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Abstract 

Mining has been a defining driver of human progress since the beginning of organized 

civilization. Minerals extracted from the Earth not only gave humans the means to create tools and 

weapons, but ornamental gemstones and metals add to the rich culture we share as a species. Today, 

the need and desire for mining precious resources has never been higher. This demand results in an 

undeniable need to focus time, energy, and resources in the exploration of new deposits, and to 

better understand those deposits we currently rely on. This is the aim of mineral resource 

geochemistry: to better understand where, why, and how economically important mineral deposits 

form. This can be done via the analysis of the chemistry found within individual minerals from 

these deposits. Understanding the trace elements and specific isotopes that comprises a mineral—

like a unique fingerprint—allow us to gain tremendous insights and draw broad conclusions on 

resource formation from microscopic amounts of sample material.  It can be argued that no 

instrument more profoundly transformed the field of geochemical research than the laser ablation 

inductively coupled plasma mass spectrometer (LA-ICP-MS). Its ease of use, moderate cost, 

relatively rapid data collection compared to other geochemical techniques, ability to maintain 

spatial context within samples, and minimal sample preparation needed makes the LA-ICP-MS one 

of the most powerful tools in the geochemist’s arsenal.  

This dissertation investigates distinct applications of LA-ICP-MS to mineral resource and 

gemological research, the results of which add to our understanding of geologic resource formation 

and mineral provenance determination. Chapter 2 highlights the power of LA- ICP-MS in situ U–Pb 

dating for elucidating the geochronology of the Candelaria iron oxide-copper- gold deposit in 

Northern Chile. This is coupled with other geochronological techniques for a comprehensive study 

of the temporal evolution of one of the most important copper mines in the world. Chapters 3 and 4 

utilize a comprehensive suite of LA-ICP-MS collected trace element data and a random forest 

machine learning algorithm to effectively determine the provenance of different gemstone material 

to a hyper-specific degree: Colombian emeralds and euclase in chapter 2, and Montana, USA, 



xvii  

sapphires in chapter 4. The results of this dissertation highlight the effectiveness, broad-reaching 

application, and versatility of LA-ICP-MS as a tool in mineral resource geology. 
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Chapter 1: Introduction 

 

1.1 Introduction 

 

Mining has been the defining driver of human progress since the beginning of organized 

civilization. So much so, that ages of antiquity are defined in terms of the dominant resource of the 

day: stone, copper, bronze, iron. Minerals extracted from the Earth not only gave humans the means 

to create tools and weapons, but ornamental stones and metals add to the rich culture we share as a 

species. Today, the need and desire for mining precious resources has never been higher. Precious 

metals such as lithium, cobalt, and rare earth elements are essential for modern day electronics we 

all enjoy on a daily basis. Iron is used to create steel for buildings and infrastructure and this 

demand is projected to substantially increase by as much as triple the demand between 2010 and 

2050 as population increases force the demand for more infrastructure (Elshkaki et al., 2018). In 

2023, 22,000 metric kilotons of copper were mined for important infrastructure, electrical and 

electronic equipment, and transportation (USGS, 2024). This resource is not only important for 

maintaining current infrastructure and equipment but copper is critical for generating renewable 

energy technology such as wind turbines, solar panels, and electric cars to move society towards 

renewable resource utilization. Copper is one of the resources with the fastest growing demand and 

this demand is projected to increase by 2-3% per year from now to 2050 (Kupiers et al., 2018). 

Additionally, the gemstone industry was valued at an estimated $33.38 billion (USD) in 2023 and is 

projected to increase to $55.96 billion by 2033 (Verghese, 2023). This demand results in an 

undeniable need to focus time, energy and resources in the exploration of new deposits, and to 

better understand those deposits we currently rely on. 

This is the aim of economic geochemistry: to better understand where, why, and how 

economically important mineral deposits form. This can be done via the analysis of the chemistry 

found within individual minerals from these deposits. Understanding the trace elements and specific 

isotopes that comprises a mineral—like a unique fingerprint—allows us to gain tremendous insights 

and draw broad conclusions on resource formation from microscopic amounts of sample material. 
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It can be argued that no instrument more profoundly transformed the field of geochemical 

research than the laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). The 

LA-ICP-MS allows for the relatively rapid collection of trace element and isotopic data, with a key 

advantage of preserving the geologic context of the sample via in-situ measurements. It is 

considered a semi destructive technique as it requires only a very small amount of material—

leaving permanent ablation spots around 10-100 micrometers in diameter and typically about 10-50 

micrometers in depth. Very simply, it works by a laser pulse ablating a sample and carrying the 

aerosolized particulate into an argon plasma, which then strips the electrons from the atoms in the 

particulate cloud, thereby ionizing them. The ionized material is then transported to a mass 

spectrometer which segregates the ionized material based on mass and charge. Since this 

information is unique to each element, elemental concentrations can be derived from this 

information. The combination of its ease of use, moderate cost, relatively rapid data collection 

compared to other geochemical techniques, ability to maintain spatial context within samples, and 

minimal sample preparation needed makes the LA-ICP-MS one of the most powerful tools in the 

geochemist’s arsenal.  

This dissertation investigates distinct applications of LA-ICP-MS to mineral resource and 

gemological research with resulting implications which add to our understanding of geologic 

resource formation and mineral provenance determination. Chapter 2 highlights the power of LA-

ICP-MS in situ U–Pb dating for uncovering the geochronology of the Candelaria iron oxide-copper-

gold deposit in Northern Chile. This is coupled with other geochronologic techniques for a 

comprehensive study of the temporal evolution of one of the most important copper mines in the 

world. Chapters 3 and 4 utilize a comprehensive suite of LA-ICP-MS collected trace element data 

and a random forest machine learning algorithm to effectively determine the provenance of 

different gemstone material to a hyper-specific degree: Colombian emeralds and euclase in chapter 

2, and Montana, USA, sapphires in chapter 4. The results of this dissertation highlight the 

effectiveness, broad-reaching application, and versatility of LA-ICP-MS as a tool in mineral 

resource geology. 

 

1.2 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 

 

The idea for coupling a laser ablation system to a inductively coupled plasma mass 

spectrometer was first demonstrated by Allan Gray, in 1985 (Gray 1985), transforming the field of 
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in situ chemical analysis. A laser ablation system needs to have the ability to ablate target material 

by a photo-chemical process rather than physical disaggregation, and then be able to deliver target 

material to the inductively coupled plasma (ICP) in particles small enough that the plasma can be 

completely vaporized and ionized in order to avoid volatility related elemental and isotopic 

fractionation (Sylvester and Jackson 2016). Neodymium doped yttrium-aluminum garnets (Nd: 

YAG) are among the most common lasing mediums used in modern ablation systems, and typically 

operate in the deep ultraviolet range with wavelengths typically at 193 nm or 213 nm. Ruby (red 

corundum) interestingly, is also a lasing medium that was used in earlier LA-ICP-MS systems (e.g. 

Gray, 1985; Arrowsmith, 1987) and emitted photons in the visible light spectrum as a deep red 

color (693 nm). Shorter wavelength (and therefore higher energy) ultraviolet lasers are preferable to 

the longer because more materials can absorb higher energy photons, which results in a better 

ablation. 

Once aerosolized by the laser ablation system, the particulate cloud is transported to the ICP 

by a carrier gas, most commonly helium, which is a non-reactive gas and is not an element of 

interest to measure using this system. The argon plasma torch of the inductively coupled plasma 

reaches extremely high temperatures at around ~6,000o K, approximately the surface temperature of 

the sun—hot enough to ionize most elements. Newly ionized material is then focused into a stream 

using a series of lenses and cones and are passed through into the mass spectrometer.  

Most ICP-MS systems in use today are quadrupole mass spectrometers and single collector 

sector field mass spectrometers. The most common type of mass spectrometer (MS) used with LA-

ICP-MS is a quadrupole MS, whose primary function is the collection of trace elements. The basis 

of a quadrupole MS is measuring the mass/charge (m/z) ratio of the ionized stream. The heart of the 

quadrupole consists of four parallel rods, two with negative potentials and two with positive 

potentials. These poles generate an oscillating quadrupolar electrical field from a combination of 

imputed direct current and radio frequency voltages. Ions pass through this field, and depending on 

their m/z, follow either a stable or unstable path. The precise control of the frequency voltages 

allow only ions with a specific m/z ratio to pass through the entire length of the quadrupole (stable 

path). Those ions that make it through the quadrupole are detected by an electron multiplier, which 

converts the ion signal to an electrical signal to be processed. 

The multi-collector ICP-MS, while less common, is still deeply important for geological 

science. The multi collector allows for the highly precise collection of U and Pb isotopes, which is 

the basis for dating many different U-bearing minerals. After the ionized beam is transported out of 
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the ICP torch, the beam passes through a magnetic sector field which separates the ions based on 

their m/z ratio. This separation is needed to isolate the specific isotopes of interest. The separated 

ions are simultaneously detected by multiple collectors, each one dedicated to its own m/z ratio. 

The simultaneous isotope measurements reduce error associated with signal drift over time, which 

can be an issue with quadrupole MS, and is what allows this method to have enough precision for 

geochronology with U–Pb isotopes. Certain highly specialized laboratories are capable of splitting 

the ion stream from the ICP and sends half of the stream to a quadrupole MS, and half to a multi-

collector, allowing for the collection of U–Pb isotopes for geochronology and trace elements 

simultaneously from the same sample spot, in a system aptly called split stream LA-ICP-MS 

(Kylander-Clark, 2013). 

The ability to preserve geologic context within a sample is arguably the most important 

virtue of the LA-ICP-MS system for geologic research. Selecting spots to analyze within a polished 

thin section or epoxy mount allows the researcher to carefully pick and choose which minerals to hit 

without requiring individual mineral separation. This is particularly important in chapter 2 of this 

dissertation, where LA-ICP-MS spots were carefully chosen on datable accessory minerals, while 

maintaining the cross-sectional veinlet contexts, and other mineral-mineral relationships. The 

relatively small sample size required can also allow for future analysis to be completed on the very 

same samples.  

The advantages of this technique for Earth science is obvious. In addition to trace elemental 

analysis with spot analysis quadrupole MS, or age dating with multi-collector MS, geochemists are 

finding ever increasingly creative ways of utilizing LA-ICP-MS, such as with fluid inclusion studies 

(e.g. Rusk et al., 2004; Catchpole et al., 2011; Chang et al., 2018; Zhao et al., 2020; Xie et al., 

2023;  ), 2D chemical mineral mapping (e.g. Ubide et al., 2015; Dubosq et al., 2018; Chew et al., 

2021; Chernonozhkin et al., 2021),  and 3D chemical mapping (e.g. Słaby et al., 2011; Chirinos et 

al., 2014). Being able to obtain rapid, high-resolution elemental and isotopic data, while preserving 

geologic context is an invaluable tool for geologic research.The moderate financial cost of operation 

and general ubiquity across laboratories around the world also add to the plethora of advantages, 

and its importance is the common thread between each chapter in this dissertation.  
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1.3 Random Forest machine learning 

 

No technology has quite captured the attention of society in recent years more so than the 

rapid advances in artificial intelligence (AI), specifically generative AI tools such as Open AI’s 

(owned by Microsoft) ChatGPT or Google’s Bard. Artificial intelligence is broadly defined as the 

capability of computer systems or algorithms to imitate intelligent human behavior, and machine 

learning (ML) can be thought of as a subset of AI which enables a computer to learn and perform 

tasks by analyzing a large dataset without being explicitly programmed (Merriam-Webster, 2024). 

Machine learning can be further subdivided into two subgroups: Supervised ML and unsupervised 

ML. Unsupervised ML algorithms use unlabeled data to find underlying structure (i.e. groupings, 

clusters, correlations) in data without pre-labeled input. Examples of popular unsupervised ML 

algorithms include: K-means clustering analysis, principal component analysis, hierarchical 

clustering, and Apriori algorithm. Supervised ML algorithms learn from a labeled dataset and are 

useful for solving classification problems. Some of the most widely used supervised ML algorithms 

include: Linear regression analysis, support vector machines, logistic analysis, naive Bayes, K-

nearest neighbors, neural networks, adaptive boosting, decision tree classification, and random 

forest classification.  

A major part of this dissertation involves the processing of LA-ICP-MS geochemical data in 

order to find patterns and derive meaning. As explained in detail in chapters 3 and 4, a random 

forest classification (RFC) machine learning model was determined to be the most appropriate, and 

most effective method for parsing large suites of LA-ICP-MS elemental data in regards to mineral 

provenance determination. The RFC model falls under the category of Classification and 

Regression Tree (CART) family of supervised machine learning algorithms, which is defined by the 

decision tree structure that aims to elucidate differences in a data set by variable to sort into 

categories via a branching list of boolean True/False questions. A decision tree starts with a root 

node, a variable which is then split into 2 paths (also called branches): a greater than or equal to, or 

a less than path in the case of quantitative data such as elemental concentrations. Each branch leads 

to another boolean True/False question called a “node” or “leaf”, and the process of splitting 

continues recursively until there are no more features to split. One of the mathematical ways this 

algorithm decides where to split data is by using the Gini impurity—a measure of how often a 

randomly chosen element from the set would be incorrectly labeled if it was randomly labeled 

according to the distribution of the subset. The gini impurity can be calculated as follows: 
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Where Pi  represents the proportion of the samples that belong to class i in a given set, and c 

equal to the number of classes. A gini impurity is calculated for each potential split, and chooses the 

one with the lowest value. The goal is to limit the Gini impurity. The relative simplicity and 

computational brevity of this equation makes it a popular option for CART algorithms, and also 

serves as the basis for calculating variable importance.  

Another important principle of CART machine learning is the partitioning of data into 

testing and training data. Training data, as the name suggests, is used to train and develop the 

model. In supervised ML, the data is pre-labeled into classifications, and the training data is used to 

iteratively make predictions on which variables correspond to which category. Testing data is 

completely independent of this process, and is separated from the dataset before training. This data 

is later used to validate the effectiveness of the trained model by parsing unknown data through the 

trained model. Common data partitions are between 70-80% training, and 20-30% testing.  

Stratified sampling is another important parameter of CART algorithms, especially when 

dealing with large datasets or with imbalanced classes (non-homoscedasticity). Stratified sampling 

ensures that each class is sampled representatively. This is critically important when building a 

model to ensure that both training data and testing data have elements from each class.  

Evaluating the effectiveness of the ML model is of the utmost importance before practical 

implementation. One of the methods of doing so is cross validation. Cross validation first splits the 

data “k” number of times, into equal sized segments, or “folds”. In the studies included in this 

dissertation, k = 10.  For each unique group, the model is trained on k minus 1 folds, as the training 

set, then is validated on the remaining sets. This process is repeated k number of times, each using a 

different fold as the testing set. K-fold cross validation evaluates the effectiveness of the model with 

the metrics: Precision, recall, F1 score, and accuracy.  

Precision, as a metric, is equal to the ratio of true positives over true positives plus false 

positives. Recall is similar to precision, but instead measures the ability of a model to capture actual 
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positives, with the ratio of true positives over true positives plus false negatives. The F1 score is the 

harmonic mean of the precision and recall, providing an overarching measure which balances both 

metrics, and is calculated as the precision multiplied by recall, then divided by the precision plus the 

recall, all multiplied by 2. Accuracy is arguably the most important metric for model evaluation, as 

it measures the overall correctness of the model, and is calculated by the true positives plus true 

negatives, divided by the total cases. Taken together these metrics help determine the overall 

effectiveness of a ML model. 

The RFC is an ensemble learning model which builds off the decision tree structure 

(Breiman, 2001). This model constructs a multitude of individual decision trees, which all “vote” on 

a classification, and the classification with the most votes is the consensus pick. The RFC model has 

several key advantages over a single decision tree and other types of machine learning. First, and 

most importantly for handling high-dimensional data, is that it reduces overfitting. A single decision 

tree has a tendency to make arbitrary splits in the data to achieve a separation. Overfitting can be 

easily observed in a ML model by comparing the testing accuracy to the training accuracy. Ideally, 

these accuracies should be the same. However, almost always the training dataset will have a higher 

accuracy than the testing set. If the gap in accuracies between training and testing datasets are large, 

this is a clear indication of overfitting. The RFC can still have problems with overfitting if data is 

particularly noisy, but by relying on hundreds to thousands of decision trees, the risk of overfitting 

is minimized.  

Other major advantages of using a RFC model is that the underlying assumptions required 

for many other statistical analyses are unneeded. For example, the need for homoscedasticity, and 

non-co-linearity which are required for parametric machine learning algorithms such as linear 

discriminant analysis, linear regression, support vector machines, among others. It can also 

incorporate non-quantifiable data, which presents opportunities for qualitative observations to be 

included in the model. 

For a large geochemical dataset with potentially many elements and elemental ratios of 

interest, and a classification and prediction problem like mineral origin determination, the RFC 

model shows remarkable potential as will be discussed in chapters 3 and 4. 
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1.4 Applications of LA-ICP-MS to problems in mineral resource geology 

 

The duality of the LA-ICP-MS to be used for geochronology and trace element studies 

makes it one of the most powerful tools available in geochemistry. It is especially powerful in 

economic geology where information regarding the formation of deposit timing and source can be 

derived from the chemical makeup of key minerals.  

In chapter 2 of this dissertation, a multi-collector LA-ICP-MS is used to measure U and Pb 

isotopes of the minerals apatite, titanite, and magnetite from drill core samples from the Candelaria 

iron-oxide copper gold (IOCG) deposit located in northern Chile. Apatite (Ca5(PO4)3 (F,Cl, OH)) and 

titanite (CaTiSiO5) are common accessory minerals dated via U–Pb geochronology. Magnetite is not 

traditionally used as a geochronometer but was experimentally dated via U–Pb. These techniques 

are used in concert with Ar-Ar dating of the amphibole mineral actinolite (Ca2(Mg,Fe)5Si8O22(OH)2 ) 

in an attempt to uncover new insights into the temporal evolution of the world class Candelaria 

IOCG deposit located in Northern Chile.  

Understanding the formational history of IOCG deposits is a prominent topic of debate in 

the economic geology community, and is of broad societal importance as this type of deposit is a 

major source of copper globally. The geochronologic results provide insights into the temporal 

history of mineralization in the Candelaria IOCG deposit and improve the understanding of the 

evolution of this world-class mineral system. 

In chapters 3 and 4 of this dissertation, I explore the other face of the LA-ICP-MS: its trace 

elemental capabilities using Quadraopole LA-ICP-MS. In the gemstone industry one of the most 

pressing issues is how to more accurately, and more specifically identify the provenance of a 

mineral (e.g. McClure et al, 2019, Vertriest et al. 2019). As is evident from the service offered at 

gem laboratories, there is a strong demand from consumers to know where their gemstones are 

from. Motivating factors which enhance the perceived value of a gem include the prestige of 

locality, ensuring the authenticity, personal or cultural significance, or wanting to have a 

documented anthropological history or story attached to an heirloom. In addition to the potential 

personal benefit to consumers, being able to reliably fingerprint a valuable mineral using its 

intrinsic and unchanging properties can also be an invaluable ethical tool used to prevent gems from 

mines using unethical practices from spreading on the market (i.e. conflict gems). Being able to 

better predict a mineral’s provenance also has massive implications in exploration geology and 

mineral prospectivity (e.g. Rodriguez-Galiano et al. 2015, O’Brian et al, 2015; McKay and Harris, 
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2016; Hong et al., 2021, Bédard et al., 2022). For gemological laboratories, the motivation behind 

pursuing mineral origin research is to ensure the public’s trust within the industry, and thus much 

effort is taken to develop reliable testing methodologies. 

In order to make predictions on unknown minerals, a reliable methodology must be in place 

for pre-existing and meticulously documented samples. In the gemstone industry, obtaining samples 

with reliable provenance to use as reference poses a significant obstacle to developing such 

methods, as by their nature, gem material is rare, expensive, easy to transport leading to mistakes in 

tracing, and can come from areas of the world with varying degrees of political stability. The 

Gemological Institute of America (GIA) uses a grading system (A-F) to record the reliability of a 

gemstone’s known provenance, with an A grade meaning a researcher from the GIA personally 

collected and documented the origin, an “F” rating given to a gem purchased from a vendor at an 

international market such as the annual Tucson gem and mineral show, and a “Z” grade meaning 

the location information is completely lost, unknown, or its information is put into doubt (Vertriest 

et al. 2019). While an A grade is obviously the gold standard of origin confidence, realistically for 

database compilation, B-C grade where gemstones are witnessed, purchased or collected from a 

trusted source near the mine are also generally acceptable confidence levels. Additionally, it may 

not even be possible to self-collect as many mines have shut down, or are otherwise inaccessible. 

Regardless of the degree of confidence in a gemstone’s origin, the most important responsibility of 

a gem laboratory, museum or academic collection is to properly preserve these metadata. 

Any instrument capable of obtaining chemical data can be used as a basis for a database. 

Common non-destructive methods include electron microprobe analysis, Raman spectroscopy, and 

x-ray fluorescence spectroscopy. The most limiting factor with these techniques is the relatively 

high elemental detection limit. More sensitive techniques such as thermal ionization mass 

spectrometry, solution ICP-MS are capable of much lower detection limits and the ability to 

measure specific isotopes, but are often highly destructive and very expensive. For the price of a 

small ablation hole barely visible to the eye, the LA-ICP-MS offers trace elemental resolution 

(down to parts per million and billion), quickly, at a moderate financial cost. Even on gem quality 

material, a carefully placed ablation spot is virtually undetectable to the human eye, which is why 

this is an ideal method to be used on precious samples such as gemstones. 

Chapter 3 details the development of a hyper-specific provenance method applied to 

emeralds from Colombia. Colombian emeralds were chosen as the test samples for a number of 

reasons. Firstly, there is a strong desire in the gemstone industry to better understand where a 
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Colombian emerald comes from, as certain deposits carry more perceived value than others (i.e. 

Emeralds from the Muzo mining district in Colombia). Secondly, between the gem laboratories of 

Technological Development Center for the Colombian Emerald (CDTEC) and the Gemological 

Institute of America (GIA), a comprehensive suite of first-hand geolocated emeralds were available. 

Third, the differing mining area classifications allowed us to test origin determination capabilities at 

3 increasing levels of specificity: (1) The mining belt (east and west) which have similar, yet unique 

geology, (2) the mining district, of which there are 9, and (3) the individual mine—in this study 40 

mines were sampled and studied.   

The successful provenance discrimination determined at each level as detailed in chapter 3, 

set the basis for the new complementary study outlined in chapter 4, where this method was applied 

to a different mineral system with alluvial and primary igneous sapphires (corundum) deposits in 

Montana, USA. By repeating this methodology on a different mineral system, new insights to this 

provenance determination methods were discovered, for example the consistent success of the RFC 

model as a way to determine mineral provenance on applied to quadrupole LA-ICP-MS data, and 

some of the limitations of using a mineral which has fewer sites for trace elemental substitution than 

does emerald. In both chapters 3 and 4, in addition to answering the question of “where does a 

mineral come from”, geochemical data can also shed valuable insights into the underlying geologic 

processes of formation. With the case of Colombian emeralds, the heterogeneity of V and Cr 

between the two mining belts was a major result. And with the Montana sapphire study, the 

importance of Mg/Ti as an indicator of the primary formational oxygen fugacity was discovered. 

These chapters can act as a blueprint for future mineral origin determination studies. 

Using both the geochronological and trace elemental capabilities of the LA-ICP-MS, this 

dissertation will demonstrate its incredible usefulness in application to problems in mineral resource 

geology. 
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2.1 Abstract 

 
 Iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) deposits are important sources 

of Cu and Fe, respectively, and in some deposits, by-product metals such as Ti, V, Co, U, Au, Ag, 

and rare earth elements (REE). Studies have interpreted the spatial and temporal relationship 

between IOCG and IOA deposits to indicate that both deposits are members of a single mineralizing 

system. The Candelaria IOCG deposit in Chile documents evidence of episodic pulses of 

magmatic-hydrothermal fluids that produced early magnetite- and actinolite-rich IOA-type 

mineralization that was overprinted by a later copper-rich fluid precipitating magnetite-, actinolite- 

and Cu-Fe- sulfide-rich IOCG mineralization. We tested this episodic formation hypothesis 

by dating actinolite–hornblende, apatite, magnetite, and titanite in samples from a 1,132 m 

drill core. Isotopic ratios of U and Pb in apatite, titanite, and magnetite were determined by laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and 40Ar/39Ar from an 

actinolite–hornblende sample. Apatite and titanite dates are generally consistent with published Re–

Os dates for molybdenite of c. 115 Ma, which is the interpreted age of main-stage Cu-sulfide 

mineralization. The 40Ar/39Ar date for the actinolite-hornblende sample is 121.2 ± 0.6 Ma, and 

magnetite grains yielded U–Pb dates between 122.2 ± 7.9 and 147.5 ± 10.6 Ma. Together, the 

dates obtained for actinolite-hornblende, apatite, magnetite, and titanite provide evidence of 

episodic pulses of magmatic-hydrothermal mineralizing fluids forming the Candelaria deposit. 
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2.2 Introduction 
 

 Iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) deposits host a diverse 

array of critical elements for modern technology and renewable energy, such as Cu, Fe, P, rare 

earth elements (REEs), Co, Au and U (e.g., Hitzman, 2000; Williams et al., 2005; Sillitoe, 2003; 

Groves et al., 2010; Barton, 2014; Reich et al., 2022). Copper is of particular global concern 

because it is the backbone for the global electricity infrastructure (Elshkaki et al., 2016). As global 

electricity demand increases and society transitions to renewable energy infrastructure such as 

utility scale solar and wind, the demand for copper is forecasted to increase between 275% and 

350% by 2050 technologies (Kesler and Simon, 2015, Elshkaki et al., 2016). The increase also 

considers the global adoption of electric vehicles and grid-scale battery storage, among others. 

Thus, understanding the formation of copper-bearing mineral deposits is critical for improving 

the discovery of deposits necessary for sustainable production of copper from primary resources. 

 Although IOCG and IOA deposits are considered separate deposit types, several studies 

have suggested a genetic relationship in which IOA style mineralization represents the root of a 

larger, vertically connected, evolving IOA-IOCG deposit system (e.g., Espinoza et al., 1998; 

Sillitoe, 2003; Reich et al., 2016; Bilenker et al., 2016; Barra et al., 2017; Rodriguez-Mustafa et 

al., 2020; Reich et al., 2022). A key location to test this hypothesis is Chilean Iron Belt, and 

particularly, the Candelaria IOCG deposit in northern Chile (Fig. 2-1), where recent studies have 

proposed that IOA and IOCG mineralization styles may represent temporally distinct hydrothermal 

stages of the same system (del Real et al., 2021). The Candelaria mine in the Punta del Cobre 

district is one of the largest IOCG deposits in the world, containing > 743 Mt measured and infered 

reserves of Cu (Banerjee et al., 2023). Primary Cu mineralization in this district is hosted in the 

Punta del Cobre Formation, an Early Cretaceous, volcanic-clastic sequence (c. 135–132 Ma) 

overlain by marine sediments of the Chañarcillo Group that span between 132 and 130 Ma (del 

Real et al., 2018). The crustal-scale Atacama sinistral strike-slip fault system appears to have 

controlled fluid flow and mineralization in Candelaria as well as IOCG and IOA deposits in other 

parts of the Coastal Cordillera of northern Chile (del Real et al., 2018 and references therein). 

Previous work documented evidence that supports two discrete stages of mineralization at 

Candelaria: an earlier sulfide-poor, magnetite-, and actinolite-rich IOA style and a later magnetite-, 

actinolite-, biotite-, Cu-Fe-sulfide-rich IOCG stage (Rodriguez-Mustafa et al., 2020; del Real et al., 

2021). Fe concentrations measured in Candelaria actinolite, which has been suggested to 

indicate changes in temperature (Lledó and Jenkins, 2008), suggest at least two distinct magmatic-
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hydrothermal events in the Candelaria system, wherein actinolite grains record a first hotter growth 

event, overgrown by a subsequent hot, but lower temperature growth event, which could be 

explained by growth from two distinct pulses of magmatic-hydrothermal fluid flow within the 

Candelaria system (del Real et al., 2021). 

 This study tests the multi-episodic formation hypothesis by constraining the timing of 

hydrothermal events at Candelaria. We collected samples from a 1,132 m drill core that vertically 

traverses the Candelaria deposit extending from shallow Cu-Fe-sulfide IOCG mineralization and 

transitioning to magnetite–actinolite rich IOA-style mineralization with depth. U–Pb isotope ratios of 

apatite, magnetite, and titanite in thin sections from varying depths in the drill core (133 m to 1132 

m) were measured via in-situ laser ablation inductively coupled plasma mass spectrometry (LA-

ICP-MS). The geochronologic results provide insights into the temporal history of 

mineralization in the Candelaria IOCG deposit and improve the understanding of the evolution of 

this world-class mineral system. 

 
 

2.3 Analytical Methods 
 

 Actinolite–hornblende in solid solution, apatite, magnetite, and titanite were documented 

using back scattered electron (BSE) imaging and energy dispersive X-ray spectrometry (EDS) on a 

JEOL JSM-7800F field emission scanning electron microscope (SEM) at the University of 

Michigan. A relatively coarse amphibole with actinolite–hornblende solid solution was also 

analyzed with a JEOL JXA-8600 electron microprobe at Auburn University. U–Pb isotopic 

ratios of apatite, magnetite, and titanite grains were measured analyzed in-situ by LA-ICP-MS. 

All apatite, all magnetite, and 3 of 7 titanite samples from four depths were analyzed via laser-

ablation split-stream (LASS) ICP-MS using a Cetac/Teledyne Photon Machines 193 nm excimer 

Analyte laser with a HelExII cell connected to a Nu Instruments Plasma HR-ES MC-ICP-MS and 

an Agilent 7700X at the University of California, Santa Barbara following the procedures of 

Kylander-Clark et al. (2013) and Kylander-Clark (2020). Reference materials for analysis (run at 

standard intervals throughout each session) include MAD-UCSB (primary U-Pb ap; Apen et al., 

2021), Durango (Paul et al., 2021), BRZ-1 (Apen et al., 2021), NIST612 (primary U-Pb mag; 

primary TE ap, ttn), BHVO (primary TE mag), MKED-1 (primary U-Pb ttn; Spandler et al., 2016), 

Y1710C5 (Spencer et al., 2013), BLR-1 (Aleinikoff et al., 2007) and Fish Canyon ttn (Schmitz and 

Bowring, 2001). Calculated ages for secondary reference materials for apatite and titanite were well 
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within 2% of their accepted values, and as such, final ages reported for unknowns should be accurate 

to the long-term reproducibility of 2%. Because no reference material yet exists for magnetite, NIST 

612 glass was used as the reference material for U-Pb reduction (Kylander-Clark, 2020); because 

of this, accuracy can vary systematically from session to session so, relative ages may be 

comparable within each session, but are only qualitative from session to session. Titanite grains 

from four additional depths were analyzed using a NWR193UC Excimer laser coupled to an 

Agilent 8900 ICP-MS at the University of Maine, Orono. All data were processed using the 

commercially available software Iolite (Paton et al., 2011). Reported measurements are weighted 

mean ages and uncertainties are 2σ. Measurements were not corrected for common Pb to reduce 

uncertainty. Calculated U–Pb dates are the 95% confidence intervals of lower discordia intercepts.  

 No matrix-matched U–Pb reference material is available for magnetite U–Pb dating; 

therefore, magnetite dates were calculated using Mud Tank zircon standard (Black and Gulson, 

1978) and NIST614 glass as the primary and secondary reference material, respectively. 

Actinolite–hornblende grains were separated drilling the vein directly and isotope ratios for 
40Ar/39Ar geochronology were measured at the Auburn Noble Isotope Mass Analysis Lab 

(ANIMAL) at Auburn University. Additional method details are reported in Appendix A-1.  

 
2.4 Results 

 
 Magnetite crystals commonly exhibit triple junctions and there are textural differences 

between the core and rim (Fig. 2-2a). Magnetite cores are porous and inclusion-rich; rims are 

non-porous and lack inclusions. Ablation spots were generally too large to discriminate between the 

core and rims and therefore represent whole grain dates. In BSE images, magnetite cores are 

darker than rims, consistent with greater abundances of minor and trace elements in the cores 

(Rodriguez-Mustafa et al., 2020). Two titanite grains also have a core–rim distinction in BSE images 

(Fig. 2-2b) and some titanite grains have irregular, sometimes globular grain boundaries and are 

often associated with or included within magnetite (Fig. 2-2c). Apatite grains are generally 

anhedral, clusters or vein or void fillings, and exhibit little to no zonation in BSE images (Fig. 2-

2d). Apatite grains from deeper parts of the drill core often appear porous and inclusion rich. 

 New calculated dates are presented in Table 2-1, with uncertainties of 2 se. Most apatite 

dates were c. 115 Ma, regardless of textural setting or depth in the deposit (Fig. 2-3a). Titanite 

dates from two sample depths were also c. 115 Ma (sample depth 731 m: 115.4 ± 1.6 Ma; 817 m: 

114.4 ± 2.3 Ma ). Older titanite dated to c. 118 Ma (sample depth 1132 m: 118.7 ± 1.4 Ma), c. 126 
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Ma (sample depth 148 m: 126.1 ± 3.7 Ma; 1030 m: 126.9 ± 4.7 Ma), and c. 130 (sample depth 

1101 m: 130.1 ± 2.7 Ma). A single titanite grain adjacent to a potassium feldspar vein dated to 

90.8 ± 2.8 Ma. The actinolite-hornblende sample had sufficient weight percent K2O (0.2 wt%) to be 

dated via the 40Ar/39Ar method and had the sufficient grain size (>100 µm in smallest 

dimension) to be separable (via drilling) and datable. Actinolite-hornblende from sample depth 

731 m yielded a plateau age of 121.2 ± 0.6 Ma. Exploratory U–Pb magnetite dates from the 5 

samples ranged from c. 122-147 Ma with 2se uncertainties around ± 10 Ma (Table 1, Fig 2-3b). 

 Samples from depths 731 m and 840 m are of particular interest because they preserve 

distinct cross-cutting relationships and therefore provide additional context for interpreting the 

dates. Sample depth 731 m has a vein of mushketovite (i.e., platy magnetite pseudomorph after 

hematite) cross-cutting the section laterally over a fine-grained altered groundmass, and a vein of 

actinolite-hornblende cross-cutting through the whole section (Fig. 2-4). When dates were calculated 

taking textural relationship into account, dates from apatite found in both the matrix and in the 

magnetite, vein are statistically indistinguishable (115.2 ± 2.5 Ma and 116.9 ± 0.9 Ma, 

respectively) and record the same date as the titanite found in the matrix (115.4 ± 1.5 Ma). The 

actinolite-hornblende yielded a plateau age of 121.2 ± 0.6 Ma (Fig. 2-4a & b). 

 Sample depth 840 m also featured a prominent mushketovite vein crosscutting a fine-

grained matrix with patches of disseminated magnetite. Another vein of fine grained-magnetite 

can be seen cross-cutting the matrix in a different area of the section. Apatite from the large 

mushketovite vein gives a date of 115.4 ± 16.7 Ma, apatite from the matrix gives a date of 120.2 ± 

6.6 Ma. Apatite associated with the fine-grained magnetite vein gives a date of 112.9 ± 2.6   Ma.  

Taken together, these three dates are not statistically distinguishable. 
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2.5 Discussion 
 
 New dates from this study and from previous works show strong evidence for a main 

hydrothermal mineralization at c.115 Ma. Published Re–Os dates for molybdenite, which is 

interpreted as coeval with Cu-Fe-sulfides in the shallow levels of the deposit, are 114.2 ± 0.6 Ma 

and 115.2 ± 0.6 Ma and constrain the age of Cu-Fe-sulfide IOCG mineralization (Mathur et al., 

2002). These dates for sulfide mineralization are consistent with the 40Ar/39Ar dates of 

biotite and amphibole as determined in Marschke and Fontboté (2001) which ranged from 

116.6 ± 1.2 Ma to 114.9 ± 0.5 Ma. 

 The nearby Copiapó batholith is a potential source of the magmatic-hydrothermal 

fluids for the Candelaria deposit (Marschik and Fontboté, 2001; Mathur et al., 2002; Arévalo et al., 

2006), and ranges in age from 110–118 Ma (Marschik and Söllner, 2006). In our study, titanite and 

apatite dates that record c. 115 Ma hydrothermal event are contemporaneous with the San 

Gregorio unit of the batholith (115.5 ± 0.4 Ma, U–Pb in zircon), and dacitic dikes (112.8 ± 1.3 Ma 

and 115.2 ± 1.8 Ma, U–Pb in zircon) likely marking the same hydrothermal event (del Real et 

al., 2018). One titanite sample yielded a slightly older date of 118.7 ± 1.4 Ma, which is the 

same age as the La Brea unit of the Copiapó Batholith (118 ± 1 Ma, U–Pb in zircon, Marschik 

and Söllner, 2006) the largest and most prominent phase of the intrusion (del Real et al., 2018). 

Although hydrothermal mineralization and batholith emplacement are temporally correlated, there 

has not yet been a direct geochemical or field relationship connection determined to indicate 

the batholith is the direct source of the fluids (Marschik and Fontboté, 2001). 

 Most apatite and many titanite dates from this study are indistinguishable 

within uncertainty at c. 115 Ma. A single titanite grain in one sample (817m) associated with a 

potassium feldspar yielded younger dates of c. 90 Ma. This suggests possible additional, minor 

hydrothermal activity after the main c. 115 Ma mineralization event. 

 Sample 52 from 731 m depth features two cross-cutting veins over a fine-

grained groundmass: A mushketovite vein cutting through the matrix, and an actinolite vein 

cross-cutting the magnetite (Fig. 2 - 4). Matrix apatite, vein apatite, and matrix titanite 

yielded statistically indistinguishable dates of c. 115 Ma, in agreement with the interpreted age of 

Cu-Fe mineralization (Marschik and Fontboté, 2001; Mathur et al., 2002). Titanite found in the 

matrix show irregular grain boundaries and strong lobate zoning around the margins, further 
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supporting the interpretation of these dates as an age of hydrothermal alteration via dissolution-

reprecipitation (Fig. 2-2b, Putnis, 2009; Holder and Hacker, 2019). The presence of 

mushketovite in this sample also implies secondary interaction with a hydrothermal fluid, as 

mushketovite forms as a pseudomorphic reaction where hematite is replaced by magnetite, 

which is caused by a change in temperature or oxygen fugacity (Hu et al., 2020). The 

occurrence of mushketovite in many samples is evidence of more complex (re)crystallization 

processes, but this event(s) were not resolvable in this study via magnetite U–Pb dating. 

 Due to the distinct cross-cutting relationships of veins in this section, it is expected for 

the groundmass to be the oldest, followed by the mushketovite, with the actinolite–hornblende 

vein to be the youngest. However, the actinolite-hornblende yielded a plateau age of 121.2 ± 

0.6 Ma—distinctly older than the c. 115 Ma apatite and titanite from this section. Unlike the 

titanite, BSE images and EMPA maps of actinolite-hornblende do not show any indication of 

hydrothermal alteration (Fig. 2-5). Candelaria actinolite-hornblende has been suggested to record 

different growth generations from distinct hydrothermal pulses (del Real et al., 2021), but this 

actinolite-hornblende appears to only record one single mineralizing event, as there are no 

apparent overgrowth zones, and the plateau age remains constant throughout step heating 

indicating no diffusive Ar loss following initial crystallization. It therefore appears that this 

actinolite date represents a distinct hydrothermal event at c. 121 Ma, which is consistent with a 

dacitic dike U-Pb zircon age of 121.9 ± 2.4 Ma (del Real et al., 2018), which was followed by a 

later hydrothermal event c. 115 Ma that reset the titanite and apatite in the groundmass of the 

andesitic host rock. 

2.6 Magnetite dating: Promise and Limitations 
 

 Magnetite dates reported in this study range from 122.2 ± 7.9 Ma to 147.6 ± 10.1 Ma., 

with most falling c. 130 Ma (Table 2-1, Fig 2-3b). Because a primary, matrix-matched 

reference material for magnetite is yet to exist, these dates are only qualitative in nature. The 

analytical uncertainties are too large to precisely constrain distinct hydrothermal events, the 

dates are consistent with the maximum and minimum age constraints provided by the host 

rock andesites (~135 Ma, del Real 2018) and the c. 115 Ma hydrothermal mineralization, 

respectively (Fig. 2-3). The primary challenge with U–Pb dating of magnetite is the high 

concentration of common Pb often found in magnetite in combination with low concentrations 
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of U. This makes for low U/Pb and therefore makes it difficult to accurately measure this 

ratio: for example, sample 34 from 486 m depth (Fig. 2-6). An additional challenge to dating 

magnetite from Candelaria is that core and rim dates, which clearly record two generations of 

magnetite, were not statistically distinguishable (Fig 2-2a, d). With these caveats, the 

geologically reasonable results from this study show that U–Pb magnetite dating has promise 

as a geochronometer. Thus far, it has proven its ability to help broadly constrain the timing of 

magnetite mineralization, but not to discriminate between temporally close magnetite events 

due to relatively high uncertainties (~6-7%). Further work developing an analytical standard 

for this method is needed in order to reliably date magnetite going forward. 

 
 

2.7 Summary 

 

 Most of the new apatite and titanite dates reported here are consistent with previously 

reported ages of sulfide mineralization (Re–Os, Molybdenite) at c. 115 Ma. Actinolite-hornblende 

and four titanite samples record other hydrothermal events at 118 Ma, 121 Ma, and 126 

Ma. It was determined that these dates has no meaningful correlation with depth (Fig. 2 - 3). 

The new dates presented in this study present evidence supporting an episodic, multi-pulse 

model of formation for the Candelaria IOCG deposit. Magnetite U–Pb dates are less precise due 

to low U/Pb ratios, but still geologically useful and broadly consistent with the other dates 

reported here. Our results support a multi-phase hydrothermal model of formation of the 

Candelaria deposit, where an IOA style mineralization (magnetite-actinolite) is overprinted by the 

Cu-rich IOCG style mineralization. 
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2.9 Figures and Tables 
 

Table 2-1. Summary of ages determined by U-Pb for titanite, apatite and magnetite, and Ar-Ar 
for actinolite. 
 
3  

Mineral Comment Age (Ma) 2SE N MSWD p(X^2) Depth 
Titanite C52 115.4 1.6 4 0.91 0.44 731 
Titanite C58 114.4 2.3 7 0.91 0.48 817 
Titanite C58 (Ttn adjacent K-spar 

vein) 
90.8 2.8 3 3.4 0.064 817 

Titanite C11 126.11 3.66 24 4.2 1.7 x 10-
10 

148 

Titanite C65 126.92 4.7 26 1.2 0.27 1030.4 
Titanite C70 130.1 2.7 30 1.8 0.0049 1109.5 
Titanite C73 118.7 1.4 30 0.78 0.79 1132.1 
Apatite C43 106.6 8.8 8 0.82 0.57 618 
Apatite C52 (in mushketovite vein) 116.9 0.9 58 1 0.43 731 
Apatite C52 (in volcanic 

groundmass) 
115.2 2.5 13 0.63 0.82 731 

Apatite C61 (ap in matrix) 120.2 6.6 5 1.9 0.1 840 
Apatite C61 (ap in mag vein 1) 115.4 16.7 7 1.4 0.21 840 
Apatite C61 (ap in mag vein 2) 112.9 2.6 19 2.3 0.0017 840 
Apatite C62 112.3 4.2 7 0.19 0.98 871 
Apatite C12 113 1.4 90 1.4 0.015 133 

Magnetite C12 122.2 7.9 26 0.25 1 133 
Magnetite C52 124.4 9 16 0.76 0.73 731 
Magnetite C58 128.3 8.5 8 0.75 0.63 817 
Magnetite C61 127.2 16.2 18 0.24 1 840 
Magnetite C61 (matrix mag) 130.7 11.5 19 0.85 0.64 840 
Magnetite C61 (mag vein 1) 137.5 11.9 11 0.59 0.64 840 
Magnetite C61(mag vein 2) 147.6 10.1 6 0.45 0.81 840 
Magnetite C62 (Magnetite in matrix) 130.9 7.3 29 0.53 0.91 871 
Actinolite C58 121.15 0.63 3 0.82 0.69 817 

Notes: SE = standard error at 95% Confidence interval. 
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Figure 2 - 1: Map of the Chilean Iron Belt (CIB) highlighting the area’s important IOA and 
IOCG deposits (modified from Rodriguez-Mustafa et al., 2020). The location of the 
Candelaria IOCG deposit is designated with a star. Note the proximal relationship between IOCG 
style deposits such as Candelaria and IOA deposits along the Atacama Fault System in northern 
Chile. 
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Figure 2-2: Representative BSE images. (Mag: magnetite, Ap: apatite, Ttn: titanite, Ccp: 
chalcopyrite) (A) Image of a hydrothermal apatite and magnetite. Note the difference in 
texture between the magnetite core (spongy, full of mineral inclusions and pits) and rims (non-
spongy, inclusion free). The dashed red line denotes a triple junction between magnetite grains. 
(B) Titanite grain with increased contrast to highlight internal zonation. Internal zones appear 
blobby and porous with some associated magnetite. (C) Representative image of a 
commonly seen petrological relationship between titanite with magnetite in these samples. 
(D) Representative image of the Candelaria IOCG mineralization with chalcopyrite, apatite, 
magnetite. Outline of textural core-rim zoning in magnetite highlighted by the dashed red line. 
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Figure 2-3a: Summary chart showing depths and dates with 2se uncertainties for minerals dated 
from the Candelaria IOCG, highlighting the temporal relationship with proximal igneous units. 
The colored vertical bars represent zircon U–Pb ages of magmatic activity reported by del Real et 
al (2018). From left to right, the light pink bars show ages of different pulses of the Copiapó batholith 
(Los Liros: 110.7 ± 0.4 Ma, San Gregorio: 115.5 ± 0.4 Ma, Adamelite (quartz monzonite 
porphyry): 116.3 ± 0.4 Ma, La Brea: 118.0 ± 1.0 Ma), the dark pink bars show the ages of pre-
mineralization dacitic dikes (121.9 ± 2.4 Ma and 124.9 ± 0.4 Ma), and the gray bar shows the ages of 
the host rock andesite (upper andesite: 132.4 ± 2.9 Ma, lower andesite: 135.3 ± 1.0 Ma). Dates 
falling within the dashed boxes are from the same sample depth. Many dates calculated in this 
study cluster heavily around c. 115 Ma, which corresponds to the San Gregorio and Adamelite 
pulses of the Copiapó batholith, as well as previously published ages from Mathur et al. (2002) 
and Marschik and Fontboté (2001). 
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Figure 2-3b. Summary chart showing depths and dates with 2se uncertainties for 
exploratory magnetite/mushketovite dated. While the uncertainties are high, dates reported are 
interestingly geologically reasonable. 
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Figure 2-4a: Image of sample C52 from 731 m with locations of dated minerals, highlighting 
cross-cutting relationships, with the actinolite-hornblende vein outlined in a white dotted line. 
Apatite and titanite found in the matrix, and apatite in the magnetite (mushketovite) vein have the 
same calculated dates at c. 115 with overlapping 2se uncertainties. The actinolite-hornblende 
is distinctly older at 121.1 Ma. Green circles in the thin section image represent the locations of 
apatite dated, and blue represent the location of titanate dated. See text for discussion. 
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Figure 2-4b: Terra-Wasserburg diagrams for U–Pb dates of matrix apatite, titanite, and apatite 
found in the magnetite (mushketovite) vein, and 40Ar/39Ar age spectra of Actinolite-hornblende in 
sample C52 from 731 m depth. 
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Figure 2-5: BSE image and WDS maps of the actinolite vein in sample C52 from the 731 m depth. 
Actinolite is generally homogeneous, with zoning in the BSE image due to Fe - Mg 1 exchange. K 
is present throughout the actinolite (averaging ~0.25 wt% K2O), and accompanied by the coupled 
KAlSi-1 exchange, with cores slightly more enriched in K relative to the rim. Scale bar = 1 mm in 
each image. 
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Figure 2-6: Terra-Wasserburg diagrams of magnetite U–Pb from samples C12 from (a) 133 m 
depth and (b) C34 from 486 m depth,  highlighting the potential and limitations of magnetite 
U–Pb dating, respectively. Sample C12 has a date of 122.2 ± 7.9 Ma (MSWD = 0.25, p(χ2) = 1), 
whereas sample C34 has a date of 95.4 ± 38.8 Ma (MSWD = 0.19, p(χ2) = 1). The very high 2se 
uncertainty in sample C34 is due to high concentrations of common Pb, which is a key 
hindrance to the effectiveness of magnetite U–Pb dating. 
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3.1 Abstract  
 

One of the most pressing issues currently facing the gem industry is how to accurately 

determine the provenance of an unknown gemstone. This problem is particularly relevant with 

emeralds from Colombia, which are widely considered to be among the world’s finest. Hence, there 

is a strong desire among traders and consumers to accurately determine the geographic origin of 

Colombian emeralds. Here, we used laser ablation inductively coupled plasma mass spectrometry 

(LA-ICP-MS) to measure elemental concentrations of emeralds from 40 mines from all 9 mining 

districts of the eastern and western Colombian emerald belts. These data were used to develop a 

random forest classification (RFC) machine learning algorithm to distinguish emeralds from among 

the Colombian belts, districts, and mines. The RFC method was proven highly effective at 

determining whether an unknown emerald was from the eastern or western mining belt (~98% 

accuracy) and determining the mining district of origin (~93% accuracy), and had moderately high 

effectiveness in determining the individual mine of origin (~85% accuracy). Using the variable 

importance list calculated from the RFC model, it was determined that the V/Cr ratio is the most 
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important variable in determining whether an emerald is from the Eastern or Western mining belt, 

with western emeralds having higher concentrations of V and lower concentrations of Cr than 

eastern belt emeralds. These elements are the primary chromophores that give emeralds their 

distinctive color, and the variability in V and Cr contents explains the wide range of hues of green 

observed among Colombian emeralds. The same method of coupling LA-ICP-MS data with a RFC 

model was also used on Colombian euclase from three of the same mines as the emeralds, and it 

was determined that the origin of an unknown Colombian euclase can be predicted with ~99% 

accuracy. An added benefit of the RFC model is that useful visualizations can be created utilizing 

the calculated variable importance list and calculated probabilities associated with its predictions. 

This allows for the creation of discriminant charts post-hoc, as well as probability heat maps that 

complement the RFC machine learning prediction. This method of (1) collecting a comprehensive 

database of LA-ICP-MS trace element data; (2) applying a random forest model to the data; (3) 

creating visualizations and discriminant diagrams post-hoc—has potential to rapidly expand our 

current capabilities to determine the provenance of any given mineral to a potentially hyper-specific 

degree.  

 

Keywords: Random Forest Classification, CART, Machine Learning, Geochemistry,  Colombia, 

Emeralds, Euclase, LA-ICP-MS, Mineral Origin Determination, Provenance, Gemology 
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3.2 Introduction 
 

Geographic origin determination is one of the most pressing issues facing the gem industry 

(e.g. McClure et. al 2019), and it is the responsibility of gemology laboratories to develop methods 

to better predict where an unknown gemstone is from to ensure public trust. Whether due to the 

perceived quality, history, lore, geology, or collector’s interest—some localities are valued more 

highly than others. For example, a Burmese (Myanmar) ruby can fetch a higher price than a ruby of 

equal quality from elsewhere simply due to the fame behind its source locality (Shor and Weldon, 

2009). Likewise, Colombian emeralds are generally more highly valued than those from other 

sources, and even more specifically within Colombia, emeralds from the Muzo mining area hold 

exceptional value. Each collected mineral has a deep geologic and anthropological history to it, and 

to the collector, information can be as valuable as the stone. Whether or not the reader agrees that 

added value should be placed on gemstones based on location, it is an undeniable trend in the gem 

and mineral industry that location holds a special value in the eyes of many buyers.  

Preserving origin information for gemstones is notoriously difficult because original 

location information may be inadvertently lost due to poor record keeping and poor inventory 

control (e.g. McClure et. al 2019). Additionally, as in any industry, where there is perceived value, 

there is also opportunity for unethical practices. Herein lies the importance of gem laboratories to 

provide and continue to develop quality assurance methods. There is already an established market 

for origin determination, as is evident by the services offered at gemology laboratories around the 

world. Previous and current methods of origin determination include the qualitative observation of 

inclusions, color, and habit of a particular gem mineral, determined by highly skilled gemologists 

(Gübelin and Koivula, 1986; Renfro et al., 2016; Saeseaw et al., 2019). While undeniably useful, 

these physical observations are usually coupled with advanced laboratory techniques to 

geochemically fingerprint the origin of a stone due to the ever-increasing number of producing gem 
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deposits. The recorded complexities of a mineral’s formational environment are left imprinted in the 

crystal form of a mineral, such as chemical or color zonation, micro-textural features, inclusions, 

crystal habits, and minerals associations. These differences can often be detected at the trace 

element level, which is the basis for geochemical provenance determination methods.  

Here we present a highly effective approach to origin determination using a machine 

learning algorithm on trace elemental data from Colombian emeralds at increasing levels of 

specificity:  by mining belt, mining district, and by individual mine. In Colombia, emeralds are 

mined from two regional mining belts: the Eastern and Western, and 9 mining districts 

encompassing numerous mines (Fig. 3-1). Emerald mineralization is associated with Lower 

Cretaceous strata. In the Western belt, emeralds are hosted by the Rosablanca and Muzo 

Formations; whereas in the Eastern belt the two hosting units are the Santarosa and Chivor 

Formations (Terraza Melo, 2019). 

Colombian emeralds form from the chemical interaction of evaporitic brines and black 

shales containing chromophore elements such as Cr and V (Ottoway et al., 1994). They are distinct 

from most emeralds that formed by chemical reaction of magmatic-hydrothermal fluids evolved 

from granitic melts with mafic-ultramatic host rocks (Giuliani et al, 2019; Alonso-Perez and Day 

2021). Thermal reduction of sulfate from brines at 300-330 °C, with organic matter led to extensive 

albitization, followed by precipitation of carbonates, pyrite, and Be-bearing minerals (e.g., beryl, 

euclase), which are very low in Fe, and relatively enriched in V and Cr (Giuliani et al., 2000; 

Alonso-Perez and Day, 2021). Emerald mineralization in both mining belts involved comparable 

but not identical rock units and took place under similar physicochemical conditions as evidenced 

by fluid inclusion data and consistent mineral assemblages (Kozlowski et al., 1988; Cheilletz et al., 

1994; Banks et al., 2000; Giuliani et al., 2000; Romero Ordoñez et al 2021; Gonzalez-Duran et al., 

2021). Although, the structural setting and age of mineralization differ, with the Western belt being 
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associated with a compressive phase (Branquet et al., 1999) dating at 34-51 Ma, as determined 

through Ar/Ar dating on micas by Cheilletz et al. (1994) and Th/Pb dating on syngenetic parisite by 

Altenbergen (2022), and the Eastern belt being linked to extensional events at 65 Ma (Cheilletz et 

al., 1994; Branquet et al., 1999). The method detailed in this study provides an origin prediction, an 

accuracy probability, as well as helpful graphs, charts, and tools to provide broader insights into the 

underlying geochemistry and geologic processes and has potential to serve as a blueprint for future 

mineral provenance studies. 

 

3.3 Methods 

3.3.1 Sample Material 

The most critical aspect in developing a database for origin determination is ensuring the 

samples of interest are actually from their stated location. This is where the collaboration of the 

Technological Development Centre for the Colombian Emerald (CDTEC) and the Gemological 

Institute of America (GIA) has proven exceptionally beneficial. Geoscientists at CDTEC have spent 

years meticulously collecting gem-rough emeralds from active mines with first-hand knowledge of 

where each stone originated. Likewise, the GIA takes equally careful record of their reference 

collection in order to ensure location accuracy (Vertiest et al., 2019). The compiled database 

contains a comprehensive 2284 individual LA-ICP-MS spot analyses, 694 emeralds, from 9 mining 

districts and 40 individual mines. Of these, 1113 spots from 388 emeralds were from CDTEC 

collected samples, 458 spots from 77 emeralds in the GIA reference collection, and 527 spots, from 

229 emeralds from Jiménez (2017).  
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3.3.2 LA-ICP-MS trace element data collection at the GIA 

New trace elemental data of Colombian emerald samples were acquired at the Gemological 

Institute of America in Carlsbad, CA by using a Thermo Fisher iCAP Qc ICP-MS, coupled with an 

Elemental Scientific Lasers NWR213 laser ablation system with a frequency quintupled Nd:YAG 

laser operated in Q-switched (pulsed) mode at a wavelength of 213nm and pulse duration of 4 ns. 

Laser sampling was performed in the third generation two-volume cell from ESI (TwoVol2). The 

laser-generated aerosol was collected by a device (or cup) that is supported evenly throughout the 

entire range of motion with a specially designed internal movement system. This system minimizes 

inconsistent gas dynamics and a positional sensitivity dependence. The laser cell is flushed with 

helium gas, carrying the ablated material to where nebulizer gas (Ar) was mixed with the carrier gas 

(He) via a wye shaped connector before entering the plasma for ionization and subsequent analysis 

in the mass spectrometer. Data acquisition was performed in time-resolved mode. The following 

elements were measured: Li, Be, Na, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Ga, Rb, Cs. Dwell time of each 

analyte measured was 0.01 seconds except Al, Si and Fe that were measured for 0.005 seconds, and 

Li, K and Rb that were measured for 0.05 seconds. Dwell time of each laser spot was 40 seconds. Si 

was used as an internal standard. National Institute of Standards and Technology (NIST) Standard 

Reference Material (SRM) 610 and 612 were used as external standards. All isotopes were 

externally standardized using both standards. Concentrations of all isotopes were calculated by 

Qtegra software (Version 2.10.3324.131). Full LA-ICP-MS parameters can be found in Table 1 in 

the supplemental data sheet.  
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3.4 Results 

3.4.1 Variable Selection and Database Compilation  

In addition to the major elements measured (Be, Al, Si) in Colombian emerald samples, the 

following elements were present in minor concentrations (1 - 5 wt. %): Na, Mg, V, Cr. The 

following elements were detected at trace level (<1000 ppm): Li, Ca, Sc, Ti, Fe, Ga, Rb, and Cs. In 

over 50% of analyses, K, P and Mn were detected in trace amounts, but were not consistently 

detected. Summary statistics of elemental concentrations can be found in Appendix B (B-2, B-3, B-

4, B-5).  

Only analytes which were detected in all (or very nearly all, >99%) spot analyses were 

considered for separation analysis. This included Li, Be, Na, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Ga, Rb, 

and Cs. The analytes: K, P, and Mn were detected in >50% of analyses, therefore were not used in 

separation analysis. Additionally, some analytes raised suspicion of having been affected from 

systematic instrumental drift over time, including the major elements Be and Al and Si. This 

potential systematic drift between sessions was tested by re-analyzing the same emeralds on 

different days and comparing the results (Fig. 3-2). Be and Si were determined to be significantly 

different enough to be excluded from analysis, and Al was determined to be consistent enough 

between sessions to use in analysis. The analytes which had plausible polyatomic interferences, 56Fe 

(e.g. 40Ar + 16O+), 44Ca (e.g. 28Si + 16O+) (May and Wiedmeyer, 1998), were not considered. 

A split in data is apparent with 24Mg (Fig. 3-3a). Initially, this was suspected to be a natural 

split in data by mine, district, or belt—however, none of these attributes explained the separation. It 

is suspected that 24Mg has an interference with H+ and 23Na, and different sessions might have had 

different levels of hydrous gas present in the system which was then ionized upon contact with the 

argon plasma.  This split is not seen in 23Na vs. 25Mg (Fig. 3-3b). For this reason, 24Mg was not 

considered for analysis.  
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Lastly, an effort was made to reconcile the newly collected data with the dataset from 

Jiménez (2017), as their study includes nearly 500 spot analyses on Colombian emeralds with 

specific mine information. The standard NIST 610 was used in the Jiménez (2017) study, whereas 

the newly collected analyses in this study used both NIST 610 and NIST 612. After re-calculating 

our data using only NIST 610, it was found that our concentrations remained the same, except for 

Fe, so it was not included in data analysis.  

The analytes that our study had in common with Jiménez (2017), and were therefore used in 

separation analysis included: Li, Na, Al, Sc, Ti, V, Cr, Ga, Rb, and Cs. Each of these elemental 

concentrations were then divided by each other systematically to determine ratios (e.g. Li/Na, Li/Al, 

Li/Sc, etc.). A total of 55 variables, both measured and derived, were used in separation analysis.  

It should be noted that Fe and Mg showed promise for separation, however, equally 

effective separations were possible without using these elements, and the decision to exclude Fe and 

Mg was made to appropriately include the previously published dataset into this new database.   

 

3.4.2 Machine Learning and Data Processing 

 Attempts were made in the nascency of this study to separate emeralds using more 

traditional trace elemental discriminant approaches, namely scatterplots and other graphic 

multivariate diagrams. While there were some encouraging results using these approaches, when 

working with 55 variables, the possibilities for diagram separation were practically endless, 

therefore, the feasibility of machine learning algorithms was explored. 

Eight different machine learning algorithms were considered for predictive effectiveness on 

the database: Linear Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbors 

(KNN), Gaussian Naïve Bayes (NB), Linear Support Vector Classification (SVM), Quadratic 

Discriminant Analysis (QDA), Decision Tree Classification (DTC), and Random Forest 



43  

Classification (RFC). A training - test data split of 80% - 20% was used, along with stratified K-

fold sampling with 5 splits while shuffling. Cross validation accuracy scores were used to determine 

the model’s effectiveness (Fig. 3-4). 

Several variables, especially the derived variables, had co-linearity (e.g. Rb:Na:Mg, and 

Cr:V:Sc), which results in LR, LDA, QDA not having an underlying assumption met. Additionally, 

homoscedasticity is required for LDA, and not every variable had the similar degrees of variance. 

The strict assumptions needed for the parametric algorithms lead to the decision to choose a non-

parametric option. Of these, NB and KNN had moderately successful performance, and SVM 

performed poorly.  

The DTC and RFC algorithms (both under the classification and regression tree, or 

“CART”, family of algorithms) performed the best, did not violate any assumptions, and was 

therefore the chosen algorithm for this study. 

Figure 3-5 shows an example of a single, simplified, DTC model applied to our data. While 

effective at handling data of different variances, sizes, and even types (categorical and continuous), 

one of the shortcomings of a DTC is its tendency to over-fit noisy data, meaning the training 

accuracy is much higher than the testing accuracy, thereby limiting its predictive ability. This is 

where an RFC surpasses a single DTC in terms of effective predictive ability. While over-fitting can 

still occur with very noisy data in RFC, by using hundreds of decision trees with randomized 

variables, and taking a simple majority vote of all those trees, the RFC algorithm performs 

exceptionally well in both training and testing accuracy, reducing the chance of an over-fit model. 

For this reason, an RFC was chosen and performed on the trace element database of Colombian 

emeralds by mining belt (east vs. west), mining district, and by individual mine. Each RFC model 

was run independently on these three categories to self-validate the results. For example, if the 

model predicted a mine that was not in the predicted district or belt, it would alert the analyst to take 
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caution in interpretation. It was found that a random forest of 100 trees performs equally well to a 

random forest of 1000 trees, so for computational brevity, a forest of 100 trees was used. Each 

random forest used an 80-20 training-testing data partition, and the Gini split rule. 

This decision tree recursively partitions the data into subsets based on the chemical 

variables, with the aim of maximizing the homogeneity of the target variable within each subset. 

Each split is a Boolean True/False question. In this diagram, the green bar represents the number of 

classifications which fall under “True”, and the red represents those which fall under “False” for 

each split. For example, the first split (root node) divides the data into those with a V/Cr ratio less 

than or equal to 0.6781. Training accuracy is improved when more nodes are allowed, and when 

multiple DTC trees are used in a random forest classification (RFC) analysis. This highlights the 

simple flow-chart style logic underlying DTC and RFC machine learning algorithms.   

 

3.4.3 Random Forest Classification Predictive Results 

The random forest classification (RFC) model was applied to the dataset independently to 

the following attributes: east or west mining belt (n=2), mining district (n = 9), and individual mine 

(n = 40). One of the characteristics of a RFC model is that each time it is performed, the results can 

vary slightly even when the same data is being fit. This is because variables are generated 

randomly, and each occurrence is slightly different. For this reason, results here are reported as 

approximations, however, they are still representative of the model’s performance (Table 3-1). 

The RFC model successfully separated emeralds by belt with 98% testing accuracy and 99% 

training accuracy. For mining districts, the RFC model was able to separate the 9 districts with a 

testing accuracy of 93% accuracy with a 97% training accuracy. For individual mine separation, the 

model has an 85% testing accuracy, with 92% training accuracy (summarized in Table 3-1). 
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Throughout the development of this model and the database, accuracy scores improved when more 

data was added. Full example RFC model summaries are reported in Appendix B (B6, B7, B8). 

 

3.4.4 Probability Heat Maps 

One of the most useful features of the RFC model is that in addition to making predictions, 

it calculates a probability associated with those predictions, as well as probabilities associated with 

attributes that it did not predict. This proves particularly useful in the case of confused predictions. 

Fig. 3-6a-c show example probability heat maps that can be created from data produced in the RFC 

model. Each row is an individual spot analysis, and each grouping of three rows is from one 

emerald (i.e. rows 0 - 2 is one emerald, 3 - 5 is another, for a total of 9 emeralds - one from each 

district). This sample set is representative of the model’s performance. The lighter the color, the 

higher the probability of an emerald being from a particular belt (Fig 3-5a), district (Fig 3-5b) or 

mine (Fig 3-5c). In this sample, the model correctly predicted the belt of origin with 100% accuracy 

(27/27), the district with 93% accuracy (25/27, missing analyses labeled 14 and 26), and by 

individual mine with 88% accuracy (24/27, missing analyses labeled 9, 14 and 26).  

 

3.4.5 Variable Importance 

In addition to predictions and probabilities, another highly useful feature of a RFC model is 

that it can calculate the most important variables for separation, which can aid in the creation of 

graphical visualizations. The top 12 variables for separation of each are reported in table 2. Full 

results can be found in Appendix B (B6-, B7, B8). Using the variable importance, it is obvious the 

most significant variable for separation by belt is the V/Cr ratio (Table 2, Fig. 3-7a-c).  
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3.5 Discussion 
 

3.5.1 Importance of V and Cr in Differentiating East and West Emerald Belts 

By far the most important variable in separating an emerald by mining belt is the V/Cr ratio 

(Fig. 3-7a-c.). These elements are, interestingly, the primary chromophores which give emerald its 

characteristic color. In fact, running the RFC model using only those two variables, predicts the belt 

of origin with ~85% testing accuracy (training = ~93%). Meaning, this model can correctly predict 

whether an emerald is from the Eastern or Western belt based solely on the primary chromophores 

~ 85% of the time. Using the other variables as mentioned above, we can fully separate emeralds 

from Eastern and Western belts with a testing accuracy greater than 98%. Fortaleché et al. (2020) 

noted the anecdotal color difference in Western vs. Eastern emeralds, with Western emeralds 

having “light to vivid green to yellowish green color” and Eastern emeralds having “light to vivid 

bluish green color”. Experienced traders of Colombian emeralds claim to know the difference 

between an Eastern and a Western emerald based solely on color, albeit with some overlap (e.g. Fig. 

3-8). The noted qualitative difference in color can now be empirically corroborated with the 

distinctive difference in V/Cr ratio of emeralds by belt reported here. 

A handful of previous studies have touched on the differences in V and Cr concentrations 

between individual mines in Colombia (Cedeño et al, 2015; Jimenez 2017; Angarita-Sarmiento et 

al., 2022). Additionally, Cronin and Rendle (2012) determined the chromophores V, Cr, Mg and Ni 

to be statistically different in the Guali (Eastern belt) vs the Coscuez and Muzo mines (Western 

belt) of Colombia, and speculated this as a cause of the color difference in these emeralds. The 

differences in Cr and V were specifically emphasized between the Guali, Coscuez, and Muzo 

mines. A photoluminescence study of Colombian emeralds found the wavelengths between 683 and 

685 nm, which correspond to the Cr3+ ion, effective in differentiating emeralds from the Eastern and 

Western belts of Colombia (García et al., 2019). Data from our study complements this finding well 
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and takes it a step further to determine that the V and Cr concentrations are significantly different 

by the entire mining belts – east vs. west, not just localized to specific mines.  

 

3.5.2 Mines vs. Mining Districts 

Both mines and mining districts could be separated with moderately high to high accuracy 

(Table 3-1). Grouping mines into “mining districts” presents key advantages over individual mines. 

First, it aids with the issue of the proximity of mines. Some mines in Colombia are so close to each 

other that they have shafts and adits which overlap. This, obviously, renders any sort of 

geographical separation extremely difficult if not impossible, obfuscating any meaningful potential 

difference in geochemistry. Second, the apparent trace elemental heterogeneity of Colombian 

emeralds—even at a localized level—raises the possibility that some emeralds from larger mines 

could face significant differences in trace element chemistry even within the same mine. By 

grouping mines at the district regional level, this overcomes these challenges and presents a more 

accurate prediction, as is seen with the results of this study where the accuracy improved with each 

broadening group (Mine ~85%, District ~93%, Belt ~98%). 

 

3.5.3 Value Even in Confusion 

Valuable information can be ascertained even when predictions are confused. In the case of 

Colombian emeralds, a common mistake for the RFC algorithm to make is confusing the Maripi 

with Muzo districts, and occasionally with Coscuez—a mistake which is quite intuitive (see green 

boxes in Fig. 3-6c). These districts are less than 10 km away from each other and are in the same 

lithostratigraphic unit (Fig. 3-1). The fact that this algorithm can separate these districts with a 

moderate degree of confidence is itself, quite remarkable. Even if the algorithm determines an 

emerald to have a 50-50 chance of being from either Muzo or Maripi, knowing this is not from any 
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other mining district is itself an important result. As mentioned before, Muzo emeralds have a 

reputation for being among the world’s finest, and where there is inflated value due to a famous 

locality, there could be fraudulent dealers falsely attaching the Muzo location onto an emerald to 

fetch a higher price. This method now gives us the ability to say either plausibly whether an 

emerald is from the Muzo district, or decisively if it is not, with a quantitative probability. Ruling 

out options is possible because the separation of emerald trace element chemistry between Eastern 

and Western districts is so conclusive, and separation of districts further away while in the same 

unit (i.e. Pauna vs. Muzo) and in different lithostratigraphic units (i.e. Muzo vs. Peñas Blancas) is 

also quite decisive. Despite the geochemical similarities, the RFC model can successfully 

differentiate these two districts remarkably well, in particular with the RFC model’s ability to 

produce probability heat maps (Fig. 3-6). The RFC provides a list of potential predictions and 

associated confidence in these predictions. Most of the time, it provides only one district as an 

option; sometimes it will provide 2-3, and only very rarely will it provide more than 3. If the 

algorithm cannot place the unknown emerald to a particular mine, it will provide its best guess with 

a low probability, alerting the analyst to take caution in interpretation. Having a comprehensive 

database containing samples from each mining district from 40 mines allows us to have confidence 

in the machine learning’s output, and the post-hoc visualizations help aid the analyst’s interpretation 

to ensure that no conclusion is overstated.  

 

3.5.4 Causes of separation 

Various authors, including Schwarz (1992), Cedeño et al. (2015), Jimenez (2017), McManus 

et al. (2018), Fortaleché et al. (2020), and Angarita-Sarmiento et al. (2022), have pointed out 

differences in trace element concentrations of emeralds from different mining belts. Geochemical 

variation along the stratigraphy and the paleoenvironment of deposition within the Colombian 
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Cretaceous basin emerges as a major control influencing the endowment of minor and trace 

elements for the mineralizing system. Despite emerald mineralization being hosted by comparable 

rock units (e.g., Muzo, Chivor Formations), emerald pockets are not found at the very same 

stratigraphic levels, as demonstrated by Cheilletz et al. (1994), Giuliani et al. (2000), Terraza 

(2019), Romero-Ordoñez et al. (2021), and Gonzalez-Duran et al. (2021). The latter authors 

documented geochemical variation across the Muzo Formation in the La Pava mine, while Mantilla 

et al. (2007) and Terraza (2019) reported distinct deposition facies along the mining belts.  

This variation is further reflected in the non-homogeneous distribution of V/Cr ratios in the 

host rocks. The concentration of V in the rock strata is notably higher in the Western Emerald Belt 

may be attributed to heightened levels of organic matter, coupled with the affinity of V and Cr for 

sediments abundant in organic content (Breit and Wanty, 1991; Gustafsson, et al., 2014). The 

measured total organic carbon (TOC) is higher in the Western belt (3-4 % in the Muzo Formation, 

2-3 % in the Rosablanca Formation), as opposed to the Eastern Emerald Belt: 1.46 % in the Santa 

Rosa Formation, 1.06% in Chivor Formation, and 0.34% in Las Juntas Formation (Mantilla et al., 

2007).  

Consequently, the Western belt has on average 409 ppm of Vanadium and 111 ppm of 

Chromium (González et al., 2021), while the Eastern Belt  has on average 133 ppm of Vanadium 

and 82 ppm of Chromium (Pignatelli et al., 2017). This trend has also been recorded in other 

minerals that incorporate chromophore elements. Garcia-Toloza et al. (2022) studied green micas 

documenting average concentrations of 5368 ppm (V) and 1259 ppm (Cr) in the Western belt, 

compared to 2278 ppm (V) and 778 ppm (Cr) in the Eastern belt. Additionally, the concentration of 

Vanadium is higher in euclase from the Western belt, as reported here and corroborated by Garcia-

Toloza et al., 2022. 
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Furthermore, Jimenez (2017) attributed differences in the concentration of Cr/V, and other 

trace elements, to variations in fluid evolution controlled by tectonic conditions. In the Eastern belt, 

emerald compositions reflect the signature of evaporite-derived fluids, while the Western belt, 

influenced by a compressive tectonic regime, involves the input of salt diapirs. The order of 

precipitation of the mineral assemblage may also play a role in the incorporation of trace elements 

in emeralds. For instance, Gonzalez-Duran et al. (2021) found different V/Cr ratios in the rocks and 

emeralds in the La Pava mine, attributing this difference to the crystallization of green mica before 

emeralds. The early formation of micas and carbonates can deplete the mineralizing fluid in 

Vanadium, leading to a different V/Cr ratio by the time emeralds precipitate (Garcia-Toloza et al., 

2022). 

In summary, differences in trace element concentrations, including Vanadium and 

Chromium, among Colombian emeralds arise from complex interactions involving geochemical 

variations in stratigraphy, tectonic influences, and nuances during mineralization processes. 

 

3.5.5 Further proof of Concept: Colombian Euclase 

To further test the effectiveness of this method, samples of Colombian Euclase. Euclase 

(BeAl(SiO4)(OH)) has a similar composition to beryl (Be₃Al₂Si₆O₁₈) and is found in some of the 

same mines as emeralds. Euclase lacks the long channels down the c-axis as seen in beryl which can 

trap fluid inclusions. For this reason, fewer trace elemental substitutions can occur, resulting in a 

shorter list of detectable trace elements than in emerald. 

Gem rough euclase from three of the same Colombian mines (La Marina, Pauna district; La 

Vega de San Juan, Gachalá district; and Palo Arañado, Chivor district) were analyzed with LA-ICP-

MS and an RFC model was applied using the same procedure as detailed above. A total of 360 LA-

ICP-MS spot analyses were obtained on 60 euclase crystals (108 spots on 18 euclase from La 



51  

Marina; 180 spots on 30 euclase from La Vega de San Juan; 72 spots on 12 euclase from, Palo 

Arañado). Minor concentrations (<1wt%) of Ca, V, Cr, Ge, and trace concentrations (<100 ppm) of 

Mg, Sc, Ti, Fe, and Ga, were detected. Using the same methods detailed above, the RFC model was 

able to predict with 98-99% training-testing accuracy which mine a Colombian euclase is from. The 

bi-variant discriminant diagrams in Fig. 3-9 were created post-hoc with guidance from the variable 

importance list. 

This further demonstrates the effectiveness and relative ease of use for this method for 

mineral origin determination studies, which can be summarized as such: 

1. Collect a comprehensive database of trace element data  

2. Apply the random forest model  

3. Create discriminant diagrams after the analysis based on variable importance and probability 

heat maps, and other visual supplements to the “black box” machine learning algorithm to 

better understand its classification and predictive ability. 

 

3.5.6 Previous work in Machine Learning Applied to Mineral Origin Determination 

The random forest classification (RFC) model has been relatively underutilized in mineral 

science to date, with the many applications coming from economic geologic prospectively and 

classification studies (e.g. Rodriguez-Galiano et al. 2015, O’Brian et al, 2015; McKay and Harris, 

2016; Hong et al., 2021, Bédard et al., 2022).  

Other machine learning algorithms, such as linear discriminant analysis (LDA), have been 

more commonly applied to mineral science. However as noted previously, using this parametric 

approach limits the type of variables and data that can be used, needing to satisfy the assumptions of 

homoscedasticity and collinearity, and for a suite of trace element data such as used in this study, 

the ability to use as many variables as possible gives a greater chance of determining subtle 
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differences in mineral chemistry. An additional benefit of the random forest model, however not 

utilized in this study, is the ability to incorporate categorical information as well as numerical data 

into the model. This could lead to the inclusion of some of the more traditional qualitative 

observations (such as phase inclusion shape or composition), or additional instrumental analyses to 

be incorporated into a random forest model, theoretically improving, and extending the breadth of 

separational ability. 

A study published in Gem Frontiers by Gem Guild (Fortaleché et al., 2020), performed LDA 

machine learning on a suite of emerald trace element data from the Chivor, Gachala and Muzo 

mining districts, and reported successful separations from these three districts. While the authors of 

this present study saw LDA as promising, we ultimately decided against it in favor of RFC as some 

of the variables we used contained some degree of collinearity. Another study determined it to be 

possible to differentiate Colombian Emeralds by mine using laser induced breakdown spectroscopy 

(LIBS) coupled with a statistical algorithm (McManus et al. 2018). Regardless of the differences in 

approach, previous results support the separability of these emeralds at the district level, and our 

study is consistent with their conclusion, expounding upon the idea to include the remaining active 

districts. 

 

3.6 Implications 

By coupling the power of machine learning and the uniqueness of each mineral’s trace 

elemental chemistry, it appears hyper-specific origin determination could be possible for many 

different mineral systems. Machine learning assists in quantifying the otherwise mostly qualitative 

observation-based gemstone origin determination and could help standardize origin reporting from 

differing laboratories—which can occasionally provide conflicting origin opinions. 
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It is suspected that this method will work best on minerals which have more crystallographic 

sites for trace elemental substitution. The long c-axis channels in emerald can trap primordial fluid, 

along with the sites in the crystal structure which allow for elemental substitutions, making slight 

differences in trace element chemistry possible. Minerals such as apatite and tourmaline, with 

multiple site-substitutions, are predicted to be even more readily separable with this method.  

Another benefit of the RFC and the CART class of machine learning is that both 

quantitative and qualitative observations can be incorporated into the model. While not used in this 

study, this offers the ability to build a database including different variable types. With Colombian 

emeralds, previous diagnostic features include the shape and phases of inclusions (Saeseaw et al 

2019), and type of mineral included if observable. For example, the rare earth phosphate mineral 

parisite is diagnostic of Colombian emeralds. A decision tree could be crafted to include these 

observations. Other types of analytical test, such as UV-Vis and Raman spectroscopy, isotope 

chemistry etc., could also theoretically be used in conjunction with this model. In this study, LA-

ICP-MS data was determined to be effective enough on its own, but in future origin determination 

studies, these considerations could be taken into account.  

With the results of this study, we are now able to confidently determine the belt and mining 

district of origin from an unknown Colombian emerald by using trace elements analyzed with a 

random forest classification machine learning algorithm. We are also able to determine the mine of 

origin of 40 individual mines in Colombia with moderate confidence. More data would be needed in 

order to increase the confidence in differentiating down to the individual mine, but with the vast 

number of Colombian emerald mines, along with their geographic proximity, it may not be possible 

to achieve a better separation using any combination of analytical or machine learning method, nor 

would it be practical.  
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The key advantage of this approach is the coupling of a machine learning model, with the 

prediction score and visualizations to assist the user in understanding why the “black box” arrived 

at the determinations it did. Even when the algorithm guesses incorrectly, there is ample evidence 

as to why the model predicted wrong, and what the other possibilities are. This allows the analyst to 

make an informed prediction and allows this information to be passed along to the client. 

Additionally, the empirical probability and corresponding visualizations could give 

laboratories more confidence in stating their origin opinions, as it is harder for an unethical dealer to 

claim with certainty that a stone is 100% from a specific location based solely on a report made in 

good faith. This method has promise for rapidly expanding origin determination capabilities hyper-

specifically, well beyond the country of origin. 

An issue with country-of-origin reporting when it comes to gemstones is that the geo-

political lines drawn over the course of history are completely geologically arbitrary. This results in 

ready confusion between gems from deposits (or gem-rough alluvium) that cross country 

boundaries. While it may never be possible to fully connect each unknown gem and mineral back to 

their mine of origin, the results of this study should provide optimism that there may be ways of 

continuing to pinpoint origin determinations even better.  
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3.8 Figures and Tables 

 
Table 3-1. Representative Sample Performance of RFC Model Separations 

Belt (East or West) Mining District Individual mine 

Training 

Accuracy 

Testing 

Accuracy 

Training 

Accuracy 

Testing 

Accuracy 

Training 

Accuracy 

Testing 

Accuracy 

98% 99% 93% 97% 85% 92% 
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Table 3-2. Top 12 Variables for each RFC separation 

Belt (East or West) Mining District Individual mine 

Variable Importance (%) Variable Importance (%) Variable Importance (%) 

V/Cr 12.09 V/Ga 4.93 V/Ga 3.57 

Li/Na 6.79 Cs 3.87 Li 3.15 

Li/Ga 5.46 Sc/Ga 3.54 Ga/Cs 3.01 

Li/Al 5.41 Na/Rb 3.53 V/Cr 2.89 

Li/Rb 4.95 Ga 3.51 V 2.84 

Sc/V 4.03 Ga/Cs 3.49 Ga 2.69 

Na/Cs 3.95 Li/Ga 3.35 Al/V 2.67 

Rb/Cs 3.63 Rb/Cs 2.85 Li/Al 2.65 

Li/V 3.41 V/Cs 2.82 Sc/V 2.40 

Cr/Ga 3.15 Al/Ga 2.72 Li/V 2.31 

Li 3.11 Na/Cs 2.65 Al 2.29 

V/Cs 3.08 Al/Cs 2.61 V/Cs 2.26 
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Figure 3-1: Generalized map of the Colombian mining districts showing geographic and geologic 
proximity 
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Figure 3-2 (a,b): Example test for systematic instrumental drift by comparing (a) Be and (b) Al, 
from different LA-ICP-MS sessions. Each dotted section represents emeralds tested from a specific 
mine—the left box in each is an earlier session, and the right box the same emeralds analyzed in a 
later session. This shows significant changes in 9Be from session to session, and occurring at each 
sample location. For this reason, 9Be was not considered for data analysis. Conversely, Al was 
determined to be consistent between laboratory sessions, and was considered for analysis 
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Figure 3-3(a): Scatterplot of 24Mg vs. 23Na from all spot analyses highlighting a possible polyatomic 
interference varying by laboratory session causing a split in 24Mg. Also note the strong positive 
correlation between 23Na and 24Mg. 
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Figure 3-3(b): Scatterplot of 25Mg vs. 23Na from all spot analyses. Note the lack of a split in data as 
seen in the plot of 24Mg vs. 23Na, still showing a very strong positive correlation 
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Figure 3-4: Comparison of different machine learning algorithm’s effectiveness on the mining belt 
(east vs. west) dataset. All but the decision tree classification (DTC) and random forest 
classification (RFC) performed poorly or did not satisfy the underlying assumptions of the model.  
The RFC model was ultimately chosen for data analysis. 
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Figure 3-5: An example of a simple 10-node decision tree classification analysis (DTC) performed 
on the emerald database for separation by mining belt. 
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Figure 3-6 (a-c). Probability heat map of sample data by belt (6a), district (6b) and mine (6c). Each 
grouping of 3 rows are 3 spot analyses on the same emerald, for a total of 9 emeralds—one from 
each of the 9 mining districts. In this example, the RFC model correctly predicted each mining belt 
(27/27); correctly predicted mining districts (25/27); and correctly predicted the mine of origin 
(24/27). In Fig. 3-6b, the most confused districts are highlighted in the green boxes. The correct 
origins for the 9 sampled emeralds are as followed: Sample 1 (rows 0-2): Peñas Blancas Mine, 
Peñas Blancas District, Western Belt. Sample 2 (rows 3-5): La Fortuna Mine, Ubalá District, 
Eastern Belt. Sample 3 (rows 6-8): San Gregorio Mine, Chivor District, Eastern Belt. Sample 4 
(rows 9-11): Mina Real, Muzo District, Western Belt. Sample 5 (rows 12-14): Cunas Mine, Maripí 
District, Western Belt. Sample 6 (rows 15-17): Matecaña Mine, Gachalá District, Eastern Belt. 
Sample 7 (rows 18-20): Gualteros Mine, Pauna District, Western Belt. Sample 8 (rows 21-23): 
Achiote Mine, Somondoco District, Eastern District. Sample 9 (rows 24-26): La Abuela Mine, 
Coscuez District, Western Belt. 
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Figure 3-7 (a) Scatter Plot of V vs. Cr in Colombian emeralds highlighting the distinct trends 
between Eastern and Western belts.  
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Figure 3-7 (b) Histograms with kernel density estimate (KDE) lines highlighting the bi-modality of 
the V/Cr ratio in Colombian emeralds between Eastern and Western belts, with some overlap. 
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Figure. 3-7 (c) Map of Colombian emerald mines with V/Cr ratios averaged by individual mine and 
interpolated. Notice the generally higher V/Cr ratio in Western belt, where V/Cr is generally greater 
than 1,  over the Eastern belt emeralds where V/Cr is generally less than 1. 
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Figure 3-8: Emeralds from the Chivor mining district (east) and the Coscuez mining district (west). 
Photos by Robert Weldon, GIA. Chivor emeralds (24.90 ct total) and Muzo emeralds (16.20 ct 
total) are courtesy of Guillermo Ortiz, Colombian Emeralds, Inc. 
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Figure 3-9: Discriminant scatterplot created post-hoc following RFC on LA-ICP-MS Data on 
Euclase, which effectively separates euclase from each of the 3 mines 
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Figure 3-10: A highly effective single decision tree for origin determination of Colombian euclase. 
Using a random forest containing 100 individual decision trees, overfitting is reduced, and the 
predictive ability is nearly 100% accurate. 
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Chapter 4: Promise and Limitations of Provenance Determination of Alluvial Montana 

Sapphires Using Random Forest Machine Learning on LA-ICP-MS Trace Elemental Data 

 
Co-authors: Aaron Palke, Adam Simon 

 
 

4.1 Abstract 

Geographic origin is an increasingly important factor driving the value of a gemstone and it 

is a main objective of gemological laboratories to develop methods to better pin-point the 

provenance of an unknown gemstone. Recent work has shown promise for hyper-specific 

provenance determination methods utilizing a random forest machine learning model on a 

comprehensive suite of trace element chemistry on Colombian emeralds. To further test the 

effectiveness of this method, Montana sapphires were chosen for provenance analysis as 

provenance studies have not been done before on these sapphires, and their geologic origin has been 

a subject of debate. Sapphires occur in four localities in Montana: The Yogo Gulch (primary 

igneous), Rock Creek (alluvial), Missouri River (alluvial) and Dry Cottonwood Creek (alluvial). 

While Yogo Gulch sapphires have been fairly well characterized and studied, the source of alluvial 

sapphire deposits of Montana remain poorly understood. The goal of this study is to see if it is 

possible to determine the provenance of an unknown Montana sapphire given laser ablation 

inductively coupled plasma mass spectrometry (LA-ICP-MS) data, and to see if the trace elemental 

chemistry can shed light on their primary geologic origin. 182 sapphires from each deposit were 

analyzed with LA-ICP-MS for trace element chemistry (total of 750 individual spot analyses), and a 

random forest machine learning model was applied to the dataset. It was determined that the 
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provenance of an alluvial Montana sapphire could be predicted correctly with 90% accuracy, with 

the most important variable for separation being the Mg/Ti ratio. Yogo Gulch sapphires are 

confirmed to be chemically distinct from the alluvial sapphires, demonstrating a 99% separability 

accuracy.  Mg/Ti was also determined to have a strong positive correlation (r = 0.84), and is the 

most effective bi-variate diagram for visualizing geographic separation. This trend in Mg/Ti is 

interpreted to be a result of differences in oxygen fugacity during formation in the upper mantle, 

possibly as a result of forming at different depths. This study adds support to the hypothesis that the 

famous alluvial Montana sapphires have differing primary geologic formational environments, and 

their geographic provenance can be determined with a high degree of accuracy.  

 

4.2 Introduction  

Improving mineral origin determination methods is one of the primary goals of researchers 

in the gemstone industry (e.g. McClure et al., 2019, Krebs et al., 2020), and has broad reaching 

implications for quality assurance and promoting ethical trade practice. Recent work detailed a 

highly effective method of provenance determination at varying degrees of locality specificity using 

a random forest machine learning algorithm on a suite of trace element data on Colombian emeralds 

(Chapter 3 of this dissertation: Blakemore et al. in review). This study aims to build upon this 

previous provenance determination work by using a random forest machine learning methodology 

on an entirely different, and in some ways more challenging set of trace elemental data to test the 

effectiveness and limitations on a different mineralization system. Sapphires from Montana are an 

intriguing mineral system and locality to study with this method because (1) there is previous work 

proving the effectiveness of using trace elements to separate gem corundum broadly by country of 

origin (e.g. Sutherland et al., 1998; Zaw et al., 2006; Peucat et al., 2007; Simonet et al., 2008; 

Sutherland and Abduriyim, 2009) (2) much work has been done by gemological laboratories to 

build up collections of well documented sapphires (e.g. Hsu et al. 2016), (3) corundum has few 
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crystallographic sites for trace element substitution so the limitations of the method from 

Blakemore et al. (in review) will be tested, and (4) the source of Montana’s famous alluvial 

sapphires remains elusive, and studies have suggested that while they are close in geographic 

proximity (Fig. 4-1), the wide array of mineral inclusions observed in alluvial Montana sapphires 

may suggest differing geologic origins, requiring the need of a origin determination study of these 

gems (Berger and Breg, 2006, Zwaan, 2015). Adding to the body of geochemical work performed 

on Montana sapphires has the potential to discover insights into their formation by testing to see if 

alluvial sapphires from Montana are chemically and statistically distinct from each other.  

Sapphire is a variety of the mineral corundum (Al2O3), and although it is colloquially thought 

of as blue, it in fact more broadly refers to any non-red colored corundum, with red corundum 

famously known as ruby. Non blue or red corundum is sometimes referred to as “fancy sapphires”, 

much like a colored diamond is called a “fancy diamond”.  Its high hardness (Mohs = 9) and 

durability make it a useful mineral for use as an abrasive, in addition to its ornamental use as a 

gemstone. Corundum is allochromatic, meaning that its color is determined by trace elemental 

impurities. Ruby is colored by Cr3+, and blue sapphire is colored by varying amounts of Fe3+ and Ti3+, 

and V3+. The color of corundum can be artificially enhanced using a Be diffusion heat treatment, 

which is one of the key treatments gem laboratories test for to determine if color is natural or 

artificial (Emmet et al., 2003). Elemental substitutions occur predominantly in the Al site. Common 

substituents include Mg, Ti, Cr, Fe, V, and Ga. The limited number of sites for substitution is in part 

what makes provenance determination in corundum utilizing trace elements challenging (e.g. Palke 

et al., 2018; Krebs et al 2020).  

Sapphires occur in four mining locations in Montana: Yogo Gulch (primary igneous), 

Missouri River (alluvial), Dry Cottonwood Creek (alluvial), and Rock Creek (alluvial) (Fig. 4-1). 

One formational model of Yogo Gulch sapphires suggests from garnet inclusion evidence that Yogo 
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sapphires formed from a mantle eclogite and were then transported as xenocrysts to the surface 

(Cade and Groat, 2006). Plagioclase inclusions are a relatively common occurrence in Montana 

sapphires, which is inconsistent with mantle eclogite formation, and surficial etching on the crystal 

faces of Yogo sapphires indicate disequilibrium with the host rock lamprophyre (Renfro et al. 

2018). A possible formational model to reconcile these observations proposes that Yogo sapphires 

were created through a peritectic melting reaction which occurred when the lamprophyre intruded 

into the lower crust and partially melted in place aluminum-rich rock (Dahy, 1991, Palke et al., 

2015, Renfro et al. 2018). 

Sapphires from Missouri River, Dry Cottonwood Creek, and Rock Creek (also called Gem 

Mountain) are all secondary alluvial deposits, with gemstones being extracted from riverbeds and 

poorly sorted mudflows (Hsu et al., 2016). This intrinsically obfuscates geologic study on the 

sapphires from these localities since their primary origin and context to their formation is unknown, 

especially in contrast to Yogo sapphires, which can be studied in situ. The underlying bedrock at 

these localities consists of Eocene rhyolite flows along with other volcanics (Breg, 2014). Textual 

evidence on the surface of these sapphires suggests that these alluvial sapphires are the result of 

weathered xenocrysts from alkali basaltic magmas (Breg, 2007). Inclusions and geochemical 

evidence suggest a metasomatic origin (Zwaan et al. 2015; Palke et al., 2023).  

The geology of western Montana is defined by basin development and degradation caused 

by the subducting Pacific plate during the Cenozoic (e.g. Garland 2002, Fuentes et al. 2012). 

Sediments accumulated fairly rapidly in the Proterozoic basin between 1470 Ga and 1400 Ma 

(Evans et al. 2000) and these sediments are locally exposed in the Rock Creek area. Several periods 

of glaciation over North America during the Pleistocene eroded and carved away underlying 

bedrock. Garland (2002) postulated that alluvial sapphires were distributed post-glacially from a 

pre-existing paleoplacer deposit from the Pliocene.  
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One of the motivations behind performing a provenance determination study on Montana 

sapphires is to gain insight into whether or not alluvial sapphires share a common source material, 

or are chemically distinct. Krebs et al., 2020 notes the potential and pitfalls of using LA-ICP-MS as 

a tool for gem-corundum provenance determination, citing the need for additional discrimination 

tools as it has few sites for trace elemental substitution and can form under a variety of different 

geologic conditions. Our study proposes utilizing a random forest machine learning model that has 

previously successfully determined origin from trace elements, with a comprehensive suite of trace 

element data of sapphires as a potential solution to this problem, to make more accurate sapphire 

discrimination possible. In addition to a more accurate provenance determination, an added benefit 

is the potential to gain deeper insight into the formational environment using trace elements. This 

trace element study aims to shed light on the formation of Montana sapphires and determine 

geochemical differences between localities in order to see if a successful provenance determination 

is possible.  

 

4.3 Methods 

 
Sapphire samples were collected by and curated at the Gemological institute of America 

(GIA). Trace elemental data of Montana samples were acquired at the GIA in Carlsbad, CA by 

using a Thermo Fisher iCAP Qc ICP-MS, coupled with an Elemental Scientific Lasers NWR213 

laser ablation system with a frequency quintupled Nd:YAG laser operated in Q-switched (pulsed) 

mode at a wavelength of 213nm and pulse duration of 4 ns. Laser sampling was performed in the 

third generation two-volume cell from ESI (TwoVol2). The laser-generated aerosol was collected 

by a device (or cup) that is supported evenly throughout the entire range of motion with a specially 

designed internal movement system. This system minimizes inconsistent gas dynamics and a 

positional sensitivity dependence. The laser cell is flushed with helium gas, carrying the ablated 
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material to where nebulizer gas (Ar) was mixed with the carrier gas (He) via a wye shaped 

connector before entering the plasma for ionization and subsequent analysis in the mass 

spectrometer. Data acquisition was performed in time-resolved mode. The following elements were 

measured: Be, Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Sn, La, Ce, Nd, 

Hf, Ta, W, Pb to observe what elements were and were not present in concentrations above 

detection. Dwell time of each analyte measured was 0.01 seconds except Be, Mg, Al, Ti, V, Cr, Fe 

and Ga that were measured for 0.05 seconds. Dwell time of each laser spot was 40 seconds. A laser 

spot size of 55 um was used for each analysis (3 spots per sapphire), with a 20 Hz repetition rate, 

and 10 J/cm2 fluence. The internal standard used was Al at 529200 ppm. National Institute of 

Standards and Technology (NIST) Standard Reference Material (SRM) 610 and 612 were used as 

external standards. All isotopes were externally standardized using both standards. Concentrations 

of all isotopes were calculated by Qtegra software (Version 2.10.3324.131).  

 Additional trace elements were also collected using a ESI NWR193 excimer laser system 

and Agilent 7900 ICP-MS at the University of Colorado Boulder (CU Boulder), TRaIL laboratory, 

using the same parameters as the GIA laboratory, with the addition of external standards NIST 616, 

and corundum standards 07-0687-15, 02-1267-30 and Y-A19 (Stone‐Sundberg et al., 2021) were 

used to validate results. Elemental concentrations were processed with Iolite software (v. 4.9). 

 
4.4 Results 

In total, a total of 750 individual spot analyses were collected on 182 sapphires were 

analyzed: 39 from Dry Cottonwood creek (156 total LA-ICP-MS spots), 61 from Missouri River 

(215 total LA-ICP-MS spots), 61 from Rock Creek (317 total LA-ICP-MS spots), and 21 from 

Yogo Gulch (62 total LA-ICP-MS spots). Trace element data collected from Montana sapphires had 

the following elements above detection limits: Cr, Ga, Mg, Fe, Ti, and V. 10% of samples contained 
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Cr below detection so it was excluded from provenance determination analysis. A compilation of 

summary statistics can be found in Table 4-1.  

In combining data collected from separate laboratories, it was found that Ga had a 

significant difference in chemistry between sessions at the GIA and CU Boulder (Fig. 4-2). This 

difference is further highlighted with probability plots showing a bimodality to the data, between 

sessions (Fig. 4-3). This probability plot also shows Cr to not have normal distribution. Due to this 

systematic uncertainty, Ga was also removed from separation analysis in this study although it 

should be noted that it shows promise for separation in future corundum provenance determination 

work.   

Yogo Gulch sapphires have reasonably distinct chemistry in comparison to the alluvial 

deposits, having higher concentrations of Mg, and Ti, and generally higher V and Cr (Fig. 4-4). 

Figure 4-4 also highlights how Rock Creek alluvial sapphires generally have lower trace elemental 

concentrations of the four groups. A correlation matrix analysis was performed in order to test for 

collinearity and to discover any elemental relationships (Table 4-2). Only Mg and Ti showed 

significant positive correlation (r = 0.84).  

A Random Forest Classification (RFC) machine learning model proved most effective and 

appropriate considering the data, yielding a 90% testing accuracy (96% training accuracy) in 

separability. Parameters for the random forest model are 10 k-fold cross validation for training data, 

a 20% – 80% testing–training data split, with stratified sampling using the methods detailed in 

Blakemore et al. (in review) (chapter 3 of this dissertation). The most important variable for 

separation was determined to be the Ti/Mg (Table 4-3). The variable importance ranking assisted in 

deriving useful visual diagrams to aid in separation (e.g. Fig. 4-5). Confusion matrices provide an 

example of the model’s performance, highlighting which classes are more frequently confused with 
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each other. Taken together, the training and testing confusion matrices provide an effective visual 

evaluation of the model’s performance (Figure 4-6 a and b).  

The RFC model was also performed considering only the 2 classes: alluvial Montana sapphires and 

primary igneous (Yogo Gulch) Montana sapphires. The results of this test show that Yogo Gulch 

primary igneous sapphires have distinct enough chemistry to be separated with 99% accuracy (both 

training and testing). The confusion matrix from this test can be seen in Figure 4-7.  

 

4.5 Discussion 

 
4.5.1 Provenance Determination 

The results of this study confirm that sapphires from Yogo Gulch have significantly 

different chemistry from the alluvial Montana sapphires, and can be separated with 99% 

effectiveness (both training and testing) when the model is used on alluvial vs. Yogo sapphires. In 

fact, Yogo sapphires can essentially be effectively separated on a simple bi-variate plot of Mg vs. Ti 

(Fig. 4-5). Even at the gemological level, Yogo sapphires are not as commonly heat treated to 

enhance their color as alluvial Montana sapphires, as their color is naturally more intense, alluding 

to intrinsic geochemical difference.  

Alluvial Montana sapphires can be separated from each other with 90% testing accuracy 

(96% training accuracy). The gap between testing and training accuracy, while not too wide, does 

indicate a degree of overfitting with this model due to the noisy nature of this dataset. However, 

90% separation still should be considered successful, and to date, the most effective separation of 

Montana alluvial sapphires. This provides evidence to support the hypothesis that Montana alluvial 

sapphires have differing geologic origins. While this is indeed a high degree of separability, the 
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10% inaccuracy in the test model suggests there is some inseparable overlap in trace element 

chemistry between the alluvial sapphires.  

Some studies have utilized isotopic analysis in hopes of determining provenance, or gaining 

deeper insight into the formational origin of gem corundum (e.g. Giuliani et al., 2007; Turnier et al., 

2020; Krebs et al., 2020). While undeniably useful and potentially successful, precise isotopic work 

was not considered with this study as the intention is to develop a practical and widely accessible 

means of provenance determination, without a high financial cost or major destruction to the 

sample.  

 
4.5.2 Comparison with Colombian Emerald Separation 

Recent work demonstrated the effectiveness of applying a random forest machine learning 

model to a suite of trace element data from Colombian emeralds for hyper-specific provenance 

determination (Blakemore et al. in review, chapter 3 of this dissertation). In that study, minute 

differences in emerald trace element chemistry was enough to discriminate between mining belts 

(98% accuracy), mining districts (~93% accuracy) and individual mines (~85% accuracy). This 

same method was applied in this study to attempt to demonstrate chemical separability in Montana 

sapphires. Emeralds have a key advantage over sapphires in utilizing this method, in that they have 

more sites available for elemental substitution, namely the Be2+, Al3+, Si4+ cation sites, in addition to 

long interstitial channels parallel to the c-axis which is shown to trap primordial fluid inclusions 

(Giuliani et al., 1995). These allowed emeralds to record slight fluctuations in chemistry of the 

hydrothermal fluids and in the parent rock (organic rich, black shales). Certain elemental ratios, in 

the case of Columbian emeralds it was V/Cr ratio, appear to be the best indicators for separation 

across a large geographic area, and was indicative of a documented heterogeneity of V and Cr in the 

emerald host rock, indicating these geochemical differences can imply formation conditions and 
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host rock composition. (Breit and Wanty, 1991; Gustafsson, et al., 2014, Mantilla et al., 2007, 

González et al., 2021, Pignatelli et al., 2017).  

 
Another key difference in the former Colombian emerald study and this Montana sapphire 

study is that three of the four sapphire deposits are alluvial, meaning the original source is lost. The 

emerald study had the advantage of knowing precisely where each emerald was found in situ. While 

geographically alluvial sapphires are distinct to their mining areas, considering their age, the 

tectonic, volcanic, and glacial history of the area it is an unknown question whether they shared a 

common source.  

 
The RFC model had a 90% testing accuracy in determining  the alluvial deposit of origin of 

Montana sapphires. This falls right in between the accuracies of the individual mine of origin 

(~85%) and mining district of origin (~93%) with the Colombian emerald study. The alluvial 

sapphire deposits can be thought of comparably as mining districts, since the area for extraction 

extends for miles up and down river valleys (e.g. Hsu et al., 2016). By comparing the chemistry of 

an unknown alluvial sapphire to this dataset, likewise with the Colombian emerald study, 

probabilities can be calculated for more holistic and realistic origin reporting. The 90% testing 

accuracy highlights the repeatability of this method yet again showing success on a previously 

unseparated set of mineral locations. This study adds a piece to a broader puzzle of origin 

determination, and with more data from more localities, the better and more practical the results 

will be. 

 
4.5.3 Mg vs Ti: A possible cause of separation and insights into formation 

 
The most striking trend in this data discovered after applying the RFC model to this data to 

determine variable importance analysis (Table 4-2), is the strong positive correlation (r = 0.84; 
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Table 4-2), and gradational trend of Mg vs. Ti (Fig. 4-5). In fact, the most important variable for 

separation is the Ti/Mg ratio (Table 4-3), meaning that the processes driving Ti and Mg substitution 

are a major cause for the separability in geography.   

This correlation is also noted in (Oliveira et al., 2021) who reported that the slope of 

regression changes with Ti content in volcanic corundum from Mt. Carmel, Israel. The Oliveira 

(2021) study also notes correlations between Sc and Ti and Zr vs Ti. Ti3+ is shown to substitute for 

Al3+ under reducing conditions (Oliveira et al. 2021), indicating that oxygen fugacity of the 

evolving magma controls Ti3+ content in corundum. Sapphires measured in this study had much 

lower concentrations of Ti3+ (mean of ~ 40 ppm vs. ~7000 ppm) however maintained the same 

strong positive correlation between Ti and Mg as observed in Oliveira et al. (2021). Griffin et al. 

2021 also demonstrated Cr3+ to be higher in Mt. Carmel corundum as well due to the highly reduced 

conditions, indicating fO2 is also an important factor controlling the concentration of other trace 

elements in corundum.  

In fact, Yogo Sapphires can be almost entirely separated on the Mg vs. Ti bi-variate plot 

alone (Fig. 4-5), indicating the source of their formation had more reduced fO2 conditions than 

those of alluvial sapphires. This is an observation noted by Renfro et al. (2018) as a distinguishing 

chemical difference of Yogo Sapphires from alluvial Montana sapphires. Dry Cottonwood Creek 

and Missouri River sapphires showed consistently lower Ti concentrations than Yogo, with Rock 

Creek having intermediate concentrations. This observation suggests that there is evidence to 

suggest a different source for alluvial sapphires, possibly coming from different depths as 

fO2 generally decreases with depth.  

Additionally, Yogo Gulch sapphires are consistently higher in trace elements (Mg, Ti, Cr, 

Fe) than alluvial sapphires (Fig. 4-4), yielding to support the idea that Yogo Sapphires were formed 

under more reduced conditions than their alluvial counterparts. This trend is likewise seen in 
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somewhat of a gradient in comparing the alluvial sapphires as well, with Rock Creek sapphires 

having generally higher concentrations of trace elements than Missouri River and Dry Cottonwood 

Creek sapphires. Rutile (TiO2) is a common mineral inclusion in Rock Creek sapphires and has 

been suggested to be characteristic of this deposit (Zwaan, 2015). This is in agreement with the 

results of our study, where Ti is generally elevated in Rock Creek sapphires than in Missouri River 

and Dry Cottonwood Creek sapphires.  

 
4.5.4 Implications and future work with gemstone provenance determination 

 
The results of this study show promising results for the random forest machine learning LA-

ICP-MS trace elemental method of provenance determination, being able to separate sapphires from 

each location with 90% accuracy. Additionally, this method is useful in making discoveries in 

geochemical data post-analysis, using the variable importance list. In this study, the correlation and 

class separability between Ti and Mg was discovered this way, adding evidence to support the 

hypothesis of multiple geologic sources of formation for alluvial Montana sapphires. This study 

should be taken within the broader context of adding to the body of knowledge regarding origin 

determination, with the goal of making granular improvements which are building towards a more 

comprehensive way of determining the origin of a gemstone from any source. Having the ability to 

determine not only an origin opinion on an unknown mineral, but also a probability associated with 

said prediction presents a more transparent way of representing the geochemical fingerprint for use 

in origin determination. The success of this method on a new and famously enigmatic mineral 

system, albeit with some geochemical overlap, should provide optimism in moving forward with 

expanding this method to new systems.  
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4.7. Figures and Tables 

Table 4-1: Summary Statistics of chemistry (ppm) 

Summary Statistics of Montana Sapphire Trace Elements (ppm) 

 Mg Ti V Cr Fe Ga 

Total Montana Sapphires: Count 747 747 747 673 747 747 

Total Montana Sapphires: Minimum 3.4 1.9 0.4 0.5 465.9 9.1 

Total Montana Sapphires: Maximum 146.0 143.5 19.2 607.9 3999.2 83.3 

Total Montana Sapphires: Mean 41.3 41.4 4.6 26.5 1692.4 28.9 

Total Montana Sapphires: Median 37.5 34.6 3.5 8.4 1632.0 16.0 

Total Montana Sapphires: Range 142.6 141.6 18.8 607.5 3533.3 74.2 

Total Montana Sapphires: Interquartile Range 25.7 30.8 4.4 17.3 697.5 32.4 

Total Montana Sapphires: Standard Deviation 24.8 29.1 3.5 67.2 573.7 18.6 

Dry Cottonwood Creek : Count 152 152 152 152 152 152 

Dry Cottonwood Creek : Minimum 3.4 1.9 0.4 0.6 845.0 11.3 

Dry Cottonwood Creek : Maximum 123.4 87.2 15.9 115.9 3999.2 66.6 

Dry Cottonwood Creek : Mean 28.6 23.4 4.3 12.2 1951.8 33.9 

Dry Cottonwood Creek : Median 24.6 17.7 3.3 6.5 1755.0 39.0 

Dry Cottonwood Creek : Range 120.0 85.3 15.5 115.3 3154.2 55.3 

Dry Cottonwood Creek : Interquartile Range 32.8 32.5 4.8 14.0 861.8 32.8 

Dry Cottonwood Creek : Standard Deviation 23.4 20.1 3.6 16.6 676.1 17.1 

Missouri River : Count 217 217 217 203 217 217 

Missouri River : Minimum 7.1 3.5 0.9 1.2 465.9 9.1 

Missouri River : Maximum 110.0 75.1 14.3 173.6 2318.0 83.3 

Missouri River : Mean 32.3 24.5 5.1 22.9 1378.5 33.1 

Missouri River : Median 31.0 22.0 4.4 11.1 1321.0 15.7 
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Missouri River : Range 102.9 71.6 13.4 172.4 1852.1 74.2 

Missouri River : Interquartile Range 25.8 14.7 5.0 16.7 570.8 43.3 

Missouri River : Standard Deviation 16.1 11.5 3.1 31.1 354.9 23.5 

Rock Creek : Count 315 315 315 255 315 315 

Rock Creek : Minimum 7.1 4.1 0.9 0.5 594.6 11.6 

Rock Creek : Maximum 92.4 143.5 15.5 607.9 3598.4 58.3 

Rock Creek : Mean 42.1 49.7 3.6 30.7 1834.0 26.7 

Rock Creek : Median 40.8 40.3 2.7 5.2 1781.0 15.9 

Rock Creek : Range 85.3 139.4 14.6 607.5 3003.8 46.7 

Rock Creek : Interquartile Range 16.5 29.9 2.4 13.7 643.0 28.4 

Rock Creek : Standard Deviation 13.3 23.2 2.6 90.0 559.6 15.0 

Yogo Gulch : Count 63 63 63 63 63 63 

Yogo Gulch : Minimum 72.7 76.7 3.4 2.7 1060.0 11.0 

Yogo Gulch : Maximum 146.0 131.0 19.2 470.0 3110.0 20.6 

Yogo Gulch : Mean 99.0 101.2 9.1 55.7 1439.4 13.7 

Yogo Gulch : Median 97.1 100.0 8.0 17.9 1370.0 12.9 

Yogo Gulch : Range 73.3 54.3 15.8 467.3 2050.0 9.6 

Yogo Gulch : Interquartile Range 17.8 22.2 5.7 37.7 360.0 3.8 

Yogo Gulch : Standard Deviation 14.0 15.1 4.5 102.6 381.3 2.6 
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Table 4-2: Correlation Matrix 

 

 Mg Ti V Cr Fe Ga 

Mg 1 0.84 0.5 0.21 0.043 0.1 

Ti 0.84 1 0.49 0.21 0.21 0.11 

V 0.5 0.49 1 0.37 0.06 0.48 

Cr 0.21 0.21 0.37 1 -0.11 0.15 

Fe 0.043 0.21 0.06 -0.11 1 0.15 

Ga 0.1 0.11 0.48 0.15 0.15 1 
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Table 4-3: List of variable importance for RFC separation 

Variable Importance 

Mg/Ti 495.7 

Mg 470.8 

Ti/Fe 456.7 

Fe 425.6 

Ti 424.4 

Mg/Fe 383.0 

Ti/V 375.2 

V/Fe 365.7 

Mg/V 277.0 

V 275.2 
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Figure 4-1. Map of Montana Sapphire deposits (Modified after Zwaan et al. 2015). Rock Creek, 

Dry Cottonwood Creek, and Missouri River deposits are alluvial, and Yogo Gulch is primary 

igneous.  
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Figure 4-2: Comparison of elemental concentrations collected at different laboratories as a visual 

test for consistency. Each element except for Ga was shown to be consistent, so Ga was excluded 

from discrimination analysis to avoid incorporating any artificial breaks in data caused by any 

systematic error.  
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Figure 4-3. Probability plots of sapphire trace elements. Notice how Ga and Cr show non-normal 

distribution. For this reason, these elements were excluded from separation analysis. Orange data 

points were collected at the GIA, and blue were collected at the University of Colorado Boulder. 
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Figure 4-4. Box plots of Mg, Ti, V, and Cr highlighting the unique chemistry of Yogo Gulch 

sapphires, compared to the alluvial deposits, with generally elevated trace element concentrations. 

Notice also how dry cottonwood creek generally has the lowest median trace element 

concentrations. 
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Figure 4-5. Mg vs. Ti. Note the strong positive correlation, and gradation of location, with Yogo 

Gulch sapphires having higher concentrations of Mg and Ti, Rock creek having intermediate, and 

Dry Cottonwood and Missouri River having similarly lower concentrations. 
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Figure 4-6:  Example confusion diagrams from the training set and testing set of data during the 

RFC model analysis for the entire data set. Data was partitioned 80% training and 20% testing.  

 

 

 

Figure 4-7: Confusion matrix showing near perfect separation of alluvial Montana sapphires versus 

primary igneous Yogo Gulch Montana sapphires. 
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Chapter 5: Conclusion 
 

The results from this dissertation unequivocally demonstrate the utility of the LA-ICP-MS 

for geochemical studies in mineral resource geology. In chapter 2, the LA-ICP-MS was used to add 

to the body of geochronology work done on the Candelaria IOCG deposit. Most of the new apatite 

and titanite dates reported here are consistent with previously reported ages of sulfide 

mineralization (Re–Os, Molybdenite) at c. 115 Ma. Actinolite-hornblende and four titanite samples 

record other hydrothermal events at 118 Ma, 121 Ma, and 126 Ma. It was determined that these 

dates have no meaningful correlation with depth. The new dates presented in chapter 2 present 

evidence supporting an episodic, multi-pulse model of formation for the Candelaria IOCG deposit. 

Magnetite U–Pb dates are less precise due to low U/Pb ratios, but still geologically useful and 

broadly consistent with the other dates reported here. Our results support a multi-phase 

hydrothermal model of formation of the Candelaria deposit, where an IOA style mineralization 

(magnetite-actinolite) is overprinted by the Cu-rich IOCG style mineralization. These results have 

broader reaching implications for adding to the body of knowledge on the formation of IOCG 

deposits which could aid in the exploration for new IOCG deposits, and also shows promise for the 

possible future development of magnetite U–Pb dating. 

In chapter 3, a large suite of elemental data was collected with LA-ICP-MS and was used to 

develop a provenance determination machine learning model for Colombian Emeralds. With the 

results of this study, we are now able to confidently determine the belt (98% accuracy) and mining 

district (93% accuracy) of origin from an unknown Colombian emerald by using trace elements 

analyzed with a random forest classification machine learning algorithm. We are also able to 

determine the mine of origin of 40 individual mines in Colombia with moderate confidence (85% 

accuracy). More data would be needed in order to increase the confidence in differentiating down to 

the individual mine, but with the vast number of Colombian emerald mines, along with their 

geographic proximity, it may not be possible to achieve a better separation using any combination 

of analytical or machine learning method, nor would it be practical.  

The key advantage of this approach is the coupling of a machine learning model, with the 

prediction score and visualizations to assist the user in understanding why the “black box” arrived 
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at the determinations it did. Even when the algorithm guesses incorrectly, there is ample evidence 

as to why the model predicted wrong, and what the other possibilities are. This allows the analyst to 

make an informed prediction and allows this information to be passed along to the client. 

Additionally, the empirical probability and corresponding visualizations could give laboratories 

more confidence in stating their origin opinions, as it is harder for an unethical dealer to claim with 

certainty that a stone is 100% from a specific location based solely on a report made in good faith. 

This method has promise for rapidly expanding origin determination capabilities hyper-specifically, 

well beyond the country of origin. 

In addition to provenance determination, this method allows for the ability to make impartial 

observations about data after analyses to discover insights into the underlying geologic process. In 

the case of the emerald study, it was discovered that V/Cr is the most important variable for 

separation and alludes to a natural heterogeneity in the host rock shale between the eastern and 

western mining belts, likely controlled by total organic carbon concentration at deposition. 

Chapter 4 followed up this provenance determination model on an entirely different mineral 

system: Montana Sapphires. This was the first time an attempt has been made at determining if 

there is a way to geochemically fingerprint alluvial sapphires from Montana, and the results show a 

great deal of potential, with RFC model having ~90% accuracy in separating the alluvial sapphires 

form each other, and over 99% accuracy in separating the only primary igneous sapphire deposit 

from the other Montana localities. The broader implications of this study are a confirmation that the 

method developed in chapter 3 can be applied to different mineral systems successfully, and will 

continue to be a useful method in future provenance studies. Another important takeaway from this 

study is the correlation between Ti and Mg, suggesting a change in oxygen fugacity in the original 

formational environment of alluvial sapphires. This highlights the added benefit of uncovering 

geologic insights after applying the provenance RFC machine learning model to a suite of LA-ICP-

MS data. 

This dissertation highlights the dual applications of the LA-ICP-MS in application to 

mineral resource geology and paves the way for future work in mineral provenance method 

development. 
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Appendices 

Appendix A: Chapter 2 Supplemental 

 

Extended methods used in chapter 2 

 

Scanning Electron Microscopy 

A JEOL JSM-7800F field emission scanning electron microscope coupled with an Oxford 

Instruments X-Max energy dispersive X-ray spectrometer (EDS) detector at the University of 

Michigan's EMAL facility was used to identify and document minerals in preparation for 

isotopic and trace element analysis. EDS spectra were processed with AZtec EDS software by 

Oxford Instruments. Images of selected minerals were collected in backscattered electron 

spectroscopy (BSE) mode to document textural context. All EDS spectra and BSE images were 

taken at variable magnifications with an accelerating voltage of 20 KeV and a working distance 

of 10 mm. Usage of the SEM allowed for non-destructive identification of apatite, titanite, and 

magnetite for this study. 

  
Laser Ablation Multi-Collector ICP-MS (University of California Santa Barbara) 

Laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) 

analyses were performed at the University of California, Santa Barbara to measure U-Pb ratios. 

A Photon Machines 193 nm excimer Excitelaser with a HelExII cell was used for mineral 

ablation. Ablated material was measured with a Nu Instruments Plasma HR-ES multi-collector 
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ICP-MS. Spots were ablated at a repetition rate of 5 Hz, for 15 s, with a fluence of ~1 J/cm2. 

Spot diameters were 35 μm for titanite and apatite, and 65 μm for magnetite. 

Data were processed using the commercially available software Iolite v3.5. A series of reference 

materials were run at the beginning and end of each analytical session, and in between every 8-

12 unknown analyses. The primary Titanite reference material (RM) for U–Pb was MKED 

(Spandler et al., 2016). Secondary RMs BLR (Aleinikoff et al., 2007), Y1710C5 (Spencer et al., 

2013), P5701G (Kylander-Clark et al., 2008), and FCT (Schmitz and Bowring, 2001) were used 

as quality control and yielded ages within 2% of their accepted values; the 91500 zircon RM 

(Weidenbeck et al., 1995) was used as an additional check on 207Pb/206Pb. The primary apatite 

RM for U–Pb was the Madagascar apatite (467 Ma; Apen et al. 2022); Durango (32.3 Ma; Paul 

et al., 2021), McClure (Krestianinov et al., 2021), and BRZ-1 (Apen et al., 2022) . Titanite and 

apatite trace-element data was processed using NIST612 and BHVO glass reference materials 

assuming stoichiometric Ca as an internal standard. No matrix-matched magnetite standard exists 

yet, so Mud Tank zircon (Black and Gulson, 1978) was used as the primary RM, and NIST and 

BHVO were used as a secondary check on 207Pb/206Pb.   Dates were calculated using the 

207Pb/206Pb vs 238U/206Pb Tera-Wasserburg diagram using Isoplot-R (Vermeesch, 2018; 

Parameters: discordia model-1 age, no correction for common lead or disequilibrium). Data 

presented in the manuscript first show the 2σ analytical uncertainty, followed by that uncertainty 

propagated with the long-term reproducibility (2% for titanite and apatite, but unknown for 

magnetite) in brackets. 

  
Laser Ablation ICP-MS (University of Maine) 

U-Pb isotopes were collected on titanite at the University of Maine MicroAnalytical 

Geochemistry and Isotope Characterization (MAGIC) laboratory using an ESL  NWR193UC 
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excimer laser ablation system equipped with a TV2 large format cell coupled to an Agilent 8900 

ICP-MS. Titanite was ablated using a 25 µm round spot at 6 Hz and 3 J/cm2. Each spot analysis 

consisted of 15 s of background collection during laser warmup, 30 s of ablation, and 10 s of 

washout. Isotope ratios were determined in iolite 4 (Paton et al., 2011; Woodhead et al., 2007; 

Paton et al., 2010) relative to titanite reference material MKED (Spandler et al., 2016). 

Secondary titanite RM BLR gave a weighted mean age of 151±15 Ma (2s) with a correction for 

common Pb based on Stacey and Kramers (1965), which is consistent with the TIMS age of 

147.1±0.4 Ma (Aleinikoff et al., 2007). Titanite dates based on 206Pb/238U were calculated 

using discordia model 1 in IsoplotR (Vermeesch, 2018).  

 

Argon-Argon (Auburn University) 

Argon-Argon dating was performed on an actinolite at Auburn University's Noble Isotope Mass 

Analysis Lab (ANIMAL).The GLM-110 mass spectrometer was used for the analyses, that is a 

10-cm radius 90° sector instrument with double focusing geometry, a Nier-type source, and a 

single detector (an ATP discrete dynode-style electron multiplier). Samples fused for gas 

extraction with a CO2 laser. Operation of the laser, extraction line and mass spectrometer were 

fully automated. The time required for one complete analysis cycle is 20 minutes (4 minutes 

gettering, followed by generally 10 measurements per peak and baseline, 30 measurements of 

m/e=36). Sample inlet and equilibration time is 5 s for a half-split of a sample and 20 s for an 

entire sample.  Blanks were measured following every 5th analysis. Blank corrections to 36 Ar 

measurements are based on an average or regression of several blanks measured for a given day 

of analysis. Air aliquots are typically analyzed 3 times per day (generally at the beginning of the 

day). Data were reduced using an Excel spreadsheet and Isoplot (Ludwig, 2012, Sp. Pub. BGC, 
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75 p.). Samples were irradiated for 16 hours with Cd shielding in the CLICIT facility of the 

Oregon State University TRIGA reactor. Unless indicated otherwise, the data are in volts and 

errors are the standard deviation of measurement and do not include the error in estimating the J-

Value (0.15% at the 95% confidence level). P = Laser Power Level (10 = 100%), t = laser 

heating time (s). Data are corrected for blank, mass discrimination, and interfering nuclear 

reactions. The rubric for irradiation filenames is: ‘AU + package”+ “layer, radial position” + 

“phase” + “planchet hole # and sequence”, saved as a text file. All samples for this study were in 

radial positions of a single irradiation layer, with positions labeled as in sketch, and the monitor 

data for this layer are included in the dataset.   

 

Irradiation parameters, analysis standards, and correction factors for 40Ar/39Ar data 

Irradiation package: AU-36 

Median date of Irradiation: 12/28/2019 

Median dates of analyses: ~1/29/2020 (monitors and K-feldspars); ~5/28/2020 (actinolite) 

GA-1550 Biotite age used: 9.944E+07 (Jordan and Renne, 2007) (age of GA-1550 Biotite is 

recalculated to FCS=28.201 Ma, see Schaen et al., 2020) 

FC Sanidine age used: 28.201E+07 (Kuiper et al., 2016) 

  λ total: 5.463E-10 (Min et al., 2000) 

(40Ar/36Ar)air: 295.5 (Nier, 1950) 

Air 40Ar/36Ar (based on daily measurements): 291.5 +/- 0.5 

(36/37)Ca: 0.0003046± 0.000008 

(39/37)Ca: 0.0007380± 0.000037 

(40/39)K: 0± 0.00040 
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(38/39)Cl: 0.01± 0.01 
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Table A-1: Sample Descriptions and data from Rodriguez-Mustafa et al., 2020 and del Real et 
al., 2021. These thin sections are from a 1000 m drill core (LD1687B) of the Candelaria mine. 
 

Thin 
Section 
Label 

Drill Core-
sample 
number 

Vertical 
Depth 
from 

Collar 
(m) 

Description 
 

C11 LD1687B-11 148 

 Sample with straight edge vein containing K-feldspar 
and bladed, colorful actinolite. The vein has pyrite-
magnetite and minor chalcopyrite in the middle and 
some large titanite cristals with it. The host rock 
presents a fine grained pervasive biotite alteration 
with minor dark grean fine patches and fine grains 
magnetite. 

C12 LD1687B-12 133 
Undifferentiated matrix with magnetite fragments; 
sulfides present in 
their borders and fractures 

C34 LD1687B-34 486 
Abundant sulfides (py, cpy, po) in magnetite breccia 
with clasts pervasively 
altered to chlorite 

C43 LD1687B-43 618 
Breccia with sodic-calcic–altered groundmass with 
few disseminated 
sulfides and massive magnetite clasts 

C52 LD1687B-52 731 
Mushketovite and potassic feldspar veins in fine, 
undifferentiated 
matrix 

C58 LD1687B-58 817 Massive mushketovite and minor actinolite in altered 
volcanic matrix 

C61 LD1687B-61 840 

Albitized volcanic rock with a massive magnetite vein 
crosscut by a 
chlorite vein; posterior K-feldspar veins contain 
sulfides 

C62 LD1687B-62 871 Porphyritic rock with K-feldspar veins cutting 
magnetite veins 

C65 LD1687B-65 1030.4 
Volcanic rock with patches albite-chlorite-actinolite 
and titanite alteration and disseminated magnetite-
pyrite-epidote-feldspar-actinolite 

C70 LD1687B-70 1109.5 Andesite with disseminated magnetite and actinolite 
aggregates 

C73 LD1687B-73 1132.1 
Andesite with disseminated magnetite and minor 
actinolite. Actinolite-magnetite veins with minor 
sulfides. 
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Table A-2: Titanite sample information and associated depth at which the titanite originated, U-
Pb ages and associated error, rho values, the textural relationship of the titanite within the overall 
sample, and whether samples fell off the discordia line and therefore omitted from further 
calculation, data taken at USCB. Parameters used in Isoplot-R (Vermeesch, 2018) discordia 
model-1 age, no correction for common lead or disequilibrium. 
 

Sample 
Label 

Depth 
(m) 

238U 
/206Pb 2se 

207Pb 
/206Pb 2se rho Textural 

Relationship 
Omitted 
point (x) 

C52_01 731 53.0223 1.4855 0.0731 0.0034 0.1562 
Matrix, in 
contact with 
mag  

C52_03_1 731 54.2594 1.3452 0.0788 0.0066 0.1696 Matrix  
C52_03_2 731 53.7634 1.4184 0.0690 0.0034 0.1624 Matrix  
C52_04 731 54.1419 1.3075 0.0624 0.0029 0.3677 Matrix  
C58_01_1 817 50.7614 3.0107 0.1030 0.0112 0.1861 Matrix  
C58_01_2 817 52.8541 1.7295 0.1140 0.0152 0.1678 Matrix  
C58_02_01 817 38.0228 6.6937 0.2180 0.0582 0.2704 Matrix  
C58_02_2 817 27.1739 3.1486 0.4360 0.0351 0.4779 Matrix  
C58_03 817 29.9401 2.2332 0.3930 0.0291 0.4203 Matrix  

C58_04_1 817 64.6412 2.0154 0.0899 0.0083 0.2924 
In a cross-
cutting K-
spar vein 

x 

C58_04_2 817 65.2316 1.6568 0.1132 0.0063 0.4175 
In a cross-
cutting K-
spar vein 

x 

C58_04_3 817 46.3392 1.6934 0.2900 0.0180 0.2602 
In a cross-
cutting K-
spar vein 

x 

C58_05 817 49.6524 1.3484 0.1340 0.0104 0.1913 Matrix  
C58_06 817 44.0917 1.2285 0.2120 0.0146 0.2136 Matrix  

C61_02 840 21.9780 2.6452 0.5010 0.0403 0.5343 Undifferentia
-ted 

 

C61_01 840 17.0068 2.5392 0.5770 0.0407 0.5524 Undifferentia
-ted 
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Figure A-1: Titanite C52 Tera-Wasserburg Diagram (UCSB) 
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Figure A-2: Titanite C58, Tera-Wasserburg Diagram Omit C58_04 (UCSB) 
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Table A-3: Titanite sample ID information, 207Pb/235U ratios and error, 206Pb/238U ratios and 
error, and 207Pb/206Pb ratios and error, data taken at University of Maine. 
 

Sample ID 
Final 207Pb 

/235U 
mean 

Final 207Pb 
/235U  
2SE 

(prop) 

Final 206Pb 
/238U 
mean 

Final 206Pb 
/238U 
2SE 

(prop) 

Final 207Pb 
/206Pb 
mean 

Final 207Pb 
/206Pb 
2SE 

(prop) 
11ttn       
11ttn_1.d 0.173336 0.019067 0.020021 0.001324 0.062687 0.006163 
11ttn_2.d 0.180778 0.026101 0.020508 0.001522 0.060353 0.008464 
11ttn_3.d 3.509307 0.537072 0.0475 0.00521 0.497069 0.060519 
11ttn_4.d 0.483907 0.098627 0.021842 0.002121 0.154043 0.031504 
11ttn_6.d 0.196364 0.027444 0.019846 0.001408 0.072173 0.009407 
11ttn_31.d 0.162396 0.046022 0.02166 0.00218 0.063316 0.020113 
11ttn_32.d 0.206034 0.042843 0.021426 0.001777 0.068245 0.0144 
11ttn_35.d 1.730713 0.202919 0.032267 0.00269 0.375678 0.039177 
11ttn_36.d 0.827276 0.126254 0.025861 0.002163 0.22339 0.030541 
11ttn_39.d 0.535377 0.104022 0.022379 0.001982 0.18102 0.033567 
11ttn_41.d 1.552159 0.276607 0.034097 0.003903 0.390435 0.073725 
11ttn_42.d 1.644613 0.257993 0.033144 0.003927 0.451517 0.089989 
11ttn_43.d 1.82681 0.356765 0.031841 0.003536 0.413285 0.05865 
11ttn_44.d 2.032748 0.266434 0.036879 0.003268 0.391843 0.044464 
11ttn_45.d 1.053233 0.113297 0.028239 0.002411 0.257051 0.026275 
11ttn_46.d 0.625064 0.1384 0.025687 0.003091 0.214654 0.056979 
11ttn_47.d 0.142656 0.034178 0.019883 0.001699 0.05554 0.013942 
11ttn_48.d 0.705996 0.140299 0.023972 0.002314 0.188307 0.033559 
11ttn_49.d 0.357158 0.05729 0.022259 0.001896 0.125076 0.01954 
11ttn_50.d 0.831104 0.117157 0.023354 0.002428 0.293657 0.047715 
11ttn_51.d 2.63631 0.368094 0.04118 0.004165 0.449139 0.051806 
11ttnvein       
11ttnvein_4.d 88.17616 20.40227 0.286224 0.069352 0.816476 0.095088 
11ttnvein_6.d 4.617864 0.899022 0.069863 0.012234 0.570995 0.100531 
11ttnvein_7.d 6.0104 0.821919 0.074392 0.008841 0.670256 0.097416 
65ttn       
65ttn_1.d 1.023187 0.182103 0.029484 0.002958 0.27556 0.043597 
65ttn_2.d 0.320098 0.069236 0.022235 0.002227 0.134651 0.032568 
65ttn_3.d 0.477251 0.092089 0.02276 0.002206 0.186186 0.039593 
65ttn_4.d 0.977335 0.228579 0.029854 0.003917 0.276824 0.048743 
65ttn_5.d 1.987495 0.255872 0.039041 0.003938 0.430012 0.057676 
65ttn_6.d 2.143988 0.531303 0.037267 0.005545 0.409394 0.063999 
65ttn_7.d 2.958418 0.473749 0.041855 0.004644 0.500525 0.060169 
65ttn_8.d 2.446534 0.250614 0.039871 0.004034 0.491149 0.049404 
65ttn_9.d 0.338677 0.073201 0.02198 0.002247 0.153997 0.039325 
65ttn_10.d 2.387072 0.447256 0.039579 0.004651 0.413764 0.048266 
65ttn_13.d 0.458937 0.095261 0.023443 0.00234 0.149951 0.034824 
65ttn_14.d 0.495765 0.088821 0.023995 0.002761 0.202888 0.043911 
65ttn_15.d 0.974695 0.222484 0.025454 0.00284 0.290831 0.057691 
65ttn_16.d 0.302328 0.054318 0.019031 0.001924 0.121173 0.026738 
65ttn_19.d 1.127214 0.240921 0.028144 0.003012 0.273054 0.042012 
65ttn_20.d 0.570245 0.097109 0.022842 0.002147 0.180737 0.029552 
65ttn_21.d 0.361989 0.076367 0.024586 0.002384 0.136491 0.034216 
65ttn_22.d 0.576651 0.122638 0.02455 0.002876 0.163671 0.036583 
65ttn_23.d 0.701653 0.157934 0.025373 0.002681 0.213291 0.049691 
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65ttn_26.d 0.615593 0.116174 0.0236 0.002998 0.254902 0.059495 
65ttn_27.d 0.442064 0.092197 0.022864 0.002105 0.149547 0.03255 
65ttn_28.d 0.409531 0.101223 0.022724 0.002322 0.153179 0.042378 
65ttn_30.d 0.478285 0.098203 0.022107 0.002148 0.191676 0.041777 
70area3ttn       
70area3ttn2_1.d 1.599479392 0.359878811 0.035205093 0.004399927 0.35161004 0.092502252 
70area3ttn2_2.d 1.402894121 0.360586521 0.028283174 0.003742813 0.290370925 0.066506208 
70area3ttn2_3.d 0.24982714 0.092899366 0.021521383 0.002634367 0.10992567 0.047926054 
70area3ttn2_4.d 0.251545415 0.068951139 0.021898494 0.00220155 0.088701134 0.026637169 
70area3ttn2_5.d 0.227704449 0.058044586 0.021123576 0.001925761 0.087618327 0.022839857 
70area3ttn2_6.d 0.292538189 0.092700486 0.020615937 0.002393774 0.143250136 0.04621212 
70area3ttn2_7.d 0.907591307 0.130217778 0.027489292 0.002415354 0.253413933 0.036488029 
70area3ttn2_8.d 1.19822737 0.316453479 0.027869473 0.003688417 0.301376842 0.062554218 
70area3ttn2_9.d 0.224199432 0.050182756 0.023230086 0.001770916 0.072777418 0.016061712 
70area3ttn2_10.d 0.248918778 0.04120564 0.020266172 0.001558966 0.095212576 0.015680618 
70area3ttn2_11.d 0.272948201 0.089156001 0.019383106 0.002535816 0.126603612 0.044845305 
70area3ttn2_12.d 0.801089703 0.144662145 0.026641019 0.002307037 0.231138165 0.035304544 
70area3ttn2_13.d 0.659313686 0.144867011 0.027488303 0.002619019 0.17371 0.034601141 
70area3ttn2_14.d 0.146664089 0.041144762 0.019770442 0.002212245 0.051652011 0.01664262 
70area3ttn2_15.d 0.385073789 0.066850925 0.024000526 0.002622217 0.117585617 0.019917503 
70area3ttn2_16.d 0.210611747 0.040291693 0.021444883 0.001616121 0.068952549 0.01298895 
70area3ttn2_17.d 0.254154541 0.054476144 0.022503907 0.001870183 0.08492588 0.018031059 
70area3ttn2_18.d 0.268148825 0.051307866 0.021995083 0.001692605 0.088733213 0.01722135 
70area3ttn2_19.d 0.231392193 0.048764154 0.023236715 0.001804431 0.077486512 0.016018197 
70area3ttn2_20.d 0.159417529 0.028991342 0.019806139 0.001599916 0.063404813 0.011419397 
70area3ttn2_21.d 0.209999927 0.042139022 0.021866259 0.00158496 0.066750752 0.013197476 
70area3ttn2_22.d 0.24236008 0.047938786 0.022961451 0.00184279 0.084804054 0.017629818 
70area3ttn2_23.d 0.256552877 0.055381424 0.022343413 0.001794272 0.083294982 0.01744865 
70area3ttn2_24.d 0.186956141 0.040241342 0.020895928 0.001726957 0.071417068 0.014557811 
70area3ttn2_25.d 0.188540061 0.034906269 0.021970053 0.001602725 0.064445134 0.011571484 
70area3ttn2_26.d 0.135539639 0.019756144 0.019054566 0.001202827 0.050229032 0.006733289 
70area3ttn2_27.d 0.290081613 0.066541766 0.021088062 0.001949874 0.090698399 0.013696045 
70area3ttn2_28.d 0.219278187 0.050494613 0.020878365 0.001598315 0.075157252 0.016881739 
70area3ttn2_29.d 0.136824538 0.020462631 0.019361204 0.001207178 0.049304482 0.006748384 
70area3ttn2_30.d 
with links 

0.311962947 0.05986873 0.020062474 0.002352963 0.124216066 0.026124425 

73area2       
73area2ttn1_1.d 0.135321193 0.019816007 0.018272431 0.001276696 0.05468503 0.007306493 
73area2ttn1_2.d 0.129986093 0.01555176 0.018737275 0.001115509 0.050131348 0.005099829 
73area2ttn1_3.d 0.123205332 0.015206807 0.018489454 0.001156538 0.050286485 0.005764023 
73area2ttn1_4.d 0.298911834 0.025466616 0.020393889 0.001175921 0.105873568 0.006847654 
73area2ttn1_5.d 0.1174413 0.01510867 0.018819889 0.001171699 0.046253329 0.005350242 
73area2ttn1_6.d 0.110462878 0.014031312 0.018425351 0.001102209 0.044074737 0.005156564 
73area2ttn1_7.d 0.112974176 0.021889869 0.017872866 0.001165274 0.044703939 0.008549229 
73area2ttn1_8.d 0.141977848 0.01756888 0.018416727 0.001366511 0.055901868 0.005730836 
73area2ttn1_9.d 0.124909221 0.016145176 0.018638304 0.001119598 0.048352129 0.006014641 
73area2ttn1_10.d 0.123907956 0.014394275 0.018701506 0.001139888 0.048866961 0.004617509 
73area2ttn1_11.d 0.130028649 0.016682155 0.0181778 0.001066147 0.054602641 0.006482747 
73area2ttn1_12.d 0.126089089 0.014604073 0.018710522 0.001109831 0.047419073 0.004639258 
73area2ttn1_13.d 0.147982143 0.021330806 0.018277518 0.001183232 0.055139162 0.00784721 
73area2ttn1_14.d 0.12365758 0.013296404 0.018343494 0.001098105 0.04917826 0.004731915 
73area2ttn1_15.d 0.119185448 0.015118316 0.018553912 0.001162418 0.04590435 0.005202021 
73area2ttn1_16.d 0.127133801 0.013266116 0.019487858 0.001221834 0.047161028 0.004250521 
73area2ttn1_17.d 0.129184424 0.013596357 0.01870914 0.001162583 0.051220274 0.004559313 
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73area2ttn1_18.d 0.192981359 0.027193796 0.01902795 0.00128877 0.076080814 0.010790969 
73area2ttn1_19.d 0.120979498 0.009903672 0.018075637 0.001072772 0.049803955 0.002807753 
73area2ttn1_20.d 0.09116582 0.019437691 0.017381781 0.001153627 0.040751526 0.009068495 
73area2ttn1_21.d 0.121906899 0.012287069 0.019589475 0.001207073 0.045912503 0.004147419 
73area2ttn1_22.d 0.130097379 0.014069353 0.018798257 0.001139022 0.051972505 0.004811244 
73area2ttn1_23.d 0.131495148 0.013457112 0.019164128 0.00116498 0.049417337 0.003961331 
73area2ttn1_24.d 0.129666295 0.01260081 0.018839547 0.001197172 0.049214675 0.004209042 
73area2ttn1_25.d 0.131593556 0.017891819 0.019573218 0.001271049 0.049136198 0.006021622 
73area2ttn1_26.d 0.164948647 0.018831722 0.019780259 0.001228733 0.05872666 0.005092993 
73area2ttn1_27.d 0.132786223 0.014373292 0.018404439 0.0011315 0.051409615 0.004563203 
73area2ttn1_28.d 0.137479193 0.014555872 0.019146653 0.001209806 0.053484257 0.005054992 
73area2ttn1_29.d 0.139432652 0.025710563 0.017863059 0.001159464 0.057322039 0.01076814 
73area2ttn1_30.d 0.138537753 0.013143294 0.018922353 0.001172116 0.052542885 0.004241413 
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Figure A-3: Titanite C11 Tera-Wasserburg Diagram (Maine) 
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Figure A-4: Titanite C65 Tera-Wasserburg Diagram (Maine) 
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Figure A-5: C70 
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Figure A-6: Titanite C73 Tera-Wasserburg Diagram (Maine) 
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Table A-4: Apatite sample ID information and associated depth at which the titanite originated, 
238U/206Pb ratios and error, 207Pb/206Pb ratios and error, rho, the textural relationship of the 
titanite within the overall sample, and whether samples fell off the discordia line and therefore 
omitted from further calculation, data taken at UCSB. 
 

Sample 
Label 

Depth 
(m) 

238U 
/206Pb 2se 

207Pb 
/206Pb 2se rho Textural 

relationship 
Omitted 

point? (x) 
C12_05_1 133 26.12 2.57 0.497 0.025 0.35 Undifferentiated   
C12_05_2 133 26.81 2.42 0.449 0.035 0.24 Undifferentiated   
C12_05_3 133 25.26 2.46 0.51 0.021 0.21 Undifferentiated   
C12_05_4 133 25.47 2.24 0.479 0.028 0.21 Undifferentiated   
C12_05_5 133 33.06 3.03 0.41 0.036 0.46 Undifferentiated   
C12_04 133 22.98 1.83 0.533 0.029 0.13 Undifferentiated   
C12_06_1 133 23.6 1.93 0.492 0.02 0.32 Undifferentiated   
C12_06_2 133 21.11 1.38 0.497 0.022 0.18 Undifferentiated   
C12_06_3 133 19.27 1.54 0.547 0.025 0.27 Undifferentiated   
C12_06_4 133 24.3 2.33 0.494 0.026 0.28 Undifferentiated   
C12_06_5 133 29.61 3.5 0.378 0.02 0.12 Undifferentiated   
C12_06_6 133 23.87 1.61 0.489 0.022 0.22 Undifferentiated   
C12_06_7 133 20.4 2.66 0.524 0.021 0.1 Undifferentiated   
C12_06_8 133 20.44 1.99 0.521 0.019 0.12 Undifferentiated   
C12_06_9 133 22.68 2.36 0.51 0.023 0.14 Undifferentiated   
C12_06_10 133 22.93 2.29 0.468 0.028 0.12 Undifferentiated   
C12_07_1 133 23.83 2.56 0.556 0.037 0.22 Undifferentiated   
C12_07_2 133 18.05 1.98 0.589 0.019 0.47 Undifferentiated   
C12_07_3 133 25.63 1.54 0.491 0.026 0.09 Undifferentiated   
C12_07_4 133 26.24 2.98 0.48 0.038 0.43 Undifferentiated   
C12_08 133 19.61 1.38 0.58 0.021 0.3 Undifferentiated   
C12_09_1 133 25.05 2.32 0.501 0.025 0.12 Undifferentiated   
C12_09_2 133 28.18 1.48 0.478 0.024 0.17 Undifferentiated   
C12_09_3 133 24.75 1.68 0.491 0.02 0.1 Undifferentiated   
C12_09_4 133 25.42 1.77 0.477 0.018 0.38 Undifferentiated   
C12_09_5 133 28.57 2.15 0.504 0.026 0.44 Undifferentiated   
C12_09_6 133 24.3 2 0.486 0.028 0.27 Undifferentiated   
C12_10 133 19.12 2.16 0.572 0.031 0.51 Undifferentiated   
C12_11_1 133 23.64 2.12 0.499 0.022 0.16 Undifferentiated   
C12_11_2 133 23.87 2.06 0.48 0.028 0.13 Undifferentiated   
C12_11_3 133 26.01 2.17 0.447 0.037 0.23 Undifferentiated   
C12_12 133 26.18 3.19 0.446 0.03 0.34 Undifferentiated   
C12_13_1 133 21.07 1.34 0.551 0.025 0.24 Undifferentiated   
C12_13_2 133 10.25 2.94 0.665 0.037 0.6 Undifferentiated   
C12_25_1 133 21.52 1.43 0.553 0.021 0.13 Undifferentiated   
C12_25_2 133 20.68 1.43 0.568 0.026 0.34 Undifferentiated   
C12_25_3 133 25.42 1.72 0.505 0.024 0.21 Undifferentiated   
C12_26_1 133 24.8 1.08 0.509 0.024 0.34 Undifferentiated   
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C12_26_2 133 24.8 2.96 0.471 0.029 0.08 Undifferentiated   
C12_26_3 133 27.98 1.94 0.48 0.03 0.17 Undifferentiated   
C12_27_1 133 23.42 2.52 0.514 0.023 0.2 Undifferentiated   
C12_27_2 133 22.1 1.86 0.529 0.023 0.19 Undifferentiated   
C12_27_3 133 19.15 1.32 0.551 0.023 0.2 Undifferentiated   
C12_27_4 133 25.21 1.64 0.514 0.022 0.13 Undifferentiated   
C12_27_5 133 22.39 1.62 0.541 0.025 0.25 Undifferentiated   
C12_27_6 133 22.89 2.11 0.486 0.029 0.24 Undifferentiated   
C12_27_7 133 25.26 2.36 0.501 0.024 0.15 Undifferentiated   
C12_27_8 133 22.76 1.64 0.505 0.026 0.17 Undifferentiated   
C12_28_1 133 19.27 1.99 0.547 0.019 0.07 Undifferentiated   
C12_28_2 133 20.23 1.5 0.534 0.024 0.24 Undifferentiated   
C12_28_3 133 14.22 1.03 0.614 0.02 0.26 Undifferentiated   
C12_29_1 133 23.92 2.3 0.483 0.032 0.46 Undifferentiated   
C12_29_2 133 24.65 1.62 0.504 0.022 0.35 Undifferentiated   
C12_30_1 133 22.22 1.52 0.551 0.023 0.32 Undifferentiated   
C12_30_2 133 25.47 1.83 0.501 0.022 0.37 Undifferentiated   
C12_30_3 133 25.1 1.53 0.485 0.02 0.31 Undifferentiated   
C12_31_2 133 42.51 2.24 0.374 0.031 0.38 Undifferentiated  x 
C12_36 133 23.51 1.52 0.514 0.023 0.33 Undifferentiated   
C12_32_1 133 26.46 1.75 0.502 0.028 0.25 Undifferentiated   
C12_32_2 133 24.9 1 0.508 0.024 0.49 Undifferentiated   
C12_32_3 133 26.12 2.03 0.503 0.024 0.25 Undifferentiated   
C12_33_1 133 19.33 1.76 0.557 0.017 0.13 Undifferentiated   
C12_33_2 133 17.91 1.82 0.569 0.025 0.13 Undifferentiated   
C12_34 133 21.48 2.2 0.54 0.024 0.22 Undifferentiated   
C12_35_1 133 23.24 2.13 0.527 0.023 0.18 Undifferentiated   
C12_35_2 133 21.59 2.07 0.528 0.028 0.15 Undifferentiated   
C12_37_1 133 3.38 0.74 0.749 0.019 0.67 Undifferentiated   
C12_37_2 133 19.65 1.94 0.584 0.028 0.39 Undifferentiated   
C12_37_3 133 27.98 2.44 0.436 0.026 0.19 Undifferentiated   
C12_38_1 133 27.48 1.64 0.446 0.017 0.28 Undifferentiated   
C12_38_2 133 26.12 1.23 0.434 0.014 0.31 Undifferentiated   
C12_39_1 133 36.53 3.36 0.431 0.021 0.26 Undifferentiated  x 
C12_39_2 133 27.54 1.89 0.462 0.029 0.09 Undifferentiated   
C12_39_3 133 27.6 2.25 0.458 0.021 0.3 Undifferentiated   
C12_39_4 133 21.94 2.14 0.538 0.019 0.33 Undifferentiated   
C12_39_5 133 26.52 2.31 0.499 0.025 0.23 Undifferentiated   
C12_39_6 133 27.35 2.22 0.416 0.028 0.26 Undifferentiated   
C12_39_7 133 27.11 2.53 0.455 0.025 0.23 Undifferentiated   
C12_50_1 133 26.75 1.45 0.454 0.019 0.16 Undifferentiated   
C12_50_2 133 25.1 2.83 0.454 0.029 0.16 Undifferentiated   
C12_50_3 133 23.92 2.12 0.497 0.023 0.2 Undifferentiated   
C12_50_4 133 22.02 1.92 0.489 0.023 0.25 Undifferentiated   
C12_50_5 133 28.11 2.21 0.44 0.033 0.42 Undifferentiated   
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C12_50_6 133 23.15 1.82 0.503 0.024 0.43 Undifferentiated   
C12_50_7 133 24.4 1.87 0.486 0.034 0.26 Undifferentiated   
C12_50_8 133 22.3 2.17 0.558 0.029 0.12 Undifferentiated   
C12_50_9 133 24.55 1.89 0.507 0.027 0.26 Undifferentiated   
C12_49_1 133 8.78 0.78 0.725 0.021 0.41 Undifferentiated   
C12_49_2 133 24.55 2.96 0.503 0.026 0.33 Undifferentiated   
C12_49_3 133 21.37 1.45 0.608 0.031 0.34 Undifferentiated   
C12_49_4 133 20.5 1.41 0.554 0.024 0.2 Undifferentiated   
C12_49_5 133 18.6 1.58 0.596 0.033 0.2 Undifferentiated   
C12_49_6 133 23.11 2.36 0.495 0.021 0.17 Undifferentiated   
C34_35_2 486 0.63 0.03 0.837 0.017 0.36 Undifferentiated  
C34_35_3 486 0.55 0.03 0.832 0.017 0.21 Undifferentiated  
C34_35_4 486 0.51 0.03 0.837 0.017 0.37 Undifferentiated  
C34_35_5 486 0.61 0.03 0.839 0.017 0.36 Undifferentiated  
C34_35_6 486 0.65 0.12 0.837 0.018 0.09 Undifferentiated  
C34_34_2 486 0.54 0.04 0.834 0.017 0.41 Undifferentiated  
C34_34_3 486 1.21 0.05 0.827 0.017 0.24 Undifferentiated  
C34_34_4 486 0.78 0.06 0.834 0.017 0.24 Undifferentiated  
C34_32_1 486 0.29 0.04 0.842 0.017 0.26 Undifferentiated  
C34_32_2 486 0.93 0.07 0.828 0.017 0.18 Undifferentiated  
C34_32_3 486 0.48 0.06 0.838 0.017 0.48 Undifferentiated  
C34_32_4 486 0.38 0.04 0.838 0.018 0.12 Undifferentiated  
C34_32_5 486 0.87 0.05 0.833 0.017 0.22 Undifferentiated  
C34_32_6 486 0.77 0.03 0.835 0.017 0.52 Undifferentiated  
C34_32_7 486 0.78 0.05 0.834 0.017 0.32 Undifferentiated  
C34_32_8 486 0.98 0.05 0.829 0.018 0.35 Undifferentiated  
C34_32_9 486 1.07 0.04 0.828 0.017 0.4 Undifferentiated  
C34_36_1 486 0.63 0.07 0.834 0.017 0.13 Undifferentiated  
C34_36_2 486 0.49 0.04 0.835 0.017 0.15 Undifferentiated  
C34_36_3 486 1.39 0.21 0.821 0.018 0.14 Undifferentiated  
C34_36_4 486 0.63 0.06 0.833 0.018 0.15 Undifferentiated  
C34_36_5 486 0.85 0.03 0.831 0.017 0.31 Undifferentiated  
C34_37_1 486 0.82 0.04 0.833 0.017 0.24 Undifferentiated  
C34_37_2 486 0.84 0.12 0.829 0.017 0.31 Undifferentiated  
C34_37_4 486 1.3 0.15 0.821 0.017 0.13 Undifferentiated  
C34_37_5 486 0.76 0.16 0.834 0.021 0.03 Undifferentiated  
C34_37_6 486 0.45 0.14 0.833 0.019 0.04 Undifferentiated  
C34_37_7 486 2.69 0.46 0.796 0.019 0.15 Undifferentiated  
C34_10_1 486 0.84 0.06 0.834 0.017 0.37 Undifferentiated  
C34_10_2 486 0.68 0.04 0.833 0.017 0.44 Undifferentiated  
C34_10_3 486 0.81 0.08 0.836 0.018 0.37 Undifferentiated  
C34_10_4 486 0.53 0.04 0.836 0.018 0.24 Undifferentiated  
C34_10_5 486 2.34 0.14 0.817 0.017 0.27 Undifferentiated  
C34_10_6 486 0.45 0.04 0.836 0.017 0.39 Undifferentiated  
C34_10_7 486 1.05 0.15 0.828 0.017 0.47 Undifferentiated  
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C34_10_8 486 0.51 0.04 0.836 0.017 0.34 Undifferentiated  
C34_10_9 486 0.46 0.04 0.836 0.017 0.21 Undifferentiated  
C34_10_10 486 0.6 0.05 0.84 0.017 0.34 Undifferentiated  
C34_10_11 486 0.55 0.03 0.838 0.017 0.5 Undifferentiated  
C34_10_12 486 0.88 0.1 0.831 0.018 0.49 Undifferentiated  
C34_10_13 486 0.97 0.08 0.829 0.017 0.15 Undifferentiated  
C34_10_14 486 0.32 0.02 0.839 0.017 0.24 Undifferentiated  
C34_10_15 486 0.81 0.06 0.832 0.017 0.14 Undifferentiated  
C34_10_16 486 0.88 0.04 0.832 0.018 0.53 Undifferentiated  
C34_10_17 486 0.91 0.05 0.828 0.017 0.21 Undifferentiated  
C34_10_18 486 0.79 0.03 0.832 0.017 0.43 Undifferentiated  
C34_10_19 486 0.91 0.06 0.836 0.018 0.15 Undifferentiated  
C34_10_20 486 0.94 0.07 0.832 0.018 0.22 Undifferentiated  
C34_10_21 486 1.05 0.2 0.827 0.019 0.23 Undifferentiated  
C34_22_1 486 0.63 0.08 0.832 0.018 0.44 Undifferentiated  
C34_22_2 486 0.8 0.04 0.834 0.018 0.18 Undifferentiated  
C34_22_3 486 0.87 0.11 0.831 0.018 0.17 Undifferentiated  
C34_22_4 486 0.84 0.11 0.83 0.018 0.36 Undifferentiated  
C34_22_5 486 0.64 0.04 0.836 0.017 0.22 Undifferentiated  
C34_22_6 486 0.92 0.04 0.832 0.017 0.46 Undifferentiated  
C34_22_7 486 0.65 0.03 0.835 0.017 0.23 Undifferentiated  
C34_22_8 486 0.6 0.06 0.839 0.017 0.13 Undifferentiated  
C34_22_9 486 1.28 0.19 0.826 0.017 0.32 Undifferentiated  
C34_29_1 486 1.27 0.07 0.826 0.017 0.37 Undifferentiated  
C34_29_2 486 0.84 0.04 0.829 0.017 0.42 Undifferentiated  
C34_29_3 486 1.3 0.26 0.822 0.018 0.04 Undifferentiated  
C34_29_4 486 1.14 0.06 0.829 0.017 0.49 Undifferentiated  
C34_29_5 486 0.93 0.07 0.827 0.018 0.35 Undifferentiated  
C34_29_6 486 1.27 0.07 0.832 0.017 0.33 Undifferentiated  
C34_29_7 486 0.6 0.07 0.834 0.018 0.13 Undifferentiated  
C34_29_8 486 0.79 0.11 0.84 0.018 0.38 Undifferentiated  
C34_31_1 486 0.54 0.02 0.837 0.017 0.29 Undifferentiated  
C34_31_2 486 0.97 0.04 0.832 0.017 0.24 Undifferentiated  
C34_31_3 486 0.87 0.06 0.834 0.017 0.25 Undifferentiated  
C34_31_4 486 0.65 0.03 0.837 0.017 0.27 Undifferentiated  
C34_31_5 486 0.8 0.04 0.832 0.017 0.48 Undifferentiated  
C34_11_8 486 0.72 0.03 0.832 0.017 0.34 Undifferentiated  
C34_11_9 486 0.72 0.03 0.83 0.017 0.34 Undifferentiated  
C34_11_10 486 0.53 0.03 0.837 0.017 0.2 Undifferentiated  
C34_11_11 486 0.97 0.03 0.832 0.017 0.36 Undifferentiated  
C34_11_12 486 0.74 0.08 0.839 0.017 0.51 Undifferentiated  
C34_11_13 486 0.75 0.04 0.834 0.017 0.17 Undifferentiated  
C34_11_14 486 0.57 0.04 0.84 0.017 0.32 Undifferentiated  
C34_11_15 486 0.64 0.03 0.84 0.017 0.3 Undifferentiated  
C34_11_16 486 0.66 0.04 0.834 0.017 0.42 Undifferentiated  
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C34_11_17 486 0.52 0.06 0.841 0.017 0.34 Undifferentiated  
C34_11_18 486 0.47 0.02 0.839 0.017 0.17 Undifferentiated  
C34_11_19 486 0.97 0.04 0.832 0.017 0.44 Undifferentiated  
C34_11_20 486 0.69 0.03 0.84 0.017 0.35 Undifferentiated  
C34_12_1 486 1.03 0.21 0.829 0.018 0.05 Undifferentiated  
C34_12_2 486 0.44 0.11 0.838 0.018 0.03 Undifferentiated  
C34_12_3 486 0.94 0.12 0.829 0.018 0.19 Undifferentiated  

C43_01_1 618 41.08 4.91 0.303 0.047 0.08 Brecciated 
Matrix  

C43_01_2 618 27.11 7.85 0.447 0.036 0.05 Brecciated 
Matrix  

C43_01_4 618 53.74 14.01 0.264 0.089 0.11 Brecciated 
Matrix  

C43_04_1 618 43.26 8.79 0.233 0.054 0.08 Brecciated 
Matrix  

C43_04_2 618 28.77 4.11 0.482 0.03 0.15 Brecciated 
Matrix  

C43_04_3 618 34.17 7.12 0.296 0.035 0.2 Brecciated 
Matrix  

C43_04_4 618 45.35 12 0.195 0.031 0.26 Brecciated 
Matrix  

C43_04_5 618 26.52 16.73 0.51 0.22 0.06 Brecciated 
Matrix  

C52_03_1 731 30.93 4.59 0.329 0.028 0.23 Matrix  
C52_03_2 731 37.15 4.43 0.331 0.015 0.1 Matrix  
C52_03_3 731 38.59 3.2 0.266 0.022 0.23 Matrix  
C52_05 731 40.82 10.31 0.203 0.054 0.18 Matrix  
C52_06 731 33.33 2.41 0.267 0.023 0.16 Matrix  
C52_07_1 731 46.88 5.93 0.198 0.04 0.27 Matrix  
C52_07_2 731 47.17 2.01 0.141 0.011 0.2 Matrix  
C52_08_1 731 45.63 2.59 0.171 0.013 0.2 Matrix  
C52_09_1 731 44.94 1.91 0.204 0.011 0.34 Matrix  
C52_09_2 731 42.11 2.51 0.238 0.016 0.22 Matrix  
C52_10 731 45.63 2.27 0.213 0.018 0.13 Matrix  
C52_11 731 43.96 3.96 0.343 0.029 0.2 Matrix x 
C52_12_1 731 40.82 2.24 0.265 0.019 0.38 Matrix  
C52_15 731 38.83 3.73 0.296 0.035 0.14 Matrix  
C52_16_1 731 47.06 3.99 0.198 0.022 0.43 Matrix  
C52_16_2 731 40.27 4.4 0.264 0.036 0.46 Matrix  
C52_17_1 731 45.28 2.09 0.187 0.018 0.21 Mag Vein  
C52_17_2 731 43.8 2.85 0.17 0.014 0.28 Mag Vein  
C52_17_3 731 44.28 2.76 0.198 0.015 0.12 Mag Vein  
C52_17_4 731 32.17 3.76 0.347 0.029 0.2 Mag Vein  
C52_24_1 731 48.06 1.4 0.135 0.009 0.21 Mag Vein  
C52_24_2 731 46.15 2.82 0.177 0.011 0.3 Mag Vein  
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C52_24_3 731 43.48 2.37 0.174 0.012 0.12 Mag Vein  
C52_24_4 731 37.74 3.06 0.277 0.021 0.25 Mag Vein  
C52_24_5 731 48.06 1.52 0.165 0.02 0.11 Mag Vein  
C52_24_6 731 45.8 2.94 0.164 0.011 0.19 Mag Vein  
C52_26_1 731 50.42 2.35 0.125 0.006 0.27 Mag Vein  
C52_26_2 731 48.17 2.07 0.136 0.008 0.23 Mag Vein  
C52_26_3 731 49.5 2.05 0.128 0.006 0.38 Mag Vein  
C52_26_4 731 49.69 1.45 0.123 0.006 0.25 Mag Vein  
C52_26_5 731 48.86 1.65 0.14 0.009 0.19 Mag Vein  
C52_26_6 731 48.94 1.52 0.127 0.008 0.23 Mag Vein  
C52_26_7 731 49.5 1.61 0.138 0.008 0.14 Mag Vein  
C52_26_8 731 48.13 1.85 0.141 0.008 0.4 Mag Vein  
C52_26_9 731 47.87 1.71 0.126 0.008 0.14 Mag Vein  
C52_27_1 731 39.09 4.27 0.33 0.038 0.04 Mag Vein  
C52_27_2 731 43.8 3.62 0.267 0.026 0.25 Mag Vein  
C52_27_3 731 45.45 3.73 0.187 0.022 0.38 Mag Vein  
C52_27_4 731 41.67 5.13 0.166 0.028 0.61 Mag Vein  
C52_27_5 731 35.19 6.64 0.202 0.038 0.13 Mag Vein  
C52_27_6 731 44.94 7.8 0.247 0.024 0.11 Mag Vein  
C52_27_7 731 48.19 9.34 0.191 0.027 0.3 Mag Vein  
C52_27_9 731 30.3 7.29 0.212 0.033 0.13 Mag Vein x 
C52_28_1 731 27.27 8.08 0.497 0.071 0.11 Mag Vein  
C52_28_10 731 47.71 1.99 0.164 0.011 0.29 Mag Vein  
C52_28_3 731 44.61 2.8 0.186 0.017 0.16 Mag Vein  
C52_28_4 731 48 2.5 0.148 0.015 0.23 Mag Vein  
C52_28_5 731 42.86 18.39 0.17 0.093 0.07 Mag Vein  
C52_28_8 731 37.15 7.28 0.192 0.066 0.11 Mag Vein  
C52_28_9 731 36.25 3.79 0.302 0.021 0.2 Mag Vein  
C52_29_2 731 45.63 2.59 0.183 0.015 0.22 Mag Vein  
C52_29_3 731 46.33 2.67 0.182 0.01 0.34 Mag Vein  
C52_29_4 731 48.9 2.2 0.167 0.011 0.1 Mag Vein  
C52_30_1 731 37.27 6.18 0.243 0.035 0.18 Mag Vein  
C52_30_2 731 38.22 4.69 0.23 0.021 0.2 Mag Vein  
C52_30_3 731 35.4 3.42 0.318 0.034 0.08 Mag Vein  
C52_30_4 731 39.47 2.59 0.254 0.015 0.31 Mag Vein  
C52_30_5 731 37.27 5.72 0.283 0.017 0.29 Mag Vein  
C52_30_6 731 40.54 2.21 0.233 0.018 0.27 Mag Vein  
C52_30_7 731 38.22 3.49 0.223 0.02 0.13 Mag Vein  
C52_30_8 731 40.68 3.54 0.235 0.024 0.2 Mag Vein  
C52_31_1 731 45.8 3.95 0.227 0.021 0.38 Mag Vein  
C52_31_2 731 48.54 1.97 0.186 0.016 0.39 Mag Vein  
C52_31_3 731 43.96 2.87 0.171 0.014 0.24 Mag Vein  
C52_32_1 731 49.48 2.1 0.137 0.009 0.27 Mag Vein  
C52_32_2 731 47.36 1.72 0.143 0.008 0.41 Mag Vein  
C52_33_1 731 38.83 2.99 0.254 0.019 0.22 Mag Vein  
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C52_33_2 731 45.45 2.42 0.171 0.016 0.12 Mag Vein  
C52_33_3 731 45.98 2.31 0.171 0.011 0.21 Mag Vein  
C52_33_4 731 43.64 2.39 0.192 0.006 0.44 Mag Vein  
C52_33_5 731 43.32 2.5 0.187 0.017 0.07 Mag Vein  
C52_34_2 731 28.78 4.52 0.335 0.038 0.4 Mag Vein  
C52_34_4 731 33.99 4.2 0.288 0.022 0.2 Mag Vein  
C52_34_5 731 40.4 3.36 0.216 0.008 0.35 Mag Vein  
C52_34_6 731 37.97 2.87 0.281 0.025 0.29 Mag Vein  
C52_35_1 731 50.21 5.55 0.203 0.027 0.26 Mag Vein  
C52_35_2 731 44.44 7.13 0.226 0.034 0.07 Mag Vein  
C52_35_3 731 33.61 2.81 0.378 0.033 0.12 Mag Vein  
C52_36_1 731 42.84 1.71 0.218 0.017 0.2 Mag Vein  
C52_36_2 731 47.06 2.41 0.169 0.01 0.21 Mag Vein  
C61_01_1 840 3.47 0.66 0.78 0.022 0.29 Vein 3  
C61_01_2 840 14.12 6.48 0.556 0.07 0.12 Vein 3  
C61_02 840 40.13 1.68 0.329 0.025 0.25 Vein 3  
C61_03 840 22.22 11.12 0.46 0.13 0.35 Vein 3  
C61_04 840 30.77 8.7 0.282 0.072 0.49 Vein 3  
C61_05_2 840 30 9.02 0.34 0.17 0.13 Vein 3  
C61_06 840 6.49 0.71 0.768 0.024 0.24 Matrix  
C61_07 840 34.88 1.49 0.368 0.025 0.4 Vein 3  
C61_08 840 44.94 2.52 0.237 0.019 0.25 Vein 3  
C61_09_1 840 49.75 2.16 0.182 0.013 0.49 Vein 3  
C61_09_2 840 45.11 1.39 0.169 0.007 0.26 Vein 3  
C61_10 840 62.5 10.49 0.67 0.32 0.17 Matrix x 
C61_11 840 25.53 14.13 0.5 0.25 0.08 Matrix  
C61_12_2 840 12.12 5.76 0.47 0.1 0.1 Matrix x 
C61_13 840 29.13 4.42 0.443 0.035 0.2 Vein 3  
C61_14 840 23.3 2.35 0.476 0.027 0.25 Vein 3  
C61_15 840 67.42 4.02 0.081 0.014 0.66 Vein 3 x 
C61_16 840 35.29 3.4 0.36 0.034 0.13 Matrix  
C61_18_2 840 20 13.01 0.305 0.095 0.07 Vein 1  
C61_19_1 840 17.65 8.57 0.287 0.046 0.17 Vein 1 x 
C61_19_10 840 37.38 10.97 0.3 0.11 0.04 Vein 1  
C61_19_2 840 29.27 15.72 0.237 0.073 0.1 Vein 1  
C61_19_3 840 29.27 8.59 0.273 0.048 0.11 Vein 1  
C61_19_5 840 37.15 7.63 0.33 0.089 0.07 Vein 1  
C61_19_7 840 44.61 11.48 0.313 0.068 0.03 Vein 1  
C61_19_9 840 15.58 10.53 0.53 0.12 0.09 Vein 1  
C61_22 840 31.09 2.26 0.365 0.017 0.1 Matrix  
C61_23 840 23.9 1.55 0.461 0.021 0.2 Matrix  
C62_05_1 871 47.58 2.04 0.209 0.021 0.36 Vein 1  
C62_05_2 871 41.5 2.14 0.271 0.028 0.37 Vein 2  
C62_01 871 40.53 2.68 0.276 0.021 0.18 Vein 3  
C62_03_1 871 47.25 1.49 0.179 0.007 0.41 Vein 4  
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C62_03_2 871 48.05 1.61 0.156 0.007 0.22 Vein 5  
C62_03_3 871 47.96 1.38 0.178 0.009 0.23 Vein 6  
C62_02 871 9.24 1.07 0.703 0.021 0.41 Vein 7  

C62_04 871 39.14 1.34 0.288 0.015 0.5 Brecciated 
Matrix  
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Figure A-7: Apatite C12 Tera-Wasserburg Diagram (UCSB) 
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Figure A-8: Apatite C34 (Low U) Tera-Wasserburg Diagram (UCSB) 
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Figure A-9: Apatite C43 Tera-Wasserburg Diagram (UCSB) 
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Figure A-10: Apatite C52 in Mushketovite vein Tera-Wasserburg Diagram (UCSB) 
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Figure A-11: Apatite C52 in Volcanic Groundmass Tera-Wasserburg Diagram (UCSB) 
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Figure A-12: Apatite C61 Tera-Wasserburg Diagram (UCSB) 
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Figure A-13:  Apatite C62 Tera-Wasserburg Diagram (UCSB) 
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 Table A
-5: 40A

r/ 39A
r representative air and representative blank 

R
epresentative 

A
ir or B

lank 
P 

t 
40 V

 
40 V

 
error 

39 V
 

39 V
 

error 
38 V

 
38 V

 
error 

37 V
 

37 V
 

error 
36 V

 
36 V

 
error 

M
oles 

40A
r* 

40/
36 

40/
38 

air.5.29.20.b.txt 
0 

0 
13.6
5275 

0.006
97 

 
 

0.008
86 

0.0000
6 

 
 

0.046
8769 

0.000
1163 

9.29E-
14 

291
.2 

154
0 

air.5.29.20.c.txt 
0 

0 
13.7
6888 

0.008
04 

 
 

0.008
94 

0.0000
5 

 
 

0.047
2995 

0.000
0973 

9.37E-
14 

291
.1 

154
0 

blank.5.29.20.m
.txt 

0 
0 

0.00
598 

0.000
093 

0.0002
2 

0.0000
12 

0.000
05 

0.0000
05 

0.000
12 

0.000
008 

0.000
0459 

0.000
004 

4.07E-
17 
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5.1 

blank.5.29.20.n.
txt 

0 
0 

0.00
563 

0.000
100 

0.0002
0 

0.0000
28 

0.000
06 

0.0000
08 

0.000
11 

0.000
007 

0.000
0447 

0.000
004 

3.83E-
17 
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  Table A
-6: M

onitor D
ata (G

A
-1550 B

iotite, ca. 200 µm
 diam

eter flakes provided by M
. C

osca of U
SG

S) 
Irradiation 
Filenam

e 
P 

t 
40 V

 
39 V

 
38 V

 
37 V

 
36 V

 
M

oles 
40A

r* 
%

 R
ad 

R
 

J ± 1s 
%

 
s.d. 

au36.1a.bio.4a.txt 
2.2 

10 
4.35175 
± 0.001562 

0.32421  
± 0.000326 

0.00517  
± 0.000031 

0.00086  
± 0.000019 

0.000569 
± 0.000008 

2.96E-14 
96.14%

 
12.90439 

0.00432618 
± 0.000005 

0.1%
 

au36.1a.bio.6a.txt 
2.2 

10 
3.22746  
± 0.002015 

0.24206  
± 0.000306 

0.00360  
± 0.000013 

0.00057  
± 0.000018 

0.000331 
± 0.000009 

2.20E-14 
96.97%

 
12.92906 

0.00431792 
± 0.000007 

0.2%
 

au36.1a.bio.3a.txt 
2.2 

10 
3.51508 
± 0.001262 

0.26712  
± 0.000420 

0.00410  
± 0.000022 

0.00137  
± 0.000015 

0.000194 
± 0.000006 

2.39E-14 
98.37%

 
12.94486 

0.00431265 
± 0.000007 

0.2%
 

au36.1a.bio.7a.txt 
2.2 

10 
2.89165  
± 0.001543 

0.19935  
± 0.000417 

0.00327 
± 0.000016 

0.00088 
± 0.000009 

0.001050 
± 0.000016 

1.97E-14 
89.27%

 
12.94944 

0.00431113 
± 0.000013 

0.3%
 

au36.1a.bio.5a.txt 
2.2 

10 
2.14265  
± 0.000731 

0.15813  
± 0.000195 

0.00252  
± 0.000024 

0.00048 
± 0.000017 

0.000241 
± 0.000009 

1.46E-14 
96.67%

 
13.09904 

0.00426189 
± 0.000008 

0.2%
 

 
M

ean: 0.0043199±0.0000072  [0.17%
]  2σ 

W
td by data-pt errs only, 0 of 4 rej. 

M
SW

D
 = 0.95, probability = 0.41 

au36.1e.bio.12a.txt 
2.2 

10 

1.28331 
± 0.000897 

0.09313 
± 0.000194 

0.00151 
± 0.000014 

0.00075 
± 0.000018 

0.000246 
± 0.000007 

8.73E-15 
94.33%

 
12.99831 

0.00429492  
± 0.000012 

0.3%
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 au36.1e.bio.13a.txt 
2.2 

10 

8.38807 
± 0.003961 

0.61255 
± 0.000233 

0.00946 
± 0.000070 

0.00849 
± 0.000083 

0.001460 
± 0.000012 

5.71E-14 
94.85%

 
12.99050 

0.00429750 
± 0.000003 

0.1%
 

au36.1e.bio.14a.txt 
2.2 

10 

7.25783 
± 0.006947 

0.52592 
± 0.000787 

0.00876 
± 0.000102 

0.00642 
± 0.000059 

0.001378 
± 0.000014 

4.94E-14 
94.39%

 
13.02741 

0.00428533 
± 0.000008 

0.2%
 

au36.1e.bio.8a.txt 
2.2 

10 

2.55864 
± 0.001269 

0.18925 
± 0.000201 

0.00309 
± 0.000030 

0.00490 
± 0.000040 

0.000335 
± 0.000006 

1.74E-14 
96.14%

 
12.99985 

0.00429441 
± 0.000006 

0.1%
 

 
M

ean = 0.0042955±0.0000054  [0.13%
]  2σ 

W
td by data-pt errs only, 0 of 4 rej. 

M
SW

D
 = 0.61, probability = 0.61 

au36.1i.bio.15a.txt 
2.2 

10 

2.59444 
± 0.001039 

0.18945 
± 0.000398 

0.00294 
± 0.000021 

0.00077 
± 0.000013 

0.000488 
± 0.000013 

1.77E-14 
94.44%

 
12.93304 

0.00431660 
± 0.000012 

0.3%
 

au36.1i.bio.16a.txt 
2.2 

10 

2.77727 
± 0.000421 

0.20899 
± 0.000229 

0.00330 
± 0.000046 

0.00118 
± 0.000012 

0.000269 
± 0.000006 

1.89E-14 
97.14%

 
12.90888 

0.00432467 
± 0.000006 

0.1%
 

au36.1i.bio.17a.txt 
2.2 

10 

2.32549 
± 0.001268 

0.16984 
± 0.000273 

0.00274 
± 0.000019 

0.00110 
± 0.000015 

0.000460 
± 0.000014 

1.58E-14 
94.16%

 
12.89343 

0.00432986 
± 0.000011 

0.3%
 

au36.1i.bio.18a.txt 
2.2 

10 

4.49204 
± 0.003640 

0.33214 
± 0.000446 

0.00538 
± 0.000042 

0.00207 
± 0.000033 

0.000740 
± 0.000010 

3.06E-14 
95.13%

 
12.86651 

0.00433892 
± 0.000008 

0.2%
 

au36.1i.bio.19a.txt 
2.2 

10 

2.42395 
± 0.001378 

0.17692 
± 0.000314 

0.00286 
± 0.000019 

0.00199 
± 0.000022 

0.000474 
± 0.000011 

1.65E-14 
94.23%

 
12.91056 

0.00432411 
± 0.000011 

0.2%
 

 
M

ean = 0.0043283±0.0000080  [0.19%
]  2σ 

W
td by data-pt errs only, 0 of 4 rej. 

M
SW

D
 = 1.09, probability = 0.35 

au36.1s.bio.22a.txt 
2.2 

10 

3.25711 
± 0.003851 

0.24457 
± 0.000364 

0.00385 
± 0.000021 

0.00067 
± 0.000018 

0.000337 
± 0.000012 

2.22E-14 
96.94%

 
12.91005 

0.00432428 
± 0.000010 

0.2%
 

au36.1s.bio.20a.txt 
2.2 

10 

8.33497 
± 0.003399 

0.63185 
± 0.000527 

0.01036 
± 0.000041 

0.02805 
± 0.000129 

0.000589 
± 0.000015 

5.67E-14 
97.91%

 
12.92021 

0.00432088 
± 0.000005 

0.1%
 

au36.1s.bio.24a.txt 
2.2 

10 

1.19394 
± 0.001238 

0.08991 
± 0.000163 

0.00141 
± 0.000012 

0.00019 
± 0.000015 

0.000080 
± 0.000006 

8.12E-15 
98.03%

 
13.01787 

0.00428847 
± 0.000011 

0.3%
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 au36.1s.bio.21a.txt 
2.2 

10 

4.45157 
± 0.002837 

0.32077 
± 0.000401 

0.00496 
± 0.000034 

0.00037 
± 0.000013 

0.000927 
± 0.000016 

3.03E-14 
93.85%

 
13.02416 

0.00428640 
± 0.000008 

0.2%
 

au36.1s.bio.23a.txt 
2.2 

10 

2.56169 
± 0.001869 

0.17544 
± 0.000493 

0.00270 
± 0.000034 

0.00014 
± 0.000013 

0.000717 
± 0.000006 

1.74E-14 
91.73%

 
13.39382 

0.00416809 
± 0.000014 

0.3%
 

 

M
ean = 0.004311±0.000029  [0.67%

]  95%
 conf. 

W
td by data-pt errs only, 0 of 4 rej. 

M
SW

D
 = 6.5, probability = 0.000 

   
Irradiation 
Filenam

e 
P 

t 
40 V

 
39 V

 
38 V

 
37 V

 
36 V

 
M

oles 
40A

r* 
%

 R
ad 

R
 

J ± 1s 
%

 s.d. 

au36.1c.act.1a.txt 
0.5 

30 
0.00411 
± 0.000144 

0.00002 
± 0.000031 

-0.00002 
± 0.000009 

-0.00001 
± 0.000168 

0.000013 
± 0.000006 

2.80E-
17 

3.9%
 

6.6790 
52.7 
± 2493.5 

4732%
 

au36.1c.act.1b.txt 
0.6 

30 
0.05363 
± 0.000289 

0.00010 
± 0.000030 

0.00008 
± 0.000010 

0.00101 
± 0.000321 

0.000150 
± 0.000012 

3.65E-
16 

17.4%
 

94.6974 
634.2 
± 1468.7 

232%
 

au36.1c.act.1c.txt 
0.7 

30 
0.05474 
± 0.000245 

0.00028 
± 0.000033 

0.00008 
± 0.000010 

0.00030 
± 0.000150 

0.000134 
± 0.000011 

3.72E-
16 

27.6%
 

54.7187 
392.7 
± 224.8 

57%
 

au36.1c.act.1d.txt 
0.8 

30 
0.03704 
± 0.000242 

0.00043 
± 0.000040 

0.00005 
± 0.000011 

0.00123 
± 0.000156 

0.000102 
± 0.000006 

2.52E-
16 

18.7%
 

16.2809 
125.9 
± 88.2 

70%
 

au36.1c.act.1e.txt 
0.9 

30 
0.05044 
± 0.000308 

0.00049 
± 0.000035 

0.00004 
± 0.000010 

0.00071 
± 0.000141 

0.000133 
± 0.000009 

3.43E-
16 

22.1%
 

22.6348 
172.8 
± 83.0 

48%
 

au36.1c.act.1f.txt 
1 

30 
0.01505 
± 0.000167 

0.00032 
± 0.000043 

0.00000 
± 0.000021 

0.00036 
± 0.000174 

0.000031 
± 0.000008 

1.02E-
16 

38.9%
 

18.3336 
141.2 
± 80.3 

57%
 

au36.1c.act.1g.txt 
1.1 

30 
0.02053 
± 0.000223 

0.00045 
± 0.000039 

0.00003 
± 0.000008 

0.00132 
± 0.000204 

0.000042 
± 0.000006 

1.40E-
16 

39.5%
 

17.9760 
138.5 
± 47.3 

34%
 

au36.1c.act.1h.txt 
1.2 

30 
0.04411 
± 0.000279 

0.00071 
± 0.000040 

0.00002 
± 0.000009 

0.00594 
± 0.000246 

0.000101 
± 0.000011 

3.00E-
16 

32.1%
 

20.0234 
153.6 
± 48.9 

32%
 

au36.1c.act.1i.txt 
1.3 

30 
0.02369 

0.00094 
0.00002 

0.00754 
0.000027 

1.61E-
65.9%

 
16.5581 

128.0 
20%
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± 0.000216 
± 0.000038 

± 0.000007 
± 0.000273 

± 0.000009 
16 

± 25.7 

au36.1c.act.1j.txt 
1.4 

30 
0.24641 
± 0.000496 

0.00948 
± 0.000067 

0.00033 
± 0.000011 

0.26587 
± 0.002118 

0.000313 
± 0.000010 

1.68E-
15 

62.4%
 

16.2284 
125.49 
± 3.46 

2.8%
 

au36.1c.act.1k.txt 
1.5 

30 
0.10000 
± 0.000323 

0.00362 
± 0.000037 

0.00011 
± 0.000011 

0.07261 
± 0.000872 

0.000145 
± 0.000009 

6.80E-
16 

57.1%
 

15.7735 
122.09 
± 7.15 

5.9%
 

au36.1c.act.1l.txt 
1.6 

30 
0.44029 
± 0.000749 

0.01645 
± 0.000062 

0.00065 
± 0.000012 

0.51442 
± 0.004886 

0.000628 
± 0.000017 

3.00E-
15 

57.9%
 

15.4873 
119.94 
± 3.07 

2.6%
 

au36.1c.act.1m
.txt 

1.7 
30 

0.73503 
± 0.000795 

0.03889 
± 0.000249 

0.00138 
± 0.000043 

1.26311 
± 0.007281 

0.000367 
± 0.000010 

5.00E-
15 

85.2%
 

16.1063 
124.58 
± 1.58 

1.3%
 

au36.1c.act.1n.txt 
1.8 

30 
0.40567 
± 0.000875 

0.02225 
± 0.000087 

0.00063 
± 0.000009 

0.69014 
± 0.002626 

0.000200 
± 0.000005 

2.76E-
15 

85.5%
 

15.5833 
120.66 
± 1.14 

0.9%
 

au36.1c.act.1o.txt 
1.9 

30 
0.31315 
± 0.000449 

0.01640 
± 0.000102 

0.00051 
± 0.000013 

0.46296 
± 0.002118 

0.000169 
± 0.000008 

2.13E-
15 

84.0%
 

16.0395 
124.08 
± 2.28 

1.8%
 

au36.1c.act.1p.txt 
2 

30 
0.46928 
± 0.000643 

0.02762 
± 0.000077 

0.00082 
± 0.000015 

0.81579 
± 0.004025 

0.000104 
± 0.000003 

3.19E-
15 

93.5%
 

15.8809 
122.89 
± 1.04 

0.8%
 

au36.1c.act.1q.txt 
2.2 

30 
0.30645 
± 0.000336 

0.01879 
± 0.000107 

0.00045 
± 0.000013 

0.49219 
± 0.003413 

0.000037 
± 0.000002 

2.08E-
15 

96.5%
 

15.7337 
121.79 
± 1.40 

1.2%
 

au36.1c.act.1r.txt 
2.4 

30 
0.12324 
± 0.000617 

0.00775 
± 0.000045 

0.00010 
± 0.000004 

0.08649 
± 0.000541 

0.000010 
± 0.000002 

8.38E-
16 

97.6%
 

15.5285 
120.25 
± 2.27 

1.9%
 

au36.1c.act.1s.txt 
2.5 

30 
0.14019 
± 0.000510 

0.00920 
± 0.000067 

0.00009 
± 0.000005 

0.06072 
± 0.000663 

-0.000043 
± 0.000018 

9.54E-
16 

109.0%
 

15.8265 
122.48 
± 2.76 

2.3%
 

au36.1c.act.1t.txt 
2.6 

30 
0.10884 
± 0.000691 

0.00709 
± 0.000048 

0.00006 
± 0.000005 

0.02865 
± 0.000324 

-0.000001 
-± 
0.000001 

7.40E-
16 

100.3%
 

15.3803 
119.14 
± 2.50 

2.1%
 

 
Total 39A

rK
 = 0.18128 

A
ge = 120.51 ± 0.54 M

a 
J = 0.00437 ± 0.000009 

(1σ, including J-error of .1%
) 

100%
 of the 39A

r, steps 1 through 20 
M

SW
D

 = 0.61, probability = 0.90 
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 au36.1f.act.2a.txt 
0.5 

30 
0.01136 
± 0.000142 

0.00001 
± 0.000032 

0.00001 
± 0.000008 

0.00020 
± 0.000178 

0.000031 
± 0.000008 

7.73E-
17 

19.1%
 

241.1535 
1304 
± 30596 

2346%
 

au36.1f.act.2b.txt 
0.6 

30 
0.07456 
± 0.000389 

0.00009 
± 0.000040 

0.00008 
± 0.000012 

0.00040 
± 0.000153 

0.000219 
± 0.000013 

5.07E-
16 

13.2%
 

106.5756 
692 
± 2988 

432%
 

au36.1f.act.2c.txt 
0.7 

30 
0.03059 
± 0.000275 

0.00015 
± 0.000030 

0.00005 
± 0.000009 

0.00017 
± 0.000142 

0.000102 
± 0.000006 

2.08E-
16 

1.7%
 

3.4406 
27 
± 468 

1739%
 

au36.1f.act.2d.txt 
0.8 

30 
0.15944 
± 0.000377 

0.00025 
± 0.000043 

0.00017 
± 0.000012 

0.00139 
± 0.000239 

0.000531 
± 0.000009 

1.08E-
15 

1.5%
 

9.7241 
75 
± 1229 

1637%
 

au36.1f.act.2e.txt 
0.9 

30 
0.07106 
± 0.000276 

0.00036 
± 0.000030 

0.00007 
± 0.000007 

0.00175 
± 0.000305 

0.000229 
± 0.000007 

4.83E-
16 

4.9%
 

9.6942 
75 
± 186 

249%
 

au36.1f.act.2f.txt 
1 

30 
0.03481 
± 0.000283 

0.00028 
± 0.000043 

0.00004 
± 0.000008 

0.00246 
± 0.000368 

0.000107 
± 0.000008 

2.37E-
16 

8.8%
 

10.9106 
84 
± 208 

247%
 

au36.1f.act.2g.txt 
1.1 

30 
0.07899 
± 0.000254 

0.00242 
± 0.000037 

0.00011 
± 0.000007 

0.07977 
± 0.001165 

0.000151 
± 0.000005 

5.37E-
16 

43.5%
 

14.2020 
109 
± 7 

6.8%
 

au36.1f.act.2h.txt 
1.2 

30 
0.09743 
± 0.000317 

0.00117 
± 0.000042 

0.00010 
± 0.000008 

0.02167 
± 0.000304 

0.000275 
± 0.000008 

6.63E-
16 

16.7%
 

13.8803 
106 
± 33 

31.4%
 

au36.1f.act.2i.txt 
1.3 

30 
0.56304 
± 0.000644 

0.01391 
± 0.000060 

0.00079 
± 0.000013 

0.45706 
± 0.001982 

0.001144 
± 0.000021 

3.83E-
15 

39.9%
 

16.1665 
123.23 
± 4.05 

3.3%
 

au36.1f.act.2j.txt 
1.4 

30 
0.53577 
± 0.000652 

0.02426 
± 0.000097 

0.00089 
± 0.000016 

0.83084 
± 0.003120 

0.000497 
± 0.000006 

3.64E-
15 

72.6%
 

16.0231 
122.18 
± 1.15 

0.9%
 

au36.1f.act.2k.txt 
1.5 

30 
0.33339 
± 0.000668 

0.01594 
± 0.000066 

0.00055 
± 0.000009 

0.56597 
± 0.001853 

0.000251 
± 0.000010 

2.27E-
15 

77.7%
 

16.2630 
123.95 
± 2.39 

1.9%
 

au36.1f.act.2l.txt 
1.6 

30 
0.63729 
± 0.000679 

0.02881 
± 0.000159 

0.00103 
± 0.000013 

0.99614 
± 0.002997 

0.000605 
± 0.000015 

4.34E-
15 

71.9%
 

15.9148 
121.38 
± 1.97 

1.6%
 

au36.1f.act.2m
.txt 

1.7 
30 

0.46093 
± 0.000451 

0.02339 
± 0.000139 

0.00077 
± 0.000013 

0.82501 
± 0.004437 

0.000319 
± 0.000005 

3.14E-
15 

79.5%
 

15.6736 
119.60 
± 1.23 

1.0%
 

au36.1f.act.2n.txt 
1.8 

30 
0.37207 

0.02111 
0.00067 

0.73760 
0.000113 

2.53E-
91.0%

 
16.0411 

122.31 
1.1%
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± 0.000331 
± 0.000072 

± 0.000014 
± 0.003667 

± 0.000004 
15 

± 1.35 

au36.1f.act.2o.txt 
1.85 

30 
0.11390 
± 0.000455 

0.00591 
± 0.000045 

0.00019 
± 0.000010 

0.19366 
± 0.001689 

0.000076 
± 0.000004 

7.75E-
16 

80.2%
 

15.4670 
118.07 
± 2.76 

2.3%
 

au36.1f.act.2p.txt 
2 

30 
0.08143 
± 0.000273 

0.00476 
± 0.000055 

0.00014 
± 0.000007 

0.15268 
± 0.001200 

0.000016 
± 0.000003 

5.54E-
16 

94.1%
 

16.1054 
122.78 
± 5.23 

4.3%
 

au36.1f.act.2q.txt 
2.2 

30 
0.06613 
± 0.000298 

0.00378 
± 0.000041 

0.00010 
± 0.000008 

0.11197 
± 0.001661 

0.000032 
± 0.000003 

4.50E-
16 

85.5%
 

14.9504 
114.25 
± 4.16 

3.6%
 

au36.1f.act.2r.txt 
2.4 

30 
0.05460 
± 0.000218 

0.00313 
± 0.000034 

0.00013 
± 0.000007 

0.09605 
± 0.000686 

0.000012 
± 0.000003 

3.71E-
16 

93.5%
 

16.3263 
124.41 
± 6.56 

5.3%
 

au36.1f.act.2s.txt 
2.6 

30 
0.04975 
± 0.000210 

0.00295 
± 0.000030 

0.00011 
± 0.000009 

0.09436 
± 0.000740 

0.000021 
± 0.000003 

3.38E-
16 

87.8%
 

14.7869 
113.04 
± 4.72 

4.2%
 

au36.1f.act.2t.txt 
2.7 

30 
0.03585 
± 0.000203 

0.00200 
± 0.000047 

0.00007 
± 0.000009 

0.06319 
± 0.000564 

0.000018 
± 0.000003 

2.44E-
16 

85.0%
 

15.2304 
116.32 
± 8.16 

7.0%
 

 
Total 39A

rK
 = 0.15466 

A
ge = 121.05 ± 0.61 M

a 
J = 0.0043077 ± 0.000009 

(1σ, including J-error of .1%
) 

100%
 of the 39A

r, steps 1 through 20 
M

SW
D

 = 0.82, probability = 0.68 

au36.1f.act.3a.txt 
0.5 

30 
0.01131 
± 0.000169 

0.00000 
± 0.000031 

0.00002 
± 0.000008 

0.00006 
± 0.000166 

0.000016 
± 0.000009 

7.70E-
17 

57.8%
 

5824.6750 
5970 
± 293430 

4915%
 

au36.1f.act.3b.txt 
0.6 

30 
0.03373 
± 0.000192 

0.00005 
± 0.000034 

0.00006 
± 0.000012 

-0.00007 
± 0.000170 

0.000113 
± 0.000008 

2.29E-
16 

1.0%
 

6.6512 
52 
± 5245 

10144%
 

au36.1f.act.3c.txt 
0.7 

30 
0.08527 
± 0.000211 

0.00016 
± 0.000033 

0.00011 
± 0.000009 

0.00054 
± 0.000086 

0.000266 
± 0.000007 

5.80E-
16 

8.0%
 

41.6108 
302 
± 1035 

343%
 

au36.1f.act.3d.txt 
0.8 

30 
0.05272 
± 0.000342 

0.00022 
± 0.000033 

0.00008 
± 0.000008 

0.00112 
± 0.000110 

0.000139 
± 0.000010 

3.59E-
16 

22.0%
 

52.5005 
373 
± 330 

88%
 

au36.1f.act.3e.txt 
0.9 

30 
0.06398 
± 0.000239 

0.00022 
± 0.000042 

0.00009 
± 0.000007 

0.00108 
± 0.000123 

0.000200 
± 0.000007 

4.35E-
16 

7.6%
 

21.9122 
165 
± 553 

335%
 

au36.1f.act.3f.txt 
1 

30 
0.03732 

0.00030 
0.00004 

0.00145 
0.000120 

2.54E-
4.8%

 
5.9352 

46 
356%
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± 0.000227 
± 0.000035 

± 0.000008 
± 0.000116 

± 0.000006 
16 

± 165 

au36.1f.act.3g.txt 
1.1 

30 
0.04519 
± 0.000268 

0.00035 
± 0.000036 

0.00006 
± 0.000008 

0.00276 
± 0.000208 

0.000148 
± 0.000008 

3.07E-
16 

3.2%
 

4.1615 
33 
± 157 

484%
 

au36.1f.act.3h.txt 
1.2 

30 
0.05121 
± 0.000258 

0.00100 
± 0.000030 

0.00006 
± 0.000006 

0.02407 
± 0.000317 

0.000142 
± 0.000006 

3.48E-
16 

17.9%
 

9.1724 
71 
± 21 

30%
 

au36.1f.act.3i.txt 
1.3 

30 
0.22094 
± 0.000357 

0.00642 
± 0.000034 

0.00034 
± 0.000009 

0.20948 
± 0.001576 

0.000401 
± 0.000006 

1.50E-
15 

46.3%
 

15.9366 
121.54 
± 2.95 

2.4%
 

au36.1f.act.3j.txt 
1.4 

30 
0.39720 
± 0.000358 

0.01513 
± 0.000058 

0.00067 
± 0.000012 

0.54082 
± 0.002896 

0.000512 
± 0.000007 

2.70E-
15 

61.9%
 

16.2445 
123.81 
± 1.63 

1.3%
 

au36.1f.act.3k.txt 
1.5 

30 
0.49289 
± 0.000612 

0.02108 
± 0.000061 

0.00080 
± 0.000011 

0.73731 
± 0.003959 

0.000538 
± 0.000011 

3.35E-
15 

67.7%
 

15.8374 
120.81 
± 1.68 

1.4%
 

au36.1f.act.3l.txt 
1.6 

30 
0.38120 
± 0.000700 

0.01930 
± 0.000096 

0.00067 
± 0.000009 

0.67807 
± 0.003550 

0.000244 
± 0.000005 

2.59E-
15 

81.1%
 

16.0089 
122.07 
± 1.39 

1.1%
 

au36.1f.act.3m
.txt 

1.7 
30 

0.35039 
± 0.000283 

0.01434 
± 0.000104 

0.00058 
± 0.000016 

0.53015 
± 0.003735 

0.000401 
± 0.000006 

2.38E-
15 

66.2%
 

16.1703 
123.26 
± 1.92 

1.6%
 

au36.1f.act.3n.txt 
1.8 

30 
0.58044 
± 0.000463 

0.02749 
± 0.000085 

0.00096 
± 0.000013 

0.99812 
± 0.003976 

0.000460 
± 0.000009 

3.95E-
15 

76.6%
 

16.1651 
123.22 
± 1.36 

1.1%
 

au36.1f.act.3o.txt 
1.9 

30 
0.55640 
± 0.000673 

0.03137 
± 0.000082 

0.00100 
± 0.000014 

1.09478 
± 0.003461 

0.000196 
± 0.000003 

3.79E-
15 

89.6%
 

15.8883 
121.18 
± 0.76 

0.6%
 

au36.1f.act.3p.txt 
2 

30 
0.24763 
± 0.000280 

0.01345 
± 0.000064 

0.00041 
± 0.000011 

0.46147 
± 0.002130 

0.000120 
± 0.000004 

1.68E-
15 

85.6%
 

15.7647 
120.27 
± 1.70 

1.4%
 

au36.1f.act.3q.txt 
2.2 

30 
0.07952 
± 0.000294 

0.00393 
± 0.000033 

0.00015 
± 0.000011 

0.13805 
± 0.000959 

0.000065 
± 0.000007 

5.41E-
16 

75.7%
 

15.3012 
116.84 
± 6.20 

5.3%
 

au36.1f.act.3r.txt 
2.4 

30 
0.07555 
± 0.000285 

0.00405 
± 0.000037 

0.00015 
± 0.000010 

0.14160 
± 0.001390 

0.000032 
± 0.000004 

5.14E-
16 

87.4%
 

16.3084 
124.28 
± 5.53 

4.5%
 

au36.1f.act.3s.txt 
2.5 

30 
0.03769 
± 

0.00207 
± 

0.00009 
± 

0.07493 
± 

0.000019 
± 

2.56E-
16 

85.0%
 

15.4737 
118.12 
± 7.70 

6.5%
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0.000223 
0.000031 

0.000008 
0.000822 

0.000003 

au36.1f.act.3t.txt 
2.6 

30 
0.01789 
± 0.000243 

0.00081 
± 0.000029 

0.00004 
± 0.000008 

0.02979 
± 0.000393 

0.000022 
± 0.000005 

1.22E-
16 

64.2%
 

14.2455 
109.02 
± 18.97 

17%
 

 
Total 39A

rK
 = 0.16175 

A
ge = 121.76 ± 0.50 M

a 
J = 0.0043077 ± 0.000009 

(1σ, including J-error of .1%
) 

100%
 of the 39A

r, steps 1 through 20 
M

SW
D

 = 0.71,  probability = 0.81 

D
ata sum

m
ary of all sam

ple sets 

7B
-52 A

ctinolite (1st aliquot) (au36.1f.act.2) 
A

ge = 121.05 ± 0.61 M
a 

7B
-52 A

ctinolite (1st aliquot duplicate) (au36.1f.act.3) 
A

ge = 121.76 ± 0.50 M
a 

 
7B

-52 A
ctinolite (2nd aliquot) (au36.1c.act) 

A
ge = 120.51 ± 0.54 M

a 

A
verage across all sam

ples com
bined 

M
ean = 121.15 ± 0.63 [0.52%

] 2σ 
W

td by data-pt errs only, 0 of 3 rej. 
M

SW
D

 = 1.5, probability = 0.23 
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Table A-7: Magnetite sample ID information and associated depth at which the magnetite 
originated, 238U/206Pb ratios and error, 207Pb/206Pb ratios and error, rho, the textural relationship 
of the magnetite within the overall sample, and whether samples fell off the discordia line 
discordant and therefore omitted from further calculation, data taken at UCSB. 
 

Sample Label Depth 
(m) 

238U 
/206Pb 2se 

207Pb 
/206Pb 2se rho Textural 

Relationship 
Omitted 

point? (x) 
C12_49_m1_1 133 8.99 0.62 0.705 0.022 0.52 Undifferentiated  
C12_49_m1_3 133 5.24 0.32 0.762 0.018 0.44 Undifferentiated  
C12_49_m1_4 133 2.24 0.31 0.802 0.018 0.62 Undifferentiated  
C12_49_m1_5 133 8.06 0.67 0.720 0.021 0.45 Undifferentiated  
C12_49_m1_6 133 23.64 2.45 0.467 0.030 0.24 Undifferentiated  
C12_50_m2 133 1.53 0.10 0.816 0.017 0.39 Undifferentiated  
C12_39_m3_1 133 1.00 0.12 0.827 0.018 0.28 Undifferentiated  
C12_39_m3_2 133 7.58 1.21 0.737 0.021 0.59 Undifferentiated  
C12_39_m3_3 133 1.48 0.17 0.820 0.017 0.25 Undifferentiated  
C12_39_m3_4 133 7.35 2.11 0.701 0.041 0.19 Undifferentiated  
C12_33_m4_1 133 1.54 0.19 0.819 0.017 0.22 Undifferentiated  
C12_33_m4_2 133 3.93 0.16 0.781 0.017 0.56 Undifferentiated  
C12_33_m4_3 133 1.19 0.05 0.821 0.017 0.41 Undifferentiated  
C12_33_m4_4 133 2.78 0.11 0.798 0.016 0.60 Undifferentiated  
C12_33_m4_5 133 2.22 0.42 0.806 0.020 0.10 Undifferentiated  
C12_33_m4_6 133 1.65 0.12 0.808 0.018 0.29 Undifferentiated  
C12_33_m4_7 133 2.83 0.46 0.797 0.016 0.12 Undifferentiated  
C12_36_m5_1 133 1.49 0.19 0.823 0.019 0.23 Undifferentiated  
C12_36_m5_2 133 2.36 0.27 0.809 0.018 0.60 Undifferentiated  
C12_36_m5_3 133 2.62 0.15 0.793 0.017 0.28 Undifferentiated  
C12_25_m6_1 133 3.26 0.42 0.804 0.018 0.34 Undifferentiated  
C12_25_m6_2 133 4.46 0.27 0.775 0.017 0.49 Undifferentiated  
C12_25_m6_3 133 3.42 0.22 0.791 0.017 0.44 Undifferentiated  
C12_25_m6_4 133 5.35 0.69 0.762 0.019 0.57 Undifferentiated  
C12_25_m6_5 133 6.06 0.64 0.748 0.021 0.38 Undifferentiated  
C12_25_m6_6 133 7.58 0.65 0.717 0.017 0.35 Undifferentiated  
C34_12_m1_1 486 0.17 0.09 0.835 0.018 0.31 Undifferentiated  
C34_12_m1_2 486 0.12 0.03 0.840 0.018 0.60 Undifferentiated  
C34_12_m2_4 486 0.09 0.02 0.839 0.017 0.43 Undifferentiated  
C34_12_m2_5 486 0.08 0.01 0.840 0.017 0.61 Undifferentiated  
C34_12_m2_6 486 0.14 0.06 0.845 0.017 0.17 Undifferentiated  
C34_12_m2_7 486 0.03 0.02 0.842 0.018 0.61 Undifferentiated  
C34_12_m2_8 486 0.23 0.04 0.836 0.017 0.39 Undifferentiated  
C34_12_m2_9 486 0.16 0.03 0.837 0.017 0.52 Undifferentiated  
C34_12_m2_10 486 0.18 0.03 0.839 0.017 0.36 Undifferentiated  
C34_12_m2_11 486 0.33 0.11 0.838 0.019 0.64 Undifferentiated  
C34_12_m3_1 486 3.16 0.64 0.787 0.021 0.44 Undifferentiated  
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C34_12_m3_2 486 0.24 0.04 0.833 0.018 0.50 Undifferentiated  
C34_37_m5_1 486 0.07 0.02 0.842 0.017 0.29 Undifferentiated  
C34_37_m5_2 486 0.01 0.00 0.843 0.017 0.19 Undifferentiated  
C34_37_m5_3 486 0.08 0.02 0.842 0.017 0.70 Undifferentiated  
C34_37_m5_5 486 3.05 0.61 0.808 0.019 0.50 Undifferentiated  
C34_37_m5_6 486 0.59 0.24 0.833 0.019 0.18 Undifferentiated  
C34_37_m5_7 486 0.07 0.04 0.841 0.018 0.30 Undifferentiated  
C34_36_m6_1 486 0.67 0.24 0.823 0.019 0.67 Undifferentiated  
C34_36_m6_2 486 0.15 0.04 0.843 0.017 0.42 Undifferentiated  
C34_36_m6_3 486 0.40 0.05 0.836 0.017 0.66 Undifferentiated  
C34_36_m6_4 486 1.05 0.09 0.834 0.017 0.64 Undifferentiated  
C34_36_m6_5 486 0.34 0.06 0.838 0.017 0.39 Undifferentiated  
C34_32_m7_1 486 0.27 0.05 0.840 0.018 0.36 Undifferentiated  
C34_32_m7_2 486 0.49 0.08 0.841 0.018 0.20 Undifferentiated  
C34_32_m7_4 486 0.35 0.12 0.833 0.018 0.46 Undifferentiated  
C34_32_m7_5 486 0.24 0.14 0.842 0.018 0.31 Undifferentiated  
C34_32_m7_6 486 0.30 0.10 0.837 0.017 0.54 Undifferentiated  
C34_35_m8_1 486 0.10 0.03 0.839 0.018 0.36 Undifferentiated  
C34_35_m8_2 486 1.11 0.28 0.830 0.021 0.37 Undifferentiated  
C34_35_m8_3 486 0.05 0.01 0.842 0.017 0.40 Undifferentiated  
C43_01_m1_1 618 4.44 1.21 0.775 0.045 0.13 Undifferentiated  
C43_01_m1_2 618 3.27 0.82 0.781 0.027 0.44 Undifferentiated  
C43_01_m2_1 618 3.28 0.45 0.815 0.026 0.14 Undifferentiated  
C43_01_m2_2 618 0.91 0.83 0.817 0.047 0.16 Undifferentiated  
C43_01_m2_3 618 3.52 1.03 0.820 0.027 0.23 Undifferentiated  
C43_01_m2_4 618 5.15 0.36 0.759 0.019 0.46 Undifferentiated  
C52_17_m05 731 6.17 0.44 0.731 0.024 0.56 Mag Vein  
C52_24_m11 731 1.32 0.54 0.812 0.026 0.48 Mag Vein  
C52_24_m15 731 8.70 1.75 0.676 0.026 0.41 Mag Vein  
C52_17_m08 731 4.31 0.79 0.774 0.026 0.53 Mag Vein  
C52_24_m18 731 20.41 3.07 0.511 0.027 0.27 Mag Vein  
C52_24_m17 731 14.71 2.61 0.655 0.027 0.48 Mag Vein  
C52_24_m20 731 12.99 2.38 0.598 0.028 0.49 Mag Vein  
C52_17_m09 731 8.62 2.16 0.683 0.032 0.34 Mag Vein  
C52_17_m07 731 6.90 1.15 0.743 0.034 0.33 Mag Vein  
C52_24_m12 731 12.17 1.17 0.652 0.035 0.52 Mag Vein  
C52_24_m16 731 24.57 2.52 0.462 0.036 0.16 Mag Vein  
C52_17_m01 731 19.57 3.74 0.563 0.037 0.30 Mag Vein  
C52_24_m14 731 9.09 3.97 0.679 0.053 0.35 Mag Vein  
C52_24_m13 731 12.50 2.82 0.626 0.054 0.24 Mag Vein  
C52_24_m19 731 20.83 4.79 0.574 0.055 0.18 Mag Vein  
C52_17_06 731 8.93 4.71 0.760 0.111 0.15 Mag Vein  
C58_10_m11 817 4.24 0.67 0.763 0.021 0.17 Undifferentiated  
C58_03_m03 817 34.01 1.76 0.308 0.023 0.52 Undifferentiated  
C58_31_m17 817 35.34 4.18 0.243 0.027 0.54 Undifferentiated  
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C58_31_m20 817 0.81 0.61 0.820 0.028 0.11 Undifferentiated  
C58_03_m04 817 2.94 0.55 0.756 0.034 0.03 Undifferentiated  
C58_31_m18 817 8.47 2.09 0.713 0.040 0.29 Undifferentiated  
C58_26_m14 817 7.69 0.84 0.722 0.041 0.33 Undifferentiated  
C58_26_m15 817 3.70 2.47 0.825 0.045 0.11 Undifferentiated  
C58_31_m16 817 24.51 4.11 0.426 0.068 0.52 Undifferentiated  
C61_17_m06 840 0.29 0.13 0.830 0.018 0.15 Vein 1  
C61_17_m07 840 0.82 0.35 0.823 0.019 0.45 Vein 1  
C61_05_m03 840 2.47 0.20 0.790 0.020 0.41 Vein 3  
C61_18_m20 840 2.28 0.26 0.801 0.020 0.58 Vein 1  
C61_17_m11 840 0.38 0.30 0.831 0.021 0.35 Vein 1  
C61_17_m08 840 6.71 0.40 0.734 0.022 0.35 Vein 1  
C61_18_m16 840 5.88 0.63 0.736 0.022 0.64 Vein 1  
C61_17_m13 840 2.47 0.36 0.792 0.023 0.35 Vein 1  
C61_18_m19 840 2.70 0.54 0.799 0.023 0.58 Vein 1  
C61_17_m10 840 0.16 0.26 0.819 0.024 0.34 Vein 1  
C61_05_m02 840 12.33 1.35 0.637 0.025 0.50 Vein 3  
C61_18_m15 840 6.25 0.64 0.743 0.026 0.27 Vein 1  
C61_18_m18 840 12.35 1.85 0.638 0.026 0.40 Vein 1  
C61_17_m09 840 3.34 0.76 0.775 0.029 0.64 Vein 1  
C61_14_m04 840 9.71 1.71 0.686 0.030 0.28 Vein 3  
C61_17_m12 840 1.19 0.65 0.798 0.036 0.20 Vein 1  
C61_14_m05 840 6.37 1.43 0.715 0.039 0.29 Vein 3  
C61_18_m14 840 0.82 0.65 0.809 0.046 0.32 Vein 1  
C61_18_m17 840 6.54 0.70 0.770 0.076 0.31 Vein 1  
C61_01_m01 840 0.26 0.26 0.820 0.820 0.25 Vein 3  

C62_01_m1_1 871 11.63 5.95 0.690 0.101 0.09 Magnetite 
Breccia  

C62_01_m1_2 871 3.23 1.25 0.807 0.042 0.42 Magnetite 
Breccia  

C62_01_m1_3 871 0.70 0.26 0.834 0.018 0.42 Magnetite 
Breccia  

C62_01_m1_4 871 1.22 0.58 0.820 0.027 0.47 Magnetite 
Breccia  

C62_03_m2_1 871 2.08 0.65 0.797 0.026 0.52 Magnetite 
Breccia  

C62_03_m2_2 871 1.82 0.40 0.788 0.031 0.36 Magnetite 
Breccia  

C62_03_m2_3 871 4.02 0.78 0.771 0.027 0.28 Magnetite 
Breccia  

C62_03_m2_5 871 0.71 0.71 0.814 0.030 0.22 Magnetite 
Breccia  

C62_03_m2_6 871 2.04 1.29 0.840 0.067 0.45 Magnetite 
Breccia  

C62_03_m2_11 871 5.05 0.77 0.766 0.018 0.39 Magnetite  
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Breccia 

C62_03_m2_12 871 4.39 0.95 0.783 0.031 0.21 Magnetite 
Breccia  

C62_03_m2_13 871 0.30 0.23 0.832 0.022 0.14 Magnetite 
Breccia  

C62_03_m2_14 871 1.47 1.21 0.755 0.035 0.57 Magnetite 
Breccia x 

C62_03_m2_15 871 0.22 0.13 0.798 0.020 0.13 Magnetite 
Breccia  

C62_03_m2_16 871 1.75 0.59 0.808 0.023 0.50 Magnetite 
Breccia  
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Figure A-14: Magnetite C12 Tera-Wasserburg Diagram (UCSB)
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Figure A-15: Magnetite C34 (Low U) Tera-Wasserburg Diagram (UCSB)
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Figure A-16: Magnetite C43 Tera-Wasserburg Diagram (UCSB)
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Figure A-17: Magnetite C52 Tera-Wasserburg Diagram (UCSB)
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Figure A-18: Magnetite C58 Groundmass Tera-Wasserburg Diagram (UCSB)
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Figure A-19: Magnetite C61 Tera-Wasserburg Diagram (UCSB)
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Figure A-20:  Magnetite C62 Tera-Wasserburg Diagram (UCSB)
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Table A-8: Magnetite sample ID information and associated depth at which the magnetite 
originated, 238U/206Pb ratios and error, 207Pb/206Pb ratios and error, rho, the textural relationship 
of the magnetite within the overall sample and whether samples fell off the discordia line and 
therefore omitted from further calculation, data taken at UCSB. 
 

Sample 
Label 

Depth 
(m) 

238U 
/206Pb 2se 

207Pb 
/206Pb 2se rho Textural 

Relationship 
Omitted 

point? (x) 
C34_Mag_
Rim-1 486 1.5826 0.3823 0.7916 0.0273 0.4503 Magnetite 

Breccia  

C34_Mag_
Core-2 486 0.0986 0.0493 0.8474 0.0172 0.4876 Magnetite 

Breccia  

C34_Mag_
Rim-3 486 1.9133 0.4727 0.8139 0.0311 0.4251 Magnetite 

Breccia  

C34_Mag_
Core-3 486 0.5962 0.1668 0.8290 0.0174 0.3083 Magnetite 

Breccia  

C34_Mag_
Rim-4 486 0.7699 0.1143 0.8406 0.0177 0.6159 Magnetite 

Breccia  

C34_Mag_
Rim-5 486 14.650

6 2.9447 0.5595 0.0377 0.1722 Magnetite 
Breccia  

C34_Mag_
Core-4 486 0.0610 0.0175 0.8445 0.0172 0.1434 Magnetite 

Breccia  

C34_Mag_
Core-5 486 0.0817 0.0248 0.8411 0.0170 0.5467 Magnetite 

Breccia  

C34_Mag_
Rim-6 486 0.4578 0.0985 0.8372 0.0198 0.3828 Magnetite 

Breccia  

C34_Mag_
Rim-7 486 0.2817 0.0499 0.8271 0.0179 0.4435 Magnetite 

Breccia  

C34_Mag_
Core-6 486 0.0625 0.0168 0.8423 0.0171 0.3676 Magnetite 

Breccia  

C34_Mag_
Core-7 486 0.1654 0.0609 0.8382 0.0187 0.1587 Magnetite 

Breccia  

C34_Mag_
Rim-9 486 1.1981 0.1807 0.8244 0.0187 0.6431 Magnetite 

Breccia  

C34_Mag_
Rim-11 486 2.0844 1.0515 0.7503 0.0390 0.2580 Magnetite 

Breccia  

C34_Mag_
Core-11 486 0.0541 0.0081 0.8609 0.0177 0.5332 Magnetite 

Breccia  

C34_Mag_
Core-12 486 0.1349 0.0853 0.8495 0.0176 0.6186 Magnetite 

Breccia  

C34_Mag_
Core-14 486 0.0466 0.0153 0.8461 0.0171 0.6225 Magnetite 

Breccia  

C34_Mag_
Rim-16 486 0.4662 0.4578 0.8086 0.0258 0.1147 Magnetite 

Breccia  

C34_Mag_
Core-15 486 0.0722 0.0091 0.8496 0.0171 0.4542 Magnetite 

Breccia  

C34_Mag_ 486 0.8379 0.1842 0.8087 0.0186 0.5153 Magnetite  
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Rim-17 Breccia 
C34_Mag_
Core-16 486 0.9461 0.1825 0.8271 0.0170 0.2289 Magnetite 

Breccia  

C34_Mag_
Rim-18 486 4.0696 0.6511 0.7669 0.0180 0.5914 Magnetite 

Breccia  

C34_Mag_
Core-17 486 0.1592 0.0466 0.8431 0.0177 0.1622 Magnetite 

Breccia  

C34_Mag_
Rim-19 486 0.1942 0.0239 0.8409 0.0174 0.6472 Magnetite 

Breccia  

C34_Mag_
Core-18 486 0.0741 0.0053 0.8570 0.0176 0.6046 Magnetite 

Breccia  

C34_Mag_
Rim-20 486 0.8841 0.1716 0.8282 0.0182 0.6679 Magnetite 

Breccia  

C34_Mag_
Core-19 486 0.0759 0.0056 0.8594 0.0173 0.6052 Magnetite 

Breccia  

C34_Mag_
Core-20 486 0.0200 0.0049 0.8767 0.0182 0.5493 Magnetite 

Breccia  

C34_Mag_
Core-21 486 0.0099 0.0038 0.8459 0.0179 0.4317 Magnetite 

Breccia  

C34_Mag_
Rim-22 486 0.4273 0.0717 0.8196 0.0181 0.4861 Magnetite 

Breccia  

C34_Mag_
Core-22 486 0.3016 0.0818 0.8300 0.0170 0.2961 Magnetite 

Breccia  

C34_Mag_
Rim-23 486 0.5232 0.1179 0.8297 0.0209 0.4183 Magnetite 

Breccia  

C34_Mag_
Core-23 486 0.0583 0.0173 0.8428 0.0171 0.4315 Magnetite 

Breccia  

C34_Mag_
Rim-24 486 1.3494 0.7817 0.7948 0.0655 0.0596 Magnetite 

Breccia  

C34_Mag_
Rim-25 486 1.6435 0.4332 0.8011 0.0233 0.3354 Magnetite 

Breccia  

C34_Mag_
Core-24 486 0.2084 0.0764 0.8676 0.0196 0.3626 Magnetite 

Breccia  

C34_Mag_
Core-25 486 0.0122 0.0033 0.8673 0.0176 0.1763 Magnetite 

Breccia  

C34_Mag_
Rim-27 486 0.6855 0.1017 0.8287 0.0203 0.3432 Magnetite 

Breccia  

C34_Mag_
Core-26 486 0.0325 0.0042 0.8512 0.0171 0.4960 Magnetite 

Breccia  

C34_Mag_
Core-27 486 0.1831 0.1439 0.8611 0.0174 0.5056 Magnetite 

Breccia  

C34_Mag_
Core-28 486 0.0777 0.0330 0.8619 0.0180 0.4807 Magnetite 

Breccia  

C34_Mag_
Core-29 486 0.3827 0.1202 0.8428 0.0182 0.2255 Magnetite 

Breccia  

C34_Mag_ 486 14.087 4.8072 0.6581 0.0847 0.4140 Magnetite  
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Rim-30 1 Breccia 
C43_Mag-
1 618 1.1761 0.2439 0.8117 0.0194 0.4113 Undifferentia

ted  

C43_Mag-
2 618 0.6410 0.1927 0.8160 0.0201 0.6666 Undifferentia

ted  

C43_Mag-
3 618 1.2209 0.6981 0.8117 0.0250 0.6598 Undifferentia

ted  

C43_Mag-
4 618 3.8266 0.7464 0.7640 0.0270 0.4993 Undifferentia

ted  

C43_Mag-
5 618 0.4662 0.2206 0.8255 0.0208 0.6615 Undifferentia

ted  

C43_Mag-
6 618 3.0522 0.4043 0.8086 0.0258 0.4858 Undifferentia

ted  

C43_Mag-
7 618 5.9486 0.7820 0.7280 0.0208 0.3938 Undifferentia

ted  

C43_Mag-
8 618 10.772

5 1.8682 0.6655 0.0444 0.4786 Undifferentia
ted  

C43_Mag-
9 618 6.5740 1.6908 0.7492 0.0314 0.5627 Undifferentia

ted  

C43_Mag-
10 618 6.3777 0.8348 0.7810 0.0326 0.4466 Undifferentia

ted  

C43_Mag-
11 618 4.8374 1.2815 0.7429 0.0520 0.2068 Undifferentia

ted  

C43_Mag-
12 618 1.4906 0.1844 0.8241 0.0181 0.5889 Undifferentia

ted  

C43_Mag-
13 618 5.3976 0.6454 0.7397 0.0233 0.5429 Undifferentia

ted  

C43_Mag-
14 618 15.352

4 1.1451 0.5680 0.0231 0.4444 Undifferentia
ted  

C43_Mag-
15 618 0.1756 0.1167 0.8357 0.0196 0.4285 Undifferentia

ted  

C43_Mag-
16 618 2.1545 1.1957 0.6888 0.0476 0.1519 Undifferentia

ted  

C43_Mag-
17 618 5.9624 1.5299 0.7376 0.0419 0.2309 Undifferentia

ted  

C43_Mag-
18 618 29.134

6 4.0154 0.3274 0.0492 0.3884 Undifferentia
ted  

C43_Mag-
19 618 1.2692 0.3027 0.8315 0.0194 0.3379 Undifferentia

ted  

C43_Mag-
20 618 4.4128 0.6441 0.7715 0.0271 0.3678 Undifferentia

ted  

C43_Mag-
21 618 0.6442 0.1608 0.8353 0.0181 0.6530 Undifferentia

ted  

C43_Mag-
23 618 12.629

8 1.0874 0.6316 0.0172 0.6290 Undifferentia
ted  

C43_Mag- 618 4.8835 0.7505 0.7609 0.0236 0.5590 Undifferentia  
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24 ted 
C43_Mag-
25 618 11.497

1 1.2079 0.6305 0.0265 0.5063 Undifferentia
ted  

C43_Mag-
26 618 11.601

1 1.2810 0.6379 0.0247 0.5864 Undifferentia
ted  

C43_Mag-
27 618 2.9812 0.3860 0.7831 0.0195 0.6265 Undifferentia

ted  

C43_Mag-
28 618 10.296

6 1.5028 0.6475 0.0276 0.6259 Undifferentia
ted  

C43_Mag-
29 618 0.7987 0.1923 0.8361 0.0224 0.3953 Undifferentia

ted  

C43_Mag-
30 618 6.5238 0.6442 0.7354 0.0209 0.5992 Undifferentia

ted  

C43_Mag-
31 618 2.6431 0.4392 0.8096 0.0227 0.5276 Undifferentia

ted  

C43_Mag-
32 618 2.8487 0.7618 0.7874 0.0364 0.4829 Undifferentia

ted  

C61_Mag-
1 840 4.9210 0.6685 0.7407 0.0189 0.4761 Matrix zone 

1  

C61_Mag-
2 840 7.0825 1.3379 0.7153 0.0349 0.3307 Matrix zone 

1  

C61_Mag-
3 840 2.3739 0.2249 0.8096 0.0227 0.4154 Matrix zone 

1  

C61_Mag-
4 840 9.6749 2.1263 0.6379 0.0494 0.1203 Matrix zone 

1  

C61_Mag-
5 840 10.507

6 2.3349 0.5934 0.0349 0.3958 Matrix zone 
1  

C61_Mag-
6 840 16.330

2 1.7982 0.5765 0.0318 0.4544 Matrix zone 
1  

C61_Mag-
7 840 3.8096 0.4369 0.7609 0.0185 0.3841 Matrix zone 

1  

C61_Mag-
8 840 4.6615 0.8527 0.7397 0.0233 0.5737 Matrix -

dissemenated  

C61_Mag-
9 840 21.838

6 1.1640 0.5034 0.0254 0.4378 Matrix -
dissemenated  

C61_Mag-
10 840 12.692

3 1.1591 0.6083 0.0263 0.4890 Matrix -
dissemenated  

C61_Mag-
11 840 2.2891 0.6353 0.7874 0.0308 0.3849 Matrix -

dissemenated  

C61_Mag-
12 840 4.2030 1.5870 0.7206 0.0339 0.1448 Vein 3  

C61_Mag-
13 840 3.1652 1.1740 0.7630 0.0334 0.1349 Vein 3  

C61_Mag-
14 840 1.4404 0.4137 0.7982 0.0180 0.1779 Vein 3  

C61_Mag- 840 4.6279 0.8073 0.7545 0.0243 0.1799 Matrix -  
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15 dissemenated 
C61_Mag-
16 840 7.4530 0.8580 0.6909 0.0262 0.5819 Vein 2  

C61_Mag-
17 840 7.8405 0.7597 0.6952 0.0196 0.6333 Vein 2  

C61_Mag-
18 840 12.150

9 0.7871 0.6379 0.0204 0.5144 Matrix -
dissemenated  

C61_Mag-
19 840 9.7115 0.9399 0.6454 0.0257 0.6182 Matrix -

dissemenated  

C61_Mag-
20 840 2.7045 0.1822 0.6485 0.0164 0.5189 Matrix -

dissemenated x 

C61_Mag-
21 840 6.8552 0.4433 0.7139 0.0177 0.4563 Matrix -

dissemenated  

C61_Mag-
22 840 1.3784 0.3420 0.7969 0.0225 0.5969 Vein 2  

C61_Mag-
23 840 5.1900 0.3519 0.7515 0.0174 0.4729 Vein 2  

C61_Mag-
24 840 11.815

0 0.6438 0.6252 0.0178 0.6126 Vein 2  

C61_Mag-
25 840 14.125

9 0.5931 0.5807 0.0206 0.5288 Vein 2  

C61_Mag-
26 840 5.0272 1.5803 0.7015 0.0387 0.2629 Vein 3  

C61_Mag-
27 840 2.3098 0.6052 0.7989 0.0189 0.5416 Vein 3  

C61_Mag-
28 840 4.9305 1.5203 0.7227 0.0378 0.5904 Matrix zone 

1  

C61_Mag-
29 840 10.863

8 1.5345 0.6464 0.0295 0.5762 Matrix zone 
1  

C61_Mag-
30 840 9.3914 1.1507 0.6613 0.0250 0.5826 Matrix zone 

1  

C61_Mag-
31 840 6.2839 0.7347 0.7280 0.0266 0.5649 Matrix zone 

1  

C61_Mag_
V-32 840 1.5538 0.2281 0.8027 0.0176 0.4397 Vein 1  

C61_Mag_
V-33 840 7.8646 1.5760 0.6983 0.0328 0.2863 Vein 1  

C61_Mag_
V-34 840 12.326

2 3.6233 0.5818 0.0553 0.2705 Vein 1  

C61_Mag_
V-35 840 1.8714 0.9706 0.7757 0.0354 0.5772 Vein 1  

C61_Mag_
V-36 840 19.571

4 2.5698 0.4779 0.0435 0.2969 Vein 1  

C61_Mag_
V-37 840 1.3148 0.3852 0.8255 0.0252 0.1788 Vein 1  

C61_Mag_ 840 5.6225 0.3748 0.7422 0.0164 0.6326 Vein 1  
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V-38 
C61_Mag_
V-39 840 2.5385 0.5302 0.8022 0.0257 0.4753 Vein 1  

C61_Mag_
V-40 840 8.3786 0.7047 0.7111 0.0213 0.4647 Vein 1  

C61_Mag_
V-41 840 9.2558 0.4416 0.6814 0.0201 0.5323 Vein 1  

C61_Mag_
V-42 840 6.4581 1.0007 0.7460 0.0313 0.4850 Vein 1  

C62_Mag_
Vein-3 871 4.4204 1.5268 0.7524 0.0420 0.3058 Undifferentia

ted  

C62_Mag_
Vein-4 871 1.1497 0.2024 0.8064 0.0250 0.3730 Undifferentia

ted  

C62_Mag_
Vein-5 871 4.2030 1.9999 0.6846 0.0376 0.3398 Undifferentia

ted  

C62_Mag_
Vein-6 871 2.6162 0.8559 0.7831 0.0264 0.5245 Undifferentia

ted  

C62_Mag_
Vein-7 871 0.7063 0.1118 0.8262 0.0182 0.5782 Undifferentia

ted  

C62_Mag_
Vein-8 871 7.3253 2.7248 0.7323 0.0479 0.6087 Undifferentia

ted  

C62_Mag_
Vein-9 871 11.195

8 1.4354 0.5998 0.0262 0.1974 Undifferentia
ted  

C62_Mag_
Vein-10 871 7.9376 1.8010 0.7227 0.0378 0.2065 Undifferentia

ted  

C62_Mag_
Vein-11 871 6.1631 1.0002 0.7312 0.0350 0.4281 Undifferentia

ted  

C62_Mag_
Vein-12 871 6.8369 0.8317 0.7259 0.0248 0.5526 Undifferentia

ted  

C62_Mag_
Vein-13 871 20.676

2 4.8532 0.5299 0.1593 0.1379 Undifferentia
ted  

C62_Mag_
Vein-14 871 11.294

5 0.6851 0.6528 0.0231 0.5521 Undifferentia
ted  

C62_Mag_
Vein-15 871 1.7092 0.6390 0.7948 0.0240 0.2664 Undifferentia

ted  

C62_Mag-
1 871 6.5404 1.6570 0.6655 0.0384 0.5326 Undifferentia

ted  

C62_Mag-
3 871 3.7704 1.7205 0.7513 0.0410 0.3711 Undifferentia

ted  

C62_Mag-
4 871 3.6626 0.7883 0.7725 0.0402 0.4963 Undifferentia

ted  

C62-mush-
1 871 14.650

6 0.8870 0.5892 0.0189 0.6237 Undifferentia
ted  

C62-mush-
2 871 4.5620 0.3923 0.7556 0.0197 0.5981 Undifferentia

ted  

C62-mush- 871 4.8928 0.5963 0.7545 0.0269 0.6382 Undifferentia  
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3 ted 
C62-mush-
4 871 11.601

1 0.8714 0.6697 0.0251 0.5083 Undifferentia
ted  

C62-mush-
5 871 5.9624 0.7445 0.7450 0.0196 0.6045 Undifferentia

ted  

C62-mush-
6 871 26.349

9 1.3776 0.4101 0.0257 0.4190 Undifferentia
ted  

C62-mush-
7 871 2.5897 0.6821 0.7958 0.0211 0.5514 Undifferentia

ted  

C62-mush-
8 871 4.2030 1.1056 0.7630 0.0244 0.5717 Undifferentia

ted  

C62_Mag-
5 871 7.3253 4.6068 0.6824 0.0723 0.0759 Undifferentia

ted  

C62_Mag-
6 871 5.0669 0.7975 0.7354 0.0249 0.6355 Undifferentia

ted  

C62_Mag-
7 871 7.7458 0.7876 0.6708 0.0251 0.4450 Undifferentia

ted  

C62_Mag-
8 871 3.5609 0.6960 0.7778 0.0208 0.6223 Undifferentia

ted  

C62_Mag-
9 871 41.756

5 4.2317 0.2077 0.0279 0.3751 Undifferentia
ted  
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Figure A-21: Magnetite C34 All Spots Tera-Wasserburg Diagram (UCSB) 
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Figure A-22: Magnetite C34 “Rims” Tera-Wasserburg Diagram (UCSB) 
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Figure A-23: Magnetite C34 “Cores” Tera-Wasserburg Diagram (UCSB) 
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Figure A-24: Magnetite C43 Tera-Wasserburg Diagram (UCSB) 
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Figure A-25: Magnetite C61 All Spots Tera-Wasserburg Diagram (UCSB) 
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Figure A-26: Magnetite C61 In Matrix Tera-Wasserburg Diagram (UCSB) 
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Figure A-27:  Magnetite C61 Vein 1 Tera-Wasserburg Diagram (UCSB) 
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Figure A-28: Magnetite C61  Vein 2 Tera-Wasserburg Diagram (UCSB) 
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Figure A-29: Magnetite C62 All Spots Tera-Wasserburg Diagram (UCSB) 
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Figure A-30: Magnetite C62 In Matrix Tera-Wasserburg Diagram (UCSB) 
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Figure A-31: Magnetite C62 Vein Tera-Wasserburg Diagram (UCSB) 
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Appendix B: Chapter 3 Supplemental  
 
 

Table B-1: Operating conditions for LA-ICP-MS analysis at the Gemological Institute of 
America  
 
Operation conditions for LA-ICP-MS analysis 
Material Emerald 
ICP-MS conditions   
Plasma power 1550 W 
Cool gas flow 14 L/min Argon 
Auxiliary gas flow 0.8 L/min Argon 
Nebulizer gas flow (argon gas) 1.01 L/min Argon 
Sampling depth 5 mm 
Extraction Lens 2 -172 V 
CCT Focus Lens 0.24 V 
Detector type Dual (analog and pulse counting) 
    
Laser parameters   
Wavelength 213 nm 
Fluence (energy density) 8-10 J/cm2 
Repetition rate 10 Hz 
Ablation style Single circular spot 
Ablation spot size 55 μm diameter 
Carrier gas flow (helium gas)  0.8 L/min Helium 
 
 
Note: Argon and helium gas flow rate, torch position, sampling depth and lens voltage were 
optimized to achieve maximum sensitivity (counts per concentration) and low oxide production 
rates (232Th16O/232Th < 1%).  
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55942.59 

3583.562 
3165 

321000 
21.075 

259 
197.5733 

9.56 
East : 90 percentile 

111 
56749.27 

4790 
4243 

326000 
48.38 

454.2 
335 

13.1 
East : 95 percentile 

127 
57043.98 

5732.5 
5162 

330000 
79.5 

727 
493.5 

18.61 
East : 99 percentile 

266.55 
60865 

8637 
6800.9 

336000 
163.56 

1891.2 
1004.15 

63.224 
W

est : C
ount N

um
eric 

1240 
1240 

1240 
959 

959 
1208 

931 
1236 

959 
W

est : M
inim

um
 

20.9 
40800 

546 
273 

294000 
1.220894 

92.9 
2.738814 

3.45 
W

est : M
axim

um
 

421 
67100 

41600 
10700 

342000 
270 

61800 
1480 

144 
W

est : M
ean 

46.84693 
52944.66 

3885.593 
3422.827 

318597.5 
22.63852 

369.7142 
102.374 

12.24342 
W

est : M
edian 

39.06416 
52800 

3710 
3150 

318000 
19.1 

184 
59.03575 

8.82 
W

est : R
ange 

400.1 
26300 

41054 
10427 

48000 
268.7791 

61707.1 
1477.261 

140.55 
W

est : Interquartile R
ange 

24.175 
6300 

2487.5 
2580 

9000 
23.98514 

46 
79.83696 

3.16 
W

est : Standard D
eviation 

25.14421 
4144.177 

2024.451 
1776.212 

7052.194 
21.43585 

2466.719 
145.1851 

12.03458 
W

est : 1 percentile 
23.8 

44141 
883.9632 

646.8 
304000 

1.69175 
117.32 

4.659106 
5.074 

W
est : 5 percentile 

27.4 
45800 

1370 
1100 

308000 
2.8845 

135.6 
10.385 

6.1 
W

est : 10 percentile 
29.6 

47700 
1760 

1420 
310000 

4.145478 
146.2 

14.27 
6.71 
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 W
est : 25 percentile 

32.9 
50000 

2472.5 
1970 

314000 
7.78958 

162 
30 

7.54 
W

est : 75 percentile 
57.075 

56300 
4960 

4550 
323000 

31.77472 
208 

109.837 
10.7 

W
est : 90 percentile 

68.99 
57538.59 

6164 
5920 

328000 
44.60343 

268 
219 

18.9 
W

est : 95 percentile 
82.76364 

59197.89 
6929.5 

6780 
332000 

51.2 
413.2 

364.6 
36 

W
est : 99 percentile 

134.59 
62636 

8685.9 
8556 

338000 
90.356 

1707.2 
772.26 

74.18 
  

47Ti 
51V

 
52C

r 
53C

r 
55M

n 
57Fe 

69G
a 

71G
a 

85R
b 

133C
s 

East : C
ount N

um
eric 

1042 
1044 

798 
1044 

731 
1044 

1044 
1044 

1042 
1044 

East : M
inim

um
 

0.070583 
37.5 

16.2 
15.4 

0.032124 
44.8 

2.81 
2.79 

0.13 
2.66 

East : M
axim

um
 

166 
5040 

8480 
9080 

638 
7500 

47.9 
49.1 

12.7 
41.6 

East : M
ean 

4.971517 
1120.442 

2215.25 
2309.857 

4.681771 
455.8384 

18.726 
19.16175 

1.332818 
12.97815 

East : M
edian 

3.075 
982.966 

1795 
1926.604 

0.67 
377 

18.56366 
19 

1.23 
11.6 

East : R
ange 

165.9294 
5002.5 

8463.8 
9064.6 

637.9679 
7455.2 

45.09 
46.31 

12.57 
38.94 

East : Interquartile R
ange 

1.9725 
687.9291 

2276 
2247.5 

3.495841 
327.7999 

6.8 
6.809903 

0.887238 
8.43 

East : Standard D
eviation 

11.44851 
777.3125 

1587.387 
1636.706 

25.90265 
385.8585 

6.032815 
6.197062 

0.907663 
6.48966 

East : 1 percentile 
0.168605 

120.35 
32.991 

34.045 
0.036443 

95.17007 
8.181642 

8.246513 
0.184792 

3.951332 
East : 5 percentile 

0.351141 
271.676 

290.55 
310.25 

0.053576 
134.8817 

9.62302 
9.690351 

0.31 
5.286627 

East : 10 percentile 
0.524864 

361.3128 
484.9 

551.6482 
0.065711 

162 
10.59943 

10.7 
0.401323 

6.05 
East : 25 percentile 

2.2075 
642.9973 

986.5 
1052.5 

0.194159 
242.2001 

15.1 
15.6 

0.795262 
7.97 

East : 75 percentile 
4.18 

1330.926 
3262.5 

3300 
3.69 

570 
21.9 

22.4099 
1.6825 

16.4 
East : 90 percentile 

7.101 
2029.7 

4211 
4449.141 

10.68 
774.7637 

26.16312 
26.8 

2.17 
21 

East : 95 percentile 
13.38 

2240 
4881 

5207.5 
16.2 

1050 
29.6 

30.6 
2.69 

25.775 
East : 99 percentile 

58.727 
4432 

7305.4 
7678.5 

36.224 
1772.18 

36.04 
36.775 

4.3821 
33.91 

W
est : C

ount N
um

eric 
1238 

1240 
959 

1240 
895 

1240 
1240 

1240 
1239 

1240 
W

est : M
inim

um
 

0.273505 
91.56541 

56.4 
45.96175 

0.046514 
53.7 

4.533194 
4.519671 

0.051 
0.4 

W
est : M

axim
um

 
227 

11300 
6150 

6780 
217 

2680 
91.7 

61.57172 
11.5 

32.5 
W

est : M
ean 

7.038639 
1691.715 

1192.056 
1163.639 

1.850976 
420.2553 

23.60317 
24.06822 

2.223855 
9.33832 

W
est : M

edian 
3.58 

1240 
808 

786.4167 
0.42 

364.5953 
21.9 

22.2 
2.02 

9.087381 
W

est : R
ange 

226.7265 
11208.43 

6093.6 
6734.038 

216.9535 
2626.3 

87.16681 
57.05205 

11.449 
32.1 

W
est : Interquartile R

ange 
3.085 

1694.87 
1265 

1183 
0.498185 

274.7896 
19.075 

19.4 
2.34 

5.266329 
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 W
est : Standard D

eviation 
12.42979 

1585.245 
1164 

1179.441 
9.348681 

262.6584 
11.72244 

11.73145 
1.561621 

4.040221 
W

est : 1 percentile 
0.49845 

130 
74.4 

73.051 
0.071327 

102.41 
6.4305 

6.34 
0.17 

2.0664 
W

est : 5 percentile 
0.883581 

251.1614 
141 

128 
0.136663 

145.0238 
8.074984 

8.2515 
0.41 

3.7005 
W

est : 10 percentile 
1.398044 

331.2075 
166 

162 
0.2 

184.8635 
9.411 

9.787 
0.52 

4.384 
W

est : 25 percentile 
2.5175 

572.6301 
365 

367 
0.281815 

241.25 
13.725 

14 
0.88 

6.433671 
W

est : 75 percentile 
5.6025 

2267.5 
1630 

1550 
0.78 

516.0396 
32.8 

33.4 
3.22 

11.7 
W

est : 90 percentile 
14.52 

3570 
2830 

2854.054 
3.118 

692.8 
40.39 

41.09 
4.29 

14.4 
W

est : 95 percentile 
28.625 

4918 
3760 

3717.906 
5.588 

897.5354 
44.1 

44.995 
5.16 

16.495 
W

est : 99 percentile 
65.381 

7860 
5120 

5505.9 
32.736 

1390 
50.259 

50.913 
6.646 

20.69048 
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 Table B
-3: Table B

-3: Sum
m

ary Stats for m
ining district C

olom
bian em

erald geochem
istry 

  
7Li 

9B
e 

23N
a 

25M
g 

27A
l 

28Si 
39K

 
43C

a 
45Sc 

46Ti 
C

hivor D
istrict : C

ount N
um

eric 
484 

484 
484 

370 
484 

370 
454 

367 
484 

370 
C

hivor D
istrict : M

inim
um

 
24.778
34 

41200 
545 

358 
75800 

291000 
0.6404
23 

124 
8.4361
06 

5.08 

C
hivor D

istrict : M
axim

um
 

351 
58800 

21500 
9200 

111000 
341000 

1090 
4450 

624 
166 

C
hivor D

istrict : M
ean 

66.104
26 

52373.
54 

2611.3
88 

2099.2
76 

94614.
61 

316708
.1 

27.442
33 

332.17
44 

111.69
98 

10.055
86 

C
hivor D

istrict : M
edian 

62.05 
52800 

2422.2
65 

1945 
94300 

316000 
10.147
02 

217 
99.45 

7.92 

C
hivor D

istrict : R
ange 

326.22
17 

17600 
20955 

8842 
35200 

50000 
1089.3
6 

4326 
615.56
39 

160.92 

C
hivor D

istrict : Interquartile R
ange 

30.325 
6132.0
6 

1013.8
51 

825 
5200 

9000 
26.242
5 

140 
88.225 

2.13 

C
hivor D

istrict : Standard D
eviation 

34.000
89 

3579.3
23 

1471.2
04 

997.86
75 

5158.4
53 

7259.8
83 

60.651
92 

383.86
67 

79.699
26 

12.039
13 

C
hivor D

istrict : 1 percentile 
28.524
97 

43470 
729.13
31 

503.15 
81785 

297420 
1.0944
75 

133 
10.525 

5.3978 

C
hivor D

istrict : 5 percentile 
34.210
23 

46025 
998.71
4 

892.2 
84500 

306000 
2.205 

152.6 
15.425 

6.031 

C
hivor D

istrict : 10 percentile 
38.468
27 

47300 
1415 

1260 
87900 

308000 
3.0946
04 

167.8 
23.809
91 

6.36 

C
hivor D

istrict : 25 percentile 
46.55 

49700 
1996.1
49 

1625 
92500 

312000 
5.6575 

186 
58.525 

6.975 

C
hivor D

istrict : 75 percentile 
76.875 

55832.
06 

3010 
2450 

97700 
321000 

31.9 
326 

146.75 
9.105 

C
hivor D

istrict : 90 percentile 
88.3 

56611.
19 

3620 
2908 

101000 
326000 

71.7 
576.8 

202.5 
11.48 

C
hivor D

istrict : 95 percentile 
104 

56865.
02 

4145 
3273.5 

103000 
330000 

93.75 
849.2 

239.13
42 

15.735 

C
hivor D

istrict : 99 percentile 
270.9 

57515 
9706.5 

7770.7 
108000 

336580 
191.4 

2308.8 
432.06
1 

75.326 

C
oscuez D

istrict : C
ount N

um
eric 

255 
255 

255 
182 

255 
182 

253 
173 

254 
182 

C
oscuez D

istrict : M
inim

um
 

22.9 
45000 

833.84
664 

78400 
297000 

1.2208
105 

6.5592
5.48 
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66 
94 

37 
C

oscuez D
istrict : M

axim
um

 
180 

59900 
41600 

8980 
111000 

334000 
82.6 

8680 
1040 

61 
C

oscuez D
istrict : M

ean 
58.209
5 

53497.
96 

4229.3
37 

3899.4
18 

94983.
98 

316192
.3 

13.866
18 

243.20
81 

106.29
89 

11.130
38 

C
oscuez D

istrict : M
edian 

59.051
78 

53400 
3715.2
23 

3340 
94220.
1 

316000 
7.5910
52 

172 
62.9 

8.49 

C
oscuez D

istrict : R
ange 

157.1 
14900 

40766.
15 

8316 
32600 

37000 
81.379
11 

8575 
1033.4
41 

55.52 

C
oscuez D

istrict : Interquartile R
ange 

20.1 
5640.1
66 

2268.3
16 

2392.5 
6100 

7500 
17.877
35 

38 
88.021
35 

2.9 

C
oscuez D

istrict : Standard D
eviation 

24.194
39 

3074.3
14 

2829.0
19 

1536.5
22 

5364.1
97 

6024.9
34 

13.124
09 

662.59
43 

157.61
85 

8.8932
04 

C
oscuez D

istrict : 1 percentile 
23.268 

47112 
983.72
26 

1009.2
8 

81856 
300320 

2.0038
3 

109.44 
7.962 

5.7041 

C
oscuez D

istrict : 5 percentile 
28.1 

48300 
1624 

1990.5 
86520 

305000 
3.0578
77 

129.4 
10.644
94 

6.22 

C
oscuez D

istrict : 10 percentile 
31.135
26 

49500 
2345.8
11 

2400 
89260 

308300 
3.854 

140 
13.8 

6.656 

C
oscuez D

istrict : 25 percentile 
44.3 

50900 
2950 

2740 
91800 

312750 
5.0255
19 

154 
30 

7.425 

C
oscuez D

istrict : 75 percentile 
64.4 

56540.
17 

5218.3
16 

5132.5 
97900 

320250 
22.902
86 

192 
118.02
13 

10.325 

C
oscuez D

istrict : 90 percentile 
71.94 

57351.
37 

6374 
6197 

102000 
324000 

31.46 
206.6 

203 
15.4 

C
oscuez D

istrict : 95 percentile 
111.4 

57613.
54 

6946 
6758.5 

105000 
326000 

40.74 
293.2 

299.25 
30.55 

C
oscuez D

istrict : 99 percentile 
161 

58542.
79 

8624 
7735 

110440 
329850 

58.396 
3574 

965.55 
59.34 

G
achalá D

istrict : C
ount N

um
eric 

383 
383 

383 
251 

383 
251 

331 
249 

383 
251 

G
achalá D

istrict : M
inim

um
 

56.3 
44500 

802 
478 

77800 
294000 

0.8519
02 

110 
5.31 

3.16 

G
achalá D

istrict : M
axim

um
 

356 
64900 

9618.4
46 

6100 
109000 

338000 
214 

3090 
794.12
74 

116 

G
achalá D

istrict : M
ean 

94.175
56 

53745.
62 

3102.7
62 

2842.3
03 

94544.
37 

315784
.9 

11.286
55 

268.91
16 

139.10
09 

10.024
18 
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 G
achalá D

istrict : M
edian 

84.934
85 

53600 
2787.9
66 

2930 
94119.
87 

315000 
5.0141
49 

196 
119 

8.5 

G
achalá D

istrict : R
ange 

299.7 
20400 

8816.4
46 

5622 
31200 

44000 
213.14
81 

2980 
788.81
74 

112.84 

G
achalá D

istrict : Interquartile R
ange 

32.997
05 

5361.2
75 

1870 
2010 

3900 
9000 

6.9152
45 

64.5 
152.3 

2.56 

G
achalá D

istrict : Standard D
eviation 

36.579
85 

3364.4
81 

1397.6
88 

1241.5
6 

4723.2
37 

7687.4
92 

20.965
24 

312.34
89 

108.75
78 

7.7653
32 

G
achalá D

istrict : 1 percentile 
58.452 

45268 
854.59
4 

552.6 
79188 

298640 
0.9131
47 

115.5 
5.6888 

4.6408 

G
achalá D

istrict : 5 percentile 
64.753
95 

48420 
1038.8
76 

1096 
87800 

305000 
1.2535
89 

137 
9.85 

5.924 

G
achalá D

istrict : 10 percentile 
67.040
73 

49300 
1394.7
77 

1204 
89200 

307000 
1.9613
38 

149 
14.317
48 

6.564 

G
achalá D

istrict : 25 percentile 
72.002
95 

51200 
2130 

1750 
92200 

311000 
3.5847
55 

167 
58.7 

7.44 

G
achalá D

istrict : 75 percentile 
105 

56561.
28 

4000 
3760 

96100 
320000 

10.5 
231.5 

211 
10 

G
achalá D

istrict : 90 percentile 
124 

57043.
44 

5046 
4562 

102000 
327000 

25.7 
364 

278.47
55 

14.5 

G
achalá D

istrict : 95 percentile 
151 

57859.
09 

5634 
4874 

104000 
331000 

36.98 
715.5 

317.97
86 

19.3 

G
achalá D

istrict : 99 percentile 
310.16 

61780 
6816.4 

5739.2 
107160 

336480 
114.8 

2150 
465.02
62 

28.408 

M
aripí D

istrict : C
ount N

um
eric 

213 
213 

213 
213 

213 
213 

213 
207 

213 
213 

M
aripí D

istrict : M
inim

um
 

20.9 
43300 

1780 
1530 

78100 
303000 

4.3 
92.9 

11.4 
5.43 

M
aripí D

istrict : M
axim

um
 

69.4 
59100 

10100 
8920 

106000 
341000 

228 
1280 

957 
89.6 

M
aripí D

istrict : M
ean 

35.231
92 

52530.
99 

4813.8
97 

4428.5
45 

95184.
51 

318375
.6 

27.355
4 

194.95
6 

189.25
49 

10.974
13 

M
aripí D

istrict : M
edian 

33.3 
52600 

4500 
3940 

96000 
318000 

23.7 
185 

117 
8.12 

M
aripí D

istrict : R
ange 

48.5 
15800 

8320 
7390 

27900 
38000 

223.7 
1187.1 

945.6 
84.17 

M
aripí D

istrict : Interquartile R
ange 

8.55 
4100 

2385 
2550 

8350 
7000 

16.9 
42 

192.85 
2.595 

M
aripí D

istrict : Standard D
eviation 

8.4696
08 

3095.2
46 

1676.4
54 

1694.3
77 

5791.8
61 

5917.6
55 

19.981
62 

87.964
55 

175.16
99 

9.3138
63 
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 M
aripí D

istrict : 1 percentile 
23.3 

44298 
1887 

1621.2 
81442 

304280 
5.0046 

122.16 
11.912 

5.4928 
M

aripí D
istrict : 5 percentile 

25 
47070 

2284 
2051 

84470 
309000 

8.34 
134.4 

16.36 
5.837 

M
aripí D

istrict : 10 percentile 
26.48 

48400 
2898 

2574 
86640 

312000 
11.96 

147.8 
42.1 

6.388 
M

aripí D
istrict : 25 percentile 

29.9 
50600 

3585 
3230 

91150 
315000 

16.15 
165 

61.65 
7.2 

M
aripí D

istrict : 75 percentile 
38.45 

54700 
5970 

5780 
99500 

322000 
33.05 

207 
254.5 

9.795 
M

aripí D
istrict : 90 percentile 

44.56 
56400 

7130 
6732 

102000 
325000 

46.44 
235 

456.6 
22.12 

M
aripí D

istrict : 95 percentile 
55.59 

57400 
8161 

7597 
104000 

328300 
54.73 

261 
585.3 

29.62 
M

aripí D
istrict : 99 percentile 

62.572 
58758 

9601.6 
8875.8 

106000 
339720 

95.834 
465.76 

765.92 
48.17 

M
uzo D

istrict : C
ount N

um
eric 

424 
424 

424 
216 

424 
216 

418 
203 

421 
216 

M
uzo D

istrict : M
inim

um
 

21.9 
40800 

700.69
03 

975 
77800 

294000 
1.2817
32 

115 
2.7388
14 

3.9 

M
uzo D

istrict : M
axim

um
 

421 
67100 

10700 
10700 

118000 
342000 

270 
1680 

815.87
01 

111 

M
uzo D

istrict : M
ean 

42.976
83 

55054.
95 

3874.5
78 

3318.6
16 

95611.
56 

323745
.4 

27.908
9 

195.86
21 

81.978
14 

14.617
64 

M
uzo D

istrict : M
edian 

37.25 
56308.
14 

3827.7
23 

3060 
93748.
32 

325000 
25.949
64 

183 
51.866
4 

9.515 

M
uzo D

istrict : R
ange 

399.1 
26300 

9999.3
1 

9725 
40200 

48000 
268.71
83 

1565 
813.13
13 

107.1 

M
uzo D

istrict : Interquartile R
ange 

9.2834
74 

5963.0
3 

1946.0
53 

1977.5 
6092.9
61 

12750 
24.244
89 

40 
68 

4.635 

M
uzo D

istrict : Standard D
eviation 

29.460
87 

4563.3
69 

1516.3
65 

1601.7
64 

5699.2
16 

8053.5
98 

20.177
2 

112.05
81 

95.403
23 

15.260
94 

M
uzo D

istrict : 1 percentile 
25.228
97 

43375 
791.19
02 

980.08 
82825 

307170 
1.6841
52 

117.36 
3.7194
75 

4.0968 

M
uzo D

istrict : 5 percentile 
27.847
13 

46600 
1421.6
92 

1515.5 
88928.
29 

311000 
6.044 

137 
6.3202
33 

5.323 

M
uzo D

istrict : 10 percentile 
29.85 

48450 
1850 

1635 
90675.
99 

312700 
8.596 

148.4 
11.46 

6.295 

M
uzo D

istrict : 25 percentile 
32.616
53 

51425 
2842.5 

2150 
92182.
04 

317000 
13.944
47 

165 
25.15 

7.94 

M
uzo D

istrict : 75 percentile 
41.9 

57388.
03 

4788.5
53 

4127.5 
98275 

329750 
38.189
36 

205 
93.15 

12.575 

M
uzo D

istrict : 90 percentile 
58.181

60800 
5700 

5193 
105000 

333000 
46.801

227.6 
212.78

32.06 
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46 
85 

57 
M

uzo D
istrict : 95 percentile 

76.085
62 

61800 
6348.3
93 

6091.5 
107000 

337000 
51.225 

263.4 
281.35
18 

48.295 

M
uzo D

istrict : 99 percentile 
146.80
94 

64500 
7917.5 

9814.1 
112000 

341830 
94.955 

414.44 
470.63
4 

80.103 

Pauna D
istrict : C

ount N
um

eric 
208 

208 
208 

208 
208 

208 
190 

208 
208 

208 
Pauna D

istrict : M
inim

um
 

23.5 
43000 

546 
273 

73300 
304000 

1.37 
115 

7.66 
5.5 

Pauna D
istrict : M

axim
um

 
260 

57000 
9010 

8180 
111000 

339000 
263 

747 
329 

77.4 
Pauna D

istrict : M
ean 

51.243
75 

49511.
54 

2536.6
68 

2093.1
73 

92241.
83 

317620
.2 

16.777
74 

210.28
37 

51.953
17 

13.011
39 

Pauna D
istrict : M

edian 
41.75 

49750 
2140 

1670 
91500 

317000 
6.41 

190 
36.65 

9.145 
Pauna D

istrict : R
ange 

236.5 
14000 

8464 
7907 

37700 
35000 

261.63 
632 

321.34 
71.9 

Pauna D
istrict : Interquartile R

ange 
33.825 

5400 
865 

847.5 
8575 

8000 
14.975 

50.75 
33.975 

3.0975 
Pauna D

istrict : Standard D
eviation 

25.814
64 

3347.2
7 

1336.2
99 

1275.5
86 

6870.7
13 

6317.2
93 

29.984
54 

82.152
22 

38.907
75 

12.256
3 

Pauna D
istrict : 1 percentile 

24.6 
43163 

817.17 
603.62 

76200 
304090 

1.3791 
128 

10.563 
5.628 

Pauna D
istrict : 5 percentile 

28.545 
44200 

1379 
965.9 

81260 
308450 

1.9855 
146.9 

20.31 
6.7815 

Pauna D
istrict : 10 percentile 

30.29 
44890 

1559 
1160 

83860 
310000 

2.442 
151.9 

23.98 
7.253 

Pauna D
istrict : 25 percentile 

33.425 
46600 

1815 
1420 

87825 
313000 

3.075 
165 

29.025 
8.0775 

Pauna D
istrict : 75 percentile 

67.25 
52000 

2680 
2267.5 

96400 
321000 

18.05 
215.75 

63 
11.175 

Pauna D
istrict : 90 percentile 

79.27 
54000 

4132 
3308 

102000 
327000 

38.97 
282.6 

102.5 
24.42 

Pauna D
istrict : 95 percentile 

84.975 
54855 

5351 
4852.5 

106000 
330000 

53.04 
397.2 

132.95 
37.655 

Pauna D
istrict : 99 percentile 

180.26 
56900 

8217.4 
7345.5 

107000 
335820 

209.31 
645.32 

187.02 
76.474 

Peñas B
lancas D

istrict : C
ount N

um
eric 

140 
140 

140 
140 

140 
140 

134 
140 

140 
140 

Peñas B
lancas D

istrict : M
inim

um
 

29.2 
44700 

637 
324 

83600 
303000 

1.4 
102 

4.6 
3.45 

Peñas B
lancas D

istrict : M
axim

um
 

114 
59600 

7570 
7320 

110000 
330000 

114 
61800 

1480 
144 

Peñas B
lancas D

istrict : M
ean 

49.010
71 

51275.
71 

3884.6
14 

3409.4 
95663.
57 

315571
.4 

23.573
06 

1273.3
86 

99.314
57 

10.817
43 

Peñas B
lancas D

istrict : M
edian 

42.1 
51000 

4515 
4065 

95550 
316000 

20 
189.5 

65.25 
8.75 

Peñas B
lancas D

istrict : R
ange 

84.8 
14900 

6933 
6996 

26400 
27000 

112.6 
61698 

1475.4 
140.55 

Peñas B
lancas D

istrict : Interquartile 
R

ange 
16.25 

3750 
3577.5 

3265 
7725 

6000 
21.047
5 

161.25 
81.925 

2.3925 
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 Peñas B
lancas D

istrict : Standard 
D

eviation 
17.315
26 

2508.8
3 

1924.4
06 

1841.0
65 

5328.6
28 

4780.2
69 

18.272
38 

6257.5
95 

220.99
55 

12.774
01 

Peñas B
lancas D

istrict : 1 percentile 
29.692 

45438 
733.76 

385.91 
84379 

303410 
1.4105 

102.41 
4.8337 

4.2577 
Peñas B

lancas D
istrict : 5 percentile 

33.525 
47525 

1031 
658.7 

86930 
306000 

2.3825 
129.05 

7.7275 
6.4175 

Peñas B
lancas D

istrict : 10 percentile 
36.01 

48400 
1172 

747.8 
88800 

309100 
4.145 

140.1 
9.468 

6.865 
Peñas B

lancas D
istrict : 25 percentile 

38.1 
49225 

1755 
1462.5 

92000 
313000 

9.9275 
157 

16.6 
7.6075 

Peñas B
lancas D

istrict : 75 percentile 
54.35 

52975 
5332.5 

4727.5 
99725 

319000 
30.975 

318.25 
98.525 

10 
Peñas B

lancas D
istrict : 90 percentile 

75.57 
54780 

6075 
5438 

103000 
321000 

47.4 
949.7 

128.3 
12.38 

Peñas B
lancas D

istrict : 95 percentile 
93.715 

55395 
6648 

5977 
105000 

322950 
56.8 

1718 
172.8 

17.59 
Peñas B

lancas D
istrict : 99 percentile 

113.59 
58903 

7537.2 
7274.9 

109180 
329180 

103.36 
50812 

1447.2 
111.52
8 

Som
ondoco D

istrict : C
ount N

um
eric 

45 
45 

45 
45 

45 
45 

45 
45 

45 
45 

Som
ondoco D

istrict : M
inim

um
 

50.1 
40500 

862 
570 

86000 
303000 

1.56 
145 

8.65 
6.43 

Som
ondoco D

istrict : M
axim

um
 

123 
54300 

54400 
2340 

147000 
373000 

177 
530 

115 
48.3 

Som
ondoco D

istrict : M
ean 

64.702
22 

49448.
89 

3810.6
44 

1482.4
44 

100095
.6 

318511
.1 

16.098 
195.68
89 

53.010
89 

10.593
56 

Som
ondoco D

istrict : M
edian 

59.6 
49600 

1830 
1450 

101000 
316000 

5.03 
181 

56.6 
9 

Som
ondoco D

istrict : R
ange 

72.9 
13800 

53538 
1770 

61000 
70000 

175.44 
385 

106.35 
41.87 

Som
ondoco D

istrict : Interquartile R
ange 

9.3 
4950 

515 
425 

7000 
11000 

5.005 
31.5 

37.35 
2.675 

Som
ondoco D

istrict : Standard D
eviation 

17.501
25 

3079.2
28 

8942.1
84 

332.35
49 

8825.2
47 

11112.
28 

31.255
79 

62.070
28 

26.590
38 

7.1064
18 

Som
ondoco D

istrict : 1 percentile 
50.1 

40500 
862 

570 
86000 

303000 
1.56 

145 
8.65 

6.43 
Som

ondoco D
istrict : 5 percentile 

50.23 
43980 

1066.9 
771 

87620 
305300 

2.366 
150.9 

8.851 
6.997 

Som
ondoco D

istrict : 10 percentile 
52.2 

46000 
1456 

1176 
90540 

308000 
3.348 

156.4 
9.502 

7.19 
Som

ondoco D
istrict : 25 percentile 

55.65 
47200 

1610 
1280 

96000 
312000 

4.01 
167.5 

34.95 
7.625 

Som
ondoco D

istrict : 75 percentile 
64.95 

52150 
2125 

1705 
103000 

323000 
9.015 

199 
72.3 

10.3 
Som

ondoco D
istrict : 90 percentile 

88.88 
53380 

2692 
1898 

104800 
328800 

57 
238.4 

85.92 
12.9 

Som
ondoco D

istrict : 95 percentile 
121.2 

54210 
24585 

2115 
108700 

334700 
83.5 

320.7 
94.29 

28.86 
Som

ondoco D
istrict : 99 percentile 

123 
54300 

54400 
2340 

147000 
373000 

177 
530 

115 
48.3 

U
balá D

istrict : C
ount N

um
eric 

132 
132 

132 
132 

132 
132 

130 
130 

132 
132 

U
balá D

istrict : M
inim

um
 

44.8 
44600 

1570 
1190 

78700 
308000 

3.47 
118 

24.9 
6.1 
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 U
balá D

istrict : M
axim

um
 

290 
57100 

8790 
17300 

105000 
336000 

83.4 
34000 

2020 
77.5 

U
balá D

istrict : M
ean 

81.265
15 

51431.
06 

4114.4
7 

3652.5 
92075 

318462
.1 

21.452
77 

461.56
15 

451.57
5 

10.278
79 

U
balá D

istrict : M
edian 

70.05 
51500 

3755 
3105 

92650 
318000 

18.55 
175 

409 
8.265 

U
balá D

istrict : R
ange 

245.2 
12500 

7220 
16110 

26300 
28000 

79.93 
33882 

1995.1 
71.4 

U
balá D

istrict : Interquartile R
ange 

18.175 
4575 

2490 
2297.5 

7975 
6000 

17.775 
55.5 

344 
2.015 

U
balá D

istrict : Standard D
eviation 

42.772
38 

2778.1
63 

1494.3
78 

1862.7
49 

5981.4
01 

5081.6
32 

14.564
2 

2965.7
41 

321.24
84 

8.6909
39 

U
balá D

istrict : 1 percentile 
44.932 

44996 
1708.6 

1308.8 
78997 

308000 
3.7273 

118.93 
27.573 

6.1033 
U

balá D
istrict : 5 percentile 

52.115 
46700 

2139.5 
1762 

81330 
310000 

7.5465 
127.1 

45.615 
6.683 

U
balá D

istrict : 10 percentile 
56.17 

47660 
2542 

2053 
83280 

312000 
8.478 

135.6 
64.89 

6.905 
U

balá D
istrict : 25 percentile 

62.4 
49200 

3012.5 
2425 

87500 
315000 

10.175 
158 

222.5 
7.51 

U
balá D

istrict : 75 percentile 
80.575 

53775 
5502.5 

4722.5 
95475 

321000 
27.95 

213.5 
566.5 

9.525 
U

balá D
istrict : 90 percentile 

105.7 
54970 

6330 
5814 

100000 
325700 

40.28 
287.9 

969.9 
12.9 

U
balá D

istrict : 95 percentile 
198.2 

55500 
6707 

6164 
102350 

329000 
49.635 

362 
1040 

21.895 
U

balá D
istrict : 99 percentile 

282.08 
56902 

8532.6 
14204.
6 

104670 
334020 

79.99 
23672.
97 

1732.9 
72.781 

   
47Ti 

51V
 

52C
r 

53C
r 

55M
n 

57Fe 
69G

a 
71G

a 
85R

b 
133C

s 
C

hivor D
istrict : C

ount N
um

eric 
484 

484 
370 

484 
343 

484 
484 

484 
483 

484 
C

hivor D
istrict : M

inim
um

 
0.0705
83 

142.51
28 

174 
172 

0.0321
24 

66.823
64 

7.59 
7.79 

0.16 
3.0067
15 

C
hivor D

istrict : M
axim

um
 

166 
2319.8
17 

5450 
6750.2
28 

219 
1820 

39 
29.3 

12.7 
38.4 

C
hivor D

istrict : M
ean 

4.8011
74 

842.06 
2000.0
57 

2154.2
11 

5.2994
26 

312.41
58 

16.448
96 

16.780
92 

1.3219
7 

8.9468
38 

C
hivor D

istrict : M
edian 

2.98 
794 

1525 
1670 

1.67 
274 

16.856
29 

17.3 
1.2393
67 

7.915 

C
hivor D

istrict : R
ange 

165.92
94 

2177.3
04 

5276 
6578.2
28 

218.96
79 

1753.1
76 

31.41 
21.51 

12.54 
35.393
29 

C
hivor D

istrict : Interquartile R
ange 

1.795 
528.25 

2047.5 
2068.5
98 

5.8868
3 

228 
6.2589
72 

6.4252
08 

0.7272
96 

4.5487
08 
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 C
hivor D

istrict : Standard D
eviation 

11.267
54 

421.54
38 

1273.3
06 

1419.0
14 

14.594
38 

186.72
93 

4.4095
86 

4.4151
1 

0.9412
78 

4.1773
31 

C
hivor D

istrict : 1 percentile 
0.1312
99 

194.34
19 

261.41 
286.37
51 

0.0345
23 

79.878
69 

8.2073
85 

8.2783
94 

0.2452
85 

3.8485 

C
hivor D

istrict : 5 percentile 
0.2538
34 

269.66
42 

486.55 
513.5 

0.0433
67 

114.72
91 

9.1525 
9.5625 

0.3588
18 

4.5154
98 

C
hivor D

istrict : 10 percentile 
0.4431
74 

326.40
61 

614.2 
661.5 

0.0533
47 

133.25
44 

10.159
1 

10.4 
0.4576
04 

5.225 

C
hivor D

istrict : 25 percentile 
2.1625 

531.75 
1030 

1080 
0.0831
7 

176 
13.3 

13.439
53 

0.88 
6.3125 

C
hivor D

istrict : 75 percentile 
3.9575 

1060 
3077.5 

3148.5
98 

5.97 
404 

19.558
97 

19.864
74 

1.6072
96 

10.861
21 

C
hivor D

istrict : 90 percentile 
6.135 

1374.2
76 

3889 
4269.1
86 

13.6 
512 

21.374
06 

22.103
83 

2.016 
14.15 

C
hivor D

istrict : 95 percentile 
11.85 

1720 
4282.5 

4797.5 
18.06 

628 
23.033
77 

23.575 
2.346 

15.3 

C
hivor D

istrict : 99 percentile 
59.549 

2196.1
35 

5245.8 
6090.5
15 

52.928 
1033 

26.085
67 

26.345 
3.7112 

26.28 

C
oscuez D

istrict : C
ount N

um
eric 

255 
255 

182 
255 

207 
255 

255 
255 

255 
255 

C
oscuez D

istrict : M
inim

um
 

0.2735
05 

258.48
13 

91.1 
84.193
73 

0.0528
98 

114.45
62 

11.851
22 

11.866
82 

0.1645
68 

4.46 

C
oscuez D

istrict : M
axim

um
 

227 
11300 

5870 
6160 

83.2 
2490 

55.8 
57.4 

5.91 
22.9 

C
oscuez D

istrict : M
ean 

6.8076
81 

2255.9
6 

1425.7
31 

1267.3
22 

1.0844
61 

530.41
24 

32.069
33 

32.701
53 

1.7317
06 

10.480
62 

C
oscuez D

istrict : M
edian 

3.7 
1790 

932 
856.77
95 

0.39 
450 

31.5 
32.1 

1.19 
10 

C
oscuez D

istrict : R
ange 

226.72
65 

11041.
52 

5778.9 
6075.8
06 

83.147
1 

2375.5
44 

43.948
78 

45.533
18 

5.7454
32 

18.44 

C
oscuez D

istrict : Interquartile R
ange 

3.47 
1587.4
65 

1342 
1141.3
52 

0.41 
281 

14.516
18 

14.373
09 

1.6346
22 

4.06 

C
oscuez D

istrict : Standard D
eviation 

15.991
91 

1765.1
22 

1334.9
29 

1289.5
72 

5.8334
66 

333.33
23 

9.5471
86 

9.7490
57 

1.2288
6 

3.3500
02 

C
oscuez D

istrict : 1 percentile 
0.2916
48 

309.64 
115.91
7 

106.78
45 

0.0667 
120.00
36 

12.263
3 

12.367
83 

0.2592 
4.6670
84 

C
oscuez D

istrict : 5 percentile 
0.5271

578.16
212.9 

211.4 
0.0997

179.35
17.14 

17.68 
0.4571

5.4754
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17 
18 

43 
56 

01 
22 

C
oscuez D

istrict : 10 percentile 
0.9746
31 

737.34
78 

308.3 
299.03
24 

0.1475
96 

213.62
23 

20.2 
20.425
83 

0.5870
56 

6.4107
64 

C
oscuez D

istrict : 25 percentile 
2.53 

1180 
468 

418.64
83 

0.27 
328 

25.1 
25.610
87 

0.83 
8.34 

C
oscuez D

istrict : 75 percentile 
6 

2767.4
65 

1810 
1560 

0.68 
609 

39.616
18 

39.983
96 

2.4646
22 

12.4 

C
oscuez D

istrict : 90 percentile 
10.605
96 

3862 
3321 

2850 
1.136 

1054 
45.48 

46.52 
3.77 

15.44 

C
oscuez D

istrict : 95 percentile 
20.158
75 

6176 
5001 

4840 
3.234 

1204 
47.46 

48.62 
4.342 

17.12 

C
oscuez D

istrict : 99 percentile 
55.76 

10476 
5745.5 

5724.4 
9.478 

1757.6 
52.356 

52.78 
5.3988 

21.128 
G

achalá D
istrict : C

ount N
um

eric 
382 

383 
251 

383 
272 

383 
383 

383 
382 

383 
G

achalá D
istrict : M

inim
um

 
0.2181
32 

37.5 
16.2 

15.4 
0.0529
14 

44.8 
2.81 

2.79 
0.13 

2.66 

G
achalá D

istrict : M
axim

um
 

158 
2240 

5220 
5690 

70.1 
3350 

37.351
22 

38.4 
7.27 

41.6 

G
achalá D

istrict : M
ean 

5.2385
41 

1140.1
73 

2304.2
78 

2295.7
14 

2.3025
41 

637.04
17 

21.176
52 

21.618
59 

1.0719
76 

16.038
94 

G
achalá D

istrict : M
edian 

3.02 
1172.6
82 

2220 
2144.7
73 

0.31 
589 

21.6 
21.981
31 

0.94 
14.6 

G
achalá D

istrict : R
ange 

157.78
19 

2202.5 
5203.8 

5674.6 
70.047
09 

3305.2 
34.541
22 

35.61 
7.14 

38.94 

G
achalá D

istrict : Interquartile R
ange 

3.8725
14 

699.85
05 

2746 
2130 

1.3647
02 

380 
6.4 

6.2803
18 

0.9015
58 

7.8 

G
achalá D

istrict : Standard D
eviation 

13.095
82 

507.42
13 

1475.8
42 

1437.1
17 

6.2563
47 

394.58
19 

6.2797
32 

6.4618
6 

0.7365
01 

6.5505
7 

G
achalá D

istrict : 1 percentile 
0.2834
23 

40.604 
16.852 

16.684 
0.0641
87 

129.72
8 

2.9324 
3.0692 

0.1483 
5.7012 

G
achalá D

istrict : 5 percentile 
0.3953
53 

245.02
04 

48.38 
92.6 

0.0757
37 

231.2 
9.656 

9.6369
89 

0.2290
78 

8.8340
34 

G
achalá D

istrict : 10 percentile 
0.4649
72 

480.65
14 

372 
607.87
15 

0.0869
43 

282 
10.84 

11.48 
0.3064
19 

9.6944
41 

G
achalá D

istrict : 25 percentile 
0.9613
75 

707 
934 

1070 
0.1827
98 

359 
18.3 

18.7 
0.58 

11.3 
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 G
achalá D

istrict : 75 percentile 
4.8338
89 

1406.8
51 

3680 
3200 

1.5475 
739 

24.7 
24.980
32 

1.4815
58 

19.1 

G
achalá D

istrict : 90 percentile 
9.64 

1870 
4338 

4478.6
67 

6.72 
1122.1
35 

29.336
17 

30.18 
1.907 

25.58 

G
achalá D

istrict : 95 percentile 
13.77 

2016 
4634 

4918 
10.535 

1370 
31.54 

32.62 
2.4285 

30.5 
G

achalá D
istrict : 99 percentile 

71.907 
2131.6 

4934.8 
5403.6 

33.412 
2021.2 

36.448 
37.507
97 

3.4540
42 

36.376 

M
aripí D

istrict : C
ount N

um
eric 

212 
213 

213 
213 

124 
213 

213 
213 

213 
213 

M
aripí D

istrict : M
inim

um
 

1.52 
190 

116 
116 

0.24 
116 

12.6 
12.4 

0.83 
4.7 

M
aripí D

istrict : M
axim

um
 

84.3 
8140 

6150 
6780 

68 
644 

53.6 
53.6 

5.82 
22.6 

M
aripí D

istrict : M
ean 

6.6411
32 

2587.8
12 

1520.8
83 

1628.2
3 

2.0751
61 

294.13
15 

31.884
04 

32.868
08 

2.7845
54 

9.5560
09 

M
aripí D

istrict : M
edian 

3.625 
1700 

997 
1070 

0.49 
283 

33.3 
34.3 

2.59 
9.24 

M
aripí D

istrict : R
ange 

82.78 
7950 

6034 
6664 

67.76 
528 

41 
41.2 

4.99 
17.9 

M
aripí D

istrict : Interquartile R
ange 

2.5275 
2935 

1864 
2001 

0.5025 
130.5 

11.95 
12.3 

1.3 
3.51 

M
aripí D

istrict : Standard D
eviation 

9.3137
06 

2166.2
76 

1311.5
47 

1451.5
08 

7.1117
94 

83.545
56 

8.6097
97 

8.8058
41 

1.0722
8 

2.6750
49 

M
aripí D

istrict : 1 percentile 
1.6017 

191 
118.28 

120.42 
0.2425 

128.84 
12.628 

13.1 
0.8628 

4.8556 
M

aripí D
istrict : 5 percentile 

2.0265 
430.7 

164.7 
163.1 

0.26 
175.7 

17.01 
17.37 

1.097 
5.37 

M
aripí D

istrict : 10 percentile 
2.272 

464.6 
180.8 

180.4 
0.28 

192.4 
18.58 

19.34 
1.482 

6.696 
M

aripí D
istrict : 25 percentile 

2.8025 
1035 

456 
469 

0.34 
228 

25.2 
26.05 

2.13 
7.59 

M
aripí D

istrict : 75 percentile 
5.33 

3970 
2320 

2470 
0.8425 

358.5 
37.15 

38.35 
3.43 

11.1 
M

aripí D
istrict : 90 percentile 

19.89 
6336 

3628 
4068 

4.56 
397.4 

42.3 
43.7 

4.306 
13.2 

M
aripí D

istrict : 95 percentile 
26.455 

7548 
4183 

4514 
7.79 

436.8 
44.59 

45.69 
4.836 

13.86 
M

aripí D
istrict : 99 percentile 

40.962 
8080.2 

5185 
5722 

60 
494.88 

51.09 
52.03 

5.6086 
19.558 

M
uzo D

istrict : C
ount N

um
eric 

423 
424 

216 
424 

345 
424 

424 
424 

424 
424 

M
uzo D

istrict : M
inim

um
 

0.2907
05 

91.565
41 

56.4 
45.961
75 

0.0465
14 

89 
4.5331
94 

4.5196
71 

0.2203
87 

2.57 

M
uzo D

istrict : M
axim

um
 

98 
7548.5
25 

1970 
3718.8
48 

73.1 
1390 

91.7 
61.571
72 

11.5 
32.5 

M
uzo D

istrict : M
ean 

7.3525
21 

942.76 
434.55
19 

635.51
08 

0.8776
81 

408.86
82 

22.160
82 

22.257
76 

2.9299
81 

10.449
24 
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 M
uzo D

istrict : M
edian 

3.01 
464 

257.5 
483.5 

0.3174
51 

370.87
98 

19.2 
19.421
97 

2.7991
45 

10.297
78 

M
uzo D

istrict : R
ange 

97.709
3 

7456.9
6 

1913.6 
3672.8
86 

73.053
49 

1301 
87.166
81 

57.052
05 

11.279
61 

29.93 

M
uzo D

istrict : Interquartile R
ange 

4.5924
68 

861.78
64 

381 
737.22
78 

0.2299
79 

299.69
93 

12.047
43 

11.572
79 

2.1776
52 

6.7155
27 

M
uzo D

istrict : Standard D
eviation 

12.618
61 

1047.3
25 

418.24
83 

586.83
02 

5.4242
43 

215.21
33 

11.235
66 

10.639
79 

1.6822
58 

4.6385
39 

M
uzo D

istrict : 1 percentile 
0.4469
33 

108.5 
59.793 

56.075 
0.0639
71 

122.5 
6.4225 

6.57 
0.2907
46 

2.895 

M
uzo D

istrict : 5 percentile 
0.6482
16 

145 
75.48 

83.15 
0.1044
05 

148.25 
8.5133
43 

8.6210
14 

0.7126
61 

3.9403
22 

M
uzo D

istrict : 10 percentile 
0.9424
68 

206.5 
90.68 

107.45
13 

0.1478
6 

177.95
02 

9.925 
10.5 

1.025 
4.2706
4 

M
uzo D

istrict : 25 percentile 
1.6674
05 

329 
152 

164 
0.2300
22 

237.25 
14.934
43 

15.325 
1.5973
02 

6.6844
73 

M
uzo D

istrict : 75 percentile 
6.2598
73 

1190.7
86 

533 
901.22
78 

0.46 
536.94
93 

26.981
86 

26.897
79 

3.7749
54 

13.4 

M
uzo D

istrict : 90 percentile 
19.095
11 

2412.4
74 

1185 
1429.8
99 

0.67 
691.5 

39.521
68 

39.250
55 

5.29 
16.15 

M
uzo D

istrict : 95 percentile 
33.071
77 

3041.9
45 

1446 
1702.6
44 

1.307 
792.75 

43.784
76 

43.265
85 

5.98 
18.318
23 

M
uzo D

istrict : 99 percentile 
71.268 

5530.0
51 

1698.3 
2828.1
81 

8.002 
1190 

55.999
87 

54.079
12 

8.2416
33 

23.1 

Pauna D
istrict : C

ount N
um

eric 
208 

208 
208 

208 
109 

208 
208 

208 
208 

208 
Pauna D

istrict : M
inim

um
 

1.18 
301 

141 
138 

0.2 
124 

4.81 
4.9 

0.083 
0.4 

Pauna D
istrict : M

axim
um

 
71.3 

2810 
2160 

2300 
40.5 

2680 
25 

25.6 
4.43 

23.6 
Pauna D

istrict : M
ean 

7.99 
992.40
87 

660.44
23 

691.09
13 

2.5600
92 

479.43
27 

10.465
24 

10.817
74 

0.8085
72 

6.8487
5 

Pauna D
istrict : M

edian 
3.51 

906 
598 

611 
0.96 

407 
10.65 

10.9 
0.63 

5.885 
Pauna D

istrict : R
ange 

70.12 
2509 

2019 
2162 

40.3 
2556 

20.19 
20.7 

4.347 
23.2 

Pauna D
istrict : Interquartile R

ange 
2.7175 

677.25 
519.75 

566.25 
2.435 

346.25 
3.4625 

3.555 
0.2975 

3.6275 
Pauna D

istrict : Standard D
eviation 

12.691
56 

435.89
24 

378.85
71 

411.60
08 

4.9915
41 

333.01
48 

2.8084
06 

2.9684
65 

0.6152
77 

3.2436
48 
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 Pauna D
istrict : 1 percentile 

1.5918 
410.44 

144.36 
145 

0.2 
144.25 

4.9749 
5.1212 

0.1709 
2.5334 

Pauna D
istrict : 5 percentile 

2.139 
471.7 

187.35 
189.35 

0.21 
188.45 

6.599 
6.448 

0.349 
3.3635 

Pauna D
istrict : 10 percentile 

2.358 
553.7 

224.9 
233.7 

0.33 
204.7 

7.27 
7.379 

0.38 
3.989 

Pauna D
istrict : 25 percentile 

2.68 
622.75 

351 
352.25 

0.51 
250.25 

8.4125 
8.745 

0.51 
4.605 

Pauna D
istrict : 75 percentile 

5.3975 
1300 

870.75 
918.5 

2.945 
596.5 

11.875 
12.3 

0.8075 
8.2325 

Pauna D
istrict : 90 percentile 

21.81 
1604 

1071 
1163 

5.52 
761.5 

13.7 
14 

1.586 
10.8 

Pauna D
istrict : 95 percentile 

35.355 
1831 

1453 
1568.5 

8.13 
1125.5 

15.12 
16.1 

2.1465 
13.62 

Pauna D
istrict : 99 percentile 

69.592 
1997.3 

1957.3 
2096.4 

39.19 
2188.7 

22.368 
23.687 

3.7121 
20.076 

Peñas B
lancas D

istrict : C
ount N

um
eric 

140 
140 

140 
140 

110 
140 

140 
140 

139 
140 

Peñas B
lancas D

istrict : M
inim

um
 

2.4 
833 

512 
528 

0.26 
53.7 

7.9 
7.63 

0.051 
1.51 

Peñas B
lancas D

istrict : M
axim

um
 

61.4 
4810 

5270 
5800 

217 
947 

29.2 
31.1 

7.24 
16.3 

Peñas B
lancas D

istrict : M
ean 

5.6994
29 

2607.8
71 

2346.5
36 

2569.4
93 

5.3906
36 

358.06
64 

19.471
36 

20.124
5 

2.2314
17 

7.2607
86 

Peñas B
lancas D

istrict : M
edian 

3.985 
2710 

2175 
2360 

1.035 
387 

21.2 
21.75 

2.4 
8.115 

Peñas B
lancas D

istrict : R
ange 

59 
3977 

4758 
5272 

216.74 
893.3 

21.3 
23.47 

7.189 
14.79 

Peñas B
lancas D

istrict : Interquartile 
R

ange 
2.0575 

1582.5 
1217.5 

1412.5 
3.31 

282.75 
9.35 

10.05 
2.45 

5.885 

Peñas B
lancas D

istrict : Standard 
D

eviation 
6.9887
7 

908.67
37 

1007.7
23 

1149.3
81 

21.461
02 

197.47
87 

5.5628
36 

5.7791
92 

1.6140
61 

3.6168
83 

Peñas B
lancas D

istrict : 1 percentile 
2.4205 

850.63 
573.09 

578.84 
0.2622 

55.914 
7.9246 

7.8063 
0.0518 

1.5305 
Peñas B

lancas D
istrict : 5 percentile 

2.6355 
1201 

872.25 
889.45 

0.3155 
87.475 

9.7615 
10.2 

0.13 
1.883 

Peñas B
lancas D

istrict : 10 percentile 
2.932 

1371 
1053 

1122 
0.36 

111.1 
11.12 

11.63 
0.24 

2.371 
Peñas B

lancas D
istrict : 25 percentile 

3.3025 
1785 

1660 
1765 

0.5025 
179.5 

14.55 
14.625 

0.7 
3.6625 

Peñas B
lancas D

istrict : 75 percentile 
5.36 

3367.5 
2877.5 

3177.5 
3.8125 

462.25 
23.9 

24.675 
3.15 

9.5475 
Peñas B

lancas D
istrict : 90 percentile 

8.329 
3569 

3758 
4070 

9.511 
579.7 

25.79 
26.59 

4.3 
11.3 

Peñas B
lancas D

istrict : 95 percentile 
12.235 

3736.5 
4662.5 

5219.5 
14.8 

727.9 
27.29 

28.295 
4.73 

13.635 
Peñas B

lancas D
istrict : 99 percentile 

57.136 
4810 

5245.4 
5791.8 

198.87
2 

938.8 
29.118 

30.895 
7.068 

16.013 

Som
ondoco D

istrict : C
ount N

um
eric 

45 
45 

45 
45 

10 
45 

45 
45 

45 
45 

Som
ondoco D

istrict : M
inim

um
 

1.72 
117 

169 
171 

0.23 
156 

8.2 
8.18 

0.4 
8.16 

Som
ondoco D

istrict : M
axim

um
 

43.7 
795 

830 
881 

16.6 
510 

29.3 
31.6 

6.21 
26.5 
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 Som
ondoco D

istrict : M
ean 

4.9366
67 

437.91
11 

417.26
67 

429.86
67 

3.446 
220.62
22 

15.874
89 

16.364
67 

1.3413
33 

11.638 

Som
ondoco D

istrict : M
edian 

3.61 
438 

428 
421 

0.445 
207 

16.3 
16.8 

1.16 
11.1 

Som
ondoco D

istrict : R
ange 

41.98 
678 

661 
710 

16.37 
354 

21.1 
23.42 

5.81 
18.34 

Som
ondoco D

istrict : Interquartile R
ange 

1.725 
163.5 

251 
268 

5.0375 
45 

2.3 
2.65 

0.255 
1.9 

Som
ondoco D

istrict : Standard D
eviation 

6.9187
24 

144.80
47 

174.88
87 

188.03
97 

5.3946
6 

62.593
31 

3.5031
98 

3.7978
78 

0.8362
62 

2.9645
82 

Som
ondoco D

istrict : 1 percentile 
1.72 

117 
169 

171 
0.23 

156 
8.2 

8.18 
0.4 

8.16 
Som

ondoco D
istrict : 5 percentile 

2.053 
122.3 

177.9 
180.3 

0.23 
157.8 

8.425 
8.962 

0.55 
8.321 

Som
ondoco D

istrict : 10 percentile 
2.172 

228.4 
196.8 

195.8 
0.23 

167.6 
10.56 

10.64 
0.946 

9.486 
Som

ondoco D
istrict : 25 percentile 

2.5 
373.5 

291.5 
289.5 

0.2675 
186 

14.95 
15.3 

1.07 
10.1 

Som
ondoco D

istrict : 75 percentile 
4.225 

537 
542.5 

557.5 
5.305 

231 
17.25 

17.95 
1.325 

12 
Som

ondoco D
istrict : 90 percentile 

5.902 
607.2 

654 
686 

15.832 
285.6 

18.58 
19.04 

1.818 
14.64 

Som
ondoco D

istrict : 95 percentile 
20.538 

640.3 
794.9 

853.6 
16.6 

364.4 
20.41 

21.7 
2.584 

17.38 
Som

ondoco D
istrict : 99 percentile 

43.7 
795 

830 
881 

16.6 
510 

29.3 
31.6 

6.21 
26.5 

U
balá D

istrict : C
ount N

um
eric 

131 
132 

132 
132 

106 
132 

132 
132 

132 
132 

U
balá D

istrict : M
inim

um
 

1.71 
613 

144 
139 

0.3 
249 

8.82 
8.87 

0.9 
11.5 

U
balá D

istrict : M
axim

um
 

62 
5040 

8480 
9080 

638 
7500 

47.9 
49.1 

5.29 
30.3 

U
balá D

istrict : M
ean 

4.8341
98 

2316.6
06 

3262.1
06 

3562.5 
8.9049
06 

536.14
39 

20.936
89 

21.716
44 

2.1244
7 

19.335
61 

U
balá D

istrict : M
edian 

3.18 
2115 

2815 
3120 

0.8 
451.5 

18.8 
19.5 

1.85 
19.35 

U
balá D

istrict : R
ange 

60.29 
4427 

8336 
8941 

637.7 
7251 

39.08 
40.23 

4.39 
18.8 

U
balá D

istrict : Interquartile R
ange 

1.21 
2032.5 

1540 
1732.5 

2.3 
199.25 

10.95 
11.275 

0.9575 
4.275 

U
balá D

istrict : Standard D
eviation 

7.6611
05 

1228.1
72 

2058.0
99 

2232.5
69 

61.914 
635.63
03 

7.3845 
7.7091
96 

0.8024
8 

3.7581
9 

U
balá D

istrict : 1 percentile 
1.8028 

660.52 
145.32 

141.97 
0.3007 

249.66 
9.1269 

9.4409 
0.9198 

11.797 
U

balá D
istrict : 5 percentile 

2.156 
809.05 

802.4 
800.5 

0.3535 
297.95 

12.365 
12.6 

1.292 
13.465 

U
balá D

istrict : 10 percentile 
2.292 

1000 
1292 

1333 
0.387 

315.5 
13.16 

13.73 
1.42 

14.33 
U

balá D
istrict : 25 percentile 

2.71 
1170 

1820 
1977.5 

0.4975 
359 

15.025 
15.7 

1.615 
16.8 

U
balá D

istrict : 75 percentile 
3.92 

3202.5 
3360 

3710 
2.7975 

558.25 
25.975 

26.975 
2.5725 

21.075 
U

balá D
istrict : 90 percentile 

5.89 
4285 

6811 
7416 

10.6 
670.7 

30.44 
31.72 

3.207 
23.8 
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 U
balá D

istrict : 95 percentile 
12.08 

4632 
7843.5 

8381 
14.095 

1017 
34.69 

36.22 
3.731 

26.64 
U

balá D
istrict : 99 percentile 

60.752 
5036.7 

8430.5 
9066.8 

595.79 
5411.1 

46.019 
47.516 

5.1382 
30.102 
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