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ABSTRACT

For safety-critical systems such as autonomous vehicles, power systems, and robotics, it is im-
portant to guarantee the systems operate under given safety constraints. Numerous safety control
methods have been proposed for this purpose, but many of them are developed for a wide range
of systems and do not take full advantage of the structures inherent in dynamics, controllers, and
disturbances. This dissertation focuses on enhancing scalability and reducing conservativeness in
safety control by leveraging these structures.

The first part of the dissertation focuses on developing scalable safety controller synthesis al-
gorithms. We begin with analyzing the convergence properties of the inside-out algorithm, a well-
established method for computing inner approximations of the maximal robust controlled invariant
set (RCIS). Under mild conditions, we show that the inside-out algorithm converges exponen-
tially to the maximal RCIS for linear systems, filling an important gap in the literature. Follow-
ing the analysis of the inside-out algorithm, we develop efficient methods for computing implicit
RCISs for discrete-time controllable systems. By augmenting the original system with a periodic
structure, our implicit RCISs are constructed in closed form, making the proposed methods more
scalable than competing approaches. Leveraging the convergence analysis for the inside-out algo-
rithm, we further prove that the proposed implicit RCIS converges exponentially to a well-defined
maximal set with a tuning parameter. Finally, we investigate the safety control problem for input-
delayed systems, which are very common in the real world and possess a special structure in the
system dynamics. By exploiting this structure, we show that the maximal RCIS for systems with
input delay is embedded in the maximal RCIS of an auxiliary system, whose dimension is inde-
pendent of the delay time. Leveraging this property, we propose an efficient method for computing
the maximal RCIS for input-delayed systems, which scales well with the delay time.

In the second part of the dissertation, we focus on reducing the conservativeness in safety con-
trol, by leveraging structure in disturbance. One such structure is preview on disturbance. To assess
the value of preview information in safety control, we introduce a metric called safety regret that
quantifies the variation of the maximal RCIS as the preview horizon changes. For discrete-time
linear systems, we prove the exponential convergence of the safety regret with the preview hori-
zon and offer numerical algorithms that estimate the convergence rate. Our analysis can provide
valuable insights when it comes to selecting sensors or perception algorithms with different pre-
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diction horizons. It is worth noting that synthesizing safety controllers for systems with preview is
in general a challenging task. In this dissertation, we present efficient methods for computing the
maximal RCIS for three classes of systems with preview, for which we can again exploit special
structures in system dynamics to improve scalability. Finally, we introduce a novel safety control
framework called opportunistic safety control, enabling safe operation beyond the maximal RCIS.
This framework identifies worst-case disturbance models for each state and constructs control in-
puts robust to these models. Such disturbance model and control inputs can be computed from the
maximal RCIS of an auxiliary system. We show in both simulation and drone experiments that our
approach outperforms the existing safety control framework, especially when the system operates
beyond the maximal RCIS with unexpected disturbance.
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CHAPTER 1

Introduction

As more and more autonomous functionality is introduced in human-cyber-physical systems,
such as passenger vehicles and aircraft, guaranteeing their safe and correct operation becomes
a major concern. From a control perspective, given a set of unsafe states of the system, we
need to synthesize controllers such that the system’s closed-loop trajectory is guaranteed to avoid
unsafe states indefinitely, referred to as the safety control problem in this dissertation. The core
mathematical tool to deal with safety control problems is the so-called robust controlled invariant set
(RCIS) [20, 56, 103], characterizing sets of states where a controller can maintain their invariance.
In the literature, some other tools to tackle safety control problems include reference governors [41],
control barrier functions (CBF) [5, 4], safety filters [117, 110, 45], Hamilton-Jacobi reachability
(HJR) [19, 47, 115], and viability theory [16], but these are essentially alternative representations
or alias of RCISs. Because of the crucial role RCIS fulfills in safety control, it is the focus of this
dissertation. In particular, we focus on two roadblocks that prevent many safety control approaches
from being applied to real-world systems, namely scalability and conservativeness.

In terms of scalability, it is well known that the computation of RCIS suffers from the curse of
dimensionality [119, 47, 25, 45]. The state-of-the-art safety control methods for continuous-time
systems, such as HJR-based methods, can handle systems with up to only ten states at their limit
[47, 115]. The situation is even worse for discrete-time systems, where the state-of-the art methods
can barely handle systems with more than five states [73, 91]. To tackle the scalability bottleneck,
multiple works have explored the idea of computing implicit RCIS, a set in a higher-dimensional
space whose projection yields an RCIS. By avoiding expensive operations such as projection,
implicit RCIS based methods have been shown to successfully scale to systems of dimension
13 in continuous time [45], and systems of dimension 19 in discrete time [119]. The main idea
of constructing implicit RCIS is to implicitly compute the backward reachable sets (BRS) of a
given RCIS (which should be easy to compute but commonly conservative). In theory, there is
no guarantee that the BRSs of a conservative RCIS would converge to the maximal RCIS. Thus,
compared with methods based on explicit RCIS [20, 19], the main concern of using implicit RCIS
is that the resulting controller may behave overly conservatively. In this dissertation, we resolve this
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concern by providing a novel convergence analysis of BRSs of RCISs (Chapter 3). We rigorously
prove that under mild conditions, the BRSs of an RCIS converge to the maximal RCIS exponentially
fast for discrete-time linear systems, thus providing a theoretical foundation for implicit RCIS based
methods, and explaining why implicit RCIS works well in practice.

Another drawback of implicit RCIS based methods is the need of a pre-computed RCIS [119, 45],
which adds one extra layer of complexity to these methods. In this dissertation, we propose a novel
approach of constructing implicit RCIS (Chapter 4) for controllable systems, which does not require
a pre-computed RCIS. Compared with the existing methods, our approach constructs implicit RCIS
in closed form, and provides weak completeness and performance guarantees, thanks to our BRS
convergence analysis in Chapter 3. In particular, for a nominal system, our approach is guaranteed
to converge to the maximal controlled invariant set (CIS) exponentially fast with a tuning parameter.
Similar results also hold for systems with disturbance. The key idea behind our approach is to close
the loop of a controllable system with a parameterized controller that generates eventually periodic
control inputs. This structure in controller along with a integrator-like structure inherent in any
controllable system allows us to compute the set of all the initial states and controller parameters that
satisfy the safety constraints in closed form. This set of safe initial states and controller parameters
forms the implicit RCIS, whose projection onto the coordinates of the initial states yields an RCIS
of the original system. The closed-form construction of implicit RCIS makes our approach more
scalable to high-dimensional systems. For instance, our approach can construct CIS for nominal
systems of dimension 200 within 3 seconds, and construct RCIS for uncertain systems of dimension
20 within 5 seconds (see Section 4.6.3 for details). We further generalize this approach by enabling
disturbance feedback in controller parameterization (Chapter 5), which significantly reduces the
conservativeness of the original approach.

At a high level, the enhancement of scalability in our methods for constructing implicit RCIS
is a result of leveraging the structure in controllable systems and the structure imposed on the
parameterized controller. In concept, the more structures a dynamical system possesses, the higher
the likelihood of improving the scalability of safety control synthesis. This intuition is proven to be
true in the next part of this dissertation, where we consider discrete-time systems with input delays.

Input delay is ubiquitous in real-world systems. For instance, in vehicle control systems, input
delay occurs due to actuator dynamics, communication delays in CAN bus, or delays in the upstream
perception module. The dimension of systems with input delay grows linearly with the delay time,
making the computation of its maximal RCIS rapidly intractable as the delay time increases. In
Chapter 6, by exploiting the structure in input-delayed systems, we show that the maximal RCIS of
an input-delayed system is embedded in the maximal RCIS of an auxiliary dynamics without delay.
This observation enables a method of computing the maximal RCISs for input-delayed systems that
scale well with the delay time. In particular, as the delay time increases, safety constraints become
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Figure 1.1: A transition system with four discrete states {s0,s1,s2,s3}, three controlled actions
{u1,u2,u3} (control inputs), and two uncontrolled actions {d1,d2} (disturbance). The state transition
is determined by both controlled and uncontrolled actions. Let the safe set be S = {s0,s1}. The
goal is to design a safe control policy such that the system state stays within S indefinitely robust
to any uncontrolled actions. Suppose that at run time a control policy needs to determine the next
controlled action without any knowledge of the next uncontrolled action. Then this goal can be
achieved only if the system is initialized at s1.

more challenging to satisfy, but the computational cost of the maximal RCIS remains relatively
stable due to its connection to the auxiliary system without delay.

In addition to finding a scalable method of computing RCIS, Chapter 6 also provides an inter-
esting observation: As the delay time grows, the maximal RCIS of a input-delayed system would
continue to shrink until becoming empty. However, this negative impact of input delay can be
compensated by adding preview on future disturbances. This motivates our study in the second part
of this dissertation, namely how to systemically reduce conservativeness in safety control. Later we
will show that preview on disturbance can not only compensate input delay, but also play a crucial
role in improving the safety for generic systems. Prior to this, we need to explain the origins of the
conservativeness in safety control.

Roughly speaking, the conservativeness of a safety controller can be evaluated by the size of
the underlying RCIS it yields, since RCIS determines the subset of the state space where the safety
controller is valid. Therefore, in principle, the most permissive safety controller is the one that
yields the maximal RCIS. In the literature, most efforts (if not all) are put in how to find a tighter
approximation of the maximal RCIS. The first part of this dissertation falls into this category,
proposing approaches with a balance of conservativeness and scalability. However, in the second
half of this dissertation, we want to answer a different question, namely how to enlarge the maximal
RCIS of a given system. In other words, we are interested in reducing the conservativeness inherent
in the system itself, instead of the conservativeness introduced by a specific safety control approach.

The key to reduce conservativeness is to exploit structure in disturbance. The main ideas behind
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this can be explained via the toy example in Fig. 1.1: Given the safe set S = {s0,s1}, the maximal
RCIS of this transition system is {s1}, and thus existing safety control frameworks are only valid if
the system starts at s1. However, suppose that the system always starts at s0. How can we ensure
the safety of the system in this case? Apparently this is not possible unless we have additional
knowledge of the disturbance. A simple solution is to assume that the control policy knows the
next uncontrolled action in advance. Then, at s0, a control policy can enforce the invariance of S by
choosing u1 for d1, and u2 for d2. In this dissertation, we call this knowledge of future disturbance
the preview information.

The idea of incorporating preview information into controller design has been explored exten-
sively in the past [21], with many successful applications to real-world systems, such as autonomous
vehicles [77, 120, 78], power systems [111] and humanoid robots [54]. Compared with purely
state or output feedback control mechanisms, preview-based control allows feedforward control
on available information of the incoming uncertainties to the system, and thus can substantially
improve the control performance [21]. In the literature, there are several types of uncertainty
considered “previewable”. The first type is disturbances or uncontrolled inputs to the dynamical
systems [78, 122]. Examples include road curvature for vehicles [120], or wind velocity for wind
turbines [111], which can be previewed by dedicated perception systems [107, 71]. The second type
of uncertainty is the reference signal in a reference tracking task [114, 28]. Unlike disturbances, its
future values can be naturally obtained by the tracking controller at run time since the reference
signal is commonly generated by other algorithmic components, such as a path planner. The third
type of previewable uncertainty, recently studied in the context of online optimal control, is the
unknown parameters in the optimization problem solved by the controller at run time [70, 109]. In
many cases, one type of uncertainty (with the corresponding preview) can be converted easily to
other types. For instance, unknown reference signals are modeled as disturbances in [122] and as
unknown parameters in the cost function in [70]. In this dissertation, preview information always
refers to the knowledge of future disturbance to the dynamics, that is, the first type above.

While prior research has explored preview information in control, fewer studies have investigated
its application in safety control. In Chapter 7 of this dissertation, we study the safety control
problem for continuous-state systems with preview, which, as explained in Chapter 2, is the dual
of the problem for input-delayed systems. This duality relation makes the role of the preview
horizon (with which the system dimension grows linearly) the opposite of the role of delay time.
Intuitively, as we increase the preview horizon, the safety constraints become easier to satisfy,
which explains why preview can compensate for the negative impact of input delay as discussed
in Chapter 6. However, unlike the input-delayed case, the maximal RCIS computation still suffers
from the curse of dimensionality. Choosing the preview horizon therefore becomes crucial since it
determines the balance between safety and the computational cost. Conceptually, one can compute
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the maximal RCIS at different preview horizons. The change in the size of the maximal RCIS
reflects how much safety the system gains by using more preview information. However, this idea
is computationally intractable. Instead, in Chapter 7, we introduce safety regret as a measure of the
incremental value obtained from preview information in safety control. This metric is defined by the
Hausdorff distance from a well-defined maximal safe set of the system with a finite preview horizon
to that of a system with infinite preview. For discrete-time linear systems, under mild conditions,
we prove that this safety regret converges to zero exponentially with the preview horizon. We also
offer numerical algorithms for estimating the convergence rate of safety regret, enabling efficient
evaluation of system safety at various preview horizons. In addition, although finding the maximal
RCIS for systems with preview is generally challenging, there are specific classes of systems for
which we can develop scalable approaches to efficiently compute their maximal RCIS. Three such
classes of systems are presented in Chapter 8, where we leverage structure in the dynamics and/or
preview for efficient computation.

While preview information can mitigate conservativeness in safety control and enable safe
operation beyond the maximal RCIS, it is important to note that not all real-world systems have
access to such preview information. In the final part of this dissertation, we explore strategies for
ensuring safe operation beyond the maximal RCIS without relying on preview information. Let us
gain some inspiration from the toy example in Fig. 1.1: Without preview on disturbance, there is no
safe control policy that can ensure the system to stay within the safe set S when the system starts at
s0. However, note that if we apply either u1 or u2 at state s0, depending on the uncontrolled action,
there is still a chance that the system would transit to s1 and be safe. However, if we apply u3 at s0,
the system definitely leaves the safe set S in one step. Therefore, u1 and u2 are safer actions than u3

at state s0. Then, it is natural to come up with the idea that when it is impossible to be robust to all
disturbance, one should synthesize a controller that always picks the most safe input at run time. In
Chapter 9, we formalize this idea and propose a novel safety control framework called opportunistic

safety. Unlike existing safety control frameworks, opportunistic safety controller can work both
inside and outside the maximal RCIS, by identifying the worst-case disturbance model that can
be handled at each state and constructing the control inputs robust to that worst-case disturbance
model. We show that such disturbance models and control inputs can be jointly computed from
the maximal RCIS for an auxiliary system, which can be approximated using existing tools. In
simulation and in a drone experiment, this novel safety control framework shows great resilience
to unexpected disturbances, and outperforms existing safety control approaches when operating
outside the maximal RCIS.
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Figure 1.2: Dissertation Overview (Chapters 6 and 8 are highlighted since they are at the intersection
of Parts I and II.)

1.1 Dissertation Overview and Summary of Contributions

This dissertation is structured in two parts. In the first part, we introduce safety control methods that
can be applied to high-dimensional systems by exploiting structure in dynamics. In the second part,
we investigate methods for reducing the conservativeness of safety control by leveraging structure
in disturbance. Following is a brief summary of the main contributions from each chapter.

Part I: Scalable Safety Controller Synthesis: Design and Analysis

• In Chapter 3, we investigate the convergence properties of the k-step BRS for an RCIS. For
linear systems with both control and disturbance inputs, we identify a condition for the
exponential convergence of the k-step backward reachable set to the maximal RCIS. This
condition is readily verifiable through linear programming when all sets are represented as
polytopes. To our knowledge, this is the first such result in the literature for systems with
additive disturbances. Results in this chapter are published in [80].

• In Chapter 4, we propose a method that computes implicit RCISs for linear systems with
polytopic constraints in closed form, by lifting the original system to a higher-dimensional
system with an eventually periodic structure. Due to the closed-form expression of the implicit
RCISs, the proposed method is guaranteed to terminate in finite time, and is more scalable
to the system dimension. Several case studies are provided to show the efficiency of our
method and usages of the implicit RCIS. Furthermore, we present an extended version of this
method in Chapter 5, which mitigates the conservativeness inherent in the original approach
by allowing for disturbance feedback within the parameterized controllers. Results in these
two chapters are reported in [7, 75].
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• In Chapter 6, we address the safety control problem for input-delayed systems. We prove
that the maximal RCIS of input-delayed systems is embedded in the maximal RCIS of a
low-dimensional system without input delay. Leveraging this structural property, we propose
an efficient method for computing the maximal RCIS of linear systems with input delays. We
further extend this method to incorporate additional preview information on disturbance while
preserving computational efficiency. Compared with the baseline approach of constructing a
higher dimensional system by appending the state space with the delayed inputs and previewed
disturbances, our method demonstrates superior scalability as the delay time increases. Results
in this chapter are published in [83].

Part II: Safety Control Beyond the Maximal RCIS

• In Chapter 7, we explore the utility of preview information in safety control. We uncover
novel structural properties of the maximal RCIS for systems with preview, enabling the
approximation of the maximal RCIS from both inside and outside. To assess the value of
preview information, we introduce the concept of safety regret as the Hausdorff distance
between a properly defined maximal safe set of a system with finite preview and that of a
system with infinite preview. We prove that this metric converges to zero exponentially with
the preview horizon. Additionally, we develop algorithms to numerically evaluate the safety
regret for various preview horizons. The theory and algorithms are illustrated using real-world
examples. We also extend our analysis of safety regret to demonstrate how the preview
horizon impacts the feasible domain of preview-based model predictive control (MPC) under
different recursive feasibility constraints. Results in this chapter are reported in [81].

• In Chapter 8, we introduce efficient methods for computing the maximal RCIS for three
specific classes of systems with preview. The first class comprises systems in Brunovsky
canonical form with hyperbox safe sets. We show that the maximal RCIS can be obtained in
closed form for systems in this class with preview. The second class encompasses switched
linear systems with a preview on the switching signal. We introduce a novel modeling
mechanism called preview automaton to model constraints on preview horizon, and then
present an efficient algorithm for computing the maximal RCIS for linear switched systems
equipped with preview automata. The last class involves systems with uncertain preview,
posing a special output-feedback safety control problem. While the general solution to output-
feedback safety control problem involves the maximal RCIS of a set dynamics, by exploiting
a nilpotent structure inherent in systems with preview, we show that this set dynamics can
be reduced to a finite-dimensional system, enabling efficient controller synthesis. Part of the
results in this chapter is published in [78, 77].
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• In Chapter 9, we propose a novel safety control framework that can work both inside and
outside the maximal RCIS, by identifying the worst-case disturbance that can be handled at
each state and constructing the control inputs robust to that worst-case disturbance model. We
show that such disturbance models and control inputs can be jointly computed by considering
an invariance problem for an auxiliary system. Finally, we demonstrate the efficacy of our
method both in simulation and in a drone experiment. Results in this chapter are reported in
[76].

Authorship Acknowledgment. Chapters 4 and 5 include the works [7, 75] published with Dr.
Tzanis Anevlavis and Prof. Paulo Tabuada at UCLA. Chapter 6 presents the work in [83] published
with Dr. Liren Yang at HUST. Chapter 9 presents the work in [76] published with Hao Chen at
University of Michigan and Prof. Yulong Gao at Imperial College London.

Acknowledgment of other contributions. Below are contributions made during my PhD study
which are not included within the scope of this dissertation:

• We propose an approach that computes inner-approximated BRSs for discrete-time nonlinear
systems based on their Koopman approximations learned from data [18].

• We prove that continuous-time systems with multiple ω-limit sets cannot be immersed in a
linear system, which sheds lights on the applicability of Koopman operator theory in learning
linear representations for nonlinear systems [82].

• We provide a sample complexity analysis of ordinary least squares method for identifying
over-parameterized ARX models, and show that the identified over-parameterized model
converges to the minimal ground-truth model without any regularization, which we refer to as
the self regularization property [33].

• Given a collection of normal and abnormal agents, we propose a inverse reinforcement
learning based framework that can detect the abnormal agents from the normal ones by
comparing reward functions learned for each individual agent with a common reward function
[68].

• We propose a novel safety supervisor that smoothly overrides user inputs by blending the
user inputs with some optimal safe inputs based on the value of an RCIS induced CBF.
Our approach can effectively prevent systems from the chattering behaviors observed in
conventional minimally invasive safety supervisor when operating near the boundary of the
RCIS [14].
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• In the context of driving scenarios, we propose a guardian architecture consisting of an driver
intention estimator and a safety supervisor. The safety supervisor is designed to adjust its
response based on real-time intention estimation, effectively reducing unnecessary caution
while maintaining safety guarantees [105].

1.2 Related Works

RCIS and its backward reachable sets. Robust controlled invariant set (RCIS) has a wide range
of applications in control and verification for safety-critical systems, such as autonomous vehicles
[57, 35, 91, 29], robotic systems [110, 4], and power systems [51]. In many lines of work regarding
RCIS, the backward reachable sets of RCISs need to be computed implicitly or explicitly. For
instance, the computation of the maximal RCIS is known to be a difficult problem [20, 32, 103]. A
common means to efficiently inner-approximate the maximal RCIS is by computing the backward
reachable sets of a small but easy-to-compute RCIS [32, 103, 36, 119, 8], which is referred to as the
inside-out algorithm in this dissertation. In the context of the constrained MPC, the terminal set of
the MPC is typically chosen as an RCIS to guarantee constraint satisfaction and recursive feasibility
[23, 74, 50]. The domain of attraction (DoA) of the MPC is then exactly equal to the T -step
backward reachable set of the terminal set, where T is the prediction horizon [74]. More recently,
inspired by MPC, a control framework referred to as safety filter is proposed for discrete-time
systems [117] and continuous-time systems [110, 45] to equip a given nominal controller with
safety guarantees in a minimally invasive way. In discrete time, the connection between the DoA of
a safety filter and the backward reachable sets of RCISs is similar to that in MPC. In continuous
time, a finite-step backward reachable set of some given RCIS is constructed implicitly, to improve
the scalability and reduce the conservatism of the safety filter [110, 45].

Implicit RCISs. In Chapter 4, we propose a method that computes implicit RCISs in closed
form. The concept of implicit RCISs is initially explored in [36] for nominal systems and in
[100, 98, 119] for systems with disturbances, where sufficient conditions on set recurrence are
checked by linear programs. Since no iterative set operation is involved, these methods scale well
with the system dimension compared with the standard method in [20] for computing the maximal
RCISs for discrete-time systems. Ideas similar to the implicit RCISs in Chapter 4, in the sense that
finite input sequences are used, have also been explored in the context of MPC [88]. The goal there
is to establish the asymptotic stability of a linear system, whereas in our case we exploit finite input
sequences that describe an eventually periodic input signal, which leads to a closed-form expression
for an implicit representation of controlled invariant sets. Other popular approaches first close the
loop with a linear state-feedback control law, and then compute an invariant set of the closed-loop
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system. Under this umbrella, an idea close to ours is reference governor, where the control loop is
closed by a constant controller and the maximal admissible output set of the closed loop forms an
implicit RCIS [59]. Another idea close to ours is found in [65], where recurrent sets are computed
in the context of MPC without disturbances. These two approaches can be understood as special
cases of our method in Chapter 4.

Safety control for systems with input delays. There are several results in the literature related
to the invariance problem for time-delay systems. Lyapunov-based methods have been recently
explored by [95, 52]. In particular, safety barrier functionals are proposed in [95] for general
continuous-time nonlinear autonomous time-delay systems, and the “Artstein” model reduction
method [12] is used in [52] for computing control barrier functions for continuous-time linear
systems with input delay. For methods based on discrete-time linear systems, the work in [94]
tackles time-varying input delay using polytope approximations, and then computes the maximal
output admissible set of the closed-loop system stabilized by a linear feedback law. The work
in [86, 85], on the other hand, compute invariant sets for discrete-time autonomous time-delay
systems with different levels of conservativeness. In this dissertation, we are interested in finding
the maximal RCISs for discrete-time systems with input delays. This problem cannot be handled by
the above methods, since they are mainly designed for systems without disturbance and lack any
guarantees on the maximality of the resulting controlled invariant set.

Safety control for systems with preview. Preview-based control has a rich literature [21], but
the majority of the literature focuses on incorporating preview information into optimal control
formulation [108, 114, 55, 120]. A prime example is MPC [40, 63, 122], where preview information
is naturally incorporated into the state propagation constraints. In this case, the improvement due
to the preview is measured by the amount of cost reduction after increasing the preview horizon.
A recent work [122] proves in theory that the cost reduction in both the linear quadratic control
and MPC formulations decays exponentially as the preview horizon increases. Similar results on
the cost reduction with respect to the preview horizon can also be found in [114, 70, 109] under
different optimal control setups. However, these results are not applicable to safety control problems,
since the class of cost functions considered by [122, 114, 70, 109] cannot characterize state-input
constraints. Notably, the impact of preview horizon is a relatively well-studied problem in linear
temporal logic (LTL) synthesis [62, 49, 58], where preview is called lookahead. The work in [62]
provides some extreme case analysis by checking the universal satisfiability of the LTL formula,
which is similar to what we do in Chapter 7. The work in [58] provides upper and lower bounds
on the preview horizon necessary for the existence of a controller that realizes a LTL specification,
which sheds light on the impact of different preview horizons. Unfortunately, these analyses are for
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finite-state transition systems only, which cannot be easily generalized for systems with real-valued
states like those studied in Chapters 7 and 8.

Safety control beyond the maximal RCIS. The opportunistic safety control framework intro-
duced in Chapter 9 draws inspiration from the line of work on best-effort synthesis in the field of
reactive synthesis, as exemplified by [6, 37]. In these works, the goal is to synthesize controllers for
finite-transition systems with respect to LTL specifications. The central idea is that if there is no
winning strategy robust to all disturbances, one should select a strategy that is at least as good as the
other strategies in terms of the disturbances it can robustly handle. Similar concepts are explored
in abstraction-based control [106] and finite-horizon constrained optimal control [39]. To the best
of our knowledge, the framework presented in Chapter 9 is the first to apply this idea to the safety
control problem for continuous-state systems.

In the literature, there are other approaches aimed at extending safety controllers beyond the
maximal RCIS. For instance, Li et al. in [69] propose a method to potentially expand the domain
of a safety supervisor beyond the maximal RCIS by addressing a time-optimal control problem
when the safety supervisor is undefined. As shown by the numerical examples in Section 9.3,
our method demonstrates a significant performance improvement over the method in [69] when
the system is outside the maximal RCIS and the disturbance is not entirely adversarial. Another
line of work, such as [96, 116, 66] explores the possibility of relaxing the state-input constraints
to find a larger maximal RCIS. These works typically assume that part of the constraints is not
safety-critical and thus can be relaxed as needed [96], or a priority among different constraints
is offered by the user [116, 66]. It is important to note that our approach does not rely on these
assumptions, making direct comparison with these methods less relevant. In cases where the system
of interest is stochastic, controllers based on the maximal probabilistic RCIS, as in [38, 2], can
minimize the risk of constraint violation in the infinite horizon, even if the system is outside the
maximal RCIS. This might be appropriate when the statistics of the disturbances are known. On the
other hand, our method operates without requiring knowledge of the disturbance statistics and is
more computationally tractable because RCISs are easier to compute than probabilistic RCISs.
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CHAPTER 2

Preliminaries

To establish a precise definition for a control synthesis method, we typically specify three essential
components: the system model, the specification (or control target), and the synthesis algorithm, as
shown in Figure 2.1. In this chapter, we introduce the mathematical preliminaries of safety control
from those three aspects.

Chapter Overview. We first define the dynamical systems considered in this dissertation in
Section 2.2, and then introduce the safety specification in Section 2.3 and the definition of controlled
invariance in Section 2.4. Finally, we present two basic algorithms of computing the maximal RCIS
in Section 2.5.

Figure 2.1: General diagram of controller synthesis methods

2.1 Mathematical Notations

Following is a list of mathematical notations used throughout the entire dissertation:

• The symbols R, N, and Z+ denote the set of real numbers, the set of non-negative integers,
and the set of positive integers respectively.

12



• For a function f : X → Y and a subset X0 ⊆ X , the image of X0 under f is denoted by f (X0).

• For a matrix A ∈ Rn×n and a set X ⊆ Rn, the set {Ax | x ∈ X} is denoted by AX .

• For a scalar α and a set X ⊆ Rn, the set {ax | x ∈ X} is denoted by αX .

• The projection of a set X ⊆ Rn+m onto the first n coordinates is denoted by

π[1,n](X) = {x1 ∈ Rn | (x1,x2) ∈ X}.

• The convex hull of a subset X of Rn is denoted by conv(X).

• The Minkowski sum of two sets X and Y is denoted by X +Y = {x+ y | x ∈ X ,y ∈ Y}. When
Y = {y} is a singleton, the Minkowski sum X +Y is written as X + y for short. Also, for a set
X and a point y, X− y = X +(−y).

• The Minkowski difference of two sets X and Y is denoted by X−Y = {x ∈ Rn|x+Y ∈ X}.

• For a collection of sets {Si}n
i=1, the cartesian product of Si for i from 1 to n is denoted by

S1×S2× ...×Sn. For the case S1 = S2 = ...= Sn = S, S1× ...×Sn is denoted by Sn for short.

• For vectors x1 ∈ Rn and x2 ∈ Rm, (x1,x2) ∈ Rn+m denotes the concatenation of the vectors.

• For a sequence (x(t))t≥0, we denote its finite segment (x(t))b
t=a for some a,b ∈ N by x(a : b).

• For a set of indexed variables u1, ..., uk in Rm, their concatenation (u1, · · · ,uk) ∈ Rmk is
denoted by u1:k.

2.2 System Descriptions

We consider discrete-time dynamical systems in form of

x(t +1) = f (x(t),u(t),d(t)), (2.1)

with states x ∈ X , inputs u ∈U and disturbance d ∈ D. The state space X and the input set U can
be continuous (such as convex sets in Rn), discrete (such as subsets of N), or hybrid (that is, some
coordinates are continuous and some are discrete). The disturbance set D contains all the possible
disturbance inputs and is assumed to be bounded when the state space X is continuous.

We restrict the scope of this dissertation to state-feedback controller synthesis. A static state-
feedback controller for a system in (2.1) is a function u : Rn→U that maps each x to a control
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input u(x) in the input set U . In contrast, a dynamic state-feedback controller is a discrete-time
system in the form of

xc(t +1) = g(xc(t),x(t)) (2.2)

u(t) = h(xc(t)), (2.3)

where xc ∈ Xc, x ∈ X , and u ∈U are the internal states, input, and output of the controller. The
usages of dynamic controllers in safety control are explored in Chapters 4 and 5. In the rest of this
dissertation, a controller refers to a static state-feedback controller if no further clarification is made.
The following are several classes of discrete-time systems considered in this dissertation.

Linear systems. A system in (2.1) is linear if there exist matrices A ∈ Rn×n, B ∈ Rn×m and
E ∈ Rn×l such that

f (x,u,d) = Ax+Bu+Ed, (2.4)

with x ∈ Rn, u ∈ Rm and d ∈ D⊆ Rl .

Systems with input delay. A discrete-time system Σdelay with τ-step input delay is in the form of

Σdelay : x(t +1) = f (x(t),u(t− τ),d(t)), (2.5)

with x(t) ∈ X , u(t) ∈U and d(t) ∈ D. A system in (2.5) can be written in the form of (2.1) by
appending the past τ-step inputs to the state space. The resulting (n+mτ)-dimensional augmented
system Στ takes the form:

Στ :



x(t +1)
u1(t +1)

...
uτ−1(t +1)
uτ(t +1)


=



f (x(t),u1(t),d(t))

u2(t)
...

uτ(t)

u(t)


(2.6)

with x(t) ∈ X , u(t) ∈U and d(t) ∈ D.

Systems with preview. A system Σ in the form of (2.1) is said to have p-step preview if at each
time step t, we have the measurements of

• the current state x(t), and
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Figure 2.2: Block diagrams of input-delay systems (left) and systems with preview (right), where τ

and p are the delay steps and the preview horizon, and z−1 is the time-shift operator.

• the current and incoming disturbances {d(t + k)}p−1
k=0 in p steps, denoted by d1:p(t) for short.

The scalar p is called the preview horizon. Similar to systems with input delay, we define an
augmented system whose states stack the states x(t) and the previewed disturbances d1:p(t) of Σ,
called the p-augmented system Σp. The p-augmented system of Σ has the form

Σp :



x(t +1)
d1(t +1)

...
dp−1(t +1)
dp(t +1)


=



f (x(t),u(t),d1(t))

d2(t)
...

dp(t)

d(t)


(2.7)

with state (x,d1, · · · ,dp) ∈ X×Dp, input u ∈U and disturbance d ∈ D.

Duality between input delay and preview. Comparing augmented systems in (2.6) and (2.7),
one can immediately realize if we switch the role of control input u and disturbance input d, an
input-delayed system becomes a system with preview and vice verse. Indeed, one can view a system
with p-step preview as a system with p-step time delay in the uncontrolled input d(t), as shown in
Figure 2.2. This is what we call the duality between input delay and preview.

Due to this duality relation, those two classes of systems share many dual properties. For instance,
intuitively, an input-delayed system becomes harder to control as the delay steps τ increases, while a
system with preview becomes easier to control as the preview horizon p increases. In Chapter 6, we
show that for a system with both input delay and preview, their effects on the safety of the system
are canceled. This duality also suggests that the safety control problem for systems with preview
can be harder to deal with, as the dual problem, the safety control for input-delayed systems, is easy
(Chapter 6). In Chapter 7, we present nontrivial properties of the maximal RCIS for systems with
preview by exploring this duality between input delay and preview.
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2.3 Safety Control Problem

For a system as in (2.1), suppose that Sxu is the safe set that contains all the desired state-input
pairs (x,u) in X ×U . The safety specification of the system is to maintain the state-input pairs
(x,u) in the safe set Sxu indefinitely, robust to all possible disturbances. More formally, the safety
specification can be defined as the set Tsa f e of state-input trajectories in Sxu, that is

Tsa f e = {(x(t),u(t))∞
t=0 | x(t +1) ∈ f (x(t),u(t),D),(x(t),u(t)) ∈ Sxu,∀t ∈ N}, (2.8)

where f (x,u,D) = { f (x,u,d) | d ∈ D}. Given any state-input trajectory of the system, we say the
trajectory satisfies the safety specification if this trajectory is contained in Tsa f e. Now, for a given
controller u : X →U and an initial state x0 ∈ X , we define the set T (u,x0) of the closed-loop
state-input trajectories starting at x0 by

T (x0,u) = {(x(t),u(x(t)))∞
t=0 | x(0) = x0,x(t +1) ∈ f (x(t),u(x(t)),D),∀t ∈ N}. (2.9)

Definition 2.1. A controller u : X →U is safe at the initial state x0 if all the corresponding closed-
loop state-input trajectories starting at x0 satisfy the safety specification, that is T (x0,u)⊆Tsa f e.

Problem 2.1 (Safety control problem). Given a system model as in (2.1) and a safe set Sxu, find the

initial states x0 and controllers u : X →U such that T (x0,u)⊆Tsa f e.

Remark 2.1. Problem 2.1 has different variants in the literature [38]. For instance, when the
disturbance in (2.1) is stochastic, we can relax the inclusion condition T (x0,u)⊆Tsa f e in Problem
2.1 to be satisfied with high probability [38]. In this dissertation, we focus on the deterministic
version of the safety control problem, namely Problem 2.1.

2.4 Reachability Analysis and Invariance

In this section, we define RCIS of a system, which is the key for solving Problem 2.1. We first
introduce the definition of one-step backward reachable set (BRS).

Definition 2.2. Given a system model Σ as in (2.1), a safe set Sxu and a target set X0 ⊆ X , the
one-step BRS PreΣ(X0,Sxu,D) of the target set X0 with respect to the system Σ, the safe set Sxu, and
the disturbance set D is the set of states x where there exists an input u such that the state-input pair
(x,u) is in the safe set Sxu and the next state stays in X0 robust to any disturbance in D, that is

PreΣ(X0,Sxu,D) = {x | ∃u,(x,u) ∈ Sxu, f (x,u,D)⊆ X0}. (2.10)
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In the literature, PreΣ(X0,Sxu,D) is also called the controlled predecessors [72], which is the
origin of the acronym “Pre”. We define the k-step BRS Prek

Σ
(X0,Sxu,D) for all k ∈N recursively by

Pre0
Σ(X0,Sxu,D) = X0, (2.11)

Prek
Σ(X0,Sxu,D) = PreΣ(Prek−1

Σ
(X0,Sxu,D),Sxu,D), ∀k > 0. (2.12)

When the safe set Sxu and disturbance set D are clear from the context, we denote the k-step BRS of
X0 by Prek

Σ
(X0) for short.

Definition 2.3. Given a system model Σ as in (2.1) and a safe set Sxu, a set C ⊆ X is a robust

controlled invariant set (RCIS) of the system Σ with respect to the safe set Sxu if for all x ∈C, there
exists an control input u such that (x,u) ∈ Sxu and for all d ∈ D, f (x,u,d) ∈C. Equivalently, C is
an RCIS of Σ with respect to Sxu if and only if C ⊆ PreΣ(C,Sxu,D).

When the disturbance set D = {0}, we call an RCIS a controlled invariant set (CIS). The
maximal RCIS is then equal to the union of all RCISs of Σ with respect to Sxu. It can be shown that
Cmax is a fixed point of the Pre operator, that is,

Cmax = PreΣ(Cmax,Sxu,D). (2.13)

By definition, for any state x in an RCIS C, one can always find an admissible input u : C→ Rm

such that (x,u) ∈ Sxu, and the next state x+ = f (x,u,d) is in C for any disturbance d ∈ D. The set
of all such inputs at a given state is called the admissible input set.

Definition 2.4. Given a controlled invariant set C of the system Σ, the admissible input set at the
state x ∈C is defined by

A (x,C) = {u ∈ Rm | (x,u) ∈ Sxu, f (x,u,d) ∈C}. (2.14)

By definition of RCIS, A (x,C) is nonempty for any x ∈C. Next, the connection between the
maximal RCIS of Σ and the solutions to Problem 2.1 is summarized in the following:

• A safe controller u : X →U exists at a given initial state x0 ∈ Rn if and only if x0 is in the
maximal RCIS Cmax of Σ with respect to Sxu;

• A controller u : X →U is safe for any initial state x0 ∈Cmax, if and only if u(x) ∈A (x,Cmax)

for all x ∈Cmax.

The “if and only if” statements in the two preceding bullet points become “if” statements when we
substitute the maximal RCIS Cmax with an arbitrary RCIS C of Σ with respect to Sxu. Therefore,
solving Problem 2.1 is equivalent to finding the maximal (or any) RCIS of the system Σ.
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As an application of the second bullet point above, if a reference controller ure f and an RCIS C

are given, a safety supervisor u can be synthesized by minimally modifying the reference controller,

u(x) = min
u∈A (x,C)

∥u−ure f (x)∥2
2, ∀x ∈C. (2.15)

By construction, this safety supervisor u is safe for all initial states x0 ∈C.
Finally, a notion similar to RCIS but for autonomous systems is the so-called robust positively

invariant set (RPIS), which would be used to construct implicit RCIS later in Chapters 4 and 5.

Definition 2.5. Given an autonomous system x+ = f (x,d) with state x ∈ Rn and disturbance
d ∈ D ⊆ Rl and a safe set Sx ⊆ Rn, a set C ⊆ Sx is a robust positively invariant set (RPIS) of the
system within Sx if:

∀x ∈C we have that f (x,d) ∈C,∀d ∈ D. (2.16)

A set Cmax is the maximal RPIS within Sx if it is positively invariant and contains every robust
positively invariant set in Sx.

2.5 Iterative Algorithms for Computing RCISs

Given a system Σ as in (2.1) and a safe set Sxu, there are two standard iterative algorithms that can
approximate the maximal RCIS:

The outside-in algorithm [20, 103]: Let C0 = π[1,n](Sxu) be the projection of the safe set Sxu

onto the x coordinates. Recursively compute the k-step BRS Ck of C0 with respect to Sxu until the
termination condition Ck =Ck−1 is satisfied.
The inside-out algorithm [32, 103]: Let C0 be a known RCIS of Σ in Sxu. Recursively compute
the k-step BRS Ck of C0 with respect to Sxu until the termination condition Ck =Ck−1 is satisfied or
k reaches a user-defined maximum iteration number kmax.

Algorithm 1 The outside-in algorithm
Input: System dynamics Σ and the safe set Sxu
Initialization: k←−1, C0← π[1,n](Sxu)
do

k← k+0
Ck← PreΣ(Ck−1,Sxu,D)

while Ck ̸=Ck−1
return Ck
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Algorithm 2 The inside-out algorithm
Input: System dynamics Σ, the safe set Sxu, an RCIS C−1 of Σ in Sxu, and the maximal iteration
number kmax
Initialization: k←−1
do

k← k+0
Ck← PreΣ(Ck−1,Sxu,D)

while Ck ̸=Ck−1 or k < kmax
return Ck

Figure 2.3: Demonstrations of the inside-out and outside-in algorithms. The BRSs Ck of the outside-
in algorithm are depicted in blue; those of the inside-out algorithm are in red.

The pseudocode of both algorithms are provided in Algs. 1 and 2. The k-step BRS Ck in the
outside-in algorithm monotonically shrinks with k and outer approximates Cmax, while the set Ck the
inside-out algorithm monotonically expands and inner approximates Cmax. Fig. 2.3 demonstrates
how those two algorithms approximate the maximal RCIS from different directions. Under mild
conditions, the BRS Ck in the outside-in algorithm converges to the maximal RCIS [20]. The
conditions under which the inside-out algorithm converges to the maximal RCIS is studied in
Chapter 3.

Both algorithms can not guarantee to terminate within finite steps [103]. However, when
prematurely terminated at step k, the set Ck in the outside-in algorithm is not necessarily robust
controlled invariant, and thus cannot be used in control synthesis; in contrast, the set Ck in the
inside-out algorithm is always an RCIS. Due to this reason, the inside-out algorithm is also called
an anytime algorithm [103], as users can stop the algorithm at any step k and use the RCIS Ck in
control synthesis.

Definition 2.6. A set C ⊆ Rn is a polytope if there exist a matrix H and a vector h such that
C = {x ∈ Rn | Hx≤ h}. The tuple (H,h) is called the H-representation of the polytopic set C.

If the system is linear, and the safe set Sxu, the disturbance set D and the initial set C0 are all
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polytopic, the outside-in algorithms and the inside-out algorithms can be easily implemented via
the MATLAB toolbox MPT3 [48].
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Part I

Scalable Safety Controller Synthesis: Design
and Analysis
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CHAPTER 3

On the Attractivity of the Maximal RCIS in
Backward Reachability Analysis

Due to the pivotal role of the backward reachable set (BRS) of RCISs in safety control (see a
brief literature review in Section 1.2), it is important to understand its convergence properties,
including (i) what conditions ensure that the BRSs of an RCIS converges to the maximal RCIS and
(ii) how fast the BRSs of an RCIS converge. In the literature, the existing works in this direction
can only deal with systems without disturbances: Ahmadi and Gunluk [3] study asymptotically
stable autonomous systems and provide a sufficient condition under which the k-step BRS of an
invariant set converges to the maximal invariant set in finite steps. The papers [30, 46, 32, 31] study
controllable systems without disturbances and show a sufficient condition under which the k-step
BRS of a controlled invariant set (CIS) converges to the maximal CIS in Hausdorff distance, with an
exponential convergence rate. When the system is asymptotically stabilizable without disturbances,
Santis et al. [32] present a sufficient condition under which the BRSs of a small CIS converge to
the maximal CIS, but does not reveal the convergence rate.

As the main contribution of this chapter, for linear systems with both control and disturbance
inputs, we develop a mild sufficient condition under which the k-step BRS of an RCIS converges to
the maximal RCIS in Hausdorff distance, with an exponential convergence rate. Furthermore, when
all sets are represented by polytopes, this sufficient condition can be easily checked by a linear
program. To the best of our knowledge, our work is the first result in the literature that shows these
convergence properties for systems with additive disturbances. When restricted to systems without
disturbances, the existing results in [46, 32, 31, 30] are shown to be special cases of our result. In
addition, our result extends the results for stabilizable systems in [32] by showing the convergence
rate is exponential.

Chapter Overview. We state the problem in Section 3.1, followed by the main results in Section
3.2 and the proofs in Section 3.3. We illustrate our results with a numerical example in Section 3.4.
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After that, we compare our result with existing results in the literature in Section 3.5 and conclude
the chapter in Section 3.6. The proofs of all the minor theorems are found in Appendix A.

Notation. We define the distance from a point x to a set Y by d(x,Y ) = inf{∥x− y∥2 | y ∈ Y}, and
then define the Hausdorff distance of two sets X and Y by

dH(X ,Y ) = max(sup
x∈X

d(x,Y ),sup
y∈Y

d(y,X)).

For a subset X of Rn, the interior and closure of X are denoted by int(X) and cl(X). The ε-ball
centered at x is denoted by Bε(x) = {y | ∥x− y∥2 < ε}.

3.1 Problem Setup

We consider a discrete-time linear system Σ in form of

Σ : x(t +1) = Ax(t)+Bu(t)+Ed(t), (3.1)

with x ∈ Rn, u ∈ Rm, and d ∈ D ⊆ Rl . The state-input constraints of the system Σ are specified
by the safe set Sxu, which contains all the desired state-input pairs (x,u). We make the following
assumption throughout this chapter.

Assumption 3.1. The safe set Sxu and the disturbance set D are convex and compact.

Given C0 is an RCIS of Σ with respect to Sxu, we denote the k-step BRS of C0 by Ck. This
sequence (Ck)

∞
k=0 of sets is an expanding family of RCISs. That is, for all k ≥ 0, Ck is robust

controlled invariant in Sxu, and Ck+1 ⊇Ck. Thus, the set-theoretical limit C∞ of the k-step BRS of
C0 as k goes infinity is well defined (see e.g. [101] for the definition of the set-theoretical limit):

C∞ = ∪∞
k=0Ck. (3.2)

In this chapter, we also refer to the limit C∞ as the infinite-step BRS of C0. It can be shown that C∞

is an RCIS with respect to Sxu. In this chapter, we want to answer the following two questions:
(i) What condition ensures that the k-step BRS Ck converges to the maximal RCIS Cmax in Hausdorff

distance, that is, dH(C∞,Cmax) = 0?

(ii) How fast does the k-step BRS Ck converge to its limit C∞?

3.2 Main Results

Before we state our main result, let us first gain some intuitions from a toy example.
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Example 3.1. Consider the 1-dimensional system

x(t +1) = αx(t)+u(t)+d(t), (3.3)

with x∈R, u∈R, and d ∈ [−dmax,dmax]. The safe set is Sxu = [−xmax,xmax]× [−umax,umax]. Define

cd = (dmax−umax)/(1−|α|). (3.4)

Consider symmetric RCIS C0 in form of [−c0,c0] with c0 ≤ xmax. Then, the k-step BRS Ck of C0 is
symmetric, and if |α| ̸∈ {0,1}, Ck is equal to [−ck,ck] with

ck = min
(

c0− cd

|α|k
+ cd, xmax

)
. (3.5)

Case 1: Suppose |α| ∈ (0,1), umax ≤ dmax and xmax > cd ≥ dmax. For any c0 ∈ [cd,xmax], C0 =

[−c0,c0] is an RCIS. The maximal RCIS is [−xmax,xmax].
According to (3.5), if we select c0 ∈ (cd,xmax), there always exists a finite k such that ck is equal

to xmax. That is, the k-step BRS Ck converges to the maximal RCIS [−xmax,xmax] in finite steps.
However, if we select c0 = cd , then ck = c0 < xmax for all k ≥ 0. That is, Ck =C0 fails to converge
to the maximal RCIS.

Case 2: Suppose that |α| > 1, umax ≥ dmax, and xmax ≥ cd ≥ dmax. For any c0 ∈ [dmax,cd],
C0 = [−c0,c0] is an RCIS. The maximal RCIS is [−cd,cd].

According to (3.5), if we select any c0 ∈ [dmax,cd), ck converges to cd in the limit. That is, the
k-step BRS Ck converges to the maximal RCIS in Hausdorff distance in infinite steps. The limit
C∞ = (−cd,cd) is the interior of the maximal RCIS. Furthermore, the Hausdorff distance between
Ck and the maximal RCIS is

dH(Ck, [−cd,cd]) =
cd− c0

|α|k
, (3.6)

which decays to 0 exponentially fast.
Otherwise: For all the other cases where the maximal RCIS is not empty, the behavior of Ck is

similar to Case 1. That is, Ck is either equal to C0 for all k ≥ 0 or converges to the maximal RCIS in
finite steps.

In Example 3.1, we observe three types of limit of Ck: (i) the limit C∞ is exactly equal to the
maximal RCIS Cmax; (ii) C∞ is a subset of Cmax, but the Hausdorff distance dH(C∞,Cmax) = 0; (iii)
C∞ is a subset of Cmax and the Hausdorff distance dH(C∞,Cmax)> 0. Note that for the limit type (ii),
even if C∞ ⊂Cmax, the maximal RCIS Cmax is equal to the closure of C∞ since dH(C∞,Cmax) = 0.
Thus, among the three types, the limit type (iii) is the least desirable one, as in this case it is
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impossible to obtain the maximal RCIS from the BRSs of C0.
A key observation in Example 3.1 that distinguishes between the limit types (i), (ii) and the limit

type (iii) is that if there exists a k such that Ck contains C0 in the interior, then C∞ is either in type
(i) or in type (ii). Indeed, in Example 3.1, the limit type (iii) only happens when Ck =C0 for all
k ≥ 0. Intuitively, this observation suggests that if the BRSs of C0 expand in all directions in Rn,
then they keep expanding until they reach the maximal RCIS (that is the limit types (i) and (ii)). In
other words, the limit type (iii) occurs only if the BRSs of C0 only expand in certain directions, or
do not expand at all (which happens in Example 3.1).

In terms of the convergence rate, another interesting observation in Example 3.1 is that the
Hausdorff distance between Ck and the maximal Cmax decays to 0 at least exponentially fast for
the limit types (i) and (ii). Next, we state the main result of this chapter, which shows that the
observations made in Example 3.1 actually hold for any linear systems of the form (3.1):

Theorem 3.1. Under Assumption 3.1, suppose that C0 is a compact and convex RCIS of the system

Σ in Sxu. If C0 is contained in the interior of Ck0 for some k0 > 0, then Ck converges to the maximal

RCIS Cmax in Hausdorff distance, and there exists integers N0 ≥ 0, N > 0 and scalars c > 0,

a ∈ (0,1) such that the Hausdorff distance between CN0+kN and Cmax satisfies

dH(CN0+kN ,Cmax)≤ cak. (3.7)

That is, the Hausdorff distance dH(CN0+kN ,Cmax) decays to zero exponentially fast as k goes to

infinity.

Note that the bound in (3.7) holds for indices {N0 + kN}∞
k=0 increasing by an interval of N. But,

due to the fact that dH(Ck,Cmax) is monotonically non-increasing over k, the inequality in (3.7)
implies for all k ≥ 0,

dH(CN0+k,Cmax)≤ c(a1/N)k−N+1 = (ca−1+1/N)ak/N . (3.8)

Hence, by Theorem 3.1 and (3.8) , the k-step BRS Ck converge to the maximal RCIS Cmax in
Hausdorff distance exponentially fast whenever C0 is contained in the interior of Ck0 for some
k0 > 0. This result validates the two key observations we have in Example 3.1.

When C0 and Ck are represented by polytopes, the condition C0 ⊆ int(Ck) can be numerically
checked by a linear program1. Suppose that C0 = {x | H1x≤ h1} and Ck = {x | H2x≤ h2} for some
Hi, hi in appropriate dimensions, i = 1, 2, and x0 is any interior point of Ck. We construct the

1This is a variant of the standard polytope containment problem given the H-representations of two polytopes [104].
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following linear program to check if C0 ⊆ int(Ck):

γ
∗ = min

γ≥0,Λ
γ

subject to ΛH1 = H2

Λ(h1−H1x0)≤ γ(h2−H2x0).

(3.9)

According to [104, Lemma 1], γ∗ in (3.9) is less than 1 if and only if C0 ⊆ int(Ck) if and only
if k0 ≤ k. We can incorporate this linear program to Alg. 2 to obtain a convergence certificate
while inner approximating Cmax, as shown by the pseudocode in Alg. 3. If Alg. 3 terminates with
isConvergent= True, we know that the inside-out algorithm converges to Cmax exponentially
fast; otherwise, it is inconclusive.

Algorithm 3 The inside-out algorithm with convergence certificate
Input: System dynamics Σ, the safe set Sxu, an RCIS C−1 of Σ in Sxu, and the maximal iteration
number kmax
Initialization: k←−1, isConvergent← False, γ∗← 1
do

k← k+0
Ck← PreΣ(Ck−1,Sxu,D)
if isConvergent= False then

γ∗← the optimal cost of (3.9) with respect to Ck
isConvergent← (γ∗ < 1)

end if
while Ck ̸=Ck−1 or k < kmax
return Ck, isConvergent

Next, recall that C∞ in (3.2) is the limit of the k-step BRS Ck as k goes to infinity. When k0

in Theorem 3.1 exists, it is obvious that C0 is contained by the interior int(C∞) of C∞, since Ck0

is a subset of C∞. But conversely, if C0 ⊆ int(C∞), does there always exist a finite k0 such that
C0 ⊆ int(Ck0)? It turns out that those two conditions are equivalent, shown by the following theorem:

Theorem 3.2. Under the same conditions of Theorem 3.1, C0 is contained in the interior of Ck0 for

some finite k0 > 0 if and only if C0 is contained in the interior of C∞ in (3.2).

Finally, the readers may wonder what happens if k0 in Theorem 3.1 does not exist, or equivalently
C0 ̸⊆ int(C∞). In Example 3.1, the limit type (iii) occurs when k0 does not exist. However, there
are examples where the limit types (i) and (ii) occur even if a finite k0 does not exist. Thus, the
existence of k0 is only a sufficient condition for the convergence of the BRS Ck to the maximal RCIS.
When the system is disturbance-free (that is D = {0}), the existence of k0 is guaranteed if (A,B)
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is asymptotically stable and 0 ∈ int(C0), or if (A,B) is controllable and 0 ∈C0 and 0 ∈ int(Sxu). A
more in-depth discussion for results of disturbance-free systems can be found in Section 3.5.

3.3 Proof of the Main Result

In this section, we present the main ideas in the proof of Theorem 3.1. First, according to a
fixed-point theorem [27, Theorem 12]2, given a compact convex RCIS C0 in Sxu, there always exists
a stationary point (xe,ue,de) ∈ Sxu×D such that xe ∈C0 and Axe+Bue+Ede = xe. Without loss of
generality, we assume that the stationary point (xe,ue,de) is the origin of the state-input-disturbance
space and thus 0 ∈C0 and 0 ∈ Sxu×D for the remainder of this section. Also, by Theorem 3.2, we
convert the condition on the existence of k0 in Theorem 3.1 into the following equivalent assumption.

Assumption 3.2. The set C0 is a compact convex RCIS of Σ in Sxu and is contained by the interior

int(C∞) of the infinite-step BRS C∞ in (3.2).

Based on Assumption 3.2, the proof of Theorem 3.1 contains two steps: The first step is to
show that the closure cl(C∞) of the limit C∞ is equal to the maximal RCIS Cmax, that is to prove the
following theorem:

Theorem 3.3. Under Assumptions 3.1 and 3.2, the closure of C∞ in (3.2) is the maximal RCIS Cmax,

that is cl(C∞) =Cmax.

Sketch proof. Note that the maximal RCIS Cmax is bounded due to Assumption 3.1. Since C0 ⊆
int(C∞) and Cmax is bounded, intuitively, we can find a small enough α > 0 such that the set
C(α) = (1−α)C0 +αCmax is contained in int(C∞). Due to the linearity of the system, it can be
shown that the infinite-step BRS of C(α) contains (1−α)C∞ +αCmax. Then, the key to prove
Theorem 3.3 is to realize that for any set C′ ⊆ int(C∞), the infinite-step BRS of C′ is contained by
C∞. Thus, for some α > 0, we have (1−α)C∞ +αCmax ⊆C∞ ⊆Cmax. That implies Cmax = cl(C∞).
The complete proof can be found in Appendix A.

The second step is to show that the Hausdorff distance between Ck and and the maximal RCIS
Cmax decays to 0 exponentially fast when C0 ⊆ int(C∞). We first introduce an extended notion of
λ -contractive sets [22]:

Definition 3.1. Given a scalar λ > 0, a set X is called k-step λ -contractive if the k-step BRS of λX

contains the set X , that is Prek
Σ
(λX ,Sxu,D)⊇ X .

2See Appendix A.1 for a detailed discussion.
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By definition, a set X is k-step λ -contractive if the system can go from any state in X to some
state in λX in k steps without violating any safety constraints. Under Assumptions 3.1 and 3.2, the
closure of the infinite-step BRS cl(C∞) always contains a N-step λ -contractive set, shown by the
following theorem.

Theorem 3.4. Under Assumptions 3.1 and 3.2, there exist an integer N > 0 and scalars γ ∈ (0,1],
λ ∈ [0,1) such that γcl(C∞) is N-step λ -contractive. Furthermore, there exists a finite integer

N0 ≥ 0 such that PreN0
Σ
(C0,Sxu,D)⊇ λγcl(C∞).

Sketch proof. Since C0 ⊆ int(C∞) and C∞ is convex, there exists positive scalars β0 and β1, with
0 < β0 < β1 < 1, such that C0 ⊆ β0cl(C∞)⊂ β1cl(C∞)⊆ int(C∞). Since β1cl(C∞)⊆ int(C∞) and
the k-step BRS of C0 converges to C∞, it can be proven that there exists a finite N such that
β1cl(C∞) ⊆ CN . Since C0 ⊆ β0cl(C∞), CN is contained by the N-step BRS of β0cl(C∞). That
implies β1cl(C∞)⊆CN is contained in the N-step BRS of β0cl(C∞), and thus is a N-step (β0/β1)-
contractive set. By assigning γ = β1, λ = β0/β1 and N0 = N, the statement in Theorem 3.4 is
proven. A complete proof can be found in Appendix A.

By Theorems 3.3 and 3.4, we show that γcl(C∞) = γCmax is N-step λ -contractive. Note that a
k-step λ -contractive set X is not necessarily an RCIS unless k = 1 and 0 ∈ X . Thus, γCmax may not
be an RCIS.

Recall that our goal in the second step of proving Theorem 3.1 is to show the convergence
rate of the k-step BRS Ck to Cmax. So how is γCmax being k-step λ -contractive set related to the
convergence rate of BRSs? Let C be an RCIS of Σ in Sxu. It turns out that if there exists a factor
γ ∈ (0,1] such that the scaled set γC is N-step λ -contractive for some N and λ ∈ [0,1), then the
k-step BRS of λγC approaches to C exponentially fast as k increases. The proof of this statement is
enabled by the following theorem.

Theorem 3.5. Under Assumption 3.1, for any convex RCIS C of Σ in Sxu, suppose that there exist

γ ∈ (0,1), N and λ ∈ [0,1) such that γC is N-step λ -contractive, that is

PreN
Σ (λγC,Sxu,D)⊇ γC. (3.10)

Then, for any scalar ξ with 1 > ξ ≥ λγ ,

PreN
Σ (ξC,Sxu,D)⊇ g(ξ )C, (3.11)

where

g(ξ ) =
1− γ

1−λγ
ξ +

(1−λ )γ

1−λγ
≥ ξ . (3.12)
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For any C satisfying the conditions in Theorem 3.5, (3.11) implies that the N-step BRS of λγC

expands at least to g(λγ)C ⊇ λγC. By applying Theorem 3.5 k times, we obtain that

PrekN
Σ (λγC,Sxu,D)⊇ gk(λγ)C, (3.13)

where gk(·) = g(g(...)) is the function that composes g(·) for k times. According to Theorems 3.3
and 3.4, C in (3.13) can be replaced by Cmax. That is, for γ , N and λ in Theorem 3.4,

PrekN
Σ (λγCmax,Sxu,D)⊇ gk(λγ)Cmax. (3.14)

By Theorem 3.4, there exists N0 such that the N0-step BRS CN0 of C0 contains λγCmax. Then, by
(3.14),

Cmax ⊇CN0+kN ⊇ PrekN
Σ (λγCmax,Sxu,D)⊇ gk(λγ)Cmax. (3.15)

The inclusion relation in (3.15) implies that the Hausdorff distance between CN0+kN and the maximal
RCIS Cmax is bounded by

dH(CN0+kN ,Cmax)≤ (1−gk(λγ)) sup
x∈Cmax

∥x∥2. (3.16)

Since g(·) in (3.12) is affine, it can be shown that

1−gk(λγ) =

(
1− γ

1−λγ

)k

(1−λγ). (3.17)

Combining (3.16) and (3.17), we have

dH(CN0+kN ,Cmax)≤ cak,

where c = (1−λγ)supx∈Cmax
∥x∥2 and a = (1− γ)/(1−λγ). With γ ∈ (0,1], λ ∈ [0,1), it is easy

to check that a ∈ [0,1). Since Cmax is bounded, c is finite. Thus, the Hausdorff distance between
CN0+kN and Cmax decays to zero exponentially fast as k goes to infinity. That completes the proof of
Theorem 3.1.
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3.4 Numerical Example

Consider the two-dimensional system Σ

Σ : x(t +1) =

[
1.1 1
0 1

]
x+

[
0
1

]
u+

[
1
1

]
d, (3.18)

with x ∈ R2, u ∈ R and d ∈ D = [−0.01,0.01]. The safe set of the system is Sxu = Sx×U , with
Sx = [−4,4]× [−2,2] and U = [−0.3,0.3]. Denote the maximal RCIS of Σ in Sxu by Cmax. The set
C0 is selected to be the maximal RCIS in a scaled safe set S̃xu = (0.1Sx)×U , shown by the yellow
polytope in Fig. 3.1a.

MPT3 toolbox [48] and YALMIP [84], equipped with GUROBI 9.5.0 [44], are used to implement
the computation of the BRS in (2.10) and the linear program in (3.9). The computed k-step BRSs
Ck of C0 for k = 1, · · · ,16 are visualized in Fig. 3.1a, which converges to the maximal Cmax in
16 steps. By solving the linear program in (3.9), we checked that C0 is contained in the interior
of C2. Thus, Theorem 3.1 implies that the k-step BRS Ck converges to the maximal RCIS Cmax

at least exponential fast. The Hausdorff distance between Ck and Cmax is shown by the red curve
in Fig. 3.1b. We also manually fit an exponential function y(k) = 4.61×0.8k (the blue curve in
Fig. 3.1b) that bounds the actual Hausdorff distance from above. The existence of this exponential
decaying upper bound is predicted by Theorem 3.1. Given any system and C0, how to find such an
exponential decaying function without computing all the BRSs would be part of our future work.

3.5 Discussion

In this section, we compare our result with the existing ones in [32, 31, 46, 30]. Here we adopt
the notation in [32, 31] and call a set X a C-set if X is convex, compact and contains 0 in the
interior. Note that the results in [32, 31, 46, 30] are all based on the condition that the disturbance
set D = {0} and Sxu is a C-set. Hence, we assume that the above condition holds for the remainder
of this section.

First, [32, 31, 46] identify the two sufficient conditions under which the k-step BRS Ck converges
to the maximal CIS in Hausdorff distance. The first sufficient condition [46, 32, 31] is that (A,B)
is controllable and C0 = {0}; the second one [32, Proposition 30] is that (A,B) is asymptotically
stabilizable and C0 is a controlled invariant C-set. When the first sufficient condition is satisfied,
[32, 31] show that C0 = {0} also satisfies the conditions in Theorem 3.1. When the second sufficient
condition is satisfied, the corresponding C0 may not satisfy the condition in Theorem 3.1. However,
the proof of [32, Proposition 30] shows that C0 must contain a smaller CIS that satisfies the
conditions in Theorem 3.1. Thus, both of the sufficient conditions are corollaries of our result.
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(a) The k-step BRS of C0 over k (b) The Hausdorff distance dH(Ck,Cmax) over k

Figure 3.1: Left: The k-step BRS Ck for k = 1, · · · ,16 are the nested cyan polytopes, where a larger
one corresponds to a larger k. The set C0 is the yellow polytope in the middle. The maximal RCIS
Cmax is equal to the largest cyan polytope C16. The dark blue rectangle is the safe set Sxu. Right: The
Hausdorff distance dH(Ck,Cmax) between the k-step BRS Ck and the maximal RCIS Cmax versus
the number of steps k (the red curve with dots). An exponential function y(k) = 4.61×0.8k that
bounds the Hausdorff distance from above is manually fitted (the blue curve).

Though [32, 31, 46] prove the convergence of Ck, none of those works show the convergence
rate of Ck. To our best knowledge, [30] is the only work that shows the convergence rate of Ck,
under the condition that (A,B) is controllable and C0 = {0} (the first sufficient condition above).
Originally [30] derives the convergence rate in a different metric. But by converting the metric in
[30] to Hausdorff distance, we can show that the convergence rate of Ck in [30] is equivalent to
the exponential convergence in Hausdorff distance proven in this chapter. That is, under the first
sufficient condition in the previous paragraph, our result coincides with the result in [30].

3.6 Conclusion

In this chapter, we consider linear systems with disturbance and show a sufficient condition under
which the k-step BRS of RCISs converges to the maximal RCIS exponentially fast. When all sets
are represented by polytopes, this sufficient condition can be numerically checked via the linear
program in (3.9). When restricted to disturbance-free systems, our result implies the existing results
in [32, 31, 46, 30].

In terms of applications, our result provides convergence guarantees for inside-out algorithm
(and its variants) [46, 32, 103, 36, 119, 8], and sheds some light on novel analysis for RCIS-based
control synthesis algorithms. For instance, in constrained MPC equipped with a controlled invariant
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terminal set [23], our results imply that under mild conditions, the DoA of MPC enlarges to the
maximal DoA exponentially fast as the prediction horizon T increases, which provides new insights
for selecting the prediction horizon T . Moreover, if parameters N0, N, a and c in Theorem 3.1
are known, we can quantitatively evaluate the Hausdorff distance between the DoA of MPC with
respect to any given T and the maximal DoA via (3.7). Algorithms for estimating parameters N0,
N, a in Theorem 3.1 for nominal systems are studied in Chapter 7.
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CHAPTER 4

Controlled Invariant Sets: Implicit Closed-form
Representations and Applications

The iterative algorithms for computing RCISs introduced in Section 2.5 are known to suffer from
poor scaling with the system’s dimension and no guarantees of termination. An alternative approach
is to construct an implicit representation for an RCIS. The specific implicit representation used in
this chapter is a set in the higher dimensional space of states and finite input sequences. We argue
that in many practical, safety-critical applications, such as MPC and supervisory control, knowledge
of the explicit RCIS is not required and the implicit representation suffices. Consequently, by
exploiting the efficiency of the implicit representation the aforementioned ideas are suitable for
systems with large dimensions.

In this chapter, we propose a general framework for computing (implicit) RCISs for discrete-time
linear systems with additive disturbances, under polytopic state-input constraints. We consider
RCISs parameterized by collections of eventually periodic input sequences and prove that this
choice leads to a closed-form expression for an implicit RCIS in the space of states and finite input
sequences. Moreover, this choice results in a systematic way to obtain larger RCISs, which we
term a hierarchy. Essentially, the computed sets include all states for which there exist eventually
periodic input sequences that lead to a trajectory that remains within the safe set indefinitely. Once
the (implicit) RCIS is computed, any controller rendering the RCIS invariant can be used in practice
and a fixed periodic input is not chosen or used. Moreover, we show that this parameterization is
rich enough, such that: 1) in the absence of disturbances, our method is complete and sufficient
to approximate the maximal CIS arbitrarily well; 2) in the presence of disturbances, a weak com-
pleteness result is established, along with a bound for the computed RCIS that can be approximated
arbitrarily well. Finally we study, both theoretically and experimentally, safety-critical scenarios
and establish that the efficient implicit representation suffices in place of computing the exact RCIS.
In practice, the use of implicit RCISs can be done via optimization programs, e.g., a Linear Program
(LP), a Mixed-Integer (MI) program, or a Quadratic Program (QP), and is only limited by the size
of the program afforded to solve.
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Chapter Overview. We state the problem in Section 4.1, and then provide a closed-form construc-
tion of implicit RCISs in Section 4.2. Section 4.3 shows how to systematically expand the implicit
RCIS to reduce conservativeness, followed by usages of the resulting implicit RCIS in planning
and control in Section 4.4. In Section 4.5, we derive a performance bound of our approach, showing
that the implicit RCIS converges to a maximal set exponentially fast with the parameterization size.
Finally, we demonstrate the effectiveness of the proposed method via several case studies in Section
4.6 and conclude this chapter in Section 4.7.

Notation. The Hausdorff distance between two subsets P and Q of Rn is denoted by d(P,Q) and
is induced from the Euclidean norm in Rn. We denote a block-diagonal matrix M with blocks
M1, . . . ,MN by M = blkdiag(M1, . . . ,MN). For any N ∈ Z+, let [N] = {1,2, · · · ,N}. Let I and 0 be
the identity and zero matrices of appropriate sizes respectively, while 1 is a vector with all entries
equal to 1.

4.1 Problem Setup

In this chapter, we consider a discrete-time linear system Σ

x+ = Ax+Bu+Ew, (4.1)

with state x ∈ Rn, input u ∈ Rm, and disturbance w ∈W ⊆ Rd . Let Sxu ⊆ Rn+m be the safe set of
the system Σ.

Assumption 4.1. In this chapter, we focus on systems and safe sets that satisfy the following:

1) There exists a suitable state feedback transformation that makes the matrix A of system Σ nilpotent.

For a nilpotent matrix, there exists a ν ∈ Z+ such that Aν = 0.

2) The safe set Sxu ⊂ Rn×Rm and the disturbance set W ⊂ Rd are both polytopes.

Remark 4.1. For any controllable system Σ, there exists a state feedback transformation satisfying
Assumption 4.1 [11, Ch.3]. In this case, the nilpotency index ν is equal to the largest controllability
index of Σ.

For any system Σ satisfying Assumption 4.1, let K ∈ Rm×n be the feedback gain such that A+BK

is nilpotent. We construct a system Σ′ by pre-feedbacking Σ with u = Kx+u′:

x+ = (A+BK)x+Bu′+Ew,

where u′ ∈ Rm is the input of the system Σ′. The safe set for Σ′ is the polytope induced from the
safe set Sxu of Σ as S′xu = {(x,u′) ∈ Rn×Rm | (x,Kx+u′) ∈ Sxu}.

34



Proposition 4.1. Any RCIS C of Σ with respect to Sxu is an RCIS of Σ′ with respect to S′xu and vice
versa.

Proof. The proof is based on the fact that the map from (x,u) to (x,u′) = (x,u−Kx) is a bijection
from Sxu to S′xu.

Consider an RCIS C of Σ with respect to Sxu, and (x,u) with x ∈ C and Ax+Bu+EW ⊆ C .
Take u′ = u−Kx. Then, (x,u′) ∈ S′xu since (x,Kx+u′) = (x,u) ∈ Sxu. Advancing the state x with
input u′ in Σ′ gives (A+BK)x+Bu′+EW = Ax+BKx−BKx+Bu+EW = Ax+Bu+EW ⊆ C .
Hence, C is also an RCIS for Σ′ with respect to S′xu. The other direction is shown in a similar
way.

Based on Proposition 4.1, it can be seen that the problem of finding an RCIS of Σ with respect to
Sxu is exactly equivalent to the problem of finding an RCIS of Σ′ with respect to S′xv. That is, for any
procedure that takes in (Σ,Sxu) and produces a RCIS C , there exists an equivalent procedure that
takes in (Σ′,S′xu) and produces the same RCIS C , and vice versa. Therefore, in the remainder of
this chapter, we simply assume that the system in (4.1) (and its safe set Sxu) is already transformed
to this equivalent form where the matrix A is nilpotent.

The main goal of this chapter is to compute an implicit representation of an RCIS in closed-form.
Hereafter, we refer to this representation as the implicit RCIS.

Definition 4.1 (Implicit RCIS). Given a system Σ, a safe set Sxu ⊂ Rn×Rm, and some integer
q ∈ Z+, a set Cxv ⊆ Rn×Rq is an Implicit RCIS for Σ if its projection π[1:n] (Cxv) onto the first n

dimensions is an RCIS for Σ with respect to Sxu.

The following result stems directly from Definition 2.3.

Proposition 4.2. The union of RCISs and the convex hull of an RCIS are robustly controlled
invariant.

We define the accumulated disturbance set at time t by:

W t =
t

∑
i=1

Ai−1EW. (4.2)

By nilpotency of A we have that:

W ∞ =
∞

∑
i=1

Ai−1EW =
ν

∑
i=1

Ai−1EW. (4.3)

In the literature, W ∞ is called the Minimal RPIS of the system x+ = Ax+Ew [99].
The next operator is used throughout this chapter.
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Definition 4.2 (Reachable set). Given a system Σ and a set X ⊂ Rn, define the reachable set from
X under input sequence {ui}t−1

i=0 as:

RΣ

(
X ,{ui}t−1

i=0
)
= AtX +

t

∑
i=1

Ai−1But−i +W t . (4.4)

Intuitively, RΣ

(
X ,{ui}t−1

i=0
)

maps a set X and an input sequence {ui}t−1
i=0 to the set of all states that

can be reached from X in t steps when applying said input sequence. Conventionally, RΣ(X , /0) = X

and when X is a singleton, i.e., X = {x}, we abuse notation to write RΣ

(
x,{ui}t−1

i=0
)
.

4.2 Implicit Representation of RCISs for Linear Systems

The classical algorithm that computes the maximal RCIS consists of an iterative procedure [20, 34]
and theoretically works for any discrete-time system and safe set. However, this approach is known
to suffer from the curse of dimensionality and its termination is not guaranteed. To alleviate these
drawbacks, we propose an algorithm that is guaranteed to terminate and computes an implicit
RCIS efficiently in closed-form, thus being suitable for high dimensional systems. Moreover, by
optionally projecting the implicit RCIS back to the original state-space one computes an explicit
RCIS. Overall, the proposed algorithm computes controlled invariant sets in one and two moves
respectively.

The goal of this section is to present a finite implicit representation of an RCIS. That is, we
provide a closed-form expression for an implicit RCIS characterized by constraints on the state
and on a finite input sequence, whose length is the design parameter. This results in a polytopic
RCIS in a higher dimensional space. Intuitively, the implicit RCIS contains the pairs of states and
appropriate finite input sequences that guarantee that the state remains in the safe set indefinitely.

4.2.1 General implicit robust controlled invariant sets

We begin by discussing a general construction of a polytopic implicit RCIS. First, we consider
inputs ut to Σ that evolve as the output of a linear dynamical system, ΣC, whose state is a sequence

of q inputs, v, i.e.:

ΣC :
vt+1 = Pvt ,

ut = Hvt ,
(4.5)

where v ∈ Rmq, P ∈ Rmq×mq, and H ∈ Rm×mq. The choice of a linear dynamical system stems from
our safe set being a polytope per Assumption 4.1. By using system ΣC we preserve the linearity
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of the safe set constraints and we are, hence, able to compute polytopic RCISs with respect to
polytopic safe sets. The resulting input to Σ can be expressed as:

ut = Hvt = HPtv0, (4.6)

for an initial choice of v0 ∈ Rmq. We can then lift system Σ, after closing the loop with ΣC, to the
following companion dynamical system:

Σxv :

[
x+

v+

]
=

[
A BH

0 P

][
x

v

]
+

[
E

0

]
w. (4.7)

Given the safe set Sxu, we construct the companion safe set
Sxv = {(x,v) ∈ Rn×Rmq | (x,Hv) ∈ Sxu}. The companion system of (4.1) is the closed-
loop dynamics of (4.1) with a control input in (4.6). Then, the companion safe set simply constrains
the closed-loop state-input pairs in the original safe set, i.e., (xt ,Hvt) ∈ Sxu.

Theorem 4.3 (Generalized implicit RCIS). Let Cxv be an RPIS of the companion system Σxv with

respect to the companion safe set Sxv. The projection of Cxv onto the first n coordinates, π[1:n] (Cxv),

is an RCIS of the original system Σ with respect to Sxu. In other words, Cxv is an implicit RCIS of Σ.

Proof. Let x ∈ π[1:n] (Cxv). Then, there exists a v ∈ Rmq such that (x,v) ∈ Cxv. Define u = Hv and
pick an arbitrary w ∈W . By construction of Sxv, (x,u) ∈ Sxu. Since Cxv is an RPIS, we have that
(x+,v+) = (Ax+Bu+Ew,Pv) ∈ Cxv and thus x+ ∈ π[1:n] (Cxv). By Definition 2.3, π[1:n] (Cxv) is an
RCIS of Σ in Sxu.

In principle, Theorem 4.3 holds even if ΣC is nonlinear. However, the choice of a linear system
ΣC, as in (4.5), makes the computation of the maximal RPIS of Σxv more efficient. In what follows,
we study the conditions on P and H such that the maximal RPIS of Σxv is represented in closed-form.

4.2.2 Finite reachability constraints

By definition of the companion safe set Sxv and Definition 2.5, we have that any state (x,v) belongs
to the maximal RPIS of Σxv with respect to Sxv, if and only if, the input sequence {ui}t−1

i=0 , with each
input as in (4.6), satisfies:

(
RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆ Sxu, t ≥ 0, (4.8)

where RΣ

(
x,{ui}t−1

i=0
)
⊆ Rn, ut ∈ Rm, and the pair

(
RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆ Rn×Rm. By Theorem

4.3, the above constraints characterize the states and input sequences within an implicit RCIS of
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Σ, such that the pair (x,u) stays inside the safe set Sxu indefinitely. Notice that (4.8) defines an
infinite number of constraints in general. In this section, we investigate under what conditions we
can reduce the above constraints into a finite number and compute them explicitly. Then, we use
these constraints to construct the promised implicit RCIS.

Definition 4.3 (Eventually periodic behavior). Consider two integers τ ∈ Z+∪{0} and λ ∈ Z+. A
control input ut follows an eventually periodic behavior if:

ut+λ = ut , for all t ≥ τ. (4.9)

We call τ the transient and λ the period.

Proposition 4.4 (Finite reachability constraints). Consider a system Σ satisfying Assumption 4.1. If
the input ut follows an eventually periodic behavior with transient τ ∈ Z+∪{0} and period λ ∈ Z+,
then the infinite constraints in (4.8) are reduced to a finite number of constraints.

Proof. Under Assumption 1 the matrix A is nilpotent with nilpotency index ν . Consequently, given
(4.4), the reachable set from a state x for t ≥ ν depends only on the past ν inputs. We abuse notation
to write RΣ

(
{ui}t−1

i=0
)

and omit the state x to denote dependency only on the inputs. Then, for
t ≥ ν + τ:

RΣ

(
{ui}t−1

i=0
)
=

ν

∑
i=1

Ai−1But−i +W ∞

(4.9)
=

ν

∑
i=1

Ai−1But+λ−i +W ∞ = RΣ

(
{ui}t+λ−1

i=0

)
.

Therefore, under inputs with eventually periodic behavior the reachability constraints repeat them-
selves after t = ν + τ +λ . As a result, we can split the constraints in (4.8) as:(

RΣ

(
x,{ui}t−1

i=0

)
,ut

)
⊆ Sxu, t = 0, . . . ,ν−1, (4.10)(

RΣ

(
{ui}t−1

i=0

)
,ut

)
⊆ Sxu, t = ν , . . . ,ν + τ +λ −1. (4.11)

The above suggests that
(
RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆ Sxu for all t ≥ 0 can be replaced with only ν +τ +λ

constraints.

Proposition 4.4 provides a finite representation of the constraints in (4.8) under the eventually
periodic input behavior in (4.9). The next question we address concerns characterizing the classes
of policies that guarantee the behavior in (4.9).
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4.2.3 Implicit robust controlled invariant sets in closed-form

Recall that our goal is to derive a closed-form expression for an implicit RCIS of Σ, which is
essentially the maximal RPIS of the companion system Σxv by Theorem 4.3. So far we proved that,
in general, inputs with eventually periodic behavior result in finite reachability constraints. Clearly,
the parameterized input in (4.6) follows an eventually periodic behavior as in (4.9) if:

Pt = Pt+λ , t ≥ τ, (4.12)

i.e., P is an eventually periodic matrix with transient τ and period λ .

Proposition 4.5 (Structure of eventually periodic matrices). Any eventually periodic matrix P∈Rn×n

has eigenvalues that are either 0 or λ -th roots of unity. If τ ̸= 0, i.e., P is not purely periodic, then P

has at least one 0 eigenvalue with algebraic multiplicity equal to τ and geometric multiplicity equal
to 1. If Pτ ̸= 0, i.e., P is not nilpotent, then P has at least one eigenvalue that is a λ -th root of unity.

Proof. Let v ̸= 0 be an eigenvector of P and δ the corresponding eigenvalue, i.e., Pv = δv. Then,
(4.12) for t ≥ τ yields:

Pt = Pt+λ ⇒ Ptv = Pt+λ v⇔ δ
tv = δ

t+λ v
v̸=0⇔ δ

t = δ
t+λ ⇔ δ

t
(

1−δ
λ

)
= 0,

that is, the eigenvalues δ of P are only 0 or λ -th roots of unity.
Consider now the Jordan normal form P = MJM−1 [64]. This form is unique up to the order of

the Jordan blocks, and Pt = MJtM−1. Without loss of generality, we write:

J =

[
J1 0
0 J2

]
,

where J1 is the Jordan block corresponding to the eigenvalues of P that are 0, and J2 is the Jordan
block corresponding to the eigenvalues of P that are the λ -th roots of unity. Thus, J1 is nilpotent.
Then, when τ ̸= 0, equality (4.12) is equivalent to:

Pt = Pt+λ ⇔MJtM−1 = MJt+λ M−1, t ≥ τ.

Matrix J1 vanishes in exactly τ steps, i.e., Jτ
1 = 0 and Jt

1 ̸= 0, for t < τ . This implies that P has at
least one 0 eigenvalue with algebraic multiplicity equal to τ and geometric multiplicity equal to 1,
but no 0 eigenvalues of geometric multiplicity 1 and algebraic multiplicity greater than τ .
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Moreover, when P is not nilpotent, i.e., Pτ ̸= 0, for t ≥ τ:

Jt = Jt+λ
Jt

1=0,t≥τ

⇔

[
0 0
0 Jt

2

]
=

[
0 0
0 Jt+λ

2

]
⇔ Jt

2 = Jt+λ

2 .

Thus, P has at least one eigenvalue that is a λ -th root of unity.

Corollary 4.5.1. The class of matrices described by Proposition 4.5 that satisfies (4.12) can be
written, up to a similarity transformation, in the following form:

P =

[
N Q

0 R

]
, (4.13)

where N is a nilpotent matrix with nilpotency index τ , R is a matrix whose eigenvalues are all λ -th
roots of unity, i.e., Rλ = I, and Q is an arbitrary matrix.

Proposition 4.5 and Corollary 4.5.1 guide the designer to effortlessly select matrix P via its
eigenvalues or its submatrices. Moreover, it is reasonable to select the projection matrix H to be
surjective in order to obtain a non-trivial input in (4.6).

We now show that we can compute the desired closed-form expression for an implicit RCIS
parameterized by collections of eventually periodic input sequences.

Theorem 4.6 (Closed-form implicit RCIS). Consider a system Σ and a safe set Sxu for which

Assumption 4.1 holds. Select an eventually periodic matrix P ∈ Rmq×mq and a surjective projection

matrix H ∈ Rm×mq. An implicit RCIS for Σ with respect to Sxu, denoted by Cxv, is defined by the

constraints:(
Atx+

t

∑
i=1

Ai−1BHPt−iv,HPtv

)
⊆ Sxu−W t×{0}, t = 0, . . . ,ν−1,(

ν

∑
i=1

Ai−1BHPt−iv,HPtv

)
⊆ Sxu−W ∞×{0}, t = ν , . . . ,ν + τ +λ −1.

(4.14)

That is, the set Cxv ⊂ Rn×Rmq:

Cxv = {(x,v) ∈ Rn×Rmq | (x,v) satisfy (4.14)} , (4.15)

is computed in closed-form. Moreover, Cxv is the maximal RPIS of the companion dynamical system

in (4.7).

Proof. By Proposition 4.4, the set Cxv defined by (4.14) in closed-form satisfies the constraints in
(4.8) and, thus, is the maximal RPIS of the companion system Σxv in Sxv. Then, by Theorem 4.3,
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Cxv is an implicit RCIS of Σ in Sxu.

Theorem 4.6 provides an implicit RCIS, Cxv, in closed-form. This set defines pairs of states and
finite input sequences such that the state remains in the safe set indefinitely.

Remark 4.2 (On the choice of input behavior). Notice that the open-loop eventually periodic policy
used to parameterize the implicit RCIS is only a means towards its computation in closed-form. In
practice, after computing an RCIS, we can use any controller appropriate for the task at hand. This
is illustrated in our case studies in Section 4.6, where the controller of the system is independent of
the RCIS implicit representation. For instance, once an RCIS is available one defines a closed-loop
non-periodic and memoryless controller K : Rn→ Rm for which Ax+BK(x) belongs to the RCIS
when x is an element of the RCIS.

Corollary 4.6.1 (Computation of explicit RCIS). By selecting an eventually periodic matrix P ∈
Rmq×mq and a projection matrix H ∈ Rm×mq, one computes an explicit RCIS Cx = π[1:n] (Cxv) with
a single projection step.

The size of the lifted space leads to a trade-off: on the one hand it can result to larger RCISs, as
we detail in the next section, but on the other it requires more effort if the optional projection step is
taken.

4.3 A Hierarchy of Controlled Invariant Sets

Our main result, Theorem 4.6, provides a closed-form expression for an implicit RCIS, Cxv, with
constraints on the state of the system, x, and on a finite sequence of inputs, v. The resulting sets
depend on the choice of the eventually periodic matrix P in (4.5) and the projection matrix H.

In this section, we show how to systematically construct a sequence of RCISs that form a
hierarchy, i.e., a non-decreasing sequence. Our goal is to provide a closed-form expression for the
implicit RCISs corresponding to this hierarchy. Towards this, we identify special forms of matrices
P and H.

Definition 4.4 ((τ,λ )-lasso sequence). Consider two integers τ ∈ Z+∪{0} and λ ∈ Z+, and let
q = τ +λ . The control input u generated by the dynamical system ΣC in (4.5) forms a (τ,λ )-lasso

sequence with respect to the inputs v, if:

P = P(τ,λ ) = blkdiag(P̄, . . . , P̄) ∈ Rmq×mq,

H = H(τ,λ ) = blkdiag(H̄, . . . , H̄) ∈ Rm×mq,
(4.16)
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with m blocks each and P̄, H̄ defined as:

P̄ =

[
0 I
0 · · · 1 · · · 0

]
∈ Rq×q,

H̄ =
[
1 0 . . . 0

]
∈ R1×q.

(4.17)

In the last row of P̄ the 1 occurs at the τ-th position. It is easy to verify that P(τ,λ ) in (4.16) is of the
form (4.13). A (τ,λ )-lasso sequence has a transient of τ inputs followed by periodic inputs with
period λ .

We utilize the (τ,λ )-lasso sequence to formalize a hierarchy of RCISs with a single decision
parameter q.

Definition 4.5 (Lassos of same length). Select q ∈ Z+. Define the set of all pairs (τ,λ ) ∈ Z+∪
{0}×Z+ corresponding to lassos of length q as:

Θq =
{
(τ,λ ) ∈ Z+∪{0}×Z+ | τ +λ = q

}
. (4.18)

The cardinality of Θq is exactly q.

The next result provides a way to systematically construct implicit RCISs in closed-form such
that the corresponding explicit RCISs form a hierarchy.

Theorem 4.7 (Hierarchy of RCISs). Consider a system Σ and a safe set Sxu for which Assumption

4.1 holds, and select an integer q ∈ Z+. Given q, the set Cxv,q ⊂ Rn×Rmq:

Cxv,q =
⋃

(τ,λ )∈Θq

Cxv,(τ,λ ), (4.19)

is the implicit RCIS induced by the q-level of the hierarchy, where each Cxv,(τ,λ ) is computed in

closed-form in (4.15) with P and H as in (4.16). In addition, the explicit RCIS:

Cx,q = π[1:n]
(
Cxv,q

)
=

⋃
(τ,λ )∈Θq

π[1:n]
(
Cxv,(τ,λ )

)
=

⋃
(τ,λ )∈Θq

Cx,(τ,λ ), (4.20)

corresponding to the q-level of the hierarchy contains any RCIS lower in the hierarchy, i.e.:

Cx,q ⊇ Cx,q′, for any q,q′ ∈ Z+ with q′ < q. (4.21)

Proof. First, the sets Cxv,q and Cx,q are implicit and explicit RCISs respectively as the unions of,
implicit and explicit, RCISs by Proposition 4.2. Next we prove (4.21) for the case of q and q+1,
while the more general statement follows by a simple induction argument.
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For any λ ∈ Z+ such that (τ,λ ) ∈ Θq, we have by (4.18) that (τ +1,λ ) ∈ Θq+1. It is easy to
conceptualize that:

Cx,(τ+1,λ ) ⊇ Cx,(τ,λ ), (4.22)

as Cx,(τ,λ ) contains the set of states rendered invariant by a (τ,λ )-lasso sequence of inputs, and any
(τ,λ )-lasso sequence is also a (τ +1,λ )-lasso sequence. Hence, by (4.20):

Cx,(q+1) =
⋃

(τ,λ )∈Θq+1

Cx,(τ,λ ) =

 ⋃
(τ,λ )∈Θq

Cx,(τ+1,λ )

⋃Cx,(0,q+1)

(4.22)
⊇

 ⋃
(τ,λ )∈Θq

Cx,(τ,λ )

⋃Cx,(0,q+1)
(4.20)
= Cx,q

⋃
Cx,(0,q+1).

The above entails that Cx,(q+1) ⊇ Cx,q.

Corollary 4.7.1. Using the standard big-M formulation, the implicit RCIS Cxv,q can be expressed as
a projection of a higher-dimensional polytope:

Cxvζ ,q =

{
(x,v,ζ )

∣∣∣∣∣ q

∑
i=1

ζi = 1,Gi(x,v)≤ fi +(1−ζi)M1

}
, (4.23)

where ζ ∈ {0,1}q, Gi and fi describe each of the q polytopes Cxv,(τ,λ ) in (4.19), and M ∈ R+ is
sufficiently large. The set Cxvζ ,q is a polytope in Rn×Rmq×{0,1}q, and its projection on Rn×Rmq

is exactly the union in (4.19), while its projection on Rn is exactly the explicit RCIS in (4.20).

Theorem 4.7 defines the promised hierarchy and provides an implicit RCIS for each level of the
hierarchy that can also be computed in closed-form in (4.23) at the cost of an additional lift. Fig. 4.1
illustrates the relation in (4.21), that is, how the sets induced by each hierarchy level contain the
ones induced by lower hierarchy levels.

Remark 4.3 (Convex hierarchy). We can replace the union in (4.19) by the convex hull

conv

 ⋃
(τ,λ )∈Θq

Cxv,(τ,λ )

 .

Then, in an analogous manner, all the above results go through resulting in a hierarchy of convex

RCISs. Similarly to (4.23), by standard set-lifting techniques, one obtains a closed-form expression
for the convex hull.
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Figure 4.1: RCIS corresponding to q = 1 (white), q = 2 (gray), q = 3 (teal), q = 4 (green), q = 5
(yellow), and q = 6 (orange) for a double integrator. Safe set in blue.

Remark 4.4 (Partial hierarchies without union). The proposed hierarchy involves handling a union
of sets. However, one might prefer to avoid unions of sets and rather use a single convex set. As
each implicit RCIS Cxv,(τ,λ ) involved in the hierarchy is computed in closed-form by Theorem 4.6,
we provide two more refined guidelines for obtaining larger RCISs, based on the choice of (τ,λ ):

1. Given any λ ∈ Z+, it holds that Cx,(τ+1,λ ) ⊇ Cx,(τ,λ ) for any τ ∈ Z+∪{0}.

2. Given any τ ∈Z+∪{0}, it holds that Cx,(τ,λ )⊇Cx,(τ,λ ′) for any λ ,λ ′ ∈Z+ such that λ = kλ ′,
k ∈ Z+, i.e., λ is a multiple of λ ′, see [10, Section 4.6] when τ = 0.

The above can direct the designer in search of larger RCISs that are based on a single implicit RCIS.

4.4 Implicit Invariant Sets in Practice: Controlled Invariant
Sets in One Move

Using the proposed results, one has the option to project the implicit RCIS back to the original
space and obtain an explicit RCIS as proposed in the two-move approach [9, 10, 8]. However, the
required projection from a higher dimensional space becomes the bottleneck of this approach.
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One of the goals of this chapter is to establish that in a number of key control problems explicit
knowledge of the RCIS is not required and the implicit RCIS suffices. We show how the proposed
methodology can be used online as the implicit RCIS which admits a closed-form expression.

4.4.1 Extraction of admissible inputs

For many applications in this section, we need to extract a set of admissible inputs of the RCIS
πn(Cxv) at a given state x, i.e, A (x,πn(Cxv)) as given in Definition 2.4. Given only the implicit
RCIS Cxv, we provide here three linear encodings of A (x,πn(Cxv)) or its nonempty subsets.

1) The first linear encoding of A (x,πn(Cxv)) is given by the polytope:

U1(x) =
{
(u,v1:N) ∈ R(1+Nq)m ∣∣(x,u) ∈ Sxu,(Ax+Bu+Ewi,vi) ∈ Cxv,∀i ∈ [N]

}
, (4.24)

where v1:N denotes the vector (v1,v2, · · · ,vN). It follows that πm(U1(x)) = A (x,πn(Cxv)).
2) The second linear encoding is:

U2(x) =
{

v ∈ Rqm ∣∣(x,v) ∈ Cxv
}
, (4.25)

with H and P as in (4.5). Note that U2(x) is the slice of Cxv at x and is nonempty for x ∈ πn(Cxv).
Then, the linear transformation HU2(x) is a nonempty subset of A (x,πn(Cxv)).

3) Finally, define the polytope:

U3(x) =
{
(u,v) ∈ R(1+q)m ∣∣(x,u) ∈ Sxu,(Ax+Bu+Ewi,v) ∈ Cxv,∀i ∈ [N]

}
, (4.26)

where wi ∈ V with V the vertices of W . It follows that πm(U3(x)) ⊆ A (x,πn(Cxv)). It is easy
to check that (Hv,Pv) ∈ U3(x) for all v ∈ U2(x), which implies that U3(x) is guaranteed to be
nonempty for any x ∈ πn(Cxv).

All three linear encodings are easily computed online given Cxv. Moreover, it holds that:

HU2(x)⊆ πm(U3(x))⊆ πm(U1)(x) = A (x,πn(Cxv)).

That is, U2(x) is the most conservative encoding, while U1(x) is the least conservative one. However,
U2 is of lower dimension, while U1 has the highest dimension. More conservative encodings are
easier to compute. Depending on the available compute, a user can select the most appropriate
encoding.
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4.4.2 Supervision of a nominal controller

In many scenarios, when synthesizing a controller for a plant, the objective is to meet a performance
criterion while always satisfying a safety requirement. This gives rise to the problem of supervision.

Problem 4.1 (Supervisory Control). Consider a system Σ, a safe set Sxu, and a nominal controller

that meets a performance objective. The supervisory control problem asks at each time step to

evaluate if, given the current state, the input ũ from the nominal controller keeps the next state of Σ

in the safe set. If not, correct ũ by selecting an input that does so.

To solve Problem 4.1 one has to guarantee at every step that the pairs of states and inputs respect
the safe set Sxu. A natural way to do so is by using an RCIS. The supervision framework operates
as follows. Given an RCIS C , assume that the initial state of Σ lies in C . The nominal controller
provides an input ũ to be executed by Σ. If ũ ∈A (x,C ), then its execution is allowed. Else ũ is
corrected by selecting an input usa f e ∈A (x,C ). Existence of usa f e is guaranteed in any RCIS by
Definition 2.3.

In practice an explicit RCIS is not needed. One can exploit the three linear encodings of
admissible inputs from the proposed implicit RCISs to perform supervision. Furthermore, the
nominal controller can be designed independently of the implicit RCIS parameterization. Consider
an implicit RCIS Cxv for Σ with respect to Sxu, as in Theorem 4.6. Then supervision of an input ũ is
performed by solving the following QP:

min
u,v

||u− ũ||22

s.t. (x,u) ∈ Sxu

(Ax+Bu+Ew,v) ∈ Cxv,∀w ∈W

(4.27)

Notice that the feasible domain of the QP in (4.27) is equal to the third linear encoding U3(x) of
admissible inputs; similar QPs are easily formulated with the feasible domain being U1(x) or U2(x).
By solving optimization problem (4.27) we compute the minimally intrusive safe input.

4.4.3 Safe online planning

Based on the discussed supervision framework, we utilize the proposed implicit RCIS to enforce
safety constraints in online planning tasks. The goal here is to navigate a robot through unknown
environments without collision with any obstacles. The map is initially unknown, and it is built
and updated online based on sensor measurements, such as LiDAR. The robot must only operate in
the detected obstacle-free region. To ensure this, given a path planning algorithm and a tracking
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Figure 4.2: The overall safe online planning framework.

controller, we supervise the controller inputs based on the implicit RCIS. The overall framework is
shown in Figure 4.2.

The safe set for the robot imposes bounds on states and inputs, which do not change over time,
and also constraints, e.g., on the robot’s position, which are given by the obstacle-free region in the
current map. As the detected obstacle-free region expands over time, the corresponding part of the
safe set does as well. Thus, differently from Section 4.4.2, we have a time-varying safe set Sxu(t)

satisfying Sxu(t)⊆ Sxu(t +1), t ≥ 0. As the implicit RCIS is constructed in closed-form, we can
generate a new implicit RCIS Cxv(t) for each Sxu(t). Then, at each time step t, for any t ′ ≤ t, we
supervise the nominal input ũ(t) by solving the optimization problem:

P(t, t ′) :

min
u,v
||u− ũ||22

s.t. (x,u) ∈ Sxu(t)

(Ax+Bu+Ew,v) ∈ Cxv(t ′),∀w ∈W.

As Sxu(t) ⊆ Sxu(t + 1), Cxv(t ′) is a valid implicit RCIS in Sxu(t) for all t ≥ t ′. Thus, as long as
P(t, t ′) is feasible, the optimizer v∗ of P(t, t ′) is a safe input that guarantees the next state lies
in the RCIS. Furthermore, if P(t, t ′) is feasible, by definition of RCIS, P(t +1, t ′) is also feasible.
Thus, if P(0,0) is feasible, for all t > 0, there exists t ′ ≤ t such that P(t, t ′) is feasible. That is, the
recursive feasibility of P(t, t ′) is guaranteed. In practice, to take advantage of the latest map, we
always select t ′ to be the latest time instant t∗ for which P(t, t∗) is feasible.

To summarize, at each time step, we first construct the implicit RCIS Cxv(t) based on the current
map. Then, given the state and nominal control input, we solve P(t, t∗) to obtain the minimally
intrusive safe input. This input guarantees that the state of the robot stays within Sxu(t) for all t ≥ 0,
provided that P(0,0) is feasible.

47



4.4.4 Safe hyper-boxes

For high dimensional systems, the exact representation of an RCIS Cx can be a set of thousands
of linear inequalities. This reduces insight as it is quite difficult to clearly identify regions of each
state that lie within the RCIS. In contrast, hyper-boxes are easy to grasp in any dimension and
immediately provide information about the regions of states they contain. Based on this, we explore
how implicit RCISs can be used to find hyper-boxes that can be considered safe in the following
sense.

Definition 4.6 (Safe hyper-boxes). Consider a system Σ, a safe set Sx, and the maximal RCIS
Cmax ⊆ Sx. Define a hyper-box B = [b1,b1]×·· ·× [bn,bn] = [b,b]⊂ Rn. We call a hyper-box B

safe if B ⊆ Cmax.

To simplify the presentation we only consider state constraints, Sx, instead of Sxu. Notice that
by Definition 4.6, a safe hyper-box is not necessarily invariant. A safe hyper-box B entails the
guarantee that the trajectory starting therein can remain in Sx forever, but not necessarily within B.
We now aim to address the following problem.

Problem 4.2. Find the largest1 safe hyper-box B within Cx.

A hyper-box B can be described by a pair of vectors
(
b,b
)
∈ Rn×Rn. Then, using similar

arguments to Section 4.2, we compute in closed-form an implicit RCIS CB characterizing all
hyper-boxes

(
b,b
)

that remain in Sx under eventually periodic inputs. The eventually periodic
inputs are given by a vector v ∈ Rmq with q = τ +λ . Then, the set CB lives in Rn×Rn×Rmq and
is described by:

At [b,b]+ t

∑
i=1

Ai−1BHPt−iv⊆ Sx−W t , t = 0, . . . ,ν−1,

ν

∑
i=1

Ai−1BHPt−iv⊆ Sx−W ∞, t = ν , . . . ,ν +q−1.

The above constraints can all be written as linear inequalities in
(
b,b,v

)
∈ Rn×Rn×Rmq. Then,

the implicit RCIS CB is a polytope and one solves Problem 4.2 by the following convex optimization
program:

max
(b,b,v)

γ
(
b−b

)
s.t.

(
b,b,v

)
∈ CB,

1The largest, as measured by volume, hyper-box within a set might not be unique. We choose a heuristic for
maximizing the volume of a set that yields a well-defined convex optimization problem. Hence, the term “largest” refers
to the heuristic used.
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where γ(y) =
(
Πn

i=1yi
) 1

n is the geometric mean function, which is used as a heuristic for the volume
of the hyper-box. Function γ is concave, and maximizing a concave function can be cast as a convex
minimization problem [24].

Remark 4.5 (Invariant and recurrent hyper-boxes). Two special cases of the above are invariant

hyper-boxes, when τ = 0, λ = 1, see also [9], and recurrent hyper-boxes, when τ = 0, λ > 0, see
also [10, 8].

A related question to Problem 4.2 is to evaluate if a proposed hyper-box is safe. This is of interest
when evaluating whether the initial condition of a problem or an area around a configuration point xc

where the system is required to operate is safe. If both the above are modeled by hyper-boxes (b,b),
we can simply ask whether there exists a v, such that (b,b,v) ∈ CB. Similarly, more complicated
questions can be formulated, e.g., to find the largest safe box around a configuration point.

Remark 4.6 (Complexity when using implicit RCISs). In this section we showed how several key
problems in control are solved without the need of projection and of an explicit RCIS, which results
in extremely efficient computations since the implicit RCISs are computed in closed-form. The
decision to be made is the size of the lift, i.e., the length of the input sequence. From a computational
standpoint, this choice is only limited by how large an optimization problem one affords solving
given the application.

4.5 Performance Bound for the Proposed Method

Numerical examples, to be presented later, will show that the projection of the proposed implicit
RCIS onto the original state-space can coincide with the maximal RCIS. However, this is not always
the case. When there is a gap between our projected set and the maximal RCIS, one may wonder if
that gap is fundamental to our method. In other words, can we arbitrarily approximate the maximal
RCIS with the projection of our implicit RCIS by choosing better P and H matrices?

In this section we aim to answer the above question and provide insights into the completeness
of our method. Given (4.3), define the nominal system Σ and the nominal safe set Sxu:

Σ : x+ = Ax+Bu, (4.28)

Sxu = Sxu−W ∞×{0}, (4.29)

where A and B are the same as in (4.1). Let C max be the maximal CIS of the nominal system Σ with
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respect to Sxu and define:

Couter,ν =
{

x ∈ Rn
∣∣∣∃{ui}ν−1

i=0 ∈ Rmν ,
(
RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆Sxu, t = 0, . . . ,ν−1,

RΣ

(
x,{ui}ν−1

i=0
)
⊆ C max +W ∞

}
,

(4.30)

where ν is the nilpotency index of A.

Proposition 4.8. Couter,ν is an RCIS of Σ with respect to Sxu.

Proof. In this proof, we use the order cancellation lemma, as a special case of [42, Thm. 4].

Lemma 4.9. Let X ,Y ⊂Rn be two closed convex sets with Y bounded. A point x ∈Rn is in X if and
only if x+Y ⊆ X +Y .

To prove that Couter,ν is an RCIS, we show that for any x0 ∈ Couter,ν , there exists u such that
(x0,u) ∈ Sxu and for all w ∈W , Ax0 +Bu+Ew ∈ Couter,ν . By definition of Couter,ν , there exists a
sequence {ui}ν−1

i=0 that, along with x0, satisfies the conditions in (4.30). We aim to show that u0 in
{ui}ν−1

i=0 is a feasible choice for u. Given (4.30), the reachable set from x0 at time ν is:

RΣ

(
x0,{ui}ν−1

i=0

)
=

ν−1

∑
i=0

Aν−1−iBui +W ∞ ⊆ C max +W ∞,

with W ∞ and C max convex and W ∞ bounded. By Lemma 4.9 we have that ∑
ν−1
i=0 Aν−1−iBui ∈ C max.

Since C max is controlled invariant with respect to Sxu for the nominal system Σ, there exists uν such
that: (

ν−1

∑
i=0

Aν−1−iBui,uν

)
∈ Sxu, (4.31)

A

(
ν−1

∑
i=0

Aν−1−iBui

)
+Buν =

ν

∑
i=1

Aν−1−iBui ∈ C max.

Consider any w ∈W and define x1 = Ax+Bu0 +Ew:

RΣ(x1,{ui}ν
i=1) =

ν

∑
i=1

Aν−1−iBui +W ∞ ⊆ C max +W ∞. (4.32)

From (4.31) we have that:

(RΣ(x1,{ui}ν−1
i=1 ),uν)⊆ Sxu. (4.33)
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Finally, note that for t = 0, · · · ,ν−2, we have:

(
RΣ(x1,{ui}ti=1),ut+1

)
⊆
(
RΣ(x0,{ui}ti=0),ut+1

)
⊆ Sxu. (4.34)

From (4.32), (4.33), and (4.34) we verify that x1 ∈ Couter,ν . Thus, Couter,ν is an RCIS.

The following theorem shows that Couter,ν is an outer bound of the projection of the proposed
implicit RCIS.

Theorem 4.10 (Outer bound on π[1:n] (Cxv)). For a companion system Σxv as in (4.7), with arbitrary

matrices P and H, let Cxv be an RPIS of Σxv within the companion safe set Sxv. The RCIS π[1:n] (Cxv)

is a subset of Couter,ν , that is π[1:n] (Cxv)⊆ Couter,ν .

Proof. Let x ∈ π[1:n] (Cxv). We show that x ∈ Couter,ν . By definition of Cxv, there exists a vector v

such that: (
RΣ

(
x,
{

HPiv
}t−1

i=0

)
,HPtv

)
⊆ Sxu, for all t ≥ 0. (4.35)

Define ut = HPtv. We want to verify that x and {ui}ν−1
i=0 satisfy the two conditions in the def-

inition of (4.30). The first condition is immediately satisfied by (4.35). It is left to show that
RΣ(x,{ui}ν−1

i=0 )⊆ C max +W ∞. That is:

ν−1

∑
i=0

Aν−1−iBui +W ∞ ⊆ C max +W ∞.

By Lemma 4.9, it is equivalent to prove that:

x≡
ν−1

∑
i=0

Aν−1−iBui ∈ C max.

By (4.35), we have that for t ≥ 0:(
ν−1

∑
i=0

Aν−1−iBui+t +W ∞,uv+t

)
⊆ Sxu⇔

(
ν−1

∑
i=0

Aν−1−iBui+t ,uν+t

)
∈ Sxu

⇔
(
R

Σ
(x,{ui}ν+t−1

i=ν
),uν+t

)
∈ Sxu

(4.36)

According to (4.36), the control sequence {ui}ν+t−1
i=ν

guarantees that the trajectory of Σ starting
at x stays within Sxu for all t ≥ 0. Thus, x must belong to the maximal CIS of Σ in Sxu. That is,
x ∈ C max.
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Note here that the set Couter,ν , which serves as an outer bound for the set computed by our
method, is as hard to compute as the maximal RCIS. Given Theorem 4.10 we have:

π[1:n] (Cxv)⊆ Couter,ν ⊆ Cmax. (4.37)

Thus, the projection of our implicit RCIS can coincide with the maximal RCIS, for appropriately
selected matrices P and H, only if Couter,ν =Cmax in (4.37). This potential gap between our approxi-
mation and the maximal RCIS is due to the fact that our method uses open-loop forward reachability
constraints under disturbances. Finally, the following theorem establishes weak completeness of
our method.

Theorem 4.11 (Weak completeness). The set Couter,ν is nonempty, if and only if, there exist matrices

P and H such that the corresponding implicit RCIS Cxv is nonempty. Specifically, Couter,ν ̸= /0, if

and only if, Cxv,(0,1) ̸= /0, that is P and H are as in (4.16) with (τ,λ ) = (0,1).

Proof. We want to show that Couter,ν is nonempty if and only if Cxv,(0,1) is nonempty, where Cxv,(0,1)

is defined in (4.19) with respect to system Σ and safe set Sxu.
Since π[1:n]

(
Cxv,(0,1)

)
⊆ Couter,ν , immediately nonemptyness of Cxv,(0,1) implies nonemptyness

of Couter,ν .
For the converse, suppose that Couter,ν is nonempty. Then C max is nonempty. By [27, Theorem

12], we know that C max is nonempty, if and only if, there exists a fixed point x ∈ C max along with a
u such that (x,u) ∈ Sxu and Ax+Bu = x. Also, note that AW ∞ +EW =W ∞. Thus, we have:

(x+W ∞,u)⊆ Sxu,

A(x+W ∞)+Bu+EW = x+W ∞.
(4.38)

According to (4.38), for any y ∈ x+W ∞, we have (y,u) ∈ Sxu and Ay+Bu+EW ⊆ x+W ∞, which
implies that x+W ∞ is an RCIS of Σ with respect to Sxu. By the definition of Cxv,(0,1), it is easy to
check that (x+W ∞,u)⊆ Cxv,(0,1). Thus, Cxv,(0,1) is nonempty.

Corollary 4.11.1 (Completeness in absence of disturbances). In the absence of disturbances,
Couter,ν = Cmax and, thus, there exist P and H such that Cxv is nonempty, if and only if, Cmax

is nonempty. That is, the proposed method is complete.

The significance of Theorem 4.11 lies in allowing to quickly check nonemptiness of Couter,ν by
computing Cxv,(0,1), which we can do in closed-form. Even though the gap between Couter,ν and
Cmax is still an open question at the writing of this chapter, we show that π[1:n] (Cxv) can actually
converge to its outer bound for a specific choice of H and P matrices.
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Theorem 4.12 (Convergence to Couter,ν ). Assume that the disturbance set W contains 0, and the

interior of Sxu contains a fixed point (x,u) of Σ. There exist matrices H and P such that π[1:n] (Cxv)

approaches Couter,ν . Specifically, if H and P are as in (4.16), by increasing τ in (4.16), π[1:n] (Cxv)

converges to Couter,ν in Hausdorff distance exponentially fast.

Proof. Without loss of generality, assume that the fixed point (x,u) of Σ in the interior of Sxu is the
origin of the state-input space. We define a set operator U (C ) that maps a subset C of Rn to a
subset of Rνm:

U (C ) =

{
u0:ν−1 ∈ Rνm

∣∣∣∣ ν

∑
i=1

Ai−1Buν−i ∈ C

}
, (4.39)

where u0:ν−1 denotes the vector (u0,u1, · · · ,uν−1) ∈ Rνm.
To maintain a streamlined presentation, we make the following claims that we prove in Ap-

pendix B.1.
Claim 1: The polytope Cxv,0 contains the origin, where:

Cxv,0 = {(x,u0:ν−1) ∈ Rn+νm |
(
RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆Sxu, t = 0, . . . ,ν−1}.

Claim 2: For the set Couter,ν in (4.30) it holds that:

Couter,ν = πn(Cxv,max), (4.40)

where Cxv,max = Cxv,0∩ (Rn×U (C max)).
Claim 3: Let C xv,(τ,λ ) be the implicit CIS of the nominal system Σ with respect to Sxu with H

and P as in (4.16) and let C x,(τ,λ ) = πn(C xv,(τ,λ )). The implicit RCIS Cxv,(τ,λ ) of Σ with respect to
Sxu with H and P as in (4.16) satisfies:

πn(Cxv,(τ,λ )) = πn(Ĉxv,(τ,λ )), for any τ ≥ ν , (4.41)

where Ĉxv,(τ,λ ) = Cxv,0∩ (Rn×U (C x,(τ−ν ,λ ))).
Claim 4: There exist c0 > 0, a ∈ [0,1), and some τ1 ≥ 0 such that for any λ ≥ 1 and for any

τ ≥ τ1:

C x,(τ,λ ) ⊇ (1− c0aτ)C max, (4.42)

with τ1 big enough such that 1− c0aτ1 ≥ 0 and thereby the right hand side of (4.42) is well-defined.
We use these claims to prove the desired convergence rate. The operator U (·) in (4.39) is

linear with respect to scalar multiplication, i.e, U (ξC ) = ξU (C ), ξ ≥ 0, and monotonic, i.e.,
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U (C1)⊇U (C2), C1 ⊇ C2. According to (4.42), for τ ≥ τ1:

U (C x,(τ,λ ))⊇ (1− c0aτ)U (C max). (4.43)

Note τ0 = ν + τ1. By (4.41), for τ ≥ τ0:

Ĉxv,(τ,λ ) ⊇ Cxv,0∩ (1− c0aτ−ν)(Rn×U (C max))⊇ (1− c0aτ−ν)(Cxv,0∩ (Rn×U (C max)))

⊇ (1− c0aτ−ν)Cxv,max.

(4.44)

The second inclusion above holds since 0 ∈ Cxv,0 and thus (1− c0aτ)Cxv,0 ⊆ Cxv,0. Note that πn(·)
is also linear with respect to scalar multiplication. By (4.40), (4.41) and (4.44), for τ ≥ τ0:

Cx,(τ,λ ) = πn(Cxv,(τ,λ )) = πn(Ĉxv,(τ,λ ))⊇ πn((1− c0aτ−ν)Cxv,max) = (1− c0aτ−ν)Couter,ν . (4.45)

By Theorem 4.10 and (4.45), for any τ ≥ τ0:

(1− c0aτ−ν)Couter,ν ⊆ Cx,(τ,λ ) ⊆ Couter,ν . (4.46)

Let c1 = maxx1,x2∈Couter,ν ∥x1− x2∥2 be the diameter of Couter,ν , which is finite since Sxu is bounded.
Then, by (4.46), the Hausdorff distance between Cx,(τ,λ ) and Couter,ν satisfies:

d(Cx,(τ,λ ),Couter,ν)≤ caτ , for c = c0c1a−ν and τ ≥ τ0.

Note that Couter,ν contains the union of the projections πn(Cxv) for all general implicit RCISs
Cxv suggested by Theorem 4.3 (that is, the matrices H and P can be arbitrary, not necessarily the
eventually periodic ones in Section 4.2.3). Hence, intuitively the set Couter,ν should be much larger
than the projection of any specific implicit RCIS Cxv corresponding to an eventually periodic H and
P in Section 4.2.3. However, Theorem 4.12 shows that the proposed implicit RCIS can approximate
Couter,ν arbitrarily well by just using the simple H and P matrices as in (4.17). Moreover, the
approximation error decays exponentially fast as we increase the parameter τ in (4.17). This result
implies that the eventually periodic input structure explored in Section III.B and III.C is rich enough,
and not as conservative as what it may look at first sight.

Corollary 4.12.1. In the absence of disturbances, if the interior of Sxu contains a fixed point of
Σ, then for any λ > 0, then Cx,(τ,λ ) converges to the maximal CIS Cmax in Hausdorff distance
exponentially fast as τ increases.
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The condition that the interior of Sxu (resp. Sxu) contains a fixed point of Σ (resp. Σ) in Corollary
4.12.1 (resp. Theorem 4.12) is critical to our method:

Example 4.1. Let Σ be x+1 = x2, x+2 = u and the safe set Sxu = {(x,u)| − 1 ≤ x1, 1.5x2 ≤ x1 ≤
2x2,u ∈ [−1,1]}. The only fixed point of Σ in Sxu is the origin in R3, which is also a vertex of Sxu. It
is easy to check that Cmax = πn(Sxu), but the largest CIS πn(Cxv) computed by our method is equal
to the singleton set {0}.

If we expand Sxu slightly so that its interior contains the origin, there immediately exist H

and P such that πn(Cxv) approximates Cmax arbitrarily well, as expected by Corollary 4.12.1.
Conversely, if we slightly shrink Sxu so that it does not contain any fixed point, then Cmax is empty
[27, Theorem12].

Remark 4.7. Under the assumption that 0 ∈W , let Sxu be the set of all the polytopic safe sets
Sxu that have a nonempty Couter,ν . Moreover, let ∂Sxu be the set of all safe sets Sxu ∈ Sxu, whose
corresponding nominal safe set Sxu does not contain a fixed point of Σ in the interior. It can be
shown that ∂Sxu must be contained by the boundary of Sxu in the topology induced by Hausdorff
distance. Consequently, for any safe set in the interior of Sxu, there exists H and P such that πn(Cxv)

approximates Couter,ν arbitrarily well.

4.6 Case Studies

A MATLAB implementation of the proposed method, along with instructions to replicate our case
studies, can be found at https://github.com/janis10/cis2m.

4.6.1 Lane keeping supervision using implicit RCIS

We begin by tackling the supervision problem, defined in Section 4.4.2, for the task of vehicle
lane keeping control. That is, we filter vehicle steering inputs to ensure the lateral position of the
vehicle to stay within lane boundaries. We consider a 4-dimensional linearized bicycle model with
respect to a constant longitudinal velocity v̄ [112], discretized with time step Ts = 0.1s. The states
consist of the lateral displacement y, the lateral velocity v, the yaw angle ∆Ψ, and the yaw rate r.
The input δ is the steering angle. The disturbance rd is the road curvature. The safe set is given by
constraints y ∈ [−0.9,0.9], ν ∈ [−1.2,1.2], ∆Ψ ∈ [−0.05,0.05], r ∈ [−0.3,0.3], and δ ∈ [−π

2 ,
π

2 ].
The disturbance bounds are rd ∈ [−0.015,0.015].

The nominal controller to be supervised is ud(t) =−0.1812y−0.0373ν−4.5996∆Ψ−0.6649r.
We implement the safety supervisor in (4.27) using the implicit RCIS Cxv,(τ,λ ) for (τ,λ ) equal to
(0,2) and (4,6), and compare them with the safety supervisor in (2.15) using the maximal RCIS.
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Figure 4.3: Vehicle maneuvers under the safety supervision with the maximal RCIS (red) and
the implicit RCIS Cxv,(τ,λ ) for (τ,λ ) = (0,2) (cyan) and (τ,λ ) = (4,6) (green). The black region
depicts the lane shape.
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Figure 4.4: Filtered vehicle steering inputs (6≤ t ≤ 9) with respect to the maximal RCIS (red) and
the implicit RCIS Cxv,(τ,λ ) for (τ,λ ) = (0,2) (cyan) and (τ,λ ) = (4,6) (green).

We run simulations for each supervisor under the same initial states and disturbance inputs. Fig. 4.3
compares the simulated vehicle maneuvers under the three safety supervisors. As shown by the
zoomed-in plot in Fig. 4.3, even when supervised with Cxv,(0,2), the trajectory already follows tightly
with the trajectory supervised with the maximal RCIS, and as we increase τ and λ , it gets even
closer. Similar phenomenon can be observed in the filtered steering inputs shown in Fig. 4.4. As we
increase τ and λ from (0,2) to (4,6), the difference between the steering signal supervised with the
implicit RCIS Cxv,(τ,λ ) and that with the maximal RCIS becomes significantly smaller, indicating
that our implicit RCIS approximates the maximal RCIS better as τ and λ increase.
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Figure 4.5: Robot operational space: initial position (yellow arrowhead), target position (cyan),
unsafe region (dark area).

4.6.2 Safe online planning using implicit RCIS

Next, we solve the safe online planning problem, discussed in Section 4.4.3, for ground robot
navigation. The map is initially unknown and is built online based on LiDAR measurements. While
navigating the robot needs to avoid the obstacles, indicated by the dark area in Fig. 4.5, and reach
the target point. This case study is inspired by the robot navigation problem in [17].

The robot’s motion, using forward Euler discretization, is:

x+ =

[
I ITs

0 I

]
x+

[
0
ITs

]
u,

where the state x = (px, py,vx,vy) ∈ R4 is the robot’s position and velocity and the input
u = (u1,u2) ∈ R2 is the acceleration. The safe set consists of two parts:

1) The time-invariant constraints vx,vy ∈ [−v,v] and u1,u2 ∈ [−u,u].
2) The time-varying constraint of (px, py) within the obstacle-free region, shown by the white

nonconvex area in Fig. 4.5. The obstacle-free region, denoted by M(t)⊆ R2, is determined by a
LiDAR sensor using data up to time t. Combining the two constraints, the safe set at time t is:

Sxu(t) ={(px, py,vx,vy,u1,u2) | (px, py) ∈M(t),

vx,vy ∈ [−v,v], u1,u2 ∈ [−u,u]}.

Since M(t)⊆M(t +1), we have Sxu(t)⊆ Sxu(t +1), t ≥ 0.
The overall control framework is shown in Fig. 4.2. Initially, the map is blank and the path planner
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generates a reference trajectory assuming no obstacles. At each time t, the map is updated based on
the latest LiDAR measurements and the path planner checks if the reference trajectory collides with
any obstacles in the updated map. If so, it generates a new, collision-free, reference path. Then, the
nominal controller provides a candidate input ũ = (ũ1(t), ũ2(t)) tracking the reference path. When
updating the reference trajectory, a transient period is needed for the robot to converge to the new
reference. Moreover, the path planner cannot guarantee satisfaction of the input constraints. To
resolve these issues, we add a supervisory control to the candidate inputs. Based on the updated
obstacle-free region M(t), we construct the safe set Sxu(t) and compute an implicit CIS Cxv,(τ,λ )(t)

with respect to Sxu(t). To handle the nonconvexity of Sxu(t), we first compute a convex composition
of Sxu(t). When constructing Cxv,(τ,λ )(t), we let the reachable set at each time belong to one of the
convex components in Sxu(t), encoded by mixed-integer linear inequalities. For details see [79]. The
convex decomposition of Sxu(t) becomes more complex over time, which slows down the algorithm.
To lighten the computational burden, we replace the full convex composition by the union of the 10
largest hyper-boxes in Sxu(t) as the safe set. Given the constructed implicit CIS Cxv,(τ,λ )(t) at time t,
we supervise the nominal control input ũ(t) by solving P(t, t∗) as discussed in Section 4.4.3. Note
that P(t, t∗) becomes a mixed-integer program as we introduced binary variables for the convex
composition of the safe set and, therefore, in the implicit CIS.

In our simulations, we use a linear feedback controller as the nominal controller. The MATLAB
Navigation Toolbox is used to simulate a LiDAR sensor with sensing range of 100 m, update the map,
and generate the reference path based on the A* algorithm. The simulation parameters are (τ,λ ) =

(6,4), Ts = 0.1s, v = 5m/s, u = 5m/s2. The mixed-integer program P(t, t∗) is implemented via
YALMIP [84] and solved by GUROBI [44]. The average computation time for constructing
Cxv,(τ,λ )(t) and solving P(t, t∗) at each time step is 2.87s. The average computation time shows
the efficiency of our method, considering the safe set is nonconvex and being updated at every time
step.

The simulation results are shown in Fig. 4.6. The robot reaches the target region at t =

78.6s, and thanks to the supervisor, it satisfies the input and velocity constraints, while always
staying within the time-varying safe region. As a comparison, when the supervisor is disabled,
the velocity constraint is violated at time t = 1.2s. The full simulation video can be found at
https://youtu.be/mB9ir0R9bzM .

4.6.3 Scalability and quality

In this subsection we illustrate the scalability of the proposed method and compare with other
methods in the literature. We consider a system of dimension n as in (4.1) that is already in
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(a) t = 0s
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(b) t = 40s
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(c) t = 78.6s

Figure 4.6: Simulation screenshots at times t = 0s, 40s and 78.6s.
Left: reference path (red) and actual trajectory (blue); the disk of blue rays is the LiDAR measurements; the
arrowhead indicates the position and moving direction of the robot.
Right: obstacle-free region M(t) (white) and unknown region (grey); purple boxes are the 10 largest boxes in
M(t) that contain the current robot position.
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Figure 4.7: Absence of disturbances. Computation times for implicit CISs for different levels q
of the full hierarchy, i.e., computing q Implicit CISs per level. (a) Safe sets with 2n constraints,
n≤ 200. (b) Safe sets with n2 constraints, n≤ 100.

Brunovsky normal form [26].

An =

[
0 I
0 0

]
, Bn =

[
0
1

]
,

where An ∈ Rn×n and Bn ∈ Rn. This assumption does not affect empirical performance measure-
ments as the transformation that brings a system in the above form is system-dependent and, thus,
can be computed offline just once. To generalize the assessment of performance, we generate
the safe set as a random polytope of dimension n and we average the results over multiple runs.
Moreover, we constraint our input to [−0.5,0.5] and the disturbance to [−0.1,0.1].

Scalability of implicit invariant sets We begin with the case of no disturbances. Fig. 4.7a and
Fig. 4.7b show the times to compute the implicis CIS Cxv,q for safe sets with 2n and n2 constraints
respectively. Cxv,q can be computed in less than 0.5s for systems of size n = 200 when the safe set
has 2n constraints, and in around 5s for n = 100 and safe sets with n2 constraints, that is 10000
constraints in this example.

We now proceed to the case where system disturbances are present. In Fig. 4.8a and Fig. 4.8b,
we observe that in the presence of disturbances computations are slower and, actually, are almost
identical for different values of q. This is attributed to the presence of the Minkowsky difference in
the closed-form expression (4.14) that dominates the runtime and depends on the nilpotency index
of the system. Still, we are able to compute implicit RCISs in closed-form for systems with up to
20 states fairly efficiently in this experiment.
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Figure 4.8: Presence of disturbances. Safe sets with 2n constraints, n≤ 20. Computation times for
Implicit RCISs. (a) Different levels q of the hierarchy. (d) Individual implicit RCIS, Cxv,(τ,λ ), for
different values of (τ,λ ).

The above results suggest the efficiency and applicability of our approach to scenarios involving
online computations. Moreover, in our experience, the numerical result of a projection operation,
depending on the method used, can be sometimes unreliable. Contrary to this, our closed-form
implicit representation does not suffer from such drawback.

Quality of the computed sets and comparison to other methods We now compare our method
with different methods in the literature, both in runtime and quality of the computed sets as measured
by the percentage of their volume compared to the maximal (R)CIS. Even though, we already
provided a comprehensive analysis in terms of runtime for our method, we still present a few
cases for the shake of comparison. We compare our approach to the Multi-Parametric Toolbox
(MPT3) [48] that computes the maximal (R)CIS, Cmax, the iterative approach in [113] that computes
low-complexity (R)CISs, and the one in [67] that computes ellipsoidal CISs.

The runtimes of each method are reported in Fig. 4.9. The difficulty of computing Cmax is
apparent from the steep corresponding curve. The low-complexity methods in [113] and [67] are
considerably faster, and [67] is slightly faster than even our implicit representation. However, our
sets are superior in quality as we detail next.

First, in the absence of disturbances, the relative volume of the computed sets with respect
to Cmax is presented in Table 4.1. Since for n ≥ 7 MPT3 does not terminate after several hours
and the computed set before termination is not invariant, we present the relative volumes only
for 2≤ n≤ 6. Our method returns a very close approximation of Cmax even with small values of
(τ,λ ) and computes substantially larger sets compared to the other techniques. This supports our
theoretical result in Corollary 4.12.1. In other words, our implicit representation retains the best out
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Figure 4.9: Computation times for Cxv,(0,2), its projection Cx,(0,2), the LMI method in [113], the
ellipsoidal CIS in [67], and Cmax. Logarithmic scale. Note: [67] is evaluated in the absence of
disturbances as it considers only nominal systems. For the other methods the performance without
disturbance is similar or better.

Table 4.1: Absence of disturbances. Volume percentage with respect to the maximal CIS.
Algorithms: Our method for different implicit CISs Cxv,(τ,λ ), the LMI method in [113], and the
method in [67] computing ellipsoidal CISs. (S) denotes a singleton set.

Our method
LMI method

[113]
Ellipsoidal

CIS method [67]
System

dimension Cxv,(0,2) Cxv,(4,2)

n = 2 100 100 42.43 45.69
n = 3 100 100 16.31 24.66
n = 4 99.92 100 3.69 14.41
n = 5 99.75 100 0.47 10.50
n = 6 97.81 100 0 (S) 3.89

of two worlds: computational efficiency and close approximations of Cmax.
In the presence of disturbances, the results are similar and are reported in Table 4.2, where we

omit [67] that is not designed for the case of disturbances. Theorem 4.12 proves that our method
converges to its outer bound Couter,ν . Here, we can appreciate that empirically Couter,ν approximates
very closely Cmax, even in the presence of disturbances, based on the size of the sets computed by
our method. However, the gap between Couter,ν and Cmax depends on the size of the disturbance as
shown next.

We illustrate how the size of the disturbance set affects our performance. We fix the safe set
to be a random polytope in R4 and constraint the input to [−0.5,0.5]. The disturbance set is
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Table 4.2: Presence of disturbances. Volume percentage with respect to the maximal RCIS.
Algorithms: Our method for different implicit RCISs Cxv,(τ,λ ) and the LMI method in [113]. (S)
denotes a singleton set.

Volume (%) Our method LMI method [113]
System

dimension Cxv,(0,2) Cxv,(2,2) Cxv,(4,2)

n = 2 100 100 100 31.99
n = 3 98.24 99.67 99.96 16.35
n = 4 99.02 99.42 99.88 4.36
n = 5 98.75 99.74 99.81 3.64
n = 6 91.17 96.07 97.91 0 (S)

Table 4.3: Increasing the size of the disturbance set W = [−w,w]. Volume percentage of Cx,(2,2)

with respect to the maximal RCIS and volume percentage of Sxu with respect to Sxu. (NE) set is
nonempty. (E) set is empty.

w 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
vol Cx,(2,2)
vol Cmax

99.9 99.7 99.3 98.1 91.8 10.5
Cx

empty
Cmax

empty
vol Sxu
vol Sxu

63.9 38.2 20.5 9.2 2.6 0.1 Sxu
empty

Sxu
empty

Sxu∩∆xu NE NE NE NE NE NE E E

W = [−w,w] and we increase w as in Table 4.3. Recall the nominal system Σ and the nominal
safe set Sxu = Sxu−W ∞, and let ∆xu be the set of fixed points of Σ, which is in Brunovsky normal
form. We can show that ∆xu = {(x,u) ∈ R4×R|x1 = x2 = x3 = x4 = u}. As Table 4.3 details, by
increasing the size of W the our RCIS shrinks at a faster rate compared to Cmax, until finally Sxu is
empty and, hence, does not contain any fixed points from ∆xu. This is when the set we compute
becomes empty as well.

4.7 Conclusion

In this chapter, we propose a novel approach to compute implicit RCISs in closed form. For systems
without disturbances, we show that our approach is complete and converges to the maximal CIS
exponentially fast as the parameterization size grows. Similarly, for systems with disturbances, our
approach is weak complete and converges to a well-defined maximal set with the parameterization
size. In addition, we show how to apply the implicit RCIS in safety supervisory control and safe
planning, and demonstrate the effectiveness of our approach via several case studies.

One potential drawback of this approach is that the implicit RCIS can become overly conservative
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when the disturbance set D becomes large, due to the open-loop nature of the eventually periodic
control inputs used in the construction of the implicit RCIS. This issue can be alleviated by replacing
the eventually periodic control inputs with a disturbance-feedback controller, presented in the next
chapter.
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CHAPTER 5

Automaton-based Implicit RCIS Computation for
Discrete-Time Linear Systems

Several recent works [9, 10, 8, 119], including the one presented in Chapter 4, develop approaches
for constructing implicit RCIS in closed form. To be precise, an implicit RCIS is a set in a lifting
space whose projection onto the original state space gives an RCIS. By avoiding computing RCISs
explicitly, these methods can work for systems with higher dimensions. It is indeed the case in many
practical applications, such as model predictive control and supervision control, that knowledge of
the explicit RCIS is not required and the implicit representation suffices.

Inspired by the recent progress on implicit RCISs, in this chapter we propose a novel approach
to compute implicit RCISs for discrete-time linear systems. In addition, the aforementioned works
consider non-measurable disturbances only, however, in many safety-critical applications, incoming
disturbances can be measured in advance [120] and, hence, are considered measurable [90]. Thus,
unlike the existing works, we develop a method that works for both measurable and non-measurable
disturbances, achieved by introducing an automaton-based controller whose input is exactly the
measurable disturbance. Specifically, our contributions include:

1) We propose a automaton-based method for computing implicit RCISs for a class of linear
systems that contains the class of controllable linear systems, with measurable disturbances.

2) We derive conditions on the structure of the automaton such that the computation of the implicit
RCIS is done exactly in closed-form.

3) We present a generic connection between measurable and non-measurable disturbances, en-
abling the proposed method to work with systems with non-measurable disturbances.

4) For systems with non-measurable disturbances, the proposed approach generalizes the method
in Chapter 4. Numerical results show that the proposed approach significantly reduces the conserva-
tiveness inherent in the method in Chapter 4.

In addition to the above, we demonstrate the practicality of the implicit RCIS in the task of
supervision control for the lane keeping problem. The goal is to modify nominal control inputs, as
needed, to keep the system’s trajectory within a set of safe states. We show that this is achieved by
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solving a single optimization problem using the implicit RCIS.

Chapter Overview. In Section 5.1, the problem is mathematically set up, along with the essential
definitions and assumptions. Section 5.2 lays down the ideas for computing an implicit RCIS for
systems with measurable disturbances. Subsequently, Section 5.3 investigates when the implicit
RCIS can be computed in closed-form, while Section 5.4 connects the proposed method to the case
of non-measurable disturbances. Section 5.5 provides a computational evaluation of the proposed
method. To keep a streamlined presentation, the proofs of all theorems are found in Appendix C.

5.1 Problem Setup

We consider a discrete-time linear system Σ:

Σ : x(t +1) = Ax(t)+Bu(t)+d(t), (5.1)

with state x ∈Rn, input u ∈Rm, and disturbance d ∈D⊆Rn. The set D contains all possible values
of d. The disturbance d is measurable if the measurement d(t) is available before u(t) is determined;
otherwise, d is non-measurable. Unless specified explicitly, the disturbance is non-measurable by
default in this dissertation.

Let S⊆ Rn+m be the safe set of the system Σ. Depending on whether the disturbance is measur-
able or not, we define RCIS differently. The definition of RCIS for non-measurable disturbance
is provided in Definition 2.3. We define RCIS for a system with measurable disturbance in the
following.

Definition 5.1 (RCIS with measurable disturbance). For the disturbance d being measurable, a set
C ⊆ Rn is an RCIS for the system Σ within the safe set S if:

∀x ∈C,∀d ∈ D,∃u such that (x,u) ∈ S,Ax+Bu+d ∈C. (5.2)

Note that the order of the quantifiers ∀d ∈D and ∃u is swapped in Definitions 2.3 and 5.1, which
means an RCIS C with respect to a non-measurable disturbance is guaranteed to be an RCIS for
the same system with measurable disturbance but not vice versa. Finally, we call a set Cmax the
maximal RCIS within S if it is controlled invariant and contains every RCIS in S.

In the first part of this chapter, we focus on the computation of RCISs for systems with mea-
surable disturbances. More specifically, we propose a method that computes the desired implicit
representation for an RCIS in closed-form based on the following assumptions. In the second part,
we extend our method to compute controlled invariant set for non-measurable disturbance. We make
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the following assumptions throughout this chapter. The same assumptions are make in Chapter 4,
where a discussion on their conservativeness can be found in Section 4.1.

Assumption 5.1. The matrix A is nilpotent. That is, there exists an integer h≤ n such that Ah = 0.

Assumption 5.2. The safe set S⊂ Rn+m and the disturbance set D⊂ Rn are both polytopes.

The next theorem shows that to compute an RCIS for systems with a measurable disturbance we
only need to consider the (finite) vertices of D.

Proposition 5.1. with a measurable disturbance d ∈ D, and let Dv be the set of vertices of D. Let Σ′

be a system the same as Σ but with d ∈Dv. Then, a convex set C is an RCIS for Σ if and only if C is
an RCIS Σ′.

According to Proposition 5.1, given any polytopic disturbance set D, we can substitute D by th
finite set Dv without loss of generality. Thus, for the remaining of this chapter, we directly assume
that D is a finite set, as stated below.

Assumption 5.3. The disturbance set D⊂ Rn is given as a finite set of vertices.

Problem 1: For a system Σ with measurable disturbance, a safe set S, and a disturbance set D

satisfying Assumptions 5.1, 5.2, and 5.3, compute a convex implicit RCIS of Σ within S in closed
form.

We end this section with a technical definition used later. Consider an autonomous system Σa:

Σa : x(t +1) = f (x(t),d(t)) (5.3)

with state x ∈ Rn and a disturbance term d ∈ D. Let S be the safe set of Σa. The maximal RPIS
of Σa within S is defined in Definition 2.5. The following proposition provides a equivalent
characterization of the maximal RPIS.

Definition 5.2 (Reachable set for autonomous systems). The reachable set R(Σa,x0) of the au-
tonomous system Σa from state x0 is the set of all possible states that the system may visit. Formally,
x ∈ R(Σa,x0) if and only if there exists a trajectory (x(t))K

t=0, K ≥ 0, of Σa under disturbance
sequence (d(t))K−1

t=0 ∈ DK with x(0) = x0 and x(K) = x.

Proposition 5.2. The set C = {x ∈ Rn |R(Σa,x)⊆ S}, i.e., the set of states whose corresponding
reachable set is contained in the safe set S, is the maximal RPIS for Σa within S.
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5.2 Controlled Invariant Set Computation Framework

The maximal RCIS for a system in (5.1) with measurable and/or non-measurable disturbances can
be computed by standard iterative methods in Section 2.5, which is not guaranteed to terminate in
finite time and does not scale to high-dimensional systems. To reduce the computation burden, many
existing works close the loop with a linear feedback controller and then compute a RPIS of the
closed-loop system as an under-approximation of the maximal RCIS. In this section, we extend this
idea to a more general case: We close the loop with a parametrized nonlinear disturbance-feedback
controller. Then, by computing a RPIS of an augmented closed-loop system, we search for the
feasible initial states and controller parameters simultaneously such that the closed-loop trajectory
satisfies the safety constraints. Lastly, we retrieve a RCIS from the RPIS of the augmented system.

First, we want to determine an appropriate controller structure. A popular choice in the literature
is linear state feedback controllers, as linear structures make computation easier. But, if we ignore
the computation tractability, would linear state feedback controllers be the optimal choice? We draw
some inspirations from Definition 5.1: Given any RCIS C for Σ under measurable disturbances,
by definition, there exists a memoryless state-disturbance feedback controller u(t) = k (x(t),d(t))

such that C is the maximal RPIS of the closed-loop system. In other words, any RCIS, including
the maximal RCIS, is the maximal RPIS of a closed-loop system with respect to some memoryless
state-disturbance controller. Thus, to minimize the conservativeness of the closed-loop RPIS, it is
enough to consider the class of memoryless state-disturbance feedback controllers. Furthermore, it is
well-known that any memoryless state-disturbance feedback controller is equivalent to a disturbance

feedback controller with memory, explained by the following example.

Example 5.1. Consider a memoryless state-disturbance feedback controller u(t) = k(x(t),d(t)).
This controller can be expressed in the form of (5.5) as:s(t +1) = As(t)+Bk(s(t),d(t))+d(t),

u(t) = k(s(t),d(t)),
(5.4)

with s(0) = x(0). That is, the internal dynamics of the controller forms a state estimator. ■

For above reasons, we consider a parameterized disturbance-feedback controller with memory

Σc:

Σc :

s(t +1) = T (s(t),d(t);θ),

u(t) = o(s(t),d(t);θ).
(5.5)

In the above, s is the internal state (memory) of the controller that distills useful information from
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the disturbance input d ∈ D, and u is the output of the controller. The same d and u correspond
to the disturbance and the control input of Σ respectively. The state transition function T and the
output function o map the current state s(t) and the disturbance input d(t) into the next state s(t +1)
and the current output u(t) respectively. Finally, θ is a constant vector that parameterizes the state
transition function T and the output function o. The value of θ can depend on the initial state x0 of
the system Σ, such as in Example 5.1, θ = x(0). In what follows, we assume that the functions T

and o in Σc are known. We discuss how to select T and o in the next section.
Closing the loop of Σ in (5.1) with the controller in (5.5), we obtain the following closed-loop

system augmented with the controller internal state s and the constant vector θ :

Σcl :

x(t +1)
θ(t +1)
s(t +1)

=

Ax(t)+Bo(s(t),d(t);θ(t))+d(t)

θ(t)

T (s(t),d(t);θ(t))

 , (5.6)

with the augmented state (x,θ ,s) and the disturbance d ∈ D.
In the above augmented system we can calculate feasible initial states x0 and controller parameters

θ simultaneously. The control input u(t) of Σ is equal to o(x(t),d(t);θ(t)), as a function of the
augmented state. Then, given the safe set S of the system Σ, the safe set for the closed-loop system
is defined by:

Scl = {(x,θ ,s) | (x,o(s,d;θ)) ∈ S,∀d ∈ D)} . (5.7)

The following theorem connects the problem of computing an RCIS for the system Σ with the
problem of computing an RPIS for the closed-loop system Σcl .

Theorem 5.3. Let Ccl be an RPIS for the closed-loop system Σcl within the safe set Scl . Then, the

convex hull conv(π[1,n](Ccl)) of the projection of Ccl onto the first n coordinates is a convex RCIS

for the system Σ within the safe set S.

According to Theorem 5.3, in order to compute RCISs for Σ, we first compute the maximal
RPIS Ccl of the augmented system Σcl within Scl and then compute the convex hull of its projection.

5.3 Closed-form Construction of Implicit RCISs

In the previous section we presented a framework for computing RCISs. Still, there are two main
questions to be addressed. First, can we compute the maximal RPIS Ccl efficiently? Second, in
practice the convex hull computation is expensive, can we avoid this operation?
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Recall that in Section 5.2, we introduced the general controller structure in (5.5), but did not
discuss how to select the functions T and o. In this section, we show that by carefully designing T

and o we address both questions.

5.3.1 Computing Ccl in closed-form

From Proposition 5.2 we have that:

Ccl = {(x,θ ,s) |R(Σcl,(x,θ ,s))⊆ Scl} . (5.8)

According to (5.8), if we express the reachable set R(Σcl,(x,θ ,s)) in closed-form, then we obtain a
closed-form expression of Ccl . The next theorem gives a sufficient condition for the reachable set
R(Σcl) to admit a closed-form expression.

Theorem 5.4. Under Assumptions 5.1 and 5.3, if the state s of the controller belongs to a finite

set Q, then given any initial state (x,θ ,s) ∈ Rn+mL×Q, the reachable set R(Σcl,(x,θ ,s)) is finite.

Moreover, it can be expressed in closed-form.

Note that Theorem 5.4 is the only result that requires Assumption 5.1 in this chapter. Given
Theorem 5.4, we want to design the functions T and o such that the internal state s of the controller
belongs to a finite set Q. Recall that by Proposition 5.1 and Assumption 5.3, the input d of the
controller also belongs to a finite set D. Thus, the controller Σc is a system with finite states and
inputs. In the literature, this type of system is called a mealy machine, a special class of automata.

Definition 5.3 (Mealy Machine). A Mealy Machine Σ f ts is a quintuple (Q,D,T ,Θ,o), where:

• Q is a finite set of discrete states;

• D is a finite set of actions;

• T : Q×D→ Q is the state transition function that maps each state-action pair to the next
state;

• Θ is a finite set of outputs;

• o : Q×D→ Θ is the output function that maps each state-action pair to an element in the set
Θ.

With slightly abusing notations, we denote both the action set of a mealy machine and the
disturbance set of Σ by D, since in this chapter we only consider the disturbance set D as the action
set of a mealy machine. The transition function T and the output function o are designed by the
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Figure 5.1: A toy mealy machine controller.

user. We parameterize the output set Θ of a mealy machine by the parameter vector θ : Suppose that
Θ = {ui}L

i=1, where each ui is a vector of variables in Rm. Given a vector θ = (u1, · · · ,uL) ∈ RmL,
we define a parametrized output function o(s,d;θ) : Q×D→ Rm such that o(s,d;θ) = ui for
o(s,d) = ui. A simple example of a mealy machine and the parametrized output function is shown
below.

Example 5.2. Let D = {d1,d2}, d1, d2 ∈ Rn, and Q = {s1,s2}. The state transition func-
tion T is shown in Figure 5.1. The output set is Θ = {u1,u2}. The output function
is o(s1,d1) = o(s2,d1) = u1 and o(s1,d2) = o(s2,d2) = u2. Let the controller parameter be
θ = (u1,u2) = (1,2). Then, the parametrized output function is o(s1,d1;θ) = o(s2,d1;θ) = 1 and
o(s1,d2;θ) = o(s2,d2;θ) = 2. ■

Next, we provide guidance on how to select T and o such that Ccl can be computed efficiently.
Since s ∈ Q, with Q finite, we can decompose Ccl into |Q| subsets:

Ccl =
⋃

si∈Q

Csub(si)×{si}, (5.9)

where:

Csub(si) =
{
(x,θ) ∈ Rn+mL |R(Σcl,(x,θ ,si))⊆ Scl

}
. (5.10)

For each state (x′,θ ,s′) ∈R(Σcl,(x,θ ,si)):

(x′,θ ,s′) ∈ Scl ⇔ (x′,o(s′,d;θ)) ∈ S, ∀d ∈ D. (5.11)

Notice that x′ and o(s′,d;θ) are linear functions of x, θ , and d ∈ D. Then, the condition
(x′,o(s′,d;θ)) ∈ S is a set of linear inequality constraints on (x,θ). Thus, by (5.11) and the
fact that R(Σcl,(x,θ ,si)) is finite, the set Csub(si) in (5.10) can be expressed by a set of linear
inequality constraints, that is a polytope in Rn+mL. We use the following example to illustrate the
computation of Csub(si).
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Example 5.3. Consider the mealy machine controller in Example 5.2. Suppose that the nilpotent
matrix A of system Σ satisfies A2 = 0. Then, the reachable set R(Σcl,(x,θ ,si)) contains 7 elements,
that is

R(Σcl,(x,θ ,si)) =

{ ⋃
j,k=1,2

(ABu j +Buk +Ad j +dk,θ ,sk)

}

∪
{
(x,θ ,si)

}
∪

{ ⋃
j=1,2

(Ax+Bu j +d j,θ ,s j)

}
,

where θ = (u1,u2). Suppose that the safe set is S = {(x,u) ∈ Rn+m | Gxx+Guu≤ h}, then:

Csub(s1) =Csub(s2) =

{(x,u) ∈ Rn+m |Gxx+Guui ≤ h,

Gx(Ax+Bu j +d j)+Guu j ≤ h,

Gx(ABu j +Buk +Ad j +dk)+Guui ≤ h,

∀i, j,k ∈ {1,2}}.

Finally, Ccl =
⋃

i=1,2Csub(si)×{si}.

So far we constructed Ccl in closed-form. However, to obtain an RCIS from Ccl , we have to
project Ccl onto the first n coordinates and then compute the convex hull of the projected set. Both
projection and convex hull operations are time consuming and thus undesirable. In what follows we
derive an implicit expression of the resulting RCISs.

5.3.2 Implicit Controlled Invariant Set Expression (Method 1)

Assumption 5.4. The safe set S of Σ is bounded.

Given that S is bounded, the projection of Csub(si) onto the first n coordinates is also bounded.
Thus, we can always find a large enough hypberbox B such that:

π[1,n](Csub(si)∩B) = π[1,n](Csub(si)).

Denote the intersection of the hyperbox B and the polytope Csub(si) by Csub(si) = B∩Csub(si). Note
that the projection of Ccl is exactly the union of the projections of polytopes Csub(si) for si ∈Q, that
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is:

π[1,n](Ccl) =
⋃

si∈Q

π[1,n]
(
Csub(si)

)
. (5.12)

Furthermore, since the order of convex hull operation and the projection can be swapped, we have
that:

conv(π[1,n](Ccl)) = π[1,n]

(
conv

(⋃
si∈Q

Csub(si)

))
. (5.13)

Since Csub(si) is a polytope, it can be written as:

Csub(si) = {(x,θ) | Gi(x,θ)≤ hi}.

Then, we construct the polytope:

Cλ =

{(
x,θ ,x1,θ1, · · · ,x|Q|,θ|Q|,λ1, · · · ,λ|Q|

)
|

λi ≥ 0,Gi(xi,θi)≤ λihi,∀1≤ i≤ |Q|,
|Q|

∑
i=1

λi = 1,
|Q|

∑
i=1

xi = x,
|Q|

∑
i=1

θi = θ

}
.

(5.14)

Under Assumption 5.4, given that (x,θ) ∈ Rn+mL, we have:

conv

(⋃
si∈Q

Csub(si)

)
= π[1,(n+mL)] (Cλ ) , (5.15)

π[1,n]

(
conv

(⋃
si∈Q

Csub(si)

))
= π[1,n](Cλ ). (5.16)

By (5.13) and (5.16), the RCIS conv(π[1,n](Ccl)) is the projection of Cλ onto the first n coordinates.
In other words, Cλ is an implicit expression of the RCIS conv(π[1,n](Ccl)).

Remark 5.1. Assumption 5.4 is only required if we want the equality π[1,n](Cλ ) = conv(π[1,n](Ccl))

to hold. In the next section, we introduce an alternative implicit expression which does not need a
bounded safe set S.
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5.3.3 Implicit Controlled Invariant Set Expression (Method 2)

In Example 5.3, the projection of Ccl is already convex and, thus, the convex hull computation is
omitted. It turns out that the convexity of π[1,n](Ccl) is not a coincidence. We define the nested state
transition function by:

T ∗(s,(d(t))k
t=0)=

T (s,d(0)), k = 0,

T (T ∗(s,(d(t))k−1
t=0 ),d(k)), k > 0.

(5.17)

Similarly, the nested output function o∗(s,(d(t))k
t=0) is:

o∗(s,(d(t))k
t=0) =

o(s,d(0)), k = 0,

o(T ∗(s,(d(t))k−1
t=0 ),d(k)), k > 0.

(5.18)

Define a preorder relation “⪰” on Q as follows. For any s1,s2 ∈ Q, we have that s1 ⪰ s2 if for all
(d1(t))

k1
t=0 ∈ Dk1 and (d2(t))

k2
t=0 ∈ Dk2 with non-negative integers k1,k2 ≤ |Q|2, o∗(s1,(d1(t))

k1
t=0) =

o∗(s1,(d2(t))
k2
t=0) implies o∗(s2,(d1(t))

k1
t=0) = o∗(s2,(d2(t))

k2
t=0) .

Here, the “=” sign in o∗(si,(d1(t))
k1
t=0) = o∗(si,(d2(t))

k2
t=0) is interpreted as the function o∗

mapping two inputs to the same element in Θ (regardless of the parameter θ ). Given the definition
of the relation ⪰ on Q, we can algorithmically check if two states s and s′ satisfy s⪰ s′ with worst
case time complexity O(|Q|2).

Note that the “⪰” relation is not a partial order as it does not satisfy the antisymmetry condition,
namely it is possible to have s1 ⪰ s2 and s2 ⪯ s1 but s1 ̸= s2. However, the following theorem shows
that the ⪰ relation in Q actually implies the partial order on the sets {π[1,n](Csub(s))}s∈Q defined by
the set inclusion.

Theorem 5.5. Given the ⪰ relation defined on the set Q, for any two states s1, s2 ∈ Q, s1 ⪰ s2

implies that π[1,n](Csub(s1))⊇ π[1,n](Csub(s2)).

We call a state smax ∈ Q a maximal state if for any s′ ∈ Q, s′ ⪰ smax implies smax ⪰ s′, and call
a state sdom a dominant state if sdom ⪰ s for all s ∈ Q. Denote Qmax as the set of all the maximal
states in Q.

Corollary 5.5.1. Suppose that there exists a dominant state smax ∈ Q. Then,

π[1,n](Ccl) = π[1,n](Csub(s0)).

Corollary 5.5.1 explains our observation in Example 5.3.
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Algorithm 4 Compute Implicit Controlled Invariant Set

inputs: Σ, S, Σc = (Q,D,T ,Θ,o).

if a dominant state sdom ∈ Q exists then
Compute Csub(sdom) as in (5.10).
return Csub(sdom).

else
for si ∈ Q0 ⊆ Q do

Compute Csub(si) as in (5.10).
end for
Compute Cλ as in (5.14).
return Cλ .

end if

Example 5.4. For the mealy machine in Example 5.2, s1 ⪰ s2 and s2 ⪰ s1. Thus, both s1 and s2 are
dominant states. Then, π[1,n](Ccl) = π[1,n](Csub(s1)) = π[1,n](Csub(s2)).

Corollary 5.5.2. Define a partition over Qmax as follows: For s and s′ ∈ Q, s and s′ belong to the
same component if s⪰ s′ and/or s′ ⪰ s. Let a set Q0 ⊆ Qmax contain exactly one state from each
component of this partition. Then, π[1,n](Ccl) = ∪smax∈Q0π[1,n](Csub(smax)).

According to Corollary 5.5.1, if a dominant state sdom exists in Q, the RCIS conv(π[1,n](Ccl)) is
simply the projection of Csub(sdom) onto the first n coordinates. In this case, we can directly take
Csub(sdom) as the implicit representation of the RCIS conv(π[1,n](Ccl)); otherwise, by Section 5.3.2,
we construct Cλ as the implicit RCIS. Note that according to Corollary 5.5.2, we can replace Q by
Q0 in the definition of Cλ . The overall procedure of computing implicit RCISs is summarized in
Algorithm 4.

5.3.4 Classes of Mealy Machines with Dominant States

In this subsection, we present three classes of mealy machines with at least one dominant state,
which we use later to construct implicit RCISs in case studies. It is important to note, however, that
there exists many mealy machines with dominant states that do not belong to those three classes.

Furthermore, within this subsection, we demonstrate that when Method 2 (outlined in Section
5.3.3) is employed with a specific class of mealy machine controllers, it yields the construction of
the implicit RCIS Cxv,(τ,λ ) in Chapter 4. This observation underscores that the method presented in
Chapter 4 can be regarded as a distinct subset of Method 2, as described in Section 5.3.3.
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Simple Loop Given a positive integer λ > 0, let Q = {si}λ
i=1 and Θ = {ui}λ

i=1. Define, for all
d ∈ D, the state transition and output functions as:

T (si,d) =

si+1 i < λ ,

s1 i = λ .
, o(si,d) =

ui+1 i < λ ,

u1 i = λ .
(5.19)

For such a structure, any s ∈ Q is a dominant state.

Simple Loop with a Tail Given two integers τ ≥ 0 and λ > 0, let Q = {si}τ+λ

i=1 and Θ = {ui}τ+λ

i=1 .
Define, for all d ∈ D, the state transition and output functions as:

T (si,d) =

si+1 i < τ +λ ,

sτ+1 i = τ +λ .
, o(si,d) =

ui+1 i < τ +λ ,

uτ+1 i = τ +λ .
(5.20)

For such a structure, the domain state is s1. Note that a simple loop structure is a special case of
a simple loop with a tail (τ = 0). Since all the transitions in a simple loop with a tail structure
is independent of the disturbance measurement, when a system with measurable disturbance is
equipped with a controller in such a structure, it can be shown that the resulting implicit RCIS
Csub(s1) is also controlled invariant for the same system with non-measurable disturbance. In fact,
the resulting implicit RCIS Csub(s1) is exactly equal to the implicit RCIS Cxv,(τ,λ ) in Section 4.3 of
Chapter 4. In other words, the method for constructing implicit RCISs in Chapter 4 is a special case
of Method 2 described in Section 5.3.3.

Tree Structure Suppose the cardinality of the disturbance set |D|= K. Given an integer L > 0,
define N = (KL−1)/(K−1). Let Q = {s0}∪

⋃l
i=1 DL. That is, Q is the union of s0 and all finite

sequences of elements in D with length less than or equal to L. We assign one output for each s ∈ Q

denoted by u(s). Thus, Θ = {u(s)}s∈Q. The state transition function is defined as for all d ∈ D:

T (s,d) =


d s = s0,

sd s ∈ Dk,k < L,

s(2 : L)d s ∈ DL,

(5.21)

where sd ∈ Dk+1 denotes the concatenation of s ∈ Dk and d ∈ D, and s(2 : L)d denotes the con-
catenation of the subsequence s(2 : L) of s and d ∈ D. For instance, if s = d1d2 · · ·dL, then
s(2 : L)d = d2 · · ·dLd.

For L = K = 2, the state transition function is shown in Figure 5.2. We call this class of mealy
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Figure 5.2: The tree-structure mealy machine (L = 3, D = {d1,d2}). The red arrow and blue arrow
indicate transitions under d1 and d2 respectively.

machines tree structure since the mealy machine transition graph, as shown in Figure 5.2, embeds a
tree with s0 the root node.

Given the state transition function, the output function is simply defined as:

o(s,d) = u(T (s,d)). (5.22)

For any tree-structure mealy machine, s0 is the dominant state. Intuitively, the tree-structure
mealy machine memorizes the past L disturbance measurements and assigns a control input to each
possible combination of the past L disturbances.

Finally, for the three classes of mealy machines introduced here, it can be proven that by
increasing the number of discrete states (complexity), that is increasing L, τ , or λ , we tend to obtain
larger RCISs.

5.4 Bridge Measurable and Non-measurable Disturbances

According to the discussion of Section 5.3.4, one way to handle non-measurable disturbance is to
use Method 2 in Section 5.3.3 with a mealy machine controller whose transitions are independent of
the disturbance measurement, such as the simple loop with tail structure. In this case, the proposed
method degrades to the method in Chapter 4, which yields implicit RCISs for non-measurable
disturbance. But this workaround is conservative since we restrict the method to only use open-loop
controllers to construct implicit RCISs. In this section, we show a generic connection between
measurable and non-measurable disturbance, which enables our method to compute RCISs for
systems with any type of disturbances using any mealy machine controller.

Suppose a system Σ in (5.1) has a non-measurable disturbance d ∈ D. We construct a system Σ′
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with a measurable disturbance by adding a one-step delay:

Σ
′:

[
x(t +1)
u(t +1)

]
=

[
A B

0 0

][
x(t)

u(t)

]
+

[
0
Im

]
v(t)+

[
In

0

]
d(t), (5.23)

with state (x,u) ∈ Rn+m, input v ∈ Rm, a measurable disturbance d ∈ D⊆ Rn, and In, Im being the
n×n and m×m identity matrices respectively.

Let the safe set of Σ be S⊂Rn+m. We want to compute a RCIS for Σ within S. The next theorem
reveals that this can be achieved by computing a RCIS for Σ′ within S×Rm.

Theorem 5.6. Given the systems Σ in (5.1) and Σ′ in (5.23), if C′ is an RCIS for Σ′ in S×Rm, the

projection π[1,n](C′) of C′ onto the first n coordinates is an RCIS for Σ in S.

If C′ is the maximal RCIS for Σ′ in S×Rm, then π[1,n](C′) is the maximal RCIS for Σ in S.

Thanks to Theorem 5.6, in terms of computing RCISs, any method designed for measurable
disturbances can be applied to systems with non-measurable disturbances.

5.5 Case Studies

5.5.1 Lane Keeping Supervision

Consider a 4-dimensional linearized bicycle vehicle dynamics with respect to a constant longitudinal
velocity 30m/s in [112], discretized with time step ∆t = 0.1s. The system states consist of the
lateral displacement y, lateral velocity v, yaw angle ∆Ψ and yaw rate r. The control input u is the
steering angle. The disturbance is d = (0,0,−rd∆t,0), where rd ∈ R is the road curvature within a
range |rd| ≤ rd,max. The safe set is given by constraints |y| ≤ 0.9, |v| ≤ 1.2, |∆Ψ| ≤ 0.05, |r| ≤ 0.3
and |u| ≤ π/2.

The future road curvature can be measured in advance and thus d is a measurable disturbance
[120]. We compare our method with the method proposed in Chapter 4, LMI-based low-complexity
RCIS in [113], full-complexity RCIS in [43] and the maximal RCIS. Our method uses the tree
structure with L = 4 in Section 5.3.4 as the mealy machine controller. For the method in Chapter 4,
we use Cxv,(τ,λ ) defined in Section 4.3 with τ = 0 and λ = 14 as the implicit RCIS, with is equivalent
to our method equipped with simple loop controller with parameter λ = 14. For the LMI-based
method in [113], we set the parameter ρ = 1 and run the iterative algorithm until convergence. The
methods in [8], [113] consider non-measurable disturbances only. To make a fair comparison, our
method computes RCISs for d being measurable and/or non-measurable respectively. We evaluate
the algorithm performance by their computation time and the volume percentage of the resulting
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Table 5.1: Computation Time and Volume Percentage of Computed RCIS to the maximal RCIS.
(Lane Keeping)

rd,max 0.01 0.015 0.03 0.05 0.07
Our method (d
meas.)

Time (s) 0.042 0.035 0.037 0.035 0.032
Vol (%) 100.00 99.99 99.89 98.91 74.75

Our method (d
non-meas.)

Time (s) 0.071 0.062 0.072 0.063 0.060
Vol (%) 100.00 100.00 100.00 99.89 0

Method in
Chapter 4

Time (s) 0.506 0.443 0.404 0.397 0.484
Vol (%) 99.82 87.64 0 0 0

LMI Method
[113] (ρ = 1)

Time (s) 0.449 0.519 0.562 0.500 0.564
Vol (%) 0 0 0 0 0

Maximal RCIS Time (s) 13.084 18.918 15.525 15.698 21.513

RCISs to the maximal RCIS. The volume percentage is estimated by monte carlo method with
sample size N = 104.

The comparison results are shown in Table 5.1: According to the 2nd, 3rd and 4th rows of Table
5.1, when dealing with non-measurable disturbances only, our method outperforms the method in
Chapter 4 and LMI-based method in [113] in both the computation time and the volume of the
resulting RCIS for all rd,max, showing a strong robustness to non-measurable disturbances. The
LMI-based method encounters an infeasible optimization problem in all test cases and thus has 0
volume percentage. The method in Chapter 4, as a special case of the proposed method, has a decent
volume percentage when the disturbance range is small. But as rd,max > 0.015, the implicit RCIS
Cxv,(0,14) in Chapter 4 becomes empty, while our method still has volume percentage greater than
98% for both measurable and non-measurable cases. It is worth recalling that, by Theorem 4.11,
the emptiness of Cxv,(0,14) implies the emptiness of any implicit RCIS generated using the method
in Chapter 4. This observation underscores the significantly reduced conservativeness inherent in
the method introduced in this chapter when compared to the one in Chapter 4.

Shown by the first 2 rows of Table 5.1, when rd,max = 0.7, our method returns an nonempty
RCIS for d being measurable, but returns an empty RCIS for d being non-measurable. Thus, by
considering d as a measurable disturbance, our method is robust to a larger range of disturbances.
Finally, comparing the first 2 rows with the last row of Table 5.1, when rd,max < 0.07, our method
computes implicit RCISs with almost the same size as the maximal RCISs, using less than 0.3%
computation time of the maximal RCISs.

Next, we illustrate how the computed implicit RCIS can be used to supervise a nominal controller.
Suppose the current state x(t) belongs to the RCIS π[1,n](Csub(s0)). Given the nominal steering
input ud(t) and the disturbance d(t) at time t, we minimally change the input ud(t) such that the
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Figure 5.3: (a) Vehicle maneuvers under control inputs supervised by our implicit RCIS (cyan
curve) and the maximal RCIS (red curve). The black region indicates the road surface. (b)Vehicle
steering inputs supervised by our implicit RCIS (blue curve) and the maximal RCIS (red curve)
(6≤ t ≤ 8).

next state x(t +1) stays in the RCIS π[1,n](Csub(s0)) by solving the following linear program:

min
u(t),θ
∥ud(t)−u(t)∥2

2

subject to (Ax(t)+Bu(t)+d(t),θ) ∈Csub(s0),
(5.24)

where A, B are the system matrices and θ is a slack variable. We use the solution u(t) of (5.24) as
the actual steering input to the vehicle. The feasibility of (5.24) is guaranteed since π[1,n](Csub(s0))

is a RCIS and x(t) ∈ π[1,n](Csub(s0)).
We compare the corrected inputs when using our method to the ones obtained based on the

maximal RCIS Cmax via the following linear program:

min
u(t)
∥ud(t)−u(t)∥2

2

subject to Ax(t)+Bu(t)+d(t) ∈Cmax.
(5.25)

The nominal controller is ud(t) =−0.1812y−0.0373v−4.5996∆Ψ−0.6649r. We run two sim-
ulations with the same initial states and control inputs obtained from (5.24) and (5.25) respectively
(rd,max = 0.015). As shown in Figures 5.3a and 5.3b, the vehicle maneuvers and steering inputs
supervised by our implicit RCIS Csub(s0) and the maximal RCIS are very close to each other. The
maximal difference between the control inputs from (5.24) and (5.25) is around 0.035 at t = 6.5s.
This observation is consistent with the results shown in Table 5.1, where the volume of our implicit
RCIS is approximately 99.96% of the volume of the maximal RCIS.
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Figure 5.4: RCISs for double integrator. Yellow: RCIS from LMI-based method [113]. Red: the
maximal RCIS computed by both our method and [8].

5.5.2 Chain of Integrators

Consider a discrete-time n-th order integrator:

x(t +1) =

(
In +

[
0 In−1

0 0

])
x(t)+

[
0
1

]
(u(t)+d(t)) (5.26)

with x ∈ Rn, u ∈ R and d ∈ R. In indicates the identity matrix in Rn×n. d is considered as a measur-
able disturbance within range |d| ≤ 0.1. The safe set is S = {(x,u) | |xi| ≤ 1,∀i = 1, . . . ,n, |u| ≤ 1}.

The comparison results of our approach (tree structure, L = 4) with the method in Chapter 4
(Cτ,λ with τ = 0 and λ = 14) and the LMI-based method in [113] (ρ = 1) are shown in Table
5.2. For n ≤ 4, our method outperforms the other 2 methods in computation time and volume
percentage. For n = 2, our method returns exactly the maximal RCIS, depicted in Fig. 5.4. For
n≥ 6, the maximal RCIS does not terminate within 1 hour. Thus we only check if the computed
RCISs are empty or not instead of comparing their volume to the maximal RCIS. When n≥ 6, our
method is the only one that returns non-empty RCISs. Note that even though the implicit RCIS has
closed-form expression, the number of constraints in the implicit RCIS grow exponentially as n

increases. In this example, for n = 10, it takes about 339s for our method to generate the implicit
RCIS, which is a polytope in R24 with about 36×104 constraints.

5.5.3 Truck with N Trailers

Consider a continuous-time model for a truck with N trailers [102]. The state consists of the N +1
velocity values, each for the truck and the N trailers, and the N spring elongations in between them.
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Table 5.2: Computation Time and Volume Percentage of Computed RCIS to the maximal RCIS
(Chain of Integrators).

n 2 4 6 8 10
Our method (d
meas.)

Time (s) 0.005 0.025 0.368 9.287 339.060
Vol (%) 100 98.79 > 0 > 0 > 0

Method in
Chapter 4

Time (s) 0.183 0.341 2.420 7.168 37.105
Vol (%) 74.49 0 0 0 0

LMI Method
[113] (ρ = 1)

Time (s) 3.465 0.603 0.952 1.405 3.1402
Vol (%) 66.85 ≈ 0 0 0 0

Maximal RCIS Time (s) 0.734 11.114 > 3600 > 3600 > 3600

Table 5.3: Computation Time and Volume Percentage of Computed RCIS to the maximal RCIS.
(Truck with N trailers)

System dimension n = 3 n = 5 n = 7 n = 9

Our method Time (s.) 0.109 0.781 8.669 163.1
Vol (%) 100 100 > 0 0

Method in
Chapter 4

Time (s.) 0.547 0.814 1.352 6.577
Vol (%) 100 98.90 0 0

Maximal RCIS Time (s.) 0.746 13.76 > 3600 > 3600

Hence, N trailers correspond to dimension n = 2N +1. The input is the velocity of the truck. We
discretize the model with a sampling time of Ts seconds assuming piecewise constant inputs.

Table 5.3 shows the results of this case study for our method and the method in Chapter 4 (Cτ,λ

with τ = 0 and λ = 14). For n≥ 7 the method computing the maximal RCIS does not terminate after
1 hour, and, hence, we only check non-emptiness of sets instead of volume percentage. When the
maximal RCIS is computed, we see that our approach covers it, but due to the implicit representation
the running times are much faster. However, we see that in this example, after some point, as the
dimension becomes large, the set our algorithm returns is empty. This can be understood as by
adding more trailers the noise from each spring compounds towards the ones behind it, resulting in
the shrinking the RCIS.

5.6 Conclusion

In this chapter, we derive closed-form expressions for implicit RCISs for discrete-time linear
systems with measurable disturbances. In particular, a disturbance-reactive (or disturbance feedback)
controller in the form of a parametrized finite automaton is considered. We show that, for a class of
automata, the RPISs of the corresponding closed-loop systems can be expressed by a set of linear
inequality constraints in the joint space of system states and controller parameters. This leads to
an implicit representation of the invariant set in a lifted space. We further show how the same
parameterization can be used to compute invariant sets when the disturbance is not measurable.

Also, we show that the method proposed in this chapter generalizes the method in Chapter
4. The idea of using disturbance-feedback controllers for constructing implicit RCISs allows us

82



to significantly reduce the conservativeness inherent in the method in Chapter 4. In particular,
numerical examples show that the proposed method can yield nonempty implicit RCIS for non-
measurable disturbance while the method in Chapter 4 fails. This underscores the considerable
improvement and practical applicability of the method introduced in this chapter.
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CHAPTER 6

Scalable Computation of RCISs for Discrete-time
Linear Systems with Input Delays

One critical application of RCISs is to synthesize safety controllers and/or safety supervisors for
autonomous vehicles [91, 112]. While there exist simple linear dynamical models for vehicle
control, when deploying such controllers on actual vehicles [92], we have realized that there is a
non-negligible time delay on the input signal. This delay may arise from the inherent dynamics
of low-level actuators or communication bottlenecks within the vehicle’s system. To address this
input delay, we must extend the original system by incorporating additional states corresponding
to these delayed inputs, resulting in a high-dimensional augmented system. Computing invariant
sets for such high-dimensional systems is challenging. Intriguingly, this augmented system is very
structured and our goal in this chapter is to exploit this structure to compute invariant sets for
systems with input delays in a scalable manner.

Another concern for systems with input delays is that when the system is subject to additional
disturbances, it becomes harder to guarantee invariance with a delayed input. To mitigate this
challenge, one effective approach is to incorporate preview information on external disturbances
into the control framework, a concept known as preview control [97]. In the latter part of this
chapter, we explore the integration of such preview information into our invariant set computation
framework while preserving scalability.

The main contributions of this chapter are summarized below:

• We construct a delay-free auxiliary system by predicting the future states in τ steps (where
τ is the input delay), and then show that the computation of the maximal RCIS for the
high-dimensional equivalent of the delayed system can be reduced to the computation of
the maximal RCIS of the low-dimensional auxiliary system and (τ + 2) set intersection
operations.

• We extend the proposed method for systems with both input delay and disturbance preview,
where the preview on disturbance can mitigate the difficulty in controlling systems with large
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input delays.

• We provide two examples to show the efficiency and utility of the proposed method.

Chapter Overview. We introduce the problem statement in Section 6.1. Then, we present our
approach for systems with input delays in Section 6.2 and its extension to systems with both
input delay and disturbance preview in Section 6.3. Section 6.4 illustrates the effectiveness of our
approach with numerical examples. We conclude this chapter in Section 6.5.

Notation. The Minkowski sum of a collection of sets {Si}i∈I is denoted by ∑i∈I Si. Note that we
apply the convention that if b < a, the Minkowski sum ∑

b
i=a Si = /0.

6.1 Problem Setup

Consider a linear system with τ-step pure delay in control input, that is

Σdelay : x(t +1) = Ax(t)+Bu(t− τ)+Fd(t) (6.1)

with state x(t) ∈ Rn, input u(t) ∈ Rm, and disturbance d(t) in a polytopic set D⊂ Rl . Let the safe
set of the system be Sxu = X ×U , with X ⊆ Rn and U ⊆ Rm both polytopes. We can rewrite the
time-delayed system Σdelay as a linear system without input delay, by appending the past τ-step
inputs to the state space. The resulting (n+mτ)-dimensional augmented system takes the form:

Σaug :



x(t +1) = Ax(t)+Bu1(t)+Fd(t)

u1(t +1) = u2(t)

u2(t +1) = u3(t)
...

uτ(t +1) = u(t).

(6.2)

If we want the state trajectories of the system Σdelay to remain within the safe set X×U , this is the
same as asking the trajectories of the augmented system Σaug to remain in the safe set S×U , with
S := X×Uτ . Therefore, one can state the invariance problem for a system with input delay in terms
of the system Σaug as follows.

Problem 6.1. Find the maximal RCIS of the system in Σaug subject to the safe set S×U.

According to Section 2.5, Problem 6.1 can, in principle, be solved by the outside-in algorithm
(Alg. 1). However, it is well-known that the outside-in algorithm suffers from the curse of
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dimensionality. Since the dimension of the augmented system increases linearly with the delay
steps τ , the outside-in algorithm becomes computationally intractable very soon as τ increases. In
what follows, we propose a method to solve Problem 6.1 whose complexity is independent of τ .
For the remainder of this chapter, we make the following technical assumption:

Assumption 6.1. The k-step BRS of S subject to the system Σaug and safe set S×U converges to

the maximal RCIS of Σaug subject to S×U as k goes to infinity.

Assumption 6.1 is guaranteed if the sets X , U , and D are compact [20]. Under Assumption 6.1,
the following proposition presents a key property of the maximal RCIS, later used to prove our
main results.

Proposition 6.1. Consider a system Σ as in (2.1) with safe set Sxu. Let Ck be the k-step BRS of X ,
with X the projection of Sxu onto the state space. Suppose Cmax =

⋂
k≥0Ck. Then for all x ̸∈Cmax,

there exists a non-negative integer N < ∞ such that if the system starts at x, the system can be forced
to violate the state-input constraint (x,u) ∈ Sxu by disturbances in at most N steps.

Proof. Define Wk = Rn\Vk for k ≥ 0 and W∞ = ∪∞
i=1Wk. Then W0 = Rn\X is the unsafe set, and as

the complement of Vk, Wk is the maximal set of states that if the system starts from Wk, there exists
disturbances that can force the system state to violate the state-input constraint (x,u) ∈ Sxu in at
most k steps. By De Morgan’s law, W∞ = X\V∞. Now pick x ̸∈Cmax =V∞. Then x ∈W∞ = ∪∞

i=1Wk,
which implies that there exists a N < ∞ such that x ∈WN . As discussed above, if the system starts
from state x ∈WN , disturbance can force the system state to reach W0 in at most N steps.

6.2 State Prediction and Prediction Dynamics

Our solution approach relies on the construction of a reduced-order delay-free auxiliary dynamics
with state space dimension the same as x(t) in (6.1). We then show that the maximal RCIS of the
system Σaug subject to S can be reconstructed from the maximal RCIS of the delay-free dynamics
within a modified safe set. Since the dimension of new dynamics does not explode as the delay step
τ increases, the proposed method is computationally more efficient than directly computing the
maximal RCIS of (6.2).

Our method is inspired by the following observation. We denote the maximal RCIS of the
system without delay (that is, τ = 0) by C. Also, suppose that there is a sensor that can measure the
future τ-step values of the disturbance d. Then at each time t, the exact state evolution in τ steps,
namely x(t + 1 : t + τ), can be calculated based on the measurement of x(t), future disturbance
d(t : t +τ−1) and the extended states u1:τ(t), which essentially correspond to past inputs. Then for
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the dynamics (6.2), as long as x(t + τ) ∈C, we can pick u(t) such that x(t + τ +1) ∈C. It can be
shown that

∃u(t) s.t. x(t + τ) ∈ X ,∀t ≥ 0⇐⇒ x(τ) ∈C, (6.3)

which is very close to our goal (that is, ∃u(t) s.t. x(t)∈X for t ≥ 0) except that x(t) with t ∈ [0,τ−1]
can be out of X . Moreover, by definition, d(t : t + τ−1) is not accessible at time t. Nevertheless,
we can predict the state evolution by assuming the future disturbances to be zero. The question
arises as to whether a result akin to (6.3) exists, and the affirmative answer is indeed the case. We
are going to show this result in the rest of this section.

First, we expand Σaug in τ steps to obtain the exact expression of x(t + τ) as

x(t + τ) =Aτx(t)+
τ

∑
i=1

Ai−1Buτ−i+1(t)+
τ

∑
i=1

Ai−1Fd(t + τ− i). (6.4)

Since x(t) and u1:τ(t) are known at time t, we define

x̂τ(t) = Aτx(t)+
τ

∑
i=1

Ai−1Buτ−i+1(t), (6.5)

as a prediction of x(t + τ) based on the state measurements of dynamics Σaug at time t. Define the
polytope Dτ = ∑

τ
i=1 Ai−1FD, which is the exact bound of the prediction error (x(t + τ)− x̂τ(t)).

Note that Dτ is time invariant and can be computed offline. Then, for all t ≥ 0, we have the following
inclusion relation:

x(t + τ) ∈ x̂τ(t)+Dτ

.
= {x̂τ(t)+d | d ∈ Dτ}, (6.6)

which implies the following statement:

x̂τ(t)+Dτ ⊆ X ,∀t ≥ 0⇒ x(t + τ) ∈ X ,∀t ≥ 0. (6.7)

Therefore, if there exists a controller u(t) such that x̂τ(t) ∈ X−Dτ for all t ≥ 0, such a controller
guarantees that x(t + τ) ∈ X for all t ≥ 0. According to the analysis above, it is important to
understand the relation between x̂τ(t) and x̂τ(t +1). By definition and after some simple algebra,
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we have Σaux defined by

x̂τ(t +1) = Aτx(t +1)+
τ

∑
i=1

Ai−1Buτ−i+1(t +1) (6.8)

= Ax̂τ(t)+Bu(t)+AτFd(t), (6.9)

with disturbance d(t) ∈ D. Thus, the problem becomes: Given x̂τ(t) ∈ X −Dτ , find a u(t) ∈U

so that for all d(t) ∈ D, x̂τ(t +1) ∈ X −Dτ . All that we need is to compute the maximal RCIS Ĉ

of Σaux subject to the safe set (X −Dτ)×U . This computation can be done using the outside-in
algorithm. Since the dimension of Σaux is equal to the dimension of x in (6.1), the complexity is not
directly affected by the delay time τ .

Once Ĉ is obtained, to guarantee x(t + τ) ∈ X for all t ≥ 0, we need the initial state x(0) and
u1:τ(0) of dynamics Σaug to be in the set

Cτ = {(x(0),u1:τ(0)) | x̂τ(0) ∈ Ĉ}, (6.10)

where x̂τ(0) is a function of x(0) and u1:τ(0) defined in (6.5). Furthermore, we want x(0 : τ−1) to
stay within X . Note that x(0 : τ−1) is determined by x(0) and u1:τ−1(0), that is

x(k) = Akx(0)+
k

∑
i=1

Ai−1Buk−i+1(0)+
k

∑
i=1

Ai−1Fd(k− i). (6.11)

Therefore, for k = 0,1, ...,τ−1, the condition under which x(k) is in X for arbitrary d(0 : k−1) is

Ck =

{
(x(0),u1(0), . . . ,uτ(0))

∣∣∣∣(Akx(0)+
k

∑
i=1

Ai−1Buk−i+1(0)
)
∈ X−

k

∑
i=1

Ai−1FD
}
. (6.12)

Now we denote the set of states in S satisfying the constraints in (6.10) and (6.12) by

Cext =

(
τ⋂

i=0

Ci

)
∩S. (6.13)

Now, we are ready to state our main result.

Theorem 6.2. The set Cext in (6.13) is the maximal RCIS of Σaug subject to the safe set S×U.

Proof. Denote the maximal RCIS of Σaug contained by S as Caug. First, we want to show Cext ⊆Caug.
It is enough to show that Cext is an RCIS subject to S×U : Let (x(t),u1:τ(t)) ∈Cext . We want to
find a u(t) ∈U such that for all d(t) ∈ D, (x(t +1),u2:τ(t),u(t)) ∈Cext .

Since (x(t),u1:τ(t)) ∈Cτ ∩S, we have x̂τ(t) ∈ Ĉ. Hence, there exists u(t) ∈U such that for all
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Figure 6.1: Pick a point from Caug\Cext .

d(t) ∈ D, x̂τ(t +1) ∈ Ĉ. That is,

(x(t +1),u2:τ(t),u(t)) ∈Cτ . (6.14)

Also, since (x(t),u1:τ(t)) ∈
⋂

τ−1
i=0 Ci, the set {x(t +1), ...,x(t + τ−1)} is contained by X . Because

x(t +1) ∈ X and u(t) ∈U ,

(x(t +1),u2:τ(t),u(t)) ∈ S. (6.15)

Since x̂τ(t) ∈ Ĉ ⊆ X −Dτ , x(t + τ) ∈ X by (6.7). Hence, for state (x(t + 1),u2:τ(t),u(t)) and
arbitrary d(t + 1 : t + τ − 1) ∈ Dτ−1, it is verified that {x(t + 1), ...,x(t + τ)} is contained by X ,
which implies

(x(t +1),u2:τ(t),u(t)) ∈
τ−1⋂
i=0

Ci. (6.16)

By (6.14), (6.15) and (6.16), there exists u(t) such that for arbitrary d(t) ∈ D,

(x(t +1),u2:τ(t),u(t)) ∈

(
τ⋂

i=0

Ci

)
∩S =Cext .

Therefore, Cext is an RCIS of dynamics Σaug subject to S×U . Since Caug is the maximal RCIS,
Cext ⊆Caug. Next, we want to show Cext =Caug. Suppose that there exists

(x(0),u1:τ(0)) ∈Caug\Cext ,

as demonstrated in Figure 6.1. It is easy to show that Caug ⊆Ck∩S for k from 0 to τ−1. Since
Cext =

(⋂
τ−1
i=0 (Ci∩S)

)
∩Cτ ⊆ Caug, we have (x(0),u1:τ(0)) ̸∈ Cτ and thus x̂τ(0) ̸∈ Ĉ. Since Ĉ is

the maximal RCIS of Σaux in X −Dτ , by Proposition 6.1, there exists N ≥ 0 such that ∀u(0) ∈U ,
∃d(0) ∈ D, ∀u(1) ∈U , ∃d(1) ∈ D, ..., ∀u(N−1) ∈U , ∃d(N−1) ∈ D, the trajectory {x̂τ(k)}N

k=0 ̸⊆
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X−Dτ . That is, there exists some s≤N such that x̂τ(s) ̸∈ X−Dτ . Denote (x(s),u1:τ(s)) as the state
of Σaug corresponding to x̂τ(s). Followed by x̂τ(s) ̸∈ X −Dτ , for any possible state (x(s),u1:τ(s))

of Σaug at time s, there exists d(s : s+ τ−1) ∈ Dτ such that x(s+ τ) ̸∈ X , which holds for arbitrary
control inputs u(s : s+ τ−1). Contradiction to the assumption that Caug is an RCIS of dynamics
Σaug. Therefore, Cext =Caug.

As an application of Theorem 6.2, we can compute the maximal RCIS Cext of Σaug using the
RHS of (6.13). In terms of computational complexity, given the maximal RCIS Ĉ of the auxiliary
system, the sets Ci for i from 0 to τ are polytopes explicitly defined in (6.10) and (6.12) and thus
can be constructed in one shot. Thus, the main computational burden comes from computing Ĉ.
Since Ĉ is the maximal RCIS of a system in Rn, compared with directly applying the outside-in
algorithm to the augmented system Σaug in Rn+τm, our approach can reduce the computation time
significantly. This is verified later by numerical examples in Section 6.4.

Finally, the initial section of the proof for Theorem 6.2 yields a significant corollary, demonstrat-
ing the versatility of our approach in cases where Ĉ may not necessarily be the maximal RCIS of
Σaux. This can be highly valuable, as it is often easier to find an RCIS than the maximal RCIS.

Corollary 6.2.1. If Ĉ is an RCIS of Σaux subject to X −Dτ ×U (but not necessarily the maximal
one), then Cext is an RCIS of Σaug subject to S×U .

6.3 Extension to Systems with Preview

In the previous section, we make the assumption that the disturbance is entirely unknown at the
runtime. However, in real-world systems, it is often possible to measure many external signals
through sensors ahead of time. For instance, consider the lane-keeping example in Section 6.4.2,
where the disturbance term corresponds to lane curvature and can be predicted.

In this section, we shift our focus to the investigation of the maximal RCIS for time-delayed
systems with disturbance inputs that can be categorized into two types: non-measurable disturbances
and disturbances with preview. Formally, we define a disturbance as having a k-step preview if the
controller can measure and utilize the disturbance signal d(t : t +k−1) at time t. A non-measurable

disturbance is one with a 0-step preview.
Consider the following linear system1

Σ
prev
delay : x(t +1) = Ax(t)+Bu(t− τ)+F0d0(t)+Fpdp(t), (6.17)

where x(t) ∈ Rn, u(t) ∈ Rm, d0 is a non-measurable disturbance in D0 and dp is a disturbance with

1The results in this section can be generalized for systems with multiple preview horizons (less than or equal to τ).
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p-step preview in Dp ⊆ Rl . Let the safe set of the system be Sxu = X×U . We assume that the sets
X , U , D0, and Dp are polytopes. In the analysis that follows, we assume p≤ τ and show that in this
case one can still compute the invariant set by applying the invariance iterations in n-dimensional
space. While the case when p > τ can be handled with some added complexity within the current
framework, whether this case can also be reduced to iterations in an n-dimensional space is left for
future research.

Similar to the delay, a system with preview can also be converted to a standard linear system by
appending the state space with addition states corresponding to the preview of the disturbance. In
particular, we have the following augmented system equivalent to Σ

prev
delay:

Σ
prev
aug :



x(t +1) = Ax(t)+Bu1(t)+F0d0(t)+Fpdp,1(t)

u1(t +1) = u2(t)
...

uτ(t +1) = u(t)

dp,1(t +1) = dp,2(t)

dp,2(t +1) = dp,3(t)
...

dp,p(t +1) = dp, f (t),

(6.18)

where x(t) ∈ Rn, u(t) ∈ Rm, d0(t) and dp, f (t) are non-measurable disturbances bounded by D0 and
Dp. Note that dp, f (t) is just an alias of dp(t + p). The safe set for the system Σ

prev
aug is Sp×U , with

Sp = X×Uτ ×Dp
p.

Problem 6.2. Find the maximal RCIS of system Σ
prev
aug subject to the safe set Sp×U.

Proceeding as in the previous section, we can write the τ-step expansion of x(t + τ) as

x(t + τ) =Aτx(t)+
τ

∑
j=1

A j−1Buτ− j+1(t)+
τ

∑
j=τ−p+1

A j−1Fpdp,τ− j+1(t)+

τ

∑
j=1

A j−1F0d0(t + τ− j)+
τ−p

∑
j=1

A j−1Fpdp, f (t + τ− p− j). (6.19)

Based on what can be measured at time t, we define the prediction variable

x̂τ(t) =Aτx(t)+
τ

∑
i=1

Ai−1Buτ−i+1(t)+
τ

∑
j=τ−p+1

A j−1Fpdp,τ− j+1(t) (6.20)
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assuming the non-measurable disturbance is zero. The dynamics of x̂τ takes the form

Σ
prev
aux : x̂τ(t +1) =Ax̂τ(t)+Bu(t)+AτF0d0(t)+Aτ−pFpdp, f (t), (6.21)

where u(t) ∈U , d0 ∈ D0 and dp, f (t) ∈ Dp are non-measurable disturbances, which is again an
n-dimensional system. From Eq. (6.20), it follows that to ensure x(t + τ) ∈ X , we need

x̂τ(t) ∈ X̂ := X− ∑
i∈{0,p}

τ−i

∑
j=1

A j−1FiDi. (6.22)

Let Ĉp as the maximal RCIS of Σ
prev
aux within X̂ . We next show how to construct an invariant set

for the (n+mτ + pl)-dimensional augmented system Σ
prev
aug using the set Ĉp ⊆ Rn. The constraints

on the initial states of the system Σ
prev
aug , ensuring the existence of a controller such that x(t + τ) ∈ X

for all t ≥ 0, can be written as

Cp,τ = {(x(0),u1(0), ...,dτ,τ(t)) | x̂τ(0) ∈ Ĉp}, (6.23)

where x̂τ(0) is defined by (6.20).
To ensure x(k) ∈ X for the time period k = 0, . . . ,τ−1, we need the following constraints on

initial states:

Cp,k =

{
(x(0),u1(0), . . . ,dτ,τ(t)) | Akx(0)+

k

∑
j=1

A j−1Buk− j+1(0)+
k

∑
j=max{1,k−p+1}

A j−1Fpdp,k− j+1(0)

∈ X− ∑
i∈{0,p}

k−i

∑
j=1

A j−1FiDi

}
(6.24)

Finally, define the intersection of these constraint sets:

Cp,ext = (
τ⋂

k=0

Cp,k)∩Sp. (6.25)

Theorem 6.3. Cp,ext is the maximal RCIS of system Σ
prev
aug in set Sp.

Proof. The proof for Theorem 6.3 can be easily extended from the proof of Theorem 6.2, omitted
for brevity.

Similar to the preceding section, we have the following corollary.

Corollary 6.3.1. If the set Ĉp is an RCIS of Σ
prev
aux subject to (X−∑i∈{0,p}∑

τ−i
j=1 A j−1FiDi)×U , then

the set Cp,ext defined by (6.25) is an RCIS of Σ
prev
aug in Sp.
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6.4 Numerical Examples

The algorithms are implemented in MATLAB 2018b on a computer equipped with Intel i7-8650U
CPU and 16 GB memory. We use implementations from MPT3 toolbox [48] for the polytope
operations in the algorithms.

6.4.1 One-dimensional Example

In this section, we use a toy example to show how much performance improvement is achieved by
applying the proposed method.

Consider the following 1-dimensional system:

x(t +1) = 1.5x(t)+u(t− τ)+d(t) (6.26)

where x(t) ∈ R, u(t) ∈ R and d(t) ∈ [−2,2] with p-step preview. The safe set on x and u is
[−32,32]× [−20,20].

In Table 6.1, we compare the computation time of the maximal invariant sets for different τ and p

using two methods: the proposed method (that uses outside-in algorithm on computing the maximal
RCIS of the low-dimensional auxiliary system), and outside-in algorithm directly operating on
the augmented system. We call the later the direct method for short. The outside-in algorithm
terminates in finite number of steps for all of the test cases in the table. There are two important
observations.

First, for each τ in Table 6.1, p is selected as the smallest preview length that makes the maximal
invariant set nonempty. The increasing trend on p in Table 6.1 implies that if we do not have any
preview on disturbance, the RCIS becomes empty very soon as τ increases. That reveals how
preview on disturbance reduces conservativeness for input-delay systems, which is why we take
preview into consideration in Section 6.3.

Second, according to the last two columns of Table 6.1, the computation time with the direct
method increases drastically as τ increases, while the computation time for the proposed method
just increases slightly. This is because the dimension of the reduced-order system does not change
as τ and p increase. Our method is apparently more efficient than the direct method in this example.

6.4.2 Vehicle Lane Keeping Control

In this example, the proposed method is applied to synthesize a controller that guarantees the safety
of a vehicle in a lane-keeping scenario. The goal of lane keeping is to control the vehicle to follow
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Table 6.1: Time required to compute an invariant set with the proposed method and the direct
method.

τ p proposed method (s) direct method (s)
1 0 0.7705 0.5960
5 1 0.8779 7.7573

10 6 1.1548 98.3379
15 11 1.6999 525.7656
20 16 3.0460 1.6217×103

the center line of the road. The safety requirement is to make sure the lateral displacement, the
lateral velocity, yaw angle and yaw rate of the vehicle with respect to the road center are within
given bounds so that the vehicle does not leave the target road, spin, or rollover.

The vehicle dynamics considered is linearized from a bicycle model [112] and discretized by
forward Euler method with time step h = 0.1s. The longitudinal velocity vd is fixed and equal to
30m/s. The state of the system consists of the lateral displacement y between the vehicle center and
the road center, the lateral velocity v, the yaw angle ∆Ψ and the yaw rate r of the vehicle, denoted
by x = [y,v,∆Ψ,r]. The dynamics Σcar of x is

x(t +1) = (I +A ·h)x(t)+Bhδ f (t− τ)+Fhrd(t) (6.27)

with I equal to the identity matrix and

A =


0 1 u 0

0 −Cα f+Cαr
mu 0 bCαr−aCα f

mu −u

0 0 0 1

0 bCαr−aCα f
Izu

0 −a2Cα f+b2Cαr
Izu

 ,B =


0

Cα f
m

0

aCα f
Iz

 ,F =


0
0
−1
0

 ,

where the steering angle δ f ∈ R is the control input with τ-step delay and the desired yaw rate
rd is a disturbance with p-step preview (p≤ τ). The parameters in A, B matrices are taken from
[112]. According to [1], the maximal range of rd with respect to vd = 30m/s in Michigan is
D = [−0.05,0.05]. Desired yaw rate rd is a function of the road curvature, which can be measured
with a forward looking camera or acquired from a map ahead of time. Therefore it is reasonable to
assume that rd is a disturbance with preview.

The safe region X of states is given by bounds |y| ≤ 0.9, |v| ≤ 1.2, |∆Ψ| ≤ 0.05, |r| ≤ 0.3. The
input constraint set U is given by input bound |δ f | ≤ π/2. For τ = 10, p = 8, our method takes
249s to compute the maximal RCIS of the 22-dimensional augmented system subject to the safe set
X×U10×D8×U . By fixing r, u1, . . ., u10, d1, . . ., d8 to be zero, we make a 3-dimensional slice of
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the 22-dimensional polytope, shown in Figure 6.2. The red region in Figure 6.2 contains all the
feasible initial values of the first three coordinates (y,v,∆Ψ) from which it is possible to guarantee
safety, when the other coordinates have initial value equal to 0.

Figure 6.2: A slice of the maximal RCIS.

Once the maximal RCIS C is obtained, the admissible input set with respect to a state in C is the
set of inputs that make the next state within C robust to any disturbances in D. A safety supervisor
for a legacy vehicle controller or human-driver can be implemented by checking if the controller’s
output is within the admissible input set at each time and making appropriate adjustment [91].

We run a simulation under the supervisory control framework using the maximal RCIS of
Σcar. In the simulation, rd is given by a sine function over time. A legacy controller un of the
vehicle is obtained by solving a LQR problem for the augmented system of Σcar. The supervisor
is implemented by projecting the output of un to the admissible input set given by the maximal
acRCIS of Σcar at each time step. As a baseline, we first assume that the invariant set designer is
either unaware of the existence of the delay and preview or simply ignores them and implements
the supervisor using the maximal controlled invariant of Σcar with zero delay and no preview. Then,
another supervisor is implemented based on the maximal RCIS of Σcar with the actual delay steps
and preview steps. A sample trajectory of the closed-loop systems equipped with the first and
second supervisors are compared in Figure 6.3, indicated by red and blue curves. The red trajectory
terminates at 4.9s because at that time the system equipped with the first supervisor reaches the
unsafe region. In contrast, the system equipped with the second supervisor stays within the safety
bounds all the time. Comparing the two different simulation results, it can be seen that simply
ignoring the delay can lead to unsafe situations. It is also worth noting that the invariant set becomes
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Figure 6.3: Trajectories of the supervisory control simulation. The safety bound on each coordinates
are indicated by the dash lines. The red and blue trajectories correspond to supervisors designed
with different knowledge on the delay time.

empty in this example when taking the preview time p to be zero while keeping the delay time as
is. In fact, for any value of p < 8, the invariant set is empty. This indicates the value of preview in
coping with uncertainty for systems with input delays.

6.5 Conclusion

In this chapter, we propose a scalable method for computing RCISs for linear systems subject to
input delays. This method is extended to incorporate preview information while preserving the
scalability properties. Both of the problems studied are motivated by safety control problems in
automotive domain, yet we believe the proposed methods are broadly applicable. Our current work
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focuses on understanding the robustness of the approach to uncertainties in the delay time. We are
also interested in time-varying delays where the correctness and maximality guarantees will depend
on the protocol that resolves missing or clashing input packets.
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Part II

Safety Control Beyond the Maximal RCIS
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CHAPTER 7

Quantifying the Value of Preview Information for
Safety Control

In this chapter, we are interested in safety control for systems with preview information. The goal
of safety control is to synthesize safe controllers that can guarantee the closed-loop system satisfies
given safety requirements indefinitely, robust to certain amount of uncertainties in the dynamics
[20, 77, 78, 83]. For systems with preview, the safe controllers are allowed to use feedback on the
states and feedforward on the preview information. An important question is if the safe controller
should utilize all the available preview information. In theory, the more preview information a
controller utilizes, the more safety the system may gain. This is verified by numerical examples in
our previous works [77, 78], where incorporating more preview information enlarges (i) the region
of states where the safety requirements can be enforced or (ii) the range of disturbances the system
can tolerate under the safety constraints. However, in practice, it is often computationally intractable
to incorporate all the available preview information since many safety control algorithms (even
the most scalable ones) suffer from the curse of dimensionality [119, 47, 25, 45]. In those cases,
one needs to carefully select the amount of preview information fed into the safe controllers, for a
good balance between the computational cost and the safety loss due to omitting part of the preview
information.

Motivated by this need, in this chapter, we want to reveal how the safety of a system is impacted
by different amount of preview. Since we focus on the preview of disturbances, in our analysis,
the amount of preview information is indicated by the number of the time steps that the future
disturbances can be previewed, which we call the preview time. We measure the safety of the same
system with different preview time by a notion called safety regret, defined based on the maximal
RCIS of an auxiliary system that augments the original states with the preview information. Given
a preview time p, the corresponding safety regret reflects the room to improve the system safety as
we increase the preview time from p to infinity. The main contributions of this chapter include:

• We provide novel outer approximations of the maximal RCIS for nonlinear systems augmented
with preview information, by exploring a duality between preview and input delay;
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• For linear systems, we prove that the safety regret of a finite-step preview decays exponentially
fast with the preview time. For polytopic state-input constraints, we further develop algorithms
that computes upper bounds of the safety regret;

• We extend our analysis to show the projection of the feasible domain of a preview-based robust
MPC onto the space of initial states converges exponentially with the prediction horizon;

• We demonstrate the usage of our theoretical results and the proposed algorithms with both
analytical and numerical examples.

Chapter Overview. We state the problem in Section 7.1, and present several structural properties
of the maximal RCIS for systems with preview in Section 7.2. The main results of this chapter on
the convergence of safety regret are presented in Section 7.3. Using similar techniques from the
previous section, Section 7.4 analyzes the convergence of the feasible domain of a preview-based
MPC. In Section 7.5, we demonstrate our theoretical and algorithmic results with examples from
multiple fields. All the proofs in this chapter can be found in Appendix D.

Notations. For a polytope P = {x | Hx≤ h}, the H-representation of P is the matrix [H h]. For
a positive integer q, the set {1,2, · · · ,q} is denoted by [q]. The unit hypercube in Rn is denoted by
B(n) = [−1,1]n. The Hausdorff distance between two sets X and Y in Rn is induced from 2-norm
in Rn and is denoted by d(X ,Y ). Given a compact set X in Rn, the radius of X with respect to a
point x0 is defined by ψ(X) = supx∈X ∥x− x0∥2.

7.1 Problem Setup

A general discrete-time dynamical system Σ is in form of

Σ : x(t +1) = f (x(t),u(t),d(t)), (7.1)

with state x ∈ Rn, input u ∈ Rm and disturbance d ∈ D⊆ Rl . The disturbance set D is assumed to
be compact. A system Σ in form of (7.1) is said to have p-step preview if at each time step t, the
controller has access to the measurements of

• the current state x(t), and

• the current and incoming disturbances {d(t + k)}p−1
k=0 in p steps, denoted by d1:p(t) for short.

For a system Σ with p-step preview, we define an augmented system whose states stack the states
x(t) and the previewed disturbances d1:p(t) of Σ together, called the p-augmented system Σp of Σ.
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The p-augmented system Σp is in form of

Σp :



x(t +1)
d1(t +1)

...
dp−1(t +1)
dp(t +1)


=



f (x(t),u(t),d1(t))

d2(t)
...

dp(t)

d(t)


(7.2)

with state (x,d1, · · · ,dp) ∈ Rn+pl , input u ∈ Rm and disturbance d ∈ D⊆ Rl . Any preview-based
controller of Σ with feedback on the state x(t) and feedforward on the previewed disturbances d1:p(t)

is equivalent to a state-feedback controller of the p-augmented system Σp. Due to this equivalence
relation, we study the safety control for the system Σ with p-step preview by simply studying the
state-feedback safety control for its p-augmented system Σp.

In this chapter, we want to study the impact of preview to the safety of the system Σ by revealing
how the maximal RCIS varies with different preview time. More specifically, given the safe set Sxu

of Σ, we define safe set Sxu,p of the p-augmented system Σp of Σ by

Sxu,p = {(x,d1:p,u) | (x,u) ∈ Sxu,d1:p ∈ Dp}. (7.3)

Intuitively, the safe set Sxu,p imposes the same constraints on (x,u) as in Sxu and does not constrain
the previewed disturbances d1:p since we cannot control the preview information.

We denote the maximal RCIS of the system Σp in the safe set Sxu,p by Cmax,p. The shape and
dimensions of Cmax,p vary with the preview time p. Since Cmax,p characterizes all the safe controllers
of Σp, the variation of Cmax,p with the preview time p reflects the impact of different preview time
to the safety of Σ. In this chapter, we want to reveal how Cmax,p varies with different preview time
p, and its implication to the safety of the system. Note that it is intractable to compute Cmax,p for all
p and then compare their difference. Later we introduce a quantity called safety regret to evaluate
the variation of Cmax,p with the preview time p. We show that it is possible to estimate the safety
regret without computing Cmax,p, by exploiting the structures in the augmented system Σp and its
safe set Sxu,p.

Before moving to the next section, we introduce one technical definition used later.

Definition 7.1. A set X is an N-step λ -contractive set of the system Σ in the safe set Sxu if X

satisfies that

X ⊆ PreN
Σ (λX ,Sxu). (7.4)

Intuitively, X is N-step λ -contractive if we can steer the system from any state in X to a state
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in λX in N steps while keeping the state-input trajectory in the safe set. Note that an N-step
λ -contractive set is not necessarily an RCIS. When N = 1, we call X a λ -contractive set for short.

7.2 Structural Properties of the Maximal RCIS for Systems
with Preview

In this section, we present several structural properties of the maximal RCIS Cmax,p of the p-
augmented system, which allow us to approximate Cmax,p without computing it, and pave the way
to our analysis in the following sections.

7.2.1 Inner and outer bounds of the maximal RCIS Cmax,p

We briefly summarize the inner and outer bounds of the maximal RCIS Cmax,p derived in the
previous work [78]. Those bounds are useful when the actual representation of Cmax,p is difficult to
obtain, and play important roles later in our analysis to the variation of Cmax,p with different p.

To have an outer bound of the maximal RCIS Cmax,p, we introduce an auxiliary system: Given a
system Σ and a safe set Sxu, we define the disturbance collaborative system D(Σ) of Σ by

D(Σ) : x(t +1) = f (x(t),u(t),ud(t)), (7.5)

with state x ∈ Rn and two inputs u ∈ Rm, ud ∈ Rl . The safe set Sxu,co of D(Σ) is Sxu×D, that is

Sxu,co = {(x,u,ud)|(x,u) ∈ Sxu,ud ∈ D}. (7.6)

We denote the maximal CIS1 of D(Σ) in Sxu,co by Cmax,co. The only difference between the original
system Σ and the corresponding D(Σ) is that we turn the disturbance term d in Σ into the second
input ud in D(Σ). Due to the extra control power introduced by ud , the maximal CIS Cmax,co of
D(Σ) provides an outer bound of the maximal RCIS Cmax,p for all p. This outer bound along with
an inner bound of Cmax,p are stated in the following theorem.

Theorem 7.1 ( [78], Theorems 1 and 2). For a system Σ with p-step preview, the maximal RCIS

Cmax,p of Σp in S is inner approximated by Cmax,p′×Dp−p′ for any p′< p, and is outer approximated

by the Cartesian product Cmax,co×Dp. That is,

Cmax,p′×Dp−p′ ⊆Cmax,p ⊆Cmax,co×Dp. (7.7)

1The set Cmax,co is a CIS instead of an RCIS since D(Σ) has no disturbance.
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Furthermore, the inner bound Cmax,p′×Dp−p′ is an RCIS of Σp in Sxu,p.

The proof of Theorem 7.1 can be found in [78]. We have discussed the intuition behind the
outer bound in Theorem 7.1. The inner bound is based on the intuition that a longer preview time p

should make the maximal RCIS Cmax,p larger. However, this intuition is not fully correct. Since
the dimensionality of Σp grows with p, the maximal RCIS Cmax,p lies in a different space for each
different p and cannot be compared with each other directly. It turns out that for a shorter preview
time p′ < p, we can always lift an RCIS Cp′ of Σp′ to the RCIS Cp′×Dp−p′ of Σp and then compare
the lifted set with Cmax,p. The difference between between the lifted RCIS Cmax,p′×Dp−p′ and the
maximal RCIS Cmax,p tells how much we gain in safety by increasing the preview time from p′ to p.

7.2.2 Improved outer bounds for the maximal RCIS Cmax,p

The outer bound of Cmax,p in Theorem 7.1 is based on the maximal CIS Cmax,co of D(Σ) of Σ. Since
Cmax,co is independent of the preview time p, this outer bound is not very tight. In this section, we
derive tighter outer bounds of Cmax,p, by exploring a duality between delay and preview.

In Section 7.2.1, we introduce the disturbance collaborative system D(Σ). However, except for
D(Σ), we can also define the disturbance collaborative system D(Σp) of the p-augmented system
Σp. Formally, the system D(Σp) is in form of

D(Σp) :



x(t +1)
d1(t +1)

...
dp−1(t +1)
dp(t +1)


=



f (x(t),u(t),d1(t))

d2(t)
...

dp(t)

ud(t)


(7.8)

with control inputs u ∈ Rn and ud ∈ Rl . Let the safe set of the system D(Σp) be Sxu,p×D. We
denote the maximal CIS of the system D(Σp) in safe set Sxu×D by Cmax,p,co. When p = 0,
Cmax,0,co =Cmax,co.

Then, for any p′ ≤ p, the system Σp can be viewed as the (p− p′)-augmented system of the
system Σp′ . By applying Theorem 7.1 to Σp′ , we have the following corollary.

Corollary 7.1.1. For a system Σ with p-step preview and any non-negative integer p′ ≤ p, the
maximal RCIS Cmax,p is outer approximated by the Cartesian product Cmax,p′,co×Dp−p′ . That is,

Cmax,p ⊆Cmax,p′,co×Dp−p′. (7.9)

According to Corollary 7.1.1, we have (p+1) outer bounds for the maximal RCIS Cmax,p, that
is {Cmax,k,co×Dp−k}p

k=0, including the one in Theorem 7.1.
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Figure 7.1: The relation diagram of the four systems Σ, D(Σ), Σp, and D(Σp).

Next, we want to study the relation between those outer bounds, and figure out which one is the
tightest bound. The key is to realize that D(Σp) is actually the state-space representation of D(Σ)

with p-step input delay in ud:

x(t +1) = f (x(t),u(t),ud(t− p)). (7.10)

In [83], D(Σp) is called the augmented system of the input delay system in (7.10). Intuitively, since
we turn the disturbance in Σp to the input ud in D(Σp), the p-step preview on d becomes a p-step
delay on the input ud . This is what we call the duality between delay and preview. The relations of
the four systems Σ, Σp, D(Σ) and D(Σp) are shown by the diagram in Fig. 7.1. Since D(Σp) is the
“delayed” version of D(Σ), the maximal CIS of D(Σp) is embedded in the maximal CIS of D(Σ),
shown by the next theorem.

Theorem 7.2. For any p≥ 0, the maximal CIS Cmax,p,co of the system D(Σp) in the safe set Sxu,p×D

can be obtained from the maximal CIS Cmax,co of D(Σ) in Sxu×D, via the formula

Cmax,p,co ={(x(0),d1(0), · · · ,dp(0)) |

∃u(0), · · · ,u(p−1),

(x(t),u(t)) ∈ Sxu,0≤ t ≤ p−1,

x(p) ∈Cmax,co,

di(0) ∈ D,1≤ i≤ p},

(7.11)

where x(t) = f (x(t−1),u(t−1),dt(0)) for 0≤ t ≤ p. Furthermore, we have

Cmax,p,co ⊆Cmax,co×Dp. (7.12)

Theorem 7.2 extends the results in [83] and actually holds for any deterministic system with
input delays. According to (7.12), it can be shown that for any p′ ≤ p,

Cmax,p,co ⊆Cmax,p′,co×Dp−p′ ⊆Cmax,co×Dp. (7.13)
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Thus, Cmax,p,co is the tightest outer bound of Cmax,p in the set {Cmax,k,co×Dp−k}p
k=0. Furthermore,

this outer bound can be computed by (7.11), once the maximal RCIS Cmax,co is known. Compared
with the computation cost of Cmax,co, the computation cost of (7.11) is typically negligible. Thus,
we improve the outer bound of Cmax,p with little extra cost.

Due to the similarity between the system pairs (Σ,Σp) and (D(Σ),D(Σp)), one may wonder if
the maximal RCIS Cmax,p of the p-augmented system can also be obtained from Cmax by a formula
similar to (7.11). Unfortunately, we cannot find such a formula. But the duality between the preview
and delay, as shown in Fig. 7.1, does allow us to take the advantage of (7.11) to obtain the tighter
outer approximations of Cmax,p easily.

7.3 Quantifying the Value of Preview

In this section, we want to study how the value of preview information in safety control varies with
the preview time p. First, we need to find a way to quantify the value of different preview time.
Ideally, we want to quantify the value of preview by the size of the maximal RCIS Cmax,p, since
this set characterizes all the safe controllers. However, since the dimensionality of Cmax,p depends
linearly on p, it is unfair to compare the size of Cmax,p over different preview time p. To resolve
this issue, we project Cmax,p onto the first n coordinates, and study how the size of the projections
π[1,n](Cmax,p) varies with the preview time p.

We argue that the size of the projection π[1,n](Cmax,p) indeed reflects the value of p-step preview.
First, the projection π[1,n](Cmax,p) contains all the initial states x0 of the system Σ where a safe
controller exists for some initial p-step preview. Second, by Theorem 7.1, for any p′ ≤ p,

π[1,n](Cmax,p′)⊆ π[1,n](Cmax,p). (7.14)

That is, the projection π[1,n](Cmax,p) expands with p, which matches our intuition that a longer
preview time has higher value in safety control.

In the remainder of this section, we show what the limit of the projection π[1,n](Cmax,p) is and
how fast this projection converges to the limit in Hausdorff distance. For short, the Hausdorff
distance between the projection π[1,n](Cmax,p) and its limit is denoted by dp, that is

dp = d(π[1,n](Cmax,p), lim
p→∞

π[1,n](Cmax,p)). (7.15)

Intuitively, the value of dp reflects the room to improve the safety of the system if we are allowed
to further increase the preview time. In a sense, dp measures the safety gap between the p-step
preview and the infinite-step preview. Due to this reason, we also call dp the safety regret of the
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p-step preview (similar to the notion of regret in [122, 70]).

7.3.1 Assumptions

We restrict our analysis to the class of discrete-time linear systems. A system Σ is linear if its
transition function f in (7.1) is in form of

f (x,u,d) = Ax+Bu+Ed, (7.16)

with matrices A ∈ Rn×n, B ∈ Rn×m and E ∈ Rn×l . The results later in this section are based on the
following assumptions.

Assumption 7.1. The disturbance collaborative system D(Σ) of the linear system Σ is stabilizable.

Note that the disturbance-collaborative system D(Σ) being stabilizable is a weaker condition
than the system Σ being stabilizable, since the system D(Σ) has one more control input ud than the
system Σ.

Assumption 7.2. The safe set Sxu and the disturbance set D are convex and compact.

Lemma 7.3. Suppose that the system Σ is linear. Under Assumption 7.2, if the set π[1,n](Cmax,p) is
nonempty, then

(i) π[1,n](Cmax,p) is a convex compact CIS of the system D(Σ) within Sxu×D;
(ii) there exists a forced equilibrium (xe,ue,de) ∈ Sxu×D of the system D(Σ) such that xe is in

π[1,n](Cmax,p).

Assumption 7.3. For some p0 ≥ 0, there exists a forced equilibrium (xe,ue,de) of D(Σ) in the

interior of Sxu×D with xe ∈ π[1,n](Cmax,p0).

According to Lemma 7.3, Assumption 7.3 is almost an implication of Assumption 7.2, except
that we require the forced equilibrium is not only in the safe set Sxu×D, but in its interior.

Remark 7.1. For linear systems, we can shift the origin of the state space to any forced equilibrium
without changing the system equations. Hence without loss of generality, for the remainder of this
section, we simply assume that the forced equilibrium (xe,ue,de) in Assumption 7.3 is the origin of
the state-input-disturbance space Rn+m+l .

7.3.2 Convergence of π[1,n](Cmax,p)

By Remark 7.1, the safe set Sxu×D, the maximal RCIS Cmax,co and the projection π[1,n](Cmax,p) all
contain the origin for any p≥ p0. Thus, there exists a scalar λ ∈ (0,1] such that

0 ∈ λCmax,co ⊆ π[1,n](Cmax,p0)⊆Cmax,co. (7.17)
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We call the maximal λ such that (7.17) holds the initial factor λ0, which reflects the percentage of
the set Cmax,co contained in the projection of the set Cmax,p0 . By definition, the initial factor λ0 ≥ 0.
To prove the convergence of π[1,n](Cmax,p), we need the initial factor λ0 > 0, which is ensured by
the following assumption.

Assumption 7.4. The forced equilibrium (xe,ue,de) in Assumption 7.3 satisfies that xe is in the

interior of π[1,n](Cmax,p0).

The reason to have the initial factor λ0 > 0 becomes clear later in this section.

Lemma 7.4. For any system Σ in (7.1) with safe set Sxu and a preview time p, the projection
π[1,n](Cmax,p) satisfies that for any k > 0,

Prek
D(Σ)(π[1,n](Cmax,p),Sxu×D)

⊆ π[1,n](Cmax,p+k)⊆Cmax,co. (7.18)

By (7.17) and Lemma 7.4, we obtain the following inner bound of π[1,n](Cmax,p0+k):

Prek
D(Σ)(λ0Cmax,co,Sxu×D)

⊆ π[1,n](Cmax,p0+k)⊆Cmax,co. (7.19)

Since λ0Cmax,co is a CIS of D(Σ) in Sxu×D, the k-step backward reachable set of λ0Cmax,co in
Sxu×D is expanding with k. If we can show that this k-step backward reachable set converges
to the maximal CIS Cmax,co of D(Σ) in Sxu×D as k goes infinity, then by (7.19), the projec-
tion π[1,n](Cmax,p) converges to the maximal CIS Cmax,co. Furthermore, if we know how fast
Prek

D(Σ)(λ0Cmax,co,Sxu×D) converges, then we have a lower bound on the convergence rate of
π[1,n](Cmax,p). The following theorem gives such a lower bound.

Theorem 7.5. For a linear system Σ with a safe set Sxu satisfying Assumption 7.2, suppose that

there exists a scalar γ ∈ (0,1], a positive integer N and a scalar λ ∈ [0,1] such that γCmax,co is an

N-step λ -contractive CIS of the system D(Σ) within the safe set Sxu. Then, the kN-step backward

reachable set of λ0Cmax,co satisfies that for k ≤ k0,

λ0

λ kCmax,co ⊆ PrekN
D(Σ)(λ0Cmax,co,Sxu×D); (7.20)
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for k ≥ k0, (
1− (1−λ0/λ

k0)

(
1− γ

1− γλ

)k−k0
)

Cmax,co

⊆ PrekN
D(Σ)(λ0Cmax,co,Sxu×D), (7.21)

where

k0 = max
(

0,
⌈

logλ0− logγ

logλ
−1
⌉)

. (7.22)

It turns out that for stabilizable systems satisfying assumptions in Section 7.3.1, the N-step
λ -contractive CIS stated in Theorem 7.5 always exists, shown by the following lemma.

Lemma 7.6. Under Assumptions 7.1, 7.2 and 7.3, there exist a scalar γ ∈ (0,1], a positive integer N

and a scalar λ ∈ [0,1) such that γCmax,co is an N-step λ -contractive CIS of the system D(Σ) within
the safe set Sxu, that is

γCmax,co ⊆ PreN
D(Σ)(λγCmax,co,Sxu). (7.23)

By combining (7.19) with Lemma 7.6 and Theorem 7.5, the following theorem bounds the
convergence of the projection π[1,n](Cmax,p0+kN).

Theorem 7.7. Suppose that a system Σ, a safe set Sxu and a preview time p0 satisfy Assumptions

7.1, 7.2 and 7.3. Then, there exists a scalar γ ∈ (0,1], a positive integer N and a scalar λ ∈ [0,1)
such that the projection π[1,n](Cmax,p0+kN) satisfies that for k ≤ k0,

λ0

λ kCmax,co ⊆ π[1,n](Cmax,p0+kN)⊆Cmax,co; (7.24)

for k ≥ k0, (
1− cak

)
Cmax,co ⊆ π[1,n](Cmax,p0+kN)⊆Cmax,co, (7.25)

where k0 is defined by (7.22), a = (1− γ)/(1− γλ ) and c = (1−λ0/λ k0)ak0 .

In the case of λ0 = 0, Theorem 7.7 is trivial as k0 = +∞ and the right most term in (7.24)
becomes {0}. That is why we need Assumption 7.4 to enforce λ0 > 0 and exclude this trivial case.
The results in this section is summarized by the following corollary.

Corollary 7.7.1. Under Assumptions 7.1, 7.2, 7.3 and 7.4, the projection of Cmax,p onto the first
n-coordinates converges to the maximal RCIS Cmax,co of the disturbance collaborative system D(Σ)
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in Hausdorff distance, that is

dp = d(π[1,n](Cmax,p),Cmax,co)
p→∞−−−→ 0.

Furthermore, the Hausdorff distance dp satisfies the following inequality:
For p0 ≤ p < p0 +N(k0 +1),

dp ≤ (1−λ0λ
−⌊(p−p0)/N⌋)rco; (7.26)

for p≥ p0 +N(k0 +1),

dp ≤ ca⌊(p−p0)/N⌋rco, (7.27)

with rco the radius of Cmax,co with respect to 0. The other constants k0, N, λ0, λ , a and c are the
same as in Theorem 7.7.

According to (7.27), as we increase the preview time, the safety regret decays exponentially fast.
We further define the marginal value ∆dp of the preview at preview time p as the Hausdorff distance
between π[1,n](Cmax,p) and π[1,n](Cmax,p+N). Then, by (7.27), for p≥ p0 +N(k0 +1),

∆dp = d(π[1,n](Cmax,p),π[1,n](Cmax,p+N)) (7.28)

≤ dp +dp+N ≤ c(1+a)a⌊(p−p0)/N⌋rco. (7.29)

Thus, we show that the marginal value of preview decays exponentially fast as p increases.

7.3.3 Estimating the parameters in Theorem 7.7

In this section, we show how to numerically obtain an exponentially decaying upper bound of dp

predicted by Theorem 7.7 for a given system. Specifically, we propose a sequence of optimization
programs to estimate the parameters λ0, γ , N and λ in Theorem 7.7. To make the computation
tractable, we assume that the safe set Sxu and the disturbance set D are represented by polytopes.
In case where the maximal CIS Cmax,co and the maximal RCIS Cmax,p0 are not polytopes, we use a
polytopic outer approximation of Cmax,co and a polytopic inner approximation of Cmax,p0 instead,
which results in a lower estimate of λ0. Clearly, results in Section 7.3.2 still hold when λ0 is replaced
by its lower estimate. There is a rich literature of computing polytopic inner or outer approximations
of the maximal RCIS for discrete-time linear systems (see [103] for example).

Step 1: We check if the origin is a forced equilibrium of D(Σ) that satisfies Assumptions 7.3
and 7.4. If not, we find a forced equilibrium (xe,ue,de) satisfying Assumptions 7.3 and 7.4 by the
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following linear program:

ε
∗ = max

ε≥0,xe,ue,de
ε

s.t. Axe +Bue +Ede = xe,

xe + εB(n)⊆ π[1,n](Cmax,p0),

(xe,ue,de)+ εB(n+m+ l)⊆ Sxu×D.

(7.30)

Given the H-representations of Cmax,p0 , Sxu and D, the second and third constraints of (7.30) can
be easily encoded as linear inequality constraints by iterating vertices of the hypercubes B(n) and
B(n+m+ l).

When ε∗ > 0, the solution (xe,ue,de) of (7.30) is a feasible forced equilibrium satisfying
Assumptions 7.3 and 7.4. Then, as highlighted in Remark 7.1, we shift the origin of the state-
input-disturbance space to the forced equilibrium computed in (7.30), that is to shift the sets Sxu, D,
Cmax,co and Cmax,p0 accordingly.

Step 2: We want to compute (lower-estimates of) the initial factor λ0. We first introduce a
baseline method, with two steps: The first step is to find the maximal λ such that λCmax,co ⊆ B(n).
This scalar λ can be computed by a linear program. By the construction of (7.30), we know
ε∗B(n) ⊆ π[1,n](Cmax,p0), where ε∗ is the optimal cost of (7.30). Thus, ε∗λCmax,co ⊆ ε∗B(n) ⊆
π[1,n](Cmax,p0). That is, ε∗λ provides a lower estimate of λ0. The benefits of this method include (i)
whenever (7.30) returns a positive ε∗ 2, the estimated λ0 is guaranteed to be positive, and (ii) the
computation is easy. The main drawback is that the estimated λ0 can be very conservative.

Alternatively, according to (7.17), the estimation of λ0 can be formulated as a polytope contain-
ment problem [104]: Let P1 and P2 be two polytopes with H-representation [H1 h1] and [H2 h2],
where hi ∈Rqi for i= 1, 2. Our goal is to find the maximal λ such that λP1⊆ P2, which is equivalent
to find the minimal r such that P1 ⊆ rP2. Then, according to Farka’s Lemma, the minimal r can be
obtained by the following linear program:

r∗ = min
r,Λ∈Rq2×q1

+

r

s.t. ΛH1 = H2

Λh1 ≤ rh2.

(7.31)

Thus, by replacing the polytopes P1 and P2 in (7.31) with Cmax,co and π[1,n](Cmax,p0) (or their
polytopic approximations), we obtain an estimate of λ0 as the reciprocal of the optimal solution r∗

of (7.31).
2Note that if (7.30) returns ε∗ = 0, there is no need to compute λ0 anymore, as Assumption 7.4 cannot be verified.
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This alternative method returns more accurate λ0 than the baseline. When the H-repesentations
of Cmax,co and π[1,n](Cmax,p0) are exact (instead of approximated), λ0 estimated by (7.31) matches
the true λ0. But, this method is more time consuming than the baseline. Recall that we only have the
H-representation of Cmax,p0 , but (7.31) needs the H-representation of the projection π[1,n](Cmax,p0)

of Cmax,p0 . The projection operation of polytopes in H-representation is computationally expensive.
It is also possible to encode the polytope containment constraint in (7.17) directly based on the

H-representations of Cmax,co and Cmax,p0 , which enables us to estimate λ0 without the projection
step [104]: Suppose that the H-representations of Cmax,co and Cmax,p0 are [H1 h1] and [H2 h2] with
hi ∈ Rqi , i = 1, 2. Then, λ0 can be estimated by the reciprocal of the optimal solution of the
following linear program:

λ
−1
0 = min

r,Γ∈Rnp×n,β∈Rnp ,Λ∈Rq2×q1
+

r

s.t. ΛH1 = H2Γ

Λh1 ≤ rh2 +H2β

PΓ = I,

Pβ = 0,

(7.32)

where np = n+ p0l, I is the n×n identity matrix, and P is the projection matrix that maps points
in Rnp onto the first n coordinates. The linear program in (7.32) is formulated based on a sufficient
condition of polytope containment in [104]. Thus, λ0 estimated by (7.32) is more conservative than
λ0 estimated by (7.31).

To summarize, we propose three methods to estimate λ0, with different conservativeness and
computation cost. As discussed in Section 7.3.2, the estimate of λ0 is meaningful only when it is
positive, which can only be guaranteed by the first two methods. Thus, in practice, we suggest users
to first obtain a positive baseline estimate of λ0 via the first method, and then select the second or
third method, based on the available computation power, for a potentially better estimate of λ0.

Step 3: We propose a method to find feasible γ , N and λ , inspired by the proof of Lemma 7.6.
First, compute a λa-contractive ellipsoidal CIS of D(Σ) for some λa in [0,1). Here we formulate a
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bilinear program3 to calculate the minimal possible λa:

λ
2
a = min

r≥0,Q≻0,R1,R2
r (7.33)

subject to[
Q AQ+BR1 +ER2

(AQ+BR1 +ER2)
T rQ

]
≻ 0.

The bilinear program in (7.33) can be solved by line search over r. For any stabilizable system, the
optimal value λ 2

a of (7.33) must be smaller than one4. Given the optimal solution r = λ 2
a , Q, R1 and

R2 of (7.33), the ellipsoid E (c) = {x | xT Q−1x≤ c2} is a λa-contractive CIS of D(Σ) for any c > 0,
and the controller u = R1Q−1x, ud = R2Q−1x is a safe controller for any state x in E (c).

Let c0 be a scalar such that (x,R1Q−1x) is in Sxu and R2Q−1x is in D for all x ∈ E (c0). Let cout

be a scalar such that Cmax,co ⊆ E (cout). The second step of finding γ , N and λ is to estimate the
maximal c0 and the minimal cout .

Suppose that the Cholesky decomposition of the positive definite matrix Q is Q = LLT for
some invertible matrix L ∈ Rn×n. Then, the ellipsoid E (c) can be represented equivalently by
E (c) = {cLs | sT s≤ 1}. By Section 8.4.2 of [24], the maximal c0 is given by the optimal value of
the following linear program:

c0 = max
c≥0

c

subject to

c∥[LT L−1RT
1 ]H

T
xu,i∥2 ≤ hxu,i, i ∈ [qxu]

c∥L−1RT
2 HT

D, j∥2 ≤ hD, j, j ∈ [qd],

(7.34)

where [Hxu,i hxu,i] is the i th row of the H-representation [Hxu hxu] of Sxu, and [HD, j hD, j] is the j th
row of the H-repsentation [HD hD] of D, and qxu and qd are the numbers of rows of Hxu and HD.

Suppose that the set of vertices of Cmax,co is V . Then, the square of the minimal cout is equal to
cout = maxv∈V

√
vT Q−1v. However, it is usually time consuming to compute the vertices of Cmax,co

given its H-representation. An alternative way is to first find the minimal bounding rectangle of
Cmax,co and then use the minimal c such that E (c) contains the minimal bounding rectangle as a
conservative estimate of cout .

Once we have the maximal c0 and a feasible cout , a set of feasible γ , N and λ is given by the
following theorem.

3The constraints in (7.33) that encode
√

r-contractive ellisoidal CISs can be found in Remark 4.1 of [22] and Section
4.4.2 of [23]

4See Proposition 23 of [32].
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Figure 7.2: The inclusion relations among E (c0) (yellow), E (cout) (orange), Cmax,co (dark green)
and λCmax,co (light green).

Theorem 7.8. Given the λa-contractive ellipsoidal CIS E (c) of D(Σ), the maximal c0 and a feasible

cout , let

γ = c0/cout , (7.35)

N =

⌊
log(γ)
log(λa)

⌋
+1, (7.36)

λ = λ
N
a /γ. (7.37)

Then γCmax,co is an N-step λ -contractive CIS of D(Σ), with γ ≤ 1 and λ < 1.

The intuition behind Theorem 7.8 is: By the definition of c0, the ellipsoid E (c0) is a λa-
contractive CIS of D(Σ) in Sxu×D and thus is contained in the maximal CIS Cmax,co, as shown in
Fig. 7.2. Then, for γ = c0/cout , we have γCmax,co contained in the λa-contractive CIS E (c0). As
E (c0) can be controlled to reach an arbitrary small neighborhood of the origin over time (by being
λa-contractive), for an arbitrary small λ , γCmax,co is N-step λ -contractive for a large enough N.

Step 4 (Refinement): If the H-representation of Cmax,co is accurate instead of an outer approxi-
mation, given the set of feasible parameters γ and N and λ in Theorem 7.8, we can find another set
of feasible parameters which potentially lead to a tighter upper bound of dp: Recall that γCmax,co is
N-step λ -contractive. Let γ∗ be the maximal scalar such that PreN

D(Σ)(λγCmax,co,Sxu×D) contains
γ∗Cmax,co. Here γ∗ can be solved by a linear program in form of (7.31). It can be shown that
γ∗Cmax,co is N-step λγ/γ∗-contractive. Then, we replace the estimated γ and λ by γ∗ and λγ/γ∗.

The entire procedure (Steps 1-4) of estimating λ0, γ , N and λ is summarized into Alg. 5. One
can disable the refinement step by commenting out the last if statement in Alg. 5. In Section 7.5.2,
we show numerically that the estimated upper bound is much tighter when the refinement is applied.
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Algorithm 5 Estimating parameters in Theorem 7.7

input: (A,B,E), Sxu, D, Cmax,co, Cmax,p0

(xe,ue,de)← 0
ε∗← solve the LP in (7.30) with (xe,ue,de) fixed to 0
if ε∗ = 0 ▷ that is, (xe,ue,de) is not a forced equilibrium of D(Σ) satisfying Assumptions 7.3
and 7.4 then

(xe,ue,de),ε
∗← solve the LP in (7.30)

Sxu← Sxu− (xe,ue)
D← D−de ▷ shift the origin to (xe,ue,de)

end if
r∗← solve the LP in (7.31) with P1 =Cmax,co, P2 = B(n)
λ0← ε∗/r∗ (baseline estimate of λ0)
if H-representation of π[1,n](Cmax,p0) available then

r∗← solve the LP in (7.31) with P1 =Cmax,co, P2 = π[1,n](Cmax,p0)
else

r∗← solve the LP in (7.32)
end if
λ0←max(λ0,1/r∗) ▷ Pick the best estimate of λ0
λ 2

a ,Q,R1,R2← solve the convex program in (7.33)
c0← solve the LP in (7.34)
if the set V of vertices of Cmax,co available then

cout ←maxv∈V
√

vT Q−1v
else

V ← vertices of minimal rectangle containing Cmax,co

cout ←maxv∈V
√

vT Q−1v
end if
γ,N,λ ← RHSs of (7.35), (7.36) and (7.37)
if H-representation of Cmax,co is exact then

CN ← PreN
D(Σ)(λγCmax,co,Sxu×D)

γ∗← solving LP in (7.31) with P1 =Cmax,co, P2 =CN
γ ← γ∗, λ ← λγ/γ∗

end if
return λ0, γ , N, λ
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7.3.4 Special case: controllable D(Σ)

According to Corollary 7.7.1, the convergence of π[1,n](Cmax,p0+Nk) may have two phases, depending
on whether k is greater or smaller than k0. In this section, we show a single-phased convergence
π[1,n](Cmax,p) when the disturbance collaborative system D(Σ) is controllable. Furthermore, we
show that Assumption 7.4 is no longer required for the convergence of π[1,n](Cmax,p).

Assumption 7.5. The disturbance collaborative system D(Σ) of the linear system Σ is controllable.

The key observation for controllable disturbance collaborative system is stated by the following
lemma.

Lemma 7.9. Under Assumptions 7.2, 7.3 and 7.5, for any N ≥ n, there exists a scalar γ ∈ (0,1] such
that γCmax,co is a N-step 0-contractive CIS of the system D(Σ) within the safe set Sxu, that is

γCmax,co ⊆ PreN
D(Σ)(0,Sxu). (7.38)

Combining Lemma 7.9 with Theorem 7.7, we bound the convergence of π[1,n](Cmax,p) by the
following theorem.

Theorem 7.10. Suppose that a system Σ, a safe set Sxu and a preview time p0 satisfy Assumptions

7.2, 7.3 and 7.5. For any N ≥ n, let γmax be the maximal γ such that (7.38) holds. Then, (i) γmax > 0
and (ii) the projection π[1,n](Cmax,p0+kN) satisfies that for k ≥ 0,

Cmax,co ⊇ π[1,n](Cmax,p0+kN)

⊇
(

1− (1−λ0)(1− γmax)
k
)

Cmax,co. (7.39)

Proof. (Sketch) For the N-step 0-contractive CIS γCmax,co in Lemma 7.9, k0 in (7.22) is 0 due to
λ = 0. Then Theorem 7.7 with k0 = 0 implies Theorem 7.10.

It is obvious that the right hand of (7.39) converges to Cmax,co even if λ0 = 0. Thus, here we do
not need Assumption 7.4 to make λ0 > 0.

Corollary 7.10.1. Under Assumptions 7.2, 7.3 and 7.5, the projection of Cmax,p onto the first n-
coordinates converges to the maximal RCIS Cmax,co of the disturbance collaborative system D(Σ)

in Hausdorff distance, that is

dp = d(π[1,n](Cmax,p),Cmax,co)
p→∞−−−→ 0.

Furthermore, the Hausdorff distance dp satisfies the following inequality: For p≥ p0,

dp ≤ (1−λ0)(1− γmax)
⌊(p−p0)/N⌋ rco, (7.40)
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with N and γmax in Theorem 7.10, and rco the radius of Cmax,co with respect to 0.

Compared with the upper bound on dp in Corollary 7.7.1, the upper bound in (7.40) does not
have the burn-in time k0 and is easier to compute, which is shown next.

We propose an algorithm that numerically calculates the parameters λ0 and γmax in Theorem
7.10 for controllable D(Σ). The same as in Section 7.3.3, we assume that the safe set Sxu and the
disturbance set D are polytopes, and the sets Cmax,co and Cmax,p0 are replaced by their polytopic
outer/inner approximations when they are not polytopes.

Step 1: We first check if the origin as a forced equilibrium satisfies Assumption 7.3. If not, we
find a feasible forced equilibrium via a linear program modified from (7.30), where we replace the
constraint xe + εB(n)⊆ π[1,n](Cmax,p0) in (7.30) by xe ⊆ π[1,n](Cmax,p0).

When the optimal value ε∗ > 0, the optimal solution (xe,ue,de) of the modified linear program
is a feasible forced equilibrium satisfying Assumptions 7.3. Then, by Remark 7.1, we shift the
origin of the state-input-disturbance space to this forced equilibrium.

Step 2: We compute λ0 by the second or the third methods of estimating λ0 proposed in Section
7.3.3. Since λ0 > 0 is no longer necessary, one may prefer the third method for less computation
cost.

Step 3: We select a step size N and estimate the corresponding γmax. Since Sxu and D are
polytopes, the N-step backward set PreN

D(Σ)({0},Sxu×D) is a polytope, whose H-representation
can be easily computed. Then, solving the maximal γ satisfying (7.38), that is γmax, is again a
polytope containment problem. Thus, γmax is equal to the reciprocal of the optimal value r∗ of (7.31)
with P1 =Cmax,co and P2 = PreN

D(Σ)(0,Sxu×D).
The procedure (Steps 1-3) of estimating λ0 and γmax is summarized into Alg. 6. Note that

different from Alg. 5, the step size N here can be freely selected by users. By Lemma 7.9, for any
N ≥ n, Alg. 6 is guaranteed to find a nonzero γmax. In Section 7.5.2, we show numerically how
different N affects the estimated upper bound of dp.

7.3.5 On the finite-time convergence of π[1,n](Cmax,p)

In practice, π[1,n](Cmax,p) may converge to Cmax,co in finite preview time p, which is not reflected by
the exponentially decaying upper bounds in Theorems 7.7 and 7.10. In this section, we propose a
simple algorithm to detect the potential finite-time convergence of π[1,n](Cmax,p).

Suppose that the projection π[1,n](Cmax,p0) is known for some p0. According to Lemma 7.4,
π[1,n](Cmax,p) is equal to Cmax,co for p = p0 + k if

Prek
D(Σ)(π[1,n](Cmax,p0),Sxu×D) =Cmax,co. (7.41)

Based on the above sufficient condition, we propose Alg. 7 to detect the finite-time convergence of
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Algorithm 6 Estimating parameters in Theorem 7.10

input: N, (A,B,E), Sxu, D, Cmax,co, Cmax,p0

(xe,ue,de)← 0
ε∗← solve the LP modified from (7.30) with (xe,ue,de) fixed to 0
if ε∗ = 0 ▷ that is, (xe,ue,de) is not a forced equilibrium of D(Σ) satisfying Assumption 7.3
then

(xe,ue,de),ε
∗← solve the LP modified from (7.30)

Sxu← Sxu− (xe,ue)
D← D−de ▷ shift the origin to (xe,ue,de)

end if
if H-representation of π[1,n](Cmax,p0) available then

r∗← solve the LP in (7.31) with P1 =Cmax,co, P2 = π[1,n](Cmax,p0)
else

r∗← solve the LP in (7.32)
end if
λ0← 1/r∗

CN ← PreN
D(Σ)({0},Sxu×D)

r∗← solve LP in (7.31) with P1 =Cmax,co, P2 =CN .
γmax← 1/r∗

return λ0, γmax

π[1,n](Cmax,p0). Note that we set a maximal iteration number kmax to guarantee the termination of

Algorithm 7 Detecting finite-time convergence

input: Cmax,co, π[1,n](Cmax,p0), kmax
k← 0, C0← π[1,n](Cmax,p0), p← ∞

if C0 =Cmax,co then p← p0
end if
while k < kmax do

k← k+1, Ck← PreD(Σ)(Ck−1,Sxu×D),
if Cmax,co =Ck then p← p0 + k; break
end if

end while
return p, {Ck}

min(p,kmax)
k=0

Alg. 7. In case where Alg. 7 returns a finite number p, we know thta π[1,n](Cmax,p) must be equal to
Cmax,co. In terms of the computational cost, given the H-representation of π[1,n](Cmax,p0), the k-step
backward reachable set of π[1,n](Cmax,p0) with respect to D(Σ) is much cheaper to compute than
π[1,n](Cmax,p+k), since the dimensions of the system D(Σ) are independent of the preview time p.
Thus, Alg. 7 is more tractable than directly checking if π[1,n](Cmax,p) =Cmax,co for p≥ 0.

As a side product, the Hausdorff distance between the backward reachable set Ck computed in
Alg. 7 and Cmax,co gives an upper bound of dp0+k for k = 0, · · · ,min(p− p0,kmax), tighter than those
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obtained by Algs. 5 and 6. However, Alg. 7 is more computationally expensive than Algs. 5 and 6
due to the iterative backward reachable set computation (and the Hausdorff distance computation).
Another drawback is that Alg. 7 can only provide the upper bounds of dp for finitely many p.

7.4 Model Predictive Control with Preview

In this section, we study the impact of preview to the feasible domain of constrained MPC. We
consider the class of discrete-time linear systems Σ as in (7.16) with p-step preview. Let the MPC
planning horizon be the preview time p and the constraints on state and input to be the safe set Sxu of
Σ for simplicity. Given the current state x0 and preview information d0:p−1, a standard optimization
problem to be solved by MPC at each time step is:

min
x1:p,u0:p−1

lF(xp,up−1)+
p−1

∑
t=1

lt(xt ,ut−1)

s.t. xt = Axt−1 +But−1 +Edt−1,

(xt−1,ut−1) ∈ Sxu,∀t ∈ [p],

RFC,

(7.42)

where lt and lF are the stage cost at time t and the final cost, and RFC is a placeholder for constraints
that guarantee the recursive feasibility of (7.42).

Definition 7.2. The feasible domain F of the MPC in (7.42) is the set of initial conditions
(x0,d0:p−1) that satisfy the constraints in (7.42).

To guarantee the recursive feasibility of the MPC, we need to impose certain recursive feasibility
constraints RFC in (7.42) such that the feasible domain F is an RCIS of the p-augmented system
Σp in Sxu,p. Depending on the choice of the RFC, the size of feasible domain can be very different.
Here we study two RFCs.

First, let RFC in (7.42) be

(x1,d2:p−1,dp) ∈Cmax,p,∀dp ∈ D. (7.43)

The constraints in (7.43) is the least conservative RFC, since the corresponding feasible domain is
the maximal RCIS Cmax,p of Σp in Sxu,p, the largest feasible domain any RFC can produce.

Since the maximal RCIS Cmax,p is hard to compute as p increases, a more common RFC in
practice is to force the final state xp to be in an RCIS C of the original system Σ in Sxu, that is

xp ∈C. (7.44)

118



The following theorem characterizes the relation between the terminal constraint set C and the
corresponding feasible domain.

Theorem 7.11. The feasible domain, denoted by Fp(C), of the MPC corresponding to the RFC as

in (7.44) is the p-step backward reachable set of C×Dp for Σp in Sxu,p. That is,

Fp(C) = Prep
Σp
(C×Dp,Sxu,p). (7.45)

Proof. Combining constraints in (7.42) and (7.44), it is easy to check that Fp(C) ⊆ Prep
Σp
(C×

Dp,Sxu,p). It is remained to show the other inclusion direction.
Suppose (x0,d0:p−1)∈Prep

Σp
(C×Dp,Sxu,p). Then, for arbitrary dp:2p−1 ∈Dp, there exists u0:p−1

such that for all t = 0, · · · , p−1,

(xt ,dt:t+p−1,ut) ∈ Sxu,p, (7.46)

(xp,dp:2p−1) ∈C×Dp. (7.47)

That is, (xt ,ut) ∈ Sxu for t = 0, · · · , p−1 and xp ∈C, which implies (x0,d0:p−1) ∈Fp(C).

By (7.45), Fp(C) is an RCIS of Σp in Sxu,p and thus is a subset of Cmax,p. Intuitively, Fp(C) is
the set of states where the system is guaranteed to stay in the safe set indefinitely even if no preview
is available after the first p steps, and thus is more conservative than Cmax,p.

We want to compare how the gap between Fp(C) and Cmax,p changes as p increases. Since the
dimensions of the two feasible domains Cmax,p and Fp(C) increases with p, a direct comparison is
intractable. Similar to Section 7.3, we instead compare the gap between the projections of Fp(C)

and Cmax,p onto the first n dimensions.

Lemma 7.12. The projection of Fp(C) is equal to the p-step backward reachable set of C with
respect to D(Σ) in Sxu×D. That is,

π[1,n](Fp(C)) = Prep
D(Σ)

(C,Sxu×D). (7.48)

Proof. Let x(0) ∈ π[1,n](Fp(C)). There exists d1:p(0) ∈ Dp such that (x(0),d1:p(0)) ∈ Fp(C).
Since by Theorem 7.11 Fp(C) = Prep

Σp
(C×Dp,Sxu,p), for the system Σp as in (7.2), there exist

inputs {u(t)}p−1
t=0 such that (x(t),u(t)) ∈ Sxu for t = 0, · · · , p− 1 and x(p) ∈ C for all possible

{d(t)}p
t=0 ⊆ D. That implies x(0) ∈ Prep

D(Σ)
(C,Sxu ×D). Thus, π[1,n](Fp(C)) is a subset of

Prep
D(Σ)

(C,Sxu×D).
Next, we want to prove the other direction. Let x(0) ∈ Prep

D(Σ)
(C,Sxu×D). Then, for the

system D(Σ) as in (7.5) , there exist inputs {u(t)}p−1
t=0 and {ud(t)}p−1

t=0 ⊆ D such that (x(t),u(t)) ∈
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Sxu for t = 0, · · · , p− 1 and x(p) ∈ C. That implies (x(0),ud(0), · · · ,ud(p− 1)) is contained by
Prep

Σp
(C×D,Sxu,p) = Fp(C) by Theorem 7.11. Thus, x(0) ∈ π[1,n](Fp(C)).

By (7.48), it is clear that the projection π[1,n](Fp(C)) is a CIS of D(Σ) in Sxu×D. Recall that
Cmax,co is the maximal CIS of D(Σ) in Sxu×D. Thus, we have

π[1,n](Fp(C))⊆ π[1,n](Cmax,p)⊆Cmax,co. (7.49)

Following similar steps in Section 7.3, we can show the convergence rate of the projection
π[1,n](Fp(C)) over the planning horizon p: First, we modify Assumptions 7.3 and 7.4 by re-
placing π[1,n](Cmax,p0) with the set C, and call the modified assumptions Assumption 7.3’ and 7.4 ’.
Let λ0 be the maximal λ such that λCmax,co ⊆C, which is greater than 0 under Assumption 7.4’.
Then, the following theorem shows that π[1,n](Fp(C)) converges to Cmax,co exponentially fast.

Theorem 7.13. Under Assumptions 7.1, 7.2, 7.3’ and 7.4’ (or Assumptions 7.2, 7.3’ and 7.5), the

projection π[1,n](Fp(C)) converges to the maximal RCIS Cmax,co of D(Σ) in Hausdorff distance,

that is

d(π[1,n](Fp(C)),Cmax,co)
p→∞−−−→ 0. (7.50)

Furthermore, there exist some constants c > 0 and a ∈ [0,1) such that for p≥ 0,

d(π[1,n](Fp(C)),Cmax,co)≤ cap. (7.51)

Proof. By (7.48), we want to show that Prep
D(Σ)

(C,Sxu×D) converges to the maximal CIS Cmax,co

exponentially fast under the assumptions. The arguments to show this convergence is very similar
to those in the proofs of Theorems 7.7 and 7.10 (by replacing Cmax,p with Fp(C)) and thus is
omitted.

Remark 7.2. Since the proof of Theorem 7.13 is similar to those of Theorems 7.7 and 7.10, one may
expect that the upper bound on d(π[1,n](Fp(C)),Cmax,co) is in form of (7.26), (7.27) or (7.40). It is
indeed the case, but we relax those tighter bounds to the RHS of (7.51) for simplicity. The tighter
upper bounds can be retrieved from Section 7.3 by replacing π[1,n](Cmax,p) there with C.

According to (7.49) and Theorem 7.13, we have

d(π[1,n](Fp(C)),π[1,n](Cmax,p))

≤ d(π[1,n](Fp(C)),Cmax,co)≤ cap.
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That is, the gap between the projections of Fp(C) and Cmax,p decays exponentially fast under the
conditions in Theorem 7.13. Thus, even if Fp(C) is more conservative than Cmax,p, as the planning
horizon p is increased, this conservativeness decays fast. Thus, in practice, the RFC in (7.44) with a
long enough planning horizon p is usually a good choice. Also, the constants c and a in Theorem
7.13 can be estimated by some modified Algs. 5 and 6 that replace π[1,n](Cmax,p0) in both algorithms
by C. Once c and a are obtained, users can simply compute cap to quantitatively evaluate the
conservativeness of the RFC in (7.44) with respect to the maximal feasible domain Cmax,p for any
given planning horizon p. Besides, similar to Section 7.3.5, the potential finite-time convergence of
the projections of Fp(C) can be detected by a modified Alg. 7 that replaces π[1,n](Cmax,p0) with C.

7.5 Illustrative Examples

7.5.1 One-dimensional systems

Consider the 1-dimensional system [78]

Σ : x(t +1) = ax(t)+u(t)+d(t), (7.52)

with x(t), u(t) ∈ R and d(t) ∈ [−d,d]. The safe set Sxu = [−x,x]× [−u,u].
Suppose that the parameters a, x, d, u and p satisfy a > 1, x≥ (u+d)/(a−1) and ap−1u≥ d.

Then, it is shown in [78] that the maximal RCIS Cmax,p of the p-augmented system of Σ within the
augmented safe set [−x,x]× [−d,d]p× [−u,u] is

Cmax,p =

{
(x,d1:p)

∣∣∣∣ |di| ≤ d,∀i ∈ {1, · · · , p},

|x+
p

∑
i=1

di

ai | ≤
u−d/ap

a−1

}
. (7.53)

The projection of the maximal controlled invariant set onto the first coordinate is

PROJ1(Cmax,p) =

[
−u+d−2d/ap

a−1
,
u+d−2d/ap

a−1

]
. (7.54)

The disturbance-collaborative system with respect to (7.52) is

D(Σ) : x(t +1) = ax(t)+u, (7.55)

with the safe set Sxu,co = [−x,x]× [−u−d,u+d]. The maximal controlled invariant set Cmax,co of
D(Σ) in the safe set is [−(u+d)/(a−1),(u+d)/(a−1)]. Thus, for any p such that ap−1u ≥ d,
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the Hausdorff distance between PROJ1(Cmax,p) and Cmax,co satisfies

d(PROJ1(Cmax,p),Cmax,co) =
2d

(a−1)ap , (7.56)

which decays to 0 with exponential rate 1/a as p goes to infinity.
Note that this one-dimensional system is simple enough for us to solve Alg. 6 by hands: Since

PreD(Σ)(0,Sxu,co) = [−(u+d)/a,(u+d)/a], the value of γmax in Theorem 7.10 is (1−1/a). We
pick any p0 satisfying ap0−1u≥ d. Then, by (7.54), λ0 is equal to

λ0 = 1− 2d/ap0

(u+d)
. (7.57)

The radius ψ of Cmax,co with respect to 0 is (u+d)/(a−1). Plugging γmax, λ0 into (7.40), for all
p≥ p0, the Hausdorff distance between PROJ1(Cmax,p) and Cmax,co satisfies

d(PROJ1(Cmax,p),Cmax,co)≤
2d

(a−1)ap . (7.58)

Comparing the right hand sides of (7.56) and (7.58), the upper bound of the Hausdorff distance dp

obtained by Alg. 6 is equal to the actual value in this toy example.

7.5.2 Two-dimensional system with random safe set

We consider the following 2-dimensional system Σ:

Σ : x+ =

[
1.5 1
0 1.1

]
x+

[
0
1

]
u+

[
1
1

]
d, (7.59)

with x ∈ R2, u ∈ R and d ∈ [−0.3,0.3]. The safe set Sxu is randomly generated, shown by the
dark blue polytope in Fig. 7.3. Assume that the preview on d is available. We select p0 = 1. The
projection of Cmax,p0 onto R2 is shown by the yellow polytope in Fig. 7.3. The projections of
Cmax,p0+k for k = 1, · · · ,8 are shown by the nested cyan polytopes in Fig. 7.3. The set Cmax,co is
equal to the projection of Cmax,p with p = 9, shown by the largest cyan polytope in Fig. 7.3.

Since Σ is controllable, we apply both Algs. 5 and 6 to this example. The parameters estimated
by Alg. 1 (with or without Step 4) and Alg. 2 (N = 1 or 8) are listed in Table 7.1. Plugging the
parameters in Table 7.1 into (7.26), (7.27) and (7.40), we obtain four upper bounds of the Hausdorff
distance dp in (7.15), as depicted in Fig. 7.4a. Note that the red curve in Fig. 7.4a lies below the
blue curve, showing that the refinement step in Alg. 5 indeed helps us find a tighter upper bound on
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Figure 7.3: The projections of Cmax,p0 (yellow polytope), Cmax,p0+k (cyan polytopes) with k =
1, · · · ,8 and the safe set (dark blue polytope).

Table 7.1: Parameters estimated by Algs. 5 and 6

λ0 γ or γmax N λ

Alg. 5 w.o. Step 4 0.6550 0.0402 1 0.0011
Alg. 5 w. Step 4 0.6550 0.0752 1 5.737×10−4

Alg. 6 (N = 1) 0.6550 0.0752 1 0
Alg. 6 (N = 8) 0.6550 0.9794 8 0

dp. The purple curve obtained by Alg. 6 is coarser than the other curves due to a larger step size
(N = 8), but is also decaying faster than the others as p increases. This observation implies that
selecting a larger N in Alg. 6 may lead to a coarser but faster decaying upper bound. Among all the
upper bounds in Fig. 7.4a, Alg. 5 with Step 4 and Alg. 6 (N = 1) find the tightest upper bounds
(red and yellow curves) when p is small; Alg. 6 (N = 8) finds the tightest bound (purple curve in
Fig. 7.4a) when p is large.

We also run Alg. 7 with kmax = 50, which terminates with p = ∞. That indicates π[1,n](Cmax,p)

may not converge to Cmax,co for a finite p. The upper bound of dp obtained as the side product of
Alg. 7 is the tightest, coinciding with the actual dp shown by the green curve in Fig. 7.4a. The
computation time of the three algorithms is listed in the first column of Table 7.2.

7.5.3 Lane-keeping control

We consider the linearized bicycle model with respect to the longitudinal velocity 30m/s in [112]
with the same parameters. The states x = (y,v,∆Ψ,r) are the lateral displacement y, lateral velocity
v, yaw angle ∆Ψ and yaw rate r; the input is the steering angle δ f ; the disturbance rd is the road
curvature, with |rd| ≤ 0.05. The safe set of the system is the set of state-input pairs satisfying
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Table 7.2: Computation time of Algs. 5, 6 and 7

Time (s) 2D system Lane-keeping Biped
Alg. 5 w.o. Step 4 3.58 3.86 4.42
Alg. 5 w. Step 4 4.13 727.09 8.68
Alg. 6 (N = n) 0.58 13.22 0.84
Alg. 6 (N = 8) 3.66 227.37 2.41

Alg. 7 (kmax = 50) 14.29 573.33 188.55

(a) Two-dimensional example (b) Lane-keeping example (c) Biped example

Figure 7.4: The Hausdorff distance dp (light blue dash curve) in (7.15) and its upper bounds
estimated by Alg. 5 (blue and red curves), Alg. 6 (yellow and purple curves), and Alg. 7 (green
curve) versus the preview time p.
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|y| ≤ 0.9, |v| ≤ 1.2, |∆Ψ| ≤ 0.05, |r| ≤ 0.3 and |δ f | ≤ π/2.
The preview on the road curvature rd is assumed to be available. We select p0 = 0 and run Algs.

5, 6 and 7. Alg. 7 obtains p = 7, implying that π[1,n](Cmax,p) converges to Cmax,co at p = 7. This
observation suggests that the lane-keeping controller gains most from the first 7-step preview. The
upper bounds on dp from the three algorithms are shown in Fig. 7.4b. The upper bound obtained by
Alg. 7 is the tightest. The computation time of the three algorithms is listed in the second column of
Table 7.2.

7.5.4 Biped walking pattern generation

In [54, 118], preview of the zero-moment point (ZMP) reference is used to control the center of
mass (CoM) of biped robots. We consider the discrete-time lateral dynamics of the biped robot in
[118], with the same parameters. The states (x, ẋ, ẍ) are the lateral position x of the CoM and its
first and second derivatives; the input is the jerk ...x of x. The target is to control the lateral position
x such that the ZMP z = x+(hCoM/g)ẍ tracks a given reference closely, where hCoM and g are the
robot altitude and the acceleration of gravity. The ZMP reference is typically a periodic square
signal (see [54, 118]). Here we assume that the reference signal is a trajectory of the uncertain
system

z(t +1) = 0.15z(t)+d(t), (7.60)

with disturbance |d| ≤ 0.085. This system can generate periodic signals with maximal magnitude up
to 0.1. We couple the biped lateral dynamics and the reference dynamics in (7.60), which leads to a
four-dimensional system with state-input pairs satisfying (x, ẋ, ẍ,z). Based on the control target, we
select the safe set Sxu to be the set of state-input pairs satisfying |x+(hCoM/g)ẍ− z| ≤ 0.1, |x| ≤ 0.1,
|ẋ| ≤ 10, |ẍ| ≤ 10, |z| ≤ 0.1 and | ...x | ≤ 100.

The preview on the disturbance d in (7.60) is available, induced from the preview of ZMP
reference [118]. We select p0 = 0. Alg. 7 returns p = 10, which implies that π[1,n](Cmax,p)

converges to Cmax,co at p = 10. This result suggests that the first 10-step preview on the ZMP
reference is most useful for maintaining the lateral position of the robot in the safe set. We also
depict the upper bounds of dp obtained by Algs. 5, 6 and 7 in Fig. 7.4c. The conservativeness of
those upper bounds are similar to the 2D example in Section 7.5.2. The computation time of the
three algorithms is listed in the last column of Table 7.2.
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7.5.5 Blade pitch control of wind turbine

Preview of incoming wind events can be measured by Lidar scanners, whose usage has been widely
studied in the literature of wind turbine control [89, 111]. In this section, we demonstrate the use of
our methods in analyzing the feasible domain of the preview-based constrained MPC in [111] for
blade pitch control of a wind turbine. We consider the discrete-time linear wind turbine dynamics in
[111] with states x = (δΩ,

∫
δΩ,δβ ), input ∆β and disturbance δv. The states δΩ,

∫
δΩ and δβ

are the rotor speed (rad/s) relative to a nominal speed, the integral of δΩ and the pitch angle (deg)
relative to a nominal angle; the input ∆β is the increment of δβ in one step; the disturbance δv is
the wind speed relative to a nominal wind speed. We use the same parameters in [111]. The safe
set Sxu is the set of state-input pairs satisfying the state-input constraints Jx+E∆β ≤ l of the MPC
proposed in [111] (with J, E and l defined in [111]), and some large enough state bounds |δΩ| ≤ 5,
|
∫

δΩ| ≤ 100, and −4.53≤ δβ ≤ 10.47 to ensure the compactness of Sxu.
The disturbance δv on the wind speed can be previewed [111]. We select C to be the maximal

RCIS of the system without preview. Alg. 7 terminates with p = 4. That is, π[1,n](Fp(C)) converges
to Cmax,co at p = 4, which suggests that the MPC benefits most from the first 4-step preview in
terms of feasible domain size. We also run Algs. 5 and 6 as in the previous examples. But since
Alg. 7 terminates quickly and provides the tightest bound, the results from the other algorithms are
omitted.

7.6 Conclusion

In this chapter, we study the impact of different preview time to the safety of discrete-time systems.
For general nonlinear system, we derive a novel outer bound on the maximal RCIS Cmax,p. For
linear systems under mild conditions, we prove that the safety regret dp decays to zero exponentially
fast, which indicates that the marginal value of the preview information decays to zero exponentially
fast with the preview time. We further develop algorithms that compute upper bounds on the safety
regret dp. We also adapt the established theoretical and algorithmic tools to analyze the convergence
of the feasible domain of a preview-based robust MPC. The efficiency of the proposed algorithms
are verified with four numerical examples.

In this chapter, we assume that we have accurate preview of future disturbances for a finite
time horizon. Later in Section 8.3, we relax this assumption and study the safety control problem
for systems with uncertain preview (that is, the measurements of future disturbances are noisy).
Besides, our current work only deals with a single disturbance with a fixed preview time. As part of
the future work, we want to extend our results to systems with multiple disturbances, where each
disturbance may have a different preview time.
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CHAPTER 8

Scalable Computation of RCISs for Systems with
Preview: Three Cases

As shown in Chapter 7, safety control problem for systems with preview is equivalent to the safety
control problem for the corresponding augmented systems whose states contain the measurements
of the future disturbance (see Section 7.1 for details). Because of the high dimensionality of these
augmented systems, synthesizing safety controllers for systems with preview is computationally
demanding, and thus a challenging research problem. However, for certain classes of systems with
special structures, exploiting structural properties in dynamics can help us reduce the computational
cost in controller synthesis. In this chapter, we present three classes of systems where we can
efficiently synthesize safety controllers with preview.

The first class is called systems in Brunovsky canonical form. For this class of systems with
hyperbox safe sets, the maximal RCIS of the corresponding augmented system can be derived in
closed form.

The second class of systems is switched linear systems, where we assume that the mode switching
is uncontrolled but can by previewed. We further propose a novel modeling mechanism, called
preview automaton, to encode switching signals that can be previewed at run time. The product
of the switched system and the preview automaton yields a hybrid system, whose safety control
problem is challenging in general. But for this specific hybrid system, we show that its maximal
RCIS can be computed efficiently via iterative computations of BRSs of each linear subsystem.

The last class involves systems with uncertain preview, posing a special output-feedback safety
control problem. While the general solution to an output-feedback safety control problem involves
the maximal RCIS of a set dynamics, by leveraging a nilpotent structure inherent in systems with
uncertain preview, we demonstrate that the set dynamics can be reduced to a finite-dimensional
system, enabling efficient safety controller synthesis.

Chapter Overview. We first present our results for systems with Brunovsky canonical form in
Section 8.1, followed by the results for switched systems equipped with preview automaton in
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Section 8.2. In Section 8.3, we present the results for systems with uncertain preview.

8.1 Safety Control for Systems in Brunovsky Canonical Form
with Hyperbox Safe Sets

In this section, we study systems in Brunovsky canonical form with a single input1. Due to the
simple structure of the systems in Brunovsky canonical form, we can derive a closed-form expression
of the maximal RCIS within hyperbox safe sets and show some interesting properties of the maximal
RCIS based on the closed-form expression. In terms of generality, any controllable system can be
converted in a system in Brunovsky canonical form via an invertible transformation (see [11]), and
thus our results on systems in Brunovsky canonical form is also useful for controllable systems.

8.1.1 Problem Setup

The dynamics of a system ΣB in Brunovsky canonical form is

ΣB : x(t +1) = Ax(t)+Bu(t)+d(t), (8.1)

where x(t) ∈ Rn, u(t) ∈ R, d(t) ∈ D⊆ Rn, and

A =

[
0(n−1)×1 In−1

0 01×(n−1)

]
,B =

[
0(n−1)×1

1

]
. (8.2)

The Ik and 0 j×k in (8.2) represent the identity matrix in Rk×k and the matrix with all zero entries
in R j×k. Suppose that D is a polytope in Rn, and suppose Bd = Πn

k=1[ck,1,ck,2] is the smallest
hyperbox containing D. We consider a hyperbox safe set B×R, where the state x is constrained
within hyperbox B = Πn

k=1[bk,1,bk,2] and the input u is unconstrained.
Recall the definition of the p-augmented system in (7.2). We denote the p-augmented system

corresponding to ΣB by ΣB,p. The p-augmented safe set is B×Dp×R. We want to solve the
following problem in this section.

Problem 8.1. Compute the maximal RCIS of the p-augmented system ΣB,p with respect to p-

augmented safe set B×Dp×R.
1The results in this section applies to multiple-input case, since in Brunovsky canonical form, a system with multiple

inputs can be decoupled into several systems with single input [11].
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8.1.2 Closed-form Expression of the Maximal RCIS for ΣB,p

In this subsection, we first show several core properties of the maximal RCIS Cmax,p of ΣB,p within
B×Dp×R, built on which we derive a closed-form expression of the maximal RCIS .

First, we want to derive a necessary condition under which there exists nonempty RCISs of ΣB,p

within B×Dp×R. The idea is based on the following observation: given an input u(t) at time
t ≥ 0, due to the special structure of A and B, we have the exact expression of xn−k+1(t + k) for k

with 1≤ k ≤ n as follows:

xn−k+1(t + k) = u(t)+
k−1

∑
i=0

d1,n−i(t + i), (8.3)

where d1,n−i(t + i) is the n− i th entry of the vector d1(t + i) ∈ Rn for i from 0 to n−1.
Suppose there exists a nonempty RCIS in B×Dp×R. Then there must exist at least one safe

input u(t) ∈R such that for all k from 1 to n, the state xn−k+1(t +k) in (8.3) satisfies the constraints
provided by B robust to all possible future disturbances, that is, for k from 1 to n,

u(t)+
k−1

∑
i=0

d1,n−i(t + i) ∈ [bn−k+1,1,bn−k+1,2], (8.4)

for all possible values of ∑
k−1
i=0 d1,n−i(t + i); otherwise, for all u(t) ∈ R, we can find future distur-

bances such that the state xn−k+1(t + k) ̸∈ [bn−k+1,1,bn−k+1,2].
Note that if i < p, d1,n−i(t + i) is a fixed number known from preview at time t; otherwise

d1,n−i(t + i) takes arbitrary values in [cn−i,1,cn−i,2]. Based on this observation, the condition of the
existence of a safe input u(t) satisfying (8.4) is given in Theorem 8.1, which is necessary for the
existence of a nonempty controlled invariant set.

Theorem 8.1. There exists a nonempty RCIS of ΣB,p within B×Dp×R only if the following

conditions are satisfied

∀v ∈Vd,p,
n⋂

k=1

([
b̂k,1, b̂k,2

]
−

min(n−k+1,p)

∑
i=1

vp−i+1

)
̸= /0 (8.5)

where Vd,p is the set of vertices of the hyperbox Bd,p = Πn
k=n−p+1[ck,1,ck,2], and p = min(p,n), and

b̂k,1 = bk,1−∑
n−p
i=k ci,1 and b̂k,2 = bk,2−∑

n−p
i=k ci,2 for k with n− p≤ k ≤ n.

In practice, if we want to compute a RCIS of ΣB,p, unnecessary computation can be avoided
by checking the conditions provided by Theorem 8.1 first. However, the cardinality of Vd,p can be
large, which prevents us from checking (8.5) efficiently. Fortunately, with some manipulation, the
condition in (8.5) can be simplified to n2 inequalities, independent of the cardinality of Vd,p, namely
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that for all j and k from 1 to n,

∀ j = k, b j,1−bk,2 ≤
n−p

∑
i=k

(ci,1− ci,2),

∀ j < k, b j,1−bk,2 ≤
n−p

∑
i= j

ci,1−
n−p

∑
i=k

ci,2 +
max(k−1,n−p)

∑
i=max( j,n−p+1)

ci,1,

∀ j > k, b j,1−bk,2 ≤
n−p

∑
i= j

ci,1−
n−p

∑
i=k

ci,2−
max( j−1,n−p)

∑
i=max(k,n−p+1)

ci,2.

(8.6)

Next, suppose that there exists a nonempty RCIS , namely that (8.5) is satisfied. We want to
derive conditions under which states ξ = (x,d1,d2, ...,dp) ∈ R(p+1)n are contained by the maximal
RCIS .

We use xi, dk,i to denote i th entry of x, dk. According to the dynamics in (8.1), the first (n− t)

entries of the vector x(t) for all t = 0,1, · · · ,n− 1 are independent from the control inputs and
completely determined by the initial state x(0) and disturbances d(0), d(1) ..., d(n−2).

Thus, one necessary condition on ξ (0) = (x(0),d1:p(0)) ∈Cmax,p is that for all possible future
disturbances in D that are not previewed yet at the initial time, for all t from 0 to n−1 and all k

from 1 to n− t, the state x(t) satisfies

xk(t) ∈ [bk,1,bk,2]. (8.7)

By expanding xk(t) using x(0) and d1:p(0), we obtain the conditions stated in the following theorem.

Theorem 8.2. A state (x,d1:p) is contained in the maximal RCIS Cmax,p only if

x ∈ B,d1:p ∈ Dp, (8.8)

and for all k, 2≤ k ≤ n and for all j, 1≤ j < k :

xk +
min(k− j,p)

∑
i=1

di,k−i ∈ [b j,1,b j,2]−
k− j

∑
i=p+1

[ck−i,1,ck−i,2]. (8.9)

where di,k−i is the k− i th entry of vector di.

To make notation clear, in the case of k− j < p + 1, the right hand set of (8.9) becomes
[b j,1,b j,2]− /0 = [b j,1,b j,2]. We denote the set of states (x,d1:p) satisfying constraints in (8.8) and
(8.9) by Cp. The following theorem states that the maximal RCIS of ΣB,p within B×Dp×R is
exactly equal to Cp.
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Theorem 8.3. Suppose that (8.5) is satisfied. Define

Cp = {ξ = (x,d1:p) | ξ satisfies (8.8), (8.9)}. (8.10)

Then, Cp is the maximal RCIS of ΣB,p within the safe set B×Dp×R.

Corollary 8.3.1. The condition in (8.5) is the necessary and sufficient condition for the existence of
nonempty RCISs of ΣB,p within B×Dp×R.

Corollary 8.3.2. If instead of ΣB in (8.1), we consider a system in the following form:

Σv : x(t +1) = Ax(t)+Bu(t)+Ed(t), (8.11)

for d(t) ∈ Dv ⊆ Rl and some E ∈ Rn×l . Then, we first define system Σ′B in Brunovsky canonical
form

Σ
′
B : x(t +1) = Ax(t)+Bu(t)+d(t), (8.12)

with d(t) ∈ EDv ⊆ Rn. We have the closed-form expression of the maximal RCIS Cp of the p-
augmented system of Σ′B within B×Dp×R. The maximal RCIS Cv of the p-augmented system of
Σv within B×Dp×R is nonempty if and only if Cp is nonempty and

Cv = {(x,d1:p) | (x,Ed1,Ed2, · · · ,Edp) ∈Cp}. (8.13)

Remark 8.1. Adopting the idea from [8], if we have a more general safe set in form of P×R, where
P is a polytope, we can construct a RCIS of ΣB,p within P×Dp×R in 2 moves: we first construct
a polytope in a lifted space that encodes all hyperboxes B in P and all states (x,d1:p) within the
maximal RCIS within B×Dp×R based on the nonemptyness condition (8.5) and the closed-form
expression of Cp. Then, we project this lifted set onto its first n(p+1) coordinates, which is equal
to the union of the maximal RCIS within B×Dp×R for all hyperboxes B contained by P. By
construction, this set is a RCIS in P×Dp×R.

Furthermore, as pointed out by Remark 1 in [9], any controllable system with a polytopic safe
set (including input constraints) can be transformed into system in Brunovsky canonical form with
a safe set in form of P×R. Thus, our results in this section can be used to compute controlled
invariant sets for p-augmented systems of a controllable system. ■

Directly obtained from the closed-form expression of the maximal RCIS Cp, an interesting
property of Cp for p≥ n is revealed by the following theorem.

Theorem 8.4. For preview time p > n, the maximal RCIS Cp is equal to the cartesian product of

the maximal RCIS Cn of ΣB,n and the set Dp−n, that is Cp =Cn×Dp−n.
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Theorem 8.4 indicates that for system ΣB in Brunovsky canonical form with a safe set B×R,
the preview time longer than p = n is not necessary. However, given a state (x,d1:p) in the maximal
RCIS Cn×Dp−n, the admissible input set with the maximal size is obtained when preview is n+1,
that is

A (Cn,(x,d1:n))⊆A (Cn+1,(x,d1:n+1)) = A (Cp,(x,d1:p)).

Finally, recall that we define safety regret as the Hausdorff distance between the maximal CIS of
the disturbance-collaborative system and the projection of the maximal RCIS of the p-augmented
system in Section 7.3. We wonder how the safety regret varies with preview time p for this class of
systems.

Theorem 8.5. For preview time p > n, if nonemptyness condition (8.5) holds, then the projection of

Cp onto the first n coordinates is equal to the maximal RCIS Cmax,co of the disturbance-collaborative

system D(ΣB) within safe set B×R, that is

Cmax,co = π[1,n](Cp) = π[1,n](Cn).

By Theorem 8.5, the safe regret for systems in Brunovsky canonical form with hyperbox safe
sets always converges to zero in n steps.

8.1.3 Illustrative Examples

In this section, we show the effect of preview information on safety control via concrete examples.

8.1.3.1 Impact of Preview on Disturbance Tolerance

First, we want to demonstrate the impact of preview on disturbance tolerance via our results
on systems in Brunovksy canonical form. We fix the state dimension n = 10 and the safe set
B = Πn

i=1[−1,1]. Then, we parametrize the disturbance set D = Πn
i=1[−c,c] by a positive number

c > 0. We are interested in the largest c we can have such that the augmented system ΣB,p has
nonempty RCISs within B×Dp×R. According to Corollary 8.3.1, we can utilize the condition on
nonempty RCIS given by (8.6) to determine the largest possible c.

By plugging bk,1 =−1, bk,2 = 1, ck,1 =−c and ck,2 = c for all k from 1 to n into (8.6) , we can
obtain an upper bound on c such that the nonemptyness condition in (8.6) holds. The largest c

computed for different preview time p are shown in Fig. 8.1. As we expect, as the preview time
increases, a larger disturbance set can be handled, due to the power of preview.
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Figure 8.1: The largest disturbance bound c versus preview time p for the system in Brunovsky
canonical form (n = 10) with hyperbox safe set.

In addition, we observe in Fig. 8.1 that the largest c stops increasing after p≥ 6. This observation
suggests that a disturbance set with c > 0.2222 may lead to an empty RCIS for any preview time p.
With some calculation, we can verify that for c > 2/9, the necessary condition (8.6) does not hold
for all p≥ 0 and thus the maximal RCIS is always empty no matter how large the p is.

8.1.3.2 Lane Keeping Control with Preview

To show the usefulness of preview, we are going to present how preview helps the driver-assist
system to keep a vehicle within lanes. We use a 4-dimensional linearized bicycle model with respect
to constant longitudinal speed 30m/s from [112]. The state space consists of lateral displacement y,
lateral velocity v, yaw angle ∆Ψ and yaw rate r. The disturbance rd with |rd| ≤ 0.04 considered in
this simplified model is a quantity related to the road curvature that perturbs the yaw angle. The
control input u is the steering angle, with constraints u ∈ [−π/2,π/2].

The safe set Sxu is the set of state-input pairs within bounds |y| ≤ 0.9, |v| ≤ 1.2, |∆Φ| ≤ 0.05
and |r| ≤ 0.3, and |u| ≤ π/2. We set the preview time p = 5. We first compute the maximal RCIS
within Sxu for system without preview, denoted by Cmax,0. Then, we use the inside-out algorithm
(Alg. 2) to grow the seed set Cmax,0×D5 for the p-augmented system over 10 iterations, the result
of which is denoted by Cio,5. Numerically we find that Cio,5 strictly contains Cmax,0×D5. We also
try the idea in Remark 8.1 to obtain a RCIS based on our results in Section 8.1, but the resulting set
is contained by Cmax,0×Dp, which is too conservative to be useful.

Next, we find a point (x0,d1, · · · ,d5) belonging to the set difference Cio,5 \Cmax,0×D5 and
simulate 2 trajectories starting at x0 with the first 5 disturbances d1:5, using the two RCISs Cmax,0

and Cio,5 respectively. The controller consists of two parts: First, we synthesize a nominal state
feedback controller, by solving the LQR problem for the p-augmented system. Then, at each time
instant, we supervise the control input from the nominal controller by projecting that input onto
the admissible input set at current state with respect to Cmax,0 or Cio,5. If the admissible input
set happens to be empty at some time instants, then we project the nominal input onto the input
constraint set [−π/2,π/2]. The resulting vehicle maneuvers are shown by Fig. 8.2, where we find
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Figure 8.2: The vehicle maneuvers under the linearized bicycle model with supervised LQR
controller. The dark region indicates the safe region in the plane, that is the lane. The cyan curve is
the maneuver corresponding to Coi,5. The red curve is the maneuver corresponding to Cmax,0.

that the trajectory under the supervision of the admissible input set with respect to Cio,5 stays within
the lane as required by the safety constraints during the simulation time span, but the trajectory under
the supervision with respect to Cmax,0 violates the constraints on lateral displacement y and drives
out of the lane at the 2nd time step. This observation meets our expectation since we intentionally
pick an initial state that is not in Cmax,0. This example demonstrates how the preview on future
disturbances enables controllers to deal with a larger set of initial states safely.

8.1.4 Summary

In this section, we study systems in Brunovsky canonical form with hyperbox safe sets, for which we
derive the maximal RCIS of the p-augmented system in closed form. The closed-form expression
enables us to directly see the impact of preview on the RCISs and lead us to some interesting
properties for this special systems and safe sets, such as a finite-step convergence of the safety
regret.

8.2 Safety Control with Preview Automaton

In this section, we consider discrete-time switched systems where the mode signal is controlled by
external factors. We assume the system is equipped with sensors that provide preview information
on the mode signal (i.e., some future values of the mode signal can be sensed/predicted at run-time).
To capture how the mode signal evolves and how it is sensed/predicted at run-time, we introduce
preview automaton. Then, we focus on safety specifications defined in terms of a safe set within
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Figure 8.3: A simple example on autonomous vehicle cruise control. The road grade alternates
between three ranges r1, r2, r3, modeled by a switched system Σ with three modes. The blue
shadows indicate the regions where the vehicle’s sensors are able to look ahead and upon the
detection of the upcoming change, a preview input is released.

each mode, and develop an algorithm that computes the maximal invariant set inside these safe sets
while incorporating the preview information. A simple example where such information can be
relevant is depicted in Fig. 8.3, where an autonomous vehicle can use its forward looking sensors or
GPS and map information to predict when the road grade will change. The proposed framework
provides a means to leverage such information to compute provably-safe controllers that are less
conservative compared to their preview agnostic counterparts.

Our work is related to [62, 49, 123] where synthesis from linear temporal logic or general
omega-regular specifications are considered for discrete-state systems. In [62], it is assumed that
a fixed horizon lookahead is available; whereas, in our work, the preview or lookahead time is
non-deterministic, and preview automaton can be composed with both discrete-state and continuous-
state systems. While we restrict our attention to safety control synthesis, extensions to other logic
specifications are also possible. Another main difference with [62] is that we use the preview
automaton also to capture constraints on mode switching. The idea of using automata or temporal
logics to capture assumptions on mode switching is used in [15] and [93]. In particular, the structure
of the RCISs we compute is similar to the invariant sets (for systems without control) in [15].
However, neither [15] nor [93] takes into account preview information.

The remainder of this section is organized as follows. After briefly introducing the basic notations
next, in Section 8.2.1, we describe the problem setup, define the preview automaton and formally
state the safety control problem. An algorithm to solve the safety control problem with preview is
proposed and analyzed in Section 8.2.2. In Section 8.2.3, we demonstrate the proposed algorithm
by two case studies one on vehicle cruise control and another on lane keeping before we conclude
this section in Section 8.2.4.
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Notation. The symbol N denotes the set N∪{∞} of extended natural numbers. Given a set X , the
power set of X is denoted by 2X .

8.2.1 Problem Setup

We consider switched systems Σ of the form:

x(t +1) ∈ fσ(t)(x(t),u(t)), (8.14)

where σ(t) ∈ {1, . . . ,s} is the mode of the system, x(t) ∈ X is the state and u(t) ∈U is the control
input. We assume that the switching is uncontrolled (i.e., the mode σ(t) is determined by the
external environment) however σ(t) is known when choosing u(t) at time t. By defining each
fi : X×U → 2X to be set-valued, we capture potential disturbances and uncertainties in the system
dynamics that are not directly measured at run-time but that affect the system’s evolution.

We are particularly interested in scenarios where some preview information about the mode
signal is available at run-time. That is, the system has the ability to lookahead and get notified of
the value of mode signal before the mode signal switches value. More specifically, we assume that
for each pair of modes (i, j), if the switching from i to j takes place next, a sensor can detect this
switching for τi j time steps ahead of the switching time, where τi j ≥ 0 is called the preview time

and belongs to a time interval Ti j. Mathematically, if σ(t + τi j−1) = i and σ(t + τi j) = j, then the
value σ(t + τi j) is available before choosing u(t) at time t, for some τi j ∈ Ti j.

In many applications, switching is not arbitrarily fast. That is, there is a minimal holding time
(or, dwell time) between two consecutive switches. For each mode i of the switched system, we
associate a least holding time Hi ≥ 1 such that if the system switches to mode i at time t, the
environment cannot switch to another mode at any time between t and t +Hi−1. Note that Hi = 1
for all i is the trivial case where the system does not have any constraints on the least holding time.
Moreover, there could be constraints on what modes can switch to what other modes.

Following example illustrates some of the concepts above.

Example 8.1. In Figure 8.3, a vehicle runs on a highway where the road grade can switch between
ranges r1 = [−30.5,−29.5] and r2 = [−0.5,0.5] and between r2 and r3 = [29.5,30.5] (no direct
switching between r1 and r3). We use a switched system Σ of 3 modes to model the three ranges r1,
r2 and r3. Thanks to the perception system on the vehicle, the switching from mode i to mode j

can be detected τi j ∈ Ti j steps ahead, where Ti j is a known interval of feasible preview times for
(i, j) ∈ {(1,2),(2,1),(2,3),(3,2)}. Also, the least time steps for the vehicle in range ri is Hi for
i = 1,2,3.

For simplicity, in the rest of the section, we will assume that the least holding time is greater
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than or equal to the least feasible preview time among all modes that the system can switched to
from mode i, i.e., Hi ≥min(∪ jTi j) for any mode i. This assumption is justified in many applications
where switching is “slow” compared to the worst-case sensor range. For instance, the road curvature
or road grade does not change too frequently.

The main contribution of this section is two folds:

• to provide a new modeling mechanism for switched systems that can capture both the
constraints on the switching and the preview information,

• to develop algorithms that can compute controllers to guarantee safety with preview informa-
tion in a way that is less conservative compared to their preview agnostic counterparts.

8.2.1.1 Preview Automaton

Provided the prior knowledge on the preview time interval Ti j and the least holding time Hi, we
model the allowable switching sequences of a switched system with preview with a mathematical
construct we call preview automaton.

Definition 8.1. (Preview Automaton) A preview automaton G corresponding to a switched system
Σ with s modes is a tuple G = {Q,E,T,H}, where

• Q = {1,2, · · · ,s} is a set of nodes (discrete states), where node q ∈ Q corresponds to the
mode q in Σ;

• E ⊆ Q×Q is a set of transitions;

• T : E → {[t1, t2] : 0≤ t1 ≤ t2, t1 ∈ N, t2 ∈ N} labels each transition with the time interval of
possible preview times corresponding to that transition;

• H : Q→ (N\{0})∪{∞} labels each node q ∈ Q with the least holding time corresponding to
that node.

We make a few remarks. First, we do not allow any self-loops, i.e., (q,q) ̸∈ E for all q ∈ Q.
Second, the preview times T (q1,q2) for any (q1,q2) ∈ E is in one of the three forms: a singleton
set {t1} (interval [t1, t1]), or a finite interval [t1, t2] with t1 < t2, or an infinite interval [t1,∞). Finally,
if there is a state q with no outgoing edges, that is {(q, p) ∈ E : p ∈ Q} = /0, we set H(q) = ∞ to
indicate that once the system visits q, it remains in q indefinitely, so the deadlocks are not allowed.
We call such a state a sink state. The set of sink states and the set of non-sink states in Q are denoted
by Qs and Qns.
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Figure 8.4: This preview automaton corresponds to the switched system in Example 8.1.

In Definition 8.1, the nodes of the preview automaton are chosen to be the modes of the switched
system for simplicity. It is easy to extend the definition to allow multiple nodes in the preview
automaton to correspond to the same mode. Alternatively, redefining the switched system by
replicating certain modes and keeping the current definition can serve the same purpose.

Example 8.2. The preview automaton for the switched system in Example 8.1 has nodes Q =

{1,2,3} with transitions shown in Figure 8.4. The least holding mapping H(q) = Hq for all q ∈ Q

and T (q1,q2) = Tq1q2 for (q1,q2) ∈ {(1,2),(2,1),(2,3),(3,2)}.

Any transition in the preview automaton is associated with an input in the form of the preview of
the switching mode. We assume that there is at most one preview between any two consecutive
switches. During the execution of the preview automaton, if a preview takes place at time t, there is a
corresponding preview input of the preview automaton, including the timestamp t of the occurrence
of the preview, the destination state d ∈ Q of the next transition and the remaining time steps (the
preview time) τ from the current time t up to the next transition. If no preview takes place before
the next switching time2, the preview input corresponding to that switch is trivially (t,0,q), where t

and q are the time instant and destination of the next transition. Note that t + τ is the time that the
system transits from the last mode to the mode d.

Definition 8.2. Given preview automaton G = {Q,E,T,H} and initial state q0 ∈ Q, a sequence of
tuples {(tk,τk,dk)}N

k=1 (N < ∞ when the system remains in dN after t ≥ tN + τN) is a valid preview

input sequence of G if for all 1≤ k ≤ N , the sequence satisfies (with t0 = 0, τ0 = 0, d0 = q0) that
(1) τk−1 ≥ 0 and tk−1 + τk−1 ≤ tk and
(2) (dk−1,dk) ∈ E and τk ∈ T (dk−1,dk) and
(3) (tk + τk−1)− (tk−1 + τk−1)≥ H(dk−1).

In above definition, conditions (1), (2) and (3) guarantee that only one preview input is received
between two consecutive switches, the mode switch constraints and preview time constraints are
met, and the holding time constraint is met, respectively. Once a valid input sequence is given, we
can uniquely identify the transitions of the preview automaton over time, that is, the execution of the

2This is possible when the lower bound of the time interval of possible preview times is 0.
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preview automaton with respect to that input sequence. In the rest of the section, we only consider
valid preview input sequences and drop the word valid when it is clear from the context.

Definition 8.3. Given preview automaton G = {Q,E,T,H} and a preview input sequence
{tk,τk,dk}N

k=1, the execution of G with respect to the preview input sequence is a sequence of
tuples {(Ik,qk)}N

k=0, where
(1) I0 = [0, t1 + τ1−1] and Ik = [tk + τk, tk+1 + τk+1−1] for all k ≥ 0,
(2) qk = dk for all k ≥ 1.

Note that two different valid preview input sequence may have the same execution. According
to Definition 8.2 and 8.3, the set of possible executions of one preview automaton is determined by
the set of valid preview input sequences of the preview automaton.

Once we have the preview automaton G corresponding to a switched system Σ, we have a model
of the allowable switching sequences for Σ, given by the executions of G. Therefore we can define
the runs of a switched system with respect to a preview automaton.

Definition 8.4. A sequence {(q(t),x(t))}∞
t=0 is a run of the switched system Σ of s modes with

preview automaton G under the control inputs {u(t)}∞
t=0 if (1) {q(t)}∞

t=0 is an execution of G for
some preview input sequence and (2) x(t +1) ∈ fq(t)(x(t),u(t)) for t ≥ 0.

8.2.1.2 Problem Statement

Though the preview automaton can be useful in the existence of more general specification, we focus
only on safety specifications here. Suppose that each mode k is associated with a safe set Sk ⊆ X ,
that is the set of states where we require the switched system to stay within when the system’s active
mode is k. Denote the collection of safe sets {Si}i∈Q for each mode as a safety specification for
the switched system Σ. Then, given a safety specification {Si}i∈Q, a run {(q(t),x(t))}∞

t=0 is safe if
(q(t),x(t)) ∈ ∪i∈Q(i,Si) for all t ≥ 0. Otherwise, this run is unsafe.

A controller is usually assumed to know the partial run of the system up to the current time
before making a control decision at each time instant. In our case, since the system can look ahead
and see the next transition, reflected by the preview input signal, the controller for a switched system
equipped with a preview automaton is assumed to have access to the preview inputs of the preview
automaton up to the current time.

Definition 8.5. Denote {(p(t),x(t))}t∗t=0 and {(tk,τk,dk)}k∗
k=0 as the partial run and preview inputs of

the switched system up to time t∗ (k∗ refers to the latest preview up to t∗, i.e., k∗ = maxk s.t. tk ≤ t∗).
A controller U of the switched system Σ with preview automaton G is a function that maps the
partial run {(p(t),x(t))}t∗t=0 and the preview inputs {(tk,τk,dk)}k∗

k=0 to a control input u(t∗) of the
switched system for any t∗ ≥ 0.
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Figure 8.5: A switched finite transition system with 2 modes f1 and f2. The safe set (blue) is
{s1,s2} for each mode.

Definition 8.6. Given a switched system Σ and a safety specification {Si}i∈Q, a subset Wi of the
state space of Σ is a single winning set with respect to mode i if there exists a controller U such that
any run of the closed-loop switched system with initial state in {i}×Wi is safe. A winning set Wi is
the maximal winning set with respect to the mode i if for any x ̸∈Wi, for any controller U , there
exists an unsafe run with initial state (i,x). A winning set with respect to the switched system Σ is
the collection {Wi}n

i=1 of single winning sets for all modes, which is called winning set for short.

We note that, by definition, arbitrary unions of winning sets with respect to one mode is still
a winning set, and therefore the maximal winning set is unique under mild conditions [20] and
contains all the winning sets with respect to that mode. Now, we are ready to state the problem of
interest.

Problem 8.2. Given a switched system Σ with corresponding preview automaton and safety specifi-

cation {Si}i∈Q, find the maximal winning set {Wi}i∈Q.

Before an algorithm that computes the maximal winning set is introduced, we first study the
following toy example to demonstrate the usefulness of preview information.

Example 8.3. A switched transition system with two modes is shown in Figure 8.5. The state
space and input space of the switched system are {s1,s2,s3} and {u1,u2} respectively. The safety
specification is S1 = S2 = {s1,s2}. To satisfy this safety specification, the system state has to be
s1 when f1 is active and be s2 when f2 is active. Thus by inspection, when there is no preview,
the winning sets are empty and when there is a preview for at least one-step ahead before each
transition, there is a non-empty winning set W1 = {s1} and W2 = {s2}.

Example 8.3 suggests that a winning set is not the same as a RCIS of the switched system. When
the preview information is ignored or unavailable, they are the same and therefore Problem 8.2
can be solved by computing the RCISs within the safe sets. However, if the preview is available,
the RCISs can be conservative since their computation does not take advantage of the online
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preview information. Therefore, in Example 8.3, the maximal RCIS is empty, but the winning set is
non-empty.

8.2.2 Maximal Winning Set Computation with Preview Information

In this section, we propose an algorithm to solve Problem 8.2. Recall that in Definition 8.1, the
feasible preview time interval given by T can be unbounded from the right, which is difficult to
deal with in general because it essentially corresponds to a potentially unbounded clock. However,
the following theorem reveals an important property of the preview automaton, which allows us to
replace the preview time interval with its lower bound in the computation of winning sets.

Theorem 8.6. Let G = {Q,E,T,H} and Ĝ = {Q,E, T̂ ,H} be two preview automata of the switched

system Σ with s modes, where T̂ (q1,q2) = min(T (q1,q2)) for any (q1,q2) ∈ E. Then given a safety

specification {Si}i∈Q, {Wi}i∈Q is a winning set with respect to G if and only if {Wi}i∈Q is a winning

set with respect to Ĝ.

Proof. Note that G and Ĝ are the same except the feasible preview time interval T . For each
transition (p1, p2) ∈ E, T̂ (q1,q2) is equal to the lower bound of T (q1,q2).

To show the “only if” direction, suppose that Wi is a winning set with respect to G for mode i.
Then by Definition 8.6, there exists a controller U such that any run of the closed-loop system
with initial state in {i}×Wi with respect to any valid preview input sequence of G is safe. By
Definition 8.2 and 8.3, any preview input sequence and the corresponding execution of Ĝ are also
valid preview inputs and execution of G. Therefore, using the same controller U , any run of the
closed-loop system with initial state in {i}×Wi with respect to any valid preview input sequence of
Ĝ is safe. Hence we conclude that each Wi, for i ∈ Q, is a winning set with respect to Ĝ for mode i.

To show the “if” direction, suppose that Wi is a winning set with respect to Ĝ for mode i, and
U is a controller such that any run of the closed-loop system with initial state in {i}×Wi with
respect to any valid preview input sequence for Ĝ is safe. Note that any execution of G is also
an execution of Ĝ, but the corresponding preview input sequences of G and Ĝ can be different.
Suppose that {(tk,τk,qk)}N

k=1 and {(t ′k,τ ′k,qk)}N
k=1 are two preview input sequences of G and Ĝ

corresponding to the same execution π = {(Ik,qk)}N
k=0. Then by Definition 8.2, for all k ≥ 1,

τ ′k = T̂ (qk,qk+1) = min(T (qk,qk+1)) and τk ∈ T (qk,qk+1) and t ′k+τ ′k = tk+τk = min(Ik+1). Hence
τ ′k ≤ τk and t ′k ≥ tk for all k ≥ 1, which implies that for any transition in π , a controller of G always
knows the next mode from the preview input of G earlier than a controller of Ĝ.

Since the preview input of the next transition is earlier in G than in Ĝ, given an execution
π = {(Ik,qk)}N

k=0, for any k ≥ 1, U can always infer3 the kth preview input of Ĝ from the kth input

3Given the kth preview input (tk,τk,qk+1) of G, the kth preview input of Ĝ is (tk + τk − τ ′k,τ
′
k,qk+1) with τ ′k =

T̂ (qk,qk+1).
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of G before time t ′k. We force controller U to generate control inputs for the switched system Σ

with preview automaton G based on the inferred inputs of Ĝ. Then any run of Σ when closing the
loop with the customized U and G is a run of the closed-loop system with respect to Σ, U and Ĝ,
which is safe if the initial state is in {i}×Wi. Hence Wi is a winning set of G for all i ∈ Q.

Thanks to Theorem 8.6, in terms of maximal winning set computation, it is enough to consider
the preview automaton whose preview time interval is a singleton set for all transitions without
introducing any conservatism. This property stated in Theorem 8.6 can reduce computation cost
and simplify the algorithms. Therefore, whenever there is a preview automaton G, we first convert
G into the form of Ĝ in Theorem 8.6. Algorithm 8 is designed to compute the maximal winning
set for the preview automaton in the form of Ĝ, whose result is equal to the maximal winning
set of G. We note that Ĝ can be expanded to a non-deterministic finite transition system with

∑i(Hi− (min j Ti, j) +∑ j Ti, j) states. Taking a product of this finite transition system with the
switched system, the problem can be reduced to an invariance computation (with measurable and
unmeasurable non-determinism) on the product system. However, the algorithms we propose avoid
product construction and directly define fixed-point operations on the switched system’s state space.

In Algorithm 8, lines 4-6 compute the maximal winning set for each sink state in G. Lines 7-12
compute the winning sets of the non-sink states iteratively, with updates given by Algorithm 9. The
main operators used in these algorithms are as follows. First, given a mode i of the switched system
with state space X and action space U , and a subset V of X , the one-step controlled predecessor of
V with respect to the dynamics fi is defined as

Pre fi(V ) = {x ∈ X : ∃u ∈U, fi(x,u)⊆V}, (8.15)

that is the set of states that can be guaranteed to reach the set V in one time step by some control
inputs in U .

Second, given a safe set Si ⊂ X , the one-step constrained controlled predecessors PreInt(·) of
an arbitrary set V with respect to the dynamics fi as

PreInt fi(V,Si) = Pre fi(V )∩Si. (8.16)

Now define V0 = Si and update Vk recursively for k ≥ 0 by

Vk+1 = PreInt fi(Vk,Si). (8.17)

Note that {Vk}∞
k=0 in (8.17) is monotonically non-increasing sequence of sets and the fixed point

(reached when Vk+1 =Vk) is the maximal RCIS within the safe set Si with respect to the dynamics
fi, denoted as Inv fi(Si). Finally, given the preview automaton G = {Q,E,T,H}, the successors of
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some node i ∈ Q is defined as PostG(i) = { j : (i, j) ∈ E}.

Algorithm 8 Winning Set for Problem 1

1: function ConInv(Σ,S = {Si}i∈Q,G)
2: initialize {Wi}i∈Q with Wi = Si,∀i ∈ Q.
3: initialize {Vi}i∈Q with Vi = /0.
4: for i ∈ Q such that H(i) = ∞ (sink states) do
5: Wi← Inv fi(Si)
6: end for
7: while ∃i ∈ Q such that Wi ̸=Vi do
8: Vi←Wi,∀i ∈ Q
9: for i ∈ Q such that H(i)< ∞ do

10: Wi← InvPre fi(G,{Wj} j∈Post(i),S)
11: end for
12: end while
13: return {Wi}i∈Q
14: end function

Some properties of these operators and the InvPre operator defined by Algorithm 9 are analyzed
next. These properties are used later to prove the correctness of the main algorithm. In what follows
we use {Ŵi}i∈Q ⊆ {Wi}i∈Q to denote the element-wise set inclusion Ŵi ⊆Wi for all i ∈ Q. When
we talk about maximality, maximality is in (element-wise) set inclusion sense.

Lemma 8.7. Consider two collections of subsets Ŵ = {Ŵi}i∈Q and W = {Wi}i∈Q of X . If Ŵ ⊆W ⊆ S,
then Ŵ and W satisfy

InvPre fi(G,Ŵ ,S)⊆ InvPre fi(G,W,S)⊆ Si (8.18)

for any non-sink state i ∈ Qns.

Lemma 8.8. W = {Wi}i∈Q is the maximal winning set with respect to the safe set S = {Si}i∈Q if and
only if {Wi}i∈Qns is the maximal solutions of the following equations:

Wi = InvPre fi(G,W,S),∀i ∈ Qns, (8.19)

where the components of the winning set W for sink states are chosen according to Wj = Inv f j(S j)

for all j ∈ Qs.

The proofs of Lemma 1 and 2 are given in the appendix.
Let us illustrate how Algorithm 8 works, using the switched system shown in Fig. 8.5 with

preview automaton in Fig. 8.6 before proving that the proposed algorithm indeed computes the
maximal winning set.
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Algorithm 9 InvPre operator for Algorithm 8

1: function InvPre fi(G,W,S)
2: for j in PostG(i) do
3: C0, j =Wj and Ti j = T (i, j)
4: for l = 1,2,3, ...,Ti j do
5: Cl, j = PreInt fi(Cl−1, j,Si)
6: end for
7: end for
8: Tmin = min j∈PostG(i)T (i, j)
9: CTmin = Inv fi(

⋂
j∈PostG(i)CTi j, j)

10: Hi = H(i)
11: for k = Tmin +1, · · · ,Hi do
12: Ck = PreInt fi(Ck−1,Si)
13: if Jk = { j ∈ PostG(i) : Ti j ≥ k} ̸= /0 then
14: Ck =Ck∩

(⋂
j∈Jk

CTi j, j
)

15: end if
16: end for
17: return CHi

18: end function

Example 8.4. Since there are no sink nodes in the preview automaton in Fig. 8.6, lines 4-6 in
Algorithm 8 are skipped. We use pair (k, l) to indicate the kth iteration of the while loop and lth

iteration of the for loop in line 7 and 9 in Algorithm 8, and use W k,l
i to refer to the value of Wi after

the (k, l) iteration. Note that at iteration (k, l), only Wl is being updated and the other Wi remains
unchanged for i ̸= l.

Initially W 0,0
1 =W 0,0

2 = {s1,s2}. In the iteration (0,1), W 0,1
1 = InvPre f1(G,{W 0,0

1 ,W 0,0
2 },S) =

{s1} and W 0,1
2 = W 0,0

2 . In the iteration (0,2), W 0,2
2 = InvPre f1(G,{W 0,1

1 ,W 0,1
2 },S) = {s2} and

W 0,2
1 = W 0,1

1 . In the following iterations (1,1),(1,2), W 1,1 and W 1,2 are unchanged. Therefore,
the termination condition in line 7 is satisfied and the output of Algorithm 8 of this example is
W1 = {s1} and W2 = {s2}. It is easy to verify that W1 = {s1} and W2 = {s2} form the maximal
winning set for this problem.

The main completeness result is provided next.

Theorem 8.9. If Algorithm 8 terminates, the tuple of sets {Wi}n
i=1 it returns is the maximal winning

set within the safe set S = {Si}i∈Q of the switched system Σ with the preview automaton G.

Proof. Suppose that {W ∗i }i∈Q is the maximal winning set we are looking for. Let us partition the
discrete state space Q into the set of sink states Qs = {q ∈ Q : H(q) = ∞} and the set of non-sink
states Qns = Q\Qs = {q ∈ Q : H(q)< ∞}.
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Figure 8.6: The preview automaton corresponding to the switched system in Fig. 8.5. H1 = H2 = 3
is the least holding time for both modes, and T12 = T21 = 1 is the preview time for transitions (1,2)
and (2,1).

If q is a sink state, once the system enters the mode q, the system remains in mode q without any
future switching. Therefore, the maximal winning set Wq is trivially the maximal RCIS within the
safe set Sq with respect to the dynamics of mode q, that is W ∗q = Inv fq(Sq). In line 4-6 of Algorithm
8, we compute the maximal winning sets for all the sink states.

We have solved W ∗i for sink state i ∈ Qs. Let us consider the maximal winning sets for non-sink
states. We want to show that W being updated based on lines 7-12 of Algorithm 8 converges to W ∗.
Without loss of generality, assume that Qns = {1,2, ...,sns} and let the “for” loop in line 9 iterate
over the indices 1,2, ...,sns in the natural order.

We use W k,l to indicate the updated value of W after the kth iteration of the “while” loop (line
7) and the lth iteration of the “for” loop (line 9). Then the initial value of W is W 0,0 = {W 0,0

i }i∈Q

where W 0,0
i = Si for all i ∈ Qns and W 0,0

j =W ∗j for all j ∈ Qs. According to line 9-10, for all k ≥ 0
and 0≤ l ≤ sns−1, W k,l+1

i = InvPre fi(G,W k,l,S) for i = l +1 and W k,l+1
j =W k,l

j for all j ̸= l +1
and W k+1,0 =W k,sns .

Now we want to prove that if W ∗ ⊆W k,0 ⊆ S for some k ≥ 0, then W ∗ ⊆W k,l ⊆ S for any
l ∈ {1,2, ...,sns} by induction. (Base case 1) Since we have W ∗ ⊆W k,0 ⊆ S, by Lemma 1 and 2, we
have

W ∗i = InvPre fi(G,W ∗,S)⊆ InvPre fi(G,W k,0,S) =W k,1
i ⊆ Si

for i = 1. Since W ∗ ⊆W k,0 and W k,1
j = W k,0

j for all j ̸= 1, we have W ∗ ⊆W k,1 ⊆ S. (Induction
hypothesis 1) Suppose that W ∗ ⊆W k,l ⊆ S for some 0 ≤ l ≤ sns−1. Again, by Lemma 1 and 2,
W ∗ ⊆W k,l+1 ⊆ S. Finally by induction, if W ∗ ⊆W k,0 ⊆ S, W ∗ ⊆W k,l ⊆ S for all l ∈ {1,2, ...,sns}.

Then next we want to prove by induction that W ∗ ⊆W k,0 ⊆ S for all k ≥ 0. (Base case 2)
W ∗ ⊆W 0,0 ⊆ S by construction. (Induction hypothesis 2) Suppose W ∗ ⊆W k,0 ⊆ S for some k ≥ 0.
Then, we have proven that W ∗ ⊆W k,sns =W k+1,0 ⊆ S. Therefore by induction, W ∗ ⊆W k,0 ⊆ S for
any k ≥ 0.

The two induction arguments above prove that W ∗ ⊆W k,l for any k ≥ 0 and 0≤ l ≤ sns.
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Now let us show that W 0,0,W 0,1,W 0,2, ...,W k,0,W k+1,1, ... is a non-expanding sequence. Since
W k,sns =W k+1,0 for all k ≥ 0, it suffices to show W k,l+1 ⊆W k,l for any k ≥ 0 and 0≤ l ≤ sns−1.

(Base case 3) Note that InvPre fi(G,V,S)⊆ Si for arbitrary V ⊆ X and i ∈ Q. Thus by definition
W 0,1

i = InvPre fi(G,W 0,0,S) ⊆ Si = W 0,0
i for i = 1. Note that W 0,1

j = W 0,0
j for all j ̸= 1. Thus

W 0,1 ⊆ W 0,0. Now consider W 0,2. Note that W 0,2
j = W 0,1

j for all j ̸= 2. For i = 2, W 0,2
i =

InvPre fi(G,W 0,1,S)⊆ Si =W 0,1
i . Thus W 0,2⊆W 0,1. Similarly, we have W 0,sns ⊆ ...⊆W 0,1⊆W 0,0.

(Induction hypothesis 3) Suppose W k,sns ⊆ ... ⊆W k,1 ⊆W k,0 for some k > 0. To show that
W k+1,l+1 ⊆W k+1,l for all l, we need another induction argument. (Base case 4) We know W k+1,0 =

W k,sns , and W k+1,1
j =W k+1,0

j for j ̸= 1. For i = 1, W k+1,0
i =W k,sns

i =W k,1
i = InvPre fi(G,W k,0,S).

By induction hypothesis 3, W k,sns ⊆W k,0 and thus by Lemma 8.7 and 8.8,

W k+1,1
i = InvPre fi(G,W k+1,0,S)⊆ InvPre fi(G,W k,0,S) =W k+1,0

i

for i = 1, and therefore W k+1,1 ⊆W k+1,0.
(Induction hypothesis 4) Suppose that W k+1,l ⊆ W k+1,l−1 ⊆ ... ⊆ W k+1,0. By definition,

W k+1,l+1
j =W k+1,l

j for all j ̸= l+1. Also, for i = l+1, W k+1,l
i =W k,l+1

i = InvPre fi(G,W k,l,S). By
the induction hypothesis 3 and 4, W k+1,l ⊆W k,l and thus by Lemma 8.7 and 8.8 again, for i = l+1,

W k+1,l+1
i = InvPre fi(G,W k+1,l,S)⊆ InvPre fi(G,W k,l,S) =W k+1,l

i

and therefore W k,l+1 ⊆W k,l . Then by induction 4, we have W k+1,sns ⊆ ...⊆W k+1,1 ⊆W k+1,0.
Therefore by the induction 3, we show that W 0,0, ...,W k,0,W k+1,1, ... is non-expanding.
By far, we have shown that W 0,0W 0,1...W k,0W k,1... is a monotonic non-expanding sequence

within S, which implies that the limit of this sequence W ∞,0 (the output of Algorithm 8) exists and
is contained by S thus safe. By line 7-12 of Algorithm 8, W ∞,0 is a solution of equations in (8.19).
Also, since for any k and l, W ∗ ⊆W k,l and W ∗ is the maximal solution of equations in (8.19), we
have W ∞,0 =W ∗.

Note that the above proof also guarantees termination if the switched system under consideration
has finitely many states. For switched systems with continuous state spaces, the non-expanding
property of the computed sets guarantees convergence but termination in finite number of steps is
not guaranteed, in general. For linear switched systems, termination can still be guaranteed using
algorithms from [32, 103] by slightly sacrificing maximality (see also [112]).

Once the maximal winning set (or a winning set) W ∗ = {W ∗i }i∈Q is obtained, a controller can
be extracted roughly as follows: for a sink node i ∈ Qs, the allowable control inputs for each state
in the RCIS W ∗i can be obtained by applying the Pre operator to W ∗i . For a non-sink node j ∈ Qns,
we need a “invariance” controller to make sure the system state remain in W ∗i before a preview
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happens, and a “reachability” controller for each transition ( j,k) ∈ E and each possible preview
time τ jk ∈ T ( j,k) such that from the time point a preview is received by the controller, system
state can guarantee to reach Wk in τ jk steps, where the allowable control input for each step can
be obtained by applying the PreInt recursively for τ jk times. For the “invariance” controller, we
also need to make sure that the system state reaches certain parts of the maximal winning set based
on the holding time (time steps elapsed since last transition) such that once a preview occurs, the
system state is within the domain of the corresponding “reachability” controller. The process of
computing the “reachability” controllers actually corresponds to line 2-7 in Algorithm 9, and the
process of computing the “invariance” controller corresponds to line 9 and 12-14, if the preview
automaton has a singleton preview time interval. The process can be generalized to general preview
time intervals from the Algorithm 9 based on the description above.

8.2.3 Illustrative Examples

In the following case studies, we apply the proposed algorithms to switched affine systems, where
the state space and safe set are polytopes. In this case Pre and PreInv operators reduces to polytopic
operations, which we implement using the MPT3 toolbox [48].

8.2.3.1 Vehicle Cruise Control

Our first example is a cruise control problem for the scenario shown in Example 8.1. The longitudinal
dynamics of a vehicle with road grade is given by

v̇ =− f0

m
− f1

m
v+

Fw

m
−gsinθ (8.20)

where v is the longitudinal speed, m is the vehicle mass, f0 and f1 are the coefficients related to
frictions, Fw is the wheel force, g is the gravitational acceleration and θ is the road grade. We
choose Fw as the control input and θ as a disturbance. We discretize (8.20) with time step ∆t = 0.1s.
The discrete-time dynamics with disturbance ranges r1, r2 and r3 consist of the modes 1, 2, 3 in the
switched system defined in Example 8.1.

The safety specification is to keep the longitudinal speed within X = [31.95,32]m/s. The speed
range is intentionally picked small enough so that the change the road grade induces on the dynamics
makes the specification hard to be satisfied. The parameters are chosen as m = 1650kg, f0 = 0.1N,
f1 = 5N · s/m, g = 10m/s2. The control input range is Fw ∈ [−0.65mg,0.66mg]. For the preview
automaton shown in Fig. 8.4, the holding time for each mode is 2 and the preview time for each
transition is 1.

To make a comparison, we compute the maximal RCIS for the dynamics discretized from (8.20)
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with disturbance in [−30.5◦,30.5◦] (convex hull of r1, r2, r3). If such an invariant set exists, it is
a feasible winning set for our problem. However, the resulting RCIS is empty, which suggests
that the problem is infeasible if disturbance can vary arbitrarily in [−30.5◦,30.5◦]. In contrast, the
winning set obtained from Algorithm 8 is {Wi}3

i=1 with W1 =W2 =W3 = X . Therefore the preview
automaton is crucial in this case study for the existence of a safety controller.

8.2.3.2 Vehicle Lane Keeping Control

In the second example, we apply the proposed method to synthesize a lane-keeping controller,
which controls the steering to limit the lateral displacement of vehicle within the lane boundaries.

The lateral dynamics we use are from a linearized bicycle model [112]. The four states of the
model consist of the lateral displacement y, lateral velocity v, yaw angle ∆Ψ and yaw rate r. The
vehicle is controlled by the steering input δ f in range [−π/2,π/2]. We assume that the longitudinal
velocity u of the vehicle is constant and equal to 30m/s. The disturbance rd is a function of the road
curvature, which is what we assume to have preview information on at run-time.

The maximal recommended range of rd on Michigan highways [1] with respect to u = 30m/s

is about [−0.06,0.06]. We divide [−0.06,0.06] evenly into 5 intervals d1 = [−0.06,−0.036],
d2 = [−0.036,−0.012], ..., d5 = [0.036,0.06] and construct a switched system with 5 modes, where
each mode i∈Q = {1,2,3,4,5} corresponds to a lateral dynamics with rd bounded in di, denoted by
fi. The corresponding preview automaton is shown in Fig. 8.7, where transitions are only between
any two modes with adjacent rd intervals. For simplicity, the preview time interval T (i, j) = τc for
all (i, j) ∈ E, and the least holding time H (i) = τd for all i ∈ Q for some constants τc and τd .

The safe set is given by the constraints |y| ≤ 0.9, |v| ≤ 1.2, |∆Ψ| ≤ 0.05, |r| ≤ 0.3 for all modes.

Table 8.1: Computation costs for different (τc,τd)

(τc,τd) #iterations time (min)
(1,2) 4 18.9
(2,2) 4 18.0
(1,1) 5 20.3
(5,5) 3 16.8

We apply Algorithm 8 to compute the maximal winning sets for various τc and τd . The values of
(τc,τd) with corresponding numbers of iterations at termination and running time are listed in Table
8.1. Denote the maximal winning set with respect to mode 2 for each pair (τc,τd) in Table 8.1 as
W2,(τc,τd).

As a comparison, we compute the maximal RCIS for the lateral dynamics with rd in [−0.06,0.06],
denoted by Winv. The projections of W2,(τc,τd) and Winv onto 3-dimensional subspaces are shown in
Figs. 8.8 and 8.9.
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Figure 8.7: Preview automaton for the lane-keeping case study

(a) project on (y,v,∆Ψ) (b) project on (y,v,r)

Figure 8.8: Projections of Winv,W2,(1,2),W2,(2,2) onto two subspaces. The red, blue and green regions
are the projection of Winv, the difference of projections of W2,(1,2) and Winv and the difference of
projections of W2,(2,2) and W2,(1,2).

Fig. 8.8 compares Winv, W2,(1,2) and W2,(2,2), where the holding time τd is fixed and the preview
time τc are tuned to show the effect of preview time on winning set. In theory, Winv ⊆W(τc,τd) ⊆
W(τ ′c,τ

′
d)

for any τc≤ τ ′c and τd ≤ τ ′d , which is verified by the numerical result where Winv⊆W2,(1,2)⊆
W2,(2,2). The blue region in Fig. 8.8 shows the difference of W2,(1,2) and Winv, indicating how much
we gain from the preview information with (τc,τd) = (1,2) compared to no preview. The green
region in Figure 8.8 shows the difference of W2,(2,2) and W2,(1,2), which indicates how much the
maximal winning set grows as the preview time τc increases from 1 to 2 while the least holding
time τd = 2 is fixed. As revealed by the size of the green region in Fig. 8.8, the growth of the
maximal winning set decreases as the preview time becomes one step longer. Understanding the
conditions under which a longer preview does or does not help the growth of the maximal winning
set is subject of our future work.

Fig. 8.9 compares Winv, W2,(1,1) and W2,(1,5), where we fix the preview time τc and change the
least holding time τd . The blue and green regions show the difference of W2,(1,1) and Winv and the

149



(a) project on (y,v,∆Ψ) (b) project on (y,v,r)

Figure 8.9: Projections of Winv,W2,(1,1),W2,(1,5) onto two subspaces. The red, blue and green regions
are the projection of Winv, the difference of projections of W2,(1,1) and Winv and the difference of
projections of W2,(1,5) and W2,(1,1).

difference of W2,(1,5) and W2,(1,1). Therefore, the size of the green region indicates how much the
winning set grows as we increase the least holding time τd from 1 to 5. Compared to Fig. 8.8,
the winning set is more sensitive to the change of the least holding time τd than the change of the
preview time τc.

Finally, Winv, W2,(1,1), W2,(5,5) are compared in Fig. 8.9, where we increase τc and τd simul-
taneously. W2,(5,5) is numerically equal to W2,(1,5), and thus its projections are the same as the
projections of W2,(1,5) shown in Fig. 8.9. In fact, the winning sets with respect to modes 2, 3, 4
for τc = 1,τd = 5 and τc = 5,τd = 5 are numerically equal; the winning set with respect to mode 1
and 5 slightly grows when (τc,τd) changes from (1,5) to (5,5), but the growth is too small to be
visualized. The observation in Fig. 8.8 and 8.9 reveals one theoretical conjecture: If the preview
time and the least holding time are large enough, a longer preview time and/or a longer holding
time will not increase the size of the maximal winning set. That is, the size of the maximal winning
set converges as the preview time and the least holding time increase. To verify this conjecture is
part of our future work.

8.2.4 Summary

In this section, we introduce preview automaton and provide an algorithm for safety control
synthesis in the existence of preview information. The proposed algorithm is shown to compute the
maximal winning set upon termination. These ideas are demonstrated with two examples from the
autonomous driving domain. As shown in these examples, incorporation of preview information
in control synthesis leads to less conservative safety guarantees compared to standard RCIS based
approaches. In the future, we will investigate the use of preview automaton for synthesizing
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controllers from more general specifications. We also have some ongoing work investigating the
connections of preview automaton with discrete-time I/O hybrid automaton with clock variables
representing preview and holding times.

8.3 Safety Control with Uncertain Preview

In Chapter 7 and Section 8.1, we study the safety control problem for systems with preview under
the assumption that the preview on future disturbances is accurate. This assumption can be satisfied
in certain control applications, such as reference tracking [114, 28]. However, if the preview
information is obtained from a perception module, it is likely that the preview is corrupted by
measurement noise and thus becomes uncertain. Motivated by these applications, in this section,
we study how to synthesize safety controllers for systems with uncertain preview.

Notation. For a collection X = {Xk}N
k=1 of sets, the union ∪X∈X X is denoted by ∪X for short.

8.3.1 Problem Setup

8.3.1.1 Systems with uncertain preview

Consider a discrete-time dynamical system Σ in form of

Σ : x(t +1) = f (x(t),u(t),d(t)), (8.21)

with state x ∈ Rn, input u ∈ Rm and disturbance d ∈ D⊆ Rl . The disturbance set D is assumed to
be compact. A system Σ in form of (8.21) is said to have p-step (uncertain) preview if at each time
step t, the controller has access to

• the current state x(t), and

• the noisy measurements (d̂(t + k))p−1
k=0 of current and incoming disturbances (d(t + k))p−1

k=0 in
p steps, denoted by d̂1:p(t) for short.

To simplify the problem setup, we only assume that the disturbance measurements are corrupted by
noise, while the state can be accurately measured at each time instance. Moreover, we assume that
there exist p measurement functions hk : D→ 2D\ /0 such that d̂k(t) ∈ hk(dk(t)).

In the next two subsections, we first introduce the output-feedback control problem for general
discrete-time systems, and then formulate the safety control problem for a system with uncertain
preview as a special output-feedback safety control problem.
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8.3.1.2 Output Feedback Safety Control Problem

A discrete-time system Σ with output function h is given by

(Σ,h) :
x(t +1) = f (x(t),u(t),d(t)),

y(t) ∈ h(x(t)),
(8.22)

where Σ is a discrete-time system as in (8.21), y ∈Y ⊆Rq is the output of Σ, and h : Rn→ 2Y\ /0 is a
function mapping each state x ∈ Rn to a nonempty subset h(x) of Y . The set Y contains all possible
outputs of the system. For any y ∈ Y , we define the inverse of h by h−1(y) := {x ∈ Rn | y ∈ h(x)}.
We make the following assumption on the output function h.

Assumption 8.1. For all y ∈ Y , the inverse h−1(y) is nonempty.

Note that we can always make the output function h satisfy Assumption 8.1 by redefining
Y = ∪x∈Rnh(x). For a system in (8.22) , since its states cannot be directly observed, we can infer
where the current state is located based on the system outputs over time. Specifically, suppose that
the initial state x(0) is known to be within some subset X−1 of Rn. Then, X0 := X−1∩h−1(y(0))
is the set of all the initial state x(0) ∈ X−1 consistent with the output y(0). For t ≥ 1, given y(0 : t)

and u(0 : t−1), we define Xt as the set of states x(t) such that there exists x(0 : t−1) satisfying

(a) x(0) ∈ X0;

(b) for all k from 0 to t−1, x(k+1) ∈ f (x(k),u(k),D) and y(k+1) ∈ h(x(k+1)).

One can interpret Xt as the set of state estimates of x(t) consistent with the outputs y(0 : t) and inputs
u(0 : t−1) observed up to time t. In the remainder of this section, we call Xt the belief set of the
state x(t) (also known as information set in the literature [13]). Note that in our previous discussion,
the construction of X0 is different from Xt with t ≥ 1 due to the extra assumption x(0) ∈ X−1. In
practice, this set X−1 may be inferred from additional observations on x(0), and thus can vary with
the initial state x(0). The following assumption allows us to deal with all different X−1 in an unified
manner.

Assumption 8.2. There exists a collection X0 of belief sets X0 of the initial state x(0) such that

given the output y(0) and any additional information on x(0) available at time t = 0, one can

identify at least one element X0 ⊆ h−1(y0) from X0 such that the actual initial state x(0) ∈ X0.

A trivial collection X0 of initial belief sets satisfying Assumption 8.2 is {h−1(y) | y ∈ Y}. By
definition, given an initial belief set X0 ∈X0, the belief set Xt on x(t) can be determined by the
inputs u(0 : t−1) and the outputs y(1 : t). The following lemma shows that Xt is actually Markovian,
namely that Xt is a function of Xt−1, u(t−1), and y(t).
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Lemma 8.10. For all t ≥ 1, the set Xt is uniquely determined by Xt−1, u(t−1), and y(t), satisfying

Xt = f (Xt−1,u(t−1),D)∩h−1(y(t)) =: F(Xt−1,u(t−1),y(t)). (8.23)

Proof. Let X t be the RHS of (8.23). We want to show that Xt = X t .
First, pick an arbitrary x(t) ∈ Xt . By definition of Xt , there exist x(0 : t−1) such that x(k) ∈ Xk

for k from 0 to t−1, and x(t) ∈ f (x(t−1),u(t−1),D)∩h−1(y(t)). Therefore, x(t) ∈ X t , and thus,
Xt ⊆ X t .

Next, pick an arbitrary x(t) ∈ X t . Then, there exists xt−1 ∈ Xt−1 such that x(t) ∈ f (x(t −
1),u(t−1),D) and y(t) ∈ h(x(t)). If t = 1, it is obvious that x(t) ∈ Xt by definition. If t > 1, since
x(t−1) ∈ Xt−1, there further exists x(0 : t−2) satisfying the points (a) and (b) in the definition of
Xt−1 with respect to x(t−1). Then, it can be shown that x(0 : t−1) satisfies the points (a) and (b)
in the definition of Xt with respect to x(t). Hence, x(t) ∈ Xt and thus, X t ⊆ Xt .

Given the collection X0 of the initial belief sets, we denote the collection of all possible belief
sets of x(t) by Xt . By Lemma 8.10, we can characterize Xt with t ≥ 1 with the recursive equation

Xt = {F(Xt−1,u,y) | Xt−1 ∈Xt−1,u ∈ Rm,y ∈ ∪x+∈ f (Xt−1,u,D)h(x
+)}, (8.24)

where the set ∪x+∈ f (Xt−1,u,D)h(x+) contains all possible outputs at time t given that the state x(t−1)
is in Xt−1. We call the set X := ∪t≥0Xt of all possible belief sets the belief space of the system.

Since the belief set Xt is the minimal region containing the state x(t) one can infer from the
historical inputs and outputs at time t, the control input u(t) should be determined based on the
belief set Xt . Therefore, the controllers considered in this section are functions u : X → Rm from
the belief space X to the input space Rm. Specifically, given a controller u, the control input u(t)

at time t is u(Xt), where Xt is by definition determined by X0, y(0 : t), and u(0 : t−1).

Remark 8.2. To implement a controller u : X→Rn, we have to represent the belief set Xt numerically.
One simple representation of Xt is the tuple (X0,y(0 : t),u(0 : t−1)), from which one can uniquely
determine Xt . However, as t goes to infinity, this representation of Xt requires infinite memory.
Therefore, a output-feedback controller u : X → Rm in general requires infinite memory, unless
every element in X can be represented with finite memory.

Now we are ready to define the output-feedback safety control problem. Let Sxu ∈ Rn+m be a
safe set of a system Σ with output h. Given an initial belief set X0 ∈X0, a controller u : X → Rm

is safe if all possible state-input trajectories (x(t),u(t))t≥0 starting from any x(0) ∈ X0 under the
control of u stay in the safe set Sxu indefinitely. A set X0 ∈X0 is a winning belief set if there exists
a safe controller u with respect to X0.
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Problem 8.3. Given a system Σ with output function h, safe set Sxu, and a collection X0 of initial

belief sets, identify the set Wmax of all winning belief sets, and the corresponding safe controllers.

8.3.1.3 Problem Statement

Consider a system Σ with p-step uncertain preview, as described in Section 8.3.1.1. Let Sxu be a
safe set of Σ. Recall the p-augmented system Σp of Σ and its safe set Sxu,p, defined in (7.2) and
(7.3). The safety control problem for a system Σ with p-step uncertain preview can be formulated
as the output-feedback safety control problem for the p-augmented system Σp with respect to the
safe set Sxu,p. The output function h of Σp is given by

h(x,d1:p) = {x}×h1(d1)×·· ·×hp(dp). (8.25)

We denote the output (x(t), d̂1:p(t)) of Σp at time t by (x(t), d̂1:p(t)) ∈ h(x(t),d1:p(t)). We make the
following assumption to simplify the derivation later.

Assumption 8.3. At time t = 0, for each j from 1 to p, we have (p− j) additional measure-

ments (d̂ j+k(−k))p− j
k=1 of the state d j(0) of Σp satisfying d̂ j+1(−1) ∈ h j+1(d j(0)), ..., d̂p( j− p) ∈

hp(d j(0)).

Assumption 8.3 essentially states that we start previewing disturbances of Σ at time t =−(p−1).
This assumption can be easily fulfilled in real-world applications if we allow the perception module
that generates preview to start running p steps earlier than the control module. According to
Assumption 8.3, the collection X0 of the initial belief sets for Σp is

X0 := Rn×D1×D2×·· ·×Dp, (8.26)

where the collection D j :=
⋃

d∈D

{⋂p
k= j h−1

k (yk) | yk ∈ hk(d)
}

contains all possible belief sets of

the state d j(0) given its (p− j+1) measurements d̂ j(0), ..., d̂p( j− p). At run time, given the initial
output (x(0), d̂1:p(0)) ∈ h(x(0),d1:p(0)) and the additional preview information in Assumption 8.3,
the initial belief set X0 is

X0 = {x(0)}×
p⋂

k=1

h−1
k (d̂k(1− k))×·· ·×

p⋂
k= j

h−1
k (d̂k( j− k))×·· ·×h−1

p (d̂p(0)) ∈X0. (8.27)

Now we have all the ingredients for the safety control problem of systems with uncertain preview.

Problem 8.4. Given a system Σ with p-step uncertain preview and its safe set Sxu, find a solution to

Problem 8.3 with respect to the system Σp with output function h in (8.25), the safe set Sxu,p, and

the collection X0 of initial belief sets in (8.26).
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Remark 8.3. Let X ′
0 := {h−1(x, d̂1:p) | (x, d̂1:p) ∈ ∪h(Rn×Dp)}, that is, the collection of initial

belief sets determined only by the initial output (x(0), d̂1:p(0)) ∈ h(x(0),d1:p(0)) for all possible
(x(0),d1:p(0)) ∈ Rn×Dp. It can be shown that X0 in (8.26) is equal to X ′

p , where X ′
p is defined

according to the recursive equation in (8.24) with respect to X ′
0 . Furthermore, it can be shown that

any safe controller with respect to X ′0 ∈X ′
0 can be extended from a safe controller with respect to

some X0 ∈X0. In this sense, we do not lose any generality by making Assumption 8.3.

8.3.2 Set-Invariance Based Approach

In this subsection, we first characterize the solution to Problem 8.3, addressing the output-feedback
safety control problem for any system. While computing the general solution for Problem 8.3 is
challenging, we present in the latter part of this subsection an efficient computation method for
the solution to Problem 8.4, a specific case of Problem 8.3. This approach leverages the inherent
structure within Σp.

8.3.2.1 General Approach

Consider a general system Σ as in (8.21) with output h, safe set Sxu, and a collection X0 of initial
belief sets. We define a set dynamics ΣF by

ΣF : X(t +1) = F(X(t),u(t),dy(t)), (8.28)

with state X(t) ∈ X , input u(t) ∈ Rm, and disturbance dy(t) ∈ Dy(X(t),u(t)) :=⋃
x+∈ f (X(t),u(t),D) h(x+). Recall that F is defined in (8.23), and X is the belief space with re-

spect to X0. It can be checked that for any X(t) ∈X , u(t) ∈ Rm, and dy(t) ∈ Dy(X(t),u(t)),
X(t +1) ∈X , and thus, ΣF is well-defined over X .

According to Lemma 8.10, any sequence (Xt)t≥0 of belief sets of Σ with respect to inputs
(u(t))t≥0 and outputs (y(t))t≥0 must be the trajectory of ΣF with X(0) = X0 corresponding to the
same inputs (u(t))t≥0 and the disturbance sequence dy(t) = y(t +1) for all t ≥ 0, and vice versa.
We define the safe set SF of ΣF by

SF := {(X ,u) | X ∈X ,X×{u} ⊆ Sxu}. (8.29)

Definition 8.7. For a system x+ = f (x,u,d) with state-input-dependent disturbance set d ∈ D(x,u),
a set C is an RCIS of this system with respect to a safe set Sxu if for all x ∈C, there exists u such
that (x,u) ∈ Sxu and f (x,u,D(x,u))⊆C. Given an RCIS of the system, its admissible input set at
state x is defined by A (x,C) := {u | (x,u) ∈ Sxu, f (x,u,D(x,u))⊆C}.
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Definition 8.7 extends Definition 2.3 for systems with state-input-dependent disturbance, such as
ΣF . Let Cmax be the maximal RCIS of ΣF with respect to SF . The following theorem reveals the
relation between Cmax and the maximal winning set Wmax in Problem 8.3.

Theorem 8.11. Given a system (Σ,h) with output function h, safe set Sxu, and a collection X0 of

initial belief sets, the maximal winning set Wmax is equal to the intersection of X0 and the maximal

RCIS Cmax of ΣF with respect to SF . That is, Wmax = Cmax ∩X0. Furthermore, any controller

u : X → Rm satisfying u(X) ∈A (X ,Cmax) for all X ∈ Cmax is safe with respect to any X0 ∈Wmax.

Proof. Pick any X0 ∈ Cmax∩X0. By the definition of Cmax, there exists a controller u : X → Rm

satisfying that for all X ∈ Cmax, u(X) ∈A (X ,Cmax). Therefore, all feasible state-input trajectories
(X(t),u(t))t≥0 of ΣF from X(0) = X0 under the control of u stay within SF indefinitely, implying
that u is a safe controller of (Σ,h) with respect to X0. Thus, X0 ∈Wmax. Since X0 is picked arbitrarily
from Cmax∩X0, Cmax∩X0 ⊆Wmax.

Next, pick an arbitrary X0 ∈ Wmax. There exists a safe controller u : X → Rm with respect
to X0. From the definition of safe controller, it can be shown that any closed-loop trajectory of
ΣF from X0 under the control of u stays within SF indefinitely, implying that X0 ∈ Cmax. Thus,
Wmax ⊆ Cmax.

According to Theorem 8.11, the maximal winning set of the output-feedback safety control
problem is exactly Cmax∩X0. In other words, to solve Problem 8.3, one only needs to find the
maximal RCIS of ΣF with respect to SF . Since the system ΣF is a set dynamics, its maximal RCIS
is in general challenging to compute. However, in the next part of this subsection, we show that
when restricting to the system (Σp,h) defined in Section 8.3.1.3, the corresponding set dynamics
can be converted into a finite-dimensional nonlinear system, whose maximal RCIS can be more
efficiently computed.

8.3.2.2 Efficient Computation for Systems with Uncertain Preview

Consider the p-augmented Σp with output function h, safe set Sxu,p, and the collection X0 of initial
belief sets in Section 8.3.1.3. We denote the system ΣF in (8.28) and the safe set SF in (8.29) defined
with respect to (Σp,h), Sxu,p, and X0 by ΣF,p and SF,p. The reminder of this subsection focuses on
the computation of the maximal RCIS of ΣF,p with respect to SF,p, denoted by Cmax,p.

Definition 8.8. Consider two discrete-time systems Σx : x+ = f (x,u,d) and Σz : z+ = g(z,u,w)

with states x ∈ X and z ∈ Z, input u ∈U , and disturbances d ∈D(x,u), and w ∈W (z,u). The system
Σx emulates the system Σz if there exists a surjective function τ : X → Z such that for all x ∈ X and
u ∈U , τ( f (x,u,D(x,u))) = g(τ(x),u,W (τ(x),u)).
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Lemma 8.12. For two systems Σx and Σz as in Definition 8.8, suppose that Σx emulates Σz. Then,
the maximal RCIS Cmax,z of the system Σz with respect to a safe set Szu is equal to τ(Cmax,x), where
Cmax,x is the maximal RCIS of the system Σx with respect to the safe set Sxu := {(x,u) | (τ(x),u) ∈
Szu}.

Proof. First, we want to show that τ(Cmax,x) is an RCIS of Σz with respect to Szu. Let z ∈ τ(Cmax,x).
Then, there exists (x,u) ∈ Sxu such that x ∈Cmax,x, τ(x) = z, and f (x,u,D(x,u))⊆Cmax,x. Since Σx

emulates Σz, we have g(τ(x),u,W (τ(x),u)) = τ( f (x,u,D(x,u)))⊆ τ(Cmax,x). By the definition of
Sxu, (x,u) ∈ Sxu implies (z,u) = (τ(x),u) ∈ Szu. Thus, τ(Cmax,x) is an RCIS of Σz with respect to
Szu, and thereby, τ(Cmax,x)⊆Cmax,z.

Second, let x ∈ τ−1(Cmax,z). Then, τ(x) ∈ Cmax,z, and there exists u such that
g(τ(x),u,W (τ(x),u))⊆Cmax,z. Since Σx emulates Σz,

f (x,u,D(x,u))⊆ τ
−1(τ( f (x,u,D(x,u)))) = τ

−1(g(τ(x),u,W (τ(x),u)))⊆ τ
−1(Cmax,z).

Also, since (τ(x),u)∈ Szu, (x,u)∈ Sxu by definition. Thus, τ−1(Cmax,z) is an RCIS of Σx with respect
to Sxu, and thus, τ−1(Cmax,z)⊆Cmax,x. Since τ is surjective, τ(τ−1(Cmax,z)) =Cmax,z ⊆ τ(Cmax,x),
which completes the proof.

Recall that we want to compute the maximal RCIS Cmax,p of the set dynamics ΣF,p. According
to Lemma 8.12, if we can find an auxiliary system Σaux that emulates ΣF,p, then the maximal RCIS
of ΣF,p can be obtained from the maximal RCIS of the auxiliary system. Next, we show how to
construct such an auxiliary system.

First, note that due to the nilpotent structure in the dynamics of Σp corresponding to the states d1:p

and the specific output function h, the belief set Xt at time t only depend on x(t), {d̂k(t +1−k)}p
k=1

(p measurements of d1(t)), {d̂k(t +2− k)}p
k=2 ((p−1) measurements of d2(t)), ..., d̂p(t) (the first

measurement of dp(t)). Specifically, we have

Xt = {x(t)}×
p⋂

k=1

h−1
k (d̂k(t +1− k))×·· ·×

p⋂
k= j

h−1
k (d̂k(t + j− k))×·· ·×h−1

p (d̂p(t)). (8.30)

Comparing (8.27) and (8.30), it can be shown that Xt = X0 (thanks to Assumption 8.3) and
thus X = X0. Furthermore, by (8.30), each Xt ∈Xt = X can be uniquely determined by the
vector (x(t), d̂1,1:p(t), d̂2,2:p(t), · · · , d̂p,p(t)), where d̂ j,k(t) denotes d̂k(t + j− k), the (p+1− k) th
measurement of the state d j(t) of Σp (recall that the first measurement of d j(t) is d̂p(t + j− p)). We
denote the set of all feasible (x(t), d̂1,1:p(t), d̂2,2:p(t), · · · , d̂p,p(t)) by Ξ, that is,

Ξ = Rn× D̂1×·· ·× D̂p, (8.31)

157



where D̂ j :=
⋃

d∈D Π
p
k= jhk(d) is the set of all potential measurements d̂ j, j:p of a disturbance d ∈ D

obtained from the measurement functions h j:p. We define the function τ : Ξ→X by

τ(x, d̂1,1:p, · · · , d̂p,p) := {x}×∆1(d̂1,1:p)×·· ·×∆ j(d̂ j, j:p)×·· ·×∆p(d̂p,p), (8.32)

where ∆ j(d̂ j, j:p) :=
⋂p

k= j h−1
k (d̂ j,k) is the belief set of the state d j. Based on the previous discussion,

it can be shown that τ is surjective, that is, τ(Ξ) = X . Next, we define an auxiliary system Σaug

over Ξ by

Σaux :



x(t +1)
d̂1,1(t +1)

d̂1,2:p(t +1)
d̂2,2(t +1)

d̂2,3:p(t +1)
...

d̂p,p(t +1)


=



f (x(t),u(t),δ0(t))

δ1(t)

d̂2,2:p(t)

δ2(t)

d̂3,3:p(t)
...

δp(t)


, (8.33)

with the state ξ := (x, d̂1,1:p, · · · , d̂p,p) ∈ Ξ, input u ∈ Rm, and disturbances δ0:p ∈ Daux(ξ ) :=
∆1(d̂1,1:p)×Π

p−1
j=1 ∪ h j(∆ j+1(d̂ j+1, j+1:p))×∪hp(D). Recall that for a subset X of Rn, ∪h j(X)

denotes ∪x∈X h j(x).

Lemma 8.13. The system Σaux in (8.33) emulates the system ΣF,p.

Proof. According to Definition 8.8, we want to check that for all ξ ∈ Ξ, for all u ∈ Rm,

τ( faux(ξ ,u,Daux(ξ )) = fF,p(τ(ξ ),u,Dy,p(τ(ξ ),u)), (8.34)

where faux is dynamics function of Σaux (that is, RHS of (8.33) ), and fF,p is the dynamics function
of ΣF,p, and Dy,p is the disturbance set of ΣF,p (that is, Dy in (8.28) with respect to Σp and h).

First, by plugging the dynamics faux and the disturbance Daux into τ , it can be shown that

τ( faux(ξ ,u,Daux(ξ ))

= f (x,u,∆1(d̂1,1:p))×Π
p−1
j=1 ∆ j(∪h j(∆ j+1(d̂ j+1, j+1:p))×{d̂ j+1, j+1:p})×∆p(∪hp(D)). (8.35)

By the definition of ∆ j, it can be shown that

∆ j(∪h j(∆ j+1(d̂ j+1, j+1:p))×{d̂ j+1, j+1:p})

={h−1
j (d)∩∆ j+1(d̂ j+1, j+1:p) | d ∈ ∪h j(∆ j+1(d̂ j+1, j+1:p))} (8.36)
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Next, by definition,

Dy,p(τ(ξ ),u) = f (x,u,∆1(d̂1,1:p))×Π
p−1
j=1 ∪h j(∆ j+1(d̂ j+1, j+1:p))×∪hp(D). (8.37)

Thus,

fF,p(τ(ξ ),u,Dy,p(τ(ξ ),u))

={ fp(Xt ,u,D)∩h−1(y) | y ∈ Dy,p(τ(ξ ),u)} (8.38)

={{x+}×Π
p−1
j=1 (h

−1
j (d̂+

j )∩∆ j+1(d̂ j+1, j+1:p))×h−1
p (d̂+

p )) | (x+, d̂+
1:p) ∈ Dy,p(τ(ξ ),u)} (8.39)

= f (x,u,∆1(d̂1,1:p))×Π
p−1
j=1{h

−1
j (d)∩∆ j+1(d̂ j+1, j+1:p) | d ∈ ∪h j(∆ j+1(d̂ j+1, j+1:p))}×

∆p(∪hp(D)) (8.40)

= f (x,u,∆1(d̂1,1:p))×Π
p−1
j=1 ∆ j(∪h j(∆ j+1(d̂ j+1, j+1:p))×{d̂ j+1, j+1:p})×∆p(∪hp(D)) (8.41)

The last equality above is due to (8.36). Since (8.41) is the same as (8.35), we have proven the
equality in (8.34).

Theorem 8.14. The maximal winning set for the system Σ with p-step uncertain preview is equal to

τ(Cmax,aux), where the function τ is defined in (8.32), and the set Cmax,aux is the maximal RCIS of

Σaux with respect to the safe set {(ξ ,u) | τ(ξ ,u) ∈ SF,p}.

Proof. By Lemmas 8.12 and 8.13, τ(Cmax,aux) is the maximal RCIS of ΣF,p with respect to SF,p.
Then, by Theorem 8.11, the maximal winning set is equal to τ(Cmax,aux)∩X0 = τ(Cmax,aux), since
τ(Cmax,aux)⊆X = X0.

Thanks to Theorem 8.14, the solution to Problem 8.4 can be obtained by computing the maximal
RCIS Cmax,aux of the auxiliary system Σaux. Compared with the set dynamics ΣF,p, the auxiliary
system Σaux is of finite dimensions, and thus, its maximal RCIS can be approximated using existing
backward reachability toolboxes for nonlinear systems (such as [73]).

Remark 8.4. Since any belief set X ∈X can be represented by a finite-dimensional vector ξ ∈ Ξ,
output-feedback controllers for the p-augmented system Σp only require finite amount of memory.

8.3.3 Summary

In this section, we study the safety control problem for systems with uncertain preview. We
first characterize the solution to the safety control problem for an arbitrary system with output,
establishing a connection between the maximal winning set and the maximal RCIS of a set dynamics.
Subsequently, we show that when dealing specifically with systems with uncertain preview, the
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maximal winning set can be derived from the maximal RCIS of a finite-dimensional nonlinear
system, which can be approximately more efficiently than the maximal RCIS of the set dynamics.
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CHAPTER 9

Opportunistic Safety Outside the Maximal Controlled
Invariant Set

Constraints are ubiquitous in control tasks for safety-critical systems, such as lane keeping for
autonomous vehicles, overload protection in power systems, and obstacle avoidance for mobile
robots. The goal of safety control is to synthesize controllers that can guarantee a system operates
under its safety constraints indefinitely. Many methods have been developed over the years that
can provide such safety guarantees, such as viability theory [16], reference governors [41], safety
supervisory control [91, 112], robust control barrier function [53], and Hamilton-Jacobi reachability
[19]. A common property shared by those methods is that they all yield an RCIS of the system with
respect to the safety constraints.

Recall that there exists a unique maximal RCIS that contains all possible RCISs given some
safety constraints. Controllers synthesized by the aforementioned methods are defined only if the
system initially operates in the maximal RCIS, since otherwise the worst-case disturbance is able to
force the system to violate the safety constraints in finite time. However, in practice, the system may
be initialized outside the maximal RCIS or exit the maximal RCIS due to unexpected disturbances.
In those cases, the system may still operate safely and even re-enter the maximal RCIS, as long
as the disturbance is not completely adversarial (or to put it differently, the disturbance behaves
collaboratively to some extent). The core question here is how to synthesize controllers that can
seize the opportunity to keep the system safe when the disturbance is not entirely adversarial.
Apparently the aforementioned methods do not answer this question since they become undefined
outside the maximal RCIS.

Similar issues also arise in the field of reactive synthesis for finite transition systems and have
been addressed by recent works [6, 37]. The main idea there is that if a winning strategy robust to
all disturbances does not exist, one should pick a strategy at least as good as the other strategies in
terms of the amount of disturbances it can be robust to. These ideas are also applied in the context
of abstraction-based control [106] and finite-horizon constrained optimal control [39]. Inspired by
this line of work, in this chapter, we present a novel safety control framework that finds control

161



inputs that are safe against the largest possible disturbance set. Compared with the existing safety
control methods restricted by the maximal RCIS, our method has the following benefits:

• The proposed controller provides the same safety guarantees as the existing methods when
the system operates inside the maximal RCIS.

• When outside the maximal RCIS, the proposed controller is robustly safe against the largest
amount of disturbance within a predefined template set.

• The proposed controller is well-defined as long as a constraint violation is evitable with some
possible collaboration from the disturbance.

In addition, we show that the proposed controller can be synthesized by finding the maximal RCIS
(or its inner approximation) of an auxiliary system one dimension higher than the original system,
using a technique from [121]. Therefore, toolboxes developed for existing safety control methods
can be directly applied to synthesize the proposed controllers. Numerical examples show that our
method improve the safety of the system outside the maximal RCIS significantly.

Chapter Overview. In Section 9.1, we provide necessary definitions and the problem statement.
A solution to the proposed problem is presented in Section 9.2, followed by numerical examples in
Section 9.3 that illustrate the efficacy of our approach. We conclude our work in Section 9.4.

Notation. For two sets X and Y , f : X ⇒ Y denotes a set-valued function from X to Y . For
two sets X and Y , their set difference and symmetric set difference are denoted by X\Y and
X⊖Y := (X\Y )∪ (Y\X) respectively. For a function f : X → R, the infinity norm of f is denoted
by ∥ f∥∞ := supx∈X | f (x)|. For two functions f : X →Y and g : Y → Z, their composition is denoted
by g◦ f .

9.1 Problem Setup

We consider a discrete-time linear system Σ

Σ : x+ = Ax+Bu+Ed, (9.1)

with state x ∈ Rn, input u ∈ Rm, and disturbance d ∈ D⊆ Rl . The disturbance set D contains all
possible disturbances. Let Sxu denote the set of desired state-input pairs, which we call the safe set

of the system. We assume that both D and Sxu are convex polytopes, and moreover D is compact.
A disturbance model ∆ : Rn ⇒ D is a function that assigns a subset ∆(x) of D to each x ∈ Rn.

Given a disturbance model ∆, if the disturbance input satisfies the constraint d ∈ ∆(x) at each time
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step, we say the disturbance is generated by ∆. Given a controller u : Rn→ Rm and a disturbance
model ∆, the k-step forward reachable set Rk

Σ
(x0,u,∆) from the initial state x0 is defined recursively

by

Rk+1
Σ

(x0,u,∆) = {(x+,u(x+)) | ∃(x,u) ∈Rk
Σ(x0,u,∆),

x+ ∈ Ax+Bu+E∆(x)}, (9.2)

with R0
Σ
(x0,u,∆) = {(x0,u(x0))}. Intuitively, Rk

Σ
(x0,u,∆) contains all possible state-input pairs

reached at time k from x0 by the closed-loop system when the disturbance d is generated by ∆.

9.1.1 Robust Safety Control Framework

Given the system Σ, the safe set Sxu, and a disturbance model ∆, the robust safety control problem
tries to solve for the set of all the initial states x0 where there exists u : Rn→ Rm such that

Rk
Σ(x0,u,∆)⊆ Sxu, ∀k ≥ 0. (9.3)

Indeed, the maximal set of such initial states is called the maximal RCIS Cmax of Σ with respect
to Sxu and ∆. There is also an alternative characterization of the maximal RCIS Cmax: Given the
system Σ, the safe set Sxu, and a disturbance model ∆, a set C ⊆ Rn is an RCIS of Σ with respect to
Sxu and ∆ if for all x ∈C, there exists an input u such that (x,u) ∈ Sxu and Ax+Bu+E∆(x) ⊆C.
Then, the maximal RCIS Cmax is the union of all RCIS of Σ with respect to Sxu and ∆. Given an
RCIS C with respect to Sxu and ∆, the admissible input set A (x,C) at a state x is defined as

A (x,C) = {u | (x,u) ∈ Sxu, Ax+Bu+E∆(x)⊆C}. (9.4)

A controller u satisfies the condition in (9.3) for any initial state x0 ∈Cmax if and only if for all
x ∈Cmax,

u(x) ∈A (x,Cmax). (9.5)

Most of existing works on safety control consider a special case of the robust safety control
problem, which we denote as Problem 9.1, where the disturbance model ∆all is such that ∆all(x)=D

for all x∈Rn. We denote the corresponding maximal RCIS as Cmax,1 [20]. As an application of (9.5),
if a reference controller ure f is given, a robust safety supervisor u that satisfies (9.3) with respect to
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∆all for all x0 ∈Cmax,1 can be synthesized by minimally modifying the reference controller,

u(x) = min
u∈A (x,Cmax,1)

∥u−ure f (x)∥2
2, ∀x ∈Cmax,1. (9.6)

Note that the robust safety supervisor in (9.6) is not defined for states outside Cmax,1. In particular,
the admissible input set A (x,Cmax,1) is empty for any x ̸∈Cmax,1. This is not problematic if the
system starts from Cmax,1 and the disturbance is always in D, ensuring that the system stays in
Cmax,1 indefinitely. But those assumptions may be unreliable in practice, potentially causing an
inadvertent exit from Cmax,1. As a result, the safety control framework described in this subsection
is exceedingly susceptible to potential violations of those assumptions.

9.1.2 An Opportunistic Safety Control Problem

Let D be a collection of Borel subsets of the disturbance set D, with D ∈ D . We call D the
disturbance template set. For a given controller u and an initial state x0, let P(u,x0) be the
collection of disturbance models ∆ : Rn→D for which the safety specification in (9.3) is satisfied,
that is

P(u,x0) := {∆ : Rn→D |Rk
Σ(x,u,∆)⊆ Sxu,∀k ≥ 0}.

We further define P(x0) := ∪uP(u,x0), that is the set of disturbance models a controller can
possibly be robust to when the system starts at x0.

With these new notations, Problem 9.1 can be rephrased as finding u such that the worst-case
disturbance model ∆all is in P(u,x0) for a given x0. Note that ∆all is the worst-case disturbance
model in the sense that if the safety specification in (9.3) is satisfied for ∆all , it is satisfied for any
∆ : Rn→D with respect to the same x0 and u. Then, it is clear that when ∆all is not contained by
P(x0) (that is when x0 ̸∈Cmax,1), Problem 9.1 has no solutions. Apparently, a better strategy is to
find a controller u robust to the worst-case disturbance model available in P(x0) (if ∆all is not)1.
In this case, we synthesize a controller that is doing its best to keep the system within the safety
constraints, as long as P(x0) is nonempty.

To formalize this idea, we need to identify the worst-case disturbance model in P(x0). Here we
use a simple criterion. Let µ be a Borel measure on D. For any disturbance models ∆1 and ∆2, we
define γ(∆1,∆2)(x) := supx∈Rn |µ(∆1(x)⊖∆2(x))|. This function γ is a pseudometric in the space
of disturbance models, measuring the distance between two disturbance models. Then, since we
know ∆all is the worst-case disturbance model among all disturbance models, we simply consider a
nearest point in P(x0) to ∆all with respect to γ as a worst-case disturbance model in P(x0). As

1Under the partial order given by ∆1 ≤ ∆2 iff ∆1(x)⊆ ∆2(x),∀x∈Rn, it can be shown that ∆all is the unique maximal
element in the set of disturbance models, and P(u,x) is a lower set with respect to this partial order. Thus, being safe
against one disturbance model ∆ ∈P(x0) implies being safe against all disturbance models less than ∆.
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a result, finding a controller robust to a worst-case disturbance model in P(x0) is equivalent to
finding u that minimizes the distance γ(P(u,x0),∆all) := inf∆∈P(u,x0) γ(∆,∆all) between the set
P(u,x0) and ∆all (by default γ(P(u,x0),∆all) = +∞ if P(u,x0) is empty). Based on the above
discussion, we pose an opportunistic safety control problem.

Problem 9.2. Given the system Σ with its safe set Sxu, synthesize a controller u∗ : Rn→ Rm such

that

(i) ∆all ∈P(u∗,x) for x ∈Cmax,1;

(ii) u∗ minimizes2 the distance between P(·,x) and ∆all with respect to the pseudometric γ

for x ̸∈Cmax,1.

Point (i) above assures that any solution u∗ to Problem 9.2 provides safety guarantees as strong
as that to Problem 9.1 when the system operates in the maximal RCIS Cmax,1. When outside Cmax,1,
point (ii) assures that u∗ provides extra robustness guarantees compared with solutions to Problem
9.1. Besides, if Cmax,1 is empty, Problem 9.1 has no solution, but a solution u∗ to Problem 9.2 may
still exist.

Remark 9.1. The conservativeness and computational tractability of the solutions u∗ to Problem 9.2
depend on the measure µ over D and the disturbance template set D . A trivial choice is D = {D},
under which Problem 9.2 degrades to Problem 9.1 .

9.2 Construction of u∗

In this section, we show how to construct a solution u∗ to Problem 9.2. As noted in Remark 9.1, we
need to first specify the measure µ and the disturbance template set D . We choose the measure µ to
be the Lebesgue measure on Rl but restrict it to D. We assume that µ(D)> 0 3. The disturbance
template set is chosen to be

D = {ud +αD | ud ∈ (1−α)D, α ∈ [0,1]}. (9.7)

That is, the disturbance template set D contains all the subsets of D that have the same shape as D.
This collection of disturbance sets is rich enough since it contains uncountably many subsets of D

scaled to different sizes and positioned at various places, as demonstrated in Fig. 9.1a. At the same
time, D is simple enough for constructing u∗, which is shown next.

2Point (ii) does not necessarily imply point (i) since γ(P(u,x),∆all) = 0 does not imply ∆all ∈P(u,x) (unless
P(u,x) is closed).

3Otherwise, D lies in a subspace of Rl , which implies we should lower l.
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(a) D and ud +αD (b) Cmax,α and Cmax,[0,1]

Figure 9.1: Demonstration of the disturbance template set D in (9.7) and the maximal RCIS Cmax,α
of Σα .

For each α ∈ [0,1], we define an auxiliary system Σα

Σα : x+ = Ax+Bu+E(ud +d), (9.8)

with A, B, and E the same as in (9.1), and ud , d ∈ Rl . In addition to u, we introduce a new control
input ud . The maximal RCIS of Σα with respect to the safe set Sxu,α := Sxu× (1−α)D and the
disturbance model ∆α := α∆all is denoted by Cmax,α .

Intuitively, in Σα , we split the disturbance input in Σ into two parts, namely that ud ∈ (1−α)D

and d ∈ αD, and turn ud into a control input. When α = 1, Cmax,α is just the maximal RCIS Cmax,1

of Σ with respect to Sxu and ∆all defined in Section 9.1.1. As α goes to 0, Σα has more control
power and less uncertainty, and thus Cmax,α monotonically expands as α goes to 0, as demonstrated
in Fig. 9.1b . When α = 0, we have full control of the disturbances in D. Hence for any initial state
x0 not in Cmax,0, we cannot find a controller and a disturbance model such that (9.3) is satisfied. In
other words, P(x0) is empty if and only if x ̸∈Cmax,0. The following theorem draws a connection
between Cmax,α and solutions u∗ to Problem 9.2.

Theorem 9.1. For any state x ∈Cmax,0, let α∗(x) be the maximal α ∈ [0,1] such that x ∈Cmax,α .

Then, a controller u∗ is a solution to Problem 9.2 if and only if for all x ∈Cmax,0, there exists ud ∈Rl

such that

(u∗(x),ud) ∈A (x,Cmax,α∗(x)), (9.9)
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where A (x,Cmax,α∗(x)) is the admissible input set of the system Σα with respect to Sxu,α and ∆α ,

with α = α∗(x). In addition, the distance between P(u∗,x) and ∆all satisfies

γ(P(u∗,x),∆all) =

(1−α∗(x)l)µ(D) x ∈Cmax,0,

+∞ o.w.
(9.10)

The proof of Theorem 9.1 is in the appendix. Intuitively, if a state x is in Cmax,α , we can find
u : Rn→ Rm and ud : Rn→ Rl such that the disturbance model ud +∆α is in P(u,x). It can be
shown that by taking α = α∗(x), ud +∆α is actually a worst-case disturbance model in P(x0) and
is contained by P(u∗,x) for any u∗ satisfying (9.9). Furthermore, when α∗(x) = 1, ud +∆α = ∆all .
Thus, both points in Problem 9.2 are fulfilled by u∗. Applying Theorem 9.1, given a reference
controller ure f , we propose an opportunistic safety supervisor

u(x) = min
(u,ud)∈A (x,Cmax,α∗(x))

∥u−ure f (x)∥2
2 (9.11)

This opportunistic safety supervisor is defined over Cmax,0, larger than the domain Cmax,1 of the
robust safety supervisor in (9.6). Recall that when x0 is not in Cmax,0, it becomes inevitable to
violate the safety constraints no matter what the controller and the disturbance do. The opportunistic
safety supervisor becomes undefined only in this extreme case.

Remark 9.2. Our results also hold for Problem 9.2 with discretized α: Let αi for i from 0 to N be
an increasing sequence of scalars such that 0 = α0 < α1 < · · ·< αN = 1. Let

D = {ud +αiD | ud ∈ (1−αi)D, i ∈ {0, · · · ,N}}. (9.12)

We redefine α∗(x) to be the maximal αi such that x ∈ Cmax,αi . Theorem 9.1 with this redefined
α∗(x) holds for the disturbance set D in (9.12). The only benefit for using D in (9.12) instead of
(9.7) is that to construct u∗, we only need Cmax,α for finitely many α (versus a continuum of α in
[0,1]).

9.2.1 The One-shot Computation of Cmax,α

In this subsection, we show how to compute Cmax,α for all α ∈ [0,1] in one shot. Consider a new
auxiliary system Σ[0,1]

Σ[0,1] :

[
x+

α+

]
=

[
Ax+Bu+E(ud +d)

α

]
, (9.13)
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where we introduce a new state α ∈ [0,1] and a new control input ud ∈ Rl . Define the safe set
Sxu,[0,1] of Σ[0,1] by

Sxu,[0,1] = {(x,α,u,ud) |(x,u,ud) ∈ Sxu,α ,α ∈ [0,1]}. (9.14)

Let ∆[0,1] be the disturbance model such that ∆[0,1](x,α) = αD for all (x,α) ∈ Rn× [0,1]. We
denote the maximal RCIS of Σ[0,1] with respect to Sxu,[0,1] and ∆[0,1] by Cmax,[0,1]. Since Sxu and D

are both polytopes, it can be shown that Sxu,[0,1] is a polytope and the maximal RCIS Cmax,[0,1] can
be approximated by the standard iterative method [20]. The implementation details of this method
are outlined in [91, 121]. Once we have Cmax,[0,1], Cmax,α ′ is just equal to the slice of Cmax,[0,1]

through α = α ′, for any α ′ ∈ [0,1], as shown in Fig. 9.1b. Furthermore, given Cmax,[0,1] and x, the
value α∗(x) can be easily obtained by solving a linear program:

α
∗(x) = max

α∈[0,1]
α

s.t. (x,α) ∈Cmax,[0,1].

(9.15)

Remark 9.3 (Computational cost). Compared with the robust safety control framework, our method
needs to compute the maximal RCIS Cmax,[0,1] for a system with one additional state α ∈ R and one
extra control input ud ∈ Rl (cf., (9.13) vs. (9.1)) and thus has a higher offline computational cost.

At runtime, given the current state x and Cmax,[0,1], we first solve the linear program in (9.15) to
check if x∈Cmax,0 and find α∗(x), and then solve the quadratic program in (9.11). For a comparison,
the robust safety control framework solves one linear program to check if x ∈Cmax,1 and then solve
the quadratic program in (9.6). The runtime computational cost of the two frameworks should be
similar.

Remark 9.4. If the maximal RCIS Cmax,[0,1] cannot be computed exactly, one can use any controlled
invariant inner approximation of Cmax,[0,1] in (9.11), with the cost of extra conservativeness.

9.3 Numerical Examples

The maximal RCISs Cmax,[0,1] in the examples are computed using MPT3 [48] equipped with
GUROBI [44] in MATLAB. The code and video can be accessed from https://ozay-group.

github.io/OppSafe/.
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9.3.1 Adaptive Cruise Control

We consider the car-following example in [69]. The goal is to maintain the relative distance ∆s

and the relative velocity ∆v between the ego vehicle and the front vehicle within a safe range. The
system is modeled by a discretized double integrator with states x = (∆s,∆v). The model parameters
can be found in [69]. The control input and the disturbance are the acceleration u of the ego vehicle
and the acceleration d ∈ [−dmax,dmax] of the front vehicle respectively. The safe set is given by
|∆s−15| ≤ 5, |∆v| ≤ 5, and |u| ≤ 2.

The reference controller ure f = 0.2842∆s+ 0.8056∆v, with a saturation limit at ±2. We im-
plemented the robust and the opportunistic safety supervisors in (9.6) and (9.11) and the safety
protection and extension governor outlined in Section V of [69], assuming dmax = 1. To evaluate
those three safety supervisors at states with different values of α∗(x), we generated 10 groups X0,i

of initial states, where X0,i contains 1000 states uniformly sampled in Cmax,0.1∗(i−1)\Cmax,0.1∗i for
i from 1 to 10. That is, each x0 ∈X0,i has α∗(x0) between 0.1(i− 1) and 0.1i. Note that X0,i

is disjoint from the maximal RCIS Cmax,1 for all i, since we want to evaluate how the controllers
perform outside the maximal RCIS.

For each initial state x0 in X0,i, we generate a random disturbance sequence from a uniform
distribution in the interval [−dmax,dmax] and then run simulations for each safety supervisor for 500
steps. During the simulation, if a safety supervisor becomes undefined, we switch to the reference
controller. Thus, for each group index i and dmax, we have 1000 trajectories starting from X0,i

under each safety supervisor. We evaluate the performance with two metrics: the average exit time

the system first exits the safe set (taken to be 500 when the system never exits Sxu), and the safety

rate, the ratio of trajectories remaining in Sxu through the entire simulation period out of a total
of 1000 trajectories. The average exit time and the safety rates of the three safety supervisors for
dmax = 1 and 1.05 are shown in Fig. 9.2. First note that both metrics of all the safety supervisors
grow with the group index i. This is expected since the initial states with a higher value of α∗(x)

have worst-case disturbances in P(x0) closer to ∆all and thus are easier to be kept within the safe
set. Comparing curves in different colors in Fig. 9.2, we observe that the performance of the safety
supervisors degrade as the disturbances is sampled in a range larger than the assumed one. Finally,
comparing curves in the same color, we observe that the proposed safety supervisor outperforms the
safety supervisors in (9.6) and in [69] in both metrics for all groups of initial states and all dmax. In
particular, when unexpected disturbances appear (by increasing dmax from 1 to 1.05), the proposed
safety supervisor has much larger average exit time than the other two, as shown in Fig.9.2a, and
is the only one among the three that has nonzero safety rates, as shown in Fig. 9.2b, showing that
the proposed method enhances the safety of the system significantly when the system operates
outside the maximal RCIS. Similar results are observed when we repeat this experiment with
disturbances generated by nonuniform distributions, suggesting that our approach works well across
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(a) Average exit time (b) Safety rate

Figure 9.2: The average exit time and safety rates of the safety supervisors in (9.6) (robust) and
(9.11) (opportunistic), and the safety governor in [69] in the adaptive cruise control example.

different disturbance distributions. We omit the results for these other experiments but the code for
reproducing them is available in our code repository.

9.3.2 Lane Keeping Control

We consider a highway driving scenario where we want to keep the lateral position of a vehicle
within given lane boundaries. We use the 4-dimensional linearized bicycle model in [112] with
respect to the constant longitudinal velocity 30m/s, discretized with time step 0.1s. The states are
the lateral displacement y, the lateral velocity v, the yaw angle ∆Ψ, and the yaw rate r. The control
input is the steering angle u. The safe set is given by constraints |y| ≤ 0.9, |v| ≤ 1.2, |∆Ψ| ≤ 0.05,
|r| ≤ 0.3, and |u| ≤ π/2. The disturbance of the system is the road curvature d with |d| ≤ dmax.

The reference controller ure f is ure f =−Kx subject to a saturation limit at ±π/2, where K is
determined through solving an LQR problem (with Q = I and R = 0). Then, we implement the
proposed safety supervisor in (9.11) and the robust safety supervisor in (9.6), assuming dmax = 0.08.
For this example, our implementation of the approach in Section V of [69] fails to find a nonempty
RCIS and thus its simulation results are omitted. We assess the safety supervisors in the same
manner as in Section 9.3.1. Fig. 9.3 illustrates the average exit time and the safety rate for both
safety supervisors under simulations with dmax = 0.08, 0.12, and 0.16. Similar to the previous
example, the performance of the safety supervisors is improved as the initial states have a higher
value of α∗(x), and degrades as the disturbance range used in the simulation exceeds that used in
control synthesis. Comparing curves in the same color in Fig. 9.3 , the proposed safety supervisor
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(a) Average exit time (b) Safety rate

Figure 9.3: The average exit time and the safety rate of the robust safety supervisor in (9.6) and the
opportunistic safety supervisor in (9.11) in the lane keeping example.

consistently outperforms the robust safety supervisor across all groups of initial states and all dmax.
Notably, the performance of our approach at dmax = 0.12 (50% larger than the assumed dmax) is
even better than the performance of the robust safety supervisor at dmax = 0.08, highlighting its
enhanced safety and resilience to unexpected disturbances when the system operates beyond the
maximal RCIS Cmax,1.

9.3.3 Safe Tracking for Aerial Vehicle

We tested our approach on the drone platform Crazyflie 2.1 in a task of cruising around designated
waypoints in the horizontal plane while avoiding entering hazardous region (red region in Fig.
9.4). We use a built-in controller to keep the altitude of the drone constant, and then control its
horizontal motion by sending the reference velocities ux and uy in the x, y axes to a lower-level
controller in the period of 0.1s. Validated by the flight data, the drone dynamics in x and y axes
under the lower-level controller are decoupled, homogeneous, and linear. Thus, we model the
dynamics in x and y by two identical 3-dimensional linear systems with states sx = (x,vx,ux,−1) (or
sy = (y,vy,uy,−1), respectively), where x and vx are the position and velocity in x axis, and ux,−1 is
the previous reference velocity ux. The system matrices are learned from data via least square with
the disturbance set the convex hull of the prediction error. The safe set of Σx is given by constraints
|x| ≤ 1, |vx| ≤ 1, |ux| ≤ 1, and |ux,−1−ux| ≤ 0.5. The setup for the system in y axis is the same.

We synthesize one reference tracking controller for each subsystem in form of ure f ,∗ =−K(s∗−
sre f ,∗) (∗ is a placeholder for x or y) subject to a saturation limit of ±1, where K is determined
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(a) No measurement noise
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(b) With measurement noise

Figure 9.4: The drone trajectories in x-y plane under the safety supervisors in (9.6) (yellow-red) and
(9.11) (blue-dark blue). The color of the curves reflects the value of α∗(x) along the trajectories.

through solving a LQR problem (with Q = 3I and R = I). We then implement the safety supervisors
in (9.6) and (9.11) to supervise ure f ,∗. For the experiments, we pick 24 waypoints to form a big “M”,
as shown by the checkmarks in Figure 9.4. Part of the waypoints is picked outside the safe region
such that the reference controller without any supervision would steer the drone to the unsafe region.
During the experiments, we switch to the reference controller whenever the safety supervisor is
undefined. Since the drone is initialized within Cmax,1, both safety supervisors are able to maintain
the drone within the safe region, as shown by Fig. 9.4a. To make this task more challenging,
we repeat this experiment with the state measurements corrupted by an additional Gaussian noise
with standard deviation 0.05. Subject to this unexpected measurement noise, our opportunistic
safety supervisor still successfully keeps the drone within the safe region, while the robust safety
supervisor in (9.6) fails as shown in Fig. 9.4b.

9.4 Conclusion

In this chapter, we present an opportunistic safety control framework that extends the domain of
safety controllers beyond the maximal RCIS. This is achieved by designing a controller that is
robustly safe against as much disturbance as possible. Our approach can be trivially extended for
nonlinear systems, which we consider in future. We also want to extend these results to probabilistic
settings, by using a given or learned probability measure µ instead of the Lebesgue measure used in
this chapter.
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CHAPTER 10

Summary and Outlook

10.1 Summary

This dissertation addresses challenging safety control problems for discrete-time systems, by
leveraging inherent structures in system dynamics, controllers, and disturbances.

The first part of the dissertation develops scalable safety controller synthesis algorithms. It first
analyzes the convergence properties of the inside-out algorithm for computing inner approximations
of the maximal RCIS. Then, efficient methods for computing implicit RCISs are introduced, making
use of an eventually periodic or automaton-based structure in control. Compared with existing
methods of computing implicit RCIS, our approach does not need a “seed” RCIS, and provide
weak completeness and performance guarantees. Lastly, we reveal a key structural property of the
maximal RCIS of input-delayed systems. Based on this property, we propose an efficient method
for computing the maximal RCIS of input-delayed systems that scales well with delay time.

The second part of this dissertation focuses on reducing conservativeness in safety control by
utilizing the structure of disturbance, particularly preview information on disturbance. We introduce
the concept of safety regret, which measures the incremental value of preview information in
safety control. Then we prove the exponential convergence of safety regret with preview horizon
for discrete-time linear systems and provides numerical algorithms to estimate the convergence
rate. For three classes of systems with preview, we develop efficient methods for computing the
maximal RCIS for systems with preview, by exploiting the structural properties in the system model.
Finally, we propose the opportunistic safety control framework that works both inside and outside
the maximal RCIS without relying on preview information. By steering the system against the
worst-case disturbance that can be tolerant at each state, this opportunistic safety control framework
outperforms the existing safety control frameworks in experiments, and shows great resilience to
unexpected disturbance.

173



10.2 Future Work

In this section, we discuss a few research directions that extend the works presented in this
dissertation.

10.2.1 Safety Control for Systems with Uncertain Preview

In Section 8.3, we study the safety control problem for systems with uncertain preview. While we
have shown that the maximal winning set for such a problem can be derived from the maximal RCIS
of a finite-dimensional auxiliary system, the computational cost for approximating this maximal
RCIS can be high due to the nonlinearity and the high dimensionality of the auxiliary system. It
would be of interest to develop approaches that can efficiently approximate the maximal winning
set, and moreover, synthesize safe controllers for systems with uncertain preview.

10.2.2 Opportunistic Safety for Nonlinear Systems

In Chapter 9, we propose the opportunistic safety control framework for discrete-time linear systems.
It is straightforward to extend this approach for nonlinear systems either in continuous time or
discrete time. The main challenge in these extensions is how to approximate the maximal RCIS
Cmax,[0,1] of the auxiliary system Σ[0,1] in (9.13), which would be a nonlinear system with state-
dependent disturbance constraints. One potential solution is to use existing toolboxes such as
helperOC [19] for continuous-time systems and ROCS [73] for discrete-time systems. Furthermore,
our current framework does not utilize any statistics regarding the disturbance. Another interesting
research direction is to investigate how to incorporate disturbance statistics into our framework
when they are available.

10.2.3 Safety Control for Nonlinear Systems Based on Koopman Operator
Theory

The safety control methods presented in this dissertation are mainly developed for discrete-time
linear systems, limiting their applicability. Recent results in applied Koopman operator theory have
shown that many nonlinear control systems can be approximated well by high-dimensional linear
systems via a nonlinear lifting function [60, 61, 87]. This high-dimensional linear representation
of a nonlinear system allows one to use methods developed for linear systems, such as LQR or
linear MPC, to control nonlinear systems. However, there are few works that combine Koopman
operation theory with safety control. The main challenge is that many safety control methods are
developed for linear systems with polytopic constraints, but the lifting function that maps states
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of the nonlinear system to states of its linear representation is typically nonlinear and does not
preserve linear inequality constraints. Our recent work [18] shows that if the lifting function has
a linear left inverse, we can map polytopic constraints on the nonlinear system to some polytopic
constraints on its linear representation, enabling efficient BRS computation for nonlinear systems.
However, experiments in [18] also show that the conservativeness of the resulting BRS highly
depends on the choice of the lifting function. One open research problem is how to design or learn
a lifting function that can systematically reduce the conservativeness in BRS computation. Another
interesting research direction is to investigate if we can compute RCIS for nonlinear systems using
similar ideas.
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APPENDIX A

Complementary Materials for Chapter 3

A.1 On the existence of stationary points

The work [27, Theorem 12] considers disturbance-free systems with decoupled safe set Sxu = X×U

for a convex compact X ⊆ Rn and a closed convex U ⊆ Rm. To apply [27, Theorem 12] to our
setting, given the system Σ of the form (3.1), we construct the disturbance-free system Σ′:[

x(t +1)
u(t +1)

]
=

[
A B

0 0

][
x(t)

u(t)

]
+

[
0
I

]
v1(t)+

[
E

0

]
v2(t), (A.1)

where (x,u) is the state and v1, v2 are two inputs of the system Σ′. Given a compact convex RCIS
C0 of Σ in Sxu, construct the set C′0 as

C′0 = {(x,u) ∈ Sxu | x ∈C0,∃d ∈ D,Ax+Bu+Ed ∈C0}. (A.2)

It is easy to check that C′0 is a compact convex controlled invariant set[27] of the system Σ′ in the
decoupled safe set Sxu×Rm×D. Then, by [27, Theorem 12], there exists (xe,ue) ∈C′0, v1,e ∈ Rm

and v2,e ∈ D such that [
xe

ue

]
=

[
A B

0 0

][
xe

ue

]
+

[
0
I

]
v1,e +

[
E

0

]
v2,e. (A.3)

Define de = v2,e. By (A.3), xe = Axe +Bue +Ede. By construction of C′0, we have xe ∈ C0 and
(xe,ue) ∈ Sxu.

A.2 Proofs of Theorems 3.2-3.5

The following lemmas reveal properties of the BRS, which are crucial for proving Theorems 3.2-3.5.
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Lemma A.1. For a linear system Σ in form of (3.1),

PreΣ(X1 +X2,Sxu,1 +Sxu,2,D1 +D2)⊇ PreΣ(X1,Sxu,1,D1)+PreΣ(X2,Sxu,2,D2). (A.4)

Proof. Let xi ∈ PreΣ(Xi,Sxu,i,Di) for i = 1,2. Then, there exists ui such that (xi,ui) ∈ Sxu,i and
Axi +Bui +EDi ⊆ Xi, for i = 1,2. Thus, we have

(x1,u1)+(x2,u2) ∈ Sxu,1 +Sxu,2 (A.5)

A(x1 + x2)+B(u1 +u2)+ED1 +ED2 ⊆ X1 +X2. (A.6)

Thus, x1 + x2 ∈ PreΣ(X1 +X2,Sxu,1 +Sxu,2,D1 +D2).

Lemma A.2. For a linear system Σ in form of (3.1), if X , Sxu and D are convex, then for any a∈ [0,1],
b ∈ [0,1] and k ≥ 1, we have

Prek
Σ(X ,Sxu,D)⊇ Prek

Σ(aX ,bSxu,bD)+Prek
Σ((1−a)X ,(1−b)Sxu,(1−b)D).

Proof. For any convex set C, C = αC+(1−α)C for any α ∈ [0,1]. Thus, by Lemma A.1,

PreΣ(X ,Sxu,D)⊇PreΣ(aX ,bSxu,bD)+PreΣ((1−a)X ,(1−b)Sxu,(1−b)D).

Now assume that (A.7) holds for k = N−1. By applying Lemma A.1 again, it can be easily proven
that (A.7) holds for k = N. Thus, by induction that (A.7) holds for all k.

Lemma A.3. For a linear system Σ in form of (3.1) and any a≥ 0,

PreΣ(aX ,aSxu,aD) = aPreΣ(X ,Sxu,D). (A.7)

Proof. Let x ∈ PreΣ(X ,Sxu,D). Then, there exists u such that (x,u) ∈ Sxu and Ax+Bu+ED⊆ X .
Thus, (ax,au) ∈ aSxu and Aax+Bau+ aED ⊆ aX . That is, ax ∈ PreΣ(aX ,aSxu,aD). Therefore,
aPreΣ(X ,Sxu,D)⊆ PreΣ(aX ,aSxu,aD).

Next, let ax ∈ PreΣ(aX ,aSxu,aD). Then, there exists au such that (ax,au) ∈ aSxu and Aax+

Bau+aED⊆ aX . Thus, (x,u)∈ Sxu and Ax+Bu+ED⊆X . That is, x∈PreΣ(X ,Sxu,D). Therefore,
PreΣ(aX ,aSxu,aD)⊆ aPreΣ(X ,Sxu,D).

Lemma A.4. Let {Ci}∞
i=0 be an expanding family of nonempty compact convex set. That is, Ci ⊆C j

for any i, j such that i≤ j. Suppose that int(Ci) ̸= /0 for all i≥ i0 for some i0 ≥ 0, and C∞ = ∪∞
i=0Ci

is bounded. Then, for any closed set U ⊆ int(C∞), there exists i such that Ci ⊇U .
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Proof. Without loss of generality, we assume i0 = 0. Since Ci is convex and compact, it is easy to
check that cl(int(Ci)) =Ci.

Define C̃∞ = limk→∞∪k
i=0int(Ci). Thus, C̃∞ is an open convex set. Note that

cl(C∞)⊇ cl(C̃∞)⊇ cl(int(Ci)) =Ci,∀i≥ 0. (A.8)

Thus,

cl(C∞)⊇ cl(C̃∞)⊇ lim
k→∞
∪k

i=0Ci =C∞. (A.9)

Thus, cl(C∞) is the closure of C̃∞. By convexity of C∞, C̃∞ is the interior of cl(C∞), and also the
interior of C∞.

Next, let U be a closed subset of int(C∞) = C̃∞. Since C∞ is bounded, U is compact. Also, since
U ⊆ C̃∞ = ∪∞

i=0int(Ci), {int(Ci)}∞
i=0 forms a open cover of U . By compactness, there exists a finite

subcover {Cik}K
k=0 of U for some K ≥ 0. Then, U ⊆ int(CiK).

Lemma A.5. Let X be a nonempty compact convex set in Rn. Under Assumption 3.1, PreΣ(X ,Sxu,D)

is compact and convex.

Proof. A proof for similar results can be found in [22]. We provide a separate proof here for
completeness.

Define Cxu = {(x,u) ∈ Sxu | Ax+Bu+ED ⊆ X}. By definition of backward reachable set,
PreΣ(X ,Sxu,D) = π[1,n](Cxu). For now, we assume that Cxu is compact and convex. Since projection
π[1,n](·) is continuous and Cxu is compact, PreΣ(X ,Sxu,D) is compact. Since the projection of a
convex set is convex, PreΣ(X ,Sxu,D) is convex. It is left to show the convexity and compactness of
Cxu.

We first show that Cxu is convex. Let (x1,u1), (x2,u2) be two points in Cxu and α be a constant
in (0,1). Denote (x,u) = α(x1,u1)+ (1−α)(x2,u2). Since Sxu is convex, (x,u) is in Sxu. For
any d ∈ D and i ∈ {1,2}, x+i = Axi +Bui +Ed ∈ X . Since X is convex, for the same d ∈ D,
Ax+Bu+Ed = αx+1 +(1−α)x+2 is in X . Thus, (x,u) ∈Cxu. That is, Cxu is convex.

Next, we show that Cxu is compact. Let {(xn,un)}∞
n=1 be an arbitrary convergent sequence in Cxu.

Suppose that (xn,un)→ (x,u). Since Sxu is compact, (x,u)∈ Sxu. For any d ∈D, Axn+Bun+Ed→
Ax+Bu+Ed. Since X is compact and Axn +Bun +Ed ∈ X , Ax+Bu+Ed ∈ X . Since (x,u) ∈ Sxu

and Ax+Bu+ED⊆ X , (x,u) ∈Cxu. Thus, Cxu is closed. Since Cxu is closed subset of the compact
set Sxu, Cxu is compact.
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Lemma A.6. Suppose Assumption 3.1 holds. Let C0 be a compact convex RCIS of Σ in Sxu. Define
Ck = Prek

Σ
(C0,Sxu,D) and C∞ = ∪∞

k=1Ck. Then, C∞ satisfies the following properties:

(a) {Ck}∞
k=1 is an expanding family of compact convex RCISs;

(b) C∞ is bounded and convex;

(c) If int(C∞) is nonempty, then there exists a finite k ≥ 0 such that int(Ck) is nonempty;

(d) For any compact subset C contained in the interior of C∞, there exists an ε > 0 such that
C+Bε(0)⊆C∞.

Proof. We first prove (a): Since C0 is an RCIS in Sxu, by definition, C0 ⊆ PreΣ(C0,Sxu,D) =C1.
Since C0 is compact and convex, by Lemma A.5, C1 is compact and convex. Now suppose that
Ck−1 ⊆ Ck, and both Ck−1 and Ck are compact and convex. Then, Ck = PreΣ(Ck−1,Sxu,D) ⊆
PreΣ(Ck,Sxu,D) = Ck+1. Since Ck is compact and convex, by Lemma A.5, Ck+1 is compact
and convex. By induction, {Ck}∞

k=1 is an expanding family of nonempty compact convex sets.
Furthermore, since Ck ⊆Ck+1 = PreΣ(Ck,Sxu,D), Ck is an RCIS of Σ in Sxu for all k ≥ 0.

(b) Since Sxu is bounded and Ck ⊆ π[1,n](Sxu) for all k ≥ 0, C∞ is bounded. Let x1 and x2 be two
points in C∞. Since {Ck}∞

k=1 is an expanding family of sets and C∞ = ∪∞
k=1Ck, there exists k0 such

that x1,x2 ∈Ck0 . According to (a), Ck0 is convex. Thus, any convex combination of x1 and x2 is in
Ck0 ⊆C∞. Hence, C∞ is convex.

(c) Since int(C∞) is nonempty, we can fit a small hypercube in the interior of C∞. By definition
of C∞, each vertex of this hypercube is contained by Ck for some finite k. Since the hypbercube has
finitely many vertices, there exists a finite k0 such that Ck0 contains all the vertices of the hypercube.
Since Ck0 is convex, Ck0 contains the hypercube and thus has nonempty interior.

(d) Suppose that for all ε > 0, C+Bε(0) ̸⊆C∞. Then there exists xn ∈C such that B1/n(xn) ̸⊆C∞.
Since C is compact, there exists a convergent subsequence (xni)

∞
i=1 such that xni → x for some x ∈C.

Since C is contained by the interior of C∞, there exists a constant ε ′ > 0 such that Bε ′(x) ⊆ C∞.
Since ni → ∞ and xni → x, there exists i′ such that 1/ni′ < ε ′/2 and ∥xni′ − x∥2 < ε ′/2. Thus,
B1/ni′

(xni′ )⊆ Bε ′(x)⊆C∞. However, by construction, B1/ni′
(xni′ ) ̸⊆C∞, contradiction! Thus, there

exists ε > 0 such that C+Bε(0)⊆C∞.

Proof of Theorem 3.2. If C0 is contained in the interior of CL0 for some L0 > 0, it is trivial that C0

is contained in the interior of C∞. Now suppose that C0 is contained in the interior of C∞. By Lemma
A.6 (d), there exists ε > 0 such that cl(C0+Bε(0))⊆ int(C∞). Also, by Lemma A.6 (c), there exists
k0 such that int(Ck0) is nonempty. Thus by Lemma A.4, there exists k such that Ck ⊇ cl(C0+Bε(0)).
For the same k, it is clear that C0 ⊆ int(Ck).
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Proof of Theorem 3.3. We first show that there exists a constant α ∈ (0,1) such that αCmax +(1−
α)C0 is contained by the interior of C∞. Since C0 is contained in the interior of C∞, by Lemma A.6,
there exists ε > 0 such that C0 +Bε(0) ⊆C∞. Then, C0 +Bε/2(0) is in the interior of C∞. Since
Sxu is compact, Cmax is bounded, and thus there exists α > 0 such that αCmax ⊆ Bε/2(0). Thus,
C0 +αCmax ⊆ int(C∞). Since 0 ∈C0, (1−α)C0 +αCmax ⊆C0 +αCmax ⊆ int(C∞).

Next, it can be easily shown that for any RCIS C in the compact convex safe set Sxu, the
convex hull of C and the closure of C are also RCIS in Sxu (a special case is proven by [32,
Proposition 20]). Thus, the maximal RCIS Cmax is compact and convex. Since both Cmax and C0 are
compact and convex, αCmax +(1−α)C0 is compact and convex. By Lemmas A.4 and A.6, since
αCmax+(1−α)C0 is a closed subset of int(C∞), there exists k0 such that αCmax+(1−α)C0 ⊆Ck0 .

We denote C0 = αCmax +(1−α)C0. Since Cmax and C0 are RCISs, it is easy to check that C0 is
also an RCIS in Sxu. Define Ck = Prek

Σ
(C0,Sxu,D). Then, by Lemmas A.1 and A.3,

Ck = Prek
Σ(C0,Sxu,D)⊇αPrek

Σ(Cmax,Sxu,D)+

(1−α)Prek
Σ(C0,Sxu,D) (A.10)

=αCmax +(1−α)Prek
Σ(C0,Sxu,D)

=αCmax +(1−α)Ck (A.11)

Define C∞ = ∪∞
k=0Ck. Then,

C∞ ⊇ ∪∞
k=0(αCmax +(1−α)Ck) (A.12)

= αCmax +(1−α)∪∞
k=0 Ck (A.13)

= αCmax +(1−α)C∞. (A.14)

Since by construction of k0, C0 ⊆Ck0 ,

C∞ ⊆ ∪∞
k=1Prek

Σ(Ck0,Sxu,D) = ∪∞
k=1Ck0+k =C∞. (A.15)

Thus, by (A.14) and (A.15),

αCmax +(1−α)C∞ ⊆C∞ ⊆C∞ (A.16)

cl(αCmax +(1−α)C∞)⊆ cl(C∞)⊆ cl(C∞). (A.17)

Since Cmax and cl(C∞) are compact, αCmax +(1−α)cl(C∞) is compact. Thus,

cl(αCmax +(1−α)C∞)⊆ αCmax +(1−α)cl(C∞).
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Let x ∈ αCmax + (1−α)cl(C∞). Then, there exist points x1 ∈ Cmax and x2 ∈ cl(C∞) such that
x = αx1 +(1−α)x2. Since x2 ∈ cl(C∞), there exists {x2,k}∞

k=1 ⊆C∞ such that x2,k → x2. Since
αx1 +(1−α)x2,k ∈ αCmax +(1−α)C∞ and αx1 +(1−α)x2,k→ x, x ∈ cl(αCmax +(1−α)C∞)

and thus cl(αCmax +(1−α)C∞) is equal to αCmax +(1−α)cl(C∞). Hence, (A.17) implies

αCmax +(1−α)cl(C∞)⊆ cl(C∞) = αcl(C∞)+(1−α)cl(C∞). (A.18)

Since cl(C∞) is convex and compact, by order cancellation theorem [42, Theorem 4], (A.18) implies
αCmax ⊆ αcl(C∞) and thus Cmax ⊆ cl(C∞). Also, since Cmax is the maximal RCIS, C∞ ⊆ Cmax.
Thus, Cmax = cl(C∞).

Proof of Theorem 3.4. Let β0 be the infimum β such that C0 ⊆ βcl(C∞). We first want to show
that β0 < 1. By Lemma A.6, cl(C∞) is a compact and convex set and there exists ε > 0 such that
C0+Bε(0)⊆ cl(C∞). Since cl(C∞) is bounded, there exists α > 0 such that αcl(C∞)⊆ Bε(0). Thus,
C0+αcl(C∞)⊆ cl(C∞) = αcl(C∞)+(1−α)cl(C∞). Since αcl(C∞) is a nonempty compact set and
(1−α)cl(C∞) is convex, by the order cancellation theorem (Theorem 4 in [42]), C0⊆ (1−α)cl(C∞).
Thus, β0 ≤ 1−α < 1.

Pick β1 in (β0,1). For now, let us assume that there exists a N > 0 such that

CN = PreN
Σ (C0,Sxu,D)⊇ β1cl(C∞). (A.19)

Then, PreN
Σ
(β0cl(C∞),Sxu,D) ⊇ β1cl(C∞). Let λ = β0/β1. Then, β1cl(C∞) is an N-step λ -

contractive set.
Now it is left to show that there exists a N > 0 such that (A.19) holds. It is easy to show that

(i) {Ck}∞
k=1 is an expanding family of convex compact sets. (ii) Since C∞ = ∪∞

k=1Ck contains 0
in the interior, by Lemma A.6 (c), there exists k0 such that Ck0 contains 0 in the interior. (iii)
C∞ is bounded since Sxu is bounded. Finally, since cl(C∞) contains 0 in the interior, cl(C∞) =

β1cl(C∞)+(1−β1)cl(C∞)⊇ β1cl(C∞)+Bε(0) for some small ε . Thus, β1cl(C∞) is a compact set
in the interior int(cl(C∞)). In the proof of Lemma A.4, we have shown that int(cl(C∞)) = int(C∞).
Thus, (iv) β1cl(C∞) is a compact set in the interior of C∞. Then, by Lemma A.4, there exists N such
that CN ⊇ β1cl(C∞).

Proof of Theorem 3.5 . Define

λ0,1 =
λ0−λγ

1−λγ
, λ0,2 =

λγ(1−λ0)

1−λγ
. (A.20)

It is easy to check that λ0,1 ≥ 0, λ0,2 ≥ 0, λ0 = λ0,1 + λ0,2 and 1− λ0,1 = λ0,2/(λγ). Thus, by
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Lemmas A.2 and A.3, we have

PreN
Σ (λ0C,Sxu,D)

⊇PreN
Σ (λ0,1C,λ0,1Sxu,λ0,1D)+PreN

Σ (λ0,2C,
λ0,2

λγ
Sxu,

λ0,2

λγ
D)

=λ0,1PreN
Σ (C,Sxu,D)+

λ0,2

λγ
PreN

Σ (λγC,Sxu,D)

⊇λ0,1C+
λ0,2

λγ
γC = g(λ0)C.

The inclusion in last row above holds since γC is N-step λ -contractive.
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APPENDIX B

Complementary Materials for Chapter 4

B.1 Claims of Theorem 4.12

Proof of Claim 1: Since Sxu contains the origin, we have W ∞×{0} ⊆ Sxu. Since 0 ∈W , it is
easy to verify from (4.2) and (4.3) that W k ⊆W ∞ for all k ≥ 1. Thus, W k×{0} ⊆ Sxu for all
k≥ 1. According to (4.4), if x = 0 and ut = 0 for all t ≥ 0, the reachable set

(
RΣ

(
x,{ui}t−1

i=0
)
,ut
)
=

W t×{0} ⊆ Sxu. Thus, 0 ∈ Cxv,0.
Proof of Claim 2: Recall from (4.30) that Couter,ν is:

Couter,ν =
{

x ∈ Rn | ∃{ui}ν−1
i=0 ∈ Rmν ,(

RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆Sxu, t = 0, . . . ,ν−1,

RΣ

(
x,{ui}ν−1

i=0
)
⊆ C max +W ∞

}
.

Due to Lemma 4.9, RΣ

(
x,{ui}ν−1

i=0
)
⊆ C max +W ∞ if and only if ∑

ν−1
i=0 Aν−1−iBui ∈ C max. Based

on this observation, it is easy to verify that Couter,ν = πn(Cxv,max) where Cxv,max = Cxv,0∩ (Rn×
U (C max)).

Proof of Claim 3: We show that Ĉxv,(τ,λ ) = πn+νm(Cxv,(τ,λ )). Using the matrices H and P as in
(4.16), the definition of Cxv,(τ,λ ), and Lemma 4.9, we write Cxv,(τ,λ ) as:

Cxv,(τ,λ ) =
{
(x0,u0:τ+λ−1) | (B.1)(
RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆ Sxu, t = 0, · · · ,ν−1,

(R
Σ
(

v

∑
i=1

Ai−1Buv−i,{uv+i}k−1
i=0 ),uv+k) ∈ Sxu,

k = 0, · · · ,τ +λ −1
}
.
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By (B.1) , the projection πn+νm(Cxv,(τ,λ )) is:

πn+νm(Cxv,(τ,λ )) =
{
(x0,u0:ν−1) | ∃uν :τ+λ−1, (B.2)(

RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆ Sxu, t = 0, · · · ,ν−1,

(R
Σ
(

ν

∑
i=1

Ai−1Buν−i,{uν+i}k−1
i=0 ),uν+k) ∈ Sxu,

k = 0, · · · ,τ +λ −1
}
.

Again, using the matrices H and P as in (4.16), by the definition of C x,(τ−ν ,λ ), we have:

C x,(τ−ν ,λ ) =
{

x0 ∈ Rn | ∃u0:τ−ν+λ , (B.3)

(R
Σ
(x0,{ui}t−1

i=0),ut) ∈ Sxu,

t = 0, · · · ,τ +λ −1
}
.

Comparing the right hand sides of (B.2) and (B.3), we have:

πn+νm(Cxv,(τ,λ )) =
{
(x0,u0:ν−1) | (B.4)(

RΣ

(
x,{ui}t−1

i=0
)
,ut
)
⊆ Sxu, t = 0, · · · ,ν−1,

ν

∑
i=1

Ai−1Buν−i ∈ C x,(τ−ν ,λ )

}
.

Note that Cxv,0 and U (C x,(τ−ν ,λ )) respectively impose the first and second constraints on
(x0,u0:ν−1) on the right hand side of (B.4). Thus, πn+νm(Cxv,(τ,λ )) is equal to the intersection
of Cxv,0 and U (C )x,(τ−ν ,λ ). That is:

Ĉxv,(τ,λ ) = πn+νm(Cxv,(τ,λ )). (B.5)

Since (B.5) implies (4.41), the third claim is proven.
Proof of Claim 4: We define the k-step null-controllable set Ck as the set of states of Σ that reach

the origin at kth step under the state-input constraints Sxu:

Ck =
{

x ∈ Rn | ∃u0:k−1 ∈ Rkm, (B.6)

(R
Σ
(x,{ui}t−1

i=0),ut) ∈ Sxu, t = 0, · · · ,k−1,

R
Σ
(x,{ui}k−1

i=0 ) = 0
}
.
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Obviously, C0 = {0}. Since Aν = 0 and the fixed point (0,0) ∈ Rn×Rm is in the interior of Sxu,
there exists an ε > 0 such that the ε-ball Bε(0) at the origin satisfies that for u0:ν−1 = 0 ∈ Rνm and
for all t ∈ [0,k−1]:

(R
Σ
(Bε(0),{ui}t−1

i=0),ut) = (AtBε(0),0)⊆ Sxu,

R
Σ
(x,{ui}ν−1

i=0 = AνBε(0) = 0.
(B.7)

By (B.7) and the definition of Ck, Bε(0) is contained by Cν , and thus C0 = {0} is contained in the
interior of Cν . Then, by Theorem 3.1, since C0 is contained in the interior of Cν , there exists τ2 ≥ 0,
c2 ∈ [0,1] and a ∈ [0,1) such that for all k ≥ τ2, the Hausdorff distance d(Ck,C max) satisfies that:

d(Ck,C max)≤ c2ak. (B.8)

Furthermore, let k = τ . For any x ∈ Cτ and the corresponding u0:τ−1 satisfying the constraints on
the right hand side of (B.6), it is easy to check that (x,u0:τ−1,0) ∈ Rn×R(τ+λ )m is contained in
C xv,(τ,λ ). Thus, we have for all τ ≥ 0:

Cτ ⊆ C x,(τ,λ ) ⊆ C max. (B.9)

Thus, by (B.8) and (B.9), for any τ ≥ τ2, the Hausdorff distance d(C x,(τ,λ ),C max) satisfies:

d(C x,(τ,λ ),C max)≤ c2aτ . (B.10)

From the properties of Hausdorff distance, (B.10) implies that:

C max ⊆ C x,(τ,λ )+Bc2aτ (0), (B.11)

where Bc2aτ (0) is the ball at origin with radius c2aτ . Recall that Cν contains a ε-ball Bε(0) for
some ε > 0. Since Cν ⊆ C max, we have (c2aτ/ε)C max ⊇ Bc2aτ (0). Thus, by (B.11), we have for
any τ ≥ τ2:

C max ⊆ C x,(τ,λ )+
c2aτ

ε
C max. (B.12)

Select a big enough τ1 such that τ1 ≥ τ2 and c2aτ1 ≤ ε . Then, by Lemma 4.9 and (B.12), we have
for any τ ≥ τ1:

C x,(τ,λ ) ⊇ (1− c0aτ)C max,
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where c0 =
c2
ε

. Thus, the fourth claim is proven.
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APPENDIX C

Complementary Materials for Chapter 5

Proof of Proposition 5.2 . Let x∈C and d ∈D. By the Definition 5.2, R(Σ, f (x,d))⊆R(Σa,x)⊆ S

and thus f (x,d) ∈C. Hence, C is an RPIS by definition.
Suppose x belongs to an arbitrary RPIS within S. By definition, R(Σa,x)⊆ S. Thus, x ∈C and

C is the maximal RPIS.

Proof of Proposition 5.1. The ”only if” direction is obvious. It is left to show the ”if” direction.
Suppose the safe set is S. Let C be an RCIS for the system Σ′ in S and x be a point in C. We want
to show that for all d ∈ D, there exists u such that Ax+Bu+ d ∈ S. Since D = conv(Dv), there
exists a finite K > 0 such that d = ∑

K
i=1 αidi for some d1, ..., dK ∈ Dv and some α1, ..., αK ≥ 0

satisfying ∑
K
i=1 αi = 1. Since C is controlled invariant for Σ′, for each di ∈ Dv, there exists ui such

that (x,ui) ∈ S and Ax+Bui +Edi ∈C. Define u = ∑
K
i=1 αiui. It is easy to show that (x,u) ∈ S and

Ax+Bu+Ed ∈C, by the convexity of S and C. Thus, C is an RCIS within S for Σ.

Proof of Theorem 5.3. Denote conv(π[1,n](Ccl)) by Cp. Let x ∈Cp and d ∈ D. We want to show
that there exists u such that (x,u) ∈ S and Ax+Bu+d ∈Cp.

By definition of convex hull, there exist a positive integer k > 0, k vectors xi ∈ π[1,n](Ccl) and k

scalars αi ∈ [0,1] for i from 1 to k such that ∑
k
i=1 αi = 1 and ∑

k
i=1 αixi = x. For each i, there exists θi

and si such that (xi,θi,si)∈Ccl . We define ui = o(si,d). Note that by the definition of Scl , (xi,ui)∈ S.
Also, since Ccl is an RPIS, (Axi +Bui +d,θi,T (si,d)) ∈Ccl and thus Axi +Bui +d ∈Cpro j. We
define u = ∑

k
i=1 αiui. Since S is convex and (xi,ui) ∈ S, (x,u) = ∑

k
i=1 αi(xi,ui) ∈ S. Since Cp is

convex and Axi +Bui +d ∈Cp, Ax+Bu+d = ∑
k
i=1 αi(Axi +Bui +d) ∈Cp. Thus, Cp is an RCIS

for the system Σ in S.

Proof of Theorem 5.4. We want to show R(Σcl,(x,θ ,s)) is finite. Let ((x(t),θ(t),s(t)))∞
t=0 be the

trajectory of Σcl with initial state (x(0),θ(0),s(0)) = (x,θ ,s). Let (d(t))∞
t=0 be the disturbance
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sequence. Given A is nilpotent, that is Ah = 0 for some h≥ 0, we have that

x(t) =

Atx+∑
t−1
i=0 At−1−i[Bo(s(i),d(i);θ)+d(i)] t < h,

∑
t−1
i=t−h At−1−i[Bo(s(i),d(i);θ)+d(i)] t ≥ h.

(C.1)

Since s(t) and d(t) belong to finite sets Q and D, o(s(t),d(t);θ) belongs to the finite set U(θ) =

{o(s,d;θ)}s∈Q,d∈D. Thus, according to (C.1), x(t), as a function of o(s(t),d(t);θ) and d(t) for
t ≥ h, must belongs to a finite set, denoted by X(θ). Thus, the reachable set R(Σcl,(x,θ ,s)) ⊆
X(θ)×{θ}×Q is a finite set.

Proof of Theorem 5.5. We want to derive a sufficient condition under which π[1,n](Csub(s1)) ⊇
π[1,n](Csub(s2)). Note that if for all (x,θ2) ∈Csub(s2), there exists θ1 such that (x,θ1) ∈Csub(s1),
then we have π[1,n](Csub(s1))⊇ π[1,n](Csub(s2)).

Similar to how we define o∗(s,d), we define the parametrized nested output function as

o∗(s,(d(t))k
t=0;θ) =

o(s,d(0);θ) k = 0,

o(T ∗(s,(d(t))k−1
t=0 ),d(k);θ) k > 0.

(C.2)

Given s and θ , the parametrized nested output function o∗(s, ·;θ) becomes a function of (d(t))k
t=0

in ∪∞
i=1Di. If for any θ2, we can always find a θ1 such that the functions o∗(s2, ·;θ2) = o∗(s1, ·;θ1),

then for all (x,θ2) ∈ Csub(s2), (x,θ1) ∈ Csub(s1). Intuitively, recall that (x,θ2) ∈ Csub(s2) if
(x(k),o∗(s2,(d(t))k

t=0)) ∈ S for all k ≥ 0 and (d(t))k
t=0 ∈ Dk. If we know that

(x(k),o∗(s2,(d(t))k
t=0;θ2)) ∈ S for all k ≥ 0, then we know (x(k),o∗(s2,(d(t))k

t=0;θ2)) ∈ S for all
k ≥ 0 since o∗(s2, ·;θ2) = o∗(s1, ·;θ1). Thus, (x,θ1) ∈Csub(s1).

Now our goal is to derive a sufficient condition under which there exists a θ1 such that
o∗(s1, ·;θ1) = o∗(s2, ·;θ2) for all θ2.

Lemma C.1. Given s1, s2 ∈ Q and θ1, θ2, the functions o∗(s1, ·;θ1) = o∗(s2, ·;θ2) if and only if
o∗(s1,(d(t))k

t=0;θ1) = o∗(s2,(d(t))k
t=0;θ2) for all k ≤ |Q|2 and all (d(t))k

t=0 ∈ Dk.

According to Lemma C.1, given any θ2, we can directly solve for a θ1 satisfying
o∗(s1,(d(t))k

t=0;θ1) = o∗(s2,(d(t))k
t=0;θ2) for all k ≤ |Q|2 and all (d(t))k

t=0 ∈ Dk, which is a
system of linear equations on θ1. It can be checked that given any θ2, the solvability of the
system of equations on θ1 is guaranteed if for all (d1(t))

k1
t=0 and (d2(t))

k2
t=0 with k1, k2 ≤ |Q|2,

o∗(s1,(d1(t))
k1
t=0) = o∗(s1,(d2(t))

k2
t=0) implies o∗(s2,(d1(t))

k1
t=0) = o∗(s2,(d2(t))

k2
t=0), that is s1 ⪰ s2

by definition.

Proof of Lemma C.1 . Given the mealy machine (Q,D,T ,Θ,o), we can construct a product mealy
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machine (Q×Q,D,Tpd,Θ×Θ,opd) where for all si, s j ∈ Q and d ∈ D

Tpd((si,s j),d) = (T (si,d),T (s j,d)), (C.3)

opd((si,s j),d) = (o(si,d),o(s j,d)). (C.4)

Given θ1 and θ2 as two value assignments of Θ, we define the parametrized output function
opd((si,s j),d;θ1,θ2) = (o(si,d;θ1),o(s j,d;θ2)).

Given s1, s2 ∈ Q and θ1 and θ2, by construction, o∗pd((s1,s2), ·;θ) is equal to
(o∗(s1, ·;θ1),o∗(s2, ·;θ2)). Thus, o∗(s1, ·;θ1) ̸= o∗(s2, ·;θ2) if and only if there exists a (d(t))k

t=0

such that (s′1,s
′
2) = T ∗

pd((s1,s2),(d(t))k−1
t=0 ) and opd((s′1,s

′
2),d(k);θ1,θ2) = (u1,u2) for some u1,

u2 ∈ Θ, u1 ̸= u2. Since there are only |Q|2 states in the product mealy machine, if (s′1,s
′
2) can be

visited from (s1,s2) under action sequence (d(t))k−1
t=0 , the smallest k we need is less than or equal

to |Q|2. Thus, if o∗(s1, ·;θ1) ̸= o∗(s2, ·;θ2), there must exists a (d(t))k
t=0 with k ≤ |Q|2 such that

o∗(s1,(d(t))k
t=0;θ1) ̸= o∗(s2,(d(t))k

t=0;θ2)

Proof of Theorem 5.6. Denote Cp = π[1,n](C′). Suppose C′ is an RCIS of Σ′ in S×Rm. Let x ∈Cp.
We want to show that there exist u such that (x,u) ∈ S and for all d ∈ D, Ax+Bu+d ∈Cp.

By definition of Cp, there exists u ∈ Rm such that (x,u) ∈ C′ ⊆ S. Furthermore, since C′ is
controlled invariant, there exists v ∈ Rm such that (Ax + Bu+ d,v) ∈ C′ for all d ∈ D. Thus,
Ax+Bu+d ∈Cp for all d ∈ D. Thus, we showed that Cp is an RCIS for the system Σ in S.

Next, suppose that C′ is the maximal RCIS for Σ′ in S×Rm. Also, suppose that Cmax is the
maximal RCIS for Σ in S. We want to show that π[1,n](C′) =Cmax. Note that π[1,n](C′)⊆Cmax as
π[1,n](C′) is controlled invariant for Σ in S. We need to show that π[1,n](C′)⊇Cmax, which is done
in 3 steps.

First, define the set C′max = {(x,u) | (x,u) ∈ S,Ax+Bu+d ∈Cmax,∀d ∈ D}. We want to show
that C′max is controlled invariant for Σ′ in S×Rm. Let (x,u) ∈C′max and d ∈ D. By construction,
(x,u) ∈ S and x+ = Ax+Bu+ d ∈ Cmax. Since Cmax is controlled invariant for Σ, there exists
v ∈Rm such that (x+,v) ∈ S and Ax++Bu+d+ ∈Cmax for all d+ ∈D. Thus, by definition of C′max,
(x+,v) = (Ax+Bu+d,v) ∈C′max. Thus, C′max is an RCIS for Σ′ in S×Rm.

Second, as C′ is the maximal RCIS for Σ′ in S×Rm, C′ ≥C′max. Thus, π[1,n](C′)⊇ π[1,n](C′max).
Finally, note that for all x∈Cmax, there exists u such that (x,u)∈ S and Ax+Bu+d ∈Cmax for all

d ∈D, namely that (x,u) ∈C′max. Hence, Cmax ⊆ π[1,n](C′max)⊆ π[1,n](C′). That is, π[1,n](C′) =Cmax

is the maximal RCIS for Σ in S.
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APPENDIX D

Complementary Materials for Chapter 7

Proof of Theorem 7.2. First, we want to show the set Cmax,p,co in (7.11) is a CIS of the system
D(Σp) within the safe set Sxu,p×D. Let (x(0),d1:p(0)) be any point in Cmax,p,co. By (7.11) , there
exists u(0), ..., u(p−1) such that (x(t),u(t)) is in Sxu for t from 0 to p−1 and x(p) is in Cmax,co.
Since Cmax,co is controlled invariant for D(Σ), there exists u(p) and v(0) ∈ D such that (x(p),u(p))

is in Sxu and x(p+1) = f (x(p),u(p),v(0)) is in Cmax,co. Thus, for control inputs u(0) and v(0), it
is easy to check that

(x(0),d1:p(0),u(0),v(0)) ∈ Sxu,p×D

and the next state
(x(1),d2:p(0),v(0)) ∈Cmax,p,co,

where x(1) = f (x(0),u(0),d1(0)). Thus, Cmax,p,co is a CIS of D(Σp) within Sxu,p,co.
Next, denote the maximal CIS of D(Σp) in Sxu,p×D by Cmax,p,co. Suppose that Cmax,p,co is

strictly contained in Cmax,p,co. Then, there exists at least one point (x(0),d1(0), · · · ,dp(0)) in
Cmax,p,co but not in Cmax,p,co. That implies for all u(0), ..., u(p−1) satisfying (x(t),u(t)) ∈ Sxu for
t from 0 to p−1, we have x(p) ̸∈Cmax,co. As Cmax,co is the maximal CIS of D(Σ) in Sxu×D, for
all input sequence (u(t))∞

t=p and (v(t))∞
t=p with v(t) ∈ D, there always exists a finite time instant

T ≥ p such that (x(T ),u(T )) ̸∈ Sxu. That implies that any state-input trajectory of D(Σp) from
(x(0),d1:p(0)) always leaves the safe set Sxu,p×D in finite time for any input sequence, contradicting
to the assumption that (x(0),d1:p(0)) is in the maximal CIS Cmax,p,co. Thus, Cmax,p,co must be the
maximal RCIS Cmax,p,co and thereby (7.11) is proven.

Finally, by the construction of Sxu,p, it is easy to check that Cmax,p,co ⊆ Rn×Dp. Thus, to prove
(7.12) is equivalent to prove that

π[1,n](Cmax,p,co)⊆Cmax,co. (D.1)
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Let x(0) be any point in π[1,n](Cmax,p,co). By (7.11), it is easy to check that

x(0) ∈ Prep
D(Σ)

(Cmax,co,Sxu×D). (D.2)

Since Cmax,co is the maximal CIS of D(Σ) in Sxu×D, we have

Prep
D(Σ)

(Cmax,co,Sxu×D) =Cmax,co. (D.3)

Thus, x(0) ∈Cmax,co. That is, (D.1) is proven.

Proof of Lemma 7.3. We first show that π[1,n](Cmax,p) is convex and compact. Note that Assumption
7.2 implies that the safe set Sxu,p is convex and compact. Thus, the maximal RCIS Cmax,p is compact.
Also, for linear systems, the convex hull of any RCIS is also a RCIS. Thus, the maximal RCIS
of Σp in Sxu,p must be convex (otherwise we can take the convex hull of the maximal RCIS and
obtain a larger RCIS). Since Cmax,p is convex and compact, the projection π[1,n](Cmax,p) is convex
and compact.

Next, we show that π[1,n](Cmax,p) is a CIS of D(Σ) within Sxu×D by definition. Let x be an
arbitrary point in π[1,n](Cmax,p). There exists d1:p ∈ Dp such that (x,d1:p) ∈Cmax,p. As Cmax,p is an
RCIS of Σp, there exists u0 such that (x,u0)∈ Sxu such that (Ax+Bu0+Ed1,d2:p,d)∈Cmax,p for any
d ∈ D. Thus, there exists u and ud such that (x,u,ud) ∈ Sxu×D and Ax+Bu+Eud ∈ π[1,n](Cmax,p)

(one feasible choice is u = u0, ud = d1). Thus, by definition, π[1,n](Cmax,p) is a CIS of D(Σ) in
Sxu×D.

Finally, [9, Proof of Theorem 3.3] shows1 that for any nonempty convex compact CIS C of a
linear system Σ in safe set Sxu, there always exists a forced equilibrium (xe,ue) ∈ Sxu of the system
such that xe ∈C. Thus, (i) implies (ii).

Proof of Lemma 7.4. We first show the 1-step backward reachable set of the projection π[1,n](Cmax,p)

is contained in the projection π[1,n](Cmax,p+1), that is

PreD(Σ)(PROJ[1,n](Cmax,p),Sxu×D)

⊆ π[1,n](Cmax,p+1). (D.4)

1[9, Proof of Theorem 3.3] only proves the case without input constraints, which can be easily extended to the case
with state-input constraints according to [9, Remark 1]. Also, though [9] mainly considers controllable systems, the
part used to prove (ii) holds for any linear systems.
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By Theorem 7.1, Cmax,p×D⊆Cmax,p+1, which implies

PreΣp+1(Cmax,p×D,Sxu,p+1)

⊆ PreΣp+1(Cmax,p+1,Sxu,p+1) =Cmax,p+1. (D.5)

Thus, to prove (D.4), it is sufficient to show

PreD(Σ)(π[1,n](Cmax,p),Sxu×D)

⊆ π[1,n](PreΣp+1(Cmax,p×D,Sxu,p+1)). (D.6)

We select an arbitrary point x0 such that

x0 ∈ PreD(Σ)(π[1,n](Cmax,p),Sxu×D).

By the definition of Pre, there exists u0, d0 such that the point (x0,u0,d0) is in Sxu×D and the point
x1 = f (x0,u0,d0) is in PROJ[1,n](Cmax,p). Also, there exists d1:p ∈ Dp such that (x1,d1;p) ∈Cmax,p.
That is, ( f (x0,u0,d0),d1:p,D) ⊆ Cmax,p×D. Thus, (x0,d0,d1:p) ∈ PreΣp+1(Cmax,p×D), which
implies

x0 ∈ π[1,n](PreΣp+1(Cmax,p×D)).

Thus, (D.4) is proven.
Next, by taking Pre on both sides of (D.4), we have

Pre2
D(Σ)(PROJ[1,n](Cmax,p),Sxu×D)

⊆ PreD(Σ)(π[1,n](Cmax,p+1),Sxu×D)

⊆ π[1,n](Cmax,p+2), (D.7)

where the second inclusion is due to (D.4). Following the pattern in (D.4) and D.7, (7.18) can be
easily proven by induction.

To prove Theorem 7.5, we need the following lemma.

Lemma D.1. Under the same conditions of Theorem 7.5, for any ξ ∈ (0,1], the N-step backward
reachable set of ξCmax,co satisfies that for ξ ≤ λγ ,

PreN
D(Σ)(ξCmax,co,Sxu×D)⊇ ξ

λ
Cmax,co; (D.8)

192



for ξ > λγ ,

PreN
D(Σ)(ξCmax,co,Sxu×D)

⊇
(

1− (1−ξ )

(
1− γ

1− γλ

))
Cmax,co, (D.9)

Proof. First, it can be easily checked that for any γ ′ ≤ γ , γ ′Cmax,co is an N-step λ -contractive CIS
of D(Σ) in γ ′/γ(Sxu×D), which is a subset of Sxu×D.

Case 1: ξ ≤ λγ . Since ξ/λ ≤ γ , (ξ/λ )Cmax,co is an N-step λ -contractive CIS of D(Σ) in
Sxu×D, which implies (D.8).

Case 2: ξ > λγ . We first separate ξ into two parts, that is

ξ = ξ1 +λξ2 (D.10)

where

ξ1 =
ξ −λγ

1−λγ
, ξ2 = γ(

1−ξ

1−λγ
). (D.11)

Since Cmax,co is convex, we can separate ξCmax,co into two parts, that is

ξCmax,co = ξ1Cmax,co +λξ2Cmax,co. (D.12)

It can be shown that for any convex set C, and any a, b ∈ [0,1],

PreN
D(Σ)(C,Sxu×D)⊇ PreN

D(Σ)(aC,b(Sxu×D))+

PreN
D(Σ)((1−a)C,(1−b)(Sxu×D)). (D.13)

By (D.10) and (D.13), we have

PreN
D(Σ)(ξCmax,co,Sxu×D)⊇

PreN
D(Σ)(γ1Cmax,co,γ1(Sxu×D))+

PreN
D(Σ)(λγ2Cmax,co,(1− γ1)(Sxu×D)). (D.14)

Since γ1Cmax,co is a CIS of D(Σ) in γ1(Sxu×D), we have that

PreN
D(Σ)(γ1Cmax,co,γ1(Sxu×D))⊇ γ1Cmax,co. (D.15)
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Note that 1− γ1 = γ2/γ . Also, for a linear D(Σ), we have that for any set C and a > 0, we have

PreN
D(Σ)(C,Sxu×D) =

1
a

PreN
D(Σ)(aC,a(Sxu×D)). (D.16)

Thus, by (D.16),

PreN
D(Σ)(λγ2Cmax,co,(1− γ1)(Sxu×D))

=PreN
D(Σ)(λγ2Cmax,co,γ2/γ(Sxu×D))

=(γ2/γ)PreN
D(Σ)(λγCmax,co,Sxu×D)

⊇(γ2/γ)γCmax,co = γ2Cmax,co. (D.17)

By (D.14), (D.15) and (D.17), we have

PreN
D(Σ)(ξCmax,co,Sxu×D)⊇ (γ1 + γ2)Cmax,co (D.18)

It is easy to check that

γ1 + γ2 = 1− (1−ξ )
1− γ

1− γλ
,

which proves (D.9).

Now we are ready to prove Theorem 7.5.

Proof of Theorem 7.5. We only prove the case of λ0 ≤ λγ , since the case of λ0 > λγ can be easily
extended from this proof. Given λ0 ≤ λγ , by (D.8), we have

PreN
D(Σ)(λ0Cmax,co,Sxu×D)⊇ λ0

λ
Cmax,co. (D.19)

If λ0/λ ≤ λγ , we can compute the N-step backward reachable sets of both sides of (D.19) and
apply (D.8) again, which leads to

Pre2N
D(Σ)(λ0Cmax,co,Sxu×D)⊇ PreN

D(Σ)(
λ0

λ
Cmax,co)

⊇ λ0

λ 2Cmax,co. (D.20)

Following the pattern of (D.19) and (D.20), as long as λ0/λ k−1 ≤ λγ , we can easily prove by
induction that

PrekN
D(Σ)(λ0Cmax,co,Sxu×D)⊇ λ0

λ kCmax,co. (D.21)
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We denote the minimal k such that λ0/λ k > λγ by k0. Then,

k0 =

⌈
logλ0− logγ

logλ
−1
⌉
. (D.22)

By (D.21) and (D.22), we have proven (7.20) for k ≤ k0. Note that when k = k0, we have λ0/λ k0 >

λγ . Thus,

Prek0N
D(Σ)

(λ0Cmax,co,Sxu×D)⊇ λ0

λ k0
Cmax,co

⊇ λγCmax,co. (D.23)

We define a function g : R→ R by

g(ξ ) = 1− (1−ξ )

(
1− γ

1− γλ

)
. (D.24)

Then, we define gk(ξ ) recursively by

g1(ξ ) = g(ξ ), (D.25)

gk(ξ ) = g(gk−1(ξ )). (D.26)

By taking N-step backward reachable sets on both sides of (D.23) and applying (D.9), we have

Pre(k0+1)N
D(Σ)

(λ0Cmax,co,Sxu×D)

⊇ PreN
D(Σ)

(
λ0

λ k0
Cmax,co,Sxu×D

)
⊇ g(λ0/λ

k0)Cmax,co. (D.27)

It can be checked that if ξ > λγ , then gk(ξ ) > λγ for all k ≥ 1. Thus, gk(λ0/λ k0) > λγ for all
k ≥ 1. Following the pattern of (D.27), we can prove by induction that

Pre(k0+1)N
D(Σ)

(λ0Cmax,co,Sxu×D)

⊇ g(λ0/λ
k0)Cmax,co (D.28)

Finally, it can be checked that

gk(ξ ) = 1− (1−ξ )

(
1− γ

1− γλ

)k−k0

. (D.29)
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By (D.28) and (D.29), we have proven (7.21) for k ≥ k0.
The proof for the case of λ0 > λγ follows exactly the same arguments from (D.23) to (D.29),

with k0 = 0.

Proof of Lemma 7.6. By the proof of Proposition 23 of [32], since the system D(Σ) is stabilizable
and the safe set Sxu×D contains the origin in the interior, there exists a λa-contractive ellipsoidal
CIS E within the safe set Sxu×D for some λa ∈ [0,1). Clearly, E ⊆Cmax,co, and thereby Cmax,co

contains the origin in the interior.
Let λin be the maximal λ such that λCmax,co ⊆ E . As E contains the origin in the interior,

λin > 0. Since E is λ -contractive, we have

λinCmax,co ⊆ E ⊆ Prek
D(Σ)(λ

k
a E ,Sxu×D). (D.30)

Let λ be an arbitrary number in (0,1). Since λa ∈ [0,1) and E ⊆Cmax,co, there exists N > 0 such
that λ N

a E ⊆ λλinCmax,co. Thus,

λinCmax,co ⊆ PreN
D(Σ)(λ

N
a E ,Sxu×D) (D.31)

⊆ PreN
D(Σ)(λλinCmax,co,Sxu×D). (D.32)

Thus, λinCmax,co is an N-step λ -contractive CIS of D(Σ) in Sxu×D.

Proof of Theorem 7.8. By the definition of c0, E (c0) is a λa-contractive CIS of D(Σ) in Sxu×D.
Therefore, E (c0) is a subset of Cmax,co. Also, γCmax,co ⊆ E (γcout) = E (c0). Thus, we have

γCmax,co ⊆ E (c0)⊆Cmax,co. (D.33)

Since E (c0) is λa-contractive, we have for any k ≥ 1

Prek
D(Σ)(λ

k
a E (c0),Sxu×D)⊇ E (c0)⊇ γCmax,co. (D.34)

Since Cmax,co ⊇ E (c0),

Prek
D(Σ)(λ

k
aCmax,co,Sxu×D)

⊇ Prek
D(Σ)(λ

k
a E (c0),Sxu×D) (D.35)

By (D.34) and (D.35),

Prek
D(Σ)(λ

k
aCmax,co,Sxu×D)⊇ γCmax,co. (D.36)
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By definition of N, λ N
a < γ . Thus, λ = λ N

a /γ < 1.

PreN
D(Σ)(λγCmax,co,Sxu×D)

=PreN
D(Σ)(λ

N
a Cmax,co,Sxu×D)⊇ γCmax,co. (D.37)

That is, γCmax,co is N-step λ -contractive.

Proof of Lemma 7.9. To prove the lemma, it suffices to show that Pren
D(Σ)(0,Sxu×D) contains the

origin in the interior. Since the system is controllable, there exists a feedback gain K = [K1 K2] such
that the closed-loop system matrix Ac = A+K1B+K2E has all eigenvalues equal to zero. That
implies An

c = 0. In other words, under the control of u = K1x, ud = K2x, the closed-loop system
reaches the origin 0 at step n for all initial states x0 ∈ Rn. Now let us consider the unit ball B in
Rn. Since Sxu×D contains the origin in the interior, there exists a positive scalar ξ > 0 such that
ξ (Ak

cB×KAk
cB) is contained in Sxu×D for k from 0 to n−1. That implies that ξB is a subset of

Pren
D(Σ)({0},Sxu×D). Thus, Pren

D(Σ)(0,Sxu×D) contains the origin in the interior.
Since Pren

D(Σ)(0,Sxu×D) is a CIS of D(Σ) in Sxu×D, the maximal CIS Cmax,co must contain
Pren

D(Σ)(0,Sxu×D) and thus contain the origin in the interior. Thus, there exists a positive scalar γ

such that γCmax,co is contained in Pren
D(Σ)(0,Sxu×D).
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APPENDIX E

Complementary Materials for Chapter 9

E.1 Proof of Theorem 9.1

In this section, we denote the distance γ(P(u,x),∆all) between P(u,x) and ∆all by r(x,u) for
short.

Lemma E.1. For any given (x,α)∈Rn+1, the minimal distance infu r(x,u) at x is less than or equal to
(1−α l)µ(D) if and only if x ∈Cmax,α . Furthermore, a controller u satisfies r(x,u)≤ (1−α l)µ(D)

for all x ∈Cmax,α if and only if for all x ∈Cmax,α ,

u(x) ∈A (x,Cmax,α), (E.1)

where A (x,Cmax,α) is the admissible input set of Σα .

Proof. We first show the “if” direction. Pick an arbitrary x ∈Cmax,α . Since Cmax,α is the maximal
RCIS of Σα , there exist u : Rn→ Rm and ud : Rn→ (1−α)D such that

Rk
Σα
((x,α),(u,ud),∆α)⊆ Sxu,α , ∀k ≥ 0. (E.2)

Define the disturbance model ∆(x) := ud(x)+αD ∈D for all x̄ ∈ Rn. By the construction of Σα

and Sxu,α , (E.2) implies that Rk
Σ
(x,u,∆)⊆ Sxu for all k ≥ 0. That is, ∆ ∈P(u,x). Hence,

inf
u

r(x,u)≤r(x,u)≤ γ(∆,∆all) = (1−α
l)µ(D), (E.3)

where the last equality uses the property of Lebesgue measure µ(αD)=α lµ(D) (recall that D⊆Rl).
Also, by Section 9.1.1, we know that u satisfies (E.1). Hence, we proved the “if” direction of both
statements in Lemma E.1.

Next, we pick an arbitrary (x,α) such that infu r(x,u) ≤ (1−α l)µ(D). By the definition of
r(x,u), for any integer i≥ 1/α , there exist ui : Rn→ Rm and ∆i : Rn→D such that ∆i ∈P(ui,x)
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and γ(∆i,∆all)< (1−α l
i )µ(D), with αi := α−1/i > 0. By the definition of D in (9.7), there exists

ud : Rn→ (1−αi)D such that ud(x)+αiD ⊆ ∆i(x) for all x ∈ Rn. Hence, ∆i ∈P(u,x) implies
that the disturbance model ud +αiD is in P(u,x) as well. That is, Rk

Σ
(x,ui,ud +αiD)⊆ Sxu for

all k ≥ 0, which is further equivalent to

Rk
Σαi

(x,(ui,ud),∆αi)⊆ Sxu,αi, ∀k ≥ 0. (E.4)

By definition, (E.4) implies that x ∈Cmax,αi , that is, (x,αi) ∈Cmax,[0,1]. Since Cmax,[0,1] is closed, we
know that (x,α) = limi→∞(x,αi)∈Cmax,[0,1] as well. This completes the proof for the first statement
in Lemma E.1.

Now suppose that u is a controller satisfying r(x,u)≤ (1−α l)µ(D) for all x ∈Cmax,α . We pick
an arbitrary x ∈Cmax,α . Clearly, (x,u(x)) ∈ Sxu. For all i≥ 1/α , there exists ∆i : Rn→D such that
∆i ∈P(u,x) and γ(∆i,∆all)< (1−α l

i )µ(D). Thus, for all d ∈ ∆i(x),

Rk
Σ(Ax+Bu(x)+Ed,u,∆i)⊆ Sxu, ∀k ≥ 0, (E.5)

which implies that r(Ax+Bu(x)+Ed,u) ≤ (1−α l
i )µ(D) for all d ∈ ∆i(x). Based on the first

statement of Lemma E.1, we have (Ax + Bu(x) + Ed,αi) ∈ Cmax,[0,1] for all d ∈ ∆i(x). Since
γ(∆i,∆all)< µ(D)−µ(αiD), there exists ud,i ∈ (1−αi)D such that ud,i +αiD⊆ ∆i(x). Thus, we
have (Ax+Bu(x)+E(ud,i + d),αi) ∈Cmax,[0,1] for all d ∈ αiD. Since D is compact, there exists
a subsequence of ud,i that converges to a point ud ∈ (1−α)D. We abuse the notation a bit and
denote this subsequence by ud,i again. Then, we have Ax+Bu(x)+E(ud +αD) ⊆ Cmax,α and
(x,u(x)) ∈ Sxu, which implies u(x) ∈A (x,Cmax,α).

Proof of Theorem 9.1 . Point (i) of Problem 9.2 is trivially satisfied by u∗ since (9.9) implies (9.5)
with respect to Cmax,1 for x ∈Cmax,1. For point (ii), according to (9.10), a controller u∗ minimizes
r(x, ·) for all x∈Rn if and only if r(x,u∗)≤ (1−α∗(x)l)µ(D) for all x∈Cmax,0, which is equivalent
to the condition in (E.1) due to Lemma E.1. Equation (9.10) is just a direct application of Lemma
E.1.
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[84] J. Löfberg. Yalmip : A toolbox for modeling and optimization in matlab. In In Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

205



[85] W. Lombardi, S. Olaru, G. Bitsoris, and S.-I. Niculescu. Cyclic invariance for discrete
time-delay systems. Automatica, 48(10):2730–2733, 2012.

[86] W. Lombardi, S. Olaru, M. Lazar, and S.-I. Niculescu. On positive invariance for delay
difference equations. In Proceedings of the 2011 American Control Conference, pages
3674–3679. IEEE, 2011.

[87] G. Mamakoukas, S. Di Cairano, and A. P. Vinod. Robust model predictive control with data-
driven koopman operators. In 2022 American Control Conference (ACC), pages 3885–3892.
IEEE, 2022.
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