
Development and Assessment of Machine Learning Techniques for
Non-Intrusive Probabilistic Surrogate Modeling of High-Fidelity Nuclear

Reactor Simulations

by

Brandon LaFleur

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Nuclear Engineering and Radiological Sciences)

in the University of Michigan
2024

Doctoral Committee:

Professor Annalisa Manera, Chair
Dr. Brian Aviles, Naval Nuclear Laboratory
Professor Karthik Duraisamy
Assistant Professor Brendan Kochunas

Brandon LaFleur

blafleur@umich.edu

ORCID ID: 0000-0002-6020-6401

©Brandon LaFleur 2024

DEDICATION

To my son, my wife, my parents, and my siblings

ii

ACKNOWLEDGMENTS

This dissertation represents the culmination of years of dedicated work and collabo-

ration. Many of the individuals who made this work possible and improved its quality

are likely unaware of how much I have benefited from their expertise and wisdom, both

technically and personally. Each of them played a pivotal role in my success during the

process and will no doubt continue to play a role in my future endeavors.

I would like to express my appreciation to my Ph.D. advisor, Professor Annalisa

Manera, and to my university committee members, Professor Karthik Duraisamy and

Professor Brendan Kochunas. I value their feedback, criticisms, and dedication to my

success. I particularly thank Professor Duraisamy, whose methods formed the underlying

basis for the work herein. Their role in this process greatly shaped my final product. I

also would like to thank Professor Kiedrowski, who was a great help in putting together

the final product and who improved almost every aspect of my work. I owe a special debt

of gratitude to my laboratory advisor, Dr. Brian Aviles, whose patience and wisdom

kept me aligned throughout the entire process. He influenced my growth as a scholar,

engineer, and person in more ways than he knows.

I would also like to acknowledge my employer, the Naval Nuclear Laboratory, for their

financial support, which opened the initial door for me to pursue this personal goal. I also

want to express a special thanks to my many talented coworkers at the Naval Nuclear

Laboratory who unknowingly shaped my technical growth and curiosity. They had a

permanent impact on me through discussions, teachings, and collaborations. Many of

these people were instrumental in expanding my knowledge and fostering my passion for

exploration.

Additionally, this research made use of the resources of the High Performance Com-

puting Center at Idaho National Laboratory, which is supported by the Office of Nuclear

Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under

Contract No. DE-AC07-05ID14517.

Finally, I will forever be grateful to my family members. My wife, best friend, and

biggest advocate, Lakhena, was always in my corner offering unconditional support. My

parents, Jamie and Doug, had complete faith in me, especially at those times when I did

not have faith in myself. My siblings, Cameron, Chloe, Kara and Kanika, always cheered

me on with their unwavering encouragement. Last but not least, I have deep appreciation

for my friends, who were a constant source of joy and levity. All of these people provided

me with camaraderie and kept me whole.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF APPENDICES . x

LIST OF ACRONYMS . xi

ABSTRACT . xiv

CHAPTER

1 Introduction . 1
1.1 Motivation . 1

1.1.1 Nuclear Reactor Design Challenges 1
1.1.2 Reduced-Order Modeling in Nuclear Engineering 6

1.2 Relevant Research . 7
1.2.1 General Reduced-Order Modeling Research 7
1.2.2 Reduced-Order Modeling in Nuclear Engineering 10

1.3 Thesis Contributions . 11
1.4 Thesis Organization . 14

2 Background Theory and Algorithms . 15
2.1 full-order Models . 15

2.1.1 Neutron Transport . 16
2.1.2 MPACT . 21
2.1.3 Cobra-CTF . 24
2.1.4 MC21 . 27
2.1.5 Bateman Equations . 28

2.2 Reduced-Order Models . 30
2.2.1 Projection-Based Reduced-Order Models 31
2.2.2 Proper Orthogonal Decomposition 33
2.2.3 Neural Network-Based Projection Methods 35
2.2.4 Non-linear Independent Dual System 47
2.2.5 Metrics . 52

2.3 Uncertainty Quantification . 54

iv

2.3.1 Bayesian Neural Network Theory 56
2.3.2 Bayesian Neural Network Implementation 64

2.4 Summary . 66

3 Single-Assembly Reactivity Insertion Accident 68
3.1 Nuclear Model Description . 69
3.2 Surrogate Modeling Architectures . 73

3.2.1 Multi-Stage CNN Architecture . 73
3.2.2 NIDS Neural Network Architecture 76

3.3 Description of Modeling Scenarios and Figures of Merits 77
3.4 CNN Results and Discussion . 79

3.4.1 CNN Training and Qualitative Results 79
3.4.2 CNN Uncertainty Quantification Performance 82
3.4.3 CNN Sensitivity Analysis Performance 85

3.5 NIDS Results and Discussion . 87
3.5.1 NIDS Training and Qualitative Results 87
3.5.2 NIDS Uncertainty Quantification Performance 89
3.5.3 NIDS Sensitivity Performance . 93

3.6 Summary . 95

4 Depletion Trajectory Sensitivities . 100
4.1 Nuclear Model Description . 101

4.1.1 2D Plane . 101
4.1.2 3D Full Core . 106

4.2 Surrogate Modeling Architecture . 115
4.2.1 CNN Latent Space Stepper Architecture 115
4.2.2 NIDS Neural Network Architecture 117

4.3 Description of Modeling Scenarios and Figures of Merits 118
4.4 2D Planar Results . 121

4.4.1 Training and Qualitative Results 122
4.4.2 Quantitative Results . 126
4.4.3 Variational Inference Results . 131

4.5 3D Quarter Core Results . 133
4.6 Impact of SDF on Performance . 136
4.7 Summary . 137

5 Conclusion . 157
5.1 Conclusions . 157
5.2 Future Work . 160

5.2.1 Existing workflow integration . 161
5.2.2 Programmatic improvements to Parody 163
5.2.3 Theoretical improvements . 165

APPENDICES . 168

BIBLIOGRAPHY . 200

v

LIST OF TABLES

TABLE

3.1 MPACT single-assembly parameters. 69
3.2 Summary of CAE hyper-parameters. 74
3.3 Summary of TCAE hyper-parameters. 75
3.4 NIDS neural network hyperparameters for the MPACT application. . . . 77
3.5 Input parameters for uncertainty quantification and sensitivity studies. . 78
3.6 Summary of model and training datasets. 80
3.7 Summary of training performance over 100 MPACT runs. 80
3.8 Performance metrics for increasing training dataset sizes for the CNN. . . 85
3.9 Comparison of UQ performance metrics when isolating input parameters. 86
3.10 Summary of NIDS model and training data sets. 87
3.11 NIDS UQ performance for increasing training dataset sizes. 92
3.12 NIDS sensitivity analysis FOM and ROM average predictions. 95
3.13 NIDS sensitivity analysis FOM and ROM standard deviation error. . . . 95

4.1 Material definitions for 2D MC21 model. All units in (# / barn-cm).
When the isotope is not specified, natural abundances are assumed. . . 102

4.2 All isotopes within the 2D and 3D MC21 models. 103
4.3 Fuel pin characteristics in cm, with material definitions in Table 4.5. . . . 109
4.4 Axial mesh break points used for depletion. 110
4.5 Material isotopic definitions for zirconium, stainless steel, and lower-nozzle

regions. All units in (# / barn-cm). 112
4.6 NIDS hyperparameters for the MC21 application problem. 118
4.7 Summary of CNN error metrics. 127
4.8 Summary of NIDS error metrics. 127
4.9 Dataset definitions for constant resource budget study. 130
4.10 Summary of NIDS error metrics for the 10-timestep case. 136

A.1 Programs and scripts used to create this work (repository name in paren-
theses). GitHub repositories found at git@github.com/bdlafleur/phd.git. 170

vi

LIST OF FIGURES

FIGURE

1.1 Classes of nuclear solvers and their relative cost/accuracy. 4

2.1 Illustration of TML scheme [42]. 24
2.2 Flow chart for the transient multilevel method. 25
2.3 A simple POD-NN non-intrusive model order reduction technique ([12]). 39
2.4 Generalized neural network architecture. Image from [15]. 44
2.5 Illustration of the latent space stepping neural network architecture. . . . 46
2.6 Schematic diagram of a NIDS ROM ([25]). 50

3.1 Fuel pin (left), rodded guide tube (middle), and guide tube (right). . . . 69
3.2 Various fidelities of the 1-assembly model used in this analysis. 3.2a shows

the computational mesh of a single pin, 3.2b shows the computational
mesh of a quarter assembly, and 3.2c shows the full assembly with each
pin represented as one block. 70

3.3 A representative power spike for the one-assembly rod ejection casualty. . 72
3.4 Schematic diagram of a NIDS network ([25]). 77
3.5 Histogram of errors for the recreated suite of 100 cases for Case 0 (left

column of plots) and 5 (right column of plots). 81
3.6 CAE radially condensed relative power results for Case 0 and 5. 82
3.7 CAE axially condensed relative power results for Case 0 and 5. 82
3.8 TCAE axially condensed relative power results for Case 0 and 5. 82
3.9 TCAE axially condensed relative power results for Case 0 and 5 83
3.10 FOM and ROM forward uncertainty propagation for relative power at a

single location in the core for Case 0. Each shade of blue represents one
additional standard deviation of separation from the mean. 83

3.11 FOM and ROM forward uncertainty propagation for relative power at a
single location in the core for Case 5. Each shade of blue represents one
additional standard deviation of separation from the mean. 84

3.12 FOM and ROM initial power sensitivity for the multi-stage CNN for Case
5. Each shade of blue represents one additional standard deviation of
separation from the mean. 86

3.13 Histogram of ratios for the recreated suite of 100 cases. Figures 3.13a and
3.13b show Case 0 and 3 results respectively. 88

3.14 NIDS ROM and FOM realizations of the same inputs and associated error
for Case 0. 90

3.15 NIDS ROM and FOM realizations of the same inputs and associated error
for Case 3. 90

vii

3.16 FOM and ROM forward uncertainty propagation for NIDS Case 0. Each
shade of blue represents one additional standard deviation of separation
from the mean. 91

3.17 FOM and ROM forward uncertainty propagation for NIDS Case 2. Each
shade of blue represents one additional standard deviation of separation
from the mean. 91

3.18 FOM and ROM forward uncertainty propagation for NIDS Case 3. Each
shade of blue represents one additional standard deviation of separation
from the mean. 91

3.19 The spread in 59 cases as determined by Wilks’ formula for a 95/95 confi-
dence interval as predicted by the FOM and ROM. The red shaded region
represents the full spread in FOM results. 93

3.20 FOM and ROM rodspeed sensitivity for NIDS Case 3. Each shade of blue
represents one additional standard deviation of separation from the mean. 94

3.21 FOM and ROM initial power sensitivity for NIDS Case 3. Each shade of
blue represents one additional standard deviation of separation from the
mean. 94

3.22 FOM and ROM coolant flow sensitivity for NIDS Case 3. Each shade of
blue represents one additional standard deviation of separation from the
mean. 94

3.23 NIDS error in relative power prediction - average (left) standard deviation
(right). 96

4.1 Truncated 2D single-assembly MC21 model 102
4.2 Signed distance function representing distance to closest non-fuel grid lo-

cation for the 2D model. 105
4.3 Top-down view of the 3D quarter-core geometry along the x-y plane . . . 107
4.4 Axial view of the 3D quarter-core geometry along the x-z plane 108
4.5 Fuel pins present in the 3D model - fuel (left), poison (middle), coolant

(right). 108
4.6 Assembly types present in the 3D MC21 model - the left assembly contains

the poison pins, while the right assembly contains the coolant pins. . . . 111
4.7 Signed distance function representing distance to closest non-fuel grid lo-

cation for the 3D model. 114
4.8 Illustration of the convolutional autoencoder and latent space modifying

neural network architecture. 115
4.9 Visualization of the CNN latent space stepper model architecture. 117
4.10 Schematic diagram of a NIDS network ([25]). 118
4.11 FOM and ROM (CNN) depletion trajectories for an arbitrary power his-

tory at various locations for all focal isotopes. All 50 realizations used
during training. 141

4.12 FOM and ROM (CNN) depletion trajectories for an arbitrary power his-
tory for 4 test cases for the focal isotopes. All 50 realizations used during
training. 142

4.13 FOM and ROM (NIDS) 2D depletion trajectories for an arbitrary power
history at various locations for all focal isotopes. 143

4.14 FOM and ROM (NIDS) 2D depletion trajectories for arbitrary power his-
tories for 4 test cases for the focal isotopes. 144

viii

4.15 O17 depletion trajectory predictions. 145
4.16 RU105 depletion trajectory predictions. 145
4.17 FOM and ROM agreement when training with first 5 timesteps. 145
4.18 FOM and ROM agreement when training with first 15 timesteps. 145
4.19 FOM and ROM agreement when training with first 20 timesteps. 145
4.20 FOM and ROM agreement for each training dataset. 146
4.21 FOM and ROM depletion trajectories for a 60-timestep depletion using

dataset containing 30 timesteps. 147
4.22 FOM and ROM agreement using 50 5-timestep realizations with 0 30-

timestep realizations. 148
4.23 FOM and ROM agreement using 26 5-timestep realizations with 4 30-

timestep realizations. 148
4.24 FOM and ROM agreement as a function of number of 30-timestep datasets

used in training. 148
4.25 FOM and ROM (NIDS) VI depletion trajectories for an arbitrary power

history at one location in the 2D plane. This model used 5 timesteps in
its training dataset and extrapolated the remaining timesteps. 149

4.26 FOM and ROM (NIDS) VI depletion trajectories for an arbitrary power
history at one location in the 2D plane. This model used 15 timesteps in
its training dataset and extrapolated the remaining timesteps. 149

4.27 FOM and ROM (NIDS) VI depletion trajectories for an arbitrary power
history at one location in the 2D plane. This model used 20 timesteps in
its training dataset and extrapolated the remaining timesteps. 150

4.28 FOM and ROM (NIDS) VI depletion trajectories for an arbitrary power
history at one location in the 2D plane. This model used 30 timesteps in
its training dataset. 150

4.29 FOM and ROM (NIDS) 3D depletion trajectories for an arbitrary power
history at various locations for all focal isotopes. 151

4.30 FOM and ROM (NIDS) 3D depletion trajectories for arbitrary power his-
tories for 4 test cases for the focal isotopes. 152

4.31 FOM and ROM agreement when training with first 2 timesteps. 153
4.32 FOM and ROM agreement when training with first 5 timesteps. 153
4.33 FOM and ROM agreement when training with all 10 timesteps. 153
4.34 SDF impact on MAPE for 2D case. 154
4.35 SDF impact on MAPE for 3D case. 154
4.36 NIDS performance for important Uranium isotopes with no SDF. 155
4.37 NIDS performance for important Uranium isotopes with an SDF. 155
4.38 The poison assembly in the 3D model. 156

B.1 Key components of Parody code infrastructure. 173

ix

LIST OF APPENDICES

A. Supporting Code . 169
B. Parody: A Python Framework for ROM Research 171
C. Data Science Tools and Best Practices . 196

x

LIST OF ACRONYMS

ADAM adaptive moment estimation. 38

API application program interface. 163

BBB Bayes by backprop. 63–66, 131

BEPU best estimate plus uncertainty. 13

BNN Bayesian neural networks. 12, 13, 59, 60, 66, 133, 168

BOL beginning of life. 106

CAE convolutional autoencoder. 9, 44, 45, 73, 74, 76, 80, 89, 96

CFD computational fluid dynamics. 1, 5, 9, 12, 13, 49, 97

CMFD coarse mesh finite difference. 22–24

CNN convolutional neural network. 9–12, 31, 33, 36, 39–43, 45–48, 66, 68, 73–75, 77, 79,
83–89, 91–93, 95, 96, 98, 100, 101, 115, 118, 122–124, 126, 134, 137–139, 157–159,
164, 170, 197, 199

CTF COBRA-TF. 16, 24–27, 66, 68

DAG directed acyclic graph. 198, 199

DEIM discrete empirical interpolation method. 8, 31

DVC Data Version Control. 198, 199

ELBO evidence lower bound. 62, 64

EPKE exact point kinetics equation. 22–24

FOM full order model. 5–8, 10, 12, 14, 15, 21, 29–36, 46–48, 51–54, 56, 66, 68, 70,
78–80, 82–90, 92, 93, 95, 97, 98, 100, 118, 120, 122–124, 127, 128, 130, 133, 134,
138, 160–164, 172, 173

GP Gaussian Processes. 11

HPC high-performance computing. 71, 119, 170

xi

INL Idaho National Laboratory. 71, 79, 102, 112, 170

KL-divergence Kullback-Leibler divergence. 61, 62, 65, 66, 131

LSTM long short term memory. 10, 39, 96

MAE Mean Absolute Error. 53, 92, 120, 123, 126, 135

MAPE Mean Absolute Percentage Error. 53, 120, 123, 126, 128, 135, 136

MLP multi-layer perceptron. 9, 45, 75, 76, 80

MOC method of characteristics. 16

MOPED MOdel Priors with Empirical Bayes using DNN. 65, 66, 131

MPACT Michigan Parallel Characteristics Transport Code. 12, 14, 16, 20–25, 27, 29,
66, 68, 75, 78–80, 87, 95, 170

MSE Mean Squared Error. 37, 52, 53, 64, 85, 92, 95, 120, 121, 126

NIDS Non-Linear Independent Dual System. 12, 14, 31, 47–52, 66, 68, 73, 76, 87–89,
92, 93, 95, 97, 98, 100, 101, 104, 106, 107, 112, 117, 118, 122–127, 131–134, 137–139,
158–161, 163–167, 170, 172, 197

ORNL Oak Ridge National Laboratory. 16, 24

PCE polynomial chaos expansion. 10

PDE partial differential equation. 6

POD Proper Orthogonal Decomposition. 7–9, 11, 13, 30–35, 39, 43, 66, 158, 167

POD-NN Proper Orthogonal Decomposition neural network. 8, 35, 36, 38, 39, 164

QOI quantity of interest. 3, 7, 11, 33, 55, 56, 70, 167

RIA reactivity insertion accident. 12, 14, 25, 66, 68, 71, 72, 77, 78, 95, 97, 138, 158

ROM reduced-order model. 1–3, 5–15, 29–35, 38–40, 43, 47–49, 52–54, 56–58, 62, 66,
68, 69, 71, 73, 75, 77–80, 82–93, 95–102, 105, 107, 112–116, 118–128, 131–140,
157–168, 170–174, 196, 199

SDF signed distance function. 13, 48–50, 97, 105, 106, 114, 136–139, 158, 165, 166

SVD singular value decomposition. 9, 30, 32, 35, 39, 43

TCAE temporal autoencoder. 9, 45, 74, 76, 80, 81, 89

TML transient multilevel. 22, 23

xii

UQ uncertainty quantification. 10, 11, 54–56, 59, 68, 70, 78, 82, 84–86, 89, 90, 92, 93,
97, 160

VERA Virtual Environment for Reactor Analysis. 27, 68, 78

VI variational inference. 12, 13, 56, 60–62, 64–66, 131, 132, 168

xiii

ABSTRACT

With the continuing advancement of computational resources, high-fidelity simula-

tions of neutron transport play an increasingly important role in the design and analysis

of nuclear reactor cores. Because of the inherent non-linear interdependency of the flux

solution on the coolant properties, neutron transport solvers are often coupled to subchan-

nel thermal-hydraulics or computational fluid dynamic solvers to capture the necessary

physics.

The challenges present in numerical simulations required for nuclear reactor design,

specifically the high computational cost and dimensionality encountered, are not unique

to nuclear engineering. A full-order model is often expensive to evaluate in many en-

gineering disciplines, particularly if the governing equations contain non-linear terms.

The discretization of these partial differential equations leads to large systems of coupled

equations.

This limitation has led to the development and deployment of reduced-order modeling

techniques. For decades, reduced-order models (ROM) have experienced a wide variety

of successes in many fields and have been demonstrated for a wide range of applications.

These techniques are not typically applied in the nuclear engineering field, particularly

in production environments. Importantly, they have not been applied to high-fidelity

multiphysics simulations of nuclear reactors.

This work investigates the current state-of-the-art of ROMs and investigates their ap-

plicability to commonly encountered nuclear reactor design applications. Specifically,

multi-stage convolutional neural network-based ROMs and the newly proposed Non-

xiv

Linear Independent Dual System (NIDS) algorithm. The following chapters contain a dis-

cussion of traditional intrusive projection-based ROMs and works its way to non-intrusive

neural network-based ROM methods. This work includes discussions on the theory, mer-

its, challenges, and limitations associated with various methodologies. Furthermore, the

uncertainty associated with reducing high-dimensional multiphysics problems is quanti-

fied using probabilistic modeling techniques combined with neural network-based ROMs.

Specifically, variational inference approaches were applied to the ROMs.

Using current state-of-the-art methods in non-intrusive ROMs, coupled with varia-

tional inference methods, ROMs are developed for two representative classes of nuclear

engineering problems. The first application is a coupled MPACT/CTF model represent-

ing a single-assembly configuration experiencing a reactivity insertion accident via rod

ejection. The state variables of interest are time-dependent relative pin powers. The

second application is a 3D quarter-core MC21 depletion model. The state variables of

interest are isotopic depletion trajectories. The performance of associated ROMs are

assessed to evaluate the efficacy of using non-intrusive neural network-based ROMs in

production design environments. In all contexts analyzed, NIDS methods are shown to

outperform convolutional neural network-based algorithms for nuclear engineering ap-

plications and perform to a level acceptable in certain production design environments.

Finally, a new Python package, Parody, is introduced to facilitate the assessment of ROMs

and its potential use for further study of ROMs for nuclear applications is presented and

discussed.

xv

CHAPTER 1

Introduction

This chapter first motivates the interest in studying reduced-order modeling in the

context of nuclear engineering. Then, it explains how similar challenges existing in the

computational fluid dynamics (CFD) community have benefited from the development

of capable reduced-order model (ROM) techniques. Next, this chapter will explore what

work has been done in the radiation transport community using ROM techniques and

how they differ from what has been accomplished in other communities. This includes a

brief historical review of these ROM methods and how they have evolved over the last

decade within and without the nuclear industry. Then, a discussion follows of the high

level approaches that are explored in this work and what representative nuclear reactor

analysis problems this work applies the ROM techniques to. Finally, the contributions

this work represents along with the organization of the thesis will be summarized.

1.1 Motivation

1.1.1 Nuclear Reactor Design Challenges

Nuclear engineering, in the context of reactor design, deals with a wide range of physics

processes and associated methodologies to model them. Primary physics of interest in-

clude neutron transport, reactor plant kinetics, material science, fluid dynamics, heat

transfer, and structural analysis. A key trade-off present in nuclear engineering (as it is

1

in most engineering disciplines) is developing physics solvers with the right balance of

accuracy and computational cost.

Some of the more common types of analysis performed by a nuclear designer include

optimization, uncertainty quantification, design space exploration, plant analysis, and op-

erational and manufacturing support. The list below highlights some classes of problems

nuclear designers often find themselves solving:

1. Finding optimal physical arrangements of structural material, reactor coolant, fuel,

and neutron poisons to support operational goals by performing core design opti-

mization.

2. Predicting plant dynamics during routine operation using plant analysis codes.

3. Quantifying the impact of deviations from assumed tolerances during the manufac-

turing of reactor components.

4. Supporting transport or long-term storage of potentially critical nuclear material

by doing critical configuration optimizations.

5. Determining what level of fidelity is needed to make engineering decisions by per-

forming physics down-selection analyses.

6. Analyzing spaces where radioactive material and human workers are present to

support shielding applications.

7. Analyzing undesirable events to ensure the safety of the public and employees who

interact with nuclear technology in the event of an accident.

Each of these analyses typically require many calculations of very similar physical

systems under slightly perturbed initial conditions. These analyses are critical to eval-

uating the safety and performance of nuclear systems, as well as for designing new and

more efficient reactors. By reducing the computational cost of simulations, ROMs can

enable engineers to perform more detailed and thorough analyses of nuclear systems. Be-

fore exploring how to reduce their cost, we first discuss the variety of ways that neutron

transport is modeled in practice.

In reactor design, neutron transport theory is the fundamental physics that describes

2

the behavior of neutrons in a nuclear reactor. In Reference [1], Sanchez provides a dis-

cussion on the derivation of approaches used in general-purpose production calculations.

Larson [2] offers a review of the advancements made in the previous 30 years for a va-

riety of simulation techniques in the radiation transport community. Larsen et al. [2]

extends the history that Lawrence [3] wrote, which provides a similar summary for com-

mon nodal methods and their histories from the perspective of the industry in 1985. Cho

[4] presents a brief overview of the steps involved in typical modern reactor design and

analysis, and provides derivations of commonly used multigroup transport equations and

nodal methods.

In its full implementation, the neutron transport equation is 7 dimensional - 3 dimen-

sions in space, 2 in direction, 1 in energy, and 1 in time. There is a large body of work

devoted to discretizing and solving this equation along all dimensions. As a result, there

are many methods available that describe the spatial and temporal evolution of neutrons

within a reactor. These include point kinetics, diffusion theory, deterministic transport,

and Monte Carlo methods. Each solver has its own strengths and weaknesses, which

can impact both the accuracy and computational cost of the simulation. However, all

are used in industry during some phase of the design and operational assessment phases.

Which method that is deployed depends heavily on the problem at hand. For example,

the point kinetics equations are relatively cheap computationally and are often used for

transient analysis of reactor plants undergoing a plant evolution due to the fact that

they are quick to solve and can be tuned to capture global power output as a function

of time quite well. However they provide no information on the spatially dependent flux

or power generation within a reactor. Therefore this approach, although used effectively

throughout the industry for safety analysis, will not be the subject of the work herein

that is focused on full-field ROM predictions of 3D quantity of interest (QOI)s.

Deterministic transport methods that solve the neutron transport equation directly, or

the less accurate but cheaper diffusion equation, are used when static analyses are required

that seek information on spatially dependent information within a reactor (such as power

3

generation, fluence, decay heat, etc.) and can provide accurate solutions to the neutron

transport equation. Diffusion theory assumes that the angular flux is well-approximated

as a linear function of the neutron direction, which allows for a less expensive version of the

transport equation to emerge at the cost of less accuracy. Monte Carlo methods represent

the highest level of accuracy in practice, and simulate the underlying behavior of radiation

which the transport equation describes the average behavior of. Monte Carlo methods

require no discretization of the dimensions of the neutron transport equation, and can

capture the full range of neutron behavior in a reactor based on the average behavior

of simulated random walks. However, they are the most computationally intensive in

practical environments and can be prohibitively expensive for many applications. Figure

1.1 shows a cartoon that depicts the relative cost and accuracy of the main classes of

techniques used in industry to model reactor and/or plant behavior.

Figure 1.1: Classes of nuclear solvers and their relative cost/accuracy.

Neutron transport codes approximately solve the neutron transport equation. As

mentioned above, this equation requires up to 7 dimensions to resolve (however for most

applications involving full-field solutions, this includes just 6 dimensions - 2 in angle,

4

3 in space, and 1 in energy) and can result in huge systems of equations that take a

significant amount of computational resources to produce converged solutions even when

using state-of-the-art iterative solvers on state-of-the-art high performance computers.

This work will not go into detail on methods of solving the neutron transport equation

as there is a plethora of work over many decades devoted to this field. Section 2.1

provides more details on the methods employed in the full order model (FOM)s used in

this work. For details on common approaches, the reader is pointed to other references.

In Reference [4], Cho also provides an overview of important tasks and steps involved

in nuclear design and analysis of reactor technology, as well as derivations of multigroup

transport equations, multigroup diffusion equations, and nodal diffusion methods.

In addition to the challenges involved in capturing the behavior of neutron transport

alone, modeling tools are often coupled to subchannel or CFD codes. These codes are used

to simulate the flow of coolant and the heat transfer between coolant and the nuclear fuel.

It is important to do so because the behavior of neutron transport in a reactor is highly

dependent on the properties of the surrounding coolant for thermal reactors. These codes

solve equations related to the conservation of mass, momentum, and energy. For more

details on the nuclear and thermal hydraulics codes used in this work refer to Chapters

3 and 4.

In summary, designers often require high fidelity simulations of high dimensional

systems, and often many independent realizations of those systems, in order to capture

the requisite physics to design safe and operable reactors. This section motivated the high

cost associated with simulating the requisite physics needed for nuclear reactor design and

analysis. The next section will introduce the ROM concept and present it as a solution

to the ever-increasing desire to simulate nuclear reactors in many configurations.

5

1.1.2 Reduced-Order Modeling in Nuclear Engineering

These challenges are not unique to the nuclear industry. Many engineering problems arise

in the form of discretized partial differential equation (PDE)s that result in large systems

of coupled equations. These systems can be thought of as a simple mapping of a set of

inputs, µ, to a set of outputs, y.

Numerical analysis methods for solving FOM systems of equations have been studied

for decades and great strides have been made in their efficiency, sophistication, and

robustness for a wide range of problems. However, two drivers can cause traditional

solutions to these PDEs to become too computationally expensive. First, as models

become more complex both in the physics captured and in the desired fidelity of results,

the underlying systems of equations can become too large to solve on available computing

resources in a reasonable amount of time. Second, if the application for the simulators

requires a high number of evaluations, then the application of the model in a production

environment can become too expensive, even if the evaluation of a single model is not.

For these applications where the FOM is prohibitively expensive to evaluate, a ROM

can be a promising approach to reduce the computational cost of simulations in many

fields, including nuclear reactor design and analysis. ROMs are simplified models that

approximate the behavior of complex systems using a reduced number of degrees of free-

dom. These models are obtained by projecting the original high-dimensional problem

onto a lower-dimensional subspace, which allows for faster and more efficient computa-

tions. The two circled methods in Fig. 1.1, “deterministic transport” and “Monte Carlo

methods”, represent the two most accurate but expensive methods used to solve the neu-

tron transport equation. Replacing or augmenting these two classes of solvers will be

the focus of the work herein. Chapter 2 explicitly describes the methods often employed

to model neutron transport in reactor analysis. Later sections of this work will discuss

various classes of ROMs that have different strengths and weaknesses depending on how

they are deployed in the context of nuclear reactor design.

6

In general, ROMs use the same sets of inputs but require a lower-order model to

predict the output quantities of interest. In the context of nuclear reactor modeling, the

inputs, µ, are parameters such as material properties, geometries, cross sections, coolant

temperatures and pressures, etc. The output quantities of interest, y, could be the

magnitude and locations of the peak power, departure from nucleate boiling, time to the

peak power, distributions of the coolant temperature and density, isotopic concentrations,

groupwise flux distributions, reactivity, etc.

For a ROM to be considered useful, ŷ should be as close to y as possible, while still

keeping the ROM significantly less expensive to evaluate than the FOM. When these

outputs are scalar quantities of interest, these ROMs are also often called surrogate

models. This work deals only with full-field ROMs to predict one or more 3D QOI. In

this work we explore current state-of-the-art methodologies for constructing ROMs and

apply them to certain problems of interest in the nuclear engineering industry. Before

discussing the detailed theory underpinning the ROM methods used in this work, the

next section will provide a brief discussion of relevant research in the ROM field.

1.2 Relevant Research

1.2.1 General Reduced-Order Modeling Research

Projection-based ROMs use a reduced-order subspace to project the FOM equations onto

a lower-order manifold, solve this new set of equations, and then project the low-order

solution back into the original space. Proper Orthogonal Decomposition (POD) is a

particularly well-researched method.

Benner [5] wrote a survey of state-of-the-art methods in projection based parametric

model reduction and summarizes the important role these classes of problems play in

engineering design. Rathinam [6] investigates basic properties of the POD method, in-

cluding error analysis and the impact of perturbations to the training data. Willcox et al.

7

[7] and Carlberg [8] provide excellent summaries of the POD method in their background

sections and are recommended by this author for a good first exposure to the primary

ideas of projection based reduced-order modeling techniques. Parish et al. [9] wrote

another work that has an excellent discussion of the primary ideas in projection based

reduced-order modeling, while also introducing the Adjoint Petrov-Galerkin method as

an improvement to existing approaches. Finally, Ghavamian [10] demonstrates the dis-

crete empirical interpolation method (DEIM) approach to dealing with non-linearities in

the FOM equations and applies this approach to two application problems.

These references explore the basics behind POD, and also contain descriptions of its

variants that address issues commonly seen in projection-based ROMs. For example,

using a linear projection-based method for non-linear operators often produces unstable

results and can actually make the ROM more expensive than the FOM. Methods such as

DEIM are used to make non-linear projection-based ROMs practical (see [5] and [10]).

See Section 2.2.1 for a description of the POD method.

Within the last 10 years, neural network-based methods have been explored to gener-

ate ROMs and can provide a number of significant benefits over linear-based projection

methods (such as POD, POD-DEIM, and other projection-based methods). For example,

it can sometimes be difficult to implement intrusive projection-based ROMs because it

requires access to the FOM operators and source code, which can be difficult for some

commercial codes or legacy software that are currently deployed in production settings.

Additionally, most projection-based ROMs employ a linear trial subspace, which can be

limiting if the problem at hand cannot be easily reduced to such a subspace [11]. There-

fore, in an effort to both simplify the application of employing ROMs and improve on

the performance, non-linear trial subspaces have been explored, which can be both fully

non-intrusive and do not suffer from the consequences of a linear trial subspace for a

problem that it is ill-suited for. For more information on the application of neural net-

works for projection-based reduced-order modeling, see [12], [11], [13], or [14]. Section

2.2.3 provides a summary of the base Proper Orthogonal Decomposition neural network

8

(POD-NN) algorithm.

Other methods which do not utilize singular value decomposition (SVD) for computing

the reduced subspace exist and are completely non-intrusive. These methods do not

perform a projection analogous to the POD methods, but instead rely wholly on neural

networks to perform the reduction in dimensionality. [15] demonstrated that a fully non-

intrusive neural network-based architecture could be used for parameter mapping and

time series prediction for some problems. This work mapped an input parameter, such

as the Reynolds number, to the fully reconstructed time evolution of some dynamical

system using a series of neural networks. As described in [15], the components of this

neural network are as follows.

1. a convolutional autoencoder (CAE) performs spatial compression for each timestep

and for each set of input parameters.

2. a temporal autoencoder (TCAE) performs temporal compression for each scalar

input parameter. It used the compressed code from step (1) as its training input

and output.

3. a multi-layer perceptron (MLP) performs the mapping of some set of inputs to the

compressed code of the TCAE.

In this way, new parameter prediction can be performed using the MLP to reconstruct

the latent code of the TCAE, which in turn reconstructs the latent code of the CAE,

which can then be decoded into the full-order solution of the dynamical system using the

CAE’s decoder. The work in Chapter 3 fully describes this method and utilizes a modified

version of this scheme on a coupled nuclear/thermal-hydraulics application problem.

These convolutional neural network (CNN) based ROMs have seen success in a di-

verse set of applications, particularly in the creation of flow fields for CFD applications.

Bhatnagar [16] predicted velocity and pressure fields in unseen flow conditions and ge-

ometries given the shape of the object. Bhatnagar [16] used the flow solutions over airfoils

9

with varying shapes as training data. Guo [17] used CNNs to predict non-uniform steady

laminar flow in both 2D and 3D domains. Specifically, they used CNN based ROMs to

predict flow over 2D primitive shapes (such as triangles, pentagons, and hexagons) and

2D car prototype shapes, as well as a 3D test involving randomly placed primitive objects

in space. Time-varying applications make use of CNNs for spatial deconstruction and

time series modeling methods, such as long short term memory (LSTM) layers, for step-

ping forward in the temporal dimension [18]. LSTMs are specialized types of recurrent

units that are designed to capture and manage long-term dependencies in sequential data.

However, these approaches can see limitations based on their large memory requirements.

Another class of algorithms centers around the notion that neural networks can be

seen as universal approximators of continuous functions, and with enough neurons can

approximate non-linear continuous operators [19], [20]. These algorithms are able to

addresses some of the shortcomings present in CNN based ROMs ([20], [21], [22], [23],

[24], [25]). Specifically, they are capable of handling FOMs that are defined on non-regular

Cartesian grids while also requiring much less memory than CNN based ROMs.

1.2.2 Reduced-Order Modeling in Nuclear Engineering

In the context of nuclear engineering applications, much work has been done to reduce the

burden of FOMs by employing surrogate models to predict scalars, such as global eigen-

values or global peaking parameters, and to optimize loading patterns. Prince and Regusa

[26] has performed parametric uncertainty quantification (UQ) using proper generalized

decomposition on a neutron diffusion problem, and Gilli [27] has demonstrated the use

of non-intrusive polynomial chaos expansion (PCE) on criticality problems. Saleem [28]

demonstrated a global parameter prediction framework using neural networks. Specif-

ically, the framework predicts three quantities of interest: power peaking factors, fuel

cycle length, and control rod bank level. Yamamoto [29] and Meneses et al. [30] per-

formed core loading optimization using various machine learning methods. Ikonen and

10

Tulkki [31] performed analyses that demonstrated the importance of input interactions

in the performance of nuclear fuel. Finally, Brown and Zhang [32] performed a basic

Monte Carlo UQ analysis on a large-scale high-fidelity transient large-reactivity insertion

analysis for a commercial core.

Recently, work has also been done to create intrusive ROMs specifically tailored to

various forms and applications of the neutron transport equation. German [33] applied

POD on multigroup diffusion eigenvalue problem benchmarks. German [34] also has

implemented intrusive ROM methods to a 2D molten salt reactor benchmark problem.

Tano [35] used a simple dense artificial neural network to speed up transport sweeps.

Behne et al. [36] proposed multiresolution POD for neutron transport problems that

have QOIs that span many orders of magnitude. Halvic et al. [37] used POD and

Gaussian Processes (GP)s to model radiation transport through the atmosphere. And

Anderson [38] introduced CrudNET, which was a CNN-based surrogate model used to

predict crud deposition in a 2D lattice model.

These studies demonstrate the need for less expensive methods to tackle nuclear en-

gineering problems that require high-fidelity results. They illustrate that there is a need

for ROMs and surrogate models to fill the gap as the nuclear reactor design community

continues to perform more and more analyses requiring quick turnaround models, such

as UQ and input interaction analyses.

1.3 Thesis Contributions

Much work has been done in the ROM community to address the need to reduce the

dimensionality of physics problems, but progress is just beginning in the transfer of these

methods to the nuclear reactor design community. This area has a strong need for cou-

pled thermal hydraulics/neutronics multiphysics simulations due to the tight interaction

between thermal-hydraulic and nuclear physics, which poses an additional layer of com-

plexity when converging solutions. This work assesses the efficacy of applying state-of-

11

the-art ROM techniques to coupled thermal hydraulic/neutronic transport multiphysics

problems and builds upon available previous work.

Specifically, to the author’s knowledge, this work marks the first application of fully

non-intrusive neural network-based ROMs whose uncertainty is quantified by variational

inference (VI) techniques applied to representative nuclear design application problems.

We apply the state-of-the-art Non-Linear Independent Dual System (NIDS) methodology,

originally derived for application in the CFD community, to neutronics applications.

Furthermore, we introduce uncertainty to the ROMs in the form of Bayesian neural

networks (BNN)s via VI techniques. This represents the first application of VI techniques

to non-intrusive neural-network based ROMs to estimate their uncertainty.

This work demonstrates these concepts by applying these methods to two nuclear

applications of interest. The first is a single-assembly Michigan Parallel Characteristics

Transport Code (MPACT) model undergoing a reactivity insertion accident (RIA). The

inference time for neural networks is on the order of seconds to minutes, while the FOM

runs take about an hour on 48 CPUs. These ideas are then scaled to a large 3D model

in the second application to demonstrate their viability in a production environment.

The second application is a depletion study using a 3D quarter-core MC21 model. The

inference time for these neural networks are on the order of 5-10 minutes, while the run

time for the associated FOMs are approximately 30-40 hours on 960 CPUs. Gains in

calculation time vary significantly depending on the application, the desired accuracy,

and the size of the dataset required to train the neural networks. However, this work saw

wall clock speed ups of 60x to 240x for offline neural network inference.

The first application problem demonstrates the ability to properly capture the multi-

physics present in an RIA that a coupled neutronics/CFD FOM can capture. The second

application problem extends these ideas to a much larger full core model. Together, these

problems constitute a contribution to the field of nuclear engineering in that the use of

CNN and neural operator-based ROMs is new in the field of nuclear engineering. As

mentioned previously, work in this field using ROMs has thus far been mostly focused

12

on intrusive POD based methods for small benchmark problems. And, these methods

are further restricted to linear dimensionality reduction methods. The methods explored

in this work are neural network-based, employing nonlinear activation functions allowing

the neural network to find nonlinear mappings between the full-order and reduced-order

spaces. And, this work applies these methods to larger problems more representative of

the size and scale encountered in production environments.

Furthermore, the methods of the CFD community from which these methods are

derived are adjusted to suit the unique needs of nuclear engineering applications. Specif-

ically, this is accomplished by leveraging the signed distance function (SDF) concept to

encode geometric information about a reactor design. The SDF construct is traditionally

used to define an object’s boundary with a fluid in a CFD calculation. However, by

changing its definition to instead encode the proximity to non-fuel elements in the spatial

dimension, a nuclear reactor’s core layout may be efficiently communicated to a neural

network.

In addition, the application of BNNs will be explored. Specifically, VI will be used to

quantify the epistemic uncertainty present in a few neural network-based ROMs. This

method assumes a non-deterministic viewpoint of neural networks. Instead of a point

estimate for the weights and biases of the networks, they are assumed to be random

variables which can be sampled. In this way, they can provide estimates on the accuracy

of the trained model.

Currently in the nuclear reactor design community little production level work is

completed using multiphysics solvers without stacked uncertainties or within the best

estimate plus uncertainty (BEPU) paradigm. Design spaces are explored, but often

not to completeness (i.e., casualty optimization studies can rely heavily on engineering

judgement and past assumptions). The type of work presented herein represents steps

towards remedying these current deficiencies. If successful, this work could lead to more

realistically deployable non-intrusive application opportunities to a larger pool of reactor

simulation problems. It contributes to the growing body of work surrounding reduced-

13

order modeling for reactor design calculations, specifically focused on the non-intrusive,

and nonlinear methodologies areas of research. Finally, it does so by demonstrating these

methods on problems of significant size to demonstrate the impressive scalability of the

NIDS modeling architecture.

1.4 Thesis Organization

Chapter 2 details the background and primary neural network methodologies and archi-

tectures for the analyses in the thesis. Chapter 3 outlines and summarizes the results

for the first application problem, a single assembly MPACT RIA analysis. Chapter 4

outlines and summarizes the results for the second application problem, a 3D quarter-

core MC21 depletion analysis. Chapter 5 summarizes the work performed to support this

work, discusses the various advantages and disadvantages of the methods used, and pro-

vides suggestions on where this research could reasonably be used in production nuclear

engineering environments. Chapter 5 also contains suggestions for how the methods used

herein could be further developed.

Additionally, for reproducibility and potential extensions of this work, the Appendix

A provides details on the source code used and generated as part of creating this work.

Appendix B discusses a Python tool, Parody, which was created to support the analyses.

Parody provides an abstract wrapper around PyTorch to help perform ROM research

faster and deploy various ROM methods to arbitrary FOM results.

14

CHAPTER 2

Background Theory and Algorithms

This chapter introduces and discusses the methods and theory underpinning the pri-

mary research of this work. First, Section 2.1 introduces the full order model (FOM)s

used throughout this work. Then Section 2.2 discusses projection based reduced-order

models and their evolution to non-intrusive neural network-based reduced-order modeling

methods. These non-intrusive reduced-order models will form the basis for the remainder

of this dissertation. See Chapters 3 and 4 for the application of these methods to the

nuclear models of interest. Finally, Section 2.3 summarizes the methods available and

chosen to transform the deterministic neural networks into their Bayesian versions, which

are used for uncertainty estimation.

2.1 full-order Models

This section will introduce the theory behind the FOM tools used in the rest of this

work. Although the intent of the non-intrusive methodologies is that the FOM tools

can be treated as black boxes, it is critical to understand the underlying nature of the

equations being solved so it is known what types of future problems the reduced-order

model (ROM) methodologies might be effectively applied to and which are still considered

open areas of research.

First, Section 2.1.1 introduces the governing equations used to describe neutron trans-

15

port. Section 2.1.2 discusses the methods used to solve the neutron transport equation

in the Michigan Parallel Characteristics Transport Code (MPACT) tool, which is the

solver used in the first application problem in Chapter 3. Section 2.1.3 will discuss the

tool, COBRA-TF (CTF), which is coupled to MPACT to provide thermal feedback. This

coupling is the source of the non-linear nature of the problem dynamics.

Section 2.1.4 will discuss the Monte Carlo tool, MC21, which is the solver used in

the second application problem in Chapter 4. The source of the non-linearity in this

application problem stems from how MC21 and the Bateman equations interact, which

are the governing equations describing isotopic depletion. These equations are discussed

in Section 2.1.5.

2.1.1 Neutron Transport

MPACT is a 3D reactor transport code developed by Oak Ridge National Laboratory

(ORNL) and the University of Michigan. MPACT utilizes a 2D/1D method to solve the

neutron transport equation ([39], [40]). In the 2D/1D method, 2D method of characteris-

tics (MOC) is used in the radial planes to capture the heterogeneity of neutron flux in the

radial direction. Each pin cell is explicitly modeled, and sub-pin detail can be captured

[32]. In the axial direction, a low-order transport solution is obtained through a pin-cell

homogenized basis. [41].

The following sections provide enough details to understand the essential approaches

used in MPACT to describe neutron transport in a reactor. However, for more details on

how MPACT solves the neutron transport equation please see [39], [42] and [43].

2.1.1.1 Linear Boltzmann Equation

The 3D steady-state Linear Boltzmann Transport Equation is the governing equation

defining how neutrons and photons transport through matter for nuclear reactor and

shielding analyses. It is 6 dimensional. There are 3 dimensions in space,

16

x = (x, y, z) ,

with x, y, and z, being the spatial dimensions. There are 2 dimensions in direction. The

polar cosine, µ, and azimuthal angle ω are used to define the 3D unit vector Ω defined

as,

Ω = (Ωx,Ωy,Ωz) = (
√

1− µ2 cosω,
√
1− µ2 sinω, µ) .

Finally, there is one dimension in energy, denoted as E. With these dimensions, it is

possible to define the population of neutrons at a specific point in space, traveling in a

specific direction, with a specific energy. Before presenting the full equation, a few more

quantities are defined to establish the proper context.

If the spatial variables x, y, and z are displaced by small amounts, dx, dy, and dz,

the spatial vector will sweep out an incremental volume dV = dxdydz. Similarly, by

sweeping the angular variables, µ and ω, on the unit sphere by incremental amounts, dµ

and dω, the directional vector Ω creates an incremental solid angle dΩ.

Macroscopic cross sections, Σr(x, E)ds, are defined as the probability that a neutron

at point x with energy E traveling an incremental distance ds experiences a particu-

lar nuclear interaction r. The types of interactions that are used in neutron transport

equations for reactor design are,

Σt(x, E)ds = the macroscopic cross section for any interaction with a nucleus,

Σs(x, E)ds = the macroscopic cross section for a scattering interaction,

Σγ(x, E)ds = the macroscopic cross section for a capture interaction,

Σf (x, E)ds = the macroscopic cross section for a fission interaction.

17

These cross sections satisfy,

Σt(x, E) = Σs(x, E) + Σγ(x, E) + Σt(x, E) .

The macroscopic differential scattering cross section is defined as the incremental proba-

bility that a neutron at location x, traveling in direction Ω′, with energy E, traveling an

incremental distance ds, will scatter into dΩ about Ω and dE about E,

Σs(x,Ω
′ ·Ω, E ′ → E)dsdΩdE .

This expression satisfies,

∫ ∞

0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)dsdΩdE = Σs(x, E

′) .

The fission spectrum, χ(x, E)dE is defined as the probability that a fission neutron,

emitted at location x, will have energy between E and E + dE.

To complete the set-up for the linear Boltzmann equation, we next consider all neu-

trons located in a volume dV , about point x, traveling in a solid angle between Ω and

Ω + dΩ, and having energy between E and E + dE. This defines the angular neutron

density, N(x,Ω, E, t). Finally, the angular flux is defined as,

ψ(x,Ω, E) = vN(x,Ω, E),

where v =
√

2E/m is the neutron speed, with m being the mass of a neutron. The

ψ quantity is important because the rates at which neutrons interact with matter are

directly proportional to it.

With these definitions, the linear Boltzmann equation for ψ is given as

18

Ω · ∇ψ(x,Ω, E)+Σt(x, E)ψ(x,Ω, E) =∫ ∞

0

∫
4π

Σs(x,Ω
′ ·Ω, E ′ → E)ψ(x,Ω′, E ′)dΩ′dE ′+

χ(x, E)

4πkeff

∫ ∞

0

∫
4π

vΣf (x, E
′)ψ(x,Ω′, E ′)dΩ′dE ′,

with x ∈ V,Ω ∈ 4π, 0 < E <∞ ,

(2.1)

with boundary conditions,

ψ(x,Ω, E) = 0,x ∈ ∂V,Ω · n < 0, 0 < E,∞ . (2.2)

Equations (2.1) and (2.2) define an eigenvalue problem for the eigenfunction ψ and

the eigenvalue keff . To solve this set of equations, each of the six variables must be

discretized.

2.1.1.2 Discretization of the Linear Boltzmann Equation

First, the discretization in energy is discussed. The multigroup approximation is typically

used, which breaks up Eq. (2.1) into a series equations split up by energy group. To

do so, each quantity in Eq. (2.1) is integrated over an energy range. For example, the

angular flux for group g is defined as,

ψg(x,Ω) =

∫ Eg−1

Eg

ψ(x,Ω, E)dE . (2.3)

A challenge in this process is what to do with the cross section terms when performing

the integration over the other terms in Eq. (2.1). For example, the total macroscopic

term is often represented as

Σt,g(x) =

∫ Eg−1

Eg
Σt(x,Ω)ψ(x,Ω, E)dE∫ Eg−1

Eg
ψ(x,Ω, E)dE

. (2.4)

However, this presents a problem as the right hand side of Eq. (2.4) depends on the

19

solution to the continuous energy angular neutron flux and is unknown. To make this a

tractable problem, the typical procedure for this problem involves making a separability

assumption and defining the neutron spectrum, Ψ(x, E):

ψ(x,Ω, E) ≈ Ψ(x, E)f(x,Ω) .

With these assumptions and similar procedures followed for the other terms in Eq.

(2.1), the multigroup transport equation becomes

Ω · ∇ψg(x,Ω)+Σt,g(x)ψg(x,Ω) =

G∑
g′−1

∫
4π

Σs,g′→g(x,Ω
′ ·Ω)ψg′,n(x,Ω

′)dΩ′+

χg(x)

4πkeff

G∑
g′−1

∫
4π

vΣf,g(x)ψg′,n(x,Ω
′)dΩ′

with x ∈ V,Ω ∈ 4π, 1 ≤ g ≤ G .

(2.5)

The key decision in this approximation is the choice of the neutron spectrum, Ψ(x, E),

to perform the multigroup cross section calculations.

Next, discretization in the angular dimension is performed. The method used in

MPACT, and many other tools, is the discrete ordinates approximation. Here, the ap-

proximation is to allow neutrons to travel only in discrete directions. Let N denote the

number of discrete angles, Ωn, in a quadrature set, with 1 ≤ n ≤ N . Associated with each

direction is a weight term, wn, representing the fraction of area that direction accounts

for on the unit sphere. With these variables, discrete directions can be represented as

ψ(Ωn) = ψn, 1 ≤ n ≤ N ,

and angular integrals of can be represented as discrete summations using the discrete

direction along with its weighting function, such as,

20

∫
4π

ψ(Ω)dΩ ≈
N∑

n=1

ψnwn .

Putting the multigroup and discrete ordinates approximations together yields the

multigroup discrete ordinates equation,

Ωn · ∇ψg,n(x)+Σt,g(x)ψg,n(x) =

G∑
g′−1

N∑
n′=1

Σs,g′→g(x,Ωn′ ·Ωn)ψg′,n′(x)wn′+

χg(x)

4πkeff

G∑
g′−1

N∑
n′=1

vΣf,g(x)ψg′,n′(x)wn′

with x ∈ V, 1 ≤ n ≤ N, 1 ≤ g ≤ G .

(2.6)

The choice of energy discretization and quadrature sets is dependent on the problem

at hand, as well as the expertise and experience of the method and design engineers

available. This topic has a long research history and is outside the scope of this work.

The multigroup discrete ordinates equations retain the basic structure of the original

Boltzmann transport equation, with the main difference being that neutrons can exist in

discrete energies and travel in discrete directions [42].

2.1.2 MPACT

There is a large body of work detailing methods for solving the neutron transport equa-

tion. See [2], [44], [1], [45], [46] for more context on challenges, solutions, and reviews in

the nuclear community at various points in its history. This work will not go into detail

on the many methods available to solve this equation, except to summarize the methods

used in the FOM tool MPACT used for the Chapter 3 analysis. These equations and

their complete derivations can be found in the MPACT theory manual in [42].

MPACT uses a 2D/1D method, which essentially approximates Eq. (2.1) with a

21

2D radial transport equation coupled to a 1D axial transport equation. The 2D radial

approximation uses the multigroup discrete ordinate equations presented in Eq. (2.6),

while the 1D axial transport equation is approximated with a 1D low-order PN equation.

The 2D problem formulation is derived from Eq. 2.1, and includes an axial leakage

term, Jz, which represents the leakage from the 2D plane to the axial plane:

Ωx
∂ψ

∂x
(x,Ω) +Ωy

∂ψ

∂y
(x,Ω)+Σtψ(x,Ω) =

Σs

4π

∫
4π

ψ(x,Ω′)dΩ′

+
vΣf

4πkeff

∫
4π

ψ(x,Ω′)dΩ′ − 1

4π

[
∂Jz
∂z

(x)

]
.

(2.7)

While the 1D axial transport equation includes leakage terms Jx and Jy,

µ
∂ψ

∂z
(x,Ω)+Σtψ(x,Ω) =

Σs

4π

∫
4π

ψ(x,Ω′)dΩ′

+
vΣf

4πkeff

∫
4π

ψ(x,Ω′)dΩ′ − 1

4π

[
∂Jx
∂x

(x) +
∂Jy
∂y

(x)

]
.

(2.8)

The axial equation is further simplified by making the P1 or P3 approximations to reduce

computational cost. The details of this approximation are outside the scope of this work

but the reader is directed to the MPACT theory manual for a complete derivation [42].

The primary takeaway of the 2D/1D approximation is that the two problems are coupled

together through the current leakage terms.

To allow for transient calculations, as performed in Chapter 3, the transient multilevel

(TML) method is used. The primary idea of the TML method is to capture the flux

change in space, energy, and angle in a time domain consistent with its physical variation

during a transient [42]. Prior to describing the general scheme used by MPACT, two new

concepts must be introduced: the coarse mesh finite difference (CMFD) method and the

exact point kinetics equation (EPKE).

CMFD is a method used to speed convergence when solving the neutron transport

equation. It was originally developed to accelerate the convergence of nodal diffusion

22

problems in reactor analysis. In short, it is derived from a multigroup diffusion equation

variant of the neutron transport equation. Its basic formulations consist of using the dif-

fusion approximation and solving the resultant equations on a coarse mesh and mapping

this information to and from the mesh used for the fine mesh transport solution. See the

MPACT theory manual for more details [42].

The EPKE is derived from the integration of Eq. (2.1) over angle, space, and energy

and is presented below:

dp(t)

dt
=
ρ(t)− βeff (t)

Λ(t)
p(t) +

1

Λ(0)

∑
τ

λτ (t)Cτ (t) , (2.9a)

dCτ (t)

dt
=

Λ(0)

Λ(t)
βeff
τ (t)p(t)− λPK

τ (t)Cτ (t) , τ = 1, 2, ..., 6 , (2.9b)

where p(t) represents the core wise amplitude, Cτ (t) represents the adjoint weighted

precursor number density for delayed neutron group τ , βeff
τ represents the adjoint flux

weighted delayed neutron fraction, Λ is the neutron generation time, and λPK
τ are the

delayed neutron constants.

The EPKE is used throughout the nuclear reactor design community for transient

analysis of plant operations and accident analysis. It is useful as it can be quickly

solved compared to higher fidelity approaches and provides accurate predictions for global

changes in power. In MPACT, it is useful specifically for this reason. The TML method

uses these three levels of fidelity together (transport methods, CMFD methods and the

EPKE) to provide accurate and relatively cheap 3D transient solutions for reactor anal-

ysis.

The 3D transport solution (the 2D/1D method) uses coarse timesteps to capture the

variation in sub-pin flux behavior, a 3D CMFD transient solver uses an intermediately

sized timestep to capture the pin-wise scalar flux distribution changes, and the EPKE

uses the smallest timestep in order to capture the time variation of the flux magnitude,

which is driven by the prompt neutron generation time [42]. Figure 2.1 shows a cartoon

23

of how the three solution methods compare to each other in timestep sizes.

Figure 2.1: Illustration of TML scheme [42].

To couple these three techniques together, an assumption of separability is made

about the shape and amplitudes at each stage. For the transport solution coupled to

the CMFD solution, the shape within a coarse mesh is assumed to be accurate from the

transport solution while the amplitude function is corrected using the CMFD solution.

Likewise, for the CMFD coupling to the EPKE the shape within the CMFD solution is

assumed to be accurate while the global amplitude function is updated using the EPKE.

Figure 2.2 shows the entire coupled scheme, with more details about intermediate

steps available in the MPACT theory manual [42].

Notice that Fig. 2.2 includes a “TH solve” in the transport step loop. During this

solve step, a thermal solution for the coolant in the model is found using CTF and the

cross section data is updated. The next section introduces the CTF tool’s governing

equations.

2.1.3 Cobra-CTF

COBRA-TF, also referred to as CTF, is a thermal-hydraulic simulation code designed for

light water reactor vessel and core analysis. It was developed by the Reactor Dynamics

and Fuel Modeling Group at North Carolina State University (established at Penn State)

and also sees contributions from ORNL ([47]). CTF is a thermal hydraulic simulation

code designed for the analysis of light-water reactors. It uses a two-fluid, three-field

modeling approach to model the independent behavior of liquids, droplets, and vapor.

CTF is able to model both the flow within each channel and the cross flow between

24

Figure 2.2: Flow chart for the transient multilevel method.

channels. Users and developers of VERA-CS have used it in a number of application

problems (see [39], [32], and [43]).

The axial mesh for CTF is consistent with the axial mesh of MPACT, and the MPACT

power is summed over each pin and passed to CTF. In this way, the geometries are consis-

tent, and energy is conserved between the codes. MPACT receives average temperatures

from CTF for each radial, axial, and azimuthal volume of each pin and cladding region,

together with the average coolant density for each coolant segment. The energy depo-

sition and cross-section information is then updated during each iteration between the

codes until they converge on a solution. See [39] for more details on how MPACT and

CTF are coupled.

This section summarizes the general conservation equations that CTF solves, as pre-

sented in [48] (i.e., the CTF theory manual). These equations are important in the

context of this work because it is the coupling of the neutron transport and these sub-

sequent equations which provide the non-linearity which makes a reactivity insertion

25

accident (RIA) difficult to model. However, this section will not go into the various clo-

sure models, assumptions, and mesh discretization strategies used by CTF as they are

outside the scope of this work. See [48] for a complete derivation of, and implementation

details for, the solver methods used within CTF.

CTF conserves mass, momentum, and energy for three phases of flow (liquid film,

liquid droplets, and vapor). Each phase is modeled with its own set of conservation

equations. The general mass conservation equation is given by

∂

∂t
(αkρk) +∇ · (αkρkV⃗k) = Lk +MT

e . (2.10)

Here, the k subscript refers to the type of flow (liquid film, droplets, or vapor). α

refers to the specific volume, and ρ the density. The first term on the left hand side is

the change of mass with time, and the second term is the advection of the field mass into

or out of the volume with V⃗k being the field velocity. Lk represents mass transfer into or

out of the phase k. MT
e represents the mass transfer due to turbulent mixing and void

drift. See [48] for the models used and available for each phase for Lk and MT
e .

The general momentum conservation equation is given by,

∂

∂t
(αkρkV⃗k) +

∂

∂x
(αkρkukV⃗k) +

∂

∂y
(αkρkvkV⃗k) +

∂

∂z
(αkρkwkV⃗k)

= αkρkg⃗ − αk∇P +∇ ·
[
αk(τ

ij
k + T ij

k)
]
+ M⃗L

k + M⃗d
k + M⃗T

k .

(2.11)

Here, the left-hand side describes the change in volume momentum with time and the

advection of momentum. uk, vk, and wk refer to the velocities in x, y, and z directions

respectively for phase k. The right-hand side has a term for gravitational force g⃗, pressure

force P , viscous τ , and turbulent shear stress T , momentum source/sink due to phase

change M⃗L
k , interfacial drag forces M⃗d

k , and momentum transfer due to turbulent mixing

M⃗T
k .

The general energy conservation equation is given by,

26

∂

∂t
(αkρkhk) +∇ · (αkρkhkV⃗k) = −∇ ·

[
αk(Q⃗k + q⃗Tk)

]
+ Γkh

i
k + q′′′wk + αk

∂P

∂t
. (2.12)

The left hand side terms are change of phase energy with respect to time and advection

of phase energy into or out of the volume, with h representing enthalpy. The right-hand

side represents the conduction Q⃗k, turbulent heat flux q⃗
T
k , energy transfer due to phase

change τk, volumetric wall heat transfer q′′′wk, and the pressure work term.

Among others, CTF makes the following simplifying assumptions for the energy con-

servation equation. There is no volumetric heat generation within the fluid. There is

no radiative heat transfer, pressure is uniform throughout the phases, and conduction in

the fluids is zero. See [48] for a complete description of other assumptions and simplifi-

cations made for various models of all phenomena captured by these three conservation

equations.

2.1.4 MC21

MC21 is a continuous energy Monte Carlo radiation transport code used to compute

steady-state reaction rate distributions in three-dimensional models ([49]) and was devel-

oped by the Naval Nuclear Laboratory. It was specifically optimized to support large-scale

reactor physics simulations, but the code can be used for any neutron or photon trans-

port problem. It has been used to evaluate Virtual Environment for Reactor Analysis

(VERA) core physics benchmark problem number 6 and 7 ([50] and [51] respectively)

and has shown to produce state-of-the-art results when compared to other multiphysics

solvers such as the VERA tool used in Chapter 3 (specifically MPACT and CTF - [39]).

For the Chapter 4 analysis, MC21 is used along with an internal depletion solver

to model the change in isotopic concentrations as a function of time. The equations

describing how depletion of nuclear reactor isotopes evolves with time are presented in

the next section.

27

2.1.5 Bateman Equations

Nuclei production and the variation in their inventory during and after reactor operation

are governed by the Bateman Equations [52] (originally described by Bateman [53]).

The depletion analysis application problem using MC21 (see Chapter 4) relies on inline

buildup equations which utilize these equations to compute isotopic abundances after

each timestep. In general, the concentration for any individual isotope in a reactor is

influenced by three phenomena:

• the generation by fission production,

• the generation from one or more parent nuclei by radioactive decay or neutron

capture, or

• the disappearance by radioactive decay or neutron capture.

The equation used by reactor engineers to capture these phenomena for isotopes in a

reactor can be generalized as,

dNi

dt
= ϕ

∑
hn

σhn
f yihnNhn +

∑
j,k

(αj
iλPjNPj + ϕβk

i σ
Pk
c NPk)− (σi

aϕ+ λi)Ni . (2.13)

The left hand side represents the change in the number density N of the isotope i. The

first term on the right-hand side of Eq. (2.13) represents generation from heavy nuclei

by fission, where ϕ is the neutron flux, the sum is over all heavy nuclei hn capable of

undergoing fission, σhn
f is the microscopic fission cross section of each heavy nucleus, yihn

is the fission yield of heavy nuclei hn for fission product i, and Nhn is the concentration

of heavy nuclei. The second term on the right-hand side of Eq. (2.13) is the generation

of one or more parent nuclei by radioactive decay or neutron capture, where αj
i and βk

i

are the branching ratios of the parents Pj and Pk to the fission product i. λPj is the

radioactive decay constant of parent Pj, NPj and NPk are the concentrations of parents

28

j and k, and σPk
c is the microscopic capture cross section of parent Pk. The third term

on the right hand side of Eq. (2.13) is the disappearance by radioactive decay or neutron

capture, where σi
a is the microscopic capture cross section of fission product i, and λi is

the radioactive decay constant of the fission product.

Capturing behavior for each isotope of interest in a reactor creates a system of coupled

differential equations that can be solved for any isotope at any time, given the flux and

current isotopic concentrations of all other isotopes. In a nuclear reactor the flux, ϕ,

depends on the power distribution, which depends on the thermal feedback within the

core as well as any way in which a reactivity control mechanism (such as soluble boron

or control rod mechanisms) reacts to the reactivity of the core. All of these physics and

control phenomena (neutronics, isotopic concentration decay/production rates, thermal

distributions, and reactivity control feedback) are tightly coupled to each other. In a

FOM, the way this is typically solved is with an iterative coupling of physics codes. It is

this system that the ROMs in Chapter 4 is the focus of.

During a depletion step, the Bateman equations are discretized and solved over some

period of time, defining a timestep. In each timestep, the flux, ϕ in Eq. (2.13) is assumed

to be constant with time. The most accurate method for incorporating time dependence

of flux into a depletion calculation would be to perform transport calculations at many

intermediate steps and use the resulting flux values during the depletion calculation. This

would result in very small timesteps to resolve the dependence of flux on composition

because of the non-linear interdependence of flux and number densities of isotopes. To

reduce the cost and allow for larger timesteps, in this work the so-called “predictor-

corrector” technique is used in MC21.

As outlined in [42] for MPACT (but implemented in the same manner as in MC21),

the predictor-corrector method works by computing a predicted nuclide concentration for

a given time step and then a corrected nuclide concentration. First, a typical depletion

calculation is performed to compute the particle number densities at the end of the

timestep, using the flux, ϕ1, and cross section values from the beginning of the timestep

29

to do so. Call the resulting number densities N1. Next, a new flux solution, ϕ2 and cross

sections are computed using the end of time step number densities, N1. Then, a corrector

step performs a depletion from the beginning of timestep number densities using ϕ2 to

compute new end of timestep number densities, N2. The final number densities are then

the average of the predicted, N1, and corrected, N2, concentrations.

The Bateman equations and a FOM solver (in the case of this work, MC21), work

together using this predictor-corrector procedure to capture the isotopic trajectories dur-

ing a depletion analysis. The term “power history” refers to the primary driver of this

trajectory and is defined by a reactor power executed over a specific length of time. These

tools, MC21 and the Bateman Equation solvers, are the focus of Chapter 4.

2.2 Reduced-Order Models

Reduced-order modeling is the transformation of high-dimensional models into mean-

ingful representations of reduced dimensionality [54]. Well-known and researched linear

ROM techniques can be classified into Krylov subspace methods, balanced truncation,

and Proper Orthogonal Decomposition (POD). In reference [55], Bai summarizes the

Lanczos process based Krylov subspace technique for reduced-order modeling and pro-

vides a review of other Krylov subspace techniques. In reference [56], Gugercin and

Antoulas provide a survey of model reduction methods using balanced truncation in

2007, with [57] providing a good tutorial for those new to both reduced-order modeling

and balanced truncation in particular. POD will be discussed in Section 2.2.1. Other

methods include reduced basis methods, dynamic mode decomposition and Koopman

operator methods, Gaussian processes, or polynomial chaos expansion. Each method is

potentially useful in certain contexts; however, this paper will focus largely on projection-

based ROMs.

In reference [58], Antoulas discusses the two basic families of singular value decompo-

sition (SVD) and Krylov based reduced-order models, weighing the strengths and weak-

30

nesses of each and how they may be combined to realize the benefits of both. In reference

Lu et al. [59] published another survey paper which highlights common methods for

model reduction, focusing on the POD method. This author recommends this resource

for those interested in a thorough introduction to the POD method contrasted against

other common methods. In reference, Chen et al. [60] proposed a continuous reduced-

order modeling approach, as opposed to other methods which reduce dimensionality of

the discretized space.

Each of these references observes the model reduction task in a slightly different

light but with significant overlap. Taken together, they help the reader understand the

intuition and algorithmic steps needed to perform effective model order reduction. The

next section provides a basic discussion of the POD method and will walk through how

it relates to the growth of the field into the neural network-based non-intrusive reduced-

order modeling methods. Finally, it introduces all the methods used in the application

sections of this dissertation (i.e., the convolutional neural network (CNN) and Non-Linear

Independent Dual System (NIDS) based ROMs.

2.2.1 Projection-Based Reduced-Order Models

Projection-based ROM methods are a common way to avoid the cost of expensive FOMs.

One of the most well-researched areas is POD derived methods, which have been applied

in a wide variety of applications. Alsayyari [61] used a POD approach to build a surrogate

for a fast spectrum molten salt reactor. Ghavamian et al. [10] applied the discrete em-

pirical interpolation method (DEIM) method to two solid mechanics problems. Rahman

[62] created a surrogate model for a 2D flow field of ocean currents. This application

showed good performance for a problem with dynamics evolving over a large range of

temporal and spatial scales. Although these methods are quite common, they have not

been widely applied in the nuclear engineering field outside of research contexts, despite

their potential computational cost savings.

31

Only in the last few years have intrusive POD based ROMs been seriously explored

for radiation transport applications. German [33] applies POD on multi-group diffusion

eigenvalue problem benchmarks and shows great agreement. In another paper, German

[34] also implemented an intrusive ROM method applied to a 2D molten salt reactor

problem under a handful of scenarios to evaluate its effectiveness. Tano and Regusa [35]

used a simple dense artificial neural network to speed up transport sweeps by replacing

the Gaussian elimination process used in typical neutron transport methods with a neural

network. Later, Behne and Regusa[36] introduced multi-resolution POD ROMs applied

to neutron transport problems with large streaming paths that lead to large changes in

order of magnitude of quantities of interest. Halvic et al. [37] created a ROM to model

radiation transport through the atmosphere using SVD as a reduced subspace calculator

and Gaussian processes as the coefficient dynamics regressor.

Notice that these previous works either used POD derived methods as their basis

for subspace selection ([34], [34], [63], [37]) or sought to improve convergence speeds of

currently used numerical methods algorithms ([63]). The former is valuable work for

when the problem dynamics can be accurately captured with a linear subspace. There

are a huge class of problems in nuclear engineering that are static, linear problems well

suited for this type of analysis; however, when the problem express strong nonlinear

behavior these approaches are expected to struggle. In reference, Behne [63] also showed

great improvements for convergence performance, but represents an intrusive approach

to deploying neural networks for reactor analysis. This would be an excellent approach

when seeking faster convergence for FOMs; however, if the goal is to treat the FOM as

a black box to generate a flexible ROM for nonlinear problems, other approaches are

required.

The following section will start with a description of the POD algorithm as a basis

for the introduction of neural network-based non-intrusive ROMs. These non-intrusive

neural network-based ROMs are then applied to nuclear applications to assess their appli-

cability within the nuclear community. These methods, and the research herein, fill a gap

32

in the class of projects represented in the previous paragraph. The methods herein repre-

sent non-intrusive neural network-based ROM algorithms capable of capturing nonlinear

dynamics in 3 dimensions for an arbitrary number of quantity of interest (QOI)s.

2.2.2 Proper Orthogonal Decomposition

Projection-based methods consist of an offline phase and an online phase. During the

offline phase, a series of FOM results are calculated for multiple input parameter instances

with the aim of exploring the design space of interest. This collection of FOM results,

often called a snapshot matrix, is used to construct a lower-dimensional subspace of the

problem space. During the online phase, the chosen ROM algorithm seeks to construct

this space using the snapshot matrix. The new system, in the lower order subspace, can

then be used to realize low-dimensional solutions to new input parameter combinations in

the design space. The ROM algorithm is then used to project this low-order solution from

the lower-dimensional space back into the full-order space, thus producing a full-order

result for downstream analysis.

This section explores basic non-intrusive ROMmethods, built up from the well-studied

ROM method, POD. These non-intrusive methods all rely on neural networks to do

the mapping from the full-order space to the low order space and back again. The

next sections build from the POD method to various non-intrusive neural network-based

architectures, such as CNN and neural operator-inspired architectures. These algorithms

are then implemented for nuclear applications of interest (see Chapters 3 and 4).

POD is a widely studied method in the ROM community. It is often ineffective at

handling non-linear operators and requires adjustments to make it effective for most real-

world applications. However, its basic formulation provides a useful context for the CNN

and hypernetwork-based ROMs explored later in this work.

33

Let a generic FOM be represented as

du(x, t)

dt
= Lu(x, t) +N(u(x, t), µ) , (2.14)

where

u = state variable of interest

t = time - let the problem be discretized into nt timesteps

x = spatial location - let the problem be discretized into nx spatial locations

µ = input parameters which define a full-order model execution

L = linear operator

N = non-linear operator.

The POD algorithm first decomposes u(t) into a linear combination of a collection of

spatially dependent functions, ϕ(x) (sometimes called modes), and time-dependent basis

coefficients a(t) such that

u(x, t) ≈
r∑

k=1

ak(t)ϕk(x) , (2.15)

where

k = the kth mode

r = number of modes included in the ROM formulation.

Plugging Eq. (2.15) into Eq. (2.14) allows us to rewrite the FOM as

da(t)

dt
≈ ΦT

r LΦr +ΦT
r N(Φra(t), µ) , (2.16)

where

a = [a1, a2, ..., ar] ∈ Rnr×nt , basis coefficients

Φ = [ϕ1, ϕ2, ..., ϕr] ∈ Rnx×nr , spatial modes.

The ROM is considered useful if r ≪ nx and the ROM still retains acceptable accuracy

for the application in question. Put another way, aim for the dimensionality of the ROM

34

to be much less than that of the original FOM problem with minimal degradation of

accuracy when compared to the FOM. To determine the spatial modes Φr, the eigenmodes

are extracted via an SVD on the snapshot matrix. The snapshot matrix is constructed so

that it includes the state variables of the FOM for many parametrically unique runs, with

the goal of adequately exploring the design space during the offline phase. After creating

the snapshot matrix and performing the SVD decomposition, the resulting left-singular

matrix is truncated to include only the most important modes. A nice property of the

POD algorithm is that when adding more modes the error, quantified via the Frobenius

norm, never increases.

The terms in the linear portion of Eq. (2.16) (ΦT
r LΦr) can be computed in an offline

phase, whereas the terms in the nonlinear portion of Eq. (2.16) (ΦT
rN(Φra(t), µ)) must

occur in an online phase. Therefore, using this formulation of POD has the shortcoming

that the presence of a non-linear operator can cause the ROM to be more expensive than

the FOM. Methods such as the discrete empirical interpolation method ([10]) (and others;

see [7] for a review of projection-based methods and various solutions to this non-linearity

problem) exist to mitigate this shortcoming. However, for the purpose of this discussion,

the simple POD framework is adequate.

2.2.3 Neural Network-Based Projection Methods

One disadvantage of POD with Galerkin projection as presented here is that it is con-

sidered an intrusive method. In this context, intrusive refers to the act of recasting the

governing equations into the lower-dimensional space. It often requires access to the

underlying code of the FOM. This can make the deployment of these ROM solutions

difficult in production environments where legacy software is used. Proper Orthogonal

Decomposition neural network (POD-NN) is one way to bypass these constraints ([14],

[12]). POD-NN algorithms retain the essential components of POD, with the exception

that they use neural networks to capture the dynamics of the basis coefficients in time

35

instead of the lower-dimensional representation of the FOM (that is, Eq. (2.16)).

Using other constructs in neural networking, such as CNN based neural networks or

operator based neural networks, can see further improvements over the POD-NN method.

This section will discuss each of these methods in turn; however, Before discussing these

methods in detail the next section will discuss the basic mechanics of neural networks in

general.

2.2.3.1 Neural Networks

A neural network is a type of machine learning model. It contains a single or multiple

layers of connected nodes, called neurons, which are organized into layers. Each neuron

takes an input, linearly transforms it, and applies a non-linear transformation to produce

an output. It then feeds this output into the input of the next layer. In supervised

learning, the model learns to adjust the weights and biases of the linear transformation

to minimize the difference between the predicted and known outputs during the training

process. The operations performed for a single-layered neural network are

zi =

mi∑
j=1

wijxj + bi , (2.17)

where:

zi = Output of a neuron in the i-th hidden layer

mi = Number of neurons in the previous layer

wij = The weight connecting neuron j in the previous layer to neuron i in the current layer

bi = The bias term of neuron i in the current layer.

After the output zi is computed, an activation function, f(·) is performed on the out-

put to introduce a non-linearity into the neural network model. The activation function

is defined as

36

ai = f(zi) ,

where

ai = Output of a neuron in the i-th hidden layer after the activation function is applied.

Typical activation functions include the rectified linear unit (often referred to as “ReLU”),

f(zi) = max(0, zi) ,

the sigmoid function,

f(zi) =
1

1− e−zi
,

and tanh function,

f(zi) = tanh(zi) .

These operations (the linear and non-linear transformations to the inputs) can be

chained together to create neural networks with an arbitrary number of layers. The final

layer of the neural network is called the output layer, denoted as ŷ = [a1, ..., an]. For

binary classification, this usually produces just one output. For multiclass classification

or regression, this can include as many outputs as is required for the application of

interest.

The task of computing the specific values used for the weights and biases (wij and

bi) is performed using the backpropagation algorithm, which is a supervised learning

algorithm that updates the weights of neurons in a neural network so that the network

can learn to approximate the output of a given input ([64], [65]). First, a loss is computed

which represents the difference between the known output and the output produced by

the neural network. The goal of the backpropagation algorithm is to minimize this loss

value. For regression problems, this is often a distance metric such as Mean Squared

Error (MSE),

37

L =
1

n

n∑
i=1

(yi − ŷi)2 ,

where

L = The loss of the neural network.

n = Number of output values.

Using algorithms such as gradient descent or its variants, such as adaptive moment

estimation (ADAM) ([66]), the weights and biases are updated using the gradients of the

loss function with respect to the parameters:

wij ← wij − α
∂L
∂wij

(2.18a)

bi ← bi − α
∂L
∂bi

(2.18b)

where

α = The learning rate, which controls the size of the weight update.

Loss gradients (∂L
∂wij

, ∂L
∂bi

) are calculated layer by layer starting with the output layer.

For example, first the derivative of the loss function with respect to the final activation

function is computed. Then, these gradients are propagated backward through the net-

work. For each neuron, the gradient with respect to its output using the chain rule is

computed. This gradient is then used to update the gradients of neurons in the previous

layer. This process is carried out sequentially all the way backwards through the neural

network until the contribution of each weight and bias to the overall loss is known. Once

these values are known, Eqs (2.18a) and (2.18b) are executed for all weights and biases.

2.2.3.2 Proper Orthogonal Decomposition and Neural Networks

Returning to the context of ROMs, POD-NN uses the idea of neural networks to find a

mapping of the basis coefficients, a(t), at some time t to the next time t+∆t. The modes,

38

ϕ(x), remain the same and are still derived from the SVD of the snapshot matrix. Figure

2.3 (from [12]) shows how a densely connected network could move the basis coefficients

forward in time. In this example, the problem is characterized by a Reynolds number that

is used as one of the inputs to the model, but this could be generalized to any number

of input parameters for some application of interest. Note that any time series model

could be used in place of the dense network, such as a long short term memory (LSTM)

layer or a non-neural network-based time-stepping method. The POD-NN method is

non-intrusive and can be treated as a black box. All that is needed to train the algorithm

is the snapshot matrix. No projections of the governing equations are performed and,

therefore, no access to underlying code or matrices is required.

Figure 2.3: A simple POD-NN non-intrusive model order reduction technique ([12]).

A disadvantage of ROM methods that originate from the principles of POD is that

spatial modes are computed using a linear decomposition method such as SVD and, there-

fore, the modes are restricted to a linear subspace. Another class of ROMmethods utilizes

CNN based autoencoders to perform dimensionality reduction and projection, which ig-

nore the constraints of a linear subspace. Before discussing how the CNN autoencoders

39

are structured, the autoencoder and CNN constructs are briefly described.

2.2.3.3 Autoencoders and Convolutional Neural Networks

An autoencoder is a type of neural network that is used for unsupervised learning ([67]).

They consist of two neural networks trained simultaneously, an encoder and a decoder.

The encoder compresses the input data into a lower-dimensional representation. This

can be represented as f(x) = h where f is the encoder model, x is the model input,

and h is the lower-dimensional representation, often referred to as the “code” of the

autoencoder. The decoder operates on this code to reconstruct the original input. This

can be represented as g(h) = x̂, where g is the decoder, and x̂ is the reconstructed input.

Taken together, traversing an autoencoder is represented as x̂ = g(f(x)). It is called an

unsupervised learning method because all that is needed to train the networks are the

original input data without labels or associated output data.

The objective of the autoencoder is to minimize the difference between the input data

and its reconstruction, effectively learning to capture the most important features of the

data in the encoding. The encoder and decoder from the equations above are composed

of neural networks as described in Eq. (2.17), and follow the same procedures for training

and optimization using the backpropagation algorithm. Autoencoders are widely used

for tasks such as data compression, feature extraction, and anomaly detection.

Their value comes from their ability to find informative representations of data in

a lower-dimensional space which can be used for classification, or in the case of ROMs,

time stepping of a physics problem. An autoencoder, composed only of densely connected

layers, quickly becomes too expensive and large to be used for common image classification

or physics modeling problems, so the autoencoder construct is often combined with CNNs.

A CNN is a type of neural network that retains the spatial relationship between a

structured input format. CNNs started to become ubiquitous with the creation of AlexNet

[68], but were introduced much earlier ([69]) and have been deployed in a significant num-

ber of image recognition applications. These networks received continuous improvement

40

over the last 15 years as the technology became better understood and computational

power became more available. Some important papers in this history are referenced below.

[70] investigated these methods to perform classification for categories with variations in

their pose, lighting, and orientation. [71] explored the large hyperparemeter space which

describes these architectures and quantified their impact on image recognition. [72] stud-

ied CNNs and their ability to learn to recognize features in large images. [73] and [74]

investigated the effects of increasing the depth of their neural networks for the ImageNet

image classification competition and found improved performance over other entries.

They are commonly used in image processing tasks because the spatial relationship

between certain features of an image is often useful for the classification of images. Due to

the way they sweep a set of trained filters with variable stride length, coupled with pooling

techniques, they have an inherent ability to automatically select the most important

features within images at various levels of spatial scale to best solve the application for

which it is being trained.

There are three primary operations performed in a convolutional neural network. The

following equations assume a 2D grid of information (i.e., an image) but these relation-

ships can be adjusted for 1D or 3D applications by adjusting the dimensions of the kernel

and convolving the kernel over three dimensions instead of two.

The first, the convolution, maps a kernel K with dimensions kh × kw onto the input

2D plane I. In this context, a kernel refers to a matrix (being 1, 2, or 3 dimensional)

that is convolved over the input information (i.e., a 2D image). This involves element

wise multiplication of the kernel with a region of the input, to produce an output feature

map. In a CNN, the values of the kernel are the parameters that are optimized, and are

adjusted during training to create the optimal kernels for the current application.

A convolutional operation is defined as,

41

O(x, y, cout) =

kh
2∑

i=− kh
2

kw
2∑

j=− kw
2

Cin−1∑
cin=0

I(x+ i, y + j, cin) ·K(i+
kh
2
, j +

kw
2
, cin, cout) ,

where

O = is the output of the convolutional layer

x, y = are the x and y locations in the grid space

cout = output channel dimension

cin = input channel dimension.

After the convolution operation, as is typical with neural networks, a non-linear ac-

tivation function is applied element-wise to the output features. A common activation

function is the ReLU (defined in (2.2.3.1)), which is denoted as AReLU in the following

equations. Finally, the third primary operation seen in typical CNNs is the pooling oper-

ation. Pooling is often used to reduce dimensions of the features during a forward pass.

A max pooling operation takes the maximum value of the neural network layer, after

convolution with the kernel and activation, and is performed for each output channel.

For example, a max pooling with a window size of 2 (here window refers to the scale over

which the maximum operation is performed), would look like,

O(x, y, cout) = max(AReLU(2x, 2y, cout),

AReLU(2x+ 1, 2y, cout),

AReLU(2x, 2y + 1, cout),

AReLU(2x+ 1, 2y + 1, cout)) .

This example performs pooling with a window size of 2; however, kernels can be any

size according to the application at hand (i.e., the kernel size and shape is a hyperpa-

rameter that is optimized). Another common pooling operation is the average pooling

42

operation, where the same task is performed by averaging neighboring locations in the

output feature instead of reducing the result to the maximum value over some region.

Additional hyperparameters include step size of the convolutional operation and padding

rules for when a kernel overlaps with the edge of the input feature.

CNN extension to the applied physics domain is natural in that solutions to physics

problems often have a physical structure that contains useful information about the un-

derlying dynamics. For example, in a nuclear reactor design, the spatial arrangement of

fuel and poison pins is extremely important to predicting the shape of the neutron flux.

Or, the proximity of some fuel pin to a radial water reflector will influence the neutron

spectrum in nearby spatial regions.

CNN based autoencoders methods thus establish mappings between reduced-dimensional

subspaces and input parameter spaces in a fully non-intrusive manner. CNN based au-

toencoder ROMs represent an improvement on POD inspired methodologies, as they

are more suited to retain the spatial relationships present in physics problems and are

non-linear in nature (due to the non-linear activation functions inherent within a neural

network). This allows them to learn non-linear mappings between higher and lower di-

mensional spaces, unlike SVD, which is restricted to a linear mapping. CNN autoencoder

based ROMs have been used in many applications with good success ([62], [11], [16], [18]).

Two CNN autoencoder-based ROM architectures are used in this work and are described

below.

2.2.3.4 Multi-Stage Convolutional Neural Network

Now that the basic mechanics of neural networks, autoencoders, and CNNs have been

described, the next section will discuss how to put these pieces together to produce fully

non-intrusive neural network-based ROMs.

The following multistage convolutional neural network was introduced in [15]. It

assumes that the time-varying spatially dependent solution is on a uniform Cartesian

grid and is evenly spaced in time. The state variable of interest is indicated by q(i;µ),

43

where i is the time step, and µ ∈ Rnµ is the set of nµ input parameters. The entire

time series sequence is defined by a set of input parameters µ and is denoted by Q(µ) =

[q(1;µ), ..., q(nt;µ)] ∈ Rnxnt , where nt is the total number of time steps and n is the

number of spatial locations.

To map a set of input parameters µ to a sequence of output parameters Q, three layers

of neural networks are constructed and trained independently. The first is an autoencoder

that compresses individual snapshots into lower-dimensional representations. The second

compresses a series of these compressed snapshots (i.e., the code of the first layer) into

a temporally compressed representation. The third and final layer maps µ to the code

of the second layer. Figure 2.4 (from [15]) shows a schematic of the interaction between

the three layers. Figure 2.4 shows both the flow of data to train each individual network

(shown by the black line) and how the three networks are connected during the prediction

of new parameters (shown by the red line).

Figure 2.4: Generalized neural network architecture. Image from [15].

The convolutional autoencoder compresses each individual full-order state variable of

interest distribution at some time step i into a lower-dimensional representation. This

process trains both the encoder and the decoder. Let us denote the convolutional autoen-

coder (CAE) encoder by Φs(q(i;µ)) that maps q → qs, compressing the problem into ns

44

dimensional space. Call the decoder of this level Ψs(qs(i;µ)) that maps qs → q̂. The goal

is to find Φs and Ψs, which produce q̂ ≈ q. There are many hyperparameters to define at

this stage, including the number of convolutional filters, the learning rate, the number of

hidden layers, stride lengths, and up-sampling strategies during the decoding phase.

The temporal convolutional autoencoder compresses a series of codes from the first

stage Qs(µ) = [qs(1;µ), ..., qs(nt;µ)] into a lower-dimensional representation. This pro-

cess trains both the encoder and the decoder. Let us denote the temporal autoencoder

(TCAE) encoder by Φl(Qs(µ)) which maps Qs → ql, and the decoder by Ψl(ql) that maps

ql → Q̂s. An important feature of this convolutional network is that it uses causal con-

volutions in its convolutional layers. Causal convolutions ensure that the neural network

does not violate the ordering in which the underlying data are modeled. In other words,

qs(i;µ) should not depend on any time steps following i, but should depend only on the

proceeding time steps.

The final stage is a multi-layer perceptron (MLP), which maps µ onto q̂l. In the

prediction of new parameters, after each stage is independently trained and fine-tuned,

a new µ will be input into the MLP stage to produce a set of Q̂s. This Q̂s will then be

input into the decoder of TCAE (Ψl) to produce a set of q̂s. This q̂s is then input into

the decoder of the CAE (Ψs) to produce a set of q̂.

2.2.3.5 CNN Latent Space Stepper

The CNN latent space stepper is a unique method introduced in this work to bypass

one constraint of the previous method. One significant difference between the method

proposed here and the multistage CNN network from section 2.2.3.4, is that the latter

uses a second autoencoder to compress the spatial distribution latent space in the tem-

poral dimension. However, for problems that attempt to predict a time-varying quantity

where the drivers of the underlying physics can change at each timestep, this is not suf-

ficient. The method proposed here shows that these CNN based surrogate methods can

be extended to the useful application of predicting phenomena where the inputs of the

45

underlying physics may change with each time step. Other methods can do this, but this

method is proposed and used here because of its simplicity and effectiveness in fitting the

nuclear application of interest.

The framework of the CNN latent space stepper is comprised of an encoding neural

network, a concatenation of the latent space with scalar input data (in Chapter 4 ap-

plication, inputs are power history and timestep length), followed by a decoding neural

network that predicts the next time step’s state variable of interest. Figure 2.5 shows a

cartoon representation of this architecture.

Figure 2.5: Illustration of the latent space stepping neural network architecture.

More formally, the architecture can be described as follows. A convolutional encoder

compresses each FOM result in some time step i into a lower-dimensional representation.

In Figure 2.5 this is represented as the pink boxes. The channels of the input layer of

this encoder are all the state variables of interest. For example, they could be isotopic

concentrations, power level, or coolant temperature. Denote the encoder by Ω(T (i)),

where i is the timestep, and T is the collection of state variable distributions. Ω maps

T (i) onto Ts(i), a latent space representation of the state variable of interest. In Figure

2.5 this is represented by the first green line. In this case T ∈ Rn×nt , where n is the

spatial dimensionality and nt is the number of state variables in the problem.

Once in the flattened latent space, Ts, these data are concatenated with a vector

representation of the input parameter scalars, µ, which describe the timestep i. In Figure

2.5 this is represented by the yellow line. The first demonstration of this method will

include only a varying depletion power fraction as part of µ. In this case, µ is a single-

46

valued scalar representing the depletion power fraction.

After this concatenation, a decoder is used to map this latent space representation of

the current timestep’s T (i) and µ onto the next timestep’s isotopic distribution, T (i+1).

In Figure 2.5 this is represented by the second green line and the subsequent decoder.

Call the decoder Θ(Ts(i)). In a strict sense, it is not an autoencoder as the inputs and

outputs to the network are not identical; however, it mimics the intent of an autoencoder

in that it reduces the input to a lower dimensional latent space. In this application,

the latent space is then used to step the transient forward in time using that timestep’s

unique scalar inputs. Θ maps Ts(i) to T̂ (i+ 1).

After the network is trained, predictions would be performed by first taking the current

timestep, compressing it with the encoder, attaching the timestep-specific scalar input

data onto the latent space, and finally decoding it to the next timestep distribution. The

process in full is expressed as

T (i+ 1) = Θ(Ω(T (i)), µ) . (2.19)

2.2.4 Non-linear Independent Dual System

One disadvantage of the CNN based methods is that they require spatial discretization

to be on a regular Cartesian grid and to be constant across all FOM realizations and new

predictions for the ROM. This is a significant problem in many engineering applications

where the geometry changes from input to input, such as core optimization, or when

the FOM results are composed of measurement data where the sensor locations change

between different training cases. Another primary disadvantage is their computational

memory requirements. CNN based ROMs do not scale well to large physics problems, as

their layers become too unwieldy to contain in memory. This pitfall is demonstrated later

in this work for the 3D MC21 application problem in Section 4.2.1. NIDS is a recently

proposed method that builds on the ideas of neural operator methods and uses the idea

47

of implicit neural representations to define and capture the geometric constraints of a

problem [75]. NIDS is one approach that can avoid the two primary issues with CNN

based ROMs.

Neural operator methods take advantage of the notion that neural networks can be

seen as universal approximators of continuous functions and, with enough neurons, can

approximate non-linear continuous operators ([19], [20]). These algorithms can address

some of the shortcomings present in CNN based ROMs ([20], [21], [22], [23], [24], [25]).

Specifically, they are able to handle FOMs that are defined on non-regular Cartesian grids

and require much less memory than CNN based ROMs. Methods such as these, as well

as other physics-informed neural network frameworks ([76], [77], [78]) attempt to solve an

underlying set of physics equations (or at least obtain information from the underlying

governing physics) or obtain relationships on a continuous geometric basis which allows

them to be unconstrained by the Cartesian grid constraints of CNN based methods.

Implicit neural representations can also be used to describe the geometric properties

of a FOM application. The signed distance function (SDF) is an example of an implicit

representation construct that can be used to represent the surface of a shape by a con-

tinuous field where the magnitude of the SDF at any point represents the distance from

the surface of some object, and the sign indicates whether the region is inside or outside

of the shape. In this way, the SDF field can be used to encode the shape of objects in

some problem space. This method has been used for various aerodynamic applications in

which the shape of the object of interest is varied during training and prediction. Work

such as [18], [16], [79], and [80] represent a few applications in which the SDF was used

to capture geometric shapes that had impacts on the state variables of interest.

As described in [16], the SDF can be simply represented by Eq. (2.20):

48

SDF (x) =



d(x, ∂Ω) x /∈ Ω

0 x ∈ ∂Ω

−d(x, ∂Ω) x ∈ Ω

(2.20)

Where:

Ω = The object boundary

x = Geometric location

d(x, ∂Ω) = The shortest geometric distance between x and the surface of the object

Including a SDF in a computational fluid dynamics (CFD) application is valuable

because it allows for the encoding of the shape of some object within a flow field. In

nuclear engineering applications, the SDF can be modified to represent the minimum

geometric distance in the x-y plane from a poison or reflector. In this way, each fuel pin

will know how far away the strong absorbing or scattering materials are. The inclusion of

a SDF of this nature proved important in determining the correct depletion trajectory in

the 3D MC21 application. This application includes a complex checkerboard arrangement

of poison pins intermixed with fuel pins. Although not pursued in this work, future work

could include using this type of SDF to encode fuel and poison arrangements and allow

for quick design space exploration of fuel and poison loading arrangements.

NIDS seeks to create a ROM using this idea of implicit neural representation to allow

discretization-independent learning and prediction for unseen or variable geometric fields

[25]. NIDS also leverages the idea of a hypernetwork from the neural operator work

([20], [22], [23]). A hypernetwork is a neural network that uses a smaller network to

generate the weights and biases of a larger network layer by layer [81]. NIDS leverages

the hyperparameter idea by breaking up the inputs to an engineering problem into two

pieces, each with its own neural network.

The first network operates on global parameters and is used to predict the weights

and biases of a linear output layer, while the final hidden state is the output of the spatial

49

network (which takes geometric data such as x, y, z locations, and SDF information) [25].

Figure 2.6 shows a representation of this idea. Notice that the spatial network outputs

the required shape as the final hidden layer values, and the parameter network output is

reshaped to form the weight and bias matrices that are combined with the hidden layer

values to produce a final output.

Figure 2.6: Schematic diagram of a NIDS ROM ([25]).

NIDS, as defined in [25], is summarized below. The spatial network is defined as

Nx(x) ≜ hx (2.21)

Where:

Nx(x) = Spatial network

x = Spatial information

hx = Hidden vector for the final output layer

The parameter network is defined as

Nµ(µ) ≜ wµ = Wµ, bµ (2.22)

Where:

Nx(x) = Parameter network

µ = Parameter information

wµ = Output of parameter network

Wµ = Reshaped output to be of shape nq × nh

50

The resulting vectors from these two networks (hx, Wµ, and bµ) are combined to

produce the final predictions as follows:

q̂(x, µ) ≜ Wµhx + bµ (2.23)

The spatial network takes pointwise spatial location information, x, as input and

outputs a hidden vector hx. The parameter network takes in parametric information

about the FOM, µ, and outputs a vector, wµ ∈ R(nq×nh)+nq , which is reshaped into weight,

Wµ, and bias, bµ, matrices. To summarize, the parameter matrix produces weight and

bias values while the spatial network produces hidden vector values. These two outputs

are linearly combined to produce final predictions. In other words, the two networks

combine to produce the final output layer of the neural network. In this context the

name, Nonlinear Dual Independent System, is made apparent. There are two systems

which are independently created (the parameter and spatial networks) in a non-linear

fashion (due to the non-linear activation functions in the neural networks).

Formulated in this way, NIDS is suitable for the prediction of new steady-state param-

eters. However, with a simple change, it can be formulated to perform transient analysis.

Both application problems in this work can be interpreted as transient analyses, so this

adaptation was necessary to be able to apply this algorithm to nuclear application prob-

lems. The first application problem (see Chapter 3) is a transient application, since it

analyses the time-dependent dynamics of a rod ejection event.

The second application problem (see Chapter 4) is computed with steady-state solvers

to resolve the neutron flux for each depletion timestep. However, it is more precisely

interpreted as a time-dependent problem, as it is intended to track the isotopic depletion

as a function of varying power history with time. It is important to realize that the

isotopic depletion takes place on a timescale that is orders of magnitude slower than that

of neutron transport. This allows for decoupling the depletion and neutronics solves.

To use NIDS in a transient context, instead of predicting the state variable of interest

51

given some spatial and parametric input, the change in value is predicted. For example,

for the Chapter 4 MC21 depletion calculation, instead of predicting the isotopic concen-

tration at some location, x, given some parametric inputs, the NIDS model predicts the

change in isotopic concentration. For this application problem, the intent is to be able

to predict how isotopic concentrations change given an arbitrary power history (different

power levels at each timestep). In this way, the NIDS model can step through time and

predict how isotopic concentrations change given arbitrary power histories.

The requirements for this transient adaptation are simple. The NIDS algorithm and

the model architecture do not need to be changed. Only the preparation of data needs to

be changed. Appendix B describes the Python tool Parody that was created to support

this work. Parody supports transient and steady-state NIDS applications for 1, 2, and

3 spatial dimensions. See Appendix B for details on how the Parody infrastructure was

designed to quickly accommodate the prepossessing required to support transients NIDS.

2.2.5 Metrics

At the global level, the agreement between the relative power distribution of a ROM and

its FOM can be defined in a few ways. This work will use some or all of these metrics

during comparisons between FOM and ROMs for subsequent chapters.

The first and most common metric seen for regression problems such as this is the

MSE. The MSE is also known as an L2 loss and is calculated by computing the square

of the difference between the predicted and actual value and averaging that difference,

MSE(y, ŷ) =
1

n

n∑
i=1

(pi − p̂i)2 , (2.24)

where:

MSE = mean squared error between the ROM and the FOM

yi = quantity of interest at spatial-temporal location i produced by the FOM

ŷi = quantity of interest at spatial-temporal location i produced by the ROM.

52

This is the loss term that is used for all deterministic neural network training in this work

and is implied when discussing metrics such as “validation loss” of a neural network. Here

and for all metrics defined below, the value of n is the sum total of all spatial locations

in all time steps in a single, or set of, FOM realizations.

A related metric is the Mean Absolute Error (MAE). The MAE is also known as the

L1 loss. It is related to the MSE except that it does not square the difference but takes

the absolute value of the difference in its summation. The MAE is defined as

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| . (2.25)

The RMSE is the square root of the MSE and is often used to assess neural network

training when observing the validation dataset performance,

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 . (2.26)

Finally, Eq. (2.27) shows the Mean Absolute Percentage Error (MAPE), which nor-

malizes MAE by the maximum value in the collection. This last metric highlights relative

error performance, which will be useful in Chapter 4 because average isotopic concentra-

tions can range from 10−2 to 10−15 #
barn-cm

. The MAPE provides a way to capture how

well individual isotopes are predicted compared to each other,

MAPE(y, ŷ) =
1

n

n∑
i=0

|yi − ŷi|
max(|yi|)

. (2.27)

These metrics can also be filtered for some power level threshold. This technique is

used during ROM assessment in Chapter 3. For example, ŷi and yi can be filtered to

include the top x% power generation regions (for example, the top 10% power generation

regions), as this is often of interest for a nuclear designer. This is valuable because a

53

designer may not always be interested in how well the ROM performs for the regions that

do not produce the majority of the power. These regions are typically not limiting from

a performance perspective. These metrics will be used for individual realizations as well

as averaged over a collection of FOM and ROM realizations. When each metric is used

in the remainder of this work, its context and use case will be discussed appropriately.

2.3 Uncertainty Quantification

In this work, neural networks are being trained to make predictions of new parameters

for nuclear simulations. Before these methods can be applied in practice, there must be

confidence in their prediction accuracy. There are many methods available to quantify

model uncertainty in neural network predictions ([82]) including MC dropout, Markov

chain Monte Carlo, Bayes by Backprop, Laplacian approximations, ensemble techniques,

and others. Section 2.3.1 offers a brief summary of each method, and covers Bayes by

Backprop in more detail, which is the method used in this work to quantify the epistemic

uncertainty of neural network predictions.

Separate from model uncertainty are forward uncertainty quantification (UQ) and

input-sensitivity studies that are often performed in the engineering community. In this

work, representative forward UQ and input sensitivity studies are performed to assess the

applicability of the ROM algorithms to the nuclear reactor design and analysis community

(see Chapters 3 and 4). UQ and sensitivity analysis refer to two similar but different

activities in engineering and design. UQ is concerned with understanding the uncertainty

of the model output due to uncertain inputs. Input-sensitivity studies are concerned with

assessing the impact on the output by individual inputs.

One tool for setting performance limits in the context of UQ analyses is Wilks’ for-

mula. In the nuclear power industry, Wilks’ formula for setting tolerance limits has gained

popularity because the U.S. Nuclear Regulatory Commission allows licensing decisions

based on best estimate plus uncertainty analyses. In these contexts, where numerous

54

uncertain inputs are sampled and their impact on the output QOI is observed, nuclear

reactor designers require a way to quantify the limiting behavior. Because the probabil-

ity distribution of the output QOI is unknown, non-parametric methods are required to

determine confidence bounds on a sample from the unknown distribution. Here, Wilks’

formula can be used to determine the sample size required to estimate statistical param-

eters within a certain degree of confidence. It fits well into the regulatory framework

because it incorporates both a tolerance and a confidence in its prediction [83].

The term “rank” is used to describe which order estimate from Wilks’ formula is

desired. For example, an order estimate of an upper tolerance limit uses the maximum of

the sample, the second order estimate uses the second largest, etc. [83]. When the rank

is 1, the Wilks’ computation is given by the relationship,

α > PN ,

where

100(1− α) = confidence desired (typically 95%)

100P = tolerance limit

N = number of samples.

This concept is best illustrated with an example. Typically, a rank 1, 95/95 (α = 5,

and P = 95) value is used. For a maximum response with a 95% confidence level and

95% probability, the rank 1 evaluation of Wilks’ formula requires that 59 samples are

collected.

In other words, this means that if 59 calculations are performed, the highest result is

within the upper 5% range of the true output distribution with at least a 95% confidence

level. The required samples are 93 and 124 for second- and third-order evaluations of

Wilks’ formula, respectively for 95/95 estimates. [84] has demonstrated that although

the Wilks’ formula provides a good estimate of the 95/95 limit, a Monte Carlo-based UQ

procedure is preferable in some nuclear engineering contexts. This work will reference

55

Wilks’ formula results (using 59 samples), but will also perform Monte Carlo-based for-

ward UQ due to the ease of generating large numbers of FOM results for the application

problems in Chapters 3 and 4.

Separate, but related to, UQ analyses are input sensitivity studies, which are also

performed for some application problems in this work. Input sensitivity studies are in-

terested in understanding the impact of a single input value on output QOIs. These

studies hold all input values constant, while varying one single value across its allowable

range. Input sensitivities are of interest to this work because they allow us to understand

whether the ROM is capable of separating contributions from individual input parame-

ters. More details are given in Sections 3.4.3 and 3.5.3, where input sensitivity analyses

are performed for all input variables of interest for the application problem.

2.3.1 Bayesian Neural Network Theory

In addition to exploring neural network ROMs, this work also explores combining the

reduced-order modeling algorithms above with variational inference (VI). This technique

is one method that can be used to assign uncertainty to deep neural networks in a

Bayesian context. In the context of deep learning, specifically this is used to quantify the

uncertainty of the model due to the uncertainty of the weights and biases. This section

provides a brief summary of Bayesian interpretations for a neural network-based ROM

before describing the specific algorithms used.

The field of UQ identifies two primary categories of uncertainty that can emerge in

physics models: aleatoric and epistemic uncertainty. Aleatoric uncertainty encompasses

the uncertainty associated with the intrinsic randomness of a system that remains ir-

reducible even with perfect knowledge. For instance, the interaction of a neutron with

a Uranium 235 atom contains aleatoric uncertainty, as the occurrence of an interaction

stems from a stochastic process. Due to the probabilistic nature of a system, the aleatoric

uncertainty cannot be diminished, although it can be quantified in some cases [85]. Epis-

56

temic uncertainty is associated with limited knowledge or information about a system.

In theory, epistemic uncertainty can be mitigated by acquiring additional data. This

type of uncertainty arises from an incomplete understanding of the true underlying data-

generating process and can potentially be diminished through increased data collection

or measurements. Epistemic uncertainty is frequently related to the selection of model

input, the constraints of the chosen model, or an insufficiency of measurement data.

In summary, epistemic uncertainty refers to the reducible part and aleatoric refers

to the irreducible part of the uncertainty associated with creating and using a physics

model. [85] provides an introduction to this topic in the context of machine learning.

In the work herein, epistemic uncertainty is estimated for a subset of applications and

ROMs presented throughout. Specifically, epistemic uncertainty is estimated by taking

on a Bayesian interpretation of neural networks. Recall that a neural network is a series

of linear transformations coupled with non-linear transformations. For ease of reading,

Eq. (2.17) is repeated here in compact form,

y = σ(W1x+ b)W2 , (2.28)

where W1 represents the weight matrix, b represents the biases, and σ represents

the nonlinear activation function. The primary idea behind Bayesian interpretations

of neural networks is that instead of computing a point estimate of the weights and

biases of the model through stochastic gradient descent, we interpret the parameters

as probabilistic variables. These probabilistic variables have an associated probability

distribution defined by its own parameters. For example, an individual weight in a

model could be interpreted as a Gaussian distribution with a certain mean and standard

deviation. The goal of any deep learning Bayesian algorithm is thus to estimate the

probability distribution parameters for each model weight and bias value. When it comes

time to perform model inference, these distributions are then sampled many times and

an estimate of the distribution of expected outputs can be made.

57

What follows in this section is a discussion that recasts the ROMs into a Bayesian

framework. To begin, the aim of a ROM model is to create a function f , with parameters

ω (the weights, W1 and W1, and biases, b), which can produce an output, yi, from a set

of inputs xi,

yi = fω(xi) .

Call the training dataset D = {X, Y } = {(xi, yi)}Ni=1, for N training data samples, to

denote the set of known inputs and outputs, X and Y . A Bayesian interpretation defines

the likelihood of the model, p(y|x, ω). In other words, this is the probability of producing

the outputs y given a set of inputs x and model parameters ω. Using the likelihood of

the model, for a given test sample, x∗, a test output, y∗, can be estimated by

p(y∗|x∗, D) =

∫
p(y∗|x∗, ω)p(ω|D)dω , (2.29)

which is the probability of producing the output y∗ given a set of inputs x∗ for a model

trained with training data D. In words, Eq. (2.29) is equivalent to averaging the pre-

dictions from an ensemble of networks (a collection of model outputs sampled from

p(y∗|x∗, ω)) weighted by the probability that the true model is characterized by parame-

ters ω, p(ω|D). The primary challenge associated with this formulation is the process of

calculating the posterior, p(ω|D). The posterior distribution of the model parameters can

be rewritten using Bayes theorem (note that D is expanded into its constituent elements

for clarity),

p(ω|X, Y) =
p(Y |X,ω)p(ω)

p(Y |X)
.

Computing this in practice is difficult and typically intractable in the context of

neural networks because neural networks often have millions of parameters. There are

many approaches to handling and modeling uncertainty for machine learning in this

58

context and, in particular, deep learning. [82] provides a comprehensive review of UQ of

epistemic uncertainty under these contexts. Some of the key approaches to estimating

the uncertainty of Bayesian neural networks (BNN) are highlighted here.

2.3.1.1 Bayesian Neural Network Approaches

Markov Chain Monte Carlo is one way to compute the posterior. It approximates a

probability distribution taking an initial sample of the posterior, and then applying a

stochastic transition repeatedly to map out the true posterior. However, it is slow and

computationally expensive compared to other methods [86]. Chandra [87] provides a

Python based summary and demonstration of Bayesian neural networks using Markov

Chain Monte Carlo approaches. Despite their high costs, there has been recent attempts

to exploit the symmetry of neural networks to define more efficient sampling methods for

faster convergence [88].

To combat the high cost of Markov Chain Monte Carlo, MC dropout was introduced

as an effective technique that has been widely used to help solve over-fitting problems

in neural networks and compute prediction uncertainty [89]. During training, dropout

randomly removes some neurons within the neural network, which can be viewed as a way

to reduce co-tuning of a neural network [90] (i.e., it forces the model to learn multiple

representations/relationships between inputs and outputs instead of “memorizing” or

overfitting to the training data). During inference, neurons are “dropped out” with the

same probability as during training. In this way, multiple predictions for the same input

behave as an ensemble of models and can be used to estimate the epistemic uncertainty

of the model.

Model ensembles are another method that can estimate the uncertainty of a model. In

essence, these methods seek to combine multiple independent models trained on a given

task in various ways. Deep ensembles [91] train multiple models of the same architecture

on the same data using different random seeds to start the parameter training. At

inference time each model makes a prediction and the results are statistically combined.

59

Batch ensembles [92] are similar to deep ensembles with the exception that they are

trained using different batches of the training data. They are more attractive than deep

ensembles because the training time for each ensemble model will be reduced because of

the reduced datasets used for each model.

Finally, probabilistic ensembles [93] train a single probabilistic model. At inference

time, outputs from the model are sampled multiple times and the results are statisti-

cally combined. These are more attractive because they have a more solid theoretical

interpretation in a Bayesian framework, despite being typically more complicated to im-

plement than other approaches. On a model by model basis they are also more expensive

to train because they will have more parameters than their deterministic counterparts.

This approach will be used during calculations of the VI BNNs used in this work.

Laplacian approximations [94] build Gaussian distributions around the true posterior

using Taylor expansions about the maximum a posteriori estimate. Finally, Deep Gaus-

sian processes are another method to acquire model uncertainty. See [95] for details on

the Gaussian process modeling method, and [96] for their extension into deep Gaussian

processes. These represent a hierarchy of Gaussian processes. As [96] describes, there are

three types of connected nodes in a deep Gaussian model. The input node, hidden node

(which can be abstracted to be multiple nodes if desired) and the output node. Each node

becomes an independent Gaussian process. The attraction to this type of model is that

it has been shown to approximate a true posterior of a probability distribution. However,

this work employed VI to estimate epistemic model uncertainty. The next section will

discuss why it was chosen and how it can be integrated into neural networks models.

2.3.1.2 Variational Inference

VI is another method to estimate the posterior. It is used here because its implementation

lends itself to large neural networks easily (i.e, it is scalable to situations with millions

of parameters), the algorithm requires small changes to the underlying source code, it

is able to incorporate any potential posterior distribution regardless of its complexity,

60

and its training time is small compared to other methods (in particular Markov chain

Monte Carlo, which can be intractable for large neural networks). Compared to ensemble

methods, VI also has a more firm mathematical foundation describing its interpretations.

Ensemble methods have a more empirical interpretation. For these reasons VI was chosen

for this work.

In VI, because the posterior is intractable, it is replaced with a distribution of known

form (that is, a variational distribution), q(w|θ), characterized by θ. In practice, this

is usually a Gaussian distribution characterized by a mean, µ, and standard deviation,

ρ. In VI based models, computing the posterior is considered an optimization problem

that can take advantage of the stochastic gradient descent that is performed by training

standard neural network models to train against a loss function that characterizes the

difference between the true posterior and the variational posterior of known form.

The Kullback-Leibler divergence (KL-divergence) is used [97] to quantify the similarity

between a known and unknown probability distribution. The KL-divergence, sometimes

referred to as relative entropy, is a mathematical metric that quantifies the difference be-

tween two probability distributions. It is a common metric used to describe the similarity

of the variational distribution and the posterior of interest for VI problems. Intuitively,

the KL-divergence can be understood as a quantity that describes how likely the ob-

servations in one distribution would be produced in another. See [98] for a discussion

of various interpretations of VI and KL-divergence in different probabilistic contexts.

In VI, the goal is to minimize the KL-divergence between the variational and the true

posterior probability distributions. In general, KL-divergence between two probability

distributions (q(x) and p(x)) is defined as

KL(q(x)||p(x)) =
∫
q(x) log

q(x)

p(x)
dx .

In the context of estimating the posterior distribution of neural network parameters, this

becomes

61

KL(q(ω|θ)||p(ω|D)) =

∫
q(ω|θ) log q(ω|θ)

p(ω|D)
dω . (2.30)

The following steps will demonstrate how to convert this into actionable expressions

that can be used within the PyTorch neural network framework used for other ROMs in

this work. A key result of this process is that a practitioner can optimize the weights of

a neural network using a loss term that does not include the true posterior distribution

p(ω|D). To begin with, the following equations expand and rewrite the KL-divergence

used for VI,

KL(q(ω|θ)||p(ω|D)) =

∫
q(ω|θ) log q(ω|θ)

p(ω|D)
dω

=

∫
q(ω|θ) log q(ω|θ)

p(D|ω)p(ω)
p(D)dω

=

∫
q(ω|θ)[log q(ω|θ)− log p(D|ω)− log p(ω) + log p(D)]dω

= KL(q(ω|θ)||p(ω)) +
∫
q(ω|θ) [log p(D|ω) + log p(D)] dω . (2.31)

Note that log p(D) does not depend on the model parameters. By taking advantage of the

fact that the integral over a probability distribution is 1, i.e., log p(D)
∫
q(ω|θ)dω = log p(D),

Eq. (2.31) can be rewritten as

KL(q(ω|θ)||p(ω|D)) = KL(q(ω|θ)||p(ω)) + Eq(ω|θ)[log p(D|ω)] + log p(D) . (2.32)

The two terms on the left of the right-hand side of Eq. (2.32) are known as the “Varia-

tional free energy”, F, or the negative of the evidence lower bound (ELBO). Variational

free energy is

F(D, θ) = KL(q(ω|θ)||p(ω))− Eq(ω|θ)[log p(D|ω)] . (2.33)

62

Variational free energy can be viewed as the sum of a data-dependent part, called

the likelihood cost, and a prior dependent part, called the complexity cost ([99], [100]).

Expanding the KL term from Eq. (2.33), the cost function can be rewritten as

F(D, θ) = KL(q(ω|θ)||p(ω))− Eq(ω|θ)[log p(D|ω)]

= Eq(ω|θ)[log q(ω|θ)]− Eq(ω|θ)[log p(w)]− Eq(ω|θ)[log p(D|ω)] . (2.34)

All three of these terms are expectations with respect to the variational distribution,

q(ω|θ). This means the variational free energy can be written as proportional to,

F(D, θ) ∝ log q(ω|θ)− log p(w)− log p(D|ω) , (2.35)

and it can be approximated by drawing samples from of w(i),

F(D, θ) ∝ 1

N

N∑
i=1

[log q(ω(i)|θ)− log p(ω(i))− log p(D|ω(i))] . (2.36)

Blundell [101] describes an efficient algorithm named Bayes by backprop (BBB) that

uses the gradients computed during normal backpropagation to compute the gradients

with respect to the estimated means and standard deviations of the parameters of the

neural network using the relationship in Eq. (2.36). During the forward pass, the weights

are sampled from their variational distribution. Because the forward pass involves a

stochastic sampling step, the so-called “reparametrization trick” from [102] is applied.

This ensures that during the backward pass the gradients can be computed (i.e., gradients

for purely sampled values cannot be computed with backpropagation).

The idea of the reparametrization trick is to use a random variable, ϵ ∼ q(ϵ), as a

non-variational source of noise. The variational parameters, θ, are not sampled directly,

but obtained via a deterministic transform t(ϵ, θ) such that ω = t(ϵ, θ) follows qθ(ω). ϵ is

sampled and thus changes at each iteration but can still be considered a constant with

63

respect to other variables ([103]). This allows a regular backpropagation implementation

to work as usual to converge on the variational parameters. In the BBB algorithm

proposed by [101] (which assumes that θ describes a Gaussian distribution with mean µ

and standard deviation ρ) the reparametrization trick is represented as,

t(ϵ, θ) = t(ϵ, µ, ρ) = µ+ log(q + exp(ρ)) ◦ ϵ . (2.37)

Next, to leverage Eq. (2.35) in deep learning so that weights and biases, and their

distribution parameters θ, can be learned, [101] makes the critical note that if q(ω|θ)dω =

q(ϵ)dϵ, the derivative of an expectation for a function f with derivatives in ω can be

expressed as the expectation of the derivative,

∂

∂θ
Eq(ω|θ)[f(ω|θ)] = Eq(ϵ)

[
∂f(ω, θ)

∂ω

∂ω

∂θ
+
∂f(ω, θ)

∂θ

]
. (2.38)

If we let f from Eq. (2.38) be the right hand side of Eq. (2.35), we note that the

function f corresponds to an estimate of the ELBO from a single sample (i.e., Eq. (2.36)

for one sample). This has the consequence that the estimate of the gradient will be

noisy and the convergence graph of the loss versus the training epoch will be more noisy

than in the case of a classic backpropagation [103]. However, training is able to progress

successfully. This behavior is noted in the original research paper and is seen empirically

during the work presented here.

2.3.2 Bayesian Neural Network Implementation

In the end, what this implies is that by using the regular backpropagation scheme uti-

lized by deterministic neural networks, with augmented loss functions to represent the

ELBO instead of a typical MSE (typically used in regression problems), the variational

parameters of ω can be learned with standard backpropagation. Because this algorithm

ultimately resembles that of a classical neural network training algorithm, optimizing

deep learning VI using BBB is simple to do if the Python implementation of the Py-

64

Torch layers is adjusted to include appropriate changes in the loss terms. Specifically,

the PyTorch implementation must include the KL-divergence computation in the loss

term recast the weights and biases as probability distributions instead of point estimates.

Algorithm 1 shows the final algorithm defined by BBB as it is implemented in this work.

Algorithm 1 Bayes by Backpropagation
ω = ω0

while not converged do
Sample ϵ ∼ N(0, I)
ω = µ+ log(q + exp(ρ)) ◦ ϵ
f(ω, θ) = log q(ω|θ)− log p(ω)− log p(D|ω)
∆θf = backpropθf
ω = ω − α∆θf

end while

VI in deep learning doubles the number of trainable parameters required to optimize,

since instead of a single weight and bias for a neural network, there are now a mean and

standard deviation for each weight and bias. As an improvement, [104] proposed the

so-called “flipout” method. This method decorrelates the gradients within a mini-batch

by implicitly sampling pseudo-independent weight perturbations for each sample. [104]

claims a number of benefits from this algorithmic improvement, including the ability

to vectorize the optimization algorithm and the faster convergence of fully connected,

recurrent and convolutional neural networks.

Finally, as another improvement, [105] proposed the MOdel Priors with Empirical

Bayes using DNN (MOPED) method. This method chooses informed weight priors for

Bayesian neural networks using a deterministic version of the Bayesian neural network

of interest. Practically, the work herein saw similar performance with and without the

MOPED method with slightly improved convergence times.

The Bayesian-torch python package [106] was used to implement all VI related pro-

cedures (BBB, flipout, reparametrization, and MOPED) during training and testing of

neural networks for the studies in this document. The Bayesian-torch package is a li-

brary of neural network layers and utilities that extend the core libraries of PyTorch to

enable Bayesian inference in deep learning models. It provides interfaces for both the

65

BBB with and without flipout, as well as a way to incorporate the MOPED algorithm

when initializing the Bayesian neural network by providing a deterministically trained

version of a neural network. As mentioned previously, Appendix B describes the Python

tool Parody that was created to support the ROM research here. Parody is built on top

of PyTorch Lightning, which itself is built on top of PyTorch and therefore can leverage

the BNN tools provided by Bayesian-torch. Parody thus includes a simple “bnn” flag to

invoke VI via the algorithms described above into the training loop. It works by first

converting all layers of the deterministic neural network into their Bayesian counterparts

and modifies the loss term used during the backpropagation step to include the requisite

KL-divergence relationship so that BBB can proceed as described.

2.4 Summary

This chapter introduced the theoretical foundation for the work in subsequent chapters.

Section 2.1 began with a discussion of the methods underlining the FOMs used by later

chapters. This includes MPACT for neutron transport, and CTF for the fluid field

solutions. Section 2.2 walked through the evolution of ROM methods in the last decade,

beginning with POD methods and ending with fully non-intrusive neural network-based

ROMs. In particular, it included discussions of CNN and operator based neural network

ROMs. Finally, Section 2.3 introduced the concept of BNNs. It included a discussion on

the VI algorithm that is used in the next sections to capture epistemic uncertainty for

model predictions.

Chapters 3 and 4 apply the tools introduced in this chapter to two engineering appli-

cation problems of interest. Chapter 3 creates a CNN and NIDS based ROM to model

a RIA for a single assembly reactor model and compares their performance. Chapter 4

will extend these ideas to a quarter-core model for an isotopic depletion analysis. In both

instances, we see that NIDS is capable of capturing the physics of interest better than

the CNN ROMs, and encourages the further research of these concepts for application in

66

reactor design and analysis.

67

CHAPTER 3

Single-Assembly Reactivity Insertion Accident

A transient single-assembly reactivity insertion accident (RIA) is used to demonstrate

the viability of the convolutional neural network (CNN) and Non-Linear Independent

Dual System (NIDS) based reduced-order model (ROM) algorithms. The physics anal-

ysis code for this study, Virtual Environment for Reactor Analysis (VERA), is invoked

using two of its integrated solvers; Michigan Parallel Characteristics Transport Code

(MPACT) for neutron transport and COBRA-TF (CTF) for thermal-hydraulics. See

Section 2.1 for a complete discussion on the full order model (FOM)s used in this chap-

ter. These codes are coupled together to capture the important interactions of neutronics

and thermal-hydraulics. This coupling is important because local energy deposition is

directly correlated with the neutron flux. And, the neutron flux is strongly correlated

to the surrounding coolant temperatures, which in turn is dependent on the local energy

deposition. The code used for this analysis is the VERA toolkit, which couples together

MPACT and CTF as described in Section 2.1.2 and 2.1.3 respectively.

Section 3.1 describes the nuclear model and the specific transient that is modeled for

this application problem. Section 3.2 discusses the two types of ROM algorithms (CNN

and NIDS) that are tested against the application problem and basic neural network

training details. Section 3.3 describes the two types of analysis that are used to assess

the success of the ROM models - a uncertainty quantification (UQ) and input sensitivity

study. Sections 3.4 and 3.5 discuss the results of the CNN and NIDS models when applied

68

to this application problem. Finally, Section 3.6 summarizes key findings and results.

3.1 Nuclear Model Description

The model used for this work is a 1x1 fuel assembly configuration with reflecting bound-

ary conditions on each side. This small-scale geometry allowed for easy testing of various

ROM frameworks quickly compared to using a larger 3x3 assembly or full core configu-

ration. The fuel assembly consists of a 17x17 grid of fuel elements with key geometric

parameters described in Table 3.1. Each of the 17x17 grid locations contains either a

fuel pin, a rodded guide tube containing a neutron poison, or an unrodded guide tube.

Figure 3.1 shows the material definitions for each type of fuel pin configuration.

Parameter Value Unit

Axial height 406 cm
Pin pitch 1.26 cm

Clad material zirc4 -
235U Enrichment 2.5 %
Assembly pitch 21.5 cm

Table 3.1: MPACT single-assembly parameters.

(a) (b) (c)

Figure 3.1: Fuel pin (left), rodded guide tube (middle), and guide tube (right).

Each fuel pin is discretized azimuthally and radially. Radially, Figure 3.2a shows

an image of the detailed computational mesh of a single pin for the neutronics solver.

69

The edits from this model come in the form of pin-averaged relative power, which is

the quantity of interest (QOI) for this application problem. In other words, Fig. 3.2a is

condensed to one output for each axial height. Figure 3.2b shows the computational mesh

of a quarter assembly, with the colors indicating the relative thermal flux levels in each

pin for a representative realization of the model. The predominantly blue cells contain

neutron poisons that suppress the neutron flux. Figure 3.2c shows the entire assembly,

with the colors indicating the relative power levels of each pin. The black regions indicate

guide tubes where there is no fuel. All of these images are 2D slices along the xy plane.

(a) (b) (c)

Figure 3.2: Various fidelities of the 1-assembly model used in this analysis. 3.2a shows the
computational mesh of a single pin, 3.2b shows the computational mesh of a quarter assembly,
and 3.2c shows the full assembly with each pin represented as one block.

Axially, the problem is broken up into 49 equally spaced regions. Therefore, the edits

from this model are of dimension 17x17x49 (that is, there are approximately 14k spatial

regions for each spatial solution). The transient is defined as 50 equally spaced time steps

of 5 ms, during which the model experiences a rod ejection event removing them axially

out of the model at a constant speed. The speed of the rod ejection is different on a

case-by-case, spanning 280 to 320 cm/s. The total transient time is thus 0.250 s.

Compared to other problems requiring dimensionality reduction, this problem is rela-

tively small. It would not be unreasonable to perform a full-scale UQ or design optimiza-

tion analysis using the FOM. Each run takes approximately 1 hour to run on one node

70

of the Idaho National Laboratory (INL) Sawtooth high-performance computing (HPC)

machine. Individual compute nodes contain dual Xeon Platinum 8268 processors with

24 cores each and 196 GB of memory. However, this small problem allows for quick ex-

perimentation of many neural network architectures, and its non-linear and highly input

sensitive nature, due to the complex interaction of the physics involved, make it an ideal

benchmark problem for the purpose of assessing the deployment of ROMs in the nuclear

field.

The transient of interest is a RIA. In this scenario, a control rod is simulated as

being suddenly and quickly ejected from the model. The rod ejection causes a severe

increase in reactivity, and therefore power, in the model. When the fuel temperature

increases, the Doppler broadening of the resonance capture cross-section of fuel material

inserts negative reactivity, which reduces power in the model. This is followed by an

increase in temperature of the water moderator. This occurs because of the negative

temperature coefficient of reactivity present in this model (and in most commercial power

plants). As the temperature increases, the density of the coolant decreases. This decrease

in density reduces the effectiveness of neutron moderation, causing a decrease in the

effectiveness of the neutron’s ability to cause fission, which causes quick decrease in

power. However, the effects from the coolant temperature increase are negligible for

transient models simulating less than 2-3 seconds, because the heat generated does not

have time to conduct out of the pin into the coolant.

Figure 3.3 shows the model average power during a representative transient due to an

ejected rod. Note the rapid increase followed by a rapid decrease in power over a short

period of time.

The behavior of this power spike is of interest to a nuclear analyst on a global and local

scale. On a global scale, analysts are often interested in understanding how much total

power is introduced into the coolant loop to ensure the plant design has enough cooling

capacity during this accident scenario. For a fast moving transient such as this though,

an analyst is likely more interested in local scale energy deposition. It is important to

71

Figure 3.3: A representative power spike for the one-assembly rod ejection casualty.

understand where the power is peaking and by how much. As the analysis will show,

some parts of the model have relative power values in excess of 2.0, which means that if

the global power spike indicates an assembly average power of 2000%, those parts of the

core will actually be greater than 4000%. Understanding the locations and magnitude of

the local power peak is important from a fuel rupture and departure from nucleate boiling

perspective. There are many analyses that seek to understand the important inputs for

this type of scenario (see [107] and [108]).

From a licensing perspective this transient represents an important challenge for de-

signers as well. The RIA is a postulated design basis accident for reactors and its analysis

is required for licensed operation. General Design Criteria 28 of 10 CFR Part 50 Ap-

pendix A can be violated if this accident is not properly designed for. General Design

Criteria 28 of 10 CFR Part 50 Appendix A requires that reactivity limits on the amount

and rate of reactivity increase do not exceed certain thresholds, and an accident does not

remove to the ability to adequately cool the core or result in a breach pressure bound-

aries. These considerations make this accident scenario represent both a difficult physics

problem and a problem with a high importance in the regulatory landscape.

72

3.2 Surrogate Modeling Architectures

To assess the viability of ROM methodologies on this representative nuclear engineering

application, two algorithms are explored. The first is the multistage CNN algorithm

described in Section 2.2.3.4. The second is the NIDS algorithm described in Section 2.2.4.

Each are qualitatively and quantitatively evaluated to determine its applicability to the

previously described nuclear engineering application. Section 3.2.1 and 3.2.2 summarizes

each network’s key design features. The notation in each network’s description section

is assumed known throughout the discussions below. Finally, the general procedure for

training the neural networks followed the procedure outlined in Appendix C.

3.2.1 Multi-Stage CNN Architecture

The first surrogate modeling method applied to this application problem is the multistage

CNN architecture described in Section 2.2.3.4. The notation and terminology of Section

2.2.3.4 is assumed throughout this section. The general architecture for each level was

found through the steps described in Section 3.2.

The convolutional autoencoder (CAE) encoder is made up of 4 consecutive 3D convo-

lutional layers. The size of the kernel was 3×3×3, and the number of filters ranged from

50 to 150 for all layers except the final layer, which had only one filter. The stride sizes

are also fixed at 1, except for the third layer, which have a stride size of 2 to condense

each spatial dimension by a factor of two. The stride sizes refer to the size of the step

taken to move the convolutional kernel from one location to the next during a convolu-

tion across the entire input. A stride size of one means that each individual “pixel” in an

input receives a direct convolutional calculation. After the convolutional layers, a flatten

layer was used to rearrange the 3 dimensional tensor to one vector. This is followed by

one densely connected 400-unit layer.

The CAE decoder consists of a densely connected layer followed by a reshape layer to

73

reproduce a 3D tensor, one deconvolutional layer, and an upsampling layer to reconstruct

the desired dimensions. Three final deconvolutional layers were used, with filter sizes of 75

or 150, to produce the final estimate of q̂ (the state variable of interest). ReLu activation

was used throughout the network except for the final layer of the decoder, which uses a

linear activation. The most influential hyperparameters of the CAE are summarized in

Table 3.2.

Layer Type Filters Kernel Shape Stride Length Units

Encoder

1 3D conv 75 1x1x1 1x1x1 -
2 3D conv 75 3x3x3 1x1x1 -
3 3D conv 75 3x3x3 2x2x2 -
4 3D conv 1 3x3x3 1x1x1 -
5 flatten - - - -
6 dense - - - 400

Decoder

7 dense - - - 2025

8 3D deconv 75 3x3x3 - -
9 upsample - 2x2x2 - -
10 3D deconv 75 2x2x2 - -
11 3D deconv 150 1x1x1 - -
12 3D deconv 1 1x1x1 - -

Table 3.2: Summary of CAE hyper-parameters.

The temporal autoencoder (TCAE) encoder begins with a dense layer of 400 units.

The size of this layer must match the size of the final layer of the CAE encoder. Six one-

dimensional causal convolutional layers are then used with strides of length 2 to compress

the temporal information. This is followed by a final dense layer of 600 units.

The TCAE decoder begins with a repeat vector to set the appropriate dimension to

reproduce the correct number of qs’s. As a reminder, qs is the code of the first CNN stage

(the CAE) and the input of the second stage (the TCAE). See Section 2.2.3.4 for more

details. The repeat vector is followed by a dense layer with 450 units, and 4 1-dimensional

causal convolutions, followed by a dense layer of 400 units. ReLu activation units are

used in all layers except for the final dense layer, where linear activation is used. The

74

most influential hyperparameters are shown in Table 3.3.

Layer Type Filters Kernel Shape Stride Length Units

Encoder

1 dense - - - 400
2 1D conv 150 6 2 -
3 1D conv 500 2 2 -
4 1D conv 300 5 2 -
5 1D conv 550 1 2 -
6 1D conv 300 1 2 -
7 1D conv 150 1 2 -
8 flatten - - - -
9 dense - - - 600

Decoder

10 repeat-vector - - - -
11 dense - - - 450
12 1D deconv 950 25 6 -
13 1D deconv 950 25 5 -
14 1D deconv 950 12 1 -
15 1D deconv 1400 18 3 -
16 dense - - - 400

Table 3.3: Summary of TCAE hyper-parameters.

The final stage of the multistage CNN ROM is a multi-layer perceptron (MLP). The

performance of the ROM did not appear to be sensitive to the hyperparameters of the

MLP. A hyperparameter optimization was performed, but little performance improve-

ment was seen over the baseline model. The MLP consists of two densely connected

layers, each with 400 nodes and ReLu activation layers.

A second MLP was used for this application problem to capture the magnitude of the

average power of the model. The spatial edits of the MPACT model that describe the 3D

distribution are relative powers, not absolute powers. In addition to spatially dependent

edits, MPACT also outputs scalar edits. This includes the average power of the model,

which is what this second MLP was fitted against. It is used to capture the transient

behavior of the model average power. Let the time-dependent model average power be

denoted by X = [x(1), ..., x(nt)], where x is the average power of the model at some time

step. The goal of this MLP (call it Ω) is to map a set of inputs µ ∈ Rnµ onto X̂ ∈ Rnt .

75

This MLP uses a set of 4 dense layers with 500 units in each layer. Although an MLP is

used here, any other multidimensional fitting scheme could be used to attempt to capture

the time dynamics of the average power of the model.

In summary, two systems are trained, consisting of 4 neural networks. The first is the

model average power MLP, which maps µ to the time dynamics of the model average

power. The second reproduces the 3D distributions of relative pin powers and is comprised

of three levels - CAE, TCAE, and MLP. In order, these constituent levels act to compress

the time dynamics of the 3-dimensional relative power distribution by first compressing

each snapshot in the spatial dimension, compressing a series of snapshots in the time

dimension, and finally mapping a set of inputs onto the fully compressed information.

Ultimately, a new parameter prediction can be achieved by performing Ψs(Ψl(P (µ
′))) for

some new set of input parameters µ′. The process of training and using this architecture

is visually represented in Fig. 2.4.

The final architectures are then trained for the specific application problem described

in Section 3.1. For a generic application problem different hyperparameters will be more

effective (number of layers, stride length, hidden units, learning rates, etc.). However, for

the application problem used herein, the specific architecture described above proved to

be the most effective.

3.2.2 NIDS Neural Network Architecture

The second surrogate modeling method applied to this application problem is the NIDS

method described in Section 2.2.4. The notation in Section 2.2.4 is assumed throughout

the discussion of the network architecture. The general architecture for each level was

found through the steps described in Section 3.2.

The spatial network and the parameter network are both dense neural networks with

ReLU activation. After combining the output of the two networks, the final layer of the

NIDS architecture uses a linear activation. The hyperparameters for the NIDS algorithm

76

are much less complex than those for the CNN based ROM described in Section 2.2.3.4.

Table 3.4 lists the main parameters defining the architecture of neural networks. For ease

of reading, the image from [25] is reproduced in Figure 3.4

Parameter Value
Param input dimensions 8

Param dense layers 6
Param units per layer 800

Latent space dimensions 800
Spatial input dimensions 3

Spatial dense layers 6
Spatial units per layer 800
Output dimensions 2

Table 3.4: NIDS neural network hyperparameters for the MPACT application.

Figure 3.4: Schematic diagram of a NIDS network ([25]).

3.3 Description of Modeling Scenarios and Figures

of Merits

Each run of the RIA analysis problem is defined by several scalar inputs that determine

how the transient progresses. The inputs used in this study are summarized in Table 3.5.

Each parameter affects different parts of the transient in different ways (heat deposition

rate, power peak magnitude, power peak suppression speed, time of maximum power,

etc.). Table 3.5 indicates the allowable range of each parameter within the analysis.

These ranges are intended to emulate a real application that would have uncertainty in

77

its input parameters; however, these ranges are not representative of any specific core

design. Finally, the last column in Table 3.5 shows how many individual evaluations are

performed in the sensitivity study, which is discussed in more detail in this section.

Parameter +/- Range Units Number of
input sensitivity

evaluations

Rod Ejection Speed 300 ± 20 cm/s 9
Starting Power 100 ± 3 % 7
Guide Tube
Coefficient

0.5 ± 0.2 - 5

Gamma Heating
Fraction

0.02 ± 0.005 % 5

Flow Rate 50 ± 1.5 % 7
Fuel Rod Gap
Conductance

5500 ± 500 W/m2/K 5

Inlet Temperature 565 ± 2 K 5

Table 3.5: Input parameters for uncertainty quantification and sensitivity studies.

Two studies are performed that represent typical analyses performed in the nuclear

engineering field (and are consistent with many other engineering disciplines) - a UQ and

input sensitivity study. These studies assess the efficacy and robustness of using a ROM

in the context of an RIA analysis. These studies are also used to highlight the impact of

using different training approaches when creating a ROM.

The UQ analysis was a simple forward UQ study where inputs to the VERA model are

varied within their ranges, and the impact of the inputs on relative power distributions

is observed. This analysis is primarily concerned with the ability of a ROM to capture

the resulting variability in relative power from uncertain inputs. Specifically, a suite of

100 FOM MPACT runs are executed, sampling the input parameters described in Table

3.5. All sampling assumes a uniform distribution.

The sensitivity study holds all but one parameter constant, with that single parameter

varied within its range in a uniform stepwise fashion. The constant parameters are held

in the center of their allowable ranges. The sensitivity study assesses how well a ROM is

78

able to capture the contribution of individual inputs to the overall transient. Again, the

impact on relative power is observed.

Both studies represent a commonly encountered analysis in many engineering disci-

plines, and both types of analyses benefit when a cheaper ROM is available for analysis

instead of having to rely on a computationally expensive FOM. For context, 1 FOM result

takes 1 hour to execute, was computed using MPACT version 2.1.0, and was executed

on the INL Sawtooth1 supercomputers on a compute node consisting of 48 CPUs.

3.4 CNN Results and Discussion

3.4.1 CNN Training and Qualitative Results

Once the set of hyperparameters was chosen for the neural network and the suite of

100 MPACT runs was executed, the multi-stage CNN ROM was trained. To explore

how many FOM results are required for adequate performance, 6 neural networks were

trained using varying numbers of FOM results. The set of training data sets and their

validation losses at the various stages of the network are shown in Table 3.6.

Training occurred independently for each stage of the network until the neural network

for that stage experienced a training plateau in its loss function. These neural networks

used TensorFlow’s standard callbacks to reduce the learning rate on a training plateau

(patience of 8, factor of 0.2), and early stopping criteria with a patience of 14 to ensure

efficient use of compute resources and training convergence. The time to train each neural

network is also listed in Table 3.6, which scales mostly linearly with the training set size.

Figure 3.5 shows the expected result that increasing the number of training cases

improves performance. Histograms of q/q̂ for every spatial location for all 100 FOM

realizations are shown. Table 3.7 shows these results in table format for each training

case. Each value in Table 3.7 represents the percent agreement between ROM and FOM in

various forms. The first two columns show the maximum model-average power error and

79

Case Number of
Training
Inputs

Training
Time
(min)

CAE
Validation

Loss

TCAE
Validation

Loss

MLP
Validation

Loss

0 5 3 8.9×10−4 2.0×10−4 7.1×10−5

1 10 5 4.9×10−4 1.8×10−4 3.5×10−4

2 25 8 3.2×10−4 2.3×10−4 9.9×10−4

3 50 16 2.3×10−4 1.3×10−4 3.8×10−4

4 75 25 1.8×10−4 1.3×10−4 3.7×10−4

5 100 29 1.1×10−4 9.0×10−5 8.1×10−5

Table 3.6: Summary of model and training datasets.

the time-to-max power error. These metrics deal with global quantities captured by the

model-average power MLP. The remaining columns represent the percentage of spatial

locations for each reproduced MPACT run that falls within some band of agreement.

These values are further filtered to determine how much power is generated in that region.

For example, the rightmost column is filtered to include only the top 5% power generating

regions in the model and represents what percentage of those regions have ROM results

that fall within +/- 5% of the FOM result. These filtered metrics are important to keep

in mind for nuclear applications, as designers are often interested only in regions reaching

some power thresholds, as they are the locations that set performance limits.

Case Average
maximum
power error

(%)

Average
time-to-max
power error

(%)

top 100%
reg -
+/-5

top 10%
reg -
+/-5

top 5%
reg -
+/-5

0 0.00 0.01 21.0 28.7 28.4
1 -0.06 -0.02 41.5 69.7 70.0
2 -0.11 -0.01 27.9 38.4 37.8
3 0.01 0.00 51.2 82.7 83.1
4 -0.01 0.00 54.6 90.1 90.8
5 -0.01 0.00 60.3 95.7 96.2

Table 3.7: Summary of training performance over 100 MPACT runs.

Performance of the CAE and TCAE is also demonstrated with qualitative visual

checks. Starting with the CAE, Figure 3.6 shows the relative power condensed axially

80

(a) (b)

Figure 3.5: Histogram of errors for the recreated suite of 100 cases for Case 0 (left column of
plots) and 5 (right column of plots).

for selected axial slices as a function of the time step for Case 0 and Case 5. Figure 3.7

shows the relative power condensed radially for select transient times as a function of the

axial height for Case 0 and Case 5.

However, the next stage, the TCAE, results in a significant loss in accuracy in power

distribution reconstruction. Figures 3.8 and 3.9 illustrate the performance of the TCAE.

Training the TCAE and then reconstructing the power distributions from the resulting

code of the TCAE results in degraded performance. The axial slices with time appear to

have stepwise features. It captures the general upward or downward trends of the power

distributions, but so poorly that it requires large periodic course corrections, resulting in

81

the observed stepwise features.

(a) (b)

Figure 3.6: CAE radially condensed relative power results for Case 0 and 5.

(a) (b)

Figure 3.7: CAE axially condensed relative power results for Case 0 and 5.

(a) (b)

Figure 3.8: TCAE axially condensed relative power results for Case 0 and 5.

3.4.2 CNN Uncertainty Quantification Performance

Once the three-stage network is trained, each stage is combined to produce relative powers

for individual pin and axial locations as a function of time. Specifically, this section

assesses how well local relative powers agree between the FOM and ROMwhen performing

a simple forward UQ analysis.

82

(a) (b)

Figure 3.9: TCAE axially condensed relative power results for Case 0 and 5

Using the CNN model for uncertainty quantification reveals that although some qual-

itative metrics show reasonable performance, the ability of the neural network to accu-

rately predict relative powers for new parameters is limited. Figure 3.10 shows the average

and standard deviation of a representative local region within the model after 100 ROM

realizations with randomly sampled inputs. This model uses the Case 0 training set, or

just 5 FOM results. Notice how the model average relative power over all 100 realizations

appears to look reasonable; however, the standard deviation in model average power due

to uncertain inputs is not captured by the CNN ROM. The variation is much too large

and does not exhibit the trait of smaller uncertainty at the beginning of the transient

followed by a larger uncertainty near timestep 40.

Figure 3.10: FOM and ROM forward uncertainty propagation for relative power at a single
location in the core for Case 0. Each shade of blue represents one additional standard deviation
of separation from the mean.

Adequate improvement is not seen even after increasing the dataset from 5 to 100

FOM realizations. Instead, the deficiencies of Case 0 results are exacerbated. Figure 3.11

83

shows the performance using the Case 5 training set. This amount of data is already

out of the realm of reasonableness for a practical ROM (i.e., a ROM requiring 100 FOM

realizations is of little value). Still, the performance is poor. The standard deviation

in the average power shrinks but is more uncertain in the beginning of the transient

than in the end, a complete reversal of the actual FOM standard deviation behavior.

These results indicate that the CNN based ROM as implemented here is not capable of

capturing the impact of individual input parameters on relative power and would be a

poor candidate for deployment in a nuclear engineering environment.

Figure 3.11: FOM and ROM forward uncertainty propagation for relative power at a single
location in the core for Case 5. Each shade of blue represents one additional standard deviation
of separation from the mean.

For comparison with other ROM methodologies, the metrics shown in Figures 3.10

and 3.11 are condensed to single figures for each training set. Table 3.8 shows the average

agreement between the average power of the model over the UQ analysis of 100 realiza-

tions. In other words, it represents the average error between the red and black lines in

the lower left image of Figure 3.11 for each location in the model. Table 3.8 also shows

this condensed result for the agreement in standard deviations (that is, the plot on the

lower right of Figure 3.11).

Table 3.8 shows an improvement in these metrics as the number of training samples

increases, but only marginally. This table is misleading also because although the MSE

of the standard deviation improves dramatically, Fig. 3.11 shows that the shape of

84

the predicted standard deviation in relative power is not captured by the ROM. The

improvement in Mean Squared Error (MSE) of the standard deviation is only due to the

collapse of any variation in power, not to any increase in ability to capture the input-

output relationships. Performance does not continue to increase even when including 50

or more FOM realizations in the training data set.

Case MSE of average
power

MSE of
standard
deviation

0 1.5×10−1 1.7×10−2

1 1.5×10−1 4.5×10−4

2 1.4×10−1 2.6×10−4

3 1.4×10−1 4.7×10−4

4 1.4×10−1 5.6×10−4

5 1.4×10−1 4.3×10−4

Table 3.8: Performance metrics for increasing training dataset sizes for the CNN.

3.4.3 CNN Sensitivity Analysis Performance

The previous section showed that within the CNN based ROM there is an inability to

capture the finer details of relative power distributions, especially in the context of input

impact variability. This lack of ability is evident due to the poor spread in model power

in local regions of the model by the ROM when compared to the FOM. This section digs

deeper and further highlights the CNN based ROMs inability to capture individual input

impacts on relative power by performing the individual sensitivity analysis.

Figure 3.12 shows the results of the study of power sensitivity using the best available

CNN ROM. In this figure, all input parameters are held constant, while the input, “start-

ing power”, is varied within is range according to Table 3.5 (97-103%). In essence, it is a

simplified UQ analysis in that only one parameter is varied, but it is more informative in

that it isolates the ROM’s ability to capture the impact on the solution due only to one

parameter. Notice in Fig. 3.12 that, much like the UQ analysis, there is good agreement

of the average power between the FOM and ROM; however, the standard deviation in

85

the results is very poor performing. The ROM always predicts convergence in relative

power at the end of the transient, even though that is precisely where the FOM predicts

the spread to be the greatest. What plots like this show is that the CNN ROM is not

capturing input dependence, but simply finds the average output of the FOM.

Figure 3.12: FOM and ROM initial power sensitivity for the multi-stage CNN for Case 5. Each
shade of blue represents one additional standard deviation of separation from the mean.

For completeness, a sensitivity study for each input parameter from Table 3.5 is run

with the FOM and ROM. The mean-square-error is summarized in Table 3.9. Much like

the UQ analysis, once a certain threshold is reached in the size of the training set, the

performance does not improve beyond what is shown in Table 3.9.

Parameter MSE of average
power

MSE of
standard
deviation

dhfrac 1.5×10−3 5.6×10−5

flow 1.6×10−3 2.2×10−4

guide tube coefficient 1.2×10−3 3.6×10−4

hgap 1.3×10−3 3.1×10−4

power 1.7×10−3 3.3×10−4

rodspeed 1.6×10−3 8.5×10−5

tinlet 1.5×10−3 3.0×10−4

Table 3.9: Comparison of UQ performance metrics when isolating input parameters.

86

3.5 NIDS Results and Discussion

3.5.1 NIDS Training and Qualitative Results

Once the set of hyperparameters was chosen for the NIDS model, a set of 100 MPACT

runs was executed, sampling the input parameters according to Table 3.5. To explore

how many FOM results are required for adequate performance for the NIDS model, 4

neural networks are trained using varying numbers of FOM results - much like the analysis

performed in Section 3.4.1. Table 3.10 shows the cases, the number of FOM realizations

in each case, the total training time and test metrics.

This process is identical to the CNN training regimen. In this case, however, the

Parody tool (see Appendix B for details) is used for all ROM network implementations.

Parody was built with efficient training in mind and incorporates common methods used

today for training neural networks. Leveraging Pytorch-Lightning’s intuitive interface

([109]), this includes callbacks to implement early stopping criteria (with patience of

20 epochs) and reduction of the learning rate on training plateaus (with patience of 8

epochs). This practice provides confidence that a given neural network is trained to its

performance limit while not wasting resources on training epochs that no longer improve

results. Additionally, more training data were not incorporated after 50 FOM realizations.

As are shown below, 50 FOM realizations are enough to provide promising results for this

class of ROM algorithm for this application problem.

Case Number of
Training
Inputs

Training
Time
(min)

Test
RMSE

TEST
MAE

0 5 43 8.7×10−4 4.2×10−4

1 10 71 7.1×10−4 3.2×10−4

2 25 157 3.3×10−4 1.6×10−4

3 50 237 4.0×10−4 2.7×10−4

Table 3.10: Summary of NIDS model and training data sets.

Next, the figures of merits discussed in 3.3 are used to assess the ability of the trained

87

networks to reproduce the results from 100 FOM realizations. Figure 3.13 shows how

increasing the number of training cases improves performance. It is already clear that

the NIDS framework significantly improves performance compared to similar plots of the

CNN model (see Fig. 3.5).

(a) (b)

Figure 3.13: Histogram of ratios for the recreated suite of 100 cases. Figures 3.13a and 3.13b
show Case 0 and 3 results respectively.

Unlike the CNN framework, there is no second stage where the results have the op-

portunity to be compressed and uncompressed for a second time, losing fidelity in the

results. Section 3.4.1 discusses and shows, with axially condensed and radially condensed

power trace plots, how this occurred for the multistage CNN based ROM and introduced

a stepwise pattern in the graphs that capture time evolution. For the NIDS algorithm,

88

the plots of the condensed relative power (axially and radially) are shown below, along

with the cross sections of the relative power. Figures 3.14 and 3.15 show this for the Case

0 and Case 3 training sets for individual realizations of power distributions.

In Figures 3.14 and 3.15, each row represents an individual realization of the FOM

and ROM. These figures have two columns of line plots. The first column shows the time

evolution of the relative power for a single representative x-y-z location in the assembly.

As a function of time, the NIDS model is able to capture the evolution quite well. The

second column shows a single axial power profile for one point in that x-y plane. Again,

this shows that axial power profiles are also captured quite well. The second and third

columns show 2D distributions across high-power generating planes in the assembly for

the FOM and ROM, with the fifth column showing the ratio between the two. Taken all

together, these plots demonstrate a remarkable agreement between FOM and ROM.

Qualitatively, significantly improved performance is observed with the NIDS algorithm

compared to the CNN framework. With the CNN model, even at the spatially condensed

level, the plots showed deviation from truth and prediction. However, with NIDS, on a

spatially condensed basis, the results are almost indistinguishable. Compare Figures 3.14

and 3.15 with Fig. 3.8.

The CNN based ROMs had reasonable performance at the CAE stage (average power

traces, condensed on some spatial basis), but had degraded performance once the TCAE

stage was complete. The NIDS based ROMs have good spatially condensed performance

and individual location performance, and, as we will see later, this allows them to be

more useful on both a UQ and sensitivity-based analysis.

3.5.2 NIDS Uncertainty Quantification Performance

The NIDS model is able to more accurately quantify uncertainties than the CNN model.

Figures 3.16, 3.17, and 3.18 show the performance of the NIDS model for the Cases 0, 2

and 3 training sets, respectively. These plots show the results of a forward UQ analysis

89

Figure 3.14: NIDS ROM and FOM realizations of the same inputs and associated error for Case
0.

Figure 3.15: NIDS ROM and FOM realizations of the same inputs and associated error for Case
3.

at a single location in the core. Each shade of blue represents one additional standard

deviation in relative power. The lower plots in each figure show a comparison between

the predicted average model power and the standard deviation in the model power for

100 realizations of the FOM and ROM. Five FOM realizations are not enough to produce

reasonable UQ results. However, depending on the application, 25 or 50 FOM realizations

may be satisfactory for some nuclear engineering applications.

90

Figure 3.16: FOM and ROM forward uncertainty propagation for NIDS Case 0. Each shade of
blue represents one additional standard deviation of separation from the mean.

Figure 3.17: FOM and ROM forward uncertainty propagation for NIDS Case 2. Each shade of
blue represents one additional standard deviation of separation from the mean.

Figure 3.18: FOM and ROM forward uncertainty propagation for NIDS Case 3. Each shade of
blue represents one additional standard deviation of separation from the mean.

For comparison with the CNN ROM method, the metrics shown in Figures 3.16, 3.17,

and 3.18 are condensed into single figures for each training case. Table 3.11 shows the

91

average agreement between model average power over the UQ analysis of 100 realizations.

It represents the average error in an image such as the lower left plot of 3.18 for each

location in the model for all time steps. Table 3.11 also shows this condensed result for

the agreement in standard deviations (i.e., the lower right plot in Figure 3.18). Table

3.11 demonstrates the improvement in these metrics as the number of training samples

increases, and shows plainly that the NIDS model is able to capture the individual con-

tributions of the input parameters such that it more correctly captures the standard

deviation in local power when compared against the CNN model by multiple orders of

magnitude (see Table 3.8).

Case MSE of average
power

MSE of
standard
deviation

0 1.6×10−3 1.1×10−2

1 1.0×10−4 3.0×10−3

2 3.0×10−5 3.3×10−4

3 4.0×10−6 8.9×10−6

Table 3.11: NIDS UQ performance for increasing training dataset sizes.

Finally, we use the Wilks’ formula value of 59 samples to obtain a 95/95 confidence

interval on the worst performing sample (i.e., we are 95% confident that we have captured

the top 95% worst performing case). Figure 3.19 shows the average relative power for

the ROM and FOM for a random sampling of 59 cases for one location in the model as a

function of time. The red shaded area in this image shows the maximum and minimum

spread in value over all cases. The blue dotted line shows the maximum value as predicted

by the. Here, it is clear that the NIDS ROM is able to predict any individual case to

a high level of accuracy, including the cases which determine the most limiting out of a

sample of 59. The MSE and Mean Absolute Error (MAE) for all 59 cases for the NIDS

ROM are 0.01% and 0.38% respectively.

92

Figure 3.19: The spread in 59 cases as determined by Wilks’ formula for a 95/95 confidence
interval as predicted by the FOM and ROM. The red shaded region represents the full spread
in FOM results.

3.5.3 NIDS Sensitivity Performance

The previous section showed an increase in performance compared to the CNN model for

the UQ analysis. This section uses the sensitivity analysis to further illustrate the ability

of NIDS to capture the dependence of input parameters on a local scale both in the average

and standard deviation of local power. Figures 3.20, 3.21, and 3.22 show the sensitivity

results for a representative location in the assembly when performing sensitivity analyses

for the input rod speed, starting power, and inlet coolant temperature. All of these cases

utilize the trained model of Case 3 (with 50 FOM realizations).

For a parameter such as the rod speed, which does not have a large impact on the

overall power trace when varied over its range for this location in the assembly, the NIDS

model is able to represent this lack of impact. The shape of the standard deviation of

power is not precise, but it captures the order of magnitude of its impact.

On the contrary, starting power and input coolant temperature have a large impact

on the spread of the power trace. In particular, the ends of the power spike seem to be

heavily affected by these input parameters. Here, the NIDS model is able to capture this

variability. It is encouraging and important that any ROM considered for deployment in

a production environment can learn which input parameters have a large impact on the

state variable of interest and which do not. These results suggest that NIDS is capable

93

of capturing these dependencies.

Figure 3.20: FOM and ROM rodspeed sensitivity for NIDS Case 3. Each shade of blue represents
one additional standard deviation of separation from the mean.

Figure 3.21: FOM and ROM initial power sensitivity for NIDS Case 3. Each shade of blue
represents one additional standard deviation of separation from the mean.

Figure 3.22: FOM and ROM coolant flow sensitivity for NIDS Case 3. Each shade of blue
represents one additional standard deviation of separation from the mean.

94

When each of the four trained NIDS models was used to perform each sensitivity

study, it is clear that the performance increased with larger training sets and that NIDS

performed orders of magnitude better than the CNN ROM. These images are condensed

into single metrics representing the performance of the sensitivity study by computing

the MSE of the predicted average power and the standard deviation of the power. Tables

3.12 and 3.13 show the results for all input parameters and training sets. Here again we

see the expected trend that as the number of training cases increases, so does agreement.

However, unlike the CNN case, a plateau is not reached until much greater agreement

is reached between FOM and FOM. Figure 3.23 visualizes these table values. Notice

that case three only sees a marginal increase in average agreement for all but one input

parameter (hgap - Figure 3.23 shows this result graphically), while the error in standard

deviation shows a continuous improvement for all cases.

Case dhfrac flow guide hgap power rodspeed tinlet

0 1.1×10−29.6×10−39.8×10−35.7×10−31.2×10−21.3×10−2 1.1×10−2

1 4.9×10−34.2×10−32.9×10−33.4×10−34.0×10−34.3×10−3 3.5×10−3

2 1.1×10−41.5×10−41.4×10−44.2×10−42.8×10−41.5×10−4 8.8×10−5

3 1.2×10−41.4×10−46.5×10−56.2×10−52.4×10−47.9×10−5 7.2×10−5

Table 3.12: NIDS sensitivity analysis FOM and ROM average predictions.

Case dhfrac flow guide hgap power rodspeed tinlet

0 2.7×10−34.2×10−41.1×10−25.7×10−33.6×10−32.8×10−3 1.6×10−3

1 4.1×10−41.4×10−33.1×10−33.2×10−31.4×10−44.4×10−4 2.1×10−3

2 6.1×10−44.1×10−45.4×10−41.5×10−41.2×10−41.6×10−4 1.9×10−4

3 2.7×10−52.7×10−51.2×10−49.8×10−55.7×10−56.4×10−5 1.7×10−5

Table 3.13: NIDS sensitivity analysis FOM and ROM standard deviation error.

3.6 Summary

These studies demonstrate the relative effectiveness of the CNN and NIDS based ROMs

for the single-assembly MPACT RIA analysis. The NIDS model performs much better

95

Figure 3.23: NIDS error in relative power prediction - average (left) standard deviation (right).

than the CNN based ROM. Improvements to the CNN model are available that could

help it improve performance.

One way to improve performance would be to perform a more exhaustive hyperpa-

rameter search. There are a significant number of hyperparameters that describe the

multistage CNN. Although a hyperparameter study was performed, a more exhaustive

one could be warranted, which would include everything from latent space size to stride

length to skip layer inclusion to batch normalization and kernel size/filter. These param-

eters were included during the hyperparameter search in this work; however, due to the

large size of the search space, these parameters were searched piecemeal. In other words,

not all parameters were allowed to change during each phase of tuning, only a subset.

Then, those parameters were locked in place, and another set of hyperparameters were

allowed to change. This was required due to the size of the search space, but it is possible

that more compute time could find a more optimum combination of hyperparameters.

Another way to potentially find improvement would be to use a different time-stepping

algorithm for the second stage of the architecture. In its current implementation, the

entire code of the first stage is condensed into one temporal CNN. However, other work

has shown to have good performance when using a time series prediction framework such

as long short term memory (LSTM)s to progress the latent space of the CAE forward in

96

time. With this improvement, the entire transient is not predicted in one shot; instead,

the difference between the current and next timestep is predicted, much like how NIDS

was adopted to produce transient results for this work.

Similarly, the NIDS algorithm could see an improvement by using the concepts of

signed distance function (SDF)s for this application. Specifically, having each xy coor-

dinate be accompanied by the distance to the closest control rod or poison pin in the

model. This technique could help the model resolve more quickly and improve both train-

ing time and performance. This method was used in Chapter 4 and was able to improve

performance.

A final idea to progress this research project involves a much more complex imple-

mentation but could be the subject of subsequent work in this field. The RIA analysis is

itself a coupled simulation between a neutronic, heat conduction, and fluid solver. The

results from this coupled model are the state variables of interest which are trained on

and predicted in the work presented above. Instead of making the state variable of in-

terest the power distribution of the converged solution, the ROM could be inserted into

the convergence process itself. With an appropriate data set on which to train, one of or

both intermediate (i.e., before convergence) neutronics and computational fluid dynam-

ics (CFD) solutions could be the state variables of interest. During each multiphysics

iteration, instead of converging one of the physics solutions from scratch (or from the

previously converged), a ROM could be used to predict the next converged solution. The

physics solver would then be used to converge the rest of the way for that iteration. This

back and forth hand-off between the physics solvers and a collection of ROMs could sig-

nificantly improve run time and negate the need for a fully non-intrusive ROM approach

in the first place.

In its current form, the NIDS model could be considered for use to replace the back half

of a UQ study. If an analysis requires 100 realizations of FOM to complete, the methods

proposed here could be used to replace the last 50 executions with 50 realizations of the

ROM. The results from Section 3.5.2 show this directly. Another context in which it could

97

be used is design space exploration. Specifically, rather than exploring all combinations of

input parameters in a search to find the most limiting combination for some metric (peak

power, average power over some region, time to max power, etc.), a handful of FOM runs

could be generated to train a ROM. Then, the ROM could feasibly be used to inform the

designer of the anticipated top 10% limiting locations of the design space. At which point,

FOM could be used to fully characterize those areas of the design space. This iterative

process could significantly reduce the time it takes for these types of optimization studies.

The purpose of this study is to determine the viability of using ROM models in a

design environment. The decision of whether either of these methods could be used in

a true production level analysis is difficult to speculate on. This is due to the fact that

each analysis, tool, regulatory requirement, analysis method, and application will have

different constraints setting criteria for acceptability. Some application cases may require

proof that the ROM agrees with the FOM for some benchmark cases representing the

design space to within a certain degree of the relevant figure of merit for that analysis.

Other types of analyses may not use results directly from the ROM and instead use the

FOM to always run a final confirmatory case. In this situation, the ROM may just be

used in a design space exploration context. However, these cases may require proof that

the ROM is able to capture the contributions from each individual input of the FOM on

the output of interest in a design space regime of interest. Still other applications may

integrate the ROM with the FOM solver in such a way as to only improve convergence

times. In these cases the users may desire the final results of the FOM to be within the

FOM margin of error regardless if the ROM was used to speed up convergence or not.

At first glance, the CNN model appears to be out of contention as it does not capture

the variability even when all input parameters are varied within their ranges, as shown

in Section 3.4.2. And although the NIDS model captures this variability with orders of

magnitude more agreement, each analysis would have its own criteria for how accurate

a ROM tool needs to be in order to be used in a production environment. Putting

these caveats aside, the NIDS model has at least shown itself as a viable candidate when

98

evaluating ROM methods to be included in production-level design environments.

99

CHAPTER 4

Depletion Trajectory Sensitivities

A depletion trajectory application is used to assess the performance of a convolutional

neural network (CNN) and Non-Linear Independent Dual System (NIDS) algorithm ap-

plied to a large-scale nuclear engineering application. The analysis code for this applica-

tion is MC21 (see Section 2.1.4. This section extends the ideas of Chapter 3 in two ways.

First, from a spatial size perspective (single assembly to multi-assembly, and two to three

dimensions in space) and second from how many state variables of interest are present.

The first application problem in Chapter 3 predicts just one state variable - relative

power peaking. This chapter demonstrates predictions of 190 state variables of interest.

Specifically, this chapter demonstrates the prediction of isotopic number densities of all

depletable isotopes in the model for two MC21 models. The first is a 2D truncated single-

assembly application, and the second is a 3D quarter-core application. The role of this

reduced-order model (ROM) would be to predict isotopic number densities for arbitrary

power histories without the need of a full order model (FOM) for the depletion analysis.

The number densities predicted by the ROM would then be loaded into a downstream

nuclear solver in order to perform “branch calculations” at core configurations of interest.

Two neural network ROM approaches are explored in this application problem. The

first is a CNN based approach (the latent space stepper architecture described in Section

2.2.3.5). The second is a NIDS model (Section 2.2.4). This section further demonstrates

the primary shortcomings of a CNN based ROM for nuclear applications - its inability

100

to scale to large problems and inaccuracies even with small-scale problems. Although it

can be applied to the 2D truncated single assembly problem, its performance is shown to

be much worse than that of the NIDS based ROM. However, although the CNN based

ROM can be applied to the 2D model it is simply unable to scale to the 3D quarter-core

application due to memory constraints whereas the NIDS based ROM performs almost

as well on the 3D problem as it does for the 2D problem with no significant increase in

memory footprint.

Section 4.1 describes the 2D and 3D nuclear models used for this analysis. Section 4.2

discusses the two types of ROM algorithms (CNN and NIDS) tested against application

problems and basic network training details. Section 4.3 describes the analysis that is

used to evaluate the performance of the ROM algorithms. Section 4.4 discusses the

2D planar results, while Section 4.5 discusses the 3D quarter-core result. Section 4.7

summarizes the key findings and results.

4.1 Nuclear Model Description

4.1.1 2D Plane

The first MC21 problem is a truncated two-dimensional assembly model that was used to

test the mechanics and basic performance of the candidate ROM algorithms. The model

consists of an 11 by 11 grid of fuel pins surrounded by water coolant. The fuel pins have

a diameter of 3.575 cm. The inner and outer diameters of the cladding are 3.615 cm and

4.11 cm, respectively. In between the fuel and cladding is a 4He filled gap. In one corner

of the model there is no fuel pin, which was introduced to include some radial asymmetry

in the neutron flux. Finally, all boundaries are reflective. None of these dimensions is

reflective of a real reactor core design, and they were manually tuned to provide a model

that was approximately critical and demonstrated variability in its depletion trajectories

depending on the power history. However, the magnitudes are representative of values

101

which might be found in a real core design (any matching dimensions are coincidental).

Figure 4.1 shows an image of the 2D model, and Table 4.1 lists the definitions of the

materials used in the model.

Figure 4.1: Truncated 2D single-assembly MC21 model

Isotope Density

O16 4.58×10−2

O17 1.741×10−5

U234 1.3607×10−5

U235 1.8161×10−4

U238 2.5014×10−2

(a) Fuel material

Isotope Density

O 2.96×10−4

Cr 7.6×10−5

Fe 7.1×10−5

Ni 3.4×10−5

Zr 4.254×10−2

Sn 4.65×10−4

Hf 1.660×10−6

(b) Clad material

Isotope Density

O 2.790×10−2

H 5.580×10−2

(c) Coolant material

Table 4.1: Material definitions for 2D MC21 model. All units in (# / barn-cm). When the
isotope is not specified, natural abundances are assumed.

In addition to the isotopes listed here, a selection of fission products are also modeled

within the fuel. These isotopes are listed in Table 4.2 and constitute all isotopes modeled.

This model is quite small and is intended to be used to quickly test candidates for

the ROM algorithm under various conditions, neural network architectures, and MC21

preprocessing scripts. All results presented using this 2D model took approximately

50-60 minutes per timestep to complete on 1 node (48 CPUs) of the Idaho National

Laboratory (INL) Sawtooth1 supercomputer. Each timestep was executed using 400

batches, 10 discards, and 6E4 histories per batch. This run scheme achieved a 1-σ

reactivity convergence of approximately 20 pcm. Analyses were performed using mostly

102

AG109 AG110M AG111 AM241 AM242M
AM243 AS75 B10 BA134 BA135
BA136 BA137 BA138 BA140 BR81
CD110 CD111 CD112 CD113 CD114
CD115M CD116 CE140 CE141 CE142
CE143 CE144 CM242 CM243 CM244
CS133 CS134 CS135 CS136 CS137
DY160 DY161 DY162 EU151 EU152
EU153 EU154 EU155 EU156 EU157
GA71 GD152 GD153 GD154 GD155
GD156 GD157 GD158 GD160 GE72
GE73 GE74 GE76 I127 I129
I130 I131 I135 IN115 KR82
KR83 KR84 KR85 KR86 LA139
LA140 MO100 MO95 MO96 MO97
MO98 MO99 NB95 ND142 ND143
ND144 ND145 ND146 ND147 ND148
ND150 NP237 O16 PD104 PD105
PD106 PD107 PD108 PD110 PM147
PM148 PM148M PM149 PM151 PR141
PR142 PR143 PU238 PU239 PU240
PU241 PU242 RB85 RB87 RH103
RH105 RU100 RU101 RU102 RU103
RU104 RU105 RU106 RU99 SB121
SB123 SB124 SB125 SB126 SE76
SE77 SE78 SE79 SE80 SE82
SM147 SM148 SM149 SM150 SM151
SM152 SM153 SM154 SN115 SN116
SN117 SN118 SN119 SN120 SN122
SN123 SN124 SN125 SN126 SR88
SR89 SR90 TB159 TB160 TC99
TE122 TE123 TE124 TE125 TE126
TE127M TE128 TE129M TE130 TE132
U233 U234 U235 U236 U238
XE128 XE129 XE130 XE131 XE132
XE133 XE134 XE135 XE136 Y89
Y90 Y91 ZR90 ZR91 ZR92
ZR93 ZR94 ZR95 ZR96 -

Table 4.2: All isotopes within the 2D and 3D MC21 models.

30-timestep depletion runs, with one 60-timestep analysis included as a side study.

Consistent between the 2D and 3D models is an MC21 post-processing data pipeline,

which was created to support this application problem. This pipeline reads the MC21

103

restart files and retrieves the model component names and isotopic number densities.

As discussed previously, when constructing NIDS models one of the inputs is the spatial

location of the variables of interest. Combining the information from the restart files with

the MC21 mapping files, this spatial information was extracted by the post processing

scripts.

At the end of the process, each MC21 run (consisting of 30 timesteps for the purpose

of this discussion) produced a tuple of Python Numpy saved data arrays consistent with

the expectations of the Parody tool (see Appendix B). This tuple had four Numpy array

elements (see Appendix B for more information on what these terms refer to):

1. state variable array of shape (1, 30, 11, 11, 190)

2. locs array of shape (1, 11, 11, 2)

3. params array of shape (1, 30, 3)

4. params dist array of shape (1, 30, 11, 11, 1)

The state variable array dimensions correspond to a single case with 30 timesteps

on an 11x11 spatial grid for each of the 190 isotopes in the model. The locs array

dimensions correspond to a single case on an 11x11 spatial grid, with the xy coordinate

pair represented by the last dimension. The params array represents the three scalar input

values for the model for each timestep - depletion power fraction, effective full power

depletion timestep length, and cumulative depletion hours. Note that each depletion

timestep is exactly 48 hours long. The effective full power depletion timestep length

corresponds to the depletion power fraction multiplied by 48 hours.

Finally, an important step in feature engineering is normalizing the concentration of

each isotope by the average concentration for just that isotope. This was required because

of the varying magnitudes of all of the isotopes during depletion, which span many orders

of magnitude (ranging from 10−2 to 10−15). Stochastic gradient descent, the algorithm

used to train neural networks, often benefits from normalized inputs to avoid having large

variance in the scales of input dimensions.

104

Finally, the params dist array corresponds to each spatial location’s closest distance

to a pin cell grid location without a fuel pin. Using the concept discussed in Section

2.2.4 on the signed distance function (SDF), additional geometric information is encoded

as input into the ROM models. Figure 4.2 shows what the x-y distribution of the SDF

looks like for the 2D model. In the color bar the whole numbers are used to represent

the number of grid points away each location is from the bottom right corner where no

fuel is present. These numbers are scaled within Parody during training.

Figure 4.2: Signed distance function representing distance to closest non-fuel grid location for
the 2D model.

This params dist array construct allows for unique inputs to be applied to each lo-

cation (and at each timestep—this functionality is not leveraged in this work but is

supported with Parody). When discussing spatial scales on the order of a neutron’s

mean-free path in a lattice, neutron flux is heavily dependent on proximity to strong

absorbers or reflectors. Rather than creating a larger neural network and having it learn

the relationship between neutron flux/flux gradient and proximity to absorbers and re-

flectors, this feature engineering step allows us to encode this information as part of the

input. With this additional input, the ROM converged faster and with greater precision.

The benefits were minimal for the small-scale 2D case, but significant for the 3D case.

See Section 4.6 for an analysis on the impact of the SDF for the 2D and 3D case. Note

that this SDF approach is important when predicting values that are directly related to

105

the proximity of fuel or poison pins. In the current case, because this is a thermal reactor

and it is dominated by thermal fission, the SDF offers significant benefits. However, for

other systems such as a fast reactor (not explored in this work) where there is a higher

spatial coupling the SDF may not be as impactful.

These four Python Numpy arrays (state variables, locations, scalar inputs, and dis-

tributed parameter inputs) were concatenated and entered into the Parody tool (see

Appendix B). Specifically, the inputs to the resulting NIDS model are the scalar and dis-

tributed parameter values, and the outputs are the difference in isotopic concentrations

for each isotope. Parody is designed to accept arrays of this shape and handle all of

the scaling, data reshaping and mapping, data splitting, and GPU-CPU handoffs during

training, as well as the scaling and inverse transformations required for inference.

4.1.2 3D Full Core

The second MC21 problem is a 3-dimensional model that is used to demonstrate the

ability of NIDS to scale to a more realistic and representative real-world problem. The

model is a quarter-core representation of a 37-assembly core. Each assembly consists of

a grid of 17x17 pins. Each assembly also has a regular pattern of poison pins or coolant

pins. There are reflective boundaries on the lines of symmetry and vacuum boundaries

on the outside of the water reflectors and axially.

Figures 4.3 and 4.4 show a top-down and axial view of the geometry. Once again, this

application problem does not represent a real reactor core design. Its dimensions and

concentrations of beginning of life (BOL) isotopics were artificially tuned to provide an

approximately critical configuration and demonstrate variability in its depletion trajec-

tories with power history. A real reactor core design would likely include variability in its

radial fuel and poison loading based on pin and assembly location. However, as will be

demonstrated in subsequent sections, the geometry analyzed for this work still produces

adequate neutron flux and isotopic concentration gradients in the radial dimension such

106

that the NIDS ROM capabilities are stressed.

Figure 4.3: Top-down view of the 3D quarter-core geometry along the x-y plane

Although difficult to see in the quarter-core image in Figure 4.3, the geometry of this

3D model has more constituent elements than the 2D model. There are three types of

combinations of pin geometry materials that are present in the model and two types of

assemblies, each consisting of a 17x17 grid of fuel pins. Figure 4.5 shows the three types

of pin cells in the model. There is a fuel pin, poison pin, and coolant pin. The fuel pin

contains the fuel, the poison pin contains a boron-based poison to act as a reactivity

control substance, and the coolant pins contain a zirconium pin filled with coolant water.

Table 4.3 describes the geometric and material definitions for each of the pin cell types

in Figure 4.5. Table 4.4 describes the axial mesh used for depletion in the model. The

material names referred to are defined in Table 4.5. The distance from one centroid of

a pin to the next in the x- and y-directions is 1.26 cm. Note that a 4He filler was used

to fill the space for all locations of the pin geometry as is not specifically identified. The

number density of 4He is largely unimportant due to it being virtually invisible from a

neutronics perspective (i.e., the cross section for 4He is negligible).

107

Figure 4.4: Axial view of the 3D quarter-core geometry along the x-z plane

(a) (b) (c)

Figure 4.5: Fuel pins present in the 3D model - fuel (left), poison (middle), coolant (right).

108

Characteristic Inner diameter Outer
diameter

Material

Fuel Pin

Fuel - 0.8192 U18
Clad 0.836 0.95 ZIRC4

Coolant 0.95 - COOLANT

Poison Pin

Inner pyrex container 0.428 0.462 SS
Pyrex 0.482 0.854 PYREX

Outer pyrex container 0.874 0.968 SS
Coolant 0.968 1.122 COOLANT
Clad 1.122 1.204 ZIRC4

Coolant 1.204 - COOLANT

Coolant pin

Coolant - 1.122 COOLANT
Clad 1.122 1.204 ZIRC4

Coolant 1.204 - COOLANT

Table 4.3: Fuel pin characteristics in cm, with material definitions in Table 4.5.

Finally, the assemblies are placed in a checkerboard pattern for all 37 assemblies in

the model. Note that this is a quarter-core symmetric model, so only one quarter of the

core is represented in the model input files (as seen in Fig. 4.3), but it behaves as a full

core model would due to the symmetry of the design. Figure 4.6 shows a closeup of the

two types of assemblies. The distance from the center of any assembly to its neighbor in

the x and y directions is 21.504 cm. There are 15 total non-fuel pin cells in each type of

assembly in a regular pattern.

Table 4.5 defines the materials that are seen in all the geometric figures that represent

the 3D model. These materials make up the constituents shown in Fig. 4.5, with one

addition of the “LOWERNOZZLE” material, which is used for the structural material

above and below the core. This structural material is seen in Fig. 4.4 as the yellow

regions at the top and bottom of the core. There are several other structural materials

not represented in Table 4.5; however, they are not included because of their negligi-

ble importance from a neutronic perspective and because they are not present in large

quantities from a volumetric or mass perspective.

109

Node Axial Height (cm)
1 11.951
2 15.817
3 24.028
4 32.239
5 40.450
6 48.662
7 56.873
8 65.084
9 73.295
10 77.105
11 85.170
12 93.235
13 101.300
14 109.365
15 117.430
16 125.495
17 129.305
18 137.370
19 145.435
20 153.500
21 161.565
22 169.630
23 177.695
24 181.505
25 189.570
26 197.635
27 205.700
28 211.951

Table 4.4: Axial mesh break points used for depletion.

110

(a) (b)

Figure 4.6: Assembly types present in the 3D MC21 model - the left assembly contains the
poison pins, while the right assembly contains the coolant pins.

111

Isotope Density

O16 0.0457591

U234 4.04814×10−6

U235 4.9368901×10−4

U236 2.23756×10−6

U238 0.0223844

(a) U18

Isotope Density

B10 9.61468×10−4

B11 0.00389444
O16 0.0466888
SI28 0.0181641

SI29 9.22749×10−4

SI30 6.08994×10−4

(b) PYREX

Isotope Density

B10 1.05835×10−5

B11 4.25999×10−5

H-H2O 0.0496231
O16 0.0248116

(c) COOLANT

Isotope Density

CR50 3.30121×10−6

CR52 6.36606×10−5

CR53 7.2186×10−6

CR54 1.79686×10−6

FE54 8.68307×10−6

FE56 1.36306×10−4

FE57 3.14789×10−6

FE58 4.18926×10−7

HF174 3.54138E-9

HF176 1.16423×10−7

HF177 4.11686×10−7

HF178 6.03806×10−7

HF179 3.0146×10−7

HF180 7.76449×10−7

SN112 4.68066×10−6

SN114 3.18478×10−6

SN115 1.64064×10−6

SN116 7.01616×10−5

SN117 3.70592×10−5

SN118 1.16872×10−4

SN119 4.14504×10−5

SN120 1.57212×10−4

SN122 2.23417×10−5

SN124 2.79392×10−5

ZR90 0.0218865
ZR91 0.00477292
ZR92 0.00729551
ZR94 0.00739335
ZR96 0.0011911

(d) ZIRC4

Isotope Density

C 3.20895×10−4

CR50 7.64915×10−4

CR52 0.0147506
CR53 0.0016726

CR54 4.16346×10−4

FE54 0.00344776
FE56 0.0541225
FE57 0.00124992

FE58 1.66342×10−4

MN55 0.00175387
NI58 0.00530854
NI60 0.00204484

NI61 8.88879×10−5

NI62 2.83413×10−4

NI64 7.2177×10−5

P31 6.99938×10−5

SI28 0.00158197

SI29 8.03653×10−5

SI30 5.30394×10−5

(e) SS

Isotope Density

B10 7.61305×10−6

B11 3.06435×10−5

C 8.96008×10−5

CR50 2.13581×10−4

CR52 0.00411869

CR53 4.67027×10−4

CR54 1.16253×10−4

FE54 9.6269×10−4

FE56 0.0151122

FE57 3.49006×10−4

FE58 4.64463×10−5

H-H2O 0.0357666

MN55 4.89719×10−4

NI58 0.00148226

NI60 5.70964×10−4

NI61 2.48194×10−5

NI62 7.91351×10−5

NI64 2.01534×10−5

O16 0.017883

P31 1.95438×10−5

SI28 4.4172×10−4

SI29 2.24397×10−5

SI30 1.48097×10−5

(f) LOWERNOZZLE

Table 4.5: Material isotopic definitions for zirconium, stainless steel, and lower-nozzle regions.
All units in (# / barn-cm).

In addition to the isotopes listed here, fission products are modeled. These isotopes

are the same as was present for the 2D model, and are listed in Table 4.2 and constitute

all isotopes modeled.

This model is much larger and is intended to be used as a final test for the NIDS

ROM algorithm in a real-world context. The scope of its analysis is much smaller than

that of the 2D model due to its more narrow goals of stressing the size of the ROM,

memory requirements, and to assess if NIDS can capture a more realistic fuel-poison

loading pattern than an 11 by 11 truncated assembly. All results presented using this

model took approximately 260-275 minutes per timestep to complete on 10 nodes (480

CPUs) of the INL Sawtooth1 supercomputer. Each timestep was executed using 1500

batches with 500 discards and 500, 000 neutron histories per batch. This run scheme

achieved a one 1-σ reactivity convergence of approximately 7 pcm. It is more important

112

for this application to have a more tightly converged solution than that of the 2D case

because the more complicated flux shape resulting from a more converged solution will

produce more complicated isotopic depletion distributions later in core life.

Like the 2D model, the same post-processing infrastructure was used for the 3D model

results to produce the input required by Parody. For completeness, the dimensionality

of the arrays associated with the 3D model are listed below, however, no additional steps

or manipulations to the data were made to the 3D model compared to the 2D model

other than the addition of a spatial dimension. At the end of the process, each MC21 run

(consisting of 10 timesteps for the 3D models) produced a tuple of Python Numpy saved

data arrays consistent with the expectations of the Parody ROM tool (see Appendix B).

This tuple had four Numpy array elements:

1. state variable array of shape (1, 10, 60, 60, 24, 189)

2. locs array of shape (1, 60, 60, 24, 3)

3. params array of shape (1, 10, 3)

4. params dist array of shape (1, 10, 60, 60, 24, 1)

The dimensions of the state variable array correspond to a single case with 10 timesteps

on a 60x60x24 spatial grid for each of the 189 isotopes in the model. There was one less

isotope present in this model compared to the 2D model due to the materials used in the

3D MC21 model. The locs array dimensions correspond to the single case on a 60x60x24

spatial grid, with the x-y-z coordinate pair represented by the last dimension. The params

array represents the three scalar input values for the model for each timestep - depletion

power fraction, effective full power depletion timestep length, and cumulative depletion

hours. And, much like the 2D case, the params dist array corresponds to each spatial

location’s closest distance to a pin cell grid location without a fuel pin. The distance for

the 3D case corresponds to the distance in the x-y plane, as any pin cell without a fuel

element will contain no fuel along the entire z-dimension.

113

This again uses the SDF concept detailed in Section 2.2.4. Specifically, additional

geometric information is encoded as input into the ROM models. Figure 4.7 shows what

the x-y distribution of the SDF looks like for the 3D model.

Figure 4.7: Signed distance function representing distance to closest non-fuel grid location for
the 3D model.

This params dist array construct allows for unique inputs to be applied to each lo-

cation (and at each timestep - this functionality is not leveraged in this work but is

supported with Parody). When discussing spatial scales on the order of a neutron’s

mean-free path in a lattice, neutron flux is heavily dependent on proximity to strong

absorbers or reflectors. Rather than creating a larger neural network and having it learn

the relationship between neutron flux/flux gradient and proximity to absorbers and re-

flectors, this feature engineering step allows us to encode this information as part of the

input. With this additional input, the ROMs were found to converge faster and with

greater accuracy. The benefits were minimal for the small-scale 2D case, but significant

for the 3D case.

These four Python Numpy arrays (state variables, locations, scalar inputs, and dis-

tributed parameter inputs) were concatenated and entered into the Parody tool (see

Appendix B). Parody is designed to accept arrays of this shape and handle all of the

114

scaling, data splitting, and GPU-CPU handoffs during training, as well as the scaling

and inverse transformations required for inference.

4.2 Surrogate Modeling Architecture

To assess the viability of ROM methodologies on this representative nuclear engineering

application, two algorithms are explored. The first is the CNN latent space stepper algo-

rithm are qualitatively and quantitatively evaluated to determine its applicability to the

previously described nuclear engineering application. Section 4.2.1 and 4.2.2 will sum-

marize each networks’ key design features. The notation in each network’s description

section is assumed to be known throughout the discussion below. In general, the proce-

dure for designing the neural networks and selecting their hyperparameters followed the

procedure outlined in Appendix C.

4.2.1 CNN Latent Space Stepper Architecture

The first surrogate modeling method applied to this application problem is the CNN

latent space stepper described in Section 2.2.3.5. The terminology in Section 2.2.3.5 is

assumed to be known for this discussion. The general architecture was found by the steps

described in Appendix C. All activation layers were ReLU except the final layer. For ease

of reading, the image from 2.2.3.5 is reproduced in Fig. 4.8.

Figure 4.8: Illustration of the convolutional autoencoder and latent space modifying neural
network architecture.

115

Figure 4.9 shows a more detailed depiction of the model used. Note that skip con-

nections are used in this model. These skip layers were found to improve performance

and were inspired from a similar application to predict the CRUD deposit distributions

with neural networks ([38]). Although the use of skip layers has been shown to help

deep neural networks train much faster, common critiques of skip connections include

the fact that the precise mechanism of their action is not well understood ([110]). An-

other critique noted in this work is that their architecture is harder to optimize as it

is more difficult to design automatic architecture search heuristics that account for the

added complexity introduced by skip connections. The reason for the added complexity

is because any neural network layer receiving input from both a skip connection layer

and its own parent layer would require a dedicated concatenation intermediate step to

combine the inputs from both layers.

However, due to their success in many different applications (such as vision, natural

language processing, reinforcement learning, and others - [111], [112], [113]), they were

used here to improve performance. One potential reason for the improvement is that

skip connections make neural networks behave like an ensemble of networks, which are

often found to perform better than their independent constituents. Figure 4.9 provides

the basic architecture of this ROM.

In Fig. 4.9, each node in the graph represents one layer of the neural network. The

inputs and outputs correspond to the inputs and outputs of that layer, with the dimen-

sions noted in parentheses. The names of the layers during creation are also noted on the

left-hand side of each of the nodes of the graph, along with the type of Tensorflow layer

being used. The edges of the graph correspond to where the output of some node is input.

For example, the layer “conv2d 21: Conv2D” tells us that the layer is a 2D convolutional

layer with inputs of dimension (11× 11× 3), and outputs of (11× 11× 200). From this

information, we can surmise that the number of filters in this layer is 200, as that is how

large the last dimension is. Reading Fig. 4.9 in this way allows for this network to be

reproduced by any program capable of making neural networks (PyTorch, TensorFlow,

116

Keras, PyTorch Lightning, etc.).

Figure 4.9: Visualization of the CNN latent space stepper model architecture.

4.2.2 NIDS Neural Network Architecture

The second surrogate modeling method applied to this application problem is the NIDS

method described in Section 2.2.4. The general architecture for each of the spatial and

parameter networks was found through the steps described in Appendix C.

117

The spatial network and the parameter network were both dense neural networks with

ReLU activation. After combining the output of the two networks, the final layer of the

NIDS architecture used a linear activation. The hyperparameters for the NIDS algorithm

are much less complex than those for the CNN based ROM described in Section 4.2.1.

Table 4.6 lists the main parameters defining the architecture of neural networks. For ease

of reading, the image from [25] is reproduced in Figure 4.10

Parameter Value
Param input dimensions 4

Param dense layers 4
Param units per layer 500

Latent space dimensions 400
Spatial input dimensions 3

Spatial dense layers 4
Spatial units per layer 500
Output dimensions 189

Table 4.6: NIDS hyperparameters for the MC21 application problem.

Figure 4.10: Schematic diagram of a NIDS network ([25]).

4.3 Description of Modeling Scenarios and Figures

of Merits

This section describes a representative depletion analysis that has value in the nuclear

reactor design community to be able to do quickly and is hindered by the current high

cost of FOMs. Subsequent studies based on this analysis present an assessment of the

118

viability of deploying the previously described ROMs in a realistic nuclear engineering

context. Specifically, the application problems for this full-scale analysis produce a ROM

that can capture the time-dependent trajectory of isotopic concentrations both in number

of isotopes at each timestep and in the 3D distribution of isotopic concentration for each

isotope modeled.

An MC21 model which is used for fission depletion analyses typically has on the

order of 200 isotopes. Although the constituent elements that define a nuclear reactor’s

fuel, coolant, and structural materials do not require this many isotopes, the process

of nuclear fission creates many other isotopes. However, only a portion of all possible

isotopes are included. The decision to include isotopes or not is usually dependent on

how much they impact the neutron flux distribution, with isotopes having larger cross

sections typically being included. This decision also has to balance memory limitations

on modern high-performance computing (HPC)s, as including all possible isotopes would

create too large a memory footprint for the model, while having too few isotopes results

in inaccurate depletion behavior. Getting this balance right is important because isotopes

with non-negligible nuclear cross sections will impact the steady-state neutron population

distribution (i.e., the neutron flux distribution), and thus the power distribution, which

will in turn affect how many fission events will occur and therefore impact how much

the isotopic concentrations will change for the next timestep. See Section 2.1.5 for a

discussion on the governing equations describing isotopic depletion.

The following sections will attempt to produce an accurate ROM that can be used

to deplete a nuclear model experiencing an arbitrary power history. A power history is

defined by two quantities, the timestep length and the power level at which the timestep

is depleted. This analysis will focus only on varying the power level and withholding the

variation in timestep length for a future study. These analyses will explore what type of

training data set is required to encode the proper information within the ROM to be able

to execute arbitrary power history depletion trajectories. Specifically, the application

in mind should be an expensive multiphysics calculation where it is too expensive to

119

deplete the core fully. In this scenario, we are interested in how many FOM timesteps are

required in the training dataset before a ROM can adequately replace the functionality

of the FOM and perform depletion steps into the future using only the ROM.

The following metrics will be used to quantify the effectiveness of these studies. These

are the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and

Mean Squared Error (MSE). Eq. (2.25) shows the MAE, which represents a metric

corresponding to the expected value of the L1-norm loss. Eq. (2.24) shows the MSE,

which is the expected value of the squared error between prediction and truth. Finally,

Eq. (2.27) shows the MAPE, which normalizes MAE by the maximum value in the

collection. This last metric highlights relative error performance, which will be useful in

subsequent sections because average isotopic concentrations can range from 10−2 to 10−15

#
barn-cm

. The MAPE provides a way to capture how well individual isotopes are predicted

compared to each other.

Because there are 190 isotopes of varying importance estimated by the ROM, only

the relevant ones are displayed in the following plots. Some isotopes have small half-lives

and/or small number densities, with small cross sections. In other words, they do not

impact the neutronics of the model to any appreciable degree, while other isotopes can

be very important to the depletion trajectory, such as isotopes defining the fuel or poison

pin cells. Although all isotopes are modeled and predicted by the ROM and FOM, only

a subset are presented in the results.

234U, 235U, 238U, 238Pu, and 239Pu are included. These isotopes represent isotopes

that are important in nuclear engineering because they are fissile material or isotopes

that can be transmuted into fissile material by neutron capture. SR90 and CS137 are

included, as they are commonly created after nuclear fission. CS137 and SR90 both have

a relatively long half-life of about 30 years and produce relatively high energy radiation.

Because of these features, they are often the focus trace nuclides that are used to help

benchmark spent nuclear fuel isotopic quantities or are tracked due to their potentially

negative health consequences. 10B is also included due to its common use as a poison in

120

reactor design. 10B has a large thermal neutron cross section and tends to be depleted

substantially throughout core life. Because of this its impact on the neutron trajectory

changes with life and it represents both an important and potentially challenging isotope

to include.

Finally, 135Xe and 135I are included due to their often significant importance in nuclear

transients on time scales of interest to thermal reactor operators. 135Xe has such a high

neutron cross section that it is directly accounted for as a dimension of analysis for reactor

analysis. In other words, when converging on neutron flux distribution, it can be included

in the iterative convergence process alongside the power and thermal distributions. 135I

decays into 135Xe with a slightly shorter half-life, giving 135Xe an overall difficult quality

that its concentration will peak hours after shutdown and can exert influence on the

power distribution in ways other isotopes cannot.

The ROMs are trained on all 190 isotopes, and in general the performance of these

nine focal isotopes are representative of all isotopes in the model. For the reasons above,

these 9 focal isotopes will be shown in plots and listed in metrics as the focal point of

the analyses below, while other isotopes, although still predicted by the ROM, will be

neglected in the plotted results. However, the performance of all isotopes are included in

any global metrics of performance, such as MSE for a particular case.

4.4 2D Planar Results

In the subsequent plots, there are a few different ways that time could be represented.

However, a simple “timestep” metric is used in all x-axes. It would also be appropriate to

illustrate this information in the form of “effective full power days”, or “calendar time”.

Timestep was ultimately chosen so that comparisons between each cases’ power history

could be made on a consistent basis. To choose to use “effective full power days” would

result in plots having different scales for the different power history cases. Likewise,

calendar time is directly related to timestep. However, its use may cause confusion as the

121

models shown here are not intended to represent a real core design and are not reflective of

what may be found when applying these methods to other designs. So, to avoid confusion

from these perspectives, a simple “timestep” metric was chosen to represent time in all

x-axes for this study.

4.4.1 Training and Qualitative Results

With these metrics and scenarios in mind, the MC21 models were created and executed.

For the 2D planar model described in Section 4.1.1, a series of 60 FOM runs was executed.

Consistent with common machine learning best practices, the datasets are always divided

into train, validation, and test datasets. For the 2D case, the last 10 FOM results

are withheld as the test dataset while 15% of the remaining dataset was reserved as a

validation dataset. Each FOM solution consisted of 30 time steps of randomly sampled

power levels for each case and timestep ranging from 0% power to 100% power.

As previously discussed, these data are pre-processed in the data pipeline, helping

convert the MC21 output restart, mapping, and MC21 input files into the format re-

quired by Parody to create the ROMs. Once the FOM dataset was created, the set of

hyperparameters was chosen for the neural networks, and the suite of 60 MC21 runs was

executed, NIDS and CNN models were trained.

Training occurred until the neural network experienced a training plateau in its loss

function. The CNN network and the NIDS networks used Tensorflow and PyTorch Light-

ning (with Parody as executor), respectively, to handle training. Both libraries offer stan-

dard callbacks to reduce the learning rate on a training plateau (patience of 10, factor

of 0.2) and early stopping criteria (patience of 20) to ensure efficient use of compute

resources and adequate training convergence.

First, we review the qualitative performance of the CNN and NIDS ROMs before citing

their performance via the metrics discussed above for our isotopes of interest (234U, 235U,

238U, 238Pu, 239Pu, SR90, CS137, 10B, 135Xe and 135I). For the first two models shown (the

122

CNN and the first NIDS model results) the models are trained using all 30 timesteps and

the data associated with 50 FOM realizations. For predictions and comparisons, the test

input power history represents a power history that is previously unseen by the model.

And the only input the ROM has is the isotopic depletions in the first timestep. In other

words, these comparisons will show how well the models can do when the isotopes are

depleted from a “fresh core” distribution through 30 new timesteps.

Figure 4.11 shows comparisons of isotopic depletion for the nine focal isotopes for

the CNN model. Each row is a separate isotope, and each column shows a different

perspective on performance. The first column shows traces with time of the isotopic

concentrations for the FOM and ROM at 3 locations in the model. These locations show

two corners and a centrally located region. The second column shows the planar average

MAPE for each timestep for that isotope as a function of time to illustrate how the error

changes with depletion. This quantity is averaged over all locations and therefore looks

much tighter than some of the plots in the first column. Finally, the third column shows

a distribution of MAE for the last timestep in the trajectory.

Figure 4.12 shows similar qualitative performance. Each row in Fig. 4.12 is a different

isotope, and each column is a different arbitrary power history. These are power histories

that are not present in the training or validation training sets and represent performance

on unseen data from the perspective of the model/hyperparameter tuning processes.

Here, we see more of the same patterns that Figure 4.11 shows. Specifically, the order of

magnitude and trends are correct, but overall agreement is poor.

In general, Figures 4.11 and 4.12 show promising performance in that the order of

magnitudes of the isotopes (which have a wide range through the 190 isotopes and within

the nine focal isotopes) are captured. In addition, their general trajectories are correct

(isotopes that accumulate through life and isotopes that diminish through life do so in

the ROM reconstructions). This is true for all focal isotopes except 135Xe and 135I. As

will be discussed later, this is practically of no consequence for the way in which a ROM

would be deployed for this type of analysis. However, much like in the analysis in Chapter

123

3, the CNN models do not perform as well as the NIDS models.

Better performance could be found with more appropriate architectures, combinations

of skip layers, and hyperparameters. However, in light of how well the NIDS models

performed for this model and due to the fact that the CNN models have much higher

memory requirements which would prevent them from being effective for a full-scale

depletion analysis, these paths were not pursued.

One pattern to note, and one that will not be improved even by the NIDS architec-

ture, is that the short-lived isotopes (such as 135Xe and 135I) vary significantly in their

concentrations in the FOM. This trend is consistent with expectations due to their shorter

half-life. The agreement for these isotopes is typically lower for the ROMs explored here.

Although these two isotopes are important to be able to describe in a FOM to obtain the

correct power distributions, the ability of a ROM to capture their dynamics for a deple-

tion study is of little actual practical consequence for a nuclear designer. The reason is

because typically, in a design context, a depletion is first performed to capture the isotopic

depletion trajectories. Then, for conditions of interest (i.e., for some temperature and

pressure combination) those isotopic number densities will be reloaded alongside the new

core condition, and a “branch calculation” is performed, which finds the proper equilib-

rium concentration distributions for these short-lived isotopes under different operating

conditions.

Fig. 4.13 shows comparisons of isotopic depletion for all focal isotopes. Again, each

row is a separate isotope, and each column shows a different perspective on performance.

Notice the much better performance for all isotopes except 135Xe and 135I, which show

essentially indistinguishable results between the FOM and ROM. The errors are relatively

constant with timestep, with the exception of SR90 and CS137, which see a slight increase

in error for the second half of the depletion.

Figure 4.14 shows similar qualitative performance. Each row in Fig. 4.14 is a differ-

ent isotope, and each column is a different arbitrary power history. Here again we see

markedly improved performance over the CNN model. The ability to capture 135Xe and

124

135I is still lacking; however, as previously discussed, these isotopes have little consequence

for a nuclear designer if the ROM would be used in this manner.

Of the isotopes that perform poorly, there are several contributing factors that may

explain why they are not well captured by the ROM.

1. Isotopes that are not depleted by the model (i.e., O17). The NIDS model

is unable to learn that some isotopes are not changing and ends up predicting an

arbitrary trajectory that causes a large error. This is easily fixed by neglecting these

isotopes in the training and assuming they remain constant during the predictions.

Figure 4.15 shows what the NIDS model from above predicts for a constant isotope

before this processing step is performed.

2. Isotopes with short half-lives. Short half-lives will make their depletion tra-

jectories more erratic and often cause concentrations to be quite small during low-

power timesteps. This may make them span a large range of orders of magnitude

in concentration and cause difficulty in the training process (despite all isotopes

being normalized to their own average concentrations). An example of this type of

isotope is 135I. Because this is one of the highlighted isotopes, another isotope of

this nature is shown in Fig. 4.16 for RU105, which has a half-life of 4.4 hours. As

you can see, this type of isotope looks just like 135I in its agreement between ROM

and FOM.

3. Isotopes with large neutron absorption cross sections which do not con-

tribute to the fission process, even if they have a large half life. A large neutron

absorption cross section will cause an isotope to transmute quickly into other iso-

topes, and it has a similar effect as that of a short half-life. However, the model

seems to be able to recognize isotopes which are important to the fission process,

such as fissile material. This is because they are of the greatest importance in

producing all other isotope concentration growth and are thus recognized during

the stochastic gradient descent process as large contributors to the training error.

125

This effect is harder to illustrate because neutron cross sections are energy depen-

dent, and correlating some collapsed cross section value to half-life and error is not

straightforward.

4. Isotopes that are part of active and complicated decay chains, in that their depen-

dence is reliant on difficult to predict isotopic concentrations which make their own

concentrations more difficult to predict.

4.4.2 Quantitative Results

This section provides quantitative results to compare the types of models and training

methods and perform the study described in Section 4.3. First, we compare the CNN

and NIDS ROMs. Table 4.7 shows the average error metrics for the CNN model when

predicting all 30 timesteps and all 10 test cases. One additional metric is shown below

(and will be in all error tables) - the “MAE-norm”. This metric is simply the MAE

divided by the average mass of the isotope for the depletion trajectory. MSE is given for

completeness and because it is a common regression metric. However, for isotopes with

different magnitudes of mass, this metric is misleading. The MAE is useful because it

gives an absolute difference, but it also suffers from the same issue in that comparing

the MAE between isotopes is not a fair comparison. The MAPE and MAE-norm offer

normalized results. The former normalizes to the maximum value in the dataset and the

latter normalizes to the average value in the dataset.

Table 4.8 shows the same data for the NIDS model. Notice how the CNN model

actually performs better than the NIDS model for the two more erratically behaved

isotopes, 135Xe and 135I. However, this is misleading and mirrors what was seen in Chapter

3 in that the CNN model appears to simply average the values over all timesteps and

does not capture the step-by-step variation in concentration. Figures 4.14 and 4.12 show

this behavior. Other than that, the CNN model performs orders of magnitude worse

in all other isotopes and is not considered going forward in the representative nuclear

126

Isotope MAPE MAE MAE-
norm

MSE

U234 0.0401 4.65e-08 0.0398 5.32e-15
U235 0.0845 9.71e-06 0.0804 1.79e-10
U238 0.0398 9.89e-04 0.0398 2.59e-06
PU238 0.4365 1.08e-08 0.2304 4.00e-16
PU239 0.1929 8.58e-06 0.1118 1.22e-10
SR90 0.1888 4.99e-07 0.1163 5.12e-13
CS137 0.1905 8.73e-07 0.1262 1.71e-12
XE135 0.0952 4.64e-10 0.0910 3.87e-19
I135 1.9080 4.38e-08 0.4744 2.60e-15

Table 4.7: Summary of CNN error metrics.

engineering application as we evaluate the viability of a NIDS model being used in this

application.

Isotope MAPE MAE MAE-
norm

MSE

U234 0.0003 3.86e-10 0.0003 2.75e-19
U235 0.0013 1.42e-07 0.0012 3.67e-14
U238 0.0000 2.29e-07 0.0000 1.10e-13
PU238 0.0971 3.52e-10 0.0075 2.53e-19
PU239 0.0026 1.89e-07 0.0025 6.51e-14
SR90 0.0014 4.70e-09 0.0011 3.75e-17
CS137 0.0011 6.19e-09 0.0009 8.16e-17
XE135 0.1705 9.35e-10 0.1834 1.61e-18
I135 5.1459 1.85e-07 2.0059 6.42e-14

Table 4.8: Summary of NIDS error metrics.

Continuing to the analysis described in Section 4.3, the NIDS model is evaluated

to see how many timesteps are needed within the training dataset to complete a full

30-timestep depletion analysis. The models are trained using the first 5, 15 and 20 time

steps in the 30-timestep depletion training case. Figures 4.17 through 4.19 show the ROM

and FOM results for just the 235U and 238Pu isotopes. All the isotopes are not shown for

readability, but the agreement for these two isotopes is representative of the behavior for

most isotopes. Notice how the agreement slowly diverges shortly after the 10th timestep

for the 5 timestep case, and shortly after the 20th timestep for the 15 timestep case. The

20-timestep case appears to have enough data so that the neural network is able to learn

127

the trajectory up to 30 timesteps.

This procedure is repeated so that the models were trained with 5, 10, 15, 20 and 30

time steps. The MAPE error averaged throughout the 2D plane for each time step for

the 10 test cases was calculated for each training set. Figure 4.20 shows how the errors

for each case evolve over time. The patterns are not completely reliable (i.e., 135Xe shows

similar behavior for all training datasets, 239Pu shows the 5 case dataset performing better

than the 10 case dataset late in life); however, in general performance for the isotopes

degrades more quickly for the training datasets which have less information late in life.

This aligns with expectations - the more that the neural network has to extrapolate, the

less high quality the predictions will be.

These results raise two natural questions to help assess the viability of this class of

ROM algorithm for this class of nuclear engineering problem.

1. Does the 30-timestep case contain enough information to encode how depletions

will progress indefinitely? Or will it also deteriorate shortly after it begins to

extrapolate, as the other cases demonstrated?

2. How well would a mixed dataset perform? In other words, a training dataset with

some 5-timestep and some 30-timestep data.

For item 1, Fig. 4.21 shows clearly that the limitation in the models ability to ex-

trapolate still exists even for the 30 timestep case. This study used a unique 60 timestep

FOM result to compare against, and extrapolated the previously trained neural networks

(based on 30 timestep training datasets) well past their 30 timestep dataset. This result

suggests that all models seem to begin to deteriorate after around 5-10 timesteps outside

of its training dataset range (this varies from isotope to isotope). This is a common find-

ing in neural networks in general. Their ability to extrapolate outside of their training

dataset is often limiting. Because the Bateman equations defining isotopic concentrations

are linear one might expect neural networks to be able to extrapolate more successfully.

128

However, as previously discussed the evolution of the flux determining the spatial dis-

tributions of isotopic concentrations is based upon non-linear phenomena, making this a

difficult problem to extrapolate.

129

Item 2 is more complicated in that there are a large number of ways this strategy

may be explored. For the purpose of this work, an approach was used which held the

total amount of MC21 run time constant. Put another way, it kept the total amount

of training data constant. This assesses the situation where there is a fixed amount of

computing resource and the practitioner needs to decide how best to spend it to create

the best training dataset.

To explore this concept, the 5-timestep dataset is adjusted. For the studies mentioned

previously, 50 FOM realizations were included in the training dataset, each having 5

timesteps. This constitutes running (50 × 5 = 250) MC21 timesteps. Instead of only

depleting 5 timesteps for each realization, a designer could deplete a mix of 5 and 30

timestep datasets while still remaining at the 250 timestep budget. Table 4.9 shows

9 dataset combinations which include increasing amounts of 30-timestep training data.

Each row in Table 4.9 contains exactly 250 MC21 timesteps.

dataset number 5-timestep
realiza-
tions

30-
timestep
realiza-
tions

0 50 0
1 44 1
2 38 2
3 32 3
4 26 4
5 20 5
6 14 6
7 8 7
8 2 8

Table 4.9: Dataset definitions for constant resource budget study.

Using some of the “run-time budget” dedicated to execute depletions to completion

greatly improves performance when extrapolating past the first 5 timesteps. Figures

4.22 and 4.23 show performance when using a dataset comprised of 50 5-timestep and

0 30-timestep FOM realizations and 26 5-timestep and 4 30-timestep FOM realizations,

respectively. Notice that including just 4 30-timestep realizations causes extrapolations

130

past the first 5 timesteps to significantly improve.

In practice, there are clearly many ways this time of “constant run-time budget”

experiment could be executed and assessed. The constraints would be application-specific.

However, this study at least demonstrates that this way of considering using the available

computational resource budget is impactful and deserves attention.

Figure 4.24 shows the MAE-norm error for the ROM realizations as a function of how

many 30-timestep datasets are included in the training dataset. Note that all it takes is

one 30-timestep depletion within the training dataset to get markedly improved results.

4.4.3 Variational Inference Results

Section 2.3.1 discusses the primary building blocks for the specific Bayesian context

through which this section views the NIDS ROMs. In summary, this section will uti-

lize the variational inference (VI) approach to Bayesian neural networks.

VI was chosen for this work because its implementation lends itself to large neural

networks, the algorithm is able to be implemented directly into the Parody framework

without significant refactoring, and its training time is small compared to other more

accurate methods, such as a brute-force Monte Carlo approach. A key concept of VI, is

that we replace the unknown posterior with a probability distribution that we know, such

as a Gaussian distribution, and reformulate the loss function to include the Kullback-

Leibler divergence (KL-divergence) to allow the network to make an estimate for the

probability distribution parameters of the model weights.

Other important concepts leveraged for this work include use of the Bayes by backprop

(BBB) algorithm with “flipout” and the reparametrization trick to take advantage of the

stochastic gradient descent that already occurs within a neural network training loop.

The MOdel Priors with Empirical Bayes using DNN (MOPED) approach is also used to

improve the convergence speed of neural network training. See Section 2.3.1 for a more

detailed review of these algorithms and how they were implemented within the Parody

131

tool.

For this study, we test the implementation of VI within Parody and demonstrate

the expected behavior that increasing the sizes of the training data set used for training

reduces the estimates of epistemic uncertainty in the neural network. This study also

highlights the risk with this methodology and cautions a future practitioner from trusting

uncertainty estimates without question.

A subset of isotopic information is shown below to illustrate these conclusions. 235U,

235U, and 135Xe were chosen. 135Xe was chosen because of how difficult it is to capture

in general for the ROM models generated for this work and represents the lowest perfor-

mance bound expected for isotopic depletion predictions. 235U and 235U were chosen as

representatives of the other main heavy isotopes in the focal isotope group of the previous

section.

Once a Bayesian model is trained (p(ω|D)) it was sampled 100 times to get a distri-

bution of its outputs at each location in the model. The outputs are assumed to follow

a Gaussian distribution. These values are plotted below in Figures 4.25 through 4.28

which show the estimates of epistemic uncertainty for the models for all timesteps for

a representative location in the model. These figures show results when training with

datasets containing 5, 15, 20, and 30 timesteps, respectively. The remaining time steps

for each case are extrapolated. Each shade of blue represents one standard deviation of

distance away from the model predicted average.

This study demonstrates the ability to capture epistemic uncertainty in a deep learn-

ing context for the isotopic depletion application problem on the 2D model. Epistemic

uncertainty is notoriously difficult to benchmark against, as it requires us to answer the

question: “how uncertain should the model results be?” However, figures 4.25 through

4.28 show the expected conclusions. First, the uncertainty for 135Xe should be higher

than that for other, more well-behaved isotopes. This is because, as shown in Section

4.4, this isotope is not captured well with the NIDS ROM. Second, training with more

data reduces the uncertainty bands for all isotopes. This is an expected trait of neural

132

networks and epistemic uncertainty in general. The cost of increased training time is

shown to be a trade-off in the associated uncertainty of the model output. Finally, the

more timesteps that are extrapolated, the larger the uncertainty bands.

Importantly, a practitioner may want to ensure that their neural network is safe to

extrapolate a certain number of timesteps. What these plots show is what was suggested

by the results in Section 4.4: extrapolating the past 5-10 timesteps is a risk. Notice in

Fig. 4.26 that although the uncertainty bands are relatively small in timesteps 25-30, the

uncertainty bands do not encompass the true FOM result. When performing any sort

of extrapolation, Bayesian neural networks (BNN) approaches can help provide insight

into how many timesteps a model can extrapolate before being outside the calculated

uncertainty bands. Future practitioners of these methods in a nuclear engineering context

should be aware of this limitation and perform similar studies to ensure that they do not

trust their models or uncertainty bands without a questioning attitude.

4.5 3D Quarter Core Results

To demonstrate the scalability of the algorithm to a more realistic nuclear engineering

problem in terms of size/degrees of freedom, the same NIDS approach is applied to a 3D

case. For the 3D model as described in Section 4.1.2, a collection of 20 FOM runs was

executed. Consistent with common machine learning best practices, training datasets

were always divided into training, validation, and test datasets. For the 3D case, the last

10 FOM results were withheld as the test dataset and 85% of the remaining dataset was

used as the training dataset, with the remaining used for validation. Each FOM solution

consisted of 10 time steps of randomly sampled power levels for each case and timestep

ranging from 0% to 100% power.

As before, the data were preprocessed in the data pipeline that converted the MC21

output restart, mapping, and MC21 input files into the format required by Parody to

create the ROMs. Once the suite of 20 MC21 runs was executed, a NIDS model was

133

created. In this case, the CNN model was unable to produce sensible results before

encountering memory problems with the hardware used for this analysis. This, in addition

to the poor relative performance of the CNN ROM for the 2D case, gives confidence that

the NIDS approach is the most promising of the two approaches. The 3D model is

substantially larger than the 2D model (60×60×24 spatial locations), resulting in much

more expensive and computationally limiting files at each intermediate stage in the data

pipeline. For comparison, a single MC21 timestep file for the 2D model is 2̃.5 MB, while

one timestep for the 3D model is 3̃00 MB.

These file sizes may seem small until one considers that for this demonstration prob-

lem, with 10 FOM results that each contain 10 timesteps, this equates to 90GB. For

a typical analysis you may have upwards of 50-100 timesteps, for 10s or 100s of FOM

results. Considering this potential for the overall file footprint to balloon so easily, for

larger application problems efficient memory management (loading data onto and off of

training GPUs, for instance) will become required. This drastic difference in disk space

and in memory requirements, as well as substantially higher computational cost (approx-

imately 2160 CPU hours for the 3D case versus approximately 44 CPU hours for the 2D

case), means that the scope of this analysis will be smaller and will serve primarily as a

proof of concept of this training pipeline rather than an opportunity to explore the best

training strategies and analyzing isotopic performance as closely as was performed for

the 2D case.

Training occurred until the neural network experienced a plateau in its loss function,

using the same callback inputs as the 2D model (a patience of 10 and factor of 0.2 for

the reduction of the learning rate on a plateau, and a patience of 20 for early stopping

criteria) to ensure efficient use of compute resources and adequate training convergence.

As before, we first review the qualitative performance of the NIDS ROM before citing its

performance using the metrics from Section 4.3. Also consistent with the 2D model, we

will observe the focal isotopes of 234U, 235U, 238U, 235U, 239Pu, SR90, 135Xe, and 135I. The

10B isotope is also shown here in the 3D model, which was not present in the 2D model.

134

Figure 4.29 shows comparisons of isotopic depletion for all focal isotopes. This model

is trained with all 10 timesteps worth of data. Each row is a separate isotope, and each

column shows a different perspective on performance. The first column shows traces with

time of isotopic concentrations at various x-y-z locations. These locations are intended to

show performance for regions with differing properties (proximity to the radial reflector,

axial reflector, and centroid of the core). The second column shows the core average

MAPE for each timestep for that isotope as a function of time to illustrate how the error

changes with depletion. This quantity is averaged over all locations and therefore looks

much tighter than some of the plots in the first column. Finally, the third column shows

a distribution of MAE for the last timestep in the trajectory for a representative z-slice.

Figure 4.30 shows similar qualitative performance. Each row in Fig. 4.30 is a different

isotope, and each column is a different arbitrary power history for a single location in

the core. The ability to capture 135Xe and 135I is lacking here, as was the case in the

2D model; however, as previously discussed, these isotopes have little consequence for a

nuclear designer if the ROM were used in this way.

The timestep study is performed again for the 3D model. This time, the first 2, 5,

and 10 timesteps were included. Results similar to those of the 2D study were observed.

Quickly after the model begins extrapolating to lifetimes not included in the training

dataset, performance deteriorates. Because the 2D and 3D models performed qualita-

tively similarly, it is likely a safe assumption that the 3D model would perform similarly

if using a constant budget training dataset as shown in Section 4.4. We leave it to future

analyses and applications to explore which type of training dataset and regiment are most

appropriate for a 3D model of interest.

Figures 4.31 through 4.33 show the performance of the model, which includes the first

2, 5 and 10 time steps for 235U and 235U. Table 4.10 shows the results for the 10 timestep

case for comparison.

135

Isotope MAPE MAE MAE-
norm

MSE

U234 0.0431 5.34e-06 0.0181 6.38e-11
U235 0.0159 8.68e-07 0.0162 1.63e-12
U238 0.1397 1.92e-09 0.0258 1.33e-17
PU238 0.0255 2.52e-06 0.0266 1.46e-11
PU239 0.0344 7.46e-07 0.0250 1.31e-12
SR90 0.0315 9.35e-10 0.0173 2.92e-18
CS137 0.0138 3.07e-07 0.0104 2.43e-13
XE135 0.0154 6.37e-07 0.0109 1.05e-12
I135 1.8221 2.17e-08 1.0059 1.12e-15

Table 4.10: Summary of NIDS error metrics for the 10-timestep case.

4.6 Impact of SDF on Performance

As mentioned in Section 4.1.1, when discussing spatial scales on the order of a neutron’s

mean-free path in a lattice, neutron flux is heavily dependent on proximity to strong

absorbers or reflectors. To capture this behavior with a surrogate model, either a larger

neural network could be constructed, which gives the model the flexibility to capture these

dynamics, or we must do some level of feature engineering/augmentation to provide the

model more information on the problem at hand. The SDF was used for both 2D and

3D models, with varying degrees of impact. This feature engineering step allows us to

encode important geometric information as part of the input. With this additional input,

the ROM converged with greater precision. The benefits were minimal for the small-scale

2D case, but significant for the 3D case.

To assess the impact of the SDF on model performance, new models are trained for

both the 2D and 3D cases. For each case, all available training data was used. This

includes all training cases (30 and 10 cases for the 2D and 3D cases respectively) and

available timesteps (30 and 10 timesteps for the 2D and 3D cases, respectively). Figure

4.34 shows the impact of including the SDF as part of the parameter input array. The

error metric shown is the MAPE. Notice that the performance increases for some isotopes,

but it also decreases for others. Generally, the changes are marginal. It is expected that

136

the 2D results would improve less than the 3D results because the 2D results do not

have a complicated lattice structure. There is only one non-fuel pin, and it resides in the

corner. So, the distance to the single non-fuel element follows a simple linear pattern as

the fuel pins move farther from the corner of the model. This relationship is likely easy

for the neural network to capture and thus including the SDF does not result in large

improvements.

Contrast this with the impact of the SDF on the 3D case in Figure 4.35. Here we see

that each isotope sees a significant improvement. Notice that the y-axis is log scale for

readability between isotopes. Performance increases by as much as 35% for 239Pu, and on

average improves the isotopic errors by 17%. Further improvements to the way in which

the SDF is implemented will be discussed in Section 4.7.

The SDF also improves the spatial distribution of the isotopes. While the previous

metrics look at global performance, observing plots of spatially dependent error reveals

the absolute necessity of including an SDF for the 3D model. Figures 4.36 and 4.37

show the performance of NIDS for a few uranium isotopes. Of interest is the column

on the right, which shows the spatial distribution of error. These plots demonstrate the

importance of the SDF. Notice that without the SDF, there are two undesirable features.

First, there is a clear in-to-out dependence on the error. In other words, there is a clear

error gradient when moving from the center (the lower right corner) to the reflector. This

likely reflects the inability to capture the dependence of isotopic evolution on proximity

to the reflector. Second, the pattern of pins, where there is no fuel, is more clearly seen

in Figure 4.37. This reflects the fact that the model including the SDF is better able to

capture how these isotopes should be evolving when close to non-fuel elements.

4.7 Summary

These studies demonstrate the relative effectiveness of the CNN and NIDS based ROMs

for a nuclear model depletion study. Specifically, this analysis looked at a small-scale

137

truncated assembly 2D model, as well as a 3D quarter-core model meant to simulate

a 37 assembly core. As with the reactivity insertion accident (RIA) analysis, the CNN

ROM under-perform when compared to the NIDS ROM. This study extended the ideas of

chapter 3 by applying them to a more complicated nuclear model (37 versus 1 assembly),

predicting a higher dimensional output (190 isotopic distributions versus only relative

power distributions) and incorporated an improvement to the NIDS algorithm in the

inclusion of the SDF, which provides additional geometric information in the form of

distance to the nearest non-fuel region. In general, a good agreement was observed

between the NIDS ROM and the FOM.

This work represents a first-of-a-kind approach to using ROMs in the context of

prediction of depletion trajectory. It leaves open a number of paths to explore both in

improving the results shown herein and extending this work to make it more appealing

for deployment in a production environment.

1. Augment the inputs with isotopic half-lives.

There appeared to be some dependence on performance of individual isotopes and

that isotope’s half-life. A simple follow-up study would incorporate the isotope

half-lives as an input to the model. When performing machine learning at any

scale for any set of inputs, if the practitioner is able to do feature engineering to

any degree, it often leads to a benefit in performance. This is because giving the

model a stronger signal via providing it with known relationships (i.e., half-lives)

to direct its learning during stochastic gradient descent, rather than depending on

the weights and biases within the model to learn those relationships, inevitably

results in more effective (and in some cases even possible) training. It is expected

that including this additional information would allow the neural network to better

predict some isotopes that were not captured well due to short half-lives.

2. Explore the impact of the variable timestep length.

The primary input to this study was the power level at which to deplete the model.

138

Another realistic input that is varied during these types of studies in a production

environment is the timestep length. It is expected that the NIDS ROM can learn the

complicated relationship between timestep length and isotopic depletion, however it

was not shown in this work. This study would be a natural next step to extend the

work herein to bring it one step closer to being deployable in a production context

for studies with arbitrary depletion trajectories.

3. Augment SDF parameters to include a dimension for each type of “non-fuel” region.

Currently, the SDF input has one dimension outside of time and location. This sin-

gle dimension contains the distance to the closest non-fuel region. However, there

are a few ways that a location in the core can be “non-fuel”, and this difference

is likely important for improving performance. For example, as seen in the poison

assembly type (repeated below in Figure 4.38 for convenience), there are both the

coolant (in the center) and the poison pin types (all other non-fuel regions). Also,

the reflector represents another type of non-fuel region that is important to the be-

havior of nearby neutrons. Put another way, if the SDF were 3 dimensional instead

of 1, the performance could be improved. The three dimensions are proximity to

poisons, coolant pins, and the reflector.

Each of these side studies represents a way to improve performance or explore what

unique enhancements to the modeling scheme shown here that are required for specific

applications of nuclear engineering.

The purpose of a study like this is to determine the viability of using ROM models in

a design environment for some application. However, as discussed in this work, there are

many ways these ROM models could be applied, trained, and evaluated. Using this work

as evidence, the NIDS model seems much more likely to be deployable in a production

environment than the CNNmodel. However, even the NIDS model lacks in certain metrics

which may be important for some applications. For example, some analysis types are

specifically concerned with the behavior and impacts of xenon transients, which we have

139

seen are not well captured in this incarnation of the ROM. Likewise, other applications

may not have as many isotopes, may have more controlled power histories (i.e., not

ranging from 0% to 100%, but perhaps something more manageable like 70% to 100%),

and may take much larger steps in time. All of this would likely improve the metrics of

interest.

Similarly to Chapter 3, it is clear that the decision of whether a ROM can be applied

to some application is difficult to speculate on without knowing the specific interests

of the application or how it would be deployed. However, this work has demonstrated

that ROMs constructed in this manner are at least a viable option and worthy of future

research.

140

Figure 4.11: FOM and ROM (CNN) depletion trajectories for an arbitrary power history at
various locations for all focal isotopes. All 50 realizations used during training.

141

Figure 4.12: FOM and ROM (CNN) depletion trajectories for an arbitrary power history for 4
test cases for the focal isotopes. All 50 realizations used during training.

142

Figure 4.13: FOM and ROM (NIDS) 2D depletion trajectories for an arbitrary power history
at various locations for all focal isotopes.

143

Figure 4.14: FOM and ROM (NIDS) 2D depletion trajectories for arbitrary power histories for
4 test cases for the focal isotopes.

144

Figure 4.15: O17 depletion trajectory predictions.

Figure 4.16: RU105 depletion trajectory predictions.

Figure 4.17: FOM and ROM agreement when training with first 5 timesteps.

Figure 4.18: FOM and ROM agreement when training with first 15 timesteps.

Figure 4.19: FOM and ROM agreement when training with first 20 timesteps.

145

Figure 4.20: FOM and ROM agreement for each training dataset.

146

Figure 4.21: FOM and ROM depletion trajectories for a 60-timestep depletion using dataset
containing 30 timesteps.

147

Figure 4.22: FOM and ROM agreement using 50 5-timestep realizations with 0 30-timestep
realizations.

Figure 4.23: FOM and ROM agreement using 26 5-timestep realizations with 4 30-timestep
realizations.

Figure 4.24: FOM and ROM agreement as a function of number of 30-timestep datasets used
in training.

148

Figure 4.25: FOM and ROM (NIDS) VI depletion trajectories for an arbitrary power history
at one location in the 2D plane. This model used 5 timesteps in its training dataset and
extrapolated the remaining timesteps.

Figure 4.26: FOM and ROM (NIDS) VI depletion trajectories for an arbitrary power history
at one location in the 2D plane. This model used 15 timesteps in its training dataset and
extrapolated the remaining timesteps.

149

Figure 4.27: FOM and ROM (NIDS) VI depletion trajectories for an arbitrary power history
at one location in the 2D plane. This model used 20 timesteps in its training dataset and
extrapolated the remaining timesteps.

Figure 4.28: FOM and ROM (NIDS) VI depletion trajectories for an arbitrary power history
at one location in the 2D plane. This model used 30 timesteps in its training dataset.

150

Figure 4.29: FOM and ROM (NIDS) 3D depletion trajectories for an arbitrary power history
at various locations for all focal isotopes.

151

Figure 4.30: FOM and ROM (NIDS) 3D depletion trajectories for arbitrary power histories for
4 test cases for the focal isotopes.

152

Figure 4.31: FOM and ROM agreement when training with first 2 timesteps.

Figure 4.32: FOM and ROM agreement when training with first 5 timesteps.

Figure 4.33: FOM and ROM agreement when training with all 10 timesteps.

153

Figure 4.34: SDF impact on MAPE for 2D case.

Figure 4.35: SDF impact on MAPE for 3D case.

154

Figure 4.36: NIDS performance for important Uranium isotopes with no SDF.

Figure 4.37: NIDS performance for important Uranium isotopes with an SDF.

155

Figure 4.38: The poison assembly in the 3D model.

156

CHAPTER 5

Conclusion

5.1 Conclusions

The work presented here constitutes a first-of-a-kind deployment of the neural network-

based reduced-order model (ROM) construct applied to two representative nuclear engi-

neering applications. Work has been done in the ROM community to address the need

to reduce the dimensionality of physics problems, but the nuclear engineering community

has not yet deployed these methods outside of research contexts. The nuclear reactor

design and engineering field has a strong need for coupled thermal hydraulics/neutronics

multiphysics simulations because of the tight interaction between thermal-hydraulic and

neutron transport, which poses an additional layer of complexity when converging solu-

tions. This work also introduces the Parody tool (see Appendix B) to provide an abstract

interface for ROM research and deployment. Overall, the work helps to take the appli-

cation of these ROM methods one step closer to deployment in a production nuclear

engineering environment. Specifically, two classes of ROMs are applied to two classes of

nuclear engineering problems.

The first class are two types of convolutional neural network (CNN) based ROMs,

which used convolutional layers to compress and expand the state variables of interest

into lower-dimensional subspaces. These ROMs then step forward in time in this lower-

dimensional subspace and used inverse convolutional layers to expand the latent space

157

back into the full-order subspace. By mapping the inputs to these compressed latent

spaces, it becomes possible to predict the state variable distributions for new combinations

of input parameters. The second class of ROM is the Non-Linear Independent Dual

System (NIDS) algorithm. This approach can be thought of as a non-linear analog to the

classic Proper Orthogonal Decomposition (POD) algorithm. NIDS exists within a class of

“hypernetwork” approaches that seek to train neural networks that produce the weights

and biases of another network that is ultimately used for predictions. The main feature

of NIDS is that it builds a continuous field representation where the inputs are local

quantities. Specifically, NIDS produces the weights and biases for a single-layer neural

network. NIDS trains two networks, one to encode geometric information and another

to encode input parameter information. The output of the parameter networks becomes

the weights and biases, while the output of the spatial networks become the latent space

of the final layer of the “hypernetwork”. Furthermore, shown in Chapter 4, the memory

requirements for NIDS are significantly lower than those of typical CNN based ROMs.

Coupled with the signed distance function (SDF) encoding of geometric information on

fuel layout, these characteristics make it an excellent candidate for full field ROMs in the

nuclear reactor design field.

The first application problem is a single assembly reactivity insertion accident (RIA)

transient. It represents a commonly performed class of analysis in nuclear engineering: a

non-linear multiphysics transient with complex physics, feedback mechanisms, and high

input sensitivity. To assess whether this RIA analysis could be easily enhanced with

ROMs, it is observed in two contexts. In the first, a traditional uncertainty quantification

analysis is performed where inputs to the problem were sampled according to their allowed

distributions and the impacts to the output state variable of interest (relative power) are

observed. In the second context, all input variables except one are kept constant, while

the singled-out input variables varied throughout their allowable range. This analysis

demonstrates how well each ROM approach is able to tease out the contribution to

the state variable of interest by each input parameter. In both contexts, NIDS ROMs

158

performs significantly better than CNN ROM and represents a more promising direction

for future research.

The second application problem is a depletion analysis. It represents another com-

monly performed class of analysis, a lifetime study of a core design to observe how its

nuclear characteristics change as fuel is depleted and fission products build up. This

application problem also represents a test of the ROM’s ability to scale to a realistically

sized problem. The first application is a single-assembly model, while the second appli-

cation is a reflectively symmetric quarter-core model intended to represent a 37-assembly

core with a nonhomogeneous fuel and poison arrangement of pins. Additionally, the

smaller model has roughly 14k spatial locations, while the larger 3D model has roughly

86k spatial locations.

As a test to assess viability, the isotopic depletion trajectories are chosen as the

state variable of interest. This also represents a scaling in output dimensionality. The

first application problem has 1 state variable of interest, while this second application

problem has 190. Again, both CNN and NIDS ROM algorithms are applied and again

the NIDS algorithm shows the most promising results.

NIDS ROMs consistently perform better than CNN ROMs and represent the best path

forward as an option for non-intrusive ROM approaches. This is due to both accuracy

and hardware limitations. The second application problem in particular is too large

for a CNN model to fit on the hardware used for this analysis (a single NVIDIA 3090

GPU). In production environments where much more capable hardware is available, a

CNN model may indeed prove to be not only possible but provide competitive results;

however, this option was not explored in this work due to the positive performance and

light weight nature of the NIDS algorithm. Additionally, CNN models require more

complexity to describe via their more numerous hyperparameters and dimensionality

constraints (particularly, the act of compression and expansion while conserving final

dimensionality requirements can be a fragile exercise). Although not insurmountable,

it represents a challenge that is not encountered with the more simplistic NIDS neural

159

network architecture hyperparameter requirements.

Overall, the agreement between NIDS ROMs and the full order model (FOM) is

promising. One of the primary purposes of this work is to determine the viability of using

ROM models in realistic design environments often encountered in nuclear engineering

contexts. The decision of whether these methods can be used in a true production

level analysis is difficult to conclude without caveat. The requirements for the analyses

are different. For the first application, a designer may be interested in the duration of

the power peak, how accurate the peak is at certain thermally limiting locations, the

integrated relative power over some time or spatial region, the accuracy at the inlet or

outlet, the ROM’s behavior in a uncertainty quantification (UQ) analysis, or any other

number of unique concerns. For the second application, a designer may be interested

in certain isotopes over others, the total mass of isotopes in individual pins, assemblies,

or an integrated core, or just the global reactivity value predicted using the ROM tool.

Each analysis would require specific metrics, hyperparameters, training regimens, and

unique considerations. However, this work shows that these ROMs should be considered

as a viable research paths to serve as supplements, replacements, or guides in nuclear

engineering analyses at the production level.

5.2 Future Work

This work opens the path to many potential future projects. These paths fall into one

of three categories. The first category includes production-level workflows which could

benefit from the types of NIDS ROM introduced exactly as presented here. These involve

more engineering challenges than theoretical challenges. The second category includes

features that improve the generic ROM tool Parody. Finally, the third includes algorith-

mic extensions that would likely improve performance and allow the application of these

methods in novel ways.

160

5.2.1 Existing workflow integration

There is a spectrum along which a ROM could be used in production design calculations.

On the one hand, designers could completely eliminate the need for a FOM (other than

to generate training data for a ROM) and use a ROM to replace its role in a whole

analysis workflow. On the other side of the spectrum, it could be used as a design space

exploration tool, serving as a guide to where in the design space a FOM should be used.

The ideas below represent three locations along that spectrum that should be considered

when assessing the role a ROM should play in a reactor design context.

1. Improve initial guesses for transient neutronic calculations.

Transient neutronics calculations involve simulating the time-dependent behavior of

nuclear reactors under different conditions. These calculations often require numerous

iteration steps between solvers at each timestep to obtain accurate results. However, this

can be computationally expensive, especially when complex non-linear physics interac-

tions occur, which creates a need for multiple iterations to converge.

A potential solution to this problem is to use the NIDS ROM algorithm. This algo-

rithm can help reduce the number of iteration steps needed, particularly when dealing

with complex non-linear physics interactions. Currently, a common approach is to use

the last timestep solution as the initial guess for the next timestep. However, using a

ROM model to provide a better initial guess for the next timestep could further improve

the computational efficiency of the simulations, without replacing the use of FOM models

in their role as providing the final converged solution.

To use a ROM model in this context, the state variables of interest (such as relative

power distributions, coolant temperature, pressure distribution, etc.) would be used as

inputs to the model. The model would then provide the next timestep’s state variables of

interest as outputs. Relevant physics solvers would use these outputs as a starting point

for convergence for that timestep, which would help speed up the simulation process.

This would require a robust coding framework to handle interaction between the ROM

161

and FOM and must be compatible with the existing FOM workflow.

This approach could also be used in the context of coupled physics simulations. In-

stead of converging on solutions using only FOM calculations, ROM calculations could

be used to provide better initial guesses for each physics of interest. Like the previous

suggestion, the state variables of interest for a coupled neutronics-thermal hydraulics

analysis would be the neutronics solution for the thermal hydraulics solver, and the ther-

mal solution for the neutronics solver. This would improve convergence times without

impacting the final results, as all results would ultimately come from FOM solutions.

2. Replace the FOM solver every N timesteps.

Some depletion or transient analyses may have a large number of timesteps. One way

to insert a ROM into an analysis workflow would be to have it provide state variables

at some regular interval, rather than replace the FOM entirely. As in the previous

research idea, this would require a robust coding framework to handle the interaction

between ROM and FOM. This is reminiscent of other methods currently used in nuclear

engineering, where alternating diffusion and transport solutions are used to step forward

in time. This idea is different from the previous idea in that the ROM predictions would

be used in place of the FOM results instead of providing them with a better initial guess

during convergence.

3. Use the ROM tool as a “first-cut” design space exploration tool.

Another method would be to use a ROM as a purely design space exploration tool.

Often a designer is interested in finding the most limiting combinations of inputs for some

physics model. A combination of FOM results, first principle analysis, and engineering

intuition is usually used to justify final conclusions (since it is often intractable to fully

survey a high-dimensional design space completely for reactor design applications). The

most optimal way to insert a ROM into this procedure would be an interesting study.

A ROM could not be deployed until sufficient training data is available. Therefore, an

iterative approach involving a FOM to generate training data to feed a ROM to suggest

the limiting locations in the design space in which to run the FOM (which would then

162

improve the next iteration of predictions from the ROM) could be valuable. The goal

of such a research project would be to find the most optimal balance between compute

time and optimized design with the FOM runs and ROM training time representing more

accuracy but higher cost.

5.2.2 Programmatic improvements to Parody

The Parody tool (see Appendix B) was developed to facilitate quick turnaround of ex-

perimentation with ROM algorithms, particularly the NIDS algorithm. It was generated

with inline documentation, testing, and Python package distribution in mind; however,

many traits and features that were not developed would preclude it from being used by

a wider audience. With proper investment, a tool like Parody could become something

that other researchers or industry ROM practitioners could use to help them in their

work. These ideas represent considerations for transforming Parody into an attractive

tool for such a user base.

1. Develop an abstraction paradigm for data consumption.

Currently, Parody requires data to be in monolithic structures that represent entire

training datasets. This is not sustainable if it were to be implemented on larger scales

with large datasets. Furthermore, the first two ideas in the previous section would require

a smooth transition between FOM and ROM input and output, which would benefit from

an abstracted data layer. Work must be done to provide a higher level of abstraction for

training data consumption and inference. The abstract classes which Parody is built on

top of (PyTorch Lightning’s DataModule class) support this type of work, but Parody

does not yet allow for this level of abstraction out of the box. As a few examples: a

user may want to specify file locations of FOM results files, filter by metadata on which

results to include, create interfaces for FOM results fetching, and define metadata on its

outputs. A user may also want an application program interface (API) with which to

integrate Parody into production FOM tools or workflow tools to facilitate the handoff

163

of FOM and ROM data in a larger pipeline.

2. Expand Parody to include other ROMs.

Parody currently includes only the NIDS and Proper Orthogonal Decomposition neu-

ral network (POD-NN) ROM algorithms. It does not include the CNN based algorithms

explored in this work, or the many other ROM approaches which exist in the literature.

An obvious project to improve Parody’s usefulness would be to make it a library of ROMs.

Such a work effort would flesh out the areas of improvements needed in its design to allow

it to support the various classes of algorithms. This work effort would also force code

contributors to consider and implement the requisite level of abstraction to accommodate

the needs of varying ROM algorithms. Once a library of ROMs is available, then they

could all quickly be compared against one another for different applications of interest.

3. Improve Parody quality according to best practices in software engineering.

Parody currently has basic Python tests, Sphinx documentation of its Python API,

example Jupyter Notebooks, and other features common in open-source Python packages.

However, it has not undergone development at a production level, which may flesh out use

cases not tested, documentation needs not covered, and a robust build and distribution

system. An overhaul to improve its professionalism does not represent a research project,

but a required software development endeavor if it were to be distributed to a wider user

audience. The ROM community would benefit from efforts in this vein. This would allow

researchers to not need to create the workflows required by this complicated work for

each research group. Instead, work could be spent on exploring different methods rather

than establishing the programmatic framework itself. Much like the first suggestion

in this subsection, this would require the right level of abstraction. Research would

likely be needed to converge on the correct level of abstraction and the correct way to

programmatically express it to users. A balance of abstraction and usability/ease of

adoption is always a challenge and would require deep planning and expertise in the

ROM research field as well as software engineering.

164

5.2.3 Theoretical improvements

These improvement ideas refer to ways to extend or improve upon the underlying ROM

algorithms. The methods suggested would allow the deployment of NIDS in other types

of nuclear engineering applications. In its current implementation, it is limited in its

breadth of application potential. But with a few small improvements, its applicability

widens drastically to include other classes of nuclear engineering problems.

1. Use SDF for core optimization.

The SDF construct allows the practitioner to embed geometric information into the

ROM in ways that drastically speed up the accuracy and convergence of the neural

networks. In the work presented herein, we saw how it was used to represent the distance

to the nearest non-fuel element. One way this idea could be expanded is by instead using

the SDF as a one-hot encoder to describe the type of fuel pin at each location. Once a

training data database is created with enough variety in fuel pin loadout, the ROM could

theoretically be used to test new fuel loading patterns. This type of analysis may be of

interest for refueling load plans, core optimization, or other applications concerned with

accurate 3D distributions of relative power or depletion isotopics.

The size of the training database and how far outside the training dataset the neural

network could extrapolate would be the subject of a potential research project. Addi-

tionally, other ways of embedding the neighboring pin information as well as what type

of pin the target pin is, for each fuel pin other than one-hot encoding, could be explored.

It may be, like the natural language processing field, that other encoding forms exist

which are much more efficient than one-hot encoding. It may also be that instead of

encoding physical distances, encoding information about the mean free path distance to

larger absorbers or reflector regions.

2. Explore other NIDS variants

In [114], Duvall et al. discuss other types of hypernetwork approaches that are related

to the NIDS architecture. These include the DV-Hnet models. Whereas NIDS uses two

165

neural networks to produce the weights and biases of a single-layered neural network,

the DV-Hnet model uses two networks to produce the weights and biases of a multi-

layered neural network. The authors saw much better performance from the DV-Hnet

architecture than that for NIDS. The application of the DV-Hnet approach to nuclear

engineering applications may further improve the performance of the application problems

explored in this work. A future research project could be dedicated to applying this and

other ROM methodologies aimed at creating surrogates for physics fields, which has

become a very active field in the last few years.

3. Explore physics-informed loss terms

Other work has shown that including physics-derived terms in the loss function of

neural networks can improve the accuracy and convergence speed. By embedding infor-

mation specific to the neutron transport equation that constrains the weights and bias

search space, coupled with the SDF construct to encode geometric information, future

projects should be able to improve performance for the application problems discussed

herein. Physics terms related to boundary conditions of the problem and neutron con-

servation across boundary conditions could help improve convergence time and accuracy

at difficult spatial locations. Particularly, areas that are next to strong absorbers, near

the reflector, or corner locations where two assemblies meet next to a reflector represent

difficult areas to model neutronically. These areas are likely the most susceptible to a

neural network-based ROM generalizing poorly, as they represent a small part of the

dataset.

Similarly, in the depletion analysis certain isotopes behaved poorly compared to oth-

ers. It may be that a loss term constructed intentionally to focus on certain isotopes

would yield better results tailored to an application of interest. For example, if only

fissile material, or only material related to high energy gamma decay modes concerning

public health are of interest, then having a model that captures xenon-135 is of less im-

portance. A loss term targeting these isotopes’ performance may be favorable. Research

that understands the best way to contribute to weight loss from certain isotopes would

166

be beneficial.

4. Explore other nuclear engineering applications

All of the work presented here contains ideas related to the application of ROMs

in critical core configuration analysis in nuclear engineering. There are other classes of

problems that a nuclear design team may consider during the optimization and analysis

of reactor cores. These include shielding applications, plant transient analysis, and spent

fuel analysis. Other work (see [36] and [37]) has explored the application of ROMs in

nuclear engineering in other contexts. A future research project could be dedicated to

exploring these other application areas and finding solutions to the unique challenges

present in these topics. These could include shielding applications, spent fuel criticality

optimization, or real time nuclear simulations.

Shielding applications offer difficulties in that their quantity of interest (QOI)s vary by

many orders of magnitudes and could require unique solutions to deal with this problem.

Previous work has explored solutions to this problem using POD based approaches [36].

Critical configuration approaches involve potentially very large design spaces, and often

incur large uncertainties to deal with the inability to explore them fully. Finally, real time

nuclear simulations would have obvious benefits from being able to rely on higher fidelity

neutronics solutions for certain casualty simulations, particularly asymmetric ones like a

single rod ejection. Simplified neutronics methods are typically used in these applications,

however ROMs could instead be used to reduce the amount of accuracy lost when finding

models which perform fast enough for real time simulations.

For example, some analyses require looking at global and/or local reactivity coeffi-

cients. The application of full field ROMs, such as NIDS would only be as useful as

their ability to predict spatially condensed quantities of interest, such as assembly-wise

k-infinity values. Like the previous future work item, work involving honing on in the

correct loss terms that represent impacts to spatially condensed quantities of interest

could improve performance.

5. Explore other nuclear engineering applications

167

This work explored implementing a Bayesian neural networks (BNN) for ROM gen-

eration. Specifically, variational inference (VI) was used. This process could be explored

more in depth to create a suite of benchmark dataset results that various BNN approaches

could be applied to. Each could be tested against the dataset for calibration accuracy.

In other words, quantifying how many of the true results fall within the model predicted

ranges. Methods such as MCMC, model ensembles, or MC dropout could be compared

and contrasted to one another for neutron transport applications.

All of these ideas represent areas that would further advance the field of nuclear

engineering towards the stated goal of this work: the deployment of ROM methods in

production-level nuclear engineering applications. To assist future projects that may use

this work as a reference, the Appendix A documents the source code, models, and scripts

used to generate the results herein for any future researcher or engineer looking to build

on this work and push it further.

168

APPENDIX A

A. Supporting Code

This work represents the capabilities of multiple repositories, codes, and nuclear mod-

els created and maintained for this project. For reproducibility and to assist potential

future work in this field, a description of each repository, where it can be found, and

additional considerations are provided in Table A.1. For convenience, one Git repository,

which can be found at git@github.com:bdlafleur/phd.git, contains all of these reposito-

ries as Git submodules. Refer to the tag ”dissertation” in this repository to checkout the

version of all repositories representing their state at the time of this issuance.

For future reproducibility, MC21 input files were generated with PUMA version 9.1.1-

INL-b5 and were run with MC21 version 9.00.02-UNCL (Build 1) for all MC21 results

here. MPACT version 2.1.0 (rev. 6) was used for all MPACT results in this document. For

versions of all Python packages, see each repository’s Conda environment Yaml definition

files as well as any associated outputs from Python scripts/Jupyter Notebooks to obtain

other Python package version constraints.

169

Code Description

mc21-modeling
(mc21-modeling.git)

Contains the 3D and 2D MC21 models (as Git submodules) and
scripts used to generate MC21 input template folders, perform tem-
plate substitution to create final MC21 input files, and facilitate
input file submission to the Idaho National Laboratory (INL) high-
performance computing (HPC)s. All results in Chapter 4 were gen-
erated using these models.

mc21-post
(mc21-post.git)

Contains post processing scripts used to generate MC21 based ROM
results in Chapter 4. This includes all scripts used to go from MC21
output files to the input arrays used as training datasets for neural
network training, the neural network definitions themselves, and sup-
plementary Jupyter Notebooks which summarize and test the MC21
supporting scripts.

mpact-modeling
(mpact-modeling.git)

Contains instructions, templates, and submission scripts for Michi-
gan Parallel Characteristics Transport Code (MPACT) models used
to generate Chapter 3 nuclear model results.

mpact-post
(mpact-post.git)

Contains bash submit scripts for MPACT related neural network
training for Chapter 3. This repository contains two Jupyter Note-
books which produce all MPACT related result plots in this work
- results cnn.ipynb and results nids.ipynb. It also contains parsing
scripts to generate the input arrays from MPACT output files.

multi-stage CNN
(multi-stage-cnn-rom.git)

Contains the TensorFlow scripts defining the multi-stage CNN from
Section 2.2.3.4 and associated inputs which were used to generate
results in Chapter 3.

Parody
(parody.git)

Parody provides an abstract layer over ROM methodologies explored
in this work. Specifically, it was used to generate all NIDS results
herein. See Appendix B for more details on, and demo Jupyter
Notebooks using, Parody. Parody was used to generate NIDS ROM
results in Chapters 3 and 4.

Thesis
(thesis.git)

This repository contains the LaTeX source code and associated im-
ages/supporting scripts for creating this document.

Table A.1: Programs and scripts used to create this work (repository name in parentheses).
GitHub repositories found at git@github.com/bdlafleur/phd.git.

170

APPENDIX B

B. Parody: A Python Framework for ROM Research

B.1 Design Philosophy and User Interface

During the exploration of ROM methodologies, the Python tool Parody was created to

improve efficiency, robustness, and reproducibility of results and ROM research. Parody

provides an abstract layer over the ROM methodologies explored in this thesis. It is built

on the Python package, PyTorch Lightning ([109]) (which is itself built on PyTorch),

which allows for quick experimentation of machine learning algorithms. PyTorch Light-

ning was designed to be an extensible, lightweight, and high-performing framework that

decouples research from coding implementation with the goal of making machine learn-

ing research more efficient. In a similar spirit, Parody was created to do the same for

ROM research. Parody separates the research of ROM methodologies from the sometimes

complicated implementation requirements of building a machine learning coding frame-

work to demonstrate or implement ROM methods. This includes data manipulation and

new-parameter predictions.

Because Parody was built on top of PyTorch Lightning, it experiences the same

benefits of using PyTorch Lightning. Specifically, it leverages the Pytorch Lightning

LightningModule and LightningDataModule constructs. Each of these assists in leverag-

ing GPUs easily, optimizing batch sizes, hyperparameter tuning, keeping the data pipeline

organized and reproducible, and other organizational benefits which reduce the program-

171

ming burden of the machine learning practitioner. See the documentation for more details

on the benefits gained from utilizing PyTorch Lightning ([109]).

Parody’s interface is simple. The user should have prepared a collection of FOM

results and the associated input parameters defining each FOM result. Some ROM al-

gorithms require other classes of input, such as a collection of spatial locations for each

FOM result, as required by the NIDS algorithm. Once these are prepared, they must be

arranged according to the convention defined by Parody.

The FOM results must be in a Numpy array of the following shape: (Ncases, t, x, ..., Nst).

Ncases is the number of FOM cases generated, t is the number of timesteps (if required),

x, ..., represents the number of dimensions in the x direction, with allowance for 2 or 3

dimensions as required, and Nst represents the number of state variables in the FOM

result. Spatial location information must be in a Numpy array of the same shape as the

FOM results, with the exception that the last dimension should be as large as the number

of spatial dimensions in the problem. As an example, if there are 10 FOM realizations of

a steady-state 2D problem discretized 100 by 100 in the x and y dimensions, with 5 state

variables of interest, the state variable and spatial location arrays would have shapes of

(10, 100, 100, 5) and (10, 100, 100, 2) respectively.

To define the parameterization of the FOM realizations, the parameters can be defined

in two ways. The first would associate one set of input parameters with each FOM

realization. In this case, the dimensionality would be (Ncases, Np), where Np is the number

of parameters defining each realization. The second would be to associate each spatial

location with its own set of unique parameters. In this case the dimensionality would

be (Ncases, x, ..., Np). A problem must have one or both of these types of parameters

associated with it. Additionally, in the case where the application problem is a transient

Parody allows each time step, t, to have uniquely defined parameters. In this case one

more dimension would be added to the parameter array. For example, if there are 10

FOM realizations of a transient with 20 timesteps for a 2D problem discretized 100 by 100

in the x and y dimensions, with 5 state variables of interest, the state variable and spatial

172

location arrays would have shapes of (10, 20, 100, 100, 5) and (10, 100, 100, 2) respectively.

The parameter array could have dimensions of either (10, 20, Np) or (10, 20, 100, 100, Np)

depending on if the parameters are global inputs or spatially dependent.

B.2 Parody Design and Demo Toy Problems

Parody was designed to make exploring ROM frameworks simple. Each ROM is encap-

sulated in a package that contains the core ROM algorithm implemented with PyTorch

(defined as an extension of the PyTorch Lightning LightningModule class), the definition

of the forward pass and the data preprocessing utilities for the supported dimensions of

that ROM. In addition to a class and utility script for each algorithm, a ROMDataModule

class extends the Pytorch Lightning DataModule class and encapsulates the functional-

ity required to transform the raw Numpy arrays into the format required for a given

algorithm. Figure B.1 highlights these key components of Parody and shows two algo-

rithms implemented for illustration. Note that other functionality and utility scripts are

required; Figure B.1 is intended to highlight only the key components.

Figure B.1: Key components of Parody code infrastructure.

This framework allows any algorithm within Parody to be trained quickly and tested

against a FOM dataset. It also allows new ROM algorithms to be quickly added, tested,

173

and compared to other algorithms. To include a new algorithm, preprocessing scripts

would be created that would take the standardized Numpy array format and reshape

it into the expected shape by the new algorithm, and a PyTorch defined forward pass

would be created. Finally, support for that algorithm in the ROMDataModule class

would also be required. Overall, this process is lightweight and makes for quick testing

and comparison of ROM algorithms.

To demonstrate the simple interface provided by Parody, toy problems were imple-

mented within Parody for algorithm and functionality testing in the parody.demo utils

package. Each demo toy problem includes an interface that produces Numpy arrays in

the format required for Parody. The following toy problems are included in Parody at

the time of this writing:

• Burgers equation (1D transient)

• Multivariate Gaussian (2D steady-state)

• Sine wave (1D steady-state)

The Jupyter notebooks in the following sections illustrate how a user would invoke

the demo tools within Parody to create the requisite Numpy arrays and interact with

the different ROM Parody algorithms. These notebooks also fully define each of the toy

problems.

174

nids_1d_transient

March 16, 2023

1 NIDS 1D transient (Burgers equation)
This notebook demonstrates non-linear independent dual systems (NIDS), a reduced order modeling
(ROM) algorithm proposed by Duvall et al (2021) in https://arxiv.org/abs/2109.07018, for a 1D
transient application.

[]: import os

import matplotlib.pyplot as plt
import numpy as np
import pytorch_lightning as pl
import torch

from parody import datamodule_base
from parody.demo_utils import burgers
from parody.nids import nids
from parody.nids import nids_utils
from parody.utils import rom_utils

import warnings
warnings.filterwarnings("ignore", ".*does not have many workers.*")

Select GPU for training if available
ACC = 'gpu' if torch.cuda.is_available() else 'cpu'

Change nmber of epochs to 1 if running nbmake
NUM_EPOCHS = 200 if os.getenv('NBTEST') is None else 1
NUM_X = 1024 if os.getenv('NBTEST') is None else 100
NUM_TS = 101 if os.getenv('NBTEST') is None else 10

1.1 Problem description
This toy problem is the 1D transient Burgers equation, defined below.
𝜕𝑢
𝜕𝑡 + 𝑢𝜕𝑢

𝜕𝑥 = 1
𝑅𝑒

𝜕2𝑢
𝜕𝑥2

The first step with any ROM problem application is to generate an offline collection of full order
model (FOM) results. This is often referred to as a snapshot matrix, or a collection of state
variables.

1

175

To define a collection of FOM results, the equation above is assessed over the domains 𝑋 ∈ [0, 1]
and 𝑡 ∈ [0, 1]. This equation can be solved exactly to obtain an analytical formulation for the time
evolution of the field via the following equation:

𝑢(𝑥, 𝑡) =
𝑥

𝑡+1
1+√ 𝑡+1

𝑡0 𝑒𝑥𝑝(𝑅𝑒 𝑥2
4𝑡+4)

The FOM solutions are obtained upon 1024 equidistant spatial coordinates along 𝑋 and 101 tempo-
ral coordinates along 𝑡. The snapshot matrix contains runs of 10 equally spaces Reynolds numbers,
𝑅𝑒 ∈ [175, 225].

[]: inp_params = np.array(
[(i,) for i in [50, 75, 100, 125, 150, 175, 200, 225, 250, 275]]

)
print('--- Training data design space --')
print(f'{inp_params.shape = }')

state_vars, params, locs = burgers.generate_data(inp_params, NUM_X, NUM_TS)

print('\n--- Training datasets ---')

state_vars = np.swapaxes(state_vars, 1, 2)
print(f'{state_vars.shape = }')

params = np.expand_dims(params, 1)
params = np.repeat(params, NUM_TS, 1)
param_t = np.linspace(0, 1, NUM_TS)
param_t = np.expand_dims(param_t, -1)
param_t = np.expand_dims(param_t, 0)
param_t = np.repeat(param_t, params.shape[0], 0)
params = np.concatenate((params, param_t), -1)
print(f'{params.shape = }')

print(f'{locs.shape = }')

--- Training data design space --
inp_params.shape = (10, 1)

--- Training datasets ---
state_vars.shape = (10, 101, 1024, 1)
params.shape = (10, 101, 2)
locs.shape = (10, 1024, 1)

1.2 NIDS model
The image below is taken from the original work in https://arxiv.org/abs/2109.07018. See that
reference for full technical details. One way to conceptualize this approach is that it can be viewed
as a nonlinear analogy to Proper Orthogonal Decomposition (POD). With NIDS, there are two
networks. One for the parameters defining your problem and the other for the spacial coordinates.
The output of the parameter network becomes the weights and biases of the final layer of the spatial

2

176

network. POD likewise uses spatial modes combined with and basis coefficients which capture the
dynamics of the linear combination of those spatial modes. However in POD, the spatial modes
are determined using singular value decomposition.

There are many hyperparameters for this architecture. For instance, how may hidden nodes just
before the final output layer, and the structure of the parameter and spatial networks. Each are
encapsulated in the parody.nids.nids.Nids class.

The following code uses Parody to invoke the NIDS algorithm to create a ROM for the 2D Gaussian
toy problem.

[]: %%time

Set hyperparameters for NIDS algorithm
config = {

'transient': True,
'param_dims': 2,
'param_layers': 4,
'param_units': 200,

'latent_space': 100,

'spat_dims': 1,
'spat_layers': 4,
'spat_units': 200,

'output_dims': 1,
}

Create NIDS model object and training dataset
model = nids.Nids(config)
datamodule = datamodule_base.ROMDataModule(

model=model, locs=locs, state_vars=state_vars, params=params,
batch_size=2**12, num_workers=1)

Create callback
early_stopping = \

pl.callbacks.early_stopping.EarlyStopping(
monitor='val_loss', min_delta=0, patience=10, mode='min')

lr_monitor = pl.callbacks.LearningRateMonitor()
metrics = rom_utils.MetricTracker()

Create pl trainer and fit
trainer = pl.Trainer(

max_epochs=NUM_EPOCHS, accelerator=ACC, devices=1,
callbacks=[lr_monitor, early_stopping, metrics])

trainer.fit(model=model, datamodule=datamodule)

3

177

Calculate performance metrics on test dataset
test_metrics = trainer.test(model=model, datamodule=datamodule)

Plot training metrics
val_loss = [m.cpu() for m in metrics.collection['val_loss_epoch']]
train_loss = [m.cpu() for m in metrics.collection['train_loss_epoch']]
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(12, 4))
axes.semilogy(val_loss[1:-1], '--r', label='val loss')
axes.semilogy(train_loss, '-k', label='train loss')
axes.legend()
axes.grid()
axes.set_ylabel('Error')
axes.set_xlabel('Epoch')

GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

| Name | Type | Params

0 | param_network | ParamNetwork | 141 K
1 | spatial_network | SpatialNetwork | 141 K

282 K Trainable params
0 Non-trainable params
282 K Total params
1.130 Total estimated model params size (MB)

Sanity Checking: 0it [00:00, ?it/s]

Training: 0it [00:00, ?it/s]

Validation: 0it [00:00, ?it/s]

Validation: 0it [00:00, ?it/s]

LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

Testing: 0it [00:00, ?it/s]

��
��

Test metric DataLoader 0
��
��

MAE 0.0011400313815101981
RMSE 0.001571514061652124

��

4

178

��
CPU times: total: 17min 17s
Wall time: 29min 57s

[]: Text(0.5, 0, 'Epoch')

1.3 Model results
Shown below is the performance of the NIDS ROM over a sampling of Reynolds numbers which
represent the design space captured by the training data. Reynolds numbers of 100, 150, and 225
are included (which are contained by the training data). Additional runs at Reynolds numbers of
75 and 300 are also included to illustrate performance of the ROM outside of the training data
domain. In other words, the additional cases show that it extrapolates well, at least near the
boundaries of the training data.

[]: ts = np.linspace(0, 1, NUM_TS)
xs = np.linspace(0, 1, NUM_X)
re_list = [75, 100, 150, 225, 300]
fig, axes = plt.subplots(nrows=len(re_list), ncols=4, figsize=(12,␣

↪3*len(re_list)))

for i, re in enumerate(re_list):
--- Get true solution
u_true = np.zeros((NUM_X, NUM_TS))
for j, ti in enumerate(ts):

u_true[0:NUM_X, j] = burgers.get_soln_at_t(xs, ti, re)
u_true = np.expand_dims(u_true.T, -1)

--- Get ROM solution
u_init = np.array([[u_true[0, :, :]]])
res = np.expand_dims(np.ones((len(ts), 1))*re, 0)
param_t = np.expand_dims(np.expand_dims(ts, 0), -1)
params = np.concatenate((res, param_t), -1)

5

179

u_hat = model.clean_predict(
datamodule, locs=locs, params=params, state_var_init=u_init)[0]

--- Plot results

X, T = np.meshgrid(xs, param_t)
surf = axes[i][0].contourf(X, T, u_true.squeeze(), antialiased=False)
axes[i][0].set_title('FOM solution')
plt.colorbar(surf, ax=axes[i][0])

surf = axes[i][1].contourf(X, T, u_hat.squeeze(), antialiased=False)
axes[i][1].set_title('ROM solution')
plt.colorbar(surf, ax=axes[i][1])

surf = axes[i][2].contourf(X, T, (u_true.squeeze() - u_hat.squeeze()),␣
↪antialiased=False)

axes[i][2].set_title('Error')
plt.colorbar(surf, ax=axes[i][2])

axes[i][3].plot(u_true[0, :, 0], 'b', label='truth')
axes[i][3].plot(u_hat[0, :, 0], '--b', label='pred')
axes[i][3].plot(u_true[int(NUM_TS/2), :, 0], 'k', label='truth')
axes[i][3].plot(u_hat[int(NUM_TS/2), :, 0], '--k', label='pred')
axes[i][3].plot(u_true[-1, :, 0], 'r', label='truth')
axes[i][3].plot(u_hat[-1, :, 0], '--r', label='pred')
axes[i][3].set_title('Solution at t=[0, 0.5, 1.0]s')

fig.tight_layout()

100%|����������| 100/100 [00:00<00:00, 112.36it/s]
100%|����������| 100/100 [00:00<00:00, 117.51it/s]
100%|����������| 100/100 [00:00<00:00, 114.16it/s]
100%|����������| 100/100 [00:00<00:00, 108.87it/s]
100%|����������| 100/100 [00:00<00:00, 119.69it/s]

6

180

7

181

nids_2d_steady_state

March 16, 2023

1 NIDS 2D steady state (multivariate gaussian)
This notebook demonstrates non-linear independent dual systems (NIDS), a reduced order modeling
(ROM) algorithm proposed by Duvall et al (2021) in https://arxiv.org/abs/2109.07018, for a 2D
steady state application.

[]: import os
import random

import matplotlib.pyplot as plt
import numpy as np
import pytorch_lightning as pl
import torch

from parody import datamodule_base
from parody.demo_utils import gauss_2d
from parody.nids import nids
from parody.nids import nids_utils
from parody.utils import rom_utils

import warnings
warnings.filterwarnings("ignore", ".*does not have many workers.*")

Select GPU for training if available
ACC = 'gpu' if torch.cuda.is_available() else 'cpu'

Change nmber of epochs to 1 if running nbmake
NUM_EPOCHS = 50 if os.getenv('NBTEST') is None else 1

1.1 Problem description
This toy problem is a 2D steady state multivariate gaussian, defined below.

𝑧 = 1
2𝜋𝜎𝑥𝜎𝑦×𝑒𝑥𝑝(𝑥2

2𝜎2𝑥
+ 𝑦2

2𝜎2𝑦
)

The first step with any ROM problem application is to generate an offline collection of full order
model (FOM) results. This is often referred to as a snapshot matrix, or a collection of state
variables.

1

182

To define the collection of FOM results, 𝜎𝑥 and 𝜎𝑦 are sampled randomly from 1 to 4, and the
above equation is evaluated on a 10 × 10 grid discretized by 100 points in each direction, with
𝑋 ∈ [−10, 10] and 𝑌 ∈ [−10, 10]. The input parameter, 𝜇, is defined as a tuple of 𝜎𝑥 and 𝜎𝑦. The
training dataset consists of 50 sets of 𝜇.

In the NIDS framework, the training set consists of 50×(100×100) = 500, 000 training data points,
where each data point consists of the x and y position, 𝜎𝑥 and 𝜎𝑦, and the corresponding 𝑧 value
associated with those inputs.

[]: inp_params = np.array(
[(random.random()*3+1, random.random()*3+1) for _ in range(50)]

)
print('--- Training data design space ---')
print(f'{inp_params.shape = }')

state_vars, locs, params = gauss_2d.generate_data(inp_params)

print('\n--- Training datasets ---')
print(f'{state_vars.shape = }')
print(f'{locs.shape = }')
print(f'{params.shape = }')

--- Training data design space ---
inp_params.shape = (50, 2)

--- Training datasets ---
state_vars.shape = (50, 100, 100, 1)
locs.shape = (50, 100, 100, 2)
params.shape = (50, 2)

1.2 NIDS model
The image below is taken from the original work in https://arxiv.org/abs/2109.07018. See that
reference for full technical details. One way to conceptualize this approach is that it can be viewed
as a nonlinear analogy to Proper Orthogonal Decomposition (POD). With NIDS, there are two
networks. One for the parameters defining your problem and the other for the spacial coordinates.
The output of the parameter network becomes the weights and biases of the final layer of the spatial
network. POD likewise uses spatial modes combined with and basis coefficients which capture the
dynamics of the linear combination of those spatial modes. However in POD, the spatial modes
are determined using singular value decomposition.

There are many hyperparameters for this architecture. For instance, how may hidden nodes just
before the final output layer, and the structure of the parameter and spatial networks. Each are
encapsulated in the parody.nids.nids.Nids class.

The following code uses Parody to invoke the NIDS algorithm to create a ROM for the 2D Gaussian
toy problem.

[]: %%time

2

183

Set hyperparameters for NIDS algorithm
config = {

'transient': False,
'param_dims': 2,
'param_layers': 4,
'param_units': 100,

'latent_space': 25,

'spat_dims': 2,
'spat_layers': 4,
'spat_units': 100,

'output_dims': 1,
}

Create NIDS model object and training dataset
model = nids.Nids(config)
datamodule = datamodule_base.ROMDataModule(

model=model, state_vars=state_vars, locs=locs, params=params,
batch_size=2048, num_workers=1)

Create callback
early_stopping = \

pl.callbacks.early_stopping.EarlyStopping(
monitor='val_loss', min_delta=0, patience=5, mode='min')

lr_monitor = pl.callbacks.LearningRateMonitor()
metrics = rom_utils.MetricTracker()

Create pl trainer and fit
trainer = pl.Trainer(

max_epochs=NUM_EPOCHS, accelerator=ACC, devices=1,
callbacks=[lr_monitor, early_stopping, metrics])

trainer.fit(model=model, datamodule=datamodule)

Calculate performance metrics on test dataset
test_metrics = trainer.test(model=model, datamodule=datamodule)

Plot training metrics
val_loss = [m.cpu() for m in metrics.collection['val_loss_epoch']]
train_loss = [m.cpu() for m in metrics.collection['train_loss_epoch']]
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(12, 4))
axes.semilogy(val_loss[1:-1], '--r', label='val loss')
axes.semilogy(train_loss, '-k', label='train loss')
axes.legend()
axes.grid()
axes.set_ylabel('Error')

3

184

axes.set_xlabel('Epoch')

GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

| Name | Type | Params

0 | param_network | ParamNetwork | 33.2 K
1 | spatial_network | SpatialNetwork | 33.1 K

66.4 K Trainable params
0 Non-trainable params
66.4 K Total params
0.265 Total estimated model params size (MB)

Sanity Checking: 0it [00:00, ?it/s]

Training: 0it [00:00, ?it/s]

Validation: 0it [00:00, ?it/s]

Validation: 0it [00:00, ?it/s]

LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

Testing: 0it [00:00, ?it/s]

��
��

Test metric DataLoader 0
��
��

MAE 0.003011499997228384
RMSE 0.00483113806694746

��
��
CPU times: total: 3min 35s
Wall time: 4min 22s

[]: Text(0.5, 0, 'Epoch')

4

185

1.3 Model results
Shown below is the performance of the NIDS ROM over a sampling of 𝜇 which represents the design
space captured by the training data. In the plots below, each row represents a new 𝜇 case. Across
each row are the 2D images of the FOM results, the NIDS ROM predictions, and the associated
errors. The two line plots are slices through the middle of the X and Y dimensions.

[]: # Setup results for a sweep through input space
test_inp_params = np.array([

[1, 1], [1, 2], [1, 3],
[2, 1], [2, 2], [2, 3],
[3, 1], [3, 2], [3, 3],

])

i = 0
fig, axes = plt.subplots(nrows=9, ncols=5, figsize=(15, 20))
axes = axes.flatten()
for ax, case in zip(axes, test_inp_params):

Generate truth.
state_vars, locs, params = \

gauss_2d.generate_data(np.array([case]))

u_hats = model.clean_predict(
datamodule, locs=locs, params=params

)
u_hat = u_hats.squeeze()

Format pretty plots
state_var = np.reshape(state_vars, (100, 100))
ind = [i*5+j for j in range(5)]
cm0 = axes[ind[0]].contourf(state_var)
axes[ind[0]].set_title('Ground Truth')

5

186

fig.colorbar(cm0, ax=axes[ind[0]])

cm1 = axes[ind[1]].contourf(u_hat)
axes[ind[1]].set_title('Prediction')
fig.colorbar(cm1, ax=axes[ind[1]])

cm2 = axes[ind[2]].contourf((state_var-u_hat))
axes[ind[2]].set_title('Error')
fig.colorbar(cm2, ax=axes[ind[2]])
fig.tight_layout()

axes[ind[3]].plot(state_var[50, :], label='Truth')
axes[ind[3]].plot(u_hat[50, :], label='Prediction')
axes[ind[3]].legend()
axes[ind[3]].set_ylim((0, 0.17))
axes[ind[3]].set_title('Y-dimension')

axes[ind[4]].plot(state_var[:, 50], label='Truth')
axes[ind[4]].plot(u_hat[:, 50], label='Prediction')
axes[ind[4]].legend()
axes[ind[4]].set_ylim((0, 0.17))
axes[ind[4]].set_title('X-dimension')
i = i + 1

fig.tight_layout()

6

187

7

188

podnn_1d_transient

October 11, 2023

1 PODNN 1D transient (Burgers equation)
This notebook demonstrates Proper Orthogonal Decomposition via neural net-
work (PODNN), a non-intrusive reduced order modeling (ROM) algorithm ap-
plied to a 1D transient application. It closely follows the method outlined in
https://www.sciencedirect.com/science/article/abs/pii/S1007570419301364?via%3Dihub for a
1D transient application.

[]: import os

import matplotlib.pyplot as plt
import numpy as np
import pytorch_lightning as pl
import torch

from parody import datamodule_base
from parody.demo_utils import burgers
from parody.podnn import podnn
from parody.podnn import podnn_utils
from parody.utils import rom_utils

import warnings
warnings.filterwarnings("ignore", ".*does not have many workers.*")

Select GPU for training if available
ACC = 'gpu' if torch.cuda.is_available() else 'cpu'

Change nmber of epochs to 1 if running nbmake
NUM_EPOCHS = 100 if os.getenv('NBTEST') is None else 1
NUM_X = 1024 if os.getenv('NBTEST') is None else 100
NUM_TS = 101 if os.getenv('NBTEST') is None else 10

1.1 Problem description
This toy problem is the 1D transient Burgers equation, defined below.
𝜕𝑢
𝜕𝑡 + 𝑢𝜕𝑢

𝜕𝑥 = 1
𝑅𝑒

𝜕2𝑢
𝜕𝑥2

The first step with any ROM problem application is to generate an offline collection of full order

1

189

model (FOM) results. This is often referred to as a snapshot matrix, or a collection of state
variables.

To define a collection of FOM results, the equation above is assessed over the domains 𝑋 ∈ [0, 1]
and 𝑡 ∈ [0, 1]. This equation can be solved exactly to obtain an analytical formulation for the time
evolution of the field via the following equation:

𝑢(𝑥, 𝑡) =
𝑥

𝑡+1
1+√ 𝑡+1

𝑡0 𝑒𝑥𝑝(𝑅𝑒 𝑥2
4𝑡+4)

The FOM solutions are obtained upon 1024 equidistant spatial coordinates along 𝑋 and 101 tempo-
ral coordinates along 𝑡. The snapshot matrix contains runs of 10 equally spaces Reynolds numbers,
𝑅𝑒 ∈ [175, 225].

[]: inp_params = np.array(
[(i,) for i in [50, 75, 100, 125, 150, 175, 200, 225, 250, 275]]

)
print('--- Training data design space --')
print(f'{inp_params.shape = }')

state_vars, params, _ = burgers.generate_data(inp_params, NUM_X, NUM_TS)

print('\n--- Training datasets ---')
print(f'{state_vars.shape = }')
print(f'{params.shape = }')

--- Training data design space --
inp_params.shape = (10, 1)

--- Training datasets ---
state_vars.shape = (10, 1024, 101, 1)
params.shape = (10, 1)

1.2 PODNN model
The image below is taken from the original work in [11]. See that reference for full technical details.
This method can be viewed as a non-intrusive, neural network based implementation of POD. With
vanilla POD, the spatial modes are computed via singular value decomposition (SVD). It is assumed
that the state vector of interest can be computed as a time-evolving linear combination of these
modes. The FOM equations are recast using these assumptions, and the time dynamics of the
spatial modes are computed (sometimes referred to as basis coefficients). In PODNN, the spatial
modes are still computed via SVD, however a simple dense neural network is used to describe their
dynamics. The image below shows this idea.

Notice that the timestep and the Reynolds number are used as input to the network.

The key hyperparameters of this algorithm include the architecture of the neural network
as well as how many spatial modes to keep from the SVD. These are encapsulated in the
parody.podnn.podnn.PodNN class.

2

190

[]: %%time

Set hyperparameters for PODNN algorithm
config = {

'transient': True,
'modes': 8,
'hidden_units': 300,
'layers': 4,
'dimensions': params.shape[1],
'cases': len(state_vars),

}

Create PODNN model object and training dataset
model = podnn.PodNN(config)
datamodule = datamodule_base.ROMDataModule(

model=model, state_vars=state_vars, params=params,
batch_size=32, num_workers=1)

Create callback
early_stopping = \

pl.callbacks.early_stopping.EarlyStopping(
monitor='val_loss', min_delta=0, patience=15, mode='min')

lr_monitor = pl.callbacks.LearningRateMonitor()
metrics = rom_utils.MetricTracker()

Create pl trainer and fit
trainer = pl.Trainer(

max_epochs=NUM_EPOCHS, accelerator=ACC, devices=1,
callbacks=[lr_monitor, early_stopping, metrics])

trainer.fit(model=model, datamodule=datamodule)

Calculate performance metrics on test dataset
test_metrics = trainer.test(model=model, datamodule=datamodule)

Plot training metrics
val_loss = [m.cpu() for m in metrics.collection['val_loss_epoch']]
train_loss = [m.cpu() for m in metrics.collection['train_loss_epoch']]
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(12, 4))
axes.semilogy(val_loss[1:-1], '--r', label='val loss')
axes.semilogy(train_loss, '-k', label='train loss')
axes.legend()
axes.grid()
axes.set_ylabel('Error')
axes.set_xlabel('Epoch')

GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs

3

191

HPU available: False, using: 0 HPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

| Name | Type | Params

0 | _input | Linear | 3.0 K
1 | _layer_list | ModuleList | 273 K

276 K Trainable params
0 Non-trainable params
276 K Total params
1.105 Total estimated model params size (MB)

Sanity Checking: 0it [00:00, ?it/s]

c:\Users\brand\anaconda3\envs\phd\lib\site-
packages\pytorch_lightning\trainer\trainer.py:1933: PossibleUserWarning: The
number of training batches (24) is smaller than the logging interval
Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you
want to see logs for the training epoch.

rank_zero_warn(

Training: 0it [00:00, ?it/s]

Validation: 0it [00:00, ?it/s]

Validation: 0it [00:00, ?it/s]

LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]

Testing: 0it [00:00, ?it/s]

��
��

Test metric DataLoader 0
��
��

MAE 0.0011266579385846853
RMSE 0.001462490065023303

��
��
CPU times: total: 34.1 s
Wall time: 3min 38s

[]: Text(0.5, 0, 'Epoch')

4

192

1.3 Model results
Shown below is a visualization of a test case at a Reynolds number of 200. Also shown are the true
coefficient dynamics and the predicted coefficient dynamics for this case.

[]: test_re_list = [75, 100, 150, 225, 300]
xs = np.linspace(0, 1, NUM_X)
ts = np.linspace(0, 1, NUM_TS)
fig, axes = plt.subplots(nrows=len(test_re_list), ncols=6, figsize=(16,␣

↪4*len(test_re_list)))

Setup results for single Reynolds number
Make true solution and get true coefs
for i, test_re in enumerate(test_re_list):

test_inp_params = np.array([(test_re,)])
test_state_vars, test_params, _= \

burgers.generate_data(test_inp_params, NUM_X, NUM_TS)

--- Get true coefficient dynamics
pod_state_vars = podnn_utils.flatten_for_pod(

test_state_vars, test_params)
u_bar = np.mean(pod_state_vars[0:NUM_X], 1)
coefs_true = np.zeros((config['modes'], NUM_TS))
for j in range(0, NUM_TS):

u_n = test_state_vars[0, :, j]
prjnt(f'{datamodule.modes.shape = }')
a_n = np.dot(u_n[:, 0] - u_bar, datamodule.modes)
prjnt(f'{u_n.shape = }')
prjnt(f'{a_n.shape = }')
coefs_true[:, j] = a_n

Compute ROM solution and ROM coefs
init_cond = np.expand_dims(test_state_vars[:, :, 0, :], 2)

5

193

u_hat, coefs_hat = model.clean_predict(
datamodule=datamodule, params=test_inp_params, num_ts=NUM_TS,
state_var_init=init_cond)

Plot metrics to confirm algorithm is working
sty = {0: 'y', 1: 'r', 2: 'g', 3: 'k', 4: 'c', 5: 'b', 6: 'y', 7: 'r'}
for j in range(0, coefs_hat.shape[0],):

axes[i][0].plot(coefs_true[j], sty[j], label=f'mode {j}')
axes[i][0].plot(coefs_hat[j], f'{sty[j]}--')

axes[i][0].grid()
axes[i][0].legend()
axes[i][0].set_title('True and predicted coef dynamics')

axes[i][1].plot(u_hat[:, 0], 'r--', label='Prediction')
axes[i][1].plot(pod_state_vars[0:len(xs), 0:NUM_TS][:, 0], 'k',␣

↪label='Truth')
axes[i][1].set_title('Solution at t=0s')
axes[i][1].legend()
axes[i][2].plot(u_hat[:, 0], 'r--', label='Prediction')
axes[i][2].plot(pod_state_vars[0:len(xs), 0:NUM_TS][:, 0], 'k',␣

↪label='Truth')
axes[i][2].set_title('Solution at t=0.5s')
axes[i][2].legend()

X, T = np.meshgrid(xs, ts)
surf = axes[i][3].contourf(X, T, test_state_vars[0, :, :, 0].T,␣

↪antialiased=False)
axes[i][3].set_title('FOM solution')
plt.colorbar(surf, ax=axes[i][3])

surf = axes[i][4].contourf(X, T, u_hat.T, antialiased=False)
axes[i][4].set_title('ROM solution')
plt.colorbar(surf, ax=axes[i][4])

surf = axes[i][5].contourf(X, T, (test_state_vars[0, :, :, 0].T - u_hat.T),␣
↪antialiased=False)

axes[i][5].set_title('Error solution')
plt.colorbar(surf, ax=axes[i][5])

fig.tight_layout()

6

194

7

195

APPENDIX C

C. Data Science Tools and Best Practices

C.1 General Neural Network Training

Because many neural networks were trained to assess the viability of ROM methodologies

in representative nuclear engineering applications, a brief discussion of some best practices

that were followed is warranted. These best practices come from common approaches

found in the data science industry as well as lessons learned from performing this work.

The general process of converging on an architecture was the same for all neural networks.

1. The general architecture for any neural network is found using trial and error,

beginning with any available previous work’s architecture. A condensed dataset is

always used to facilitate a quick turnaround. Typically, about 5% of the available

data is used during this step.

2. Once an architecture was found that could capture the general dynamics of the

problem, the data set is expanded to confirm that the network could still capture

these dynamics when including all input feature variability of the problem.

3. A hyperparameter optimization is performed using a subset of the hyperparameter

sets. In this first hyperparameter stage, only those parameters which have large

impacts on training trajectories are explored. This includes hyperparameters such

as learning rate, regularization options, and loss functions.

196

4. Once the primary hyperparameters are optimized, a second hyperparameter op-

timization is performed using the remaining architecture detail hyperparameters.

This includes hyperparameters such as number of layers in a dense network, the

number of filters in a convolutional layer, or the number of latent spaces in a NIDS

model. For the CNN model, this step was usually divided into multiple stages of

optimization due to the high number of hyperparameters.

Choi [115] and Simard [116] each provide a write up summarizing some of the best

practices for neural network training, with Simard focusing on convolutional neural net-

works. During training, the standard data science practice of splitting input data sets into

training, validation, and test data sets is utilized. The training data set is the data set

that informs the gradient updates during training. The validation data set is used during

the analysis iterations to fine-tune the hyperparameters. It does not directly inform gra-

dient updates during training, so it represents a first test of how the model may perform

with previously unseen data. However, it does represent some information leakage into

the model as it impacts which hyperparameters are used; therefore, it does not perfectly

capture how well the model has generalized. In this context information leakage refers

to the process by which information from datasets not intended to impact the parameter

updates informs how these parameters are trained. Put another way, if the practitioner

is making architectural decisions based on the validation dataset, then the final model

parameters are being influenced based on decision influenced by the validation dataset.

Finally, The test data set is run only at the end of the process, as it is the best repre-

sentation of how the model will perform against unseen data. By restricting this dataset

until the last step, information leakage is prevented and the best estimate of the models

capability on unseen data is observed.

In the process described above for architecture and hyperparameter search, Step 3

usually sees greater variability in performance during training. Step 4 typically does

not observe significant performance improvements during execution outside of marginal

197

improvements. For the context and reproducibility of the studies described throughout

this work, each neural network was locally trained on a single NVIDIA-3090 GPU.

C.2 Data Science Tools

For hyperparameter tuning, multiple hyperparameter frameworks, such as Optuna and

Keras-Tuner, were tried. However, ultimately Ray-Tune was used ([117]). Ray-Tune is a

Python library for data science experiment execution and hyperparameter tuning. It was

chosen because it supports all major machine learning frameworks, including PyTorch

and Keras (the two frameworks used in this work). Other hyperparameter frameworks

can also be configured to support these frameworks, however it is the opinion of the

author that Ray-Tune provided the most approachable interface with convenient features

to integrate hyperparameter tuning into the training process. Ray-Tune contains within

it the full implementations of many major hyperparameter optimization algorithms. See

[118] for a review of common algorithms used today, or the Ray-Tune documentation

available on their GitHub page. Method classes such as grid search, random search,

Bayesian optimization, and its derivatives are available.

A note on best practices: Due to the complexity of dealing with a multistage data

pipeline, the training of many separate neural networks for the results herein, and gener-

ating plots and metrics consistent between each analysis iteration, the tool Data Version

Control (DVC) was used ([119]) and is recommended for similar work. DVC is a data

science tool that takes advantage of existing software engineering tools such as Git, VS

Code, and cloud storage. It helps machine learning projects manage large datasets, make

projects reproducible, and improve collaboration. Specifically, in this work, the pipelining

and data versioning features of the data from DVC were used.

DVC allows for arbitrary definitions of a directed acyclic graph (DAG) for defining

and re-running machine learning pipelines. The number of models trained using similar

source files with different inputs, and the desire for reproducible results, made DVC and

198

its declarative DAG yaml syntax very useful to form the infrastructure of this analysis.

Although DVC is advertised as a facilitator of collaboration in large-scale machine learn-

ing projects involving numerous participants, as a best practice, this author recommends

exploring DVC for small, solo projects as well.

Another best practice employed in this work was the use of mixed precision for all

neural network training. PyTorch Lightning [109], which Parody was built on top of, offers

16-bit (and lower) floating-point training. This enables the training and deployment of

larger neural networks than would otherwise be possible because they require less memory

and enhance data transfer operations. This essentially allows much faster operations on

GPUs than full-precision training. Mixed precision combines the use of both 32- and 16-

bit floating point operations to reduce memory footprints during training. All training

for Parody-based models (i.e., not the CNN based ROMs) used 16-bit mixed precision

during training. Negligible degradation in model performance was seen in addition to a

2X speed-up, allowing for a faster turnaround time during experimentation. See [120] for

an introduction to the use of mixed precision training in neural networks.

199

BIBLIOGRAPHY

[1] R. Sanchez and N. J. McCormick. “A Review of Neutron Transport Approxi-
mations”. In: Nuclear Science and Engineering 80.4 (Apr. 1, 1982). Publisher:
Taylor & Francis eprint: https://doi.org/10.13182/NSE80-04-481, pp. 481–535.
issn: 0029-5639. doi: 10.13182/NSE80-04-481. url: https://doi.org/10.131
82/NSE80-04-481 (visited on 04/24/2023).

[2] Edward Larsen et al. “Advances in Discrete-Ordinates Methodology”. In: Nu-
clear Computational Science: A Century in Review. Journal Abbreviation: Nu-
clear Computational Science: A Century in Review. Apr. 15, 2010, pp. 1–84. isbn:
978-90-481-3410-6. doi: 10.1007/978-90-481-3411-3_1.

[3] R. D. Lawrence. “Progress in nodal methods for the solution of the neutron diffu-
sion and transport equations”. In: Progress in Nuclear Energy 17.3 (Jan. 1, 1986),
pp. 271–301. issn: 0149-1970. doi: 10 . 1016 / 0149 - 1970(86) 90034 - X. url:
https://www.sciencedirect.com/science/article/pii/014919708690034X

(visited on 04/22/2023).

[4] Nam Zin Cho. “Fundamentals and recent developments of reactor physics meth-
ods”. In: Nuclear Engineering and Technology 37.1 (2005). Place: Korea, Republic
of INIS Reference Number: 37056374, pp. 25–78. issn: 1738-5733.

[5] Peter Benner, Serkan Gugercin, and Karen Willcox. A Survey of Projection-Based
Model Reduction Methods for Parametric Dynamical Systems — SIAM Review.
2015. url: https://epubs.siam.org/doi/10.1137/130932715 (visited on
04/18/2023).

[6] Muruhan Rathinam and Linda Petzold. “A New Look at Proper Orthogonal De-
composition”. In: SIAM J. Numerical Analysis 41 (Jan. 1, 2003), pp. 1893–1925.
doi: 10.1137/S0036142901389049.

[7] K. Willcox and J. Peraire. “Balanced Model Reduction via the Proper Orthogonal
Decomposition”. In: Aiaa Journal - AIAA J 40 (Nov. 1, 2002), pp. 2323–2330.
doi: 10.2514/2.1570.

[8] Kevin Carlberg, Matthew Barone, and Harbir Antil. “Galerkin v. least-squares
Petrov–Galerkin projection in nonlinear model reduction”. In: Journal of Compu-
tational Physics 330 (Feb. 1, 2017), pp. 693–734. issn: 0021-9991. doi: 10.1016
/j.jcp.2016.10.033. url: https://www.sciencedirect.com/science/artic
le/pii/S0021999116305319 (visited on 04/18/2023).

200

https://doi.org/10.13182/NSE80-04-481
https://doi.org/10.13182/NSE80-04-481
https://doi.org/10.13182/NSE80-04-481
https://doi.org/10.1007/978-90-481-3411-3_1
https://doi.org/10.1016/0149-1970(86)90034-X
https://www.sciencedirect.com/science/article/pii/014919708690034X
https://epubs.siam.org/doi/10.1137/130932715
https://doi.org/10.1137/S0036142901389049
https://doi.org/10.2514/2.1570
https://doi.org/10.1016/j.jcp.2016.10.033
https://doi.org/10.1016/j.jcp.2016.10.033
https://www.sciencedirect.com/science/article/pii/S0021999116305319
https://www.sciencedirect.com/science/article/pii/S0021999116305319

[9] Eric J. Parish, Christopher R. Wentland, and Karthik Duraisamy. “The Adjoint
Petrov–Galerkin method for non-linear model reduction”. In: Computer Methods
in Applied Mechanics and Engineering 365 (June 15, 2020), p. 112991. issn: 0045-
7825. doi: 10.1016/j.cma.2020.112991. url: https://www.sciencedirect.c
om/science/article/pii/S0045782520301754 (visited on 04/16/2023).

[10] F. Ghavamian, P. Tiso, and A. Simone. “POD–DEIM model order reduction for
strain-softening viscoplasticity”. In: Computer Methods in Applied Mechanics and
Engineering 317 (Apr. 15, 2017), pp. 458–479. issn: 0045-7825. doi: 10.1016/j
.cma.2016.11.025. url: https://www.sciencedirect.com/science/article
/pii/S0045782516304054 (visited on 04/16/2023).

[11] Kookjin Lee and Kevin T. Carlberg. “Model reduction of dynamical systems on
nonlinear manifolds using deep convolutional autoencoders”. In: Journal of Com-
putational Physics 404 (Mar. 1, 2020), p. 108973. issn: 0021-9991. doi: 10.1016
/j.jcp.2019.108973. url: https://www.sciencedirect.com/science/artic
le/pii/S0021999119306783 (visited on 04/18/2023).

[12] Omer San, Romit Maulik, and Mansoor Ahmed. “An artificial neural network
framework for reduced order modeling of transient flows”. In: Communications in
Nonlinear Science and Numerical Simulation 77 (Oct. 1, 2019), pp. 271–287. issn:
1007-5704. doi: 10.1016/j.cnsns.2019.04.025. url: https://www.sciencedi
rect.com/science/article/pii/S1007570419301364 (visited on 04/18/2023).

[13] Omer San and Romit Maulik. “Neural network closures for nonlinear model order
reduction”. In: Advances in Computational Mathematics 44 (Dec. 1, 2018). doi:
10.1007/s10444-018-9590-z.

[14] J. S. Hesthaven and S. Ubbiali. “Non-intrusive reduced order modeling of nonlin-
ear problems using neural networks”. In: Journal of Computational Physics 363
(June 15, 2018), pp. 55–78. issn: 0021-9991. doi: 10.1016/j.jcp.2018.02.037.
url: https://www.sciencedirect.com/science/article/pii/S002199911830
1190 (visited on 04/18/2023).

[15] Jiayang Xu and Karthik Duraisamy. “Multi-level convolutional autoencoder net-
works for parametric prediction of spatio-temporal dynamics”. In: Computer Meth-
ods in Applied Mechanics and Engineering 372 (Dec. 1, 2020), p. 113379. issn:
0045-7825. doi: 10.1016/j.cma.2020.113379. url: https://www.sciencedire
ct.com/science/article/pii/S0045782520305648 (visited on 04/18/2023).

[16] Saakaar Bhatnagar et al. “Prediction of aerodynamic flow fields using convo-
lutional neural networks”. In: Computational Mechanics 64.2 (Aug. 1, 2019),
pp. 525–545. issn: 1432-0924. doi: 10.1007/s00466-019-01740-0. url: htt
ps://doi.org/10.1007/s00466-019-01740-0 (visited on 04/18/2023).

[17] Xiaoxiao Guo, Wei Li, and Francesco Iorio. “Convolutional Neural Networks for
Steady Flow Approximation”. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. KDD ’16. New
York, NY, USA: Association for Computing Machinery, Aug. 13, 2016, pp. 481–
490. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939738. url: https://d
oi.org/10.1145/2939672.2939738 (visited on 04/18/2023).

[18] Kazuto Hasegawa et al. “Machine-learning-based reduced-order modeling for un-
steady flows around bluff bodies of various shapes”. In: Theoretical and Compu-
tational Fluid Dynamics 34 (Aug. 1, 2020). doi: 10.1007/s00162-020-00528-w.

201

https://doi.org/10.1016/j.cma.2020.112991
https://www.sciencedirect.com/science/article/pii/S0045782520301754
https://www.sciencedirect.com/science/article/pii/S0045782520301754
https://doi.org/10.1016/j.cma.2016.11.025
https://doi.org/10.1016/j.cma.2016.11.025
https://www.sciencedirect.com/science/article/pii/S0045782516304054
https://www.sciencedirect.com/science/article/pii/S0045782516304054
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1016/j.jcp.2019.108973
https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://doi.org/10.1016/j.cnsns.2019.04.025
https://www.sciencedirect.com/science/article/pii/S1007570419301364
https://www.sciencedirect.com/science/article/pii/S1007570419301364
https://doi.org/10.1007/s10444-018-9590-z
https://doi.org/10.1016/j.jcp.2018.02.037
https://www.sciencedirect.com/science/article/pii/S0021999118301190
https://www.sciencedirect.com/science/article/pii/S0021999118301190
https://doi.org/10.1016/j.cma.2020.113379
https://www.sciencedirect.com/science/article/pii/S0045782520305648
https://www.sciencedirect.com/science/article/pii/S0045782520305648
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1007/s00162-020-00528-w

[19] Tianping Chen and Hong Chen. “Universal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its applications to
dynamic systems”. In: Neural Networks, IEEE Transactions on (Aug. 1, 1995),
pp. 911–917. doi: 10.1109/72.392253.

[20] Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators”. In: Nature Machine Intelligence 3 (Mar. 1,
2021), pp. 218–229. doi: 10.1038/s42256-021-00302-5.

[21] Zongyi Li et al. Multipole Graph Neural Operator for Parametric Partial Differ-
ential Equations. Oct. 19, 2020. doi: 10.48550/arXiv.2006.09535. arXiv: 2006
.09535[cs,math,stat]. url: http://arxiv.org/abs/2006.09535 (visited on
04/18/2023).

[22] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solution operator
of parametric partial differential equations with physics-informed DeepONets”.
In: Science Advances 7.40 (Sept. 29, 2021). Publisher: American Association for
the Advancement of Science, eabi8605. doi: 10.1126/sciadv.abi8605. url:
https://www.science.org/doi/full/10.1126/sciadv.abi8605 (visited on
04/19/2023).

[23] Shengze Cai et al. “DeepM&Mnet: Inferring the electroconvection multiphysics
fields based on operator approximation by neural networks”. In: Journal of Com-
putational Physics 436 (July 1, 2021), p. 110296. issn: 0021-9991. doi: 10.1016
/j.jcp.2021.110296. url: https://www.sciencedirect.com/science/artic
le/pii/S0021999121001911 (visited on 04/19/2023).

[24] Zongyi Li et al. Neural Operator: Graph Kernel Network for Partial Differential
Equations. Mar. 6, 2020. doi: 10.48550/arXiv.2003.03485. arXiv: 2003.03
485[cs,math,stat]. url: http://arxiv.org/abs/2003.03485 (visited on
04/19/2023).

[25] James Duvall, Karthik Duraisamy, and Shaowu Pan. Non-linear Independent Dual
System (NIDS) for Discretization-independent Surrogate Modeling over Complex
Geometries. Sept. 14, 2021.

[26] Zachary Prince and Jean Ragusa. Parametric Uncertainty Quantification Using
Proper Generalized Decomposition applied to Neutron Diffusion. Jan. 2, 2019.

[27] L. Gilli et al. “Uncertainty quantification for criticality problems using non-intrusive
and adaptive Polynomial Chaos techniques”. In: Annals of Nuclear Energy 56
(June 1, 2013), pp. 71–80. issn: 0306-4549. doi: 10.1016/j.anucene.2013.01.0
09. url: https://www.sciencedirect.com/science/article/pii/S03064549
13000261 (visited on 04/19/2023).

[28] Rabie Abu Saleem, Majdi I. Radaideh, and Tomasz Kozlowski. “Application of
deep neural networks for high-dimensional large BWR core neutronics”. In: Nu-
clear Engineering and Technology 52.12 (Dec. 1, 2020), pp. 2709–2716. issn: 1738-
5733. doi: 10.1016/j.net.2020.05.010. url: https://www.sciencedirect.c
om/science/article/pii/S1738573320301637 (visited on 04/19/2023).

[29] Akio Yamamoto. “Application of Neural Network for Loading Pattern Screening
of In-Core Optimization Calculations”. In: Nuclear Technology 144 (Oct. 1, 2003),
pp. 63–75. doi: 10.13182/NT03-A3429.

202

https://doi.org/10.1109/72.392253
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.48550/arXiv.2006.09535
https://arxiv.org/abs/2006.09535 [cs, math, stat]
https://arxiv.org/abs/2006.09535 [cs, math, stat]
http://arxiv.org/abs/2006.09535
https://doi.org/10.1126/sciadv.abi8605
https://www.science.org/doi/full/10.1126/sciadv.abi8605
https://doi.org/10.1016/j.jcp.2021.110296
https://doi.org/10.1016/j.jcp.2021.110296
https://www.sciencedirect.com/science/article/pii/S0021999121001911
https://www.sciencedirect.com/science/article/pii/S0021999121001911
https://doi.org/10.48550/arXiv.2003.03485
https://arxiv.org/abs/2003.03485 [cs, math, stat]
https://arxiv.org/abs/2003.03485 [cs, math, stat]
http://arxiv.org/abs/2003.03485
https://doi.org/10.1016/j.anucene.2013.01.009
https://doi.org/10.1016/j.anucene.2013.01.009
https://www.sciencedirect.com/science/article/pii/S0306454913000261
https://www.sciencedirect.com/science/article/pii/S0306454913000261
https://doi.org/10.1016/j.net.2020.05.010
https://www.sciencedirect.com/science/article/pii/S1738573320301637
https://www.sciencedirect.com/science/article/pii/S1738573320301637
https://doi.org/10.13182/NT03-A3429

[30] A. Meneses, A. Lima, and R. Schirru. “Artificial Intelligence Methods Applied to
the In-Core Fuel Management Optimization”. In: 2018. url: https://api.sema
nticscholar.org/CorpusID:59438711 (visited on 04/19/2023).

[31] T. Ikonen and V. Tulkki. “The importance of input interactions in the uncertainty
and sensitivity analysis of nuclear fuel behavior”. In: Nuclear Engineering and
Design 275 (Aug. 1, 2014), pp. 229–241. issn: 0029-5493. doi: 10.1016/j.nucen
gdes.2014.05.015. url: https://www.sciencedirect.com/science/article
/pii/S0029549314002908 (visited on 04/18/2023).

[32] C. S. Brown and Hongbin Zhang. “Uncertainty quantification and sensitivity anal-
ysis with CASL Core Simulator VERA-CS”. In: Annals of Nuclear Energy 95
(Sept. 1, 2016), pp. 188–201. issn: 0306-4549. doi: 10.1016/j.anucene.2016.0
5.016. url: https://www.sciencedirect.com/science/article/pii/S03064
54916302894 (visited on 04/20/2023).

[33] Péter German and Jean C. Ragusa. “Reduced-order modeling of parameterized
multi-group diffusion k-eigenvalue problems”. In: Annals of Nuclear Energy 134
(Dec. 2019), pp. 144–157. issn: 03064549. doi: 10.1016/j.anucene.2019.05.049
. url: https://linkinghub.elsevier.com/retrieve/pii/S0306454919303020
(visited on 07/12/2023).

[34] Péter German et al. “GeN-ROM—An OpenFOAM®-based multiphysics reduced-
order modeling framework for the analysis of Molten Salt Reactors”. In: Progress
in Nuclear Energy 146 (Apr. 1, 2022), p. 104148. issn: 0149-1970. doi: 10.1016
/j.pnucene.2022.104148. url: https://www.sciencedirect.com/science/a
rticle/pii/S0149197022000282 (visited on 07/12/2023).

[35] Mauricio E. Tano and Jean C. Ragusa. “Sweep-Net: An Artificial Neural Network
for radiation transport solves”. In: Journal of Computational Physics 426 (Feb.
2021), p. 109757. issn: 00219991. doi: 10.1016/j.jcp.2020.109757. url: http
s://linkinghub.elsevier.com/retrieve/pii/S0021999120305313 (visited on
07/12/2023).

[36] Patrick Behne and Jean C. Ragusa. “Parametric model-order reduction for ra-
diation transport using multi-resolution proper orthogonal decomposition”. In:
Annals of Nuclear Energy 180 (Jan. 2023), p. 109432. issn: 03064549. doi: 10.1
016/j.anucene.2022.109432. url: https://linkinghub.elsevier.com/retr
ieve/pii/S0306454922004625 (visited on 07/12/2023).

[37] Ian Halvic and Jean C. Ragusa. “Non-intrusive model order reduction for para-
metric radiation transport simulations”. In: Journal of Computational Physics 492
(Nov. 1, 2023), p. 112385. issn: 0021-9991. doi: 10.1016/j.jcp.2023.112385.
url: https://www.sciencedirect.com/science/article/pii/S002199912300
4801 (visited on 11/14/2023).

[38] Brian Anderson. “A Machine Learning Based Approach to Minimize Crud Induced
Effects in Pressurized Water Reactors”. PhD thesis. NC State, Apr. 13, 2021. url:
https://repository.lib.ncsu.edu/handle/1840.20/38656?show=full.

[39] B. Kochunas et al. “Validation and Application of the 3 D Neutron Transport
MPACT Code within CASL VERA-CS”. In: 2015. url: https://api.semantic
scholar.org/CorpusID:199367949 (visited on 04/20/2023).

203

https://api.semanticscholar.org/CorpusID:59438711
https://api.semanticscholar.org/CorpusID:59438711
https://doi.org/10.1016/j.nucengdes.2014.05.015
https://doi.org/10.1016/j.nucengdes.2014.05.015
https://www.sciencedirect.com/science/article/pii/S0029549314002908
https://www.sciencedirect.com/science/article/pii/S0029549314002908
https://doi.org/10.1016/j.anucene.2016.05.016
https://doi.org/10.1016/j.anucene.2016.05.016
https://www.sciencedirect.com/science/article/pii/S0306454916302894
https://www.sciencedirect.com/science/article/pii/S0306454916302894
https://doi.org/10.1016/j.anucene.2019.05.049
https://doi.org/10.1016/j.anucene.2019.05.049
https://linkinghub.elsevier.com/retrieve/pii/S0306454919303020
https://doi.org/10.1016/j.pnucene.2022.104148
https://doi.org/10.1016/j.pnucene.2022.104148
https://www.sciencedirect.com/science/article/pii/S0149197022000282
https://www.sciencedirect.com/science/article/pii/S0149197022000282
https://doi.org/10.1016/j.jcp.2020.109757
https://linkinghub.elsevier.com/retrieve/pii/S0021999120305313
https://linkinghub.elsevier.com/retrieve/pii/S0021999120305313
https://doi.org/10.1016/j.anucene.2022.109432
https://doi.org/10.1016/j.anucene.2022.109432
https://linkinghub.elsevier.com/retrieve/pii/S0306454922004625
https://linkinghub.elsevier.com/retrieve/pii/S0306454922004625
https://doi.org/10.1016/j.jcp.2023.112385
https://www.sciencedirect.com/science/article/pii/S0021999123004801
https://www.sciencedirect.com/science/article/pii/S0021999123004801
https://repository.lib.ncsu.edu/handle/1840.20/38656?show=full
https://api.semanticscholar.org/CorpusID:199367949
https://api.semanticscholar.org/CorpusID:199367949

[40] B. Kochunas et al. Overview of development and design of MPACT: Michigan
parallel characteristics transport code. American Nuclear Society - ANS; La Grange
Park (United States), July 1, 2013. url: https://www.osti.gov/biblio/22212
692 (visited on 04/20/2023).

[41] A. Godfrey et al. “VERA Benchmarking Results for Watts Bar Nuclear Plant
Unit 1 Cycles 1-12”. In: 2016. url: https://www.semanticscholar.org/paper
/VERA-Benchmarking-Results-for-Watts-Bar-Nuclear-1-Godfrey-Collins

/ade52a6ab6fcbaac34f4d28aff528f69050d79cb (visited on 04/20/2023).

[42] Benjamin Collins, Brendan Kochunas, and Shane Stimpson. “MPACT Theory
Manual”. In: Department of Energy (Nov. 1, 2019).

[43] Benjamin Collins et al. “Simulation of the BEAVRS benchmark using VERA”. In:
Annals of Nuclear Energy 145 (Sept. 15, 2020), p. 107602. issn: 0306-4549. doi:
10.1016/j.anucene.2020.107602. url: https://www.sciencedirect.com/sc
ience/article/pii/S0306454920303005 (visited on 04/20/2023).

[44] Tengfei Zhang and Zhipeng Li. “Variational nodal methods for neutron transport:
40 years in review”. In: Nuclear Engineering and Technology 54.9 (Sept. 1, 2022),
pp. 3181–3204. issn: 1738-5733. doi: 10.1016/j.net.2022.04.012. url: ht
tps://www.sciencedirect.com/science/article/pii/S1738573322002157

(visited on 04/24/2023).

[45] Nam-Zin Cho and Jonghwa Chang. “Some outstanding problems in neutron trans-
port computation”. In: Nuclear Engineering and Technology 41 (May 31, 2009).
doi: 10.5516/NET.2009.41.4.381.

[46] L. A. Semenza, E. E. Lewis, and E. C. Rossow. “The Application of the Finite
Element Method to the Multigroup Neutron Diffusion Equation”. In: Nuclear Sci-
ence and Engineering 47.3 (Mar. 1, 1972). Publisher: Taylor & Francis eprint:
https://doi.org/10.13182/NSE72-A22416, pp. 302–310. issn: 0029-5639. doi: 10
.13182/NSE72- A22416. url: https://doi.org/10.13182/NSE72- A22416
(visited on 04/24/2023).

[47] Robert Salko et al. “Development of COBRA-TF for modeling full-core, reactor
operating cycles”. In: Advances in Nuclear Fuel Management V (ANFM 2015)
(2015). Publisher: Hilton Head South Carolina.

[48] R Salko et al. “CTF Theory Manual”. In: US Department of Energy (Nov. 8,
2019).

[49] D. P. Griesheimer et al. “MC21 v.6.0 – A continuous-energy Monte Carlo par-
ticle transport code with integrated reactor feedback capabilities”. In: Annals of
Nuclear Energy. Joint International Conference on Supercomputing in Nuclear Ap-
plications and Monte Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity,
Towards New Modeling and Numerical Simulation Paradigms 82 (Aug. 1, 2015),
pp. 29–40. issn: 0306-4549. doi: 10.1016/j.anucene.2014.08.020. url: ht
tps://www.sciencedirect.com/science/article/pii/S0306454914004058

(visited on 04/20/2023).

204

https://www.osti.gov/biblio/22212692
https://www.osti.gov/biblio/22212692
https://www.semanticscholar.org/paper/VERA-Benchmarking-Results-for-Watts-Bar-Nuclear-1-Godfrey-Collins/ade52a6ab6fcbaac34f4d28aff528f69050d79cb
https://www.semanticscholar.org/paper/VERA-Benchmarking-Results-for-Watts-Bar-Nuclear-1-Godfrey-Collins/ade52a6ab6fcbaac34f4d28aff528f69050d79cb
https://www.semanticscholar.org/paper/VERA-Benchmarking-Results-for-Watts-Bar-Nuclear-1-Godfrey-Collins/ade52a6ab6fcbaac34f4d28aff528f69050d79cb
https://doi.org/10.1016/j.anucene.2020.107602
https://www.sciencedirect.com/science/article/pii/S0306454920303005
https://www.sciencedirect.com/science/article/pii/S0306454920303005
https://doi.org/10.1016/j.net.2022.04.012
https://www.sciencedirect.com/science/article/pii/S1738573322002157
https://www.sciencedirect.com/science/article/pii/S1738573322002157
https://doi.org/10.5516/NET.2009.41.4.381
https://doi.org/10.13182/NSE72-A22416
https://doi.org/10.13182/NSE72-A22416
https://doi.org/10.13182/NSE72-A22416
https://doi.org/10.1016/j.anucene.2014.08.020
https://www.sciencedirect.com/science/article/pii/S0306454914004058
https://www.sciencedirect.com/science/article/pii/S0306454914004058

[50] Brian N. Aviles et al. “MC21/COBRA-IE and VERA-CS multiphysics solutions
to VERA core physics benchmark problem #6”. In: Progress in Nuclear Energy.
Special Issue on the Physics of Reactors International Conference PHYSOR 2016:
Unifying Theory and Experiments in the 21st Century 101 (Nov. 1, 2017), pp. 338–
351. issn: 0149-1970. doi: 10.1016/j.pnucene.2017.05.017. url: https://ww
w.sciencedirect.com/science/article/pii/S0149197017301221 (visited on
04/20/2023).

[51] Daniel J. Kelly et al. “MC21/CTF and VERA multiphysics solutions to VERA
core physics benchmark progression problems 6 and 7”. In: Nuclear Engineering
and Technology. Special Issue on International Conference on Mathematics and
Computational Methods Applied to Nuclear Science and Engineering 2017 (M&C
2017) 49.6 (Sept. 1, 2017), pp. 1326–1338. issn: 1738-5733. doi: 10.1016/j.net
.2017.07.016. url: https://www.sciencedirect.com/science/article/pii
/S1738573317302978 (visited on 04/20/2023).

[52] “Chapter 5 - Fission Product Release and Transport”. In: Nuclear Safety in Light
Water Reactors. Ed. by Bal Raj Sehgal. Boston: Academic Press, Jan. 1, 2012,
pp. 425–517. isbn: 978-0-12-388446-6. doi: 10.1016/B978-0-12-388446-6.0000
5-8. url: https://www.sciencedirect.com/science/article/pii/B9780123
884466000058 (visited on 11/05/2023).

[53] Bateman H. “The solution of a system of differential equations occurring in the
theory of radioactive transformations”. In: Proc. Cambridge Philos. Soc. 15 (1910),
pp. 423–427. url: https://cir.nii.ac.jp/crid/1571135649245258368 (vis-
ited on 11/05/2023).

[54] Marco Antonio Cardoso. “Development and Application of Reduced-Order Mod-
eling Procedures for Reservoir Simulation”. PhD thesis. Standford University.

[55] Zhaojun Bai. “Krylov subspace techniques for reduced-order modeling of large-
scale dynamical systems”. In: Applied Numerical Mathematics. 19th Dundee Bi-
ennial Conference on Numerical Analysis 43.1 (Oct. 1, 2002), pp. 9–44. issn: 0168-
9274. doi: 10.1016/S0168-9274(02)00116-2. url: https://www.sciencedire
ct.com/science/article/pii/S0168927402001162 (visited on 07/20/2023).

[56] Serkan Gugercin and Athanasios C. Antoulas. “A Survey of Model Reduction by
Balanced Truncation and Some New Results”. In: International Journal of Control
77.8 (May 20, 2004), pp. 748–766. issn: 0020-7179. doi: 10.1080/002071704100
01713448. url: https://doi.org/10.1080/00207170410001713448 (visited on
07/18/2023).

[57] Elnaz Rezaian and Karthik Duraisamy. Data-driven Balanced Truncation for Pre-
dictive Model Order Reduction of Aeroacoustic Response. May 30, 2023. doi: 10
.48550/arXiv.2304.13900. arXiv: 2304.13900[physics]. url: http://arxiv
.org/abs/2304.13900 (visited on 07/18/2023).

[58] A. C. Antoulas. “Approximation of Large-Scale Dynamical Systems: An Overview”.
In: IFAC Proceedings Volumes. 10th IFAC/IFORS/IMACS/IFIP Symposium on
Large Scale Systems 2004: Theory and Applications, Osaka, Japan, 26-28 July,
2004 37.11 (July 1, 2004), pp. 19–28. issn: 1474-6670. doi: 10.1016/S1474-667
0(17)31584-7. url: https://www.sciencedirect.com/science/article/pii
/S1474667017315847 (visited on 07/20/2023).

205

https://doi.org/10.1016/j.pnucene.2017.05.017
https://www.sciencedirect.com/science/article/pii/S0149197017301221
https://www.sciencedirect.com/science/article/pii/S0149197017301221
https://doi.org/10.1016/j.net.2017.07.016
https://doi.org/10.1016/j.net.2017.07.016
https://www.sciencedirect.com/science/article/pii/S1738573317302978
https://www.sciencedirect.com/science/article/pii/S1738573317302978
https://doi.org/10.1016/B978-0-12-388446-6.00005-8
https://doi.org/10.1016/B978-0-12-388446-6.00005-8
https://www.sciencedirect.com/science/article/pii/B9780123884466000058
https://www.sciencedirect.com/science/article/pii/B9780123884466000058
https://cir.nii.ac.jp/crid/1571135649245258368
https://doi.org/10.1016/S0168-9274(02)00116-2
https://www.sciencedirect.com/science/article/pii/S0168927402001162
https://www.sciencedirect.com/science/article/pii/S0168927402001162
https://doi.org/10.1080/00207170410001713448
https://doi.org/10.1080/00207170410001713448
https://doi.org/10.1080/00207170410001713448
https://doi.org/10.48550/arXiv.2304.13900
https://doi.org/10.48550/arXiv.2304.13900
https://arxiv.org/abs/2304.13900 [physics]
http://arxiv.org/abs/2304.13900
http://arxiv.org/abs/2304.13900
https://doi.org/10.1016/S1474-6670(17)31584-7
https://doi.org/10.1016/S1474-6670(17)31584-7
https://www.sciencedirect.com/science/article/pii/S1474667017315847
https://www.sciencedirect.com/science/article/pii/S1474667017315847

[59] Kuan Lu et al. “A Review of Model Order Reduction Methods for Large-Scale
Structure Systems”. In: Shock and Vibration 2021 (May 8, 2021). Ed. by Zeqi Lu,
pp. 1–19. issn: 1875-9203, 1070-9622. doi: 10.1155/2021/6631180. url: https:
//www.hindawi.com/journals/sv/2021/6631180/ (visited on 07/20/2023).

[60] Peter Yichen Chen et al. “CROM: Continuous Reduced Order Modeling of PDEs
using Implicit Neural Representations”. In: International Conference on Learning
Representations. Kigali Rwanda, 2023.

[61] Fahad Alsayyari et al. “A nonintrusive adaptive reduced order modeling approach
for a molten salt reactor system”. In: Annals of Nuclear Energy 141 (June 15,
2020), p. 107321. issn: 0306-4549. doi: 10.1016/j.anucene.2020.107321. url:
https://www.sciencedirect.com/science/article/pii/S0306454920300190

(visited on 05/06/2023).

[62] Sk Mashfiqur Rahman et al. “Nonintrusive reduced order modeling framework for
quasigeostrophic turbulence”. In: Physical Review E 100 (Nov. 12, 2019). doi:
10.1103/PhysRevE.100.053306.

[63] Patrick Behne, Jan Vermaak, and Jean Ragusa. “Parametric Model-Order Reduc-
tion for Radiation Transport Simulations Based on an Affine Decomposition of the
Operators”. In: Nuclear Science and Engineering 197.2 (Feb. 1, 2023), pp. 233–
261. issn: 0029-5639, 1943-748X. doi: 10.1080/00295639.2022.2112901. url:
https://www.tandfonline.com/doi/full/10.1080/00295639.2022.2112901

(visited on 07/12/2023).

[64] ROBERT Hecht-nielsen. “III.3 - Theory of the Backpropagation Neural Net-
work**Based on “nonindent” by Robert Hecht-Nielsen, which appeared in Pro-
ceedings of the International Joint Conference on Neural Networks 1, 593–611,
June 1989. © 1989 IEEE.” In: Neural Networks for Perception. Ed. by Harry
Wechsler. Academic Press, Jan. 1, 1992, pp. 65–93. isbn: 978-0-12-741252-8. doi:
10.1016/B978-0-12-741252-8.50010-8. url: https://www.sciencedirect.c
om/science/article/pii/B9780127412528500108 (visited on 04/22/2023).

[65] Barry J. Wythoff. “Backpropagation neural networks: A tutorial”. In: Chemomet-
rics and Intelligent Laboratory Systems 18.2 (Feb. 1, 1993), pp. 115–155. issn:
0169-7439. doi: 10.1016/0169-7439(93)80052-J. url: https://www.scienced
irect.com/science/article/pii/016974399380052J (visited on 04/22/2023).

[66] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Jan. 29, 2017. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980[cs]. url:
http://arxiv.org/abs/1412.6980 (visited on 07/27/2023).

[67] D. Ballard. “Modular Learning in Neural Networks”. In: AAAI Conference on
Artificial Intelligence. July 13, 1987. url: https://api.semanticscholar.org
/CorpusID:38968420 (visited on 04/19/2023).

[68] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Neural Information Processing
Systems 25 (Jan. 1, 2012). doi: 10.1145/3065386.

[69] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position”. In: Biological
Cybernetics 36.4 (Apr. 1, 1980), pp. 193–202. issn: 1432-0770. doi: 10.1007/BF0
0344251. url: https://doi.org/10.1007/BF00344251 (visited on 04/19/2023).

206

https://doi.org/10.1155/2021/6631180
https://www.hindawi.com/journals/sv/2021/6631180/
https://www.hindawi.com/journals/sv/2021/6631180/
https://doi.org/10.1016/j.anucene.2020.107321
https://www.sciencedirect.com/science/article/pii/S0306454920300190
https://doi.org/10.1103/PhysRevE.100.053306
https://doi.org/10.1080/00295639.2022.2112901
https://www.tandfonline.com/doi/full/10.1080/00295639.2022.2112901
https://doi.org/10.1016/B978-0-12-741252-8.50010-8
https://www.sciencedirect.com/science/article/pii/B9780127412528500108
https://www.sciencedirect.com/science/article/pii/B9780127412528500108
https://doi.org/10.1016/0169-7439(93)80052-J
https://www.sciencedirect.com/science/article/pii/016974399380052J
https://www.sciencedirect.com/science/article/pii/016974399380052J
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980 [cs]
http://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:38968420
https://api.semanticscholar.org/CorpusID:38968420
https://doi.org/10.1145/3065386
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251

[70] Yann Lecun, Fu Huang, and L. Bottou. “Learning methods for generic object
recognition with invariance to pose and lighting”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR. Vol. 2. Jan. 1, 2004, pp. II–97. isbn:
978-0-7695-2158-9. doi: 10.1109/CVPR.2004.1315150.

[71] Kevin Jarrett et al. “What is the Best Multi-Stage Architecture for Object Recog-
nition?” In: In Proc Intl Conf on Comput Vis. Vol. 12. Sept. 1, 2009. doi: 10.11
09/ICCV.2009.5459469.

[72] Honglak Lee et al. “Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations”. In: Proceedings of the 26th International
Conference On Machine Learning, ICML 2009. June 14, 2009, p. 77. doi: 10.114
5/1553374.1553453.

[73] Christian Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). ISSN: 1063-6919.
June 2015, pp. 1–9. doi: 10.1109/CVPR.2015.7298594.

[74] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: arXiv 1409.1556 (Sept. 4, 2014).

[75] Vincent Sitzmann et al. Implicit Neural Representations with Periodic Activation
Functions. June 17, 2020. doi: 10.48550/arXiv.2006.09661. arXiv: 2006.0966
1[cs,eess]. url: http://arxiv.org/abs/2006.09661 (visited on 04/20/2023).

[76] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems involv-
ing nonlinear partial differential equations”. In: Journal of Computational Physics
378 (Feb. 1, 2019), pp. 686–707. issn: 0021-9991. doi: 10.1016/j.jcp.2018.10
.045. url: https://www.sciencedirect.com/science/article/pii/S002199
9118307125 (visited on 04/20/2023).

[77] Isaac Lagaris, Aristidis Likas, and Dimitrios Papageorgiou. “Neural-network meth-
ods for boundary value problems with irregular boundaries”. In: IEEE transac-
tions on neural networks / a publication of the IEEE Neural Networks Council 11
(Feb. 1, 2000), pp. 1041–9. doi: 10.1109/72.870037.

[78] Yinhao Zhu et al. “Physics-constrained deep learning for high-dimensional surro-
gate modeling and uncertainty quantification without labeled data”. In: Journal
of Computational Physics 394 (Oct. 1, 2019), pp. 56–81. issn: 0021-9991. doi:
10.1016/j.jcp.2019.05.024. url: https://www.sciencedirect.com/scienc
e/article/pii/S0021999119303559 (visited on 04/20/2023).

[79] Jeong Park et al. “DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation”. In: June 1, 2019, pp. 165–174. doi: 10.1109/CVPR.2019
.00025.

[80] Kaustubh Tangsali, Vinayak R. Krishnamurthy, and Zohaib Hasnain. “Generaliz-
ability of Convolutional Encoder–Decoder Networks for Aerodynamic Flow-Field
Prediction Across Geometric and Physical-Fluidic Variations”. In: Journal of Me-
chanical Design 143.5 (Nov. 13, 2020). issn: 1050-0472. doi: 10.1115/1.4048221.
url: https://doi.org/10.1115/1.4048221 (visited on 04/20/2023).

207

https://doi.org/10.1109/CVPR.2004.1315150
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.48550/arXiv.2006.09661
https://arxiv.org/abs/2006.09661 [cs, eess]
https://arxiv.org/abs/2006.09661 [cs, eess]
http://arxiv.org/abs/2006.09661
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1109/72.870037
https://doi.org/10.1016/j.jcp.2019.05.024
https://www.sciencedirect.com/science/article/pii/S0021999119303559
https://www.sciencedirect.com/science/article/pii/S0021999119303559
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1115/1.4048221
https://doi.org/10.1115/1.4048221

[81] David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. version: 4. Dec. 1, 2016.
doi: 10.48550/arXiv.1609.09106. arXiv: 1609.09106[cs]. url: http://arxi
v.org/abs/1609.09106 (visited on 04/20/2023).

[82] Moloud Abdar et al. “A review of uncertainty quantification in deep learning:
Techniques, applications and challenges”. In: Information Fusion 76 (Dec. 2021),
pp. 243–297. issn: 15662535. doi: 10.1016/j.inffus.2021.05.008. url: https
://linkinghub.elsevier.com/retrieve/pii/S1566253521001081 (visited on
04/16/2023).

[83] N.W. Porter. “Wilks’ formula applied to computational tools: A practical discus-
sion and verification”. In: Annals of Nuclear Energy 133 (Nov. 2019), pp. 129–137.
issn: 03064549. doi: 10.1016/j.anucene.2019.05.012. url: https://linking
hub.elsevier.com/retrieve/pii/S0306454919302543 (visited on 07/20/2023).

[84] Seung Wook Lee et al. “Analysis of uncertainty quantification method by compar-
ing Monte-Carlo method and Wilks’formula”. In: Nuclear Engineering and Tech-
nology 46 (Aug. 25, 2014), pp. 481–488. doi: 10.5516/NET.02.2013.047.

[85] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in
machine learning: an introduction to concepts and methods”. In:Machine Learning
110.3 (Mar. 1, 2021), pp. 457–506. issn: 1573-0565. doi: 10.1007/s10994-021-
05946-3. url: https://doi.org/10.1007/s10994-021-05946-3 (visited on
04/16/2023).

[86] Radford M. Neal. Bayesian Learning for Neural Networks. Google-Books-ID: LHHrB-
wAAQBAJ. Springer Science & Business Media, Dec. 6, 2012. 194 pp. isbn: 978-
1-4612-0745-0.

[87] Rohitash Chandra, Royce Chen, and Joshua Simmons. Bayesian neural networks
via MCMC: a Python-based tutorial. Apr. 1, 2023. doi: 10.48550/arXiv.2304.0
2595. arXiv: 2304.02595[cs,stat]. url: http://arxiv.org/abs/2304.02595
(visited on 11/04/2023).

[88] Jonas Gregor Wiese et al. Towards Efficient MCMC Sampling in Bayesian Neural
Networks by Exploiting Symmetry. Apr. 6, 2023. doi: 10.48550/arXiv.2304.02
902. arXiv: 2304.02902[cs,stat]. url: http://arxiv.org/abs/2304.02902
(visited on 11/04/2023).

[89] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–
1958. issn: 1533-7928. url: http://jmlr.org/papers/v15/srivastava14a.htm
l (visited on 04/25/2023).

[90] Guotai Wang et al. “Aleatoric uncertainty estimation with test-time augmentation
for medical image segmentation with convolutional neural networks”. In: Neuro-
computing 338 (Apr. 21, 2019), pp. 34–45. issn: 0925-2312. doi: 10.1016/j.neu
com.2019.01.103. url: https://www.sciencedirect.com/science/article
/pii/S0925231219301961 (visited on 04/25/2023).

[91] Ruihan Hu et al. “The MBPEP: a deep ensemble pruning algorithm providing
high quality uncertainty prediction”. In: Applied Intelligence 49.8 (Aug. 1, 2019),
pp. 2942–2955. issn: 1573-7497. doi: 10 . 1007 / s10489 - 019 - 01421 - 8. url:
https://doi.org/10.1007/s10489-019-01421-8 (visited on 04/27/2023).

208

https://doi.org/10.48550/arXiv.1609.09106
https://arxiv.org/abs/1609.09106 [cs]
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1609.09106
https://doi.org/10.1016/j.inffus.2021.05.008
https://linkinghub.elsevier.com/retrieve/pii/S1566253521001081
https://linkinghub.elsevier.com/retrieve/pii/S1566253521001081
https://doi.org/10.1016/j.anucene.2019.05.012
https://linkinghub.elsevier.com/retrieve/pii/S0306454919302543
https://linkinghub.elsevier.com/retrieve/pii/S0306454919302543
https://doi.org/10.5516/NET.02.2013.047
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.48550/arXiv.2304.02595
https://doi.org/10.48550/arXiv.2304.02595
https://arxiv.org/abs/2304.02595 [cs, stat]
http://arxiv.org/abs/2304.02595
https://doi.org/10.48550/arXiv.2304.02902
https://doi.org/10.48550/arXiv.2304.02902
https://arxiv.org/abs/2304.02902 [cs, stat]
http://arxiv.org/abs/2304.02902
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1016/j.neucom.2019.01.103
https://doi.org/10.1016/j.neucom.2019.01.103
https://www.sciencedirect.com/science/article/pii/S0925231219301961
https://www.sciencedirect.com/science/article/pii/S0925231219301961
https://doi.org/10.1007/s10489-019-01421-8
https://doi.org/10.1007/s10489-019-01421-8

[92] Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: An Alternative Ap-
proach to Efficient Ensemble and Lifelong Learning. Feb. 19, 2020. doi: 10.4855
0/arXiv.2002.06715. arXiv: 2002.06715[cs,stat]. url: http://arxiv.org/a
bs/2002.06715 (visited on 04/27/2023).

[93] Kurtland Chua et al. Deep Reinforcement Learning in a Handful of Trials using
Probabilistic Dynamics Models. Nov. 2, 2018. doi: 10.48550/arXiv.1805.12114.
arXiv: 1805 . 12114[cs , stat]. url: http : / / arxiv . org / abs / 1805 . 12114
(visited on 04/27/2023).

[94] David J. C. MacKay. Information Theory, Inference & Learning Algorithms. USA:
Cambridge University Press, May 2002. isbn: 978-0-521-64298-9. url: https://w
ww.inference.org.uk/itprnn/book.pdf (visited on 11/04/2023).

[95] Samuel Stanton et al. Kernel Interpolation for Scalable Online Gaussian Processes.
Mar. 1, 2021. doi: 10.48550/arXiv.2103.01454. arXiv: 2103.01454[cs,stat].
url: http://arxiv.org/abs/2103.01454 (visited on 04/27/2023).

[96] Andreas Damianou and Neil D. Lawrence. “Deep Gaussian Processes”. In: Pro-
ceedings of the Sixteenth International Conference on Artificial Intelligence and
Statistics. Artificial Intelligence and Statistics. ISSN: 1938-7228. PMLR, Apr. 29,
2013, pp. 207–215. url: https://proceedings.mlr.press/v31/damianou13a.h
tml (visited on 11/04/2023).

[97] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals
of Mathematical Statistics 22.1 (Mar. 1951). Publisher: Institute of Mathematical
Statistics, pp. 79–86. issn: 0003-4851, 2168-8990. doi: 10.1214/aoms/117772969
4. url: https://projecteuclid.org/journals/annals-of-mathematical-st
atistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/a

oms/1177729694.full (visited on 11/04/2023).

[98] Karthik Duraisamy.Variational Encoders and Autoencoders : Information-theoretic
Inference and Closed-form Solutions. Jan. 27, 2021.

[99] Geoffrey E. Hinton and Drew Van Camp. “Keeping the neural networks simple
by minimizing the description length of the weights”. In: Proceedings of the sixth
annual conference on Computational learning theory - COLT ’93. the sixth annual
conference. Santa Cruz, California, United States: ACM Press, 1993, pp. 5–13.
isbn: 978-0-89791-611-0. doi: 10.1145/168304.168306. url: http://portal.a
cm.org/citation.cfm?doid=168304.168306 (visited on 04/26/2023).

[100] Alex Graves. “Practical Variational Inference for Neural Networks”. In: Advances
in Neural Information Processing Systems. Vol. 24. Curran Associates, Inc., 2011.
(Visited on 04/26/2023).

[101] Charles Blundell et al. “Weight uncertainty in neural networks”. In: Proceedings
of the 32nd International Conference on International Conference on Machine
Learning - Volume 37. ICML’15. Lille, France: JMLR.org, July 6, 2015, pp. 1613–
1622. (Visited on 04/16/2023).

[102] Durk P Kingma, Tim Salimans, and Max Welling. “Variational Dropout and the
Local Reparameterization Trick”. In: Advances in Neural Information Processing
Systems. Vol. 28. Curran Associates, Inc., 2015. url: https://papers.nips.cc
/paper_files/paper/2015/hash/bc7316929fe1545bf0b98d114ee3ecb8-Abstr

act.html (visited on 04/26/2023).

209

https://doi.org/10.48550/arXiv.2002.06715
https://doi.org/10.48550/arXiv.2002.06715
https://arxiv.org/abs/2002.06715 [cs, stat]
http://arxiv.org/abs/2002.06715
http://arxiv.org/abs/2002.06715
https://doi.org/10.48550/arXiv.1805.12114
https://arxiv.org/abs/1805.12114 [cs, stat]
http://arxiv.org/abs/1805.12114
https://www.inference.org.uk/itprnn/book.pdf
https://www.inference.org.uk/itprnn/book.pdf
https://doi.org/10.48550/arXiv.2103.01454
https://arxiv.org/abs/2103.01454 [cs, stat]
http://arxiv.org/abs/2103.01454
https://proceedings.mlr.press/v31/damianou13a.html
https://proceedings.mlr.press/v31/damianou13a.html
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://doi.org/10.1145/168304.168306
http://portal.acm.org/citation.cfm?doid=168304.168306
http://portal.acm.org/citation.cfm?doid=168304.168306
https://papers.nips.cc/paper_files/paper/2015/hash/bc7316929fe1545bf0b98d114ee3ecb8-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/bc7316929fe1545bf0b98d114ee3ecb8-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/bc7316929fe1545bf0b98d114ee3ecb8-Abstract.html

[103] Laurent Valentin Jospin et al. “Hands-on Bayesian Neural Networks – a Tutorial
for Deep Learning Users”. In: IEEE Computational Intelligence Magazine 17.2
(May 2022), pp. 29–48. issn: 1556-603X, 1556-6048. doi: 10.1109/MCI.2022.31
55327. arXiv: 2007.06823[cs,stat]. url: http://arxiv.org/abs/2007.06823
(visited on 04/16/2023).

[104] Yeming Wen et al. “Flipout: Efficient Pseudo-Independent Weight Perturbations
on Mini-Batches”. In: (Mar. 12, 2018).

[105] Ranganath Krishnan, Mahesh Subedar, and Omesh Tickoo. “Specifying Weight
Priors in Bayesian Deep Neural Networks with Empirical Bayes”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 34.4 (Apr. 3, 2020). Number:
04, pp. 4477–4484. issn: 2374-3468. doi: 10.1609/aaai.v34i04.5875. url:
https://ojs.aaai.org/index.php/AAAI/article/view/5875 (visited on
04/16/2023).

[106] Ranganath Krishnan, Pi Esposito, and Mahesh Subedar. Bayesian-Torch: Bayesian
neural network layers for uncertainty estimation. Version v0.2.0. Jan. 27, 2022.
doi: 10.5281/ZENODO.5908307. url: https://zenodo.org/record/5908307
(visited on 04/16/2023).

[107] G.-K. Delipei et al. “Uncertainty analysis methodology for multi-physics coupled
rod ejection accident”. In: International Conference on Mathematics and Com-
putational Methods Applied to Nuclear Science and Engineering (M&C 2019).
Aug. 25, 2019. url: https://hal.science/hal-02907458 (visited on 04/20/2023).

[108] D J Diamond, B P Bromley, and A L Aronson. “Studies of the Rod Ejection
Accident in a PWR”. In: Nuclear Regulatory Commission (2002).

[109] William Falcon and The PyTorch Lightning Team. PyTorch Lightning. url: htt
ps://www.pytorchlightning.ai.

[110] James Martens et al. Rapid training of deep neural networks without skip con-
nections or normalization layers using Deep Kernel Shaping. Oct. 4, 2021. doi:
10.48550/arXiv.2110.01765. arXiv: 2110.01765[cs]. url: http://arxiv.org
/abs/2110.01765 (visited on 04/20/2023).

[111] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). ISSN:
1063-6919. June 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[112] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural In-
formation Processing Systems. Vol. 30. Curran Associates, Inc., 2017. (Visited on
04/20/2023).

[113] David Silver et al. Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm. Dec. 5, 2017. doi: 10.48550/arXiv.1712.01815.
arXiv: 1712.01815[cs]. url: http://arxiv.org/abs/1712.01815 (visited on
04/20/2023).

[114] James Duvall, Karthik Duraisamy, and Shaowu Pan. Discretization-independent
surrogate modeling over complex geometries using hypernetworks and implicit rep-
resentations. May 17, 2022. doi: 10.48550/arXiv.2109.07018. arXiv: 2109.0701
8[physics]. url: http://arxiv.org/abs/2109.07018 (visited on 05/07/2023).

210

https://doi.org/10.1109/MCI.2022.3155327
https://doi.org/10.1109/MCI.2022.3155327
https://arxiv.org/abs/2007.06823 [cs, stat]
http://arxiv.org/abs/2007.06823
https://doi.org/10.1609/aaai.v34i04.5875
https://ojs.aaai.org/index.php/AAAI/article/view/5875
https://doi.org/10.5281/ZENODO.5908307
https://zenodo.org/record/5908307
https://hal.science/hal-02907458
https://www.pytorchlightning.ai
https://www.pytorchlightning.ai
https://doi.org/10.48550/arXiv.2110.01765
https://arxiv.org/abs/2110.01765 [cs]
http://arxiv.org/abs/2110.01765
http://arxiv.org/abs/2110.01765
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1712.01815
https://arxiv.org/abs/1712.01815 [cs]
http://arxiv.org/abs/1712.01815
https://doi.org/10.48550/arXiv.2109.07018
https://arxiv.org/abs/2109.07018 [physics]
https://arxiv.org/abs/2109.07018 [physics]
http://arxiv.org/abs/2109.07018

[115] Rene Y. Choi et al. “Introduction to Machine Learning, Neural Networks, and
Deep Learning”. In: Translational Vision Science & Technology 9.2 (Feb. 27, 2020),
p. 14. issn: 2164-2591. doi: 10.1167/tvst.9.2.14. url: https://doi.org/10
.1167/tvst.9.2.14 (visited on 11/04/2023).

[116] Patrice Simard, Dave Steinkraus, and John Platt. “Best Practices for Convolu-
tional Neural Networks”. In: (Sept. 27, 2003).

[117] Richard Liaw et al. Tune: A Research Platform for Distributed Model Selection
and Training. July 13, 2018.

[118] Tong Yu and Hong Zhu. “Hyper-Parameter Optimization: A Review of Algorithms
and Applications”. In: ArXiv (Mar. 12, 2020). url: https://www.semanticsch
olar.org/paper/Hyper-Parameter-Optimization%3A-A-Review-of-and-Yu-

Zhu/a48fd38cc34f8ffe9bcf043eafe11289627dd91a (visited on 04/20/2023).

[119] Ruslan Kuprieiev et al. DVC: Data Version Control - Git for Data & Models.
Apr. 12, 2023. doi: 10.5281/zenodo.7823624. url: https://zenodo.org/reco
rd/7823624 (visited on 04/16/2023).

[120] Paulius Micikevicius et al. Mixed Precision Training. Feb. 15, 2018. doi: 10.485
50/arXiv.1710.03740. arXiv: 1710.03740[cs,stat]. url: http://arxiv.org
/abs/1710.03740 (visited on 04/20/2023).

211

https://doi.org/10.1167/tvst.9.2.14
https://doi.org/10.1167/tvst.9.2.14
https://doi.org/10.1167/tvst.9.2.14
https://www.semanticscholar.org/paper/Hyper-Parameter-Optimization%3A-A-Review-of-and-Yu-Zhu/a48fd38cc34f8ffe9bcf043eafe11289627dd91a
https://www.semanticscholar.org/paper/Hyper-Parameter-Optimization%3A-A-Review-of-and-Yu-Zhu/a48fd38cc34f8ffe9bcf043eafe11289627dd91a
https://www.semanticscholar.org/paper/Hyper-Parameter-Optimization%3A-A-Review-of-and-Yu-Zhu/a48fd38cc34f8ffe9bcf043eafe11289627dd91a
https://doi.org/10.5281/zenodo.7823624
https://zenodo.org/record/7823624
https://zenodo.org/record/7823624
https://doi.org/10.48550/arXiv.1710.03740
https://doi.org/10.48550/arXiv.1710.03740
https://arxiv.org/abs/1710.03740 [cs, stat]
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.03740

	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	LIST OF ACRONYMS
	ABSTRACT
	Introduction
	Motivation
	Relevant Research
	Thesis Contributions
	Thesis Organization

	Background Theory and Algorithms
	full-order Models
	Reduced-Order Models
	Uncertainty Quantification
	Summary

	Single-Assembly Reactivity Insertion Accident
	Nuclear Model Description
	Surrogate Modeling Architectures
	Description of Modeling Scenarios and Figures of Merits
	CNN Results and Discussion
	NIDS Results and Discussion
	Summary

	Depletion Trajectory Sensitivities
	Nuclear Model Description
	Surrogate Modeling Architecture
	Description of Modeling Scenarios and Figures of Merits
	2D Planar Results
	3D Quarter Core Results
	Impact of SDF on Performance
	Summary

	Conclusion
	Conclusions
	Future Work

	APPENDICES
	A. Supporting Code
	A. Supporting Code
	B. Parody: A Python Framework for ROM Research
	B. Parody: A Python Framework for ROM Research
	Design Philosophy and User Interface
	Parody Design and Demo Toy Problems
	NIDS 1D Transient
	NIDS 2D Steady State
	PODNN 1D Transient

	C. Data Science Tools and Best Practices
	C. Data Science Tools and Best Practices
	General Neural Network Training
	Data Science Tools

	BIBLIOGRAPHY

