114, 121, 116]. Reducing the exit area (i.e., making a more
restrictive nozzle) back-pressurizes the detonation channel for a given flow rate, and this correlates
with an increase PG by making it less negative. The back-pressurization reduces the static pressure
ratio across the inlet, likely reducing the losses associated with the inlet. Additionally, the area
convergence better guarantees sonic exit flow, which is required for calculating EAP [113]. In
the introductory work, Kaemming and Paxson initially predicted that performance would scale by
the ratios of areas between the inlet, channel, and exit; thus, the results were not unprecedented.
However, Bach et al. recognized that the results from a wide variety of experimental PG seem to
scale with the ratio between the area of the inlet throat and the outlet throat [14]. In other words,
as the throat areas that bound the detonation channel approach the same value, the measured PG
values approach zero, or no pressure losses occur. The best performing RDC geometries reported
with single-digit losses have this area ratio being approximately one [118, 48].

Some recent work by Brophy et al. explored the channel width as an additional geometric
parameter that may impact performance [121, 48]. By fixing the inlet and outlet areas and varying
the channel width from 7.62 mm to 19.0 mm, they observed that the larger channel width resulted
in significantly better performance in less negative values of PG [121]. Many of the previously
discussed works [114, 115, 116, 117, 118, 13] had used the same channel width of 7.62 mm (0.3
in) that is commonly used throughout literature [130], marking the study of Brophy et al. a first
of its kind to vary the width parametrically. Even after changing the inlet area, the increase in
performance with increasing channel width persisted. The increase in channel width theoretically
mitigates the heat transfer to the walls, and such heat transfer serves as a loss of energy incapable
of producing work or thrust. The increased channel width may also have the benefit of lowering
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the overall bulk axial velocity (and mass flux) in the chamber, decreasing the total pressure losses
associated with viscosity/turbulence, which is of particular interest for determining the PG.

The combustor length is another alternative geometric parameter for fixed inlet and outlet
areas. The combustor length has been previously observed in several studies to significantly
change the operating mode of the RDC [131, 132, 133]. For instance, one recent study focused
on studying secondary waves within RDCs found that increasing the length leads to a mode
transition and stabilization of the detonation wave(s) [132]. Additional work has shown that
changing the combustor length can avoid longitudinal pulsing modes [131, 133]. In the context
of performance, longer detonation channels allow for more viscous and/or thermal losses to the
wall and are typically considered detrimental [134]. Some early work done by Bykovskii et al.
reported relationships for the minimum and “optimal” length of the detonation chamber with
reference to the detonation height based upon extensive testing, although in those studies, the
optimized metric in the “optimal” length is not well-defined [30]. Other computational work
suggests changing axial lengths has no significant impact on performance (measured by thrust
and specific impulse) [89, 135]. Experimentally, several groups have demonstrated that length
changes did not significantly alter the thrust and specific impulse of RDCs with rocket injectors
[136, 137, 138]. While thrust and specific impulse are useful performance metrics, they neglect
the increase in plenum pressure needed to drive the bulk flow in RDCs [139]. For instance, even
if the specific impulse is constant across the combustor lengths, a smaller plenum pressure for
the same flow rate for a certain length would be equivalent to better performance. Pressure gain
measurements, on the other hand, account for changes in plenum pressure, making it ideal for
comparisons between lengths; however, thus far, the pressure gain studies in the literature (e.g.,
[13, 121]) have had the length fixed.

1.5.7 Detonation Channel and Plena Coupling

Reactants are injected passively and continuously into the detonation channel of the RDC. A
consequence of the passive injection is a coupling between the detonation chamber and the plena
[140]. The sharp rise in pressure associated with the continuously propagating detonation wave(s)
exceeds the plenum pressures, causing a modulation in the reactant injection, potentially arresting
or reversing the flow. A transient injector response follows as the chamber pressure steadily decays
from the Taylor expansion wave behind the detonation wave(s). The impact of the detonation wave
on reactant injection has been the subject of many studies in the literature, both experimentally [140,
141, 142, 143, 144, 145, 146] and computationally [134, 147, 148]. Additionally, an oblique shock
attached to the individual detonation waves can propagate upstream through the inlet [53, 54, 55],
causing high-frequency pressure variation within the plena. Thus, the resulting coupling is highly
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geometry-specific and complex with spatially and temporally varying properties. Furthermore, the
coupling also likely depends on the number and strength of the waves in the detonation chamber.

One manifestation of the detonation-induced coupling is an observable increase in the required
global plenum pressure for a given reactant mass flow rate (for example, [53]). Driscoll et al. [141]
likened the plenum pressure increase to a reduction of the effective area since similar pressurization
would occur by geometrically reducing the injection area for the given flow rate to pass through.
The effective area ratio, as they referred to it, was computed by taking the ratio of properties at the
throat before and during detonative operation and was plotted against the corrected air mass flow
rate. Other groups have proposed other similar experimental measurement methods and metrics
[142, 144, 143, 146, 145, 50, 139]. Although various groups use different terminology, the core
concept remains consistent. The detonation wave changes the effective flow area of the inlet, and
this representation is a distillation of the complex and non-uniform inlet dynamics. In particular,
the mass-based blockage fraction first introduced by Shepard [50] and then later expanded upon by
Feleo and Gamba [139], was validated to adequately capture changes in the inlet area, unlike some
of the other metrics [139]. This blockage fraction effectively measures the reduction in the mass
flux through the inlet for a given plenum pressure during detonative operation [139]. Importantly,
this blockage fraction quantifies the coupling between the plena and detonation channel and will
be used extensively throughout this work.

Reverse/backflow at the inlet is an additional phenomenon related to the coupling that has yet
to be well characterized experimentally. The local channel pressure after the detonation wavefront
may be sufficiently large to create an adverse pressure gradient that reverses the flow direction,
thereby creating backflow into the injectors [134]. Matsuoka et al. observed characteristics of
reverse flow in their study focused on burned gas backflow with ethylene-oxygen mixtures [143].
In their study, high-speed imagery indicated the presence of burned gas propagating upstream of
the RDC inlet. However, the functional dependencies or magnitude of the backflow relative to the
bulk inlet flow still needed to be explored. Although not a specific focus of their work, the mixing
study of Rankin et al. [44] using acetone planar laser-induced fluorescence (PLIF) imaging has
shown a time-dependent mixing profile that is consistent with the presence of burnt gas backflow
propagating upstream into the air plenum of a hydrogen-air RDC. Finally, Shepard used an optically
accessible outer body around the inlet and high-speed broadband chemiluminescence to confirm
the backflow in the RDC configurations evaluated in this work [50].

In a practical system, the plenum/inlet of an air-breathing RDC connects to an upstream compo-
nent that may be susceptible to back-pressurization events, whether that be a compressor [149, 150]
or an isolator [151, 152, 153]. Outside of the interaction with upstream components, a global in-
crease in plenum pressure is also significant as it relates to PG since an increase in required plenum
pressure results in a less favorable evaluation of RDC performance. Paxson and Miki [148] and

35



Kaemming et al. [154] demonstrated the negative relationship between backflow and performance
through their computational works. However, as discussed previously, more open inlets and lower
pressure drop injectors lead to less negative values of PG. Lower pressure drop injectors, while
attractive for performance, can lead to greater backflow and/or fluidic blockage, thereby creating
a required trade-off between minimizing backflow and pressure drop across the injector. Several
attempts have been made to circumvent this trade-off by explicitly suppressing the backflow by
using diodic injection schemes similar to Tesla valves [155, 55, 145, 156]. An ideal diodic injector
is one where the flow in the forward direction experiences a minimal pressure drop. At the same
time, there is an effectively infinite pressure drop in the reverse direction that prevents flow from
traveling backward. Barnouin et al. attempted to demonstrate better performance with a higher
diodicity injector experimentally, but the results were inconclusive [156]. Thus, this remains an
active area of research.

1.6 Dissertation Objectives and Contributions

This work is a comprehensive overview and evaluation of the experimental global “pressure gain”
metric prominent in the RDC literature. While the preexisting works have investigated this quantity
both experimentally and computationally, the analysis of this work is unprecedented in scope in both
the theoretical description of “pressure gain” and the experimental method to measure “pressure
gain.” In particular, this work focuses on the experimental EAP method in favor of the other
techniques found in the literature. Overall, the evaluation of the PG centers on four critical aspects
of the experimental metric:

1. The theoretical background and description of how the average total pressure is defined. If
the theory supporting the definition of the average total pressure used in PG is flawed, the
conclusions drawn from PG may be misleading.

2. The accuracy of the experimental EAP method. The accuracy addresses the systematic
uncertainty within the method that can alter how close a given measurement is to positive
gain.

3. The precision of the experimental EAP method. The precision addresses the random uncer-
tainty present within the method that impacts the comparison of PG between tests.

4. The practical usefulness of PG in evaluating different RDC geometries since one of the end
goals for the PG metric is to determine if changes made to RDCs result in better performance.
Additionally, changes in the RDC would ideally reflect as changes in PG to enable more
intelligent designs and to determine key loss mechanisms.
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This work addresses each of these points in some capacity. For reference, Chapter 2 addresses
the theoretical background, while Chapters 4 and 5 address the accuracy and precision of EAP.
Chapters 6 and 7 utilize the developed experimental method to assess if changes in the RDC
flowfield result in a measurable and significant change in PG. Such changes in the flowfield occur
due to targeted geometric modifications to the RDC. Substantial portions Chapters 6 and 7 are
dedicated to the characterization and quantification of the changes in the flowfield, and the results
from those analyses contextualize the changes, or lack thereof, in PG. Thus, the focus remains
solely on the PG.

Several novel technical contributions to the RDC literature occurred while using and evalu-
ating the PG measurement method. The following are some of the critical contributions found
interspersed throughout this work, and they are summarized below:

• Based on the definition of the experimental version of EAP, it is easily shown that it is
effectively equivalent to an area-averaged of the exit flow. Since EAP is an area-averaged
quantity, it cannot preserve the exhausting flow’s momentum, energy, or entropy, which may
make it ill-suited for integration into a quasi-one-dimensional model.

• The application of various averaging techniques adapted from the literature to sample RDC
Computational Fluid Dynamics (CFD) simulation data reveals that the experimental EAP
under-predicts all other average total pressures. Additionally, the “average” total pressure
is not unique since it depends on the quantity of interest and exit state to which the flow is
assumed to expand; therefore, a given RDC flowfield does not provide a unique PG.

• The three primary experimental methods of experimentally measuring pressure gain converge
to the same result, which is analytically provable. The mathematical demonstration leverages
the equality between the time-average and the area-average in periodic flowfields, which
is also explicitly proven here. This result unifies the observations made by independent
researchers and the different experimental methods.

• A thrust stand for the University of Michigan RDC test facility that can interface with the
coupled exhaust was developed, characterized, and integrated. The thrust stand includes
extensive instrumentation to correct for base drags along the exhaust flange and nozzle when
measuring the gross thrust output of the RDC.

• The large number of pressure measurements taken along the nozzle identified a pressure
asymmetry, the first-of-its-kind observation amongst the RDC literature. The base drag
along the nozzle is determined to be a significant source of uncertainty due to the lack of
edge pressure measurement and the choice made during the numerical integration. This work
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also made a direct experimental comparison between a Gauss-Kronrod and the traditional
Newton-Cotes, which was lacking in the literature.

• This work provides the most in-depth detailed uncertainty analysis of the EAP method to
date. This analysis propagated the uncertainty from individual measurements into the final
PG and considered the assumptions made within the EAP method. The total uncertainty
in the PG was more significant than previously believed, indicating that PG may not have
adequate precision.

• A novel method is introduced in this work to estimate the area-averaged Mach number at
the exit using a static pressure measurement and the EAP method. Since all estimated Mach
numbers were subsonic, none matched the assumed Mach number in the EAP method. As
such, the introduced Mach-number corrected PG improves the accuracy of the EAP method
and eliminates a significant source of systematic uncertainty.

• Two new RDC modes of operation were discovered. One of those modes consisted of two
co-rotating detonation waves that were distinguishable with different pressure ratios but the
same speed. The other mode is a transient super-cycle where the number, direction, and
speed of the detonation and secondary waves vary in a well-defined, periodic manner.

• Statistical methods of measuring and comparing the measured pressure and detonation wave
speeds are developed. Traditional RDC analysis techniques do not accurately convey the
inherent cycle-to-cycle variability in the detonation properties. The empirical distributions
of such properties obfuscate direct comparisons between distinct tests, which this work
addresses.

• The combustor length was varied, and the resulting changes in the operating mode, stability,
and detonation properties were identified using the statistical methods developed. Despite
the changes to the detonation wave, the PG did not significantly change. Thus, the PG
measurement is insensitive to changes in the multiplicity, speed, and stability of the detonation
wave(s) induced by combustor length.

• Making the inlet diodicity worse allowed for the first experimental demonstration of increased
coupling between the detonation channel and plenum with an injector with a worse diodicity
for the same inlet throat area. Additionally, a significant decrease in PG occurred due to the
modified inlet, illustrating that increased blockage/backflow correlates with worse PG.

The remainder of this work explores and elaborates upon these technical contributions in greater
detail. This work concludes with some final recommendations and discussions about using the
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global PG as the preferred performance metric and about whatever benefits RDCs have that are
independent of PG.
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CHAPTER 2

Defining a Singular Value of Pressure Gain

2.1 Introduction

Before discussing the experiments performed to measure the pressure gain of the RDCs, additional
theoretical analysis is presented in this chapter to contextualize the experimental methods required
to estimate the total pressure at the outlet of the RDC. As discussed previously, the flow exiting a
RDC is highly non-uniform in the azimuthal direction due to the dependence on the relative position
of the detonation wave(s). Despite this non-uniformity, it is desirable to report a singular value for
the performance of the combustor. In the case of reporting a pressure gain or, more specifically,
a total pressure at the outlet of a RDC, the two-dimensional, non-uniform flow is reduced into a
singular value through some averaging procedure. Presented here is a detailed discussion of the
choices of the averaging procedure. Alongside this discussion, the current experimental methods of
measuring pressure gain are directly compared to the theoretical averaging performed on CFD data.
Finally, the convergence of the different experimental methods in measuring the same pressure gain
is explored and explained on a theoretical basis.

The averaging process needed for defining a total pressure ratio is non-trivial, and the “proper”
method is not immediately evident. Depending on the severity of the non-uniformities, different
averaging procedures (i.e., area-averaged, mass-averaged, etc.) give significantly different results.
The problem of averaging in unsteady deflagrative combustors has been examined previously by
Cumpsty and Horlock [108], who gave a comprehensive overview of the various averaging types.
Likewise, Paxson and Kaemming demonstrated the application of mass-averaging, averaging while
conserving entropy, and averaging while preserving thrust output to the unsteady flow of a PDE
[157]. One of the critical aspects of the choice in averaging is the effective increase in entropy
[157, 158]; the entropy calculated using some averaged state is larger than the mass-averaged
entropy. Later in this work, there will be a practical demonstration of this increase in entropy.

This work adapts the averaging procedures presented by Cumpsty and Horlock [108] to RDC
applications. The procedures for averaging are determined either over a geometric area or to
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maintain a quantity of interest, such as thrust production, work output, or entropy. Each procedure
has an independent formulation. This work also shows the contrast between these averaging
procedures and the EAP presented by Kaemming and Paxson [113]. The thrust-averaging procedure
is an extension of the ideal EAP formulation to accommodate variations in gas composition. At
the same time, the detailed analysis reveals that the experimental EAP is effectively equivalent to
the area-averaging procedure. Applying the averaging procedures to sample high-fidelity, three-
dimensional CFD simulation demonstrated that the experimental EAP significantly underrepresents
the “average” total pressure calculated from the other averaging techniques, suggesting it may be
an overly conservative metric.

Additionally, the averaging procedures that preserve thrust production and work output result in
measurably different total pressures based on the CFD data. The different total pressures contradict
the concept of EAP, which is said to preserve both quantities simultaneously. Undergoing a physical
process, whether passing through a nozzle or turbine, would increase the entropy of the flow, which
may be a concern for practical applications. This work contains a novel sensitivity analysis of the
averaging procedures on the outlet conditions, which revealed that the perceived performance could
worsen despite no changes to the flow at the outlet of the RDC. Overall, this work illustrates that the
outlet total pressure is a non-unique figure of merit as it depends upon both the desired application
(propulsion or power generation) and the exit conditions to which the flow is expanding.

2.2 Why Averaging is Desirable

For several reasons, defining a corresponding average state for the unsteady and non-uniform flow
is desirable. First, reduced thermodynamic models are based on describing the processes along
the RDC through a discrete set of representative states and often adopt a quasi-one-dimensional
representation of the flow. Determining the representative states along the axial direction necessi-
tates defining equivalent average properties. Secondly, some of the metrics of performance, such
as the pressure gain of Kaemming and Paxson [113] that the community has focused on in the
last several years, rely on quantities (i.e., total pressure) that are essentially equivalent to average
values. For instance, to determine a singular value of pressure gain to describe the performance
of a RDC, a singular value of the outlet pressure is needed that is equivalent to the non-uniform
flow. It is essential to note the term “equivalent” in these average states may not be well-defined.
Finally, total temperature, total pressure, and static pressure are regularly measured in-flight using
pitot-static and total temperature probes to provide information about the aircraft subsystems. If
RDCs are then to be used for flight, converting the limited amount of measurements with limited
spatial information into useful information regarding the performance of the RDC is imperative.
Likewise, current experiments seek to build a comprehensive knowledge of the flowfield based on
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Figure 2.1: Definition of state naming along flowpath for RDC.

such limited information. Overall, one of the purposes of this work is to clarify the different means
of defining an average state and how said average states can be “equivalent” to some aspect of the
non-uniform flow.

2.3 Averaging the Non-Uniform Flow

2.3.1 Thermodynamic States and Naming Convention

Throughout this work, thermodynamic state notation is based upon the naming convention from the
air-breathing propulsion community, although the notation easily translates to rocket applications.
The definition of states along a conceptual flow path is given in Figure 2.1. For deflagration-based
devices, the individual states effectively correspond to a physical location within the device (e.g.,
combustor exit, nozzle throat, etc.) because the flowfield and states are essentially uniform and
stationary across cross-sectional areas. For detonation-based systems, the propagating detonation
introduces spatial and temporal non-uniformity that breaks the relation between spatial location
and corresponding states. Thus, in our context, the definition of states should be considered as a
steady equivalent representing the state at a particular location or component of the device (e.g.,
inlet, nozzle, etc.). The definition of this steady-equivalent state is a challenge in itself, however.
Table 2.1 summarizes the different location descriptions for ramjet/scramjet and turbojet/turbofan
applications. A variable’s subscript number denotes its defined location. For example, consider an
arbitrary thermodynamic/fluid quantity (Q), then Q8 indicates that quantity evaluated at the nozzle
throat plane ( 8 ).

These physical locations will have corresponding thermodynamic states for the uniform and
steady flows of deflagrative combustors. For a RDC, the flow is inherently three-dimensional,
non-uniform, and unsteady from the wave propagation. Again, consider an arbitrary thermody-
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State/Location Ramjet/Scramjet Turbojet/Turbofan
0 Ambient Ambient/Diffuser Inlet
1 End of External Compression Compressor Inlet
2 End of Inernal Compression Compressor Outlet
3 Combustor Plenum/Isolator Combustor Plenum

3.1 Oxidizer Inlet Throat Oxidizer Inlet Minimum Area
3.2 Combustor Channel Combustor Channel
4 Combustor Outlet Combustor Outlet
5 – Turbine Outlet
6 – Afterburner Inlet
7 Start of Nozzle Afterburner Outlet/Start of Nozzle
8 Nozzle Throat Nozzle Throat
9 Nozzle Outlet Nozzle Outlet
10 Expanded air –

Table 2.1: Description of location notation in air-breathing engines.

namic/fluid quantity (Q) within the RDC, which can be expressed in the following form using
cylindrical coordinates,

Q = 𝑓 (x, 𝑡) (2.1)

= 𝑓 (𝑟, 𝜃, 𝑧, 𝑡) (2.2)

Since the bulk of the fluid motion is in the axial (𝑧) direction, tracking the properties at discrete
axial locations is still desirable. The desired axial planes correspond to the engine locations in
Table 2.1. Thus, the above naming convention will still denote locations within the RDC. This
work focuses on the 𝑟 and 𝜃 variations of Q at a fixed 𝑧 and 𝑡. Henceforth, the notation will be
simplified to be Q(x) in the following manner,

Q𝑖 (x) = 𝑓 (𝑟, 𝜃 |𝑧𝑖, 𝑡) (2.3)

For example, whenever 𝑝8(x) is referred to in the context of RDCs, the notation implicitly refers
to the radial and circumferential variation of pressure at the nozzle throat axially location (𝑧8) at
some arbitrary time, 𝑡.

2.3.2 General Considerations on the Averaging Process

The ultimate goal of the averaging is to relate the non-uniform and unsteady flow from RDCs
to an “equivalent” uniform flow with reduced dimensionality that preserves some quantity of the

43



non-uniform flow. In this case, the three-dimensional flow field reduces to a quasi-one-dimensional
representation along the center-line axis. Specifically, two-dimensional integrals performed across
cross-sectional areas of the annulus reduce the information in each axial plane into a single number.
The integrand of the integrals varies according to the specific averaging procedure. The quasi-
one-dimensional flow created by the averages preserves some particular information about the
flow; however, the averaging cannot conserve all quantities simultaneously. For instance, either the
entropy of the quasi-one-dimensional flow artificially increases [157, 158] or one of the conservation
equations cannot be enforced along the quasi-one-dimensional flow [159]. The various averaging
procedures exist based on what quantities are conserved, with different quantities having greater
relative importance in different applications.

This work considers four types of averaging:

1. Area-averaged – When a limited amount of information is known, as in the case of physical
experiments, geometric averaging across the plane requires the fewest assumptions. The
geometric mean, also known as the area-averaged, can be applied to the total pressure
distribution at the outlet.

2. Thrust-averaged – If the flow leaving the RDC passes through a nozzle to produce propul-
sion, the quantity of interest is the ideal gross thrust (𝐹Gi) production. The thrust-averaged
total pressure is subsequently defined to be the total pressure that provides the same gross
thrust as the non-uniform flow given the same mass-averaged total enthalpy (⟨ℎt⟩M) and
mass-averaged gas composition (⟨𝝌⟩M).

3. Work-averaged – If the flow leaving the RDC passes through a turbine for power generation,
the quantity of interest is the ideal work extracted ( ¤𝑊i). The work-averaged total pressure
is subsequently defined to be the total pressure that provides the same work output as the
non-uniform flow given the same mass-averaged total enthalpy (⟨ℎt⟩M) and mass-averaged
gas composition (⟨𝝌⟩M).

4. Entropy-averaged – The primary benefit of using detonation waves is reduced entropy
production during combustion. If entropy is the quantity of interest, an entropy-averaged
total pressure can be defined that satisfies the Gibbs relation for the given mass-averaged
enthalpy (⟨ℎt⟩M), gas composition, (⟨𝝌⟩M) and entropy (⟨𝑠⟩M).

These are also summarized in Table 2.2. The different averaging procedures presented here will
all denote averaging of quantity Q by ⟨Q⟩, with the different subscripts on the averaging brackets
indicating the averaging employed. Each averaging procedure corresponds to a reduction in
dimensionality that preserves some specific quantity about the flow, except for the area-averaging
procedure. The following sections further develop each type of averaging.
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In addition to the aforementioned averaging procedures, the method of computing EAP as
proposed by Kaemming and Paxson is considered since it is widely accepted in RDC literature
[113]. The formulation of the experimental equivalent available pressure and ideal experimental
available pressure are compared and contrasted to the other averaging procedures. Specifically,
the experimental EAP is found to be effectively equivalent to area-averaging. Meanwhile, the ideal
EAP is virtually identical to thrust-averaging, albeit with some subtle differences.

Mass-averaged of select extensive properties (properties defined per unit mass) are repeatedly
used when defining an “equivalent” uniform flow that conserves some quantity of interest of the
non-uniform flow. Both Table 2.2 and the brief descriptions above have already referred to mass-
averaging. Mass-averaging can also be referred to as preserving the flux of the quantity [108, 159].
For a generic, extensive quantity Q, the mass averaging procedure is given by,

⟨Q⟩M =
1∬

𝐴
𝜌𝑢d𝐴

∬
𝐴

𝜌𝑢Qd𝐴 (2.4)

=
1
¤𝑚

∬
𝐴

Qd ¤𝑚 (2.5)

where,
d ¤𝑚 = 𝜌𝑢d𝐴 (2.6)

The definition of d ¤𝑚 will commonly be used to simplify expressions later in this work.
The important extensive properties for our consideration are the total enthalpy (which is sub-

stituted with 𝑐𝑝𝑇t by assuming a calorically perfect gas) and specific heat at constant pressure and
volume, 𝑐𝑝 and 𝑐𝑣, respectively. The different specific heats then define a mass-averaged ratio
of specific heats (𝛾), thereby preserving information about the gas composition. Similarly, the
specific entropy is mass-averaged for use in the entropy-averaging procedure. While it may seem
helpful to perform mass-averaging on the total pressure, such a procedure does not have a physical
justification as it is an intensive property [108].

Since spatial locations are the primary concern, the averaging procedures presented here do not
average over time but are applied to single instances of time. Thus, the average quantities can vary
over time. Finally, while additional averaging procedures exist [108], the ones chosen in this work
have either direct applications to practical RDCs (area, thrust, and work-averages) or serve as the
idealistic value that is useful for comparison (entropy-average).
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Averaging Procedure Notation Conserved Quantities
⟨ℎt⟩M ⟨𝝌⟩M 𝐹Gi ¤𝑊i ⟨𝑠⟩M

Area-averaged ⟨𝑝t⟩A ✕ ✕ ✕ ✕ ✕

Experimental Equivalent Available Pressure EAPe ✕ ✕ ✕ ✕ ✕

Thrust-averaged ⟨𝑝t⟩F ✓ ✓ ✓ ✕ ✕

Ideal Equivalent Available Pressure EAPi ✓ ✓ ✓ ✕ ✕

Work-averaged ⟨𝑝t⟩W ✓ ✓ ✕ ✓ X
Entropy-averaged ⟨𝑝t⟩S ✓ ✓ ✕ ✕ ✓

✓ indicates quantity is conserved.
✕ indicates quantity is not conserved.

Table 2.2: Total pressure averaging procedures considered for their applications to RDC and the
conserved quantities associated with each procedure.

2.4 Types of Averaging Procedures

2.4.1 Area-Averaging

2.4.1.1 Basis of Area-Averaging

Assuming that the exit of the RDC is a plane, area-averaging defines the mean across that plane.
Specifically, the definition of an area-averaged value of total pressure (⟨𝑝t⟩A) is:

⟨𝑝t⟩A =
1
𝐴

∬
𝐴

𝑝t(x)d𝐴 (2.7)

In the application to RDCs with a cylindrical geometry d𝐴 = 𝑟d𝑟d𝜃.
No theoretical basis exists for area-averaging non-uniform thermodynamic quantities (i.e., total

pressure, total temperature, etc.) in that no physical meaning can be associated with these area-
averaged quantities [108]. However, due to the limited number of experimental measurements,
area-averaged quantities are often used in experiments since they require the fewest assumptions.
The other averaging techniques require knowledge about the velocities and the local thermodynamic
state, found only in CFD solutions.

2.4.1.2 Experimental EAP

As mentioned previously, the method of measuring the experimental equivalent available pressure
(EAPe) is the most widely accepted method of determining the total pressure at the outlet of an
experimental RDC. Thus, EAPe will be used as the base comparison for the other averaging
methods presented in this work. To compare and contrast EAPe with other averaging methods, the
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derivation, initially proposed by Kaemming and Paxson [113], is reproduced here.
The starting point for the EAPe derivation is the basic gross thrust equation:

𝐹G = ¤𝑚𝑢z,8 + 𝐴8(𝑝8 − 𝑝0) (2.8)

= 𝐴8𝜌8𝑢
2
z,8 + 𝐴8(𝑝8 − 𝑝0) (2.9)

Using the ideal gas law and the speed of sound by assuming a CPG, this equation becomes:

𝐹G = 𝑝8𝐴8(1 + 𝛾8𝑀
2
8,z) − 𝑝0𝐴8 (2.10)

It is this form of the thrust equation that is used in the EAPe methodology since the 𝑝8 is solvable
by measuring thrust and assuming a Mach number [113]. Note that this Mach number only accounts
for the axial velocity (𝑢z,8 = u8 · êz) and neglects any non-axial velocity (𝑀8,z = 𝑢z,8/𝑎8). When
solving for 𝑝8 in this manner, it is typically denoted with a tilde (i.e., 𝑝8) to indicate the EAPe

methodology. The isentropic relationship then gives the associated total pressure,

EAPe = 𝑝tz,8 = 𝑝8

(
1 + 𝛾8 − 1

2
𝑀2

8,z

) 𝛾8
𝛾8−1

(2.11)

The flow is assumed to be isentropic from the end of the combustor ( 4 ) to the nozzle throat ( 8 ),
such that the total pressure does not change (𝑝tz,8 = 𝑝tz,4). Here, the focus is on 8 since nozzles
that terminate at the throat are commonly used experimentally [114] to accelerate the flow and
provide back-pressurization while also not introducing a dependence on the nozzle performance
for the expansion. In reality, there is no way to distinguish 4 and 8 as reactants can theoretically
leak through the detonation and deflagrate while expanding towards the nozzle. Nevertheless, the
definition of EAPe presented by Kaemming and Paxson [113] has been recovered.

2.4.1.3 Experimental EAP as an Area-Averaged Quantity

While it is not immediately evident from the definition of the experimental EAP (EAPe), EAPe is
effectively an area-averaged total pressure (i.e., averaged across the annulus for a given instance
in time). According to Eqn. 2.10, the thermodynamic variables and gas velocity are implicitly
assumed to be area-averaged. Once again, this would be adequate for nearly uniform flows found
in deflagrative devices; however, RDCs have a non-uniform flow that Eqn. 2.10 poorly captures.

Consider the integral form of the conservation of momentum for the CV of a generic jet
propulsion device, ∭

𝑉

𝜕 (𝜌u)
𝜕𝑡

d𝑉 +
∬

𝑆

u(𝜌u · n̂)d𝑆 = FT −
∬

𝑆

𝑝n̂d𝑆 (2.12)

47



where FT is the thrust force vector, which is the resultant force (excluding pressure forces) acting
upon the CV. By imposing that the flowfield is periodic about the circumference, as done in
Appendix A, the unsteady terms disappear. After re-arrangement, the resultant force (thrust) in the
axial direction (êz) is:

𝐹G =

∬
𝑆

u · êz (𝜌u · n̂) d𝑆 +
∬

𝑆

𝑝 (êz · n̂) d𝑆 (2.13)

=

∬
𝑆

𝑢z (𝜌u · n̂) d𝑆 +
∬

𝑆

(𝑝 − 𝑝0) (êz · n̂) d𝑆 (2.14)

where, 𝐹G = FT · êz and 𝑢z = u · êz. The CV extends into the ambient conditions; thus, the pressure
integral is relative to the ambient pressure (𝑝0). Assuming no momentum enters axially into the
propulsion device (CV) by design, the equation for thrust simplifies to:

𝐹G =

∬
𝐴8

𝜌8𝑢
2
z,8d𝐴 +

∬
𝐴8

(𝑝8 − 𝑝0)d𝐴 (2.15)

=

∬
𝐴8

(𝜌8𝑢
2
z,8 + 𝑝8)d𝐴 −

∬
𝐴8

𝑝0d𝐴 (2.16)

The above equation is also the formulation of the gross thrust of an air-breathing engine, hence, the
subscript “G”.

Applying the area-averaging process given in Eqn. 2.7 to Eqn. 2.16 results in the following,

𝐹G = 𝐴8
〈
𝜌8𝑢

2
z,8 + 𝑝8

〉
A − 𝐴8 ⟨𝑝0⟩A (2.17)

Utilizing the ideal gas law and the speed of sound for a CPG, Eqn. 2.17 is rewritten as,

𝐹G = 𝐴8
〈
𝑝8𝛾8𝑀

2
8,z + 𝑝8

〉
A − 𝐴8 ⟨𝑝0⟩A (2.18)

= 𝐴8
〈
𝑝8(1 + 𝛾8𝑀

2
8,z)

〉
A − 𝐴8 ⟨𝑝0⟩A (2.19)

Equation 2.19 and Eqn. 2.10 are very similar, except for an important distinction. The 𝑝8 can
factor out of the first term in Eqn. 2.10, but not for the first term in Eqn. 2.19 due to the averaging
procedure. In other words, the following is true,〈

𝑝8(1 + 𝛾8𝑀
2
8,z

〉
A) ≠ ⟨𝑝8⟩A (1 + ⟨𝛾8⟩A

〈
𝑀8,z

〉2
A) (2.20)

Appendix B proves the above inequality results from the coupling of the non-uniform properties,
which is analogous to the Reynold’s stress term that appears when averaging the Navier-Stokes
equations. Thus, although EAPe requires an area-integrated measure (thrust), its formulation
nevertheless neglects the non-uniformities (circumferential variations) of the thermodynamic state
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variables. For Eqn. 2.20 to be invalid, the non-uniformities either do not exist or are negligible.
However, this neglects the local flow variables’ dependence on relative position to the detonation
wave(s) within a RDC. By neglecting the non-uniform coupling (ignore Eqn. 2.20), the resulting
EAPe merely approximates the area-averaged quantity. Hence, the analogy between the EAPe

measurement and an area-averaged quantity, despite it often being referred to as preserving the
ability of the flow to produce thrust and/or work. This discrepancy will be considered further in
the following sections.

2.4.2 Thrust Averaging and Ideal EAP

In many aerospace applications, such as rockets, ramjets, and scramjets, the thrust output of the
engine is paramount. Thus, the total pressure is defined such that a uniform flow with the same
mass-averaged enthalpy (total temperature) would have the same potential thrust production as the
non-uniform flow. This averaging is thrust-averaging. Kaemming and Paxson utilize the concept
of thrust-averaging in their ideal equivalent available pressure (EAPi) measurement [113]. The
method for thrust-averaging presented by Cumpsty and Horlock [108] varies from the derivation of
EAPi in some minor ways. What follows is the derivation for thrust-averaging from Cumpsty and
Horlock [108] as applied to RDCs along with a discussion of how it mirrors EAPi [113].

2.4.2.1 Thrust Averaging

Again the flow is assumed to be isentropic from the end of the combustor ( 4 ) to the nozzle throat
( 8 ), such that the total pressure does not change (𝑝tz,8 = 𝑝tz,4), for the reasons given in Section
2.4.1 2.4.1.2.

The derivation starts by computing the ideal axial exit velocity (𝑢z,9i) of expanding the flow
through an isentropic nozzle to the ambient static pressure 𝑝0. This velocity is commonly given by,

𝑢z,9i =

√√√√√
2𝜂𝑛𝑐𝑝,8𝑇tz,8

1 −
(
𝑝0
𝑝tz,8

) 𝛾8−1
𝛾8

 (2.21)

where 𝜂𝑛 is the nozzle efficiency that captures practical losses. Any non-axial velocity is a loss;
hence, the above equation considers only the axial velocity. Throughout this work, the total
temperatures and pressures based on the Mach number of the axial velocity component are,

𝑇tz,8 = 𝑇8

(
1 + 𝛾8 − 1

2
𝑀2

8,z

)
(2.22)
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𝑝tz,8 = 𝑇8

(
1 + 𝛾8 − 1

2
𝑀2

8,z

) 𝛾8
𝛾8−1

(2.23)

The flow isentropicaly expanded to ambient pressure (𝑝0), by assumption; thus, the resulting ideal
gross thrust (𝐹Gi) is generated solely by the exiting momentum,

𝐹Gi = ¤𝑚𝑢z,9i (2.24)

= ¤𝑚

√√√√√
2𝜂𝑛𝑐𝑝,8𝑇tz,8

1 −
(
𝑝0
𝑝tz,8

) 𝛾8−1
𝛾8

 (2.25)

This ideal thrust is treated as the ability of the flow to produce thrust, and this is what is pre-
served from the non-uniform flow. Importantly, there is a distinction between ideal thrust and
experimentally measured thrust.

This formulation of the ideal thrust is for uniform properties across the reference location, which
is not the case across the RDC annulus. To address this, first consider an infinitesimally small
portion of the annulus, whose area is given by,

d𝐴8 = 𝑟d𝑟d𝜃 (2.26)

The state variables are approximately uniform across an infinitesimal area, although variations exist
between the areas (i.e., variation in x). Thus, the corresponding mass flow rate through any given
infinitesimal area is,

d ¤𝑚8(x) = 𝜌8(x)𝑢z,8(x)d𝐴8 (2.27)

Each area’s flow independently passes through an isentropic nozzle to a uniform outlet static
pressure of 𝑝0 to produce thrust. Utilizing the form of Eqn. 2.25, the gross thrust is given by the
following,

d𝐹Gi(x) = d ¤𝑚8(x)

√√√√√
2𝜂𝑛𝑐𝑝,8(x)𝑇tz,8(x)

1 −
(

𝑝0
𝑝tz,8(x)

) 𝛾8 (x)−1
𝛾8 (x)

 (2.28)

Adding all the individual thrust contributions together and assuming that none of them interact
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while being expanded through the nozzle provides the following expression for 𝐹Gi:

𝐹Gi =

∫
d𝐹Gi(x) (2.29)

=

∬
𝐴8

©­­«
√√√√√

2𝜂𝑛𝑐𝑝,8(x)𝑇tz,8(x)
1 −

(
𝑝0

𝑝tz,8(x)

) 𝛾8 (x)−1
𝛾8 (x)


ª®®¬ d ¤𝑚8(x) (2.30)

Equation 2.30 will be equated to Eqn. 2.25 to find the corresponding uniform flow for the same
𝐹Gi. First, the solution becomes constrained from imposing the total temperature used in Eqn. 2.25
matches that of the mass-averaged enthalpy,

〈
𝑐𝑝8𝑇tz,8

〉
M, of the RDC exit flow. The mass-averaged

total enthalpy is, 〈
𝑐𝑝,8𝑇tz,8

〉
M =

1
¤𝑚8

∬
𝐴8

𝑐𝑝,8(x)𝑇tz,8(x)d ¤𝑚8(x) (2.31)

Similarly, the gas composition, represented by 𝛾, is mass-averaged and preserved. The ideal
amount of thrust produced by the corresponding “equivalent” uniform flow expanded isentropically
to ambient conditions is given by,

𝐹Gi = ¤𝑚8

√√√√√√√
2𝜂𝑛

〈
𝑐𝑝,8𝑇tz,8

〉
M

1 −
(

𝑝0〈
𝑝tz,8

〉
F

) ⟨𝛾8⟩M−1
⟨𝛾8⟩M

 (2.32)

where
〈
𝑝tz,8

〉
F denotes the force-averaged total pressure. It serves as the fictitious uniform total

pressure that produces the same amount of ideal thrust as the non-uniform flow. Equation 2.32
should be interpreted as the definition of

〈
𝑝tz,8

〉
F as constrained by the given mass-averaged total

enthalpy and 𝛾.
Equating the thrust produced by the uniform flow (Eqn. 2.32) to the thrust produced by the

non-uniform flow (Eqn. 2.30) results in the following expression for
〈
𝑝tz,8

〉
F,

〈
𝑝tz,8

〉
F

𝑝0
=

1 −
©­­«

1
¤𝑚8

∬
𝐴8

√√√√√
𝑐𝑝,8(x)𝑇tz,8(x)〈
𝑐𝑝,8𝑇tz,8

〉
M

1 −
(

𝑝0
𝑝tz,8(x)

) 𝛾8 (x)−1
𝛾8 (x)

d ¤𝑚8(x)
ª®®¬

2
⟨𝛾8⟩M

1−⟨𝛾8⟩M

(2.33)

2.4.2.2 Ideal EAP

While, in essence, the derivation of the thrust-averaged total pressure is similar to what is presented
by Kaemming and Paxson to compute the ideal EAP [113], the actual derivation follows a different
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path (see Appendix C for a detailed derivation of the ideal EAP in the nomenclature of this paper).
To demonstrate the similarity, Eqn 2.33 is first recast in terms of a mass-averaged velocity.

〈
𝑝tz,8

〉
F

𝑝0
=

[
1 −

〈
𝑢z,9i

〉2
M

2
〈
𝑐𝑝,8𝑇tz,8

〉
M

] ⟨𝛾8⟩M
1−⟨𝛾8⟩M

(2.34)

Velocity is an intensive property, suggesting that a mass-averaged velocity does not carry a ther-
modynamic interpretation. Nevertheless, the mass-averaged velocity becomes useful in the context
of thrust.

𝐹Gi =

∬
𝐴8

𝑢z,9i(x)d ¤𝑚8(x) = ¤𝑚8
〈
𝑢z,9i

〉
M (2.35)

Since, 〈
𝑢z,9i

〉
M =

1
¤𝑚8

∬
𝐴8

𝑢z,9i(x)d ¤𝑚8(x) (2.36)

Thus, a mass-averaged velocity is mathematically sound and is equivalent to the specific thrust.
The energy equation in the form of total enthalpy enables further manipulation. By assumption,

the mass-averaged total enthalpy is conserved from 8 to 9 . Breaking the mass-averaged total
enthalpy into the thermal and kinetic energy components gives,〈

𝑐𝑝,8𝑇tz,8
〉

M =
〈
𝑐p,8𝑇9i

〉
M + 1

2

〈
𝑢2

z,9i

〉
M

(2.37)

=
〈
𝑐p,8𝑇9i

〉
M + 1

2
〈
𝑢z,9i

〉2
M + 1

2

〈
(𝑢′z,9i)

2
〉

M
(2.38)

Appendix C provides the proof of Eqn. 2.38. Equation 2.38 decomposes the ideal exit velocity into
a mean value (angle brackets) and variations from the mean value (denoted with a ′). Solving Eqn.
2.38 for

〈
𝑢z,9i

〉
M, substituting the result into Eqn. 2.34, and re-arranging results in the following,

〈
𝑝tz,8

〉
F

𝑝0
=

©­­«
〈
𝑐𝑝,8𝑇tz,8

〉
M〈

𝑐𝑝,8𝑇9i
〉

M + 1
2

〈
(𝑢′z,9i)2

〉
M

ª®®¬
⟨𝛾8⟩M
⟨𝛾8⟩M−1

(2.39)

which is the same result for EAPi as given by Kaemming and Paxson, with the denominator
being equivalent to the EAP-related average static temperature (𝑇9i). Therefore, the sole difference
between the formulations of ideal EAP and the thrust-averaged total pressure is that 𝑐𝑝,8 and 𝛾8 are
not assumed to be constants.
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2.4.3 Work Averaging

In some cases, preserving the potential work output of the flow if the non-uniform flow were to
enter into a turbine is the quantity of interest. The naming convention for this discussion follows
Section 2.3.1 where the end of the combustor and before the turbine is 4 and after the turbine is 5 .
Here, a process occurs between 4 and 5 , unlike the assumption made in the previous analysis.

First, consider a uniform flow consisting of a perfect gas entering an isentropic turbine, which
causes a change in total enthalpy across the turbine,

¤𝑊 = 𝜂𝑡 ¤𝑚𝑐𝑝,4(𝑇tz,4 − 𝑇tz,5) (2.40)

Which, using isentropic relationships, can be written in terms of total pressure as:

¤𝑊 = 𝜂𝑡 ¤𝑚𝑐𝑝,4𝑇tz,4

1 −
(
𝑝tz,5

𝑝tz,4

) 𝛾4−1
𝛾4

 (2.41)

This equation is the common form for finding the turbine work since it is in terms of the turbine
pressure ratio. The turbine efficiency factor 𝜂𝑡 captures practical losses. The flow is, again,
decomposed into infinitesimally small slices around the annulus with a small amount of mass flow
through the area (see Eqns. 2.26 and 2.27). Each area’s flow independently passes through an
isentropic turbine to a uniform outlet total pressure of 𝑝tz,5 to extract work. There are enough stages
that dampen out any non-uniformity in the flow by assumption [160, 161]. Utilizing the form of
Eqn. 2.41, this is given by the following,

d ¤𝑊 (x) = 𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
1 −

(
𝑝tz,5

𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

 d ¤𝑚4(x) (2.42)

The flow across the different slices do not interact with one another in this framework. Repeating
this process and integrating across all the slices gives the non-uniform flow’s total work output
capability (given a uniform outlet total pressure) as,

¤𝑊 =

∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
1 −

(
𝑝tz,5

𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

 d ¤𝑚4(x) (2.43)

The goal with averaging is to find the total pressure that a uniform flow would produce the same
amount of work through a turbine with a uniform outlet total pressure of 𝑝tz,5. The work produced
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by the corresponding “equivalent” uniform flow expanded isentropically to 𝑝tz,5 is given by,

¤𝑊 = 𝜂𝑡 ¤𝑚
〈
𝑐𝑝,4𝑇tz,4

〉
M

1 −
(

𝑝tz,5〈
𝑝tz,4

〉
W

) ⟨𝛾4⟩M−1
⟨𝛾4⟩M

 (2.44)

where
〈
𝑝tz,4

〉
W indicates the work-averaged total pressure. Again, Eqn. 2.44 serves as a definition,

and
〈
𝑝tz,4

〉
W is the uniform total pressure that produces the same amount of work as constrained

by the given mass-averaged total enthalpy and 𝛾.
The solution of the work-averaged total pressure (

〈
𝑝tz,4

〉
W) comes from equating Eqns. 2.43

and 2.44. Appendix D gives algebraic simplification of equating Eqns. 2.43 and 2.44, with the
final result being:

〈
𝑝tz,4

〉
W =

©­­­­­­«
𝜂𝑡 𝑝

⟨𝛾4⟩M−1
⟨𝛾4⟩M

tz,5

∬
𝐴4

𝑐𝑝,4(x)𝑇tz,4(x)d ¤𝑚4(x)∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
(

𝑝tz,5

𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

d ¤𝑚4(x)

ª®®®®®®¬

⟨𝛾4⟩M
⟨𝛾4⟩M−1

(2.45)

In the limit that 𝛾4 variations are negligible compared to the average value and assuming that 𝑝tz,5

is a constant value, the work-averaged total pressure becomes invariant to the arbitrary value of
𝑝tz,5.

⟨𝑝tz,4⟩W ≈

©­­­­­­«
𝜂𝑡

∬
𝐴4

𝑐𝑝,4(x)𝑇tz,4(x)d ¤𝑚4(x)∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
(

1
𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

d ¤𝑚4(x)

ª®®®®®®¬

⟨𝛾4⟩M
⟨𝛾4⟩M−1

(2.46)

This approximation simplifies the calculations; however, this work uses the full formulation in Eqn.
2.45.

If the turbine efficiency 𝜂𝑡 is assumed to be the same for every x or one wishes to examine the
ideal case (𝜂𝑡 = 1), it too can be eliminated; however, this would require designing the turbine
around the non-uniform flow which poses practical challenges. Finally, Cumpsty and Horlock have
shown that mass-averaged pressure becomes equivalent to work-averaged pressure in the limit that
the variations in pressure are low [108].
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2.4.4 Entropy Averaging

The thrust- and work-averaging techniques discussed thus far have assumed isentropic processes in
their formulation. However, several studies have shown that the averaging procedures result in an ar-
tificial increase in entropy compared to the mass-averaged entropy [157, 158]. Simultaneously pre-
serving the flow’s entropy and total enthalpy is a different averaging technique, entropy-averaging.
Entropy-averaging is a helpful metric since it is a highly idealized representation.

For a mixture of ideal gases, the integrated form of Gibbs relation gives the specific (per unit
mass) entropy (𝑠),

𝑠(x) = 1
⟨M⟩ (x)

𝑁∑︁
𝑖=1

{
𝜒𝑖

[
𝑠𝑜𝑖 (𝑇 (x)) − 𝑅̄ ln

(
𝑝(x)𝜒𝑖 (x)

𝑝𝑜
𝑖

)]}
(2.47)

where 𝑅̄ is the universal gas constant and the mixture average molar mass ⟨M⟩ is,

⟨M⟩ (x) =
𝑁∑︁
𝑖=1

𝜒𝑖 (x)M𝑖 (2.48)

The summation extends over the set of 𝑁 different species present in the mixture, with each species
having a molar mass of M𝑖. The mole fraction of species 𝑖 (𝜒𝑖) describes the mixture, which varies
in space and time. The NASA polynomial parameterization gives the entropy using the reference
molar (per unit mole) entropy (𝑠𝑜) for each species at a reference pressure (𝑝𝑜) [162]. This work
specifically evaluated entropy using Cantera based on the NASA polynomial fits [163].

The mass-averaging procedure applies to the specific entropy; thus, Eqn. 2.47 at 8 is mass-
averaged, by again assuming the flow is isentropic between 4 and 8 .

⟨𝑠8⟩M =
1
¤𝑚8

∬
𝐴8

1
⟨M⟩ (x)

𝑁∑︁
𝑖=1

{
𝜒𝑖

[
𝑠𝑜𝑖 (𝑇8(x)) − 𝑅̄ ln

(
𝑝8(x)𝜒8,𝑖 (x)

𝑝𝑜
𝑖

)]}
d ¤𝑚8(x) (2.49)

Given a generic static state q and its corresponding total state tq , the entropy of the static state
is equal to the entropy of the total state (i.e., 𝑠q = 𝑠tq). Thus, the total pressure and temperature
uniquely define the entropy of a state for a given gas composition: 𝑠q = 𝑠q(𝑇tq, 𝑝tq). The entropy-
averaged total pressure (

〈
𝑝tz,8

〉
S). Therefore, the mass-averaged total temperature (enthalpy),

mass-averaged gas composition (⟨𝝌⟩M), and mass-averaged entropy define the entropy-averaged
total pressure (

〈
𝑝tz,8

〉
S) defined according to the following relation,

⟨𝑠8⟩M =
1

⟨⟨M⟩⟩M

𝑁∑︁
𝑖=1

{
⟨𝜒𝑖⟩M

[
𝑠𝑜𝑖 (

〈
𝑇tz,8

〉
M) − 𝑅̄ ln

( 〈
𝑝tz,8

〉
S
〈
𝜒8,𝑖

〉
M

𝑝𝑜
𝑖

)]}
(2.50)

55



where

⟨⟨M⟩⟩M =

𝑁∑︁
𝑖=1

⟨𝜒𝑖⟩M M𝑖 (2.51)

In practice, the total pressure is implicitly solved by equating Eqns. 2.49 and 2.50, and solving for〈
𝑝tz,8

〉
S. The term ⟨⟨·⟩⟩M, given by Eqn. 2.51, is computed from nested averaging procedures.

First, the molar mass is averaged at each spatial point along the annulus exit based on the local
composition (⟨·⟩). Then, those averaged molar masses are mass-averaged over the entire annulus
(⟨·⟩M).

The mass-averaging procedure given by Eqn 2.49 mathematically cannot be divided into the
product of individually mass-averaged quantities like Eqn. 2.50. There are additional non-linear
terms not represented in Eqn. 2.50 that appear because of the products of the various terms within
the integrand of Eqn. 2.49. For instance, expressing the mass-averaged entropy as a function of
purely mass-averaged quantities gives,

⟨𝑠8⟩M =
1

⟨⟨M⟩⟩M

𝑁∑︁
𝑖=1

{
⟨𝜒𝑖⟩M

[
𝑠𝑜𝑖 (

〈
𝑇tz,8

〉
M) − 𝑅̄ ln

( 〈
𝑝tz,8

〉
M

〈
𝜒8,𝑖

〉
M

𝑝𝑜
𝑖

)]}
+ 𝜅 (2.52)

The only difference between Eqns. 2.50 and 2.52 is that the total pressure in Eqn. 2.52 is mass-
averaged instead of entropy-averaged. The 𝜅 term captures the non-linear coupling terms and
is necessary for Eqn. 2.52 to equal Eq. 2.49. Note how 𝜅 only emerges when trying to cast the
mass-averaging integral into a reduced formulation with the target mass-averaged quantity (entropy)
depending on other mass-averaged ones (pressure, temperature, and composition); thus, 𝜅 is the
deviation caused by the specific formulation enforced, and its existence demonstrates that

〈
𝑝tz,8

〉
S

is distinct from
〈
𝑝tz,8

〉
M.

The mass-averaged entropy, total enthalpy (temperature), and gas composition are known and
have physical interpretations, all being averages of extensive thermodynamic properties. Thus,
the entropy-averaged total pressure (

〈
𝑝tz,8

〉
S) is merely the total pressure that satisfies Eqn. 2.50

with the left-hand-side evaluated according to Eqn. 2.49. It remains a fictitious total pressure
with no physical interpretation since it inherently encapsulates the deviations associated with the
non-linear terms arising from the mass-averaging procedure in Eqn. 2.49 (or alternatively, 𝜅 in
Eqn. 2.52). The resulting total pressure gives the same mass-averaged entropy for an equivalent
uniform flow given the same mass-averaged total enthalpy (temperature) and gas composition.
Likewise, the thrust- and work-averaged total pressures are mathematical constructs generated by
having a uniform flow representation undergoing some physical process (i.e., flow expansion) while
preserving some target properties (i.e., thrust or work) of the non-uniform flow. This work neglects
the entropy production of such physical processes; however, the non-uniform would likely lead to
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an increase in the mass-averaged entropy compared to the exit flow before the process.
The total temperature and pressures in Eqn 2.50 were defined solely with the axial velocity

(i.e., with a subscript “z”), which introduces an error in the formulation of the entropy-averaged
total pressure. Entropy is a fundamental thermodynamic quantity and is agnostic to flow direction,
unlike the total temperature and pressure; however, determining entropy through total temperature
and pressure introduces a velocity dependency on entropy. Specifically, any non-axial velocity
would ultimately cause

〈
𝑝tz,8

〉
S <

〈
𝑝t,8

〉
S. Since total temperature is less sensitive to changes in

velocity overall, it is assumed that
〈
𝑇tz,8

〉
M ≈

〈
𝑇t,8

〉
M. Thus,

〈
𝑝tz,8

〉
S is an idealized total pressure

for two reasons: the mixing/averaging process is assumed isentropic, and all the available total
pressure is in the axial direction. From a thermodynamics view, this is the best-case scenario.
Thus, a decrement from the entropy-averaged total pressure occurs as a mix of entropy production
in mixing the non-uniform flow and losses caused by non-axial flow.

2.5 Demonstration using RDC Simulations

2.5.1 Description of RDC Simulations

The differences become more apparent when applying the different averaging procedures to the re-
sults of RDC numerical simulations. This work considered three simulations for the demonstration,
and they were high-fidelity, three-dimensional DNS simulations of a hydrogen/air-operated RDC
with radial air injection performed by Van Beck and Raman [17]. Sato et al. [8, 16], Bielawski et
al. [164], and Van Beck and Raman [17] discuss the details of the simulated domain, numerical
scheme, and chemistry model. Table 2.3 contains some of the critical features of the cases, includ-
ing the air mass flow rate, equivalence ratio, and geometric areas relevant to this work. The three
cases study a radial air injection with fuel injected through discrete portholes orthogonally near the
air throat [16, 17]. This injection style is quite prominent in the RDC literature as it was one of the
first published injection geometries [165]. Three discrete air mass flow rates are considered, with
a unique flow rate for each case. The equivalence ratio for each simulation is 1 to be consistent
with one another. The channel area (𝐴3.2) and exit area (𝐴8) are held constant across simulations.
Importantly, there is no exit constriction/nozzle in this work for any of the cases; the combustor has
a constant area channel that terminates in a bluff body (𝐴3.2 = 𝐴8).

2.5.2 Different Equivalent Total Pressures

The static pressure, temperature, gas composition, and axial velocity at the exit give the total
pressure (𝑝tz,8) at every point around the annulus and in time. Figure 2.2 gives the distribution
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Case ¤𝑚 [g/s] 𝜙 𝐴3.2 [cm2] 𝐴8 [cm2]
1 320 1.00 34.9 34.9
2 630 1.00 34.9 34.9
3 860 1.00 34.9 34.9

Table 2.3: Summary of the geometry and operating condition of the hydrogen/air numerical
simulations used in this study. [16, 17]

of the 𝑝tz,8 around the annulus for a single instance of time for Case 1, with the entire two-
dimensional distribution being in Figure 2.2a. In contrast, Figure 2.2b highlights the variation
at the three discrete radial locations: near the inner-body (red), at the mid-channel (black), and
near the outer-body (blue). The other cases exhibit similar trends to those plotted in Figure 2.2.
The non-uniformity caused by the two detonation waves and their associated oblique shocks is
apparent; in this case, the total pressure increases by about 4.5. The total pressure decays rapidly in
the circumferential direction; after about 𝜋/2 radians, the total pressure becomes asymptotic with
a value of 1.3 atm. In this case, even the base pressure of 1.3 atm is larger than ambient conditions
(1 atm). The variations in the radial direction in both these figures are much less significant than
those in the circumferential direction since the channel width is sufficiently small [106, 107]. Even
when radial stratification of fuel occurs, the pressure remains nearly constant in the radial direction,
although the temperature may vary [166]. Due to minimal radial variations, the averaging integrals
are reasonably approximated by only integrating in the circumferential direction at a given radial
location. However, this work used the two-dimensional integrals instead of such an approximation.

The averaging procedures considered in this study, including both the experimental EAP (EAPe)
and ideal EAP (EAPi), are then applied to the data. The spatial integrals are performed for individual
time instances, generating an instantaneous spatial-average quantity. Then, the resulting values are
averaged in time to produce the results presented in Table 2.4. Although the Mach numbers
are known, EAPe is computed with the unity Mach number assumption to match experiments.
Additionally, to calculate

〈
𝑝tz,8

〉
F it is assumed that 𝑝0 = 0.1 atm while it is assumed that 𝑝tz,5 = 1

atm to calculate
〈
𝑝tz,4

〉
W. The results of Table 2.4 are the resulting average total pressures and show

that the experimental EAP (EAPe) is the lowest of these averages. Figure 2.3 further contextualizes
the variations between the results of the different averaging procedures for the different cases
by normalizing the results by the experimental EAP. The values in Figure 2.3 are the percent
differences relative to the experimental EAP. The positive bars indicate that the total pressure from
the experimental EAP is lower than the other averaging techniques. The assessment that EAPe

is closely related to the area-averaged pressure (
〈
𝑝tz,8

〉
A) is reinforced by the fact that

〈
𝑝tz,8

〉
A is

the closest to EAPe. However, a few percent (2-6%) difference occurs due to the non-uniformity
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(a) (b)

Figure 2.2: Variation of total pressure at the exit of RDC for a) full two-dimensional annulus and
b) discrete radial locations. Plots are for a single instance in time.

Case EAPe
〈
𝑝tz,8

〉
A

〈
𝑀z,8

〉
A EAPi

〈
𝑝tz,8

〉
F

〈
𝑝tz,4

〉
W

〈
𝑝tz,8

〉
S

[atm] [atm] [atm] [atm] [atm] [atm]
1 1.41 1.49 0.60 1.64 1.63 1.69 1.95
2 2.35 2.40 0.94 2.58 2.50 2.70 3.02
3 3.30 3.35 0.97 3.47 3.38 3.60 4.04

Table 2.4: Summary of the different average total pressures across the simulated cases. Results
assume: 𝑀z,8 = 1 for EAPe, 𝑝0 = 0.1 atm for

〈
𝑝tz,8

〉
F, and 𝑝tz,5 = 1 atm for

〈
𝑝tz,4

〉
W.

coupling terms neglected in EAPe. The greater disagreement for Case 1 results from the area-
averaged Mach number being ≈0.6, and EAPe assumes a unity Mach number assumption [113].

It is apparent from Figure 2.3 that there are significant differences between EAPe and the other
averaging procedures given the simulation data considered here. For instance, the ideal EAP
(EAPi) ranges from 5.1% to 16.5% larger than EAPe, with the upper limit of the discrepancy being
more significant than what was reported by Kaemming and Paxson [113]. The more considerable
discrepancy is a consequence of the subsonic Mach numbers in Case 1. The thrust-averaging
(
〈
𝑝tz,8

〉
F) and the ideal EAP (EAPi) are typically within 1-3% of another due to the variations of

𝑐𝑝,8 and 𝛾8. Thus, the assumptions in EAPi provide a valid approximation to the thrust-averaged
value, although they inadvertently make EAPi less conservative overall.

Finally, the entropy-averaging procedure results in the most significant discrepancy with EAPe,
by being 22.3% to 38.2% larger. However, any meaningful process, whether thrust or work
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(a) (b)

(c)

Figure 2.3: The different averaging techniques produce different measures of the “average” total
pressure for a) Case 1, b) Case 2, and c) Case 3. Values relative to experimental EAP equivalent.

production, results in a lower total pressure. Thus, while thermodynamically sound, the idealistic
entropy-averaged total pressure is practically unattainable. The reduction in total pressure relative
to the entropy-averaged values is equivalent to a “mixing loss”, or the increase in entropy, generated
by homogenizing the non-uniform flow [157, 158]. The mixing loss creates an inescapable tension
between thermodynamic processes within the RDC. The local gain at the detonation wave is
less entropy production as the heat release occurs at a higher static pressure; however, a rotating
detonation wave creates non-uniformities about the annulus, which leads to entropy generation.
The balance between these competing concepts requires further investigation in the future.

Based on the results presented here, the definition of “pressure gain” across a RDC depends
on the desired end application. In other words, the “pressure gain” for thrust-producing devices
differs from the “pressure gain” for work-producing devices, even if the exit flow is identical. An
interesting question arises from how these results would translate into turbojet/fan systems where
a turbine is downstream of the combustor to power the compressor despite the primary goal being
to produce thrust. Since the RDC exit flow first is utilized to extract work through the turbine,
the resulting equivalent total pressure post-combustor and pre-turbine could be closer to the work-
averaged value. The turbine can then either extract more work from the flow or, if the amount of
extracted work remains constant, the total pressure at the outlet of the turbine could experience an
increase as the presence of the turbine likely dampens out variations in total pressure [160, 161].
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(a) (b)

(c)

Figure 2.4: Static and total pressure at a) outlet of RDC, b) after thrust-averaging, and c) after
work-averaging. Assumed outlet states in b) and c) are shown as flat lines.

Regardless, from a reduced order model of a propulsion device, the combustor would appear to
perform better in a turbojet/fan than a rocket/ramjet despite identical processes occurring within the
combustor. Overall, additional data from simulations are needed to verify these trends, specifically
from simulations with geometries closer to the best-performing experimental geometries [13, 118].

2.5.3 Difference Between Thrust and Work-Averages

The difference between the EAPi and
〈
𝑝tz,8

〉
W is significant as it contradicts the notion that EAPi

preserves the ability of the flow to produce thrust and work. The primary difference between the
thrust- and work-averaged values is the assumed outlet state of the device. Visual representations of
the different processes assumed in the averaging procedures are shown in Figure 2.4. Figure 2.4a is
the circumferential profiles of static (black) and total (red) pressures at the RDC exit plane for Case
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2 at an instance in time. This plane is the end of the combustor, 4 . The thrust-averaging procedure
assumes the flow passes through an idealized nozzle to a fictitious uniform static pressure ( 9 ). In
this fictitious outlet state, the total pressure is not uniform nor equal to the static pressure (see Figure
2.4b). On the other hand, the work-average procedure assumes the flow passes through an idealized
turbine to a fictitious uniform total pressure ( 5 ). In this fictitious outlet state, the static pressure is
not uniform, nor is it assumed that it equals the static pressure (see Figure 2.4c). The velocity can
be non-uniform after the nozzle or turbine for both thrust- and work-averaging procedures.

While the assumed outlet states differ, another explanation for the different results is that the
thermodynamic processes of going through a nozzle or turbine differ. The purpose of the nozzle is
to convert as much thermal energy in the flow into kinetic energy as possible since this maximizes
the thrust (momentum transfer). The total energy in the flow remains unchanged. Thrust-averaging
depends on the local thermal and kinetic energy ratio at each location around the annulus since
the given ambient condition limits the conversion between the flow’s thermal and kinetic energy.
Meanwhile, a turbine is extracting work from the flow, which manifests as extracting thermal and
kinetic energy from the flow. There is less dependence on the ratio of the energies since both types
of energy get extracted, differentiating work-averaged from thrust-averaged.

The hypothetical applications of RDCs can further contextualize the differences in the resulting
average total pressures. In power generation applications, the total pressure at the turbine outlet
would be equivalent to the ambient static pressure; however, for propulsive jet engines, the flow
would pass through a nozzle before reaching ambient static pressure. Even in the power generation
application where 𝑝t,5 = 𝑝0, removing the variation in velocity and reduction in total pressure
causes the work-averaged pressure to be greater than the thrust-averaged pressure. Thus, while
conventional wisdom states that the flow’s ability to produce thrust and work are the same, this
analysis indicates that this assumption is incorrect when the flow is non-uniform.

2.5.4 Dependence on Exit Conditions

An assumed outlet state of the device is required to calculate both thrust and work-averaged total
pressures. Effectively, an unspoken, implicit assumption was made that stated that the results
from the averaging are insensitive to the chosen outlet state. Pianko and Wazelt remarked that
such averaging techniques are not intrinsic in that the formulation does not depend solely on the
non-uniform flow by also being dependent on the final state [167]. However, they argued that the
sensitivity of the total pressure averaging techniques to the downstream conditions, equivalent to
the chosen outlet state in this work, is low for turbojets (≤ 0.1%) [167]. The flow exiting RDCs
typically has more significant spatial variance than turbojets, which may potentially influence the
sensitivity; thus, this section evaluates the implicit assumption of the outlet state in greater detail.
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For the sake of discussion, this section assumes that the results of the simulations remain
unchanged despite the changes to the outlet condition. In other words, the flowfield at the exit
plane remains the same regardless of the assumed downstream conditions. The assumed exit static
pressure (𝑝0) used in thrust-averaging was varied from 0.001 atm to 1 atm to cover the range of static
pressures for reasonable altitudes. If the 𝑝0 value exceeds 𝑝tz,8(x) at any point around the annulus,
the averaging results are disregarded because of the complex numbers. Likewise, the post-turbine
total pressure (𝑝t,5) used in work-averaging was varied from 0.001 atm to 10 atm. Figures 2.5a and
2.5b give the results of this analysis for thrust-averaged and work-averaged pressures, respectively.
The nominal values in Table 2.4, indicated with a superscript “*”, normalize the averaged total
pressures presented in both figures. In general, a value of 𝑝0 optimizes

〈
𝑝tz,8

〉
F, which is about

0.4 atm for the cases considered in this work. This “optimal” pressure likely varies depending on
the geometry, chemistry, or other factors instead of being a universal truth. Once 𝑝0 decreases
below 0.05 atm, the resulting thrust-averaged total pressure drops significantly. Most commercial
aircraft fly at an altitude with ambient pressures above this, so these variations are neglectable.
However, high-altitude supersonic flights or rockets would see a meaningful change in the “pressure
gain” compared to the sea-level conditions, despite no change in the mass-averaged entropy at the
combustor exit and increasing thrust with decreasing exit pressures (assuming that the flow is
not over-expanded). In this regard, “pressure gain” based on the thrust-averaged pressure is not
intrinsic, and it does not uniquely portray the possible decrease in entropy production or the thrust
production for a given exit flow. This observation is especially significant for rockets since the inlet
conditions (driven by pumps) are independent of the ambient conditions, potentially producing the
same combustor exit profile regardless of the ambient pressure. For instance, a recent effort in
Japan observed that an RDC with a plug-shaped nozzle operating in space (𝑝0 = 0.1 Pa) had the
same operating frequency of 20 kHz as a ground test with higher exit pressures (10 kPa) [168].
Therefore, it would be good practice to report the ambient pressure assumed for the calculation
if a value of “pressure gain” based upon thrust-averaging procedures (like EAP) is reported from
simulations.

The variations in work-averaged total pressures caused by the value of 𝑝t,5 are overall less than
thrust-averaged values. Even in the extreme of having the 𝑝t,5 being 0.001 atm, the result is only at
most 3% different than the initially assumed 1 atm. There is only a slight difference on the order of
a 1% between the different cases. The work-averaged total pressure exhibits less sensitivity to its
respective outlet condition than the thrust-averaged pressure. The reduced sensitivity is primarily
due to the small variations in 𝛾4 around the annulus, allowing for 𝑝t,5 to be effectively eliminated
in the equation, as given by the approximation of Eqn. 2.46 (see Appendix D for further details).
Another justification for these results can be made based on the breakdown of the thermal and
kinetic energy of the flow. The work-averaging procedures assume an extraction of energy that is
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(a) (b)

Figure 2.5: Changes in a) thrust-averaged total pressure and b) work-averaged total pressure with
variable assumed exit conditions.

agnostic to the type of energy, and it only cares about the total energy/enthalpy. Therefore, for
the work-averaged pressure to depend upon the assumed outlet condition, it would require the total
enthalpy of the flow exiting the RDC to depend on downstream conditions, which is erroneous.
Hence, ⟨𝑝t⟩W is insensitive to the downstream conditions. However, the transfer of thermal energy
into kinetic energy does depend on downstream conditions; perfectly expanded nozzles are desirable
since they maximize the efficiency of this transfer. Thus, the sensitivity of ⟨𝑝t⟩F on the downstream
conditions.

Suppose a singular average total pressure to describe the performance of an RDC is desirable.
In that case, preserving the flow’s ability to produce work may be advantageous due to this greater
insensitivity over a broader range of outlet conditions. Once again, casting these results in terms
of entropy production, a lower total pressure would result in a larger average entropy than the
mass-averaged value. It is then as if a thermodynamic penalty (entropy production) grows worse
with decreasing ambient pressure for thrust applications. In contrast, work-producing applications
are less prone to these losses despite the same RDC operation for the two applications.

2.6 Alternative Experimental Pressure Gain Methods

The results above demonstrate that the EAPe is the smallest “average” total pressure and does not
conserve any meaningful quantity of interest. However, the EAP method is currently the most
prominent experimental method in the literature. Two additional methods of measuring the exit
total pressure exist in the literature. The following section will examine both in detail to draw
comparisons against EAP on a theoretical basis. Additionally, this section will demonstrate that
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the various methods converge to the same result.

2.6.1 Area-Mach Relation Method

Brophy et al. [114, 115, 120] proposed that a combination of static pressure measurements in the
detonation channel and the area-Mach relation is a suitable alternative to the EAP methodology.
This method is colloquially known as the “NPS Method” because Brophy et al. is a research group
from the Naval Postgraduate School (NPS). Instead of directly addressing the non-uniformity in
the flow, a quasi-one-dimensional approximation is assumed in the NPS method. Specifically, the
NPS method assumes single “average” values of Mach number at the exit plane, 8 , and downstream
of the detonation/combustion region but upstream of any area change, 4 from Figure 2.1. Note,
7 would be an equally appropriate description of this axial location since in the RDC experiments
without a turbine, there is nothing to distinguish between 4 and 7 ; however, the notation of Brophy
et al. utilized 4 and this notation is adopted here for the sake of consistency with their work [114].

The derivation and accompanying assumptions will now be detailed to evaluate the similarity and
differences of the NPS method compared to the EAP method. Similar to the EAP methodology,
the flow is assumed to be uniformly choked at the nozzle throat plane, 𝑀8 = 1 such that 8 is
equated to the sonic state ( * ). This assumption has the same limitations as EAP, where the choked
assumption may not be valid at low mass flow rates or configurations without a nozzle. The NPS
method also assumes that downstream of the detonation zone, the flow is approximately uniform
in the circumferential direction. This assumption enables the area-Mach relation to be used to
determine the average Mach number in the channel.(

𝐴4
𝐴8

)2
=

(
𝐴4
𝐴∗

)2
(2.53)

=
1
𝑀2

4

[
2

𝛾4 + 1

(
1 + 𝛾4 − 1

2
𝑀2

4

)] (𝛾4+1)/(𝛾4−1)
(2.54)

The˜ above the Mach number denotes that the quantity is estimated, similar to the experimental
EAP method in Section 2.4.1.2. The geometric areas of the nozzle throat and the detonation channel
are readily known, allowing for this calculation. The 𝛾4 is assumed to be that of the combustion
products and is again assumed to be a constant across the annulus. Using the definition of total
pressure along with the estimated average Mach number and a measured static pressure at 4 , a total
pressure at 4 , 𝑝t,4, can be found. Furthermore, the flow is assumed to be isentropic through the
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remainder of the device, so the total pressure is effectively constant.

𝑝t,4 = 𝑝4

(
1 + 𝛾4 − 1

2
𝑀2

4

)𝛾4/(𝛾4−1)
(2.55)

≈ 𝑝t,8 (2.56)

To measure the 𝑝4, initially, a single Capillary Tube Averaged Pressure (CTAP) measurement
was employed [114, 115]. A CTAP is a long, small tube connected to a pressure transducer, and the
tube dampens out the dynamic components of the flow which are prevalent in the highly turbulent
and unsteady flow of a RDC [169, 120]. The fluidic dampening causes the pressure measurement
to be more akin to a time-averaged static pressure than an instantaneous measurement. In a
recent study, Codoni et al. expanded the NPS method by taking pressure measurements at several
circumferential locations since they observed an asymmetry in the time-averaged pressure around
the annulus at a fixed axial location [120]. Theoretically, the asymmetry would bias the results
of the method when using only a single measurement. The cause of said asymmetry remains
unknown, though it was determined to be fluidic and not an artifact of the instrumentation.

There are several issues regarding the theory of the NPS method outside the potential influence
of circumferential variability in the time-averaged static pressure. Suppose the axial position of
the pressure measurement is within the detonation zone, i.e., the axial region of space where the
detonation wave(s) propagate. The static pressure increase across detonation will significantly
skew the results since the assumed uniformity quickly falls apart. Hence, the NPS method requires
measurements sufficiently downstream of the detonation zone. However, the location of the
detonation zone for a given geometry or flow rate is, at this time, unknown a priori. Thus, there
is ambiguity about whether the sensor is genuinely downstream of the detonation zone during the
experimental design. Making the combustor longer would mitigate the ambiguity since Rankin
et al. observed that the detonation zone is several centimeters long [100]; though, this may be
undesirable if a more compact device is preferred. Even when the pressure measurements are
“sufficiently” downstream of the detonation wave(s) in the RDCs, the flow rarely becomes truly
uniform since the attached oblique shocks cause properties to still depend on the relative location of
the detonation wave(s). Refer to the discussion in Section 1.5.4. If true, the assumptions imposed
in this method would eliminate the need for the averaging procedures discussed in this chapter,
which seems too reductive. This same argument also applies to the assumed uniformly sonic outlet
Mach number, although the EAP method depends on a similar assumption.
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Figure 2.6: Kiel probes to measure the outlet total pressure. Figure reproduced from [13].

2.6.2 Direct Measurement Method

In contrast to EAP and the NPS method, Bach et al. directly measured the stagnation pressure at the
outlet of the RDC with Kiel probes [13, 14]. A Kiel probe comprises a Pitot probe/tube encased in
a specifically designed shroud that mitigates the flow directional, particularly the yaw, sensitivity
of the Pitot tube [14]. The Pitot tube brings the flow to rest within the tube, and the subsequent
stagnation/total pressure is measured. Bach et al. integrated the Kiel probes within nozzle guide
vanes, with the entrance of the Kiel probe being at the leading edge of the nozzle guide vane.
Thus, Bach et al. measured the total pressure before the area restriction, 4 , as shown in Figure 2.6,
reproduced from [13]. By measuring 4 like the NPS method, potential viscous and thermal losses
would degrade the total pressure; the Kiel probe measurements may not capture these losses. One
of the advantages of using the Kiel probes is that the number of necessary assumptions, particularly
about the velocity and gas composition, is significantly reduced.

A high-speed pressure transducer can also be connected to the Kiel probe to provide greater time
resolution of the total pressure measurements at discrete locations around the annulus. However,
the measurements were only partially time-resolved since the Kiel probes employed by Bach et
al. had a capillary tube of 100 mm between the entrance of the probe and the transducer [13].
This capillary tube offset introduces viscous dissipation and an acoustic transfer function between
the leading edge and the transducer [14]. Even considering the lag imposed by the capillary tube,
greater time resolution is achieved with the Kiel probes than with thrust and CTAP measurements,
which typically have lower sampling rates. Since less fluidic averaging occurs within the Kiel
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probe, the averaging (in this case, time-averaging) is done post-experiment in the data-processing
step instead of during the experiment. The post-experiment averaging also contrasts with the thrust
measurements needed for EAP as thrust is inherently an area-integrated quantity.

Overall, the Kiel probes introduced by Bach et al. hold significant promise as being the method
to getting the outlet total pressure with potentially the least amount of bias or uncertainty, although
they are not without their concerns [14] and are limited to several discrete locations about the
annulus. However, the RDC community has not widely adopted the usage of Kiel probes in favor
of integrated thrust stands, which gives the EAP since thrust is a valuable measurement.

2.6.3 Similarity of the Methods

Despite the varying levels of method assumptions and instrumentation, the three methods of
estimating the total pressure at the outlet, Brophy et al. and Bach et al., have demonstrated that
their respective methods give similar values to EAP. Brophy and Codoni measured the EAP in
addition to performing the NPS method and found reasonable agreement, within ±10%, between
the measurements [114, 120]. Likewise, in conjunction with the Kiel probe measurements, Bach et
al. also measured the total pressure through the EAP method and found good agreement [13, 170].
The similarity of the methods extends beyond the comparisons made in the individual studies since
when Bach et al. compiled all of the pressure gain measurements published in the literature into a
single plot [14], reproduced in Figure 2.7, the measurements made through the NPS method (red
dots) and the Kiel probes (gray triangles) capture the same trends as the measurements from the
EAP method (the other colored dots) from studies by other groups [171, 165, 172, 116, 118]. In
particular, all the different studies observed that the pressure gain grew less negative as the exit and
inlet throat areas became closer. The experimental pressure gain measurements provided in this
work, which will be discussed in Chapters 5-7 and use the EAP method, also agree with this trend.
Overall, while the different methods employ different measurements and use different assumptions,
it has been effectively proven that each method converges to the same value within experimental
error.

The convergence of the methods is surprising, given the differences on the surfaces. For instance,
both the EAP and NPS methods attempt to approximate the outlet total pressure while the Kiel
probes measure it directly. Additionally, the EAP inherently contains more spatial information than
both the NPS method and Kiel probes since EAP involves a thrust measurement instead of point
measurements. Meanwhile, the Kiel probes have the potential for the greatest time resolution. At
the time of writing, nobody in the literature has sought to understand why all the measurements
give similar answers. This work asserts that the consistency between the different total pressure
measurement techniques is a direct consequence of the periodic nature of the flowfield.
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Figure 2.7: Comparison of published pressure gain (y-axis) measurements with respect to the ratio
of outlet and inlet throat areas. Figure reproduced from [14].

In practice, both the measurements from the Kiel probes [14] and the results from the NPS
method [120] are time-averaged to provide a singular value to report. Consider the case where
both methods only use a single measurement at a single spatial location. The time-average of any
thermodynamic quantity, Q, at a given circumferential, 𝜃i, and axial location 𝑧i, is expressed as,

〈
Q|𝜃i,𝑧i

〉
t =

(∫ 𝑡2

𝑡1

d𝑡
)−1 ∫ 𝑡2

𝑡1

𝑓 (𝑡; 𝜃i, 𝑧i)d𝑡 (2.57)

The averaging procedure is over the interval given by [𝑡1, 𝑡2] where 𝑡2 > 𝑡1. For many RDC
testing, the averaging window is between 0.1-1 seconds. This averaging window is significantly
greater than the detonation period, so ensure averaging over thousands of cycles. Thus, it is most
appropriate to consider the Kiel probe and NPS methods as time-averaged total pressures at specific
spatial locations. Additionally, the CTAP measurements used for the NPS method are effectively
time-averaged quantities [169] due to fluidic dampening, sensor response time, and low sample rate.
Meanwhile, as established previously, EAPe is effectively an area-averaged quantity, see Section
2.4.1.2; however, in practice, reported EAP or the associated PG values are steady-state values
[114, 116, 13]. Thus, the instantaneous area-averaged values are subsequently time-averaged over
a time window, similar to the methods. However, a time-averaged area-averaged quantity (EAPe)
does not necessarily equate to a time-averaged point measurement (the other methods) for a generic
flowfield, which seemingly contradicts the convergence observed in the literature.
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The next step comes from considering that the flowfield in a RDC, while unsteady in the lab
frame, is periodic in both spatial and time domains. Effectively, if the frame of reference moved
with the detonation wave(s), the frame would become steady. Recall that performing area-averaging
on axial planes implies circumferential integration. For an axial plane given by 𝑧i and at time 𝑡i,
the area-average (

〈
Q|𝑡i,𝑧i

〉
A) is:

〈
Q|𝑡i,𝑧i

〉
A =

(∬
𝐴

d𝐴
)−1 ∬

𝐴

𝑓 (𝑟, 𝜃; 𝑧i, 𝑡i)d𝐴 (2.58)

=
1

2𝜋

∫ 𝜃=2𝜋

𝜃=0
𝑓 (𝜃; 𝑧i, 𝑡i)d𝜃 (2.59)

Suppose the wave periodically propagates at a constant speed in the 𝜃 direction. In that case, the
area-averaged quantity, Q, at a specific instance in time is equivalent to a time-averaged quantity at
a specific spatial location. 〈

Q|𝑡i,𝑧i

〉
A =

〈
Q|𝜃i,𝑧i

〉
t (2.60)

For brevity, this section omits the proof; however, Appendix E provides a rigorous demonstration
of the above equality. In other words, an area-averaged quantity (e.g., EAPe) is equivalent to a
time-averaged quantity (e.g., Kiel probes).

Thus, the difference between the area-averaged and time-averaged quantities is significantly
mitigated by averaging all the measurements over a sufficiently long time window. Additionally,
while in the above discussion, only single measurement points are considered for the NPS method
and Kiel probes, in reality, several measurements at different locations are taken and then averaged
together [120, 14]. Doing so effectively area-averages the time-averaged results, further reducing the
differences compared to EAPe. Especially since reported EAPe values are time-averaged versions
of an area-averaged measurement. Thus, all the methods are consistent despite the differences in
required measurements and assumptions due to the periodic nature of the RDC flowfield. With
this in mind, determining the total pressure can follow any of the presented methods, and one can
choose the methodology that requires the least complex set of measurements if that is desirable.
However, this also means that these other experimental methods do not solve the issues that EAPe

has in under-predicting the other averaged procedures.

2.7 Discussion

From the onset, there are several concerns about the validity of using a global PG, specifically
with EAP, as the primary performance metric for RDCs. First and foremost is the fact that EAP
does not follow any conservation law after the averaging process by virtue of effectively being an
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area-averaged quantity. Integrating experimental EAP measurements into a reduced order quasi-
one-dimensional model to either infer loss parameters or predict future performances is subject to
doubt. Furthermore, experimental investigators cannot claim that EAP they measure preserves the
flow’s ability to produce thrust or work as promised initially. The other research groups that use
alternative methods to EAP are also constrained to area-averaged results. One could overlook the
lack of conserving necessary quantities if EAP converged to the same result as the other averages,
which conserve meaningful quantities; however, the results from the EAP are noticeably lower than
the others. While EAP is known to be conservative based on the unity Mach number assumption
[113], even when the assumption is valid (Cases 2 and 3), EAP is still overly conservative. The
starkest contrast is between EAP and the entropy-averaged total pressure, which may be the most
representative of the thermodynamic benefit since it considers the entropy of the exiting flow. Thus,
the experimental EAP underpredicts the “truest” measure of the gain. Even if the experimental
EAP better matched the thrust-averaged and work-averaged total pressures as initially claimed, the
resulting total pressure is not intrinsic to the flow as it would depend on the outlet state. All this
combines to suggest that the definition and implementation of experimental EAP does not withstand
rigorous theoretical analysis, which leaves ambiguity and uncertainty in the EAP method and PG
metric. However, there was no suitable experimental alternative at the time of writing, so this work
still adopted them for usage in the experimental component of this work.

There may be concerns about how well the simulation results translate to experiments. Even
high-fidelity simulations cannot simultaneously replicate the wave speed, thrust output, pressure
profiles, etc., from experiments despite using the same geometry and testing conditions [173,
174, 175]. The flow non-uniformities around the annulus in experiments may be less than what
simulations predict. Consider the experiments performed by Bach et al. where they captured a
time-resolved total pressure measurement through Kiel probes at the exit of an RDC [14]. The
sample time trace shows that the total pressure varies between 4 and 4.5 atm throughout the
detonation cycles. The specific run had ¤𝑚 = 500 g/s, 𝜙 = 1.0, the radial air injection, and an exit
constriction resulting in 𝐴8/𝐴3.2 = 0.67. The most comparable case in this work would be Case 2;
however, adding the nozzle likely dramatically influences the results. The simulation results shown
in Figure 2.2a contrast the experimental in that the total pressure ratio across the oblique shock is
4-5 in the simulation and only 1.125 in the experiment. It is unknown if the more minor changes
in total pressure are associated with the implementation of the nozzle, which homogenizes the exit
flow by promoting a higher number of waves and higher channel/base pressure, or if some inherent
difference between simulations and experiments causes the changes. Regardless, the smaller non-
uniformities around the annulus lessen the difference between the different averaging techniques,
which may add to the credibility of EAP and PG experimentally.
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CHAPTER 3

Description of Experimental Setup

3.1 Overview

The discussion now turns away from the theoretical analysis discussed in the previous chapter to the
experimental studies that explore the concept of pressure gain on a prototype RDC. This chapter
details the general RDC geometry along with the geometric variations investigated throughout the
remainder of this work. A description of the supporting infrastructure that enabled the experimental
firing of the RDC can also be found in this chapter. Additionally, the instrumentation needed to
characterize the RDC operation and the thrust takeout system required to get a pressure gain
measurement will be detailed. Finally, this chapter will introduce the uncertainty analysis of the
sensors that will ultimately propagate into the uncertainty of the pressure gain measurement.

3.2 RDC Geometries

The RDC design through the experiments in this work was the fixed inlet design presented previously
instead of the variable inlet design investigated by Shepard [47, 50]. Nevertheless, the design
was modular to allow for specific geometric parameters to be varied. Different injectors, exit
constrictions, combustor lengths, and inner body diameter are some of the possible variations to
the base design, and some previous work by Chacon and Shepard have previously explored some
of these changes [176, 45, 58, 50]. However, this work focused on a few select changes to highlight
the importance of such geometric parameters while fixing the other ones. In general, the inlet
throat area (𝐴3.1), detonation channel area (𝐴3.2), and exit throat area (𝐴8) remained the same
across all the studies presented in this work. In Chapter 5, no geometric changes are considered;
meanwhile, Chapter 6 investigated changing the combustor length, and Chapter 7 modified the
injector geometry. A summary of which geometric parameters were varied and fixed across the
different chapters is presented in Table 3.1. A general description of the RDC, including the fixed
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Study Injector 𝐴3.1 𝐴3.2 𝐴8 𝐿

Chapter 4 & 5 ✕ ✕ ✕ ✕ ✕

Chapter 6 ✕ ✕ ✕ ✕ ✓
Chapter 7 ✓ ✕ ✕ ✕ ✕

✓ indicates quantity was varied during the study.
✕ indicates quantity was kept constant during the study.

Table 3.1: A summary of which geometric properties varied during the different studies outlined
in the following chapters.

parameters, is given later in a dedicated section. Dedicated sections will also detail the geometric
variations highlighted in Chapters 6 and 7, which both change a specific geometric parameter.

3.2.1 General Description of the RDC

The RDC tested here is cylindrical, with an annular gap between the inner and outer bodies that
form the detonation channel. Within the detonation channel, the outer diameter of the annulus,
𝑑𝑜, was 154 mm (6.065 in), while the inner diameter of the annulus, 𝑑𝑖, was 138.7 mm (5.46 in).
The diameter combination resulted in an annular gap of 7.62 mm (0.30 in) during the constant area
portion of the channel, between 3.2 and 7 . The dimensions are consistent with many other annular
RDCs tested in the literature [44, 177, 178]. An area reduction occurs through a converging nozzle
before the gases are exhausted from the RDC. The area is reduced by smoothly extending the
inner body diameter through a smooth contour over the last 11.9 mm (0.469 in) of the detonation
channel. The nozzle terminates with an inner diameter of 14.66 cm (5.77 in), such that the ratio
of the outlet area (𝐴8) to the detonation channel area (𝐴3.2) was 0.5. The nozzle does not have
a diverging portion; thereby, it is truncated and terminated at the minimum area/throat ( 8 ). The
truncated nozzle produces a well-defined throat at the exit. It also removes the nozzle expansion
efficiency on the thrust measurement, which is advantageous as it better isolates the performance
of the RDC from the nozzle design [113].

3.2.2 Injection Geometries

Most of the tests conducted for this work focused on a single injection geometry, the axial air inlet.
Chapters 4, 5, and 6 focus solely on this geometry. A modified version of the axial air inlet is
employed in Chapter 7 to investigate the effects of a worse injector diodicity; see Table 3.1. As
such, a description of both injection geometries follows, and Figure 3.1 visualizes both geometries.
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Figure 3.1: Air inlets considered in this work. Left) Baseline geometry used throughout this work
and right) modified inlet to study inlet diodicity.

3.2.2.1 Axial Air Inlet

The Axial Air Inlet (AAI) has been the subject of several previous studies from the University
of Michigan [45, 58]. The defining characteristic of the AAI is the axial air injection through
a constricted annular gap. The AAI was constructed by smoothly extending the inner diameter
through a contour while maintaining the same outer diameter as the detonation channel. The inner
diameter increased until the annular gap at the throat was 1.59 mm (0.063 in). The air injector
throat area (𝐴3.1) is 7.67 cm2 (1.19 in2). This throat area resulted in an area ratio between the air
inlet throat and detonation channel of 0.215 (i.e., 𝐴3.1/𝐴3.2 = 0.215). The inverse of this ratio was
4.65. The throat area was constant for about 4.88 mm (0.192 in) before the inner diameter diverged
and the area expanded. The area expansion was symmetrical with the upstream area convergence.
Unlike the air stream, fuel was injected discretely through 120 circular injectors with a diameter
of 0.889 mm (0.035 in) evenly spaced around the circumference. The fuel injectors were located
downstream of the air inlet throat on the rear-facing surface, and the injection angle was 30◦ relative
to the central axial axis. Therefore, the fuel injection is a jet-in cross-flow; however, the cross-flow
is undergoing an expansion from the area reduction.

3.2.2.2 Modified Axial Air Inlet

Everything upstream of the fuel injectors in the Modified Axial Air Inlet (AAI-M) was identical to
the AAI. Thus, the geometry of the air inlet throat and the fuel injectors remain the same between
the two designs. However, instead of injecting air over a symmetric shoulder and having a rapid
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Figure 3.2: Combustor length defined from inlet throat (end of constant area portion) to exit throat.

downstream expansion, a streamlining of the downstream flow path slowed the rapid expansion
of the mixture; see the right-hand side of Figure 3.1. This streamlining was achieved by linearly
reducing the inner diameter of the annulus to the nominal inner diameter of 139 mm (5.46 in) at
an angle of 12.5◦. The divergence begins immediately downstream of the fuel injectors. Chacon
theorized that a toroidal re-circulation region anchors at the shoulder in the standard inlet, which
traps hot products and provides activation energy to the fresh mixture before the arrival of the
detonation wave [58]. The inlet modification mitigated the re-circulation region, which may
change the operation of the RDC. The modified design also lowered the pressure drop across the
inlet in the reverse (upstream) direction compared to the un-modified design, thereby lowering
the diodicity of the air inlet. In theory, this should promote additional backflow to occur during
operation.

3.2.3 Combustor Length

In Chapter 6, the length of the RDC combustor (refer back to Table 3.1) was the geometric parameter
that was varied. Here, the combustor length, 𝐿, was defined from the end of the inlet throat (end
of constant area portion) to the exit throat, as shown in Figure 3.2. The end of the inlet throat is
fluidically the smallest area due to viscous forces acting along the walls during the constant area
portion, making it the true throat. As described previously, the nozzle’s throat was also the exit
plane of the RDC. The study presented in Chapter 6 considered four different combustor lengths:
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Configuration 𝐿 [mm] 𝑑i [mm] 𝑑o [mm] 𝐴8/𝐴3.2 𝐴3.2/𝐴3.1 𝐿/𝜋𝑑m
A 71 139 154 0.50 4.65 0.154
B 102 139 154 0.50 4.65 0.222
C 118 139 154 0.50 4.65 0.256
D 137 139 154 0.50 4.65 0.298

Table 3.2: Relevant geometric parameters of tested RDC configurations. Variables (in order are):
𝐿, combustor length; 𝑑i, inner diameter of annulus; 𝑑o, outer diameter of annulus; 𝐴8/𝐴3.2, ratio
between exit throat and annulus areas; 𝐴3.2/𝐴3.1, ratio between annulus and air inlet throat areas;
𝑑m = 1/2 (𝑑i + 𝑑o), mean annulus diameter

71, 102, 118, and 137 mm. These are labeled as configurations A, B, C, and D in Table 3.2, which
summarises the essential geometric parameters utilized. The nominal combustor length (𝐿0) from
previous studies was 102 mm [45]; subsequently, configuration B is the standard detonation channel
geometry used in the other chapters. In addition to the aforementioned geometric parameters, the
length normalized by the mean annulus circumference, 𝜋𝑑𝑚 = 𝜋(𝑑i + 𝑑o)/2, is given to draw
comparisons to the work of Bluemner et al. [133] The different lengths corresponded to -30%,
+16%, and +34% variations from 𝐿0. Adding spacers to the inner- and outer-bodies lengthened
the channel while maintaining a constant plenum length. Outer-body spacers were necessary to
maintain a static pressure measurement at the exit plane. This measurement estimates 𝑝8 (with
the state definition presented in Figure 2.1). Chapter 5 will be used to evaluate the average static
Mach number. A new inner-body piece allowed for a shorter length when used with the standard
outer-body. The length was, again, such that the exit plane had an associated pressure measurement.
Since the length of the nozzle remained the same, effectively, the change in the combustor length
only affected the length of the constant area portion of the detonation channel.

3.3 General System Description

With a description of the RDC geometry established, this section focuses on the infrastructure
surrounding the RDC and the control sequence utilized during experimentation.

3.3.1 Control System and Data Acquisition

An in-house National Instruments (NI) LabVIEW control program handled control of the entire
experiment. The control program executed an automated timing sequence that constituted a test
firing of the RDC. The internal clock for the timing sequence operated at 200 Hz. Within the
timing sequence, various solenoid ball valves actuate to control the flow of the gaseous reactants
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to the RDC system. Additionally, BNC breakout boxes outputted TTL signals (5 V) within the
timing sequence to act as triggers for spark plugs, data acquisition systems (DAQs), cameras, etc.,
as needed. Digital I/O signals, in the form of TTL signals, were generated using seven BNC-2090
breakout boxes, while a custom relay box controlled the power to the solenoids. Connected to
the BNC breakout boxes were two NI PCI-6259, one NI PCIe-6353, and one NI PCI-6133 multi-
function I/O card(s). Each card had two associated breakout boxes except for the NI PCI-6133 card,
which only had one connected breakout box. Although the program is automated while executing
the experiment, all the timing information of the discrete events was user-provided before testing.

The steady-state air and fuel flow rates are additional user inputs. The program took the input
mass flow rates and orifice sizes, computed the necessary upstream pressure, and then converted
that necessary pressure into a voltage to be applied to the pressure regulator using experimental
calibrations. The following section provides a detailed description of the gas delivery system.
The controller can start at one flow rate before switching to another in a single piece-wise step.
Although the controller makes an instantaneous switch in requested flow rates, the fluids take longer
to respond, resulting in a transient change in the flow rates of about one second. This capability
was vital to certain test conditions while measuring thrust, as will be discussed in the following
chapters.

The control program additionally served as one of the DAQs. Specifically, the two NI PCI-6259
and one NI PCIe-6353 cards acted as a low-speed DAQ with a sample rate equivalent to the refresh
rate of the timing sequence, 200 Hz. Up to 48 sensors were connected and measured simultaneously
with the six BNC breakout boxes. The DAQ measured the voltage of each sensor in a differential
mode relative to the ground and logged for the entire duration of the timing sequence. Running in
parallel to the central control program was a program that sampled at a significantly greater speed
than the primary program. This high-speed DAQ program controlled the NI PCI-6133 data card,
and the typical sampling rate was 0.5 MHz, although this varied depending on the experiment. An
internal clock independent of the main control program enabled the higher sampling rate. The NI
PCI-6133 data card connected to a single BNC-2090 breakout box, and again, the DAQ recorded the
differential voltage relative to the ground. In total, up to eight high-speed measurements were taken
simultaneously. Due to the finite memory onboard the NI PCI-6133, a TTL pulse from the main
program at a user-specified time triggered the high-speed DAQ program to begin data collection.
Typically, this data collection time encompassed the fuel-on portion of the test with one second of
margin before and after the introduction of fuel.
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3.3.2 Gas Delivery Systems

3.3.2.1 Air Delivery

High-pressure air entered the room from an external high-pressure tank to deliver air to the system.
The high-pressure air flowed through a reducing dome pressure regulator, Groove WH 408-K5
Powereactor Dome Regulator. An air-loaded regulator, Tescom 44-1566, externally controlled
the dome regulator by setting the downstream pressure. Likewise, a Tescom ER3000 pressure
controller operated the air-loaded regulator. Connected to the inlet of the air-loaded regulator was
a type K gas cylinder containing N2 gas to provide the upstream pressure. Shop air, approximately
110 psi, was connected to the Tescom ER3000. The dome regulator was required since its 𝐶𝑣

enabled the high flow rates, up to 1 kg/s, needed for testing, unlike the Tescom 44-1566. The
LabVIEW controller operated the Tescom ER3000 to set the Tescom 44-1566 outlet pressure, and
the dome regulator’s outlet pressure matched that pressure. A precision choked orifice metered the
flow; therefore, the pressure upstream of the choked orifice (downstream of the dome regulator)
controlled the mass flow rate of air.

The mass flow through a choked orifice ( ¤𝑚o) is given by,

¤𝑚o = 𝐶d𝐴o𝑝t,o

√√
𝛾

𝑅𝑇t,o

(
2

𝛾 + 1

) 𝛾+1
𝛾−1

(3.1)

where 𝑝t,o and 𝑇t,o are the total pressure and temperature upstream of the orifice, 𝐶d is the discharge
coefficient of the orifice, and 𝐴o is the orifice area. Pressure transducers and thermocouples were
upstream of the choked orifice. Flow upstream of the orifice is assumed to be sufficiently slow that
the measured static pressure and temperatures are equivalent to the total quantities. The choked
orifice on the airline had a diameter of 13.97 mm (0.550 in) and a 𝐶d of 0.99 as given by the
manufacturer. Downstream of the choked orifices, electro-pneumatic ball valves controlled when
air entered the system. A relay box controlled by the LabVIEW program actuated the ball valves
(solenoids). After the ball valves, the airline transitions from a fixed pipe to one or more flexible
hose that connects to the RDC. For the fixed inlet geometry, this process took place in a manifold
with six flexible hoses connecting to the RDC in the radial direction. The air injection ports were
equally spaced about the circumference and were 45.2 mm (1.78 in) downstream of the mid-plane of
the inlet throat. It was confirmed that the pressurization of the six flexible hoses did not contribute
to the load-cell measurement and, thus, did not impact the thrust measurements.
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3.3.2.2 Fuel Delivery

A similar setup controlled the gaseous fuel delivery to the RDC, except there were five independently
controlled fuel lines. Each fuel line could have a different type of fuel and flow rate of said fuel.
Instead of an external high-pressure volume, the fuel originated from a type K gas cylinder. Since
the fuel flow rates are lower than the air, the lower 𝐶𝑣 values of the air-loaded pressure regulator,
Tescom 44-1566, were sufficient to provide the necessary flow rate without needing the larger dome
regulator. Once again, Tescom ER5000 pressure controllers were connected to the regulators to get
the required pressure upstream of the choked orifices for the desired flow rates, and shop air was
again connected to the Tescom ER5000 controllers. A choked orifice metered each fuel line, and
it was possible to change the orifice size depending on the mass flow requirements. The choked
orifices ranged from 1.321 mm (0.052 in) to 3.175 mm (0.125 in) in diameter. The 𝐶d for each
discrete fuel orifice was experimentally validated, with most being approximately 0.87.

There were two primary reasons that the orifice size would need to be swapped depending on
the gas and/or flow rate. First, the orifices must remain choked for metering purposes and to isolate
from downstream perturbations. If the downstream pressure in the fuel line becomes too large, the
orifice may unchoke for a given flow rate, indicating the orifice area was too large. The other reason
is to protect the Tescom 44-1566 pressure regulators. Given the outlet pressure threshold of 600 psi
for the Tescom, the system’s maximum allowable outlet pressure was 500 psi for a margin of safety.
If the desired flow rate for a given orifice would result in a required upstream orifice pressure greater
than 500 psi, that orifice can be deemed too small. The LabVIEW program performed background
calculations to ensure the system would not exceed the pressure threshold. Therefore, the orifice
size selection satisfied the choking constraint while simultaneously protecting the system.

Downstream of the choked orifices, electro-pneumatic ball valves were used on each fuel line
to control when fuel entered the system. After being independently metered and passed through
the ball valves, the five fuel lines fed into an in-line static mixing chamber to mix the streams
into a single fuel stream. Mixing different fuel streams enabled testing various mixtures of single-
component gases, and the chamber produced the mixtures in real time. Even though pure H2 was
the sole fuel tested in this work, the fuel still passed through the mixing chamber. After the mixing
chamber, one or more flexible feed hoses bring the fuel mixture to the RDC. Six hoses injected
fuel radially through elbows into the fixed inlet RDC geometry. Again, the pressurization of the
flexible hoses exerted a negligible amount of force on the load cell.

3.3.3 Coupled Exhaust and Afterburner

A consequence of testing the RDC within an enclosed space is the need for an exhaust system
directly connected to the RDC. Figure 3.3 is a picture of the exhaust system. The gases exhausted
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Figure 3.3: Coupled exhaust vessel and afterburner. The RDC is not shown but would be to the
left of the image.

from the RDC entered a large vessel that was 51 cm (20 in) in diameter and approximately 2
m (78 in) long. The vessel included an elbow which diverted the horizontal flow exiting the
RDC to become vertical. A 10 cm (4 in) pipe connected to the top of the vessel, and the pipe
ran for approximately 20 m before exhausting to the atmosphere outside the building. A pressure
transducer and thermocouple probe were instrumented at the beginning of the 10 cm pipe to monitor
the properties of the exit flow.

Despite the size of the exhaust, the entire system experiences back-pressurization during the
ignition sequence of the RDC. Shepard theorized that back-pressurization occurs due to a fluidic
impedance that arises when the high-velocity and high-temperature post-combustion products
interact with the slower-moving and cold gases before ignition [179]. The fluidic impedance
effectively chokes the flow in the reduced pipe at the top of the exhaust, increasing the pressure
upstream of the reduction (impacting the exhaust and RDC). The back-pressurization persisted up
to 0.5 s before the pressure in the system dropped and reached a quasi-steady state value. Due to
the elevated pressures, a large pressure force acted upon the RDC, which potentially could have
saturated or damaged the load cell; Chapter 5 discusses this. However, a previous work concluded
that this back-pressurization had minimal impact on the operating characteristics of the RDC [179].

During testing, fuel and oxidizer flow is established before ignition of the RDC since the mixture
must precede the externally provided activation energy. A pre-detonator initiated ignition, and the
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following section describes the pre-detonator in greater detail. However, the flow before ignition
can lead to an accumulation of the reactive mixture in the coupled exhaust system. If the mixture
accumulates too much, an explosion within the exhaust vessel is possible once ignition occurs. This
process is referred to as a hard start and is considered a safety concern. Four axially oriented pilot
flames were downstream of the RDC to minimize the accumulation of fresh reactants. This series
of pilot flames is referred to collectively as the afterburner, which can be seen by the two flanges on
the left-hand side of Figure 3.3. The afterburner consists of a stoichiometric mixture of H2/air and
an air mass flow rate of approximately 15 g/s. Any un-burnt reactants ignite after passing through
the afterburner. Ignition of the afterburner occurred before the introduction of fuel into the RDC,
and the afterburner flames persisted throughout the entire time fuel was within the RDC. Thus,
the afterburner consumed the un-combusted reactants, leaving the RDC. In other words, since the
combustion efficiency of the RDC remains unknown, the afterburner ensures that all fuel is reacted
before entering the exhaust vessel, thereby mitigating the explosion risk.

3.3.4 Pre-Detonator

Initially, the sole ignition source of the RDC was a flashback from the downstream afterburner pre-
viously described. As the flame propagated upstream into the RDC, thermo-acoustic instabilities
promoted the growth of the detonation waves from the deflagration that the afterburner initiated.
However, this proved inconsistent with an integrated nozzle, which made flashback more challeng-
ing. A custom pre-detonator provided a more reliable ignition source. A pre-detonator is akin to
a detonation tube or a pulse detonation engine since single-shot detonation waves are created and
injected into the RDC detonation channel. The fuel and oxidizer mixture, H2/O2, were introduced
simultaneously into a small chamber through automotive fuel injectors. Both injectors were Black-
Ops Honda F22C injectors with 36 lb/hr for the H2 and 150 lb/hr for the O2, respectively. The DAQ
sent TTL pulses to a dedicated control box, which then fired the injectors once for each TTL pulse.
The injectors were fired at 20 Hz for about 50 ms to fill the initial chamber. After the injection of the
reactants, a time delay of 50 ms occurred to prevent the spark plug from firing while the injectors
were open. After the time delay, the spark plug was fired at 100 Hz using an ignition coil, JEGS
555-40162, and TTL pulses for another 50 ms. Overall, the control program repeated the entire
firing process at about 6 Hz. This work performed an iterative study of varying the injector open
time, spark plug delay, and the feed pressures of the fuel/oxidizers until consistent and repeatable
detonation waves occurred. The exact flow rate of either reactant is unknown, although based upon
a previous study [180], the mixture is believed to be approximately stoichiometric.

After ignition by the spark plug, the subsequent flame traveled through a 1/2 in tube towards
the RDC. A Schelkin spiral within the tube aided the DTD transition. After about 12.7 cm (5 in)
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Figure 3.4: Automated timing sequence for a four-second duration RDC test. Start and end times
are user inputs in the LabVIEW control program.

of 1/2 in tube, the area was reduced to a 1/4 in tube directly connected to the detonation channel
of the RDC through the outer wall. The 1/4 in tube was about 1.2 m (48 in) long to assist in the
DTD. The detonation was injected radially into the channel to avoid a directional preference in the
RDC. Based on observation from the high-speed camera, the detonation bifurcates after injection
into the annulus. The two detonation waves propagated in both directions around the annulus,
beginning to ignite the pre-existing mixture. The fuel and air were typically flowing before the
initial pre-detonator shot. Eventually, the two detonation waves interacted with one another, and,
following this, a highly transient and dynamic ignition period occurred that is not well understood
and is beyond the scope of this current work. If the ignition was successful after the transient period,
the newly formed detonation wave(s) continuously propagated about the annuls. This process did
not always occur with the first shot of the pre-detonator; therefore, the pre-detonator fired at 6 Hz
for the first second of the test. If a detonation wave in the RDC establishes before the last shot of
the pre-detonator, subsequent shots do not significantly disturb the detonation wave(s). However,
this work does not explore this extensively.

3.3.5 Testing Sequence

While previous sections contained brief, interspersed descriptions of the testing sequence, this
section provides a comprehensive overview of a general testing sequence. Figure 3.4 provides a
graphical representation of a typical timing sequence for a sample four-second test duration. The
exact timing sequence was subject to adjustments depending on the exact requirements for a given
experiment. The test duration is defined based on the fuel-on time, which ranges from two to
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five seconds throughout this work. In Figure 3.4, the flow of oxidizer and fuel are blue and red,
respectively. Meanwhile, ignition events are orange, and the data collection is green. Both the
RDC and afterburner (AB) air flowed the entire test duration, including after RDC fuel ceased. The
additional airflow ensured the hot products were properly exhausted to limit the system’s heating.
The AB spark plug and pre-detonator started firing before introducing the RDC fuel to mitigate the
possibility of fuel accumulation before ignition. In the case of the pre-detonator, it continued to
fire at 6 Hz for one second into the fuel-on portion of the run. The afterburner remained lit 0.5 s
after fuel shut-off to accommodate the lag between the ball valve closing and the last fuel injection
into the RDC. The start of the RDC portion is denoted by 𝑡0 while the end of the RDC fuel is
indicated by 𝑡 𝑓 . Surrounding the RDC fuel-on portion was the high-speed data acquisition, which
started one second before 𝑡0 and ended one second after 𝑡 𝑓 to capture the whole transient nature of
the system.

3.4 Measurements

Various measurements were taken within the RDC during the course of this work, with different
studies requiring different instrumentation. The measurements presented here are those directly
related to the analysis presented later instead of a comprehensive list of all measurements taken.

3.4.1 Channel and Plenum Pressure Measurements

Various pressure transducers were used throughout testing to characterize the RDC flowfield in the
plenums and channel. The response time of an individual pressure transducer determines whether
the measurement is categorized as low-speed or high-speed. One such low-speed transducer, a TE
U5244-000005-200PA, was placed at the base of the air plenum, which was nominally 62.8 mm
(2.47 in) upstream of the inlet mid-plane. To avoid being influenced by one of the six jets of air
from the discrete injection into the plenum, this azimuthal location of this measurement bisected
the arc connecting adjacent jets. In other words, there was a 30◦ angular separation between this
measurement and the adjacent air injection ports. A TE U5244-000005-200PA was also placed at
the base of the fuel plenum to provide a similar measure of the static pressure in the fuel plenum.
Fuel enters the plenum through six discrete streams like the air; thus, the fuel plenum measurement
also bisected the arc connecting adjacent jets to avoid the expansion associated with jets.

Additionally, along the outer wall were flush-mounted CTAP measurements that spanned axially
from the air plenum to the exit plane of the combustor, all at the same azimuthal location. A CTAP
is a long, small tube connected to a pressure transducer, and the tube dampens out the dynamic
components of the flow, which are prevalent in the highly turbulent and unsteady flow of a RDC

83



[169, 120]. Here, the CTAPs were 1.59 mm (1/16 in) steel tubes with an inner diameter of 1 mm
(0.040 in), and they were approximately 1 m (39 in) long. TE U5244-000005-200PA transducers
measured the pressure at the end of the tube. In total, this work used 17 CTAPs along the outer
wall. The low sampling rate of all these specific pressure transducers, 200 Hz, was significantly less
than the detonation frequency, which was on the order of several kHz. As such, the under-sampling
resulted in the measurements being effectively time-averaged static pressure measurements.

This work also utilized several high-speed pressure measurements to resolve the dynamics of
the system and measure the pressure across the detonation wave(s). Flush-mounted to the outer
wall, about 40.5 mm (1.60 in) upstream of the end of the air throat, in the air plenum was a Kulite
XTL-HA-123G-190-17BARA. This high-speed measurement was in the same circumferential
position as its low-speed counterpart; thus, the air injection streams do not significantly impact
the measurement. Flush-mounted to the top of the fuel plenum was a Kulite XTEL-190L-250A,
which was directly opposite of the low-speed pressure measurement at the base of the fuel plenum.
Flush-mounted along the outer wall of the detonation channel were several water-cooled Kulite
EWCTV-13-312-500A. These could be placed at four discrete axial positions in series (at the same
azimuthal location). The exact axial positions depend on the combination of spacers utilized. Still,
the nominal axial positions are 8.79 mm (0.346 in) upstream, 10.3 mm (0.404 in) downstream,
30.6 mm (1.20 in) downstream, and 50.9 mm (2.00 in) downstream of the end of the air inlet
throat. In particular, the 12.7 mm axial position is effectively where the constant area portion of the
detonation channel begins for AAI, which is likely the axial location of the base of the detonation
wave(s). The high sampling frequency, 0.5 MHz, can partially resolve the pressure rise across the
detonation wave. However, the sensor may not fully resolve the discontinuous (infinite response)
pressure front due to the finite physical response time of the sensors.

3.4.2 Aft High-Speed Video

For most tests in this work, a high-speed camera recorded a chemiluminescence video of the annulus
from the aft, which allowed for post-processing identification and tracking of the waves in the RDC.
Optical access is provided through the connected exhaust system by a 178 mm (7.00 in) diameter
fused quartz window with a thickness of 31.8 mm (1.25 in). The viewing aperture of the window
was 159 mm (6.25 in) in diameter. The window was about 1.5 m (60 in) downstream from the
end of the combustor in the elbow portion of the exhaust; see Figure 3.3. The central axis of the
window was not coaxial, with the central axis of the RDC being about 11cm (4.5 in) higher than
the RDC. Thus, the videos were taken at a slight angle, on the order of a few degrees, to have an
unobstructed view of the entire annulus.

Two models of high-speed CMOS cameras were used across all the different experiments. A
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Figure 3.5: A schematic diagram of the assembled thrust stand integrated with a round RDC.
Air/fuel feed lines and accessories are not shown for clarity. The radial seal for the exit flange is
highlighted in the blue circle.

Phantom TMX5010 typically recorded the video with a resolution of 768x640 pixels covering the
entire annulus, an exposure time of 10 𝜇s, and a frame rate of 60k fps. The light was collected
with a 105mm f/2.8 macro lens, with the focal length being within the detonation channel, just
upstream of the exit plane. No filtering of the collected light occurred before being recorded. Given
the nature of the mostly H2/air combustion studied throughout this work and the spectral range of
the camera, most of the detected light can be attributed to OH* chemiluminescence near 300 nm.
The camera would have also measured the broadband visible light produced in a H2/air flame. In
several experiments, a Phantom v711 was utilized instead of the TMX5010. Videos taken with
the v711 had a resolution of 288x280 pixels covering the entire annulus, an exposure time of 7 𝜇s,
and a frame rate of 55k fps. The v711 used the same lens, and the light was, again, not filtered.
The onboard memory of the v711 was less than the TMX5010; thus, only about 1.4 s worth of
video could be saved, unlike the TMX5010, which could save over five seconds worth of video at
the described settings. The v711 recorded video during the last second of fuel-on time, while the
TMX5010 recorded the entire duration of fuel-on times (up to five seconds). Both cameras began
recording after receiving a TTL pulse from the DAQ, with the timing controlled by the LabVIEW
program.
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3.4.3 Thrust Measurement System

A diagram of the RDC on the thrust stand is shown in Figure 3.5. The RDC was mounted on a frame
that sits and translates freely on a rail system. The point of deflection on the arrangement is co-linear
to the combustor’s axis and centered on the load cell axis. The load cell (EFN30-1KN-C20005)
is a pancake type that measures tension and compression forces. The full scale is 1000 N, and the
accuracy is 0.1% of the full scale, although, as will be seen in a later section, the uncertainty of the
measured thrust is worse than this. In our setup, positive thrust production results in a compressive
force acting upon the load cell. A pre-load is applied to the load cell through a pulley, causing
the load cell to experience tension (the opposite direction of thrust). A 9.01 kg (19.9) mass hung
from the pulley, which applies a force of 177 N (39.7 lbf). The voltage output of the load cell was
recorded at 200 Hz by the existing data acquisition system.

While most reported RDCs on thrust stands exhaust to the ambient atmosphere, the facility at
Michigan requires the RDC to be directly connected to a dedicated exhaust system, as indicated by
the red arrow in the schematic. For safety concerns, the RDC must seal against the exhaust flange.
The RDC originally sealed against the exhaust flange with a fiber-glass rope seal with silicon gasket
material. However, not only was the instrumentation of the flange past this seal challenging but
the RDC would de-mate during operation. This exhausted products to the room and increased the
area over which pressure could exert a force upon the RDC. Thus, this work implemented a radial
seal to seal the exhaust properly. Figure 3.5 in the highlighted circle highlights a schematic of the
radial seal. On the RDC side, an extruded bore sits within the concentric downstream piece that is
attached and seals to the exhaust flange. A graphite packing seal creates the interfaces between the
exhaust piece and the bore connected to the RDC (red circle). Initially, a high-temperature o-ring
was used instead of graphite, but the o-ring would temporarily “stick” on the bore during operation,
causing erroneous thrust measurements. Graphite, in comparison, significantly reduces the friction
between the two pieces. The radial seal did not significantly alter the gross thrust measurement,
based upon comparisons between the theoretical gross thrust based on one-dimensional analysis
and the results of non-reacting tests. However, the potential force contributions of the radial seal
could not be readily quantified during a detonative operation where the elevated temperature may
cause more seizing; however, since the friction would impede motion, the force is in the opposite
direction of what the load cell would measure. Therefore, the reported values of the corrected
thrust are conservative.

The base pressure acting upon surfaces at the exit plane is needed to convert the measured
resultant force acting upon the load cell into the gross thrust (see Section 4.1). These surfaces are
the face of the truncated nozzle on the center body and the exit flange used to seal the exhaust
flange. Adding holes in the nozzle’s bluff face and exit flange enabled flush-mounted CTAPs to
be added. Thus, both surfaces were instrumented with many CTAPs to measure static pressure
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Figure 3.6: Diagram of instrumentation of center body (inner gray circle) and exit flange (outer
gray ring) for base drag corrections. Red circles and blue circles denote pressure transducers with
a range of 2.04 atm and 13.6 atm respectively.

distribution and subsequent base drag along the exit flange and center body. The CTAPs exited
the RDC through the inner body. The locations of the CTAP placements along both surfaces are
visualized in Figure 3.6 as red and blue circles. The gray areas represent the surface areas that
the base drag acts upon, that being 169 cm2 (26.2 in2) and 11.5 cm2 (1.79 in2) for the center body
and exit flange, respectively. The exit flange was explicitly designed to reduce the effective area as
much as possible.

The center body contained 17 CTAPs, each at a different radial position (including the cen-
ter) and three potential circumferential locations. The outer radial position, 6.16 cm (2.43 in),
was determined based on machining considerations. Between the center of the nozzle and the
aforementioned outermost radial location, the remaining pressure measurements were discretized
along the radial direction to be equally spaced. The positions were then cyclically assigned to the
circumferential legs as the radial location increased. Since pressure distribution along the truncated
nozzle was unknown a priori, this process enabled the measurements to resolve potential radial and
circumferential variations. Similar work has been done by Brophy et al. previously [114]. However,
the present study utilized more measurements with a wider range of circumferential locations than
the study from Brophy et al.

Similarly, the exit flange had six CTAPs along the protruded bore; see Figure 3.5. There were
three pairs, each being at a different circumferential location. The measurement pairs were for
redundancy. All six CTAPs had the same radial position due to size constraints, as the lip of the
bore had a width of 2.35 mm (0.093 in), which is only slightly larger than the CTAP tubes. Instead
of running the tube through the bore, which contained a 90◦ bend, passages were 3D printed into
the bore that the CTAPs could externally connect to. A summary of the radial and circumferential
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location of all the CTAPs is tabulated in Appendix F.
This work used two different pressure transducer models for the CTAPs along the nozzle: one

with a range of 0-2.04 atm (TE U5244-000005-030PA) and one with a range of 0-13.6 atm (TE
U5244-000005-200PA), due to a limited number of the 2.04 atm models. Brophy et al. previously
reported nearly atmospheric pressure measurements along a truncated nozzle of a similar rig [114];
thus, the smaller range of the 2.04 atm sensors was sufficient to measure the theorized base pressures.
In general, the 2.04 atm transducers had overall greater accuracy than the 13.6 atm as the noise
typically scales with the full scale. Thus, in subsequent plots, these sensors will have larger error
bars. In Figure 3.6, red circles are for the 2.04 atm transducers, while the blue circles are for the
13.6 atm transducers. All six CTAPs along the exit flange used the 2.04 atm transducers, while ten
selective CTAPs along the center body employed the 2.04 atm transducers. Other than the center,
which had a 2.04 atm transducer, the sensor positions with the smallest radial locations had the 13.6
atm transducers since those radial locations corresponded to the smallest effective areas. Appendix
F provides a table of the transducer for each location for reference.

3.5 Sensor Calibration and Uncertainty

One of the primary contributions to the RDC literature from this work is a detailed uncertainty
analysis of the pressure gain metric, given in Chapter 5. The uncertainty in individual measure-
ments/sensors was required to perform such an uncertainty analysis. This section supplies the
details of this process.

3.5.1 Thrust System Uncertainty

A linear calibration is used for all experimental measurements to convert the output voltage to the
unit of measure. The load cell was calibrated statically by applying loads of known weight and
recording the output voltage of the load cell (1000 samples at each load weight). This calibration
process was repeated over ten times to provide a range of linear calibrations for the load cell. The
pressure sensors on the RDC were calibrated in-situ by conducting static calibration by manually
pressurizing the combustor over a range of pressure values (from atmospheric pressure to 2.75
atm) and acquiring 1000 pressure samples at each discrete pressure. The linear calibration was
computed from the discrete points using the least-squares method, and the calibration parameters
(slope 𝑚 and intercept 𝑏) for some of the critical measurements are shown in Table 3.3. The load
cell output is labeled as 𝐹L, while the pressures measured on the nozzle and exit flange are 𝑝cb and
𝑝fl, respectively. Table 3.3 only reports a single pressure transducer for 𝑝cb and 𝑝fl; however, these
values are representative of the other transducers. The pre-load applied to the load cell is the cause
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Quantity 𝑚 [V−1] 𝑏 [–] 𝛿𝑚 [V−1] 𝛿𝑏, [–] 𝛿𝑉 [V]
𝐹L 217 N -197 N 1.56 N 4.90 N 6.12×10−2

𝑝cb (2.04 atm) 0.515 atm -0.507 atm 5.49×10−4 atm 2.19×10−3 atm 4.06×10−3

𝑝cb (13.6 atm) 3.44 atm -3.44 atm 3.22×10−3 atm 4.65×10−3 atm 5.61×10−4

𝑝fl 0.514 atm -0.507 atm 5.40×10−4 atm 2.16×10−3 atm 5.08×10−3

𝑝3 3.42 atm -3.41 atm 6.39×10−3 atm 9.21×10−3 atm 1.15×10−2

𝑝8 3.42 atm -3.39 atm 7.75×10−3 atm 1.11×10−2 atm 1.39×10−2

Table 3.3: Linear calibration and calibration uncertainties of key measurements used in this work.

of the negative intercept, indicating that the pre-load extends the range of measurable compressive
loads (thrust).

The sources of uncertainty in the measurements come from the uncertainty in the linear fit
parameters (for slope 𝑚 and intercept 𝑏: 𝛿𝑚 and 𝛿𝑏, respectively), as well as uncertainty in the
measured voltage (𝛿𝑉) from the DAQs and electrical noise. For a linear calibration constructed
from a number 𝑁 of samples of a measured voltage 𝑉 , with a slope 𝑚 and an intercept 𝑏, the total
uncertainty is:

𝛿𝑦2 =

(
𝜕𝑦

𝜕𝑚
𝛿𝑚

)2
+

(
𝜕𝑦

𝜕𝑉
𝛿𝑉

)2
+

(
𝜕𝑦

𝜕𝑏
𝛿𝑏

)2
(3.2)

which can be simplified to:
𝛿𝑦2 = (𝑉𝛿𝑚)2 + (𝑚𝛿𝑉)2 + (𝛿𝑏)2 (3.3)

This work assumes that the measurements follow a normal distribution centered on the “true” value
to determine the uncertainty in the linear calibration parameters. The best estimate for standard
deviation (𝜎) in the measured 𝑦, computed from the linear calibration, can be shown to be [181]:

𝜎𝑦 =

√√√
1

𝑁 − 2

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑚𝑉𝑖 − 𝑏)2 (3.4)

The above equation is effectively a measure of the variation of the 𝑦 estimated from the linear
calibration (𝑚𝑖 + 𝑏) and the measured 𝑦 (𝑦𝑖). Thus, this uncertainty only applies when independent
measures of 𝑥 and 𝑦 are made (i.e., during the calibration process). Only the 𝑥 (which has the units
of volts) is recorded during the experiment, necessitating using Eqn. 3.3 to find the uncertainty.

Lest-squares fitting of the calibration data provides the slope and intercept of the linear calibra-
tions. Thus, the following equations give for the uncertainties in the parameters based on Eqn. 3.4

89



and the least-squares fitting equations [181]:

𝜎𝑏 = 𝜎𝑦

√︄∑𝑁
𝑖=1(𝑉2

𝑖
)

Δ
(3.5)

𝜎𝑚 = 𝜎𝑦

√︂
𝑁

Δ
(3.6)

where Δ is:

Δ = 𝑁

𝑁∑︁
𝑖=1

(𝑉2
𝑖 ) −

(
𝑁∑︁
𝑖=1

𝑉𝑖

)2

(3.7)

The uncertainties above are derived assuming a standard deviation from a normal distribution of
errors, which only allows one to have a 68% confidence interval. However, this work considers
95% confidence intervals (a z-score of 1.96). Thus,

𝛿𝑚 = 1.96𝜎𝑚 (3.8)

Table 3.3 also shows the uncertainties in linear calibration parameters for the load cell and pressure
transducers. Similarly, the uncertainties of all individual pressure transducers used along the nozzle
and exit flange are visualized in Figures 3.7a and 3.7b, respectively. The applied voltage, 1.5 V,
is representative of voltages during testing. The 13.6 atm pressure transducers resulted in larger
uncertainties at lower radial locations than the 2.04 atm transducers (see Figure 3.6). In general,
the transducers with a range of 2.04 atm have overall lower uncertainty (about 0.002 atm compared
to 0.005 atm) in the measurements due to the reduced full-scale. Some 13.6 atm sensors had
uncertainties comparable to those with the 2.04 atm range, suggesting variability between sensors.
Chapter 5 discusses that placing the sensors with larger uncertainties at lower radial locations
mitigates their contribution to the computed drag acting on the nozzle. Both sets of sensors had a
combined uncertainty that is less than 0.2% of the full scale.

3.5.2 Flow Rate Uncertainty

This work studies several parametric studies of different combinations of air mass flow rate, ¤𝑚a and
equivalence ratio, 𝜙, for H2/air operation. However, instead of reporting the air mass flow rate, air
mass flux defined relative to the throat area of the air inlet (𝐴3.1) is reported.

¤𝑚′′
a = ¤𝑚a/𝐴3.1 (3.9)
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(a) (b)

Figure 3.7: Uncertainty in pressure measurements on the a) center body (truncated nozzle) and b)
exit flange.

This work reports mass flux in favor of mass flow rate because Chacon et al. observed that sustained
detonation wave propagation scales better with mass flux than mass flow rate [176]. Mass flux also
better captures the changes in specific properties as the air inlet is made more open (increasing the
area) [47].

The random uncertainty in the mass flux and equivalence ratio comes from the uncertainty in
the mass flow rates of air and fuel caused by the pressure and temperature measurements according
to,

(𝛿 ¤𝑚o)2 =

(
𝜕 ¤𝑚o
𝜕𝑝t,o

𝛿𝑝t,o

)2
+

(
𝜕 ¤𝑚o
𝜕𝑇t,o

𝛿𝑇t,o

)2
(3.10)

=

(
¤𝑚o
𝑝t,o

𝛿𝑝t,o

)2
+

(
− ¤𝑚o
2𝑇t,o

𝛿𝑇t,o

)2
(3.11)

The above equation arises from the partial derivatives of Eqn. 3.1. These uncertainties then
propagate into the air mass flux and equivalence ratio. The pressure transducer and thermocouple
upstream of the orifices could not be calibrated like the measurements on the engine. Instead,
this work arbitrarily assumes that 𝛿𝑝t,o is 1 psi (which is 0.2% of the full scale) and 𝛿𝑇t,o is 5 K
(comparable to the electrical noise observed). This results in the error bars on the mass flux ranging
from ±1-4% of the nominal flux values, with the lower fluxes having the larger relative uncertainty.
Similarly, the equivalence ratio has error bars ranging from ±2-4% of the nominal equivalence ratio
values, with the lower fluxes having the larger relative uncertainty.

Several sources of systematic error exist for the air mass flux and equivalence ratio. For
the air mass flux, there is a systematic error potentially caused by the orifice area (𝐴o), the orifice
discharge coefficient (𝐶d), and the area of the air inlet throat (𝐴3.1). Likewise, the area and discharge
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coefficient of the choked orifices on the air and fuel delivery systems impact the equivalence ratio.
This work neglected the uncertainty in discharge coefficients. While the manufacturers give the
machining tolerances for the diameters of the orifices, the exact dimensions remain unknown. This
study assumes that the diameter follows a uniform distribution given by the machining tolerances to
account for the unknown dimension. The machining tolerances used to generate the distributions
are ±12.7𝜇m (±0.0005in) on the choked orifice diameter, ± 0.127mm (±0.005in) on the air inlet
outer diameter, and ±0.051mm (±0.002in) on the air inlet inner diameter. A uniform distribution
requires the least amount of prior knowledge and will maximize the uncertainty (information
entropy) [182], making it ideal for this purpose. A Monte-Carlo simulation [183] of 100,000
samples randomly sampled the uniform distributions and calculated the corresponding areas for
the sampled diameters. Doing so generates the Probability Density Function (PDF) of the areas
according to the assumed uniform distributions. A Monte-Carlo simulation is beneficial for the
case where two independent distributions are combined into a single distribution, as in the case of
finding the air inlet area, making it simpler and faster than analytically deriving the possible errors.
The systematic uncertainty is calculated based on a 95% confidence interval from the mean of the
resultant PDF. For the choked orifice, the systematic uncertainty in the area leads to an uncertainty
of about ±0.1% the nominal, measured flow rate. For the air inlet, the possible range of areas is
±4.5% the nominal area value; this directly translates to a potential ±4.5% systematic change in
the reported mass fluxes which is larger than the random uncertainty for the air mass flux. The
importance of the systematic uncertainties will diminish with larger air inlet throat areas by having
more open throats or increasing the overall scale of the RDC. Finally, a similar process is used
throughout this work to evaluate the systematic uncertainty caused by machining tolerances.
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CHAPTER 4

Improving Base-Drag Corrections for Rotating
Detonation Combustor Gross Thrust Measurements

4.1 Introduction

As discussed in Section 2.4.1.2, the gross thrust output is necessary to determine the EAP. The
gross thrust is the combination of the axial momentum of mass leaving the combustor at the exit
state and the sum of the pressure forces acting upon the cross-sectional area of the annulus at the
exit plane (state 8 ):

𝐹G = ( ¤𝑚f + ¤𝑚a)𝑢8,𝑧 + (𝑝8 − 𝑝∞)𝐴8 (4.1)

Any momentum in the radial or circumferential direction does not produce usable thrust and thus
does not contribute to 𝐹G. Such momentum is effectively a loss mechanism, although this work
does not evaluate its impact.

However, the reactive force measured by the load cell (𝐹L) differs from the gross thrust produced
by the RDC (𝐹G) due to additional pressure forces acting upon the RDC. The CV analysis presented
in Figure 4.1 is employed to correct for the other contributions to the measured thrust. The combustor
is symmetric about the centerline axis. The CV is the dashed red line, and the axis of symmetry
of the combustor is shown on the right by the black dash-dot line. The different forces (pressure
and momentum flux) acting upon the surfaces of the control volume that contribute to the axial
momentum balance are displayed. At the same time, the black arrow indicates the resultant force
(𝐹L). The system injects air and fuel radially; thus, there is no incoming axial momentum. Ambient
pressure acts upon the exposed bottom of the combustor. This ambient pressure (𝑝∞) is assumed to
be constant during the test duration. On the outflow portion of the device, there is the momentum
flux of the hot products and pressure forces around the annulus (𝐹G), as well as the base drag
generated by the pressure acting on the end face of the center body (𝑝cb) and on the outermost
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Figure 4.1: Definition of control volume and conditions at boundaries used to determine the thrust
produced by the combustor. The truncated converging nozzle is shown.

flange (𝑝fl). The overall axial momentum balance on the CV is then:

𝐹L = 𝐹G +
∬

𝐴cb

Δ𝑝cbd𝐴 +
∬

𝐴fl

Δ𝑝fld𝐴 (4.2)

The pressure force terms are expressed with gauge pressures, i.e., relative to the ambient value
(Δ𝑝 = 𝑝 − 𝑝∞) to account for the ambient pressure acting on the exposed bottom surface of the
combustor. Re-arranging to solve for the gross thrust results in:

𝐹G = 𝐹L −
∬

𝐴cb

Δ𝑝cbd𝐴 −
∬

𝐴fl

Δ𝑝fld𝐴 (4.3)

= 𝐹L − 𝐷cb − 𝐷fl (4.4)

The application of Eqn. 4.3 to the instantaneous measurements of the different quantities generates
an estimate of the instantaneous gross thrust (𝐹G(𝑡)).

The need to measure the base drag is evident from Eqn. 4.3; thus, before discussing the RDC
gross thrust and subsequent total pressure measurements, a detailed discussion of the base drag
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acting upon bluff surfaces is necessary. This chapter quantifies and analyzes the base drag, while
Chapter 5 focuses on the gross thrust and pressure gain measurements. The following discussion
is an effort to increase the accuracy of the base drag measurements, specifically those acting
upon the truncated nozzle. This study used seventeen pressure measurements, CTAPs, along the
truncated nozzle to provide a well-resolved radial and circumferential pressure distribution, a first
for RDC literature. The measurements indicate that the typical axisymmetric assumption is invalid,
and the error from not performing a two-dimensional integration is estimated. Due to physical
limitations, one typically cannot have a pressure measurement near the edge of the truncated nozzle,
and this work explores how to address this shortcoming when using the standard Newton-Cotes
integration methods. Finally, the high fidelity in the radial distribution enabled an experimental
comparison between the Newton-Cotes and Gauss-Kronrod integration techniques proposed by
Fievisohn et al. [129]. The combination of these analyses and accounting for the uncertainty in
the individual pressure sensors provides a detailed uncertainty analysis of the base drag correction.
Based on the observations made in this study and the detailed uncertainty analysis results, this study
offers recommendations to improve future base drag measurements that are critical when dealing
with truncated nozzles for RDC gross thrust measurements. Specifically, the recommendations
maximize the accuracy and precision of the base drag measurements with the constraint of using
as few measurements as possible since such measurements are costly and take up space in the
experiment.

4.2 Geometry and Tested Operating Conditions

The data collected for this experiment was on the AAI injector with the 50% converging nozzle.
The nominal combustor length of 102 mm corresponds to Configuration B in Tab. 3.2. Section
3.2 gives more details about the geometry and configurations. This geometry combination is the
baseline against which future chapters with different geometry changes compare.

This study employed a parametric study of different values for the air mass flux, ¤𝑚′′
a , and

equivalence ratio, 𝜙, with hydrogen/air operation. Figure 4.2 shows the conditions tested for this
work. As mentioned, the successful detonative operation scales better with air mass flux evaluated
at the inlet throat conditions than with the flow rate [176]. Thus, the air mass flux is the ratio
of the independently controlled, prescribed air mass flow rate and the geometric air inlet throat
( ¤𝑚′′

a = ¤𝑚a/𝐴3.1). Each case considered in this work had sustained detonative operation. The
number of detonation waves, or multiplicity (𝑁D), is indicated in Figure 4.2 by the marker shapes.
One (𝑁D = 1) and two co-rotating (𝑁D = 2) wave operations are denoted with circles and triangles,
respectively. While two co-rotating waves occurred in most test cases, several tests at low mass
fluxes and equivalence ratios exhibited only one wave, highlighted in Figure 4.2 with the gray
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Figure 4.2: Summary of test conditions tested in this study. The number of detonation waves and
their normalized wave speed are given by marker shape and coloration, respectively.

boxes. Figure 4.2 also gives the detonation wave speed (𝐷) normalized by the ideal CJ velocity
(𝐷CJ) as the color of the markers. This work will give detonation velocities in favor of frequencies
such that the results are independent of the specific geometry and chemistry. Many of the tests
had normalized velocities that were 70-80% of 𝐷CJ, with the primary exceptions being the tests
with mass fluxes of 193 and 260 kg s−1 m−2 and 𝜙 = 0.6. The normalized wave speeds during
these tests were approximately 57%, comparable to acoustic speed in the hot combustion products.
These two nearly-acoustic detonation waves contrast the surrounding conditions.

Through the parametric study, the pressure and the gas velocities at the exit of the RDC annulus
can be varied. Since the downstream ambient pressure remains the same, this will generate
different expansion processes for the different test points, creating varying base drag amounts.
The magnitude of the pressures measured at each sensor location will inevitably differ from case
to case, and the spatial distribution acting on the surface of the pressure field may also change
with the different flow conditions. Additionally, the parametric study examined the evolution of
performance measurements and the relative uncertainties in those measurements, as will be seen
in Chapter 5.

4.3 Sample Pressure Measurements

To provide contextualization of the base drag calculations that are presented later in this work, some
representative measured pressure distributions (i.e., 𝑝(𝑟, 𝜃)) along the center-body are provided in
Figure 4.3. The test conditions for the shown cases were: ¤𝑚′′

a = 330 kg s−1 m−2 and 𝜙 = 0.55,
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(a) (b)

(c)

Figure 4.3: Pressure at different radial and circumferential locations for a) ¤𝑚′′
a = 330 kg s−1 m−2

and 𝜙 = 0.55 b) ¤𝑚′′
a = 329 kg s−1 m−2 and 𝜙 = 1.01 c) ¤𝑚′′

a = 507 kg s−1 m−2 and 𝜙 = 0.61. An
asymmetry is observable in most cases.

¤𝑚′′
a = 329 kg s−1 m−2 and 𝜙 = 1.01, and ¤𝑚′′

a = 507 kg s−1 m−2 and 𝜙 = 0.61 for Figures 4.3a,
4.3b, and 4.3c respectively. The pressures in Figure 4.3 are average pressures relative to ambient
conditions during the last 0.5s of fuel-on operation (Δ𝑝). The symbol color gives the sensor’s
circumferential location (𝜃), while the central point (𝑟 = 0) is a black dot, indicating it does not
belong to any circumferential locations. The x-axis gives the radial locations, normalized by the
radius of the edge of the truncated nozzle attached to the center body (𝑟CB), which is 7.33 cm (2.89
in). The lines connecting the data points are to guide the reader. Focusing on the radial variations,
a qualitative general shape is observable for the different circumferential locations. Starting from
the center, a small increase in pressure occurs until about 1cm (0.14𝑟CB) away from the center.
Afterward, the pressure decreases below the central pressure, reaching its lowest point at about
5cm (0.68𝑟CB) from the center. Finally, the pressure increases towards the elevated pressures seen
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at the exit of the annulus. The pressure at the exit of the annulus is always greater than or equal to
ambient conditions, which may explain why the measured gauge pressure increases significantly as
𝑟 approaches 𝑟CB. Overall, this profile resembles a cubic polynomial in relation to 𝑟 and is similar
to previous computational work [122].

While the radial shapes are similar for all the results presented in Figure 4.3, the circumferential
distribution varies. Specifically, Figure 4.3a appears to be axis-symmetric in that the radial distribu-
tions of the different colors seem to overlap mostly, while Figures 4.3b and 4.3c do not share in this
symmetry. For instance, the radial profiles at 𝜃 = 0◦ (green line) and 𝜃 = 240◦ have no overlap after
the measurement point at 1.16 cm (0.16𝑟CB). The spread (i.e., minimal overlap) in the three profiles
greater than the error bars suggests an asymmetry of the pressure field. The error bars convey the
individual sensor’s random uncertainty as calculated from the sensor calibrations. A small subset
of conditions tested had the axis-symmetric pressure field similar to Figure 4.3a. The cause for the
asymmetry is unknown, although minor imperfections in the geometry, i.e., non-concentric annu-
lus, differences in fuel injectors, etc., might be the cause. The lack of axial symmetry is especially
important with respect to base drag calculations since, typically, the pressure is integrated only in
the radial direction by assuming an axis-symmetric profile [115]. Section 4.4.3 will discuss the
impact of this assumption in further detail later.

4.4 Numerical Integration for the Base Drag

The base drag acting upon the center-body (𝐷cb) or the exit flange (𝐷fl) is the integration of the
pressure distribution over the area of either the nozzle or the flange. For instance, consider 𝐷cb,

𝐷cb =

∬
𝐴cb

Δ𝑝cb(𝑟, 𝜃)d𝐴 (4.5)

=

∫ 2𝜋

0

∫ 𝑅cb,2

𝑅cb,1

𝑟Δ𝑝cb(𝑟, 𝜃)d𝑟d𝜃 (4.6)

where 𝑝cb(𝑟, 𝜃) is unknown a priori and Δ𝑝cb is the gauge pressure (Δ𝑝cb = 𝑝cb − 𝑝∞). Discrete
pressure measurements can be made at 𝑛 locations and numerically integrated to approximate the
integral in the following manner,∬

𝐴

Δ𝑝cb(𝑟, 𝜃)d𝐴 ≈
𝑛∑︁
𝑖=1

𝑤𝑖Δ𝑝cb(𝑟𝑖, 𝜃𝑖) (4.7)

In the above equation, 𝑤𝑖 are the weights assigned to the 𝑖-th pressure measurement at location
(𝑟𝑖, 𝜃𝑖). Thus, the individual pressure measurements are the nodes of the numerical integration.
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Imposing an axisymmetric assumption (i.e., 𝑝 ≠ 𝑓 (𝜃)), a further simplification is possible,

𝐷cb ≈ 2𝜋
𝑛∑︁
𝑖=1

𝑤𝑖Δ𝑝cb(𝑟𝑖) (4.8)

As demonstrated in the previous section, the axisymmetric assumption is invalid for some condi-
tions tested. Due to this, this study will evaluate the base drag with and without the symmetric
simplification to examine the impact of the assumption later in Section 4.4.3. Furthermore, the
determination of the weights is method dependent (i.e., Newton-Cotes, Gaussian quadrature, etc.)
and will also be discussed in Sections 4.4.1 and 4.4.2. While this process applies to both base
drags, the focus here will be on the center body since the effective area is nearly 15 times larger
than the exit flange by design. Thus, the pressure field will likely vary more along the center body,
magnifying the impact of each pressure measurement and the numerical integration.

4.4.1 Newton-Cotes Method

This work initially chose the locations of the pressure measurements for the base drag corrections
without a specific numerical integration scheme in mind. A Newton-Cotes integration method is
most suitable since the measurements are at pre-described locations (nodes). Typically, in literature,
to find the base drag from CTAP measurements, a midpoint rule (1 point scheme) is utilized where
the effective area (weight) of the pressure measurement (node) is multiplied by the pressure and
then summed over [115]. The effective areas are concentric circles that bisect the radial distance
between the nodes. Formally, the weights from this midpoint rule are,

𝑤𝑖 =


2𝜋

( 𝑟𝑖+1
2

)2
𝑖 = 1

2𝜋
[ ( 𝑟𝑖+𝑟𝑖+1

2
)2 −

( 𝑟𝑖+𝑟𝑖−1
2

)2
]

𝑖 = 2, ..., 𝑛 − 1

2𝜋
[
𝑟2

CB −
( 𝑟𝑖+𝑟𝑖−1

2
)2

]
𝑖 = 𝑛

(4.9)

The normalized weights of the nodes are shown in Figure 4.4 to illustrate the relative importance
of the individual measurements in the midpoint rule, with a value of 1 on the x-axis being the edge
of the nozzle. A normalized weight is the effective area divided by the total area of the truncated
nozzle. In other words, the normalized weight is the individual weight divided by the summation
of the weights. The largest integration weights are near the edge due to the 𝑟 term in the integrand
of Eq. 4.6. While there is a linear increase in weights with 𝑟, the last data point is much higher than
the others by having a normalized weight of 0.33. In other words, 1/3 of the base drag calculation
comes from a single pressure measurement, which requires further evaluation.

One of the most problematic aspects of measuring base drag on a truncated nozzle and/or cap
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Figure 4.4: Normalized weights of nodes used for midpoint rule. The last effective area extends to
the edge of the center body.

is getting a measurement at the outermost edge of the nozzle. Due to physical constraints, this
measurement is impractical, which ultimately causes a significantly larger weighting on the last
node. Furthermore, since the pressure at the edge is unknown, an assumption is necessary to close
the integral. Consider the radial pressure distribution shown in Figure 4.5, the same data presented
in Figure 4.3a. For simplicity, this specific test condition, ¤𝑚′′

a = 330 kg s−1 m−2 and 𝜙 = 0.55,
was chosen for the axisymmetric pressure field. This study considers two scenarios to bound the
range of solutions. First, the pressure at the edge is the same as the measurement at the outermost
position (red triangle). Physical intuition leads to the belief that the pressure would not drop moving
towards the edge, making this the lower bound of possible pressures. This scenario is equivalent
to applying the 0.33 weight seen in Figure 4.4 to the outermost measurement point. The second
scenario estimates the pressure by extrapolating the measured pressure distribution (blue triangle).
This extrapolation is performed by applying a cubic fit to the data and computing the pressure at
𝑟CB from that fit. This study chose a cubic fit since it resulted in near-unity R2 values. The pressure
at the exit plane of the annulus is greater than the pressure acting on the truncated nozzle; thus, the
pressure close to the edge should increase. While this second scenario does not provide a true upper
bound, it is the best estimation with the current instrumentation. The red triangle would increase
the overall gross thrust compared to the blue triangle since a (more) negative gauge pressure acting
upon the cap results in a positive increase in gross thrust. Thus, the extrapolated pressure provides
a more conservative measure of thrust.

With an assumed edge pressure, the pressure is effectively “known” at 18 radial locations along
the truncated nozzle, including the endpoints of integration, the center, and the edge. Again, for the
sake of discussion, an axisymmetric assumption is applied for now, i.e., pressure is only a function
of 𝑟. While the midpoint rule remains valid, a higher accuracy method is preferred since the
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Figure 4.5: Nozzle edge pressure is either equivalent to the last measurement (red triangle) or
from extrapolated cubic fit (blue triangle) of measurements (black circles). Case where ¤𝑚′′

a =

330 kg s−1 m−2 and 𝜙 = 0.55.

midpoint rule is only first-order accurate. However, implementing the 18-point method may result
in instability in the numerical integration (i.e., Runge’s phenomenon); thus, a composite method
of the lower order is necessary. Therefore, to compute the base drag, a composite trapezoidal rule
(two-point scheme), which is of order two accurate, is employed to integrate the pressure. Note that
the spacing between the outermost CTAP and the edge pressure differs from the spacing between
the remainder of the points, which is why this work does not use the more accurate Simpson’s rule.

The results of the base drag calculation during the steady portion of the runs are shown in Figure
4.6a for all conditions considered in this work. The subscript “N” on 𝐷cb indicates a Newton-Cotes
method. The circles denote the base drag computed when the edge pressure is assumed to be
equivalent to the outermost CTAP (see the red triangle in Figure 4.5). Meanwhile, the triangles
are for the base drag with the extrapolated pressure (see the blue triangle in Figure 4.5). The color
of the markers gives the equivalence ratio in this and the following figures. Since this work tested
the equivalence ratio discretely at 0.2 increments, the interpretation of the color bar is as follows:
black for 𝜙 =0.6, red for 𝜙 =0.8, green for 𝜙 =1.0, and blue for 𝜙 =1.2. The negative base drag
causes an increase in gross thrust since the vacuum pulled on the truncated nozzle face would act
on the engine in the opposite direction of the measured gross thrust. As anticipated, the base drag
on the nozzle grows more positive with the extrapolated pressure compared to the constant edge
pressure. Figure 4.6b highlights this difference between scenarios (Δ𝐷cb,N) by showing the change
in gross thrust from using the extrapolated pressure over applying the last CTAP measurement over
the area up to the edge.

Δ𝐷cb,N = 𝐷cb,N(constant 𝑝) − 𝐷cb,N(extrap. 𝑝) (4.10)
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Figure 4.6: Computing the base drag with an edge pressure that is either a) constant or extrapolated
gives b) different values that are c) contextualized against gross thrust.

Although the difference between the two scenarios grows with increasing flux, both capture the
same overall trends. For now, this work takes the difference to be a measure of the uncertainty in
the base drag solely from the edge pressure. Effectively, the uncertainty in the edge pressure is
equivalent to the difference between the extrapolated pressure and outermost CTAP measurement.
Figure 4.6c shows the importance of this relative to the gross thrust, where Section 5.2 in the
following chapter reports the gross thrust measurements. The gross thrust values are preemptively
used here to highlight the relative impact of this uncertainty. The impact of edge pressure is more
important at the lowest flux, and the relative importance steadily decreases with increasing mass
flux to about 3% of the gross thrust value, depending upon the equivalence ratio. Nevertheless,
this is still non-negligible, highlighting the importance of edge pressure. Thus, to improve the
numerical integration, either a CTAP measurements closer to the edge to limit extrapolation or a
numerical integration method that does not utilize the edge pressure is needed.
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4.4.2 Gauss-Kronrod Method

A Gauss-Kronrod quadrature scheme is an alternative means of numerical integration to lower the
numerical error [116]. Unlike the Netwon-Cotes method used previously, which assigns weights to
given locations, one solves the pressure measurements’ location and weights before instrumentation
in a Gauss-Kronrod scheme. The locations and weights come from systems of equations that enable
the exact integration of polynomials of order 2𝑛− 1, where 𝑛 is the number of measurement points.
The Kronrod extension allows for a higher order scheme (3𝑛 + 1) by adding 𝑛 + 1 additional points
to the pre-existing Gaussian scheme, where 𝑛 is the number of points in the original Gaussian
quadrature. While helpful in minimizing the number of pressure measurements necessary, the
scheme requires assuming a polynomial shape, which can lead to errors without prior knowledge.
Fievisohn et al. previously assumed the pressure distribution was a monic-polynomial [116].
Furthermore, unlike a fine discretization of the Newton-Cotes, the method cannot find the “true”
functional form. In this section, this study compares a simulated Gauss-Kronrod scheme to the
results of the Newton-Cotes integration.

Fievisohn et al. describe the process for determining the nodes and the weights, which is
repeated here for clarity. A Gaussian scheme starts by finding a polynomial orthogonal to the
weight function (𝑤(𝑟)) with 𝑛 roots, where 𝑛 is the number of desired points. Mathematical this is,∫ 𝑏

𝑎

𝑟 𝑘𝑤(𝑟)P𝑛 (𝑟)d𝑟 = 0 for 𝑘 = 0, 1, ..., 𝑛 − 1 (4.11)

where P𝑛 is a monic polynomial of degree 𝑛.

P𝑛 (𝑟) = 𝑟𝑛 + 𝑐1𝑟
𝑛−1 + ... + 𝑐𝑛−1𝑟

0 (4.12)

Since this study applies the Gaussian scheme to Eqn, 4.6, the weight function within the integral
in Eqn. 4.11 is the radial position (𝑤(𝑟) = 𝑟). Likewise, the integration bounds are the inner and
outer radii (𝑎 = 𝑅1 and 𝑏 = 𝑅2 respectively) as determined by the geometry. Thus, Eqn. 4.11 can
be rewritten as, ∫ 𝑅2

𝑅1

𝑟 𝑘+1P𝑛 (𝑟)d𝑟 = 0 for 𝑘 = 0, 1, ..., 𝑛 − 1 (4.13)

The coefficients in the monic polynomial, i.e., 𝑐1, 𝑐2, ..., 𝑐𝑛−1 are determined by expanding Eqn.
4.13 and solving the resulting system of equations. Solving the system of equations finds the
polynomial orthogonal to the weight function. The nodes of the Gaussian quadrature, 𝑟𝑖, are then
the roots of the monic polynomial. Note that a Gaussian scheme will not have the nodes at either
the integral bounds, making it an open scheme. Being an open scheme also alleviates one of the
problems of the Newton-Cotes method, where the pressure at the edge can be a significant source
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of uncertainty.
Once the nodes are determined, the weights of the Gaussian nodes, 𝑤𝑖, are needed. These are

found by solving the following system of equations:∫ 𝑅2

𝑅1

𝑟 𝑘+1𝑑𝑟 =

𝑛∑︁
𝑖=1

𝑤𝑖𝑟
𝑘
𝑖 for 𝑘 = 0, 1, ..., 𝑛 − 1 (4.14)

The resulting nodes (𝑟𝑖) and weights (𝑤𝑖) can then be used in Eqn. 4.8 to find the base drag.

𝐷cb,G ≈ 2𝜋
𝑛∑︁
𝑖=1

𝑤𝑖Δ𝑝(𝑟𝑖) (4.15)

The sub-script “G” is appended to denote the Gaussian integration.
As stated previously, one can add a Kronrod extension to the Gaussian scheme by adding 𝑛 + 1

points and reusing the original nodes from the Gaussian scheme for a total of 2𝑛 + 1 nodes. The
Kronrod extension enables a higher-order scheme of 3𝑛 − 1. Another benefit of this approach is
that the difference between the higher and lower-order methods approximates the error associated
with the numerical integration (𝜖).

𝜖 = |𝐷cb,K − 𝐷cb,G | (4.16)

where 𝐷cb,K is the base drag from the Gauss-Kronrod scheme and 𝐷cb,G is the base drag from the
Gaussian scheme. While less accurate than a Gaussian scheme with 2𝑛 + 1 points, the error ap-
proximation is necessary for the error propagation for the thrust and subsequent PG measurements.

The process of determining the nodes of the Guass-Kronrod scheme is similar to the Gauss
scheme. ∫ 𝑅2

𝑅1

𝑟 𝑘+1P𝑛 (𝑟)P∗
𝑛+1(𝑟)d𝑟 = 0 for 𝑘 = 0, 1, ..., 𝑛 (4.17)

where P𝑛 (𝑟) is the same monic polynomial solved for in Eqn. 4.13 and P∗
𝑛+1(𝑟) is the monic

polynomial of order 𝑛+ 1 for the Kronrod extension. Since the original polynomial from Eqn. 4.13
is utilized the Gaussian nodes (𝑥𝑖) are preserved. The additional nodes are the roots of P∗

𝑛+1(𝑟),
and when combined with the 𝑥𝑖 nodes from the Gaussian form 2𝑛 + 1 set of nodes denoted by 𝑥 𝑗 .

After solving the node locations for the Gauss-Kronrod scheme, the weights, 𝑤 𝑗 , come from the
following system of equations,∫ 𝑅2

𝑅1

𝑟 𝑘+1𝑑𝑟 =

2𝑛+1∑︁
𝑗=1

𝑤 𝑗𝑥
𝑘
𝑗 for 𝑘 = 0, 1, ..., 𝑛 (4.18)
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𝑟 [cm] 𝑟/𝑟CB 𝑤𝑖 [cm2] 𝑤 𝑗 [cm2]
0.869 0.119 - 1.207
2.602 0.355 9.771 5.126
4.581 0.625 - 8.614
6.192 0.845 17.078 7.970
7.112 0.971 - 3.932

Table 4.1: Nodes and weights of Gauss-Kronrod scheme with 𝑛 = 2 and 𝑟CB = 7.33 cm.

During this study, the author created a Matlab function that performs the calculations for the
nodes and weights using symbolic math for an arbitrary 𝑛, 𝑅1, 𝑅2. The Matlab function generated
a Gauss-Kronrod scheme with the lower order method being of order 3 (2 points) and the higher
order method being of order 7 (additional 3 points), similar to what was done by Fievisohn et al.
[116]. The inner radius was 0, and the outer radius was 𝑟CB = 7.33 cm. Table 4.1 lists the nodes
and weights. While the 𝑥𝑖 nodes are a subset of the 𝑥 𝑗 nodes, their associated weights 𝑤𝑖 in the
Gaussian are different than the weights (𝑤 𝑗 ) found in Eqn. 4.18. The differences are shown in
Table 4.1. Note that the sum of the weights in either scheme is equivalent to the total area of the
truncated nozzle (𝐴cb).

𝐴cb = 2𝜋
𝑛∑︁
𝑖=1

𝑤𝑖 (4.19)

= 2𝜋
2𝑛+1∑︁
𝑗=1

𝑤 𝑗 (4.20)

The author did not initially consider a Gauss-Kronrod scheme during the experimental design
since the distribution was unknown a priori; thus, pressure measurements at the nodes of the
Gauss-Kronrod scheme are not directly available. This study assumed that the pressure distribution
measured by the 17 CTAPs is reflective of reality such that interpolations/extrapolations accurately
estimate the pressures at the nodes (𝑝(𝑟 𝑗 )) listed in Table 4.1. Again, for now, the axisymmetric
assumption is imposed in this analysis for simplicity. The last node at 7.112 cm for the Kronrod
extension is at a larger radial direction than the last CTAP measurement. The pressure at the last
node came from an extrapolation of the cubic fit of the pressure distribution along the nozzle,
similar to Section 4.4.1. While this will generate some error, this error will be less impactful
overall than the Newton-Cotes method since the weight on the last node is smaller than the points
where the measurements exist.
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(a) (b)

(c)

Figure 4.7: a) Comparing the trapezoidal rule and Gauss scheme, where the b) numerical integration
error in the Gauss-Kronrod scheme c) typically captures the differences between the two.

The base drag found from the Gauss-Kronrod scheme is,

𝐷cb,K ≈ 2𝜋
2𝑛+1∑︁
𝑗=1

𝑤 𝑗Δ𝑝 𝑗 (4.21)

Figure 4.7a makes the comparison between the base drag with extrapolated pressure computed
through the composite trapezoidal rule Newton-Cotes method (𝐷cb,N) and the base drag from the
simulated Gauss scheme (𝐷cb,G). A positive sign here indicates that the base drag from the Gauss-
Kronrod scheme is more negative, which would raise the computed gross thrust. The two schemes
agree most closely at about 190 kg s−1 m−2 and diverge from one another with increasing flux. The
increasingly negative difference in base drag suggests that the Gauss-Kronrod integration would
result in a more conservative (lower) gross thrust.
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The estimated numerical error in the Gauss-Kronrod scheme, shown in Figure 4.7b, increases
with increasing mass flux. The exception is around 300 kg s−1 m−2, where the error is inextricably
the smallest, though this may result from the cubic fit matching the data the best at that flux.
Meanwhile, Figure 4.7c displays the difference in measured base drag as computed using the
Newton-Cotes and Gauss-Kronrod schemes (i.e., Figure 4.7a ) normalized by the estimated error
from the Gauss-Kronrod method (i.e., Figure 4.8). This comparison demonstrates that, for the
most part, the estimated numerical error (𝜖) includes the potential differences between the two
integration methods. Thus, one can interpret the differences between numerical integrations as the
result of the inherent uncertainty of the numerical integration. However, for air mass fluxes around
300 kg s−1 m−2, this is not true since the estimated error in the Gauss-Kronrod scheme is close to
zero at those fluxes (see Figure 4.8). As such, the difference between the two integration techniques
becomes much more significant than the error. Overall, these results indicate the Gauss-Kronrod
scheme is accurate compared to the composite trapezoidal rule scheme despite using only five data
points instead of 18 data points and assuming a functional form of the pressure distribution a priori.
The agreement likely occurs because the measured pressure distribution is modeled well (with high
R2 values) by a cubic fit, i.e., the monic polynomial used in the Gauss scheme. However, different
geometries may have a pressure distribution that a cubic fit can not well model.

Further contextualization of the significance of the numerical error comes by comparing it to the
gross thrust, Section 5.2. This comparison is made in Figure 4.8. The numerical integration error is
always tiny compared to the gross thrust, being below 5% even at the lowest fluxes. There appears
to be an asymptote where the numerical error becomes a nearly constant 1.75% irrespective of the
mass flux once the mass flux exceeds 350 kg s−1 m−2. If true, this result is ideal as it mitigates the
uncertainty from a previously unresolved source.

Further reduction in numerical error occurs if the number of points for the Gauss quadrature
increases from 𝑛 = 2. For instance, if 𝑛 = 3 (increasing the total number of nodes from 5 to 7) the
error is reduced by almost 50%. In implementing a higher-order virtual Gauss-Kronrod scheme,
additional points of necessary extrapolation arose; thus, while the numerical integration may
decrease, the additional extrapolations will influence/constrain the error estimates. Furthermore,
since the calculations presented here use interpolations of pre-existing data, there will likely be
a convergence of the Gauss-Kronrod and trapezoidal rule schemes. In other words, the Gauss-
Kronrod would eventually become fit to the data collected, which limits the possible analysis in
this study. Overall, Gauss-Kronrod appears helpful in computing the base drag with fewer sensors.
However, suppose the experiment aims to characterize the pressure distribution on the truncated
nozzle face. In that case, having more sensors may still be preferable, as was done here.
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Figure 4.8: Simulated Gauss-Kronrod error compared to gross thrust.

4.4.3 Axisymmetric Evaluation

Until this point, this study imposed the axisymmetric assumption when computing the base drag
on the truncated nozzle for simplicity. Now, this study will utilize a two-dimensional numerical
integral to evaluate the impact of the asymmetry. The two-dimensional numerical integration is
given by,

𝐷cb,2D ≈ 1
𝑛 𝑗

𝑛 𝑗∑︁
𝑗=1

𝑛𝑖∑︁
𝑖=1

𝑤𝑖 𝑗 𝑝(𝑟𝑖, 𝜃 𝑗 ) (4.22)

≈ 1
𝑛 𝑗

𝑛 𝑗∑︁
𝑗=1

𝑛𝑖∑︁
𝑖=1

𝑤𝑖 𝑗Δ𝑝

(
𝑟𝑖 cos

(
2𝜋 𝑗
𝑛 𝑗

)
, 𝑟𝑖 sin

(
2𝜋 𝑗
𝑛 𝑗

))
(4.23)

where 𝑛 𝑗 is the number of circumferential locations (in this case, three) and 𝑛𝑖 𝑗 is the number of
radial locations for a given circumferential location. Equation 4.22 is presented this way since one
of the legs has one more measurement than the other. The weight, 𝑤𝑖 𝑗 , is a matrix since the 𝑖-th
node on the 𝑗-th leg has a different radial location than the other legs.

This study used a composite trapezoidal rule to integrate in the circumferential direction. The
trapezoidal rule has a higher convergence rate, approximately 1/𝑁4, for smooth periodic functions
compared to the standard convergence rate, 1/𝑁2. A simple, albeit incomplete, explanation is that
specific terms in expanded trapezoidal rule cancel out from the derivatives at the two endpoints
of the integration being equivalent [184]. Using cylindrical coordinates, the pressure variations in
the circumferential direction are periodic and smooth at the bounds 𝜃 = 0 and 𝜃 = 2𝜋. Thus, the
trapezoidal rule provides increased accuracy to the integral in the circumferential direction with a
limited amount of data points.
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Again, the pressure on each leg is extrapolated to the edge to perform a closed numerical
integration in the radial direction. While the extrapolation inevitably introduces errors, all the
pressure distributions indicate that the edge pressure should be greater than the outermost CTAPs.
Thus, if the pressures were assumed constant up to the edge from the outer CTAP, one would
accrue an equal amount of unquantifiable errors. Figure 4.9a compares the base drag for the
asymmetrical pressure field (𝐷cb,2D) is compared against the one for the symmetrical pressure field
with extrapolated pressure (𝐷cb,N). This difference is interpretable as the change in gross thrust
caused by two-dimensional numerical integration with positive values corresponding to an increase
in gross thrust. The data is scattered around no difference (0) with increasing equivalence ratio,
causing the difference to decrease (become more negative). It appears that for higher fluxes, the
difference grows worse as the base drag computed with the two-dimensional integration becomes
more negative (having a larger magnitude) than in the axisymmetric case. However, this difference
cannot be used as a measure of asymmetry since it is possible to have zero difference despite
being very asymmetrical. Figure 4.9b shows the relative scale between the difference in base
drag compared to the total gross thrust. The impact of the axisymmetric assumption can be seen
most at the lower fluxes, where the difference can result in up to a 6% change in the gross thrust.
The absolute value of the relative change grows smaller with increasing mass flux for a given
equivalence ratio until about 500 kg s−1 m−2, where the absolute value grows further away from 0.
Most of the data falls within the ±4% of the gross thrust, indicating that the assumption introduces
an uncertainty of the same order as the uncertainty from the edge pressure for the Newton-Cotes
scheme or the integration error for the Gauss-Kronrod scheme. The reported gross thrust, Section
5.2, values were calculated using the base drag from the two-dimensional numerical integration
presented in this section.

The overall changes in gross thrust from the typical axisymmetric midpoint method (𝐹G,old) to the
two-dimensional numerical integration (𝐹G) are in Figure 4.10a. Meanwhile, the relative changes
in the gross thrust are in Figure 4.10b. The shift to the trapezoidal rule instead of the midpoint rule,
extrapolating to find a better estimate of the edge pressure and not assuming axisymmetric pressure,
reduced the overall thrust, which implies a more conservative estimate of the performance as a
decrease in measured thrust would result in a reduction of estimated pressure gain. The changes
to numerical integration cause up to a 12% change in the gross thrust at the low flux cases. While
the relative change does decrease with increasing flux, this study has nevertheless improved the
thrust measurement since the two-dimensional numerical integration has fewer overall assumptions
and increased accuracy compared to the previous method of finding base drag. Overall, this study
highlights that proper numerical integration is necessary for the base drag to get accurate pressure
gain measurements, especially since the PG may only be several percent greater than current
deflagrative combustors.

109



(a) (b)

Figure 4.9: The base drags with (𝐷cb,N) and without (𝐷cb,2D) axisymmetric assumption are a)
different which is b) contextualized against the gross thrust.

4.5 Exit Flange Aside

While the focus here has been the numerical integration of the base drag acting upon the truncated
nozzle, a similar analysis also applies to the base drag acting upon the flange. However, due to
the design of the flange, the area that pressure could react on for the flange is 11.54cm2 (1.79in2),
which is significantly smaller than the 168.70cm2 (26.15in2) for the truncated nozzle. The flange
is only slightly wider than the 1/16 in the tube used for the CTAP measurement, mitigating any
possible radial variation and removing the need for numerical integration in the radial direction,
which was by design. Thus, this work computed the base drag by applying a composite trapezoidal
rule to integrate along the circumferential direction across the six measurements. As stated, the
trapezoidal rule converges more rapidly (less needed points) for periodic functions than non-periodic
ones. Although this work took six measurements along the flange, there were effectively only three
circumferential locations due to pairs of measurements being close to each other, as was discussed
in Section 3.4.3.

4.6 Discussion

Thrust measurements are notoriously noisy and challenging to implement correctly in an experi-
mental setting, even before considering characterizing the base drag. Wanting to isolate the gross
thrust from a load cell measurement with said base drag measurements further adds to the complex-
ity of the method. As established in this section, the truncated nozzle originates from the effort to
isolate the performance of the RDC from the performance of the nozzle expansion process. Mea-
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(a) (b)

Figure 4.10: By utilizing two-dimensional integration a) the gross thrust decreases compared to
previously using the midpoint rule (𝐹G,old), which is shown b) relative to the gross thrust.

suring said base drag is non-trivial, with the best experimental practice measuring the pressure at
discrete locations along flat surfaces. This chapter showed that the choice of sensors, measurement
locations, and numerical integration technique introduces significant uncertainty to the desired
gross thrust measurement. That considerable uncertainty in gross thrust also does not include other
sources, such as the load cell. Therefore, before even considering a thrust measurement or using
the EAP method, concerns about the precision of the experimental procedure are introduced. Such
precision concerns come even though this study utilized nearly twice as many pressure measure-
ments as other studies [114, 116] and used a composite numerical integration method. Therefore,
it is reasonable to expect such uncertainties to exist in other rigs and the experimental results found
in the literature.

One of the objectives of this study was to understand how to make accurate and precise base drag
measurements with as few data points as possible. As with any numerical integration, the number
of data points will impact the results through the convergence rate, especially when the underlying
shape is unknown a priori since interpolation occurs between the discrete data points. There is an
inherent trade-off between the accuracy of the integration and the number of measurement points.
As such, based on the results of the present study, the following recommendations are given for
future studies to strike a balance between the two competing constraints intentionally:

• One should compute the base drag using a composite, two-dimensional numerical integral.
Therefore, pressure measurements must have different discrete radial and circumferential
locations.

• Pressure needs to be measured at a minimum of three discrete circumferential locations
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evenly distributed in the circumferential direction to capture any asymmetry in the pressure
distribution. The convergence rate of the trapezoidal rule in numerically integrating a periodic
function is 1/𝑁4; thus, three points give an error of 1.2%, although the error further reduces
with a greater number of points.

• A radially-weight Gauss-Kronrod scheme is ideal for the radial integration. Based upon the
approximate cubic radial pressure distribution observed in this work, a Gaussian scheme of
order three (two points) with a Kronrod extension of order seven (additional three points)
for five radial locations would be suitable. While the Kronrod extension does not drastically
improve the accuracy of the numerical integration, it provides an invaluable estimation of the
uncertainty associated with the integration.

• A Newton-Cotes integration along the radial direction instead of the recommended Gauss-
Kronrod remains valid; however, the edge pressure is paramount to the numerical integration.
A pressure measurement at the edge is required, or the necessary assumptions lead to sig-
nificant uncertainties. The Kronrod extension typically inherently solves the edge pressure
issue by having the outermost radial node be effectively at the edge of the nozzle.

• In general, low-noise pressure transducers reduce the overall base drag uncertainty. The worst
pressure differential measured was about 0.08 atm (1.17 psi), which is relatively small com-
pared to the ambient exhaust pressure. Since most pressure transducers have uncertainty/noise
that scales with their full-scale value, minimizing the range of the pressure transducers while
still spanning the range of expected values can provide additional uncertainty mitigation.

If one follows the above recommendations, the combined uncertainty from the pressure mea-
surements and numerical integration should be on the order of a few percent of the final gross
thrust measurement. The exact values provided in the above recommendations should serve as
a lower bound and are recommended to minimize the number of needed measurements while
maximizing the information gained. Improved accuracy and reduced uncertainty will require more
costly instrumentation and take up space within the experiment. In general, most of the reduction
in uncertainty from previous experiments will come from resolving the asymmetry and being less
dependent on the edge pressure measurement to bound the Newton-Cotes integration.
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CHAPTER 5

Evaluation of Uncertainties of Pressure Gain
Measurements

5.1 Introduction

With the base drag analysis performed in the previous chapter in mind, now the gross thrust and
pressure gain measurements are evaluated for the same test conditions and geometry (refer back
to Section 4.2). Ultimately, the detailed analysis of the base drag found in the previous chapter
informs the detailed uncertain analysis of the PG metric as measured by the EAP method. This
chapter further explores the possible sources of uncertainty (both random and systematic) and
demonstrates their relative impact on pressure gain measurements through the EAP methodology.
The ultimate goal is to evaluate if the EAP methodology can be sufficiently precise for measuring
a definitive pressure gain and how to minimize the known sources of uncertainty. This chapter
presents a detailed uncertainty propagation through the EAP method, starting from the linear
calibrations of sensors used in the experiment and propagating through to the final pressure gain
measurement. The errors introduced through the force corrections needed to compute gross thrust
highlight some uncertainty sources in EAP. In addition, the work will discuss the (significant)
systematic uncertainty introduced by the exit choked flow assumption to evaluate how robust the
EAP methodology is experimentally. The exit Mach number is estimated by directly measuring
the static pressure at the exit plane. Without the Mach number assumption, the pressure gain
measurement is corrected (improving accuracy), and the overall uncertainty is reduced (improving
precision). This chapter also introduces a method that uses direct time-averaged measurements to
estimate pressure gain that does not invoke the EAP methodology. Overall, the work presented in
this chapter is to inform future testing such that the overall precision and accuracy of the pressure
gain measurement increases.
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Figure 5.1: a) Time history of load cell measurement (resultant force) and base drag forces. b)
Variation of the gross thrust relative to the quasi-steady state value. c) Average over the last 0.5
seconds of the run to produce a quasi-steady value; the time variation over this region in time is
comparable to the noise. The operating condition is ¤𝑚′′

a = 524 kg s−1 m−2 and 𝜙 = 0.97.

5.2 Thrust Measurements and Analysis

5.2.1 Quasi-Steady Measurements

This work distinguishes time-varying quantities by adding (𝑡) next to the variable name, like the
example of the time history of the reactant force from the load cell and the base drag forces in Figure
5.1a. This example comes from when the air mass flux was 524 kg s−1 m−2 and an equivalence
ratio of 0.97 with ignition at 388 kg s−1 m−2 and 0.60 to protect the load cell. The mid-run increase
in air mass flux was one of the largest ramps performed, and the temporal variations of the forces
are similar for other conditions that require mid-run ramping of flow rates. The traces in Figure
5.1a are raw (i.e., unfiltered) measurements. Time is relative to the fuel solenoids opening (𝑡0),
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with this run lasting four seconds total. The significant spike in all the forces at the beginning (the
first 0.5 seconds after 𝑡0) of the run is attributed to the initial ignition process as the entire system
momentarily pressurizes due to being coupled to an exhaust chamber [47]. A similar exhaust
chamber effect occurred at the end of the run (greater than 4 seconds after 𝑡0) with the cyclic
loading and unloading of the combustor after the detonation wave dies. A fluidic oscillation occurs
from being coupled to an exhaust chamber, which is observed in other unsteady measurements,
such as the CTAP pressure measurements throughout the combustor, some of which can be seen in
Figure 5.1a in the center body base drag force.

The change in test condition mid-run resulted in the transient behavior in all the forces that began
to level off after 3 to 3.5 seconds into the run. Steady operation (i.e., constant number of waves and
nearly constant wave speeds) occurs before the forces level off, typically around 2 to 2.5 seconds. A
quasi-steady value of gross thrust occurred during the last 0.5 seconds of the run. The measurement
is classified as quasi-steady since there may still be a slight increase (on the order of a few percent)
in the gross thrust over this averaging window for some runs, on top of the inherent noise. To better
visualize the temporal variations of measured or computed quantities, Figure 5.1b normalizes the
time history of gross thrust (𝐹G(𝑡)) by the quasi-steady state value (𝐹G). The dashed gray vertical
lines denote the averaging window. The ramping of both fuel and air mass flow rates caused the
gross thrust to increase by a factor of four from the initial condition. Around 3 seconds into the
run, the time derivative of the gross thrust relative begins to decrease as the profile starts to flatten
out. The averaging window is shown in Figure 5.1c for a closer examination of the steadiness. The
noise introduces rapid increases/decreases of about 3.5% of the steady value (about 14.6 N). One
could argue that a gradual increase is still occurring over this window, as evidenced by the dashed
blue line, a linear data fit over the window. However, the change over the 0.5 seconds of this linear
fit is 12.1 N, which is less than the uncertainty. The same is true for the other conditions.

The author postulates that if the gradual increase in thrust reflects reality, it would be due to
the thermal transients of the combustor, such as heating and expansion, though this is unverified.
Another possible explanation is the lag in time between the observed increase in mass flow rate at
the upstream metering location and the increased mass flow entering into the RDC. The metered
mass flow rate asymptotically reaches its nominal value within a fraction of a percent about 2
seconds after ignition while the load-cell measurement continually increases. Likewise, the base
drag would increase if additional mass entered the system, but it too varied by less than a percent.
Thus, while possible, the mass flow rate explanation is unlikely. Nevertheless, this work takes the
quasi-steady state value as the accurate representation of the thrust output, and the experimental
noise/uncertainty encapsulates the unsteady increase.
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Figure 5.2: a) The resultant force increases more rapidly than drag forces. b) center body drag
has a non-monotonic relationship with mass flux. c) Flange drag comparable to center body drag
despite smaller area.

5.2.2 Different Contributions to Gross Thrust

To determine the sense of scale between the three force contributions to the gross thrust, each
component in Eqn. 4.3 is examined. Figure 5.2 shows the different contributions from the load
cell measurement, Figure 5.2a, the base drag acting on the center body, Figure 5.2b, and the base
drag acting on the flange, Figure 5.2c. Each value is a time-average over the last 0.5 seconds
of fuel-on operation. According to Eqn. 4.3, the negative base drag values would increase the
gross thrust relative to the resultant force. An increase in the force magnitude with an increasing
equivalence ratio is observable for all three forces since a higher equivalence ratio means more
chemical potential energy in the system. Looking at Figure 5.2a, it is immediately apparent that
the resultant force grows much more rapidly with increasing flux than either of the base drag
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corrections. While at the lowest fluxes, all the forces are comparable (being about 10-20 N), the
resultant force grows to be nearly a factor of five times greater than the sum of the base drags at the
highest fluxes. Overall, the order of importance to the gross thrust in descending order is resultant
force, center body drag, and flange drag.

Focusing now on the base drag on the center body in Figure 5.2b, a non-monotonic relationship
with mass flux is observable. Until 500 kg s−1 m−2, the drag increases in magnitude (grows more
negatives) as the flux increases. However, for the 𝜙 = 0.6 conditions tested at fluxes above
500 kg s−1 m−2, a decrease in the magnitude (grows more positive) occurs. After 600 kg s−1 m−2,
the drag is only several Newtons, indicating an order of magnitude change in the force. The change
in the pressure distribution acting upon the center body likely occurs with a change in the overall
wave dynamics within the combustor. This study could not confirm this, although Fievisohn et al.
previously observed that a change in the number of waves significantly alters the center body drag
[129].

Despite the small area on the modified flange piece, the flange drag contributes a comparable
amount of force as the center body drag (compare Figure 5.2c to Figure 5.2b). The comparable
force results from the greater vacuum pulled on the flange than the center body. In general, the
flange base drag is about one-half the magnitude of the center body drag, except for at the highest
fluxes tested. At those high fluxes, the flange drag remains monotonically increasing in magnitude
with flux, unlike the center body drag, which exhibited a decrease in the force magnitude. The
flange area is further downstream than the combustor’s exit plane, likely causing the lack of change.
The flow field generated from the expansion of the flow around the nozzle edge would have a more
substantial radial component than the flow past the flange since the flow would recover in the axial
direction as it moves downstream. Additionally, the vertical error bars in Figure 5.2c are negligible
compared to Figure 5.2b, which the next section will discuss further.

Finally, the gross thrust is the summation of the different contributions. Figure 5.3 shows the
variation of the average thrust measured across all the operating conditions tested in this study. The
measured thrust increases monotonically with mass flux (flow rate owing to the constant inlet area)
and equivalence ratio. As expected, since the resultant force was significantly greater than the base
drags, the nearly linear relationship with air mass flux is preserved in the gross thrust.

5.3 Thrust Uncertainty Analysis

This study developed a detailed uncertainty analysis of the thrust equation (Eqn. 4.3) to evaluate
thrust measurement uncertainties. For this uncertainty analysis, the standard approach for the
propagation of uncertainties for uncorrelated uncertainties, where the sensitivity of the final thrust
measurement to each measurement component, is utilized. The individual measurement uncertain-
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Figure 5.3: Gross thrust values for tested conditions; increases linearly with mass flux, and increases
with increasing equivalence ratio.

ties combine in quadrature because of the underlying Gaussian distributions. Here, 𝛿𝑦 denotes the
uncertainty in a value 𝑦. Thus, the gross thrust uncertainty 𝛿𝐹G for independent measurements is:

𝛿𝐹2
G =

(
𝜕𝐹G
𝜕𝐹L

𝛿𝐹L

)2
+

(
𝜕𝐹G
𝜕𝐷cb

𝛿𝐷cb

)2
+

(
𝜕𝐹G
𝜕𝐷fl

𝛿𝐷fl

)2
(5.1)

= 𝛿𝐹2
L + 𝛿𝐷2

cb + 𝛿𝐷2
fl (5.2)

Thus, the error bars for the thrust come from analyzing the uncertainty in the gross thrust and
the base drag calculations on both the flange and center body. All the variables in Eqn. 5.2 are
time-varying; thus, the average over the steady portion will be taken, similar to the thrust.

5.3.1 Resultant Force Uncertainty

As Section 3.5.1 discussed, performing many load cell calibrations gives the uncertainty in the
resultant force measurement. This study set the uncertainty caused by the intercept (𝛿𝑏) to zero
since this study also tared each test’s resultant force before airflow in post-processing. The slope
of the load cell calibration is treated as a constant throughout the run, although hysteresis in the
system may cause it to change slightly after the ignition spike. The hysteresis introduces an unknown
uncertainty. For now, the uncertainty in the resultant force measurement combines the uncertainties
in slope and measured voltages, and Figure 5.4a gives the analysis results. The uncertainty is, at
maximum, 1.4% of the sensor’s full scale (1000 N), although the uncertainty continues to grow
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(a) (b)

Figure 5.4: a) The total uncertainty of resultant force (𝐹L) for tested conditions; the maximum is
about 1.4% of the full scale of the load cell. b) The total uncertainty in 𝐹L relative to gross thrust
for tested conditions; largest values at low mass fluxes.

with increasing gross thrust (increasing flux). This uncertainty decreases relative to the gross thrust
with increasing mass flux and/or equivalence ratio; see Figure 5.4b. At the highest flux tested, the
resultant force introduces 1.2% uncertainty to the measured gross thrust; however, at the lowest flux
tested, the uncertainty reaches over 10% the measured gross thrust, which is a significant source of
uncertainty.

5.3.2 Base Drag Uncertainty

The uncertainty in the base drag stems from the numerical integration, the actual pressure mea-
surements, and machining tolerances. For instance, consider the base drag along the center body,

𝐷cb ≈ 1
𝑛 𝑗

𝑛 𝑗∑︁
𝑗=1

𝑛𝑖∑︁
𝑖=1

𝑤𝑖 𝑗Δ𝑝
(
𝑟𝑖, 𝜃 𝑗 )

)
(5.3)

The components of the uncertainty are,

𝛿𝐷2
cb = 𝜖2 +

(
𝜕𝐷cb

𝜕𝑝(𝑟𝑖, 𝜃 𝑗 )
𝛿𝑝(𝑟𝑖, 𝜃 𝑗 )

)2
(5.4)

where 𝜖 is the error associated with the numerical integration, which only approximates the surface
integral. As established in the previous chapter, this work used a composite Newton-Cotes method
when computing the base drag on any surface. The Newton-Cotes cannot experimentally determine
the numerical integration error since the functional form of the pressure distribution is unknown
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a priori, and the function’s derivatives are needed to find the error. The numerical error based
upon a fitted function would also depend on the fitted distribution’s quality. Using a simulated
Gauss-Kronrod scheme, it was shown in Figure 4.8 that 𝜖 was several percent of 𝐹G). However, this
work did not directly measure pressure at the node locations for the Gauss-Kronrod scheme; thus,
Figure 4.8 only serves as an approximation for demonstrative purposes. Therefore, the numerical
integration error 𝜖 is neglected here until future studies implement the Gauss-Kronrod scheme.
The base drag uncertainty and subsequent uncertainties would increase by including 𝜖 .

5.3.2.1 Center Body

A two-dimensional numerical integral using the trapezoidal rule in the radial and circumferential
directions integrates the random uncertainty in the pressure measurements. The uncertainty in the
overall thrust measurement is reduced by selectively placing the sensors with lower uncertainty at
nodes with the most significant weight (radial position) for numerical integration. One can do this
process before testing to improve the thrust measurements. However, Section 4.4.1 demonstrated
the need for an assumed edge pressure in the center body drag calculation, introducing significant
uncertainties. To further differentiate the impact of the edge pressure, this work breaks the uncer-
tainty into two components: the known sensors uncertainty and the edge pressure uncertainty. The
integral of the uncertainties in the pressure measurements (assuming that the edge pressure has no
uncertainty) results in approximately 4.96 N of uncertainty. This result has no significant variability
across the different conditions. The uncertainty introduced by the unknown edge pressure is the
difference in base drag when computed with an extrapolated pressure and with a constant pressure
from the outermost radial CTAP, Section 4.4.1. Again, this uncertainty is intentionally large to
highlight the importance of an edge pressure measurement and guarantee that the “true” value is
within the confidence interval around the extrapolated edge pressure.

The combined uncertainties, Figure 5.5a, reveal that while the sensors’ uncertainties contribute a
non-negligible amount, most of the uncertainty is due to the lack of an edge pressure measurement.
In an absolute sense, the uncertainty does increase with mass flux and equivalence ratio. However,
the gross thrust rises more rapidly with mass flux, resulting in a relative decrease in uncertainty,
Figure 5.5b. This relative uncertainty ranges from 23% of 𝐹G at the lowest flux to 4.9% of
𝐹G at the highest mass flux tested. Furthermore, the base drag on the center body introduces
more uncertainty than the load cell (which is typically much noisier than pressure transducers)
solely due to the unknown edge pressure. A pressure measurement closer to the edge here would
drastically reduce the uncertainty in the base drag (down to 4.96 N). Thus, either including a
pressure measurement at the edge of the cap (which can be challenging from a practical standpoint)
or utilizing a numerical integration scheme that is less dependent upon the edge pressure (i.e.,
Gauss-Kronrod quadrature) will significantly reduce the base-drag uncertainty. Such a reduction
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Figure 5.5: The a) total and b) relative uncertainty in base drag along the center body (𝐷cb) due to
pressure sensors and unknown edge pressure for tested conditions.

would substantially improve the measure of gross thrust and subsequently the PG.
The integration of the base drag depends on the sensors’ physical positioning along the bluff

body nozzle and the outer diameter of the nozzle. A Monte-Carlo sampling assessed the potential
systematic impact of imprecise machining. The sensor’s radial (𝑟𝑖) and circumferential (𝜃 𝑗 ) posi-
tions, along with the nozzle outer diameter, are all treated as following uniform distribution defined
by the respective machining tolerances. This study independently and randomly sampled the uni-
form distributions before integrating each combination according to Eqn. 5.3 with the measured
pressure profile. After 10,000 times, the Mone-Carlo gives the distribution of base drag values
subject to changes in measurement locations. Here, the systematic uncertainty in the base drag is
the maximum deviation from the mean value. Overall, this source of uncertainty is on the order
of 0.1% of the nominal thrust value; thus, this systematic error is negligible compared to other
uncertainties.

5.3.2.2 Flange

A similar integration of the pressure uncertainties is possible for the flange base drag. According
to Section 4.5, a trapezoidal rule integrates in the circumferential direction for the flange. The
combination of low noise sensors and a smaller flange area results in an uncertainty of approximately
0.43 N, with negligible variation across various conditions. The variability from this value is less
than or equal to 1%. This uncertainty is a few orders of magnitude smaller than the gross thrust,
which is about 0.1% of the gross thrust. Compared to the resultant force uncertainty in Figure 5.4a,
this contribution is negligible and can be neglected.

With the reduced area comes a more significant relative uncertainty caused by the machining
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tolerances. In this circumstance, the machining tolerances lead to a possible ±5.4% variation of
the flange area from its nominal value. This ±5.4% variation directly results in a systematic error
in the base drag on the flange (Figure 5.2c) of ±5.4%. However, this only results in an uncertainty
of a few Newtons since the flange force is the most minor thrust component by design. While
greater than the random uncertainty from the pressure sensors, this component is still on the order
of 0.1% of the gross thrust. Previously, the random and systematic uncertainty was much more
considerable with the face-seal configuration due to the larger areas. The larger areas also could not
be well defined based on the placement of the seal. Furthermore, more systematic uncertainty arose
when the face seal would de-mate during operation. Thus, the negligible random and systematic
uncertainties from the flange correction due to a well-defined smaller area on the radial seal marks an
improvement in the thrust measurement. Thus, the author recommends a radial seal configuration
like the one presented here to other researchers who want to take thrust measurements while still
confined to a coupled exhaust system.

5.3.3 Combined Thrust Uncertainty

The uncertainty in the gross thrust measurements, Figure 5.6a, comes from summing the estimated
uncertainties for the individual components of the thrust in quadrature. Since the individual
uncertainties increased in an absolute sense with increasing mass flux and equivalence ratio, so
does the combined uncertainty. However, the uncertainty never becomes less than 10 N, which
can reach up to 25% of the gross thrust measurements at the lowest fluxes (Figure 5.6b). The
uncertainty never becomes negligible, although it does decrease to about 3.5% of 𝐹G at the highest
fluxes tested. Since the sensitivity to the uncertainty falls with higher fluxes, more precise gross
thrust measurements can be made by not testing near the lower limit of operability in terms of flux.
However, as seen during the later discussion in the PG discussion, it is still advisable to test at the
lower fluxes despite the considerable uncertainty.

Returning to the discussion of Figure 5.3, the error bars at lower mass fluxes encapsulate most
of the change in thrust caused by increasing equivalence ratio, obfuscating any dependence on the
equivalence ratio at those conditions. Since the uncertainty does not scale as fast as the gross thrust
(Figure 5.6b), at higher mass flux values, the variation of the measured thrust with equivalence ratio
is larger than the error bars. Thus, the thrust measurement system can properly capture the variation
of thrust associated with equivalence ratio changes for sufficiently large mass fluxes but not at the
lowest fluxes. The run-to-run variability of similar conditions (see 260 kg s−1 m−2 at 𝜙 = 0.8
and 330 kg s−1 m−2 at 𝜙 = 0.6) is captured by the error bars, indicating that the measurements are
repeatable.

The two primary contributors to the considerable thrust uncertainty are the load cell and the edge
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Figure 5.6: The a) total and b) relative uncertainty in gross thrust for tested conditions. The
relative uncertainty decreases with increasing flux, going from over 30% down to 5%. c) Relative
uncertainty in thrust if the edge pressure is measured instead of estimated.

pressure extrapolation, with the edge pressure ultimately providing more uncertainty by design. As
a thought experiment, this study introduces a separate thrust uncertainty (denoted with a superscript
*) as the uncertainty combination, assuming that the edge pressure uncertainty is similar to that of a
pressure transducer. In other words, if one repeated the tests with a sensor much closer to the edge
of the center body, 𝛿𝐹∗

G would be the resulting uncertainty. As seen in Figure 5.6c, eliminating
the imposed large uncertainty in the edge pressure with an actual measurement would reduce the
uncertainty in the gross thrust by up to 50% at the highest fluxes. In such a case, the load cell limits
the uncertainty floor, especially at the lower fluxes, with a small contribution from the remaining
pressure uncertainties on the nozzle. Such a thought experiment highlights another way to improve
the measurement technique to provide a more precise (and likely more accurate) thrust value. Even
if physical constraints make such instrumentation challenging, the penalty in uncertainty accrued
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by not having such instrumentation is too great to ignore completely.

5.4 Pressure Gain Measurements and Analysis

5.4.1 Exit Gas Composition

A gas composition is needed to compute the EAP as detailed in Section 2.4.1.2. This work assumes
an exit gas composition since it did not evaluate the composition experimentally. Specifically,
the ratio of specific heats at the exit (𝛾8) would depend on the equivalence ratio (𝜙), combustion
efficiency (𝜂c), and exit temperature (𝑇8). In this study, the RDC was operated with H2/air, so the
combustion efficiency is approximately:

𝜂c =
𝜒r

H2

𝜒r
H2

+ 𝜒u
H2

(5.5)

Where 𝜒r
H2

is the mass fraction of H2 that undergoes reaction/combustion while 𝜒u
H2

is the mass
fraction of H2 that does not undergo any reactions before the exit. This section makes no distinction
between combustion that occurs through detonation or deflagration. Furthermore, this study does
not consider incomplete reactions within the RDC. A non-unity 𝜂c results in an effective 𝜙 lower
than that of the global 𝜙 with additional unreacted fuel in the system that can have some impact
on the thermodynamic properties of the bulk flow. Lower combustion efficiencies likely arise from
non-optimized designs that have poor mixing.

The exit temperature 𝑇8 would differ from the temperature produced by the chemical reactions
as the flow is expanded towards the exit, making it some function dependent on the combination
𝜙, 𝜂c, geometry, amount of combustion in detonation vs deflagrative modes, etc. While the exit
temperature would vary depending on the circumferential location, this section uses an area-average
temperature as the thrust produced is an integrated quantity across the circumferential direction.
Note that due to the expected elevated of 𝑇8 ≥ 800K, 𝛾8 is a function of 𝑇8 as vibrational modes of
the molecules are activated.

Varying both 𝜂c and 𝑇8 results in the contour plot of 𝛾8 shown in Figure 5.7a, when 𝜙 = 1. The
range of temperatures and combustion efficiencies capture the expected values from experiments,
with the temperature range being specifically chosen based on thermocouple measurements taken
at the exit plane. The lower range of combustion efficiencies is likely unrealistic in actual RDCs,
but it provides a sense of the possible changes. As the 𝜂c increases while 𝑇8 is held constant, the
𝛾8 decreases. Similarly, as 𝑇8 increases while 𝜂c is constant, the 𝛾8 decreases. An increase in
the number of reactions (i.e., increase in 𝜂c) should also increase 𝑇8, both of which would further
reduce 𝛾8. Overall, the value of 𝛾8 deviates by ±4% from the average value of approximately 1.3,
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Figure 5.7: a) Change in ratio of specific heats (𝛾8) over expected range of 𝜂c and 𝑇8 for 𝜙 = 1;
variation of 𝛾8 within ±4% of 1.3 (red dotted curve). b) Gas constant (𝑅8) decreases with both 𝜙

and 𝜂c; variation of 𝑅8 due to 𝜂c is ±6% of mean value.

the red-dotted curve in Figure 5.7a. There will be a slight dependence on the equivalence ratio to
the average 𝛾8, although the variance always stays within the ±4%. This variance is a source of
systematic uncertainty. Whenever a 𝛾8 is necessary for calculations, this work used the mean based
on the 𝛾8 distribution for the specific equivalence ratio and the range of values for the combustion
efficiency and exit temperature, Figure 5.7a.

The same process also determines the gas constant at the exit (𝑅8) whenever needed. Unlike
𝛾8, the gas constant is not a function of temperature. The gas constant will only depend on the
equivalence ratio and combustion efficiency. Figure 5.7b provides some examples of the variability
in the gas constant due to combustion efficiency for three equivalence ratios spanning the range
tested in this work. A decrease in combustion efficiency is equivalent to a reduction in the effective
equivalence ratio, hence the negative relationship. Once again, for a specific run, the mean of the
gas constant across the range of combustion efficiencies for the measured experimental equivalence
ratio provides an estimate for the gas constant for that specific run. The variability caused by the
combustion efficiency is about ±6% of the mean value, a possible systematic error. The systematic
uncertainties of the 𝑅8 and 𝛾8 values could be removed by experimental evaluation, although they
would then become a source of random uncertainty.

5.4.2 EAP and Pressure Gain Calculations

This work quantified the PG realized by the combustor from the thrust measurements by applying
the concept of EAP introduced by Kaemming and Paxson [113]; see Section 2.4.1.2. The equivalent
static pressure based on a simple thrust balance equation that would generate the measured gross
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thrust is:
𝑝8 =

𝐹G + 𝑝∞𝐴8

𝐴8

(
1 + 𝛾8𝑀

2
8,z

) (5.6)

Which is a simple re-arrangement of Eqn. 2.10. Typically, a unity axial Mach number (i.e., choked
exit flow) is assumed, simplifying the above equation.

𝑝8 =
𝐹G + 𝑝∞𝐴8
𝐴8 (1 + 𝛾8)

(5.7)

The corresponding total pressure (referred to as EAP), still assuming the unity exit Mach number,
is then:

EAP = 𝑝tz,8 = 𝑝8

(
𝛾8 + 1

2

) 𝛾8
𝛾8−1

(5.8)

Recall that a subscript 8 denotes the exit plane conditions, a subscript “z” denotes the axial
direction, and (̃ ) denotes quantities computed from the EAP methodology. This chapter dropped
the subscript “e” previously used in Eqn. 2.11 to indicate this is an experimental measure for
brevity. The ambient pressure (𝑝∞) is measured before each test. Taking the static pressure in the
air plenum as an estimate of the total pressure of the reactants entering the combustor due to low
speeds in the plenum (𝑝3 ≈ 𝑝t,3), the change in stagnation pressure between the entrance and exit
to the combustor (Eqn. 5.8) defines the PG:

PG =
EAP
𝑝3

− 1 (5.9)

The steady-state value of PG is again defined by averaging the last 0.5 seconds of the fuel-on
portion. The resulting variation of PG with mass flow rate and equivalence ratio is then shown
in Figure 5.8. The PG is the highest for fuel-rich cases and decreases with the equivalence ratio,
suggesting better mixing processes that allow more heat to support the detonation. The slight
decrease in PG with increasing mass flux for a given equivalence ratio is likely from a more
significant total pressure drop across the injector with increasing flux. These results indicate that
positive PG will likely occur at low mass fluxes to minimize the penalty incurred by the injector
design. However, the most significant uncertainties in the gross thrust (see Figure 5.6b) occur at
these lowest fluxes, posing a natural tension between precise thrust measurements and possible
higher PG values. Additionally, the large error bars (described in the following section) encompass
all the variations in the data, suggesting that PG may currently be too imprecise to resolve the
observable trends.

To compare their measurements to the literature, Bach et al. [14] compiled the previously
existing experimental and computational results of PG, reproduced in Figure 2.7. Thus, Figure
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Figure 5.8: Pressure gain measurements for tested conditions; large error bars span all variations
in the data.

2.7 enables comparisons between this study’s PG and the values in the literature. In this study the
𝐴8/𝐴3.2 = 0.5 and 𝐴3.1/𝐴3.2 = 0.21 resulting in a geometric ratio of 𝐴8/𝐴3.1 = 2.38. Based on
the compiled literature, one would expect a PG around -0.25. The results in this chapter agree with
this since the PG ranged from -0.243 to -0.322. This agreement also exists despite the different
injection geometry utilized here. Although this work did not focus on achieving better performance,
increasing the inlet throat area (becoming more open) and lessening the total pressure drop across
the injector would improve overall performance.

5.4.3 Pressure Gain Uncertainty

5.4.3.1 Random Uncertainty

The uncertainty in the estimated PG was analyzed using the same approach for the thrust measure-
ments. Thus, this study breaks up the uncertainty of PG into the independent uncertainties of the
different terms contributing to its computation and combined in quadrature:

𝛿PG2 =

(
𝜕PG
𝜕𝐹G

𝛿𝐹G

)2
+

(
𝜕PG
𝜕𝑝∞

𝛿𝑝∞

)2
+

(
𝜕PG
𝜕𝑝3

𝛿𝑝3

)2
(5.10)

Appendix G gives the partial derivatives needed for Eqn. 5.10.
For now, this study assumes that the partial derivative of 𝑀8,z with respect to anything is zero
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for the time being. Meanwhile, the random uncertainties in the gross thrust, ambient pressure,
and plenum pressures are available. Shown in Figures 5.9a and 5.9b are the uncertainties in the
PG from the gross thrust and plenum pressure, respectively. The contribution from the ambient
pressure is negligible compared to the other terms. Both uncertainties decrease with increasing
flux, indicating that the sensitivity reduces with larger thrust values. The uncertainty from gross
thrust is over five times that from the plenum pressure, which is, on average, only±0.01 PG). Due to
combining through quadrature, the gross thrust contributes over 93% to the combined uncertainty,
Figure 5.9c, making it much more significant than the plenum pressure. Even if one cut the gross
thrust uncertainty in half by removing the large uncertainty from the edge pressure (see Figure
5.6c), the gross thrust would still contribute over 80%. Thus, while the plenum pressure is not
negligible in the uncertainty in PG, the thrust uncertainty would have to be reduced by nearly two
orders of magnitude before it becomes the most significant source of uncertainty. Such a reduction
in uncertainty would require replacing the load cell and measuring the edge pressure.

As mentioned earlier, the error bars representing this random uncertainty in Figure 5.8 are
sufficiently large to obfuscate trends in equivalence ratio at a given air mass flux. The general
magnitude of error bars is likely significant enough to complicate future comparisons between
different injection schemes if the geometric ratios are the same. Furthermore, comparing the PG
uncertainty to the PG itself shows that this uncertainty is quite significant, relatively speaking
(Figure 5.9d). This impact is ±23% of the measured PG at the lowest fluxes. Even at the highest
fluxes after the uncertainty decreases, there is a ±9% uncertainty in the PG value, mainly due to
the substantial uncertainties in the thrust measurement.

The EAP uses a bluff body nozzle to separate the nozzle’s performance (i.e., the expansion
process of the nozzle) from the combustor since there is no expansion after the contraction. Because
of this, a base drag measurement on the bluff body nozzle is necessary for gross thrust corrections.
The previous chapter demonstrated that precise gross thrust measurements are challenging because
of this base drag without proper instrumentation at the edge of the bluff body nozzle (or without
making some assumption about the pressure profile). This issue can be circumvented by testing
at high gross thrust conditions as the relative uncertainty decreases, but the lower thrust cases
(i.e., lower fluxes) seem to have better PG. Regardless, the uncertainty makes definitive claims of
positive performance even more challenging despite the conservative nature of EAP. For instance,
at the largest flux tested (with the lowest uncertainty), even a PG of positive 0.03 would not have
indicated definitive gain since the 95% confidence interval would still span into negative values.
Overall, there is a limit to the precision of the experimental EAP methodology that requires a
rigorous experimental design to mitigate.
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Figure 5.9: Pressure gain uncertainty introduced by a) gross thrust and b) plenum pressure mea-
surements. The c) total and d) relative uncertainty in PG for tested conditions; higher fluxes exhibit
less uncertainty.

5.4.3.2 Systematic Uncertainty

There are three identifiable sources of systematic uncertainty in the pressure gain calculation: the
exit gas composition (𝛾8), the exit area (𝐴8), and the exit Mach number (𝑀8,z):

𝛿PGsys = ±𝜕PG
𝜕𝐴8

𝛿𝐴8 ±
𝜕PG
𝜕𝛾8

𝛿𝛾8 ±
𝜕PG
𝜕𝑀8,z

𝛿𝑀8,z (5.11)

Again, Appendix G gives the above partial derivatives.
Recall that Section 5.4 previously calculated the uncertainty in 𝛾8 by varying the expected

combustion efficiency and exit temperatures. Once propagated through the PG calculation, it is
observable that a change in 𝛾8 would change the measured PG value in this work by at most 0.002
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for the lowest mass flux tested, which is less than 1% of the PG value. This sensitivity decreases
even further with increasing thrust. Fievisohn et al. performed a similar analysis considering the
impacts of the change in 𝛾8 over a range of 𝜂c values. They also found less than 1% variation
in EAP due to the uncertainty in 𝛾8 and equilibrium chemistry [129]. Thus, if one measured
the exit composition, it would not significantly impact the accuracy of the EAP methodology and
subsequently PG.

A Monte-Carlo approach gives the uncertainty associated with machining tolerances in the exit
area. The physical dimensions are assumed to follow a uniform distribution given by the machining
tolerances, with the Monte-Carlo sampling revealing that the uncertainty in 𝐴8 is ±2.7%. The
computed change in PG from this uncertainty is in Figure 5.10a. Unlike most uncertainties
considered thus far, the relative sensitivity of the area scales with increasing gross thrust; therefore,
as the gross thrust grows with the increasing flux, so does the possible systematic uncertainty from
the exit area.

This systematic uncertainty further increases the target PG to demonstrate definitive gain. For
instance, consider the highest flux tested with the possible systematic uncertainty of ±0.018,
which is 5.4% of the nominal PG value. Even though the random uncertainty is the smallest for
this case, if everything else stays the same, a positive value of 0.05 is required to overcome the
combination of the systematic and random uncertainties to demonstrate definitive gain. Overall,
one can not neglect this systematic error when assessing the performance of RDCs through the
EAP methodology. Thankfully, this uncertainty is controllable either by precisely measuring the
area or by scaling the RDC such that the tolerances on 𝐴8 are sufficiently small ( 0.1% of 𝐴8).
However, scaling the RDC may have competing effects since the gross thrust may also increase,
raising sensitivity to the exit area.

The last uncertainty to evaluate is the unity Mach number at the exit plane (𝑀8,z = 1) assumption
necessary for the EAP methodology. This assumption is likely invalid for geometries without a
constriction or at low flow rates, even if the geometry does have a constriction. Subsequently, this
would introduce systematic errors in calculating PG. Kaemming and Paxson analyzed the change
in EAP with variation in exit Mach number when they introduced the concept of EAP [113]. They
found that the variation in EAP over the range of expected 𝑀8,z in RDCs was about +5.4% of the
EAP found with the 𝑀8,z = 1 assumption. The choked flow assumption is conservative since it
minimizes EAP while holding all other quantities constant. Using an estimated uncertainty of 5.4%
in EAP, the following expression describes the impact of the assumption on 𝑀8,z:

𝜕PG
𝜕𝑀8,z

𝛿𝑀8,z =
𝜕PG
𝜕EAP

𝜕EAP
𝜕𝑀8,z

𝛿𝑀8,z ≈
1
𝑝3

(𝜖MEAP) = 𝜖M(PG + 1) (5.12)

Where, according to the above discussion, 𝜖M = 0.054. The actual sensitivity coefficient (i.e., the
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(a) (b)

Figure 5.10: Systematic uncertainty in pressure gain introduced by a) exit area uncertainty and b)
choked Mach number assumption. Exit area can increase or decrease PG while Mach number can
only increase PG.

partial derivative with respect to the Mach number) is in Appendix G; however, for now, 𝛿𝑀8,z

is unknown, and Eqn. 5.12 estimates the error. Due to the sonic exit flow assumption inherent
to the current implementation of EAP, the systematic uncertainty will worsen once the desirable
PG≥ 0 is measured experimentally. Figure 5.10b provides the estimated systematic error in the
PG based on the Mach number. Since the largest (least negative) PG occurred at the lowest fluxes,
the largest uncertainty occurs at those fluxes, although there is no significant variation across the
operating conditions. The non-unity Mach numbers can only cause the PG to grow more positive
(EAP is a conservative metric); thus, Figure 5.10b should be interpreted as how much the PG
could increase if a non-unity Mach number within the expected range occurred. Thus, a non-unity
Mach number would be beneficial in reaching better performance (higher PG), here representing a
potential relative increase of PG by 13-16%.

5.5 Some Considerations on Exit Mach Number Assumption

5.5.1 Exit Mach Number Estimation

Assuming choked flow at the exit (𝑀8,z = 1) affects the estimated PG in a systematic and significant
way and can distort conclusions on achieving a positive gain. At the lower mass fluxes, even with a
nozzle constriction, it is unlikely that the combustor exit is, on average, over the cycle, choked due
to the low incoming flow speeds. This section introduces an analysis that experimentally estimates
the Mach number at the exit of the combustor (𝑀8,z) from available measurements under a set of

131



assumptions. The estimated Mach number assesses if the assumptions used to define the EAP are
valid and evaluates the systematic impact of non-unity 𝑀8,z.

The experimental setup in this work contained a flush-mounted static pressure measurement at
the exit plane of the combustor (i.e., the nozzle throat, 8 ). Since a CTAP took this measurement,
this exit pressure is effectively time-averaged. This pressure measurement at this location is referred
to as 𝑝8 by analogy with the computed 𝑝8. A direct comparison between this measurement and
𝑝8 is in Figure 5.11a. Since all the data points fall above the 1:1 dashed gray line, the measured
𝑝8 always exceeds that computed from the thrust balance in Eqn. 5.7. For this to be true, the
axial Mach number must be less than unity from Eqn. 5.7. Additionally, some 𝑝8 values are
below atmospheric. These equivalent pressures are not physically possible due to exhausting into
an exhaust chamber at standard pressure, further indicative of sub-sonic Mach numbers at those
conditions.

The error bars for 𝑝8 are from the experimental calibration of the pressure sensor. The error
bars are not observable in Figure 5.11a since they are approximately ±0.004 atm, smaller than the
data point marker itself. Meanwhile, the error bars for 𝑝8 are given by:

𝛿𝑝2
8 =

(
𝜕𝑝8
𝜕𝐹G

𝛿𝐹G

)2
+

(
𝜕𝑝8
𝜕𝑝∞

𝛿𝑝∞

)2
(5.13)

=
©­­«

𝛿𝐹G

𝐴8

(
1 + 𝛾8𝑀

2
8,z

) ª®®¬
2

+
(

𝛿𝑝∞

1 + 𝛾8𝑀
2
8,z

)2

(5.14)

In the above relationship, the uncertainty contributed by the ambient pressure is negligible (by
several orders of magnitude) compared to that from the thrust. The uncertainty in 𝑝8 increases with
mass flux going from 0.04 atm to 0.08 atm. The uncertainty in 𝑝8 also increases with increasing
equivalence ratio.

The following relationship gives the systematic uncertainty sources:

𝛿𝑝8,sys = ± 𝜕𝑝8
𝜕𝐴8

𝛿𝐴8 ±
𝜕𝑝8
𝜕𝛾8

𝛿𝛾8 ±
𝜕𝑝8
𝜕𝑀8,z

𝛿𝑀8,z (5.15)

= ± 𝐹G

𝐴2
8(1 + 𝛾8𝑀

2
8,z)

𝛿𝐴8 ±
𝑝8𝑀

2
8,z

1 + 𝛾8𝑀
2
8,z

𝛿𝛾8 ±
2𝑝8𝛾8𝑀8,z

1 + 𝛾8𝑀
2
8,z

𝛿𝑀8,z (5.16)

For now, this analysis neglects the uncertainty introduced by the Mach number and assumes that
the exit is choked to reflect the EAP methodology. The relative uncertainties introduced by 𝐴8 and
𝛾8 in Figure 5.11b are represented with triangles and squares, respectively. Importantly, Figure
5.11b allows for comparisons against the random thrust uncertainty (circles). Unlike the random
uncertainty, the relative systematic uncertainty increases with increasing gross thrust, ranging from
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(c)

Figure 5.11: a) Comparison between measured static pressure (𝑝8) and the estimated static pressure
(𝑝8) from the thrust balance equation. Discrepancy implies subsonic Mach numbers. b) Relative
uncertainty in 𝑝8 across tested conditions. c) Cycle-averaged exit Mach number computed by
matching 𝑝8 and 𝑝8. All Mach numbers are subsonic.

0.8% to 2.5% for 𝐴8 and 0.7% to 1% for 𝛾8. The thrust uncertainty is still overall more significant
for all the conditions tested. Still, it is possible that at higher mass fluxes, the systematic uncertainty
may grow larger than the random uncertainty.

Even if one considers the maximum expected systematic error from 𝐴8 and 𝛾8 with the random
uncertainty, the estimated static pressure never matches the experimentally measured version. Thus,
the discrepancy between these pressures must reflect a systematic error in the choked Mach number
assumption. Therefore, the difference can estimate the cycle-averaged axial Mach number at the
exit. An estimated exit Mach number comes from re-arranging Eqn. 5.7 and imposing that the
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measured pressure and the pressure from the thrust balance match (𝑝8 = 𝑝8),

𝑀2
8,z =

1
𝛾8

(
𝐹G + 𝑝∞𝐴8

𝑝8𝐴8
− 1

)
(5.17)

Solving this equation results in a Mach number (averaged over the steady portion) that ranges
between 0.4 and 0.8 across the mass fluxes tested, Figure 5.11c. These results contrast the unity
Mach number assumption in the EAP methodology. The subsonic cycle-averaged Mach numbers
occur despite the presence of an area contraction. Up until 450 kg s−1 m−2, the Mach number
increases with mass flux; however, it reaches an asymptotic value of 0.8 after this flux, indicating
that a fully choked exit is not likely by this metric. An equivalence ratio dependence is observable
such that higher equivalence ratios result in greater axial Mach numbers, although the cause is
unknown.

The error bars for the random uncertainty, Figure 5.11c, were generated according to:

𝛿𝑀2
8,z =

(
𝜕𝑀8,z

𝜕𝐹G
𝛿𝐹G

)2
+

(
𝜕𝑀8,z

𝜕𝑝∞
𝛿𝑝∞

)2
+

(
𝜕𝑀8,z

𝜕𝑝8
𝛿𝑝8

)2
(5.18)

=

(
1

𝛾8𝑝8𝐴8
𝛿𝐹G

)2
+

(
1

𝛾8𝑝8
𝛿𝑝∞

)2
+

(
− (𝑀8,z + 1/𝛾8)

𝑝8
𝛿𝑝8

)2
(5.19)

Once again, the uncertainty due to the pressure terms is negligible compared to the thrust uncertainty.
The error bars range from ±0.05 at the highest flux to ±0.08 at the lowest flux, with a slight negative
dependence on mass flux.

The remaining systematic uncertainty comes from:(
𝜕𝑀8,z

)
sys = ±𝜕𝑀8,z

𝜕𝛾8
𝛿𝛾8 ±

𝜕𝑀8,z

𝜕𝐴8
𝛿𝐴8 (5.20)

The sensitivities to 𝛾8 and 𝐴8 increase with increasing gross thrust (mass flux). At the lowest
flux conditions, the possible systematic uncertainties from 𝛾8 and 𝐴8 are ±0.007, an order of
magnitude less than the random uncertainty. However, at the largest flux case, the uncertainty from
𝛾8 becomes ± 0.017 while the uncertainty from 𝐴8 increases to ±0.037, comparable to the random
uncertainty. However, even at the largest mass fluxes tested, the combination of error bars and
maximum expected systematic uncertainty are still below a unity Mach number, indicating that, by
this metric, a unity Mach number occurs.

Since 𝑝8 originates from the basic thrust equation, it may be a fictitious pressure instead of
a cycle-averaged pressure, unlike the measurement. In that case, the calculated Mach number
would not reflect reality, and this work has not directly evaluated this. Alternatively, this work
proposes a second method to assess the exit Mach number by imposing mass continuity through
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the system. Using the measured static pressure, an assumed gas composition, and a measure of the
cycle-averaged temperature, the exit Mach number can be estimated as:

𝑀8,z =
¤𝑚T
√
𝑅8𝑇8

𝑝8𝐴8
√
𝛾8

(5.21)

where ¤𝑚T is the sum of the air and fuel mass flow rates.
This study included a type-B thermocouple flush mounted at the nozzle throat, similar to the

static pressure measurement, to estimate the exit gas temperature. The measurement accuracy is
subject to the thermocouple leads not being in the flow, wall heating, etc. However, this study
assumes that the measurement provides a reasonable temperature estimation, albeit with imposed
uncertainties of a few hundred Kelvin (arbitrarily chosen to be 400 K for the uncertainty analysis).
Figure 5.12a shows the steady-state temperatures across the different operating conditions. An
apparent increase in the measured temperature due to increasing mass flux and equivalence ratio
is observable across most conditions. There is a jump in temperature between 190 kg s−1 m−2 and
260 kg s−1 m−2, likely caused by an increase from one to two waves. The error bars are arbitrarily
large; thus, they do not necessarily reflect the uncertainty of the measurement, but they were selected
to demonstrate the sensitivity to this quantity. Overall the measured temperatures are comparable
to the cycle-averaged exit conditions seen in computational work [102] and experimental work that
used CARS thermometry [185].

The computed steady-state values of 𝑀8,z using the temperature measurement are in Figure
5.12b. Similar to the previous analysis, the results indicate that for all mass fluxes tested, 𝑀8,z is
subsonic and seems to be approaching an asymptomatic value of about 0.8 after 450 kg s−1 m−2,
depending on the equivalence ratio. These results seem to agree with the results presented in Figure
5.11c, but a discussion on the sources of uncertainty is necessary before the direct comparisons.
The propagation of the random uncertainties in calculating the Mach number in this way is as
follows:

𝛿𝑀2
8,z =

(
𝜕𝑀8,z

𝜕 ¤𝑚T
𝛿 ¤𝑚T

)2
+

(
𝜕𝑀8,z

𝜕𝑇8
𝛿𝑇8

)2
+

(
𝜕𝑀8,z

𝜕𝑝8
𝛿𝑝8

)2
(5.22)

= 𝑀2
8,z

[(
𝛿 ¤𝑚T
¤𝑚T

)2
+

(
𝛿𝑇8
2𝑇8

)2
+

(
𝛿𝑝8
𝑝8

)2
]

(5.23)

The 𝛿𝑇 range (400 K) is comparable, albeit slightly greater, than the spread in data observed by
Athmanathan et al., where they experimentally measured the exit temperature [185]. Unsurprisingly,
the considerable uncertainty in temperature causes it to be the primary source of uncertainty in 𝑀8,z,
contributing over 95% in quadrature. The error bars are ±0.1 at the low fluxes but grow to ±0.15
at the higher fluxes, which are greater than the uncertainties in the other method for computing
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Figure 5.12: a) Cycle-averaged exit temperature across tested conditions. b) Cycle-averaged exit
Mach number across all operating conditions is subsonic. c) Comparison between different methods
for estimating exit Mach number.

Mach number. The selection of the considerable uncertainty on the temperature measurement
was intentional, and more precise temperature measurement through laser diagnostics or a better
understanding of how well a thermocouple can capture the average temperature of the flow will
vastly improve this analysis.

Unlike the initial method for computing the Mach number, Eqn. 5.17, the gas constant (𝑅8) acts
as another source of systematic uncertainty:

(𝛿𝑀8,z)sys = ±𝜕𝑀8,z

𝜕𝑅8
𝛿𝑅8 ±

𝜕𝑀8,z

𝜕𝐴8
𝛿𝐴8 ±

𝜕𝑀8,z

𝜕𝛾8
𝛿𝛾8 (5.24)

= 𝑀8,z

[
±𝛿𝑅8

2𝑅8
± 𝛿𝐴8

𝐴8
± 𝛿𝛾8

2𝛾8

]
(5.25)
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Section 5.4.1 previously estimated the uncertainty in 𝑅8 by varying the combustion efficiency over
a wide range of possible values. The uncertainty was approximately 0.06𝑅8 with slight variations
depending on the equivalence ratio. The uncertainties in 𝐴8 and 𝛾8 are 0.027𝐴8 and 0.04𝛾8

respectively. These systematic uncertainties could increase/decrease the Mach number by nearly
10% of the nominal value. Thus, the systematic uncertainty is on the same scale as the random
uncertainty.

Qualitatively, the trends with both mass flux and equivalence ratio match the trends first ob-
servable by matching the static pressure to the equivalent static pressure, Figure 5.11c. In the
direct comparison between the Mach numbers from the two methods, Figure 5.12c., nearly all the
data clusters are around the 1:1 dashed, gray line, which shows that the Mach numbers are almost
identical between the two methods. Even for the data points further off the line (at the lower Mach
numbers), the combination of the vertical and horizontal error bars still captures the 1:1 line in the
spread. This result is perhaps unsurprising since both methods depend on the measured 𝑝8, and
this comparison only cross-validates instead of demonstrating accuracy to the actual Mach number.

However, a thrust measurement is not utilized in computing the Mach number from imposing
mass continuity (Eqn. 5.21). Thus, a PG measurement can be performed with static pressure and
temperature (thermocouple) measurements at the exit plane instead of measuring thrust with a thrust
stand and performing base drag corrections. Essentially, the cycle-averaged pressure measurement
is analogous to the equivalent pressure from the thrust balance equation (𝑝8 = 𝑝8). While the NPS
method [120] also does not require a thrust measurement, using area-Mach relations is necessary.
Additionally, measurements in the detonation channel can be influenced by where the detonation
wave resides; measuring at the axial location where the detonation wave is would result in higher
static pressure. Measuring at the throat avoids the complexity of the axially varying pressure profile,
another advantage of this method.

5.5.2 Impact of Non-Choked Exit Conditions

A non-unity 𝑀8,z can be readily introduced in the definition of EAP by using the isentropic flow
relationship to find EAP from 𝑝8 including the estimated 𝑀8,z values. The resulting form that
includes a non-unity 𝑀8,z is:

EAP(𝑀8,z) = 𝑝8

(
1 + 𝛾8 − 1

2
𝑀2

8,z

) 𝛾8
𝛾8−1

(5.26)

=
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+ 𝑝∞

) (
1 + 𝛾8−1

2 𝑀2
8,z
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8,z

) (5.27)
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Figure 5.13: Modified PG with estimated exit Mach number correction for tested conditions. The
best performance of RDC at lowest tested mass fluxes.

From which a modified PG (PGM) that includes a non-unity 𝑀8,z is:

PGM =
EAP(𝑀8,z)

𝑝3
− 1 (5.28)

5.17 This analysis used the Mach number from Eqn. 5.17, although Eq. 5.21 is equally applicable.
The modified PG, Figure 5.13, has a more pronounced trend with mass flux rate compared to the
traditional PG, Figure 5.8. The decreasing relationship with mass flux directly results from the
increasing exit Mach number and pressure drop across the injector with increasing flux. These
results further support the hypothesis that the best performance occurs by minimizing the pressure
drop across the injector with low mass fluxes. The case with the least negative PGM value, which
occurs at the lowest Mach number (lowest mass flux), is now -0.174 compared to the previous
-0.251. While still not demonstrating positive gain here, an increase in PG by about 0.08 for
designs that demonstrate −0.1 ≤ PG ≤ 0 could be sufficient to show either positive or neutral PG.

For a more thorough comparison between the two PGs, consider Figure 5.14a. The dashed,
gray line is the 1:1 line, and the color bar marks the exit Mach number estimated for that operating
condition (Figure 5.11c). As anticipated, the modified PG with a subsonic 𝑀8,z is always above the
1:1 line by having larger (less negative) PG values. When 𝑀8,z reaches about 0.8 (light orange data
points), there is little difference between the modified and original values of the PG. Importantly,
the difference between the two computed PGs at the lowest Mach numbers is greater than the 95%
confidence intervals (error bars). A further comparison, Figure 5.14b, shows the percent difference
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between the two forms of PG as a function of mass flux and equivalence ratio (color-bar). At
higher fluxes (where the Mach number asymptotes to 0.8), there is only a 5% error without the
Mach number correction, consistent with the approximated 5.4% uncertainty in EAP highlighted
in Eqn. 5.12. However, the error can grow as large as 38% at lower mass fluxes. Assuming
the assumptions for the estimated Mach number presented here hold, this means that the EAP
methodology significantly under-predicts the performance of the combustor at the low mass fluxes
but is fairly accurate at fluxes greater than 450 kg s−1 m−2.

The error bars for the modified PG are from the following equation:

𝛿PG2
M =

(
𝜕PGM
𝜕𝐹G

𝛿𝐹G

)2
+

(
𝜕PGM
𝜕𝑝∞

𝛿𝑝∞

)2
+

(
𝜕PGM
𝜕𝑝3

𝛿𝑝3

)2
+

(
𝜕PGM
𝜕𝑝8

𝛿𝑝8

)2
(5.29)

This equation is similar to Eqn. 5.10 with the added term that includes the contribution of the
measured exit pressure since the Mach number depends on it. Another important distinction is how
𝜕PGM/𝜕𝑀8,z is treated. Instead of being a separate uncertainty term, its impact on the PG is in the
partial derivatives of PG (through the product rule). The partial derivatives are not shown here but
can be found in full in Appendix G.

As expected from the results of the PG computed using the choked assumption, the gross thrust
is the driving force of the uncertainty. Compared to the uncertainty from the pressure terms, the
gross thrust contributes over 90% of the error in quadrature, with the plenum pressure providing
the remaining uncertainty. The ambient pressure uncertainty was negligible, similar to the results
shown in Figures 5.9a and 5.9b. Figure 5.14c compares the uncertainty (a stand-in for precision) for
computing the PG with and without the unity Mach number assumption. Similar to Figure 5.14a,
the dashed, gray line is the 1:1 line, and the color bar marks the exit Mach number estimated for
that operating condition (Figure 5.11c). Generally, the data points fall below the 1:1 line, indicating
improved precision and lower uncertainty for the modified PG. This improved precision results
from the sensitivity coefficients (i.e., partial derivatives) of the individual measurements in Eqn.
5.10 decreasing with 𝑀8,z; see Appendix G. The two uncertainties converge more as the Mach
number grows closer to unity.

The data points shown in Figure 5.14c are technically slightly misleading since the range of
Mach numbers considered in 𝛿 PG was between 0.8 and 1.2 based upon the results from Kaemming
and Paxson [113]. The Mach numbers presented in this work (Figures 5.11c and 5.12b) can fall
below the 0.8 bound. With this information, the uncertainty due to the un-evaluated Mach number
would grow, causing 𝛿 PG to grow. In turn, this would cause the data points in Figure 5.14c to
potentially fall even further below the 1:1 line, further indicating an increase in precision. Finally,
the possible systematic uncertainty from the exit area remains in the modified PG, although the
sensitivity to area variations decreases slightly with a subsonic Mach number, further increasing
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Figure 5.14: a) Comparison between modified pressure gain with Mach number correction (PGM)
and pressure gain with the choked assumption (PG). Subsonic flow causes PGM to be larger when
the exit Mach number is below 0.8. b) Ratio of PGM and PG across test conditions. c) Uncertainty
comparison of PGM and PG with choked assumption.

the precision of the measurement.

5.6 Discussion

This work presents a methodology to identify and quantify the systematic and random uncertainty
of the thrust measurement produced by an RDC to estimate the EAP in an experimental setup.
Some sources of uncertainty can be reduced through design, although some uncertainty sources are
inevitable (e.g., individual measurements). For instance, consider the base drag acting upon the exit
flange. Even in testing rigs that are open to the atmosphere, some base drag would exist due to flow
re-circulation caused by the flow leaving the annulus. These flange areas can be quite large such
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that even slight differences in pressure result in large forces and/or force uncertainties. The size also
causes proper instrumentation to be impractical; thus, the drag is either neglected or only has a few
measurement points. This study demonstrated that this area can be minimized and instrumented for
a rig exhausting into a closed chamber, thereby improving the gross thrust measurement. Another
step to improve the measurement is to either have a proper edge measurement on the truncated nozzle
or switch integration schemes to a Gauss-Kronrod scheme to eliminate the strong dependence on
the edge pressure. Other steps to improve gross thrust include removing the sources of systematic
error caused by machining tolerances by measuring the inner and outer diameter at the exit plane
via a metrology lab. Thus, although the error bars for gross thrust and subsequently PG are larger
currently, future experimental designs can take advantage of the results of this work to improve
precision, which will be vital for net positive gain demonstration. As is, the current EAP has limited
precision and accuracy, which hinders the goal of showing definitive pressure gain across RDCs.

The PG in this work follows the conventional definition by comparing the total pressure at the
outlet to the total pressure of the oxidizer plenum. However, the merits of this definition have been
questioned in recent work since it does not account for the fuel plenum pressure [112, 50]. Plaehn
et al. and Shepard independently argued that not accounting for the fuel plenum pressure prevents
an accurate representation of the total energy available to the system and does not account for the
additional thrust that could be provided by merely raising the fuel plenum pressure [112, 50]. Using
the results from a RDC operated with gaseous oxygen and a natural gas-operated RDC, Plaehn
et al. showed that by neglecting the fuel pressure, an overestimation of the PG is made [112].
In particular, the relative difference was about 15-20%, comparable to this work’s uncertainties.
Likewise, Shepard suggested that the fuel plenum pressure is often significantly greater than the
oxidizer plenum; thus, if the PG is defined to include the fuel pressure, it would be less than the
already negative PG values [50]. While this would seemingly be a systematic error in PG, it is
more appropriate to distinguish the two measures of PG. This study found the uncertainty in the
total pressure at the outlet (the EAP) as it is being measured indirectly in experiments through
assumptions. Choosing what the total pressure is referenced against, while it can effectively change
the result, is then not inherently a source of measurement uncertainty in the EAP method.

The subsonic cycle-average exit Mach numbers require further discussion. First, consider the air
inlet of the RDC. Intuitively, the flow chokes in the throat of the inlet from high flow rates and small
areas. However, an area-averaged Mach number computed using a static pressure measurement
in the plenum is below one, suggesting the inlet is not choked [186]. This result comes from
neglecting the unsteadiness induced by the detonation wave. After the passage of the detonation
wave, a portion of the annulus becomes unchoked from the elevated pressure. The injector then
recovers until the local flow is choked again at circumferential locations far from the detonation
wave. The unchoked portion is typically thought of as the result of fluidic “blockage” [47, 139].
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Thus, the average Mach number across the annulus would have to be less than one for any amount
of blockage, recovering back to the steady-state result [186]. It is theorized a similar unsteadiness
effect at the exit plane prevents the entire exit annulus from being choked, thereby resulting in
subsonic area-averaged Mach numbers. While the detonation wave likely does not extend to the
exit plane, the attached downstream propagating oblique shock wave could cause local subsonic
flow, thereby introducing asymmetry.

Both methods presented here for finding the Mach number demonstrate a below unity area-
average Mach number; however, they both relied upon a single static pressure measurement. A
CTAP measurement is more akin to a time-average across many detonation cycles, which is assumed
to match the area-average across the annulus; see Section 2.6 and Appendix A. The usage of a CTAP
measurement in determining the total pressure at the exit is reminiscent of the colloquially termed
“NPS Method” developed by Codoni and Brophy [114, 120], which uses CTAP measurements in
the channel and area-Mach relations to compute 𝑝t,8; see Section 2.6. However, Codoni et al. have
found that an asymmetrical static pressure profile can exist around the annulus even in the CTAP
measurements [120]. Overall, more CTAPs and/or additional diagnostics at the exit plane in the
future will be crucial to further characterize the performance of RDCs through additional insight
into the “average” exit state. While the EAP remains a conservative metric by assuming a unity
Mach number, it is left up to the reader to decide whether they wish to evaluate the performance
of the Mach-corrected EAP presented here in addition to the conservative form of EAP. The
conservative (traditional) EAP should still be reported in future work to better compare against
previous literature, and subsequent chapters in this work will do this.

142



CHAPTER 6

Pressure Gain Invariant to Changes to Detonations
Caused by Combustor Length

6.1 Introduction

With the method of measuring PG and quantifying the uncertainty in said PG established in the
previous chapters, the remaining two chapters interrogate certain parts of the RDC flowfield with
targeted geometric changes to observe whether there are measurable changes to performances
associated with those changes. This chapter focuses on addressing two primary questions. First,
do the details of the operational mode or wave dynamics matter with regard to performance as
measured by the PG? In the literature, the expected PG is distilled down to the area ratio of the inlet
throat to the outlet throat and the incoming mass flux [170]. However, this approach obfuscates
the various operational modes and physics occurring within the combustor by disregarding the
specifics of the detonation wave(s). The disconnect between global performance (PG) and details
about the operational mode has seen minimal exploration [187, 136], despite much of early RDC
research focusing on the “quality” of the detonation wave in regards to the CJ condition [10, 11, 43].
Additionally, in work by Walters et al., [119], a non-detonative case effectively achieved the same
PG as a detonative case, which is concerning. This chapter investigates this gap by focusing
on creating changes in the detonation wave dynamics through combustor length changes without
changing the inlet and outlet areas.

Experimentally, several groups demonstrated that the thrust and specific impulse of RDCs with
rocket injectors do not significantly change with length alterations [136, 137, 138]. Therefore,
the second question of this chapter is: does the performance insensitivity as measured by specific
impulse with respect to combustor length extend to performance as measured by PG? While thrust
and specific impulse are helpful performance metrics, they neglect the increase in plenum pressure
needed to drive the bulk flow in RDCs [139]. For instance, a combustor with a smaller plenum
pressure and the same specific impulse performs better than another combustor requiring a higher
plenum pressure to achieve the same specific impulse.
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Configuration 𝐿 [mm] 𝑑i [mm] 𝑑o [mm] 𝐴8/𝐴3.2 𝐴3.2/𝐴3.1 𝐿/𝜋𝑑m
A 71 139 154 0.50 4.65 0.154
B 102 139 154 0.50 4.65 0.222
C 118 139 154 0.50 4.65 0.256
D 137 139 154 0.50 4.65 0.298

Table 6.1: Relevant geometric parameters of tested RDC configurations. Variables (in order are):
𝐿, combustor length; 𝑑i, inner diameter of annulus; 𝑑o, outer diameter of annulus; 𝐴8/𝐴3.2, ratio
between exit throat and annulus areas; 𝐴3.2/𝐴3.1, ratio between annulus and air inlet throat areas;
𝑑m = 1/2 (𝑑i + 𝑑o), mean annulus diameter

This study addressed both questions by systematically varying the length and testing the RDC
across a parametric study of air and H2 flow rates for each discrete length. The differences in
operational mode and wave dynamics were categorized and characterized for each combustor
length. Here, wave dynamics refers to the collection of the wave number (multiplicity), speed,
and strength. High-speed pressure transducers and an aft high-speed chemiluminescence video
evaluated such metrics within the RDCs. This work identifies two operational modes that do
not conform to the standard notions of stable operation, and statistical approaches are applied to
characterize them properly. Meanwhile, the approach detailed in the previous chapters quantified
each configuration’s performance (thrust and PG). Therefore, the performance of the RDC as
measured by EAP and PG were directly compared to both the length changes and the changes in
the detonation wave(s) and their associated operational modes.

6.2 Geometry and Tested Operational Conditions

As mentioned in Section 3.2.3, this study considered four different combustor lengths while the
inlet and outlet geometries remained constant. The combustor lengths (𝐿), defined from the end
of the inlet throat (end of constant area portion) to the exit throat, were 71, 102, 118, and 137 mm.
These are labeled configurations A, B, C, and D in Table 3.2, reproduced here as Table 6.1 for
convenience. Throughout this chapter, the different lengths will be referred to by the configuration
name for brevity. In addition to the aforementioned geometric parameters, the length normalized
by the mean annulus circumference, 𝜋𝑑𝑚 = 𝜋(𝑑i + 𝑑o)/2, is given to draw comparisons to a similar
work by Bluemner et al. [133].

This study considered a parametric study of a discrete combination of air mass fluxes, from
150 kg s−1 m−2 to 650 kg s−1 m−2, and equivalence ratios, 0.6 to 1.2, of H2/air operation. Visual
representations of the test matrices, Figure 6.1, contain additional details that the following sections
will discuss further. Overall, all tests exhibited sustained rotating detonative operation. Unlike

144



other work in literature [133], no longitudinal pulsing was observed despite the relatively small
𝐿/𝜋𝑑m. The lack of pulsations could result from different injection geometry or higher mass fluxes.
As discussed in previous chapters, the testing duration was 4 seconds to achieve a quasi-steady
thrust measurement and perform mass flow rate ramping. Both the air and mass flow rates reached
a steady state value with about 1-2 seconds remaining during the run.

6.3 Classification of Wave Mode with Respect to Length

This section will address the changes to the detonation wave system induced by varied combustor
lengths before discussing the results from the performance measurements. In doing so, the changes
or lack thereof in the performance metrics can be contextualized with respect to the detonation
wave(s) instead of in isolation to the changes to the wave(s). This section focuses on identifying
and classifying the various operational modes observed in this study, whereas the following section
(Section 6.4) provides quantitative statistical measurements of the wave properties, like speed and
pressure ratio. After the classification and characterization of wave modes, Section 6.5 will present
the performance measurements.

The classification of the operational mode of a RDC identifies whether the pressure waves or
combustion occur in a rotating, pulsed [133], or deflagrative manner. Often, the operational mode
also defines a sub-classification of a rotating mode based on the distinct features of the wave system,
whether that be the number of waves (multiplicity), the relative propagation direction of multi-wave
systems, a measure of the temporal steadiness of the mode, number of secondary waves [45], etc.
Since every test from this study exhibited sustained rotating detonation waves, the focus here is on
the later description of the operational mode. This study observed five distinct operational modes
of rotating detonation wave(s). These were as follows:

1. Mode 1: Single wave (1W)

2. Mode 2: Two co-rotating, indistinguishable waves (2WI)

3. Mode 3: Two co-rotating, distinguishable waves (2WD)

4. Mode 4: Multiple waves that follow a transient super cycle (TSC)

5. Mode 5: Chaotic operation of multiple waves (CH)

The first two operational modes are commonly observed throughout the literature and do not require
much additional description [43]. Instead, the description of 2WI is provided primarily to juxtapose
the latter operational modes. To the authors’ knowledge, 2WD and TSC have not been described
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(a) (b)

(c) (d)

Figure 6.1: Map of operational modes for Configurations. a) A, b) B, c) C, and d) D.

before this work. For conciseness, this study does not consider further sub-classifications based on
the number of secondary waves [45] or the detonation wave(s) speed.

This section will discuss additional details later; however, the maps between test conditions and
the operational mode for each tested configuration, Figure 6.1, provide needed initial contextualiza-
tion. Figures 6.1a, 6.1b, 6.1c, and 6.1d are for configurations A, B, C, and D respectively. The color
of the individual markers denotes the classified operational mode. Likewise, the shaded regions
match the colors of the markers, added to highlight the regions at which a particular operational
mode was common. Discerning the trends between the different configurations is challenging;
however, some general observations are possible. First, the number of waves typically increases
with length, as evidenced by SW (blue) effectively not existing in configurations C and D. Second,
configuration A, the shortest combustor, had more CH (black) operation than the other configura-
tions, with it being its most common operation mode. Third, either 2WI (red) or CH replace the
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(a)

(b) (c)

Figure 6.2: The channel pressure a) trace, b) time-varying spectrum, and c) time-averaged spectrum
of a 2WI operation. Data from ¤𝑚′′

a = 513 kg s−1 m−2 with 𝜙 = 0.6 in Configuration C.

2WD (green) operation that was prominent in configurations B and C. Finally, TSC (cyan) was
only observed in the longest configurations, C and D, and only at large mass fluxes and equivalence
ratios greater than 0.8.

6.3.1 Two Indistinguishable Co-Rotating Waves (2WI)

Operation with multiple co-rotating detonation waves is common in the literature [43]. This study
also observed such an operation, where a pair of co-rotating waves propagated about the annulus.
A sample high-speed channel pressure measurement, Figure 6.2a, is from a test of configuration
C where the mass flux was 513 kg s−1 m−2 and the equivalence ratio was 0.6. Time is relative
to when fuel introduction, 𝑡𝑖. The sharp rise from the detonation waves is evident and repeatable.
Notably, the two detonation waves are indistinguishable (2WI) from one another as the peak
pressures remain effectively constant, although there is a stochastic variability. The regularity of
the peaks is further demonstrated by the time-varying spectral content as shown in Figure 6.2c. The
frequencies are relative to the CJ frequency ( 𝑓CJ), which comes from the ideal CJ velocity. Again,
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Figure 6.3: Probability density function of cycle-to-cycle pressure ratio across detonation waves
for 2WI.

this work conducts all ideal detonation wave calculations (wave speed or pressure ratio) using
NASA Chemical Equilibrium with Applications (CEA) at the prescribed global equivalence ratio
[23]. The flow rates were increased during this test to achieve the nominal conditions (refer back to
Sec. 6.2), which caused the increase in frequency before 𝑡 − 𝑡𝑖 = 2 s. Once the flow rates became
steady, the frequency became steady, and the RDC reached a statistically stationary operation. The
dashed red lines indicate the portion of the run over which the time-averaged spectrum in Figure
6.2c was generated. The prominent peak at 1.56 𝑓CJ corresponds to two waves that individually
propagated at 0.78 𝑓CJ. Since the waves are indistinguishable, there is no spectral peak at 0.78 𝑓CJ,
which contrasts the 2WD as will be discussed in the following section. This 2WD mode is the
operational mode that the others will be compared against since it is commonly observable in the
literature.

Individual detonation waves in Figure 6.2a were identified by their peak pressures to generate
a statistical measure of the detonation wave properties. The ratio between these peak pressures
and estimated base pressures gives the pressure ratio across the detonation wave(s). The estimated
base pressure was computed by interpolating between the pressure troughs, or local minima, in
the detonation cycle before and after the detonation wave peak pressure [188]. This procedure is
repeated for each detonation wave during the steady portion of the test for approximately 3,000
discrete measurements of the peak pressure, base pressure, and pressure ratio, generating empirical
PDFs. Figure 6.3 gives a PDF of the pressure ratio (𝑝r), normalized by the idealized CJ conditions
(𝑝r,CJ), for the 2WI case considered thus far. In general, the PDF for 2WI is close to being
normally distributed, consisting of a single mode with a slight skew to the right. The dashed red
line and point give the peak of the estimated PDF generated by smoothing the data using a kernel.
The kernel estimates the distribution of the empirical data without making assumptions about the
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functional form of the underlying distribution. The smoothing function and bandwidth of the
kernel parameterize it. The choice in bandwidth dictates the level of smoothing; here, the built-in
Matlab algorithm automatically determined the bandwidth was automatically determined using the
algorithm in Matlab, although the algorithm is best suited for normal distributions. Finally, the
95% confidence interval, found from the empirical cumulative distribution, is marked with the
dashed blue lines. By utilizing this statistical approach, the most probable value of the pressure
ratio, which may differ from the mean, can be characterized along with the variance and skew of
the distribution.

6.3.2 Two Distinguishable Co-Rotating Waves (2WD)

In contrast to the previously described two-wave behavior, this study also observed a co-rotating,
two-wave operation where the waves were distinguishable. To the author’s knowledge, this is the
first reporting of such an operational mode. As such, what follows is a rigorous demonstration of
the existence of distinguishable waves. The analysis will focus on interpreting high-speed point
measurements while only using high-speed video to confirm the conclusions reached from the
in-depth analysis of the point measurements. This study concentrates intentionally on pressure
measurements as other experiments may not have such videos, allowing for the transference of the
process detailed here to other experiments to identify similar operational modes.

Figure 6.4a shows a sample high-speed channel pressure measurement for this type of operational
mode, which is for when ¤𝑚′′

a = 451 kg s−1 m−2 and 𝜙 = 0.6. A general trend is evident where
a stronger detonation wave with a peak pressure of about 3.5 atm precedes a weaker detonation
wave of about 3 atm. Generally, every second detonation wave appears weaker than the preceding
wave, highlighted with red arrows. The PDF of the cycle-to-cycle measurements of the pressure
ratio across each detonation wave is bi-modal, see Figure 6.5, supporting the observation of two
distinct pressure ratios. This bi-modal distribution is representative of every case that exhibited
this behavior, although the distance between the PDF peaks varied depending on the operational
conditions. The width of the distribution, as measured by the dashed blue lines, is greater than
Figure 6.3 on account of being bi-modal. The variability in the two distinct pressure ratios appears
to be individually normally distributed. At the end of the test, the time-varying spectral content,
Figure 6.4b, highlights that the operation is statistically stationary, which may cause the normal
distributions. The strongest observable peak, 1.50 𝑓CJ, in the time-averaged spectrum, Figure 6.4c
suggests that two co-rotating detonation waves existed in the RDC, like the 2WI mode. However,
additional spectral peaks at 0.75 𝑓CJ and 2.25 𝑓CJ exist, which were not present in the 2WI case.
These peaks are precisely 0.5 and 1.5 multiples of the primary frequency. The aft high-speed
video identified two co-rotating waves, confirming that two co-rotating detonation waves traveled
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(a)

(b) (c)

Figure 6.4: The channel pressure a) trace, b) time-varying spectrum, and c) time-averaged spectrum
of a 2WD operation. Data from ¤𝑚′′

a = 451 kg s−1 m−2 with 𝜙 = 0.6 in Configuration C.

at 0.75 𝑓CJ, leading to the prominent peak at 1.50 𝑓CJ. The alternating behavior would result in the
additional frequencies as the larger pressure ratio wave passed the sensor at a frequency of 0.75 𝑓CJ.
Meanwhile, the sensor observed a pressure spike caused by the passage of a wave at a frequency of
1.50 𝑓CJ since there were two waves.

The cause of the alternating pressure rise requires further examination. Chacon et al. previously
observed that secondary wave(s) can non-linearly interact with the detonation wave, resulting
in larger, alternating pressure spikes [45]; thus, secondary wave(s) may seem like a plausible
explanation for this phenomenon. There are several requirements for secondary wave(s) to be
the cause given the spectrum in Figure 6.4c. First, the secondary wave(s) would have to be the
same speed as the primary detonation wave(s) since differences in speed would appear as a distinct
frequency peak [45] in the spectrum, which is not the case. Second, the point of interaction between
the secondary and primary detonation wave(s) must be at the sensor location for the non-linear
interaction to be measured. Since the wave(s) must all be traveling at the same speed, there cannot
be a phase shift between the waves; otherwise, the interaction point would not be at the sensor
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Figure 6.5: Probability density function of cycle-to-cycle pressure ratio across detonation waves
for 2WD.

location. Finally, the number of secondary waves would have to be odd. Since there cannot
be a phase shift, an even number of secondary waves would result in a secondary wave always
passing the sensor simultaneously with one of the detonation waves. All three criteria must be
true for secondary waves to be responsible for the observed phenomenon. While possible, it was
deemed highly improbable to be true in reality, thereby disproving secondary waves as the cause.
Furthermore, the additional spatial information gained from the aft video confirmed that secondary
waves were not present in the test. An alternative theory would be that the second “detonation wave”
was instead a reflected oblique shock off the nozzle that rotates with the detonation wave. However,
unless the reflected shock caused auto-ignition of the mixture, this theory does not appropriately
explain the chemiluminescence associated with the second wave as detected by the video.

Thus, the spectrum must then be the result of two detonation waves that are continuously traveling
at the same speed but with different individual pressure ratios, making the waves in the wave pair
inhomogeneous or distinguishable co-rotating detonations (2WD). The distinction between 2WD
and 2WI is made based on the distinguishability of the waves since the multiplicity is the same
and the speeds are comparable. Theoretically, 2WD would likely perform worse than 2WI since a
significant portion of the heat releases occurs in the weaker wave with a lower pressure ratio. This
lower pressure ratio would produce more entropy than the larger pressure ratio; thus, if both waves
had the larger pressure ratio (2WI), they would generate less entropy than in 2WI with the lower
observable peak pressures.

In the simplified one-dimensional ZND model, a unique relationship exists between wave
speed and pressure ratio for a given global mixture, which would prohibit 2WD. However, loss
mechanisms such as parasitic deflagration or mixture leakage cause the global mixture to no longer
solely determine the relationship between pressure ratio and wave speed [10, 105]. Continually
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propagating detonation waves in RDCs likely exist due to balancing complex physics on multiple
scales. There are both local chemistry and shock dynamics at the wavefront. At the same time, there
is dissipation and feedback to the air and fuel injectors that ultimately create a suitable flowfield
in front of the detonation. Therefore, the two detonation wavefronts may experience a different
combination of these multi-scale phenomena. For instance, a reflected oblique shock from the
nozzle may interrupt the injector response, creating a local region of higher or lower equivalence
ratio, which then, in turn, experiences varying amounts of secondary combustion. The result is that
the waves achieve the same wave speed, albeit with different strengths in terms of pressure. Since
the wave speeds are identical, one cannot overtake the other, allowing stable propagation.

6.3.3 Transient Super-Cycle (TSC) in Wave Dynamics

The previously discussed operational modes are effectively statistically stationary in that the number
and direction of the waves do not change significantly in time. However, under some test conditions,
a phenomenon arose where the number, direction, and speed of the waves varied rapidly but
periodically over several detonation cycles. This phenomenon occurred solely at the highest fluxes
(greater than 450 kg s−1 m−2) and equivalence ratios (greater than 0.8) for configurations C and
D; see Figs. 6.1c and 6.1d.

The channel pressure measurement, Figure 6.6a, more closely resembles that of 2WI than 2WD
since there is no obvious pattern on the small scale shown. The case shown in Figure 6.6a was for
configuration D operarting with an air mass flux of 522 kg s−1 m−2 and 𝜙 = 0.97. However, the
spectral content, whether that be time-varying in Figure 6.6b or time-averaged 6.6c, shows both
more and broader spectral peaks than the previous modes. A few of the prominent (not harmonic)
spectral peaks are 1.35, 1.70, 2.11, and 2.51 𝑓CJ, which each likely corresponded to a unique wave
system within the RDC. These tones persisted over the entire time window shown with the dashed
red lines, as shown in Figure 6.6b. The nearly constant frequencies give the impression that all
the waves existed simultaneously, although it may be an artifact of the time windows of 5 ms used
to generate Figure 6.6b. The broadness of the spectral peaks suggests that the wave speeds of
the individual wave systems were changing. Finally, while it typically is preferential to identify a
primary wave system, in general, the spectral strengths of the tones are comparable, making such
distinctions challenging.

This study utilized the method of Circuit Wave Analysis (CWA) to gain additional insight into
the phenomenon’s behavior. The method of CWA reduces the high-speed videos of the detonation
wave propagation in the annulus into the properties of each wave system present in the RDC [45].
Specifically, it detects the multiplicity, strength, direction, and speed of wave systems in the annulus.
The method of CWA was applied to every 71 frames of the 50,000 fps chemiluminescence video,
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(a)

(b) (c)

Figure 6.6: The channel pressure a) trace, b) time-varying spectrum, and c) time-averaged spectrum
of a TSC operation. Data from ¤𝑚′′

a = 522 kg s−1 m−2 with 𝜙 = 0.98 in Configuration D.

resulting in a temporal resolution of 1.42 ms. This temporal resolution is greater than the temporal
resolution of the time-varying spectrum (e.g., Figure 6.6b). Figure 6.7a shows a sample of the
time variation of the wave systems, with the definition of a wave system being a combination of a
unique multiplicity and direction. The y-axis gives the normalized velocity of the individual waves
(𝑣) within the wave system. Each symbol corresponds to the predominant wave system within
the RDC at that time, and the symbol’s color indicates the wave system’s multiplicity (𝑁). The
predominant wave system refers to the one with the greatest spectral strength, i.e., the strongest
or most coherent wave system propagating during the time window and in that direction. Other
wave systems may have existed during the time window, but this analysis neglects said waves.
Note that the multiplicity here (𝑁) is distinct from the multiplicity of the detonation wave (𝑁D)
since this analysis makes no direct distinction between the primary and secondary waves. Finally,
CWA considers the positive and negative (clockwise and counter-clockwise) directions of rotation
independently, with the velocity’s sign denoting the direction. An example interpretation of Figure
6.7a is as follows: for given 𝑡 − 𝑡i, 𝑁=2 (red) for positive 𝑣 and 𝑁=4 (green) for negative 𝑣
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corresponds to two-wave operation in the positive direction and four-wave operation in the negative
direction at that 𝑡 − 𝑡i.

A cyclical pattern is discoverable with careful inspection of Figure 6.7a. During the following
discussion, the reader is encouraged to reference the generic visualization of the cyclic process,
Figure 6.7b. Essentially, Figure 6.7b is the same as Figure 6.7a with the boxes replacing the
markers and additional annotations. The cyclical pattern is as follows. First, a pair of co-rotating
waves propagated in the positive direction. At the same time, five co-rotating waves propagated
in the opposite (negative) direction at nearly acoustic speeds. After about five rotational cycles
of the wave pair, one of the counter-propagating waves was consumed or died out, while the
remaining four waves sped up marginally. A rotational cycle refers to the time (𝜏D) it took one
of the individual waves in the wave pair to complete a lap around the annulus. One of the four
counter-propagating waves ceased to exist after another approximate 10𝜏D, and the three remaining
counter-propagating waves accelerated again. Meanwhile, the co-rotating wave pair in the positive
direction persisted but gradually decelerated as the counter-propagating waves accelerated. Hence,
the negative slant to the red boxes in Figure 6.7a. Faster counter-propagating waves likely consume
more reactants, reducing the wave pair’s speed, which aligns with previous observations of counter-
propagating waves [45]. After another approximate 10𝜏D, the system underwent another rapid
transition characterized by a direction change of two co-rotating waves and the multiplicity of
the counter-propagating waves increasing back to five. This transition could be either the three
waves transitioning to two waves and out-competing the initial wave pair or the wave pair switched
directions. All the modal transitions occurred within one or two rotational cycles, which is a
transition much faster than the temporal resolution achieved with CWA. Therefore, the transition
mechanisms remain a mystery. Regardless of the exact mechanism, at the end of this super-cycle,
the system has returned to having a co-rotating wave pair and wave system with five co-rotating
waves that rotate in the opposite direction as the wave pair. The process is then repeated cyclically
following a super-cycle pattern and time-scale (𝜏S) several times the wave pair’s rotational time.
For that reason, this study will hereafter refer to this behavior as transient super-cycle transient
operation (TSC).

This study then tracked the fundamental wave properties (𝑁 and 𝑣) relative to the position
within the super-cycle. First, the super-cycle period 𝜏S is defined to be the elapsed time between
two directional shifts (indicated by the dashed black lines in Figure 6.7b). The period was defined
in this manner to study if there was a directional preference or if the system was insensitive to
direction. There was some amount of variability to 𝜏S, as is reflected in the PDF presented in
Figure 6.8 for the specific case of Figure 6.7b. The distribution was close to normal except for
several periods that skewed the distribution to the right. The peak of the PDF is the representative
super-cycle period, 𝜏S = 18.5 ms. Afterward, an algorithm parsed through each super-cycle, and
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(a) (b)

Figure 6.7: a) The time variation of multiplicity (𝑁), speed (𝑣), and direction of the wave systems
mid-run. b) Simplified representation of the super-cycle. Data from ¤𝑚′′

a = 522 kg s−1 m−2 with
𝜙 = 0.98 in Configuration D.

the multiplicity and speed of individual waves in the systems were re-sampled and binned into
25 points along the super-cycle phase. The algorithm binned both directions of rotation (positive
and negative) independently to resolve the discontinuities of the directional switches better. The
algorithm ran for all the super-cycles within the time indicated by the dashed red lines in Figure
6.6b, or about 50 super-periods.

At each phase within the super-cycle, a PDF exists for either the multiplicity or wave speed.
Plotting each of the PDFs simultaneously results in bi-variate histograms as shown in Figure 6.9.
Figures 6.9a and 6.9c give the wave multiplicity while Figs. 6.9b and 6.9d give the wave speeds.
The subscripts on the variables indicate the positive and negative directions. The dashed red lines
guide the reader and plot the trajectory of the PDF peaks in the phase space. Both directions had the
same behavior, except for a 180◦ phase difference between the positive and negative directions. The
co-rotating wave pair existed for half of the super-period in both directions, indicating no directional
preference. Overall, the pattern originally identified in Figure 6.7b is confirmed, but additional
details are now accessible. For instance, the higher multiplicities (4 and 5) were more prone to
cycle-to-cycle variable than the wave pair, as demonstrated by the color diffusivity at 𝑡/𝜏S < 0.2 in
Figure 6.9a. There was little difference in the individual wave speeds of four and five-wave systems,
and both were near acoustic speeds, hinting that there were only small differences between the wave
systems. In contrast, the step changes in speed going from four to three or three to two were much
more significant; see Figure 6.9b. The three-wave operation, 0.2 ≤ 𝑡/𝜏S < 0.5 in Figure 6.9b, had
the most stable wave speed of all the systems. Meanwhile, the wave pair speed decreased with
each subsequent decrease in the number of waves in the opposite direction in a nearly piecewise
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Figure 6.8: Probability density function of super-cycle period.

fashion. However, there was a slight upturn in speed right before the direction switch. The cause
is unknown, although that last point had significant wave speed variability, likely reflecting the
transient process of the direction change.

As previously mentioned, only the longest combustors and highest fluxes exhibited TSC. Both
increasing air mass flow rate/flux and lengthening the combustor have been seen to promote
additional detonation waves. Following these trends, it is reasonable to expect that if three co-
rotating detonation wave operations were to exist with the given geometry, they would have occurred
in the region of TSC operation. To that effect, before the onset of the phenomenon in Figure 6.6b),
the test exhibited a stable three-wave operation during the transient portion of the run. The three-
wave operation is the tone at 1.65 𝑓CJ ranging from 2 to 2.75 seconds into the run. The high-speed
video confirmed the three waves. During this portion of the run, the air and fuel rates increased
towards the nominal flow rates. The speed of the three-wave system gradually increased until the
phenomenon began when the flow rates became nearly steady. While this three-wave operation did
not last the entire run, its existence supports the hypothesis that TSC occurred in the same region
where the RDC would have undergone a modal transition to a higher multiplicity. The existence of
TSC may also suggest that the given geometry may not support steady three-wave operation. While
the switch from steady to unsteady operation is not well understood, it is intriguing that the steady
three-wave operation occurred when the plenum pressures increased to accommodate the increasing
flow rates. Perhaps different boundary conditions in the plenum, inlets, and/or injectors result in
a more stable system. Regardless, if a similar operation is observed in a different configuration,
altering the combustor length (e.g., shortening the length) could result in a more steady operation
like the other modes. Eliminating the TSC may be advantageous as it creates time-varying exit
conditions, which may be undesirable for actual applications.
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Figure 6.9: Distributions along the super-cycle phase of multiplicity (a and c) and normalized
velocity (b and d) in the positive (a and b) and negative (c and d) directions.

6.3.4 Chaotic Operation (CH)

Each operational mode described so far either has one dominant stable wave system or the variations
in the waves follow a discernible pattern, allowing for easy classification. However, not every test
condition exhibited an operation that could neatly fall into the pre-determined operational mode
classifications, and this study will hereafter refer to this as chaotic operation (CH). The system may
still have followed a pattern like TSC, but if such a pattern existed, it was too complex to distill in a
manner equivalent to previously described classifications. In general, such CH operation consists
of multiple competing wave systems that come in and out of existence.

The channel pressure, time-varying spectral content, and time-averaged spectrum for a sample
CH case, Figure 6.10, are presented to compare the other operational modes. This sample case
is from configuration B operarting with ¤𝑚′′

a = 193 kg s−1 m−2 and 𝜙 = 1.23. The time-resolved
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Figure 6.10: The channel pressure a) trace, b) time-varying spectrum, and c) time-averaged
spectrum of a CH operation. Data from ¤𝑚′′

a = 193 kg s−1 m−2 with 𝜙 = 1.23 in Configuration B.

pressure, Figure 6.10a, somewhat resembles 2WD in that stronger pressure spikes are followed by
weaker pressure spikes, although the pattern is not repeatable. The spacing between the different
pressure rises is also more irregular than the other modes, reflected in the spectral content in Figure
6.10c. Similar to the TSC operation but dissimilar to either the 2WD or 2WI operation, there were
multiple prominent spectral peaks, with each of the peaks being broad. These peaks persisted in a
quasi-steady manner as shown in Figure 6.10b, although there was a brief time around 𝑡 − 𝑡t = 2
where the operation stabilized momentarily. The broadness of the spectral peaks indicates that
waves accelerated and decelerated around distinct wave speeds, which suggests that multiple wave
systems arose during the test, with each system having a unique speed to identify it, like the TSC.

Due to the initial similarities to TSC, this study also applied the method of CWA to high-speed
video taken from this case as well, Figure 6.11. Several distinct wave systems are identifiable. In
increasing speed order, these were: a two-wave (𝑁 = 2) system with 𝑣 = 0.52𝐷CJ, a three-wave
(𝑁 = 3) system with 𝑣 = 0.59𝐷CJ, a one-wave (𝑁 = 1) with 𝑣 = 0.62𝐷CJ, and a two-wave
(𝑁 = 2) system with 𝑣 = 0.68𝐷CJ. All of these match the tones from Figure 6.10c, indicating
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Figure 6.11: The time variation of multiplicity (𝑁), speed (𝑣), and direction of the wave systems
mid-run. Data from ¤𝑚′′

a = 193 kg s−1 m−2 with 𝜙 = 1.23 in Configuration B.

that they appeared frequently throughout the test duration. The system transitioned between these
different wave systems along with the direction of the wave systems; however, unlike the TSC
operation, the wave system changes followed no discernible pattern This sample CH operation is
further differentiated from TSC since there were times when counter-rotating waves did not exist,
see the lack of markers in Figure 6.11 in the negative direction around 𝑡 − 𝑡i = 3.62. While similar
underlying processes may have occurred in this sample CH operation and the TSC operation, the
differences were sufficiently significant enough to warrant distinction.

The specific details about the number of wave systems and the speed and multiplicity of the wave
systems, Figure 6.11, do not reflect every CH operation. These details varied between the different
CH operations, but the transient nature of the operational modes remained consistent. Thus, this
study defines the CH operation as a lack of cohesion and quasi-steady transient operation. The
ultimate purpose of discussing such an operation is to highlight that the operational mode of
the RDC may not always follow simple classifications since the underlying physics couples in a
complex manner that can result in transient global features. The question remains whether or not
the CH operation, which seems undesirable, impacts performance significantly, which Section 6.5
will discuss.

6.4 Change in Wave Properties Induced by Length

Whereas the previous section focused on classifying and describing the different operational modes,
this section looks at quantifying changes to the wave properties. Specifically, the wave speed and
the pressure ratio are discussed as global metrics of the non-ideality of the waves so that this study
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can compare the measured performance metrics to metrics describing the detonation wave(s). In
general, the discussion in this section focuses on the changes, or lack thereof, in wave speed or
pressure ratio with respect to length. Different operational modes may influence the detonation
wave properties; however, additional changes within the system can also affect the detonation wave
properties. Therefore, there is less emphasis on the specific operational modes in favor of a more
global viewpoint. For these comparisons, singular values of the measured properties are given
based upon the peak of the empirical PDFs.

6.4.1 Speed of Individual Waves

The wave speed (𝐷) of the primary detonation wave(s) is a metric often used to characterize the
waves. The wave speed was determined using CWA [45] and cross-validated with the time-averaged
spectrum. The primary detonation wave(s) are distinguishable from the secondary waves due to the
greater spectral strength. The cross-validation of CWA was necessary due to the combination of
the exit constriction partially blocking the view of the annulus and observed combustion occurring
statically around the annulus. Normalizing the wave speeds by the ideal CJ detonation wave
speed (𝐷CJ) enables better comparisons between the wave speed of the individual wave(s) across
different equivalent ratios. The normalized individual wave speeds in Figs. 6.12a, 6.12b, and 6.12c
correspond to air mass fluxes of 327, 393, and 520 kg s−1 m−2, respectively. The qualitative trends
at these mass fluxes are representative of the remainder of the tests. Many subsequent plots which
track changes in some quantity across the combustor length follow a similar format as Figure 6.12.
The marker color indicates the equivalence ratio, excluding 𝜙 = 1.2, as this was not tested for every
air mass flux, while the marker shape indicates the operational modes described previously. The
different equivalence ratios have a horizontal offset to minimize the overlap of the error bars, which
denote the 95% confidence interval of the empirical PDF. The dashed lines connecting the points
are given solely to guide the reader and have no physical interpretation.

As noted previously, the combustor with the shortest length, configuration A, had predominantly
one wave (circle) or chaotic (star) operation. Both operation modes exhibited the most significant
variability in wave speed, i.e., the largest error bars. Generally, even when a single dominant wave
exists (1W), one-wave operation is not as steady as two-wave operation in these configurations.
Both 2WI (upward-pointing triangle) and 2WD (square) had minuscule error bars, making them
unobservable. Meanwhile, the wave speed of TSC (downward-pointing triangles) operation marked
in Figure 6.12 is for the two-wave operation that was most frequently the most prominent wave
system; however, the highly skewed error bars for TSC are a result of the other wave systems with
greater multiplicity that occurred throughout the test.

A general trend is observable across configurations B-D (𝐿 >100 mm) in which the normalized
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(a) (b) (c)

Figure 6.12: Normalized speed of individual detonation wave(s) for a) ¤𝑚′′
a = 327 kg s−1 m−2 b)

¤𝑚′′
a = 393 kg s−1 m−2 and c) ¤𝑚′′

a = 520 kg s−1 m−2.

speed of individual waves decreases nearly with increasing combustor length if 1W and CH
operational modes are neglected. Thus, as length increases, the waves become slower as long as the
detonation wave multiplicity remains the same. The cause of this trend is unknown, although there
may be a link to the eigenfrequencies of circumferential acoustic modes of an annular chamber,
which are inversely proportional to the axial length of the chamber [189]. Meanwhile, trends in the
1W and CH operational modes are more challenging to decipher due to the spread; however, when
𝜙 = 0.6 (black markers), an increase in wave speed can be observed going from 1W in configuration
B to 2W in configuration C in each of the mass fluxes in Figure 6.12.

The author theorizes that the wave speed decreases with combustor length for a fixed multiplicity
until a threshold length or criterion. This length may correspond to when the wave(s) slow to a
speed where the injectors recover well before the detonation wave arises, thereby creating a larger
fill region. This larger fill region can then promote and sustain an additional detonation wave.
Although a second co-propagating detonation wave would change the injector recovery, the system
can re-balance to support the extra wave. After switching to a higher multiplicity, the individual
wave speed rises significantly closer to the ideal CJ value. The wave speed jump increase may
be caused by a reduction of deflagration before the detonation (parasitic combustion), as the
resident time of fresh reactants in the channel before detonation wave arrival decreases, and the
shortened time scale between detonation waves would mitigate the amount of auto-ignition or flame
propagation that could occur. Previous studies have noted that parasitic combustion is detrimental
to detonation wave speed [60, 11, 105]. Nevertheless, since the testing in this work never yielded
a sustained three-wave operation, the generality of the increase in wave speed after an increase in
multiplicity caused by length cannot be confirmed.
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(a) (b) (c)

Figure 6.13: Normalized pressure ratio of individual detonation waves for a) ¤𝑚′′
a = 327 kg s−1 m−2

b) ¤𝑚′′
a = 393 kg s−1 m−2 and c) ¤𝑚′′

a = 520 kg s−1 m−2.

6.4.2 Pressure Ratio across Waves

As discussed previously, cycle-to-cycle variability exists within the pressure measurements, whether
from changes to the detonation wave(s), merely an artifact of the limited temporal response of the
sensor, or a consequence of thermal drift in the sensor. The variability results in empirical PDFs
of the pressure ratio; see Figs. 6.5 and 6.3 for examples. Thus, this work takes the most probable
values of the empirical PDFs when reporting a pressure ratio for a test. Additionally, this work
reports the larger pressure ratio in the case of a bi-modal distribution, Figure 6.3. The pressure
ratios for the same cases considered in Figure 6.12 are given in Figure 6.13. Like the wave speed,
the pressure ratio is normalized by the corresponding CJ condition (𝑝r,CJ). Many of the PDFs
were right-skewed, such that the upper error bar is larger than the lower error bar in Figure 6.13.
This skew could be the result of several factors. One was thermal drift or heating of the sensor,
which artificially lowered the measured signal, reducing the base pressure and increasing the ratio.
Another explanation is the non-linear interaction between the primary detonation wave(s) and
secondary waves, which would locally create even higher pressure regions [45]. Regardless of the
cause, the spread in pressure ratios is comparable among all the different operational conditions,
including the bi-modal distributions of 2WD.

The waves are relatively weak since the pressure ratios are low for all the tests, being about 10-
15% of the CJ pressure ratios. There was a marginal increase in the pressure ratio with increasing
length, although the error bars encompass such changes. The minute changes in pressure ratio
contrast the more observable changes in wave speed discussed previously. The divorce between
changes in wave speed and pressure ratio is likely a result of loss mechanisms, which cause the
relationship between the speed and pressure of the detonations to no longer be unique. Regardless,
the low-pressure ratios are likely not ideal for performance in terms of entropy production.
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6.5 Minimal Performance Changes from Length

6.5.1 Gross Thrust

The attention can return to quantifying the performance of the RDC now that the previous sections
have established some characteristics about the operation and detonation wave(s). The first per-
formance metric considered is the gross thrust (𝐹G) produced by the RDC, with Chapters 4 and 5
detailing the necessary experimental procedure. Figure 6.14 presents the variations in measured
gross thrust as length changes three discrete air mass fluxes. These mass fluxes are the same as
those in Figure 6.12 which are 327 kg s−1 m−2, 393 kg s−1 m−2 and 520 kg s−1 m−2 for Figs.
6.14a, 6.14b, and 6.14c respectively. The gross thrust increases nearly linearly with air mass flux,
reflected in the change in the scale of the y-axes in Figure 6.14. The gross thrust increases with the
equivalence ratio, i.e., the marker color. Both of these trends are reminiscent of the results from
Section 5.2.

A non-monotonic relationship existed between gross thrust and length, although the scale in
Figure 6.14 makes this difficult to discern. To better visualize the relationship, the change in
gross thrust relative to the shortest length (𝐹G,A) is presented in Figure 6.15. Depending on the
operational condition, the gross thrust could either decrease or increase with a step change in length,
hence the non-monotonic relationship. Overall, configuration C had the greatest gross thrust of
the configurations by being 5-12% larger than 𝐹G,A. However, the measurement uncertainty again
encapsulates the variations for a fixed equivalence ratio. The overlapping uncertainty grows worse
with smaller thrust values, which occur at the lower. Additionally, the changes in operational
mode (symbol markers) also do not cause significant changes to the gross thrust. Therefore, it is
inconclusive if there are changes in gross thrust production with respect to length changes or the
operational mode changes induced by length.

6.5.2 Fluidic Blockage

Thrust alone is, however, insufficient to make a complete comparison between the different config-
urations as it does not consider the impact of the mode of operation on the plenum pressure driving
the flow (𝑝t,2), and thus the resulting gross thrust. The impact of the mode of operation is here
quantified in terms of an effective fluidic blockage fraction (𝐵m). The blockage fraction is defined
based on the ratio of the tested mass flux through the combustor to the mass flux of a “cold” or
non-reacting flow (no fuel injection) test at the same plenum pressure ( ¤𝑚′′

C|𝑃) [139, 50],

𝐵m = 1 −
¤𝑚′′

a
¤𝑚′′

C|𝑃
(6.1)
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(a) (b) (c)

Figure 6.14: Gross thrust output for a) ¤𝑚′′
a = 327 kg s−1 m−2 b) ¤𝑚′′

a = 393 kg s−1 m−2 and c)
¤𝑚′′

a = 520 kg s−1 m−2.

(a) (b) (c)

Figure 6.15: Change in gross thrust output relative to Configuration A (𝐹G,A) for a) ¤𝑚′′
a =

327 kg s−1 m−2 b) ¤𝑚′′
a = 393 kg s−1 m−2 and c) ¤𝑚′′

a = 520 kg s−1 m−2.

This quantity is equivalent to the fraction of the inlet area reduced by the fluidic blockage induced
by the pressure rise across the detonation wave. The geometry of the air inlet controls the cold-flow
characteristics (e.g., pressure drop, discharge coefficient, etc.). Thus, the cold-flow plenum pressure
to drive a given mass flow through the combustor did not change with length. The additional viscous
losses from the extra channel length are assumed to be negligible. Thus, a higher value of 𝐵m (more
blockage) for a given mass flux indicates that detonative operation causes the air plenum pressure
to increase more for that configuration.

Figure 6.16 shows the blockage fraction of the air inlet for the same mass fluxes as the previous
figures. Typically, the blockage fraction decreases with increasing mass flux for a given equivalence
ratio. Additionally, the blockage fraction generally increased with increasing combustor length. An
increase in the number or severity of higher static pressure regions (waves) within the combustor
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(a) (b) (c)

Figure 6.16: The fluidic blockage fraction for a) ¤𝑚′′
a = 327 kg s−1 m−2 b) ¤𝑚′′

a = 393 kg s−1 m−2

and c) ¤𝑚′′
a = 520 kg s−1 m−2 across tested configurations.

may have caused this increase in blockage; however, the exact cause is unknown as no relationship
between the detonation wave(s) and blockage exists at this time. Regardless, while there is a minor
benefit of thrust production (ignoring uncertainty), the additional thrust comes at the cost of an
increased air inlet flow blockage and, thus, plenum pressure.

6.5.3 Pressure Gain

One advantage of measuring performance through PG is that it is a more comprehensive metric than
gross thrust because it includes both the thrust production and the plenum pressure penalty (increase)
associated with inlet blockage. This study also utilized the EAP methodology according to the
approach outlined in the previous chapters. Figure 6.17 shows a subset of the PG measurements
for the different combustor lengths considered in the study at the same mass fluxes as previous
figures. The Mach number correction introduced in Section 5.5 is not used here to allow better
comparisons between these results and other values found in the literature. Overall, this study’s
range of measured PG varies from -0.21 to -0.32. These values align with literature results based
on 𝐴8/𝐴3.1 = 2.30, Figure 2.7 [14]. Regardless of combustor length, the best PG occurred at the
lowest mass flux for a given equivalence ratio, Figure 6.17a. The static pressure drop across the air
inlet from turbulence increases with increasing mass flux, causing the general trend of worse (more
negative) PG with increasing mass flux, as was noted in the previous chapter.

Only slight variation existed between the PG for the same conditions across the different lengths.
The absolute change in PG across the lengths for a given equivalence ratio is approximately 1-2%.
These slight variations are well within the experimental uncertainty of the PG. Thus, the minor
increase in thrust is balanced by the rise in plenum pressure, resulting in minimal changes to PG.
Therefore, the PG metric appears insensitive to combustor length and the changes in operational
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(a) (b) (c)

Figure 6.17: The pressure gain for a) ¤𝑚′′
a = 327 kg s−1 m−2 b) ¤𝑚′′

a = 393 kg s−1 m−2 and c)
¤𝑚′′

a = 520 kg s−1 m−2.

mode induced by the length. Previous studies saw a similar insensitivity with specific impulse
[136, 138, 137], although, as mentioned previously PG has the advantage of incorporating the
changes in the upstream conditions.

6.5.4 Relating Pressure Gain to Wave Dynamics

The negligible difference in PG occurred despite the significant changes in the wave dynamics.
Consider Figure 6.18, which compares the PG measured with the normalized speed of the detonation
wave(s), first presented in Figure 6.12. Figures 6.18a, 6.18b, and 6.18c are for a fixed equivalence
ratio of 0.6, 0.8, and 1.0 respectively. Unlike previous figures, the marker color in Figure 6.18
indicates the RDC configuration instead of the equivalence ratio. The results from all mass fluxes
are shown in Figure 6.18, including those not discussed in Figure 6.12. A detonation wave is said
to be more “ideal” if its speed is closer to the CJ value. While not a direct and comprehensive
measure of the “quality” of the detonation wave, it is nevertheless typically accepted as a proxy. A
CJ detonation should have a larger thermodynamic gain than less-ideal waves since the heat release
occurs in a high-pressure region. If this were true, one would expect the PG to be maximized
(least negative) near a normalized wave speed of one. The results of this study do not support this.
Instead, the PG is effectively constant across the measured wave speeds, especially considering the
significant uncertainties in the measurements. Suppose the normalized wave speed is an adequate
comparison metric for the detonation. In that case, these results lead to the conclusion that PG is
invariant (or at the least insensitive) to the changes in the detonation wave(s) within the combustor.
However, these results may also indicate that the normalized wave speed is a poor measurement of
the “quality” of the wave. The latter is more optimistic, but the former is equally plausible.

From these results, the ratio between the inlet and exit throats appears to be the principal
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(a) (b) (c)

Figure 6.18: A comparison between changes in the individual wave speed and measured pressure
gain for a) 𝜙 =0.6, b) 𝜙 = 0.8 and c) 𝜙 =1.0.

geometric quantity determining PG [13], while combustor length does impact PG meaningfully.
Several explanations are plausible, although there are currently no means of verification. First,
there could be a re-balancing of loss mechanisms within the system on local scales such that the
global performance metrics remain the same. A hypothetical example is that a stronger detonation
wave (as measured by a more ideal wave speed instead of a greater pressure ratio) results in a
more significant local gain at the detonation wave front, but the expansion process from that local
state to the ambient exit has increased losses when compared to the expansion from a weaker
detonation. Likewise, the expansion may become more isentropic as the wave slows and grows
weaker. Similarly, stronger waves may cause worse blockage and thus accrue greater losses at the
inlet. The different wave systems would also likely have different heat release distributions (i.e.,
secondary combustion [10, 11]) that could also combine to achieve net zero change.

Another possible explanation for the performance insensitivity is that the gain across this study’s
detonation wave(s) is small compared to other losses, such as the inlet pressure drop. The air inlet
geometry and amount of back-pressurization remained the same in this work. Thus, the pressure
loss is effectively constant across the different configurations for the same global flow rates. This
pressure drop could dictate the PG instead of what happens at the detonation wave. The reader is
encouraged to refer back to Figure 6.13, which highlights the overall low-pressure ratios observed
in this study. Suppose one theorizes that the local thermodynamic gain at the wave scales with
this pressure ratio, irrespective of the wave speed, it would be logical to conclude that the weak
waves observed in this work have a sufficiently small local gain that losses across the inlet dwarf
the local gains. Additionally, suppose changes by the detonation are indeed small. In that case,
the EAP methodology may not currently have enough precision to account for small-scale effects
occurring within the device. An increased understanding of the interplay between loss mechanisms
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and the detonation wave is needed to understand the decoupling from changes in the detonation
wave (which, in this case, is caused by length variations) and changes in performance.

6.6 Discussion

Ultimately, the operational mode, wave speed, and other details of detonation waves had a negligible
impact on the RDC performance as measured by PG for the fixed geometry and outlet conditions
tested here. However, it may be possible that the quantification of performance in terms of PG
evaluated according to the concept of EAP is incomplete. The evaluation of the averaging techniques
presented in Chapter 2 would support this notion but is insufficient in concluding whether this is
true. Furthermore, the overall significant uncertainties explored in the previous chapters may
prevent adequately measuring the relatively small changes in global performance from the local
changes at the detonation wave. Finally, at this time, it cannot be concluded if the insensitivity
is due to a redistribution of competing effects (such as secondary combustion, back-flow, etc.)
or if the air inlet/fuel injector losses dominate the overall losses of the system. Either way, it
is mildly concerning that the “gain” of a RDC is irrespective of the titular rotating detonation
wave(s). Regardless, one may exploit other practical benefits if the performance is insensitive to
the characteristics and dynamics of the detonation wave(s).

First, the observed invariance would allow for compact designs in which the combustor length is
as short as possible while maintaining rotating detonation(s). While the length cannot be too short
to avoid pulsing detonations [133], and there might be minimum length requirements to sustain
rotating detonations [30], compactness of the combustor could allow for alternative integration
approaches specific to a different application or introduce additional volume and weight savings
[136]. So long as rotating detonations occur, this shortening of the combustor occurs without
sacrificing performance. All of this assumes that there is no decrease in combustion efficiency
from the shortening of the combustor, which would require future evaluation.

A second benefit is the ability to “tune” (i.e., change) the detonation frequency or change the
operating mode without sacrificing performance. There are geometric relations that result in stable
multi-detonation wave operation that one could tailor to the required exit conditions (e.g., degree of
homogeneity, exit flow speeds at the exit, etc.). Even though the 2WD, TSC, or CH operation seen
here did not significantly affect performance, the time variations and/or additional non-uniformities
are likely undesirable from a system integration standpoint. Changing the length would lessen the
integration challenges by stabilizing the detonation wave. Likewise, if the upstream conditions are
of more importance, one could lessen the combustor length to minimize blockage (plenum pressure
increase) caused by the detonation. Either way, this could be beneficial in integrating an RDC into
a closed system while maintaining the same level of performance.
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CHAPTER 7

Impact of Detonation-Induced Blockage on the
Pressure Gain

7.1 Introduction

Although the previous chapter observed that PG is insensitive to changes in the detonation wave if
the inlet and outlet areas are held constant, there is still interest in exploring if significant changes
in PG can occur outside of changing the mass flux or inlet/outlet areas [14] to assess how open
the design space for RDCs are. Whereas the previous chapter focused solely on changing the
combustor length, additional geometric parameters can be varied while still fixing the inlet area,
outlet area, and fuel injection scheme. Examples of such geometric parameters are the annular
gap (i.e., inner and/or outer diameters) and specific details, such as the shape of the inlet or outlet.
For instance, recent studies by Brophy et al. varied the annular width for various combinations
of area ratios, and they observed seemingly significant changes to the measured PG through the
NPS method [121, 48]. However, in such studies, the physical area of the inlet was allowed to vary
since Brophy et al. focused on maintaining a specific ratio between the inlet and channel areas.
By maintaining a fixed center line diameter, the channel area grew with increasing channel width,
which also increased the inlet area. Therefore, the changes in the PG observed in such studies
cannot be attributed solely to the channel width, as the change in the inlet area may have also
influenced the results. Thus, changing the annular gap introduces increased complexity in both
hardware and comparisons to other devices as it no longer follows the trend identified by Bach et
al. [14]. Such complexities are avoided in this study by instead focusing on the inlet by modifying
its flow path while maintaining the same geometric inlet area.

This work changed the inlet instead of the outlet geometry due to the recent interest in the impact
of backflow on the resulting PG. Backflow is gases with the locally higher total pressure/energy
expanding in the direction opposite to bulk flow producing thrust. It is then theorized that the
work that the fluid must exert to halt the backflow and correct the axial direction serves as a loss
and may produce entropy if the process is not isentropic. Computationally, this hypothesis was
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tested in a two-dimensional simulation [148] and a reduced-order thermodynamic model [154].
For instance, the work by Paxson and Miki illustrated that if 15% of the products flowed back
into the inlet, the PG decreased 50% relative to the idealized PG where no backflow was present
[148]. Such studies have then focused on the injector diodicity, or the ratio of the forward and
backward pressure drops or fluidic areas. A perfectly diodic injector would prevent backflow
entirely, which, based on the computational results, would be ideal for PG. However, it has also
been theorized that as the inlet areas increase to increase PG [14], the backflow also increases.
As such, several experimental studies have begun investigating injectors with increased diodicity
[155, 55, 145, 156]. Several research groups designed the higher diodicity injectors around the
concept of a Tesla valve [190, 191] to accommodate the passive injection used in RDCs. Barnouin
et al. attempted to experimentally demonstrate better performance (PG) with a higher diodicity
injector, but the results were somewhat inconclusive [156], thereby leaving a lack of an experimental
demonstration of the theorized impact of the backflow on PG.

This chapter seeks to address that gap in the experimental literature. Whereas some contempo-
rary works have tested injectors with a higher diodicity [145, 156], this work takes the alternative
approach by intentionally modifying the inlet to have a worse diodicity. The worse diodicity results
from an alteration of the flow path downstream of the inlet throat, reducing the pressure drop in
the backward direction. The PG measured from the modified inlet is then compared to the baseline
inlet. In doing so, this study will attempt to answer whether the experimental PG is sensitive to
changes in the flow at the inlet or if the losses will re-balance, similar to the previous chapter’s
observation. Essentially, before trying to “optimize” the injectors as done in other studies, this
study first establishes whether one can reasonably expect to measure a difference in PG given the
same inlet, channel, and outlet areas. Even considering the considerable uncertainties, this study
observed a significant decrease in PG for the modified inlet. The changes in PG are then compared
to measures of the coupling between the detonation channel and the plenum. Such measures
include the strength of the upstream propagating oblique shocks and the overall fluidic blockage.
Therefore, this study is the first to experimentally demonstrate the impact of injector diodicity on
PG by illustrating the increased amounts of backflow/coupling are detrimental to PG.

7.2 Geometry and Tested Operating Conditions

As discussed in Section 3.2.2, two inlet configurations are considered for this portion of the work.
The visual of the two geometries is repeated here in Figure 7.1 for convenience. The first inlet is the
baseline AAI from all the previous experimental chapters. The second inlet is a modified version
of the baseline, AAI-M. The streamlined downstream flow path mitigates possible re-circulation
regions and lowers the pressure drop in the reverse (backflow) direction. In other words, the
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Figure 7.1: Air inlets considered in this work. Left) Baseline geometry used throughout this work
and right) modified inlet to study inlet diodicity.

AAI-M has a worse diodicity than the baseline. Outside of the inlet changing, all other geometric
parameters remained the same. The modification of the inlet did not alter the inlet throat area, and
the same 50% reducing nozzle was employed. The length of the combustor was 119 mm, the same
as Configuration C from the previous chapter.

Since this study will compare the modified inlet to the standard inlet, the test conditions tested
in Chapter 6 were repeated for AAI-M. The parametric study consisted of the same discrete
combination of air mass fluxes, from 150 kg s−1 m−2 to 650 kg s−1 m−2, and equivalence ratios,
0.6 to 1.2, of H2¸ /air operation. Again, all tests exhibited sustained rotating detonative operation,
and the testing duration was 4 seconds to accomplish a quasi-steady measurement of thrust and
perform mass flow rate ramping, as discussed in previous chapters. Both the air and mass flow
rates reached a steady state value with about 1-2 seconds remaining during the run.

7.3 Change in Wave Mode from Modified Inlet

This section covers fewer details of the operating mode as operation with AAI-M did not result in
any new operational modes. Section 6.3 previously identified and classified the operational modes
in great detail. The operation map for AAI from Section 6.3 (Configuration C), Figure 7.2a, and
the operation mode for the new AAI-M configuration, Figure 7.2b recap the exhibited operational
modes across all tests. Recall that the five distinct operational modes of rotating detonation wave(s)
are as follows:
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(a) (b)

Figure 7.2: Map of operational modes for a) AAI and b) AAI-M for the same combustor length,
inlet area, and outlet areas.

1. Mode 1: Single wave (1W)

2. Mode 2: Two co-rotating, indistinguishable waves (2WI)

3. Mode 3: Two co-rotating, distinguishable waves (2WD)

4. Mode 4: Multiple waves that follow a transient super-cycle (TSC)

5. Mode 5: Chaotic operation of multiple waves (CH)

Figure 7.2 highlights that the modified inlet significantly impacted the operating mode at lower
mass fluxes. Whereas, 1W operation was rare for the baseline configuration, only appearing
once when ¤𝑚′′

a = 190 kg s−1 m−2 and 𝜙 = 0.6, many tests of AAI-M resulted in 1W operation.
Specifically, effectively, all tests with ¤𝑚′′

a ≤ 330 kg s−1 m−2 resulted in 1W regardless of the
equivalence ratio. The reduction in multiplicity may result from the injector recovery as influenced
by the inlet modification. The CH operation at 325 and 393 kg s−1 m−2 and 𝜙 = 0.6 appear
to be a transient state between 1W and 2WI as the system rapidly transitions between the two
modes. The rapid transitions did not repeat periodically, differentiating this CH operation from
TSC. The remaining tests, ¤𝑚′′

a ≥ 393 kg s−1 m−2, resulted in similar operating modes between the
two inlets with regions of both 2WI and 2WD operation. Finally, no test with AAI-M resulted in
TSC operation.
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Figure 7.3: a) Evolution of wave speed across the operating map. b) Direct comparison of wave
speed between inlets.

7.4 Change in Wave Properties from Modified Inlet

As expected with any other geometric change, the properties of detonation wave(s) changed due to
the inlet modification. This study again considers the detonation wave speed and pressure ratio as
global metrics of the non-ideality of the detonation waves. Similar to the previous chapter, the focus
is on these metrics independent of the operating mode, even though the operating mode affects the
speed and pressure ratios. For these comparisons, singular values of the measured properties are
given based upon the peak of the computed empirical PDFs, and error bars indicate 95% of the
data points. In the case of the pressure ratio, a more detailed investigation into the distribution
of base and peak pressures is necessary. The previous chapter did not utilize the same thorough
investigations since the four lengths would cause such analysis to scale exponentially.

7.4.1 Speed of Individual Waves

Before comparing the wave speeds (𝐷) between the inlets, Figure 7.3a presents measured wave
speeds for AAI-M. As was done in the previous chapter (Section 6.4), wave speed was measured
using CWA [45] and cross-validated with the time-averaged Power Spectral Density (PSD) of
high-speed pressure measurements. To better compare the wave speed of the individual wave(s),
this work normalizes the speed by the ideal CJ detonation wave speed (𝐷CJ). When 1W operation
occurred, the detonation wave propagated at speeds between 60%-70% 𝐷CJ, with leaner equivalence
ratios resulting in larger normalized wave speeds. The non-normalized wave speeds (about 1160
m/s) did not change between the equivalence ratios; therefore, the decrease in normalized wave
speed with increasing equivalence ratio is indicative that the added potential heat release from the

173



higher equivalence ratios did not directly support the detonation wave. Additional evidence for this
comes from the high-speed video in which the increase in equivalence ratio correlated with a visible
increase in the amount of combustion occurring downstream of the RDC. After ¤𝑚′′

a increased to
390 kg s−1 m−2 and the multiplicity rose from one to two waves, a step-change in wave speed was
observed. A decrease in wave speed with an increase in multiplicity has been commonly observed
in the RDC literature [192, 187]. In this case, the wave speed dropped to nearly 50% 𝐷CJ, almost
acoustic speeds in the post-combustion gases. These low speeds persisted throughout all the tests
that exhibited two waves.

Figure 7.3b directly compares the wave speed for each test with AAI-M to the corresponding test
with AAI. A handful of the 1W operating modes observed with AAI-M had a larger wave speed
than the corresponding wave(s) with AAI since some near acoustic speeds also occurred with AAI.
However, most data points generally fall below the 1:1 line, which is unsurprising considering the
acoustic speeds observed in AAI-M when more than one wave was present. Still, some of the
1W operating modes were also slower than the corresponding tests with AAI. Therefore, while
not universally true, it is concluded that the flow path modification generally resulted in slower
detonation wave(s). The current study could not determine the cause of the slower waves since the
determination is beyond the scope of this work. Nevertheless, this observation is consistent with
previous testing of the AAI-M without the nozzle [58].

7.4.2 Pressure Ratio across Detonation Waves

7.4.2.1 Direct Comparisons

A high-speed channel measurement measured the pressure ratio across the detonation wave(s)
(𝑝r,3.2) to assess the ideality of the detonation wave(s). This study took the channel measurement at
the same distance from the fuel injectors and inlet throat for both inlets; however, the cross-sectional
area at the measurement point differed between AAI and AAI-M. Specifically, the measurement
location for the AAI-M was at an axial location where the area diverged from the modification;
thus, the cross-sectional area at the measurement location was approximately 0.73𝐴3.2 for AAI-M
and 𝐴3.2 for AAI. The change in cross-sectional area may then change the resulting pressure
measurements. Figure 7.4a gives the normalized (by the ideal CJ value, 𝑝r,CJ) pressure ratios for
AAI-M across all operating conditions. Based solely on the markers, the normalized pressure
ratio decreased with increasing equivalence ratio; the measured pressure ratios did not increase
as rapidly with equivalence ratio as the ideal CJ values. However, the large error bars cause the
differences caused by changes in mass flux and equivalence ratio to be less statistically significant.

Like Figure 7.3b did for wave speeds, Figure 7.4b directly compares the pressure ratios between
the inlets for similar test conditions. Recall from the last chapter that some of the tests in AAI
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Figure 7.4: a) Evolution of detonation pressure ratio across the operating map. b) Direct comparison
of pressure ratio in the channel between inlets.

resulted in distinguishable co-rotating waves (2WD), which had bimodal pressure ratio distribution
(Section 6.3.2). This study took the larger peak as the most probable value for those tests. Two
main observations are made from Figure 7.4b. First, many of the markers are above the dashed
gray, 1:1 line, which on first pass would lead to the conclusion that the pressure ratios were larger.
Greater pressure ratios would be consistent with the previous testing of AAI-M without a nozzle
[58]. Such conclusions neglect the error bars which span across the dashed 1:1 line. The second
main observation is that the error bars are much more significant in the y-direction than in the x-
direction. In other words, the distribution of measured pressure ratios for AAI-M is much broader
and skewed to the right. A more detailed analysis of the PDFs of the pressure ratios is warranted
to understand these observations better.

7.4.2.2 Statistics of Individual Tests

The pressure ratio across the detonation wave(s) consists of two parts, the peak pressure (𝑝+) and
base pressure (𝑝−), that are each independently identified [188]. As such, the distributions of both
components are assessed before considering the pressure ratio, even though this is the quantity that
is of the most interest. Consider the sample empirical PDFs of the peak and base pressures given
in Figure 7.5a and 7.5b respectively. These samples are for ¤𝑚′′

a = 514 kg s−1 m−2 and 𝜙 = 0.6,
and the color indicates the inlet configuration. There is more significant variability for the AAI-M
(red) than the AAI (blue) for each quantity. The variability/spread in the data can be a result of
several factors: the imprecise nature of the algorithm to detect the base and peak pressures, thermal
drift in the sensors, changes in the overall flowfield in time, and potential non-linear interactions
between the primary detonation waves and secondary waves. Thermal drift can be identified in the
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data as abnormally low-pressure readings since the voltage decreases as the sensor face overheats.
One can correct for thermal drift by either adjusting the mean component of the signal in such
regions of time or by directly removing erroneous measurements, although this is subjective. The
current study takes the former approach despite the correction process being imperfect. In addition,
non-linear interactions of secondary waves are detectable in spectral content as they appear as a
super-cycle with a well-defined frequency. Not all tests exhibited such secondary waves, so this
cannot be the sole explanation for the spread. Finally, the impact of the algorithm is unclear, so this
study assumed that given enough samples, the algorithm’s results would follow the central limit
theorem.

Returning to the specific distributions given in Figure 7.5, the peak pressure has a larger skew
(to the right). The cause of the skew is unknown since the non-linear interactions from secondary
waves [45] were absent in this test. The PSD plots for the pressure measurements proved the
absence of the secondary waves. Meanwhile, the base pressure more closely follows a normal
distribution for AAI-M along with having a lower mean; however, this is not always the case as
there are times when the distribution directly overlaps the distribution from AAI. The following
section investigates this further. Both the peak and base pressures combine into the distribution for
the pressure ratio (𝑝r) given in Figure 7.5c. The effects of the individual variability culminate with
a relatively flat PDF compared to AAI. Thus, the larger error bars in Figure 7.4b stem from the
increased variability of both the peak and base pressures, with the skew of the peak pressure likely
having a more significant impact.

7.4.2.3 Determining Probability of Changes

The distributions discussed in the previous section are necessary to contextualize and understand
the changes between the two inlets. Instead of simply comparing the most likely value of any
quantities, this study now compares the distributions against one another. More specifically, this
study seeks to generate the PDF of the relative change in a given quantity. This relative change is
given by Π, with a subscript that gives the specific quantity considered. For instance, the relative
change in pressure ratio (𝑝r) is given by the following,

Π𝑝r =
𝑝r,M − 𝑝r,B

𝑝r,B
(7.1)

=
𝑝r,M

𝑝r,B
− 1 (7.2)

The Π ratio will always be the change in a measured quantity between AAI-M (subscript “M”) and
AAI (subscript “B” for baseline), normalized by the baseline measurement (AAI) of said quantity.

This study found the distribution of Π for any quantity through a Monte-Carlo approach to

176



(a) (b)
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Figure 7.5: PDFs of the channel a) peak pressure, b) base pressure, and c) normalized pressure
ratio across detonation wave. Data from ¤𝑚′′

a = 513 kg s−1 m−2 with 𝜙 = 0.6.

avoid fitting a distribution to the data, which either will smooth the data or require applying a
particular shape. The empirical distribution found with the AAI-M was assumed to be independent
of the distribution of the same quantity from the AAI. The Monte-Carlo simulation independently
randomly sampled both empirical Cumulative Density Function (CDF)s 5000 times and then
computed Π for each pair of randomly selected values. The 5000 instances of Π then approximate
the distribution of Π.

Examples of the resulting distributions for each of the quantities from the convolutions are in
Figure 7.6. These are for the cases considered initially in Figure 7.5. Since Π is a ratio of two
PDFs, it will inherently be right-skewed, although the skew of the peak pressure and the pressure
ratio for the AAI-M also cause more skew. The dashed red line is at Π = 0, which occurs when
there is no change between the inlets. Positive values of Π are when AAI-M had a larger quantity,
while negative values are when the quantity is smaller for AAI-M. Using these ac PDFs, the peak
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(c)

Figure 7.6: PDFs of the relative change in the channel a) peak pressure, b) base pressure, and c)
normalized pressure ratio across detonation wave. Data from ¤𝑚′′

a = 513 kg s−1 m−2 with 𝜙 = 0.6.

pressures and pressure ratios are more likely to be larger for AAI-M than AAI, and the base pressure
is more likely to be less for AAI-M than AAI. While this could have been observed from Figure
7.5, this approach proves helpful in better quantifying the probabilistic chance that the quantity
changed in a significant manner.

Due to the overlapping underlying distributions, the Π ( 𝑓 (Π)) distribution typically spans both
positive and negative values of Π. It is desirable to define the probability (𝑃) of the measured
quantity being greater for AAI-M than for AAI. The probability comes from integrating the
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empirical PDF of Π,

𝑃(Π𝑝r > 0) =
∫ ∞

0
𝑓 (Π𝑝r)𝑑Π (7.3)

= 1 −
∫ 0

−∞
𝑓 (Π𝑝r)𝑑Π (7.4)

Equation 7.3 is equivalent to evaluating the empirical CDF at Π = 0 and subtracting that probability
from one. A probability of 0% would indicate that the quantity for AAI-M is guaranteed to be
less than that of AAI, even considering the experimental uncertainties/distributions. Conversely, a
probability of 100% would indicate the quantity for AAI-M is guaranteed to be greater than that
of AAI. Meanwhile, a normal distribution centered around Π = 0 would result in a probability of
precisely 50%, making it inconclusive if the quantity is greater in either inlet. In such cases, the
quantity is essentially the same between the two inlets.

This process was done for the peak and base pressures along with the pressure ratio, with the
results being in Figure 7.7 for the case considered thus far. The peak pressure had the highest
probability (of the three quantities) of being larger in AAI-M than AAI, with the probabilities
ranging from 65% to 98% and averaging around 83%. The higher probabilities for the peak
pressures likely arose from the peak pressure distributions in AAI-M being right-skewed, as
displayed in Figure 7.6a. In general, as the equivalence ratio increased, so did the probability that
AAI-M had a larger peak pressure. Due to the high probabilities, it is reasonable to say that it
was highly likely that the peak pressures were larger in AAI-M; however, statistical significance
(greater than 95% chance) is limited to only a handful of cases.

The base pressure did not follow a pattern similar to the peak pressure. The range of the
probabilities was quite extensive, ranging from 10% to 79%, with the average being 45%. The
equivalence ratio greatly impacted the base pressure since 𝜙 = 0.6 had a high probability of AAI-M
having a lower base pressure than AAI. For instance, the 10% chance that the base pressure
AAI-M was larger corresponds to a 90% change it was lower than AAI. Overall, the base pressure
seemed marginally lower in AAI-M at low fluxes for all 𝜙 and 𝜙 = 0.6 for all fluxes. Then, the
base pressure seemed marginally larger for AAI-M for equivalence ratios greater than 0.6 at higher
fluxes. However, none of the differences were statistically significant, making the base pressure
nearly the same between the inlets. This result is somewhat surprising considering that the flow
would still be expanding through the area change. Yet, one could argue that slowing the expansion
process lessened the viscous/turbulent losses. The net change in base pressure would be negligible
as the lower losses balance the flow still expanding.

Finally, Figure 7.7c gives the pressure ratio for consideration. For every test, it was more
probable that the pressure ratio was greater for AAI-M, with probabilities ranging from 61% to
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(c)

Figure 7.7: Probability that the relative change in a) peak pressure, b) base pressure, and c)
normalized pressure ratio across detonation wave in the channel.

97% and averaging about 78%. This closely matches the results from the peak pressures, Figure
7.7a, although the probabilities for the pressure ratio are slightly less. Unlike the peak and base
pressures, which had general trends with equivalence ratios, the pressure ratio had a less clear trend.
At higher fluxes, the probabilities are the greatest for 𝜙 = 0.6 from the lower base pressures. Since
all the other equivalence ratios had effectively the same base pressures, the larger peak pressures
for AAI-M lead to larger pressure ratios for AAI-M. Overall, while not every case is statistically
significant, the trends suggest that the detonation waves were slower and likely stronger for AAI-M
compared to the corresponding cases for AAI. While this matches previous results from testing
AAI-M without a nozzle [58], the analysis presented here better captures the inherent spread to the
data by using statistical arguments to evaluate the pressure ratios.
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Figure 7.8: a) Direct comparison of pressure ratio across the oblique shocks in the plenum between
inlets. b) The reduction in pressure ratio between the plenum and channel.

7.5 Coupling Between Detonation Channel and Plenum

This study explores the coupling between the channel and the upstream plenum in two different
manners. First, a high-speed pressure measurement upstream of the inlet throat is evaluated. Such
a measurement captures upstream propagating pressure disturbances (i.e., oblique shock waves).
Second, the blockage fraction first discussed in the previous chapter is explored. The blockage
fraction provides a sense of the global mean component of the plenum pressure.

7.5.1 Pressure Disturbances Upstream of Inlet

This study employed an additional high-speed pressure measurement 6.35 mm (0.25 in) upstream of
the air inlet throat for both inlets. This measurement allows for studying the upstream propagating
oblique shocks emanating from the detonation channel. Unlike the channel pressure measurement,
the measurement cross-sectional area did not change from the inlet modifications. Thus, no changes
in flow area influence the comparisons between the inlets of the statistics of the peak pressure, base
pressure, and pressure ratios across the oblique shocks. Once again, the analysis begins with a
direct comparison between the pressure ratios of the upstream propagating disturbances (𝑝𝑟,3),
Figure 7.8a. Note that the axis scales in Figure 7.8a are smaller than those for Figure 7.4b since the
pressure ratios are lower across the oblique shock than the detonation wave(s) (𝑝𝑟,3.2). For instance,
there is a reduction of between 10-50% of the mean pressure ratios between the channel ( 3.2 ) and
the plenum measurement ( 3 ), Figure 7.8b. The results presented in Figure 7.8b are specifically for
AAI-M, although the trends are comparable between the inlets. In addition to the smaller pressure
ratios, the spread in the pressure ratio measurements (i.e., the error bars) is much smaller for this
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Figure 7.9: Probability that the relative change in a) peak pressure, b) base pressure, and c) pressure
ratio across oblique shock wave in the inlet.

measurement than the channel measurement. Based solely on the markers, the oblique shocks were
stronger in the AAI-M than AAI since all points were on or above the 1:1 line. The error bars are
comparable between the inlets, unlike the channel measurement, which had the AAI-M be more
skewed to the right than AAI distribution. The remainder of this section will further discuss the
uncertainty caused by the error bars.

To assess if the changes in the inlet were statistically significant, the empirical PDFs of the
pressure measurements were used to generate the PDF of the relative change in those measurements
(Π) using Eqn. 7.2. Figure 7.9 gives the resulting probabilities based on the PDF of Π. Focusing
on the peak pressures across the oblique shock (𝑝+3) in Figure 7.9a, effectively all the data points
had over 80% chance of the peak pressures being larger for AAI-M. Additionally, about half of
the tests had statistically significant probabilities over 95%, resulting in an average probability of
about 94%. The exception to this was ¤𝑚′′

a = 300 kg s−1 m−2 and 𝜙 = 0.6, which had a probability
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of being larger of effectively 50%; indicative of being the same between the inlets. The current
measurements were insufficient to determine the cause of this abnormality, and the point was
deemed an outlier. Thus, the peak pressures across the oblique shock(s) in the inlet grew larger
from the modified flow path of AAI-M.

Like the channel measurement, the probability of the larger base pressure, Figure 7.9b, is evenly
distributed among the center (50%) than the peak pressure, as reflected by the mean probability
being 48%. Some cases were more likely to have a lower base pressure than AAI. Meanwhile,
an equal number of cases had a greater likelihood of being larger, and there was no discernible
pattern with either mass flux or equivalence ratio. In the context of the measurement in the inlet,
the flow of fresh reactants from the plenum likely dictates the base pressure more than the upstream
propagating oblique shock. The flow of fresh reactants is affected by the flow rates and the geometry
upstream of the inlet throat, neither of which changed when AAI-M was implemented. Hence, the
minimal changes in the base pressures and the more considerable overlap in the empirical PDFs
result in the probabilities that Π𝑝− > 0 of around 50%.

Finally, Figure 7.9c examines the strength of the oblique shocks based on the pressure ratio across
it (𝑝r,3). In general, the probability that the pressure ratios are larger is less than the corresponding
peak pressure probabilities ranging from as low as 65% and having an average of 84%. The lone
point below the 50% line is the same test that resulted in the outlier peak pressure as discussed
above. Despite the many tests in which the peak pressures were statistically greater for the AAI-M
than AAI, only a single test had a pressure ratio that had a statistically significant likelihood of
being greater in AAI-M. Based upon these results, the oblique shocks were likely stronger in the
AAI-M, although this is not definitive.

Currently, there is no established link between the strength of these pressure events in the inlet
and the strength of the detonation wave within the channel of a RDC. While somewhat inconclusive,
there is reason to believe that the detonation wave(s) in the channel for AAI-M were stronger. It
would be reasonable to hypothesize that the oblique shock strength would scale with the detonation
wave strength, which would be consistent with the results of a detonation bounded by inert gases
[36]. Still, neither an experimental nor computational demonstration of this exists in the literature.
It may also be that the more gradual area change from the modified flow path is more conducive
to the propagation of the oblique shock upstream, as sudden area changes can significantly disrupt
a shock [193, 194]. Therefore, the oblique shock(s) can travel upstream through AAI-M without
suffering as great of an induced attenuation as the baseline AAI. Regardless of the cause, the
channel can seemingly communicate more with the plenum with the modified inlet for AAI-M
because of the likelihood of stronger oblique shocks.
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7.5.2 Blockage Fraction Measurements

Once again, the established effective blockage fraction (𝐵m) is applied to quantify the global
coupling between the detonation channel and the air plenum using Eqn. 6.1. Unlike the analysis
above, the blockage fraction takes a global approach as it considers the increase in the mean
component of the plenum pressure. The blockage fraction, shown in Figure 7.10a, decreased with
increasing air mass flux regardless of the inlet configuration. This result aligns with previous
observations [139, 50]. More importantly, the results from AAI-M (triangles) are significantly
larger than the results from AAI (circles). This increase is even more apparent in the direct
comparisons, Figure 7.10b. No error bars are presented for 𝐵m as the calculation of it relies upon
an interpolation of the empirical curve relating pressure and mass flow rate, and the uncertainty of
such an interpolation is challenging to quantify. Otherwise, the uncertainty would come from the
pressure measurements, which are assumed to be negligible.

The geometry upstream of the inlet throat of AAI-M was identical to AAI; thus, the non-reacting
flow characteristics (e.g., pressure drop, discharge coefficient, etc.) did not significantly change
between the two inlets. More specifically, the flow’s forward direction was undisturbed from the
inlet modifications. In contrast, this study theorized that the changes made to the inlet alter the
characteristics of the reversed flow direction, although this was not directly evaluated. Nevertheless,
since the forward direction pressure drop did not change, a further increase in the plenum pressure
indicates an increase in the fluidic blockage at the throat. Therefore, the significant increase in the
blockage fraction presented in Figure 7.10 is assumed to be directly correlated to an increase in the
fluidic blockage as opposed to a change in the inherent pressure losses or discharge coefficient of
the inlet. Overall, the increase in fluidic blockage and the stronger upstream propagating oblique
shocks provide strong evidence that the coupling between the channel and plenum significantly
increased due to the modification as initially hypothesized.

7.6 Performance Analysis

7.6.1 Gross Thrust Measurements

Before considering the PG measurements, an examination of the gross thrust used in the EAP
method is warranted. The evolution of the measurements with air mass flux is given in Figure
7.11a, where, once again, the thrust increases nearly linearly with increasing mass flux and also
increases with increasing equivalence ratio. For most of the operating conditions, the AAI-M
(triangles) are slightly below the AAI (circles). The error bars were purposely omitted from Figure
7.11a for clarity to enable better discernment between the marker shapes. Nevertheless, the error
bars appear in the direct comparison between the two inlets, Figure 7.11b. In Figure 7.11b, the data
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Figure 7.10: a) Blockage fraction decreases with increasing mass flux. b) Direct comparison of
blockage fraction between the two inlets.

clusters around the 1:1 line, suggesting an equal thrust production between the two inlets, especially
considering the error bars. However, the large span of thrust values, over 400 N, makes seeing the
overlap more challenging than the other measurements simply due to the scale of the axes.

Significant changes are more identifiable by normalizing the change in thrust by the baseline
results. As such, the relative change, Π from Eqn. 7.2, between the gross thrust measurements is
employed. However, unlike the pressure measurements, the exact empirical PDF of 𝐹G does not
represent the full uncertainty. Instead, the uncertainty is estimated (in Chapter 5) by propagating
the individual experimental uncertainties. In doing so, this work implicitly assumed that the
𝐹G is normally distributed about the reported value, with the standard deviation relating to the
uncertainty by Eqn. 3.8. A Monte-Carlo sampling process was again used, with the only difference
being randomly sampling the normal distributions of 𝐹G instead of an empirical PDF. Figure
7.11c gives the probabilities that the gross thrust produced with the AAI-M were greater than the
corresponding AAI tests. Many of the points fall below the 0.5 line, which correlates to having a
higher probability of having worse thrust production with the AAI-M. The maximum probability of
a worse performance was around 90%, with many cases having only between 60-80% probabilities.
Additionally, there were several fuel-lean tests where it was more probable that the AAI-M produced
more thrust, but, again, the changes were largely insignificant. Overall, while a reduction in gross
thrust output is still probable for many cases, the change is generally marginal compared to the
uncertainty, making definitive claims of significant performance changes unsubstantiated.
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Figure 7.11: a) Gross thrust still decreased with increasing flux. b) Direct comparisons of 𝐹G
appear to fall along the 1:1 line. c) There is an insignificant probability of a worse 𝐹G due to the
large uncertainties.

7.6.2 Pressure Gain Measurements

With a probable decrease in gross thrust and a significant increase in the blockage fraction, it is
no surprise that on the first pass of Figure 7.12a, the PG for the AAI-M is less (worse) than the
AAI. The error bars are purposely omitted for clarity, like the gross thrust plot in Figure 7.11a.
The previously observed trend of decreasing (worsening) PG with air mass flux persists since the
losses across the injector will still scale with increasing flux despite the modification. In the more
direct comparison between the two inlets, Figure 7.12b, all the markers are decidedly below the 1:1
line. Without the uncertainties, this indicates the PG being worse in the AAI-M compared to the
AAI. As has been the case throughout this work, the larger uncertainties identified in Chapter 5
complicate the direct comparisons, as some of the error bars cross the 1:1 line, potentially leading
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Figure 7.12: a) Pressure gain still decreased with increasing flux. b) Direct comparisons of PG
suggest worse performance from AAI-M. c) There is a high probability of a worse PG despite the
large uncertainties.

to no significant change in PG as a result of the relatively substantial experimental uncertainties.
The probability that the value of PG is larger (more positive) in the AAI-M is given in Figure

7.12c. Like the gross thrust, a normal distribution given by the measured uncertainty was used
for the Monte-Carlo sampling in favor of an empirical PDF. Due to the negative signs of PG,
a Π ratio less than zero is indicative of better (less negative) PG values for the AAI-M. The
annotated text in Figure 7.12c emphasizes this. Several of the low mass flux and fuel-lean tests
had less significant chances of having worse PG by being 80% or less probabilities. From Section
5.4.3, these tests had the greatest relative uncertainty, limiting the significance of the potential PG
decrement. Nevertheless, a vast majority of the tests had probabilities that had a probability of being
worse that was greater than 95%. Thus, even though the experimental uncertainties are relatively
large, the decrement in PG from modifying the inlet can be significant. This result contrasts the
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results from the previous chapter, which had no significant difference in the experimental PG.

7.7 Blockage as a Loss Mechanism

Upon examination of Figs. 7.10 and 7.12, it would appear evident that the worse performance of the
modified inlet correlates with an increase in the blockage fraction. Such a correlation is seemingly
intuitive as a worse blockage is a result of a greater back-pressurization of the plenum, which
subsequently would reduce the computed PG if the same outlet total pressure was achieved (refer to
Eqn. 5.9). However, determining whether the decrease in performance is a product of augmented
blockage (backflow) or a consequence of a change in the detonation wave(s) is challenging due
to the coupled nature of RDCs. Recall that in the previous chapter, the PG was invariant to the
wave dynamics with the experimental uncertainties. While it is beyond the scope of this work to
determine whether the results are unique to the changes caused by the combustor length, the author
hypothesizes that the changes in the detonation wave(s) have a secondary and insignificant effect on
the performance. Consequently, the change in performance in this study arises from the augmented
blockage of the modified inlet.

However, two conflicting trends are observable if the blockage is plotted directly against the
PG, as is done in Figure 7.13. First, for a fixed equivalence ratio (marker color), a negative trend
in which PG decreases with increasing 𝐵m across both geometries, supporting the hypothesis that
more blockage is worse for performance. However, for a fixed geometry marker shape, as the
equivalence ratio increases (black to blue), a positive trend is observed in which the PG increases
(grows less negative) with increasing 𝐵m. The positive trend seemingly conflicts with the original
hypothesis and currently prevents a generalized relationship between blockage and PG; however, a
direct comparison between the two may be ill-advised due to the other changes in the system, such
as mass flux dependencies, that may confound the direct comparisons.

Instead of the direct approach of comparing blockage to the PG as described above, this study
considered an alternative approach. The root of the analysis is the hypothetical question: what
would the pressure gain be without the blockage-induced back-pressurization? This question is
equivalent to: how does the estimated total pressure at the outlet of the RDC compare to the plenum
pressure required to drive the flow without the back-pressurization or blockage? Such questions
are purely hypothetical since the flowfield in the RDC is a result of complex coupling between
the detonation wave(s) and the plenum, and removing the back-pressurization is tantamount to
removing this coupling, which, at the time of writing, appears to be a necessary condition for
continuous propagation of the detonation wave(s). Nevertheless, this study adopted this framework
for demonstrative purposes.

An alternative version of the PG (PG′) that neglects the plenum pressure increases is here defined
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Figure 7.13: Comparing the mass-based blockage fraction to pressure gain.

as:
PG′ =

𝑝t8
𝑝3C| ¤𝑚

− 1 (7.5)

The prime indication differentiates this alternative PG from the original PG. The sole difference
between Eqn. 7.5 above and the original formulation of PG (Eqn. 5.9) is the pressure term in the
denominator. The subscript “C” designates the pressure from the “cold” or non-reacting flow case
and can be interpreted as the plenum pressure required during the non-reacting flow to drive the
same mass flow rate as the reacting case. Figure 7.14a presents this hypothetical PG across the
range of test conditions. Unsurprisingly, the values are larger than the actual PG (refer back to
Figure 7.12), and the hypothetical PG grew with increasing mass flux before reaching an asymptote,
unlike the actual PG. This reversal may reflect the outlet of RDC becoming choked at larger mass
fluxes; see Section 5.5. Once the outlet becomes choked, the static pressure at the exit increases
with increasing mass flux, thereby increasing the total pressure given the unity Mach number
assumption.

Perhaps more important than the relationship with the flux is that the hypothetical PG values
reached positive values. Thus, the total pressure at the outlet of the RDC during the operation was
greater than the initial plenum pressure necessary to drive the airflow without combustion, which
may be indicative of the theorized local gain from the detonation wave(s) within the channel. It is
essential to highlight the distinction that the hypothetical PG is not necessarily what the performance
of the RDC would be if the plenum and detonation channel were made more isolated through a
higher diodicity injector [154, 148]. For this to be true, the flowfield would have to be unchanged
with the higher diodicity injector, which contradicts previous experimental results [145, 156].

Whereas there was a significant difference between the resulting PG between the two inlets,
the hypothetical PG (PG′) did not follow the same trend. The direct comparisons, Figure 7.14b,
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fall along the 1:1, especially with the error bars. There also seems to be a random spread of
some data points above the line while others are below. Both of these observations are reflected
in Figure 7.14c, which is the probability that this hypothetical PG is worse with the AAI-M. The
data is randomly scattered about the 0.5 line, with only a few points having a significant difference.
Most of the data was between 20-80% probabilities, making the changes insignificant. Of note,
when ¤𝑚′′

a ≈ 200 kg s−1 m−2 and 𝜙 ≈ 0.6 the PG′ was significantly better with the AAI-M for an
undetermined reason. There was no significant increase in gross thrust for that test (Figure 7.11c),
although there was a meaningful increase in blockage between the two inlets (see Figure 7.10).
Nevertheless, the modified inlet, which had worse overall performance, produced a comparable
total pressure at the outlet compared to the unmodified inlet. The comparable total pressures are
mostly a direct reflection of the thrust production between the two configurations being nearly
equivalent (i.e., Figure 7.11c).

While observing the increased values in the hypothetical PG provides qualitative evidence of
the impact of back-pressurization, a more quantitative approach is desirable. To that end, this study
casts the impact of back-pressurization in terms of a decrement in PG from this more idealized,
hypothetical value.

ΔPG = PG − PG′ (7.6)

A pressure-based blockage (𝐵p) measurement [132, 139] is employed to relate the differences in
the PG decrement to a measure of blockage. This blockage fraction is,

𝐵p = 1 −
𝑝3C| ¤𝑚
𝑝3H

(7.7)

The pressure-based blockage is similar to the mass-based blockage fraction (𝐵m) discussed in this
work (𝐵m). Yet, previous work has demonstrated that the pressure-based blockage incorrectly
predicts the change in the fluidic area at lower mass fluxes [139, 50]. Nevertheless, since the
pressure-based blockage is a ratio of pressures similar to the PG measurement, it allows useful
analytical manipulations since the numerator in Eqn. 7.7 is identical to the denominator of Eqn.
7.5. For instance, Eqns. 5.9, 7.5, 7.6, and 7.7 can be combined to get the following,

ΔPG = −𝐵p(1 + PG′) (7.8)

≤ 0 (7.9)

The 𝐵p value is between 0 and 1. In contrast, the lower bound of PG′ is -1, resulting in the inequality
presented above, which is merely a mathematical representation of the decrease in PG as caused by
an increase in the plenum pressure.

While Eqn. 7.8 is useful for illustrative purposes, the additional dependence upon PG′ prevents
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(a) (b)

(c)

Figure 7.14: a) Pressure gain if the plenum pressure increase caused by fluidic blockage is neglected.
b) Direct comparison of hypothetical pressure gain between inlets. c) Changes in the hypothetical
pressure gain are insignificant.

it from being evaluated explicitly. Thus, the explicit relationship between 𝐵p and ΔPG remains
unknown a priori, necessitating an empirical relationship. The measured 𝐵p and PG′ were plotted
against one another, as shown in Figure 7.15a, to determine if there was a functional relationship
between the two. Given one of the two geometries, the dashed gray lines highlight an approximately
linear correlation between 𝐵p and PG′. The two lines accentuate how the correlation is different
between the two geometries. There is a significant spread in the data around the linear line, as
reflected by the low 𝑅2 values of 0.735 and 0.781 for AAI and AAI-M, respectively. Nevertheless,
this study applies the following approximation since it captures the general trend in the data,

PG′ ≈ 𝑚𝐵p + 𝑏 (7.10)
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(a) (b)

Figure 7.15: Comparing pressure-based blockage fraction to a) hypothetical PG without plenum
pressure increase and b) change in PG from measured to hypothetical value.

Using Eqn. 7.10, Eqn. 7.8 can be rewritten to eliminate the dependency on PG′. This substitution
gives a quadratic scaling between the decrement in PG and a measure of the blockage.

ΔPG ≈ −𝑚𝐵2
p − (𝑏 + 1)𝐵p (7.11)

= 𝐶1𝐵
2
p + 𝐶2𝐵p + 𝐶3 (7.12)

Equation 7.11 is the approximately derived relationship relating 𝐵p and ΔPG while Eqn. 7.12 is the
quadratic fit calculated from the data. The origin (0,0) point was included when calculating the fit
with the experimental data to enforce that ΔPG = 0 when 𝐵p = 0, which is evident from Eqn. 7.8.
The resulting parameters for Eqn. 7.12 are provided in Tab. 7.1, while the fits are plotted in Figure
7.15b as the dashed gray lines. The linear fit presented in Figure 7.15a was not used; however,
the high 𝑅2 values demonstrate that a quadratic polynomial fits the data well. The quadratic fit, in
turn, supports the approximation given in Eqn. 7.11. Again, there is a slight difference between
the two geometries in terms of the quadratic fit. Unfortunately, the lower bound of 𝐵p measured in
this work was about 0.15, leading to a required extrapolation in the limit of 𝐵p → 0. As was seen
in Figure 7.10, blockage reaches an asymptotic value that depends on the equivalence ratio and the
geometry; thus, additional experiments with different geometries are necessary to confirm that the
data follows the quadratic fit at even lower 𝐵p values.

As mentioned previously, the pressure-based blockage fraction does not always accurately
describe a change in fluidic area [139]. Therefore, while the decrease in PG was initially related
to 𝐵p, it is preferable to cast the results in terms of the more accurate mass-based blockage, 𝐵m.
Feleo et al. previously demonstrated that the difference between 𝐵m and 𝐵p is a function of a Mach
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Geometry 𝐶1 𝐶2 𝐶3 𝑅2

AAI -1.584 -0.580 -0.003 0.986
AAI-M -1.088 -0.669 -0.001 0.993

Table 7.1: Parameters for the quadratic fits that satisfy Eqn. 7.12

Figure 7.16: Comparing the mass-based blockage fraction to pressure gain decrease.

number during a non-reacting flow test with the same mass flux (𝑀3.1C| ¤𝑚 ) [139]. In particular,
this Mach number is evaluated at the inlet throat for a non-reacting flow test with the same mass
flux as the reacting flow test being considered (𝑀3.1C| ¤𝑚 ). Importantly, when this Mach number is
unity, 𝐵m and 𝐵p agree, but when the Mach number is subsonic at lower mass fluxes, 𝐵p is smaller
than 𝐵m [139]. Thus, when 𝐵m is plotted against the PG decrement in Figure 7.16, the coloration
of the markers now gives this Mach number instead of the equivalence ratio. The dashed gray
curves are the quadratic fits to the 𝐵p data. As 𝑀3.1C| ¤𝑚 approaches one, the pink markers, the
data collapses along these quadratic curves since 𝐵m becomes equivalent to 𝐵p. When the Mach
number was subsonic, an increase in blockage had less of an impact on the PG decrement as the
data moves up and to the right in Figure 7.16. Regardless of the geometry, similar Mach numbers
form distinct curves that relate 𝐵m and ΔPG, suggesting a family of relationships that depend on the
Mach number. Overall, the worse end-to-end performance of the modified inlet occurs due to the
outlet total pressure not increasing as much as the plenum pressure increase caused by the worse
blockage (larger 𝐵m) since the inlet Mach number for the non-reacting cases was invariant to the
inlet modification.
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7.8 Discussion

The design of the modified inlet served two purposes: intentionally worsening the diodicity of the
inlet and suppressing the toroidal re-circulation region anchored at the shoulder of the standard
inlet [58]. Chacon theorized that this toroidal re-circulation region was detrimental to overall
performance since it supports parasitic combustion (refer back to Section 1.5.3) by transferring
thermal energy from the trapped hot products to the fresh reactants. Several modeling efforts
have shown that parasitic combustion is detrimental to thrust [58, 195] or specific impulse [105].
Such a detrimental impact is a result of the heat release occurring at a lower temperature, thereby
producing more overall entropy than if all the heat release occurred within the detonation wave.
Chacon previously tested of AAI-M without a nozzle and demonstrated that parasitic combustion
was suppressed using the OH* chemiluminescence method of Feleo et al. [58, 11]. However, in the
case of the present study, the inlet modification did not completely suppress parasitic combustion.
This is attributed to the back-pressurization of the nozzle, causing the reaction rates to increase
such that auto-ignition kernels occur. For the sake of brevity, this work did not directly address the
changes in parasitic combustion, but, generally, the heat release distribution within the cycle was
altered in a manner that the parasitic combustion was reduced but not eliminated. However, the PG
decreased significantly despite the reduction of a theorized loss mechanism, indicative that some
other loss was more significant than the potential gains of reducing parasitic combustion.

While many aspects of the flowfield changed with the inlet modification such as the heat release
distribution, the most prominent and significant of the changes is the increase in the backflow and
coupling between the plenum and channel. Although this study demonstrated that both the oblique
shock strength in the plenum and the overall fluidic blockage, it was not experimentally confirmed
here that this was directly related to an increase in the backflow; however, Shepard tested both
the AAI and AAI-M geometries along with an optically accessible outer body [50]. Iron oxide
particles, approximately 50 microns in diameter, were seeded into the air stream upstream of the
RDC. After the passage of the detonation wave, the iron oxide particles were visibly luminescent
from blackbody radiation, enabling a high-speed camera to track them. Shepard observed that more
particles flowed back up into the inlet throat when AAI-M was being tested. Likewise, the overall
chemiluminescence intensity in the inlet throat increased by nearly 25% for the AAI-M [50]. While
such measurements are more qualitative than quantitative, they further support the hypothesis that
there was more backflow based on the measured increase in pressure coupling between the plenum
and channel.

Therefore, this study attributes the significant decrease in PG to the negative impact backflow
and blockage has on PG. Several theoretical processes explain this detrimental impact on PG. The
flow may require work to turn the products’ axial velocity back in the proper direction, which may
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produce entropy. Effectively, the products that flow backward must undergo additional, potentially
non-isentropic, expansion processes before exiting the combustion. Even if the expansion is
isentropic, the backflow will act as both an impediment to incoming flow and additional mass that
has been injected into the channel, both of which effectively increase the fluidic blockage. Another
is that the hot products pre-heat the incoming fresh reactants, which would lower the peak pressure
of the detonation wave, thereby causing the detonation wave to produce more entropy. Additionally,
this pre-heating may be sufficient to cause auto-ignition of the fresh reactants, potentially leading
to parasitic combustion [11, 10]. This is another possible explanation for the inability to suppress
parasitic combustion, unlike what was observed by Chacon [58].

The theories above focus on the local physics of the losses introduced by backflow; however, a
more macroscopic viewpoint is also applicable. For instance, the fluidic blockage manifests as an
increase in plenum pressure, which causes a less favorable comparison to the exit total pressure. An
alternative viewpoint is to interpret fluidic blockage as a reduction in the fluidic area, which is what
the blockage fraction (𝐵m) tries to describe. Consider the trend observed by several researchers
in which the PG became better (less negative) with more open inlets [14] originally shown in
Figure 2.7. The reverse is that the PG grows worse (more negative) with more restrictive inlets.
From this, the theorized smaller area (caused by blockage) would then correlate to a decrease in
PG. Additionally, the mass flux through the unblocked portion of the inlet would increase with
decreasing the decreasing area caused by blockage. Recall that Chapter 5 observed that total
pressure losses scale with the mass flux through the throat. Thus, the increase in local mass flux
may also influence the total pressure loss.

Regarding practical applications, some blockage of the injectors/inlet may be unavoidable for
the continuous propagation of the detonation wave(s). Thus far, no studies have demonstrated
successful operation without a plenum pressurization. The exception to this may be liquid fuels
or rocket applications since the feed pressure is much greater than the channel pressure. Based on
the experimental results in this work and literature, this plenum pressurization raises the threshold
of total pressure needed at the outlet to demonstrate positive PG successfully. However, despite
being unavoidable, the PG decrement caused by the blockage or plenum back-pressurization can
be minimized by operating the RDC at fluxes with low inlet Mach numbers before the introduction
of detonation waves. Currently, it is unknown what the lower bound on this Mach number is, and
it is exceedingly likely that if said lower bound exists, it would be geometry-dependent. These
low fluxes have the additional benefit of minimizing the turbulent losses across the inlet, making
them even more preferential. In such cases, the Mach number correction to the EAP introduced in
Section 5.5 would likely be necessary, as the exit Mach numbers are subsonic at flow fluxes. While
low fluxes are likely ideal from a performance perspective, there is bound to the lowest flux that
can achieve detonative operation [176, 38]. The current speculation is that the lower bound may
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arise from too great of coupling between the inlet and channel or insufficient time for the injectors
to recover [38, 43]. Therefore, there is an intrinsic tension between sustained detonative operation
and better performance. This is also reflected in making the inlet throats more open [14] which
Feleo and Shepard have demonstrated increases the blockage fraction [139, 50].

Finally, it is essential to highlight a significant decrease in PG occurred despite the considerable
uncertainties, unlike the previous chapter. When it comes to designing better-optimized inlets and
injectors as is being done currently [145, 156], the results of this chapter are promising in that
potential improvements could be resolved through the EAP method. Thus, the experimental EAP
can detect these significant changes for fixed inlet and outlet areas. However, the backflow and
blockage correspond to fluidic changes at the inlet throat, which, from pre-existing work [114, 14],
is known to impact PG significantly. Meanwhile, differences in the processes within the channel
(e.g., the detonation waves, secondary waves, secondary combustion, etc.) seem to have little
impact on PG based on the results from the previous chapter. The lack of sensitivity may be due
to re-balancing or a hierarchy of loss mechanisms. Regardless, the agnostic nature of PG to what
occurs in the channel ultimately gives the impression that the experimental PG can only resolve the
pressure loss across the inlet during operation. While useful, such a measurement fundamentally
neglects the titular detonation wave(s) and, therefore, is limited in assessing the processes present
within RDCs.
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CHAPTER 8

Conclusions and Final Discussion

This final chapter presents the conclusions of this entire work. First, the following sections explain
the findings of the individual studies; each study gets an associated section. These conclusions
summarize the accomplished work and contributions found in each of the preceding chapters. After
such summaries, the final discussion section considers the totality of the work. Specifically, the
discussion section focuses on evaluating the current global PG metric based on the results found
throughout this work. The work will conclude with recommendations for future research into the
performance of RDCs.

8.1 Summary of Work

8.1.1 Theoretical Analysis of Pressure Gain

The flowfield in RDCs is inherently three-dimensional and unsteady, which complicates the deter-
mination of thermodynamic gain, estimated using the total pressure ratio across the RDC, relative
to standard combustors. However, various averaging procedures have been adapted in this work to
reduce the dimensionality of RDC flowfields. Most of the averaging procedures end with a total
pressure defined to preserve a property of the flowfield. Two such methods preserve the flow’s
ability to produce thrust and extractable work while maintaining the same mass-averaged total
enthalpy. Likewise, averaging in a manner that preserves mass-averaged energy and entropy is
considered the ideal case. All other averaging methods result in an artificial increase in entropy
relative to the mass-averaged entropy, which is unavoidable due to non-uniform flow transitioning
to a uniform state. In addition, this study considered the ideal and experimental EAP [113]. The
ideal EAP is nearly equivalent to the thrust-averaging procedure, while the experimental EAP is
roughly equivalent to the area-averaging procedure. The experimental EAP and area-averaging
do not preserve the flowfield’s total energy or entropy but are relevant to physical experiments.
The concern then becomes whether the experimental methods for determining an average total
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pressure can adequately capture the fundamental thermodynamic gain of the detonation wave(s)
(less-entropy production).

This study applied the averaging procedures to high-fidelity, three-dimensional DNS simulations
of a H2/air-operated RDC with radial air injection and no exit constriction. The experimental
EAP (area-average) consistently underrepresented the total pressure relative to the other averaging
procedures. It was 3-15% less than the thrust-averaged, 9-20% less than the work-averaged, and
22-38% less than the entropy averaged. While experimental EAP being a conservative metric is
prudent, it may be overly conservative if the trends observed in this work persist in configurations
with nozzles. On the other hand, the work-averaged total pressure was greater than the ideal
EAP/thrust-averaged pressure, which suggests that the process of extracting work from the outlet of
a RDC may yield better performance (on the order of 4-8%) than the same RDC producing thrust.

This study also evaluated the impact of the choice in assumed static or total pressure on the
averaging. The thrust-averaged pressure is more sensitive to the outlet pressure than the work-
averaged pressure. Specifically, as the ambient pressure drops by several orders of magnitude,
the “average” pressure also decreases despite the same exit flow. In terms of rocket applications,
this would lead to a performance decrement that would worsen the lower the outlet pressure is,
assuming matched pressures. Overall, PG is not an intrinsic metric as there is subjectivity in the
average outlet total pressure of a RDC. The problem arises from using an “average” total pressure
since any averaging procedure that reduces the flow’s dimensionality results in information loss,
preventing a universal solution.

Experimentally, three prominent methods exist to estimate the average total outlet pressure.
These are the EAP method, NPS method, and direct measurements with Kiel probes. However,
the results of these methods are consistent with one another. This study demonstrated that the
consistency directly results from the convergence between area-averaged and time-averaged quan-
tities in the periodic flowfield. Thus, physical experiments are currently limited to area-averaged
total pressures, and the other methods do not resolve the issues with EAP. Correction factors that
address the disagreement between experimental measures and the other averages may be beneficial
to consider in the future.

8.1.2 Experimental Method to Measure Pressure Gain

8.1.2.1 Base Drag

This study presented a first-of-its-kind, in-depth analysis of the base drag acting along the truncated
nozzle of a RDC. A parametric study of air mass fluxes and equivalence ratios for an experimental
AAI RDC with a 50% exit area blockage operated with H2/air provided sample base drag measure-
ments for the analysis. This work leveraged seventeen flush-mounted pressure measurements via
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CTAPs along the truncated nozzle at three equally spaced circumferential locations. Each measure-
ment had a unique radial location. While the truncated nozzle garnered much of the focus of this
work, an outer exit flange on the RDC also has base drag acting upon it. Six pressure measurements
measured the base drag along the exit flange, and the lessons learned from the nozzle are readily
applicable to this surface as well; however, through the judicious design of the seal, the effective
area of the exit flange is minimal compared to that of the truncated nozzle.

Overall, the analysis from this study can significantly improve the measurement technique. Such
improvements are essential when measuring the total pressure at the outlet of RDCs through the
EAP method. Specifically, several issues with current base drag measurements were identified
and addressed. Previous studies assumed that the pressure distribution along the truncated nozzles
of RDCs was axisymmetric; however, the tests presented in this study revealed an observable
asymmetry that invalidates said assumption. The uncertainty in the individual measurements
cannot explain the asymmetry. The cause of this asymmetry is currently unknown, although it may
result from the specific experimental setup (e.g., the specifics of the reactant’s injection system).
The base drag reported in this work, instead, is a result of a composite trapezoidal scheme in the
radial direction and a standard trapezoidal scheme in the circumferential direction. The composite
integration method addresses and captures the effects of the asymmetry, which alters the base drag
by up to 8%. This work also discussed the impact of the lack of a pressure measurement at the edge
of the surface on the resulting drag. Without a direct measurement at the proper location, previous
studies assumed that the edge pressure was equivalent to the outermost pressure measurement.
Based upon the radial distributions in this work, this assumption severely under-predicts the edge
pressure, which artificially raises the gross thrust result by up to 8%. After addressing both
assumptions, the base drag measured was reduced by up to 20%, thereby making the overall gross
thrust measurement more conservative. Even more importantly, these lessons can further reduce
the uncertainty in future measurements, which will be critical in having accurate and precise PG
measurements if a demonstration of the gain is achievable.

Following the previous suggestion made by Fievisohn et al. [116], this work implemented a
Gaussian-Kronrod scheme in conjunction with the Newton-Cotes method (e.g., trapezoidal rule) to
experimentally compare the two. The implemented Gauss-Kronrod scheme was radially weighted
and was order three (two points). Meanwhile, the Kronrod extension was of order seven (an
additional three points). This study did not directly measure pressure at the node; however, the
fine radial resolution of this study allowed for interpolation between the existing pressure locations
to get the node measurements except for the node with the largest radial position, which required
extrapolation. The comparison between the axis-symmetric Newton-Cotes and axis-symmetric
Gauss-Kronrod schemes was quite favorable, as the differences between the two were on the order
of the numerical error of the Gauss-Kronrod scheme. This numerical error was several percent of
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the gross thrust; this is an improvement compared to the uncertainty in a Newton-Cotes integration
when an edge pressure is not directly measured. The primary drawback of the Gauss-Kronrod
scheme is having to assume the pressure distribution with potentially no a priori knowledge.

The study then provided recommendations, repeated here, based on the mentioned observations:

• One should compute the base drag using a composite, two-dimensional numerical integral.
Therefore, pressure measurements must have different discrete radial and circumferential
locations.

• Pressure needs to be measured at a minimum of three discrete circumferential locations
evenly distributed in the circumferential direction to capture any asymmetry in the pressure
distribution. The convergence rate of the trapezoidal rule in numerically integrating a periodic
function is 1/𝑁4; thus, three points give an error of 1.2%, although the error further reduces
with a greater number of points.

• A radially-weight Gauss-Kronrod scheme is ideal for the radial integration. Based upon the
approximate cubic radial pressure distribution observed in this work, a Gaussian scheme of
order three (two points) with a Kronrod extension of order seven (additional three points)
for five radial locations would be suitable. While the Kronrod extension does not drastically
improve the accuracy of the numerical integration, it provides an invaluable estimation of the
uncertainty associated with the integration.

• A Newton-Cotes integration along the radial direction instead of the recommended Gauss-
Kronrod remains valid; however, the edge pressure is paramount to the numerical integration.
A pressure measurement at the edge is required, or the necessary assumptions lead to sig-
nificant uncertainties. The Kronrod extension typically inherently solves the edge pressure
issue by having the outermost radial node be effectively at the edge of the nozzle.

• In general, low-noise pressure transducers reduce the overall base drag uncertainty. The worst
pressure differential measured was about 0.08 atm (1.17 psi), which is relatively small com-
pared to the ambient exhaust pressure. Since most pressure transducers have uncertainty/noise
that scales with their full-scale value, minimizing the range of the pressure transducers while
still spanning the range of expected values can provide additional uncertainty mitigation.

8.1.2.2 Thrust and EAP

The analysis of the base drag ultimately informed the concurrent detailed uncertainty analysis of
the PG metric as measured by the EAP method. Just as the base drag uncertainty analysis is
unprecedented in scope, the uncertainty analysis of PG is currently the most comprehensive in the
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RDC literature. This work took thrust concurrently with the base drag measurements; therefore, the
analysis of PG utilized the same parametric study of air mass fluxes and equivalence ratios for H2/air
operation of an experimental AAI RDC with a 50% exit area blockage. This work developed an
integrated thrust stand to measure the thrust output of the RDC while still sealing against a coupled
exhaust. The concept of EAP was used to estimate the PG based upon the measured gross thrust,
with the estimated PG varying from -0.243 to -0.322. These values align with existing literature for
an exit-to-inlet area ratio of 2.38 [14]. The highest gross thrust in this work occurred at the highest
mass flux since the thrust scaled linearly with an increasing mass flow rate. Meanwhile, the highest
PG happened at the lowest tested mass flux. This work theorizes that the injector’s total pressure
drop scales with increasing flux; thus, lower fluxes minimize the inherent total pressure drop.

This work demonstrated that the relative uncertainty in the gross thrust ranged from 5% to 30%
of the nominal value, with the largest relative uncertainty at the lowest mass fluxes. The load cell
measurement and the base drag on the nozzle contributed to most of the uncertainty in the gross
thrust measurement, although the base drag uncertainty was more significant. The gross thrust
measurement depends on both the load cell and the overall design of the thrust stand—meanwhile,
the previous discussion elaborated upon the uncertainty in the base drag. Although a non-negligible
amount of base drag (10% of the total gross thrust) acted upon the exit flange, this work eliminated its
associated uncertainty through judicious design; a radial seal for sealing with the exhaust chamber
also minimizes the effective area. Finally, the gross thrust measurement likely has no significant
systematic uncertainty.

As for the PG, the random uncertainty was predominately from the gross thrust. The relative
uncertainty of PG was 10-20% of the nominal value, with the greatest uncertainty being at the lowest
fluxes (lowest gross thrust). In the context of the measurements presented in this study, the random
uncertainty encapsulates all the changes to PG across the operating conditions. Additionally, such
significant uncertainties are problematic as they could mask definitive demonstrations of PG. The
PG is conservative due to the unity Mach number assumption; however, the assumption introduces
a systematic uncertainty that scales proportionally to the PG, resulting in an increased uncertainty
when the PG is closer to being positive.

This study also introduced a time-averaged static pressure measurement at the nozzle throat
plane to get 𝑝8 directly. There was a notable difference between the measured and EAP pressures
at low mass fluxes due to subsonic average throat Mach numbers ranging from 0.4 to 0.8. The
subsonic Mach numbers are demonstrated by re-arranging the simple thrust equation to solve for the
Mach number given the gross thrust and measured 𝑝8. This work then incorporated the non-unity
Mach number into PG since the estimated PG under-predicts the “true” PG as a result of subsonic
Mach numbers. Furthermore, using the estimated Mach number resulted in an overall decrease in
the random and systematic uncertainty in PG despite the relative uncertainties in the Mach number.
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Thus, the precision and accuracy of PG are improved. Overall, this study explored the concept of
experimentally measured EAP and demonstrated (through rigorous uncertainty analysis) that the
current implementation of EAP has a limit on both precision and accuracy that would hinder the
goal of showing definitive pressure gain across RDCs.

Finally, this study discusses an alternative method of finding the exit total pressure based on
the measured 𝑝8. While similar to the NPS method [114, 120] measuring pressure at the throat
circumvents the need for area-Mach relations. The modified PG introduced in this study can also
be found without a thrust stand with a static pressure and temperature measurement at the exit. The
uncertainty in finding the PG without thrust is comparable to the uncertainty EAP method. Further
refinement of this technique could eventually lead to a significant reduction in uncertainty in the
PG measurement and would replace EAP.

8.1.3 Relating Pressure Gain to Detonation Wave Properties

This work also explored the effects of changing the length of the combustor section of an RDC with
an AAI operated in H2/air. The profile of the axial air inlet and converging exit nozzle remained the
same, while the combustor length alone varied from 71 mm to 137 mm. This study employed the
same parametric study of air mass fluxes and equivalence ratios for four discrete combustor lengths.
Spectra from high-speed pressure transducers and aft-time-resolved chemiluminescence movies
identified the operating mode. The RDC exhibited rotating detonation modes of operation without
any pulsing behaviors. Of the observed operating modes, two are novel: the distinguishable wave
pair (2WD) and the transient super-cycle (TSC). In the case of 2WD, two waves stably propagated
at the same speed but had distinct pressure ratios across the individual waves. The TSC comprised
a pair of detonation waves that gradually slowed as the number of counter-propagating waves
decreased and sped up. Eventually, the direction of the primary detonation waves switched, and the
number of secondary waves reset. This super-cycle had a period that was many times the rotational
period of one of the detonations. This study hypothesizes that the onset of this phenomenon is
associated with an incomplete transition between operating modes with two and three co-rotating
detonation waves.

This study presented a statistical approach to quantify the speed and pressure ratio of the
detonation wave(s), specifically the empirical PDFs of both quantities. In general, the speed of
the individual detonation wave(s) decreased with increasing length, assuming the multiplicity was
constant. The slowing of the wave(s) may be related to the eigenfrequency of the circumferential
acoustic mode, which is inversely proportional to the axial length of the annulus. Additionally, the
multiplicity increased from one to two with the increase in length, which the author theorizes to be
a result of a larger fill region caused by the slower waves being able to support an additional wave.
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Meanwhile, the normalized pressure ratios were nearly constant configurations and test conditions,
highlighting that the wave speed could significantly change without a significant change in the
pressure ratio.

The methods developed earlier in this work measured the thrust and PG through the EAP method.
Marginal differences in the gross thrust occurred as the length varied; any observed differences
were within net thrust measurement uncertainty. Meanwhile, the plenum pressure increase caused
by the detonation wave(s), as measured by an effective blockage fraction, changed significantly
from the length alterations. Pressure gain compares the gross thrust to the plenum pressure, thus
accounting for changes in both thrust and blockage. The pressure gain was between -0.21 and -0.32,
depending on the operating condition. Despite the significantly different wave systems (speed and
multiplicity) and operating modes, the total pressure loss across the RDC remained effectively
constant as the length changed, with variations within the experimental uncertainty. Thus, the
performance, as measured in this work, was insensitive to the combustor’s length and details of
the systems of multiple competing waves that result from it. This result suggests that the quality
of the detonation wave does not directly translate to an increase in the overall performance of the
combustor. Furthermore, the combustor length can be used as a design tool to achieve certain types
of operation without sacrificing performance.

8.1.4 Detrimental Impact of Blockage on Pressure Gain

The final study intentionally modified the air inlet (AAI-M) to have a worse diodicity by streamlining
the expansion downstream of the inlet throat. The inlet throat area remained unchanged, as was the
50% outlet restriction and the combustor length of 118 mm. The parametric study of air mass fluxes
and equivalence ratios of H2/air operation was repeated for the AAI-M to enable direct comparisons
between AAI and AAI-M. Once again, spectra from high-speed pressure transducers and aft-time-
resolved chemiluminescence movies identified the operating mode, of which no new operational
modes appeared. Whereas AAI only exhibited 1W operation at a single test condition, nearly half
of the test of AAI-M had 1W, indicating a meaningful change in operating mode (multiplicity)
from the inlet modification.

In general, the detonation wave speeds were significantly lower for AAI-M than AAI for the
same condition. Acoustic wave speeds ( 50% 𝐷CJ) commonly occurred for AAI-M when two co-
rotating detonation waves materialized within the RDC. Unlike the wave speed, more significant
experimental variance complicates comparisons of the pressure ratios across the detonation wave.
Thus, this study further developed the statistical analysis when considering the changes in pressure
ratio by investigating the empirical PDFs of the individual components of the pressure ratio. A
Monte-Carlo sampling of the PDFs resulted in the computation of the probability that the AAI-M
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had a larger value of said pressure. These probabilities better enabled statistical significance
arguments to be made. Thus, while AAI-M had a higher likelihood of having a greater detonation
wave pressure ratio than AAI, only a handful of tests were statistically significant.

This study investigated the coupling between the detonation channel and air plenum in two
ways: characterizing the upstream propagating oblique shock and measuring the effective blockage
fraction. A high-speed pressure transducer upstream of the inlet throat measured the pressure
across the oblique shock in the plenum. Many tests had a statistically significant likelihood that the
oblique shock measured with the AAI-M was stronger than AAI, although this was not universally
true. Meanwhile, the effective blockage fraction considered the mean plenum pressurization, which
increased from the inlet modification. Therefore, this work concluded that the inlet modification
augmented backflow/blockage, symbolic of a worse injector diodicity, as intended.

Again, the methods developed earlier in this work measured the thrust and PG through the EAP
method when AAI-M was employed. Despite the large uncertainties that this work demonstrated,
effectively all of the tests with AAI-M had a statistically significant worse PG than AAI, differenti-
ating these results from those found in the length study. The PG for the AAI-M ranged from -0.28
to -0.36. Due to the correlation between more plenum coupling and worse PG, this work contex-
tualized the PG decrement accrued by the plenum back-pressurization by considering an idealized
scenario where blockage does not cause said the back-pressurization. Specifically, the relationship
appears to be a negative quadratic relationship where increasing the blockage further reduces the
global PG. However, the total pressure penalty imposed by the blockage reduces when the inlet
throat Mach numbers during non-reacting flows are subsonic. These subsonic Mach numbers occur
at low mass fluxes, which also is where the total pressure drop across the injectors is minimized,
further emphasizing that the best performing RDCs from a PG perspective are those operating at
loss inlet mass fluxes.

8.2 Conclusions

Good experimental metrics have four components: theoretically sound, accuracy (minimal amount
of systematic errors), precision (minimal amount of random uncertainty), and practical usefulness.
Through these lenses, this work evaluated the experimental global PG. The conclusions of the
independent studies are summarized below in the context of the overarching evaluation.

• Theory: When this work evaluated the averaging procedures needed for PG, the PG was
found non-unique and not intrinsic to a given flow. Thus, the value of PG is highly subjective,
far from ideal for a performance metric. Averaging with any physical process in mind
(thrust or work) generates entropy conflicting with the thermodynamic benefit of detonations.
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Finally, the EAP is equivalent to an area-averaged total pressure, which does not satisfy any
conservation equation. These combine as limitations for both PG and EAP.

• Accuracy: This work evaluated the accuracy of PG through the experimental methods
(namely EAP) used to measure it. The primary source of systematic uncertainty in PG arises
from the Mach number assumption, although accurately measuring the base drag on the
nozzle is also paramount. However, one can significantly mitigate these current accuracy
concerns. In doing so, the EAP method could become a sufficiently accurate representation
of the area-averaged total pressure. However, the issues of the area-averaged total pressure
not accurately quantities of interest, as discussed in the theory section, remains unsolved.

• Precision: Much of this work focused on the detailed uncertainty analysis required to
appropriately estimate the random uncertainties in PG. The uncertainties culminated in
requiring a measured PG greater than 0.06 for a definitive demonstration of positive gain,
indicative of precision limitations. While one could reduce some of the random uncertainties,
the required gross thrust measurements limit the lower bound of the relative uncertainty.

• Usefulness: The practical usefulness is the most subjective of established criteria and is
the combination of the other metrics. Ideally, changes in the RDC flowfield from geometry
changes are reflected as changes in PG to inform the next design. This work had mixed
results in this regard. While a measurable decrease in PG came from an inlet modification,
different detonation wave(s) and operating modes did not result in a significant change in
PG for a constant inlet. The invariance result may result from poor precision in PG or a
rebalancing of loss mechanisms. Regardless, PG seems limited to only measuring the inlet
losses. The diodicity study, the general decrease in PG with increasing mass flux, and the
compiled results in the literature all support this. Thus far, geometry changes for a given inlet
have an insignificant impact on PG. with the one exception being more restrictive nozzles.
Therefore, PG is limited in determining the optimal design outside the inlet and nozzle.

All told, based on these criteria, the experimental global PG is a limited metric. While PG has had its
uses specifically in terms of the refinement of inlets and inclusion of nozzles, such design principles
are not unique to RDCs. Further refinements to the experimental methodology may increase the
accuracy and precision (thereby increasing the potential usefulness), but the theoretical limitations
can never be fully overcome. Therefore, this work concludes that the fixation on PG as the be-all
and end-all performance metric for RDCs has largely been unjustified. This is not to preclude the
existence of a thermodynamic benefit of using RDCs; instead, this work concludes that PG may be
too limited to adequately measure it.
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8.3 Final Discussion

8.3.1 Concluding Remarks on Pressure Gain

One of the most perplexing elements of RDCs is the duality of simultaneously being an unsteady
and steady system. Although an unsteady phenomenon (detonation wave) is locally contained
within the system, the RDC is effectively steady globally due to the periodic domain within the
encompassing CV. The amount of mass flown, energy added, thrust produced, and available work
each are effectively steady measures owing to the periodic nature of the flowfield (Appendix A).
The system must pack back the work that the detonation wave imparts upon the fresh reactants
through the expansion process [37]. The steady global nature of RDCs contrasts the original PGC
devices, e.g., pulse combustors and PDEs. This contrast is because the unsteady process exits the
CV in the same direction as the bulk fluid motion, making it impossible to establish a steady global
CV around the process. RDCs are also unique within the PGC field in that the PG occurs locally
across the detonation wave but in the opposite direction of the bulk flow. However, work extraction
and thrust production are global quantities; thus, somehow, the RDC needs to transfer the local PG
from an unsteady process to a global, steady PG. In many aspects, this is the crux of the RDC
problem.

If one considers the RDC as a globally steady system, the notion of a potential PG becomes
murkier. For instance, consider a hypothetical CV around an arbitrary combustor. The properties
that a traditional designer cares about, mass in/out, thrust production, extractable work, etc., are
steady at the inlet and outlet of the said device while being agnostic to what occurs within the
device. In such a hypothetical scenario, one would say that the total pressure in the direction of
the bulk flow must go down according to the Second Law of Thermodynamics; see Section 1.4.
Fundamentally, for mass to flow from the inlet to the outlet of such a system without cooling or
applied external work, the total pressure cannot increase in the bulk flow direction. The detonation
wave in a RDC is a source of internal work since it never crosses the CV; thus, it may not be an
exception to the global decrease in total pressure. By extension, the author speculates that there
must also be an axial decay of some “average” total pressure within RDCs to allow for the global
steady mass flow rate. In other words, there must be a PG defined by some “average” total pressure
that is negative (or at best zero) to enforce the imposed mass flow rate through the system. The
local gain in total pressure across the detonation wave remains and is the cause of backflow and
the fluidic blockage of the injectors. However, if the average total pressure within the detonation
channel increases, according to this conjecture, the system will respond by increasing the inlet total
pressure to a commiserate amount; otherwise, the flowfield cannot enforce the mass flow through
the system on a global scale. Experimentally, this is the observable plenum back-pressurization,
and this reasoning aligns with the relationship between the blockage and PG from Chapter 7.
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It is not immediately apparent which “average” total pressure (e.g., thrust-average, work-average,
etc.) is subject to the above conjecture; however, such knowledge is optional for this discussion’s
consideration. Chapter 2 demonstrated that experimental EAP/area-average consistently gave the
lowest total pressure. If the theorized average total pressure that must go down is the area-average,
clearly it must go down. Likewise, if the theorized total pressure that must go down is, say, the
thrust-averaged total pressure, the area-average must also go down on account of being lower than
the thrust-average. Thus, as long the conjecture of some hypothetical average total pressure decrease
in the axial direction is true, the area-average total pressure at the outlet will always be less than the
inlet. Following this line of reasoning, the corresponding experimental PG will ever be at best zero
since EAP and the other experimental methods are effectively area-averaged measurements of the
total pressure, which cannot increase across the device. Therefore, an experimental measurement
of global PG may be an inadequate measurement of the thermodynamic benefit of the RDC since
the average total pressure at the outlet will likely always be less than the inlet, according to this
conjecture.

A valid counter-argument to such conjectures is the observance of positive PG in simulations,
like the introductory work by Kaemming and Paxson [113]. The conservation equations are still
being solved (albeit in a two-dimensional sense), and a net positive PG is demonstrated. The
results of the computations are irrefutable because the numerical methods were likely appropriately
implemented; however, the calculations may be correct subject to the imposed boundary conditions
and models, but the boundary conditions and/or models may not reflect reality. Such simulations
rely on various submodels, such as handling the detonation wave’s leading shock discontinuity,
the premixed mixture’s reaction rates, viscous losses, etc. Perhaps the most crucial submodel
Kaemming and Paxson implemented was that of the injector. They model the injection of reactants
using a piecewise open boundary condition depending on the channel pressure downstream of the
inlet to reduce the complexity and cost of the simulation [113, 196]. The plenum feeding the RDC
is infinitely large with a fixed total pressure, thereby making the system pressure-fed as the mass
through the system can modulate. This model leads to the detonation wave decoupling in some
sense from the upstream plenum. Additionally, the aforementioned model does not capture the
viscous/turbulent losses across the inlet. Based upon the results from this work, the model then
neglects two of the more prominent losses that occur within experimental RDCs. Furthermore, if
the author’s conjecture of the plenum back-pressurization being a result of the system globally re-
balancing to enforce a total pressure drop in the axial direction is true, neglecting the inlet coupling
divorces the simulations from experiments by enabling the positive PG. Therefore, the results from
Kaemming and Paxson may be misleading. In fact, the only sources in the literature that discuss an
achieved PG are comparable two-dimensional simulations that model the inlet instead of simulating
it (e.g., [197]).
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Another valid counter-argument comes from a recent study by Brophy et al., which claimed
that a positive PG has been achieved experimentally [48]. The experimental uncertainty concerns
in the PG metric were not alleviated, so the demonstration was not definitive; nevertheless, this
result seemingly contradicts the conjecture that PG as measured by EAP is impossible. However,
the results are not contradictory but are symptomatic of PG being defined solely relative to the
oxidizer plenum. Such a definition is disingenuous as it neglects the added momentum and kinetic
energy of the fuel. Consider a RDC without any oxidizer flow; the total pressure at the outlet
would equal the inlet. Now introduce a fuel stream into the RDC that does not undergo reaction
and has an axial component. The added momentum and kinetic energy of the fuel stream, even if
small, would increase the total pressure at the outlet relative to its quiescent state [198]. In doing
so, an artificial increase in PG would occur as the oxidizer plenum pressure remains the same.
Essentially, the fuel jet’s momentum and kinetic energy are free sources with the current definition
of PG. Plaehn et al. and Shepard discussed this line of reasoning when introducing the concept of
an “equivalent supply pressure” [112, 50]. While this work did not examine said concept in detail,
this work would nevertheless be incomplete without discussing how neglecting the introduction of
fuel in the definition of PG can lead to false positives. While the discussion thus far focuses on the
work of Brophy et al., it applies to all seemingly high-performing RDCs. For instance, even though
Stout et al. claimed a peak PG of -0.014 [118], Shepard argued that since the fuel supply pressure
was twice that of the oxidizer supply pressure, a more representative PG is -0.11 when Shepard
accounted for the fuel total pressure. Therefore, even the few seemingly positive experimental PG
measurements do not directly contradict (unless proven otherwise) the conjecture that the PG is at
best zero when one properly accounts for all incoming momentum and energy.

All told, this is not to say that there is no thermodynamic benefit from using RDCs since
less entropy production should occur within the detonation wave than a comparable deflagration.
The entropy decrease is largely due to elevated temperature and pressure that the heat release is
occurring at. Entropy provides the soundest thermodynamic measurement of the gain based on ther-
modynamics since irreversibilities (i.e., losses) directly increase entropy more than total pressure;
furthermore, entropy is independent of the frame of reference, unlike the total temperature/pressure.
While the detonation wave locally adds kinetic energy to the fluid, on a global scale, the release of
chemical potential energy must be the only energy added to the fluid so as not to violate energy
conservation; see Appendix A and the work of Zel’dovich [37]. However, given the same amount
of added energy (heat), less local entropy production could still allow for more work generation or
thrust production. From this, it would be as if there was an increase in the total pressure relative
to the deflagration combustor. Consider, once again, the differences between the entropy-averaged
total pressure and the area-averaged total pressure from Chapter 2. The inflated entropy-averaged
total pressure is a virtual quantity since it does not describe the bulk flow and instead represents the
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less entropy production. It remains to be seen if this virtual gain translates to practical applications
since they may be the total pressure subject to the postulated conjecture, and any physical process
considered in thrust-averaging or work-averaging lowers this hypothetical total pressure.

8.3.2 Alternative Benefits of RDCs

Ultimately, the focus of demonstrating a tangible stagnation pressure gain from using a RDC over
the last few years (this work included) has not proven very successful. However, pressure losses
comparable to modern aircraft engines have been observed [118, 121, 48]. In isolation, if one
unfamiliar with the concept of RDCs saw that the PG promised by the PGC moniker has not been
attain or is unattainable, it could mislead them into believing that RDCs do not have practical uses.
However, PG alone ignores the other aspects of RDCs that can be leveraged for real-world use, such
as the higher energy density, shorter combustor length, and sustaining combustion at higher flow
speeds or fluxes. Thus, RDCs could result in weight savings greater than the stagnation pressure
loss or could be an enabling technology such that they could maintain a flame when deflagration
would otherwise blow out. It is advisable, then, that the PGC community that researches RDCs
not focus solely on “pressure gain” as the only metric to be used to demonstrate whether RDCs
can prove useful in applications. While further work will better optimize the designs of RDCs, in
the short term, it may prove more prudent to find specific applications where the other aspects of
RDCs provide a unique advantage.

8.4 Future Work

No work is ever truly finished, as there is always more to uncover, especially for flowfields as
complex as RDCs. As such, this section suggests potential future work to further the community’s
understanding of the operation and performance of RDCs.

8.4.1 Combustion Efficiency Measurements

As alluded to in Section 1.4, the total pressure ratio is not the only performance metric for
combustors. Currently, there are few to no experimental combustion efficiency measurements of
experimental RDCs found in the literature. When mentioned, combustion efficiency is typically
discussed in the context of assuming that complete combustion has occurred [44]. However, this
has not been demonstrated, even for especially reactive mixtures like H2. One work by Ferguson
et al. addressed this by measuring the O2 content in the exhaust of a H2/air operated RDC. After
comparisons to equilibrium calculations, they noted that the excess O2 indicated that the RDC was
not operating at peak combustion efficiency [199]. Other recent work by Cheng et al. analyzed
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the CO2 content of the exhaust of an RP-3/air operated RDC and also found that the combustion
efficiency is around 60% [200, 201]. However, the short test times of RDCs (a few seconds) limit
how much gas can be collected and sampled, although potential long-running water-cooled designs
[202] may solve this constraint.

Other studies have compared computing the total temperature/enthalpy at the exit flow instead
of analyzing the gas composition [124, 203]. Xu et al. tried adapting the EAP methodology to
compute a total temperature by using the total pressure estimated through EAP [124]. However,
such a method will commit the same errors as the EAP method discussed in this work. Walter et
al. proposed a similar process, except particle image velocimetry measurements supplemented the
process with velocity measurements [203]. An alternative approach would be to employ spectro-
scopic measurements at the exit plane of the device. From these, time-resolved measurements of the
interrogated species’ pressure, temperature, and mole fraction are possible [204, 205]. If a velocity
is either assumed or inferred from a thrust measurement, the total temperature and the fraction of
unreacted gases are estimable. Regardless of the method to determine the combustion efficiency,
the characterization of RDC performance is incomplete without these measurements to supplement
the total pressure measurements. Even if a PG value of effectively zero is demonstrated, indicating
no loss in total pressure, if the combustion efficiency is poor (i.e., the total enthalpy change is less
than ideal), the combustor still would be considered a poor combustor.

8.4.2 Pressure-Fed System

The laboratory test environment presents a unique divergence from real-world airbreathing devices
in that the gaseous reactants’ mass flow rates (and, thus, fluxes) are generally the driving parameters
for individual test cases. Many studies use upstream flow metering devices to quantify flow rates;
choked orifices metered the flow for this work. The orifices set the upstream pressure but do not
actively control the downstream pressure (i.e., the RDC plenum pressure). As such, the plenum
pressure reacts to the defined reactant mass flow rates given the boundary condition at the outlet of
the RDC.

A consequence of being a mass-driven system is the plenum pressurization caused by the
detonation wave blockage [139], which is detrimental to the global PG; see Chapter 6. The plenum
pressurization is more prevalent for gaseous reactants since the incompressible nature of liquid
reactants would inherently prevent back pressurization [206]. Thus, this may not be a concern
for the liquid fuels used in airbreathing devices or the fuel and oxidizer of rockets. Regardless,
in airbreathing applications outside the laboratory, the ambient conditions will dictate the inlet
pressure, and the detonation wave will likely modulate the flow rate (and, thus, flux) of air based
on the inlet pressure; a yet-to-be-explored scenario for air-breathing RDCs. Theoretically, if one
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connected a RDC to a sufficiently large reservoir that the pressure could not vary, air mass flow
would reduce once detonative operation is established. That is, if a detonative operation occurs, it
seems plausible that a critical component of the continuous propagation of the detonation wave(s)
is a modulation of the reactant injection. Furthermore, the author conjectures that for a given
geometry, chemistry, equivalence ratio, and outlet boundary condition, the modulated mass flow
rate, given the fixed pressure, will converge to the fixed mass flow rate with the same pressure. In
other words, irrespective of whether the system is mass-fed or pressure-fed, a unique combination
of mass flow rate and plenum pressure exists for fixed values of all other parameters. Whichever
variable (mass flow or pressure) the upstream condition does not dictate will be modulated to match
the unique combination.

While a pressure-fed system is an intriguing study to understand the operation of RDCs subject to
different boundary conditions, there is an ulterior motive for such tests regarding the performance
of RDCs. This work presented the conjecture that the pressurization of the plenum caused by
blockage ensures that a global PG does not occur across the RDC. Eliminating the possibility of
back-pressurization may present a means of evaluating the PG independently of fluidic blockage.
Even if a fluidic blockage still existed, as hypothesized, the reduced mass flow rate through the
system should not negatively impact the outlet’s total pressure since total pressure is independent of
the mass flow rate. Admittedly, the EAP and NPS methods discussed in this work use the mass flow
rate to evaluate the Mach number when calculating the total pressure. However, the decrease in
mass flow rate should not impact direct measurement through Kiel probes; thus, the other methods
would also be agnostic to the changes in flow rate. Additionally, being pressure-fed would more
closely match the simulations of Kaemming and Paxson, where they demonstrated positive PG.
Therefore, if PG is physically possible, despite what is theorized by the author, such a test could
provide a more suitable means of demonstrating a positive gain.
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APPENDIX A

Unsteady Terms in Control Volume for Periodic
Flows

Start with a generic fluid property (pressure, velocity, etc.) that is defined by function ( 𝑓 ). This
captures both the time and 3D variations of that variable. The time rate of change of this property
within a control volume (F ) is given as,

F =
𝜕

𝜕𝑡

∭
𝑉

𝑓 (𝑧, 𝑟, 𝜃, 𝑡)d𝑉 (A.1)

=
𝜕

𝜕𝑡

∫ 𝐿

0

∫ 𝑅2

𝑅1

∫ 2𝜋

0
𝑟 𝑓 (𝑧, 𝑟, 𝜃, 𝑡)d𝜃d𝑟d𝑧. (A.2)

We want to determine if F = 0 for RDC applications despite the traveling detonation wave(s)
leading to the flowfield being unsteady in the laboratory frame. Due to the wave traveling along
around the annulus, the property can be instead defined based upon it’s relative position to the wave
(𝜓).

𝜓 = 𝜃 + 𝜔𝑡 (A.3)

For now, we assume that the rotational wavespeed (𝜔) is not a function of time or space,

𝜔 = const. ≠ g(𝜃, t) (A.4)

This assumption is crucial to following derivation as it what allows the flowfield to be periodic in
both space and time. This assumption leads to,

d𝜃 = d𝜓 (A.5)

Using change of variables (integration through substitution), F can be rewritten as,

F =
𝜕

𝜕𝑡

∫ 𝐿

0

∫ 𝑅2

𝑅1

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)
𝑟 𝑓 (𝑧, 𝑟, 𝜓)d𝜓d𝑟d𝑧. (A.6)
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It is assumed that the separation of variables can be employed to break up the directional depen-
dencies in 𝑓 :

F =
𝜕

𝜕𝑡

∫ 𝐿

0

∫ 𝑅2

𝑅1

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)
𝑟𝐹 (𝑧)𝐺 (𝑟)𝐻 (𝜓)d𝜓d𝑟d𝑧. (A.7)

It is desirable to bring the time derivative into the integral for reasons that will be seen later. Since
𝐹 and 𝐺 do not depend on time by construction, the partial derivative only operates on 𝐻 since it
has a functional dependence on time through 𝜓. However, the bounds 𝜓(𝜃 = 0) and 𝜓(𝜃 = 2𝜋)
also depend on time, necessitating the Leibniz integral rule.

𝜕

𝜕𝑡

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)
𝐻 (𝜓)d𝜓 =

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)

𝜕𝐻

𝜕𝑡
d𝜓 + 𝜕 [𝜓(𝜃 = 2𝜋)]

𝜕𝑡
𝐻 [𝜓(𝜃 = 2𝜋)]

− 𝜕 [𝜓(𝜃 = 0)]
𝜕𝑡

𝐻 [𝜓(𝜃 = 0)] (A.8)

𝜕

𝜕𝑡

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)
𝐻 (𝜓)d𝜓 =

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)

𝜕𝐻

𝜕𝑡
d𝜓 + (𝜔)𝐻 [𝜓(𝜃 = 2𝜋)] − (𝜔)𝐻 [𝜓(𝜃 = 0)] (A.9)

=

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)

𝜕𝐻

𝜕𝑡
d𝜓 + 𝜔(𝐻 [𝜓(𝜃 = 2𝜋)] − 𝐻 [𝜓(𝜃 = 0)]) (A.10)

Up this point, we have not assumed that the flowfield is periodic as what can be found in ideal
RDCs. Thus far, we have only assumed that the fluid property depends on the relative position of
the detonation wave(s), 𝜓, and that the wave-speed is constant, 𝜔 = constant. Imposing that the
flowfield is periodic in the circumferential direction (𝜃) and in time (the period is related to 𝜔),
results in,

𝐻 [𝜓(𝜃 = 2𝜋)] = 𝐻 [𝜓(𝜃 = 0)], (A.11)

at every instance in time. That is to say that in the 𝜃 and 𝑡 domain, 𝐻 is constant along lines that
are perpendicular to the line given by 𝜓. Now F can be re-written as,

F =

∫ 𝐿

0

∫ 𝑅2

𝑅1

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)
𝑟𝐹 (𝑧)𝐺 (𝑟) 𝜕𝐻 (𝜓)

𝜕𝑡
d𝜓d𝑟d𝑧. (A.12)

The chain rule is used to get the partial derivative of 𝐻 with respect to time,

𝜕𝐻 (𝜓)
𝜕𝑡

=
d𝐻
d𝜓

𝜕𝜓

𝜕𝑡
(A.13)

= 𝜔𝐻′. (A.14)

213



Substituting back in gives,

F =

∫ 𝐿

0

∫ 𝑅2

𝑅1

∫ 𝜓(𝜃=2𝜋)

𝜓(𝜃=0)
𝑟𝜔𝐹 (𝑧)𝐺 (𝑟)𝐻′(𝜓)d𝜓d𝑟d𝑧. (A.15)

Integrating with respect to 𝜓 results in,

F = 𝜔 (𝐻 [𝜓(𝜃 = 2𝜋)] − 𝐻 [𝜓(𝜃 = 0)])
∫ 𝐿

0

∫ 𝑅2

𝑅1

𝑟𝐹 (𝑧)𝐺 (𝑟)d𝑟d𝑧. (A.16)

Again, due to the imposed periodic nature of the flowfield, the first term is identically zero. Thus,

F = 0, (A.17)

which means that the unsteady term in the control analysis can be neglected due the periodic nature
of the flowfield.
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APPENDIX B

Inequality within Experimental EAP

This appendix gives the mathematical differences between the experimental EAP and the area-
averaged total pressure. The differences arise from the resulting non-linear terms that arise in
trying to commute the area-averaging procedure to the product of several terms.

A simple decomposition of Q can be made such that it is expressed in terms of a mean component
and a variation, which depends on x, from that mean.

Q(x) = ⟨Q⟩A + Q′(x) (B.1)

where, by definition,
⟨Q⟩A =

1∬
𝐴

d𝐴

∬
𝐴

Q(x)d𝐴 =
1
𝐴

∬
𝐴

Qd𝐴 (B.2)

⟨Q′(x)⟩A = 0 (B.3)

⟨⟨Q⟩A⟩A = ⟨Q⟩A (B.4)

Consider the area-averaging procedure as applied to the basic gross thrust equation (Eqn. 2.19),
as given by,

〈
𝑝8(1 + 𝛾8𝑀

2
8,z)

〉
A =

1
𝐴8

∬
𝐴8

𝑝8(x)
[
1 + 𝛾8(x)𝑀2

8,z(x)
]
d𝐴 (B.5)

The decomposition introduced above is applied to the right-hand side integral. For simplicity, we
will neglect the variations of 𝛾8 around the annulus (𝛾′8 ≈ 0 ), although in reality there will be
additional terms that appear.∬

𝐴8

𝑝8(x) (1 + 𝛾8(x)𝑀8,z
2(x))d𝐴 =

∬
𝐴8

[
⟨𝑝8⟩A + 𝑝′8(x)

] (
1+

⟨𝛾8⟩A
[〈
𝑀8,z

〉
A + 𝑀′

8,z(x)
]2

)
d𝐴 (B.6)
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∬
𝐴8

𝑝8(x) (1 + 𝛾8(x)𝑀8,z
2(x))d𝐴 = 𝐴8 ⟨𝑝8⟩A

(
1 + ⟨𝛾8⟩A

〈
𝑀8,z

〉2
A

)
+

𝐴8 ⟨𝛾8⟩A

(
⟨𝑝8⟩A

〈
(𝑀′

8,z)
2〉

A + 2
〈
𝑀8,z

〉
A

〈
𝑝′8𝑀

′
8,z

〉
A +

〈
𝑝′8(𝑀

′
8,z)

2〉
A

)
(B.7)

Note the terms that arise from the variations (′). The average of the product of two or more variations
is not necessarily zero since the averaging is not commutative. Thus, it has been demonstrated that
Eq. 2.20 (shown below) is true,〈

𝑝8(1 + 𝛾8𝑀
2
8,z)

〉
A ≠ ⟨𝑝8⟩A (1 + ⟨𝛾8⟩A

〈
𝑀8,z

〉2
A) (B.8)

216



APPENDIX C

Ideal Equivalent Available Pressure Derivation

C.1 Overview

In this appendix, a derivation of the ideal EAP (EAPi) as originally proposed by Kaemming and
Paxson [113] is given, while extending it to include the effect of variable gas composition and
properties in the spatial domain. One of the underlying assumptions of the original derivation is
that it assumes constant properties (e.g., 𝑐𝑝 and 𝛾). This has been identified as a possible source
of errors as shown by Klopsch et al. [207] and the following derivation highlights where this
assumption affects the result.

C.2 Derivation

First, the ideal Mach number after expanding to ambient pressure is solved using isentropic relations.
In other words,

𝑝t,8(x)
𝑝0

=

(
1 + 𝛾8(x) − 1

2
𝑀2

9i(x)
) 𝛾8 (x)

𝛾8 (x)−1

(C.1)

is solved for 𝑀9i since 𝑝t,8 is known from the simulations. Using this Mach number, the ideal
velocity can be found.

𝑇9i(x) = 𝑇t,8(x)
(
1 + 𝛾8(x) − 1

2
𝑀2

9i(x)
)−1

(C.2)

𝑢9i(x) = 𝑀9i(x)
√︁
𝛾8(x)𝑅8(x)𝑇9i(x) (C.3)

Again,𝑇t,8 is known from the simulations. The above three equations when combined are equivalent
to Eqn. 2.21 without the nozzle efficiency term. I.e.,

𝑢9i(x) =

√√√√√
2𝑐𝑝,8(x)𝑇t,8(x)

1 −
(

𝑝0
𝑝t,8(x)

) 𝛾8 (x)−1
𝛾8 (x)

 (C.4)

217



The axial component of the ideal velocity is isolated by subtracting the circumferential compo-
nent from state 8 (which is assumed to not change across the nozzle) from the total velocity.

𝑢z,9i(x) =
√︃
𝑢2

9i(x) − 𝑢2
𝜃,9i(x) (C.5)

This velocity is in the examination of the kinetic energy component of the total enthalpy. As
such, the total enthalpy/temperature needs to be defined. Kaemming and Paxson assume that 𝑐𝑝,8
is a constant (or varies negligibly) such that a mass-averaged total temperature can be defined
similarly. [113] 〈

𝑇tz,8
〉

M =
1
¤𝑚8

∬
𝐴8

𝑇tz,8(x)d ¤𝑚8(x) (C.6)

The nozzle is assumed to conserve total temperature (enthalpy),

ℎtz,8(x) = 𝑐𝑝,8(x)𝑇9i(x) +
1
2
𝑢2

z,9i(x) (C.7)

= 𝑐𝑝,8(x)𝑇tz,8(x) (C.8)

The mass-averaging procedure is then applied to the above equation, while still assuming that 𝑐𝑝,8
is a constant.

〈
𝑐𝑝,8𝑇tz,8

〉
M = 𝑐𝑝,8 ⟨𝑇9i⟩M + 1

2

〈
𝑢2

z,9i

〉
M

(C.9)

= 𝑐𝑝,8
〈
𝑇tz,8

〉
M (C.10)

This can be manipulated into the following expression for the ideal mass-averaged exit static
temperature,

⟨𝑇9i⟩M =
〈
𝑇tz,8

〉
M −

〈
𝑢2

z,9i

〉
M

2𝑐𝑝,8
(C.11)

This result is very similar to the EAP-related average static temperature which is given as,

𝑇9i =
〈
𝑇tz,8

〉
M −

〈
𝑢z,9i

〉2
M

2𝑐𝑝,8
(C.12)

However, the square cannot be brought out of the averaging procedure, as there is a variation term
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(′) that would be ignored. I.e., 〈
𝑢2

z,9i

〉
M
≠

〈
𝑢z,9i

〉2
M (C.13)

=
〈
𝑢z,9i

〉2
M +

〈
(𝑢′z,9i)

2
〉

M
(C.14)

The velocity variations are likely too large to be neglected. The relation between the EAP equivalent
temperature (𝑇9i) and the mass-averaged temperature (⟨𝑇9i)⟩M) as derived here is,

𝑇9i = ⟨𝑇9i⟩M +

〈
(𝑢′z,9i)

2
〉

M
2𝑐𝑝,8

(C.15)

The final step to determining the total pressure is to utilize isentropic relationships to relate the
total temperature and pressure,

𝑝tz,8(x)
𝑝0

=

(
𝑇tz,8(x)
𝑇9(x)

) 𝛾8 (x)
𝛾8 (x)−1

(C.16)

Substituting the averaged total and static pressures while assuming a constant 𝛾8 (or using some
average value), the final equation for EAPi is recovered,

EAPi = 𝑝tz,8i = 𝑝0

( 〈
𝑇tz,8

〉
M

𝑇9i

) 𝛾8
𝛾8−1

(C.17)

Since the derivation of ideal EAP assumes constant gas properties (𝑐𝑝 and 𝛾), some ambiguity
arises as to which gas property to use since they vary around the annulus. Typically mass-averaged
gas properties are used, although area-averages have been shown to be more conservative [207].
On the other hand, the thrust-averaging procedure presented in the main body of this work can more
readily incorporate the variations in gas properties and eliminate ambiguity. Any discrepancies
between the thrust-averaging and the ideal EAP come from two sources, the variations in 𝑐𝑝,8 and
the variations in 𝛾8. The thrust-averaging can also be thought of as an extension of the ideal EAP
to capture those effects.
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APPENDIX D

Work-Averaged Extended Derivation

This appendix presents the remainder of the derivation of the work-averaged total pressure. The two
expressions for the theoretical work output ( ¤𝑊), Eqns. 2.43 and 2.44, are equated and subsequently
manipulated.

𝜂𝑡 ¤𝑚4
〈
𝑐𝑝,4𝑇tz,4

〉
M

1 −
(

𝑝tz,5〈
𝑝tz,4

〉
W

) ⟨𝛾4⟩M−1
⟨𝛾4⟩M

 =

∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
[
1−

(
𝑝tz,5

𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

]
d ¤𝑚4(x) (D.1)

𝜂𝑡 ¤𝑚4
〈
𝑐𝑝,4𝑇tz,4

〉
M

1 −
(

𝑝tz,5〈
𝑝tz,4

〉
W

) ⟨𝛾4⟩M−1
⟨𝛾4⟩M

 =

∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)d ¤𝑚4(x) −

∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)

(

𝑝tz,5

𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

 d ¤𝑚4 (D.2)

The first term on the right-hand side can be simplified by identifying that it is effectively the
mass-averaged total enthalpy as long as 𝜂𝑡 is constant.

𝜂𝑡 ¤𝑚4
〈
𝑐𝑝,4𝑇tz,4

〉
M =

∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)d ¤𝑚4(x) (D.3)
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Next, both sides are divided by the ¤𝑚4𝜂𝑡
〈
𝑐𝑝,4𝑇tz,4

〉
M:

1 −
(

𝑝tz,5〈
𝑝tz,4

〉
W

) ⟨𝛾4⟩M−1
⟨𝛾4⟩M

= 1 −

∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
(

𝑝tz,5

𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

d ¤𝑚4(x)

𝜂𝑡

∬
𝐴4

𝑐𝑝,4(x)𝑇tz,4(x)d ¤𝑚4(x)
(D.4)

( 〈
𝑝tz,4

〉
W

𝑝tz,5

) ⟨𝛾4⟩M−1
⟨𝛾4⟩M

=

𝜂𝑡

∬
𝐴4

𝑐𝑝,4(x)𝑇tz,4(x)d ¤𝑚4(x)∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
(

𝑝tz,5

𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

d ¤𝑚4(x)

(D.5)

〈
𝑝tz,4

〉
W =

©­­­­­­«
𝜂𝑡 (𝑝tz,5)

⟨𝛾4⟩M−1
⟨𝛾4⟩M

∬
𝐴4

𝑐𝑝,4(x)𝑇tz,4(x)d ¤𝑚4(x)∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
(

𝑝tz,5

𝑝tz,4(x)

) 𝛾4 (x)−1
𝛾4 (x)

d ¤𝑚4(x)

ª®®®®®®¬

⟨𝛾4⟩M
⟨𝛾4⟩M−1

(D.6)

Above is the proper form for the work-averaged total pressure. Due to the variations in 𝛾4, the
total pressure post turbine (𝑝tz,5) cannot be directly eliminated. Re-arranging the above equation,
to find how

〈
𝑝tz,4

〉
W depends on 𝑝tz,5, results in the following,

〈
𝑝tz,4

〉
W ∝

[∬
𝐴4

(𝑝tz,5)
𝛾4 (x)−1
𝛾4 (x) (𝑝tz,5)

− ⟨𝛾4⟩M−1
⟨𝛾4⟩M d ¤𝑚4(x)

]−1

(D.7)

∝
[∬

𝐴4

(𝑝tz,5)
𝛾4 (x)−⟨𝛾4⟩M
⟨𝛾4⟩M𝛾4 (x) d ¤𝑚4(x)

]−1

(D.8)

∝
[∬

𝐴4

(𝑝tz,5)
𝛾′4 (x)

⟨𝛾4⟩M𝛾4 (x) d ¤𝑚4(x)
]−1

(D.9)

If it is assumed that the variations in 𝛾4 are small compared to the mean (𝛾′4 ≪ ⟨𝛾4⟩M), the exponent
term becomes approximately zero. Thus, 𝑝tz,5 is effectively eliminated, resulting in an insignificant
dependence on the value of the chosen 𝑝tz,5. Overall, the following approximation is valid within
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a percent deviation,

⟨𝑝tz,4⟩W ≈

©­­­­­­«
𝜂𝑡

∬
𝐴4

𝑐𝑝,4(x)𝑇tz,4(x)d ¤𝑚4(x)∬
𝐴4

𝜂𝑡𝑐𝑝,4(x)𝑇tz,4(x)
(

1
𝑝tz,4(x)

) 𝛾4 (x)−1)
𝛾4 (x)

d ¤𝑚4(x)

ª®®®®®®¬

⟨𝛾4⟩M
⟨𝛾4⟩M−1

(D.10)
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APPENDIX E

Equating Time-Average to Area-Average Quantities
in Periodic Flowfields

E.1 Overview

This appendix has two goals. First, is to demonstrate the validity of equating the average over a
period of a point measurement and area-averaging of any quantity in a periodic flowfield, like what
is seen in RDCs. While this has been previously discussed and alluded to extensively in the RDC
community [113, 208], this paper seeks to directly support previous analysis and discussions through
a rigorous mathematical demonstration. The required assumptions/constraints are discussed, and
the equality is extended to averaging over a generic period of time (time-averaging) and for an
arbitrary number of wave systems. The second goal of this paper is to assert that the consistency
between the different total pressure measurement techniques is a direct consequence of the periodic
nature of the flowfield. By virtue of EAP being an effective area-average quantity and the flowfield
being periodic in space and time, the EAP would then be equal to time-averaged measures of the
total pressure (either from Kiel probes or the NPS method).

E.2 Proof

Consider an arbitrary thermodynamic or fluidic quantity Q within the RDC. Let us assume that the
spatiotemporal variation of Q is given by a generic function 𝑓 ; thus:

Q = 𝑓 (𝑟, 𝜃, 𝑧, 𝑡) (E.1)

≈ 𝑓 (𝜃, 𝑧, 𝑡) (E.2)

Cylindrical coordinates are used for convenience since many RDC geometries are cylindrical, but
the analysis that follows is not dependent on the choice of coordinate system. Additionally, the
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radial dependence is assumed to be negligible. The validity of this assumption has been evaluated
for small channel widths [106, 107] and with radial stratification of the fuel [166].

This work seeks to demonstrate that during the operation of a RDC, the time and area averages
of Q are equal, i.e., we seek to demonstrate that the following equality holds:〈

Q|𝑡i,𝑧i

〉
A =

〈
Q|𝜃i,𝑧i

〉
t (E.3)

where ⟨·⟩ is the averaging operator which is defined below.
Area-averaging procedure requires the definition of the plane over which the averaging procedure

is applied. For cylindrical RDCs, the simplest plane would be the cross-section at a given axial (𝑧i)
location. As such, for an axial plane given by 𝑧i and at time 𝑡i, the area-average (

〈
Q|𝑡i,𝑧i

〉
A) is given

by:

〈
Q|𝑡i,𝑧i

〉
A =

(∬
𝐴

d𝐴
)−1 ∬

𝐴

𝑓 (𝑟, 𝜃; 𝑧i, 𝑡i)d𝐴 (E.4)

=
1

2𝜋

∫ 𝜃=2𝜋

𝜃=0
𝑓 (𝜃; 𝑧i, 𝑡i)d𝜃 (E.5)

Meanwhile, the time-averaging procedure is performed at a single spatial location. Thus, at a
given circumferential, 𝜃i, and axial location 𝑧i, the time-average (

〈
Q|𝜃i,𝑧i

〉
t) is given by:

〈
Q|𝜃i,𝑧i

〉
t =

(∫ 𝑡2

𝑡1

d𝑡
)−1 ∫ 𝑡2

𝑡1

𝑓 (𝑡; 𝜃i, 𝑧i)d𝑡 (E.6)

The averaging procedure is over the time interval given by [𝑡1, 𝑡2] where 𝑡2 > 𝑡1. The bounds of
this time-averaging will be assigned later in this section.

E.2.1 Single Mode Operation

First, we limit the analysis to the case when the RDC has a single wave system (mode) during
operation. This wave system is comprised of one or more detonation wave(s) rotating in the same
direction. The number, strength, and position of the detonation wave(s) relative to one another are
irrelevant. For instance, the wave system can consist of a single detonation wave propagating with
an angular velocity of 𝜔 or multiple co-rotating detonation waves that are each propagating at 𝜔.
The multiple co-rotating waves do not need to be identical in terms of pressure ratio, heat release
profile, etc. (see Section 6.3.2); however, they must maintain the same angular speed (𝜔). This is
equivalent to saying that the flowfield is steady in the rotating (detonation) frame of reference given
by the angular speed 𝜔.
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With this framework, the functional dependence of Q on 𝜃 and 𝑡 in Q ( 𝑓 ) can be described by a
periodic function (𝑔) that only depends on the relative position of the detonation wave system (𝜓)
given by,

𝜓 = 𝜃 + 𝜔𝑡 (E.7)

For now, we impose that𝜔 does not vary in space or time and can be treated as a constant throughout
the operation. This corresponds to imposing the following condition on 𝜔:

𝜕𝜔

𝜕𝜃
=
𝜕𝜔

𝜕𝑡
= 0 (E.8)

or alternatively,

d𝜓 = d𝜃 (E.9)

= 𝜔d𝑡 (E.10)

E.2.1.1 Area-Average

Performing a change of variables on Eqn. E.5 utilizing Eqns. E.7 and E.9 gives,

〈
Q|𝑡i,𝑧i

〉
A =

1
2𝜋

∫ 𝜓(𝜃=2𝜋,𝑡=𝑡i)

𝜓(𝜃=0,𝑡=𝑡i)
𝑔(𝜓; 𝑧i)d𝜓 (E.11)

The bounds of integration are evaluated to be,

𝜓(𝜃 = 0, 𝑡 = 𝑡i) = 𝜔𝑡i (E.12)

𝜓(𝜃 = 2𝜋, 𝑡 = 𝑡i) = 2𝜋 + 𝜔𝑡i (E.13)

where 𝜔𝑡i can be treated as a constant.
The function, 𝑔(𝜓), is constructed to be periodic over the 𝜓 domain since the flowfield is

assumed to be steady in the detonation frame of reference. If a real function 𝐹 (𝑥) is periodic and
integrable over its period (T ), the following relation is always true:∫ T

0
𝐹 (𝑥)d𝑥 =

∫ T+𝑎

𝑎

𝐹 (𝑥)d𝑥 (E.14)

for every 𝑎 ∈ R. Since 𝜓 describes a full cycle of the detonation wave(s), it has a period of 2𝜋.
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Using Eqns. E.11-E.14 the area-average can be rewritten as,

⟨Q|𝑡i⟩A =
1

2𝜋

∫ 2𝜋+𝜔𝑡i

𝜔𝑡i

𝑔(𝜓; 𝑧i)d𝜓 (E.15)

=
1

2𝜋

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 (E.16)

No further simplifications can be made; thus, this is the final form for the area-average.

E.2.1.2 Time-Average over One Period

Now, we turn our focus to the time-averaging procedure. Before addressing the full form of the
time-averaging procedure, we consider the case where the averaging occurs over a single period
(𝜏) according to: 〈

Q|𝜃i,𝑧i

〉
𝜏
=

(∫ 𝑡j+𝜏

𝑡j

d𝑡

)−1 ∫ 𝑡j+𝜏

𝑡j

𝑓 (𝑡; 𝜃i, 𝑧i)d𝑡 (E.17)

The time-averaging procedure begins at time, 𝑡j, which is arbitrary. The subscript “j” is to
differentiate from the instantaneous time that the area-averaging is performed on. It is possible that
subsequent time-averaged measurements are taken in series and the “j” gives its position within the
series.

Again, a change of variables is performed on Eqn. E.17 utilizing Eqns. E.7 and E.10.

〈
Q|𝜃i,𝑧i

〉
𝜏
=

(∫ 𝜓(𝜃=𝜃i,𝑡=𝑡j+𝜏)

𝜓(𝜃=𝜃i,𝑡=𝑡j)

1
𝜔

d𝜓

)−1 ∫ 𝜓(𝜃=𝜃i,𝑡=𝑡j+𝜏)

𝜓(𝜃=𝜃i,𝑡=𝑡j)

𝑔(𝜓; 𝑧i)
𝜔

d𝜓 (E.18)

The bounds of integration of the above equation are evaluated to be,

𝜓(𝜃 = 𝜃i, 𝑡 = 𝑡j) = 𝜃i + 𝜔𝑡j (E.19)

𝜓(𝜃 = 𝜃i, 𝑡 = 𝑡j + 𝜏) = 𝜃i + 𝜔(𝑡j + 𝜏) (E.20)

This can be further simplified by using the definition of the angular speed, 𝜔 = 2𝜋/𝜏. Using
the bounds of integration, the additive property of definite integrals, and recalling Eqn. E.14, the
period-averaged quantity can then be expressed as:〈

Q|𝜃i,𝑧i

〉
𝜏
=

1
𝜔𝜏

∫ 𝜔𝜏

0
𝑔(𝜓; 𝑧i)d𝜓 (E.21)

=
1

2𝜋

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 (E.22)
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Equations E.16 and E.22 are equivalent, thus proving that Eqn. E.3 is valid if there is a single
wave system uniformly propagating at a constant angular speed. The time-averaging, thus far, must
be performed over time-intervals equal to the period of the wave system.

E.2.1.3 Convergence of Time-Average

While averaging over a singular period is possible for time-resolved measurements, other mea-
surements can be taken at a sample rate significantly smaller than the detonation wave(s). One
such measurement are the CTAPs that are frequently in the experimental setup of RDC testing
[169]. Thus, the analysis presented in the preceding section must be expanded to account for longer
intervals of time-averaging.

Now consider averaging the quantity, Q, over an arbitrary length of time (𝔗). The arbitrary
length of time can be expressed in terms of the period of the wave system (𝜏) as:

𝔗 = 𝑛𝜏 + 𝛿𝑡 (E.23)

where 𝑛 ∈ Z and 𝛿𝑡 is the remainder after factoring out the 𝑛 periods from 𝔗. From this, the
time-average can be defined as:

〈
Q|𝜃i,𝑧i

〉
t =

(∫ 𝑡j+𝔗

𝑡j

d𝑡

)−1 ∫ 𝑡j+𝔗

𝑡j

𝑓 (𝑡; 𝜃i, 𝑧i)d𝑡 (E.24)

Again, the time interval begins at the arbitrary 𝑡j.
Using the same definition of 𝜓 given in Eqn. E.7, a replacement of variables is employed to

convert everything to be in terms of 𝜓,

〈
Q|𝜃i,𝑧i

〉
t =

(∫ 𝜓(𝜃=𝜃i,𝑡=𝑡j+𝔗)

𝜓(𝜃=𝜃i,𝑡=𝑡j)

1
𝜔

d𝜓

)−1 ∫ 𝜓(𝜃=𝜃i,𝑡=𝑡j+𝔗)

𝜓(𝜃=𝜃i,𝑡=𝑡j)

𝑔(𝜓; 𝑧i)
𝜔

d𝜓 (E.25)

The bounds of integration are now evaluated to be,

𝜓(𝜃 = 𝜃i, 𝑡 = 𝑡j) = 𝜃i + 𝜔𝑡j (E.26)

𝜓(𝜃 = 𝜃i, 𝑡 = 𝑡j + 𝔗) = 𝜃i + 𝜔(𝑡j + 𝑛𝜏 + 𝛿𝑡) (E.27)

Substituting these bounds and utilizing the additive property of definite integrals to break up the
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integral gives the following,

〈
Q|𝜃i,𝑧i

〉
t =

1
2𝜋𝑛 + 𝜔𝛿𝑡

[∫ 𝜃i+𝜔𝑡j+2𝜋𝑛

𝜃i+𝜔𝑡j
𝑔(𝜓; 𝑧i)d𝜓 +

∫ 𝜃i+𝜔𝑡j+2𝜋𝑛+𝜔𝛿𝑡

𝜃i+𝜔𝑡j+2𝜋𝑛
𝑔(𝜓; 𝑧i)d𝜓

]
(E.28)

=
1

2𝜋𝑛 + 𝜔𝛿𝑡

[
𝑛∑︁

𝑘=1

∫ 𝜃i+𝜔𝑡j+2𝜋𝑘

𝜃i+𝜔𝑡j+2𝜋(𝑘−1)
𝑔(𝜓; 𝑧i)d𝜓 +

∫ 𝜃i+𝜔𝑡j+2𝜋𝑛+𝜔𝛿𝑡

𝜃i+𝜔𝑡j+2𝜋𝑛
𝑔(𝜓; 𝑧i)d𝜓

]
(E.29)

Note that Eqn. E.14 can be applied to the integral within the summation, since the difference
in the upper and lower bounds is 2𝜋. The 𝜃i + 𝜔𝑡j term, which is treated as a constant, can be thus
eliminated from the summed integral. Likewise, the 2𝜋𝑛 term can also be eliminated in the bounds
for the second integral. The additional simplification results in the following,

〈
Q|𝜃i,𝑧i

〉
t =

1
2𝜋𝑛 + 𝜔𝛿𝑡

[
𝑛∑︁

𝑘=1

∫ 2𝜋𝑘

2𝜋(𝑘−1)
𝑔(𝜓; 𝑧i)d𝜓 +

∫ 𝜃i+𝜔𝑡j+𝜔𝛿𝑡

𝜃i+𝜔𝑡j
𝑔(𝜓; 𝑧i)d𝜓

]
(E.30)

=
𝑛

2𝜋𝑛 + 𝜔𝛿𝑡

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 + 1

2𝜋𝑛 + 𝜔𝛿𝑡

∫ 𝜃i+𝜔𝑡j+𝜔𝛿𝑡

𝜃i+𝜔𝑡j
𝑔(𝜓; 𝑧i)d𝜓 (E.31)

From this equation, it can be seen that this time-average not only depends on where in the deto-
nation cycle the measurement began, as given by 𝜔𝑡j, but also where in the detonation cycle the
measurement ended, as given by 𝜔𝑡j + 𝜔𝛿𝑡.

It is desirable to express Eqn. E.31 in a more compact form and evaluate the potential error
introduced by integrating over a non-integer multiple of the period. To do this, the quantity 𝛼 is
introduced as the ratio between the two integrals in Eqn. E.31 as follows,

𝛼(𝛿𝑡; 𝑡j) =

∫ 𝜃i+𝜔𝑡j+𝜔𝛿𝑡

𝜃i+𝜔𝑡j
𝑔(𝜓; 𝑧i)d𝜓∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓

(E.32)

For the properties considered in this work (e.g., pressure, temperature, etc.), 𝑔(𝜓) > 0 for all values
of 𝜓. Thus, 𝛼 has to be strictly positive and cannot be larger than one.

0 ≤ 𝛼(𝛿𝑡; 𝑡j) ≤ 1 (E.33)
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Using 𝛼, Eqn. E.31 can be manipulated in the following manner,

〈
Q|𝜃i,𝑧i

〉
t =

𝑛

2𝜋𝑛 + 𝜔𝛿𝑡

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 +

𝛼(𝛿𝑡; 𝑡j)
2𝜋𝑛 + 𝜔𝛿𝑡

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 (E.34)

=

(
𝑛 + 𝛼(𝛿𝑡; 𝑡j)
𝑛 + 𝜔𝛿𝑡

2𝜋

) (
1

2𝜋

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓

)
(E.35)

Other than the additional term in the first set of parentheses, Eqn. E.35 looks identical to that
of the area-average as given by Eqn. E.16. Due to not integrating over an exact integer number of
periods, an error (𝜖) is going to be introduced relative to the area-average. This is given by,

𝜖 =
��〈Q|𝜃i,𝑧i

〉
t −

〈
Q|𝑡i,𝑧i

〉
A

�� (E.36)

=

�����𝑛 + 𝛼(𝛿𝑡; 𝑡j)
𝑛 + 𝜔𝛿𝑡

2𝜋
− 1

����� 〈Q|𝑡i,𝑧i

〉
A (E.37)

While there is no direct means to evaluate the error, as that would require knowing the shape of
𝑔(𝜓), the worst case scenario can be taken to find the rate of convergence. The worst-case scenario
is 𝛼 = 1 when 𝛿𝑡 = 0. This gives the rate of convergence as,

𝜖 =

����𝑛 + 1
𝑛

− 1
���� 〈Q|𝑡i,𝑧i

〉
A (E.38)

=

����1𝑛 ���� 〈Q|𝑡i,𝑧i

〉
A (E.39)

This provides the maximum difference between averaging Q over an arbitrary period of time at a
single point (

〈
Q|𝜃i,𝑧i

〉
t) and averaging Q over the area at a single instance of time (

〈
Q|𝑡i,𝑧i

〉
A). If

𝔗 ≫ 𝜏 such that 𝑛 ≫ 1, the error will converge to zero. Thus, the following approximation can be
made for a sufficiently long integration time scale,

𝜖 ≈ 0 (E.40)〈
Q|𝑡i,𝑧i

〉
A ≈

〈
Q|𝜃i,𝑧i

〉
t (E.41)

From this analysis, the time-averaged and area-averaged quantities can be equated for a single
mode of operation as long as the angular velocity is constant, and the time-integration is over a
single period or many periods.
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E.2.2 Multiple Modes

Thus far, we have limited our discussion to a single wave system (mode) that rotates about a
single constant period. An extension can be made for when multiple wave systems (modes)
exist simultaneously in the RDC. This has practical applications since secondary waves and/or
counter-rotating detonation waves are common occurrences in RDCs [209, 45, 210, 211].

The quantity, Q, can still be described by the general spatiotemporal function, 𝑓 , given by Eqn.
E.1. That being said, unlike the previous section, 𝑓 cannot be cast in terms of a single phase
variable (i.e., 𝜓) since the flowfield would also depend on the relative position of the multiple
wave modes at any given instance in time. Instead, Q depends on the relative positioning of all
the modes simultaneously. For instance, assuming that there are two independent wave systems
propagating continuously in the RDC, the phase variables that describe their propagation are given
by the following,

𝜓 = 𝜃 + 𝜔1𝑡 (E.42)

𝜙 = 𝜃 + 𝜔2𝑡 + 𝛿𝜃 (E.43)

where 𝜔1 and 𝜔2 represent the rotational speed of the two different wave systems. The additional
𝛿𝜃 term is added to allow for the different waves to be spaced apart by an arbitrary amount at 𝑡 = 0
(i.e., it represents the phase delay between the two wave systems). Although this process can be
done for any number of modes, the demonstration provided in this work will focus on two modes
for simplicity. It is again assumed that both 𝜔1 and 𝜔2 are constant, similar to Eqn. E.8. The
periods for the two wave systems are 𝜏1 and 𝜏2 for 𝜓 and 𝜙 respectively.

An assumption is required about the interaction between the different modes. In the interest of
proving the equality in Eqn. E.3, it is assumed that the wave systems are linearly superimposed
upon one another. That is to say, the waves do not non-linearly interact and the overall flowfield
can be described by,

𝑓 (𝜃, 𝑧, 𝑡) = 𝑔(𝜓, 𝑧) + ℎ(𝜙, 𝑧) (E.44)

As we will discuss further below, this is an approximation that is in general not true, but it is
necessary to provide a convenient solution to the problem. However, this assumption does not
preclude us from drawing conclusions from the results presented next which also informs us of the
properties of averaging when non-linear wave interactions are present.

E.2.2.1 Area-Average

To process to evaluate the area-averaging procedure begins by directly combining Equations E.5
and E.44. A separation of the functions 𝑔 and ℎ is performed using the additive property of definite
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integrals. After the separation, a change of variables for each integral is done to get the integrals in
terms of the phase variables. These steps are expressed in the following equations,

〈
Q|𝑡i,𝑧i

〉
A =

1
2𝜋

∫ 𝜃=2𝜋

𝜃=0
[𝑔(𝜓; 𝑧i) + ℎ(𝜙; 𝑧i)] d𝜃 (E.45)

=
1

2𝜋

[∫ 𝜃=2𝜋

𝜃=0
𝑔(𝜓; 𝑧i)d𝜃 +

∫ 𝜃=2𝜋

𝜃=0
ℎ(𝜙; 𝑧i)d𝜃

]
(E.46)

=
1

2𝜋

[∫ 𝜓(𝜃=2𝜋,𝑡=𝑡i)

𝜓(𝜃=0,𝑡=𝑡i)
𝑔(𝜓; 𝑧i)d𝜓 +

∫ 𝜙(𝜃=2𝜋,𝑡=𝑡i)

𝜙(𝜃=0,𝑡=𝑡i)
ℎ(𝜙; 𝑧i)d𝜙

]
(E.47)

The need for the linear superposition is immediately evident in allowing for the phase variables to
be separated in the manner described above. Following the defintion of Eqn. E.43, the bounds of
integration for 𝜙 are evaluated to be,

𝜙(𝜃 = 0, 𝑡 = 𝑡i) = 𝜔2𝑡i + 𝛿𝜃 (E.48)

𝜙(𝜃 = 2𝜋, 𝑡 = 𝑡i) = 2𝜋 + 𝜔2𝑡i + 𝛿𝜃 (E.49)

where 𝜔2𝑡i and 𝛿𝜃 can both be treated as constants. Meanwhile, the bounds of integration for 𝜓
remain Eqns. E.12 and E.13.

Both phase variables, 𝜓 and 𝜙, are periodic between values of 0 and 2𝜋 by construction. Thus,
the property of periodic functions (Eqn. E.14) can be applied to both integrals in Eqn. E.47 like
what was done for the single-mode operation in the previous section. This gives the following final
simplification, 〈

Q|𝑡i,𝑧i

〉
A =

1
2𝜋

[∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 +

∫ 2𝜋

0
ℎ(𝜙; 𝑧i)d𝜙

]
(E.50)

Note how the above equation is very similar to the result of area-averaging for the single mode
given in Eqn. E.16. This is a direct result of the linear superposition assumption.

E.2.2.2 Time-Average over One Period

A similar process of separating the phase variables in the time-average integral before applying the
change of variables is possible. First, the time-averaging process is applied over the period of the
first mode, 𝜏1, which is associated with the 𝜓 variable. The time average quantity then becomes:

〈
Q|𝜃i,𝑧i

〉
𝜏
=

(∫ 𝜓(𝜃=𝜃i,𝑡=𝑡j+𝜏1)

𝜓(𝜃=𝜃i,𝑡=𝑡j)

1
𝜔1

d𝜓

)−1 [∫ 𝜓(𝜃=𝜃i,𝑡=𝑡j+𝜏1)

𝜓(𝜃=𝜃i,𝑡=𝑡j)

𝑔(𝜓; 𝑧i)
𝜔1

d𝜓+∫ 𝜙(𝜃=𝜃i,𝑡=𝑡j+𝜏1)

𝜙(𝜃=𝜃i,𝑡=𝑡j)

ℎ(𝜙; 𝑧i)
𝜔2

d𝜙
]

(E.51)
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The bounds of integration for 𝜙 are evaluated to be,

𝜙(𝜃 = 𝜃i, 𝑡 = 𝑡j) = 𝜃i + 𝜔2𝑡j + 𝛿𝜃 (E.52)

𝜙(𝜃 = 𝜃i, 𝑡 = 𝑡j + 𝜏1) = 𝜃i + 𝜔2(𝑡j + 𝜏1) + 𝛿𝜃 (E.53)

where 𝜔2𝑡j and 𝛿𝜃 can both be treated as constants. Meanwhile, the bounds of integration for 𝜓
remain Eqns. E.19 and E.20. Recall that 𝜔1𝜏1 = 2𝜋 and is the period of the periodic function 𝑔.
Equation E.51 can then be manipulated in the following way,

〈
Q|𝜃i,𝑧i

〉
𝜏
=

(∫ 𝜃i+𝜔1 (𝑡j+𝜏1)

𝜃i+𝜔1𝑡j

d𝜓

)−1 [∫ 𝜃i+𝜔1 (𝑡j+𝜏1)

𝜃i+𝜔1𝑡j

𝑔(𝜓; 𝑧i)d𝜓 + 𝜔1
𝜔2

∫ 𝜃i+𝜔2 (𝑡j+𝜏1)+𝛿𝜃

𝜃i+𝜔2𝑡j+𝛿𝜃
ℎ(𝜙; 𝑧i)d𝜙

]
(E.54)

=
1

𝜔1𝜏1

[∫ 𝜔1𝜏1

0
𝑔(𝜓; 𝑧i)d𝜓 + 𝜔1

𝜔2

∫ 𝜃i+𝜔2 (𝑡j+𝜏1)+𝛿𝜃

𝜃i+𝜔2𝑡j+𝛿𝜃
ℎ(𝜙; 𝑧i)d𝜙

]
(E.55)

=
1

2𝜋

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 + 1

𝜔2𝜏1

∫ 𝜃i+𝜔2 (𝑡j+𝜏1)+𝛿𝜃

𝜃i+𝜔2𝑡j+𝛿𝜃
ℎ(𝜙; 𝑧i)d𝜙 (E.56)

The second integral cannot be simplified further as 𝜔2𝜏1 does not necessarily equal an integer
multiple 2𝜋. A similar result would arise if the time-averaging was performed over 𝜏2 instead of
𝜏1. Since Eqn. E.56 does not match Eqn. E.50, it cannot be said that time-averaging over the
period of one of the wave systems is equivalent to the area-averaging over an instance in time. In
the context of RDCs, if either a secondary wave system or counter-propagating detonation wave(s)
exists, averaging a time-resolved measurement over the detonation period is not the same as an
area-integrated or area-averaged measurement. This is true for the case where modes are linearly
superimposed upon one another, as well as non-linearly superimposed.

E.2.2.3 Convergence of Time-Average

Similar to what was done in Section E.2.1.3 for the single mode, the averaging procedure is now
performed over an arbitrary time (𝔗). Expressing this time relative to the two relevant periods
gives,

𝔗 = 𝑛𝜏1 + 𝛿𝑡1 (E.57)

= 𝑚𝜏2 + 𝛿𝑡2 (E.58)
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where 𝑛, 𝑚 ∈ Z and the 𝛿𝑡 terms are again the remainders. Changing the bounds of Eqn. E.51 to
reflect the new integration length and performing some simplifications results in the following,

〈
Q|𝜃i,𝑧i

〉
t =

1
𝜔1𝔗

∫ 𝜓(𝜃=𝜃i,𝑡=𝑡j+𝔗)

𝜓(𝜃=𝜃i,𝑡=𝑡j)
𝑔(𝜓; 𝑧i)d𝜓 + 1

𝜔2𝔗

∫ 𝜙(𝜃=𝜃i,𝑡=𝑡j+𝔗)

𝜙(𝜃=𝜃i,𝑡=𝑡j)
ℎ(𝜙; 𝑧i)d𝜙 (E.59)

The integration bounds for 𝜓 are the same as seen in Eqns. E.26 and E.27. Meanwhile, the
integration bounds for 𝜙 are evaluated as,

𝜙(𝜃 = 𝜃i, 𝑡 = 𝑡j) = 𝜃i + 𝜔2𝑡j + 𝛿𝜃 (E.60)

𝜙(𝜃 = 𝜃i, 𝑡 = 𝑡j + 𝔗) = 𝜃i + 𝜔2(𝑡j + 𝑚𝜏2 + 𝛿𝑡2) + 𝛿𝜃 (E.61)

Again, 𝜃i, 𝜔2𝑡j, and 𝛿𝜃 can all be treated as constants within the bounds. The same process as
elaborated in the single mode analysis is applied; the definite integrals are broken apart using
the additive property and the property of periodic functions is utilized. Doing so will result in a
summation of both 𝑔 and ℎ over their periods with the remainder of the integration time being left
as a separate integral (see Eqn. E.31). After manipulation, the final equation is given as,

〈
Q|𝜃i,𝑧i

〉
t =

𝑛

2𝜋𝑛 + 𝜔1𝛿𝑡1

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 + 1

2𝜋𝑛 + 𝜔1𝛿𝑡1

∫ 𝜃i+𝑡j+2𝜋𝑛+𝛿𝑡1

𝜃i+𝑡j+2𝜋𝑛
𝑔(𝜓; 𝑧i)d𝜓

+ 𝑚

2𝜋𝑚 + 𝜔2𝛿𝑡2

∫ 2𝜋

0
ℎ(𝜙; 𝑧i)d𝜙 + 1

2𝜋𝑚 + 𝜔2𝛿𝑡2

∫ 𝜃i+𝑡j+2𝜋𝑚+𝛿𝑡2

𝜃i+𝑡j+2𝜋𝑚
ℎ(𝜙; 𝑧i)d𝜙

(E.62)

If both 𝛿𝑡1 and 𝛿𝑡2 are set to be zero in the above equation, it can be reduced into the following
form. 〈

Q|𝜃i,𝑧i

〉
t =

1
2𝜋

[∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 +

∫ 2𝜋

0
ℎ(𝜙; 𝑧i)d𝜙

]
(E.63)

This is the same result from the area-averaging as seen in Eqn. E.50. From this, it can be seen that
a super-period, 𝜏∗, can be defined such that the time-average and area-average are equivalent. This
super-period is defined as the least common multiple (lcm) of the two periods since both 𝑛 and 𝑚

are integers (𝑛, 𝑚 ∈ Z).
𝜏∗ = lcm(𝜏1, 𝜏2) (E.64)

In other words, 𝜏∗ satisfies the condition with the smallest values of 𝑛 and 𝑚 possible.

𝜏∗ = 𝑛𝜏1 = 𝑚𝜏2 (E.65)

While useful, the averaging procedure may not always be an integer multiple of the super-period.
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It is therefore useful to reduce the number of integrals in a manner similar to what was done in
Section E.2.1.3. As such the following quantities indicating the fraction of the integration length
with respect to the period are used to simplify Eqn. E.62:

𝛼(𝛿𝑡1; 𝑡j) =

∫ 𝜃i+𝜔1𝑡j+𝜔1𝛿𝑡

𝜃i+𝜔1𝑡j

𝑔(𝜓; 𝑧i)d𝜓∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓

(E.66)

𝛽(𝛿𝑡2; 𝑡j) =

∫ 𝜃i+𝜔2𝑡j+𝛿𝜃+𝜔2𝛿𝑡

𝜃i+𝜔2𝑡j+𝛿𝜃
ℎ(𝜙; 𝑧i)d𝜙∫ 2𝜋

0
ℎ(𝜙; 𝑧i)d𝜙

(E.67)

Using these definitions, Eqn. E.62 can be re-written as,

〈
Q|𝜃i,𝑧i

〉
t =

𝑛 + 𝛼(𝛿𝑡1; 𝑡j)
2𝜋𝑛 + 𝜔1𝛿𝑡1

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 +

𝑚 + 𝛽(𝛿𝑡2; 𝑡j)
2𝜋𝑚 + 𝜔2𝛿2

∫ 2𝜋

0
ℎ(𝜙; 𝑧i)d𝜙 (E.68)

=

(
𝑛 + 𝛼(𝛿𝑡1; 𝑡j
𝑛 + 𝜔1𝛿𝑡1

2𝜋

) (
1

2𝜋

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓

)
+

(
𝑚 + 𝛽(𝛿𝑡2; 𝑡j)
𝑚 + 𝜔2𝛿𝑡2

2𝜋

) (
1

2𝜋

∫ 2𝜋

0
ℎ(𝜙; 𝑧i)d𝜙

)
(E.69)

Using the result of the area-averaging procedure discussed previously (Eqn. E.50), the difference
between the time-averaged and area-averaged serves as the error that is committed in approximating
the two averaged values as being equivalent. Thus, the error is defined as:

𝜖 =
��〈Q|𝜃i,𝑧i

〉
t −

〈
Q|𝑡i,𝑧i

〉
A

�� (E.70)

=

�����
(
𝛼(𝛿𝑡1; 𝑡j) − 𝜔1𝛿𝑡1

2𝜋

𝑛 + 𝜔1𝛿𝑡1
2𝜋

) (
1

2𝜋

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓

)
+

(
𝛽(𝛿𝑡2; 𝑡j) − 𝜔2𝛿𝑡2

2𝜋

𝑚 + 𝜔2𝛿𝑡2
2𝜋

) (
1

2𝜋

∫ 2𝜋

0
ℎ(𝜙; 𝑧i)d𝜙

)�����
(E.71)

Like with the single mode, the worst possible disagreement between the time-average and area-
average can be found by taking the limit as 𝛿𝑡1 → 0, 𝛿𝑡2 → 0 and enforcing that 𝛼 → 1, 𝛽 → 1. In
such a limit, the error becomes,

𝜖 =

����1𝑛 1
2𝜋

∫ 2𝜋

0
𝑔(𝜓; 𝑧i)d𝜓 + 1

𝑚

1
2𝜋

∫ 2𝜋

0
ℎ(𝜙; 𝑧i)d𝜙

���� (E.72)

Unsurprisingly, each term convergences by one over the number of periods within the averaging
window. This matches what was found for the single mode. Consider the case of two wave
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systems that propagate at the same speed but in the opposite direction to one another; the so-called
“slapping” or “clapping” mode of operation [13]. By moving at the same speed, 𝑛 = 𝑚 which
causes Eqn. E.72 to reduce to the result from the single mode analysis (Eqn. E.39). Outside of
this specific situation, if 𝔗 ≫ 𝜏1, 𝜏2 such that 𝑛, 𝑚 ≫ 1, the error will converge to zero. Thus, the
time-average and area-average can be equated under the assumption of the linear superposition of
the different modes.

The conclusions for the two-mode operation presented here can be readily extended to scenarios
with more than two wave systems. If the overall flowfield remains subject to the linear superposition
assumption, Eqn. E.44 can describe any number of modes with an equivalent amount of phase
variables. A super-period can be defined regardless of the number of wave modes and if the
time-average is over that super-period, the result would match the area-averaged. Likewise, the
error between the area-averaged and time-average over an arbitrary time (Eqn. E.72) would be the
summation of the integrals of the functional representation of the wave systems (𝑔, ℎ, ...) scaled
by the inverse in the number of periods associated with each wave system (1/𝑛, 1/𝑚, ...).

E.3 Discussion

The validity of the assumptions made throughout this work warrants further discussion. One of
the key assumptions was neglecting any variations in the wavespeed. The detonation wave(s) can
continuously propagate in a stable manner while simultaneously having varying wave speeds [212].
Likewise, modal transitions can occur during experimentation in which the wavespeed can oscillate
before the transition [213]. Even during stable operation, there exists some cycle-to-cycle variability
in the measured detonation wavespeed (for example, [214, 215]. The analysis presented here best
applies when the averaging occurs when the wave multiplicity remains the same, as the unsteady
nature of modal transitions and step-changes in velocity from a change in multiplicity invalidates
the demonstrated equality (Eqn. E.3). As for the cases when the multiplicity remains constant but
the waves change speed, as long as the distribution of wavespeeds are normally distributed about
a mean, all the methods will converge if the time-average is taken over a period much longer than
the time over which changes in wavespeed occurs.

Another implicit assumption that was made is that the time-average at any point does not depend
on the circumferential location of that measurement point (Eqns. E.6 and E.71). Codoni et al.
provided evidence that this is incorrect [120]. CTAP measurements taken at the same axial location
but different circumferential locations revealed that there is a non-uniformity in the “average” static
pressure about the annulus. Thus, while a single measurement point may be able to resolve the
full spatial variations caused solely by the detonation wave in an idealistic system, any additional
spatial variations caused by misaligned geometry, upstream components, etc., limit the usefulness
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of a single measurement point. Currently, there is no means of knowing a priori if such additional
spatial variations exist; taking measurements in experiments at different circumferential locations
is required to address this. In the case of disagreements in the time-averaged quantities, quantities
then have to be averaged over the area to be more consistent with the EAP metric [120].

Finally, in regards to the multiple modes analysis, it has been established in the literature that
counter-propagating detonation/secondary wave systems non-linearly interact when the waves are
co-located in space [211, 45]. For example, the peak pressure at the local interaction is larger
than the summation of the peak pressures of the individual waves. The non-linear interactions
then lead to the area-average quantities varying in time since the average would depend on the
relative positions of the wave systems. This contrasts the results presented in this work where the
area-averaged is invariant with time. At the time of writing a link between non-linear interactions
and performance metrics at the outlet has yet to be established. Furthermore, there has yet to be a
demonstration that the local intersection of downstream propagating oblique shocks results in non-
linear interactions at the exit throat. Such interactions are theorized to exist and thus, they would
result in time-variation of thrust and subsequently EAP produced by RDCs even if the speeds of
the wave systems are constant. That being said, since the experimental EAP is oftentimes averaged
over time windows that are significantly larger than the period of interactions, it is likely that the
effects of the non-linear interaction on the steady state value are mitigated.
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APPENDIX F

Sensor Positions for Base Drag Correction

This appendix contains a detailed description of the different pressure measurements used to
measure the base drag of the RDC. The sensor name, radial position (𝑟), circumferential location
(𝜃), and pressure sensor range are provided in Table F.1.

Sensor Position 𝑟 [cm] 𝜃 [◦] Sensor Range [atm]
𝑝cb 1 0 - 2.04
𝑝cb 2 0.386 0 13.6
𝑝cb 3 0.770 120 13.6
𝑝cb 4 1.16 240 13.6
𝑝cb 5 1.54 0 13.6
𝑝cb 6 1.93 120 13.6
𝑝cb 7 2.31 240 13.6
𝑝cb 8 2.70 0 13.6
𝑝cb 9 3.08 120 2.04
𝑝cb 10 3.47 240 2.04
𝑝cb 11 3.85 0 2.04
𝑝cb 12 4.24 120 2.04
𝑝cb 13 4.62 240 2.04
𝑝cb 14 5.00 0 2.04
𝑝cb 15 5.39 120 2.04
𝑝cb 16 5.78 240 2.04
𝑝cb 17 6.16 0 2.04
𝑝fl 1 7.82 -5 2.04
𝑝fl 2 7.82 5 2.04
𝑝fl 3 7.82 115 2.04
𝑝fl 4 7.82 125 2.04
𝑝fl 5 7.82 235 2.04
𝑝fl 6 7.82 245 2.04

Table F.1: Position and sensor range for CTAP measurements taken for base drag correction.
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APPENDIX G

Pressure Gain Uncertainty Sensitivity Coefficients

As a part of the sensitivity analysis of the PG measurement, the partial derivatives of pressure
gain with respect to the other variables are required. These partial derivatives are the sensitivity
coefficients in the uncertainty propagation equations; they determine the impact of the individual
variable’s uncertainty on the overall PG uncertainty. Presented in this appendix are the partial
derivatives of Eqn. 5.10 and an order of magnitude analysis to provide a sense of scale. The
equations for the EAP and PG are repeated here for simplicity. Recall that the equation for the EAP
for any Mach number is as follows:

EAP(𝑀8,z) = 𝑝8

(
1 + 𝛾8 − 1

2
𝑀2

8,z

) 𝛾8
𝛾8−1

(G.1)

=

(
𝐹G
𝐴8

+ 𝑝∞

) (
1 + 𝛾8−1

2 𝑀2
8,z

) 𝛾8
𝛾8−1(

1 + 𝛾𝑀2
8,z

) (G.2)

From which a modified pressure gain that includes a non-unity 𝑀8,z can then be defined according
to:

PGM =
EAP(𝑀8,z)

𝑝3
− 1 (G.3)

The random uncertainty is given as the following

𝛿PG2 =

(
𝜕PG
𝜕𝐹G

𝛿𝐹G

)2
+

(
𝜕PG
𝜕𝑝∞

𝛿𝑝∞

)2
+

(
𝜕PG
𝜕𝑝3

𝛿𝑝3

)2
(G.4)

Additionally, the systematic uncertainty in PG is given as follows:

𝛿PGsys = ±𝜕PG
𝜕𝐴8

𝛿𝐴8 ±
𝜕PG
𝜕𝛾8

𝛿𝛾8 ±
𝜕PG
𝜕𝑀8,z

𝛿𝑀8,z (G.5)

Note, that in this formulation, the Mach number is treated as an independent variable that is
measurable. If instead the choked assumption is invoked, the partial derivative of PG with respect
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to the Mach number should be moved from the random uncertainty equation to the systematic
uncertainty equation. In addition, since the Mach number is then treated as a constant, its derivative
with respect to any other variable would then be zero. The systematic error can be then approximated
as (see the main text body):

𝜕PG
𝜕𝑀8,z

𝛿𝑀8,z =
𝜕PG
𝜕EAP

𝜕EAP
𝜕𝑀8,z

𝛿𝑀8,z ≈
1
𝑝3

(𝜖MEAP) = 𝜖M(PG + 1) (G.6)

PG + 1 = O
(
100

)
(G.7)

The remaining partial derivatives are:

𝜕PG
𝜕𝑝3

= − 𝑝t8

𝑝2
3

(G.8)

=
PG + 1
𝑝3

(G.9)

= O
(
10−5

)
Pa−1 (G.10)

𝜕PG
𝜕𝐹G

=

(
1 + 𝛾8−1

2 𝑀2
8,z

) 𝛾8
𝛾8−1

𝐴8𝑝3(1 + 𝛾8𝑀
2
8,z)

+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝐹G
(G.11)

=
1
𝐹G

[
PG + 1 − 𝑝∞

𝑝3(1 + 𝛾8𝑀
2
8,z)

(
1 + 𝛾8 − 1

2
𝑀2

8,z

) 𝛾8
𝛾8−1

]
+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝐹G
(G.12)

= O
(
10−3

)
N−1 + 𝜕PG

𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝐹G
(G.13)

𝜕PG
𝜕𝑝∞

=

(
1 + 𝛾8−1

2 𝑀2
8,z

) 𝛾8
𝛾8−1

𝑝3(1 + 𝛾8𝑀
2
8,z)

+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝑝∞
(G.14)

=
1
𝑝∞

[
PG + 1 − 𝐹G

𝐴8𝑝3(1 + 𝛾8𝑀
2
8,z)

(
1 + 𝛾8 − 1

2
𝑀2

8,z

) 𝛾8
𝛾8−1

]
+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝑝∞
(G.15)

= O
(
10−6

)
Pa−1 + 𝜕PG

𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝑝∞
(G.16)
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𝜕PG
𝜕𝐴8

= −
𝐹G(1 + 𝛾8−1

2 𝑀2
8,z)

𝛾8
𝛾8−1

𝐴2
8𝑝3(1 + 𝛾8𝑀

2
8,z)

+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝐴8
(G.17)

=
1
𝐴8

[
𝑝∞

𝑝3(1 + 𝛾8𝑀
2
8,z)

(
1 + 𝛾8 − 1

2
𝑀2

8,z

) 𝛾8
𝛾8−1

− PG − 1

]
+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝐴8
(G.18)

= O
(
102

)
m−2 + 𝜕PG

𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝐴8
(G.19)

𝜕PG
𝜕𝛾8

=

(𝐹G/𝐴8 + 𝑝∞)
(
1 + 𝛾8−1

2 𝑀2
8,z

) 𝛾8
𝛾8−1

𝑝3(1 + 𝛾8𝑀
2
8,z)

[
𝛾8𝑀

2
8,z

2(𝛾8 − 1) (1 + 𝛾−1
2 𝑀2

8,z)
−

𝑀2
8,z

1 + 𝛾8𝑀
2
8,z

+
(

1
𝛾8 − 1

− 𝛾8

(𝛾8 − 1)2

)
ln

(
1 + 𝛾8 − 1

2
𝑀2

8,z

)]
+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝛾8

(G.20)

=(PG + 1)
[

𝛾8𝑀
2
8,z

2(𝛾8 − 1) (1 + 𝛾−1
2 𝑀2

8,z)
−

𝑀2
8,z

1 + 𝛾8𝑀
2
8,z

+
(

1
𝛾8 − 1

− 𝛾8

(𝛾8 − 1)2

)
ln

(
1 + 𝛾8 − 1

2
𝑀2

8,z

)]
+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝛾8

(G.21)

=O
(
10−1

)
+ 𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝛾8
(G.22)

𝜕PG
𝜕𝑀8,z

=

(𝐹G/𝐴8 + 𝑝∞)
(
1 + 𝛾8−1

2 𝑀2
8,z

) 𝛾8
𝛾8−1

𝑝3(1 + 𝛾8𝑀
2
8,z)


𝑀8,z𝛾8(𝑀2

8,z − 1)(
1 + 𝛾8−1

2 𝑀2
8,z

) (
1 + 𝛾8𝑀

2
8,z

)  (G.23)

= (PG + 1)


𝑀8,z𝛾8(𝑀2
8,z − 1)(

1 + 𝛾8−1
2 𝑀2

8,z

) (
1 + 𝛾8𝑀

2
8,z

)  (G.24)

= O
(
10−1

)
(G.25)

𝜕PG
𝜕𝑝8

=
𝜕PG
𝜕𝑀8,z

𝜕𝑀8,z

𝜕𝑝8
(G.26)
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[89] Piotr Wolański. Rotating detonation wave stability. In Proceedings of the 23rd International
Colloquium on the Dynamics of Explosions and Reactive Systems, pages 1–6, 2011.

[90] Douglas Schwer and Kailas Kailasanath. Numerical investigation of rotating detonation
engines. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2010.

[91] James Suchocki, Sheng-Tao Yu, John Hoke, Andrew Naples, Frederick Schauer, and Rachel
Russo. Rotating detonation engine operation. In 50th AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition. Paper No. AIAA-2012-119,
January 2012.

[92] Daniel Paxson. A simplified model for detonation based pressure-gain combustors. In 46th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Paper No. AIAA-2010-
6717, July 2010.

[93] K. Kailasanath. Research on pulse detonation combustion systems: A status report. In
47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace
Exposition. Paper No. AIAA-2009-631, January 2009.

[94] Suhan Lee, Deok-Rae Cho, and Jeong-Yeol Choi. Effect of curvature on the detonation wave
propagation characteristics in annular channels. In 46th AIAA Aerospace Sciences Meeting
and Exhibit. Paper No. AIAA-2008-988, January 2008.

247



[95] Venkat Athmanathan, James Braun, Zachary M. Ayers, Christopher A. Fugger, Austin M.
Webb, Mikhail N. Slipchenko, Guillermo Paniagua, Sukesh Roy, and Terrence R. Meyer. On
the effects of reactant stratification and wall curvature in non-premixed rotating detonation
combustors. Combustion and Flame, 240:112013, June 2022.

[96] Venkat Raman, Supraj Prakash, and Mirko Gamba. Nonidealities in rotating detonation
engines. Annual Review of Fluid Mechanics, 55(1):639–674, 2023.

[97] Robert Burke, Taha Rezzag, Ian Dunn, Wilmer Flores, and Kareem Ahmed. The effect of pre-
mixed stratification on the wave dynamics of a rotating detonation combustor. International
Journal of Hydrogen Energy, 46(54):27816–27826, August 2021.

[98] Takuma Sato and Venkat Raman. Detonation structure in ethylene/air-based non-premixed
rotating detonation engine. Journal of Propulsion and Power, 36(5):752–762, 2020.

[99] Fabian Chacon and Mirko Gamba. OH PLIF visualization of an optically accessible rotating
detonation combustor. In In proceedings AIAA Propulsion and Energy Forum, 2019.

[100] Brent A. Rankin, Daniel R. Richardson, Andrew W. Caswell, Andrew G. Naples, John L.
Hoke, and Frederick R. Schauer. Chemiluminescence imaging of an optically accessible
non-premixed rotating detonation engine. Combustion and Flame, 176:12–22, 2017.
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