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Abstract 

In recent years, the study of topological materials has been a hot topic in condensed matter 

physics. These materials have attracted considerable attention due to their intriguing physical 

properties and potential functional applications. This thesis first reviews the background 

knowledge of topological semimetals and then presents investigations of the low-temperature 

physical properties of three different topological semimetals. 

The first discussed is shandite Co3Sn2S2, which is a Weyl semimetal. The study focuses on 

the effect of Fe-doping on the magnetic and transport properties of polycrystalline Co3Sn2S2. Fe-

doping suppresses the sample’s magnetic order and lowers the Curie temperature. Moreover, Fe-

doping results in the Kondo effect in the temperature-dependent resistivity and the skew-scattering 

contribution to the anomalous Hall effect. In addition, a hysteresis behavior of the low-magnetic 

field magnetoresistance in both pure and Fe-doped Co3Sn2S2 is observed. At last, the Seebeck 

coefficient and thermal conductivity are discussed. 

The next material discussed is the single crystalline Ni3In2S2, which is also a semimetal 

from the shandite family like Co3Sn2S2. Ni3In2S2 displays an extremely large transverse 

magnetoresistance and a magnetic field-induced resistivity upturn behavior at low temperatures. 

Below 50 K, the magnetoresistance curves show a linear magnetic field dependence under high 

magnetic fields. Along with magnetotransport measurements, quantum oscillations and 

computation results indicate that it is the linearly dispersive bands that cause the high mobility and 

quantum linear magnetoresistance, thus leading to the extreme magnetoresistance in Ni3In2S2. 



 xx 

The last presented is the study on the type-II Dirac semimetal NiTe2 single crystal. NiTe2 

exhibits a large magnetoresistance at low temperatures, of which the value and the magnetic-field 

dependence are sensitive to the field strength and the angle between the applied magnetic field and 

the current, showing the anisotropic feature of its magnetoresistance. The quantum oscillation 

results reveal the small effective mass and the nontrivial Berry phase originating from the Dirac 

point. The temperature-dependent Lorenz number deduced from the thermal conductivity 

significantly deviates from the Sommerfeld value, indicating the breakdown of the Wiedemann-

Franz law. 

Overall, this thesis focuses on the low-temperature properties of topological semimetals, 

especially the analyses of transport properties, which may serve as a reference for future research 

on topological materials. 
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Chapter 1 Introduction  

In the 1980s, the discovery and subsequent topological understanding of quantum integer 

and fractional Hall effects in high-mobility two-dimensional electron gases led to the emergence 

of a new research field in condensed matter physics: topological states of matter [1-4]. In the past 

decades, significant efforts have been dedicated to searching for, fabricating, and characterizing 

topological materials. 

The first experimentally realized topological material was a topological insulator (TI), the 

Bi1−xSbx alloy, characterized by strong spin-orbit coupling (SOC) gapped bulk bands and 

symmetry protected gapless surface states [5-8]. Soon after that, topological semimetal (TSM), 

which has a small density of states (DOS) induced by the valence and conduction band crossings 

in the three-dimensional Brillouin zone (BZ), has been predicted and realized, boarding the field 

of topological materials [9, 10]. Such band crossings can be related to a topological invariant, 

which distinguishes TSMs from other semimetals [11]. TSMs can be categorized into three groups 

based on the dimensionality of band crossings. The first group of TSMs are those with zero-

dimensional band crossings, which are referred to as nodes or nodal points. The most studied Dirac 

semimetals (DSMs) and Weyl semimetals (WSMs) belong to this group, which are identified by 

the fourfold Dirac points and twofold Weyl points, respectively. The low-energy excitations 

around these points act like the Dirac and Weyl fermions in high-energy physics, offering 

platforms to study their characteristics, such as the chiral anomaly effect. The second group of 

TSMs are called topological nodal-line semimetals (NLSMs). They have band crossings that occur 

along one-dimensional lines in the momentum space. Such one-dimensional lines may be closed 
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loops inside the BZ or lines running across the BZ. The third group of TSMs are named as 

topological nodal-surface semimetals, which have band crossings preserved in a two-dimensional 

surface in the BZ [11]. 

TSMs exhibit tremendous intriguing physical properties. Topologically protected surface 

states, such as Fermi arcs, have been detected by angle-resolved photoemission spectroscopy 

(ARPES) [12]. The Weyl orbits induced by the Fermi arcs have been observed by quantum 

oscillation measurements [13]. The chiral anomaly effect of Weyl and Dirac fermions is 

manifested by the negative longitudinal magnetoresistance and/or the planar Hall effect [14, 15]. 

The diverging Berry curvatures near the Weyl nodes result in a large intrinsic anomalous Hall 

effect (AHE) and an anomalous Nernst effect [16, 17]. The linear dispersions and low-energy 

excitations around band crossings lead to high carrier mobility and, thus, large positive 

magnetoresistance (MR) [18]. Furthermore, thinning three-dimensional TSMs into two-

dimensional forms, quantum spin and anomalous Hall effects may be achieved [19, 20]. The 

studies on TSMs not only advance fundamental science but also pave the way for the development 

of novel electronic and energy-harvesting devices. Consequently, there has been a growing interest 

among researchers to dedicate their efforts to this captivating field. 

This thesis presents investigations of the physical properties of topological semimetals at 

low temperatures. It is structured as follows. Chapter 2 provides a brief overview of DSMs, WSMs, 

and NLSMs. Chapter 3 summarizes the background knowledge of transport properties, including 

magnetoresistance, the Hall effect, and quantum oscillations. In Chapter 4, I discuss the effects of 

Fe-doping on the magnetic and transport properties of polycrystalline WSM Co3Sn2S2. Chapter 5 

reports on the extremely large low-temperature transverse MR in a Ni3In2S2 single crystal, which 

is an isostructural compound of Co3Sn2S2, and explains the origin of such a large MR. Chapter 6 
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displays the electric and thermal transport properties and quantum oscillation results of single 

crystalline type-II DSM NiTe2. Finally, in Chapter 7, I present a summary of this thesis and an 

outlook for future work. 
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Chapter 2 Three-Dimensional Topological Semimetals 

In this chapter, I will briefly overview the background of topological semimetals, focusing 

on the Dirac and Weyl equations. Additionally, I will introduce three types of topological 

semimetals known as Dirac semimetals, Weyl semimetals, and nodal-line semimetals, along with 

their distinct electronic band structures. 

2.1 Dirac and Weyl Equations 

In the field of solid-state physics, the well-known Schrödinger equation provides a 

successful description of nearly free quasiparticles. The low-energy excitations described by the 

Hamiltonian 𝐻 = 𝒑2/2𝑚∗, where 𝒑 represents the momentum and 𝑚∗ denotes the effective mass, 

are referred to as Schrödinger fermions. However, the Schrödinger equation is not applicable in 

all cases. For instance, it has been found that quasiparticles in graphene can be described by the 

relativistic Dirac equation rather than the Schrödinger equation [21]. 

In solids, the Dirac Hamiltonian takes the form of 

 𝐻𝐷 = 𝑣𝐹𝛼 ∙ 𝒌 + 𝛽𝑚𝑣𝐹
2 = (

𝑣𝐹𝝈 ∙ 𝒌 𝑚𝑣𝐹
2

𝑚𝑣𝐹
2 −𝑣𝐹𝝈 ∙ 𝒌

) (2.1) 

where 𝒌 = (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) is the momentum, 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) is the vector of 2 × 2 Pauli matrices, 

𝑚 is the effective mass, and 𝑣𝐹  is the Fermi velocity. The Dirac fermions follow the energy-

momentum relation:𝐸± = ±√𝑚2𝑣𝐹
4 + 𝑘2𝑣𝐹

2, with a band gap of Δ = 2𝑚𝑣𝐹
2 at 𝑘 = 0, as shown in 

Figure 2.1 [11]. In the case of vanishing effective mass, the Dirac Hamiltonian becomes diagonal, 

i.e., 
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 𝐻𝐷
𝑚=0 = (

𝑣𝐹𝝈 ∙ 𝒌 0
0 −𝑣𝐹𝝈 ∙ 𝒌

)  (2.2) 

Consequently, a fourfold-degenerate Dirac point with linear dispersions in all directions appears 

at 𝑘 = 0 instead of the gap in the massive case. The low-energy excitations near the Dirac point 

are known as massless Dirac fermions, and materials that have such Dirac points near the Fermi 

level (EF) are referred to as DSMs. 

 

Figure 2.1: Schematic plots of the band structures of Schrödinger, massive Dirac, massless Dirac, and Weyl fermions. 

The curves with mixed and uniform colors represent doubly degenerate and nondegenerate bands, respectively. Taken 

from reference [11] with permission from the American Physical Society. 

 

When 𝑚 = 0, the diagonal 𝐻𝐷 can be expressed in a simpler form: 

 𝐻± = ±𝑣𝐹𝝈 ∙ 𝒌 (2.3) 

which is called the Weyl Hamiltonian, and ± represents different chirality of the massless Weyl 

fermions. Both 𝐻+ and 𝐻− have two eigenvalues, i.e., 𝐸 = ±𝑣𝐹|𝑘|. Therefore, the spectrum of the 

Weyl Hamiltonian is comprised of two linear and non-degenerate bands crossing at a twofold-

degenerate point at 𝑘 = 0, and this point is denoted as the Weyl point. A fourfold-degenerate Dirac 

point can thus be regarded as a pair of two Weyl points with opposite chirality. The low-energy 

excitations around the Weyl point are known as massless Weyl fermions, and materials that have 

such Weyl points near the Fermi level (EF) are called WSMs [11]. 
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For systems strictly obey forementioned Dirac/Weyl equations, they have isotropic 

Dirac/Weyl cones with linearly dispersed bands in all momentum directions, and the low-energy 

excitations around Dirac/Weyl points are counterparts of relativistic Dirac/Weyl fermions in high-

energy physics, which respect the Lorentz invariance. However, in solid-state physics, band 

crossings in crystals are restricted by the symmetries of 230 space groups, not the Lorentz 

invariance. Therefore, other types of band crossings are also feasible, in addition to the isotropic 

Dirac and Weyl cones. 

Take the Weyl Hamiltonian as the example. If we add a tilting term to the Weyl 

Hamiltonian, it takes the form of 

 𝐻± = ±𝑣𝐹𝝈 ∙ 𝒌 + 𝒕 ∙ 𝒌𝑰𝟐 (2.4) 

where 𝒕  is the tilt vector and 𝑰𝟐  is the 2 × 2  identity matrix. Consider only the right-handed 

fermion and suppose that 𝒕 is along the direction of 𝑘𝑧. Then, the Hamiltonian can be written as: 

 𝐻 = 𝑣𝐹 (
𝑘𝑧(1 + 𝑡/𝑣𝐹) 𝑘𝑥 − 𝑖𝑘𝑦

𝑘𝑥 + 𝑖𝑘𝑦 −𝑘𝑧(1 − 𝑡/𝑣𝐹)
) (2.5) 

The corresponding energy spectra are: 

 휀±(𝑘) = ±𝑣𝐹(𝑘𝑥 + 𝑘𝑦) ± (𝑣𝐹 ± 𝑡)𝑘𝑧 (2.6) 

These two bands cross at the Weyl point 𝑘 = 0. If 𝑣𝐹 > 𝑡, these two linear bands always have 

velocities of opposite sign along all k directions, and 휀(𝑘) = 0 occurs only at the Weyl point 𝑘 =

0. The Weyl cone is slightly tilted, and its physical properties are similar to the isotropic Weyl 

cone. Thus, the Weyl point of this case and the Weyl point with the isotropic Weyl cone are 

classified as type-I Weyl points. If 𝑣𝐹 < 𝑡, these two bands have velocities of the same sign along 

the direction of 𝑘𝑧. The Weyl cone is highly tilted, resulting in a Fermi surface comprising open 

electron and hole pockets rather than a point. The corresponding Weyl point is denoted as a type-

II Weyl point. When 𝑣𝐹 = 𝑡, one of the bands has zero velocity along 𝑘𝑧, leading to a line-like 
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Fermi surface. This kind of Weyl point is called type-III Weyl point [11]. Figure 2.2 gives a 

schematic view of different types of Weyl points. The same concept can be applied to Dirac points. 

 

 

Figure 2.2: (a)(d) Type-I Dirac/Weyl point with a point-like Fermi surface. (b)(e) The type-II Dirac/Weyl point is the 

contact point between the electron and hole pocket. (c)(f) Type-III Dirac/Weyl point with line-like Fermi surface. The 

light blue plane corresponds to the Fermi level. Modified from reference [22] with permission from the American 

Physical Society. 

 

2.2 Dirac Semimetal 

DSMs host fourfold Dirac points resulting from two doubly degenerate bands crossing at 

a point near EF. The most common mechanism to realize a DSM involves a combination of band 

inversion with uniaxial rotational symmetry. It is noteworthy that the first experimentally 

confirmed three-dimensional DSMs, namely Na3Bi and Cd3As2, are associated with this 

mechanism. Consider Na3Bi as an example. Figure 2.3a shows the calculated band structure of 

Na3Bi with and without the inclusion of SOC. The majority of the band crossings near EF are 

gapped out with SOC, except the one along the Γ-A direction (marked by the blue rectangle). This 

is because Na3Bi crystallizes in space group No.194 (P63/mmc) with C3 rotation symmetry. The 
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two bands that cross at the rotational axis belong to two distinct irreducible representations, making 

the band crossing resistant to SOC. Since Na3Bi has both inversion symmetry (IS) and time-

reversal symmetry (TRS), there are two isolated Dirac points along the Γ-A direction (see Figure 

2.3b). As displayed in Figure 2.3c, near the Dirac point, the bands disperse linearly along all 

directions but with different Fermi velocities, resulting in a nearly isotropic cone in the 𝑘𝑥
𝐷 − 𝑘𝑦

𝐷  

 

 

Figure 2.3: (a) Calculated band structure of Na3Bi with and without SOC. (b) Bulk and projected (010) surface BZs 

of Na3Bi.The red dots indicate the momentum location of the Dirac points. (c) Schematic band dispersions near the 

Dirac points in the 𝑘𝑥
𝐷 − 𝑘𝑦

𝐷  and 𝑘𝑥
𝐷 − 𝑘𝑧

𝐷  planes, respectively. (d) 3D ARPES intensity plots, showing the band 

dispersion of the bulk Dirac cone along the in-plane (𝑘𝑥
𝐷 − 𝑘𝑦

𝐷 plane) and out-of-plane (𝑘𝑦
𝐷 − 𝑘𝑧

𝐷plane) directions, 

respectively. (e) ARPES intensity plot shows the band dispersion of the upper Dirac cone along the Γ̅ − �̅� direction 

after the in situ K-doping. Taken from reference [11] with permission from the American Physical Society. 
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plane and an anisotropic cone in the 𝑘𝑥
𝐷 − 𝑘𝑧

𝐷 plane. These have been experimentally observed by 

ARPES (see Figure 2.3d). Furthermore, by tuning the position of EF through the in situ K-doping, 

the Dirac point in the bulk bands has also been observed, as shown in Figure 2.3e [11, 23]. 

Another mechanism to realize DSMs relies on nonsymmorphic symmetries, which can give 

rise to fourfold Dirac points at high-symmetry points on the boundary of BZ. It is theoretically 

predicted that β-cristobalite BiO2 is a promising candidate for a nonsymmorphic DSM, which has 

three Dirac points located on the surface of BZ [24]. However, at present, there is a dearth of 

experimental evidence to support this theoretical prediction. 

2.3 Weyl Semimetal  

WSMs have twofold Weyl points at which two non-degenerate bands cross. Breaking 

either IS or TRS can convert a DSM into a WSM. The Weyl points can be characterized by the 

Fermi surface (FS) Chern number C. For the Weyl point depicted by (2.3), the corresponding 

Chern number is 

 𝐶± =
1

2𝜋
∯ 𝛀±(𝒌) ∙ 𝑑𝑺

 

FS
= ±1 (2.7) 

where  𝜴±(𝒌) = ∇𝑘 × 𝑨±(𝒌) = ±
�̂�𝑘

2𝑘2 denotes the Berry curvature. According to Equation (2.7), 

a Weyl point acts as a source or drain of Berry curvature in the momentum space. This means that 

Weyl points can be thought of as magnetic monopoles in the momentum space. To comply with 

the periodic BZ condition, the Berry curvature must originate from a source and terminate at a 

drain within the BZ. This requires that Weyl points must always appear in pairs of opposite 

chirality, resulting in them being topologically stable as long as they stay apart in the momentum 

space [11]. 
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Because a pair of Weyl points with opposite chirality functions as a source and drain of 

Berry curvature, it leads to the penetration of Berry flux into all the 2D planes that exist between 

them. Consequently, each of these planes possesses a non-zero Chern number, which gives rise to 

the formation of a topological edge state. Combining all such edge states forms an unclosed energy 

contour, also known as the Fermi arc. The Fermi arc starts from the projection of one Weyl point, 

ending at the other with the opposite chirality on the surface, as shown in Figure 2.4 [11, 25]. The 

presence of Fermi arcs constitutes a noteworthy characteristic of WSMs.  

 

 

Figure 2.4: A Weyl semimetal has Fermi arcs on its surface connecting projections of two Weyl points with opposite 

chirality. In momentum space, the Weyl point behaves like a magnetic monopole (MMP), with its chirality 

corresponding to the charge of the MMP. Modified from reference [26] with permission from the American Physical 

Society. 

 

Take TaAs, a transition metal monoarsenide, as an example. As shown in Figure 2.5, TaAs 

crystallizes in space group No.109 (I41md), having four Ta-As layers along the c-axis in a unit cell 

devoid of IS. TaAs is a WSM with twelve pairs of Weyl points in the BZ, each pair with monopole 

charges of ±1. There are four pairs of Weyl points located at each of the kz = 0 and ±1.16π/c planes, 

where c is the lattice parameter. The calculated Fermi surface on the (001) surface of TaAs exhibits 
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Fermi arcs connecting projected Weyl points of opposite chirality. The ARPES experiments 

confirmed the existence of these Fermi arcs, and the observations demonstrate excellent agreement 

with the theoretical calculations [27]. 

 

 

Figure 2.5: (a) Crystal structure of TaAs. (b) Schematic of the bulk and (001) surface Brillouin zones (BZs) of TaAs. 

Twelve pairs of Weyl points are predicted in each BZ, with four pairs at each of the kz = 0 and ±1.16π/c planes, 

respectively. (c) Fermi surface from ab initio calculations is plotted on the (001) surface BZ with the (projected) Weyl 

points (in red and blue) overlaid, showing the characteristic Fermi arcs. The color bar shows the surface contribution 

of the FS (white/0% to red/100%). (d) Calculated Fermi surface geometry with a fine k-space grid around the Y point 

of the BZ showing the Fermi arc (green curve). Different FS segments are color coded (with contributions indicated 

by the color bar) and labelled as FS 1-3. The inset shows the detailed evolution of different Fermi surface segments 

around the Weyl point. (e) Fermi surface measured using ARPES at high resolution showing excellent agreement with 

(d). The dashed line connects the two Weyl points for reference. The six arrows above and below the dashed line 

indicate the measurement positions in (f). (f) Three band dispersions measured above and below the dashed line in (e) 

(at the locations indicated by the red and green arrows in (e), respectively). Modified from reference [27] with 

permission from Springer Nature. 
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2.4 Nodal-line Semimetal 

Unlike DSMs and WSMs, which possess zero-dimensional band crossings, i.e., discrete 

Dirac/Weyl points, NLSMs have one-dimensional nodal lines formed by the band crossings in the 

momentum space near or at the EF. The nodal lines exhibit linear dispersions exclusively along 

directions that are perpendicular to them. Consequently, the low-energy excitations of NLSMs are 

massless along the transverse directions, while they are massive along the direction that is tangent 

to the nodal lines [11].  

Each nodal line is associated with a topological invariant known as the winding number, 

w. Consider a closed loop that encircles the nodal line in the momentum space, as depicted in 

Figure 2.6.  The winding number w is defined as the integral of the Berry connection along this 

loop, i.e.,  

 𝑤 = ∫ 𝑨 ∙ 𝑑𝑙
 

𝑙
 (2.8) 

where 𝑨 is the Berry connection and l is the loop encircling the nodal line [28]. 

 

Figure 2.6: Schematic band structure of the NLSM. The conduction and valence bands are degenerate on a 1D closed 

loop, shown as the yellow circle in the BZ. The topological invariant of the nodal line is a winding number w, which 

is defined as the line integral of the Berry connection along a closed loop, shown as the green circle that encircles the 

nodal line. Modified from reference [28] with permission from Annual Reviews. 
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NLSMs can be classified based on the types of symmetry protection and the geometry of 

the nodal lines. First, nodal lines can exist as closed loops, also referred to as nodal circles, located 

within the BZ. In such cases, some nodal lines are protected by the combination of IS and TRS 

and are stable only in the absence of SOC, such as the theoretically proposed NLSM, Cu3NPd [29]. 

In contrast, some other nodal lines are stable even in the presence of SOC. They are protected by 

the mirror-symmetry in the system with either IS or TRS breaking, such as HgCr2Se4 [30], or 

protected by the nonsymmorphic symmetry in the system with IS and TRS, such as SrIrO3 [31]. 

Additionally, nodal lines can also exist as lines running across the BZ, such as in BaTaS3 [32]. 
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Chapter 3 Theory of Transport Properties of Topological Semimetals 

In view of their distinctive electronic band structures, topological semimetals exhibit 

unique transport properties, including significant magnetoresistance (MR), anomalous Hall effect 

(AHE), negative longitudinal magnetoresistance, among others. Transport measurements provide 

an alternative approach for gaining insight into the physics of topological semimetals, 

complementing direct observation of band structure using ARPES. This chapter reviews the theory 

of topological semimetals' transport phenomena, covering magnetoresistance, Hall effect, and 

quantum oscillations. 

3.1 Magnetoresistance 

3.1.1 Lorentz Force-Induced Magnetoresistance 

Magnetoresistance (MR) refers to the alteration in longitudinal electrical resistance 𝑅𝑥𝑥 (or 

resistivity 𝜌𝑥𝑥) in the presence of an external magnetic field. It is defined as 𝑀𝑅 = (𝑅𝑥𝑥(𝜇0𝐻) −

𝑅𝑥𝑥(0))/𝑅𝑥𝑥(0) (or 𝑀𝑅 = (𝜌𝑥𝑥(𝜇0𝐻) − 𝜌𝑥𝑥(0))/𝜌𝑥𝑥(0)), where 𝜇0𝐻 is the external magnetic 

field, and 𝑅𝑥𝑥(0) (or 𝜌𝑥𝑥(0)) is the longitudinal resistance (resistivity) in the zero magnetic field. 

The most common mechanism of MR is the Lorentz force. When the external magnetic field is 

perpendicular to the current, it causes the carriers’ motion to be deflected. Because the resistivity 

is governed by the scattering processes depending on the velocity and direction of carriers’ motion, 

the Lorentz force-induced deflection of motion results in a positive MR. It is worth pointing out 
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that ferromagnetic materials may exhibit negative MR due to the polarization of the electrons, 

particularly at temperatures close to their Curie temperatures [33]. 

In the study of semimetals, the analysis of magnetic field-dependent resistivity 𝜌𝑥𝑥  is 

usually conducted alongside the Hall resistivity 𝜌𝑦𝑥, using the two-band model. The experimental 

data should be obtained under conditions in which the applied magnetic field is perpendicular to 

the current passing through the sample. The two-band model is a simple classical model that 

considers only one electron and one hole band in the studied material. While this model is clearly 

oversimplified for a real system, as it averages the effect of all electron (hole) bands and neglects 

interactions between them, it still provides insights into the carrier density and mobility of the 

material. The two-band model describes the 𝜌𝑥𝑥 and 𝜌𝑦𝑥 with the following two equations: 

 𝜌𝑥𝑥(𝐵) =
1

𝑒

(𝑛ℎ𝜇ℎ+𝑛𝑒𝜇𝑒)+(𝑛ℎ𝜇𝑒+𝑛𝑒𝜇ℎ)𝜇ℎ𝜇𝑒𝐵2

(𝑛ℎ𝜇ℎ+𝑛𝑒𝜇𝑒)2+(𝑛ℎ−𝑛𝑒)2𝜇ℎ
2𝜇𝑒

2𝐵2  (3.1) 

 𝜌𝑦𝑥(𝐵) =
𝐵

𝑒

(𝑛ℎ𝜇ℎ
2−𝑛𝑒𝜇𝑒

2)+(𝑛ℎ−𝑛𝑒)𝜇ℎ
2𝜇𝑒

2𝐵2

(𝑛ℎ𝜇ℎ+𝑛𝑒𝜇𝑒)2+(𝑛ℎ−𝑛𝑒)2𝜇ℎ
2𝜇𝑒

2𝐵2 (3.2) 

where 𝐵 = 𝜇0𝐻  is the magnetic field, 𝑛ℎ  is the hole carrier density, 𝑛𝑒  is the electron carrier 

density, 𝜇ℎ is the hole mobility, and 𝜇𝑒 is the electron mobility [34]. According to the two-band 

model, a system with an 𝑛ℎ distinct from 𝑛𝑒 exhibits a saturated MR under high magnetic fields. 

On the other hand, in an electron-hole compensated system where 𝑛ℎ equals 𝑛𝑒, a non-saturating 

MR proportional to 𝐵2 is present under high magnetic fields. This kind of non-saturating quadratic 

MR has been observed in various compensated semimetals, such as semimetal LaBi [35] and type-

II WSM MoTe2 [36].  

It is important to note that although the two-band model is widely used, it has certain 

limitations. Firstly, it is not applicable to open orbitals, which arise when the Fermi surface is not 

closed in momentum space. Secondly, it is a classical model that does not account for quantum 
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effects, such as orbit quantization [28]. Therefore, while the two-band model is useful in many 

cases, it should be applied with caution and with an understanding of its limitations. 

3.1.2 Large Magnetoresistance in Topological Semimetals 

The MR reaches a giant value at low temperatures (1.5 – 5 K) without saturation in many 

topological semimetals when the magnetic field is applied perpendicular to the current, as listed in 

Table 3.1 [28]. According to the two-band model, the MR is proportional to the carrier mobility. 

The carrier mobility 𝜇 is determined by the equation 𝜇 = 𝑒𝜏/𝑚∗, where 𝜏 represents the relaxation 

time and 𝑚∗ is the effective mass. In topological semimetals, the effective mass is extremely small 

due to the linear dispersions near the EF, as confirmed by the experimental quantum oscillation 

results. The feature leads to a large carrier mobility, which results in a significant MR. 

 

Table 3.1: Magnetoresistance (MR) at 9 T, residual resistivity 𝜌𝑟𝑒𝑠, transport mobility 𝜇𝑇, quantum relaxation time 

𝜏𝑞, quantum mobility 𝜇𝑞, and effective mass ratio 𝑚∗ 𝑚0⁄  of various topological semimetals at base temperatures (1.5 

– 5 K). NA denotes the corresponding data not available. Adapted from reference [28] with permission from Annual 

Reviews. 
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The two-band model has proven to be an effective model for explaining the non-saturating 

quadratic MR. However, it falls short in explaining the non-saturating linear MR (see Figure 3.1) 

observed in certain topological semimetals, such as NLSM ZrGeSe [37] and WSM CoS2 [38]. 

While the inhomogeneous carrier density in disordered systems can lead to a linear MR [39], this 

is not the case in high-quality nanoflakes or single crystals used in these studies. The linear MR in 

ZrGeSe nanoflake is ascribed to the linearly dispersed bands, according to Abrikosov’s quantum 

linear MR theory, which will be reviewed in section 3.3.3. The linear MR observed in CoS2 single 

 

 

Figure 3.1: (a) MR of ZrGeSe nanoflake. Adapted with permission from [37]. Copyright 2024 American Chemical 

Society. (b) MR of CoS2 single crystal. Large linear MR is observed below 20 K. Adapted from reference [38] 

(Copyright National Academy of Sciences of the United States of America). 
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crystal, on the other hand, has been explained by researchers through a model that elucidates the 

interplay of the magnetic field in real space and the Berry curvature in momentum space. The 

model suggests that the slope of the linear MR is determined by the average Berry curvature in the 

vicinity of the Fermi surface [38]. It is clear that the linear MR is strongly linked to the unique 

band structure of topological semimetals, and, therefore, it cannot be accounted for by the classical 

model. 

3.1.3 Chiral Anomaly-Induced Negative Longitudinal Magnetoresistance   

Consider a WSM with only one pair of Weyl points with opposite chirality. The chemical 

potentials of left-handed and right-handed Weyl fermions are equivalent in the absence of both 

electric field E and magnetic field B, which implies that the number of electrons with opposite 

chirality is equal. When a magnetic field B is applied, the Weyl bands are quantized into Landau 

levels (LLs), which can be expressed by the following equations: 

 휀𝑛 = 𝑣𝐹𝑠𝑔𝑛(𝑛)√2ℏ|𝑛|𝑒𝐵 + (ℏ𝒌 ∙ �̂�)
2

, 𝑛 = ±1, ±2, … ,                     

 휀0 = −𝜒ℏ𝑣𝐹𝒌 ∙ �̂� ,  𝜒 = ±1                    (3.3) 

where n is the index of LL, 𝑣𝐹 is the Fermi velocity, and 𝜒 is the chirality of the Weyl points. The 

energy levels become discrete, and only the zeroth LL is linearly dispersed and chiral, crossing the 

EF [11], as illustrated in Figure 3.2a. Suppose the system is in the quantum limit at low 

temperatures, i.e., only the zeroth LLs contribute to the low-energy physics. If an electric field E 

is applied parallel to the magnetic field B, the applied electric field would shift the chemical 

potential, leading to an imbalance of the occupied states in the left-handed and right-handed LLs 

and, thus, a charge pumping from one Weyl point to the other. This is known as the chiral anomaly.  
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The Chiral anomaly can be manifested by the negative longitudinal magnetoresistance. In 

a sufficiently clean system, the backscattering of electrons with opposite chirality is effectively 

suppressed. Consequently, the rate at which electrons are pumped from one Weyl point to the other 

is proportional to E ∙ B, resulting in a negative longitudinal magnetoresistance [11]. 

Figure 3.2b shows the longitudinal magnetoresistance of DSM Na3Bi at different 

temperatures. As previously discussed in Chapter 2, the applied magnetic field breaks the TRS and 

converts the DSM into a WSM. The two overlapping Weyl points that make up the Dirac point are  

 

 

Figure 3.2: (a) Illustration of chiral anomaly. Red and green colors represent right-handed and left-handed electrons 

separately. Solid and open circles denote occupied and unoccupied states, respectively. Adapted from reference [25] 

with permission from Annual Reviews. (b) Longitudinal magnetoresistance of Na3Bi at selected temperature from 4.5 

to 300 K. Adapted from reference [40] with permission from AAAS. 

 

positioned separately in the direction of the applied magnetic field. Indeed, negative longitudinal 

magnetoresistance has been observed in Na3Bi. At temperatures below 100 K, an increase in 

magnetic field results in a decrease in longitudinal magnetoresistance [40]. However, it is 

important to note that the chiral anomaly-induced negative longitudinal magnetoresistance is not 



 20 

observed in all DSMs and WSMs. To observe this phenomenon, the system must be clean enough 

with negligible scattering between Weyl points and only Dirac or Weyl cones present at/near the 

EF without the presence of other trivial bands. 

3.2 Hall Effect 

In 1879, Edwin H. Hall discovered a transverse electromotive force within a conductor 

carrying current when placed in a magnetic field. This phenomenon, which came to be known as 

the ordinary Hall effect, is directly proportional to the magnetic field and current [41]. The Hall 

resistance is defined as the ratio of the transverse voltage to the current. In a system with only one 

carrier type, the Hall resistance displays a linear relationship with the magnetic field. The 

corresponding Hall resistivity 𝜌𝑦𝑥 is equal to 𝐵/𝑛𝑒, where B is the magnetic field, and n is the 

carrier density. In a system with two types of carriers, a hole-like and an electron-like, 𝜌𝑦𝑥 follows 

the equation (3.2) as mentioned before. The ordinary Hall effect provides an effective method to 

identify the types of a material’s carriers as well as their corresponding carrier densities.  

A few years later, Hall found that the transverse voltage was significantly larger in 

ferromagnetic materials compared to nonmagnetic materials. This stronger effect is referred to as 

the anomalous Hall effect (AHE) [42]. In ferromagnetic materials, 𝜌𝑦𝑥  is found to be closely 

related to the material’s magnetization Mz. Empirically, a relationship between them has been 

established as follows: 

 𝜌𝑦𝑥 = 𝑅0𝐵 + 𝑅𝑠𝑀𝑧 (3.4) 

Here, 𝑅0𝐵 denotes the contribution of the ordinary Hall effect, 𝑅𝑠𝑀𝑧 denotes the contribution of 

the AHE, and 𝑅0  and 𝑅𝑠  are the ordinary and anomalous Hall coefficients, respectively [42]. 

Unlike the ordinary Hall effect, the AHE results in a non-zero 𝜌𝑦𝑥 in the absence of an external 

magnetic field, named anomalous Hall resistivity. The mechanisms responsible for the occurrence 
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of anomalous Hall resistivity can be classified into two categories: intrinsic and extrinsic (side-

jump and skew-scattering), as illustrated in Figure 3.3, which will be further reviewed in the 

subsequent text. 

 

 

Figure 3.3: Illustration of the three main mechanisms that can give rise to an AHE. In any real material all of these 

mechanisms act to influence electron motion. Adapted from reference [42] with permission from the American 

Physical Society. 

 

3.2.1 Intrinsic Anomalous Hall Effect 

The theory of the intrinsic AHE was first proposed by Karplus and Luttinger in 1954 [43]. 

They demonstrated that in the presence of an external electric field, electrons acquire an additional 
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group velocity perpendicular to the electric field. In ferromagnetic conductors, the sum of this 

anomalous velocity over all occupied states is non-zero, contributing to the Hall conductivity 𝜎𝑥𝑦. 

Because this contribution is independent of scattering, only depending on the band structure, it is 

known as the intrinsic contribution to AHE. The intrinsic anomalous Hall conductivity, 𝜎𝑥𝑦
𝑖𝑛𝑡, is 

thus independent of the longitudinal conductivity 𝜎𝑥𝑥, and the corresponding intrinsic anomalous 

Hall resistivity is proportional to 𝜌𝑥𝑥
2 . 

After the concepts of the Berry phase and topology have been introduced in solid-state 

physics, the intrinsic anomalous Hall conductivity was directly linked to the integration over the 

Fermi sea of the Berry curvature of each occupied band. More precisely, it is evaluated using the 

following equation: 

 𝜎𝑖𝑗
𝑖𝑛𝑡 = −휀𝑖𝑗𝑙

𝑒2

ℏ
∑ ∫

𝑑𝒌

(2𝜋)𝑑 𝑓(휀𝑛(𝒌))𝒃𝑛
𝑙 (𝒌)

 

𝐵𝑍𝑛  (3.5) 

where 휀𝑖𝑗𝑙  is the antisymmetric tensor, 휀𝑛(𝒌) is the eigenvalue of the eigenstate |𝑛, 𝒌⟩, 𝑓 is the 

Fermi-Dirac distribution, and 𝒃𝑛
 (𝒌) is the Berry curvature. In a magnetic system, TRS is broken, 

i.e., 𝒃𝑛
 (𝒌) ≠ −𝒃𝑛

 (−𝒌), which can give rise to a non-zero intrinsic anomalous Hall conductivity. 

The intrinsic contribution has been observed to dominate the AHE in many materials with strong 

SOC [42]. 

The Weyl points in WSMs, which can be regarded as monopoles of Berry curvature, may 

result in a large intrinsic AHE in TRS-breaking WSMs. Indeed, magnetic WSMs, such as Co3Sn2S2 

[44], Co2MnAl [45], and Mn3Sn [46], exhibit significant 𝜎𝑥𝑦
𝑖𝑛𝑡 . The AHE in these materials is 

intrinsic and controllable through the separation of Weyl points. Consequently, these materials 

have promising potential for spintronic applications [28]. 
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3.2.2 Extrinsic Anomalous Hall Effect 

The intrinsic AHE is solely determined by the Hamiltonian of the perfect crystal, as 

introduced above. However, in real materials, transport properties are also influenced by 

scatterings due to defects and impurities, so as the AHE. The contributions to AHE caused by such 

scatterings are divided into two distinct mechanisms: skew-scattering and side-jump. 

3.2.2.1 Skew-Scattering Contribution to Anomalous Hall Effect 

The skew-scattering mechanism was first proposed by Smit, indicating that the skew-

scattering is due to the asymmetric scattering, caused by the SOC, of the conducting electrons 

against the defects in ferromagnetic materials [47, 48].  

In semiclassical Boltzmann transport theory, the transition probability 𝑊𝑛→𝑚  is 

conventionally considered equal to that in the opposite direction, 𝑊𝑚→𝑛. However, in the presence 

of SOC, the transition probability for a right-handed transition with respect to the magnetization 

direction differs from that of the left-handed transition. When this asymmetry is introduced into 

the Boltzmann equation, it results in a current proportional to the longitudinal current driven by 

the applied electric field E and perpendicular to both E and the magnetization. The skew-scattering 

mechanism tends to dominate AHE in nearly perfect crystals (with high conductivity greater than 

106(Ω 𝑐𝑚)−1). In this case, both Hall conductivity 𝜎𝑥𝑦 and the longitudinal conductivity 𝜎𝑥𝑥 are 

proportional to the Bloch state transport lifetime, and thus, the Hall resistivity 𝜌𝑦𝑥 is proportional 

to 𝜌𝑥𝑥 [42]. 

3.2.2.2 Side-Jump Contribution to Anomalous Hall Effect 

When a Gaussian wave packet interacts with a spherical impurity possessing SOC, the 

incident wave vector k undergoes a transverse displacement of 
1

6
𝑘ℏ2/𝑚2𝑐2. This mechanism is 
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known as the side-jump, which was proposed by Berger [49]. The side-jump contribution to the 

AHE is independent of the transport lifetime and, therefore, is independent of 𝜎𝑥𝑥. As a result, the 

corresponding anomalous Hall resistivity is proportional to 𝜌𝑥𝑥
2 . Because the side-jump 

contribution to the AHE is of the same order as the intrinsic contribution, they cannot be 

distinguished by their dependence on the transport lifetime. In practice, for materials with 

anomalous Hall conductivity independent of 𝜎𝑥𝑥, one may first calculate the intrinsic contribution 

to the AHE. If the calculation result is consistent with the experimental data, the observed 

anomalous Hall conductivity is ascribed to the intrinsic contribution. Otherwise, it may be 

attributed to the side-jump contribution [42].  

3.3 Quantum Oscillations 

 Quantum oscillation is a significant phenomenon that offers valuable insights into 

topological semimetals, including quantum mobility, effective mass, and Berry phase. Quantum 

oscillations can be observed in the electrical resistance (known as the Shubnikov-de Haas (SdH) 

effect), magnetization/magnetic torque (known as the de Haas-van Alphen (dHvA) effect), 

thermoelectric power, etc.  

3.3.1 Landau Quantization 

The phenomenon of quantum oscillation emerges from the quantized cyclotron motion of 

charge carriers under magnetic fields, which is also known as the Landau quantization of energy 

states. With the conduction bands splitting to Landau levels (LLs), the density of states (DOS) at 

the Fermi level becomes periodic, resulting in the related physical quantities oscillating as a 

function of the inverse of the magnetic field, i.e., 1/𝐵. For 2D spinless nonrelativistic electrons 

with parabolic band dispersions in the presence of an applied magnetic field, the LL energy is 휀𝑛 =
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(𝑛 + 1 2⁄ )ℏ𝜔𝑐, where 𝜔𝑐 = 𝑒𝐵/𝑚∗ represents the cyclotron motion frequency, 𝑚∗ is the effective 

mass, and 𝑛 = 0, 1, 2, … denotes the LL index. The LL energies are evenly spaced and field-

dependent, with the lowest LL having a non-zero energy of ℏ𝜔𝑐/2 . For the purpose of 

distinguishing the lowest LL of the nonrelativistic electrons from the zeroth LL with zero energy 

of the relativistic electrons, here we rewrite the LL energy of 2D nonrelativistic electrons as  휀𝑛 =

(𝑛 − 1 2⁄ )ℏ𝜔𝑐, where 𝑛 = 1, 2, 3, …. The corresponding spectra are illustrated in Figure 3.4b [28]. 

 

 

Figure 3.4: Schematics of energy dispersions of (a) nonrelativistic and (c) relativistic electrons. Landau spectra of the 

2D spinless (b) nonrelativistic and (d) relativistic electrons. Landau spectra of the 3D spinless (e) nonrelativistic and 

(f) relativistic electrons with the magnetic field along the 𝑘𝑧 direction (𝑩 ∥ 𝑘𝑧). (g) Landau tubes intersecting a 3D 

spherical Fermi surface. (h) Landau rings within the 2D Fermi surface. Adapted from reference [28] with permission 

from Annual Reviews. 

 

For 2D spinless relativistic electrons with linear band dispersions, the LL energy can be 

expressed as 휀𝑛 = 𝑣𝐹𝑠𝑔𝑛(𝑛)√2𝑒ℏ𝐵|𝑛|, where 𝑣𝐹 is the Fermi velocity and 𝑛 = 0, ±1, ±2, …, as 

shown in Figure 3.4d. It is noteworthy that the zeroth LL of 2D spinless relativistic electrons is 



 26 

fixed at the position of the band crossing. The zeroth LL energy is zero and independent of the 

magnetic field, which is entirely different from that of 2D nonrelativistic electrons. 

Given that the vast majority of topological semimetals reported to date are in 3D form, it 

is necessary to present the Landau quantization results of 3D electrons. For 3D nonrelativistic 

electrons, when the external magnetic field is applied along the 𝑘𝑧 direction, the LL energy follows 

the equation: 

 휀𝑛,𝑘 = (𝑛 − 1 2⁄ )
ℏ𝑒𝐵

𝑚∗ +
ℏ2𝑘𝑧

2

2𝑚∗ , (𝑛 = 1, 2, 3, … ) (3.6) 

The energy along the magnetic field direction is not quantized. Similarly, in the case of 3D 

relativistic electrons, the LL energy is given by the equation: 

 휀𝑛,𝑘 = 𝑣𝐹𝑠𝑔𝑛(𝑛)√2𝑒ℏ𝐵|𝑛| + (ℏ𝑘𝑧)2, (𝑛 = 0, ±1, ±2, … ) (3.7) 

The zeroth LL energy is still independent of the magnetic field, although not strictly zero. Equation 

(3.7) is valid for Dirac fermions. However, the expression for the zeroth LL energy requires 

modification in the case of Weyl fermions, as the spin degeneracy is lifted. This has been discussed 

in section 3.1.3 (see equation (3.3)). 

3.3.2 The Lifshitz–Kosevich Formula 

As presented in the last section, for 3D electrons, different LLs overlap in the energy space 

due to the unquantized energy along the magnetic field direction. The LL energy states lie on the 

Landau tubes, and, thus, the spherical Fermi surface intersects with multiple Landau tubes (see 

Figure 3.4g). However, for 2D electrons, the LL energy states lie on the Landau rings, and the 

circular Fermi surface does not intersect with multiple Landau rings (see Figure 3.4h). 

Consequently, different equations are utilized to describe the 3D and 2D quantum oscillations. In 
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the subsequent chapters of this thesis, the findings regarding quantum oscillations are all in 3D 

materials. Therefore, we primarily focus on the formulas for 3D electrons. 

At the zero-temperature limit, the oscillatory Gibbs thermodynamic potential Ω  for a 

quantized 3D system follows the equation: 

 Ω𝑜𝑠𝑐 = (
𝑒

2𝜋𝑐ℏ
)3/2 𝑒ℏ𝐵5/2

𝑚∗𝑐𝜋2(𝜕2𝑆𝑒𝑥𝑡𝑟/𝜕𝑘𝑧
2)1/2

∑
1

𝑟5/2 cos [2𝜋𝑟 (
𝐹

𝐵
− 𝛾) + 2𝜋𝛿]∞

𝑟=1  (3.8) 

where 𝑆𝑒𝑥𝑡𝑟 refers to the extremal Fermi surface cross-section area perpendicular to the magnetic 

field, 𝜕2𝑆𝑒𝑥𝑡𝑟/𝜕𝑘𝑧
2  is the curvature of the extremal Fermi surface along the magnetic field 

direction 𝑘𝑧, r is the harmonic index, 𝑚∗ is the effective mass, and rF is the oscillation frequency. 

Because the magnetization is the derivative of the Gibbs thermodynamic potential at constant 

temperature 𝑇 and chemical potential 휁, the oscillatory magnetization can be expressed by the so-

called Lifshitz-Kosevich formula (the LK formula): 

 𝑀𝑜𝑠𝑐
3𝐷 = − (

𝜕Ω

𝜕𝐵
)

𝑇,𝜁
                                                                                                                             

 = −(
𝑒

2𝜋ℏ
)3/2 𝑆𝑒𝑥𝑡𝑟

𝜋2𝑚∗ (
𝐵

|𝜕2𝑆𝑒𝑥𝑡𝑟/𝜕𝑘𝑧
2|

)1/2 ∑
1

𝑟3/2 𝑅𝑇𝑅𝐷𝑅𝑆 sin [2𝜋𝑟 (
𝐹

𝐵
− 𝛾 +

𝛿

𝑟
)]∞

𝑟=1  (3.9) 

where 𝑅𝑇 , 𝑅𝐷 , and 𝑅𝑆  are the temperature, field, and spin damping factor, separately. The 

temperature damping factor 𝑅𝑇 is related to the finite temperature corrections to the Fermi-Dirac 

distribution function, which can be expressed as 

 𝑅𝑇 =
𝑟𝑎𝑇𝜇/𝐵

sinh (𝑟𝑎𝑇𝜇/𝐵)
 (3.10) 

where 𝜇 is the ratio of effective cyclotron mass 𝑚∗ to free electron mass 𝑚0, and 𝑎 =
2𝜋2𝑘𝐵𝑚0

ℏ𝑒
≈

14.69 T/K. The field damping factor 𝑅𝐷, caused by the finite quantum relaxation time, can be 

expressed as 

 𝑅𝐷 = exp (−
𝑟𝑎𝑇𝐷𝜇

𝐵
) (3.11) 
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where 𝑇𝐷 is known as the Dingle temperature, linked to the quantum relaxation time 𝜏𝑞 through 

the formula  𝑇𝐷 = ℏ 2𝜋𝑘𝐵𝜏𝑞⁄ . And the last, the spin damping factor 𝑅𝑆  is due to the phase 

difference between the spin-up and spin-down subands, which can be expressed as  

 𝑅𝑆 = cos
𝑟𝜋𝑔𝜇

2
 (3.12) 

where 𝑔 is the Landé 𝑔-factor. The rF in the sinusoidal term in equation (3.9) represents the 

oscillation frequency, while the fundamental frequency F is connected to 𝑆𝑒𝑥𝑡𝑟 via the Onsager 

relation: 𝐹 = (ℏ/2𝜋𝑒)𝑆𝑒𝑥𝑡𝑟. The phase factor 2𝜋𝑟 (−𝛾 +
𝛿

𝑟
) in the sinusoidal term is associated 

with the Berry phase 𝜙𝐵 through the relation 𝛾 =
1

2
−

𝜙𝐵

2𝜋
. The phase shift 𝛿 is determined by the 

dimensionality of the Fermi surface, i.e., 𝛿 = 0 for 2D Fermi surfaces and 𝛿 = ±
1

8
 for 3D Fermi 

surfaces. 

In practice, the quantum oscillation frequencies can be acquired from the fast Fourier 

transform (FFT) of the oscillatory components of the magnetization. Normally, the fundamental 

frequencies dominate quantum oscillations in real materials since components with higher 

harmonic frequencies rF (𝑟 > 1) are rapidly damped with 𝑟−3/2 . The effective mass of each 

frequency band can be obtained by fitting the corresponding FFT amplitudes at different 

temperatures using equation (3.10). In systems with Dirac points located at or near the EF, the 

effective mass is typically small due to the linear dispersions. Indeed, most topological semimetals 

exhibit a very small effective mass, as evidenced in Table 3.1 [28]. After knowing the effective 

mass, the Dingle temperature can be obtained by fitting the field-dependent oscillation amplitude 

at a fixed temperature to equation (3.11). Then, the quantum relaxation time can be calculated, 

which is generally large in topological semimetals. 
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In the analysis of quantum oscillations in topological semimetals, the phase factor is a 

crucial parameter, alongside the effective mass and quantum mobility, since the nontrivial Berry 

phase is a hallmark of relativistic electrons. The Berry phase 𝜙𝐵 can be extracted from the LL 

index fan diagram, which plots the LL indices n against the inverse of magnetic field 1/𝐵. The 

integer LL indices are assigned when EF lies in the middle of two adjacent LLs, i.e., the DOS at 

EF reaches its minimum. In contrast, the half-integer LL indices are assigned when EF lies right at 

a LL, i.e., the DOS at EF reaches its maximum. For the LL fan diagram of a 3D system plotted 

under such rules, the linear extrapolated line of the linear fit of 𝑛(
1

𝐵
) intersects the n axis at 

𝜙𝐵

2𝜋
−

𝛿. The extracted 𝜙𝐵 from the LL fan diagram may deviate from the ideal value of 𝜋 if the band is 

not perfectly linear. Moreover, the Zeeman effect and uncertainty of the intercept of the linear fit 

of  𝑛(
1

𝐵
) can also lead to deviation [28]. Therefore, analyzing quantum oscillations using the LL 

fan diagram requires careful consideration of these factors. 

The effective mass, Dinger temperature, and phase factor can also be acquired by fitting 

the oscillatory components with the multiband LK formula, assuming the quantum oscillations of 

different bands are additive. However, the fitting process can be complicated by the increased 

number of fitting parameters.  

Besides magnetization, quantum oscillations have been observed in other physical 

quantities, including magnetic torque, resistivity, and thermoelectric power [50]. 

3.3.3 Beyond the Quantum Limit 

When the applied magnetic field is strong enough, all electrons in a band become confined 

to the lowest LL, and the quantum limit is reached. The critical magnetic field needed to achieve 

the quantum limit is at least comparable to the quantum oscillation frequency [28]. The enhanced 
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degeneracy of the lowest LL along with the distinct properties of relativistic electrons may lead to 

the emergence of novel and exotic phenomena in topological semimetals. 

As previously discussed, in a system with nonrelativistic electrons, the lowest LL energy 

increases linearly with the magnetic field. However, in WSMs, the zeroth LL energy is 

independent of the magnetic field. Therefore, in the case of quantum limit, the magnetization, 

𝑀𝑛=0 = −𝜕휀0,𝑘/𝜕𝐵, saturates to a field-independent value in a nonrelativistic system, while it 

vanishes in a WSM. This anomaly has been observed in the magnetic torque of WSM NbAs under 

high magnetic fields [51].  

Another phenomenon associated with the quantum limit is the linear MR. Abrikosov 

proposed that when the quantum limit is reached in a system with linear dispersions, the quantum 

linear magnetoresistance may occur due to the small pockets of the Fermi surface with a small 

effective mass [52, 53]. The linear MR observed in NLSM ZrGeSe has been well explained by 

this theory [37]. 
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Chapter 4 Magnetic and Transport Properties of Fe-doped Weyl Semimetal Co3Sn2S2 

 

4.1 Motivation 

Co3Sn2S2, a member of the ternary chalcogenide shandite family, crystallizes in a 

rhombohedral lattice (space group 𝑅 3 ̅𝑚). As shown in Figure 4.1 (drawn using VESTA [54]), 

Co3Sn2S2 has a quasi-two-dimensional structure, where Co and Sn atoms form Kagomé lattice 

layers sandwiched between S and Sn atoms. Co3Sn2S2 is a ferromagnetic material with a Curie 

temperature of ~174 K and exhibits metallic behavior as its resistivity increases with the increasing 

temperature [55, 56]. The Co atoms on the Kagomé lattice are the origin of the out-of-plane 

ferromagnetic order in Co3Sn2S2.  At the same time, Co3Sn2S2 is a Weyl semimetal [57]. It has a 

high mobility and a large non-saturating magnetoresistance, which are usually seen in topological 

semimetals [58-60]. In addition, Co3Sn2S2 shows a giant anomalous Hall conductivity ~ 

1130 Ω−1𝑐𝑚−1  and an anomalous Hall angle ~ 20 % due to its enhanced Berry curvature arising 

from interactions between its topological band structure and intrinsic ferromagnetism [61, 62]. The 

spin-orbit coupling (SOC)-induced gap structure along the nodal line, which plays a key role in 

generating the large Berry curvature, has been implied by the ab initio calculations and directly 

observed using high-resolution angle-resolved photoemission spectroscopy (ARPES) [63]. 

Recently, simulation results predict possible chiral edge states on an exposed Kagomé Co3Sn 

terrace of bulk Co3Sn2S2 and suggest that the 2D limit of Co3Sn2S2 is a Chern insulator hosting the 

quantum anomalous Hall effect [64]. Moreover, Co3Sn2S2 is identified as a half metal. Techniques 
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like photoemission [65] and scanning tunneling microscopy [66], and also the analysis of the 

modified electron-magnon scattering behavior that uses the temperature and magnetic field-

dependent electrical resistivity reveal the half-metallic nature of Co3Sn2S2 experimentally [67].  

Thanks to its exceptional physical properties, Co3Sn2S2 is a potential candidate for 

functional applications in numerous fields, such as thermoelectricity, chemical catalysis, and 

nonlinear optics. The low electrical resistance and high Seebeck coefficient of Co3Sn2S2 are 

attractive for thermoelectricity [68-71]. The maximum figure-of-merit ZT = 0.3 is reached in the 

temperature range 373K ~ 573 K by doping Fe and In into pristine Co3Sn2S2, and such ZT value 

exceeds that of many n-type sulfides in this temperature range [72]. The high electrical 

conductivity and the desirable carrier density near the Fermi level also make Co3Sn2S2 appealing 

as cathodes for aqueous Zn-ion batteries, inspiring chemists to utilize topological materials to build 

high-performance electrochemical batteries [73]. Because the topological states can provide high 

carrier mobility and are robust against surface deformation or reformation, Co3Sn2S2 is a promising 

material for electrocatalysis. Indeed, it shows an excellent performance for oxygen evolution 

reactions compared with topological trivial material catalysts [74, 75]. In the nonlinear optics field, 

it was found that the second harmonic generation phenomenon, often used to investigate non-

centrosymmetric materials, can be realized in the inversion-symmetric Co3Sn2S2 by applying a 

finite current, and the induced susceptibility can reach 105 pm V-1: a value 102-104 times greater 

than those obtained in typical optical materials [76]. 

Chemical doping is an effective method to modify the physical properties of materials, as 

it can adjust the position of the Fermi level, induce impurities, and change the grain size. Some 

chemical doping-related works have been done on Co3Sn2S2. For instance, substitutions of In for 

Sn and Fe for Co enhance the thermoelectric performance of the compound, whereas substitution 



 33 

of Ni for Co weakens the performance [69, 71]. Moreover, while all such substitutions tend to 

suppress the magnetism of Co3Sn2S2, the resulting solid solutions still show ferromagnetic order 

below the Curie temperature [77-79]. Nevertheless, Ni-doped Co3Sn2S2 solutions maintain the 

significant anomalous Hall conductivity that has been observed in pure Co3Sn2S2, which indicates 

the robustness of its topological originating anomalous Hall effect (AHE) [80]. However, little has 

been done on purely Fe-doped Co3Sn2S2 solid solutions among the above noted chemical doping-

related works. Therefore, in this study, I provide a more detailed account of investigations 

concerning the magnetic and transport properties of polycrystalline Co3-xFexSn2S2 in the 

temperature range 1.8 K ~ 300 K, with the value of x up to 0.4, the content close to the solubility 

limit ~ 0.5 at ambient conditions [77].  

The DC zero-field-cooled (ZFC) and field-cooled (FC) temperature-dependent 

magnetization curves were measured to reveal the influence of Fe-doping on the samples’ 

magnetic order and an anomalous phase right below the paramagnetic-ferromagnetic transition 

temperature TC. The Hall resistivity measurement displays the intrinsic AHE of pure Co3Sn2S2 and 

the complicated Hall effect in the Fe-doped systems. Both the transverse and longitudinal 

magnetoresistance (MR) of pure and the heaviest Fe-doped Co3Sn2S2, are evaluated and compared.  

Thermal properties, such as heat capacity, Seebeck coefficient, and thermal conductivity, were 

also measured. In addition, formation energies, band structures, and spin-polarized density of 

states (DOS) calculated by using the spin-polarized relativistic Korringa-Kohn-Rostoker – Green’s 

function method (sprKKR) [81] are also displayed. Overall, I provide a careful and comprehensive 

investigation of low-temperature magnetic and transport properties of Fe-doped Co3Sn2S2 

polycrystals. 
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Figure 4.1: Crystal structure of Co3Sn2S2. (a) Conventional unit cell of Co3Sn2S2. Orange ball represents Sn(1) siting 

at 3(a) (0, 0, 0); Pink ball represents Sn(2) siting at 3(b) (0, 0, 1/2); Blue ball represents Co siting at 9(d) (1/2, 0, 1/2); 

and Green ball represents S siting at 6(c) (0, 0, z). (b) Kagomé lattice structure within Co-Sn(2) layers.  

 

4.2 Methods 

4.2.1 Experimental Methods 

Polycrystalline Co3-xFexSn2S2 (x = 0, 0.1, 0.2, 0.3, and 0.4) samples were synthesized by 

the conventional solid-state method. Stoichiometric amounts of tin (99.999%, shot, Alfa Aesar), 

sulfur (99.999%, pieces, Acros Organics), cobalt (99.998%, powder, Alfa Aesar) and iron 

(99.998%, powder, Alfa Aesar) were put into alumina crucibles, which were then sealed in quartz 

tubes under vacuum. The sealed quartz tubes were placed vertically in the box furnace and heated 

to 1050 ℃ in 48 h with a dwell time of 24 h. Then, the tubes were slowly cooled to 600 ℃ in 180 

h. After that, the tubes were cooled to room temperature with a faster cooling rate of 120 ℃/h. The 

resulting silver shinning ingots were ground into powders, and subsequently consolidated by spark 

plasma sintering (SPS, FCT Systeme GmbH) in a 12.7 mm diameter graphite die lined with 

graphite paper under an axial compressive force of 6 kN in vacuum for 1 h at 720 ℃. The acquired 

disk-shape pellets were polished with sandpaper and cut into small pieces having the desired size 
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and shape for structural characterization, magnetization, and transport measurements. The pieces 

for structural characterization were reground into powder, and their crystal structures were 

confirmed by powder X-ray diffraction (PXRD) using a Rigaku Ultima IV X-ray diffractometer 

(Cu Kα).  

A Physical Property Measurement System (PPMS Dynacool, Quantum Design) was used 

for all magnetization and transport measurements. The ZFC and FC temperature-dependent 

magnetization curves were acquired using the Vibrating Sample Magnetometer (VSM) in the 

following way: to get ZFC curves, each sample was first cooled to 1.8 K with no applied magnetic 

field; then, a 100 Oe external field was applied, and the magnetic moment of the sample was 

recorded while the sample was warming to 300 K. The sample was subsequently cooled to 1.8 K 

in the presence of 100 Oe external field, and the magnetic moment of the sample was again 

measured while the sample was slowly heated to 300 K to obtain FC curves. Electrical resistivity 

and Hall resistivity were measured using the Electrical Transport Option (ETO). The heat capacity 

data were acquired using the Heat Capacity Option. The thermal conductivity and Seebeck 

coefficient were measured using the Thermal Transport Option (TTO) of the PPMS. To correct 

for magnetic field-induced temperature errors due to the magnetoresistance (MR), the resistive 

thermometers were calibrated using the PPMS MR calibration wizard before the transport 

measurement. 

4.2.2 Computational Method 

The electronic structures of Co3-xFexSn2S2 compounds were computed in the full-potential 

mode using the Korringa-Kohn-Rostoker (KKR) multiple scattering theory [81]. The exchange-

correlation potential was modeled by using the Perdew–Burke–Ernzerhof (PBE) parametrization 

in the scheme of the generalized gradient approximation (GGA) [82]. An angular momentum 
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cutoff of lmax = 3 was used for the expansion of the Green’s function, and the irreducible wedge of 

the Brillouin zone was sampled with a 24 × 24 ×24 k-point mesh. To further improve the charge 

convergence with respect to lmax, Lloyd’s formula is used to determine the Fermi level. All 

calculations were carried out in the relativistic representation of the valence states; thus, SOC is 

taken into account. The dopant-induced disorder between different chemical species occupying 

the same atomic site was considered with the mean-field coherent potential approximation (CPA) 

[83]. This effective medium method offers advantages over the supercell method in terms of 

computation resource requirement and time and configurational issues. Alternatively, for 

comparison, DOS was calculated based on the KKR multiple scattering theory with the 

consideration of many-body effects described by using the dynamical mean field theory (DMFT) 

[84] in a charge and self-energy self-consistent computational scheme. To examine the band 

structure of Co3-xFexSn2S2 compounds, the Bloch spectral function AB(E, k) was calculated for a 

certain range of the energy E along a path in k-space. In this case, the input parameters are chosen 

to calculate the dispersion relation E(k). The energy mesh is specified by the parameters NE = 601, 

EMIN = 0.48 Ry, and EMAX = 0.78 Ry (EF is ca. 0.6 Ry), while the corresponding path in k-

space was specified by the number of segments of a defined k-path and giving all segments the 

first and last k-vectors (NK = 601). Calculating the Bloch spectral function AB(E, k) for real 

energies is sensible only for systems with the chemical disorder, which are usually treated using 

the CPA. In this case, the CPA equations must first be solved for the required energy mesh. (The 

calculations were done by our collaborator, Dr. Zhongrui Li.) 

4.3 Results and Discussion 

4.3.1 Structure 
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Figure 4.2a shows PXRD patterns of the acquired Co3-xFexSn2S2 polycrystals. The low Fe-

doping level does not change the structure as the main phase of each Fe-substituted Co3Sn2S2 

sample is still the same shandite phase of pure Co3Sn2S2. Only a few and very weak impurity peaks 

were observed, which came from the possible by-product SnS. The lattice parameters a and c 

refined by the Rietveld method using MAUD software are shown in Figure 4.2b. Unlike in the 

previous research [77, 78], where the parameter a became smaller and the parameter c became 

larger with the increasing concentration of Fe, I find that both parameters a and c increase with the 

increasing content of Fe. This is also apparent from a slight left shift in the PXRD patterns and the 

increase in corresponding d-spacing values calculated from 2dsinθ = λ (see Table 4.1). This may 

be understood by the fact that I substituted Co atoms with larger Fe atoms, causing the lattice to 

expand. The exception here is the highest Fe content Co2.6Fe0.4Sn2S2 sample, where the parameter 

a slightly decreased, probably because the Fe solubility limit is reached. As is shown in Figure 

4.2b, the ratio of the lattice parameters c to a increases with heavier Fe-doping, indicating an 

enhancement of the trigonal distortion in the crystalline lattice, which is caused by the anisotropy 

of the Fe 3d-orbitals [77]. 

4.3.2 Magnetic Properties 

Figure 4.3a shows the zero-field-cooled (ZFC) and field-cooled (FC) temperature-

dependent susceptibility 𝜒 of Co3-xFexSn2S2 samples measured under an applied magnetic field of 

100 Oe. The magnetic susceptibility of each sample was calculated by the formula 𝜒 =

 𝑀 (𝐻 ∗ 𝑚)⁄ , where 𝑀 , 𝐻 , and 𝑚  are magnetic moment, applied field and molar mass, 

respectively. The sharp increase in the susceptibility of pure Co3Sn2S2 sample near 175 K (TC) 

corresponds to a paramagnetic-ferromagnetic phase transition. As the Fe-doping level increases, 

TC decreases and the sample’s magnetization is suppressed except for Co2.6Fe0.4Sn2S2, the 
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susceptibility of which is larger than of samples Co2.7Fe0.3Sn2S2 and Co2.8Fe0.2Sn2S2 in the low-

temperature range. The precise value of the Curie temperature TC of each sample was determined  

 

Figure 4.2: (a) Powder X-ray diffraction patterns of Co3-xFexSn2S2 polycrystals. Impurity peaks are marked with an 

asterisk. (b) Refined lattice parameters a and c, and the value of c/a plotted as a function of Fe concentration x.    
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Table 4.1: Peak positions of PXRD patterns of Co3-xFexSn2S2 and the corresponding Miller indices and d-spacing 

values. As the Fe concentration increases, a left shift of the XRD pattern happens, and d-spacing values increase. 

When x = 0.4, some peaks shift to the right, and the corresponding d-spacing values decrease. 

 
x = 0 x = 0.1 x = 0.2 x = 0.3 x = 0.4 

(h, k, l) 2θ (°) d (Å) 2휃 (°) d (Å) 2휃 (°) d (Å) 2휃 (°) d (Å) 2휃 (°) d (Å) 

(0, 0, 3) 20.13208 4.4071 20.11503 4.4108 20.1035 4.4133 20.09124 4.4160 20.09418 4.4154 

(0, 1, 2) 23.32276 3.8109 23.30483 3.8138 23.30139 3.8144 23.29594 3.8153 23.30043 3.8145 

(1, 1, 0) 33.27567 2.6903 33.25301 2.6921 33.24393 2.6928 33.23299 2.6937 33.2433 2.6929 

(0, 2, 1) 39.27583 2.2920 39.2566 2.2931 39.24037 2.2940 39.24145 2.2940 39.25719 2.2931 

(2, 0, 2) 41.07189 2.1959 41.04125 2.1974 41.02538 2.1982 41.01322 2.1989 41.01212 2.1989 

(0, 2, 4) 47.82436 1.9004 47.8026 1.9012 47.7835 1.9019 47.78057 1.9020 47.79352 1.9015 

(2, 0, 5) 52.40634 1.7445 52.38469 1.7452 52.37031 1.7456 52.35451 1.7461 52.36331 1.7458 

(1, 1, 6) 53.90212 1.6996 53.87714 1.7003 53.86342 1.7007 53.84753 1.7012 53.84739 1.7012 

(2, 1, 4) 59.56304 1.5508 59.53172 1.5516 59.52126 1.5518 59.50755 1.5522 59.52489 1.5517 

(0, 0, 9) 63.52463 1.4633 63.48453 1.4642 63.4618 1.4646 63.43703 1.4651 63.42058 1.4655 

(2, 2, 0) 70.01015 1.3428 69.97941 1.3433 69.9634 1.3436 69.93396 1.3441 69.96895 1.3435 

(2, 1, 7) 73.8532 1.2821 73.68806 1.2846 73.66317 1.2850 73.67621 1.2848 73.67011 1.2849 

(1, 0, 10) 74.90493 1.2667 74.87423 1.2672 74.8597 1.2674 74.84457 1.2676 74.85508 1.2674 

(1, 3, 4) 79.80894 1.2008 79.76457 1.2013 79.75413 1.2014 79.74307 1.2016 79.74923 1.2015 

(2, 2, 6) 84.52947 1.1453 84.51255 1.1455 84.4899 1.1458 84.47691 1.1459 84.49149 1.1457 

(4, 0, 4) 89.31211 1.0960 89.23613 1.0967 89.22084 1.0968 89.2141 1.0969 89.19488 1.0971 

 

by the inflection point of the dM/dT vs T curve, where M is the ZFC magnetic moment (see Figure 

4.3b). Figure 4.3c shows TC as a function of the Fe concentration in Co3-xFexSn2S2 samples. The 

data are fitted by the second-order polynomial, which predicts that the ferromagnetic order will 

disappear at x ~ 0.97. This is close to the earlier reported experimental value x ~ 0.8 for single 

crystals samples, but significantly less than x ~ 1.5 for polycrystals grown by high-temperature 

and high-pressure techniques [77, 78]. The different values of x are likely due to different Fe 

concentration in the samples, amplified by the fact that the actual Fe concentration measured in 

each sample differs somewhat from the intended nominal concentration. As a result, predicting the 

critical concentration using the nominal concentration yields different results. However, the critical 

concentration of x ~ 0.97, at which ferromagnetism disappears, agrees very well with the 

theoretical result that the spontaneous magnetic moments in Co3-xFexSn2S2 samples decrease to 
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zero at x = 1 [78]. The fact that the Fe-doping suppresses the ferromagnetic order in Co3Sn2S2 

compounds is also predicted by DFT calculations [78]. The density of states (DOS) of Co3-

xFexSn2S2 near the Fermi levels is dominated by the total contribution of 3d orbitals of Co and Fe 

atoms. When the Fe-doping level is low, the DOS of Co-3d orbitals, which shows the 

ferromagnetic spin-polarized state, dominates the total DOS near the Fermi level. However, when 

the Fe-doping level becomes high, the DOS of Fe-3d orbitals is dominant, which results in the 

paramagnetic spin-polarized state [78, 85]. Therefore, Fe-doping weakens the ferromagnetism of 

Co3Sn2S2. 

Unlike all FC curves that increase monotonically below TC, all ZFC curves display a hump-

like characteristic right below the bifurcation temperature of ZFC and FC curves. This anomaly 

was also observed under a low applied magnetic field in previous studies [86-89], which indicates 

that some other magnetic phases very likely exist besides the ferromagnetic state. Guguchia et al. 

used muon-spin relaxation/rotation (μSR) measurements revealing that an in-plane 

antiferromagnetic state emerges at temperatures above 90 K (𝑇𝐶
∗) in pure Co3Sn2S2 [90]. In the 

temperature range from 90 K to 172 K, the out-of-plane ferromagnetic state and in-plane 

antiferromagnetic state co-exist. The magnetic volume fraction of the antiferromagnetic state 

increases as the temperature increases and reaches the maximum of 80% around 170 K. Therefore, 

the anomaly in the ZFC curves is likely due to the emergence of the antiferromagnetic phase. 

However, this anomaly appears at ~105 K in the ZFC curve of the pure Co3Sn2S2 sample, higher 

than the 𝑇𝐶
∗ observed in μSR measurements. This is probably because the magnetic volume fraction 

of the antiferromagnetic state is pretty small at 90 K, which can only be detected by the extremely 

sensitive μSR technique. As the temperature increases, its fraction gradually increases, and 

macroscopic magnetization measurements can also detect its presence. 
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Figure 4.3: (a) Temperature-dependent susceptibility 𝜒 of Co3-xFexSn2S2 measured under an applied magnetic field of 

100 Oe. Solid lines and dashed lines represent FC and ZFC curves, respectively. (b) Derivative of ZFC magnetic 

moment of Co3-xFexSn2S2. TC are marked with purple asterisks. (c) TC as a function of Fe concentration in Co3-

xFexSn2S2. The blue extrapolated line was acquired by fitting the data points with a polynomial curve 𝑇𝐶 = 174.39 −
3.39𝑥 − 182.64𝑥2. 
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Figure 4.4a and b show field-dependent magnetization M of all samples at 1.8 K and at 200 

K, respectively. At 1.8 K, every field-dependent magnetization plot develops hysteresis due to the 

sample’s ferromagnetism. As the concentration of Fe in the sample increases, the coercive field 

displays a downward trend, except for a slight rise at x = 0.2 following a sharp drop at x = 0.1. At 

200 K, in the paramagnetic domain, the magnetization of each sample increases linearly with the 

magnetic field. 

 

Figure 4.4: (a) Field-dependent magnetization M of Co3-xFexSn2S2 at 1.8 K. The inset shows the coercive field as a 

function of Fe concentration in Co3-xFexSn2S2. (b) Field-dependent magnetization M of Co3-xFexSn2S2 at 200 K. 

 

4.3.3 Transport Properties 

4.3.3.1 Resistivity 

Figure 4.5a shows the temperature-dependent electrical resistivity of all Co3-xFexSn2S2 

samples. Co3Sn2S2 exhibits a metal-like behavior as the resistivity rises with the increasing 

temperature, and the metallic character of transport is retained in all Fe-doped samples. 
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With the increasing content of Fe, the resistivity increases throughout the temperature 

range studied, and this is especially so for the sample with x = 0.4, where the resistivity reaches a 

value ~ 2 mΩ cm at room temperature. This is almost an order of magnitude larger resistivity than 

for pure Co3Sn2S2. The residual-resistivity ratio 𝑅𝑅𝑅 = 𝜌300 𝐾 𝜌1.8 𝐾 ⁄  (see the inset of Figure 

4.5a) decreases from 10 at x = 0 to 1.2 at x = 0.4, indicating an enhanced disorder caused by Fe 

doping. 

 

Figure 4.5: (a) Temperature-dependent electrical resistivity 𝜌𝑥𝑥 of Co3-xFexSn2S2. The kink around TC is marked with 

an arrow. The inset shows RRR as a function of Fe concentration. (b) Field-dependent Hall resistivity 𝜌𝑦𝑥 of Co3-

xFexSn2S2 at 1.8 K. The inset shows a zoomed-in figure of Hall resistivity 𝜌𝑦𝑥 for Co3Sn2S2. (c) Field-dependent Hall 

resistivity 𝜌𝑦𝑥 of Co3-xFexSn2S2 at 200 K. (d) Anomalous Hall resistivity 𝜌𝑦𝑥
𝐴  versus longitudinal electrical resistivity 

𝜌𝑥𝑥. For samples’ x ≥ 0.2, the 𝜌𝑦𝑥
𝐴 ~𝜌𝑥𝑥

𝛽
 relationship is no longer retained and the parameter 𝛽 cannot be determined. 
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Each resistivity curve, except for the sample Co2.6Fe0.4Sn2S2, displays a kink around the 

sample’s TC, implying that the ordered magnetic state results in a smaller resistivity. 

At temperatures below about 50 K, samples Co3-xFexSn2S2 with x = 0.2, 0.3 and 0.4 show 

a distinctly rising resistivity as the temperature falls. This is likely due to the Kondo effect as the 

doped Fe atoms act as magnetic impurities that very effectively scatter conduction electrons. The 

Kondo effect is characterized by a -lnT-dependent resistivity shown in Figure 4.6. At still lower 

temperatures, the resistivity rises more slowly, yet another feature of the Kondo effect. The Kondo 

temperature TK, which is used to assess the strength of Kondo interactions, is determined by the 

deviation point of −𝐼𝑛 𝑇 dependence [91, 92]. Not surprisingly, TK increases from 11.6 K for 

Co2.8Fe0.2Sn2S2 to 12.8 K for Co2.7Fe03Sn2S2 and to 13.5 K for Co2.6Fe0.4Sn2S2 as the heavier Fe 

doping results in more intense Kondo scattering. 

4.3.3.2 Hall resistivity 

Figure 4.5b and 5c show the field-dependent Hall resistivity 𝜌𝑦𝑥 of Co3-xFexSn2S2 at 1.8 K 

and 200 K, respectively. The Hall resistivity  𝜌𝐻 (𝑇, 𝐻)  can be written as 𝜌𝐻 (𝑇, 𝐻) = 𝑅0𝐻 +

𝑅𝑠𝑀(𝑇, 𝐻), where 𝑀(𝑇, 𝐻) is the magnetization, and 𝑅0 and 𝑅𝑠 are the ordinary and anomalous 

Hall coefficients, respectively [42]. At 1.8 K, all samples are in the ferromagnetic phase, displaying 

a significant magnetic hysteresis. Thus, as implied by the anomalous Hall term in the equation, the 

Hall resistivity 𝜌𝑦𝑥  curve mimics the magnetization curve, indicating the occurrence of the 

anomalous Hall effect (AHE). At 200 K, as the magnetic order disappears, 𝜌𝑦𝑥 displays a linear 

relationship with the magnetic field. Figure 4.5d summarizes the relation between the anomalous 

Hall resistivity of each sample and its longitudinal electrical resistivity 𝜌𝑥𝑥 at several different 

temperatures below 100 K. The anomalous Hall resistivity 𝜌𝑦𝑥
𝐴  is defined as the value of the Hall 

resistivity 𝜌𝑦𝑥 at zero field. Only for 𝜌𝑦𝑥
𝐴  of Co3Sn2S2 at 1.8 K and 30 K, I deduced its value from 
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the 𝜌𝑦𝑥 curve at zero field directly since the simultaneous existence of electron and hole carriers 

in the sample at low temperatures leads to a non-linear field-dependent Hall resistivity at high 

fields [61]. For other data points, I acquired 𝜌𝑦𝑥
𝐴  by fitting the linear part of the 𝜌𝑦𝑥 curve, and  

 

Figure 4.6: The upturn in the low temperature resistivity of Co3-xFexSn2S2 (x = 0.2, 0.3, and 0.4). The data below the 

resistivity minimum temperature are fitted by 𝜌𝑥𝑥 = 𝑎 − 𝑏 ∗ 𝐼𝑛 𝑇.  
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the intercept of the linear fit line with the 𝜌𝑦𝑥-axis is the value of 𝜌𝑦𝑥
𝐴 . In order to eliminate the 

impact of any lead misalignment during the experiment, 𝜌𝑦𝑥
𝐴  was corrected by 𝜌𝑦𝑥

𝐴 =

(𝜌𝑦𝑥
𝐴 (+𝐻) − 𝜌𝑦𝑥

𝐴 (−𝐻))/2, where 𝜌𝑦𝑥
𝐴 (+𝐻) is the intercept of the linear fit of the positive field 

part, and  𝜌𝑦𝑥
𝐴 (−𝐻) is that of the negative part. Generally, 𝜌𝑦𝑥

𝐴  can be partitioned into contributions 

proportional to 𝜌𝑥𝑥  (caused by the skew-scattering contribution), and 𝜌𝑥𝑥
2  (resulting from the 

intrinsic and the side jump contributions). Therefore, the 𝜌𝑦𝑥
𝐴 ~𝜌𝑥𝑥

𝛽
 relationship (1 ≤ 𝛽 ≤ 2) has 

been reported in many different material systems previously [42]. For pure Co3Sn2S2 and for 

Co2.9Fe0.1Sn2S2, the data points were fitted by the formula 𝜌𝑦𝑥
𝐴 = 𝛼𝜌𝑥𝑥

𝛽
, where 𝛽 = 2.0 for pure 

Co3Sn2S2 and 𝛽 = 1.8 for Co2.9Fe0.1Sn2S2. The AHE in Co3Sn2S2 is caused by its large Berry 

curvature topologically enhanced at Weyl nodes, which is the mechanism of the intrinsic 

contribution to AHE [61]. Thus, in pure Co3Sn2S2, I observe that the fitting parameter 𝛽 is 2. In 

lightly Fe-doped samples, the intrinsic contribution still dominates the AHE because 𝛽 is close to 

2, as in Co2.9Fe0.1Sn2S2. However, because Fe atoms randomly occupy Co sites, the spin-orbit 

interaction induces asymmetric scattering of the conduction electrons that leads to a nontrivial 

skew-scattering contribution to the AHE. Consequently, 𝛽  is smaller than that of the Fe-free 

sample. With heavier Fe-doping, i.e., for x ≥ 0.2, the 𝜌𝑦𝑥
𝐴 ~𝜌𝑥𝑥

𝛽
 relationship is no longer retained. 

The Kondo effect and the strong disorder in the samples make the AHE’s mechanism complex and 

cannot be resolved by any currently known theories.  

4.3.3.3 Magnetoresistance 

The transverse MR of Co3Sn2S2 and Co2.6Fe0.4Sn2S2, measured under an externally applied 

magnetic field perpendicular to the current, is shown in Figure 4.7a and b, respectively. The MR 

is determined by the formula MR = (𝜌𝑥𝑥(𝐻) − 𝜌𝑥𝑥(0))/𝜌𝑥𝑥(0), where 𝜌𝑥𝑥(0)  and 𝜌𝑥𝑥(𝐻) are 
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the longitudinal resistivity at zero and 𝐻 fields, respectively. 𝜌𝑥𝑥(𝐻) is corrected by 𝜌𝑥𝑥(𝐻) =

(𝜌𝑥𝑥(+𝐻) + 𝜌𝑥𝑥(−𝐻))/2  to get rid of any influence of possible lead misalignment in the 

experiment, where 𝜌𝑥𝑥(+𝐻) and 𝜌𝑥𝑥(−𝐻) are the longitudinal resistivity measured separately at 

positive and negative fields. At low temperatures (below 45 K), Co3Sn2S2 has a distinctly positive 

and parabolic MR. The MR diminishes as the temperature rises and, around 55 K, the MR is nearly 

zero and turns negative at 60 K. At 170 K, the temperature close to the transition temperature TC, 

the MR reaches its highest negative value and shows a linear dependence on the field. At 200 K, 

where Co3Sn2S2 is in the paramagnetic phase, the MR has a much smaller negative value but 

exhibits the parabolic behavior again. All MR curves show hysteresis in the low field region below 

TC, which becomes more evident as the temperature increases. There are four contributions to the 

MR phenomenon. 1) The effective drop in the carrier velocity due to the Lorentz deflection caused 

by the applied magnetic field leads to a positive MR proportional to (𝜇𝐻)2; 2) The magnetic 

moments of the sample create a fictitious field and generate an extra MR as if the applied magnetic 

field was present [93]; 3) Carrier scattering results from the interaction between the spins of the 

carriers and the applied magnetic field; 4) The thermal spin fluctuation in weakly ferromagnetic 

materials causes a negative MR proportional to 𝐻  in the ferromagnetic phase and H2 in the 

paramagnetic phase [94]. The thermal spin fluctuation mechanism dominates the MR at high 

temperatures, resulting in negative MR. As the temperature decreases, the Lorentz deflection 

mechanism gradually dominates the MR because the carrier mobility is higher at low temperatures 

causing a stronger deflection of the carriers [95, 96]. Thus, a shift in MR from negative to positive 

is observed.  

Focusing on the hysteresis behavior of pure Co3Sn2S2 in the low-magnetic field region, I 

find that the MR curve shows different hysteresis behavior below and above 25K (see Figure 4.8a,  
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Figure 4.7: (a) Transverse magnetoresistance of Co3Sn2S2. (b) Transverse magnetoresistance of Co2.6Fe0.4Sn2S2.  

 

b, and c), which was previously seen only in nanoflake Co3Sn2S2 samples [93]. All the MR data 

were collected from scans spanning from the maximum positive field to the maximum negative 

field and back to the maximum positive field. At low temperatures, here at 1.8 K, the blue curve 

in Figure 4.8a in the regime of positive fields, representing a sweep from the highest positive field, 
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lies above the red curve representing a sweep from the largest negative field. This trend is reversed 

in the domain of negative fields. This characteristic feature persists until the temperature reaches 

25 K, at which point the behavior flips and is even more noticeable at 35 K. Such hysteresis 

behavior comes mainly from contributions 2) and 3). When the moments and the applied field are 

in the opposite direction, the sum of the fictitious and the applied field is smaller, resulting in a 

smaller MR. However, in this situation, the carrier scattering is stronger due to the sample 

becoming demagnetized, so the MR attributable to contribution 3) is larger. Below 25 K, 

contribution 2) predominates, causing a decrease in MR while the moments and the applied field 

are in the opposite direction. Above 25 K, the higher temperature induces a stronger carrier 

scattering so that contribution 3) wins the competition between the two mechanisms. Therefore, a 

distinct hysteresis behavior in the magnetoresistance of pure Co3Sn2S2 is observed. 

The heaviest Fe-doped sample in this study, Co2.6Fe0.4Sn2S2, has a MR of less than 1%, 

which is an order of magnitude smaller than that of the pure Co3Sn2S2 sample (see Figure 4.7b). 

At temperatures below its TC, Co2.6Fe0.4Sn2S2 possesses a butterfly-like MR, and the magnetic 

field, where maxima of the butterfly-like patterns occur, decreases as temperature increases. 

Because heavy Fe-doping generates a strong disorder in the Co2.6Fe0.4Sn2S2 sample and suppresses 

its magnetic order, the hysteresis in MR is mainly controlled by the carrier scattering. Even at the 

lowest temperature of 1.8 K, the fictitious field contribution can be detected only in low fields. 

When the applied magnetic field is weaker than 6000 Oe, an apparent reduction in MR happens 

while the moments and applied field are in the opposite direction, as illustrated in Figure 4.8d. 

When the field becomes stronger, the fictitious field contribution is less evident and is 

overwhelmed by the carrier scattering contribution. As the temperature exceeds 55 K, the effect of 
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the fictitious field can no longer be traced, and the hysteresis behavior is completely dominated by 

the carrier scattering contribution (see Figure 4.8e and f.). 

 

Figure 4.8: Low-magnetic field transverse magnetoresistance plot of Co3Sn2S2 (a) at 1.8 K, (b) 25 K, and (c) 35 K. 

Low-magnetic field transverse magnetoresistance plot of Co2.6Fe0.4Sn2S2 (d) at 1.8 K, (e) 55 K, and (f) 100 K. The 

blue circles represent the data taken from +5 × 104 Oe to −5 × 104 Oe (direction indicated by blue arrows), and the 

red circles represent the data taken from −5 × 104 Oe to +5 × 104 Oe (direction indicated by red arrows). The shaded 

areas in (d) indicate the region where an apparent reduction in MR occurs due to the effect of the fictitious field.  
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The hysteresis behavior is also observed in longitudinal MR measurements where the 

externally applied magnetic field is parallel to the current. As presented in Figure 4.9a, b, and c, 

the trend in the blue and red curves that indicate the direction of the magnetic sweep in the 

longitudinal magnetoresistance of pure Co3Sn2S2 is similar to the case of the transverse 

magnetoresistance shown in Figure 4.8a, b, and c. Moreover, the longitudinal magnetoresistance 

of Co2.6Fe0.4Sn2S2 also displays a clear butterfly-like pattern, Figure 4.9d, e, and f, documenting a 

strongly hysteretic behavior of the MR regardless of the orientation of the magnetic field. This is 

expected in polycrystalline samples. 

One of the peculiar transport phenomena in Weyl semimetals is the negative longitudinal 

magnetoresistance, which is caused by the chiral anomaly [97]. However, both Co3Sn2S2 and 

Co2.6Fe0.4Sn2S2 show positive longitudinal MR at low temperatures (see Figure 4.10). Although 

the longitudinal MR of Co3Sn2S2 and Co2.6Fe0.4Sn2S2 turns negative at 60 K and 140 K, 

respectively, this is more likely owing to the thermal spin fluctuation, which can also result in 

negative MR, as seen in the transverse MR measurements. The absence of the negative 

longitudinal MR could be attributed to the significant orbital MR in samples [98]. Even if the 

applied external magnetic field is parallel to the current, out-of-plane moments in samples form a 

fictitious field that acts like an applied magnetic field perpendicular to the current, giving rise to a 

large orbital MR and concealing the phenomenon of negative longitudinal magnetoresistance [93]. 
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Figure 4.9: Low-magnetic field longitudinal magnetoresistance plot of Co3Sn2S2 (a) at 1.8 K, (b) 25 K, and (c) 35 K. 

Low-magnetic field longitudinal magnetoresistance plot of Co2.6Fe0.4Sn2S2 (d) at 1.8 K, (e) 55 K, and (f) 100 K. The 

blue circles represent the data taken from +5 × 104 Oe to −5 × 104 Oe (direction indicated by blue arrows), and the 

red circles represent the data taken from −5 × 104 Oe to +5 × 104 Oe (direction indicated by red arrows). The shaded 

areas in (d) indicate the region where an apparent reduction in MR occurs due to the effect of the fictitious field.  
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Figure 4.10: (a) Longitudinal magnetoresistance of Co3Sn2S2. (b) Longitudinal magnetoresistance of Co2.6Fe0.4Sn2S2.  

 

4.3.3.4 Heat capacity 

Figure 4.11a shows the heat capacity cp of Co3-xFexSn2S2 between 2 K and 10 K. It is 

evident that Fe-doping increases the sample’s heat capacity. At low temperatures, heat capacity 

can generally be described by a power law dependence 𝑐𝑝(𝑇) = 𝐴𝑇𝛼(𝑇), where A is a certain 
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prefactor, and 𝛼(𝑇) is a temperature-dependent index characterizing the degree of change in heat 

capacity versus temperature [99]. For a set of experimental data points, 𝛼(𝑇) is estimated by 

𝛼(𝑇) = 𝐼𝑛
𝐶2

𝐶1
/𝐼𝑛

𝑇2

𝑇1
, where T = (𝑇1 + 𝑇2)/2 and 𝑇1 and 𝑇2 are temperatures corresponding to heat 

capacities 𝐶1 and 𝐶2, respectively [99]. Figure 4.11b plots the index 𝛼(𝑇) of each sample below 

10 K. There is no significant difference between 𝛼(𝑇) values of different samples at the same 

temperature. At 10 K, 𝛼(𝑇) ≈ 3, indicating that the phonon contribution dominates the heat 

capacity. As the temperature decreases, 𝛼(𝑇) decreases monotonically, and at 2 K,  𝛼(𝑇) ≈ 1, 

suggesting that the electron contribution gradually dominates and controls the sample’s heat 

capacity at lower temperatures. 

To extract further information, the heat capacity data are fitted with equation 𝑐𝑝/𝑇 = 𝛾 +

𝛽𝑇2, where 𝛾 is the Sommerfeld coefficient, 𝛽 is the coefficient of phonons [100], and 𝑇 is the 

temperature (see Figure 4.11c). It should be pointed out that the magnetic contribution to the heat 

capacity is ignored here. According to the Weiss model, the magnetic contribution to the specific 

heat of ferromagnetic materials is proportional to 𝑑𝑀2/𝑑𝑇, where 𝑀 is the magnetization and 𝑇 is 

the temperature [100]. Therefore, the magnetic contribution follows a general trend of being small 

at low temperatures and starting to rise rapidly as the Curie temperature Tc is approached [100]. In 

section 4.3.2, I mentioned that Co3-xFexSn2S2 samples have a Tc of at least 143 K. Hence, it is 

reasonable to overlook the magnetic contribution at the lowest temperatures. The values of 𝛾 and 

𝛽, as well as the Debye temperature [100] 휃𝐷 of each sample derived from the corresponding 𝛽 

parameter, are summarized in Table 4.2. Pristine Co3Sn2S2 has the Sommerfeld coefficient of 11.2 

mJ mol-1 K-2 and the Debye temperature of 375.4 K, which agrees with the previous report [101]. 

It is clear that doping with Fe increases both 𝛾 and 𝛽 values, although the 𝛾 values for x = 0.1 and 

x = 0.2 seem not to conform to the trend. Because the electronic specific heat is proportional to the 
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DOS at the EF [100], the larger 𝛾 value of the sample with a higher Fe concentration means the 

higher DOS at the EF. This conclusion is in line with the computational results discussed later. The 

larger 𝛽 value observed in the sample with a higher Fe concentration indicates that it has a lower 

휃𝐷. The 휃𝐷 is the temperature of a crystal’s highest normal mode of vibration [102], and grain  

 

Figure 4.11: (a) Heat capacity cp of Co3-xFexSn2S2. (b) The temperature-dependent index 𝛼(𝑇) of Co3-xFexSn2S2. (c) 

𝑐𝑝/𝑇 versus 𝑇2 plot. The heat capacity data are fitted with equation 𝑐𝑝/𝑇 = 𝛾 + 𝛽𝑇2. The fitting parameters 𝛾 and 𝛽 

are summarized in Table 4.2. 
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boundaries, defects, impurities, and disorders can somewhat reduce the value of 휃𝐷
 [103]. Thus, 

the impurities and disorders induced by Fe-doping may be the cause of the decreasing 휃𝐷 . 

Generally, a sample with a lower 휃𝐷 is expected to have a lower thermal conductivity [104]. This 

is true for my samples, as seen in the following section. 

 

Table 4.2: Fe concentration x, Sommerfeld coefficient γ, calculated DOS at the Fermi level (EF), fitting coefficient β, 

and Debye temperature 휃𝐷. 

x (Fe concentration) 𝜸 (𝒎𝑱 𝒎𝒐𝒍−𝟏 𝑲−𝟐) DOS (𝑺𝒕𝒂𝒕𝒆𝒔 𝒆𝑽−𝟏) 𝜷 (𝒎𝑱 𝒎𝒐𝒍−𝟏 𝑲−𝟒) 𝜽𝑫 (𝑲) 

0 11.2 1.64 0.257 375.4 

0.1 12.5 2.21 0.269 369.9 

0.2 11.9 2.47 0.278 366.0 

0.3 12.7 2.56 0.285 362.9 

0.4 13.9 2.67 0.338 342.7 

 

4.3.3.5 Seebeck Coefficient and Thermal Conductivity 

The temperature-dependent Seebeck coefficient S of Co3-xFexSn2S2 under a zero external 

magnetic field is shown in Figure 4.12a. All samples have a negative Seebeck coefficient in the 

measured temperature range, indicating that the dominant carriers are electrons, consistent with 

the reported computational and experimental results [68, 105]. As the temperature falls, the 

absolute value of the Seebeck coefficient, |𝑆|  first decreases linearly, showing the sample’s 

metallic character, and then exhibits a kink near the sample’s Curie temperature Tc due to the lower 

entropy state caused by the magnetic ordering and hence the suppression of |𝑆| [106]. As the 

temperature drops further, the |𝑆| of Co3Sn2S2 and Co2.9Fe0.1Sn2S2 displays a local maximum at 

temperatures around 40 K. This anomaly on the Seebeck coefficient of samples with x = 0, x = 0.1, 

as well as the hint of it on sample x = 0.2, is likely due to the phonon drag effect that is wiped out 

at higher Fe concentrations. As the temperature approaches 0 K, all S curves converge to 0, as 

expected by the Nernst’s theorem. By utilizing the electrical resistivity data, the power factor 𝑃𝐹 =
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 𝑆2/𝜌 of each sample is calculated and plotted in Figure 4.12b. For Co3Sn2S2 and Co2.9Fe0.1Sn2S2, 

the PF curve exhibits a broad maximum at about 40 K, corresponding to the local maximum of 

|𝑆|. Even though Fe-doping clearly enhances |𝑆| at temperatures above 120 K, PF is significantly 

decreased in Fe-doped samples due to their larger electrical resistivity arising from the stronger 

carrier scattering caused by the Fe-doping-induced disorder.  

Figure 4.12c shows the temperature-dependent thermal conductivity 𝜅 of Co3-xFexSn2S2 

under a zero magnetic field. The 𝜅  of pure Co3Sn2S2 initially rises as temperature decreases, 

reaches a peak of 8.7 W K-1 m-1 at 40 K, and then starts to decrease and converges to 0. The 𝜅 of 

Fe-doped samples displays a similar pattern, however the presence of Fe dramatically reduces the 

sample’s ability to conduct heat. The highest Fe content sample, Co2.6Fe0.4Sn2S2, has its maximum 

𝜅  of approximately 2.7 W K-1 m-1, some three times lower value than pure Co3Sn2S2. The 

dimensionless figure of merit, 𝑧𝑇 =  𝑆2𝜌−1𝜅−1𝑇, where S is the Seebeck coefficient, 𝜌 is the 

electrical resistivity, and 𝜅  is the thermal conductivity, is calculated for each sample and is 

depicted in Figure 4.12d. In spite of the fact that Fe-doping significantly suppresses 𝜅  and 

increases |𝑆| above 120 K, it also results in considerably larger electrical resistivity at the same 

time. Therefore, I only see a slight improvement in the thermoelectric performance in 

Co2.7Fe0.3Sn2S2 and Co2.6Fe0.4Sn2S2 compared to the pristine Co3Sn2S2 in a very narrow 

temperature range, 120 K ~ 160 K. This is remarkably different from the behavior at temperatures 

above room temperature, where the zT is claimed [69] to increase with the increasing Fe 

concentration and the enhancement in the Seebeck coefficient weighs over the reduction in the 

electrical conductivity. However, it needs to be pointed out that my Fe-doped samples, especially 

Co2.7Fe0.3Sn2S2 and Co2.6Fe0.4Sn2S2, have larger electrical resistivity and lower thermal 

conductivity at room temperature than that reported in this high-temperature research paper [69]. 
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This perhaps can be explained by the different qualities of the studied polycrystals. Since I used a 

different polycrystal synthesis method, the grain size, domain structure, and actual elements 

concentration may differ, which can affect the samples’ transport properties. 

 

Figure 4.12: Temperature-dependent (a) Seebeck coefficient S, (b) power factor PF, (c) thermal conductivity 𝜅, and 

(d) figure of merit zT of Co3-xFexSn2S2 under a zero external magnetic field. 

 

The earlier theoretical works [107-109] predicted that, unlike in traditional thermoelectric 

materials whose thermoelectric performance is almost unchanged under the magnetic field, the 

external magnetic field could significantly impact the thermoelectric properties of Dirac/Weyl 

semimetals due to their unique band structures. Thus, I also studied the influence of the external 

magnetic field applied parallel to the temperature gradient on the Seebeck effect S and thermal 

conductivity 𝜅 of pristine Co3Sn2S2 and Co2.8Fe0.2Sn2S2. As shown in Figure 4.13a, the applied 
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magnetic field significantly suppresses |𝑆| of Co3Sn2S2 near its Tc = 174 K, and the kink at this 

temperature disappears in both 5 × 104 Oe and 1.1 × 105 Oe curves. This effect is also observed 

in Co2.8Fe0.2Sn2S2 (see Figure 4.14a). In the temperature range 70 K ~ 130 K, the situation is 

reversed, here the magnetic field results in a slight increase in |𝑆| of Co3Sn2S2. The field-dependent 

change in S of Co3Sn2S2 (Figure 4.13b) provides a clearer picture. At 171 K, |𝑆| decreases as the 

magnetic field increases, and it is reduced by about 10% under a field of 1.4 × 105 Oe. At 101 K, 

|𝑆| increases as the magnetic field increases, and it is raised by about 5.6% under a field of   

 

Figure 4.13: Temperature-dependent (a) Seebeck coefficient S and (c) thermal conductivity 𝜅 of pristine Co3Sn2S2 

under the applied magnetic field of 0 Oe, 5 × 104 Oe, and 1.1 × 105 Oe. The Curie temperature of Co3Sn2S2, Tc = 

174 K, is indicated by the dashed line. Magnetic field-dependent change in (b) S and (d) 𝜅 of Co3Sn2S2 at different 

temperatures. The magnetic field is parallel to the temperature gradient in all these measurements. 
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1.4 × 105 Oe. At 61 K, S is essentially unaltered by the applied magnetic field. The suppression 

of |𝑆| near Tc can be attributed to the field-induced suppression of the thermal spin fluctuation. In 

a ferromagnetic material, the spin entropy is small at low temperatures and increases sharply when 

reaching close to Tc, exhibiting a steplike profile near Tc. If the d-orbital electrons are itinerant or 

partially itinerant, the behavior of the spin-entropy contribution to S is analogous to that of the spin 

entropy since S can be thought of as the entropy transferred per charge carrier [110]. At 

temperatures close to Tc, the spin entropy decreases significantly under a strong external magnetic 

field, because the thermal spin fluctuation is suppressed. Thus, |𝑆| reduces in the vicinity of Tc 

under applied magnetic fields. This spin fluctuation-related phenomenon has been observed in 

many other ferromagnetic materials, such as MnSi, Fe2V0.9Cr0.1Al0.9Si0.1, Fe2.2V0.8Al0.6Si0.4, and 

AFe4Sb12 (A = Ca, Sr, Ba) [110-112]. 

Figure 4.13c depicts the temperature-dependent 𝜅 of pristine Co3Sn2S2 under the applied 

magnetic field of 0 Oe, 5 × 104 Oe, and 1.1 × 105 Oe. Starting from the temperature around Tc, 

𝜅  is increased by the applied magnetic field. As the temperature falls, this increase becomes 

unnoticeable. At about 60 K, 𝜅 is almost unchanged by the magnetic field. As the temperature 

drops further, 𝜅 exhibits a decrease under the magnetic field, which is especially obvious around 

the peak temperature, 40 K. However, Co2.8Fe0.2Sn2S2 does not clearly display these features (See 

Figure 4.14b). To get a closer look at the influence of the applied magnetic field on 𝜅, the field-

dependent change in 𝜅 of Co3Sn2S2 at different temperatures are plotted in Figure 4.13d. Above 

61 K, 𝜅 increases as the magnetic field increases. Under the field of 1.4 × 105 Oe, the increases 

in 𝜅 are about 4.5%, 1.4%, and 0.6% at 171 K, 101 K, and 71 K, respectively. At 61 K, 𝜅 is 

basically unaffected by magnetic fields. Below 61 K, 𝜅 decrease as the magnetic field increases, 

and in the field of 1.4 × 105 Oe, it is reduced by about 2.1%, 5.8%, and 4.9% at 41 K, 15 K, and 
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10 K, respectively. It is worth pointing out that I observed a similar trend in the field-dependent 

magnetoresistance of Co3Sn2S2, where above about 60 K, the magnetoresistance was negative 

while below 60 K it turned positive (see section 4.3.3.3). This is intuitively reasonable. In general, 

𝜅 can be partitioned into two contributions: the lattice thermal conductivity 𝜅𝐿 and the electronic 

thermal conductivity 𝜅𝑒 . The heat transport by phonons is usually independent of the applied 

magnetic field [113]. Thus, 𝜅𝐿 can be regarded as a constant under the varying magnetic field. 

After applying an external magnetic field, if the MR is negative, 

 

Figure 4.14: Temperature-dependent (a) Seebeck coefficient S and (b) thermal conductivity 𝜅 of Co2.8Fe0.2Sn2S2 under 

the applied magnetic field of 0 Oe, 5 × 104 Oe, and 1.1 × 105 Oe. The Curie temperature of Co2.8Fe0.2Sn2S2, Tc = 166 

K, is indicated by the dashed line. The magnetic field is parallel to the temperature gradient in both measurements. 
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𝜅𝑒 increases due to the reduced electrical resistivity, and if the MR is positive, 𝜅𝑒 is diminished 

since the electrical resistivity increases.  

I also explored the influence of the external magnetic field applied perpendicular to the 

temperature gradient on the S and 𝜅 of pristine Co3Sn2S2. Nevertheless, as presented in Figure 

4.15, the results are very similar to that in Figure 4.13a and c. There is no noticeable difference 

brought on by the transverse magnetic field. It is worth emphasizing that samples measured in this 

work are polycrystals and some physical properties respond to the applied magnetic field less 

noticeably than single crystal samples would. For example, the magnetoresistance (MR) of the 

Co3Sn2S2 sample is about 10% in a magnetic field of 5 × 104 Oe at 2 K, while a single crystal 

sample can reach a value of ~25% under the same conditions [98]. Currently, the common 

synthesis method of single crystalline Co3Sn2S2 is the flux method, and the acquired sample is a 

very thin sheet with a diameter of ~ 4 mm [77]. Although this size is good enough for the magnetic 

and electrical transport measurements, it is too small to obtain reliable thermal transport data with 

acceptable errors. To further explore the thermal transport properties of Co3Sn2S2 under the applied 

magnetic field, a strategy for growing large single crystals is needed. 

4.3.4 Computational results 

In the last section of this chapter, I present the computational results. The spin-polarized 

DOS of Co3-xFexSn2S2 obtained from the full-potential KKR-Green’s function calculations is 

displayed in Figure 4.16a. For the pristine Co3Sn2S2, the spin-up band shows metallic characters, 

while the spin-down channel has an energy gap of about 0.3 eV, consistent with the reported value 

[114]. The material clearly exhibits a half-metallic nature. Fe-doping mainly affects the DOS near 

the Fermi level (EF). As the concentration of Fe increases, the band gap in the spin-down structure 

shrinks, and the DOS of the spin-up counterpart shows a noticeable    
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Figure 4.15: Temperature-dependent (a) Seebeck coefficient S and (b) thermal conductivity 𝜅 of Co3Sn2S2 under the 

applied magnetic field of 0 Oe, 5 × 104 Oe, and 8 × 104 Oe. The Curie temperature of Co3Sn2S2, Tc = 174 K, is 

indicated by the dashed line. The magnetic field is perpendicular to the temperature gradient in both measurements. 

 

increase in the range between -0.7 eV and -0.4 eV, and also a slight increase at the EF (see Figure 

4.16b and Table 4.2).  The DOS at the EF is dominated by the contributions of Fe and Co atoms. 

Figure 4.16c shows that at the concentration of x = 0.1, the DOS of Co atoms at the EF attains its 

largest value. As the content of Fe increases, the DOS of Co atoms at the EF marginally decreases. 

At the same time, as the content of Fe increases, the DOS of Fe atoms at the EF increases (see 

Figure 4.16d) and overshadows the decrease in the DOS of Co atoms, resulting in the overall 
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increase in the total DOS at the EF. To confirm the validity of the above computation, a 

KKR+DMFT approach [84] was employed as an alternative method for calculating the DOS. As 

seen in Figure 4.17, both methods yield a very similar result. 

 

Figure 4.16: (a) DOS of Co3-xFexSn2S2. (b) Enlarged plots of the DOS of Co3-xFexSn2S2 near the Fermi level (EF). The 

contributions of (c) Co atoms and (d) Fe atoms to the DOS of Co3-xFexSn2S2 near the EF. The EF is set at 0 eV. As 

indicated by upward (downward) arrows, the upper (lower) half plots denote the spin-up (spin-down) DOS. 

 

Regarding the band structure change under the influence of Fe-doping, the Bloch spectral 

function AB(E, k) is adopted, which can be seen as a k-resolved DOS function and be obtained from 

Fourier transformed of the real-space Green’s function. As for an ordered system, it is a δ-like  
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Figure 4.17: The DOS of pristine Co3Sn2S2 obtained using KKR-Green’s function and KKR+DMFT methods. The 

Fermi level (EF) is set at 0 eV. As indicated by an upward (downward) arrow, the upper (lower) half plot denotes the 

spin-up (spin-down) DOS. 

 

function that carries the same information as the dispersion relation E(k). Calculating AB(E, k) for 

an ordered system at complex energies is, therefore, an alternative way to represent E(k), with a 

broadening according to the imaginary part of E. For a disordered system, E(k) is not well defined, 

while AB(E, k) can still be used to represent the electronic band structure. As seen in Figure 4.18, 

the offset connected with a Block spectral function is due to the disorder in the Fe-doped system. 

Due to the low Fe-doping concentration, some dispersion relations remain. Hence, one can see 

these relations in the doped systems, especially the s and p states, which are less important as they 

are typically far from EF. However, in some regimes, the dispersion relations are more smeared 

out, which are mainly d states near EF and more important in the energy regime. In other words, 

the k-vector is a good quantum number for an ordered state but is not a good quantum number for 
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a disordered state. There are some physical meanings revealed by broadening of the Bloch 

spectrum function. For example, one can derive a lifetime from the width of these curves by using 

a group velocity. This information is usually needed for transport calculations using the Boltzmann 

or Kubo-Greenwood equation [115, 116].  

 

Figure 4.18: The spin-resolved Block spectral functions of pristine Co3Sn2S2 (a) spin-up (c) spin-down and 

Co2.6Fe0.4Sn2S2 (b) spin-up (d) spin-down. The amplitude is given by the color code. 

 

The formation energy of materials, which represents the energy required to dissociate the 

material into its individual components, has great significance in judging their stability. The 

formation energy of Co3-xFexSn2S2 systems was calculated from the conventional total energy. The 

relative formation energy of doped systems relative to that of pure system Co3Sn2S2 is displayed 

in Figure 4.19. The positive formation energy of the Fe-doped systems compared to the pristine 



 67 

one indicates that the doping-induced chemical disorder introduces instability to the structure of 

pristine Co3Sn2S2. Up to x = 0.3, the increase in the formation energy is still very small, but a big 

jump was observed at the Fe doping concentration of x = 0.4. This aligns with the Fe solubility 

limit of around x = 0.5 at ambient conditions [77]. 

 

Figure 4.19: The relative formation energy of Co3-xFexSn2S2 as compared to Co3Sn2S2. 

 

4.4 Conclusion 

In this work, I demonstrate the effect of Fe-doping on magnetic and transport properties of 

Co3Sn2S2. Fe-doping suppresses the ferromagnetic order and decreases the coercive field extracted 

from the magnetization curves. The suppression of the magnetic order is mainly due to the 

paramagnetic spin-polarized state of DOS of Fe-3d near the Fermi level. Right below TC, all ZFC 

curves display an anomaly, which is likely due to the emergence of the antiferromagnetic phase. 

At a low Fe-doping level, the anomalous Hall resistivity is still dominated by the intrinsic 
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contribution originating from Co3Sn2S2’s large Berry curvature, displaying the robustness of the 

topological origin of the AHE. However, with heavier Fe-doping, in addition to the skew-

scattering, the strong disorder and the Kondo effect observed in electrical resistivity measurements 

make the AHE much more complicated to analyze, leaving it for future studies. Fe-doping largely 

decreases the MR of Co3Sn2S2, but the non-saturating character is retained. The hysteresis in the 

MR at low magnetic fields below TC, which was found previously only in nanoflakes, is reported 

here for the first time in bulk samples, showing the competition and concurrence of the magnetic-

moment-induced fictitious field and the carrier scattering contribution to the MR.  

The low-temperature thermal and thermoelectrical properties, such as heat capacity, 

Seebeck coefficient, and thermal conductivity, were also studied. By fitting the low-temperature 

heat capacity data, it is demonstrated that as Fe concentration increases, the sample’s Debye 

temperature decreases, and its density of states at the Fermi level increases, which is confirmed by 

the computational results calculated using the full-potential KKR-Green’s function method. The 

Seebeck coefficient of Co3-xFexSn2S2 is negative in the measured temperature range, 2 K ~ 250 K, 

and the Fe-doping evidently enhances the absolute value of the Seebeck coefficient at temperatures 

above 120 K. Meanwhile, the thermal conductivity is notably suppressed by the Fe-doping. 

However, the power factor and the zT value are not enhanced by the Fe-doping because it strongly 

enhances the electrical resistivity at the same time. I also show how the external applied magnetic 

field influences the thermal transport properties of Co3Sn2S2. Under the applied magnetic field, the 

Seebeck coefficient and thermal conductivity exhibit different behaviors in the different 

temperature ranges. However, a large single crystal may be needed to document a more evident 

effect of the magnetic field. Overall, I conducted detailed investigations on low-temperature 

magnetic and transport properties Fe-doped Co3Sn2S2 polycrystals. I hope that this work can serve 
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as a reference and inspire future research on Co3Sn2S2 and other compounds in the shandite family. 

This work was published in references [117, 118]. 
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Chapter 5 Extremely Large Magnetoresistance and Quantum Oscillations in Semimetal 

Ni3In2S2 

 

5.1 Motivation 

Magnetoresistance (MR) is not only a fundamental topic in condensed matter physics but 

is also crucial to industrial applications. Large MR materials can be used to develop magnetic field 

sensors, random access memories, galvanic isolators, and read heads [119]. Magnetic materials 

are typically the main focus of searches for materials with a high MR. In recent years, the discovery 

of non-magnetic topological semimetals, such as Cd3As2, WTe2, and MoTe2, having a MR of more 

than 103, offers a new perspective on understanding and looking for materials with a large MR. 

Several mechanisms, such as electron-hole compensation and linear dispersion-induced high 

mobility, have been proposed to account for the large MR in these materials [18, 28]. 

Ternary chalcogenide Ni3In2S2 is a recently identified topological semimetal with endless 

Dirac-nodal lines, which displays a large transverse MR at low temperatures. In this work, I show 

that the transverse MR in single crystalline Ni3In2S2 reaches a giant value of ~ 24 000% at 2 K and 

14 T. In the meanwhile, a magnetic field-induced resistivity upturn behavior at low temperatures 

is observed, which is strongly correlated to the large MR. Moreover, below 50 K, the 

magnetoresistance curves show a linear magnetic field dependence under high magnetic fields. All 

these findings can be ascribed to the linearly dispersive electronic bands of Ni3In2S2. I will first 

present the transport measurement results and then combine them with computations and de Haas–
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van Alphen quantum oscillation results to explain the occurrence of the extremely large MR in 

Ni3In2S2 and the crucial role of the linear dispersions. 

5.2 Methods 

5.2.1 Experimental Methods 

Single crystal Ni3In2S2 was synthesized by the solid-state reaction method as previously 

reported [120]. Stoichiometric amounts of high-purity sulfur pieces, indium shots, and nickel 

powder were put into an alumina crucible. The crucible was then sealed in a quartz tube under 

vacuum. The quartz tube was placed in the box furnace and heated to 1000 ℃ in 20 h with a dwell 

time of 36 h. After that, it was slowly cooled to 500 ℃ with a rate of 2 ℃/h. Then, the tube was 

naturally cooled down to room temperature by turning off the furnace power. The acquired crystal 

could be easily cleaved into smaller pieces mechanically, and the cleavage plane is silver, shining, 

and mirror-like. A piece of crystal was ground into powder, and its crystal structure was examined 

by powder X-ray diffraction using a Rigaku Ultima IV X-ray diffractometer (Cu Kα). The 

orientation of the cleavage plane was determined by the single-crystal X-ray diffraction 

measurement using the same diffractometer. The chemical compositions of the crystal were 

checked by energy-dispersive X-ray spectrometry (EDS). 

Magnetotransport properties, heat capacity, and magnetic torque were measured in a 

Physical Property Measurement System (PPMS Dynacool, Quantum Design) under magnetic 

fields up to 14 T and temperatures down to 2 K. The torque measurements were performed on a 

piezoresistive cantilever mounted on the PPMS rotator sample puck. The vacuum grease was used 

to mount the sample onto the cantilever.  

5.2.2 Computational Method 
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The Electronic structure calculations of Ni3In2S2 crystal were performed using the full-

potential augmented-plane-wave + local orbital (APW + LO) method in the framework of density 

functional theory (DFT), as implemented in the ELK code [121]. Exchange and correlation effects 

were treated with the revised generalized gradient approximation for solids (the Perdew-Burke-

Ernzerhof functional) [82]. Spin-orbit coupling was found to have an insignificant impact on the 

electronic structure of Ni3In2S2 near the Fermi level (see Figure 5.1) and was therefore excluded 

in the present calculations. Regular Monkhorst-Pack grids of k points, typically a 16 × 16 × 16 k-

point mesh in the irreducible wedge, were used for the Brillouin-zone sampling. The lattice 

constants used in the calculations were a = b = 5.37 Å and c = 13.56 Å [122]. The fermiology of  

 

Figure 5.1: Band structure of Ni3In2S2 with and without SOC. SOC has a negligible effect on the bands near the Fermi 

level, except it opens a slight gap of 0.185 eV on Band 2 at the symmetry point T.   
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the Ni3In2S2 crystal was investigated using de Haas-van Alphen quantum oscillations. The 

quantum oscillation frequency and the effective mass of the Ni3In2S2 crystal were extracted from 

the calculated Fermi surface by employing a Supercell K-space Extremal Area Finder (SKEAF) 

program [123]. (The calculations were done by our collaborator, Dr. Zhongrui Li.) 

5.3 Results and Discussion 

5.3.1 Crystal Structure  

Ni3In2S2 crystallizes in a hexagonal lattice shandite structure with the space group No.166 

(𝑅3̅𝑚). Its conventional unit cell is shown in Figure 5.2a, which is drawn using the VESTA 

software [54]. As seen in Figure 5.2b, Ni atoms form a 2D Kagomé lattice within Ni-In(2) layers 

perpendicular to the c-axis. Figure 5.2c plots the powder X-ray diffraction (PXRD) pattern of the 

powder acquired by grinding the single crystal. Compared to the PXRD pattern generated by the 

previously reported data_415258 in the ICSD database [124], I confirm that the sample crystallizes 

in the shandite structure, and no second phase is detected. The single-crystal X-ray diffraction 

measurement result (Figure 5.2d) indicates that the cleavage plane of the crystal used for the 

transport measurements is perpendicular to the c-axis of the hexagonal conventional unit cell. The 

chemical composition of the sample determined by EDS is Ni3In2S2.1, demonstrating that the 

crystal is almost precisely stoichiometric given that the accuracy of the EDX measurement is only 

within a few wt%. 
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Figure 5.2: (a) Conventional unit cell of Ni3In2S2. Green ball represents the In(1) atom siting at 3a (0, 0, 0); Orange 

ball represents the In(2) atom siting at 3b (0, 0, 0.5); Blue ball represents the Ni atom siting at 9d (0, 0.5, 0.5); and 

Pink ball represents the S atom siting at 6c (0, 0, 0.27883). (b) Kagomé lattice within Ni-In(2) layers. (c) Powder X-

ray diffraction (PXRD) pattern of the ground single crystal Ni3In2S2 (black line), and PXRD pattern generated by the 

previously reported data_ICSD_415258 as a comparison (red line) [124]. (d) Single-crystal X-ray diffraction pattern 

of Ni3In2S2. 

 

5.3.2 Heat Capacity 

Figure 5.3a displays the temperature-dependent heat capacity cp of Ni3In2S2 under zero and 

10 T applied magnetic fields. Both cp curves show no signatures of any structural phase transition 

within the measured temperature range, and the distinction between the two curves is negligible. 

The inset plots 𝑐𝑝/𝑇 versus 𝑇2 below 4 K under zero magnetic field, and the data are fitted with 

the equation 𝑐𝑝/𝑇 = 𝛾 + 𝛽𝑇2, where 𝛾 is the Sommerfeld coefficient connected to the electronic 

heat capacity, 𝛽 is the coefficient of phonons associated to the lattice heat capacity, and 𝑇 is the 
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temperature [125]. The fitting result indicates that 𝛾 has a value of 8.3 mJ mol-1 K-2, and 𝛽 has a 

value of 0.4 mJ mol−1 K−4, suggesting the Debye temperature of Ni3In2S2 is 324 K. Because per 

atom the Sommerfeld coefficient is 1.2 mJ mol-1 K-2 atom-1, close to 1mJ mol-1 K-2 atom-1, Ni3In2S2 

has a low density of states (DOS) at the Fermi level (EF), showing the characteristic of a semimetal. 

This 𝛾 value also means no strong electron correlation effects in the Ni3In2S2 system, consistent 

with the previous study [122]. 

 

 

Figure 5.3: (a) Temperature-dependent heat capacity cp of Ni3In2S2 under zero and 10 T magnetic fields. The inset 

plots 𝑐𝑝/𝑇 versus 𝑇2  below 4 K under zero field, and the data are fitted with the equation 𝑐𝑝/𝑇 = 𝛾 + 𝛽𝑇2 . (b) 

Temperature-dependent longitudinal electrical resistivity 𝜌𝑥𝑥 under different magnetic fields. The magnetic field is 

parallel to the c-axis, and the current is in the ab-plane. (c) Minimum resistivity temperature Tm fitted by 

𝑇𝑚 ∝ (𝜇0𝐻 − 𝜇0𝐻0)1/𝑣. (d) Temperature-dependent normalized MR. 
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5.3.3 Magnetoresistance  

Figure 5.3b plots the temperature-dependent longitudinal electrical resistivity 𝜌𝑥𝑥 of the 

single crystal Ni3In2S2 under different magnetic fields, where the magnetic field is parallel to the 

c-axis, and the current is in the ab-plane. Without the externally applied magnetic field, 𝜌𝑥𝑥 

decreases as the temperature drops, showing the metallic nature of Ni3In2S2. The residual-

resistivity ratio 𝑅𝑅𝑅 = 𝜌300 𝐾 𝜌2 𝐾 ⁄ = 315, indicates the high quality of the single crystal. 𝜌𝑥𝑥 

exhibits a great dependence on the applied magnetic field in the low-temperature range, where the 

value of 𝜌𝑥𝑥  is significantly enhanced under the magnetic field. More interestingly, under the 

magnetic field greater than 2 T, 𝜌𝑥𝑥 shows an upturn at low temperatures and tends to saturate at 

still lower temperatures. The temperature corresponding to the minimum resistivity, Tm, increases 

as the magnetic field increases and can be well fitted by the relation 𝑇𝑚 ∝ (𝜇0𝐻 − 𝜇0𝐻0)1/𝑣 [126] 

with v = 2.95 and 𝜇0𝐻0 = 1.04 T, as shown in Figure 5.3c. This magnetic field-induced resistivity 

upturn behavior (also called the turn-on temperature behavior in some literature) has been reported 

in many other nonmagnetic semimetals. It can be ascribed to a number of different mechanisms 

and, usually, more than one mechanism is considered contributing simultaneously. For example, 

in semimetals WTe2 [127], HfTe2 [128], PtSn4 [129], and PdSn4 [34], this behavior is due to a 

high-quality sample of small residual resistivity, low charge carrier density, and high mobility, that 

follows the Kohler’s rule in the applied magnetic field under different temperatures. In NbSb2 

[130], the external magnetic field breaks the time reversal invariance and modifies the Fermi 

surface related to the Dirac-like point. Combined with the high carrier mobility, the resistivity 

upturn at low temperatures is observed. The metal-insulator and reentrant insulator-metal 

transitions occurring due to the gap opening at the band-touching points in graphite also lead to 

this upturn behavior [131, 132], In LaBi [35], it can be explained by the electron-hole 
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compensation and the Kohler’s rule. In orthorhombic phase of MoTe2 [36], the upturn behavior 

originates from the combination of the mixed d - p orbital texture in the electron pocket and the 

electron-hole compensation. The temperature-dependent normalized MR, which is defined by 

MR(𝜇0𝐻, 𝑇) = (𝜌𝑥𝑥(𝜇0𝐻, 𝑇) − 𝜌𝑥𝑥(0, 𝑇))/𝜌𝑥𝑥(0, 𝑇) under a fixed field, divided by the MR at 2 

K under this field, i.e., 𝑀𝑅(𝜇0𝐻, 𝑇)/𝑀𝑅(𝜇0𝐻, 2 K), is plotted in Figure 5.3d. In the case the 

external magnetic field induces a gap-opening at the band-touching point, the normalized MR 

curve displays a steeper slope under the higher field than under the lower field [36]. However, 

because the normalized MR curves under different magnetic fields collapse onto one curve, the 

metal-insulator transition is not the cause of the upturn behavior in Ni3In2S2. Here, it is of 

significance to mention again that the heat capacity curve exhibits negligible discrepancies under 

zero and 10 T applied magnetic fields (as illustrated in Figure 5.3a) at temperatures below 70 K. 

This indicates that the external magnetic field has no bearing on DOS at the Fermi level (EF), 

which further supports the conclusion that there is no metal-insulator transition occurring [36]. To 

delve deeper into the underlying factors behind this behavior, I now analyze the magnetoresistance 

and Hall resistivity at fixed temperatures.  

The magnetic-field-dependent transverse MR at different temperatures is displayed in 

Figure 5.4a. Measurements were done with the applied magnetic field aligned along the c-axis and 

the current flowing within the ab-plane. At room temperature, the MR is very small. However, as 

the temperature decreases, a gradual increase in MR is observed until it becomes significantly 

enhanced below 50 K. As displayed in the inset, the MR at 14 T dramatically increases starting 

from 50 K, eventually reaching a giant value of 23 680% at 2 K. The Shubnikov–de Haas (SdH) 

oscillations are observed in the high field range at 2 K, exhibit diminished traceability at 4 K, and 

vanish entirely at higher temperatures. The oscillatory component in the resistivity at 2 K is  
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Figure 5.4: (a) Transverse MR at different temperatures. The magnetic field is along the c-axis and the current is in 

the ab-plane. The inset shows the MR under 14 T at different temperatures. (b) FFT spectrum of SdH oscillations. 

The inset plots the oscillatory component in resistivity. (c) Kohler plots. The inset enlarges the curves above 50 K. (d) 

Fitting of MR at 2 K. The dashed extension lines serve as a guidance for the eye. (e) First-order derivative of MR. The 

inset enlarges the curve at 50 K. (f) Hall resistivity 𝜌𝑦𝑥 at different temperatures. 
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acquired after subtracting the linear background from the resistivity data, and is plotted against 

1/(𝜇0𝐻), as shown in the inset of Figure 5.4b. The corresponding fast Fourier transform (FFT) 

spectrum (Figure 5.4b) displays the oscillation frequencies of 64 T, 637 T, 891 T, and 1146 T. 

The Kohler plots at different temperatures are depicted in Figure 5.4c. It is evident that the 

scaled MR curves do not fall onto a single curve, particularly at temperatures below 40 K and high 

fields. This signifies a violation of Kohler's rule, meaning that MR does not follow the same 

functional form of 𝜇0𝐻/𝜌𝑥𝑥(0, 𝑇) at different temperatures. The breakdown of the Kohler’s rule 

indicates that the pattern of electron scattering varies as the temperature changes, which could be 

caused by variations in the mobility and/or the carrier concentration ratio of holes to electrons with 

temperature, and/or the effects of orbit quantization [33, 35]. Here, I can thus exclude the Kohler’s 

rule as the origin of the resistivity upturn behavior. 

It is worth pointing out that the MR curve exhibits different magnetic field dependence at 

a fixed temperature as the field changes. For instance, the MR curve at 2 K can be fitted by the 

second-order polynomial in the low-field range and the first-order polynomial in the high-field 

range separately, as shown in Figure 5.4d. In the field range from 0 to 1.5 T, the fitting result is 

𝑀𝑅 = 13.2𝜇0𝐻 + 168.5(𝜇0𝐻)2. Although there is a trace of linear contribution, the quadratic 

term predominates in the MR. However, the MR curve deviates from this relation quickly as the 

magnetic field increases. In the field range of 11 T to 14 T, the MR curve is well fitted by the linear 

relation, showing a 𝜇0𝐻 dependence. This field dependence change can be clearly seen in the first-

order derivative of the MR data plotted in Figure 5.4e. At 2 K, the 𝑑𝑀𝑅/𝑑(𝜇0𝐻) curve displays a 

linear behavior under low fields, suggesting that MR is dominated by the quadratic dependence. 

As the magnetic field increases, the 𝑑𝑀𝑅/𝑑(𝜇0𝐻) curve starts to bend and eventually becomes 

flat, indicating a linear MR, when the SdH oscillations are ignored. This dependence change is 
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retained until the temperature rises to 50 K. Above 50 K, the 𝑑𝑀𝑅/𝑑(𝜇0𝐻) curve no longer tends 

to flatten under high fields (see the inset of Figure 5.4e). 

Figure 5.4f shows the magnetic-field-dependent Hall resistivity 𝜌𝑦𝑥  at different 

temperatures. The magnetic field and the current directions are the same as when measuring the 

transverse MR. Below 50 K, the 𝜌𝑦𝑥 exhibits nonlinear behavior under low magnetic fields, which 

is the feature of compensated or nearly compensated semimetals, i.e., the contribution of both holes 

and electron to the transport properties is essential. The positive 𝜌𝑦𝑥 under the positive high fields 

suggests that holes make a greater contribution than electrons in my Ni3In2S2 crystal [33]. In 

studying transport properties of semimetals, a classical two-band model is usually used to fit 

magnetic field-dependent 𝜌𝑥𝑥 and 𝜌𝑦𝑥 data simultaneously to get an insight into the density and 

mobility of holes and electrons [33, 34, 133-135]. I fitted 𝜌𝑥𝑥 and 𝜌𝑦𝑥 data to the two-band model 

in the low-magnetic field range from -1.2 T to 1.2 T (see Figure 5.5). The equations (3.1) and (3.2) 

were used for the two-band model fitting (see section 3.1.1). The fitting returned hole and electron 

carrier density nh and ne, and hole and electron mobility μh and μe are displayed in Figure 5.6a and 

b, respectively. At 2 K, Ni3In2S2 has a hole carrier density of 1.5×1021 cm-3 and an electron carrier 

density of 1.3×1021 cm-3, and high hole and electron mobilities are comparable at ~1.4×104 cm2 

V-1 s-1. Based on the hole carrier density, one can roughly estimate that the Fermi wave number 

𝑘𝐹 = (3𝜋2𝑛ℎ )1/3   is 3.54 × 109 m-3. This gives a quantum oscillation frequency of 𝐹 =

ℏ𝑘𝐹
2 2𝑒⁄ = 4.1 × 103 T, which is consistent with the high oscillation frequency of the hole band 

deduced from dHvA results in section 5.3.5 (see Figure 5.12f). As temperature increases, both 

carrier density and mobility decrease. However, I want to point out the limitation of the two-band 

model in analyzing my Ni3In2S2 crystal. For example, I extended the two-band model fitting result 

in Figure 5.5a to 14 T, as shown in Figure 5.6c and d. It is clear that the low-field fitting result 
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Figure 5.5: Two-band model fitting of magnetoresistivity 𝜌𝑥𝑥 and Hall resistivity 𝜌𝑦𝑥 at different temperatures in the 

magnetic field range from -1.2 T to 1.2 T. Solid dots are experimental data, and green lines represent fitting results. 
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deviates from the experimental data as the magnetic field increases. I also tried to fit 2 K 𝜌𝑥𝑥 and 

𝜌𝑦𝑥 data to the two-band model in the magnetic field range from -14 T to 14 T. The best fitting 

result (see Figure 5.7), i.e., the Chi-square of fitting reaches minimum and the Chi-square tolerance 

value of 10-9 is reached, is still not satisfactory. The fact that the two-band model does not work 

well under higher magnetic fields implies that some other mechanisms, beyond the classical free-

electron theory, also affect the MR of Ni3In2S2, which will be discussed in the following section. 

 

 

Figure 5.6: (a) Hole and electron carrier density 𝑛ℎ and 𝑛𝑒, and (b) hole and electron mobility 𝜇ℎ and 𝜇𝑒 acquired 

from the two-band model fitting shown in Figure 5.5. (c) (d) Comparison between experimental data of 𝜌𝑥𝑥 and 𝜌𝑦𝑥 

at 2 K and extension of the fitting result in Figure 5.5a to 14 T. The inset in (d) enlarges the curves under magnetic 

fields below 3.5 T. 
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Figure 5.7: Two-band model fitting of (a) 𝜌𝑥𝑥 and (b) 𝜌𝑦𝑥 at 2 K in the magnetic field range from -14 T to 14 T. Solid 

dots are experimental data, and blue lines represent fitting results. The fitting suggests that hole carrier density 𝑛ℎ is 

8.75 × 1020 cm−3, electron carrier density 𝑛𝑒 is 8.78 × 1020 cm−3, hole mobility 𝜇ℎ is 6879 cm2 V-1 s-1, and electron 

mobility 𝜇𝑒 is 4990 cm2 V-1 s-1. This fitting result is not satisfying. It deviates from the experimental data and does not 

capture the non-linear behavior of 𝜌𝑦𝑥 in the low-magnetic field range, an important feature of semimetal. 

 

5.3.4 Density of states, Band structure, and Fermi Surface 

Figure 5.8a shows the total density of states (DOS) of Ni3In2S2 and element-specific partial 

DOS (PDOS) of Ni, In, and S atoms. The DOS near the Fermi level (EF) is dominated by the PDOS 
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of Ni atoms, which is mainly contributed by the d-orbitals of Ni (see Figure 5.8b). The DOS at the 

EF is 3.02 states eV-1 unit cell-1, which gives the Sommerfeld coefficient of 7.1 mJ mol-1 K-2, 

estimated by the formula 𝛾 = 𝜋2𝑘𝐵
2𝑛(𝐸𝐹) 3⁄ , where 𝑘𝐵 is the Boltzmann constant, and 𝑛(𝐸𝐹) is 

the DOS at the EF [125]. This value is close to that obtained from the fitting of the heat capacity 

data. Considering that the formula used here is derived from the free electron gas model, which 

certainly oversimplifies the situation of a real semimetal, one can say that the computation is well 

consistent with the experiments [100]. 

 

Figure 5.8: (a) DOS of Ni3In2S2 and PDOS of Ni, In, and S atoms. (b) Orbital contributions to PDOS of Ni atoms. (c) 

Element resolved electronic band structure. (d) Orbital projected electronic band structure. The band crossings are 

marked by the green circles. The symbol size is proportional to DOS. The numbers 1,2 and 3 correspond to the bands 

1, 2 and 3 on the Fermi Surface. 
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The band structure of Ni3In2S2, marked with the contribution of each element to bands, is 

displayed in Figure 5.8c. Here, the same k-path as in the previous study is used, and similar results 

are obtained [122]. The bands near the EF are dominated by Ni, as expected. The orbital projected 

band structure of Ni3In2S2 in Figure 5.8d shows significant contributions of 𝑑𝑦𝑧, 𝑑𝑥2−𝑦2, and 𝑑𝑧2 

orbitals to the bands near the EF. These imply that Ni 3d orbitals dominate the transport properties 

of Ni3In2S2. There are three bands crossing the Fermi level. Band 1 corresponds to the hole pockets 

near the H point (see Figure 5.9a and b), while bands 2 and 3 are related to the electron pockets at 

the Γ point (see Figure 5.9c, d, e, and f). The calculated volumes of the hole pockets in band 1 and 

the electron pockets in bands 2 and 3 are 0.1799 Å-3, 0.1469 Å-3, and 0.02787 Å-3, respectively. 

The hole density of band 1 is 1.45×1021 cm-3, and the electron density of band 2 and band 3 is 

1.18×1021 cm-3 and 0.23×1021 cm-3 separately, which agrees with carrier density acquired from 

the two-band model fitting. The almost equal hole and electron density suggest that Ni3In2S2 is a 

nearly compensated semimetal. The classical free-electron theory points out that the electron-hole 

compensation leads to an unsaturated quadratic MR [33] and is the origin of the extremely large 

MR as well as the magnetic induced-resistivity upturn behavior in some materials, as listed in 

section 5.3.3. However, the limitation of the two-band model fitting hints that the classical free-

electron theory is not sufficient to explain the transport properties in Ni3In2S2. Moreover, the MR 

curves exhibit a shift from the quadratic to the linear magnetic field dependence starting from a 

low magnetic field and the apparent violation of Kohler’s rule under high magnetic fields, 

indicating that some other mechanisms contribute to the large MR instead of the electron-hole 

compensation. 
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Figure 5.9: Top and side views of the calculated Fermi surface. (a)(b) Hole pockets associated to band 1. (c)(d) 

Electron pockets associated to band 2. (e)(f) Electron pockets associated to band 3. (g)(h) Merged graph. High 

symmetry points are labeled in (h). Γ point is the center of the Brillouin zone. 

 

Marked by the green circles in Figure 5.8d, there are three band crossings within 0.04 eV 

from the EF. Previous study has demonstrated that Ni3In2S2 hosts six endless Dirac-nodal lines, 

and linear crossings near the EF in the band structure were confirmed by ARPES measurements 

[122]. The linearly dispersive bands result in the small effective mass, which is verified by the 

following de Haas–van Alphen results, yielding high mobility. The high mobility is crucial to the 

large MR. Furthermore, the linear dispersion can also explain the linear MR observed under high 

magnetic fields. In Abrikosov’s quantum linear MR theory, the linear MR can be caused by the 

interorbital transfer in the longitudinal direction in the quantum limit. This requires a linear 

magnetic field-dependent longitudinal transfer probability, which can be realized in materials with 

linear dispersion [37, 52, 53]. Although the inhomogeneous carrier density in disordered systems 

can also result in a linear MR, it requires that the change in magnetoresistivity 𝜌𝑥𝑥 is smaller than 

the Hall resistivity 𝜌𝑦𝑥 [37, 39]. Clearly, this is not the case for my Ni3In2S2 sample. As presented 
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in the following section, the lowest dHvA oscillation frequency is 11 T, which is associated with 

band 1. The linear MR manifests evidently under a magnetic field starting right from 11 T (see 

Figure 5.4d). This suggests that under fields larger than 11 T, band 1 is driven to the quantum limit 

and, thus, leads to the large linear MR, according to Abrikosov’s quantum linear MR theory.   

 

5.3.5 de Haas–van Alphen Quantum Oscillations 

As shown in Figure 5.10a, the magnetic torque 𝜏 = 𝑉𝑀 × 𝜇0𝐻, where 𝑉 is the volume, 𝑀 

is the magnetization, and 𝜇0𝐻  is the external applied magnetic field, is measured at different 

temperatures at 휃 = 2°, where 휃 = 0°and 90° correspond to the applied magnetic field oriented 

along the c-axis and along the a-axis, respectively. Strong de Haas–van Alphen (dHvA) quantum 

oscillations are observed in my Ni3In2S2 sample. In contrast to SdH oscillations in MR, which are 

only observable under high magnetic fields at 2 K, dHvA oscillations start under a much lower 

magnetic field and are evident even at higher temperatures. This behavior is usually seen in layered 

materials. The dHvA oscillations are directly linked to the Landau level energy spectrum, while 

the SdH effect is associated with the scattering rate of charge carriers [28]. Figure 5.10b plots the 

oscillatory components against 1/(𝜇0𝐻), which are acquired after subtracting the background 

from the magnetic torque data. The corresponding FFT spectra are displayed in Figure 5.10c. At 

2 K, there are several strong main peaks with many weak peaks in the FFT spectrum. The dHvA 

frequency 𝐹 is associated with the extremal Fermi surface cross-sectional area 𝐴 perpendicular to 

the magnetic field through the Onsager relationship: 𝐹 = (ℏ/2𝜋𝑒)𝐴 , where ℏ  is the reduced 

Planck constant and e is the elementary charge. The large number of peaks shows the complexity 

of the Fermi surface, as seen in Figure 5.9. Many peaks damp out quickly as the temperature 

increases. For those frequencies with peaks still visible at 6 K, I plot the amplitude of each 
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frequency as a function of temperature in Figure 5.10d. The effective mass for each frequency 

band can be obtained by fitting the amplitude by the thermal damping factor in the Lifshitz-

Kosevich (LK) formula, i.e., 𝑅𝑇 = (𝑎𝑇𝜇/(𝜇0𝐻)) sinh (𝑎𝑇𝜇/(𝜇0𝐻))⁄ , where 𝑎 = 14.69 T/K, 𝑇 

is the temperature, 𝜇 is the ratio of effective cyclotron mass 𝑚∗ to the free electron mass 𝑚𝑒, and 

𝜇0𝐻 is the applied magnetic field [28]. The obtained effective mass ratio 𝜇 and the corresponding 

frequency F are summarized in Table 5.1. Because the lowest oscillation frequency, 11 T, is far 

from other frequencies, and its signal is strong under low fields with no influences of other 

frequencies at 2 K, as shown in Figure 5.10e, it is possible to deduce the corresponding Dingle 

temperature. The Dingle plot (Figure 5.10f) plots In (Δ𝜏/((𝜇0𝐻)3/2𝑅𝑇))  as a function of 

1/(𝜇0𝐻), where Δ𝜏 is the oscillation amplitude of frequency of 11 T at 2 K read from Figure 5.10e 

and 𝑅𝑇 is the thermal damping factor at 2 K. The Dingle plot can be linearly fitted with a slope of 

-2.77, indicating that the Dingle temperature 𝑇𝐷  is 0.75 K, as the slope is equal to −𝑎𝑇𝐷𝜇 , 

according to the field-damping factor in the LK formula [28]. Therefore, the corresponding 

quantum relaxation time 𝜏𝑞 = ℏ 2𝜋𝑘𝐵𝑇𝐷⁄  is 1.6 ps, and the quantum mobility 𝜇𝑞 = 𝑒𝜏𝑞/𝑚∗ is 

1.1×104 cm2 V-1 s-1. The quantum mobility 𝜇𝑞 is less than the mobility acquired from the two-

band model fitting. This is expected since 𝜇𝑞 is affected by scatterings in all directions, while the 

mobility introduced in the free-electron model is not influenced by small-angle scatterings [28]. 

The small effective mass and high quantum mobility of Ni3In2S2 deduced from dHvA oscillations 

are comparable to those of semimetals with large MR [28]. I have also done the same measurement 

for 휃 =  85°, as shown in Figure 5.11. 
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Figure 5.10: (a) Magnetic torque at 휃 = 2°. (b) Oscillatory components in torque signals. (c) Corresponding FFT 

spectra. (d) Amplitude of peaks in FFT spectra as a function of temperature. Solid lines represent fits to 𝑅𝑇 in the LK 

formula. For the sake of clarity, these data points are rescaled and offset. (e) The oscillatory component in the torque 

signal at 2 K under low magnetic fields. (f) Dingle plot of frequency of 11 T. The solid line represents the linear fitting 

of the data points. 
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Figure 5.11: (a) Magnetic torque at 휃 = 85°. (b) Oscillatory component in torque. (c) Corresponding FFT spectra. (d) 

Amplitude of peaks in FFT spectra as a function of temperature. Solid lines represent fits to 𝑅𝑇 in the LK formula. 

For the sake of clarity, these data points are rescaled and offset. (e) The oscillatory component in the torque signal at 

2 K under low magnetic fields. (f) Dingle plot of frequency of 18 T. The solid line represents the linear fitting of the 

data points. The slope of the solid line is -3.61. Thus, the Dingle temperature 𝑇𝐷 is 0.85 K. The corresponding quantum 

relaxation 𝜏𝑞 is 1.4 ps, and the quantum mobility 𝜇𝑞 is 8.7×103 cm2 V-1 s-1. 
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To further study the fermiology of Ni3In2S2, I measured the angle-dependent magnetic 

torque from 휃 =  2° to 85° at 2 K. The dHvA oscillations are observed in the entire angular range, 

and the corresponding FFT spectra are plotted in Figure 5.12a-e. The comparison between the 

calculated and experimental dHvA frequencies is presented in Figure 5.12f. Good agreements are 

seen between calculations and experiments for the frequency of about 1200 T (blue stars in Figure 

5.12f), which is assigned to the smaller electron pockets at the Γ point linked to band 3, and for 

the frequency of about 10 T (green squares), which is assigned to the hole pockets associated with 

band 1. However, disagreements between calculations and experiments for high frequencies 

resulting from band 1 and band 2 are obvious. In addition, there are certain frequencies obtained 

from experiments (represented by pink crosses) that cannot be linked to any calculated frequencies, 

so that it is not possible to determine from which band they originate. The Fermi surface 

calculations are sensitive to the chemical potential and lattice parameters, and the complexity of 

the Fermi surface further complicates the analysis. For example, missing extremal cross-sectional 

areas and magnetic breakdown phenomena can cause significant differences between the 

computed and experimental results [28]. Thus, it is not surprising to see such a mismatch. The 

effective mass calculation draws upon the energy slope at the Fermi surface, given by 𝑚∗ =

ℏ2

2𝜋𝑚𝑒
(

𝑑𝐴

𝑑𝐸
). Frequencies with values around 1.1 kT originating from band 3 have the effective mass 

ranging from 0.4 𝑚𝑒 to 0.6 𝑚𝑒. Frequencies between 2 kT and 4 kT resulting from band 2 have a 

much heavier effective mass ranging from 1.1 𝑚𝑒 to 2.8 𝑚𝑒. The hole pockets linked to band 1 

have complicated shapes and, thus, result in a wide distribution of frequencies from 10 T to 4.5 kT 

with effective mass ranging from 0.13 𝑚𝑒 to 5.2 𝑚𝑒. I compare the calculated effective mass to 

that extracted from the fitting of experimental data in Table 5.1. Except for the experimental 
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effective mass corresponding to frequencies of 2636 T and 3957 T acquired at 휃 =  85°, much 

smaller than the calculated values, experiments and calculations show good consistency. 

 

 

Figure 5.12: (a-e) FFT spectra of oscillatory components in torque measured at different angles θ. The definition of θ 

is shown in the inset of (f). For the sake of clarity, spectra are rescaled and offset. (f) The comparison between the 

calculated and experimental dHvA frequencies. Solid symbols represent the calculated frequencies. Open symbols 

represent experimental frequencies. Pink crosses represent frequencies obtained from experiments that cannot be 

linked to any calculated frequencies. The unit of F is in 103T, i.e., kT. 

 

 

Table 5.1: Effective mass ratio of Ni3In2S2 and the corresponding frequency and band. 𝜇𝑒𝑥𝑝 is obtained from dHvA 

experimental results, and 𝜇𝑐𝑎𝑙 is the calculated effective mass. The experiments-obtained frequencies, 1019 T and 

1315 T, cannot be linked to any calculated frequencies, so 𝜇𝑐𝑎𝑙 and corresponding bands are missing. 

휃 =  2° 휃 =  85° 

F [T] 𝜇𝑒𝑥𝑝 𝜇𝑐𝑎𝑙 band F [T] 𝜇𝑒𝑥𝑝 𝜇𝑐𝑎𝑙 band 

11 0.25 0.15 1 18 0.29 0.24 1 

660 0.58 0.64 1 597 1.01 0.83 1 

688 0.62 0.66 1 1313 0.47 0.52 3 

828 0.85 1.06 1 2636 0.56 2.13 2 

895 0.62 1.10 1 3957 0.59 2.53 2 

1019 0.69       

1136 0.37 0.41 3     

1315 0.75       
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5.4 Conclusion 

In this work, I have presented transport properties and quantum oscillations of single-

crystalline semimetal Ni3In2S2. The crystal exhibits extremely large transverse MR and magnetic 

field-induced resistivity upturn behavior at low temperatures. Below 50 K, the MR curves show a 

shift from the quadratic to the linear magnetic field dependence as the field increases. The 

computation results suggest that Ni3In2S2 is a semimetal with three linear crossings near the Fermi 

level in the electronic band structure. The linearly dispersive bands result in small effective mass 

and, thus, high quantum mobility, which is affirmed by dHvA results. Moreover, the linear MR 

under high magnetic fields can also be explained by the linear dispersions. The high mobility and 

quantum linear MR resulting from the linearly dispersive bands lead to the exceptionally large 

transverse MR in my Ni3In2S2 sample. Due to the very small resistivity and extremely large MR 

at low temperatures, an upturn behavior is observed. It is hoped that these findings can be a 

reference and inspiration for future research on semimetals with large MR. This work was 

published in reference [136]. 
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Chapter 6 Low-Temperature Electrical and Thermal Transport in Type-II Dirac 

Semimetal NiTe2 

6.1 Motivation 

Recently, several transition metal tellurides, such as CoTe2 [137], ZrTe2 [138], and PdTe2 

[139], have been identified as type-II Dirac semimetals, where the Lorentz invariance is violated 

and the Dirac cone is tilted. In these systems, however, the Dirac point is several hundred meV 

away from the Fermi level (EF). Thus, the transport properties are dominated by those topologically 

trivial bands near EF rather than the Dirac fermions. 

NiTe2, which shares the same crystal structure as the above mentioned tellurides, hosts a 

type-II Dirac point only about 80 meV above the EF [140]. The Dirac point is located along the 

high-symmetry direction Г-A (see Figure 6.6b), which is the invariant subspace of the three-fold 

rotation (𝐶3) symmetry. The symmetry analysis points out that the crossing bands have opposite 

rotation characters. As a result, the Dirac point is protected from perturbations respecting the 𝐶3 

symmetry [141]. The tilted type-II Dirac cone has been confirmed by ARPES experimentally [141]. 

Since the Dirac point of NiTe2 is in the vicinity of the EF, the corresponding Dirac fermions’ 

contributions may very likely manifest in the transport properties. In this work, I study the 

electrical and thermal transport properties of NiTe2 single crystal. The crystal displays a large and 

anisotropic magnetoresistance at low temperatures. The dHvA quantum oscillation results 

demonstrate its small effective mass and nontrivial Berry phase resulting from the Dirac point. The 

thermal conductivity of the NiTe2 crystal is significantly suppressed by the applied magnetic field. 
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Additionally, the Lorenz number deduced from the thermal conductivity strongly deviates from 

the Sommerfeld value, indicating the breakdown of the Wiedemann-Franz law in NiTe2. 

6.2 Methods 

Single crystal NiTe2 was synthesized by the self-flux method. The raw materials with a 

molar ratio of Ni:Te = 1:11.5 were loaded into a quartz tube and sealed under vacuum. The tube 

was heated to 1100 ℃ and held for 24 hours before being quickly cooled to 700 ℃ and held for 2 

hours. The tube was then cooled to 465 ℃ at a rate of 1 ℃/h. After that, the single crystal and 

excess liquid Te were separated at 465 ℃. (This sample was provided by Dr. Genda Gu and Prof. 

Qiang Li at the Brookhaven National Lab.) 

The acquired crystal could be easily cleaved into smaller and thinner pieces mechanically, 

and the cleavage planes exhibited a shining and silver appearance. The orientation of the cleavage 

plane was determined via single-crystal X-ray diffraction measurement using a Rigaku Ultima IV 

X-ray diffractometer (Cu Kα). The chemical compositions of the crystal were confirmed by 

energy-dispersive X-ray spectrometry (EDS). 

Electrical and thermal transport properties, heat capacity, and magnetic torque were 

measured in a Physical Property Measurement System (PPMS Dynacool, Quantum Design) under 

magnetic fields up to 14 T and temperatures down to 2 K. The torque measurements were carried 

out on a piezoresistive cantilever mounted on the PPMS rotator sample puck. The sample was 

affixed to the cantilever using vacuum grease. The thermal conductivity and Seebeck coefficient 

were measured using the Thermal Transport Option (TTO) of the PPMS. To correct for magnetic 

field-induced temperature errors resulting from the magnetoresistance (MR), the resistive 

thermometers were calibrated using the PPMS MR calibration wizard before the transport 

measurement. 
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6.3 Results and Discussion 

6.3.1 Crystal Structure  

NiTe2 crystallizes in a trigonal lattice structure with the space group No.164 (𝑃3̅𝑚1). 

Figure 6.1a and b illustrate different perspectives of its unit cell, which are drawn using the VESTA 

software [54]. Figure 6.1c presents the single-crystal X-ray diffraction patterns of the NiTe2 crystal, 

which indicates that the cleavage plane is perpendicular to the c-axis of the unit cell. The sample 

exhibits almost precise stoichiometry, as evidenced by its chemical compositions of NiTe1.95 

determined via EDS.  

 

 

Figure 6.1: (a)(b) Different perspectives of the unit cell of NiTe2. (c) Single-crystal X-ray diffraction patterns of the 

acquired NiTe2 crystal. 

 

6.3.2 Electrical Transport Properties 
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Figure 6.2a plots the temperature-dependent longitudinal electrical resistivity 𝜌𝑥𝑥 of the 

single crystal NiTe2, which decreases as the temperature drops, indicating its metallic nature. The 

residual resistivity is 0.11 μΩ cm, and the residual-resistivity ratio 𝑅𝑅𝑅, defined as 𝜌300 𝐾 𝜌2 𝐾 ⁄ , 

is 260, showing the high quality of the single crystal. 

As shown in Figure 6.2b and c, NiTe2 displays large transverse MR at low temperatures, 

which reaches about 700% at 2 K and 14 T. The transverse MR was measured with the applied 

magnetic field aligned along the c-axis and the current flowing within the ab-plane of the crystal. 

The transverse MR shows different magnetic field dependence at different temperatures. In the 

temperature range from 2 K to 25 K, the MR curve exhibits a cusp under low fields. As the 

temperature increases, this cusp is gradually wiped out and disappears at 30 K. In the temperature 

range from 30 K to 50 K, the MR curve shows an entirely different magnetic field dependence 

compared to that below 25 K. In this temperature range, the MR curve can be fitted by the second-

order polynomial under fields from 0 to 4 T and the first-order polynomial under fields from 4 to 

14 T separately (see the black and red lines in Figure 6.2c). These phenomena suggest that the 

scattering mechanisms dominating the transport change as the temperature and the applied 

magnetic field vary.  

Figure 6.2d shows the magnetic field-dependent 𝜌𝑥𝑥 at 2 K with several tilt angles θ, where 

θ is the angle between the c-axis and the applied magnetic field (see the inset). At a fixed field 

weaker than 4.5 T, the 𝜌𝑥𝑥 decreases as θ increases. This can be clearly seen in the polar plot of 

the angular variation of 𝜌𝑥𝑥 under a field of 2 T in Figure 6.2f. The 𝜌𝑥𝑥 reaches its maximum when 

the field is perpendicular to the current (휃 = 0°), while it reaches its minimum when the field is 

parallel to the current (휃 = 90°). This is not surprising because the Lorentz force contribution to 

the MR becomes smaller as θ increases. However, under fields stronger than 4.5 T, albeit 𝜌𝑥𝑥 at 
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휃 = 0° is still greater than that at 휃 = 90°, the greatest 𝜌𝑥𝑥 occurs at θ of 30° or 40° depending on 

the field. The polar plot in Figure 6.2f exhibits a butterfly shape at 10 T with four maxima occurring 

when the field is along the direction in the middle between the c-axis and the current direction. 

Moreover, I fitted the magnetic field-dependent 𝜌𝑥𝑥 curves (except the one at 휃 = 90°) above 2 T 

to the equation 𝜌𝑥𝑥(𝐵) = 𝑎 + 𝑏𝐵𝑚, where 𝐵 = 𝜇0𝐻 is the applied magnetic field, and a, b, and m 

are fitting parameters. The curve representing the longitudinal magnetoresistivity, i.e., the curve 

at 휃 = 90°, displays a positive MR in the measured field range and does not show any signatures 

of the chiral anomaly-induced negative longitudinal magnetoresistance. This curve cannot be fitted 

by the power law; instead, it is fitted by a logarithm relation. As plotted in Figure 6.2e, the fitted 

index m firstly increases as θ increases, reaches the maximum at  40°, and then decreases as θ 

increases. The varying value of m and shape change of the polar plot indicate that the Fermi surface 

or the scattering patterns contributing to the transport are highly anisotropic at 2 K and are also 

sensitive to the strength of the applied magnetic field. 

As displayed in Figure 6.3a, the Hall resistivity 𝜌𝑦𝑥 curves below 50 K exhibit nonlinear 

behaviors, which indicates the co-existence of both hole- and electron-type carriers. The positive 

𝜌𝑦𝑥  under the positive fields suggests that hole-type carriers make a greater contribution than 

electron-type carriers in the NiTe2 crystal. Generally, the carrier density and mobility can be 

obtained by fitting the magnetic field-dependent 𝜌𝑥𝑥 and 𝜌𝑦𝑥 simultaneously to the classical two-

band model. However, the complex transverse MR behaviors cause the fitting of the 𝜌𝑥𝑥 to the 

two-band model (equation (3.1) in section 3.1.1) to fail. Instead, here I provide the Hall carrier 

density n at 14 T, which is calculated through the equation 𝑛 = 𝐵/(𝑒𝜌𝑦𝑥,14 T), where 𝐵 = 𝜇0𝐻 is 

the applied magnetic field, and 𝜌𝑦𝑥,14 T is the value of 𝜌𝑦𝑥 at 14 T. As shown in Figure 6.3b, the  
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Figure 6.2: (a) Temperature-dependent longitudinal electrical resistivity 𝜌𝑥𝑥 of NiTe2 crystal. (b) Transverse MR in 

the temperature range from 2 K to 25 K, where MR is defined as MR = (𝜌𝑥𝑥(𝜇0𝐻) − 𝜌𝑥𝑥(0))/𝜌𝑥𝑥(0), where 𝜌𝑥𝑥(0)  

and 𝜌𝑥𝑥(𝜇0𝐻)  are the longitudinal resistivity at zero and 𝜇0𝐻  fields, respectively. (c) Transverse MR in the 

temperature range from 30 K to 50 K. The black and red lines represent the second-order polynomial fittings and the 
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first-order polynomial fittings, separately. (d) Magnetic field-dependent 𝜌𝑥𝑥  with several tilt angle θ at 2 K. The 

definition of θ is shown in the inset. The grey lines represent the fittings described in the text. (e) The fitted index m. 

(f) Polar plots of the angular variation of 𝜌𝑥𝑥 at 2 K and under a fixed magnetic field. 

  

Hall carrier density n increases as the temperature increases. It should be pointed out that the Hall 

carrier density is not equal to the real hole- or electron-type carrier density. It is the difference  

between the densities of these two types of carriers. The inset in Figure 6.3a plots the Hall 

conductivity 𝜎𝑥𝑦 at 2 K. In the standard Bloch–Boltzmann transport, the reciprocal of the peak 

field 1/Bmax is equal to the mean mobility [142] . Consequently, the mean mobility in the NiTe2 

crystal is about 2040 cm2 V-1 s-1 at 2 K, which is comparable to the previous study [143].  

 

 

Figure 6.3: (a) Hall resistivity 𝜌𝑦𝑥 of NiTe2 crystal at different temperatures. The inset shows the Hall conductivity 

𝜎𝑥𝑦 at 2 K. Bmax is marked by the orange arrow. (b) Hall carrier density at 14 T. 

 

6.3.3 de Haas–van Alphen Quantum Oscillations 

The magnetic torque 𝜏 = 𝑉𝑀 × 𝜇0𝐻, where 𝑉 is the volume, 𝑀 is the magnetization, and 

𝜇0𝐻 is the external applied magnetic field, is measured at different temperatures at 휃 = 2°, where 
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휃 = 0°and 90° correspond to the applied magnetic field oriented along the c-axis and along the a-

axis, respectively. Figure 6.4a plots the component of the magnetization perpendicular to the 

applied magnetic field 𝑀⊥ deduced from the measured 𝜏. Strong de Haas–van Alphen (dHvA) 

quantum oscillations are observed in the NiTe2 sample. Figure 6.4b plots the oscillatory 

components in 𝑀⊥ against 1/(𝜇0𝐻), which are acquired after subtracting the background from the 

𝑀⊥ data. The corresponding fast Fourier transform (FFT) spectra are displayed in Figure 6.4c. 

There are two major frequencies, 47 T and 400 T, labeled as α and β, respectively, and the peak  

 

 

Figure 6.4: (a) 𝑀⊥ at 휃 = 2°. (b) Oscillatory components in 𝑀⊥. (c) Corresponding FFT spectra. The inset enlarges 

the spectra in the range from 500 T to 900 T. (d) Amplitude of peaks in FFT spectra as a function of temperature. 

Solid lines represent fits to 𝑅𝑇 in the LK formula. For the sake of clarity, these data points are rescaled and offset. 
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corresponding to the 2nd harmonic frequency of α is evident in FFT spectra. Additionally, two 

weak peaks, γ and δ, located at 594 T and 847 T separately, are found in the spectra. In Figure 

6.4d, I plot the FFT amplitude of frequencies, α, β, and γ as a function of temperature. The effective 

mass of each frequency orbit can be obtained by fitting the amplitude by the thermal damping 

factor (equation (3.10) in section 3.3.2) in the Lifshitz-Kosevich (LK) formula. The values of the 

obtained effective mass ratio 𝜇, which is defined as the ratio of the effective cyclotron mass 𝑚∗ to 

free electron mass 𝑚0, are summarized in Table 6.1. All of these three orbits exhibit a small 

effective mass. 

 

 

Figure 6.5: FFT spectra of oscillatory components in 𝑀⊥ at different angles θ. For the sake of clarity, spectra are 

rescaled and offset. 



 103 

 

Figure 6.6: (a) dHvA frequencies as a function of θ.  The definition of θ is shown in the inset. (b) Electronic band 

structure of NiTe2 including the spin-orbit coupling (SOC). Bands crossing the EF are labeled by numbers. The 

corresponding Fermi surfaces of these bands within the first Brillouin zone are shown on the right. Adapted from 

reference [143] with permission from the American Physical Society. 

 

Figure 6.5 displays the FFT spectra of the oscillatory components in 𝑀⊥  at 2 K and 

different 휃. The oscillation frequencies as a function of 휃 are plotted in Figure 6.6a. According to 

the previous study, there are two hole bands and two electron bands crossing the Fermi energy 

(EF) in the electronic band structure of NiTe2, which are labeled by numbers in Figure 6.6b. Two 

hole bands, band 3 and band 4, cross at a Dirac point near the EF in the Г-A direction, forming a 

tilted type-II Dirac cone [143]. The α frequency of value around 50 T is linked to band 3 with a 

small Fermi surface cross-sectional area, and its value does not change evidently as θ varies. The 

β and γ frequencies are linked to band 4, and their corresponding peaks disappear in the FFT 

spectra at θ greater than 40° . The δ frequency, the highest frequency observed in my 

measurements, results from band 2. The values of β, γ, and δ frequencies vary obviously as θ 

changes, indicating the anisotropy of the Fermi surfaces of band 2 and band 3, which is consistent 

with the anisotropic magnetic field-dependent 𝜌𝑥𝑥 discussed in the previous section.  
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 Since band 3 and band 4 are related to the Dirac point near the EF, it would be interesting 

to calculate the corresponding Berry phases and quantum mobilities. By using the band filter, the 

oscillatory components of 47 T, 400 T, and 594 T are separated from the oscillatory signals in 𝑀⊥ 

at 2 K and plotted in Figure 6.7a. The corresponding Landau fan diagrams of each frequency are 

shown in Figure 6.7b. The minima of Δ𝑀⊥ are assigned with the Landau level index 𝑛 = 𝑙 −
1

4
, 

where l is an integer [28]. The linear fittings of 𝑛 are represented by the solid lines, which intersect 

with the n-axis at 0.48, 0.35, and 0.34 for 47 T, 400 T, and 594 T orbits. Previous calculation work 

points out that the 400 T orbit and 594 T orbit are linked to the minimum and maximum Fermi 

surface cross-sectional areas of band 4, respectively [143]. Therefore, the phase shift 𝜙 of the 400 

T orbit and 594 T orbit are 
1

8
 and −

1

8
, respectively. Consequently, the Berry phase 𝜑𝐵 of the 400 

T orbit is 0.95π, while that of the 594 T orbit is 0.43π. However, I do not have information about 

the phase shift of the 47 T orbit. As a result, its Berry phase would be either 0.96π, 1.21π, or 0.71π, 

depending on the value of the phase shift. All these orbits display a nontrivial Berry phase due to 

the Dirac point. 

 According to the field-damping factor (equation (3.11) in section 3.3.2)  in the LK formula, 

the quantum relaxation time and mobility can be calculated from the Dingle temperature 𝑇𝐷 

obtained from the Dingle plot. The Dingle plot of 47 T, 400 T, and 594 T orbits are shown in 

Figure 6.7c. The Dingle temperature 𝑇𝐷 of each orbit is deduced from the slope of the linear fitting 

of the corresponding Dingle plot. The quantum relaxation time 𝜏𝑞 = ℏ 2𝜋𝑘𝐵𝑇𝐷⁄  and the quantum 

mobility 𝜇𝑞 are calculated and summarized in Table 6.1. The quantum mobility 𝜇𝑞 is less than the 

mobility acquired from the peak of Hall conductivity 𝜎𝑥𝑦 in the previous section. This is expected 

since 𝜇𝑞 is affected by scatterings in all directions, while the transport mobility is not influenced 
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by small-angle scatterings. The small effective mass and high mobility related to the Dirac point 

are the reasons for the observed large MR. 

 

 

 

Figure 6.7: (a) The light blue line represents the oscillatory component in 𝑀⊥ at 2 K and 휃 = 2°. The components 

related to 47 T, 400 T, and 594 T, which are separated by the band filter, are plotted by the blue, orange, and green 

lines respectively. (b) Landau fan diagram. The solid lines represent the linear fittings. The inset shows a closer view 

of the points where the fitting lines intersect with the n-axis. (c) Dingle plot. The solid lines are linear fittings of the 

data points. 
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Table 6.1: Effective mass ratio μ, Berry phase 𝜑𝐵, Dingle temperature 𝑇𝐷, quantum relaxation time 𝜏𝑞, and quantum 

mobility 𝜇𝑞 of 47 T, 400 T, and 594 T orbits deduced from dHvA oscillation results. 

F (T) μ 𝜑𝐵 𝑇𝐷 (K) 𝜏𝑞 (ps) 𝜇𝑞 (cm2 V-1 s-1) 

47 T (α) 0.13 0.96π, when 𝜙 = 0 

1.21π, when 𝜙 =
1

8
 

0.71π, when 𝜙 = −
1

8
 

8.18 0.149 1988 

400 T (β) 0.18 0.95π 13.91 0.087 845 

594 T (γ) 0.29 0.43π 5.41 0.225 1357 

6.3.4 Thermal Transport Properties 

Figure 6.8a plots the temperature-dependent heat capacity cp of NiTe2 under zero and 14 T 

applied magnetic fields. Both cp curves show no signatures of any structural phase transition within 

the measured temperature range, and the distinction between the two curves is negligible. The inset 

plots 𝑐𝑝/𝑇 versus 𝑇2 below 5 K under zero magnetic field, and the data are fitted with the equation 

𝑐𝑝/𝑇 = 𝛾 + 𝛽𝑇2, where 𝛾 is the Sommerfeld coefficient connected to the electronic heat capacity, 

𝛽 is the coefficient of phonons associated with the lattice heat capacity. The fitting result indicates 

that 𝛾 has a value of 6.05 mJ mol-1 K-2, and 𝛽 has a value of 0.59 mJ mol−1 K−4, suggesting that 

the density of states (DOS) at the EF of NiTe2 is 2.5 states eV-1, and the Debye temperature is 215 

K. 

Seebeck coefficient S of NiTe2 is shown in Figure 6.9b, which exhibits a small positive 

value below 4 μV K-1 within the measured temperature range. This is not surprising since both 

holes and electrons contribute to the S in a semimetal, and their contributions partially compensate 

for each other. The positive sign of S suggests that the contribution of holes dominates S, consistent  
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Figure 6.8: (a) Temperature-dependent heat capacity cp of NiTe2 under zero and 14 T magnetic fields. The inset plots 

𝑐𝑝/𝑇 versus 𝑇2 below 5 K under zero field, and the data are fitted with the equation 𝑐𝑝/𝑇 = 𝛾 + 𝛽𝑇2. (b) Seebeck 

coefficient S under zero magnetic field. (c) Black and orange symbols represent the thermal conductivity 𝜅 under zero 

and 14 T magnetic fields, respectively. The lattice thermal conductivity 𝜅𝑝 and the electronic thermal conductivity 𝜅𝑒 

obtained from the fittings in (d) and (e) are shown by green and pink symbols separately. (d)(e) The solid symbols 

show the magnetic field-dependent thermal conductivity κ at different temperatures. The lines represent the fittings 

mentioned in the text. (f) Lorenz number L. 
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with the positive Hall resistivity discussed before. In the temperature range from 150 K to 300 K, 

S decreases as the temperature drops and displays a linear dependence on the temperature, 

indicating that diffusion is the dominant mechanism of S. In the temperature range of 50 K to 150 

K, there is no significant variation in S. At temperatures below 50 K, S initially increases as the 

temperature drops, culminating in a maximum near 23 K before declining subsequently. This peak 

in S is likely attributed to the phonon-drag effect, which results from carrier-phonon scattering. 

 The thermal conductivity 𝜅 under zero and 14 T magnetic fields are displayed in Figure 

6.8c. The zero field 𝜅 exhibits a peak at 15 K, with a value of 50 W K-1 m-1. Under the field of 14 

T, where the field is aligned along the c-axis and perpendicular to the temperature gradient in the 

ab-plane, the value of 𝜅 is significantly suppressed at temperatures below 50 K. In general, 𝜅 can 

be partitioned into two contributions: the lattice thermal conductivity 𝜅𝑝 and the electronic thermal 

conductivity 𝜅𝑒. Because the electronic contribution is proportional to the electrical conductivity, 

and the NiTe2 crystal displays a large MR at low temperatures, the suppressed 𝜅 is very likely due 

to the decreased 𝜅𝑒 caused by the large MR under the applied magnetic field. Since the heat 

transport by phonons is usually independent of the applied magnetic field, an empirical expression, 

𝜅(𝜇0𝐻, 𝑇) = 𝜅𝑝(𝑇) + 𝜅𝑒(𝑇)/[1 + 휂(𝜇0𝐻)𝑠], can be used to estimate the values of lattice thermal 

conductivity, 𝜅𝑝(𝑇), and electronic thermal conductivity, 𝜅𝑒(𝑇), at temperature 𝑇 and zero field 

[144]. In the expression, 휂 is proportional to the zero-field electronic mean free path, and 𝑠 is a 

constant related to the scattering [145]. As shown in Figure 6.8d and e, the magnetic field-

dependent 𝜅 at different temperatures below 50 K are fitted to this expression. The fitting-obtained 

𝜅𝑝(𝑇)  and 𝜅𝑒(𝑇)  are plotted in Figure 6.8c. Below 30 K, 𝜅𝑒  is larger than 𝜅𝑝 , and 𝜅𝑒  is 

significantly larger than 𝜅𝑝 as the temperature decreases to a value of 11 K, indicating that the 

charge carriers dominate 𝜅 at the very low temperatures in NiTe2. The Lorenz number 𝐿 =
𝜅𝑒

𝜎𝑇
, 
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where 𝜎 is the electrical conductivity at temperature 𝑇, is shown in Figure 6.8f. The value of L is 

much smaller than the Sommerfeld value 𝐿0 = 2.44 × 10−8 V2K−2. Even if I assume that 𝜅 is 

completely contributed by the electronic thermal conductivity and I ignore the lattice contribution, 

the calculated L is still much smaller than 𝐿0. This suggests that the transport behaviors of charge 

carriers in NiTe2 dramatically deviate from the free electron model. The strong violation of the 

Wiedemann-Franz law has also been observed in other topological semimetals, such as WP2 [146], 

NbSb2 [147], and PtSn4 [144]. The underlying physics still needs further study. 

6.4 Conclusion 

In this work, I have investigated the low-temperature electrical and thermal transport 

properties of type-II Dirac semimetal NiTe2. The single-crystalline NiTe2 sample displays a large 

MR at low temperatures. The MR value and its magnetic-field dependence are sensitive to the field 

strength and the angle between the applied magnetic field and the current, indicating the 

anisotropic feature of the MR. The quantum oscillation results reveal the small effective mass and 

the nontrivial Berry phase resulting from the Dirac point. By separating the lattice and electronic 

contributions to the thermal conductivity, the temperature-dependent Lorenz number has been 

obtained, which strongly deviates from the Sommerfeld value. However, the reasons for the 

anisotropic and magnetic-field sensitive MR and the violation of the Wiedemann-Franz law are 

still unclear. Thus, the related computational work would be welcome. 
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Chapter 7 Conclusion and Future Work 

7.1 Summary 

This thesis presents analyses of the low-temperature physical properties of three distinct 

types of topological semimetals I investigated during my doctoral study, with a particular focus on 

their transport properties. 

Chapter 4 discusses the effect of Fe-doping on the magnetic and transport properties of 

polycrystalline shandite Co3Sn2S2. Co3Sn2S2 is a ferromagnetic Weyl semimetal, and the Fe-

doping largely suppresses its magnetic order and lowers the Curie temperature. Due to its 

ferromagnetism, it exhibits the anomalous Hall effect (AHE). The AHE is still evident after the 

Fe-doping, demonstrating the robustness of the AHE originating from the topologically protected 

nontrivial Berry curvature. On the other hand, the Fe-doping results in the skew-scattering 

contribution to the AHE and also the Kondo effect observed in the temperature-dependent 

resistivity, making the anomalous Hall resistivity display a complex behavior at low temperatures. 

In addition, a hysteresis behavior of the low-magnetic field magnetoresistance (MR) has been 

detected for the first time in both pure and Fe-doped Co3Sn2S2 polycrystals. At last, the thermal 

spin fluctuation-induced the decrease in the absolute value of the Seebeck coefficient has been 

discussed. 

Chapter 5 focuses on the single crystalline Ni3In2S2, which is also a topological semimetal 

from the shandite family like Co3Sn2S2. Ni3In2S2 displays an extremely large transverse MR and a 

magnetic field-induced resistivity upturn behavior at low temperatures. This Chapter aims to find 

the origin of this giant transverse MR. At temperatures below 50 K, the transverse MR curves 
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show a linear magnetic field dependence under high magnetic fields, which is beyond the scope of 

the classical two-band model. Along with magnetotransport measurements, quantum oscillations 

and computation results indicate that it is the linearly dispersive bands that cause the high mobility 

and quantum linear MR, thus leading to the giant and linear magnetic field-dependent MR in 

Ni3In2S2. 

Chapter 6 presents the electrical and thermal transport properties of the type-II Dirac 

semimetal NiTe2 single crystal. NiTe2 exhibits a large magnetoresistance at low temperatures. In 

the temperature range from 2 K to 25 K, the transverse MR curve exhibits a cusp under low fields. 

At 2 K, the value and the magnetic-field dependence of MR are sensitive to the field strength and 

the angle between the applied magnetic field and the current. The polar plot of MR shows a 

butterfly shape at 10 T, which is entirely different from that at 2 T. These suggest that the Fermi 

surface of NiTe2 is anisotropic and may be affected significantly by the applied magnetic field or 

the scattering patterns may be changed dramatically by the magnetic field. The dHvA quantum 

oscillation results reveal the small effective mass and the nontrivial Berry phase originating from 

the Dirac point. The thermal conductivity is dramatically suppressed by the external magnetic field 

at temperatures below 50 K, probably due to the large MR of NiTe2. After separating the lattice 

and the electronic contributions to the thermal conductivity, the temperature-dependent Lorenz 

number is deduced from the electronic thermal conductivity, which significantly deviates from the 

Sommerfeld value, indicating the breakdown of the Wiedemann-Franz law. 

7.2 Future Work 

As pointed out in Chapter 6, there are some unclear questions about the transport properties 

of NiTe2 that need further study. First, what are the reasons for the anisotropic and magnetic field-

sensitive MR? The answers may concern the anisotropic and magnetic field-sensitive Fermi 
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surface or scattering mechanisms. The second one is why the Lorenz number is so much smaller 

compared to the Sommerfeld value. The violation of the Wiedemann-Franz law has been reported 

and well-studied in another topological semimetal, the Weyl semimetal WP2 [146]. The authors of 

reference [146] claimed that the breakdown of the Wiedemann-Franz law in WP2 is due to the 

hydrodynamic electron flow, i.e., the electron transport is thought to resemble the flow of viscous 

fluids at low temperatures. However, whether this theory can apply to NiTe2 or if there are other 

mechanisms that can explain the small Lorenz number is unclear. To solve these questions, 

computational studies on the electrical and thermal transport in NiTe2 are indispensable.   

Another possible project about NiTe2 is about the modulation of the Dirac point position. 

According to previous calculational and ARPES results, the Dirac point hosted by NiTe2 is not 

precisely at the EF. Tuning the EF by chemical doping or applying pressure may induce new 

phenomena when the Dirac point is much closer to the EF. 

It is pertinent to note that topological semimetals have captured the attention of researchers 

not only in the realm of fundamental science but also in the context of industrial applications. 

Co3Sn2S2 single crystal, for instance, exhibits a large AHE and anomalous Nerst effect due to the 

enhanced Berry curvature, making it an excellent candidate for AHE sensors and low-power 

thermoelectric devices [148]. My discovery of the extremely large MR in Ni3In2S2 single crystal 

suggests that this material can be utilized in the development of magnetic field sensors. Future 

investigations can focus on how to further enhance these properties. 

In the domain of fundamental scientific research, it is important to obtain materials that are 

as pure as possible. This enables researchers to concentrate on the desired characteristics without 

any extraneous influences. Consequently, numerous researchers are searching for topological 



 113 

semimetals that possess Dirac/Weyl points close to or at the EF without other topologically trivial 

bands in the vicinity. 

However, in applied science, the aim is to improve the performance of the material/device. 

Therefore, the addition of impurities and greater complexity in the material can sometimes be 

advantageous. A case in point is the study conducted on the Fe-doped Co3Sn2S2 single crystal, 

which revealed that a small amount of Fe dopant can significantly enhance the anomalous Hall 

conductivity and anomalous Hall angle due to the dopant-induced extrinsic contribution to the 

AHE [79]. Therefore, exploiting the intrinsic characteristics of topological semimetals while 

simultaneously introducing necessary extrinsic contributions should be a research direction for the 

applications of topological semimetals. 
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Appendix: High-Temperature Hall Effect Measurements on Thermoelectric Materials 

In my doctoral study, in addition to my own projects on topological semimetals, I carried 

out extensive measurements of the high-temperature Hall effect (HTHE) on numerous 

thermoelectric (TE) materials as part of the collaboration of Prof. Uher’s group with other research 

teams. In this appendix, I will briefly introduce the HTHE measurements. 

The HTHE was measured using a homemade instrument, as shown in Figure A.1a. The 

Hall resistance was monitored by a Linear Research AC resistance bridge (LR-700) under a 

reversible magnetic field of 0.5 T generated by the Oxford superconducting magnet. The sample 

was prepared by cutting the bulk material into a thin cuboid that had dimensions of approximately 

1 mm × 2 mm × 7 mm, which was then mounted to the sample holder adopting the Hall bar 

geometry as illustrated in Figure A.1b. To prevent the sample from oxidizing at high temperatures, 

the sample holder was sealed into a quartz tube and filled with Argon gas after pumping. 

The performance of a TE material is characterized by its figure of merit, 𝑧𝑇 =  𝑆2𝜎𝑇𝜅−1, 

where S is the Seebeck coefficient, 𝜎 is the electrical conductivity, T is the absolute temperature, 

and 𝜅 is the thermal conductivity. Since the electrical resistivity is closely linked to the carrier 

density and mobility, which can be derived from the Hall measurements, the HTHE measurements 

are essential to the study of TE materials. The instrument in Prof. Uher’s lab can measure the Hall 

effect in the temperature range from room temperature to 500 ℃, which is the working temperature 

range of TE materials. The Hall carrier density 𝑃𝐻  and mobility 𝜇𝐻  were calculated through 

equations 𝑃𝐻 = 1/𝑒𝑅𝐻  and 𝜇𝐻 = 𝜎𝑅𝐻 , where 𝑒  is the elementary charge, and 𝑅𝐻  is the Hall 

coefficient extracted from the HTHE measurements. 
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Figure A.1: (a) Photo of the instrument used for high-temperature Hall effect measurements. (b) A Hall bar: the Hall 

effect measurement setup. 

 

Here, I present the temperature-dependent Hall carrier density and mobility of the 

(1−x)Cu2Se/(x)Cu4TiSe4 composites obtained from the HTHE measurements, which have been 

published in one of my co-authored papers with Prof. Pierre Poudeu's group [149]. The 

(1−x)Cu2Se/(x)Cu4TiSe4 composites with x = 0.01 and 0.02 have an average zT of 0.84 and 0.74 

separately, exhibiting an increase of about 40% compared with the average zT of pristine Cu2Se 

and outperform other Cu2Se-based TE materials. Taking the following analysis as an example, I 

will show how the HTHE measurements play a key role in studying the underlying physics of 

electrical transport properties of TE materials. 
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Figure A.2: Electrical transport properties of the (1−x)Cu2Se/(x)Cu4TiSe4 composites. (a)Temperature-dependent 

electrical conductivity. (b) Change in the electrical conductivity, carrier mobility (300 K), and carrier concentration 

(543 K) with the content of Cu4TiSe4. (c) carrier concentration, and (d) carrier mobility. The empty and solid symbols 

in (c) and (d) denote the data before and after the phase transition. Adapted with permission from reference [149]. 

Copyright 2024 American Chemical Society. 

 

Figure A.2a displays the temperature-dependent electrical conductivity of the 

(1−x)Cu2Se/(x)Cu4TiSe4 composites. The sharp drop at ∼400 K corresponds to the phase transition 

of Cu2Se, i.e., from monoclinic α-Cu2Se to cubic β-Cu2Se. Figure A.2b demonstrates that the 

carrier mobility dominates the trend in the electrical conductivity at 300 K when α-Cu2Se is the 

sample matrix, while the carrier concentration takes over the variation in the electrical conductivity 

at 543 K when β-Cu2Se is coexisting with Cu4TiSe4. As shown in Figure A.2c and d, near room 
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temperature, for the sample with x = 0.01, the mobility is almost not influenced by the addition of 

Ti. However, the carrier density is evidently decreased by the addition of Ti. This is consistent 

with the XRD and EDS results of the sample, indicating that the added Ti atoms occupied the 

interstitial sites in the α-Cu2Se lattice, which have a large amount of cation vacancies, and serve 

as electron donors. With higher Ti concentration, the addition of Ti introduces the cubic Cu4TiSe4 

phase and results in distorted phase boundaries due to the lattice mismatch with the monoclinic α-

Cu2Se, leading to a drop in mobility. At the same time, the formation of the Cu4TiSe4 phase 

decreases the solubility of Ti atoms in the α-Cu2Se lattice, thus decreases the number of electron 

donors and increases the hole-type carrier density. 

At temperatures above 400 K, the α-Cu2Se transited into the β-Cu2Se. Because of the 

intimate lattice coherency between the cubic β-Cu2Se and cubic Cu4TiSe4 phases, the mobility is 

independent of the Ti concentration. However, the carrier density is still obviously affected by the 

Ti concentration. This reveals that introducing a secondary phase with similar lattice parameters 

and structure can modulate the carrier density without decreasing the mobility, which offers an 

instructive approach to improving the performance of TE materials.    

The above analysis is based on the results of HTHE measurements, which highlights the 

necessity and importance of such measurements when investigating electrical transport and its 

connection to the lattice structures of TE materials. 
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