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PREFACE

My PhD work mainly involves building two experimental setups, one for 1+2 QuIC

and the other for 2+3 QuIC, entirely from scratch, developing a more robust detec-

tion of 2+3 QuIC, and exploring semiconductor device fabrication in the clean room.

I worked independently on these two experiments throughout the time span of my

project. Although a previous group member has worked on the 2+3 QuIC experiment

before, I’ve never overlapped with him in the lab. The previous experimental setup

was completely taken apart by the time I started my project. Toward the end of my

project, I successfully obtained results from both the 1+2 QuIC experiment (Y. Gong,

S. T. Cundiff, in preparation) and the 2+3 QuIC experiment(Y. Gong, K. Wang, S.

T. Cundiff, in preparation).
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ABSTRACT

This dissertation presents the first comparison of the polarization dependence of the

photocurrents generated in 1+2 QuIC and 2+3 QuIC. We also show the first obser-

vation of 1+2 QuIC current from Ohmic-contact AlGaAs devices. We demonstrate

that the optical frequency combs (OFC) are capable of providing a two-color light field

with a controllable relative phase, which is vital to 2+3 QuIC generation. The feed-

forward technique is effective in reducing the bandwidth of the offset frequency and

offers tunability to the detection frequency of 2+3 QuIC.

We first discuss our results from the 1+2 QuIC setup. We generate 1+2 QuIC pho-

tocurrent from AlGaAs devices, which have two types of metal-semiconductor contact

- Schottky contact and Ohmic contact. We detect the QuIC currents at the dither

frequency of one of the arms of the two-color interferometer. We show that the oscilla-

tion of the relative phase results in the oscillation of QuIC current. The amplitude of

the QuIC current responds to the oscillations of both optical arms. The QuIC current

from the Ohmic-contact AlGaAs device has a more linear external-resistance depen-

dence than that from the Schottky-contact AlGaAs device, which indicates a current

source nature of the Ohmic-contact QuIC device.

We then discuss our results on the 2+3 QuIC current, which is detected at a phase

ramp directly related to the offset frequencies of two OFCs. We present the detection-

frequency dependence of 2+3 QuIC current, which validates the bandwidth reduction

of the offset frequencies. The sinusoidal dependence of 2+3 QuIC current on the optical

xiv



path delay is consistent with the optical injection theory.

We finally show the QuIC currents measured from two perpendicular Ohmic-contact

electrode pairs in 1+2 QuIC and 2+3 QuIC. We observe the change of QuIC currents

when two co-linearly polarized light fields rotate together. The fitting of experimental

data with an angular current density model shows evidence for the k-space localiza-

tion of 2+3 QuIC. We also extract the injection rate tensor elements from one-color

polarization dependencies of 1+2 QuIC and 2+3 QuIC. Our study shows the potential

of 2+3 QuIC as a tool for high k-space-resolution band anisotropy studies.
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CHAPTER 1

Introduction

Quantum Interference Control (QuIC) is the manipulation of a system due to the

interference of two independent pathways, A and B, coupling the same initial and final

states. The interference, contributing constructively or destructively to the transition

amplitude [6], is effectively a "matter interferometer," where the laser phase is a key

control parameter. For example, as shown in Fig. 1.1 c [1], the contributions of

mode-locked laser pulses at frequencies ωa and ωa/2 to the n = 1 image-potential state

interfere constructively on the right side (green box) and destructively on the left side

(red box) in reciprocal space.

QuIC was first theoretically explored by Manykin and Afanas’ev [12] back in 1967

when they proposed the suppression of transition rates by quantum interference of

multiple-photon transitions. The early progress on QuIC was from the studies on

molecular processes [13]. In 1986, Brumer and Shapiro [12] proposed a scheme where

weak phase-coherent optical fields excite an initial superposition state to alter product

ratios in unimolecular decay and photodissociation. In 1989, Kurizki et al. [14] applied

the same idea to semiconductors for photocurrent generation without a bias voltage.

The interference of one- and three-photon processes was proposed by Shapiro et al.

[15] in 1988 and demonstrated by Chen et al. [16] in 1990. The QuIC of one- and

two-photon processes in the photoionization of continuum states in a photomultiplier
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Figure 1.1: (A) E(k||) 2PPE spectrum of the n = 1 image-potential state on the Cu(100)
surface. Energies are referred to as the vacuum level Evac. The color scale indicates the
photoemission intensity. (B) Energy diagram of the corresponding excitation and pho-
toemission scheme together with the surface-projected bulk band structure of Cu(100),
where Evac − EF = 4.64 eV. Filled and empty projected bulk bands are marked by
dark and light shades. The solid curve depicts the n = 1 image-potential band. (C)
E(k||) spectrum of the n = 1 state for excitation with two phase-locked laser pulses at
frequencies ωa and ωa/2 as depicted in (D). The 2PPE spectra in (A) and (C) have
been recorded with zero time delay of the photoemission pulse ωb. adapted from Ref.
[1]
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was observed by Baranova et al. [17, 18, 19] in 1990.

Over the last few decades, QuIC has been extensively studied both for fundamental

research and applications. It has been explored in a wide variety of systems, which

include atomic gases [16, 20, 21, 22], semiconductors [23, 24, 25, 26]. Sun et al. [27]

have shown that QuIC is suitable for injecting and detecting ballistic currents unbiased

epitaxial graphene at 300 K. QuIC has been applied to the study of waveform and

vectorial arrangement of optical fields by Shawn et al. [28]. QuIC has also been proven

to be powerful in detecting and controlling the carrier-envelope comb offset frequency

of a mode-locked laser [29, 30].

Although the conventional wisdom is that the ultrafast decoherence processes would

make QuIC processes challenging to observe in solids, Atanasov et al. [31] predicted the

current injected by the two-color coherent field to be sufficiently large to be measurable.

The fundamentals of photocurrent in semiconductors will be further discussed in Chap-

ter 2. Current flow induced by QuIC in semiconductors has been theoretically predicted

in multiple-beam free-carrier absorption [32], photoionization of doublet donor states

[14], or band-band transition in bulk semiconductors. GaAs is often considered the

hydrogen atom of semiconductor physics and is the benchmark for many experiments.

In 1997, Hache’ et al. experimentally observed the first QuIC of current in GaAs using

electrodes to collect the accumulated charge displacement [23, 33]. In semiconductors

with spin-orbit coupling, the angular momentum of light can be transferred to the in-

jected carrier in a QuIC experiment, yielding spin-polarized carriers [34]. These carriers

were predicted to form pure spin currents without accompanying electrical currents.

Pure spin currents were experimentally observed in GaAs by Stevens et al., and in ZnSe

by Huebner et al. [35, 36]. in 2003. In noncentrosymmetric semiconductors, QuIC has

been shown by Fraser et al. to be capable of manipulating the carrier population [37]

in 1999. However, in all the previous experiments where the QuIC currents of one-

3



and two-photon absorptions were directly detected, the metal-semiconductor contacts

have Schottky barriers, which give non-ideal current transmission. We will discuss our

results on 1+2 QuIC current with Ohmic contacts in Chapter 3.

Compared to the early studies of QuIC, which is mainly related to the phase-

coherent ω and 2ω field, there have only been a few studies on higher-order QuIC

processes [20, 38]. The non-integer QuIC is desirable because it doesn’t require octave-

spanning spectra to detect the offset frequency of mode-locked lasers. QuIC of two-

and three-photon optical absorptions (2+3 QuIC) in AlGaAs has been studied both

for fundamental research [39, 40, 41] and applications [42]. More importantly, recent

theoretical studies predicted 2+3 QuIC to be desirable for studying band anisotropy

[10, 41]. However, our understanding of the carrier distribution in QuIC is still limited,

especially for higher-order QuIC processes. There have been a few experimental stud-

ies related to carrier distribution in QuIC. Yin et al. [22] measured the relative phase

dependence of one- and two-photon photoionization processes at four different angles,

which showed the k-space distribution of photoelectrons to a limited extent. The k-

space carrier distribution was also explored by Guedde et al. [1] with the time- and

angle-resolved photoelectron spectroscopy at five different angles. However, a better-

resolved carrier distribution is needed to study carrier localization in higher-order QuIC

processes.

Two main ways of detecting QuIC in semiconductors are THz emission detection and

direct photocurrent detection. With the 2+3 QuIC process, we aim to develop optical

phase-sensitive photodetectors. The THz emission cannot deliver the information of

the k-space carrier distribution. Therefore, we directly measure the photocurrents

extracted by electrodes in 1+2 QuIC and 2+3 QuIC as a tool to study the k-space

carrier distribution, which we will discuss in Chapter 4.
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CHAPTER 2

Photocurrent Generation with Quantum

Interference Control (QuIC)

2.1 Introduction to Photocurrent

The photocurrent is the current induced by illumination in photosensitive devices. To

form a photocurrent, the key is to achieve the movement of charges in space with the

energy from illumination. The charges deviate from their original state and move to-

wards a direction macroscopically. Early studies on photocurrent have revealed that

many effects can move charges in this manner, such as the photoconductive effect,

the photovoltaic effect, and the photoelectric effect. The photoconductive effect is an

extrinsic effect in which a material absorbs photons to generate electrons and holes

that move in opposite directions under a bias electric field. The photoelectric effect

is an intrinsic effect where the electrons are emitted into space when the material is

under electromagnetic radiation. The photovoltaic effect is an extrinsic effect where

the illumination of crystals can induce absorption and generate photocurrents or pho-

tovoltages. The formations of photocurrent in the effects mentioned above are different

from each other. For example, both the photoconductive effect and photovoltaic ef-

fects push electrons outside their orbits. However, the electrons in the photoconductive
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effect stay within the material, whereas electrons are emitted from the material to out-

side in the photoelectric effect. In addition, the photovoltaic effect excites electrons

from a low-energy state in the conduction band to a higher-energy state in the valence

band. Those excited electrons are called hot carriers, moving freely inside the material.

The vacancies the electrons leave behind are referred to as holes. The movement of

the electrons in the photovoltaic effect doesn’t rely on a bias field. A straightforward

example is the working mode of a photo-detector. The photo-diode signals generated

from zero-bias and biased modes are due to the photovoltaic effect and photoconductive

effect, respectively.

The photovoltaic effect (PVE) has the most extended history among these light-

matter interactional effects. The early studies primarily focused on the PVEs resulting

from inhomogeneity in crystals or nonuniform illumination. For example, the Dember

effect is caused by a nonuniform illumination of the crystal. Also, in P-N junctions,

the separation of nonequilibrium carriers due to crystal inhomogeneity gives rise to a

current flowing from the N region to the P region under illumination. In the 1960s, the

bulk photovoltaic effect was observed in uniform noncentrosymmetric crystals under

homogeneous illumination. The bulk photovoltaic can generate photovoltage of tens

of thousands of volts, which is several orders of magnitude higher than the band gap.

The fact that the generation of photocurrents is related to the second-order nonlinear

susceptibility opens opportunities to study the optical-electro properties of various

materials. It also allows people to study the carrier generation and recombination

processes from the dynamics of electrons and holes within the medium.

More importantly, the idea that the broken inversion symmetry in the k-space results

in a nonzero photocurrent was introduced by bulk photovoltaic effects. The “principle of

detailed balancing” is invalid in bulk noncentrosymmetric crystals. In other words, the

probability of excited carriers transferring from momentum k to momentum −k does
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not equal the probability of excited carriers moving from momentum −k to momentum

k. The imbalanced carrier distribution in the k space results in a ballistic photovoltaic

current. Both ballistic and shift photovoltaic currents can be affected by the crystal

structure and polarization of light. This generation mechanism of photovoltaic currents

is similar to the origin of quantum interference control of carriers. That being said,

the generation of bulk photovoltaic currents relies on the noncentrosymmetry of the

crystal, while QuIC can arise from centrosymmetric materials. In addition, QuIC is

also different from the photoelectric effect because it does not rely on a bias electric

field for the electron-hole separation.

Why are semiconductors suitable medium for QuIC? Firstly, the translational sym-

metry of bulk crystalline media permits continuum states. All the conduction and

valence band states, coupled with the excitation pulses, can contribute to the injected

current. In molecular systems, QuIC usually only targets a particular quantum state

and/or breaks a particular bond in the presence of rapid decoherence phenomena. Sec-

ondly, the electron-hole and electron-electron scattering processes require conservation

of momentum under restrictive selection rules. Thus, the scattering time of injected

carriers in semiconductors is much longer than in amorphous media or even large

molecules. These two reasons make QUIC current generation in solids more amenable

than other forms of QUIC phenomena.

2.2 Introduction to Energy Band Structure

We denote the wave function of an electron with ψ(z). Assume we have an independent

electron under a periodic potential:

U(r) = U(r +R) (2.1)
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The wave function of a Bloch electron is an energy eigenstate and a Bloch state, which

can be written as:

ψ(r) = eik·ru(r) (2.2)

where uk(x) has a boundary condition: uk(r) = uk(r + R) According to Bloch’s

theorem, the wave function of electrons in the crystal reflects the periodicity of the

lattice potential. So we have:

ψ(r +R) = eik·Rψ(r) (2.3)

The eigenfunction uk and its energy Ek can be obtain by solving the following equation:

[− ℏ2

2m0

∂2

∂r2
+ U(r)]ψ(k) = Ekψ(k) (2.4)

The solutions form the band structure of electrons in crystals. For each k, there is

an infinite number of eigenfunctions and energy states. Ek has a periodicity due to the

periodic crystal potential. The band structure of semiconductors such as GaAs can be

simplified into a 4-band model with an electron band (conduction band), a heavy hole

band, a light hole band, and a split-off band.

AlxGa1−xAs alloy is the material we used to generate QuIC in the two experiments

discussed later in the thesis. It has the same crystal structure as GaAs. A layer of

AlxGa1−xAs (x=0.28) oriented along ⟨001⟩ crystal axis is epitaxially grown on GaAs

substrate. The band gap of AlGaAs can be engineered by changing the Al fraction.

The band gap of the AlGaAs we used is 1.77 eV, based on the practical relation between
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Figure 2.1: The lattice structure of GaAs bulk crystal[2].

the energy band gap of AlGaAs and Al concentration (for x < 0.45)[ref]:

Eg,dir(x) = 1.422eV + x1.2475eV (2.5)

The GaAs lattice has inversion symmetry with respect to the center of the unit cell

shown in Fig. 2.1. The interference of the two carrier injection pathways breaks the

inversion symmetry in the k-space, creating relative-phase-dependent injected currents.

There are different types of QuICs, such as QuIC of carrier injection, QuIC of carrier

population, and QuIC of spin current. QuIC usually means the quantum interference

control of carrier injection in this thesis if not further specified. The inversion symmetry

is broken along other crystal axes such as ⟨111⟩. The QuIC of carrier population, where

the density of carriers is dependent on the relative phase of the two colors, arises from

the broken inversion symmetry of the crystal. [ref]

2.2.1 The band structure of GaAs

In the band structure of GaAs, the conduction band has three minima: one at k = 0

(called the Γ point), another along ⟨111⟩ directions at the boundary of the first Bril-

louin zone (called L). As shown in Fig. 2.2, this minimum is 0.29 eV lower than the Γ

9



Figure 2.2: The band structure of GaAs[3].

minimum. The third minimum is near the zone boundary along (100) directions (the

∆ line) and is 0.48 eV higher than the Γ minimum. There are three valence bands,

which all have a maximum at k = 0. The heavy hole and light hole bands are de-

generate at k = 0. In crystals with strong spin-orbital coupling, such as GaAs, the

split-off band is separated from the other two valence bands and more parabolic. For

most semiconductors, the spin-orbit coupling is much larger, and the split-off band is

not typically populated by holes (e.g., in GaAs, ∆so = 0.35eV). When the conduction

band minimum doesn’t occur at the same point as the valence band maximum, the

semiconductor is referred to as an indirect−gap semiconductor. It is not impossible to

generate electron-hole pairs in an indirect band gap material. Due to the momentum

preservation law, the electrons injected from the top of the valence band need to emit a

phonon to reach the bottom of the conduction band, which makes indirect-gap absorp-

tion strength susceptible to temperature. As shown in Fig. 2.2, GaAs is a direct− gap

semiconductor. The direct band gap is desirable for optical injections. The electrons

can be injected from the valence band to the conduction band by photons without

phonon assistance. The momentum of electrons is not affected by the injection pro-

cess. The electrons in the semiconductor crystal without illumination or bias field are
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Figure 2.3: The carrier distributions in the k-space when (a) Eω = 0, Eω ̸= 0 (b)
EDC = 0 (c) Eω = 0, Eω ̸= 0 (d) EDC ̸= 0. Reproduced from Ref. [4]

sketched in Fig. 2.3 (b), where k states are filled up to the Fermi surface. Compared

to Fig. 2.3 (b), the optically injected carriers in one-color absorption, as shown in Fig.

2.3 (a), are further away from k = 0. In addition, the injected carrier distribution

is more anisotropic. The velocity of carriers in Fig. 2.3 (d) needs to go through an

acceleration process. In contrast, the velocity of carriers in Fig. 2.3 (c) is directly given

by the instantaneous photon absorption process on the fs time scale. Also, the DC bias

method needs a large electric field to achieve the "herding" of statistically distributed

electrons. Therefore, the QuIC process is a more efficient way of current production

compared to the conventional DC field method.

At k = 0, the conduction and split-off valence bands are approximately parabolic.

The energy dispersion of GaAs band structure E(k) can be approximately expressed

by[43]:

E(k) =
ℏ2k2

2me

(2.6)
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Figure 2.4: The upper part of the figure is a schematic illustration of the distribution
of excited carriers in optical absorption in kx − kz plane. The lower part of the figure
is a simplified sketch of the band structure of GaAs. The light is linearly polarized
along ⟨010⟩ crystal axis. The photon energy is large enough to reach the three valence
bands. adapted from Ref. [5]

The sign of effective mass me is positive for the conduction band and minus for the

valence band. When electrons are excited by photons with larger photon energy to the

conduction band, they are far away from k = 0 in the k-space. When k is large, the

energy dispersion has a nonparabolicity[43], which is described by:

E(1 + αE) =
ℏ2k2

2me

(2.7)

The k · p perturbation theory has been widely used for calculating the band struc-

ture of crystals. The periodic Bloch state function unk can be obtained by solving a
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Schrödinger equation that contains the k · p Hamiltonian Hk:

Hkunk(r) = Ekunk (2.8)

Hk = H0 +
ℏ
m
k · p+ ℏ2k2

2m
(2.9)

v(k) =
1

ℏ
∂

∂k
Hk (2.10)

For zinc-blende crystals, the 14 band k · p model cannot fully capture the band

structure features outside 0.5 eV above and below the semiconducting band gap. 30

band k ·p model can predict the optical response above 0.5 eV. It has also been applied

to calculations of optical injection in GaAs and Ge and coherent control in Ge.

In light absorption processes of GaAs, the distribution of excited electrons in the

conduction band has inversion symmetry around k = 0. More importantly, the distri-

bution is anisotropic due to the dipole matrix elements between the conduction and

valence bands. When light is incident on the GaAs crystal, if the photon energy is

larger than the bandgap at Γ point (1.424 eV), the electrons from the three valence

bands are excited to three corresponding "rings" in the conduction band, as shown in

Fig. 2.4. Each "ring" represents the strength of optical transition with its width and

the momentum of excited electrons with its diameter.

The optical absorption strength depends on the number of states available for elec-

trons and the matrix elements. The heavy-hole-related electrons are distributed more

along kx, and the "ring" is not perfectly circular. The light-hole-related electron distri-

bution maximizes along the direction of light polarization. As mentioned earlier, the

conduction band is isotropic near k = 0. Therefore, the anisotropy is mainly due to
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the warping of valence bands. This also shows the heavy hole and light hole bands

have opposite warpings.

The density of states (DOS) quantitatively defines the number of states available

for occupation in a small range in the momentum space and energy space. The DOS

in k-space can be written as:

Number of electron states

V olume of k − space
= Nk = 2× Ld

(2π)d
(2.11)

where d is the dimensionality, L is the sample size, and the factor of 2 is due to spin

degeneracy.

The nonparabolicity flattens out the energy band and increases the DOS. It is easier

to calculate the density of state for semiconductors with higher symmetry. And it is

often more useful to express DOS in energy space rather than in momentum space.

DOS in the energy space is related to the dispersion relations of the crystal. For

parabolic energy bands, the density of the state of 3D carriers can be expressed by:

gc(E) =
me

π2ℏ2
k =

me

√
2meE

π2ℏ3
(2.12)

2.3 How do the electrons and holes move inside crys-

tals?

We simplify optical carrier injection by only considering the conduction band and light

hole valence band. The excitation light is normally incident on the crystal. As shown in

Fig. 2.5, the transitions are vertical in the energy band diagram because the momenta

of electrons and holes are preserved. That is to say, the electrons before and after light

injection have the same k vector. If we only consider the right side of the bands in Fig.
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Figure 2.5: The generation of an electron-hole pair in optical absorption. The velocities
of the electron and hole are indicated by the blue and green arrows, respectively.

2.5, the electron velocity in the conduction band can be expressed as:

ve = [2
2ℏω − Eg

me(1 +me/mℏ)
]1/2 (2.13)

where Eg is the energy gap of GaAs. When an electron-hole pair is generated, the

electron and hole carry the same momentum in opposite directions. The speed of holes

can be obtained from vhmh = veme if the energy bands are parabolic. Based on Eq.

1.6, the effective mass of an electron is defined as:

(me)
−1 =

1

ℏ2
∂2E

∂k2
(2.14)

The effective mass of electrons is related to the curvature of energy bands. Thus,

electrons have negative mass on the top of the valence band and positive mass on the

conduction band. Since the holes carry positive charges, the sign of their effective mass

is opposite to the electrons’ effective mass. So, the velocity of holes on the light hole

band is in the opposite direction to that of electrons, which is indicated by the arrows
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in Fig. 2.5. Although electrons and holes are moving in opposite directions on one

side of the bands, overall, one color excitation cannot induce a net current from an

unbiased bulk AlGaAs crystal. This is because the carriers injected at k and −k cancel

out. This is also how QuIC generates injected currents. Namely, the imbalance of the

injected currents at k and −k results in a net current sensitive to the relative phase

of the two involved excitation frequencies. Moreover, if we only consider electrons and

view holes as vacancies of electrons, we can see that the electron’s velocity changes

direction as it goes from the valence band to the conduction band. This change of

momentum comes from the lattice. In coherent control, there is initially no net current

in the crystal, and then after excitation, there is a net current moving in a certain

direction. The momentum of that current came from the lattice recoil.

The electron-hole pairs generated from above-gap excitations are fundamentally dif-

ferent from excitons. Excitons are hydrogen-like quasi-particles where electrons and

holes are bound through the Coulomb force. Similar to the energy structure of hydro-

gen atoms, excitons have discrete energy levels based on the number of electrons in

a quasi-particle. The type of exciton is related to how strongly bonded the electrons

and holes are. The excitons redshift the electron conduction band by the Coloumb

potential. The excitation photon energy is above the band gap in the current injection

process. The electrons and holes have opposite momenta, which makes the center of

mass momentum zero. On the contrary, the exciton states are usually below the con-

duction band. Excitons carry a crystal pseudomomentum equivalent to the vector sum

of the individual momenta of the electron and the hole and their relative momentum.

In other words, for excitons, electrons and holes move in the same direction, and the

momentum of the center of mass is nonzero.
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2.4 Oblique Incidence of Light in Photocurrent Injec-

tion

Light at normal incidence cannot induce a current in unbiased ⟨001⟩ oriented bulk

GaAs. Would an oblique incidence result in a current comparable to the QuIC current?

Now we consider an excitation light incident on a ⟨001⟩ oriented GaAs crystal at an

oblique angle of 70◦. We assume the wavelength of excitation is centered at 520 nm

with a bandwidth of 20 nm. In direct optical transitions, the crystal will absorb most

of the photons. The refraction index of GaAs n1 is ∼3.8. Therefore, inside the crystal,

the angle between the direction of propagation and the normal direction from the

surface will be arcsin(sin(70◦)/n1) ∼ 14◦. As shown in Fig. 2.6, each photon injects

one electron from the valence band to the conduction band. The total photon energy

corresponds to the red arrow. It is tilted because the photon momentum component

parallel to the sample surface is transferred to the injected electrons. The tilting is

towards the same direction on both sides of the bands, which, in principle, will result in

a net current. However, the current is fairly insignificant compared to the QuIC current.

We assume that the two optical pathways interfere perfectly constructively on the right

side and perfectly destructively on the left side. Then, the strength of the QuIC current

is related to the momentum of carriers injected to the right side of the conduction band,

indicated by the green arrow in Fig. 6. The photon energy contributing to the vertical

transition is 2.31 eV, indicated by the black arrow. Note that the lattice parameter

of GaAs is 5.65 angstroms. According to the electron conduction band of GaAs, the

injected electrons are centered around k1 = 1.4 × e9 m−1. The average momentum of

the electrons is ℏk1 = 1.477×e−25kg ·m/s. The electrons do not all have the same exact

momentum. The broadening of carriers on the conduction band is mainly related to the

energy span of excitation, the band curvature, and the density of states. We simplify the
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Figure 2.6: The carriers injected by the QuIC process on the band structure. The
interference of the two pathways is constructive at k and destructive at k

′
. The crystal

is GaAs (Eg=1.43 eV). The total photon energy is 2.31 eV. The red and black arrows
correspond to the optical transitions when the incidence of light is oblique and normal,
respectively. The green arrow denotes the k vector of injected carriers.

energy span of carriers on the conduction band to the span of excitation photon energy

from 2.27eV to 2.36eV. The variation of electron momentum is ∼ 6× e−26kg ·m/s The

momentum of photon can be expressed as: kphoton = fracℏλ = 2.03×e−28kg ·m/s. The

component of the photon momentum that is parallel to the surface can be expressed

as kphotonsin(14◦) = 4.9 × e−29kg ·m/s. From the calculation above, we get that the

momentum of electron given by the parallel component of photon momentum is ∼ 3×e4

times smaller than that given by the optical injection. Moreover, the momentum of

electrons given by the parallel component of photon momentum is even much smaller

than the variation of electron momentum due to excitation bandwidth. Therefore, the

net current caused by the oblique incidence alone is negligible.

18



2.5 1+2 QuIC Theory

The content in this section referenced the work done by Professor John. Sipe’s group

[6]. For one electron in the crystal, the Hamiltonian H0 can be written as:

p2

2m
+ V (r) +Hs−o (2.15)

where p is the momentum operator, V (r) is the periodic crystal lattice potential. m is

the bare mass of the electron. The spin-orbit coupling Hamiltonian can be written as:

Hs−o =
ℏ

4m2c2
σ · (∇× p) (2.16)

σ = 2S/ℏ is the dimensionless spin operator. The momentum operator can be rewritten

in the presence of a spatially uniform EM field.

p→ p− e

c
A (t) (2.17)

where A(t) is the vector potential of the field and e = −∥e∥ is the charge of the

electron. The overall Hamiltonian of electrons consists of the single-electron Hamilto-

nian H0, the electron-photon interaction Hamiltonian H1(t), and Hamiltonian H2(t)

that only affects the overall phase of |ψ(t)⟩

H1 (t) = − e

mc
A (t) · P (2.18)

H2 (t) =
e2

2mc2
|A (t)|2 (2.19)
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The expectation of single-particle operator θ should satisfy the following conditions:

(a) the expectation in the ground state is 0. (b) the operator can’t excite the ground

state: ⟨cvk| θ |0⟩ = 0. (c) only the electron states or hole states with the same crys-

tal momentum can be involved in the operation:
〈
c
′
v

′
k

′∣∣ θ |cvk⟩ = 〈
c
′
v

′
k
∣∣ θ |cvk⟩ δkk′ .

where |cvk⟩ is the state representing the perturbative term in the electron-hole pair

wave function.

We use ⟨θ⟩ to stand for the expectation ⟨ψ(t)|θ|ψ(t)⟩. Then the (m,n)-order of the

time derivative of ⟨θ⟩ can be written as:

∂ ⟨θ⟩(m,n))

∂t
= 2π

∑
cc′vv′k

(⟨c′k|θ|ck⟩ δvv′ − ⟨v′k|θ|vk⟩ δcc′)× Ω(n)
cv (w, k) δ[λ(n)cv (w, k)]

(2.20)

The m and n can be interpreted as m- and n-photon absorption in the optical absorp-

tion process. When one-photon and two-photon absorption are present, the Ωcv(k) in

equation can be written as:

Ωcv(k) = Ω(1)
cv (2ω, k) + Ω(2)

cv (ω, k) (2.21)

We first consider that there is a monochronic field with a frequency 2ω incident on

the sample. The field can be expressed as:

E(t) = E(2ω)e−i2ωt + c.c. (2.22)

In Eq. 24, the observable ⟨θ⟩ can be carrier density or spin density. Therefore, the rate

of injection of carriers excited by one-photon absorption is given by:

ṅ = ξab1 (2ω)Ea∗(2ω)Eb(2ω) (2.23)
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where the carrier injection tensor is:

ξab1 (2ω) =
2πe2

ℏ2ω2

∑
c,v

∫
d3k

8π3
va∗cv (k)v

b
cv(k)δ[ωcv(k)− 2ω] (2.24)

The matrix elements of the velocity tensor vmn(k) can be derived with the Bloch states

of bands m and n at wavevector k:

〈
mk |v|nk′

〉
= vmn(k)δ(k − k

′
) (2.25)

Some of the elements in ξab1 (2ω) are identical under crystal symmetry. The zinc-blende

lattice for GaAs results in only one independent nonzero component:

ξxx1 = ξyy1 = ξzz1 (2.26)

Also, ξ1 can be expressed as a function of the imaginary part of the susceptibility

χ(2ω):

ξ1(2ω) =
2Im[χ(2ω)]

ℏ
(2.27)

Now, we consider a light with a frequency of ω triggering two-photon absorption.

The rate of injection of carriers can be written as:

ṅ2(ω) = ξabcd2 (ω)Ea∗(ω)Eb∗(ω)Ec(ω)Ed(ω) (2.28)

ξabcd2 (ω) =
2πe4

ℏ4ω4

∑
c,v

∫
d3k

8π3
wab∗

cv (k)wcd
cv(k)δ[ωcv(k)− 2ω] (2.29)
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where ωab
cv(k) is the symmetrized two-photon amplitude:

wab
cv(k) ≡

1

2

∑
m

vacm(k)v
b
mv(k) + vbcm(k)v

a
mv(k)

ωm(k)− ωcv(k)
(2.30)

ξabcd2 (ω) has 21 nonzeros and three independent components under zic-blende lattice

symmetry.

ξxxxx2 = ξyyyy2 = ξzzzz2 (2.31)

ξxxyy2 = ξyyzz2 = ξzzxx2 = ξxxzz2 = ξyyxx2 = ξzzyy2 (2.32)

ξxyxy2 = ξyzyz2 = ξzxzx2 = ξxzxz2 = ξyxyx2 = ξzyzy2 = ξxyxy2 = ξyzzy2 = ξzxxz2 = ξxzzx2 = ξyxxy2 = ξzyyz2

(2.33)

Similar to one-photon absorption, the two-photon absorption amplitude can be ex-

pressed as a function of χ3:

ξ2(ω) =
3Im[χ3(ω;−ω, ω, ω)]

ℏ
(2.34)

In the case of 1+2 quantum interference, the incident optical field consists of two

frequencies ω and 2ω. Assuming that ω is smaller than the band gap, the two-photon

absorption of ℏω and one-photon absorption of 2ℏω will happen simultaneously. The

two-color light field can be expressed as:

E(t) = E(ω)e−iωt + E(2ω)e−2iwt + c.c. (2.35)
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where

E(ω) = Eωe
iφω êω, E(2ω) = E2ωe

iφ2ω ê2ω (2.36)

The injection rate of ⟨θ⟩ has two terms caused solely by the two absorption processes

and another term representing the interference.

∂ ⟨θ⟩
∂t

=
∂ ⟨θ⟩1
∂t

+
∂ ⟨θ⟩2
∂t

+
∂ ⟨θ⟩I
∂t

(2.37)

∂

∂t
⟨θ⟩1 = Θ1 : E

∗(2ω)E(2ω) (2.38)

∂

∂t
⟨θ⟩2 = Θ2 : E

∗(ω)E∗(ω)E(ω)E(ω) (2.39)

∂

∂t
⟨θ⟩I = ΘI : E

∗(ω)E∗(ω)E(2ω) (2.40)

Eq. 1.24 can be rewritten as:

∂

∂t
⟨θ⟩I;e = 2π

∑
cvk

(⟨ck|θ|ck⟩ − ⟨vk|θ|vk⟩)× Ω(2)∗
cv (ω, k)Ω(1)

cv (2ω, k)δ[ωcv(k)− 2ω] + c.c.

(2.41)

where

Ω(1)
cv (ω, k) = Υ(1)

cv (ω,k) · E(ω) (2.42)

Ω(2)
cv (ω, k) = Υ(2)

cv (ω,k) : E(ω)E(ω) (2.43)
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Therefore, we have the coefficient in the interference term as:

ΘI = 2π
∑
cvk

(⟨ck|θ|ck⟩ − ⟨vk|θ|vk⟩)×Υ(2)∗
cv (ω, k)Υ(1)

cv (2ω, k)δ[ωcv(k)− 2ω] (2.44)

Note that

Υ(1)
cv (ω,k) =

ie

ℏω
vcv(k) (2.45)

Υ(2)
cv (ω,k) =

e2

ℏ2ω2

∑
n

vcn(k)vnv(k)

ωn(k)− ωcv(k)
(2.46)

ωmn(k) ≡ (ωm(k) + ωn(k))/2 (2.47)

(2.48)

The rate of the observable ⟨θ⟩ can be rewritten as:

〈
θ̇
〉
I
= |Eω|2 |E2ω| (Re[ΘI : ê

∗
ωê

∗
ωê2ω]cos(∆φ

realtive
1+2 ) + Im[ΘI : ê

∗
ωê

∗
ωê2ω]sin(∆φ

realtive
1+2 ))

(2.49)

where the relative phase parameter is defined as below:

∆φrealtive
1+2 ≡ 2φω − φ2ω (2.50)

The rate of the interference term of observable
〈
θ̇
〉
I

can be the rate of the density of

injected carriers, the rate of injected current, or the rate of injected spin current. The

magnitude and sign of the observable can be controlled by the relative phase of the

light fields of two optical frequencies. Experimentally, it has been shown that QuIC

can lead to the injection of ballistic charge current[24, 23? ] or pure spin current[35].
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2.5.1 Carrier Population Control

In noncentrosymmetric materials, the crystal can absorb the incident light in two-

photon absorption if the imaginary part of χ2 is nonzero. More importantly, when

coherent fundamental and sum-frequency beams are simultaneously present in a crystal,

Im[χ2] results in the energy transferring from the two frequencies to carrier injection.

The rate of total injection of carriers is:

ṅ = ṅ1(2ω) + ṅ2(ω) + ṅI(ω) (2.51)

The one- and two-photon terms are related to the imaginary parts of the even rank

tensors χ1(−2ω; 2ω) and χ3(−ω;−ω, ω, ω) respectively. These two terms exist for any

material. The interference term of the density of injected carriers ṅI is only present in

the materials lacking enter of inversion symmetry. It can be expressed as:

ṅI(ω) = −ξabcI Ea∗(ω)Eb∗(ω)Ec(2ω) + cc. (2.52)

ξabcI (ω) is defined by Fraser et al.:

ξabcI (ω) = − iπe3

ℏ3ω3

∑
cv

∫
d3k

8π3
wab∗

cv (k)vccv(k)δ[ωcv(k)− 2ω] (2.53)

ξabcI (ω) only has one independent nonzero component in zinc-blende crystals:

ξxyzI = ξxzyI = ξyzxI = ξyxzI = ξzxyI = ξzyxI (2.54)

This component is purely real in the independent-particle approximation. It can be
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expressed as a function of the second-order susceptibility:

ξI(ω) =
2Im[χ(2)(−2ω, ω, ω)]

ℏ
(2.55)

The dependence of the density of injected carriers on the relative phase of a 1550

nm beam and its second harmonic is shown as the change in the differential transmis-

sion. The two beams are orthogonally polarized with the 1550 nm beam’s polarization

aligned parallel to crystal · ⟨011⟩ axis to maximize the χ2 contributions.

2.5.2 Injection Current Control

The interference term can generate a current that can be controlled by the relative

phase parameter ∆φrelative
1+2 :

d

dt
⟨Ja⟩1+2 = ηabcd1+2 (3ω)E

b∗
3ω/2E

c∗
3ω/2E

d
3ω + c.c. (2.56)

J̇a
I = ηabcdI (ω)Eb∗(ω)Ec∗(ω)Ed(2ω) + c.c. (2.57)

J̇a
I = ηabcdI (ω)Eb∗(ω)Ec∗(ω)Ed(2ω) + c.c. (2.58)

ηabcdl:e
(h)

(ω) = (−)
iπe4

ℏ3ω3

∑
cv

∫
d3k

8π3
vacc
(vv)

(k)wbc∗
cv (k)vdcv(k)δ[ωcv(k)− 2ω] (2.59)

ηabcde (ω) =
iπe3

ℏ3ω3

∑
cv

∫
d3k

8π3
wbc∗

cv (k)vdcv(k)δ[ωcv(k)− 2ω] (2.60)
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ηabcd1+2 (ω) =
i4πe3

27ℏ3ω3

∑
cv

∫
d3k

16π3
[
∑
m

vbcm(k)v
c
mv(k) + vccm(k)v

b
mv(k)

ωm(k)− ωcv(k)
]∗vdcv(k)δ[ωcv(k)− 3ω]

(2.61)

The imaginary part of ηabcdl:e
(h)

(ω) has been calculated in a span of photon energy for

GaAs. As shown in Fig. 2.7, there is a threshold around the band gap of GaAs, which

indicates that the above-gap excitations contribute to the QuIC injection current. Since

ηabcdl:e
(h)

(ω) is purely imaginary, the injection rate can be written as:

J̇a
I = Im[ηabcdI (ω)]sin(∆φrelative

1+2 )
∣∣Eb(ω)

∣∣ |Ec(ω)|
∣∣Ed(2ω)

∣∣+ c.c. (2.62)

Figure 2.7: The calculated imaginary parts of injection coefficient tensor elements
as functions of fundamental photon energy for intrinsic GaAs at room temperature.
adapted from Ref. [6]

The control of carrier population and the control of injected current are different in

many aspects. Firstly, the carrier population has a scalar dependence on the relative

phase parameter, whereas the control of the injected current’s direction depends on the

relative phase. Secondly, from a macroscopic point of view, the control of carrier popu-
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lation is caused by the sum of the interfering amplitudes at k and −k. But the injected

current originates from the difference of the injection rates at k and −k. Thirdly, the

control population is related to χ2(−2ω;ω, ω) whereas the control of injected current

originates from the most divergent part of χ3(0;−2ω, ω, ω). Lastly, in semiconductors

such as GaAs, the two phenomena arise from different polarization schemes and crystal

cuts. For example, the control of carrier population can arise in ⟨111⟩ oriented GaAs

with orthogonally polarized lights. In contrast, the control of injected current appears

in ⟨001⟩ oriented GaAs with co-linearly polarized lights.

2.5.3 Swarm Velocity

Swarm velocity is defined as the average velocity of the injected carriers. Swarm

velocity represents the efficiency of the carrier injection. It can be written as:

vs =
J̇

eṅ
(2.63)

where J̇ is given by Eq. 1.62. and ṅ is given by Eq. 1.56. The swarm velocity

maximizes when the following conditions are satisfied: a) sin(2φω − φ2ω) = 1. b) the

one- and two-photon absorption are balanced: ṅ1(2ω) = ṅ2(ω). The interference term

ṅI is zero for linearly polarized beams. Assuming the polarizations of two beams are

co-linearly align to ⟨100⟩, the maximum of swarm velocity is:

v⟨100⟩s,max =
Im[ηxxxxI (ω)]

e
√
ξxx1 (2ω)ξxxxx2 (ω)

(2.64)
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2.6 Carrier Scattering Mechanism

2.6.1 Hot Carrier Generation in the QuIC Process

In the light absorption process, there are different kinds of charged carriers moving

inside the crystal, such as heavy holes, light holes (hh and lh), and electrons (e). The

speed of different kinds of carriers in GaAs at the Γ-point as a function of photon

energy is shown in Fig. 2.8. The electrons generated with heavy holes have the largest

speed. The electrons (lh) and light holes have more similar velocities since their effective

masses are more similar. The number of the e-hh pairs near the band edge is about

three times larger than e-hh pairs. Assuming the excitation energy is 1.6 eV, 80%

of the injected photocurrent is carried by the electrons. Therefore, we only consider

electrons’ contribution to QuIC current.

Figure 2.8: The scattering rates of different kinds of carriers as functions of total photon
energy for intrinsic GaAs at room temperature. Electrons injected from the light-hole
valence band, electrons injected from the heavy-hole valence band, light-holes, and
heavy-holes are denoted by elh, ehh, lh, and hh, respectively. [7]
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2.6.2 Hot Carrier Relaxation

In this subsection, we discuss the general hot carrier relaxation processes. As discussed

earlier, a population of hot carriers is injected into the conduction band from the va-

lence band in optical absorption processes. In our case, the total photon energy (2.38

eV) is much higher than the band gap (1.77 eV). The injected carriers will distribute far

away from the bottom of the conduction band. In Fig. 2.9, different carrier relaxation

pathways are sketched on the band structure. ℏωLO denotes the energy of longitudinal

phonons. ℏωp denotes the energy of plasmon energy. The electron-electron scattering

becomes more significant when the carriers are more spread out towards the bottom of

the conduction band because the scattering has to satisfy the momentum and energy

conservation laws. In the quantum control of carriers process, the carriers are initially

highly localized in the conduction band. Therefore, electron-electron scattering is less

impactful than electron-phonon scattering in the initial stage. The injected carriers

are usually called "hot carriers" because they have significant excess energy, so they

can travel in crystals with large momentum. These carriers will slow down through

three thermalization stages. In the first stage, the carriers go through a rapid initial

relaxation where the carrier energy is reduced in units of plasmons and LO phonons.

In the second stage, the carriers cool down towards lattice temperature through op-

tical phonon scattering. However, the cooling will not be complete because optical

phonons carry more energy than acoustic phonons, and they are less efficient in energy

relaxation when the excess energy of carriers is reduced to a certain degree. The first

two stages of thermalization usually happen within 100 ps. In the third stage, the

distribution of carriers is further cooled down to lattice temperature through acoustic

phonon scattering. This process is usually on the nanosecond time scale. [5]

The QuIC current is sketched as a function of time in Fig. 2.10, where the current

bursts appear at the repetition rate of the laser. The rise slope of each current burst
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Figure 2.9: A schematic illustration of the scattering processes involved in the carrier
relaxation. adapted from Ref. [5]

is limited by the optical pulses, and the fall slope is related to the current relaxation

time. The current relaxation time is determined by the rate of all the scattering

mechanisms. In general, a variety of scattering mechanisms can happen in a crystal.

Inside the crystal, carriers can be scattered by defects, other carriers, and phonons.

As pointed out by Auston [44], the photocurrent lifetime may be much longer than

the carrier scattering time because only certain collision events will cause the current

to decay. In semiconductor materials such as GaAs, the current injected by QuIC is

not affected significantly by e-e, hh-hh, or lh-lh scattering. This is because the carrier-

carrier scattering follows the momentum preservation rule, which is hard to achieve on

a parabolic band surface. In principle, the carriers at k and −k on the same energy

level can still interact with each other. However, this kind of carrier-carrier interaction

is neglectable since the distribution of carriers in QuIC is highly anisotropic and non-

inversion symmetric. This kind of scattering can be prominent in the QuIC of spin

current because the carriers are injected more isotropically to the conduction band. It
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can potentially explain the short mean free path of carriers in QuIC of spin current.

In the low carrier density regime (ρ < 1018cm−3), the current relaxation is dominated

by LO-phonon scattering, of which cross-section is much smaller than e-e and e-lh

interactions. The current relaxation time τe is the sum effect of the phonon, impurity,

and carrier-carrier scattering times.

1

τe
=

∑
i

1

τi
(2.65)

Figure 2.10: A sketch of the current injected by the QuIC process as a function of time.

2.6.3 Phonon Scattering

Phonons are essentially the vibration of a lattice where atoms oscillate about their

equilibrium sites. These vibrational lattice waves have periodicity, just like Bloch

waves. For crystals with more than one different atom in the primitive cell, there are

six modes of phonon waves - three acoustic modes and three optical modes. There

is one longitudinal acoustic mode and two transverse acoustic modes. The adjacent

atoms of acoustic modes are displaced in the same direction, whereas those of optical

modes are displaced out of phase. Fig. 2.11 is the phonon energy band structure of

GaAs. Optical phonons in GaAs have higher oscillation frequency around Γ point of
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GaAs. And it has little dispersion near the long wavelength limit. The dispersion

relation of acoustic phonons can be written as:

ω(β) = vsβ (2.66)

where vs is the sound velocity in crystal. The distribution of thermal phonons follows

the Bose-Einstein distribution, where the probability of finding phonons in a given

state with a given angular frequency is:

n(ω) =
1

exp( ℏω
kBT

− 1)
, (2.67)

kB is the Boltzmann constant.

Figure 2.11: The band structure of phonons in GaAs [5]

2.6.4 Energy-momentum Conservation in Phonon Scattering

When a carrier is scattered by a phonon, both energy and momentum should be con-

served. Assume ℏω(β) is the energy of the phonon. The conservation of energy can be

expressed as:

E(p
′
) = E(p)± ℏω(β) (2.68)
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If the band is parabolic, the equation can be written as:

p
′2

2m∗ =
p2

2m∗ ± ℏω(β) (2.69)

In the carrier relaxation process, multiple phonon scattering events will alter the

magnitude of k while preserving its directionality. For ρ ∼ 1015cm−3, the scattering

rate and the electron momentum relaxation time in LT-GaAs were measured to be 5.5

ps−1 and 185±50 fs, respectively [45]. LO-phonon emission and absorption rates in

GaAs by electrons excited above the band gap have been calculated and measured by

a number of groups.[46][47] At room temperature, the combined emission/absorption

rate in GaAs is 8 ps−1 for electrons with 150 meV excess energy (this corresponds to

a two-photon transition at 1.55 nm)[48]. The effective phonon scattering time τLO for

an electron with excess energies ∆E >> ELO can be expressed as:

τLO ∼ ∆E

RLOELO

(2.70)

where RLO is the LO-phonon scattering rate. Based on the band structure of AlGaAs

and the total excitation energy (2.8 eV), we know that the excess energy ∆E ∼ 120 eV.

We use 8 ps−1 to estimate the scattering rate for undoped AlGaAs. The LO-phonon

energy ELO is ∼ 35eV in GaAs. For one injected electron to relax to the bottom of the

conduction band, the LO-phonon scattering time is roughly 430 fs.
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CHAPTER 3

1+2 Quantum Interference Control (QuIC) in

AlGaAs

To our knowledge, all the previous studies on the 1+2 QuIC currents directly extracted

from metal contacts were conducted with Schottky contacts. The 1+2 QuIC signals

were all observed as photo-voltage signals, while the intrinsic product of the QuIC

process is supposed to be current. There has been a debate on the type of electrical

source the QuIC process offers. In this chapter, we show that the Schottky contact is

more related to the "voltage source," and Ohmic contact is more related to the "current

source."

3.1 Metal-semiconductor Contact

There are two kinds of metal-semiconductor junction-rectifying contact (Schottky bar-

rier) and non-rectifying contact (ohmic contact). The ohmic contact between semicon-

ductor and metal is desirable in semiconductor devices because of its low resistance.

In the case of carrier injection, the carriers can tunnel through the depletion layer of

ohmic contact, resulting in a better current collection than Schottky contact. One of

the features of ohmic contact is that its potential barrier is very thin compared to the
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Schottky barrier. The tunneling probability is a function of barrier thickness:

P ≈ exp[−2T

√
8π2m

h2
(VH − E)] (3.1)

where VH − E is the height of the energy barrier, and m is the effective mass. The

barrier thickness T can be expressed by:

T ≈ Wdep/2 =
√
εsϕBn/(2qNd) (3.2)

Therefore, the tunneling probability can be written as:

P ≈ exp(−4π

h
(ϕBn − V )

1√
Nd

√
εsm∗) (3.3)

and the current of tunneling electrons is:

J = nqv · P = Ndqvexp(−
4π

h
(ϕBn − V )

1√
Nd

√
εsm∗) (3.4)

We can tell from the equation above that when V ≪ ϕBn, J is linear in the applied

voltage, which is a main characteristic of ohmic contact. The concept of specific contact

resistance (Ω/ cm2), the resistance of a 1 cm2 contact, is introduced by the expression

of current:

Rc ≡
V

J
=

2 · eHϕBn/
√
Nd

qvH
√
Nd

∝ eHϕBn/
√
Nd (3.5)

where H ≡ 4π
h

√
(εsmn)/q

Five layers of Au, Ge, and Ni were deposited on the AlGaAs bulk crystal and

annealed at 450 ◦C for 5 mins to create ohmic contact. The order of the five layers is

Au Ni Ge Au Ni (110nm, 30nm, 20nm, 10nm, 5nm) from top to bottom. The electrode
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pattern was applied to a layer of photoresist (5 µm) using photo-lithography. Before

the metal deposition, the wafer with photoresist was plasma etched for 1 minute with

LAM 9400. As shown in Fig. 3.2, the I-V curves of ohmic contact are linear in a

wide range of voltage. The goodness number of the fitting with the linear equation is

∼ 0.999, which is consistent with Eq. 2.4. The resistance of Ohmic contact (∼ 8KΩ) is

way smaller than that of Schottky contact (∼ 80MΩ) without illumination. Based on

the I-V curves in Fig. 3.3, the Schottky barriers have a much larger effective resistance

than ohmic contact. The I-V curve is diode-like on the V > 0 side and V < 0 side. It

can be considered as a much larger resistor when the bias voltage is small (from -100

mV to 100 mV).

Figure 3.1: A picture of the Ohmic-contact electrodes on the AlGaAs wafer. The
four tips are connected to 4 larger metal pads (1mm × 1mm). The spacing between
opposing electrode pairs is 7 µm. The width of each tip is 3 µm.

3.2 1+2 QuIC setup

Fig. 3.4 is a sketch of the 1+2 QuIC setup. The Second Harmonic Generation in a

100 µm BBO crystal doubles the frequency of the frequency comb, whose spectrum

is centered at 1040 nm. The repetition rate of the frequency comb is 250.583 MHz.
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Figure 3.2: Left: the I-V curve of the Ohmic horizontal electrode pair. Right: is the
I-V curve of the Ohmic vertical electrode pair. The range of applied voltage is from
-100 mV to 100 mV. The resistances of these two pairs are fitted by the linear equations,
denoted by the orange lines.

Figure 3.3: The I-V curve of a Schottky electrode pair on AlGaAs from Vbias = −15 V
to Vbias = 15 V .

Figure 3.4: A schematic diagram of the 1+2 QuIC setup

38



A prism pair separates the 1040 nm light from its second harmonic spatially. The

spacing between the two prisms is about 40 cm. There are pros and cons to using

a prism pair to separate the two colors. On the one hand, the prism pair has more

degrees of freedom regarding beam alignment optimization. In the previous method,

the two colors are separated by a bandpass spectral filter. The problem with this

method is that it cannot completely filter out one color from the other. The residue

of 1040 nm (520 nm) light in the 520 nm (1040 nm) arm will interfere with its replica

at the sample and create spatial fringes. As the delay between two arms varies, the

fringes will move back and forth, generating a signal at the proposed QuIC frequency.

Therefore, it will be very hard to differentiate the QuIC signal from the interference

signal. Contrary to the previous method, the prism pair can perfectly separate two

colors both spectrally and spatially, which inherently guarantees that the signal at slow

ramp frequency is caused by quantum interference. On the other hand, the prism pair

can introduce different anomalous group delay dispersions to the two colors. Therefore,

the two beams need to be kept close to each other inside the prism pair. The 520-nm

arm of the interferometer was dithered sinusoidally over about λ/4 at 2 KHz for lock-

in detection. The 1040-nm arm was ramped sinusoidally over several wavelengths at

0.5 Hz. In the previous QuIC measurements where the Lock-in Amplifier detects at

the chopper frequency, phase-insensitive single- or two-photon absorption can easily

overwhelm the QIC signal. Applying oscillation to both arms eliminates irrelevant

signals at the Lock-in reference frequency. The two driving voltages of Piezos are

phase-stable relative to the same DDS clock. After the two arms are recombined, a

fraction of the light is sent through another BBO crystal, where the second harmonic

of the 1040 nm arm interferes with the 520 nm arm when they temporally overlap.
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The power of the 520 nm light after BBO can be written as:

I = cos(ϕrelative) + c.c. = cos((2ω520nm dither + ω1040nm slow ramp)t) + c.c. (3.6)

Thus, the signal power should have the same relative-phase dependence as the QuIC

signal. The oscillation of the 520-nm power should be twice the frequency of the

slow ramp. Fig. 3.5 is the amplitude of the photo-detector signal detected at the

dither frequency (2KHz) by the Lock-in Amplifier. The turn-around points indicate

the duration of the oscillation cycle, which, in this case, is 1 second.

Figure 3.5: The power of the green light after the second BBO crystal is plotted as a
function of time, shown as the black curve. The times when the piezo starts to move
in the other direction are denoted by the red arrows. The frequency of the slow ramp
is 0.5 Hz.
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3.3 1+2 QuIC

3.3.1 Relative-phase Dependence

The two beams are focused at the center of the horizontal electrode pair. The two

beams are co-linearly polarized. The direction of their polarization is across the elec-

trode pair. The diameter of the focal spot of the 1040-nm beam is ∼ 2µm, and the

diameter of the focal spot of the 520-nm beam is ∼ 3µm. The power of 1040-nm

illumination is ∼ 42mW , and the power of 520-nm illumination is ∼ 8mW . The 1+2

QuIC current is converted to a voltage signal by external resistance, which is the load

resistor of the voltage channel of the Lock-in Amplifier (10MΩ) and EXTECH Resis-

tance Decade Box (10MΩ) in parallel. Fig. 3.6 is the 1+2 QuIC signal as a function

of the relative temporal delay between the two pulse trains. The FWHM of the over-

lap envelope (∼280 fs) is consistent with the duration of the 1040-nm pulse (∼90 fs)

and 520-nm pulse (∼120 fs) measured from auto-correlation. The oscillation inside

the envelope indicates the phase dependence of the QuIC current. The fact that the

voltage signal oscillates around 0 means that the QuIC current changes direction as the

relative phase between the two quantum pathways changes. To gain resolution of each

oscillation, we set the travel range of the slow sinusoidal ramp of the 1040-nm arm to be

a little over one wavelength and keep the waveform as what is shown in Fig. 3.7. Now,

with the same ramping frequency and sampling rate of Lock-in Amplifier, the number

of data points in each oscillation is maximized. Another reason for capturing turn-

around points is to get the amplitude of the QuIC signal. The reference signal of the

Lock-in Amplifier is at the dither frequency of the 520-nm arm. Note that not only the

oscillation depth but also the resting position of M2 needs to be adjusted. The optimal

resting position is when the relative phase between two pathways is 90◦. However, if

the resting position is when the relative phase between two pathways is 0◦ or 180◦, the
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detection frequency of QuIC signal should be twice the dithering frequency. The same

measurement was also done with a Schottky-contact sample (resistance:100KΩ under

illumination) with the same contact pattern. As shown in Fig. 3.8, with the same

excitation energies, the QuIC signal from the Schottky-contact sample has a smaller

amplitude than the QuIC signal measured from the Ohmic-contact sample.

Figure 3.6: The QuIC signal from the Ohmic-contact sample detected at 2 KHz as a
function of the relative time delay.

3.3.2 External-resistance Dependence

To study the type of electrical source the Schottky barrier and Ohmic contact offer, we

conducted measurements on the amplitude of QuIC voltage oscillation as a function of

the external resistance both on Ohmic-contact and Schottky-contact AlGaAs samples.

In the experiment, the load resistance converts the current IExternal(t) to a voltage,

whose average over time is read by the Lock-in Amplifier. The external resistance

was varied from 0.01 MΩ to 5 MΩ by adjusting the EXTECH Resistance Decade

Box. 30 cycles of phase-induce oscillation were taken at each external resistance. The

amplitude of phase-induce oscillation was analyzed by averaging the peak values for

different external resistances. The dependence of QuIC-induced voltage from Schottky
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Figure 3.7: The X channel of the Lock-in Amplifier measured the relative-phase de-
pendence of the 1+2 QuIC. The horizontal electrode pair of the Ohmic-contact sample
was used. The lock-in amplifier was in voltage mode.

Figure 3.8: The X channel of the Lock-in Amplifier measured the relative-phase depen-
dence of the 1+2 QuIC. The horizontal electrode pair of the Schottky-contact sample
was used. The lock-in amplifier was in voltage mode.
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Figure 3.9: The amplitude of 1+2 QuIC from the Schottky-contact sample and Ohmic-
contact sample are plotted as functions of the external resistance.

contact differs from that from Ohmic contact. As shown in Fig. 3.9, the voltage from

Schottky contact rises fast in the low external resistance regime and plateaus in the

high external resistance regime. In contrast, the voltage from ohmic contact has a

more linear relation with external resistance in the measurement range.

We model the 1+2 QuIC measurements with electrical circuits. Fig. 3.10 (a) is the

circuit with Schottky barriers, and Fig. 3.10 (b) is the circuit with ohmic contact. For

Schottky contact, the metal-semiconductor-metal structure is modeled by a capacitor

and a resistor in parallel. Due to the Schottky barriers, the injected carriers will

accumulate around the metal-semiconductor interface, which makes the metal electrode

pair effectively a capacitor. The capacitor is discharged periodically in time, which

creates the current flow in the external circuit. The capacitance is denoted by CMSM
Schottcky.

The resistances of the two kinds of contacts are denoted by RMSM
Ohmic(t) and RMSM

Schottcky(t),

respectively. The resistors RMSM and Rload in parallel provide two discharge channels.

The total current ITotal, resistance of device RMSM , and external current IExternal vary

44



with time. Their periodicity is related to the repetition rate of the pulse train. For

instance, we have ITotal(t) = ITotal(t+T ), where T is the time interval between adjacent

pulses.

Figure 3.10: (a) A circuit diagram as a model of the Schottky-contact 1+2 QuIC
detection. (b) A circuit diagram as a model of the Ohmic-contact 1+2 QuIC detection.

When the circuit is in the low external resistance regime, the total resistance of the

Schottky-contact circuit can be written as:
RExternal R

MSM
Schottky(t)

RExternal+RMSM
Schottky(t)

. It is larger than the

total resistance of the Ohmic contact circuit since RMSM
Schottky(t) > RMSM

Ohmic(t). We assume

that
〈
IStotal(t)

〉
roughly remain constants under the change of RExternal in the low exter-

nal resistance regime. In this regime, ITotal(t) is split into RMSM
Schottky(t) and RMSM

Ohmic(t).

The voltage measured by Lock-in Amplifier from the Schottky-contact sample can be

written as a function of external resistance: VSchottky =
⟨ITotal(t)⟩RExternal ⟨RMSM

Schottky(t)⟩
RExternal+⟨RMSM

Schottky(t)⟩
.

The experimental data from 0.01 MΩ was fitted by this function, as shown in Fig.

3.11. The fitted
〈
RMSM

Schottky(t)
〉

and ⟨ITotal(t)⟩ are 23.5 KΩ and 5.4e−7 A, respectively.

The
〈
RMSM

Schottky(t)
〉

is close to the resistance measured with a multi-meter under the

same illumination (∼37 KΩ). The voltage across the external resistance can also be

expressed by: ⟨Q(t)⟩ /CMSM
Schottky. As external resistance increases, the charges transfer

across the depletion layer to the metal-semiconductor interface become more saturated.

Therefore, the voltage plateaus in the high external resistance regime, possibly because

there are not enough charges yielding an increasing voltage.
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In addition, for Schottky contact, it is harder for carriers to get through the depletion

layer to the electrode pads, whereas the carriers can tunnel through the thin depletion

layer easily for ohmic contact. Therefore, Schottky contact’s capacitance is way larger

than Ohmic contact’s capacitance, which also makes the Schottky voltage plateau at

a lower external resistance than Ohmic voltage. These features of the Schottky MSM

device make it act like a "voltage source" that provides roughly constant voltage for a

wide range of external resistance.

Different from Schottky contact, the capacitance of Ohmic contact is mostly par-

asitic and much lower. The charges transfer across the depletion layer through the

tunneling process instead of thermionic emission. Therefore, we use the circuit in Fig.

3.10 (b) as our model, where the device provides the injected carriers as a current

source. In the high external resistance regime, the voltage across the external resistor

can be fitted by a linear function: VOhmic = ⟨IoTotal(t)⟩RExternal+V0, assuming the MSM

device (capacitor and internal resistance in parallel) acts like a "current source". The

fitted parameters ⟨IoTotal(t)⟩ and V0 are 5e−9 A and 0.0018 mV respectively. As shown

in Fig. 3.11, the linear trendline and the resistance dependence show a fairly good

agreement. ⟨IoTotal(t)⟩ is much smaller than
〈
ISTotal(t)

〉
, possibly because the voltage

also plateaus to some degree due to the charge transfer saturation.
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Figure 3.11: Left: the amplitude of the 1+2 QuIC from Schottky contact as a function
of the external resistance (pink squares). Right: the amplitude of the 1+2 QuIC from
Ohmic contact as a function of the external resistance (green squares). The fit curves
are calculated based on the circuit models (black triangles).
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CHAPTER 4

2+3 QuIC

Due to the higher order of optical transitions, the injected carriers in the QuIC of two-

and three-photon absorptions (2+3 QuIC) have been predicted to be more localized in

the k-space than those in the QuIC of one- and two-photon absorptions (1+2 QuIC)[2].

This localization is desirable because it offers access to k-space microscopy with op-

tical transitions. In this chapter, we will first demonstrate why frequency combs are

suitable tools for generating 2+3 QuIC current. We will then discuss the origin of the

localization of carrier distribution in the k-space. The control and stabilization of the

offset frequency will be discussed in detail. In the end, we will show the measurements

of the detection frequency dependence, relative-phase dependence, and polarization

dependence of the 2+3 QuIC current. Our analysis of the polarization dependence

reveals the localization of carrier distribution in 2+3 QuIC.

4.1 Introduction to Frequency Comb

In the time domain, the frequency comb can be considered as a train of pulses with

coherent phases. As shown in Fig. 4.1, the carrier-envelope phase (CEP) shift between

adjacent pulses is denoted by ωcT , where ωc is the carrier angular frequency. The

time interval between adjacent pulses is denoted by T. The electric field of an optical
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frequency comb can be written as a function of time:

E(t) =
∞∑

m=−∞

ε(t−mT )ei[wc(t−mT )+mϕoff ] (4.1)

where the sum runs to infinity, ε is the envolope. To get the comb structure in the

frequency domain, we apply Fourier transform to E(t):

g̃(ω) =

∫ ∞

−∞
g(t)e−iωtdt (4.2)

According to convolution theorem: F [f · g] = F [f ] ∗ F [g], where F represents Fourier

transform and ∗ indicates convolution. Thus, the frequency domain is:

Ẽ =
∑
m

F [ε(t−mT )] ∗ F [ei[wc(t−mT )+mϕoff ]] (4.3)

We then apply the Fourier shift theorem: F [g(t− τ)] = exp(−iωτ)F [g(t)], we have:

Ẽ =
∑
m

[e−imωT ε̃(ω)] ∗ [e−im(wcT−ϕoff )δ(ω − ωc)] = ε̃(ω − ωc)
∑
m

eim(ωT−ϕoff ) (4.4)

A Dirac comb can be expressed as:

Xωrep(ω) ≡
∞∑

k=−∞

δ(ω − kωrep) =
1

ωrep

∞∑
m=−∞

eimωT (4.5)

ωrepXωrep(ω − ωoff ) =
∞∑

m=−∞

eim(ω−ωoff )T ) (4.6)
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where ωoff ≡ ϕoff/T . Thus, the Fourier transform of the electric field can be written

as

Ẽ(ω) ≡ ωrepε̃(ω − ωc)Xωrep(ω − ωoff ) (4.7)

Alternatively this may be expressed with non-angular frequencies (refer to the appro-

priate Fourier Transform) as

Ẽ(f) = frepε̃(f − fc)Xfrep(f − foff ) (4.8)

In the time domain, the electric field now can be written as:

E(t) = frep

∞∑
k=0

ε̃(kfrep + foff − fc)e2πi(kfrep+foff )t (4.9)

The per-roundtrip CEP difference can now be written as:

ϕoff = 2πfoff/frep (4.10)

Eq. 3.9 indicates that a frequency comb is composed of numerous different CW fre-

quency lines. It is automatically guaranteed that these CW frequency components are

phase coherent, since they are only determined by two parameters-frep and foff . This

feature makes frequency combs fundamentally different from filtered thermal light from

Fabry-Perot cavities. Because thermal light has a random temporal envelope and car-

rier phase in each repetition period, there is no phase coherence between its frequency

components or temporal periodicity.

There are a few methods for optical frequency comb generation. An easy approach

to the formation of an optical frequency comb employs a few cascaded electro-optical
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Figure 4.1: (a) In the time domain, a frequency comb is defined by an infinitely long
train of identical but arbitrarily-shaped envelopes with period T = 1/frep. Each suc-
cessive carrier wave slips by a phase of ϕoff = 2foff/frep with respect to its envelope.
(b) The Fourier transform of (a) reveals comb structure with an FSR of frep offset
from the origin by frequency foff . The optical frequency of each comb tooth is given
by n = nfrep + foff where n is an integer.
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(EO) modulators driven by a microwave signal to impose a series of sidebands on

a continuous-wave laser. Due to the recent advances in integrated lithium niobate

waveguides, the EO comb uses off-the-shelf components from the telecommunication

industry and has great reliability.

Another approach to optical frequency combs generation has attracted great inter-

est due to its advantages of a small footprint, low power consumption, and integration

capability. It offers the possibility of miniature comb systems integrated on a semi-

conductor chip. They are often called microcombs which rely on the Kerr nonlinearity

that is enhanced by the optical power build-up in high-Q microresonators or ring-like

resonators. Benefiting from modern fabrication techniques, the ultra-low propagation

loss inside the microresonators results in the quality (Q) factors ranging from 106 up

to nearly 1011.

4.2 Laser System

A custom laser system (MenloSystems) outputs two femtosecond pulse trains at dif-

ferent wavelengths: one is centered at 1560 nm (400 mW) and the other is centered at

1040 nm (740 mW). The two pulse trains are pumped by the same oscillator, which

is generated from an Er-doped fiber ring. The fiber system is stabilized such that the

optical pulses are phase coherent. The output of oscillator splits into two doped fibers,

where lights go through different optical power amplification processes. The 1040-nm

and 1560-nm frequency combs share the same repetition rate of 250.583 MHz.

To get the 1560 nm frequency comb, one of the fibers goes through an Er-doped

fiber amplifier (EDFA). After EDFA, a dispersion compensation module eliminates the

dispersion introduced by the Er-doped fiber. In general, the gain is available only at a

wavelength longer than the pump wavelength. There are two excited states (Excited
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state 1 at 1480 nm absorption and Excited state 2 at 980 nm absorption) and one

ground state involved in the optical amplification process. The stimulated emission

from 1530-1560 nm happens with the population inversion between the ground state

and Excited state The population inversion can be achieved by pumping at 980 nm

or at 1480 nm. The Er ions pumped by 1480 nm light can directly participate in the

emission process. The Er ions at Excited state 2 pumped by 980 nm relax to Excited

state 1 through heat radiation, which has a short lifetime. Typically, 980 nm pumping

is more desirable because: 1. The separation between output wavelength and pumping

wavelength is larger. 2. The absorption linewidth is narrower than the absorption

linewidth at 1480 nm. 3. It cannot stimulate back transition to the ground state. To

Figure 4.2: (a) The energy diagram of Erbium. adapted from Ref. [8] (b) The absorp-
tion and emission spectra of Yb. adapted from Ref. [9]

get the 1040 nm frequency comb, the other part of the oscillator beam goes into a

fiber stretcher, where the temporal profile of femtosecond pulses is stretched. It then

goes into a Yb-doped fiber amplifier (YDFA). After that a TOD compresser is used

to compress the time duration of femtosecond pulses. The gain recovery time (10 us

to 1 ms) of doped fibers is long enough for the fiber to “see” the femtosecond pulse

trains as a continuous light power. This means its threshold is directly related to the

peak pulse energy. Even though the average power is low, ultrashort optical pulses
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have high peak intensity, which can damage the doped fiber easily. Therefore, the

stretching-compressing technique is widely used in optical power amplification to avoid

damaging the doped fibers and also get a larger power amplification.

As shown in the absorption and emission spectra in Fig. 4.2 (b), Yb ions have a

strong absorption peak at 980 nm. Optical gain can achieved with the emission peak

at 1040 nm. In the Menlos laser system, the YDFA and EDFA are pumped by the

replica of the same oscillator. The optical amplification module benefits from the fact

that Er and Yb have overlapping absorption wavelength regions, which are roughly

from 900 nm – 980 nm. The outputs of two amplifications both have a pulse duration

of ∼ 70 fs.

Figure 4.3: (a) the spectrum of the optical frequency comb center at 1040 nm. (b) the
spectrum of the optical frequency comb center at 1560 nm.

The spectra of the two output frequency combs are shown in Fig. 4.3 (a) and Fig.

4.3 (b). The 1040 nm frequency comb has an FWHM of ∼18 nm, and the 1560 nm

frequency comb has an FWHM of ∼80 nm. The two pulse trains are 1.7 ns apart in

time out of laser heads. The two frequency combs share the same repetition rate and

offset frequency. The offset frequency is one of the determining factors of the SNR of

2+3 QuIC current. It needs to be precisely measured, stabilized, and controlled. The

importance of measuring the absolute offset frequency will be further discussed later
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in the thesis.

4.3 2+3 QuIC Theory

To show why it is necessary to use OFCs for the 2+3 QuIC current generation, we

need to start with an introduction to 2+3 QuIC.

4.3.1 Carrier Injection in 2+3 QuIC

The optical injection of carriers in 2PA, 3PA, and 2+3 QuIC can be expressed by the

electric fields and the tensor ξ. The number of carriers injected by the two-photon

absorption is:

d

dt
⟨n⟩2 = ξabcd2 (3ω)Ea

−3ω/2E
b
−3ω/2E

c
−3ω/2E

d
−3ω/2 (4.11)

The number of carriers injected by the three-photon absorption is:

d

dt
⟨n⟩3 = ξabcdef3 (3ω)Ea

−ωE
b
−ωE

c
−ωE

d
ωE

e
ωE

f
ω (4.12)

The number of carriers injected by 2+3 QuIC is:

d

dt
⟨n⟩2+3 = ξabcde2+3 (3ω)Ea

−ωE
b
−ωE

c
−ωE

d
3ω/2E

e
3ω/2 + c.c. (4.13)

where,

ξabde2 (3ω) = 2π

∫
dk

(2π)D

∑
cv

Rab∗
cvkR

de
cvkδ(3ω − ωcv) (4.14)
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ξabdefg3 (3ω) = 2π

∫
dk

(2π)D

∑
cv

Rabd∗
cvk R

efg
cvkδ(3ω − ωcv) (4.15)

ξabdef2+3 = 2π

∫
dk

(2π)D

∑
cv

Rabd∗
cvk R

ef
cvkδ(3ω − ωcv) (4.16)

4.3.2 Current Injection in 2+3 QuIC

The injection rate coefficients of the interference of two- and three-photon processes

can be written as:

µabd,fg
2+3 (Ω) = 2π

∫
dk

(2π)D

∑
cvc′v′

(Mcc′kδv′v −Mvv′kδc′c)× δwcvk=w
c
′
v
′
k
R

(3)abd∗
c′v′k

R
(2)fg
cvk δ(Ω− ωcvk)

(4.17)

where the second-order coefficient R(2)ab
cvk (3ω

2
, 3ω

2
) is:

R(2)ab
cv (k;

3ω

2
,
3ω

2
) =

−4e2

9ℏ2ω2

∑
m

vacmkv
b
cmk

(3ω
2
− ωmvk)

(4.18)

and the third-order coefficient R(3)abd
cvk (ω, ω, ω) is:

R(3)abd
cv (k;ω, ω, ω) =

ie3

ℏ3ω3

∑
mn

vacmkv
b
mnkv

d
nνk

(ω − ωcmk)(ω − ωnvk)
(4.19)

The intraband transitions are the dominant contributions to R(2)ab
cvk , while R(3)abd

cvk also

has contributions from interband velocity matrix elements. Note that the intraband

velocity matrix elements are associated with the corresponding band dispersion: vannk =

∂akωnk The broken inversion symmetry of carrier distribution in the k-space is caused

by the change of sign of the factor R(3)abd∗
c′v′k

R
(2)fg
cvk under transformation k → −k.
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The current injection rate of 2+3 QuIC can be rewritten as:

d

dt
⟨Ja⟩2+3 = ηabdefg2+3 (3ω)Eb∗

ω E
d∗
ω E

e∗
ω E

f
3ω/2E

g
3ω/2 + c.c. (4.20)

where ℏΩ = 3ℏω is the total photon energy. The current injection coefficient ηabdefg2+3 is

defined as:

ηabdefg2+3 (3ω,k) = 2πe[vacc(k)− vavv(k)]R
(3)bde
cvk (k;ω, ω, ω)∗ ×R(2)fg

cv (k;
3ω

2
,
3ω

2
)δ[3ω − ωcv(k)]

(4.21)

where ωab
cv(k) is the symmetrized two-photon amplitude

wab
cv(k) ≡

1

2

∑
m

vacm(k)v
b
mv(k) + vbcm(k)v

a
mv(k)

ωm(k)− ωcv(k)
(4.22)

The 2+3 QuIC current is generated from < 001 > oriented AlGaAs and behaves like

a planar current. Since the electric fields only have x and y components, there are six

independent nonzero ηabcdef2+3 elements:

ηxxxxxx2+3 = P (x, y, z) (4.23)

ηxxxxyy2+3 = P (x, y, z) (4.24)

ηxxyyxx2+3 = ηxyxyxx2+3 = ηxyyxxx2+3 = P (x, y, z) (4.25)

ηxxxyxy2+3 = ηxxxyyx2+3 = ηxxyxxy2+3 = ηxxyxyx2+3 = ηxyxxxy2+3 = ηxyxxyx2+3 = P (x, y, z) (4.26)
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ηyxxxxy2+3 = ηyxxxyx2+3 = P (x, y, z) (4.27)

ηyxxyxx2+3 = ηyxyxxx2+3 = ηyyxxxx2+3 = P (x, y, z) (4.28)

4.3.3 The Localization of Carrier Distribution

We compare the injection rates of 1+2 QuIC and 2+3 QuIC. They are both functions

of k, representing distributions of carrier injection in the k-space. ηabdefg2+3 (3ω,k) has

higher orders of v(k), which is related to the energy band dispersion. We assume

all the upscripts of ηabdefg2+3 (3ω,k) and ηabcd1+2 (ω,k) are x, which corresponds to the case

where the electric fields are polarized along ⟨100⟩ crystal axis. We denote the angle

between k and ⟨100⟩ by θ. ηabcd1+2 (ω,k) is a function of cos4(θ), whereas ηabdefg2+3 (3ω,k)

is a function of cos6(θ). This is the origin of the localization of 2+3 carrier injection

rate in the k-space. It has been theoretically studied by Mahon, Perry T. et al. [10].

Fig. 4.4 shows the calculation of carrier injection rate distribution for 1+2 QuIC and

2+3 QuIC in the k-space.

ηabcd1+2 (ω,k) =
iπe4

2ℏ3ω3

∑
cv

vacc(k)[
∑
m

vbcm(k)v
c
mv(k) + vccm(k)v

b
mv(k)

ωm(k)− ωcv(k)
]∗vdcv(k)δ[ωcv(k)− 2ω]

(4.29)

ηabdefg2+3 (3ω,k) = 2πe[vacc(k)− vavv(k)][
ie3

ℏ3ω3

∑
mn

vbcm(k)v
d
mn(k)v

e
nν(k)

(ω − ωcmk)(ω − ωnvk)
]∗×

[
−4e2

9ℏ2ω2

∑
m

vfcm(k)v
g
cm(k)

(3ω
2
− ωmvk)

]δ[3ω − ωcv(k)]

(4.30)

ηabdefg2+3 (3ω,k) = 2π

∫
dk

(2π)3

∑
cv

i4e5

9ℏ5ω5
[
∑
mn

vb
cmkv

d
mnkv

e
nvk

(ω − ωcmk)(ω − ωnvk)

]∗ × [
∑
m

vf
cmkv

g
mvk

(3ω
2
− ωmvk)

]

δ[ωcv(k)− 3ω]

(4.31)
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Figure 4.4: Left: the calculated injection rate of 1+2 QuIC carriers in the k-space
when the relative phase of two frequencies is π

2
. The fields of frequency ω and 2ω are

polarized along kx. Right:the calculated injection rate of 2+3 QuIC carriers in the
k-space when the relative phase of two frequencies is π

2
. The fields of frequency ω and

3ω
2

are polarized along kx. adapted from Ref. [10]

4.3.4 2+3 QuIC Current Generated with Frequency Combs

In order to describe the 2+3 QuIC signal, we need to first understand the spectrum

of the second harmonic generation of a frequency comb. It can be considered as the

sum frequency process of each frequency comb tooth and all the other comb teeth, as

shown in Fig. 4.5. We denote the lower and upper bounds of the spectrum in units of

repetition rate by Na and Nb, respectively. The square of the electric field spans from

2Na to 2Nb. The offset frequency is doubled while the repetition rate is the same.

Nb∑
m=Na

e2πi(mfrep+foff )t

Nb∑
m=Na

e2πi(mfrep+foff )t =

2Nb∑
m=2Na

e2πi(mfrep+2foff )t (4.32)

According to the spectra of 1040 nm OFC and 1560 nm OFC, there are 39448 comb

59



Figure 4.5: A schematic illustration of the comb teeth of fundamental beam and second
harmonic on the frequency domain.

teeth in the 1560-nm spectrum and 28556 comb teeth in the 1040-nm spectrum. The

square of the 1040-nm electric field and the cube of the 1560-nm electric field have

the same central frequency: 2N1040nm = 3N1560nm, where N1040nm and N1560nm are

the central frequency of 1040 nm OFC and 1560 nm OFC in units of repetition rate,

respectively. We assume the two OFCs are linearly polarized along the same axis. N1

and N2 denote the number of frequency combs teeth in the two OFCs. We assume the

two OFCs have the same spectral bandwidth: N1 = 3N2/2. The electric field part of

QuIC expression can be written as:

E2∗
1040nmE

3
1560nm =

2N1040nm+N1∑
m=2N1040nm−N1

e−2πi(mfrep+2f1040
off )t

3N1560nm+3N2/2∑
n=3N1560nm−3N2/2

e2πi(nfrep+3f1560
off )t

|E1560nm|3
∣∣∣Ef

1040nm

∣∣∣2 = e2πi∆ϕrelative
2+3 |E1560nm|3

∣∣∣Ef
1040nm

∣∣∣2
(4.33)
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Therefore, the injection rate of QuIC current can be written as:

d

dt
⟨Ja⟩2+3 =

∑
bdefg

ηabcdef2+3 e2πi∆ϕrelative
2+3

∣∣Eb
1560nm

∣∣ ∣∣Ed
1560nm

∣∣ |Ee
1560nm|

∣∣∣Ef
1040nm

∣∣∣ |Eg
1040nm|+ c.c.

(4.34)

where b, c, d, e, f = (x, y, z). The relative phase parameter ∆ϕrelative
2+3 is (3f 1560

off −

2f 1040
off )t, which is a phase ramp with a slope of 3f 1560

off − 2f 1040
off . This means that

the QuIC current is oscillating at the offset frequency of the oscillator.

Fig. 4.6 is a sketch of the 2+3 QuIC current induced by a ω OFC and a 3ω/2

OFC with the same offset frequency and repetition rate. The two pulse trains are

temporally overlapped, and χ(3) comes into play. QuIC currents appear as "bursts" at

the cooccurrences of 1040 nm pulses and 1560 nm pulses. The rise of bursts is limited

by the temporal profile of the pulses, which is on the femtosecond time scale. The

long "tail" is related to the current relaxation process, which is a few hundred ps for

GaAs. Between adjacent pulses, there is a phase shift of 2πfoff/frep on the relative

phase parameter ∆ϕ, which results in the amplitude modulation of QuIC current. A

Lock-in amplifier is a tool capable of picking up signals at a specific frequency. In this

case, the Lock-in detector detects at the amplitude modulation frequency. The signal

is the integral of the current bursts, which is proportional to the injection rate of the

QuIC current.

The two determining factors of OFCs - frep and foff - are both useful to the mea-

surement of 2+3 QuIC. The offset frequency serves as the detection frequency of 2+3

QuIC. It has been mentioned that the 1040-nm OFC and 1560-nm OFC of the Menlo

Systems laser share the same repetition rate and offset frequency. Here, we show

that having the same repetition rate is beneficial to reducing the noise of 2+3 QuIC.

Firstly, the same repetition rate indicates the same pulse interval for the two OFCs,
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Figure 4.6: A schematic illustration of the current injected by 2+3 QuIC on the time
domain. The fields of photon frequency ω and 3ω

2
share the same repetition rate and

offset frequency, denoted by frep and foff , respectively.

which guarantees a good temporal overlap over the whole pulse train. Secondly, the

relative phase parameter can be expressed as:

∆ϕ = [−m(2f 1040
rep + 2δf 1040

rep ) +m(3f 1560
rep + 3δf 1560

rep )− 2(f 1040
off + δf 1040

off )

+3(f 1560
off + δf 1560

off )]t

(4.35)

If the two OFCs share the same repetition rate, we will have 3δf 1560
rep − 2δf 1040

rep = 0.

However, if the two repetition rates are locked separately, 3δf 1560
rep − 2δf 1040

rep will be

nonzero and magnified by the number of comb teeth m, which is on the order of 106.

4.4 Offset Frequency

4.4.1 2f-3f Self-referencing Technique

The conventional way of measuring the offset frequency of an OFC is to optically beat

it against itself. However, this method is only effective when the spectrum of the OFC

is octave-spanning, which is not the case for our lasers. Although the spectrum of laser

can be expanded by creating supercontinuum, we used a 2f-3f self-reference setup to
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measure the offset frequency for the following reasons: 1. The supercontinuum method

is not efficient in terms of optical power. Most of the power on the spectrum is "dead"

power since it does not contribute to the beat note. The 2f-3f self-reference technique

doesn’t require an octave-spanning spectrum. All of the power of the harmonics con-

tributes to the beat note signal. 2. More importantly, the 2f-3f self-reference process

is very similar to 2+3 QuIC in terms of the relative-phase dependence. Later we will

show that for some technical reasons, it is actually better to set different offset fre-

quencies for the two OFCs, where the beat note of 2f-3f self-reference is even more

informational.

In this experiment, we have two 2f-3f self-referencing setups. The first setup is to

measure the offset frequency of the optical oscillator. The offset frequency is detected

as the beat note of the frequency comb teeth of the third harmonic of 1550 nm light

and the second harmonic of 1040 nm light. The electrical signal from the Si-based

photodetector is sent to two modules to produce signals for offset frequency control

and stabilization: One is a feedback loop, and the other is a feed-forward loop designed

to compensate for the low-frequency noise and high-frequency noise, respectively. The

feedback loop loosely locks the offset frequency within a narrow frequency range. It is

composed of a frequency counter that reads out the offset frequency and a LabVIEW

program that calculates the voltage needed to compensate for the slow drift. In the

fast feed-forward loop, AOMs are used to provide a real-time compensation for noise

at fast frequencies (∼ 80MHz). The second 2f-3f self-referencing setup is to measure

the AOM-stabilized beat note, at which QuIC current should appear.

The two 520 nm beams need to have similar beam diameters and wavefronts to

achieve a better quality of the 2f-3f beat note signal. Fig. 4.7 is a picture of the 2f-3f

experimental setup. The 1040-nm beam and 1560-nm beam are at different heights

outside the laser heads. A periscope is used to adjust the height of the 520 nm beam
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Figure 4.7: A picture of the experimental 2f-3f setup.

Figure 4.8: A schematic diagram of the first 2f-3f self-referencing interferometer, where
the second harmonic of 1040-nm OFC and the third harmonic of 1560-nm OFC are
generated and beat against each other to create a beat note at foff .
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after the BBO crystal. As mentioned earlier in this thesis, the 1040-nm and 1560-nm

lights are 1.7 ns apart in time right out of laser heads. A delay line is used to achieve

temporal overlap of the second harmonic of 1040 nm and the third harmonic of 1560

nm. The 1560 nm light is focused by a 40X objective lens (focal length: 6 mm) to a

periodically poled lithium niobate (PPLN) crystal. The 1040 nm light is focused by

a lens (focal length: 2.5 cm) to a BBO crystal. The second harmonic generation and

third harmonic generation coincide inside the PPLN crystal. We use a dichroic short

pass filter at 950 nm on the 1560 nm arm and a dichroic short pass filter at 680 nm

on the 1040 nm arm to filter out the irrelevant light. A 10X objective lens collimates

the fundamental beam and harmonics. The longitudinal and transverse positions of

PPLN crystal can affect the efficiency and spectrum of the third harmonic generation.

Therefore, the PPLN is mounted to a 3D translational stage. The longitudinal position

of the second lens in each telescope system was varied to collimate the 520 nm beam

after the nonlinear crystal. Fig. 4.9 depicts the optical spectra of green OFCs on the

frequency domain. In each adjacent comb teeth pair, one is generated from the 1040-

nm OFC, and the other is generated from the 1560-nm OFC. Thus, the beat note of

two green OFCs can be written as:

E1040∗
greenE

1560
green =

∑
m

e2πi(3fo+3mfr)t
∑
n

e−2πi(2fo+2nfr)t (4.36)

where fr is the repetition rate and fo is the offset frequency. This expression is identical

to the expression of the injection rate of 2+3 QuIC in Eq. 31. If the 1040-nm OFC

and 1560-nm OFC have different offset frequencies, then it can be written as:

E1040∗
greenE

1560
green =

∑
m

e2πi(3f
1560
off +3mfr)t

∑
n

e−2πi(2f1040
off +2nfr)t (4.37)
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Figure 4.9: A schematic illustration of why the beat note of the green harmonics is the
offset frequency.

4.4.2 Harmonic Generation

Quasi-phase matching is a type of phase matching achieved in a nonlinear crystal where

the crystal orientation is periodically modulated. It is especially useful for nonlinear

processes where multiple beams are involved, such as second harmonic generation and

sum frequency generation. In these processes, the efficiency is dependent on how well

the product waves are in phase with the fundamental beam along the direction of

propagation. The efficiency is determined by the energy transferred from fundamental

waves to product waves. In this chapter, we only discuss collinear phase matching.

As shown below, the direction of energy transfer changes when there is a large phase

mismatch between product waves and fundamental waves. Taking second harmonic

generation as an example, we denote E1 as the electric field of the second harmonic

and E2 as the electric field of the fundamental. E1 and E2 can be expressed as plane

waves: E1 = |E1| e−ik1z, E2 = |E2| e−ik2z. The relative phase is from: E∗
1E

∗
1E2 =

|E1|2 |E2| ei(−k2+2k1)z. In a homogeneous medium, due to chromatic dispersion, we

have 2k1 ̸= k2. Therefore, a phase mismatch larger than 180◦ between the second

harmonic and fundamental makes the energy transfer flip direction, which compromises

the overall efficiency.
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The crystal orientation of Lithium Niobate is flipped by strong electric fields period-

ically. The period is a multiple of the desired wavelength of operation. The number of

generated photons is proportional to the distance waves travel with PPLN. To obtain

quasi-phase matching, the crystal orientation flips in areas where the relative phase

is more than 180 degrees. The direction of dipoles in the crystal is kept the same

throughout propagation, resulting in a consistent energy transfer from pumping light

to product lights. Although PPLN we used (MSHG1550-0.5-0.5) is typically used to

generate the second harmonic of 1550 nm, the third harmonic generation can also take

place given a high spatial intensity. In the spectrum of outcoming light from PPLN,

the intensity of 780 nm (SHG) is much stronger than that of 520 nm (THG).

Figure 4.10: Top: the spectra of the third harmonic of the 1560-nm frequency comb
generated with different modulation periods of PPLN. Bottom: the spectrum of the
second harmonic of the 1040-nm frequency comb.

The power of beat note is highly dependent on the overlap of spectra of the green

light from the 1040-nm OFC and the green light from the 1560-nm OFC. The quasi-
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phase matching condition can be adjusted by changing the modulation period inside

the crystal. There are nine modulation periods ranging from 18.50 - 20.90 um in

one PPLN crystal. As shown in Fig. 4.10, the spectrum of the second-harmonic

is centered at ∼ 519 nm. The center of the third-harmonic spectrum shifts from

512 nm to 521 nm while the modulation period gets larger. The modulation period

of 20.60 µm offers the best overlap of the two green-light spectra. In general, the

spectra of harmonics will be narrowed if the wavefronts of harmonic and fundamental

mismatch inside the crystal. Therefore, we generally need the Rayleigh length to be

longer than the thickness of crystals. The Rayleigh length of the focused beam should

be comparable to the thickness of nonlinear crystals. The beam diameter of 1040-nm

light before the objective lens is ∼ 1.62 mm. The Raylength is ∼ 530 µm, which is

longer than the thickness of BBO (100 µm). From the spectrum at the bottom of Fig.

4.10, we can tell that the second-harmonic spectrum is not limited much. On the other

hand, the beam diameter of the 1560-nm light before the 40X objective is ∼ 2.17mm.

The Raylength of 1560-nm light around the focal spot is ∼ 30.4µm, much shorter than

the thickness of PPLN (0.5 mm). This explains the narrowing of the third-harmonic

spectrum.

Figure 4.11: The offset frequency of the optical oscillator measured by 2f-3f self-
referencing interferometer. The bandwidth (red double arrow) of the offset frequency
is ∼ 400KHz.
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The power of the green light from THG is ∼ 5mW , and the power of the green light

from SHG is ∼ 10mW . Since the detection area of our photodetector is fairly small

compared to the 520 nm beam diameters, we focused both green lights with a lens in

front of the photodetector to improve the absolute electrical power of the beat note.

A beat-note signal-to-noise ratio of ∼ 25 dB was achieved, as shown in Fig. 4.11.

4.4.3 Feed-forward Loop

Figure 4.12: Concept of the direct feed-forward method for stabilization of CEP. For
maximum diffraction efficiency into first order (red comb modes), the Bragg condition
2λacsin(α) = λn has to be fulfilled. α = αin = αout is the Bragg angle, λac the acoustic
wavelength, λ the optical wavelength, and n the refractive index. adapted from Ref.
[11]

We adapted the concept of feed-forward carrier-envelope phase (CEO) stabilization

from Ref. [11]. CEP stabilization can be enabled by establishing a phase-locked loop

between fCE and a reference oscillator. The conventional servo control of the CEP has

some drawbacks: 1. It can affect other laser parameters such as output power, pulse

duration, or round-trip time. 2. It requires a careful balance between short-term phase

jitter and stability against drop-outs. A feed-forward loop can avoid these drawbacks

by feeding the independently measured and amplified carrier-envelope frequency into

the AOM. As shown in Fig. 4.12, the jitter of the CEP of the incoming beam is
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compensated in the first-order diffraction. Zero-offset frequency combs that have the

same electric field structure in all the temporal pulse envelopes have been achieved in

a feed-forward fashion.

Figure 4.13: A schematic diagram of the optical part of the feed-forward loop. The
post-AOM offset frequencies of the 1040-nm OFC and the 1560-nm OFC are 20 KHz
and 56 KHz, respectively.

In our case, the carrier-envelope frequency needs to be at specific nonzero frequencies

such that the QuIC injected current can be detected on the KHz frequency level. The

driving frequency of AOM is then fdrive = foscillator − f1st where foscillator is the offset

frequency of the oscillator and f1st is the offset frequency of 1st-order diffraction. As

mentioned before, the optimal operation frequency of ISOMET 1205C-1 AOM is 80

MHz. Thus, the offset frequency of the oscillator needs to be at around 80 MHz. Note

that the offset frequency of the 1st-order diffraction of AOMs is referred to as the

post-AOM offset frequencies in this thesis. foscillator and f1st need to be mixed by an

electrical frequency mixer to yield fdrive. However, from the RF-signal-processing point

of view, it is not trivial to get a single sideband when foscillator and f1st are orders of

magnitude apart. The frequency interval between the stop band and the pass band of

RF electrical low-pass filters is usually a few MHz. However, the sidebands are only

a few hundred KHz apart if we directly mix the post-AOM offset frequency and the

operation frequency of AOM. Therefore, we added intermediate frequencies to mix the

offset frequency up and then mix it down.
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Figure 4.14: The RF-circuit part of the feed-forward loop. The two frequencies on the
right are the driving signals of two AOMs.

As shown in Fig. 4.14, the sum of the offset frequency of the oscillator and in-

termediate frequency (30 MHZ) is picked out at around 110 MHZ with a bandpass

filter. The signal is equally split into two channels. In each channel, the signal is

amplified and then mixed with another slightly different intermediate frequency. The

lower sideband is at ∼80 MHz. As discussed before, if the two OFCs illuminating the

crystal have the same offset frequency, the QuIC injected current will oscillate at that

offset frequency as well. However, practically, the frequency mixers cannot perfectly

isolate their two inputs from the output. Hence, at the first frequency mixer, there

is a leakage of the 30 MHz into the output. The 30 MHz will mix with the other

intermediate frequency (30MHz− foff ), creating an extremely weak beat note at the

post-AOM offset frequency. It can still be captured by our AlGaAs device because it

is much more sensitive to the change of amplitude than the change of optical relative

phase. Acting as amplitude modulation, this beat note will give rise to the readings

on the Lock-in Amplifier at the QuIC detection frequency. But this is a fake QuIC

current signal since the readings will not change with the relative phase of two OFCs.

This kind of signal has been observed in [42], which later turned out to be an irrelevant

amplitude modulation artifact. The approach to avoid it is to pick a pair of different

offset frequencies so that 3f 1560
off − 2f 1040

off does not overlap with any harmonics of f 1560
off

or f 1040
off , as shown in Fig. 4.13. The driving signal applied to the AOM for 1040-nm

71



light is at 80MHz+20KHz, and the driving signal applied to the AOM for 1560-nm

light is at 80MHz+56KHz. After the feed-forward loop, the offset frequency of 1040-

nm OFC is at 20KHz, and the offset frequency of 1560-nm OFC is at 56KHz, which

results in a QuIC current oscillation at 128 KHz. All the intermediate frequencies are

generated from the same Direct Digital Synthesizer (DDS) so that the relative phase

among them is locked. The reference frequency of the Lock-in Amplifier also needs to

be generated from the same DDS because the relative phase of the internal clock of

the Lock-in Amplifier and the clock of DDS slowly drifts.

We optimized the diffraction efficiency of the two AOMs by changing their positions

in the telescope and adjusting their orientations. The post-AOM optical power of 1040

nm is ∼ 90 mW, and the post-AOM optical power of 1560 nm is ∼ 80 mW. The driving

powers of the AOM on 1040-nm arm and the AOM 1560-nm arm are both ∼33 dbm.

The electrical signals were checked on an oscilloscope after being applied to the AOMs.

On the oscilloscope, the signals are supposed to look like sine waves without too much

jittering of the amplitude. The jittering is mainly caused by non-optimal frequency

filtering, which can be eliminated by fine-tuning the backend voltage and band-pass

filters. Also, the input power of each amplifier must not exceed the maximum input

power. Otherwise, there will be significant harmonics of the signal, which can cause

artifacts on the Lock-in Amplifier as well. The signals were checked carefully on a

Keysight MXA Signal Analyzer to make sure that there was no beat note of harmonics

at 3f 1560
off − 2f 1040

off .

The second 2f-3f self-reference setup was placed after where the two post-AOM

beams were combined. It was used to measure the new beat note at 3f 1560
off − 2f 1040

off .

The two beams passed through a PPLN crystal together, generating green lights at

∼520 nm. The green lights were picked out and sent to a photodetector. Fig. 4.15

shows the beat note measured by a spectrum analyzer at ∼128 KHz. The feed-forward
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technique greatly reduced the bandwidth of the offset frequency of the oscillator from

400 KHz to 1 Hz, which is much more suitable to the Lock-in detection. It also offered

tunability to the post-AOM offset frequencies, which is beneficial to separating the

QuIC detection frequency from other frequencies. Each beam was blocked to ensure

that the interference of two green lights caused the peak.

Figure 4.15: The beat note (blue curve) with an FWHM of ∼ 1Hz from the second
2f-3f self-referencing interferometer. The frequency spectra when blocking 1560 nm
light (orange curve) and 1040 nm light (grey curve).

4.4.4 Feedback Loop

The beat note from the 2f-3f self-referencing setup powers both the slow feedback loop

and the fast feed-forward loop. We introduce the mechanism of the feedback loop here.

As discussed earlier, the offset frequency of the two OFCs determines the SNR of the

QuIC current measurement. The free-running offset frequency of the oscillator usually

drifts outside the window after only a few minutes, as shown in Fig. 4.16. The signal

from the 2f-3f photodetector has the beat note at not only offset frequency but also

the repetition rate of frequency combs and their electrical harmonics. Therefore, the

signal needs to pass through a bandpass filter first. As shown in Fig. 4.17, the bandpass

window of our bandpass filter is ∼ 4.2MHz. The QUIC signal is due to the change
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of optical phase, which is a much weaker effect than the change of optical power. The

fluctuation in optical power can easily overwhelm the actual QUIC signal. If the beat

note drifts out of the bandpass window, the electrical power of the driving signal of

AOMs will significantly decrease. The change in AOM diffraction efficiency will then

create a huge noise on the QuIC current. Therefore, a feedback loop is necessary for

keeping the beat note inside the pass band.

Figure 4.16: 5 runs of free-running oscillator offset frequency measurement. The offset
frequency drifts out of ±1.5MHz (the grey region) within a few minutes.

Figure 4.17: The spectrum of the bandpass filter with an FWHM of 4.2 MHz.

Before turning the loop on, we adjusted the pump current and backend voltage to

place the offset frequency beat note at the center of the bandpass window (∼ 77MHz),
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Figure 4.18: The spectrum of the oscillator offset frequency picked out by the bandpass
filter.

as shown in Fig. 4.18. The smallest increment of pump current is 0.01 mA, correspond-

ing to a frequency shift of 1.5MHz. So, the pump current adjustment acts as the "coarse

control," and the backend voltage offers finer control. The backend voltage not only

offers tunability for placing the offset frequency at a flat region of the filter window

but also controls the alignment of the beams through the objective before the sample.

In the fast-feed forward loop, two AOMs are compensating for the noise of the offset

frequency of the oscillator. The first-order diffractions of the two AOMs are sent to

the 60× objective lens before the sample. Due to chromatic aberration, the two colors

are focused by the objective lens at different locations longitudinally. The focal length

is given by:

1

f(λ)
= (n(λ)− 1)(

1

R1

− 1

R2

) (4.38)

where R1 and R1 are the radius of the front and back spherical surfaces respectively.

The 1560 nm light is focused further than the 1040 nm light. As shown in Fig. 4.19,

the separation of the focal spots is around 41µm.

The slow feedback loop is critical to the spatial stability of the beams at the sam-

ple. Here, we show how the slow drift of offset frequency can cause a drift of beam
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Figure 4.19: A schematic illustration of the beam geometry when the driving frequency
of the 1560-nm beam has a slow drift.

focal spots on the sample. Inside AOM, the wavevector of light gets diffracted by

bulk acoustic-optic interaction. Bragg angle θB is the particular angle of incidence

(between the incident beam and the acoustic wave), which gives efficient diffraction

into a single diffracted order. In the longitudinal-mode interaction, the acoustic wave

travels longitudinally in the crystal, and the incident and diffracted laser beams see

the same refractive index. The angle between the 0th order and the 1st order is de-

noted by seperation angle θ = 2θB, where θB = λF
2ν

. The refractive index of PbMoO4

is ∼2.4. The modulaiton frequency of AOM is ∼80 MHz. Therefore, the separation

angle between the 1560-nm fundamental and its 1st order is about 0.01◦. Now we

assume the offset frequency of the 1560-nm OFC "wanders" freely inside the bandpass

window. The change of diffraction angle is ∼ 0.0005◦. Therefore, the slow drift inside

the bandpass window can cause a deviation of beam center of 150µm at 60× objective

lens. Due to this deviation, some of the light will be clipped by the lens aperture.

Moreover, the center of the beam after the objective lens will be affected as well. At

the focal plane of 1040 nm light, the deviation of the beam center of 1560 nm light

is approximately 2.3µm. The QuIC current is practically a planar current that peaks

when the orientation of GaAs crystal is <001>. The two beams need to propagate
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along the axis of the objective lens to ensure normal incidence. Given that the spacing

between electrode pairs is only 7 µm, such a beam spot drift will be detrimental to the

observation of QuIC current.

Figure 4.20: The oscillator offset frequency as a function of the backend voltage (black
dots). A linear equation (red line) fits the measurement with a good number of 0.9978.

Figure 4.21: A schematic diagram of the feedback loop.

Fig. 4.21 is a schematic of the slow feedback loop. The beat note is picked out by

one bandpass filter, one Mini-circuit BCP-100+ low pass filter, and one Mini-circuit

BCP-90+ low pass filter. Both low-pass filters provide a > 20 dB loss for the frequency

at the repetition rate. The signal then gets amplified by a ZFM-500+ that provides a

gain of 20 dB. RF attenuators match the maximum input power of ZFM-500+, which

is five dBm. A Hewlett Packard 53132A frequency counter measures the beat note with

a sampling rate of 256/s. After adjusting the offset beat note to be at a "sweet spot,".
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The LabVIEW program records the initial offset frequency. The average of every 64

data points from the frequency counter is compared with the initial offset frequency.

If the beat note drifts out of the margins (finitial ± 500KHz), then the LabVIEW

program calculates the voltage needed to compensate for the drift based on the linear

dependence of offset frequency on the backend voltage (Fig. 4.20). Fig. 4.22 shows

the robustness of the feedback loop. The offset oscillator was manually perturbated by

changing the pumping current at times indicated by red arrows. The offset frequency

of the oscillator stays stable within a much narrower window than the band-pass filter’s

bandwidth. As a result, the alignment of beam focal spots at the sample stays stable

for hours.

Figure 4.22: The oscillator offset frequency stabilized by the feedback loop. The red
arrows denote the times when the offset frequency is manually perturbed.

4.4.5 Two-Color Temporal Overlap

To find the temporal overlap of 1040 nm and 1560 nm lights, we focused both lights

to a 10µm thick BBO with a 40× objective lens and monitored the spectrum of the

outgoing light. A 3-axis rotation stage adjusts the orientation of BBO. It needs to be

adjusted such that the second harmonic of both lights appears, as shown in Fig. 4.23.
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By scanning the delay stage on the 1560 nm beam path, we can find the temporal

overlap when the Sum Harmonic Generation (SFG) spectral peak appears at 620 nm.

Figure 4.23: The spectrum of the light after the temporal-overlap-checking BBO. The
second harmonics of 1040-nm light and 1560-nm light, the 1040-nm peaks are labeled.
The SFG of 1040 nm and 1560 nm is highlighted as it indicates the temporal overlap.

4.5 Experimental Results

4.5.1 Detection-frequency Dependence of 2+3 QuIC

To find the QuIC current, we varied the relative phase delay with a piezo on the 1040-

nm arm. Not sure about the transmission bandwidth of the MSM device, we also

studied the SNR of QuIC by setting the detection frequency to 32 Hz, 64 KHz, and

128 KHz. 2+3 QuIC detected at 32 KHz is the first 10 seconds of the data in Fig. 4.24.

The signal was taken from the X channel of the Lock-in amplifier. The AlGaAs sample

was directly connected to the current input of the Lock-in amplifier (input impedance

= 10 kΩ). The delay stage on the 1040-nm arm is oscillated at 0.5 Hz by a piezo.

The signal strength decreases significantly when offsetting the reference frequency,

indicating a QuIC current bandwidth similar to the bandwidth of the stabilized beat
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note. Note that the QuIC signal was still observable even when using the internal

reference frequency of the Lock-in Amplifier or a separate external reference frequency.

However, the signal-to-noise ratio of QuIC was significantly reduced because of the

phase drift between the DDS clock and the Lock-in Amplifier clock.

Figure 4.24: The 2+3 QuIC current from the horizontal electrode pair as a function of
time. The four colored regions from left to right show the 2+3 QuIC current detected
at 32 KHz, 32 KHz + 5 Hz, 32 KHz + 10 Hz, and 32 KHz + 20 Hz, respectively. The
fields of 1040 nm and 1560 nm are co-linearly polarized across the horizontal electrode
pair (⟨100⟩ crystal axis).

4.5.2 Relative-phase Dependence of 2+3 QuIC

To further optimize the signal-to-noise ratio of this QuIC oscillation, we built an enclo-

sure box for the setup to reduce the relative phase noise caused by air turbulence. The

temporal delay was scanned to maximize the QuIC current. A black box isolated the

sample to avoid noise caused by green stray light. The spatial overlap was optimized

by checking the alignment after a few meters. The beam focal spots were placed in

the center of the two pairs of electrodes. The longitudinal position of the MSM device

was optimized so that the number of carriers induced by three-photon absorption was

maximized. More importantly, changing the QuIC detection frequency from 32 KHz

to 128 KHz significantly increased SNR. The optimized 2+3 QuIC was plotted as a
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function of time in Fig. 4.25. The piezo oscillation amplitude and frequency are set

to be ∼ 3×2π×1040
2π×2×2

nm = 780 nm and 0.5 Hz, respectively. The turn-around points are

at t = 0s, 1s, 2s. The 2+3 QuIC current oscillation aligns well with the sine function

fit shown as the red curve in Fig. 4.25. This relative-phase dependence is consistent

with the previous study done by our group[49] but with a significantly better SNR.

The setup was completely rebuilt to reduce the relative-phase noise and the noise of

the RF driving powers.

Figure 4.25: The 2+3 QuIC current (black dots) from the horizontal electrode pair as
a function of time. The detection frequency is 128 KHz. A sine function (red curve)
fits the 2+3 QuIC current. The fields of 1040 nm and 1560 nm are co-linearly polarized
across the horizontal electrode pair (⟨100⟩ crystal axis). The piezo oscillation amplitude
and frequency are ∼780 nm and 0.5 Hz, respectively.

4.5.3 Polarization Dependence of 1+2 QuIC and 2+3 QuIC

(dual-polarization rotation)

With a better SNR, we now study the dependence of QuIC current on the polarization

of two beams. The polarization of two beams was rotated together by two HWPs
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moving at an angular frequency of 9◦/s. The 1+2 and 2+3 QuIC signals were taken

while the polarization of beams rotated. The 1+2 and 2+3 QuIC signals are shown

as a function of the angle of polarization in Fig. 4.26. Since the direction of QuIC

currents is related to the direction of co-linear polarizations, the rotation of polarization

imposes an amplitude modulation to the phase-induced QuIC oscillation. As shown

in Fig. 4.26 (b), if turn-around points inside a burst occur mostly above zero (below

zero), the turn-around points inside the next burst will mostly be below zero (above

zero). This indicates a phase shift over a 90◦ rotation of HWPs. We denote the

angle between the fast axis of HWP and the x-axis (horizontal direction) as θ. The

polarization of beams when θ = 0◦ is identical to the polarization of beams when

θ = 90◦, which means that the strength of the QuIC signal is unchanged. However,

since the polarization of light is horizontal, the phase of the electric field is delayed

by π when the fast axis of HWP moves from 0◦ to 90◦. Therefore, the change of

relative phase parameter is: ∆ϕrelative = 3∆ϕ1560nm − 2∆ϕ1040nm = 3π − 2π = π.

Therefore, the sign of QuIC flips as HWP rotates by 90◦. The bursts in 2+3 QuIC

are ’narrower’ than the bursts in 1+2 QuIC on the time domain, which indicates a

"narrower" current flux in real space in 2+3 QuIC. Later in the thesis, it will be shown

that this is related to the localization of injected carriers in the k-space in the 2+3 QuIC

process. The drawbacks of this sampling method are: 1. Although the sampling rate

of the QuIC signal is 128/s, the effective sampling rate of the polarization dependence

is much smaller because only the peaks of phase-induced oscillation are "useful." 2.

The slow drift of the relative phase caused by air flow accumulates and affects the

signal strength, especially when the angular frequency of HWPs is small. The most

effective way to increase the sampling rate of polarization dependence measurement is

to get rid of the phase-induced QuIC oscillation. It can be achieved by stopping the

slow ramp for 1+2 QuIC and the delay line oscillation for 2+3 QuIC. Fig. 4.27 and
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Fig. 4.28 are schematics of 1+2 QuIC polarization dependence measurement and 2+3

QuIC polarization dependence measurement, respectively. The QuIC signals collected

by horizontal and vertical electrode pairs are measured by Lock-in Amplifier A and

B, respectively, while rotating the two HWPs at the same rate (720◦/s). Thirty shots

of QuIC signal over a 360◦ rotation of polarizations are averaged. The shaded areas

represent the variance of data. The 1+2 QuIC and 2+3 QuIC collected by vertical

electrode pairs are shown as dashed lines in Fig. 4.31 (a) and Fig. 4.31 (b), respectively.

The 1+2 QuIC and 2+3 QuIC collected by horizontal electrode pairs were shown as

dotted lines in Fig. 4.31 (a) and Fig. 4.31 (b), respectively. The amplitude of QuIC

currents is plotted on polar coordinates, and the + and − signs of QuIC currents

are indicated by the red and purple colors, respectively. The polarization dependence

curves are consistent with the envelopes of the phase-induced QuIC oscillation in Fig.

4.26. For both 1+2 QuIC and 2+3 QuIC, the maximal vertical QuIC current occurs at

the minimum of horizontal QuIC current. In other words, for both 1+2 QuIC and 2+3

QuIC, the vertical QuIC current is 90◦ out of phase relative to the horizontal current.

This feature is consistent with Eq. 29 and Eq. 31. The maxima of the vertical 1+2

QuIC and vertical 2+3 QuIC are 3.49 nA and 51.64 pA respectively. The amplitudes

of horizontal 1+2 QuIC and 2+3 QuIC were characterized according to the resistance

between the horizontal electrode pair and the resistance between the vertical electrode

pair.

4.5.4 Current Injection Model

In Fig. 4.29, the angle between a direction k in the k-space and <100> crystal axis (kx)

is denoted by θ. The direction of polarization of two-color electric field kp and <100>

crystal axis (kx) is denoted by θp. Phenomenologically, the injection rate of carriers

can be approximately treated as a stationary distribution relative to the direction
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Figure 4.26: (a) the 1+2 QuIC current from the horizontal electrode pair (red curve) de-
tected at 2 KHz as a function of time. (b) the 2+3 QuIC current from the hot=rizontal
electrode pair (red curve) detected at 128 KHz as a function of time. In both figures,
the polarization of two-color light fields is rotated with an angular frequency of 9 ◦ /s,
which results in the amplitude modulation of the relative-phase-induced oscillations.
The cross marks denote the peaks of current oscillations. The piezo oscillation and
polarization rotation manipulate the current simultaneously.

Figure 4.27: A schematic diagram of the 1+2 QuIC polarization dependence setup. A
prism pair separates (denoted by a BS for simplicity) the 1040 nm light and its second
harmonic. The two half-wave plates on the two arms of the two-color interferometer
rotate at the same angular rate simultaneously. A PZT dithers the 1040-nm arm at
2 KHz. Two Lock-in Amplifiers measure 2+3 QuIC currents from the horizontal and
vertical electrode pairs.
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Figure 4.28: A schematic diagram of the 2+3 QuIC polarization dependence setup. The
feed-forward and feedback loops stabilize and control the offset frequencies of 1040-nm
OFC and 1560-nm oFC. The two half-wave plates on the two arms of the two-color
interferometer rotate at the same angular rate simultaneously. Two Lock-in Amplifiers
measure 2+3 QuIC currents from the horizontal and vertical electrode pairs.

of polarization. In other words, the injected current distribution rotates with the

polarization of two-color light. The relative phase ϕrelative
2+3 changes the injection rate

distribution. When ϕrelative
2+3 = π/2 or −π/2, the imbalance between the injection rates

at k and −k maximizes, resulting a large QuIC current. The injection rate distribution

of 2+3 QuIC along k⃗ can be expressed as a function of θ, θp, and ∆ϕrelative
2+3 :

η2+3(θ, θp,∆ϕ
relative
2+3 ) = A1(C1cos(θ − θp) + sin(∆ϕrelative

2+3 ))5cos(θ) +B1(C1cos(θ − θp)

+sin(∆ϕrelative
2+3 ))3sin2(θ − θp)cos(θ)

(4.39)

Since the direction of k vector is identical to the direction of carrier velocity in the real

space, η(θ, θp,∆ϕrelative) |E1040|2 |E1560|3 is proportional to the current intensity distri-

bution in the real space. The electrode pairs collect the integral of current intensity

over θelectrode. From the contact geometry, θelectrode ≈ (−π
9
, π
9
)
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Figure 4.29: An example of the injection rate of carriers on the "ring" in the k-space.
The darkness of the color denotes the injection rate. The red double arrow denotes the
polarization of the two-color light field kp

Figure 4.30: (a) A schematic illustration of 1+2 QuIC on the semiconductor band
structure. (b) A schematic illustration of 2+3 QuIC on semiconductor band structure.
In both graphs, the polarization of the two-color field is denoted by the red arrow.
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For the horizontal electrode pair, 2+3 QuIC current can be written as:

Ihorizontal2+3 (θp) =

∫ π
9

−π
9

η2+3(θ, θp,
π

2
)dθ |E1040|2 |E1560|3 −

∫ π
9
+π

−(π
9
+π)

η2+3(θ, θp,
π

2
)dθ |E1040|2 |E1560|3

(4.40)

For the vertical electrode pair, 2+3 QuIC current can be written as:

Ivertical2+3 (θp) =

∫ π
9
+π

2

−π
9
+π

2

η2+3(θ, θp,
π

2
)dθ |E1040|2 |E1560|3 −

∫ π
9
+π+π

2

−(π
9
+π)+π

2

η2+3(θ, θp,
π

2
)dθ |E1040|2 |E1560|3

(4.41)

Similarly, the injection rate distribution of 2+3 QuIC along k⃗ can be expressed as

a function of θ, θp, and ∆ϕrelative
1+2 :

η1+2(θ, θp,∆ϕ
relative
1+2 ) = (A0(C0cos(θ − θp)) + sin(∆ϕrelative

1+2 ))3cos(θ) +B0(C0cos(θ − θp)

+sin(∆ϕrelative
1+2 ))sin(θ − θp)

2cos(θ)

(4.42)

1+2 QuIC current collected by the horizontal electrode pair can be written as:

Ihorizontal1+2 (θp) =

∫ π
9

−π
9

η1+2(θ, θp,
π

2
)dθ |E520| |E1040|2 −

∫ π
9
+π

−(π
9
+π)

η1+2(θ, θp,
π

2
)dθ |E520| |E1040|2

(4.43)

1+2 QuIC current collected by the vertical electrode pair can be written as:

Ivertical1+2 (θp) =

∫ π
9
+π

2

−π
9
+π

2

η1+2(θ, θp,
π

2
)dθ |E520| |E1040|2 −

∫ π
9
+π+π

2

−(π
9
+π)+π

2

η1+2(θ, θp,
π

2
)dθ |E520| |E1040|2

(4.44)

The integrals of injected current distribution are related to the injection rate tensor

87



elements. For example, ηxxxxxx2+3 can be written as:

ηxxxxxx2+3 =

∫ π
9

−π
9

η2+3(θ, 0,
π

2
)dθ −

∫ 3π
9

π
9

η2+3(θ, 0,
π

2
)dθ (4.45)

Note that the definition of ηxxxxxx2+3 is slightly different from the definition in Sipe paper

in that the range of integrals is 2π
9

instead of π due to the geometry of electrode

pairs. We denote ηxxxx1+2 |E520| |E1040|2 and ηxxxxxx2+3 |E1040|2 |E1560|3 with ⟨xxxx⟩1+2 and

⟨xxxxxx⟩2+3 respectively.

Figure 4.31: (a) The polar plots of 1+2 QuIC currents from the vertical electrode pair
and horizontal electrode pair. (b) The polar plots of 2+3 QuIC currents from the
vertical electrode pair and horizontal electrode pair. In both graphs, the vertical QuIC
currents are fitted by the theory (solid curves). The + (red) and − (purple) signs
indicate the sign of QuIC current.

From the maxima in Fig. 4.31, we get:

⟨xxxx⟩ ≈ 3.49nA, ⟨xxxxxx⟩ ≈ 51.64pA (4.46)

The free parameters in the integrals of injected current distribution are fitted to the
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data in Fig. 4.31. The ratio of the free parameters in Eq. 3.41 is:

A0 : B0 : C0 ≡ 1.72 : 3.71 : 1 (4.47)

The ratio of the free parameters in Eq. 38 is:

A1 : B1 : C1 ≡ 0.6 : 1.11 : 1 (4.48)

Figure 4.32: (a) polar plot of the fitted injection rate of carriers in the k-space. (b)
polar plot of the fitted injection rate of carriers in the k-space. In both graphs, the two-
color light field (red double arrow) is linearly polarized across the horizontal electrode
pair.

The normalized 1+2 QuIC and 2+3 QuIC current injection distributions maximize

along kx when the polarization of two-color excitation is horizontal, as shown in Fig.

4.32. The FWHM of the 1+2 QuIC injection peak is ∼ 103.2◦ while the FWHM of the

2=3 QuIC injection peak is ∼ 57.3◦. This indicates that the localization ratio of 1+2

QuIC and 2+3 QuIC is ∼ 0.56. This result is consistent with the localization of 2+3

QuIC predicted in Sipe paper.

The imbalance of the current injection rates at k and k
′
changes with relative phase

parameter ϕrelative. Fig. 4.33 shows the relative-phase dependence of the fitted current
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Figure 4.33: Polar plots of the fitted injection rate of carriers in the k-space when the
relative phase of the fields of 1040 nm and 1560 nm is: (a) 3π

2
, (b) π, (c) π

2
. The two-

color light field (red double arrow) is linearly polarized across the horizontal electrode
pair.

injection distribution when kp is horizontal. The current injection rate has inversion

symmetry when ϕrelative
2+3 = π, resulting in zero net current. The imbalance changes

direction when ϕrelative
2+3 changes from 3π

2
to π

2
. This relative phase dependence also

exists for 1+2 QuIC.

4.5.5 Polarization Dependence of 1+2 QuIC and 2+3 QuIC

(single-polarization rotation)

The QuIC signals were taken when the polarization of only one color was rotated. The

vertical QuIC currents are plotted as dashed lines, and the horizontal QuIC currents are

plotted as dotted lines. Colored areas represent the variance of data. As shown in Fig.

4.34 (a) and Fig. 4.35 (b), the 1+2 QuIC when rotating 520-nm and the 2+3 QuIC

when rotating 1560-nm go across 0. This indicates that the direction of 1+2 QuIC

current and 2+3 QuIC follow the polarization of 520 nm light and the polarization of

1560 nm light, respectively. This feature is consistent with the prediction in Ref. [10].

The behavior of 2+3 QuIC when rotating 1560-nm light polarization is similar to the
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Figure 4.34: (a) 1+2 QuIC currents from the horizontal electrode pair (red dotted
line) and vertical electrode pair (black dashed line) are plotted as functions of the
polarization of 520-nm light field. The 1040-nm light field is linearly polarized across
the horizontal electrode pair. (b) 1+2 QuIC currents from the horizontal electrode pair
(red dotted line) and vertical electrode pair (black dashed line) are plotted as functions
of the polarization of 1040-nm light field. The 520-nm light field is linearly polarized
across the horizontal electrode pair. In both graphs, the colored regions denote the
variances.

Figure 4.35: (a) 2+3 QuIC currents from the horizontal electrode pair (red dotted
line) and vertical electrode pair (black dashed line) are plotted as functions of the
polarization of 1040-nm light field. The 1560-nm light field is linearly polarized across
the horizontal electrode pair. (b) 2+3 QuIC currents from the horizontal electrode pair
(red dotted line) and vertical electrode pair (black dashed line) are plotted as functions
of the polarization of 1560-nm light field. The 1040-nm light field is linearly polarized
across the horizontal electrode pair. In both graphs, the colored regions denote the
variances.
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previous study [49].

The horizontal 1+2 QuIC when rotating the polarization of 520-nm light can be

written as a function of θp:

Ihorizontal1+2 (θ520p ) = ηxxxx1+2 |E520| |E1040|2 cos(θ520p ) = ⟨xxxx⟩ cos(θ520p ) (4.49)

The vertical 1+2 QuIC, when rotating the polarization of 520-nm light can be written

as a function of θp:

Ivertical1+2 (θ520p ) = ⟨yyyy⟩ sin(θ520p ) (4.50)

The horizontal 1+2 QuIC when rotating the polarization of 1040-nm light can be

written as a function of θp:

Ihorizontal1+2 (θ1040p ) = ⟨xxxx⟩ cos2(θ1040p ) + ⟨xyyx⟩ sin2(θ1040p ) (4.51)

The vertical 1+2 QuIC, when rotating the polarization of 1040-nm light, can be written

as a function of θp:

Ivertical1+2 (θ1040p ) = 2 ⟨yyxx⟩ cos(θ1040p )sin(θ1040p ) (4.52)

We used the same three independent injection coefficients to fit the four curves in Fig.

4.34:

⟨xxxx⟩ ≈ 2.9nA, ⟨yyxx⟩ ≈ 1.1nA, ⟨yxxy⟩ ≈ 2.3nA (4.53)

The horizontal 2+3 QuIC when rotating the polarization of 1040-nm light can be
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written as a function of θp:

Ihorizontal2+3 (θ1040p ) = ⟨xxxxxx⟩ cos2(θ1040p ) + ⟨xxxxyy⟩ sin2(θ1040p ) (4.54)

The vertical 2+3 QuIC, when rotating the polarization of 1040-nm light, can be written

as a function of θp:

Ivertical2+3 (θ1040p ) = 2 ⟨yxxxyx⟩ cos(θ1040p )sin(θ1040p ) (4.55)

The horizontal 2+3 QuIC when rotating the polarization of 1560-nm light can be

written as a function of θp:

Ihorizontal2+3 (θ1560p ) = ⟨xxxxxx⟩ cos3(θ1560p ) + ⟨xxyyxx⟩ cos(θ1560p )sin2(θ1560p ) (4.56)

The vertical 2+3 QuIC, when rotating the polarization of 1560-nm light, can be written

as a function of θp:

Ivertical2+3 (θ520p ) = ⟨yyyyyy⟩ sin3(θ1560p ) + 3 ⟨yxxyxx⟩ sin(θ1560p )cos2(θ1560p ) (4.57)

We used the same five independent injection coefficients to fit the four curves in Fig.

4.35:

⟨xxxxxx⟩ ≈ 48.2pA, ⟨xxxxyy⟩ ≈ 16.5pA, ⟨xxyyxx⟩ ≈ 7.2pA (4.58)

⟨yxxyxx⟩ ≈ 2.8pA, ⟨yxxxyx⟩ ≈ 1.4pA (4.59)
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4.5.6 Discussion

Both in 1+2 QuIC and 2+3 QuIC, the optimal longitudinal position of the sample is

closer to the focal plane of the light with lower photon energy. This indicates that

the QuIC current is limited by the number of carriers generated from the higher-order

optical absorption. The QuIC current generation area is the "effective beam spot,"

where the two beam focal spots overlap. The beam diameters of the 1040-nm beam

and the 1560-nm beam before the 60X objective are 1.6 mm and 2.17 mm, respectively.

Therefore, the current generation area of 1+2 QuIC is the focal spot of the 1040-nm

beam (diameter of 2.13 µm). The current generation area of 2+3 QuIC is the focal

spot of the 1560-nm beam (diameter of 2.38 µm). This shows that the generation area

is not a contributing factor to the difference in polarization dependencies of 1+2 QuIC

and 2+3 QuIC.

The refractive indices of AlGaAs for 520 nm, 1040 nm, and 1560 nm are 3.92, 3.34,

and 3.28, respectively. As two of these lights propagate inside the crystal, the change

of relative phase can be written as:

∆ϕrelative
1+2 = [2× 2πn1040nm

λ1040nm
− 2πn520nm

λ520nm
]z (4.60)

∆ϕrelative
2+3 = [3× 2πn1560nm

λ1560nm
− 2× 2πn1040nm

λ1040nm
]z (4.61)

For 2+3 QuIC, a relative phase shift of π can be achieved with a propagation of 4.34µm.

Given that the thickness of the AlGaAs layer is 4µm, we know: 1. the Rayleigh lengths

are longer than the layer thickness. In other words, the wavefronts remain flat inside the

crystal. 2. the QuIC currents generated at different depths won’t cancel out because

the light intensity exponentially decays. For 1+2 QuIC, a relative phase shift of π can
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be achieved with a propagation of 224 nm. Although it is much shorter than the layer

thickness, we also know 90% of the 520-nm light is absorbed after it propagates for

230 nm in the crystal. The current with a flipped direction flows transversely deeper

inside the crystal and is much weaker than the current closer to the surface, which has

a negligible contribution to the current extracted out of the electrodes.

4.5.7 Summary

In conclusion, we have directly measured the current injected in 1+2 QuIC and 2+3

QuIC, which both have relative-phase dependence, with two perpendicular electrode

pairs. We have revealed that the direction of current is directly related to the po-

larization of the light field. For example, the current from the vertical (Horizontal)

electrode pair is minimized when the light fields are horizontally (vertically) polarized.

When the two light fields are co-linearly polarized and rotated together, we find that

the 2+3 QuIC current has a narrower angular span than the 1+2 current. Our results

reveal the localization of carrier injection distribution in the k-space in 2+3 QuIC. We

extracted a localization ratio of 0.56 based on our proposed current injection model.

When only one of the linear polarizations is rotated, we discover that the direction

of QuIC currents is mainly determined by the polarization of 520-nm light (in 1+2

QuIC) and the polarization of 1560-nm light (in 2+3 QuIC), which is consistent with

the optical injection theory.
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CHAPTER 5

Outlook

Our measurements showed that the photocurrents from Ohmic-contact AlGaAs bulk

unbiased crystal in QuIC processes are a powerful tool for studying k-space distribu-

tion of carriers. This localization of carriers in the k-space should be transferable to

other systems. The localization of carriers has been predicted to exist in Transition

metal dichalcogenides (TMD) materials such as MoSe2, WSe2 [10]. Combined with

recent advancements in Ohmic contact engineering in 2D materials [50], QuIC has the

potential to open up new opportunities in studying the band structure of novel 2D

materials.

As mentioned in Chapter 4, the wavefronts of the two lights of different colors are

slightly offset because of the inevitable chromatic aberration. This limits the sample’s

longitudinal range where the QuIC signal has a low SNR. The QuIC currents obtained

from mismatched wavefronts are shown in Appendix B. Using parabolic mirrors to focus

the two lights can eliminate the chromatic aberration, but the focal spots need to be

small enough to achieve similar excitation densities. Another way that can potentially

help is slightly changing the divergence of the beams before the objective lens to image

them on the same plane.

We demonstrated the angular distribution of QuIC currents by collecting them with

two perpendicular pairs of electrodes. The engineering of such Ohmic electrodes can be
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further improved in the future. More pairs of electrodes can be used to study the current

distribution with a better angular resolution. As mentioned in Appendix A, Heidelberg

µPG 501 Mask Maker was used to write electrode patterns on the photoresist. The

dimensions of our electrodes are close to the feature resolution of Heidelberg µPG 501

Mask Maker. Therefore, it is tricky to write more complicated patterns. However,

GCA AS200 AutoStep, which is more compatible with wafers instead of pieces, can

offer better feature resolution and alignment control. The spacing between electrodes

can also be further explored to study the free mean path of the injected carriers.

The scattering of carriers in the conduction band is a remaining interesting question.

Namely, after the carriers are optically injected into the conduction band, how do they

scatter on the same energy level? In future work, we can apply different polarization

schemes to generate various k-space distributions. Pump-probe scheme can be inte-

grated into the QuIC experiment to study carrier dynamics. The time delay between

the two pulses of different photon energies can also be varied to study the interference

dynamics of the two optical transition pathways.
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APPENDIX A

Ohmic Contact Fabrication

There have been a few early reviews on different stages of Ohmic contact formation[51,

52, 53, 54, 55]. The negative contributing factors to good ohmic contact include Au

spiking, poor morphology, temperature stability, and edge definition. One good solu-

tion is to use a low band gap alloy buffer layer. The GeAu contact has been studied

extensively for III-V compounds such as GaAs, InP, and GaN [55]. Ni can be used

as a layer between the semiconductor and GeAu to improve the wettability [56] and

avoid the "balling up" process. Ni is also important for other reasons: reducing the

surface oxides, and reacting with GaAs at low temperatures possibly forming electri-

cally important NiAs phases [57]; reducing the loss of As during contact formation [58].

Annealing time is also a determining factor of the ohmic contact formation. GeAuNi

contact has shown a strong propensity to form AuGa, which has been observed in

TEM at temperatures of 420◦C and above [57]. Rapid thermal annealing has been

proven to be effective for stopping complex alloy reactions, which limits the tendency

for total consumption of the Au. It has been shown that the annealing temperature

affects the ohmic contact formation of PtTiGePd on highly C-dope AlGaAs [59]. The

out-diffusion of As is critical to good p-type ohmic contact. And it only starts to occur

when the annealing temperature is above 530◦C.

The fabrication of ohmic contacts on AlGaAs was done in The University of Michi-
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gan Lurie Nanofabrication Facility (LNF). The following are the steps of our ohmic

contact fabrication:

1: Clean the wafer at the solvent bench with water, IPA and Acetone.

2: Use a spinner to create a layer of photoresist (SPR 220 (3.0)). The thickness of

the photoresist layer is 3µm.

3. Softbake: bake the wafer at 110◦ for 90 seconds.

4. Exposure: use Heidelberg µPG 501 Mask Maker to write the electrode pattern

onto the photoresist. The exposure time should be 110 ms.

5. Development: use CEE Developer 1 with AZ 726 to develop the sample for 30

seconds.

6. Plasma Etching: use BCl3 and HBr gases to etch the sample for 1 minute on

LAM 9400. The etching depth is ∼ 0.8µm. If the etching depth is too low, Ohmic

contact will either not form or will form with a much longer annealing time.

7. Metal deposition: the order of the five layers is Au Ni Ge Au Ni (110nm, 30nm,

20nm, 10nm, 5nm) from top to bottom [60]. The deposition rates need to be small to

achieve uniform densities of metal layers.

8. Annealing: different annealing times and temperatures were experimented with.

Annealing at 500◦C for 5 mins gives reproducible and good-quality ohmic contact.

Note that if the annealing temperature is too high, the surface of metal contact will

start melting and form "bumps". The quality of the ohmic contact highly depends on

the cleanness of the metal-semiconductor interface. If there is residue of photoresist on

the sample or the photoresist is initially non-uniform across the sample, Ohmic contact

will have higher resistance.
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APPENDIX B

Wavefront Mismatch

When the wavefront of the two lights of different colors mismatch, the relative phase

can change inside the beam spots, generating QuIC current in different directions on

the same plane, as shown in Fig. B.1. Fig. B.2 shows the 2+3 QuIC when the sample

is 20 µm inside (optimal - 20 µm) and 20 µm outside (optimal + 20 µm) the optimal

longitudinal position. The QuIC currents seem to be much noisier than Fig. 4.25. It

is potentially because: 1. currents flowing in different directions interfere on the same

plane. 2: the systematic noise is more significant as the absolute amplitude of QuIC is

reduced with the excitation density.
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Figure B.1: A schematic illustration of QuIC current inside beam focal spots when the
wavefronts are mismatched. The relative phases at different locations are labeled. The
black arrows denote the direction of QuIC currents.

Figure B.2: (a) The 2+3 QuIC current from the horizontal electrode pair when the
sample is 20 µm inside (optimal - 20 µm). (b) The 2+3 QuIC current from the
horizontal electrode pair when the sample is 20 µm outside (optimal + 20 µm).
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