Applications of Laser Ablation Inductively Coupled Plasma Mass Spectrometry to Problems in Mineral Resource Geology

by

Daniel R. Blakemore

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Earth and Environmental Sciences) in the University of Michigan 2024

Doctoral Committee:

Professor Adam Simon, Chair Professor Udo Becker Professor Michael Craig Professor Robert Holder Professor Emeritus Stephen Kesler Daniel R. Blakemore

blakemdr@umich.edu

ORCID iD: 0000-0002-6637-6081

© Daniel R. Blakemore 2024

Dedication

This dissertation is dedicated to my primary collaborator in life, Jennifer Reyné Davis. Without hyperbole or overstatement, I confidently say that I could not have done this without you, and I will be forever grateful. Thank you for believing in me.

Acknowledgements

Countless people have been of indefatigable support to me throughout my academic journey. I am truly lucky to have known so many amazingly brilliant and supportive humans.

Firstly, I owe unwavering gratitude to my advisor, Dr. Adam Simon. You are a role model in every sense of the word, possessing a rare combination of sheer brilliance, an extraordinary work ethic, deep compassion, and a firm commitment to making the world a better place. I admire so much about you, and I will be forever grateful for all you have done for my personal and professional life.

Secondly, to Drs. Stephen Kesler, Robert Holder, Udo Becker, and Michael Craig for your graciousness in serving on my committee. I feel so lucky to consider you my mentors, and have greatly enjoyed learning from you, being challenged by you, and for your helpful comments and suggestions to my projects.

To my project collaborators, Irene del Real, Martin Reich, Fernando Barra, John F.H. Thompson, Andrew Kylander-Clark, Willis E. Hames, Alicia M. Cruz-Uribe; and my friends and collaborators at the Gemological Institute of America: Aaron Palke, Ziyin (Nick) Sun, Alex Goodsuhm, Rachelle Turnier. Thank you for your support and encouragement.

Enormous gratitude is owed to my lab family: Chris Emproto, Andrés González, Maria Rodriguez-Mustafa, Jackie Kleinsasser, Allyson Murray, Evan Hirsh, Justin Casaus, José Tomás Ovalle, and Lydia Pinkham (and Natasha and Vladimir). I am honored and humbled to have shared my time at Michigan with the finest, most intelligent, and supportive lab group in the world. Thanks, in particular, to the newly minted doctor, Christopher Robert Emproto. We first met at a GSA sectional conference in 2017 while in undergrad, serendipitously ended up in the same MS program at Miami University and continued our paralleled lives at the University of Michigan in the Simon lab group. Cheers to finishing another degree together and to the inevitably intertwined future we are destined to have. It has been an honor to work (and quarantine) alongside you through the entirety of our graduate education.

To my Masters advisors and mentors at The Miami University (Ohio), Drs. Mark Krekeler, Claire McLeod and John Rakovan. Thank you all so much for providing me with the

iii

most amazing education and experiences. I learned an incredible amount and I cherish my time at Miami because of you.

To Drs. Ralph Stearley, Gerry VanKooten, C. Renee Sparks and the entire faculty of Calvin University's Geology department. Never in my life have I felt more at home than my four years learning from you. Additional thanks to the Dice Family: Bruce, Carol, and Kevin, for your incredibly generous support of Calvin's geology department, and for your investment in my life. I will remember Bruce forever.

To John Christians of Grand Rapids Christian High School, my first mentor, who introduced me to the world of science and inspired my high-school self to set my goals high. Thank you for providing a space in AP chemistry and Science Olympiad for socially awkward kids like me to find community and their life-long professional interests.

To my mother Linda, my father John (Dr. B Sr.) and stepmom Diane. I am so lucky to have three endlessly supportive parents. To my favorite sibling Steph, thank you for always having my back. And to my dear friends Sam, Jack, Devin, Isaac—thank you for everything.

And lastly to Jenn Davis, to whom this dissertation is dedicated. You are the brightest, most driven, and overall, most amazing person I have ever known. Thank you for getting me to the finish line.

Table of Contents

Dedicationii
Acknowledgementsiii
List of Tables
List of Figures x
List of Appendices xv
Abstract xvi
Chapter 1: Introduction 1
1.1 Introduction1
1.2 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)2
1.2 Random Forest Machine Learning
1.3 Applications to Economic Geochemistry
1.4 References11
Chapter 2: The Temporal Evolution of the Candelaria Iron Oxide - Copper - Gold (IOCG) System, Chile: Insights from in situ U–Pb LA-ICP-MS of Apatite, Titanite, Magnetite and Ar/Ar of Actinolite
2.1 Abstract
2.2 Introduction
2.3 Analytical Methods 16
2.4 Results
2.5 Discussion
2.6 Magnetite Geochronology: Promise and Limitations

2.7 Summary
2.8 Acknowledgements
2.9 Figures and Tables
2.10 References
Chapter 3: Application of Random Forest Classification Machine Learning for Hyper-Specific Mineral Origin Determination Studies: Insights from Colombian Emerald and Euclase
3.1 Abstract
3.2 Introduction
3.3 Methods
3.3.1 Sample Material
3.3.2 LA-ICP-MS Trace Element Data Collection at the GIA
3.4 Results
3.4.1 Variable selection and database compilation
3.4.2 Machine learning and data processing
3.4.3 Random Forest Classification Predictive Results
3.4.4 Probability Heat Maps
3.4.5 Variable Importance
3.5 Discussion
3.5.1 Importance of V and Cr in Differentiating East and West Emerald Belts 46
3.5.2 Mines vs. Mining Districts
3.5.3 Value Even in Confusion
3.5.4 Causes of Separation
3.5.5 Further proof of concept: Colombian Euclase
3.5.6 Previous Work in Machine Learning Applied to Mineral Origin Determination
3.6 Implications

3.7 Acknowledgments
3.8 Figures and Tables
3.9 References Cited
Chapter 4 Chapter 4: Promise and Limitations of Provenance Determination of Alluvial Montana Sapphires Using Random Forest Machine Learning on LA-ICP-MS Trace Elemental Data 75
4.1 Abstract
4.2 Introduction
4.3 Methods
4.4 Results
4.5 Discussion
4.5.1 Provenance Determination
4.5.2 Comparison with Colombian Emerald Separation
4.5.3 Mg vs Ti: A possible cause of separation and insights into formation
4.5.4 Implications and future work with gemstone provenance determination 87
4.6 Acknowledgements
4.7 Figures and Tables
4.8 References
Chapter 5: Conclusion 101
Appendices 103

List of Tables

Table 2-1. Summary of ages determined by U-Pb for titanite, apatite and magnetite, and Ar-Ar for actinolite. 22
Table 3-1. Representative Sample Performance of RFC Model Separations 55
Table 3-2. Top 12 Variables for each RFC separation 56
Table 4-1. Summary Statistics of chemistry (ppm) 88
Table 4-2. Correlation Matrix 90
Table 4-3. List of variable importance for RFC separation
Table A-1. Sample Descriptions and data from Rodriguez-Mustafa et al., 2020 and del Real et al., 2021. These thin sections are from a 1000 m drill core (LD1687B) of the Candelaria mine 109
Table A-2. Titanite sample information and associated depth at which the titanite originated, U–Pb ages and associated error, rho values, the textural relationship of the titanite within the overall sample, and whether samples fell off the discordia line and therefore omitted from further calculation, data taken at USCB. Parameters used in Isoplot-R (Vermeesch, 2018) discordia model-1 age, no correction for common lead or disequilibrium
Table A-3. Titanite sample ID information, ²⁰⁷ Pb/ ²³⁵ U ratios and error, ²⁰⁶ Pb/ ²³⁸ U ratios and error, and ²⁰⁷ Pb/ ²⁰⁶ Pb ratios and error, data taken at University of Maine
Table A-4. Apatite sample ID information and associated depth at which the titanite originated, ²³⁸ U/ ²⁰⁶ Pb ratios and error, ²⁰⁷ Pb/ ²⁰⁶ Pb ratios and error, rho, the textural relationship of the titanite within the overall sample, and whether samples fell off the discordia line and therefore omitted from further calculation, data taken at UCSB
Table A-5. ⁴⁰ Ar/ ³⁹ Ar representative air and representative blank
Table A-6. Monitor Data (GA-1550 Biotite, ca. 200 µm diameter flakes provided by M. Cosca of USGS)
Table A-7. Magnetite sample ID information and associated depth at which the magnetite originated, ²³⁸ U/ ²⁰⁶ Pb ratios and error, ²⁰⁷ Pb/ ²⁰⁶ Pb ratios and error, rho, the textural relationship of the magnetite within the overall sample, and whether samples fell off the discordia line and therefore omitted from further calculation, data taken at UCSB
Table A-8. Magnetite sample ID information and associated depth at which the magnetite

originated, $^{238}U/^{206}Pb$ ratios and error, $^{207}Pb/^{206}Pb$ ratios and error, rho, the textural relationship of the magnetite within the overall sample and whether samples fell off the discordia line and

therefore omitted from further calculation, data taken at UCSB154
Table B-1. Operating conditions for LA-ICP-MS analysis at the Gemological Institute of America
Table B-2. Summary Stats for the full Colombian emerald geochemical database 173
Table B-3. Summary Stats for mining district Colombian emerald geochemistry

List of Figures

Figure 2-3a: Summary chart showing depths and dates with 2se uncertainties for minerals dated from the Candelaria IOCG, highlighting the temporal relationship with proximal igneous units. The colored vertical bars represent zircon U–Pb ages of magmatic activity reported by del Real et al (2018). From left to right, the light pink bars show ages of different pulses of the Copiapó batholith (Los Liros: 110.7 ± 0.4 Ma, San Gregorio: 115.5 ± 0.4 Ma, Adamelite (quartz monzonite porphyry): 116.3 ± 0.4 Ma, La Brea: 118.0 ± 1.0 Ma), the dark pink bars show the ages of pre-mineralization dacitic dikes (121.9 ± 2.4 Ma and 124.9 ± 0.4 Ma), and the gray bar shows the ages of the host rock andesite (upper andesite: 132.4 ± 2.9 Ma, lower andesite: 135.3 ± 1.0 Ma). Dates falling within the dashed boxes are from the same sample depth. Many dates calculated in this study cluster heavily around c. 115 Ma, which corresponds to the San Gregorio and Adamelite pulses of the Copiapó batholith, as well as previously published ages from Mathur et al. (2002) and Marschik and Fontboté (2001).

Figure 2-4a: Image of sample C52 from 731 m with locations of dated minerals, highlighting cross-cutting relationships, with the actinolite-hornblende vein outlined in a white dotted line. Apatite and titanite found in the matrix, and apatite in the magnetite (mushketovite) vein have the same calculated dates at c. 115 with overlapping 2se uncertainties. The actinolite-hornblende is distinctly older at 121.1 Ma. Green circles in the thin section image represent the locations of apatite dated, and blue represent the location of titanate dated. See text for discussion......27

 Figure 3-6 (a-c). Probability heat map of sample data by belt (6a), district (6b) and mine (6c). Each grouping of 3 rows are 3 spot analyses on the same emerald, for a total of 9 emeralds—one from each of the 9 mining districts. In this example, the RFC model correctly predicted each mining belt (27/27); correctly predicted mining districts (25/27); and correctly predicted the mine of origin (24/27). In Fig. 6b, the most confused districts are highlighted in the green boxes. The correct origins for the 9 sampled emeralds are as followed: Sample 1 (rows 0-2): Peñas Blancas Mine, Peñas Blancas District, Western Belt. Sample 2 (rows 3-5): La Fortuna Mine, Ubalá District, Eastern Belt. Sample 3 (rows 6-8): San Gregorio Mine, Chivor District, Eastern Belt. Sample 4 (rows 9-11): Mina Real, Muzo District, Western Belt. Sample 5 (rows 12-14): Cunas

Mine, Maripí District, Western Belt. Sample 6 (rows 15-17): Matecaña Mine, Gachalá District, Eastern Belt. Sample 7 (rows 18-20): Gualteros Mine, Pauna District, Western Belt. Sample 8 (rows 21-23): Achiote Mine, Somondoco District, Eastern District. Sample 9 (rows 24-26): La Abuela Mine, Coscuez District, Western Belt
Figure 3-7 (a) Scatter Plot of V vs. Cr in Colombian emeralds highlighting the distinct trends between Eastern and Western belts described by the arrows
Figure 3-7 (b) Histograms with kernel density estimate (KDE) lines highlighting the bi-modality of the V/Cr ratio in Colombian emeralds between Eastern and Western belts, with some overlap.
Figure. 3-7 (c) Map of Colombian emerald mines with V/Cr ratios averaged by individual mine and interpolated. Notice the generally higher V/Cr ratio in Western belt, where V/Cr is generally greater than 1, over the Eastern belt emeralds where V/Cr is generally less than 1
Figure 3-8: Emeralds from the Chivor mining district (east) and the Coscuez mining district (west). Photos by Robert Weldon, GIA. Chivor emeralds (24.90 ct total) and Muzo emeralds (16.20 ct total) are courtesy of Guillermo Ortiz, Colombian Emeralds, Inc
Figure 3-9: Discriminant scatterplot created post-hoc following RFC on LA-ICP-MS Data on Euclase, which effectively separates euclase from each of the 3 mines
Figure 3-10: A highly effective single decision tree for origin determination of Colombian euclase. Using a random forest containing 100 individual decision trees, overfitting is reduced, and the predictive ability is nearly 100% accurate
Figure 4-1. Map of Montana Sapphire deposits (from Zwaan et al. 2015). Rock Creek, Dry Cottonwood Creek, and Missouri River deposits are alluvial, and Yogo Gulch is primary igneous
Figure 4-2. Comparison of elemental concentrations collected at different laboratories as a visual test for consistency. Each element except for Ga was shown to be consistent, so Ga was excluded from discrimination analysis to avoid incorporating any artificial breaks in data caused by any systematic error
Figure 4-3. Probability plots of sapphire trace elements. Notice how Ga and Cr show non-normal distribution. For this reason, these elements were excluded from separation analysis. Orange data points were collected at the GIA, and blue were collected at the University of Colorado Boulder
Figure 4-4. Box plots of Mg, Ti, V, and Cr highlighting the unique chemistry of Yogo Gulch sapphires, compared to the alluvial deposits, with generally elevated trace element concentrations. Notice also how dry cottonwood creek generally has the lowest median trace element concentrations
Figure 4-5. Mg vs. Ti. Note the strong positive correlation, and gradation of location, with Yogo

Figure 4-6. Example confusion diagrams from the training set and testing set of data during the RFC model analysis for the entire data set. Data was partitioned 80% training and 20% testing.
Figure 4-7. Confusion matrix showing near perfect separation of alluvial Montana sapphires versus primary igneous Yogo Gulch Montana sapphires
Figure A-1. Titanite C52 Tera-Wasserburg Diagram (UCSB)111
Figure A-2. Titanite C58 Tera-Wasserburg Diagram, Omit C58_04 (UCSB)112
Figure A-3. Titanite C11 Tera-Wasserburg Diagram (Maine)
Figure A-4. Titanite C65 Tera-Wasserburg Diagram (Maine)117
Figure A-5. Titanite C70 Tera-Wasserburg Diagram (Maine)
Figure A-6. Titanite C73 Tera-Wasserburg Diagram (Maine)119
Figure A-7. Apatite C12 Tera-Wasserburg Diagram (UCSB)128
Figure A-8. Apatite C34 (Low U) Tera-Wasserburg Diagram (UCSB)129
Figure A-9. Apatite C43 Tera-Wasserburg Diagram (UCSB)130
Figure A-10. Apatite C52 In Mushketovite vein Tera-Wasserburg Diagram (UCSB)131
Figure A-11. Apatite C52 In Volcanic Groundmass Tera-Wasserburg Diagram (UCSB)132
Figure A-12. Apatite C61 Tera-Wasserburg Diagram (UCSB)133
Figure A-13. Apatite C62 Tera-Wasserburg Diagram (UCSB)
Figure A-14. Magnetite C12 Tera-Wasserburg Diagram (UCSB)147
Figure A-15. Magnetite C34 (Low U) Tera-Wasserburg Diagram (UCSB)148
Figure A-16. Magnetite C43 Tera-Wasserburg Diagram (UCSB)149
Figure A-17. Magnetite C52 Tera-Wasserburg Diagram (UCSB)150
Figure A-18. Magnetite C58 Groundmass Tera-Wasserburg Diagram (UCSB)151
Figure A-19. Magnetite C61 Tera-Wasserburg Diagram (UCSB)152
Figure A-20. Magnetite C62 Tera-Wasserburg Diagram (UCSB)153
Figure A-21. Magnetite C34 All Spots Tera-Wasserburg Diagram (UCSB)161
Figure A-22. Magnetite C34 "Rims" Tera-Wasserburg Diagram (UCSB)162

Figure A-23. Magnetite C34 "Cores" Tera-Wasserburg Diagram (UCSB)	163
Figure A-24. Magnetite C43 Tera-Wasserburg Diagram (UCSB)	164
Figure A-25. Magnetite C61 All Spots Tera-Wasserburg Diagram (UCSB)	165
Figure A-26. Magnetite C61 In Matrix Tera-Wasserburg Diagram (UCSB)	166
Figure A-27. Magnetite C61 Vein 1 Tera-Wasserburg Diagram (UCSB)	167
Figure A-28. Magnetite C61 Vein 2 Tera-Wasserburg Diagram (UCSB)	168
Figure A-29. Magnetite C62 All Spots Tera-Wasserburg Diagram (UCSB)	169
Figure A-30. Magnetite C62 In Matrix Tera-Wasserburg Diagram (UCSB)	170
Figure A-31. Magnetite C62 Vein Tera-Wasserburg Diagram (UCSB)	171

List of Appendices

Appendix A: Chapter 2 Supplemental	103
Appendix B: Chapter 3 Supplemental	172

Abstract

Mining has been a defining driver of human progress since the beginning of organized civilization. Minerals extracted from the Earth not only gave humans the means to create tools and weapons, but ornamental gemstones and metals add to the rich culture we share as a species. Today, the need and desire for mining precious resources has never been higher. This demand results in an undeniable need to focus time, energy, and resources in the exploration of new deposits, and to better understand those deposits we currently rely on. This is the aim of mineral resource geochemistry: to better understand where, why, and how economically important mineral deposits form. This can be done via the analysis of the chemistry found within individual minerals from these deposits. Understanding the trace elements and specific isotopes that comprises a minerallike a unique fingerprint-allow us to gain tremendous insights and draw broad conclusions on resource formation from microscopic amounts of sample material. It can be argued that no instrument more profoundly transformed the field of geochemical research than the laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). Its ease of use, moderate cost, relatively rapid data collection compared to other geochemical techniques, ability to maintain spatial context within samples, and minimal sample preparation needed makes the LA-ICP-MS one of the most powerful tools in the geochemist's arsenal.

This dissertation investigates distinct applications of LA-ICP-MS to mineral resource and gemological research, the results of which add to our understanding of geologic resource formation and mineral provenance determination. Chapter 2 highlights the power of LA- ICP-MS *in situ* U–Pb dating for elucidating the geochronology of the Candelaria iron oxide-copper- gold deposit in Northern Chile. This is coupled with other geochronological techniques for a comprehensive study of the temporal evolution of one of the most important copper mines in the world. Chapters 3 and 4 utilize a comprehensive suite of LA-ICP-MS collected trace element data and a random forest machine learning algorithm to effectively determine the provenance of different gemstone material to a hyper-specific degree: Colombian emeralds and euclase in chapter 2, and Montana, USA,

sapphires in chapter 4. The results of this dissertation highlight the effectiveness, broad-reaching application, and versatility of LA-ICP-MS as a tool in mineral resource geology.

Chapter 1: Introduction

1.1 Introduction

Mining has been the defining driver of human progress since the beginning of organized civilization. So much so, that ages of antiquity are defined in terms of the dominant resource of the day: stone, copper, bronze, iron. Minerals extracted from the Earth not only gave humans the means to create tools and weapons, but ornamental stones and metals add to the rich culture we share as a species. Today, the need and desire for mining precious resources has never been higher. Precious metals such as lithium, cobalt, and rare earth elements are essential for modern day electronics we all enjoy on a daily basis. Iron is used to create steel for buildings and infrastructure and this demand is projected to substantially increase by as much as triple the demand between 2010 and 2050 as population increases force the demand for more infrastructure (Elshkaki et al., 2018). In 2023, 22,000 metric kilotons of copper were mined for important infrastructure, electrical and electronic equipment, and transportation (USGS, 2024). This resource is not only important for maintaining current infrastructure and equipment but copper is critical for generating renewable energy technology such as wind turbines, solar panels, and electric cars to move society towards renewable resource utilization. Copper is one of the resources with the fastest growing demand and this demand is projected to increase by 2-3% per year from now to 2050 (Kupiers et al., 2018). Additionally, the gemstone industry was valued at an estimated \$33.38 billion (USD) in 2023 and is projected to increase to \$55.96 billion by 2033 (Verghese, 2023). This demand results in an undeniable need to focus time, energy and resources in the exploration of new deposits, and to better understand those deposits we currently rely on.

This is the aim of economic geochemistry: to better understand where, why, and how economically important mineral deposits form. This can be done via the analysis of the chemistry found within individual minerals from these deposits. Understanding the trace elements and specific isotopes that comprises a mineral—like a unique fingerprint—allows us to gain tremendous insights and draw broad conclusions on resource formation from microscopic amounts of sample material.

It can be argued that no instrument more profoundly transformed the field of geochemical research than the laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). The LA-ICP-MS allows for the relatively rapid collection of trace element and isotopic data, with a key advantage of preserving the geologic context of the sample via in-situ measurements. It is considered a semi destructive technique as it requires only a very small amount of material—leaving permanent ablation spots around 10-100 micrometers in diameter and typically about 10-50 micrometers in depth. Very simply, it works by a laser pulse ablating a sample and carrying the aerosolized particulate into an argon plasma, which then strips the electrons from the atoms in the particulate cloud, thereby ionizing them. The ionized material is then transported to a mass spectrometer which segregates the ionized material based on mass and charge. Since this information is unique to each element, elemental concentrations can be derived from this information. The combination of its ease of use, moderate cost, relatively rapid data collection compared to other geochemical techniques, ability to maintain spatial context within samples, and minimal sample preparation needed makes the LA-ICP-MS one of the most powerful tools in the geochemist's arsenal.

This dissertation investigates distinct applications of LA-ICP-MS to mineral resource and gemological research with resulting implications which add to our understanding of geologic resource formation and mineral provenance determination. Chapter 2 highlights the power of LA-ICP-MS *in situ* U–Pb dating for uncovering the geochronology of the Candelaria iron oxide-copper-gold deposit in Northern Chile. This is coupled with other geochronologic techniques for a comprehensive study of the temporal evolution of one of the most important copper mines in the world. Chapters 3 and 4 utilize a comprehensive suite of LA-ICP-MS collected trace element data and a random forest machine learning algorithm to effectively determine the provenance of different gemstone material to a hyper-specific degree: Colombian emeralds and euclase in chapter 2, and Montana, USA, sapphires in chapter 4. The results of this dissertation highlight the effectiveness, broad-reaching application, and versatility of LA-ICP-MS as a tool in mineral resource geology.

1.2 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

The idea for coupling a laser ablation system to a inductively coupled plasma mass spectrometer was first demonstrated by Allan Gray, in 1985 (Gray 1985), transforming the field of

in situ chemical analysis. A laser ablation system needs to have the ability to ablate target material by a photo-chemical process rather than physical disaggregation, and then be able to deliver target material to the inductively coupled plasma (ICP) in particles small enough that the plasma can be completely vaporized and ionized in order to avoid volatility related elemental and isotopic fractionation (Sylvester and Jackson 2016). Neodymium doped yttrium-aluminum garnets (Nd: YAG) are among the most common lasing mediums used in modern ablation systems, and typically operate in the deep ultraviolet range with wavelengths typically at 193 nm or 213 nm. Ruby (red corundum) interestingly, is also a lasing medium that was used in earlier LA-ICP-MS systems (e.g. Gray, 1985; Arrowsmith, 1987) and emitted photons in the visible light spectrum as a deep red color (693 nm). Shorter wavelength (and therefore higher energy) ultraviolet lasers are preferable to the longer because more materials can absorb higher energy photons, which results in a better ablation.

Once aerosolized by the laser ablation system, the particulate cloud is transported to the ICP by a carrier gas, most commonly helium, which is a non-reactive gas and is not an element of interest to measure using this system. The argon plasma torch of the inductively coupled plasma reaches extremely high temperatures at around \sim 6,000° K, approximately the surface temperature of the sun—hot enough to ionize most elements. Newly ionized material is then focused into a stream using a series of lenses and cones and are passed through into the mass spectrometer.

Most ICP-MS systems in use today are quadrupole mass spectrometers and single collector sector field mass spectrometers. The most common type of mass spectrometer (MS) used with LA-ICP-MS is a quadrupole MS, whose primary function is the collection of trace elements. The basis of a quadrupole MS is measuring the mass/charge (m/z) ratio of the ionized stream. The heart of the quadrupole consists of four parallel rods, two with negative potentials and two with positive potentials. These poles generate an oscillating quadrupolar electrical field from a combination of imputed direct current and radio frequency voltages. Ions pass through this field, and depending on their m/z, follow either a stable or unstable path. The precise control of the frequency voltages allow only ions with a specific m/z ratio to pass through the entire length of the quadrupole (stable path). Those ions that make it through the quadrupole are detected by an electron multiplier, which converts the ion signal to an electrical signal to be processed.

The multi-collector ICP-MS, while less common, is still deeply important for geological science. The multi collector allows for the highly precise collection of U and Pb isotopes, which is the basis for dating many different U-bearing minerals. After the ionized beam is transported out of

the ICP torch, the beam passes through a magnetic sector field which separates the ions based on their m/z ratio. This separation is needed to isolate the specific isotopes of interest. The separated ions are simultaneously detected by multiple collectors, each one dedicated to its own m/z ratio. The simultaneous isotope measurements reduce error associated with signal drift over time, which can be an issue with quadrupole MS, and is what allows this method to have enough precision for geochronology with U–Pb isotopes. Certain highly specialized laboratories are capable of splitting the ion stream from the ICP and sends half of the stream to a quadrupole MS, and half to a multicollector, allowing for the collection of U–Pb isotopes for geochronology and trace elements simultaneously from the same sample spot, in a system aptly called split stream LA-ICP-MS (Kylander-Clark, 2013).

The ability to preserve geologic context within a sample is arguably the most important virtue of the LA-ICP-MS system for geologic research. Selecting spots to analyze within a polished thin section or epoxy mount allows the researcher to carefully pick and choose which minerals to hit without requiring individual mineral separation. This is particularly important in chapter 2 of this dissertation, where LA-ICP-MS spots were carefully chosen on datable accessory minerals, while maintaining the cross-sectional veinlet contexts, and other mineral-mineral relationships. The relatively small sample size required can also allow for future analysis to be completed on the very same samples.

The advantages of this technique for Earth science is obvious. In addition to trace elemental analysis with spot analysis quadrupole MS, or age dating with multi-collector MS, geochemists are finding ever increasingly creative ways of utilizing LA-ICP-MS, such as with fluid inclusion studies (e.g. Rusk et al., 2004; Catchpole et al., 2011; Chang et al., 2018; Zhao et al., 2020; Xie et al., 2023;), 2D chemical mineral mapping (e.g. Ubide et al., 2015; Dubosq et al., 2018; Chew et al., 2021; Chernonozhkin et al., 2021), and 3D chemical mapping (e.g. Słaby et al., 2011; Chirinos et al., 2014). Being able to obtain rapid, high-resolution elemental and isotopic data, while preserving geologic context is an invaluable tool for geologic research. The moderate financial cost of operation and general ubiquity across laboratories around the world also add to the plethora of advantages, and its importance is the common thread between each chapter in this dissertation.

1.3 Random Forest machine learning

No technology has quite captured the attention of society in recent years more so than the rapid advances in artificial intelligence (AI), specifically generative AI tools such as Open AI's (owned by Microsoft) ChatGPT or Google's Bard. Artificial intelligence is broadly defined as the capability of computer systems or algorithms to imitate intelligent human behavior, and machine learning (ML) can be thought of as a subset of AI which enables a computer to learn and perform tasks by analyzing a large dataset without being explicitly programmed (Merriam-Webster, 2024). Machine learning can be further subdivided into two subgroups: Supervised ML and unsupervised ML. Unsupervised ML algorithms use unlabeled data to find underlying structure (i.e. groupings, clusters, correlations) in data without pre-labeled input. Examples of popular unsupervised ML algorithms include: K-means clustering analysis, principal component analysis, hierarchical clustering, and Apriori algorithm. Supervised ML algorithms learn from a labeled dataset and are useful for solving classification problems. Some of the most widely used supervised ML algorithms include: Linear regression analysis, support vector machines, logistic analysis, naive Bayes, K-nearest neighbors, neural networks, adaptive boosting, decision tree classification, and random forest classification.

A major part of this dissertation involves the processing of LA-ICP-MS geochemical data in order to find patterns and derive meaning. As explained in detail in chapters 3 and 4, a random forest classification (RFC) machine learning model was determined to be the most appropriate, and most effective method for parsing large suites of LA-ICP-MS elemental data in regards to mineral provenance determination. The RFC model falls under the category of Classification and Regression Tree (CART) family of supervised machine learning algorithms, which is defined by the decision tree structure that aims to elucidate differences in a data set by variable to sort into categories via a branching list of boolean True/False questions. A decision tree starts with a root node, a variable which is then split into 2 paths (also called branches): a greater than or equal to, or a less than path in the case of quantitative data such as elemental concentrations. Each branch leads to another boolean True/False question called a "node" or "leaf", and the process of splitting continues recursively until there are no more features to split. One of the mathematical ways this algorithm decides where to split data is by using the Gini impurity—a measure of how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution of the subset. The gini impurity can be calculated as follows:

$$1 - \sum_{i=1}^{C} (P_i)^2$$

Where P_i represents the proportion of the samples that belong to class *i* in a given set, and c equal to the number of classes. A gini impurity is calculated for each potential split, and chooses the one with the lowest value. The goal is to limit the Gini impurity. The relative simplicity and computational brevity of this equation makes it a popular option for CART algorithms, and also serves as the basis for calculating variable importance.

Another important principle of CART machine learning is the partitioning of data into testing and training data. Training data, as the name suggests, is used to train and develop the model. In supervised ML, the data is pre-labeled into classifications, and the training data is used to iteratively make predictions on which variables correspond to which category. Testing data is completely independent of this process, and is separated from the dataset before training. This data is later used to validate the effectiveness of the trained model by parsing unknown data through the trained model. Common data partitions are between 70-80% training, and 20-30% testing.

Stratified sampling is another important parameter of CART algorithms, especially when dealing with large datasets or with imbalanced classes (non-homoscedasticity). Stratified sampling ensures that each class is sampled representatively. This is critically important when building a model to ensure that both training data and testing data have elements from each class.

Evaluating the effectiveness of the ML model is of the utmost importance before practical implementation. One of the methods of doing so is cross validation. Cross validation first splits the data "k" number of times, into equal sized segments, or "folds". In the studies included in this dissertation, k = 10. For each unique group, the model is trained on k minus 1 folds, as the training set, then is validated on the remaining sets. This process is repeated k number of times, each using a different fold as the testing set. K-fold cross validation evaluates the effectiveness of the model with the metrics: Precision, recall, F1 score, and accuracy.

Precision, as a metric, is equal to the ratio of true positives over true positives plus *false positives*. Recall is similar to precision, but instead measures the ability of a model to capture actual

positives, with the ratio of true positives over true positives plus *false negatives*. The F1 score is the harmonic mean of the precision and recall, providing an overarching measure which balances both metrics, and is calculated as the precision multiplied by recall, then divided by the precision plus the recall, all multiplied by 2. Accuracy is arguably the most important metric for model evaluation, as it measures the overall correctness of the model, and is calculated by the true positives plus true negatives, divided by the total cases. Taken together these metrics help determine the overall effectiveness of a ML model.

The RFC is an ensemble learning model which builds off the decision tree structure (Breiman, 2001). This model constructs a multitude of individual decision trees, which all "vote" on a classification, and the classification with the most votes is the consensus pick. The RFC model has several key advantages over a single decision tree and other types of machine learning. First, and most importantly for handling high-dimensional data, is that it reduces overfitting. A single decision tree has a tendency to make arbitrary splits in the data to achieve a separation. Overfitting can be easily observed in a ML model by comparing the testing accuracy to the training accuracy. Ideally, these accuracies should be the same. However, almost always the training dataset will have a higher accuracy than the testing set. If the gap in accuracies between training and testing datasets are large, this is a clear indication of overfitting. The RFC can still have problems with overfitting if data is particularly noisy, but by relying on hundreds to thousands of decision trees, the risk of overfitting is minimized.

Other major advantages of using a RFC model is that the underlying assumptions required for many other statistical analyses are unneeded. For example, the need for homoscedasticity, and non-co-linearity which are required for parametric machine learning algorithms such as linear discriminant analysis, linear regression, support vector machines, among others. It can also incorporate non-quantifiable data, which presents opportunities for qualitative observations to be included in the model.

For a large geochemical dataset with potentially many elements and elemental ratios of interest, and a classification and prediction problem like mineral origin determination, the RFC model shows remarkable potential as will be discussed in chapters 3 and 4.

1.4 Applications of LA-ICP-MS to problems in mineral resource geology

The duality of the LA-ICP-MS to be used for geochronology and trace element studies makes it one of the most powerful tools available in geochemistry. It is especially powerful in economic geology where information regarding the formation of deposit timing and source can be derived from the chemical makeup of key minerals.

In chapter 2 of this dissertation, a multi-collector LA-ICP-MS is used to measure U and Pb isotopes of the minerals apatite, titanite, and magnetite from drill core samples from the Candelaria iron-oxide copper gold (IOCG) deposit located in northern Chile. Apatite (Ca₃(PO₄)₃ (F,Cl, OH)) and titanite (CaTiSiO₅) are common accessory minerals dated via U–Pb geochronology. Magnetite is not traditionally used as a geochronometer but was experimentally dated via U–Pb. These techniques are used in concert with Ar-Ar dating of the amphibole mineral actinolite (Ca₂(Mg,Fe)₅Si₈O₂₂(OH)₂) in an attempt to uncover new insights into the temporal evolution of the world class Candelaria IOCG deposit located in Northern Chile.

Understanding the formational history of IOCG deposits is a prominent topic of debate in the economic geology community, and is of broad societal importance as this type of deposit is a major source of copper globally. The geochronologic results provide insights into the temporal history of mineralization in the Candelaria IOCG deposit and improve the understanding of the evolution of this world-class mineral system.

In chapters 3 and 4 of this dissertation, I explore the other face of the LA-ICP-MS: its trace elemental capabilities using Quadraopole LA-ICP-MS. In the gemstone industry one of the most pressing issues is how to more accurately, and more specifically identify the provenance of a mineral (e.g. McClure et al, 2019, Vertriest et al. 2019). As is evident from the service offered at gem laboratories, there is a strong demand from consumers to know where their gemstones are from. Motivating factors which enhance the perceived value of a gem include the prestige of locality, ensuring the authenticity, personal or cultural significance, or wanting to have a documented anthropological history or story attached to an heirloom. In addition to the potential personal benefit to consumers, being able to reliably fingerprint a valuable mineral using its intrinsic and unchanging properties can also be an invaluable ethical tool used to prevent gems from mines using unethical practices from spreading on the market (i.e. conflict gems). Being able to better predict a mineral's provenance also has massive implications in exploration geology and mineral prospectivity (e.g. Rodriguez-Galiano et al. 2015, O'Brian et al, 2015; McKay and Harris,

2016; Hong et al., 2021, Bédard et al., 2022). For gemological laboratories, the motivation behind pursuing mineral origin research is to ensure the public's trust within the industry, and thus much effort is taken to develop reliable testing methodologies.

In order to make predictions on unknown minerals, a reliable methodology must be in place for pre-existing and meticulously documented samples. In the gemstone industry, obtaining samples with reliable provenance to use as reference poses a significant obstacle to developing such methods, as by their nature, gem material is rare, expensive, easy to transport leading to mistakes in tracing, and can come from areas of the world with varying degrees of political stability. The Gemological Institute of America (GIA) uses a grading system (A-F) to record the reliability of a gemstone's known provenance, with an A grade meaning a researcher from the GIA personally collected and documented the origin, an "F" rating given to a gem purchased from a vendor at an international market such as the annual Tucson gem and mineral show, and a "Z" grade meaning the location information is completely lost, unknown, or its information is put into doubt (Vertriest et al. 2019). While an A grade is obviously the gold standard of origin confidence, realistically for database compilation, B-C grade where gemstones are witnessed, purchased or collected from a trusted source near the mine are also generally acceptable confidence levels. Additionally, it may not even be possible to self-collect as many mines have shut down, or are otherwise inaccessible. Regardless of the degree of confidence in a gemstone's origin, the most important responsibility of a gem laboratory, museum or academic collection is to properly preserve these metadata.

Any instrument capable of obtaining chemical data can be used as a basis for a database. Common non-destructive methods include electron microprobe analysis, Raman spectroscopy, and x-ray fluorescence spectroscopy. The most limiting factor with these techniques is the relatively high elemental detection limit. More sensitive techniques such as thermal ionization mass spectrometry, solution ICP-MS are capable of much lower detection limits and the ability to measure specific isotopes, but are often highly destructive and very expensive. For the price of a small ablation hole barely visible to the eye, the LA-ICP-MS offers trace elemental resolution (down to parts per million and billion), quickly, at a moderate financial cost. Even on gem quality material, a carefully placed ablation spot is virtually undetectable to the human eye, which is why this is an ideal method to be used on precious samples such as gemstones.

Chapter 3 details the development of a hyper-specific provenance method applied to emeralds from Colombia. Colombian emeralds were chosen as the test samples for a number of reasons. Firstly, there is a strong desire in the gemstone industry to better understand where a Colombian emerald comes from, as certain deposits carry more perceived value than others (i.e. Emeralds from the Muzo mining district in Colombia). Secondly, between the gem laboratories of Technological Development Center for the Colombian Emerald (CDTEC) and the Gemological Institute of America (GIA), a comprehensive suite of first-hand geolocated emeralds were available. Third, the differing mining area classifications allowed us to test origin determination capabilities at 3 increasing levels of specificity: (1) The mining belt (east and west) which have similar, yet unique geology, (2) the mining district, of which there are 9, and (3) the individual mine—in this study 40 mines were sampled and studied.

The successful provenance discrimination determined at each level as detailed in chapter 3, set the basis for the new complementary study outlined in chapter 4, where this method was applied to a different mineral system with alluvial and primary igneous sapphires (corundum) deposits in Montana, USA. By repeating this methodology on a different mineral system, new insights to this provenance determination methods were discovered, for example the consistent success of the RFC model as a way to determine mineral provenance on applied to quadrupole LA-ICP-MS data, and some of the limitations of using a mineral which has fewer sites for trace elemental substitution than does emerald. In both chapters 3 and 4, in addition to answering the question of "where does a mineral come from", geochemical data can also shed valuable insights into the underlying geologic processes of formation. With the case of Colombian emeralds, the heterogeneity of V and Cr between the two mining belts was a major result. And with the Montana sapphire study, the importance of Mg/Ti as an indicator of the primary formational oxygen fugacity was discovered. These chapters can act as a blueprint for future mineral origin determination studies.

Using both the geochronological and trace elemental capabilities of the LA-ICP-MS, this dissertation will demonstrate its incredible usefulness in application to problems in mineral resource geology.

1.5 References

- Arrowsmith, Peter. (1987) Laser ablation of solids for elemental analysis by inductively coupled plasma mass spectrometry. Analytical Chemistry, 59, 1437–1444.
- Bédard, É., De Bronac de Vazelhes, V., and Beaudoin, G. (2022) Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration. Journal of Geochemical Exploration, 236, 106959.
- Breiman, L. (2001) Random Forests. Machine Learning, 45, 5–32.
- Catchpole, H., Kouzmanov, K., Fontboté, L., Guillong, M., and Heinrich, C.A. (2011) Fluid evolution in zoned Cordilleran polymetallic veins — Insights from microthermometry and LA-ICP-MS of fluid inclusions. Chemical Geology, 281, 293–304.
- Chang, J., Li, J.-W., and Audétat, A. (2018) Formation and evolution of multistage magmatichydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet: Insights from LA-ICP-MS analysis of fluid inclusions. Geochimica et Cosmochimica Acta, 232, 181–205.
- Chernonozhkin, S.M., McKibbin, S.J., Goderis, S., Van Malderen, S.J.M., Claeys, P., and Vanhaecke, F. (2021) New constraints on the formation of main group pallasites derived from *in situ* trace element analysis and 2D mapping of olivine and phosphate. Chemical Geology, 562, 119996.
- Chew, D., Drost, K., Marsh, J.H., and Petrus, J.A. (2021) LA-ICP-MS imaging in the geosciences and its applications to geochronology. Chemical Geology, 559, 119917.
- Chirinos, J.R., Oropeza, D.D., Gonzalez, J.J., Hou, H., Morey, M., Zorba, V., and Russo, R.E. (2014) Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 29, 1292–1298.
- Dubosq, R., Lawley, C.J.M., Rogowitz, A., Schneider, D.A., and Jackson, S. (2018) Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping. Lithos, 310–311, 86–104.

- Hong, S., Zuo, R., Huang, X., and Xiong, Y. (2021) Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition. Journal of Geochemical Exploration, 230, 106859.
- Kylander-Clark, A.R.C., Hacker, B.R., and Cottle, J.M. (2013) Laser-ablation split-stream ICP petrochronology. Chemical Geology, 345, 99–112.
- L. Gray, A. (1985) Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst, 110, 551–556.
- McClure, S.F., Moses, T.M., and Shigley, J.E. (2019) The Geographic Origin Dilemma | Gems & Gemology, 55, 457–462.
- McKay, G., and Harris, J.R. (2016) Comparison of the Data-Driven Random Forests Model and a Knowledge-Driven Method for Mineral Prospectivity Mapping: A Case Study for Gold Deposits Around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25, 125–143.
- Merriam-Webster (2024, January 11) Definition of artificial intelligence.
- O'Brien, J.J., Spry, P.G., Nettleton, D., Xu, R., and Teale, G.S. (2015) Using Random Forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb–Zn–Ag deposits in the Broken Hill domain, Australia. Journal of Geochemical Exploration, 149, 74–86.
- Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., and Chica-Rivas, M. (2015) Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.
- Rusk, B.G., Reed, M.H., Dilles, J.H., Klemm, L.M., and Heinrich, C.A. (2004) Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT. Chemical Geology, 210, 173–199.
- Słaby, E., Śmigielski, M., Śmigielski, T., Domonik, A., Simon, K., and Kronz, A. (2011) Chaotic three-dimensional distribution of Ba, Rb, and Sr in feldspar megacrysts grown in an open magmatic system. Contributions to Mineralogy and Petrology, 162, 909–927.

Sneha Verghese (2023) Gemstone Market Outlook. Future Market Insights.

- Sylvester, P.J., and Jackson, S.E. (2016) A Brief History of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP–MS). Elements, 12, 307–310.
- Ubide, T., McKenna, C.A., Chew, D.M., and Kamber, B.S. (2015) High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chemical Geology, 409, 157–168.
- Vertriest, W., Palke, A., and Renfro, N. (2019) Field Gemology: Building a Research Collection and Understanding the Development of Gem Deposits | Gems & Gemology. Gems & Gemology, 55, 490–511.
- Xie, W., Zeng, Q.-D., Huang, L.-L., Zhou, L.-L., Fan, H.-R., Wu, J.-J., Wang, R.-L., and Zhu, H.-P. (2023) Composition and evolution of ore-forming fluids in the Sansheng porphyry W-Mo deposit, Inner Mongolia, NE China: Evidence from LA-ICP-MS analysis of fluid inclusions. Ore Geology Reviews, 158, 105481.
- Zhao, Z.-H., Ni, P., Sheng, Z.-L., Dai, B.-Z., Wang, G.-G., Ding, J.-Y., Wang, B.-H., Zhang, H.-D., Pan, J.-Y., and Li, S.-N. (2020) Thermal regime reconstruction and fluid inclusion LA–ICP– MS analysis on intermediate-sulfidation epithermal Pb–Zn veins: Implications for porphyry Cu deposits exploration in the Xianhualing District, Anhui, China. Ore Geology Reviews, 124, 103658.

Chapter 2: The Temporal Evolution of the Candelaria Iron Oxide - Copper - Gold (IOCG) System, Chile: Insights from in situ U–Pb LA-ICP-MS of Apatite, Titanite, Magnetite and Ar/Ar of Actinolite

Co-authors: Maria A. Rodriguez-Mustafa, Irene del Real, Adam C. Simon, Robert M. Holder, Martin Reich, Fernando Barra, John F.H. Thompson, Andrew Kylander-Clark, Willis E. Hames, Alicia M. Cruz-Uribe

2.1 Abstract

Iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) deposits are important sources of Cu and Fe, respectively, and in some deposits, by-product metals such as Ti, V, Co, U, Au, Ag, and rare earth elements (REE). Studies have interpreted the spatial and temporal relationship between IOCG and IOA deposits to indicate that both deposits are members of a single mineralizing system. The Candelaria IOCG deposit in Chile documents evidence of episodic pulses of magmatic-hydrothermal fluids that produced early magnetite- and actinolite-rich IOA-type mineralization that was overprinted by a later copper-rich fluid precipitating magnetite-, actinoliteand Cu-Fe- sulfide-rich IOCG mineralization. We tested this episodic formation hypothesis by dating actinolite-hornblende, apatite, magnetite, and titanite in samples from a 1,132 m drill core. Isotopic ratios of U and Pb in apatite, titanite, and magnetite were determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and ⁴⁰Ar/³⁹Ar from an actinolite-hornblende sample. Apatite and titanite dates are generally consistent with published Re-Os dates for molybdenite of c. 115 Ma, which is the interpreted age of main-stage Cu-sulfide mineralization. The ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ date for the actinolite-hornblende sample is 121.2 \pm 0.6 Ma, and magnetite grains yielded U–Pb dates between 122.2 ± 7.9 and 147.5 ± 10.6 Ma. Together, the dates obtained for actinolite-hornblende, apatite, magnetite, and titanite provide evidence of episodic pulses of magmatic-hydrothermal mineralizing fluids forming the Candelaria deposit.

2.2 Introduction

Iron oxide-copper-gold (IOCG) and iron oxide-apatite (IOA) deposits host a diverse array of critical elements for modern technology and renewable energy, such as Cu, Fe, P, rare earth elements (REEs), Co, Au and U (e.g., Hitzman, 2000; Williams et al., 2005; Sillitoe, 2003; Groves et al., 2010; Barton, 2014; Reich et al., 2022). Copper is of particular global concern because it is the backbone for the global electricity infrastructure (Elshkaki et al., 2016). As global electricity demand increases and society transitions to renewable energy infrastructure such as utility scale solar and wind, the demand for copper is forecasted to increase between 275% and 350% by 2050 technologies (Kesler and Simon, 2015, Elshkaki et al., 2016). The increase also considers the global adoption of electric vehicles and grid-scale battery storage, among others. Thus, understanding the formation of copper-bearing mineral deposits is critical for improving the discovery of deposits necessary for sustainable production of copper from primary resources.

Although IOCG and IOA deposits are considered separate deposit types, several studies have suggested a genetic relationship in which IOA style mineralization represents the root of a larger, vertically connected, evolving IOA-IOCG deposit system (e.g., Espinoza et al., 1998; Sillitoe, 2003; Reich et al., 2016; Bilenker et al., 2016; Barra et al., 2017; Rodriguez-Mustafa et al., 2020; Reich et al., 2022). A key location to test this hypothesis is Chilean Iron Belt, and particularly, the Candelaria IOCG deposit in northern Chile (Fig. 2-1), where recent studies have proposed that IOA and IOCG mineralization styles may represent temporally distinct hydrothermal stages of the same system (del Real et al., 2021). The Candelaria mine in the Punta del Cobre district is one of the largest IOCG deposits in the world, containing > 743 Mt measured and infered reserves of Cu (Banerjee et al., 2023). Primary Cu mineralization in this district is hosted in the Punta del Cobre Formation, an Early Cretaceous, volcanic-clastic sequence (c. 135-132 Ma) overlain by marine sediments of the Chañarcillo Group that span between 132 and 130 Ma (del Real et al., 2018). The crustal-scale Atacama sinistral strike-slip fault system appears to have controlled fluid flow and mineralization in Candelaria as well as IOCG and IOA deposits in other parts of the Coastal Cordillera of northern Chile (del Real et al., 2018 and references therein). Previous work documented evidence that supports two discrete stages of mineralization at Candelaria: an earlier sulfide-poor, magnetite-, and actinolite-rich IOA style and a later magnetite-, actinolite-, biotite-, Cu-Fe-sulfide-rich IOCG stage (Rodriguez-Mustafa et al., 2020; del Real et al., 2021). Fe concentrations measured in Candelaria actinolite, which has been suggested to indicate changes in temperature (Lledó and Jenkins, 2008), suggest at least two distinct magmatichydrothermal events in the Candelaria system, wherein actinolite grains record a first hotter growth event, overgrown by a subsequent hot, but lower temperature growth event, which could be explained by growth from two distinct pulses of magmatic-hydrothermal fluid flow within the Candelaria system (del Real et al., 2021).

This study tests the multi-episodic formation hypothesis by constraining the timing of hydrothermal events at Candelaria. We collected samples from a 1,132 m drill core that vertically traverses the Candelaria deposit extending from shallow Cu-Fe-sulfide IOCG mineralization and transitioning to magnetite–actinolite rich IOA-style mineralization with depth. U–Pb isotope ratios of apatite, magnetite, and titanite in thin sections from varying depths in the drill core (133 m to 1132 m) were measured via *in-situ* laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The geochronologic results provide insights into the temporal history of mineralization in the Candelaria IOCG deposit and improve the understanding of the evolution of this world-class mineral system.

2.3 Analytical Methods

Actinolite-hornblende in solid solution, apatite, magnetite, and titanite were documented using back scattered electron (BSE) imaging and energy dispersive X-ray spectrometry (EDS) on a JEOL JSM-7800F field emission scanning electron microscope (SEM) at the University of Michigan. A relatively coarse amphibole with actinolite-hornblende solid solution was also analyzed with a JEOL JXA-8600 electron microprobe at Auburn University. U-Pb isotopic ratios of apatite, magnetite, and titanite grains were measured analyzed in-situ by LA-ICP-MS. All apatite, all magnetite, and 3 of 7 titanite samples from four depths were analyzed via laserablation split-stream (LASS) ICP-MS using a Cetac/Teledyne Photon Machines 193 nm excimer Analyte laser with a HelExII cell connected to a Nu Instruments Plasma HR-ES MC-ICP-MS and an Agilent 7700X at the University of California, Santa Barbara following the procedures of Kylander-Clark et al. (2013) and Kylander-Clark (2020). Reference materials for analysis (run at standard intervals throughout each session) include MAD-UCSB (primary U-Pb ap; Apen et al., 2021), Durango (Paul et al., 2021), BRZ-1 (Apen et al., 2021), NIST612 (primary U-Pb mag; primary TE ap, ttn), BHVO (primary TE mag), MKED-1 (primary U-Pb ttn; Spandler et al., 2016), Y1710C5 (Spencer et al., 2013), BLR-1 (Aleinikoff et al., 2007) and Fish Canyon ttn (Schmitz and Bowring, 2001). Calculated ages for secondary reference materials for apatite and titanite were well

within 2% of their accepted values, and as such, final ages reported for unknowns should be accurate to the long-term reproducibility of 2%. Because no reference material yet exists for magnetite, NIST 612 glass was used as the reference material for U-Pb reduction (Kylander-Clark, 2020); because of this, accuracy can vary systematically from session to session so, relative ages may be comparable within each session, but are only qualitative from session to session. Titanite grains from four additional depths were analyzed using a NWR193UC Excimer laser coupled to an Agilent 8900 ICP-MS at the University of Maine, Orono. All data were processed using the commercially available software Iolite (Paton et al., 2011). Reported measurements are weighted mean ages and uncertainties are 2σ . Measurements were not corrected for common Pb to reduce uncertainty. Calculated U–Pb dates are the 95% confidence intervals of lower discordia intercepts.

No matrix-matched U–Pb reference material is available for magnetite U–Pb dating; therefore, magnetite dates were calculated using Mud Tank zircon standard (Black and Gulson, 1978) and NIST614 glass as the primary and secondary reference material, respectively. Actinolite–hornblende grains were separated drilling the vein directly and isotope ratios for ⁴⁰Ar/³⁹Ar geochronology were measured at the Auburn Noble Isotope Mass Analysis Lab (ANIMAL) at Auburn University. Additional method details are reported in Appendix A-1.

2.4 Results

Magnetite crystals commonly exhibit triple junctions and there are textural differences between the core and rim (Fig. 2-2a). Magnetite cores are porous and inclusion-rich; rims are non-porous and lack inclusions. Ablation spots were generally too large to discriminate between the core and rims and therefore represent whole grain dates. In BSE images, magnetite cores are darker than rims, consistent with greater abundances of minor and trace elements in the cores (Rodriguez-Mustafa et al., 2020). Two titanite grains also have a core–rim distinction in BSE images (Fig. 2-2b) and some titanite grains have irregular, sometimes globular grain boundaries and are often associated with or included within magnetite (Fig. 2-2c). Apatite grains are generally anhedral, clusters or vein or void fillings, and exhibit little to no zonation in BSE images (Fig. 2-2d). Apatite grains from deeper parts of the drill core often appear porous and inclusion rich.

New calculated dates are presented in Table 2-1, with uncertainties of 2 se. Most apatite dates were c. 115 Ma, regardless of textural setting or depth in the deposit (Fig. 2-3a). Titanite dates from two sample depths were also c. 115 Ma (sample depth 731 m: 115.4 ± 1.6 Ma; 817 m: 114.4 ± 2.3 Ma). Older titanite dated to c. 118 Ma (sample depth 1132 m: 118.7 ± 1.4 Ma), c. 126

Ma (sample depth 148 m: 126.1 \pm 3.7 Ma; 1030 m: 126.9 \pm 4.7 Ma), and c. 130 (sample depth 1101 m: 130.1 \pm 2.7 Ma). A single titanite grain adjacent to a potassium feldspar vein dated to 90.8 \pm 2.8 Ma. The actinolite-hornblende sample had sufficient weight percent K₂O (0.2 wt%) to be dated via the ⁴⁰Ar/³⁹Ar method and had the sufficient grain size (>100 µm in smallest dimension) to be separable (via drilling) and datable. Actinolite-hornblende from sample depth 731 m yielded a plateau age of 121.2 \pm 0.6 Ma. Exploratory U–Pb magnetite dates from the 5 samples ranged from c. 122-147 Ma with 2se uncertainties around \pm 10 Ma (Table 1, Fig 2-3b).

Samples from depths 731 m and 840 m are of particular interest because they preserve distinct cross-cutting relationships and therefore provide additional context for interpreting the dates. Sample depth 731 m has a vein of mushketovite (i.e., platy magnetite pseudomorph after hematite) cross-cutting the section laterally over a fine-grained altered groundmass, and a vein of actinolite-hornblende cross-cutting through the whole section (Fig. 2-4). When dates were calculated taking textural relationship into account, dates from apatite found in both the matrix and in the magnetite, vein are statistically indistinguishable (115.2 \pm 2.5 Ma and 116.9 \pm 0.9 Ma, respectively) and record the same date as the titanite found in the matrix (115.4 \pm 1.5 Ma). The actinolite-hornblende yielded a plateau age of 121.2 ± 0.6 Ma (Fig. 2-4a & b).

Sample depth 840 m also featured a prominent mushketovite vein crosscutting a finegrained matrix with patches of disseminated magnetite. Another vein of fine grained-magnetite can be seen cross-cutting the matrix in a different area of the section. Apatite from the large mushketovite vein gives a date of 115.4 ± 16.7 Ma, apatite from the matrix gives a date of $120.2 \pm$ 6.6 Ma. Apatite associated with the fine-grained magnetite vein gives a date of 112.9 ± 2.6 Ma. Taken together, these three dates are not statistically distinguishable.
2.5 Discussion

New dates from this study and from previous works show strong evidence for a main hydrothermal mineralization at c.115 Ma. Published Re–Os dates for molybdenite, which is interpreted as coeval with Cu-Fe-sulfides in the shallow levels of the deposit, are 114.2 ± 0.6 Ma and 115.2 ± 0.6 Ma and constrain the age of Cu-Fe-sulfide IOCG mineralization (Mathur et al., 2002). These dates for sulfide mineralization are consistent with the ⁴⁰Ar/³⁹Ar dates of biotite and amphibole as determined in Marschke and Fontboté (2001) which ranged from 116.6 ± 1.2 Ma to 114.9 ± 0.5 Ma.

The nearby Copiapó batholith is a potential source of the magmatic-hydrothermal fluids for the Candelaria deposit (Marschik and Fontboté, 2001; Mathur et al., 2002; Arévalo et al., 2006), and ranges in age from 110–118 Ma (Marschik and Söllner, 2006). In our study, titanite and apatite dates that record c. 115 Ma hydrothermal event are contemporaneous with the San Gregorio unit of the batholith (115.5 \pm 0.4 Ma, U–Pb in zircon), and dacitic dikes (112.8 \pm 1.3 Ma and 115.2 \pm 1.8 Ma, U–Pb in zircon) likely marking the same hydrothermal event (del Real et al., 2018). One titanite sample yielded a slightly older date of 118.7 \pm 1.4 Ma, which is the same age as the La Brea unit of the Copiapó Batholith (118 \pm 1 Ma, U–Pb in zircon, Marschik and Söllner, 2006) the largest and most prominent phase of the intrusion (del Real et al., 2018). Although hydrothermal mineralization and batholith emplacement are temporally correlated, there has not yet been a direct geochemical or field relationship connection determined to indicate the batholith is the direct source of the fluids (Marschik and Fontboté, 2001).

Most apatite and many titanite dates from this study are indistinguishable within uncertainty at c. 115 Ma. A single titanite grain in one sample (817m) associated with a potassium feldspar yielded younger dates of c. 90 Ma. This suggests possible additional, minor hydrothermal activity after the main c. 115 Ma mineralization event.

Sample 52 from 731 m depth features two cross-cutting veins over a finegrained groundmass: A mushketovite vein cutting through the matrix, and an actinolite vein cross-cutting the magnetite (Fig. 2 - 4). Matrix apatite, vein apatite, and matrix titanite yielded statistically indistinguishable dates of c. 115 Ma, in agreement with the interpreted age of Cu-Fe mineralization (Marschik and Fontboté, 2001; Mathur et al., 2002). Titanite found in the matrix show irregular grain boundaries and strong lobate zoning around the margins, further supporting the interpretation of these dates as an age of hydrothermal alteration via dissolutionreprecipitation (Fig. 2-2b, Putnis, 2009; Holder and Hacker, 2019). The presence of mushketovite in this sample also implies secondary interaction with a hydrothermal fluid, as mushketovite forms as a pseudomorphic reaction where hematite is replaced by magnetite, which is caused by a change in temperature or oxygen fugacity (Hu et al., 2020). The occurrence of mushketovite in many samples is evidence of more complex (re)crystallization processes, but this event(s) were not resolvable in this study via magnetite U–Pb dating.

Due to the distinct cross-cutting relationships of veins in this section, it is expected for the groundmass to be the oldest, followed by the mushketovite, with the actinolite-hornblende vein to be the youngest. However, the actinolite-hornblende yielded a plateau age of 121.2 ± 0.6 Ma—distinctly older than the c. 115 Ma apatite and titanite from this section. Unlike the titanite, BSE images and EMPA maps of actinolite-hornblende do not show any indication of hydrothermal alteration (Fig. 2-5). Candelaria actinolite-hornblende has been suggested to record different growth generations from distinct hydrothermal pulses (del Real et al., 2021), but this actinolite-hornblende appears to only record one single mineralizing event, as there are no apparent overgrowth zones, and the plateau age remains constant throughout step heating indicating no diffusive Ar loss following initial crystallization. It therefore appears that this actinolite date represents a distinct hydrothermal event at c. 121 Ma, which is consistent with a dacitic dike U-Pb zircon age of 121.9 ± 2.4 Ma (del Real et al., 2018), which was followed by a later hydrothermal event c. 115 Ma that reset the titanite and apatite in the groundmass of the andesitic host rock.

2.6 Magnetite dating: Promise and Limitations

Magnetite dates reported in this study range from 122.2 ± 7.9 Ma to 147.6 ± 10.1 Ma., with most falling c. 130 Ma (Table 2-1, Fig 2-3b). Because a primary, matrix-matched reference material for magnetite is yet to exist, these dates are only qualitative in nature. The analytical uncertainties are too large to precisely constrain distinct hydrothermal events, the dates are consistent with the maximum and minimum age constraints provided by the host rock andesites (~135 Ma, del Real 2018) and the c. 115 Ma hydrothermal mineralization, respectively (Fig. 2-3). The primary challenge with U–Pb dating of magnetite is the high concentration of common Pb often found in magnetite in combination with low concentrations

of U. This makes for low U/Pb and therefore makes it difficult to accurately measure this ratio: for example, sample 34 from 486 m depth (Fig. 2-6). An additional challenge to dating magnetite from Candelaria is that core and rim dates, which clearly record two generations of magnetite, were not statistically distinguishable (Fig 2-2a, d). With these caveats, the geologically reasonable results from this study show that U–Pb magnetite dating has promise as a geochronometer. Thus far, it has proven its ability to help broadly constrain the timing of magnetite mineralization, but not to discriminate between temporally close magnetite events due to relatively high uncertainties (~6-7%). Further work developing an analytical standard for this method is needed in order to reliably date magnetite going forward.

2.7 Summary

Most of the new apatite and titanite dates reported here are consistent with previously reported ages of sulfide mineralization (Re–Os, Molybdenite) at c. 115 Ma. Actinolite-hornblende and four titanite samples record other hydrothermal events at 118 Ma, 121 Ma, and 126 Ma. It was determined that these dates has no meaningful correlation with depth (Fig. 2-3). The new dates presented in this study present evidence supporting an episodic, multi-pulse model of formation for the Candelaria IOCG deposit. Magnetite U–Pb dates are less precise due to low U/Pb ratios, but still geologically useful and broadly consistent with the other dates reported here. Our results support a multi-phase hydrothermal model of formation of the Candelaria deposit, where an IOA style mineralization (magnetite-actinolite) is overprinted by the Cu-rich IOCG style mineralization.

2.8 Acknowledgments

A debt of gratitude is owed to Dr. Owen Neill at the University of Michigan for his assistance with scanning electron microscopy. This work was supported by the U.S. National Science Foundation under Grants EAR-2214119, EAR-2233425, EAR-1924192, EAR-1759200 and EAR-1759353, and Chilean Fondecyt grant #3200532. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Thanks to the AGeS program

for its support. All samples were obtained from the Candelaria deposit with permission from Lundin Mining. Lundin Mining is acknowledged for their field support.

2.9 Figures and Tables

Table 2-1. Summary of ages determined by U-Pb	for titanite, apatite and magnetite, and Ar-Ar
for actinolite.	

3							
Mineral	Comment	Age (Ma)	2SE	Ν	MSWD	p(X^2)	Depth
Titanite	C52	115.4	1.6	4	0.91	0.44	731
Titanite	C58	114.4	2.3	7	0.91	0.48	817
Titanite	C58 (Ttn adjacent K-spar vein)	90.8	2.8	3	3.4	0.064	817
Titanite	C11	126.11	3.66	24	4.2	1.7 x 10- 10	148
Titanite	C65	126.92	4.7	26	1.2	0.27	1030.4
Titanite	C70	130.1	2.7	30	1.8	0.0049	1109.5
Titanite	C73	118.7	1.4	30	0.78	0.79	1132.1
Apatite	C43	106.6	8.8	8	0.82	0.57	618
Apatite	C52 (in mushketovite vein)	116.9	0.9	58	1	0.43	731
Apatite	C52 (in volcanic groundmass)	115.2	2.5	13	0.63	0.82	731
Apatite	C61 (ap in matrix)	120.2	6.6	5	1.9	0.1	840
Apatite	C61 (ap in mag vein 1)	115.4	16.7	7	1.4	0.21	840
Apatite	C61 (ap in mag vein 2)	112.9	2.6	19	2.3	0.0017	840
Apatite	C62	112.3	4.2	7	0.19	0.98	871
Apatite	C12	113	1.4	90	1.4	0.015	133
Magnetite	C12	122.2	7.9	26	0.25	1	133
Magnetite	C52	124.4	9	16	0.76	0.73	731
Magnetite	C58	128.3	8.5	8	0.75	0.63	817
Magnetite	C61	127.2	16.2	18	0.24	1	840
Magnetite	C61 (matrix mag)	130.7	11.5	19	0.85	0.64	840
Magnetite	C61 (mag vein 1)	137.5	11.9	11	0.59	0.64	840
Magnetite	C61(mag vein 2)	147.6	10.1	6	0.45	0.81	840
Magnetite	C62 (Magnetite in matrix)	130.9	7.3	29	0.53	0.91	871
Actinolite	C58	121.15	0.63	3	0.82	0.69	817

Notes: SE = standard error at 95% Confidence interval.

Figure 2-1: Map of the Chilean Iron Belt (CIB) highlighting the area's important IOA and IOCG deposits (modified from Rodriguez-Mustafa et al., 2020). The location of the Candelaria IOCG deposit is designated with a star. Note the proximal relationship between IOCG style deposits such as Candelaria and IOA deposits along the Atacama Fault System in northern Chile.

Figure 2-2: Representative BSE images. (Mag: magnetite, Ap: apatite, Ttn: titanite, Ccp: chalcopyrite) (A) Image of a hydrothermal apatite and magnetite. Note the difference in texture between the magnetite core (spongy, full of mineral inclusions and pits) and rims (non-spongy, inclusion free). The dashed red line denotes a triple junction between magnetite grains. (B) Titanite grain with increased contrast to highlight internal zonation. Internal zones appear blobby and porous with some associated magnetite. (C) Representative image of a commonly seen petrological relationship between titanite with magnetite in these samples. (D) Representative image of the Candelaria IOCG mineralization with chalcopyrite, apatite, magnetite. Outline of textural core-rim zoning in magnetite highlighted by the dashed red line.

Dated Candelaria Minerals

Figure 2-3a: Summary chart showing depths and dates with 2se uncertainties for minerals dated from the Candelaria IOCG, highlighting the temporal relationship with proximal igneous units. The colored vertical bars represent zircon U–Pb ages of magmatic activity reported by del Real et al (2018). From left to right, the light pink bars show ages of different pulses of the Copiapó batholith (Los Liros: 110.7 ± 0.4 Ma, San Gregorio: 115.5 ± 0.4 Ma, Adamelite (quartz monzonite porphyry): 116.3 ± 0.4 Ma, La Brea: 118.0 ± 1.0 Ma), the dark pink bars show the ages of premineralization dacitic dikes (121.9 ± 2.4 Ma and 124.9 ± 0.4 Ma), and the gray bar shows the ages of the host rock andesite (upper andesite: 132.4 ± 2.9 Ma, lower andesite: 135.3 ± 1.0 Ma). Dates falling within the dashed boxes are from the same sample depth. Many dates calculated in this study cluster heavily around c. 115 Ma, which corresponds to the San Gregorio and Adamelite pulses of the Copiapó batholith, as well as previously published ages from Mathur et al. (2002) and Marschik and Fontbote (2001).

Figure 2-3b. Summary chart showing depths and dates with 2se uncertainties for exploratory magnetite/mushketovite dated. While the uncertainties are high, dates reported are interestingly geologically reasonable.

Figure 2-4a: Image of sample C52 from 731 m with locations of dated minerals, highlighting cross-cutting relationships, with the actinolite-hornblende vein outlined in a white dotted line. Apatite and titanite found in the matrix, and apatite in the magnetite (mushketovite) vein have the same calculated dates at c. 115 with overlapping 2se uncertainties. The actinolite-hornblende is distinctly older at 121.1 Ma. Green circles in the thin section image represent the locations of apatite dated, and blue represent the location of titanate dated. See text for discussion.

Figure 2-4b: Terra-Wasserburg diagrams for U–Pb dates of matrix apatite, titanite, and apatite found in the magnetite (mushketovite) vein, and 40 Ar/ 39 Ar age spectra of Actinolite-hornblende in sample C52 from 731 m depth.

Figure 2-5: BSE image and WDS maps of the actinolite vein in sample C52 from the 731 m depth. Actinolite is generally homogeneous, with zoning in the BSE image due to Fe - Mg 1 exchange. K is present throughout the actinolite (averaging ~0.25 wt% K₂O), and accompanied by the coupled KAlSi-1 exchange, with cores slightly more enriched in K relative to the rim. Scale bar = 1 mm in each image.

Figure 2-6: Terra-Wasserburg diagrams of magnetite U–Pb from samples C12 from (a) 133 m depth and (b) C34 from 486 m depth, highlighting the potential and limitations of magnetite U–Pb dating, respectively. Sample C12 has a date of 122.2 ± 7.9 Ma (MSWD = 0.25, $p(\chi^2) = 1$), whereas sample C34 has a date of 95.4 ± 38.8 Ma (MSWD = 0.19, $p(\chi^2) = 1$). The very high 2se uncertainty in sample C34 is due to high concentrations of common Pb, which is a key hindrance to the effectiveness of magnetite U–Pb dating.

2.10 References

- Aleinikoff, J.N., Wintsch, R.P., Tollo, R.P., Unruh, D.M., Fanning, C.M., and Schmitz, M.D., 2007, Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England: American Journal of Science, v. 307, no. 1, p. 63–118.
- Apen, F.E., Wakabayashi, J., Day, H.W., Roeske, S.M., Souders, A.K., and Dumitru, T.A., 2021, Regional-scale correlations of accreted units in the Franciscan Complex, California, USA: A record of long-lived, episodic subduction accretion, in Wakabayashi, J., Dilek, Y., and Wakabayashi, J. eds., Plate Tectonics, Ophiolites, and Societal Significance of Geology: A Celebration of the Career of Eldridge Moores: Geological Society of America, p. 0.
- Arévalo, C., Grocott, J., Martin, W., Pringle, M., and Taylor, G., 2006, Structural Setting of the Candelaria Fe Oxide Cu-Au Deposit, Chilean Andes (27°30' S): Economic Geology, v. 101, no. 4, p. 819–841.
- Banerjee, S., Zhang, B., Scott, C., MacDougall, C., and Dance, A., 2023, Technical Report for the Candelaria Copper Mining Complex, Atacama Region, Region III, Chile: CAPR002061.
- Barra, F., Reich, M., Selby, D., Rojas, P., Simon, A., Salazar, E., and Palma, G., 2017, Unraveling the origin of the Andean IOCG clan: A Re-Os isotope approach: Ore Geology Reviews, v. 81, p. 62–78.
- Barton, M.D., 2014, 13.20 Iron Oxide(-Cu-Au-REE-P-Ag-U-Co) Systems, in Holland, H.D. and Turekian, K.K. eds., Treatise on Geochemistry (Second Edition): Oxford, Elsevier, p. 515-541.
- Bilenker, L.D., Simon, A.C., Reich, M., Lundstrom, C.C., Gajos, N., Bindeman, I., Barra, F., and Munizaga, R., 2016, Fe–O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits: Geochimica et Cosmochimica Acta, v. 177, p. 94–104.
- Black, L., and Gulson, B., 1978, The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory: B.M.R.J. AUSTRAL. GEOL. GEOPHYS.; AUS; DA. 1978; VOL. 3; NO 3; PP. 227-232; BIBL. 1 P.; 6 ILL.
- Elshkaki, A., Graedel, T.E., Ciacci, L., and Reck, B.K., 2016, Copper demand, supply, and associated energy use to 2050: Global Environmental Change, v. 39, p. 305–315.
- Espinoza, S., Veliz, H., Esquivel, J., Arias, J., and Moraga, A., 1998, The Cupriferous Province of the Coastal Range, Northern Chile, in Camus, F., Sillitoe, R., and Petersen, R. eds., Andean Copper Deposits: New Discoveries, Mineralization, Styles and Metallogeny: Society of Economic Geologists, p. 0.
- Groves, D.I., Bierlein, F.P., Meinert, L.D., and Hitzman, M.W., 2010, Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits: Economic Geology, v. 105, no. 3, p.641–654.

- Harrison, M.T., 1982, Diffusion of 40Ar in hornblende: Contributions to Mineralogy and Petrology, v. 78, no. 3, p. 324–331.
- Hitzman, M.W., 2000, Iron-oxide-Cu-Au deposits: what, where, when, and why. T.M. Porter (Ed.), Hydrothermal iron-oxide copper-gold & related deposits: a global perspective: Australian Mineral Foundation, p. 9–25.
- Holder, R.M., and Hacker, B.R., 2019, Fluid-driven resetting of titanite following ultrahightemperature metamorphism in southern Madagascar: Chemical Geology, v. 504, p. 38–52.
- Hu, X., Chen, H., Beaudoin, G., and Zhang, Y., 2020, Textural and compositional evolution of iron oxides at Mina Justa (Peru): Implications for mushketovite and formation of IOCG deposits: American Mineralogist, v. 105, no. 3, p. 397–408.
- Kesler, S.E., and Simon, A.C., 2015, Mineral resources, economics and the environment: Cambridge University Press.
- Kohn, M.J., 2017, Titanite Petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, no. 1, p. 419–441.
- Košler, J., Sláma, J., Belousova, E., Corfu, F., Gehrels, G.E., Gerdes, A., Horstwood, M.S.A., Sircombe, K.N., Sylvester, P.J., Tiepolo, M., Whitehouse, M.J., and Woodhead, J.D., 2013, U-Pb Detrital Zircon Analysis – Results of an Inter-laboratory Comparison: Geostandards and Geoanalytical Research, v. 37, no. 3, p. 243–259.
- Kylander-Clark, A.R.C., 2020, Expanding the limits of laser-ablation U–Pb calcite geochronology: Geochronology, v. 2, no. 2, p. 343–354.
- Kylander-Clark, A.R.C., Hacker, B.R., and Cottle, J.M., 2013, Laser-ablation split-stream ICP petrochronology: Chemical Geology, v. 345, p. 99–112.
- Lledo, H.L., and Jenkins, D.M., 2008, Experimental Investigation of the Upper Thermal Stability of Mg-rich Actinolite; Implications for Kiruna-Type Iron Deposits: Journal of Petrology, v. 49, no. 2, p. 225–238.
- Marschik, R., and Fontboté, L., 2001, The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposits, Chile: Economic Geology, v. 96, no. 8, p. 1799–1826.
- Marschik, R., and Söllner, F., 2006, Early cretaceous U-Pb zircon ages for the Copiapó plutonic complex and implications for the IOCG mineralization at Candelaria, Atacama Region, Chile.: Miner. Deposita, v. 41, p. 785–801.
- Mathur, R., Marschik, R., Ruiz, J., Munizaga, F., Leveille, R.A., and Martin, W., 2002, Age of Mineralization of the Candelaria Fe Oxide Cu-Au Deposit and the Origin of the Chilean Iron Belt, Based on Re-Os Isotopes: Economic Geology, v. 97, no. 1, p. 59–71.

- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J., 2011, Iolite: Freeware for the visualisation and processing of mass spectrometric data: Journal of Analytical Atomic Spectrometry, v. 26, no. 12, p. 2508–2518.
- Paul, A.N., Spikings, R.A., and Gaynor, S.P., 2021, U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites: Chemical Geology, v. 586, p. 120604.
- Putnis, A., 2009, Mineral Replacement Reactions: Reviews in Mineralogy and Geochemistry, v. 70, no. 1, p. 87–124.
- del Real, I., Thompson, J.F.H., and Carriedo, J., 2018, Lithological and structural controls on the genesis of the Candelaria-Punta del Cobre Iron Oxide Copper Gold district, Northern Chile: Ore Geology Reviews, v. 102, p. 106–153.
- del Real, I., Reich, M., Simon, A.C., Deditius, A., Barra, F., Rodríguez-Mustafa, M.A., Thompson, J.F.H., and Roberts, M.P., 2021, Formation of giant iron oxide-copper-gold deposits by superimposed, episodic hydrothermal pulses: Communications Earth & Environment, v. 2, no. 1, p. 1–9.
- Reich, M., Simon, A.C., Deditius, A., Barra, F., Chryssoulis, S., Lagas, G., Tardani, D., Knipping, J., Bilenker, L., Sánchez-Alfaro, P., Roberts, M.P., and Munizaga, R., 2016, Trace Element Signature of Pyrite From The Los Colorados Iron Oxide-Apatite (IOA) Deposit, Chile: A Missing Link Between Andean IOA and Iron Oxide Copper-Gold Systems? Economic Geology, v. 111, no. 3, p. 743–761.
- Rodriguez-Mustafa, M.A., Simon, A.C., del Real, I., Thompson, J.F.H., Bilenker, L.D., Barra, F., Bindeman, I., and Cadwell, D., 2020, A Continuum from Iron Oxide Copper-Gold to Iron Oxide-Apatite Deposits: Evidence from Fe and O Stable Isotopes and Trace Element Chemistry of Magnetite: Economic Geology, v. 115, no. 7, p. 1443–1459.
- Schmitz, M.D., and Bowring, S.A., 2001, U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks: Geochimica et Cosmochimica Acta, v. 65, no. 15, p. 2571–2587.
- Sillitoe, R.H., 2003, Iron oxide-copper-gold deposits: An Andean view: Mineralium Deposita, v. 38, no. 7, p. 787–812.
- Smye, A.J., Marsh, J.H., Vermeesch, P., Garber, J.M., and Stockli, D.F., 2018, Applications and limitations of U-Pb thermochronology to middle and lower crustal thermal histories: Chemical Geology, v. 494, p. 1–18.
- Spencer, K.J., Hacker, B.R., Kylander-Clark, A.R.C., Andersen, T.B., Cottle, J.M., Stearns, M.A., Poletti, J.E., and Seward, G.G.E., 2013, Campaign-style titanite U–Pb dating by laserablation ICP: Implications for crustal flow, phase transformations and titanite closure: Chemical Geology, v. 341, p. 84–101.

- Ullrich, T.D., Clark, A.H., and Stanley, C.J., 1999, The Candelaria copper-gold deposit, Region III, Chile: Paragenesis, geochronology and fluid composition: Mineral Deposits: Processes to Processing, v. Balkema, p. 201–204.
- Williams, P.J., Barton, M.D., Johnson, D.A., Fontboté, L., De Haller, A., Mark, G., Oliver, N.H.S., and Marschik, R., 2005, Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin: Economic Geology 100th Anniversary Volume, p. 371–405.

Chapter 3: Application of Random Forest Classification Machine Learning for Hyper-Specific Mineral Origin Determination Studies: Insights from Colombian Emerald and Euclase

Co-authors: Aaron Palke, Gabriel Angarita, Andres F. Gonzalez-Duran, Ziyin Sun, Javier Garcia Toloza, Camilo A. Betancur-Acevedo, Adam C. Simon

3.1 Abstract

One of the most pressing issues currently facing the gem industry is how to accurately determine the provenance of an unknown gemstone. This problem is particularly relevant with emeralds from Colombia, which are widely considered to be among the world's finest. Hence, there is a strong desire among traders and consumers to accurately determine the geographic origin of Colombian emeralds. Here, we used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure elemental concentrations of emeralds from 40 mines from all 9 mining districts of the eastern and western Colombian emerald belts. These data were used to develop a random forest classification (RFC) machine learning algorithm to distinguish emeralds from among the Colombian belts, districts, and mines. The RFC method was proven highly effective at determining whether an unknown emerald was from the eastern or western mining belt (~98% accuracy) and determining the mining district of origin (~85% accuracy). Using the variable importance list calculated from the RFC model, it was determined that the V/Cr ratio is the most

important variable in determining whether an emerald is from the Eastern or Western mining belt, with western emeralds having higher concentrations of V and lower concentrations of Cr than eastern belt emeralds. These elements are the primary chromophores that give emeralds their distinctive color, and the variability in V and Cr contents explains the wide range of hues of green observed among Colombian emeralds. The same method of coupling LA-ICP-MS data with a RFC model was also used on Colombian euclase from three of the same mines as the emeralds, and it was determined that the origin of an unknown Colombian euclase can be predicted with ~99% accuracy. An added benefit of the RFC model is that useful visualizations can be created utilizing the calculated variable importance list and calculated probabilities associated with its predictions. This allows for the creation of discriminant charts post-hoc, as well as probability heat maps that complement the RFC machine learning prediction. This method of (1) collecting a comprehensive database of LA-ICP-MS trace element data; (2) applying a random forest model to the data; (3) creating visualizations and discriminant diagrams post-hoc-has potential to rapidly expand our current capabilities to determine the provenance of any given mineral to a potentially hyper-specific degree.

Keywords: Random Forest Classification, CART, Machine Learning, Geochemistry, Colombia, Emeralds, Euclase, LA-ICP-MS, Mineral Origin Determination, Provenance, Gemology

3.2 Introduction

Geographic origin determination is one of the most pressing issues facing the gem industry (e.g. McClure et. al 2019), and it is the responsibility of gemology laboratories to develop methods to better predict where an unknown gemstone is from to ensure public trust. Whether due to the perceived quality, history, lore, geology, or collector's interest—some localities are valued more highly than others. For example, a Burmese (Myanmar) ruby can fetch a higher price than a ruby of equal quality from elsewhere simply due to the fame behind its source locality (Shor and Weldon, 2009). Likewise, Colombian emeralds are generally more highly valued than those from other sources, and even more specifically within Colombia, emeralds from the Muzo mining area hold exceptional value. Each collected mineral has a deep geologic and anthropological history to it, and to the collector, information can be as valuable as the stone. Whether or not the reader agrees that added value should be placed on gemstones based on location, it is an undeniable trend in the gem and mineral industry that location holds a special value in the eyes of many buyers.

Preserving origin information for gemstones is notoriously difficult because original location information may be inadvertently lost due to poor record keeping and poor inventory control (e.g. McClure et. al 2019). Additionally, as in any industry, where there is perceived value, there is also opportunity for unethical practices. Herein lies the importance of gem laboratories to provide and continue to develop quality assurance methods. There is already an established market for origin determination, as is evident by the services offered at gemology laboratories around the world. Previous and current methods of origin determination include the qualitative observation of inclusions, color, and habit of a particular gem mineral, determined by highly skilled gemologists (Gübelin and Koivula, 1986; Renfro et al., 2016; Saeseaw et al., 2019). While undeniably useful, these physical observations are usually coupled with advanced laboratory techniques to geochemically fingerprint the origin of a stone due to the ever-increasing number of producing gem

deposits. The recorded complexities of a mineral's formational environment are left imprinted in the crystal form of a mineral, such as chemical or color zonation, micro-textural features, inclusions, crystal habits, and minerals associations. These differences can often be detected at the trace element level, which is the basis for geochemical provenance determination methods.

Here we present a highly effective approach to origin determination using a machine learning algorithm on trace elemental data from Colombian emeralds at increasing levels of specificity: by mining belt, mining district, and by individual mine. In Colombia, emeralds are mined from two regional mining belts: the Eastern and Western, and 9 mining districts encompassing numerous mines (Fig. 3-1). Emerald mineralization is associated with Lower Cretaceous strata. In the Western belt, emeralds are hosted by the Rosablanca and Muzo Formations; whereas in the Eastern belt the two hosting units are the Santarosa and Chivor Formations (Terraza Melo, 2019).

Colombian emeralds form from the chemical interaction of evaporitic brines and black shales containing chromophore elements such as Cr and V (Ottoway et al., 1994). They are distinct from most emeralds that formed by chemical reaction of magmatic-hydrothermal fluids evolved from granitic melts with mafic-ultramatic host rocks (Giuliani et al, 2019; Alonso-Perez and Day 2021). Thermal reduction of sulfate from brines at 300-330 °C, with organic matter led to extensive albitization, followed by precipitation of carbonates, pyrite, and Be-bearing minerals (e.g., beryl, euclase), which are very low in Fe, and relatively enriched in V and Cr (Giuliani et al., 2000; Alonso-Perez and Day, 2021). Emerald mineralization in both mining belts involved comparable but not identical rock units and took place under similar physicochemical conditions as evidenced by fluid inclusion data and consistent mineral assemblages (Kozlowski et al., 1988; Cheilletz et al., 1994; Banks et al., 2000; Giuliani et al., 2000; Romero Ordoñez et al 2021; Gonzalez-Duran et al., 2021). Although, the structural setting and age of mineralization differ, with the Western belt being

associated with a compressive phase (Branquet et al., 1999) dating at 34-51 Ma, as determined through Ar/Ar dating on micas by Cheilletz et al. (1994) and Th/Pb dating on syngenetic parisite by Altenbergen (2022), and the Eastern belt being linked to extensional events at 65 Ma (Cheilletz et al., 1994; Branquet et al., 1999). The method detailed in this study provides an origin prediction, an accuracy probability, as well as helpful graphs, charts, and tools to provide broader insights into the underlying geochemistry and geologic processes and has potential to serve as a blueprint for future mineral provenance studies.

3.3 Methods

3.3.1 Sample Material

The most critical aspect in developing a database for origin determination is ensuring the samples of interest are actually from their stated location. This is where the collaboration of the Technological Development Centre for the Colombian Emerald (CDTEC) and the Gemological Institute of America (GIA) has proven exceptionally beneficial. Geoscientists at CDTEC have spent years meticulously collecting gem-rough emeralds from active mines with first-hand knowledge of where each stone originated. Likewise, the GIA takes equally careful record of their reference collection in order to ensure location accuracy (Vertiest et al., 2019). The compiled database contains a comprehensive 2284 individual LA-ICP-MS spot analyses, 694 emeralds, from 9 mining districts and 40 individual mines. Of these, 1113 spots from 388 emeralds were from CDTEC collected samples, 458 spots from 77 emeralds in the GIA reference collection, and 527 spots, from 229 emeralds from Jiménez (2017).

3.3.2 LA-ICP-MS trace element data collection at the GIA

New trace elemental data of Colombian emerald samples were acquired at the Gemological Institute of America in Carlsbad, CA by using a Thermo Fisher iCAP Qc ICP-MS, coupled with an Elemental Scientific Lasers NWR213 laser ablation system with a frequency quintupled Nd:YAG laser operated in Q-switched (pulsed) mode at a wavelength of 213nm and pulse duration of 4 ns. Laser sampling was performed in the third generation two-volume cell from ESI (TwoVol2). The laser-generated aerosol was collected by a device (or cup) that is supported evenly throughout the entire range of motion with a specially designed internal movement system. This system minimizes inconsistent gas dynamics and a positional sensitivity dependence. The laser cell is flushed with helium gas, carrying the ablated material to where nebulizer gas (Ar) was mixed with the carrier gas (He) via a wye shaped connector before entering the plasma for ionization and subsequent analysis in the mass spectrometer. Data acquisition was performed in time-resolved mode. The following elements were measured: Li, Be, Na, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Ga, Rb, Cs. Dwell time of each analyte measured was 0.01 seconds except Al, Si and Fe that were measured for 0.005 seconds, and Li, K and Rb that were measured for 0.05 seconds. Dwell time of each laser spot was 40 seconds. Si was used as an internal standard. National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 610 and 612 were used as external standards. All isotopes were externally standardized using both standards. Concentrations of all isotopes were calculated by Qtegra software (Version 2.10.3324.131). Full LA-ICP-MS parameters can be found in Table 1 in the supplemental data sheet.

3.4 Results

3.4.1 Variable Selection and Database Compilation

In addition to the major elements measured (Be, Al, Si) in Colombian emerald samples, the following elements were present in minor concentrations (1 - 5 wt. %): Na, Mg, V, Cr. The following elements were detected at trace level (<1000 ppm): Li, Ca, Sc, Ti, Fe, Ga, Rb, and Cs. In over 50% of analyses, K, P and Mn were detected in trace amounts, but were not consistently detected. Summary statistics of elemental concentrations can be found in Appendix B (B-2, B-3, B-4, B-5).

Only analytes which were detected in all (or very nearly all, >99%) spot analyses were considered for separation analysis. This included Li, Be, Na, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Ga, Rb, and Cs. The analytes: K, P, and Mn were detected in >50% of analyses, therefore were not used in separation analysis. Additionally, some analytes raised suspicion of having been affected from systematic instrumental drift over time, including the major elements Be and Al and Si. This potential systematic drift between sessions was tested by re-analyzing the same emeralds on different days and comparing the results (Fig. 3-2). Be and Si were determined to be significantly different enough to be excluded from analysis, and Al was determined to be consistent enough between sessions to use in analysis. The analytes which had plausible polyatomic interferences, 56 Fe (e.g. 40 Ar + 16 O⁺), 44 Ca (e.g. 28 Si + 16 O⁺) (May and Wiedmeyer, 1998), were not considered.

A split in data is apparent with ²⁴Mg (Fig. 3-3a). Initially, this was suspected to be a natural split in data by mine, district, or belt—however, none of these attributes explained the separation. It is suspected that ²⁴Mg has an interference with H⁺ and ²³Na, and different sessions might have had different levels of hydrous gas present in the system which was then ionized upon contact with the argon plasma. This split is not seen in ²³Na vs. ²⁵Mg (Fig. 3-3b). For this reason, ²⁴Mg was not considered for analysis.

Lastly, an effort was made to reconcile the newly collected data with the dataset from Jiménez (2017), as their study includes nearly 500 spot analyses on Colombian emeralds with specific mine information. The standard NIST 610 was used in the Jiménez (2017) study, whereas the newly collected analyses in this study used both NIST 610 and NIST 612. After re-calculating our data using only NIST 610, it was found that our concentrations remained the same, except for Fe, so it was not included in data analysis.

The analytes that our study had in common with Jiménez (2017), and were therefore used in separation analysis included: Li, Na, Al, Sc, Ti, V, Cr, Ga, Rb, and Cs. Each of these elemental concentrations were then divided by each other systematically to determine ratios (e.g. Li/Na, Li/Al, Li/Sc, etc.). A total of 55 variables, both measured and derived, were used in separation analysis.

It should be noted that Fe and Mg showed promise for separation, however, equally effective separations were possible without using these elements, and the decision to exclude Fe and Mg was made to appropriately include the previously published dataset into this new database.

3.4.2 Machine Learning and Data Processing

Attempts were made in the nascency of this study to separate emeralds using more traditional trace elemental discriminant approaches, namely scatterplots and other graphic multivariate diagrams. While there were some encouraging results using these approaches, when working with 55 variables, the possibilities for diagram separation were practically endless, therefore, the feasibility of machine learning algorithms was explored.

Eight different machine learning algorithms were considered for predictive effectiveness on the database: Linear Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Gaussian Naïve Bayes (NB), Linear Support Vector Classification (SVM), Quadratic Discriminant Analysis (QDA), Decision Tree Classification (DTC), and Random Forest Classification (RFC). A training - test data split of 80% - 20% was used, along with stratified K-fold sampling with 5 splits while shuffling. Cross validation accuracy scores were used to determine the model's effectiveness (Fig. 3-4).

Several variables, especially the derived variables, had co-linearity (e.g. Rb:Na:Mg, and Cr:V:Sc), which results in LR, LDA, QDA not having an underlying assumption met. Additionally, homoscedasticity is required for LDA, and not every variable had the similar degrees of variance. The strict assumptions needed for the parametric algorithms lead to the decision to choose a non-parametric option. Of these, NB and KNN had moderately successful performance, and SVM performed poorly.

The DTC and RFC algorithms (both under the classification and regression tree, or "CART", family of algorithms) performed the best, did not violate any assumptions, and was therefore the chosen algorithm for this study.

Figure 3-5 shows an example of a single, simplified, DTC model applied to our data. While effective at handling data of different variances, sizes, and even types (categorical and continuous), one of the shortcomings of a DTC is its tendency to over-fit noisy data, meaning the training accuracy is much higher than the testing accuracy, thereby limiting its predictive ability. This is where an RFC surpasses a single DTC in terms of effective predictive ability. While over-fitting can still occur with very noisy data in RFC, by using hundreds of decision trees with randomized variables, and taking a simple majority vote of all those trees, the RFC algorithm performs exceptionally well in both training and testing accuracy, reducing the chance of an over-fit model. For this reason, an RFC was chosen and performed on the trace element database of Colombian emeralds by mining belt (east vs. west), mining district, and by individual mine. Each RFC model was run independently on these three categories to self-validate the results. For example, if the model predicted a mine that was not in the predicted district or belt, it would alert the analyst to take

caution in interpretation. It was found that a random forest of 100 trees performs equally well to a random forest of 1000 trees, so for computational brevity, a forest of 100 trees was used. Each random forest used an 80-20 training-testing data partition, and the Gini split rule.

This decision tree recursively partitions the data into subsets based on the chemical variables, with the aim of maximizing the homogeneity of the target variable within each subset. Each split is a Boolean True/False question. In this diagram, the green bar represents the number of classifications which fall under "True", and the red represents those which fall under "False" for each split. For example, the first split (root node) divides the data into those with a V/Cr ratio less than or equal to 0.6781. Training accuracy is improved when more nodes are allowed, and when multiple DTC trees are used in a random forest classification (RFC) analysis. This highlights the simple flow-chart style logic underlying DTC and RFC machine learning algorithms.

3.4.3 Random Forest Classification Predictive Results

The random forest classification (RFC) model was applied to the dataset independently to the following attributes: east or west mining belt (n=2), mining district (n = 9), and individual mine (n = 40). One of the characteristics of a RFC model is that each time it is performed, the results can vary slightly even when the same data is being fit. This is because variables are generated randomly, and each occurrence is slightly different. For this reason, results here are reported as approximations, however, they are still representative of the model's performance (Table 3-1).

The RFC model successfully separated emeralds by belt with 98% testing accuracy and 99% training accuracy. For mining districts, the RFC model was able to separate the 9 districts with a testing accuracy of 93% accuracy with a 97% training accuracy. For individual mine separation, the model has an 85% testing accuracy, with 92% training accuracy (summarized in Table 3-1).

Throughout the development of this model and the database, accuracy scores improved when more data was added. Full example RFC model summaries are reported in Appendix B (B6, B7, B8).

3.4.4 Probability Heat Maps

One of the most useful features of the RFC model is that in addition to making predictions, it calculates a probability associated with those predictions, as well as probabilities associated with attributes that it did not predict. This proves particularly useful in the case of confused predictions. Fig. 3-6a-c show example probability heat maps that can be created from data produced in the RFC model. Each row is an individual spot analysis, and each grouping of three rows is from one emerald (i.e. rows 0 - 2 is one emerald, 3 - 5 is another, for a total of 9 emeralds - one from each district). This sample set is representative of the model's performance. The lighter the color, the higher the probability of an emerald being from a particular belt (Fig 3-5a), district (Fig 3-5b) or mine (Fig 3-5c). In this sample, the model correctly predicted the belt of origin with 100% accuracy (27/27), the district with 93% accuracy (25/27, missing analyses labeled 14 and 26), and by individual mine with 88% accuracy (24/27, missing analyses labeled 9, 14 and 26).

3.4.5 Variable Importance

In addition to predictions and probabilities, another highly useful feature of a RFC model is that it can calculate the most important variables for separation, which can aid in the creation of graphical visualizations. The top 12 variables for separation of each are reported in table 2. Full results can be found in Appendix B (B6-, B7, B8). Using the variable importance, it is obvious the most significant variable for separation by belt is the V/Cr ratio (Table 2, Fig. 3-7a-c).

3.5 Discussion

3.5.1 Importance of V and Cr in Differentiating East and West Emerald Belts

By far the most important variable in separating an emerald by mining belt is the V/Cr ratio (Fig. 3-7a-c.). These elements are, interestingly, the primary chromophores which give emerald its characteristic color. In fact, running the RFC model using only those two variables, predicts the belt of origin with ~85% testing accuracy (training = ~93%). Meaning, this model can correctly predict whether an emerald is from the Eastern or Western belt based solely on the primary chromophores ~ 85% of the time. Using the other variables as mentioned above, we can fully separate emeralds from Eastern and Western belts with a testing accuracy greater than 98%. Fortaleché et al. (2020) noted the anecdotal color difference in Western vs. Eastern emeralds, with Western emeralds having "light to vivid green to yellowish green color" and Eastern emeralds having "light to vivid bluish green color". Experienced traders of Colombian emeralds claim to know the difference between an Eastern and a Western emerald based solely on color, albeit with some overlap (e.g. Fig. 3-8). The noted qualitative difference in color can now be empirically corroborated with the distinctive difference in V/Cr ratio of emeralds by belt reported here.

A handful of previous studies have touched on the differences in V and Cr concentrations between individual mines in Colombia (Cedeño et al, 2015; Jimenez 2017; Angarita-Sarmiento et al., 2022). Additionally, Cronin and Rendle (2012) determined the chromophores V, Cr, Mg and Ni to be statistically different in the Guali (Eastern belt) vs the Coscuez and Muzo mines (Western belt) of Colombia, and speculated this as a cause of the color difference in these emeralds. The differences in Cr and V were specifically emphasized between the Guali, Coscuez, and Muzo mines. A photoluminescence study of Colombian emeralds found the wavelengths between 683 and 685 nm, which correspond to the Cr^{3+} ion, effective in differentiating emeralds from the Eastern and Western belts of Colombia (García et al., 2019). Data from our study complements this finding well and takes it a step further to determine that the V and Cr concentrations are significantly different by the entire mining belts – east vs. west, not just localized to specific mines.

3.5.2 Mines vs. Mining Districts

Both mines and mining districts could be separated with moderately high to high accuracy (Table 3-1). Grouping mines into "mining districts" presents key advantages over individual mines. First, it aids with the issue of the proximity of mines. Some mines in Colombia are so close to each other that they have shafts and adits which overlap. This, obviously, renders any sort of geographical separation extremely difficult if not impossible, obfuscating any meaningful potential difference in geochemistry. Second, the apparent trace elemental heterogeneity of Colombian emeralds—even at a localized level—raises the possibility that some emeralds from larger mines could face significant differences in trace element chemistry even within the same mine. By grouping mines at the district regional level, this overcomes these challenges and presents a more accurate prediction, as is seen with the results of this study where the accuracy improved with each broadening group (Mine ~85%, District ~93%, Belt ~98%).

3.5.3 Value Even in Confusion

Valuable information can be ascertained even when predictions are confused. In the case of Colombian emeralds, a common mistake for the RFC algorithm to make is confusing the Maripi with Muzo districts, and occasionally with Coscuez—a mistake which is quite intuitive (see green boxes in Fig. 3-6c). These districts are less than 10 km away from each other and are in the same lithostratigraphic unit (Fig. 3-1). The fact that this algorithm can separate these districts with a moderate degree of confidence is itself, quite remarkable. Even if the algorithm determines an emerald to have a 50-50 chance of being from either Muzo or Maripi, knowing this is not from any

other mining district is itself an important result. As mentioned before, Muzo emeralds have a reputation for being among the world's finest, and where there is inflated value due to a famous locality, there could be fraudulent dealers falsely attaching the Muzo location onto an emerald to fetch a higher price. This method now gives us the ability to say either plausibly whether an emerald is from the Muzo district, or decisively if it is not, with a quantitative probability. Ruling out options is possible because the separation of emerald trace element chemistry between Eastern and Western districts is so conclusive, and separation of districts further away while in the same unit (i.e. Pauna vs. Muzo) and in different lithostratigraphic units (i.e. Muzo vs. Peñas Blancas) is also quite decisive. Despite the geochemical similarities, the RFC model can successfully differentiate these two districts remarkably well, in particular with the RFC model's ability to produce probability heat maps (Fig. 3-6). The RFC provides a list of potential predictions and associated confidence in these predictions. Most of the time, it provides only one district as an option; sometimes it will provide 2-3, and only very rarely will it provide more than 3. If the algorithm cannot place the unknown emerald to a particular mine, it will provide its best guess with a low probability, alerting the analyst to take caution in interpretation. Having a comprehensive database containing samples from each mining district from 40 mines allows us to have confidence in the machine learning's output, and the post-hoc visualizations help aid the analyst's interpretation to ensure that no conclusion is overstated.

3.5.4 Causes of separation

Various authors, including Schwarz (1992), Cedeño et al. (2015), Jimenez (2017), McManus et al. (2018), Fortaleché et al. (2020), and Angarita-Sarmiento et al. (2022), have pointed out differences in trace element concentrations of emeralds from different mining belts. Geochemical variation along the stratigraphy and the paleoenvironment of deposition within the Colombian

Cretaceous basin emerges as a major control influencing the endowment of minor and trace elements for the mineralizing system. Despite emerald mineralization being hosted by comparable rock units (e.g., Muzo, Chivor Formations), emerald pockets are not found at the very same stratigraphic levels, as demonstrated by Cheilletz et al. (1994), Giuliani et al. (2000), Terraza (2019), Romero-Ordoñez et al. (2021), and Gonzalez-Duran et al. (2021). The latter authors documented geochemical variation across the Muzo Formation in the La Pava mine, while Mantilla et al. (2007) and Terraza (2019) reported distinct deposition facies along the mining belts.

This variation is further reflected in the non-homogeneous distribution of V/Cr ratios in the host rocks. The concentration of V in the rock strata is notably higher in the Western Emerald Belt may be attributed to heightened levels of organic matter, coupled with the affinity of V and Cr for sediments abundant in organic content (Breit and Wanty, 1991; Gustafsson, et al., 2014). The measured total organic carbon (TOC) is higher in the Western belt (3-4 % in the Muzo Formation, 2-3 % in the Rosablanca Formation), as opposed to the Eastern Emerald Belt: 1.46 % in the Santa Rosa Formation, 1.06% in Chivor Formation, and 0.34% in Las Juntas Formation (Mantilla et al., 2007).

Consequently, the Western belt has on average 409 ppm of Vanadium and 111 ppm of Chromium (González et al., 2021), while the Eastern Belt has on average 133 ppm of Vanadium and 82 ppm of Chromium (Pignatelli et al., 2017). This trend has also been recorded in other minerals that incorporate chromophore elements. Garcia-Toloza et al. (2022) studied green micas documenting average concentrations of 5368 ppm (V) and 1259 ppm (Cr) in the Western belt, compared to 2278 ppm (V) and 778 ppm (Cr) in the Eastern belt. Additionally, the concentration of Vanadium is higher in euclase from the Western belt, as reported here and corroborated by Garcia-Toloza et al., 2022.

Furthermore, Jimenez (2017) attributed differences in the concentration of Cr/V, and other trace elements, to variations in fluid evolution controlled by tectonic conditions. In the Eastern belt, emerald compositions reflect the signature of evaporite-derived fluids, while the Western belt, influenced by a compressive tectonic regime, involves the input of salt diapirs. The order of precipitation of the mineral assemblage may also play a role in the incorporation of trace elements in emeralds. For instance, Gonzalez-Duran et al. (2021) found different V/Cr ratios in the rocks and emeralds in the La Pava mine, attributing this difference to the crystallization of green mica before emeralds. The early formation of micas and carbonates can deplete the mineralizing fluid in Vanadium, leading to a different V/Cr ratio by the time emeralds precipitate (Garcia-Toloza et al., 2022).

In summary, differences in trace element concentrations, including Vanadium and Chromium, among Colombian emeralds arise from complex interactions involving geochemical variations in stratigraphy, tectonic influences, and nuances during mineralization processes.

3.5.5 Further proof of Concept: Colombian Euclase

To further test the effectiveness of this method, samples of Colombian Euclase. Euclase (BeAl(SiO₄)(OH)) has a similar composition to beryl (Be₃Al₂Si₆O₁₈) and is found in some of the same mines as emeralds. Euclase lacks the long channels down the c-axis as seen in beryl which can trap fluid inclusions. For this reason, fewer trace elemental substitutions can occur, resulting in a shorter list of detectable trace elements than in emerald.

Gem rough euclase from three of the same Colombian mines (La Marina, Pauna district; La Vega de San Juan, Gachalá district; and Palo Arañado, Chivor district) were analyzed with LA-ICP-MS and an RFC model was applied using the same procedure as detailed above. A total of 360 LA-ICP-MS spot analyses were obtained on 60 euclase crystals (108 spots on 18 euclase from La

Marina; 180 spots on 30 euclase from La Vega de San Juan; 72 spots on 12 euclase from, Palo Arañado). Minor concentrations (<1wt%) of Ca, V, Cr, Ge, and trace concentrations (<100 ppm) of Mg, Sc, Ti, Fe, and Ga, were detected. Using the same methods detailed above, the RFC model was able to predict with 98-99% training-testing accuracy which mine a Colombian euclase is from. The bi-variant discriminant diagrams in Fig. 3-9 were created post-hoc with guidance from the variable importance list.

This further demonstrates the effectiveness and relative ease of use for this method for mineral origin determination studies, which can be summarized as such:

- 1. Collect a comprehensive database of trace element data
- 2. Apply the random forest model
- 3. Create discriminant diagrams after the analysis based on variable importance and probability heat maps, and other visual supplements to the "black box" machine learning algorithm to better understand its classification and predictive ability.

3.5.6 Previous work in Machine Learning Applied to Mineral Origin Determination

The random forest classification (RFC) model has been relatively underutilized in mineral science to date, with the many applications coming from economic geologic prospectively and classification studies (e.g. Rodriguez-Galiano et al. 2015, O'Brian et al, 2015; McKay and Harris, 2016; Hong et al., 2021, Bédard et al., 2022).

Other machine learning algorithms, such as linear discriminant analysis (LDA), have been more commonly applied to mineral science. However as noted previously, using this parametric approach limits the type of variables and data that can be used, needing to satisfy the assumptions of homoscedasticity and collinearity, and for a suite of trace element data such as used in this study, the ability to use as many variables as possible gives a greater chance of determining subtle differences in mineral chemistry. An additional benefit of the random forest model, however not utilized in this study, is the ability to incorporate categorical information as well as numerical data into the model. This could lead to the inclusion of some of the more traditional qualitative observations (such as phase inclusion shape or composition), or additional instrumental analyses to be incorporated into a random forest model, theoretically improving, and extending the breadth of separational ability.

A study published in Gem Frontiers by Gem Guild (Fortaleché et al., 2020), performed LDA machine learning on a suite of emerald trace element data from the Chivor, Gachala and Muzo mining districts, and reported successful separations from these three districts. While the authors of this present study saw LDA as promising, we ultimately decided against it in favor of RFC as some of the variables we used contained some degree of collinearity. Another study determined it to be possible to differentiate Colombian Emeralds by mine using laser induced breakdown spectroscopy (LIBS) coupled with a statistical algorithm (McManus et al. 2018). Regardless of the differences in approach, previous results support the separability of these emeralds at the district level, and our study is consistent with their conclusion, expounding upon the idea to include the remaining active districts.

3.6 Implications

By coupling the power of machine learning and the uniqueness of each mineral's trace elemental chemistry, it appears hyper-specific origin determination could be possible for many different mineral systems. Machine learning assists in quantifying the otherwise mostly qualitative observation-based gemstone origin determination and could help standardize origin reporting from differing laboratories—which can occasionally provide conflicting origin opinions. It is suspected that this method will work best on minerals which have more crystallographic sites for trace elemental substitution. The long c-axis channels in emerald can trap primordial fluid, along with the sites in the crystal structure which allow for elemental substitutions, making slight differences in trace element chemistry possible. Minerals such as apatite and tourmaline, with multiple site-substitutions, are predicted to be even more readily separable with this method.

Another benefit of the RFC and the CART class of machine learning is that both quantitative and qualitative observations can be incorporated into the model. While not used in this study, this offers the ability to build a database including different variable types. With Colombian emeralds, previous diagnostic features include the shape and phases of inclusions (Saeseaw et al 2019), and type of mineral included if observable. For example, the rare earth phosphate mineral parisite is diagnostic of Colombian emeralds. A decision tree could be crafted to include these observations. Other types of analytical test, such as UV-Vis and Raman spectroscopy, isotope chemistry etc., could also theoretically be used in conjunction with this model. In this study, LA-ICP-MS data was determined to be effective enough on its own, but in future origin determination studies, these considerations could be taken into account.

With the results of this study, we are now able to confidently determine the belt and mining district of origin from an unknown Colombian emerald by using trace elements analyzed with a random forest classification machine learning algorithm. We are also able to determine the mine of origin of 40 individual mines in Colombia with moderate confidence. More data would be needed in order to increase the confidence in differentiating down to the individual mine, but with the vast number of Colombian emerald mines, along with their geographic proximity, it may not be possible to achieve a better separation using any combination of analytical or machine learning method, nor would it be practical.

The key advantage of this approach is the coupling of a machine learning model, with the prediction score and visualizations to assist the user in understanding why the "black box" arrived at the determinations it did. Even when the algorithm guesses incorrectly, there is ample evidence as to why the model predicted wrong, and what the other possibilities are. This allows the analyst to make an informed prediction and allows this information to be passed along to the client.

Additionally, the empirical probability and corresponding visualizations could give laboratories more confidence in stating their origin opinions, as it is harder for an unethical dealer to claim with certainty that a stone is 100% from a specific location based solely on a report made in good faith. This method has promise for rapidly expanding origin determination capabilities hyperspecifically, well beyond the country of origin.

An issue with country-of-origin reporting when it comes to gemstones is that the geopolitical lines drawn over the course of history are completely geologically arbitrary. This results in ready confusion between gems from deposits (or gem-rough alluvium) that cross country boundaries. While it may never be possible to fully connect each unknown gem and mineral back to their mine of origin, the results of this study should provide optimism that there may be ways of continuing to pinpoint origin determinations even better.

3.7 Acknowledgments

The authors would like to thank Alexander Goodsuhm, Research Associate, GIA, for assistance with analyses and sample preparation, and Robert Weldon, Library Director, GIA, for the use of his photographs. Special thanks to the Colombian National Emerald Fund (FEDESMERALDAS) for providing the funds and assistance for fieldwork and sample collection.
3.8 Figures and Tables

Belt (East or West)		Mining	District	Individual mine		
Training Testing Accuracy Accuracy		Training Testing Accuracy Accuracy		Training Testing Accuracy Accuracy		
98%	99%	93%	97%	85%	92%	

Table 3-1. Representative Sample Performance of RFC Model Separations

Belt (East or West)		Min	ing District	Individual mine			
Variable	Importance (%)	Variable	Importance (%)	Variable	Importance (%)		
V/Cr	12.09	V/Ga	4.93	V/Ga	3.57		
Li/Na	6.79	Cs	3.87	Li	3.15		
Li/Ga	5.46	Sc/Ga	3.54	Ga/Cs	3.01		
Li/A1	5.41	Na/Rb	3.53	V/Cr	2.89		
Li/Rb	4.95	Ga	3.51	V	2.84		
Sc/V	4.03	Ga/Cs	3.49	Ga	2.69		
Na/Cs	3.95	Li/Ga	3.35	Al/V	2.67		
Rb/Cs	3.63	Rb/Cs	2.85	Li/Al	2.65		
Li/V	3.41	V/Cs	2.82	Sc/V	2.40		
Cr/Ga	3.15	Al/Ga	2.72	Li/V	2.31		
Li	3.11	Na/Cs	2.65	Al	2.29		
V/Cs	3.08	Al/Cs	2.61	V/Cs	2.26		

Table 3-2. Top 12 Variables for each RFC separation

Figure 3-1: Generalized map of the Colombian mining districts showing geographic and geologic proximity

Figure 3-2 (a,b): Example test for systematic instrumental drift by comparing (a) Be and (b) Al, from different LA-ICP-MS sessions. Each dotted section represents emeralds tested from a specific mine—the left box in each is an earlier session, and the right box the same emeralds analyzed in a later session. This shows significant changes in ⁹Be from session to session, and occurring at each sample location. For this reason, ⁹Be was not considered for data analysis. Conversely, Al was determined to be consistent between laboratory sessions, and was considered for analysis

Figure 3-3(a): Scatterplot of ²⁴Mg vs. ²³Na from all spot analyses highlighting a possible polyatomic interference varying by laboratory session causing a split in ²⁴Mg. Also note the strong positive correlation between ²³Na and ²⁴Mg.

Figure 3-3(b): Scatterplot of ²⁵Mg vs. ²³Na from all spot analyses. Note the lack of a split in data as seen in the plot of ²⁴Mg vs. ²³Na, still showing a very strong positive correlation

Figure 3-4: Comparison of different machine learning algorithm's effectiveness on the mining belt (east vs. west) dataset. All but the decision tree classification (DTC) and random forest classification (RFC) performed poorly or did not satisfy the underlying assumptions of the model. The RFC model was ultimately chosen for data analysis.

Figure 3-5: An example of a simple 10-node decision tree classification analysis (DTC) performed on the emerald database for separation by mining belt.

Mining Belt Probability Heat Map

Mining District Probability Heat Map

Mining District

Figure 3-6 (a-c). Probability heat map of sample data by belt (6a), district (6b) and mine (6c). Each grouping of 3 rows are 3 spot analyses on the same emerald, for a total of 9 emeralds—one from each of the 9 mining districts. In this example, the RFC model correctly predicted each mining belt (27/27); correctly predicted mining districts (25/27); and correctly predicted the mine of origin (24/27). In Fig. 3-6b, the most confused districts are highlighted in the green boxes. The correct origins for the 9 sampled emeralds are as followed: Sample 1 (rows 0-2): Peñas Blancas Mine, Peñas Blancas District, Western Belt. Sample 2 (rows 3-5): La Fortuna Mine, Ubalá District, Eastern Belt. Sample 3 (rows 6-8): San Gregorio Mine, Chivor District, Eastern Belt. Sample 4 (rows 9-11): Mina Real, Muzo District, Western Belt. Sample 5 (rows 12-14): Cunas Mine, Maripí District, Western Belt. Sample 6 (rows 15-17): Matecaña Mine, Gachalá District, Eastern Belt. Sample 7 (rows 18-20): Gualteros Mine, Pauna District, Western Belt. Sample 8 (rows 21-23): Achiote Mine, Somondoco District, Eastern District. Sample 9 (rows 24-26): La Abuela Mine, Coscuez District, Western Belt.

Figure 3-7 (a) Scatter Plot of V vs. Cr in Colombian emeralds highlighting the distinct trends between Eastern and Western belts.

Figure 3-7 (b) Histograms with kernel density estimate (KDE) lines highlighting the bi-modality of the V/Cr ratio in Colombian emeralds between Eastern and Western belts, with some overlap.

Figure. 3-7 (c) Map of Colombian emerald mines with V/Cr ratios averaged by individual mine and interpolated. Notice the generally higher V/Cr ratio in Western belt, where V/Cr is generally greater than 1, over the Eastern belt emeralds where V/Cr is generally less than 1.

Muzo District (West)

Chivor District (East)

Figure 3-8: Emeralds from the Chivor mining district (east) and the Coscuez mining district (west). Photos by Robert Weldon, GIA. Chivor emeralds (24.90 ct total) and Muzo emeralds (16.20 ct total) are courtesy of Guillermo Ortiz, Colombian Emeralds, Inc.

Figure 3-9: Discriminant scatterplot created post-hoc following RFC on LA-ICP-MS Data on Euclase, which effectively separates euclase from each of the 3 mines

Figure 3-10: A highly effective single decision tree for origin determination of Colombian euclase. Using a random forest containing 100 individual decision trees, overfitting is reduced, and the predictive ability is nearly 100% accurate.

3.9 References Cited

- Alonso-Perez, R., Day, J.M.D., Sylvester, P., Cruden, A.R., Antao, S.M., Xu, H., Cook, N.J., Bornhorst, T.J., Kota, H.R., and Kaksonen, A.H. (2021) Rare Earth Element and Incompatible Trace Element Abundances in Emeralds Reveal Their Formation Environments. Minerals (2075-163X), 11, 513.
- Altenberger, U., Rojas-Agramonte, Y., Yang, Y., Fernández-Lamus, J., Häger, T., Guenter, C., Gonzalez-Pinzón, A., Charris-Leal, F., and Artel, J. (2022) In Situ U–Th–Pb Dating of Parisite: Implication for the Age of Mineralization of Colombian Emeralds. Minerals, 12, 1232.
- Angarita-Sarmiento, L.G., García-Toloza, J., Gonzalez-Duran, A.F., Alvarado-Gonzalez, H.R., Paipa, L., Vargas, H., Morales, A., Zamora, J., and Cedeño-Ochoa, C.J. (2022) Méthodologie pour la détermination de l'origine des émeraudes colombiennes. Émeraudes, tout un monde!, LES ÉDITIONS DU PIAT, 319–328.
- Banks, D.A., Giuliani, G., Yardley, B.W.D., and Cheilletz, A. (2000) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Mineralium Deposita, 35, 699–713.
- Bédard, É., De Bronac de Vazelhes, V., and Beaudoin, G. (2022) Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration. Journal of Geochemical Exploration, 236, 106959.
- Branquet, Y., Laumonier, B., Cheilletz, A., and Giuliani, G. (1999) Emeralds in the Eastern Cordillera of Colombia: Two tectonic settings for one mineralization. Geology, 27, 597–600.
- Breit, G.N., and Wanty, R.B. (1991) Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chemical Geology, 91, 83–97.
- Cedeño, C.J., Jiménez, J.F., Herreño, J.H., and Fortaleché, D. (2015) Progress on the study of parameters related to the origin of Colombian emeralds. World Emer, 88–97.
- Cheilletz, A., Feraud, G., Giuliani, G., and Rodriguez, C.T. (1994) Time-pressure and temperature constraints on the formation of Colombian emeralds; an 40 Ar/ 39 Ar laser microprobe and fluid inclusion study. Economic Geology, 89, 361–380.
- Cronin, D.P., and Rendle, A.M. (2012) Determining the geographical origins of natural emeralds through nondestructive chemical fingerprinting. The Journal of Gemmology, 33, 116.
- Fortaleché, D., Li, Q., Shan, M., and Lucas, A. (2020) Specific Mine Determination of Colombian Emeralds from Muzo Formation area, Chivor and Gachala. Gemology Frontier, 1.
- García, J., Herreño, M.J., González, A.F., and Cedeño, C.J. (2019) Photoluminescence analysis to determine the origin of emeralds from the Eastern and Western belts in Colombia, 2, 5.
- Garcia-Toloza, J., Ramírez-Juya, V., Betancur-Acevedo, C.A., Gonzalez, V., Angarita, G., and Alvarado, H. (2022) Chromium and vanadium from host rock to emerald:tracing differences between the two main emerald zones in Colombia and their gemological implication. In A.B. Christie, Ed., Proceedings of the 16th SGA Biennial Meeting pp. 28–31.

- Giuliani, G., France-Lanord, C., Cheilletz, A., Coget, P., Branquet, Y., and Laumonnier, B. (2000) Sulfate Reduction by Organic Matter in Colombian Emerald Deposits: Chemical and Stable Isotope (C, O, H) Evidence. Economic Geology, 95, 1129–1153.
- Giuliani, G., Groat, L.A., Marshall, D., Fallick, A.E., and Branquet, Y. (2019) Emerald Deposits: A Review and Enhanced Classification. Minerals, 9, 105.
- González-Durán, A.F., García-Toloza, J., Bonilla, G., Cedeño-Ochoa, C.J., Angarita-Sarmiento, L.G., Castañeda-Gómez, A.J., Parra-Bastidas, S.D., Bocanegra-Rodríguez, L.C., Montaña-Cárdenas, J., and López-Castillo, C.L. (2021) Geoquímica y mineralogía de la mina La Pava, Muzo-Quípama: implicaciones en la exploración de esmeraldas en Colombia. Boletín de Geología, 43, 117–142.
- Gübelin, E.J., and Koivula, J.I. (1986) Photoatlas of Inclusions in Gemstones, ABC edition., 532 p. Zurich.
- Gustafsson, J.P., Persson, I., Oromieh, A.G., van Schaik, J.W.J., Sjöstedt, C., and Kleja, D.B. (2014) Chromium(III) Complexation to Natural Organic Matter: Mechanisms and Modeling. Environmental Science & Technology, 48, 1753–1761.
- Hong, S., Zuo, R., Huang, X., and Xiong, Y. (2021) Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition. Journal of Geochemical Exploration, 230, 106859.
- Jimenez Guevara, J.F. (2017) Estudio químico, mineralógico y espectroscópico de esmeraldas colombianas de los distritos mineros de Chivor, Muzo y Coscuez y su aplicación en la determinación de origen geográfico.
- Kozłowski, A., Metz, P., and Estrada, H. (1988) Emeralds from Somondoco, Colombia: chemical composition, fluid inclusions and origin. Neues Jahrbuch für Mineralogie Abhandlungen, 159, 23–49.
- Mantilla, L.C., Silva, A., Serrano, J.J., Conde, J., Gómez, C., Ramírez, J.C., Meza, J.A., Pelayo, Y., Ortega, L.M., Plata, L.M., and others (2007) Investigación petrográfica y geoquímica de las sedimentitas del Cretácico inferior (K1) y sus manifestaciones hidrotermales asociadas planchas 169, 170, 189, 190 (Cordillera Oriental), implicaciones en la búsqueda de esmeraldas. INGEOMINAS-Universidad Industrial de Santander (UIS), Bogotá.
- May, T.W., and Wiedmeyer, R.H. (1998) A Table of Polyatomic Interferences in ICP-MS. Atomic Spectroscopy, 19.
- McKay, G., and Harris, J.R. (2016) Comparison of the Data-Driven Random Forests Model and a Knowledge-Driven Method for Mineral Prospectivity Mapping: A Case Study for Gold Deposits Around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25, 125–143.
- McManus, C.E., Dowe, J., and McMillan, N.J. (2018) Quantagenetics® analysis of laser-induced breakdown spectroscopic data: Rapid and accurate authentication of materials. Spectrochimica Acta Part B: Atomic Spectroscopy, 145, 79–85.

- O'Brien, J.J., Spry, P.G., Nettleton, D., Xu, R., and Teale, G.S. (2015) Using Random Forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb–Zn–Ag deposits in the Broken Hill domain, Australia. Journal of Geochemical Exploration, 149, 74–86.
- Ottaway, T.L., Wicks, F.J., Bryndzia, L.T., Kyser, T.K., and Spooner, E.T.C. (1994) Formation of the Muzo hydrothermal emerald deposit in Colombia. Nature, 369, 552–554.
- Pignatelli, I., Giuliani, G., Morlot, C., Rouer, O., Claiser, N., Chatagnier, P.-Y., and Goubert, D. (2017) Recent Advances in Understanding the Similarities and Differences of Colombian Euclases. The Canadian Mineralogist, 55, 799–820.
- Renfro, N.D., Koivula, J.I., Muyal, J., McClure, S.F., Schumacher, K., and Shigley, J.E. (2016) Chart: Inclusions in Natural, Synthetic, and Treated Emerald | Gems & Gemology. Gems & Gemology, 52, 402–403.
- Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., and Chica-Rivas, M. (2015) Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.
- Romero-Ordóñez, F.H.R., González-Durán, A.F., García-Toloza, J., Cohen, J.R., Ochoa, C.J.C., González, H.R.A., and Sarmiento, L.G.A. (2021) Mineralogy and Fluid Inclusions of the Cunas Emerald Mine, Maripí, Boyacá, Colombia. Earth Sciences Research Journal, 25, 139–156.
- Saeseaw, S., Renfro, N.D., Palke, A.C., Ziyin Sun, and McClure, S.F. (2019) Geographic Origin Determination of Emerald. Gems & Gemology, 55, 614.
- Schwarz, D. (1992) The chemical properties of Colombian emeralds. Journal of Gemmology, 23, 225–233.
- Shane F. McClure, Moses, T.M., and Shigley, J.E. (2019) The Geographic Origin Dilemma | Gems & Gemology. Gems & Gemology, 55, 457–462.
- Shor, R., and Weldon, R. (2009) Ruby and Sapphire Production and Distribution: A Quarter Century of Change. Gems & Gemology, 45, 236–259.
- Terraza Melo, R. (2019) Notas sobre el contexto tectonoestratigráfico de formación de las esmeraldas colombianas. Boletín Geológico, 37–48.
- Vertriest, W., Palke, A., and Renfro, N. (2019) Field Gemology: Building a Research Collection and Understanding the Development of Gem Deposits | Gems & Gemology. Gems & Gemology, 55, 490–511.

Chapter 4: Promise and Limitations of Provenance Determination of Alluvial Montana Sapphires Using Random Forest Machine Learning on LA-ICP-MS Trace Elemental Data

Co-authors: Aaron Palke, Adam Simon

4.1 Abstract

Geographic origin is an increasingly important factor driving the value of a gemstone and it is a main objective of gemological laboratories to develop methods to better pin-point the provenance of an unknown gemstone. Recent work has shown promise for hyper-specific provenance determination methods utilizing a random forest machine learning model on a comprehensive suite of trace element chemistry on Colombian emeralds. To further test the effectiveness of this method, Montana sapphires were chosen for provenance analysis as provenance studies have not been done before on these sapphires, and their geologic origin has been a subject of debate. Sapphires occur in four localities in Montana: The Yogo Gulch (primary igneous), Rock Creek (alluvial), Missouri River (alluvial) and Dry Cottonwood Creek (alluvial). While Yogo Gulch sapphires have been fairly well characterized and studied, the source of alluvial sapphire deposits of Montana remain poorly understood. The goal of this study is to see if it is possible to determine the provenance of an unknown Montana sapphire given laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data, and to see if the trace elemental chemistry can shed light on their primary geologic origin. 182 sapphires from each deposit were analyzed with LA-ICP-MS for trace element chemistry (total of 750 individual spot analyses), and a random forest machine learning model was applied to the dataset. It was determined that the provenance of an alluvial Montana sapphire could be predicted correctly with 90% accuracy, with the most important variable for separation being the Mg/Ti ratio. Yogo Gulch sapphires are confirmed to be chemically distinct from the alluvial sapphires, demonstrating a 99% separability accuracy. Mg/Ti was also determined to have a strong positive correlation (r = 0.84), and is the most effective bi-variate diagram for visualizing geographic separation. This trend in Mg/Ti is interpreted to be a result of differences in oxygen fugacity during formation in the upper mantle, possibly as a result of forming at different depths. This study adds support to the hypothesis that the famous alluvial Montana sapphires have differing primary geologic formational environments, and their geographic provenance can be determined with a high degree of accuracy.

4.2 Introduction

Improving mineral origin determination methods is one of the primary goals of researchers in the gemstone industry (e.g. McClure et al., 2019, Krebs et al., 2020), and has broad reaching implications for quality assurance and promoting ethical trade practice. Recent work detailed a highly effective method of provenance determination at varying degrees of locality specificity using a random forest machine learning algorithm on a suite of trace element data on Colombian emeralds (Chapter 3 of this dissertation: Blakemore et al. *in review*). This study aims to build upon this previous provenance determination work by using a random forest machine learning methodology on an entirely different, and in some ways more challenging set of trace elemental data to test the effectiveness and limitations on a different mineralization system. Sapphires from Montana are an intriguing mineral system and locality to study with this method because (1) there is previous work proving the effectiveness of using trace elements to separate gem corundum broadly by country of origin (e.g. Sutherland et al., 1998; Zaw et al., 2006; Peucat et al., 2007; Simonet et al., 2008; Sutherland and Abduriyim, 2009) (2) much work has been done by gemological laboratories to build up collections of well documented sapphires (e.g. Hsu et al. 2016), (3) corundum has few crystallographic sites for trace element substitution so the limitations of the method from Blakemore et al. (*in review*) will be tested, and (4) the source of Montana's famous alluvial sapphires remains elusive, and studies have suggested that while they are close in geographic proximity (Fig. 4-1), the wide array of mineral inclusions observed in alluvial Montana sapphires may suggest differing geologic origins, requiring the need of a origin determination study of these gems (Berger and Breg, 2006, Zwaan, 2015). Adding to the body of geochemical work performed on Montana sapphires has the potential to discover insights into their formation by testing to see if alluvial sapphires from Montana are chemically and statistically distinct from each other.

Sapphire is a variety of the mineral corundum (Al.O₂), and although it is colloquially thought of as blue, it in fact more broadly refers to any non-red colored corundum, with red corundum famously known as ruby. Non blue or red corundum is sometimes referred to as "fancy sapphires", much like a colored diamond is called a "fancy diamond". Its high hardness (Mohs = 9) and durability make it a useful mineral for use as an abrasive, in addition to its ornamental use as a gemstone. Corundum is allochromatic, meaning that its color is determined by trace elemental impurities. Ruby is colored by Cr^a, and blue sapphire is colored by varying amounts of Fe^a and Ti^a, and V^a. The color of corundum can be artificially enhanced using a Be diffusion heat treatment, which is one of the key treatments gem laboratories test for to determine if color is natural or artificial (Emmet et al., 2003). Elemental substitutions occur predominantly in the Al site. Common substituents include Mg, Ti, Cr, Fe, V, and Ga. The limited number of sites for substitution is in part what makes provenance determination in corundum utilizing trace elements challenging (e.g. Palke et al., 2018; Krebs et al 2020).

Sapphires occur in four mining locations in Montana: Yogo Gulch (primary igneous), Missouri River (alluvial), Dry Cottonwood Creek (alluvial), and Rock Creek (alluvial) (Fig. 4-1). One formational model of Yogo Gulch sapphires suggests from garnet inclusion evidence that Yogo sapphires formed from a mantle eclogite and were then transported as xenocrysts to the surface (Cade and Groat, 2006). Plagioclase inclusions are a relatively common occurrence in Montana sapphires, which is inconsistent with mantle eclogite formation, and surficial etching on the crystal faces of Yogo sapphires indicate disequilibrium with the host rock lamprophyre (Renfro et al. 2018). A possible formational model to reconcile these observations proposes that Yogo sapphires were created through a peritectic melting reaction which occurred when the lamprophyre intruded into the lower crust and partially melted in place aluminum-rich rock (Dahy, 1991, Palke et al., 2015, Renfro et al. 2018).

Sapphires from Missouri River, Dry Cottonwood Creek, and Rock Creek (also called Gem Mountain) are all secondary alluvial deposits, with gemstones being extracted from riverbeds and poorly sorted mudflows (Hsu et al., 2016). This intrinsically obfuscates geologic study on the sapphires from these localities since their primary origin and context to their formation is unknown, especially in contrast to Yogo sapphires, which can be studied in situ. The underlying bedrock at these localities consists of Eocene rhyolite flows along with other volcanics (Breg, 2014). Textual evidence on the surface of these sapphires suggests that these alluvial sapphires are the result of weathered xenocrysts from alkali basaltic magmas (Breg, 2007). Inclusions and geochemical evidence suggest a metasomatic origin (Zwaan et al. 2015; Palke et al., 2023).

The geology of western Montana is defined by basin development and degradation caused by the subducting Pacific plate during the Cenozoic (e.g. Garland 2002, Fuentes et al. 2012). Sediments accumulated fairly rapidly in the Proterozoic basin between 1470 Ga and 1400 Ma (Evans et al. 2000) and these sediments are locally exposed in the Rock Creek area. Several periods of glaciation over North America during the Pleistocene eroded and carved away underlying bedrock. Garland (2002) postulated that alluvial sapphires were distributed post-glacially from a pre-existing paleoplacer deposit from the Pliocene. One of the motivations behind performing a provenance determination study on Montana sapphires is to gain insight into whether or not alluvial sapphires share a common source material, or are chemically distinct. Krebs et al., 2020 notes the potential and pitfalls of using LA-ICP-MS as a tool for gem-corundum provenance determination, citing the need for additional discrimination tools as it has few sites for trace elemental substitution and can form under a variety of different geologic conditions. Our study proposes utilizing a random forest machine learning model that has previously successfully determined origin from trace elements, with a comprehensive suite of trace element data of sapphires as a potential solution to this problem, to make more accurate sapphire discrimination possible. In addition to a more accurate provenance determination, an added benefit is the potential to gain deeper insight into the formational environment using trace elements. This trace element study aims to shed light on the formation of Montana sapphires and determine geochemical differences between localities in order to see if a successful provenance determination is possible.

4.3 Methods

Sapphire samples were collected by and curated at the Gemological institute of America (GIA). Trace elemental data of Montana samples were acquired at the GIA in Carlsbad, CA by using a Thermo Fisher iCAP Qc ICP-MS, coupled with an Elemental Scientific Lasers NWR213 laser ablation system with a frequency quintupled Nd:YAG laser operated in Q-switched (pulsed) mode at a wavelength of 213nm and pulse duration of 4 ns. Laser sampling was performed in the third generation two-volume cell from ESI (TwoVol2). The laser-generated aerosol was collected by a device (or cup) that is supported evenly throughout the entire range of motion with a specially designed internal movement system. This system minimizes inconsistent gas dynamics and a positional sensitivity dependence. The laser cell is flushed with helium gas, carrying the ablated

material to where nebulizer gas (Ar) was mixed with the carrier gas (He) via a wye shaped connector before entering the plasma for ionization and subsequent analysis in the mass spectrometer. Data acquisition was performed in time-resolved mode. The following elements were measured: Be, Li, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Sn, La, Ce, Nd, Hf, Ta, W, Pb to observe what elements were and were not present in concentrations above detection. Dwell time of each analyte measured was 0.01 seconds except Be, Mg, Al, Ti, V, Cr, Fe and Ga that were measured for 0.05 seconds. Dwell time of each laser spot was 40 seconds. A laser spot size of 55 um was used for each analysis (3 spots per sapphire), with a 20 Hz repetition rate, and 10 J/cm2 fluence. The internal standard used was Al at 529200 ppm. National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 610 and 612 were used as external standards. All isotopes were externally standardized using both standards. Concentrations of all isotopes were calculated by Qtegra software (Version 2.10.3324.131).

Additional trace elements were also collected using a ESI NWR193 excimer laser system and Agilent 7900 ICP-MS at the University of Colorado Boulder (CU Boulder), TRaIL laboratory, using the same parameters as the GIA laboratory, with the addition of external standards NIST 616, and corundum standards 07-0687-15, 02-1267-30 and Y-A19 (Stone-Sundberg et al., 2021) were used to validate results. Elemental concentrations were processed with Iolite software (v. 4.9).

4.4 Results

In total, a total of 750 individual spot analyses were collected on 182 sapphires were analyzed: 39 from Dry Cottonwood creek (156 total LA-ICP-MS spots), 61 from Missouri River (215 total LA-ICP-MS spots), 61 from Rock Creek (317 total LA-ICP-MS spots), and 21 from Yogo Gulch (62 total LA-ICP-MS spots). Trace element data collected from Montana sapphires had the following elements above detection limits: Cr, Ga, Mg, Fe, Ti, and V. 10% of samples contained

Cr below detection so it was excluded from provenance determination analysis. A compilation of summary statistics can be found in Table 4-1.

In combining data collected from separate laboratories, it was found that Ga had a significant difference in chemistry between sessions at the GIA and CU Boulder (Fig. 4-2). This difference is further highlighted with probability plots showing a bimodality to the data, between sessions (Fig. 4-3). This probability plot also shows Cr to not have normal distribution. Due to this systematic uncertainty, Ga was also removed from separation analysis in this study although it should be noted that it shows promise for separation in future corundum provenance determination work.

Yogo Gulch sapphires have reasonably distinct chemistry in comparison to the alluvial deposits, having higher concentrations of Mg, and Ti, and generally higher V and Cr (Fig. 4-4). Figure 4-4 also highlights how Rock Creek alluvial sapphires generally have lower trace elemental concentrations of the four groups. A correlation matrix analysis was performed in order to test for collinearity and to discover any elemental relationships (Table 4-2). Only Mg and Ti showed significant positive correlation (r = 0.84).

A Random Forest Classification (RFC) machine learning model proved most effective and appropriate considering the data, yielding a 90% testing accuracy (96% training accuracy) in separability. Parameters for the random forest model are 10 k-fold cross validation for training data, a 20% – 80% testing–training data split, with stratified sampling using the methods detailed in Blakemore et al. (*in review*) (chapter 3 of this dissertation). The most important variable for separation was determined to be the Ti/Mg (Table 4-3). The variable importance ranking assisted in deriving useful visual diagrams to aid in separation (e.g. Fig. 4-5). Confusion matrices provide an example of the model's performance, highlighting which classes are more frequently confused with

each other. Taken together, the training and testing confusion matrices provide an effective visual evaluation of the model's performance (Figure 4-6 a and b).

The RFC model was also performed considering only the 2 classes: alluvial Montana sapphires and primary igneous (Yogo Gulch) Montana sapphires. The results of this test show that Yogo Gulch primary igneous sapphires have distinct enough chemistry to be separated with 99% accuracy (both training and testing). The confusion matrix from this test can be seen in Figure 4-7.

4.5 Discussion

4.5.1 Provenance Determination

The results of this study confirm that sapphires from Yogo Gulch have significantly different chemistry from the alluvial Montana sapphires, and can be separated with 99% effectiveness (both training and testing) when the model is used on alluvial vs. Yogo sapphires. In fact, Yogo sapphires can essentially be effectively separated on a simple bi-variate plot of Mg vs. Ti (Fig. 4-5). Even at the gemological level, Yogo sapphires are not as commonly heat treated to enhance their color as alluvial Montana sapphires, as their color is naturally more intense, alluding to intrinsic geochemical difference.

Alluvial Montana sapphires can be separated from each other with 90% testing accuracy (96% training accuracy). The gap between testing and training accuracy, while not too wide, does indicate a degree of overfitting with this model due to the noisy nature of this dataset. However, 90% separation still should be considered successful, and to date, the most effective separation of Montana alluvial sapphires. This provides evidence to support the hypothesis that Montana alluvial sapphires have differing geologic origins. While this is indeed a high degree of separability, the

10% inaccuracy in the test model suggests there is some inseparable overlap in trace element chemistry between the alluvial sapphires.

Some studies have utilized isotopic analysis in hopes of determining provenance, or gaining deeper insight into the formational origin of gem corundum (e.g. Giuliani et al., 2007; Turnier et al., 2020; Krebs et al., 2020). While undeniably useful and potentially successful, precise isotopic work was not considered with this study as the intention is to develop a practical and widely accessible means of provenance determination, without a high financial cost or major destruction to the sample.

4.5.2 Comparison with Colombian Emerald Separation

Recent work demonstrated the effectiveness of applying a random forest machine learning model to a suite of trace element data from Colombian emeralds for hyper-specific provenance determination (Blakemore et al. *in review*, chapter 3 of this dissertation). In that study, minute differences in emerald trace element chemistry was enough to discriminate between mining belts (98% accuracy), mining districts (~93% accuracy) and individual mines (~85% accuracy). This same method was applied in this study to attempt to demonstrate chemical separability in Montana sapphires. Emeralds have a key advantage over sapphires in utilizing this method, in that they have more sites available for elemental substitution, namely the Be¹⁰, Al¹⁰, Si¹⁰ cation sites, in addition to long interstitial channels parallel to the c-axis which is shown to trap primordial fluid inclusions (Giuliani et al., 1995). These allowed emeralds to record slight fluctuations in chemistry of the hydrothermal fluids and in the parent rock (organic rich, black shales). Certain elemental ratios, in the case of Columbian emeralds it was V/Cr ratio, appear to be the best indicators for separation across a large geographic area, and was indicative of a documented heterogeneity of V and Cr in the emerald host rock, indicating these geochemical differences can imply formation conditions and

host rock composition. (Breit and Wanty, 1991; Gustafsson, et al., 2014, Mantilla et al., 2007, González et al., 2021, Pignatelli et al., 2017).

Another key difference in the former Colombian emerald study and this Montana sapphire study is that three of the four sapphire deposits are alluvial, meaning the original source is lost. The emerald study had the advantage of knowing precisely where each emerald was found *in situ*. While geographically alluvial sapphires are distinct to their mining areas, considering their age, the tectonic, volcanic, and glacial history of the area it is an unknown question whether they shared a common source.

The RFC model had a 90% testing accuracy in determining the alluvial deposit of origin of Montana sapphires. This falls right in between the accuracies of the individual mine of origin (~85%) and mining district of origin (~93%) with the Colombian emerald study. The alluvial sapphire deposits can be thought of comparably as mining districts, since the area for extraction extends for miles up and down river valleys (e.g. Hsu et al., 2016). By comparing the chemistry of an unknown alluvial sapphire to this dataset, likewise with the Colombian emerald study, probabilities can be calculated for more holistic and realistic origin reporting. The 90% testing accuracy highlights the repeatability of this method yet again showing success on a previously unseparated set of mineral locations. This study adds a piece to a broader puzzle of origin determination, and with more data from more localities, the better and more practical the results will be.

4.5.3 Mg vs Ti: A possible cause of separation and insights into formation

The most striking trend in this data discovered after applying the RFC model to this data to determine variable importance analysis (Table 4-2), is the strong positive correlation (r = 0.84;

Table 4-2), and gradational trend of Mg vs. Ti (Fig. 4-5). In fact, the most important variable for separation is the Ti/Mg ratio (Table 4-3), meaning that the processes driving Ti and Mg substitution are a major cause for the separability in geography.

This correlation is also noted in (Oliveira et al., 2021) who reported that the slope of regression changes with Ti content in volcanic corundum from Mt. Carmel, Israel. The Oliveira (2021) study also notes correlations between Sc and Ti and Zr vs Ti. Ti³⁺ is shown to substitute for Al³⁺ under reducing conditions (Oliveira et al. 2021), indicating that oxygen fugacity of the evolving magma controls Ti³⁺ content in corundum. Sapphires measured in this study had much lower concentrations of Ti³⁺ (mean of ~ 40 ppm vs. ~7000 ppm) however maintained the same strong positive correlation between Ti and Mg as observed in Oliveira et al. (2021). Griffin et al. 2021 also demonstrated Cr³⁺ to be higher in Mt. Carmel corundum as well due to the highly reduced conditions, indicating fO₂ is also an important factor controlling the concentration of other trace elements in corundum.

In fact, Yogo Sapphires can be almost entirely separated on the Mg vs. Ti bi-variate plot alone (Fig. 4-5), indicating the source of their formation had more reduced fO₂ conditions than those of alluvial sapphires. This is an observation noted by Renfro et al. (2018) as a distinguishing chemical difference of Yogo Sapphires from alluvial Montana sapphires. Dry Cottonwood Creek and Missouri River sapphires showed consistently lower Ti concentrations than Yogo, with Rock Creek having intermediate concentrations. This observation suggests that there is evidence to suggest a different source for alluvial sapphires, possibly coming from different depths as fO_2 generally decreases with depth.

Additionally, Yogo Gulch sapphires are consistently higher in trace elements (Mg, Ti, Cr, Fe) than alluvial sapphires (Fig. 4-4), yielding to support the idea that Yogo Sapphires were formed under more reduced conditions than their alluvial counterparts. This trend is likewise seen in

somewhat of a gradient in comparing the alluvial sapphires as well, with Rock Creek sapphires having generally higher concentrations of trace elements than Missouri River and Dry Cottonwood Creek sapphires. Rutile (TiO₂) is a common mineral inclusion in Rock Creek sapphires and has been suggested to be characteristic of this deposit (Zwaan, 2015). This is in agreement with the results of our study, where Ti is generally elevated in Rock Creek sapphires than in Missouri River and Dry Cottonwood Creek sapphires.

4.5.4 Implications and future work with gemstone provenance determination

The results of this study show promising results for the random forest machine learning LA-ICP-MS trace elemental method of provenance determination, being able to separate sapphires from each location with 90% accuracy. Additionally, this method is useful in making discoveries in geochemical data post-analysis, using the variable importance list. In this study, the correlation and class separability between Ti and Mg was discovered this way, adding evidence to support the hypothesis of multiple geologic sources of formation for alluvial Montana sapphires. This study should be taken within the broader context of adding to the body of knowledge regarding origin determination, with the goal of making granular improvements which are building towards a more comprehensive way of determining the origin of a gemstone from any source. Having the ability to determine not only an origin opinion on an unknown mineral, but also a probability associated with said prediction presents a more transparent way of representing the geochemical fingerprint for use in origin determination. The success of this method on a new and famously enigmatic mineral system, albeit with some geochemical overlap, should provide optimism in moving forward with expanding this method to new systems.

4.6 Acknowledgments

The authors would like to thank Dr. Liam Courtney-Davis at the University of Colorado, Boulder for his assistance with LA-ICP-MS data collection, and to Julisan Street for her assistance in data processing.

4.7. Figures and Tables

Table 4-1: Summary Statistics of chemistry (ppm)

Summary Statistics of Montana Sapphire Trace Elements (ppm)						
	Mg	Ti	V	Cr	Fe	Ga
Total Montana Sapphires: Count	747	747	747	673	747	747
Total Montana Sapphires: Minimum	3.4	1.9	0.4	0.5	465.9	9.1
Total Montana Sapphires: Maximum	146.0	143.5	19.2	607.9	3999.2	83.3
Total Montana Sapphires: Mean	41.3	41.4	4.6	26.5	1692.4	28.9
Total Montana Sapphires: Median	37.5	34.6	3.5	8.4	1632.0	16.0
Total Montana Sapphires: Range	142.6	141.6	18.8	607.5	3533.3	74.2
Total Montana Sapphires: Interquartile Range	25.7	30.8	4.4	17.3	697.5	32.4
Total Montana Sapphires: Standard Deviation	24.8	29.1	3.5	67.2	573.7	18.6
Dry Cottonwood Creek : Count	152	152	152	152	152	152
Dry Cottonwood Creek : Minimum	3.4	1.9	0.4	0.6	845.0	11.3
Dry Cottonwood Creek : Maximum	123.4	87.2	15.9	115.9	3999.2	66.6
Dry Cottonwood Creek : Mean	28.6	23.4	4.3	12.2	1951.8	33.9
Dry Cottonwood Creek : Median	24.6	17.7	3.3	6.5	1755.0	39.0
Dry Cottonwood Creek : Range	120.0	85.3	15.5	115.3	3154.2	55.3
Dry Cottonwood Creek : Interquartile Range	32.8	32.5	4.8	14.0	861.8	32.8
Dry Cottonwood Creek : Standard Deviation	23.4	20.1	3.6	16.6	676.1	17.1
Missouri River : Count	217	217	217	203	217	217
Missouri River : Minimum	7.1	3.5	0.9	1.2	465.9	9.1
Missouri River : Maximum	110.0	75.1	14.3	173.6	2318.0	83.3
Missouri River : Mean	32.3	24.5	5.1	22.9	1378.5	33.1
Missouri River : Median	31.0	22.0	4.4	11.1	1321.0	15.7

Missouri River : Range	102.9	71.6	13.4	172.4	1852.1	74.2
Missouri River : Interquartile Range	25.8	14.7	5.0	16.7	570.8	43.3
Missouri River : Standard Deviation	16.1	11.5	3.1	31.1	354.9	23.5
Rock Creek : Count	315	315	315	255	315	315
Rock Creek : Minimum	7.1	4.1	0.9	0.5	594.6	11.6
Rock Creek : Maximum	92.4	143.5	15.5	607.9	3598.4	58.3
Rock Creek : Mean	42.1	49.7	3.6	30.7	1834.0	26.7
Rock Creek : Median	40.8	40.3	2.7	5.2	1781.0	15.9
Rock Creek : Range	85.3	139.4	14.6	607.5	3003.8	46.7
Rock Creek : Interquartile Range	16.5	29.9	2.4	13.7	643.0	28.4
Rock Creek : Standard Deviation	13.3	23.2	2.6	90.0	559.6	15.0
Yogo Gulch : Count	63	63	63	63	63	63
Yogo Gulch : Minimum	72.7	76.7	3.4	2.7	1060.0	11.0
Yogo Gulch : Maximum	146.0	131.0	19.2	470.0	3110.0	20.6
Yogo Gulch : Mean	99.0	101.2	9.1	55.7	1439.4	13.7
Yogo Gulch : Median	97.1	100.0	8.0	17.9	1370.0	12.9
Yogo Gulch : Range	73.3	54.3	15.8	467.3	2050.0	9.6
Yogo Gulch : Interquartile Range	17.8	22.2	5.7	37.7	360.0	3.8
Yogo Gulch : Standard Deviation	14.0	15.1	4.5	102.6	381.3	2.6

Table 4-2: Correlation Matrix

	Mg	Ti	V	Cr	Fe	Ga		
Mg	1	0.84	0.5	0.21	0.043	0.1		
Ti	0.84	1	0.49	0.21	0.21	0.11		
V	0.5	0.49	1	0.37	0.06	0.48		
Cr	0.21	0.21	0.37	1	-0.11	0.15		
Fe	0.043	0.21	0.06	-0.11	1	0.15		
Ga	0.1	0.11	0.48	0.15	0.15	1		
Variable Importance								
---------------------	-------	--	--	--	--	--	--	--
Mg/Ti	495.7							
Mg	470.8							
Ti/Fe	456.7							
Fe	425.6							
Ti	424.4							
Mg/Fe	383.0							
Ti/V	375.2							
V/Fe	365.7							
Mg/V	277.0							
V	275.2							

Table 4-3: List of variable importance for RFC separation

Figure 4-1. Map of Montana Sapphire deposits (Modified after Zwaan et al. 2015). Rock Creek, Dry Cottonwood Creek, and Missouri River deposits are alluvial, and Yogo Gulch is primary igneous.

Figure 4-2: Comparison of elemental concentrations collected at different laboratories as a visual test for consistency. Each element except for Ga was shown to be consistent, so Ga was excluded from discrimination analysis to avoid incorporating any artificial breaks in data caused by any systematic error.

Figure 4-3. Probability plots of sapphire trace elements. Notice how Ga and Cr show non-normal distribution. For this reason, these elements were excluded from separation analysis. Orange data points were collected at the GIA, and blue were collected at the University of Colorado Boulder.

Figure 4-4. Box plots of Mg, Ti, V, and Cr highlighting the unique chemistry of Yogo Gulch sapphires, compared to the alluvial deposits, with generally elevated trace element concentrations. Notice also how dry cottonwood creek generally has the lowest median trace element concentrations.

Figure 4-5. Mg vs. Ti. Note the strong positive correlation, and gradation of location, with Yogo Gulch sapphires having higher concentrations of Mg and Ti, Rock creek having intermediate, and Dry Cottonwood and Missouri River having similarly lower concentrations.

Training Data (80%)	Dry Cottonwood Creek	Missouri River	Rock Creek	Yogo Gulch	Count	Test Data (20%)	Dry Cottonwood Creek	Missouri River	Rock Creek	Yogo Gulch	Count
Dry Cottonwood Creek	115	1	5		121	Dry Cottonwood Creek	23	4	4		31
Missouri River	1	1.5.9	2		162	Missouri River	3	38			41
Rock Creek	2	1	200	1	204	Rock Creek	1		50		51
Yogo Guich			1	49	56	Yogo Guich				13	13
Count	118	161	208	50	537	Count	27	42	54	13	136

Figure 4-6: Example confusion diagrams from the training set and testing set of data during the RFC model analysis for the entire data set. Data was partitioned 80% training and 20% testing.

Training Data (80%)	Alluvial Sapphires	Yogo Gulch	Count	Test Data (20%)	Alluvial Sapphires	Yogo Gulch	Count
Alluvial Sapphires	487	1	488	Alluvial Sapphires	122		122
Yogo Gulch	1	49	50	Yogo Gulch		13	13
Count	488	50	538	Count	122	13	135

Figure 4-7: Confusion matrix showing near perfect separation of alluvial Montana sapphires versus primary igneous Yogo Gulch Montana sapphires.

4.8 References

- Berg, B. (2007) Sapphires in the Butte-Deer Lodge Area, Montana. Montana Bureau of Mines and Geology, Bulletin, 134.
- Berger, A.L., and Berg, R.B. (2006) The Silver Bow Sapphire Occurrence, Montana: Evidence for a volcanic bedrock source for Montana's alluvial sapphire deposits. Economic Geology, 101, 679–684.
- Blakemore, D.R., Palke, A., Gonzalez-Duran, A., Sun, Z., Toloza, J.G., Betancur-Acevedo, C.A., and Simon, A.C. (n.d.) Application of Random Forest Classification Machine Learning for Hyper-Specific Mineral Origin Determination Studies: Insights from Colombian Emerald and Euclase. (In Review, Submitted to American Mineralogist, Chapter 3 of this dissertation).
- Breit, G.N., and Wanty, R.B. (1991) Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chemical Geology, 91, 83–97.
- Cade, A., and Groat, L.A. (2006) Garnet inclusions from Yogo Sapphires. Gems & Gemology, 42, 106.
- Chulapakorn, T., Intarasiri, S., Bootkul, D., and Singkarat, S. (2014) Identification of deposit types of natural corundum by PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 331, 108–112.
- Dahy, J.P. (1991) Geology and igneous rocks of the Yogo sapphire deposit, Little Belt Mountains, Montana. In D.W. Baker and R.B. Berg, Eds., *Guidebook of the Central Montana Alkalic Province*. Montana Bureau of Mines and Geology Special Publication 100, pp. 45–54.
- Emmett, J.L., Scarratt, K., McClure, S., Moses, T., Douthit, T., Hughes, R., Novak, S., Shigley, J.E., Wang, W., Bordelon, O., and others (2003) Beryllium Diffusion of Ruby and Sapphire. Gems & Gemology, 39, 84–135.
- Evans, K.V., Aleinikoff, J.N., Obradovich, J.D., and Fanning, C.M. (2000) SHRIMP U-Pb geochronology of volcanic rocks, Belt Supergroup, western Montana: evidence for rapid deposition of sedimentary strata. Canadian Journal of Earth Sciences, 37, 1287–1300.
- Fuentes, F., DeCelles, P.G., and Constenius, K.N. (2012) Regional structure and kinematic history of the Cordilleran fold-thrust belt in northwestern Montana, USA. Geosphere, 8, 1104–1128.
- Garland, M.I. (2002) The alluvial sapphire deposits of western Montana. Thesis.
- Giuliani, G., Cheilletz, A., Arboleda, C., Carrillo, V., Rueda, F., and Baker, J.H. (1995) An evaporitic origin of the parent brines of Colombian emeralds; fluid inclusion and sulphur isotope evidence. European Journal of Mineralogy, 7, 151–165.
- Giuliani, G., Fallick, A., Rakotondrazafy, M., Ohnenstetter, D., Andriamamonjy, A., Ralantoarison, T., Rakotosamizanany, S., Razanatseheno, M., Offant, Y., Garnier, V., and others (2007) Oxygen isotope systematics of gem corundum deposits in Madagascar: relevance for their geological origin. Mineralium Deposita, 42, 251–270.

- González-Durán, A.F., García-Toloza, J., Bonilla, G., Cedeño-Ochoa, C.J., Angarita-Sarmiento, L.G., Castañeda-Gómez, A.J., Parra-Bastidas, S.D., Bocanegra-Rodríguez, L.C., Montaña-Cárdenas, J., and López-Castillo, C.L. (2021) Geoquímica y mineralogía de la mina La Pava, Muzo-Quípama: implicaciones en la exploración de esmeraldas en Colombia. Boletín de Geología, 43, 117–142.
- Gustafsson, J.P., Persson, I., Oromieh, A.G., van Schaik, J.W.J., Sjöstedt, C., and Kleja, D.B. (2014) Chromium(III) Complexation to Natural Organic Matter: Mechanisms and Modeling. Environmental Science & Technology, 48, 1753–1761.
- Hsu, T., Lucas, A., McClure, S., Renfro, N., and Schumacher, K. (2016) Rock Creek Montana Sapphires: A New Age of Mining Begins. GIA.
- Kanouo, N.S., Ekomane, E., Yongue, R.F., Njonfang, E., Zaw, K., Changqian, M., Ghogomu, T.R., Lentz, D.R., and Venkatesh, A.S. (2016) Trace elements in corundum, chrysoberyl, and zircon: Application to mineral exploration and provenance study of the western Mamfe gem clastic deposits (SW Cameroon, Central Africa). Journal of African Earth Sciences, 113, 35–50.
- Krebs, M.Y., Hardman, M.F., Pearson, D.G., Luo, Y., Fagan, A.J., and Sarkar, C. (2020) An Evaluation of the Potential for Determination of the Geographic Origin of Ruby and Sapphire Using an Expanded Trace Element Suite Plus Sr–Pb Isotope Compositions. Minerals (2075-163X), 10, 447.
- Lin Sutherland, F., Hoskin, P.W.O., Fanning, C.M., and Coenraads, R.R. (1998) Models of corundum origin from alkali basaltic terrains: a reappraisal. Contributions to Mineralogy and Petrology, 133, 356–372.
- Mantilla, L.C., Silva, A., Serrano, J.J., Conde, J., Gómez, C., Ramírez, J.C., Meza, J.A., Pelayo, Y., Ortega, L.M., Plata, L.M., and others (2007) Investigación petrográfica y geoquímica de las sedimentitas del Cretácico inferior (K1) y sus manifestaciones hidrotermales asociadas planchas 169, 170, 189, 190 (Cordillera Oriental), implicaciones en la búsqueda de esmeraldas. INGEOMINAS-Universidad Industrial de Santander (UIS), Bogotá.
- McClure, S.F., Moses, T.M., and Shigley, J.E. (2019) The Geographic Origin Dilemma | Gems & Gemology, 55, 457–462.
- Oliveira, B., Griffin, W.L., Gain, S.E.M., Saunders, M., Shaw, J., Toledo, V., Afonso, J.C., and O'Reilly, S.Y. (2021) Ti3+ in corundum traces crystal growth in a highly reduced magma. Scientific Reports, 11, 2439.
- Palke, A.C., and Breeding, C.M. (2017) The origin of needle-like rutile inclusions in natural gem corundum: A combined EPMA, LA-ICP-MS, and nanoSIMS investigation. American Mineralogist, 102, 1451–1461.
- Palke, A.C., Renfro, N.D., Hapeman, J.R., and Berg, R.B. (2023) Gemological Characterization of Montana Sapphire from the Secondary Deposits at Rock Creek, Missouri River, and Dry Cottonwood Creek. Gems & Gemology, 59, 2–45.

- Palke, A.C., Wong, J., Verdel, C., and Ávila, J.N. (2018) A common origin for Thai/Cambodian rubies and blue and violet sapphires from Yogo Gulch, Montana, U.S.A.? American Mineralogist, 103, 469–479.
- Peucat, J.J., Ruffault, P., Fritsch, E., Bouhnik-Le Coz, M., Simonet, C., and Lasnier, B. (2007) Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires. Lithos, 98, 261–274.
- Pignatelli, I., Giuliani, G., Morlot, C., Rouer, O., Claiser, N., Chatagnier, P.-Y., and Goubert, D. (2017) Recent Advances in Understanding the Similarities and Differences of Colombian Euclases. The Canadian Mineralogist, 55, 799–820.
- Renfro, N.D., Palke, A.C., and Berg, R.B. (2018) Gemological Characterization of Sapphires from Yogo Gulch, Montana | Gems & Gemology. Gems & Gemology, 54, 184–201.
- Simonet, C., Fritsch, E., and Lasnier, B. (2008) A classification of gem corundum deposits aimed towards gem exploration. Ore Geology Reviews, 34, 127–133.
- Sorokina, E.S., Hofmeister, W., Häger, T., Mertz-Kraus, R., Buhre, S., and Saul, J.M. (2016) Morphological and chemical evolution of corundum (ruby and sapphire): Crystal ontogeny reconstructed by EMPA, LA-ICP-MS, and Cr3+ Raman mapping. American Mineralogist, 101, 2716–2722.
- Stone-Sundberg, J.L., Guan, Y., Sun, Z., and Ardon, T. (2021) Accurate Trace Element Reporting in Corundum: Development of Secondary Ion Mass Spectrometry Relative Sensitivity Factors. Geostandards & Geoanalytical Research, 45, 207–221.
- Sutherland, F.L., Zaw, K., Meffre, S., Giuliani, G., Fallick, A.E., Graham, I.T., and Webb, G.B. (2009) Gem-corundum megacrysts from east Australian basalt fields: trace elements, oxygen isotopes and origins*. Australian Journal of Earth Sciences, 56, 1003–1022.
- Sutherland, F.L., Zaw, K., Meffre, S., Tzen-Fui Yui, and Kyaw Thu (2015) Advances in Trace Element "Fingerprinting" of Gem Corundum, Ruby and Sapphire, Mogok Area, Myanmar. Minerals (2075-163X), 5, 61–79.
- Turnier, R.B., Katzir, Y., Kitajima, K., Orland, I.J., Spicuzza, M.J., and Valley, J.W. (2020) Calibration of oxygen isotope fractionation and calcite-corundum thermometry in emery at Naxos, Greece. Journal of Metamorphic Geology, 38, 53–70.
- Wong, J., Verdel, C., and Allen, C.M. (2017) Trace-element compositions of sapphire and ruby from the eastern Australian gemstone belt. Mineralogical Magazine, 81, 1551–1576.
- Zaw, K., Sutherland, F.L., Dellapasqua, F., Ryan, C.G., Yui, T.-F., Mernagh, T.P., and Duncan, D. (2006) Contrasts in gem corundum characteristics, eastern Australian basaltic fields: trace elements, fluid/melt inclusions and oxygen isotopes. Mineralogical Magazine, 70, 669–687.
- Zwaan, J.C. (Hanco), Butler, E., Mertz-Kraus, R., and Kane, R.E. (2015) Alluvial Sapphires from Montana: Inclusions, Geochemistry, and Indications of a Metasomatic Origin | Gems & Gemology. Gems & Gemology, 51.

Chapter 5: Conclusion

The results from this dissertation unequivocally demonstrate the utility of the LA-ICP-MS for geochemical studies in mineral resource geology. In chapter 2, the LA-ICP-MS was used to add to the body of geochronology work done on the Candelaria IOCG deposit. Most of the new apatite and titanite dates reported here are consistent with previously reported ages of sulfide mineralization (Re–Os, Molybdenite) at c. 115 Ma. Actinolite-hornblende and four titanite samples record other hydrothermal events at 118 Ma, 121 Ma, and 126 Ma. It was determined that these dates have no meaningful correlation with depth. The new dates presented in chapter 2 present evidence supporting an episodic, multi-pulse model of formation for the Candelaria IOCG deposit. Magnetite U–Pb dates are less precise due to low U/Pb ratios, but still geologically useful and broadly consistent with the other dates reported here. Our results support a multi-phase hydrothermal model of formation of the Candelaria deposit, where an IOA style mineralization (magnetite-actinolite) is overprinted by the Cu-rich IOCG style mineralization. These results have broader reaching implications for adding to the body of knowledge on the formation of IOCG deposits which could aid in the exploration for new IOCG deposits, and also shows promise for the possible future development of magnetite U–Pb dating.

In chapter 3, a large suite of elemental data was collected with LA-ICP-MS and was used to develop a provenance determination machine learning model for Colombian Emeralds. With the results of this study, we are now able to confidently determine the belt (98% accuracy) and mining district (93% accuracy) of origin from an unknown Colombian emerald by using trace elements analyzed with a random forest classification machine learning algorithm. We are also able to determine the mine of origin of 40 individual mines in Colombia with moderate confidence (85% accuracy). More data would be needed in order to increase the confidence in differentiating down to the individual mine, but with the vast number of Colombian emerald mines, along with their geographic proximity, it may not be possible to achieve a better separation using any combination of analytical or machine learning method, nor would it be practical.

The key advantage of this approach is the coupling of a machine learning model, with the prediction score and visualizations to assist the user in understanding why the "black box" arrived

at the determinations it did. Even when the algorithm guesses incorrectly, there is ample evidence as to why the model predicted wrong, and what the other possibilities are. This allows the analyst to make an informed prediction and allows this information to be passed along to the client. Additionally, the empirical probability and corresponding visualizations could give laboratories more confidence in stating their origin opinions, as it is harder for an unethical dealer to claim with certainty that a stone is 100% from a specific location based solely on a report made in good faith. This method has promise for rapidly expanding origin determination capabilities hyper-specifically, well beyond the country of origin.

In addition to provenance determination, this method allows for the ability to make impartial observations about data after analyses to discover insights into the underlying geologic process. In the case of the emerald study, it was discovered that V/Cr is the most important variable for separation and alludes to a natural heterogeneity in the host rock shale between the eastern and western mining belts, likely controlled by total organic carbon concentration at deposition.

Chapter 4 followed up this provenance determination model on an entirely different mineral system: Montana Sapphires. This was the first time an attempt has been made at determining if there is a way to geochemically fingerprint alluvial sapphires from Montana, and the results show a great deal of potential, with RFC model having ~90% accuracy in separating the alluvial sapphires form each other, and over 99% accuracy in separating the only primary igneous sapphire deposit from the other Montana localities. The broader implications of this study are a confirmation that the method developed in chapter 3 can be applied to different mineral systems successfully, and will continue to be a useful method in future provenance studies. Another important takeaway from this study is the correlation between Ti and Mg, suggesting a change in oxygen fugacity in the original formational environment of alluvial sapphires. This highlights the added benefit of uncovering geologic insights after applying the provenance RFC machine learning model to a suite of LA-ICP-MS data.

This dissertation highlights the dual applications of the LA-ICP-MS in application to mineral resource geology and paves the way for future work in mineral provenance method development.

Appendices

Appendix A: Chapter 2 Supplemental

Extended methods used in chapter 2

Scanning Electron Microscopy

A JEOL JSM-7800F field emission scanning electron microscope coupled with an Oxford Instruments X-Max energy dispersive X-ray spectrometer (EDS) detector at the University of Michigan's EMAL facility was used to identify and document minerals in preparation for isotopic and trace element analysis. EDS spectra were processed with AZtec EDS software by Oxford Instruments. Images of selected minerals were collected in backscattered electron spectroscopy (BSE) mode to document textural context. All EDS spectra and BSE images were taken at variable magnifications with an accelerating voltage of 20 KeV and a working distance of 10 mm. Usage of the SEM allowed for non-destructive identification of apatite, titanite, and magnetite for this study.

Laser Ablation Multi-Collector ICP-MS (University of California Santa Barbara)

Laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) analyses were performed at the University of California, Santa Barbara to measure U-Pb ratios. A Photon Machines 193 nm excimer Excitelaser with a HelExII cell was used for mineral ablation. Ablated material was measured with a Nu Instruments Plasma HR-ES multi-collector

ICP-MS. Spots were ablated at a repetition rate of 5 Hz, for 15 s, with a fluence of $\sim 1 \text{ J/cm}^2$. Spot diameters were 35 µm for titanite and apatite, and 65 µm for magnetite.

Data were processed using the commercially available software Iolite v3.5. A series of reference materials were run at the beginning and end of each analytical session, and in between every 8-12 unknown analyses. The primary Titanite reference material (RM) for U-Pb was MKED (Spandler et al., 2016). Secondary RMs BLR (Aleinikoff et al., 2007), Y1710C5 (Spencer et al., 2013), P5701G (Kylander-Clark et al., 2008), and FCT (Schmitz and Bowring, 2001) were used as quality control and yielded ages within 2% of their accepted values; the 91500 zircon RM (Weidenbeck et al., 1995) was used as an additional check on 207Pb/206Pb. The primary apatite RM for U-Pb was the Madagascar apatite (467 Ma; Apen et al. 2022); Durango (32.3 Ma; Paul et al., 2021), McClure (Krestianinov et al., 2021), and BRZ-1 (Apen et al., 2022). Titanite and apatite trace-element data was processed using NIST612 and BHVO glass reference materials assuming stoichiometric Ca as an internal standard. No matrix-matched magnetite standard exists yet, so Mud Tank zircon (Black and Gulson, 1978) was used as the primary RM, and NIST and BHVO were used as a secondary check on 207Pb/206Pb. Dates were calculated using the ²⁰⁷Pb/²⁰⁶Pb vs ²³⁸U/²⁰⁶Pb Tera-Wasserburg diagram using Isoplot-R (Vermeesch, 2018; Parameters: discordia model-1 age, no correction for common lead or disequilibrium). Data presented in the manuscript first show the 2σ analytical uncertainty, followed by that uncertainty propagated with the long-term reproducibility (2% for titanite and apatite, but unknown for magnetite) in brackets.

Laser Ablation ICP-MS (University of Maine)

U-Pb isotopes were collected on titanite at the University of Maine MicroAnalytical Geochemistry and Isotope Characterization (MAGIC) laboratory using an ESL NWR193^{UC}

excimer laser ablation system equipped with a TV2 large format cell coupled to an Agilent 8900 ICP-MS. Titanite was ablated using a 25 μ m round spot at 6 Hz and 3 J/cm2. Each spot analysis consisted of 15 s of background collection during laser warmup, 30 s of ablation, and 10 s of washout. Isotope ratios were determined in iolite 4 (Paton et al., 2011; Woodhead et al., 2007; Paton et al., 2010) relative to titanite reference material MKED (Spandler et al., 2016). Secondary titanite RM BLR gave a weighted mean age of 151±15 Ma (2s) with a correction for common Pb based on Stacey and Kramers (1965), which is consistent with the TIMS age of 147.1±0.4 Ma (Aleinikoff et al., 2007). Titanite dates based on 206Pb/238U were calculated using discordia model 1 in IsoplotR (Vermeesch, 2018).

Argon-Argon (Auburn University)

Argon-Argon dating was performed on an actinolite at Auburn University's Noble Isotope Mass Analysis Lab (ANIMAL).The GLM-110 mass spectrometer was used for the analyses, that is a 10-cm radius 90° sector instrument with double focusing geometry, a Nier-type source, and a single detector (an ATP discrete dynode-style electron multiplier). Samples fused for gas extraction with a CO₂ laser. Operation of the laser, extraction line and mass spectrometer were fully automated. The time required for one complete analysis cycle is 20 minutes (4 minutes gettering, followed by generally 10 measurements per peak and baseline, 30 measurements of m/e=36). Sample inlet and equilibration time is 5 s for a half-split of a sample and 20 s for an entire sample. Blanks were measured following every 5th analysis. Blank corrections to 36 Ar measurements are based on an average or regression of several blanks measured for a given day of analysis. Air aliquots are typically analyzed 3 times per day (generally at the beginning of the day). Data were reduced using an Excel spreadsheet and Isoplot (Ludwig, 2012, Sp. Pub. BGC, 75 p.). Samples were irradiated for 16 hours with Cd shielding in the CLICIT facility of the Oregon State University TRIGA reactor. Unless indicated otherwise, the data are in volts and errors are the standard deviation of measurement and do not include the error in estimating the J-Value (0.15% at the 95% confidence level). P = Laser Power Level (10 = 100%), t = laser heating time (s). Data are corrected for blank, mass discrimination, and interfering nuclear reactions. The rubric for irradiation filenames is: 'AU + package"+ "layer, radial position" + "phase" + "planchet hole # and sequence", saved as a text file. All samples for this study were in radial positions of a single irradiation layer, with positions labeled as in sketch, and the monitor data for this layer are included in the dataset.

Irradiation parameters, analysis standards, and correction factors for ⁴⁰Ar/³⁹Ar data

Irradiation package: AU-36

Median date of Irradiation: 12/28/2019

Median dates of analyses: ~1/29/2020 (monitors and K-feldspars); ~5/28/2020 (actinolite)

GA-1550 Biotite age used: 9.944E+07 (Jordan and Renne, 2007) (age of GA-1550 Biotite is recalculated to FCS=28.201 Ma, see Schaen et al., 2020)

FC Sanidine age used: 28.201E+07 (Kuiper et al., 2016)

 λ total: 5.463E-10 (Min et al., 2000)

(⁴⁰Ar/³⁶Ar)_{air}: 295.5 (Nier, 1950)

Air 40 Ar/ 36 Ar (based on daily measurements): 291.5 +/- 0.5

(36/37)Ca: 0.0003046± 0.000008

(39/37)Ca: 0.0007380 ± 0.000037

(40/39)K: 0± 0.00040

References

- Aleinikoff, J.N., Wintsch, R.P., Tollo, R.P., Unruh, D.M., Fanning, C.M., and Schmitz, M.D., 2007, Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England: American Journal of Science, v. 307, no. 1, p. 63–118.
- Apen, F.E., Wall, C.J., Cottle, J.M., Schmitz, M.D., Kylander-Clark, A.R.C., and Seward, G.G.E., 2022, Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry: Chemical Geology, v. 590, p. 120689.
- Black, L., and Gulson, B., 1978, The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory: B.M.R.J. AUSTRAL. GEOL. GEOPHYS.; AUS; DA. 1978; VOL.
 3; NO 3; PP. 227-232; BIBL. 1 P.; 6 ILL.
- Jourdan, F. and Renne, P., 2007, Age Calibration of the Fish Canyon sanidine ⁴⁰Ar/³⁹Ar dating standards using primary K-Ar standards: Geochimica et Cosmochimica Acta, v. 71, no. 2, p. 387-402.
- Krestianinov, E., Amelin, Y., Neymark, L.A., and Aleinikoff, J.N., 2021, U-Pb systematics of uranium-rich apatite from Adirondacks: Inferences about regional geological and geochemical evolution, and evaluation of apatite reference materials for in situ dating: Chemical Geology, v. 581, p. 120417.
- Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., and Wijbrans, J.R., 2008, Synchronizing Rock Clocks of Earth History: Science, v.320, no. 5875, p. 500-504.
- Kylander-Clark, A.R.C., Hacker, B.R., and Mattinson, J.M., 2008, Slow exhumation of UHP terranes: Titanite and rutile ages of the Western Gneiss Region, Norway: Earth and Planetary Science Letters, v. 272, no. 3, p. 531–540.
- Ludwig, K.,2012, User's Manual for ISOPLOT version 3.75-4.15. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, p. 75.

- Min, K., Mundil, R., Renne, P.R., and Ludwig, K.R., 2000, A test for systematic errors in ⁴⁰Ar/³⁹Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite, v. 64, no. 1, p. 73-98.
- Nier, A.O., 1950, A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon, and Potassium, Physical Review, v. 77, 789.
- Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., and Maas, R., 2010, Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction: Geochemistry, Geophysics, Geosystems, v. 11, no. 3.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J., 2011, Iolite: Freeware for the visualisation and processing of mass spectrometric data: Journal of Analytical Atomic Spectrometry, v. 26, no. 12, p. 2508–2518.
- Schaen, A. J., Jicha, B.R., Hodges, K.V., Vermeesch, P., Stelten, M.E., Mercer, C.M., Phillips, D., Rivera, T.A., Jourdan, F., Matchan, E.L., and Hemming, S.R, 2020, Interpreting and reporting ⁴⁰Ar/³⁹Ar geochronologic data: GSA Bulletin.
- Schmitz, M.D., and Bowring, S.A., 2001, U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks: Geochimica et Cosmochimica Acta, v. 65, no. 15, p. 2571– 2587.
- Spandler, C., Hammerli, J., Sha, P., Hilbert-Wolf, H., Hu, Y., Roberts, E., and Schmitz, M., 2016, MKED1: A new titanite standard for in situ analysis of Sm–Nd isotopes and U– Pb geochronology: Chemical Geology, v. 425, p. 110–126.
- Spencer, K.J., Hacker, B.R., Kylander-Clark, A.R.C., Andersen, T.B., Cottle, J.M., Stearns, M.A., Poletti, J.E., and Seward, G.G.E., 2013, Campaign-style titanite U–Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure: Chemical Geology, v. 341, p. 84–101.
- Vermeesch, P., 2018, IsoplotR: a free and open toolbox for geochronology. *Geoscience Frontiers*, v.9, p.1479-1493, doi: 10.1016/j.gsf.2018.04.001.
- Woodhead, J.D., Hellstrom, J., Hergt, J.M., Greig, A., and Maas, R., 2007, Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry: Geostandards and Geoanalytical Research, v. 31, no. 4, p. 331–343.

Table A-1: Sample Descriptions and data from Rodriguez-Mustafa et al., 2020 and del Real et al., 2021. These thin sections are from a 1000 m drill core (LD1687B) of the Candelaria mine.

Thin Section Label	Drill Core- sample number	Vertical Depth from Collar (m)	Description
C11	LD1687B-11	148	Sample with straight edge vein containing K-feldspar and bladed, colorful actinolite. The vein has pyrite- magnetite and minor chalcopyrite in the middle and some large titanite cristals with it. The host rock presents a fine grained pervasive biotite alteration with minor dark grean fine patches and fine grains magnetite.
C12	LD1687B-12	133	Undifferentiated matrix with magnetite fragments; sulfides present in their borders and fractures
C34	LD1687B-34	486	Abundant sulfides (py, cpy, po) in magnetite breccia with clasts pervasively altered to chlorite
C43	LD1687B-43	618	Breccia with sodic-calcic–altered groundmass with few disseminated sulfides and massive magnetite clasts
C52	LD1687B-52	731	Mushketovite and potassic feldspar veins in fine, undifferentiated matrix
C58	LD1687B-58	817	Massive mushketovite and minor actinolite in altered volcanic matrix
C61	LD1687B-61	840	Albitized volcanic rock with a massive magnetite vein crosscut by a chlorite vein; posterior K-feldspar veins contain sulfides
C62	LD1687B-62	871	Porphyritic rock with K-feldspar veins cutting magnetite veins
C65	LD1687B-65	1030.4	Volcanic rock with patches albite-chlorite-actinolite and titanite alteration and disseminated magnetite- pyrite-epidote-feldspar-actinolite
C70	LD1687B-70	1109.5	Andesite with disseminated magnetite and actinolite aggregates
C73	LD1687B-73	1132.1	Andesite with disseminated magnetite and minor actinolite. Actinolite-magnetite veins with minor sulfides.

Table A-2: Titanite sample information and associated depth at which the titanite originated, U-Pb ages and associated error, rho values, the textural relationship of the titanite within the overall sample, and whether samples fell off the discordia line and therefore omitted from further calculation, data taken at USCB. Parameters used in Isoplot-R (Vermeesch, 2018) discordia model-1 age, no correction for common lead or disequilibrium.

Sample Label	Depth (m)	²³⁸ U / ²⁰⁶ Pb	2se	²⁰⁷ Pb / ²⁰⁶ Pb	2se	rho	Textural Relationship	Omitted point (x)
							Matrix, in	
C52 01	731	53.0223	1.4855	0.0731	0.0034	0.1562	contact with	
—							mag	
C52_03_1	731	54.2594	1.3452	0.0788	0.0066	0.1696	Matrix	
C52_03_2	731	53.7634	1.4184	0.0690	0.0034	0.1624	Matrix	
C52_04	731	54.1419	1.3075	0.0624	0.0029	0.3677	Matrix	
C58_01_1	817	50.7614	3.0107	0.1030	0.0112	0.1861	Matrix	
C58_01_2	817	52.8541	1.7295	0.1140	0.0152	0.1678	Matrix	
C58_02_01	817	38.0228	6.6937	0.2180	0.0582	0.2704	Matrix	
C58_02_2	817	27.1739	3.1486	0.4360	0.0351	0.4779	Matrix	
C58_03	817	29.9401	2.2332	0.3930	0.0291	0.4203	Matrix	
C58_04_1	817	64.6412	2.0154	0.0899	0.0083	0.2924	In a cross- cutting K- spar vein	Х
C58_04_2	817	65.2316	1.6568	0.1132	0.0063	0.4175	In a cross- cutting K- spar vein	Х
C58_04_3	817	46.3392	1.6934	0.2900	0.0180	0.2602	In a cross- cutting K- spar vein	х
C58_05	817	49.6524	1.3484	0.1340	0.0104	0.1913	Matrix	
C58_06	817	44.0917	1.2285	0.2120	0.0146	0.2136	Matrix	
C61_02	840	21.9780	2.6452	0.5010	0.0403	0.5343	Undifferentia -ted	
C61_01	840	17.0068	2.5392	0.5770	0.0407	0.5524	Undifferentia -ted	

Figure A-1: Titanite C52 Tera-Wasserburg Diagram (UCSB)

Table A-3: Titanite sample ID information, ²⁰⁷Pb/²³⁵U ratios and error, ²⁰⁶Pb/²³⁸U ratios and error, and ²⁰⁷Pb/²⁰⁶Pb ratios and error, data taken at University of Maine.

		Final ²⁰⁷ Pb	E:	Final ²⁰⁶ Pb		Final ²⁰⁷ Pb
Comula ID	Final ²⁰⁷ PD	/ ²³⁵ U	Final ²⁰⁰ PD	/ ²³⁸ U	Final ²⁰ ^{PD}	/ ²⁰⁶ Pb
Sample ID	/2000	2SE	/200	2SE	/200 PD	2SE
	mean	(prop)	mean	(prop)	mean	(prop)
11ttn						
11ttn_1.d	0.173336	0.019067	0.020021	0.001324	0.062687	0.006163
11ttn_2.d	0.180778	0.026101	0.020508	0.001522	0.060353	0.008464
11ttn_3.d	3.509307	0.537072	0.0475	0.00521	0.497069	0.060519
11ttn_4.d	0.483907	0.098627	0.021842	0.002121	0.154043	0.031504
11ttn_6.d	0.196364	0.027444	0.019846	0.001408	0.072173	0.009407
11ttn_31.d	0.162396	0.046022	0.02166	0.00218	0.063316	0.020113
11ttn_32.d	0.206034	0.042843	0.021426	0.001777	0.068245	0.0144
11ttn_35.d	1.730713	0.202919	0.032267	0.00269	0.375678	0.039177
11ttn_36.d	0.827276	0.126254	0.025861	0.002163	0.22339	0.030541
11ttn_39.d	0.535377	0.104022	0.022379	0.001982	0.18102	0.033567
11ttn_41.d	1.552159	0.276607	0.034097	0.003903	0.390435	0.073725
11ttn_42.d	1.644613	0.257993	0.033144	0.003927	0.451517	0.089989
11ttn_43.d	1.82681	0.356765	0.031841	0.003536	0.413285	0.05865
11ttn_44.d	2.032748	0.266434	0.036879	0.003268	0.391843	0.044464
11ttn_45.d	1.053233	0.113297	0.028239	0.002411	0.257051	0.026275
11ttn_46.d	0.625064	0.1384	0.025687	0.003091	0.214654	0.056979
11ttn_47.d	0.142656	0.034178	0.019883	0.001699	0.05554	0.013942
11ttn_48.d	0.705996	0.140299	0.023972	0.002314	0.188307	0.033559
11ttn_49.d	0.357158	0.05729	0.022259	0.001896	0.125076	0.01954
11ttn_50.d	0.831104	0.117157	0.023354	0.002428	0.293657	0.047715
11ttn_51.d	2.63631	0.368094	0.04118	0.004165	0.449139	0.051806
11ttnvein						
11ttnvein_4.d	88.17616	20.40227	0.286224	0.069352	0.816476	0.095088
11ttnvein_6.d	4.617864	0.899022	0.069863	0.012234	0.570995	0.100531
11ttnvein_7.d	6.0104	0.821919	0.074392	0.008841	0.670256	0.097416
65ttn						
65ttn_1.d	1.023187	0.182103	0.029484	0.002958	0.27556	0.043597
65ttn_2.d	0.320098	0.069236	0.022235	0.002227	0.134651	0.032568
65ttn_3.d	0.477251	0.092089	0.02276	0.002206	0.186186	0.039593
65ttn_4.d	0.977335	0.228579	0.029854	0.003917	0.276824	0.048743
65ttn_5.d	1.987495	0.255872	0.039041	0.003938	0.430012	0.057676
65ttn_6.d	2.143988	0.531303	0.037267	0.005545	0.409394	0.063999
65ttn_7.d	2.958418	0.473749	0.041855	0.004644	0.500525	0.060169
65ttn_8.d	2.446534	0.250614	0.039871	0.004034	0.491149	0.049404
65ttn_9.d	0.338677	0.073201	0.02198	0.002247	0.153997	0.039325
65ttn_10.d	2.387072	0.447256	0.039579	0.004651	0.413764	0.048266
65ttn_13.d	0.458937	0.095261	0.023443	0.00234	0.149951	0.034824
65ttn_14.d	0.495765	0.088821	0.023995	0.002761	0.202888	0.043911
65ttn_15.d	0.974695	0.222484	0.025454	0.00284	0.290831	0.057691
65ttn_16.d	0.302328	0.054318	0.019031	0.001924	0.121173	0.026738
65ttn_19.d	1.127214	0.240921	0.028144	0.003012	0.273054	0.042012
65ttn_20.d	0.570245	0.097109	0.022842	0.002147	0.180737	0.029552
65ttn_21.d	0.361989	0.076367	0.024586	0.002384	0.136491	0.034216
65ttn_22.d	0.576651	0.122638	0.02455	0.002876	0.163671	0.036583
65ttn 23.d	0.701653	0.157934	0.025373	0.002681	0.213291	0.049691

65ttn 26.d	0.615593	0.116174	0.0236	0.002998	0.254902	0.059495
65ttn 27.d	0.442064	0.092197	0.022864	0.002105	0.149547	0.03255
65ttn 28.d	0.409531	0.101223	0.022724	0.002322	0.153179	0.042378
65ttn 30.d	0.478285	0.098203	0.022107	0.002148	0.191676	0.041777
70area3ttn						
70area3ttn2 1.d	1.599479392	0.359878811	0.035205093	0.004399927	0.35161004	0.092502252
70area3ttn2 2.d	1.402894121	0.360586521	0.028283174	0.003742813	0.290370925	0.066506208
70area3ttn2 3.d	0.24982714	0.092899366	0.021521383	0.002634367	0.10992567	0.047926054
70area3ttn2 4.d	0.251545415	0.068951139	0.021898494	0.00220155	0.088701134	0.026637169
70area3ttn2 5.d	0.227704449	0.058044586	0.021123576	0.001925761	0.087618327	0.022839857
70area3ttn2 6.d	0.292538189	0.092700486	0.020615937	0.002393774	0.143250136	0.04621212
70area3ttn2 7.d	0.907591307	0.130217778	0.027489292	0.002415354	0.253413933	0.036488029
70area3ttn2 8.d	1.19822737	0.316453479	0.027869473	0.003688417	0.301376842	0.062554218
70area3ttn2 9.d	0.224199432	0.050182756	0.023230086	0.001770916	0.072777418	0.016061712
70area3ttn2 10.d	0.248918778	0.04120564	0.020266172	0.001558966	0.095212576	0.015680618
70area3ttn2 11.d	0.272948201	0.089156001	0.019383106	0.002535816	0.126603612	0.044845305
70area3ttn2 12.d	0.801089703	0.144662145	0.026641019	0.002307037	0.231138165	0.035304544
70area3ttn2 13.d	0.659313686	0.144867011	0.027488303	0.002619019	0.17371	0.034601141
70area3ttn2 14.d	0.146664089	0.041144762	0.019770442	0.002212245	0.051652011	0.01664262
70area3ttn2 15.d	0.385073789	0.066850925	0.024000526	0.002622217	0.117585617	0.019917503
70area3ttn2_16.d	0.210611747	0.040291693	0.021444883	0.001616121	0.068952549	0.01298895
70area3ttn2 17.d	0.254154541	0.054476144	0.022503907	0.001870183	0.08492588	0.018031059
70area3ttn2_18.d	0.268148825	0.051307866	0.021995083	0.001692605	0.088733213	0.01722135
70area3ttn2 19.d	0.231392193	0.048764154	0.023236715	0.001804431	0.077486512	0.016018197
70area3ttn2 20.d	0.159417529	0.028991342	0.019806139	0.001599916	0.063404813	0.011419397
70area3ttn2_21.d	0.209999927	0.042139022	0.021866259	0.00158496	0.066750752	0.013197476
70area3ttn2_22.d	0.24236008	0.047938786	0.022961451	0.00184279	0.084804054	0.017629818
70area3ttn2_23.d	0.256552877	0.055381424	0.022343413	0.001794272	0.083294982	0.01744865
70area3ttn2_24.d	0.186956141	0.040241342	0.020895928	0.001726957	0.071417068	0.014557811
70area3ttn2_25.d	0.188540061	0.034906269	0.021970053	0.001602725	0.064445134	0.011571484
70area3ttn2_26.d	0.135539639	0.019756144	0.019054566	0.001202827	0.050229032	0.006733289
70area3ttn2_27.d	0.290081613	0.066541766	0.021088062	0.001949874	0.090698399	0.013696045
70area3ttn2_28.d	0.219278187	0.050494613	0.020878365	0.001598315	0.075157252	0.016881739
70area3ttn2_29.d	0.136824538	0.020462631	0.019361204	0.001207178	0.049304482	0.006748384
70area3ttn2_30.d	0.311962947	0.05986873	0.020062474	0.002352963	0.124216066	0.026124425
with links						
73area2						
73area2ttn1_1.d	0.135321193	0.019816007	0.018272431	0.001276696	0.05468503	0.007306493
73area2ttn1 2.d	0.129986093	0.01555176	0.018737275	0.001115509	0.050131348	0.005099829
73area2ttn1_3.d	0.123205332	0.015206807	0.018489454	0.001156538	0.050286485	0.005764023
/3area2ttn1_4.d	0.298911834	0.025466616	0.020393889	0.001175921	0.1058/3568	0.006847654
73area2ttn1_5.d	0.1174413	0.01510867	0.018819889	0.001171699	0.046253329	0.005350242
73area2ttn1_6.d	0.110462878	0.014031312	0.018425351	0.001102209	0.044074737	0.005156564
/3area2ttn1_/.d	0.112974176	0.021889869	0.017872866	0.001165274	0.044/03939	0.008549229
/3area2ttn1_8.d	0.1419/7848	0.01/56888	0.018416727	0.001366511	0.055901868	0.005730836
/3area2ttn1_9.d	0.124909221	0.016145176	0.018638304	0.001119598	0.048352129	0.006014641
/ 3area2ttn1 10.d	0.12390/936	0.0143942/5	0.018/01506	0.001066147	0.048866961	0.00461/509
/ 3area2ttn1 11.d	0.130028649	0.010082133	0.0181//8	0.001100614/	0.034602641	0.006482747
/ sarea2ttn1 12.d	0.120089089	0.0146040/3	0.018/10522	0.001109831	0.04/4190/3	0.004039238
$73 \operatorname{area} 2ttm 1 = 13.d$	0.14/98/143	0.021330806	0.01827/518	0.001185252	0.033139102	0.00/84/21
$73 \operatorname{area} 2ttn 1$ 15 d	0.12303/38	0.015290404	0.010343494	0.001098103	0.0491/820	0.004/31913
$\frac{73area2ttn1}{73area2ttn1}$	0.119103448	0.013266116	0.010333912	0.001102418	0.04390433	0.003202021
73area2ttn1 17 d	0.12/133801	0.013200110	0.019407030	0.001221034	0.051220274	0.004250321
/JurouZum 1/.u	0.12/10TT2T	0.013370337	0.010/0/17	0.001102303	0.001220274	0.007337313

73area2ttn1_18.d	0.192981359	0.027193796	0.01902795	0.00128877	0.076080814	0.010790969
73area2ttn1_19.d	0.120979498	0.009903672	0.018075637	0.001072772	0.049803955	0.002807753
73area2ttn1_20.d	0.09116582	0.019437691	0.017381781	0.001153627	0.040751526	0.009068495
73area2ttn1_21.d	0.121906899	0.012287069	0.019589475	0.001207073	0.045912503	0.004147419
73area2ttn1_22.d	0.130097379	0.014069353	0.018798257	0.001139022	0.051972505	0.004811244
73area2ttn1_23.d	0.131495148	0.013457112	0.019164128	0.00116498	0.049417337	0.003961331
73area2ttn1_24.d	0.129666295	0.01260081	0.018839547	0.001197172	0.049214675	0.004209042
73area2ttn1_25.d	0.131593556	0.017891819	0.019573218	0.001271049	0.049136198	0.006021622
73area2ttn1_26.d	0.164948647	0.018831722	0.019780259	0.001228733	0.05872666	0.005092993
73area2ttn1_27.d	0.132786223	0.014373292	0.018404439	0.0011315	0.051409615	0.004563203
73area2ttn1_28.d	0.137479193	0.014555872	0.019146653	0.001209806	0.053484257	0.005054992
73area2ttn1_29.d	0.139432652	0.025710563	0.017863059	0.001159464	0.057322039	0.01076814
73area2ttn1_30.d	0.138537753	0.013143294	0.018922353	0.001172116	0.052542885	0.004241413

Figure A-4: Titanite C65 Tera-Wasserburg Diagram (Maine)

Figure A-6: Titanite C73 Tera-Wasserburg Diagram (Maine)

Table A-4: Apatite sample ID information and associated depth at which the titanite originated, ²³⁸U/²⁰⁶Pb ratios and error, ²⁰⁷Pb/²⁰⁶Pb ratios and error, rho, the textural relationship of the titanite within the overall sample, and whether samples fell off the discordia line and therefore omitted from further calculation, data taken at UCSB.

Sample	Depth	²³⁸ U	200	²⁰⁷ Pb	200	who	Textural	Omitted
Label	(m)	/ ²⁰⁶ Pb	286	/ ²⁰⁶ Pb	286	rno	relationship	point? (x)
C12_05_1	133	26.12	2.57	0.497	0.025	0.35	Undifferentiated	
C12_05_2	133	26.81	2.42	0.449	0.035	0.24	Undifferentiated	
C12_05_3	133	25.26	2.46	0.51	0.021	0.21	Undifferentiated	
C12_05_4	133	25.47	2.24	0.479	0.028	0.21	Undifferentiated	
C12_05_5	133	33.06	3.03	0.41	0.036	0.46	Undifferentiated	
C12_04	133	22.98	1.83	0.533	0.029	0.13	Undifferentiated	
C12_06_1	133	23.6	1.93	0.492	0.02	0.32	Undifferentiated	
C12_06_2	133	21.11	1.38	0.497	0.022	0.18	Undifferentiated	
C12_06_3	133	19.27	1.54	0.547	0.025	0.27	Undifferentiated	
C12_06_4	133	24.3	2.33	0.494	0.026	0.28	Undifferentiated	
C12_06_5	133	29.61	3.5	0.378	0.02	0.12	Undifferentiated	
C12_06_6	133	23.87	1.61	0.489	0.022	0.22	Undifferentiated	
C12_06_7	133	20.4	2.66	0.524	0.021	0.1	Undifferentiated	
C12_06_8	133	20.44	1.99	0.521	0.019	0.12	Undifferentiated	
C12_06_9	133	22.68	2.36	0.51	0.023	0.14	Undifferentiated	
C12_06_10	133	22.93	2.29	0.468	0.028	0.12	Undifferentiated	
C12_07_1	133	23.83	2.56	0.556	0.037	0.22	Undifferentiated	
C12_07_2	133	18.05	1.98	0.589	0.019	0.47	Undifferentiated	
C12_07_3	133	25.63	1.54	0.491	0.026	0.09	Undifferentiated	
C12_07_4	133	26.24	2.98	0.48	0.038	0.43	Undifferentiated	
C12_08	133	19.61	1.38	0.58	0.021	0.3	Undifferentiated	
C12_09_1	133	25.05	2.32	0.501	0.025	0.12	Undifferentiated	
C12_09_2	133	28.18	1.48	0.478	0.024	0.17	Undifferentiated	
C12_09_3	133	24.75	1.68	0.491	0.02	0.1	Undifferentiated	
C12_09_4	133	25.42	1.77	0.477	0.018	0.38	Undifferentiated	
C12_09_5	133	28.57	2.15	0.504	0.026	0.44	Undifferentiated	
C12_09_6	133	24.3	2	0.486	0.028	0.27	Undifferentiated	
C12_10	133	19.12	2.16	0.572	0.031	0.51	Undifferentiated	
C12_11_1	133	23.64	2.12	0.499	0.022	0.16	Undifferentiated	
C12_11_2	133	23.87	2.06	0.48	0.028	0.13	Undifferentiated	
C12_11_3	133	26.01	2.17	0.447	0.037	0.23	Undifferentiated	
C12_12	133	26.18	3.19	0.446	0.03	0.34	Undifferentiated	
C12_13_1	133	21.07	1.34	0.551	0.025	0.24	Undifferentiated	
C12_13_2	133	10.25	2.94	0.665	0.037	0.6	Undifferentiated	
C12_25_1	133	21.52	1.43	0.553	0.021	0.13	Undifferentiated	
C12_25_2	133	20.68	1.43	0.568	0.026	0.34	Undifferentiated	
C12_25_3	133	25.42	1.72	0.505	0.024	0.21	Undifferentiated	
C12_26_1	133	24.8	1.08	0.509	0.024	0.34	Undifferentiated	

C12 26 2	133	24.8	2.96	0.471	0.029	0.08	Undifferentiated	
C12_26_3	133	27.98	1.94	0.48	0.03	0.17	Undifferentiated	
C12_27_1	133	23.42	2.52	0.514	0.023	0.2	Undifferentiated	
C12_27_2	133	22.1	1.86	0.529	0.023	0.19	Undifferentiated	
C12 27 3	133	19.15	1.32	0.551	0.023	0.2	Undifferentiated	
C12 27 4	133	25.21	1.64	0.514	0.022	0.13	Undifferentiated	
C12 27 5	133	22.39	1.62	0.541	0.025	0.25	Undifferentiated	
C12 27 6	133	22.89	2.11	0.486	0.029	0.24	Undifferentiated	
C12 27 7	133	25.26	2.36	0.501	0.024	0.15	Undifferentiated	
C12 27 8	133	22.76	1.64	0.505	0.026	0.17	Undifferentiated	
C12 28 1	133	19.27	1.99	0.547	0.019	0.07	Undifferentiated	
C12 28 2	133	20.23	1.5	0.534	0.024	0.24	Undifferentiated	
C12 28 3	133	14.22	1.03	0.614	0.02	0.26	Undifferentiated	
C12 29 1	133	23.92	2.3	0.483	0.032	0.46	Undifferentiated	
C12 29 2	133	24.65	1.62	0.504	0.022	0.35	Undifferentiated	
C12 30 1	133	22.22	1.52	0.551	0.023	0.32	Undifferentiated	
C12 30 2	133	25.47	1.83	0.501	0.022	0.37	Undifferentiated	
C12 30 3	133	25.1	1.53	0.485	0.02	0.31	Undifferentiated	
C12 31 2	133	42.51	2.24	0.374	0.031	0.38	Undifferentiated	Х
C12 36	133	23.51	1.52	0.514	0.023	0.33	Undifferentiated	
C12 32 1	133	26.46	1.75	0.502	0.028	0.25	Undifferentiated	
C12_32_2	133	24.9	1	0.508	0.024	0.49	Undifferentiated	
C12_32_3	133	26.12	2.03	0.503	0.024	0.25	Undifferentiated	
C12_33_1	133	19.33	1.76	0.557	0.017	0.13	Undifferentiated	
C12_33_2	133	17.91	1.82	0.569	0.025	0.13	Undifferentiated	
C12_34	133	21.48	2.2	0.54	0.024	0.22	Undifferentiated	
C12_35_1	133	23.24	2.13	0.527	0.023	0.18	Undifferentiated	
C12_35_2	133	21.59	2.07	0.528	0.028	0.15	Undifferentiated	
C12_37_1	133	3.38	0.74	0.749	0.019	0.67	Undifferentiated	
C12_37_2	133	19.65	1.94	0.584	0.028	0.39	Undifferentiated	
C12_37_3	133	27.98	2.44	0.436	0.026	0.19	Undifferentiated	
C12_38_1	133	27.48	1.64	0.446	0.017	0.28	Undifferentiated	
C12_38_2	133	26.12	1.23	0.434	0.014	0.31	Undifferentiated	
C12_39_1	133	36.53	3.36	0.431	0.021	0.26	Undifferentiated	Х
C12_39_2	133	27.54	1.89	0.462	0.029	0.09	Undifferentiated	
C12_39_3	133	27.6	2.25	0.458	0.021	0.3	Undifferentiated	
C12_39_4	133	21.94	2.14	0.538	0.019	0.33	Undifferentiated	
C12_39_5	133	26.52	2.31	0.499	0.025	0.23	Undifferentiated	
C12_39_6	133	27.35	2.22	0.416	0.028	0.26	Undifferentiated	
C12_39_7	133	27.11	2.53	0.455	0.025	0.23	Undifferentiated	
C12_50_1	133	26.75	1.45	0.454	0.019	0.16	Undifferentiated	
C12_50_2	133	25.1	2.83	0.454	0.029	0.16	Undifferentiated	
C12_50_3	133	23.92	2.12	0.497	0.023	0.2	Undifferentiated	
C12_50_4	133	22.02	1.92	0.489	0.023	0.25	Undifferentiated	
C12 50 5	133	28.11	2.21	0.44	0.033	0.42	Undifferentiated	

010 50 (100	00.15	1.00	0.502	0.004	0.42	TT 1:00 (1	
<u>C12_50_6</u>	133	23.15	1.82	0.503	0.024	0.43	Undifferentiated	
<u>C12_50_7</u>	133	24.4	1.87	0.486	0.034	0.26	Undifferentiated	
<u>C12_50_8</u>	133	22.3	2.17	0.558	0.029	0.12	Undifferentiated	
<u>C12_50_9</u>	133	24.55	1.89	0.507	0.027	0.26	Undifferentiated	
<u>C12_49_1</u>	133	8.78	0.78	0.725	0.021	0.41	Undifferentiated	
<u>C12_49_2</u>	133	24.55	2.96	0.503	0.026	0.33	Undifferentiated	
C12_49_3	133	21.37	1.45	0.608	0.031	0.34	Undifferentiated	
C12_49_4	133	20.5	1.41	0.554	0.024	0.2	Undifferentiated	
C12_49_5	133	18.6	1.58	0.596	0.033	0.2	Undifferentiated	
C12_49_6	133	23.11	2.36	0.495	0.021	0.17	Undifferentiated	
C34_35_2	486	0.63	0.03	0.837	0.017	0.36	Undifferentiated	
C34_35_3	486	0.55	0.03	0.832	0.017	0.21	Undifferentiated	
C34_35_4	486	0.51	0.03	0.837	0.017	0.37	Undifferentiated	
C34 35 5	486	0.61	0.03	0.839	0.017	0.36	Undifferentiated	
C34_35_6	486	0.65	0.12	0.837	0.018	0.09	Undifferentiated	
C34_34_2	486	0.54	0.04	0.834	0.017	0.41	Undifferentiated	
C34_34_3	486	1.21	0.05	0.827	0.017	0.24	Undifferentiated	
C34_34_4	486	0.78	0.06	0.834	0.017	0.24	Undifferentiated	
C34_32_1	486	0.29	0.04	0.842	0.017	0.26	Undifferentiated	
C34_32_2	486	0.93	0.07	0.828	0.017	0.18	Undifferentiated	
C34_32_3	486	0.48	0.06	0.838	0.017	0.48	Undifferentiated	
C34_32_4	486	0.38	0.04	0.838	0.018	0.12	Undifferentiated	
C34_32_5	486	0.87	0.05	0.833	0.017	0.22	Undifferentiated	
C34_32_6	486	0.77	0.03	0.835	0.017	0.52	Undifferentiated	
C34_32_7	486	0.78	0.05	0.834	0.017	0.32	Undifferentiated	
C34_32_8	486	0.98	0.05	0.829	0.018	0.35	Undifferentiated	
C34_32_9	486	1.07	0.04	0.828	0.017	0.4	Undifferentiated	
C34_36_1	486	0.63	0.07	0.834	0.017	0.13	Undifferentiated	
C34_36_2	486	0.49	0.04	0.835	0.017	0.15	Undifferentiated	
C34 36 3	486	1.39	0.21	0.821	0.018	0.14	Undifferentiated	
C34_36_4	486	0.63	0.06	0.833	0.018	0.15	Undifferentiated	
C34_36_5	486	0.85	0.03	0.831	0.017	0.31	Undifferentiated	
C34_37_1	486	0.82	0.04	0.833	0.017	0.24	Undifferentiated	
C34_37_2	486	0.84	0.12	0.829	0.017	0.31	Undifferentiated	
C34_37_4	486	1.3	0.15	0.821	0.017	0.13	Undifferentiated	
C34_37_5	486	0.76	0.16	0.834	0.021	0.03	Undifferentiated	
C34_37_6	486	0.45	0.14	0.833	0.019	0.04	Undifferentiated	
C34_37_7	486	2.69	0.46	0.796	0.019	0.15	Undifferentiated	
C34_10_1	486	0.84	0.06	0.834	0.017	0.37	Undifferentiated	
C34_10_2	486	0.68	0.04	0.833	0.017	0.44	Undifferentiated	
C34_10_3	486	0.81	0.08	0.836	0.018	0.37	Undifferentiated	
C34_10_4	486	0.53	0.04	0.836	0.018	0.24	Undifferentiated	
C34_10_5	486	2.34	0.14	0.817	0.017	0.27	Undifferentiated	
C34_10_6	486	0.45	0.04	0.836	0.017	0.39	Undifferentiated	
C34_10_7	486	1.05	0.15	0.828	0.017	0.47	Undifferentiated	

C34 10 8	486	0.51	0.04	0.836	0.017	0.34	Undifferentiated	
C34 10 9	486	0.31	0.04	0.836	0.017	0.21	Undifferentiated	
C34 10 10	486	0.6	0.05	0.84	0.017	0.34	Undifferentiated	
C34 10 11	486	0.55	0.03	0.838	0.017	0.5	Undifferentiated	
C34 10 12	486	0.88	0.1	0.831	0.018	0.49	Undifferentiated	
C34 10 13	486	0.97	0.08	0.829	0.017	0.15	Undifferentiated	
C34 10 14	486	0.32	0.02	0.839	0.017	0.24	Undifferentiated	
C34 10 15	486	0.81	0.06	0.832	0.017	0.14	Undifferentiated	
C34 10 16	486	0.88	0.04	0.832	0.018	0.53	Undifferentiated	
C34 10 17	486	0.91	0.05	0.828	0.017	0.21	Undifferentiated	
C34 10 18	486	0.79	0.03	0.832	0.017	0.43	Undifferentiated	
C34 10 19	486	0.91	0.06	0.836	0.018	0.15	Undifferentiated	
C34 10 20	486	0.94	0.07	0.832	0.018	0.22	Undifferentiated	
C34 10 21	486	1.05	0.2	0.827	0.019	0.23	Undifferentiated	
C34_22_1	486	0.63	0.08	0.832	0.018	0.44	Undifferentiated	
C34 22 2	486	0.8	0.04	0.834	0.018	0.18	Undifferentiated	
C34_22_3	486	0.87	0.11	0.831	0.018	0.17	Undifferentiated	
C34_22_4	486	0.84	0.11	0.83	0.018	0.36	Undifferentiated	
C34_22_5	486	0.64	0.04	0.836	0.017	0.22	Undifferentiated	
C34_22_6	486	0.92	0.04	0.832	0.017	0.46	Undifferentiated	
C34_22_7	486	0.65	0.03	0.835	0.017	0.23	Undifferentiated	
C34_22_8	486	0.6	0.06	0.839	0.017	0.13	Undifferentiated	
C34_22_9	486	1.28	0.19	0.826	0.017	0.32	Undifferentiated	
C34_29_1	486	1.27	0.07	0.826	0.017	0.37	Undifferentiated	
C34_29_2	486	0.84	0.04	0.829	0.017	0.42	Undifferentiated	
C34_29_3	486	1.3	0.26	0.822	0.018	0.04	Undifferentiated	
C34_29_4	486	1.14	0.06	0.829	0.017	0.49	Undifferentiated	
C34_29_5	486	0.93	0.07	0.827	0.018	0.35	Undifferentiated	
C34_29_6	486	1.27	0.07	0.832	0.017	0.33	Undifferentiated	
C34_29_7	486	0.6	0.07	0.834	0.018	0.13	Undifferentiated	
C34_29_8	486	0.79	0.11	0.84	0.018	0.38	Undifferentiated	
C34_31_1	486	0.54	0.02	0.837	0.017	0.29	Undifferentiated	
C34_31_2	486	0.97	0.04	0.832	0.017	0.24	Undifferentiated	
C34_31_3	486	0.87	0.06	0.834	0.017	0.25	Undifferentiated	
C34_31_4	486	0.65	0.03	0.837	0.017	0.27	Undifferentiated	
C34_31_5	486	0.8	0.04	0.832	0.017	0.48	Undifferentiated	
C34_11_8	486	0.72	0.03	0.832	0.017	0.34	Undifferentiated	
C34_11_9	486	0.72	0.03	0.83	0.017	0.34	Undifferentiated	
C34_11_10	486	0.53	0.03	0.837	0.017	0.2	Undifferentiated	
<u>C34_11_11</u>	486	0.97	0.03	0.832	0.017	0.36	Undifferentiated	
<u>C34_11_12</u>	486	0.74	0.08	0.839	0.017	0.51	Undifferentiated	
<u>C34_11_13</u>	486	0.75	0.04	0.834	0.017	0.17	Undifferentiated	
<u>C34_11_14</u>	486	0.57	0.04	0.84	0.017	0.32	Undifferentiated	
C34_11_15	486	0.64	0.03	0.84	0.017	0.3	Undifferentiated	
C34_11_16	486	0.66	0.04	0.834	0.017	0.42	Undifferentiated	

C34_11_17	486	0.52	0.06	0.841	0.017	0.34	Undifferentiated	
C34_11_18	486	0.47	0.02	0.839	0.017	0.17	Undifferentiated	
C34 11 19	486	0.97	0.04	0.832	0.017	0.44	Undifferentiated	
C34_11_20	486	0.69	0.03	0.84	0.017	0.35	Undifferentiated	
C34 12 1	486	1.03	0.21	0.829	0.018	0.05	Undifferentiated	
C34 12 2	486	0.44	0.11	0.838	0.018	0.03	Undifferentiated	
C34_12_3	486	0.94	0.12	0.829	0.018	0.19	Undifferentiated	
C43_01_1	618	41.08	4.91	0.303	0.047	0.08	Brecciated Matrix	
C43_01_2	618	27.11	7.85	0.447	0.036	0.05	Brecciated Matrix	
C43_01_4	618	53.74	14.01	0.264	0.089	0.11	Brecciated Matrix	
C43_04_1	618	43.26	8.79	0.233	0.054	0.08	Brecciated Matrix	
C43_04_2	618	28.77	4.11	0.482	0.03	0.15	Brecciated Matrix	
C43_04_3	618	34.17	7.12	0.296	0.035	0.2	Brecciated Matrix	
C43_04_4	618	45.35	12	0.195	0.031	0.26	Brecciated Matrix	
C43_04_5	618	26.52	16.73	0.51	0.22	0.06	Brecciated Matrix	
C52_03_1	731	30.93	4.59	0.329	0.028	0.23	Matrix	
C52_03_2	731	37.15	4.43	0.331	0.015	0.1	Matrix	
C52_03_3	731	38.59	3.2	0.266	0.022	0.23	Matrix	
C52_05	731	40.82	10.31	0.203	0.054	0.18	Matrix	
C52_06	731	33.33	2.41	0.267	0.023	0.16	Matrix	
C52_07_1	731	46.88	5.93	0.198	0.04	0.27	Matrix	
C52_07_2	731	47.17	2.01	0.141	0.011	0.2	Matrix	
C52_08_1	731	45.63	2.59	0.171	0.013	0.2	Matrix	
C52_09_1	731	44.94	1.91	0.204	0.011	0.34	Matrix	
C52_09_2	731	42.11	2.51	0.238	0.016	0.22	Matrix	
C52_10	731	45.63	2.27	0.213	0.018	0.13	Matrix	
C52_11	731	43.96	3.96	0.343	0.029	0.2	Matrix	Х
C52_12_1	731	40.82	2.24	0.265	0.019	0.38	Matrix	
C52_15	731	38.83	3.73	0.296	0.035	0.14	Matrix	
C52_16_1	731	47.06	3.99	0.198	0.022	0.43	Matrix	
C52_16_2	731	40.27	4.4	0.264	0.036	0.46	Matrix	
C52_17_1	731	45.28	2.09	0.187	0.018	0.21	Mag Vein	
C52_17_2	731	43.8	2.85	0.17	0.014	0.28	Mag Vein	
C52_17_3	731	44.28	2.76	0.198	0.015	0.12	Mag Vein	
C52_17_4	731	32.17	3.76	0.347	0.029	0.2	Mag Vein	
C52_24_1	731	48.06	1.4	0.135	0.009	0.21	Mag Vein	
C52_24_2	731	46.15	2.82	0.177	0.011	0.3	Mag Vein	

C52 24 3	731	43.48	2.37	0.174	0.012	0.12	Mag Vein	
C52 24 4	731	37.74	3.06	0.277	0.021	0.25	Mag Vein	
C52 24 5	731	48.06	1.52	0.165	0.02	0.11	Mag Vein	
C52 24 6	731	45.8	2.94	0.164	0.011	0.19	Mag Vein	
C52 26 1	731	50.42	2.35	0.125	0.006	0.27	Mag Vein	
C52 26 2	731	48.17	2.07	0.136	0.008	0.23	Mag Vein	
C52 26 3	731	49.5	2.05	0.128	0.006	0.38	Mag Vein	
C52 26 4	731	49.69	1.45	0.123	0.006	0.25	Mag Vein	
C52 26 5	731	48.86	1.65	0.14	0.009	0.19	Mag Vein	
C52 26 6	731	48.94	1.52	0.127	0.008	0.23	Mag Vein	
C52 26 7	731	49.5	1.61	0.138	0.008	0.14	Mag Vein	
C52 26 8	731	48.13	1.85	0.141	0.008	0.4	Mag Vein	
C52 26 9	731	47.87	1.71	0.126	0.008	0.14	Mag Vein	
C52 27 1	731	39.09	4.27	0.33	0.038	0.04	Mag Vein	
C52_27_2	731	43.8	3.62	0.267	0.026	0.25	Mag Vein	
C52 27 3	731	45.45	3.73	0.187	0.022	0.38	Mag Vein	
C52 27 4	731	41.67	5.13	0.166	0.028	0.61	Mag Vein	
C52_27_5	731	35.19	6.64	0.202	0.038	0.13	Mag Vein	
C52_27_6	731	44.94	7.8	0.247	0.024	0.11	Mag Vein	
C52_27_7	731	48.19	9.34	0.191	0.027	0.3	Mag Vein	
C52_27_9	731	30.3	7.29	0.212	0.033	0.13	Mag Vein	Х
C52_28_1	731	27.27	8.08	0.497	0.071	0.11	Mag Vein	
C52_28_10	731	47.71	1.99	0.164	0.011	0.29	Mag Vein	
C52_28_3	731	44.61	2.8	0.186	0.017	0.16	Mag Vein	
C52_28_4	731	48	2.5	0.148	0.015	0.23	Mag Vein	
C52_28_5	731	42.86	18.39	0.17	0.093	0.07	Mag Vein	
C52_28_8	731	37.15	7.28	0.192	0.066	0.11	Mag Vein	
C52_28_9	731	36.25	3.79	0.302	0.021	0.2	Mag Vein	
C52_29_2	731	45.63	2.59	0.183	0.015	0.22	Mag Vein	
C52_29_3	731	46.33	2.67	0.182	0.01	0.34	Mag Vein	
C52_29_4	731	48.9	2.2	0.167	0.011	0.1	Mag Vein	
C52_30_1	731	37.27	6.18	0.243	0.035	0.18	Mag Vein	
C52_30_2	731	38.22	4.69	0.23	0.021	0.2	Mag Vein	
C52_30_3	731	35.4	3.42	0.318	0.034	0.08	Mag Vein	
C52_30_4	731	39.47	2.59	0.254	0.015	0.31	Mag Vein	
C52_30_5	731	37.27	5.72	0.283	0.017	0.29	Mag Vein	
C52_30_6	731	40.54	2.21	0.233	0.018	0.27	Mag Vein	
C52_30_7	731	38.22	3.49	0.223	0.02	0.13	Mag Vein	
C52_30_8	731	40.68	3.54	0.235	0.024	0.2	Mag Vein	
C52_31_1	731	45.8	3.95	0.227	0.021	0.38	Mag Vein	
C52_31_2	731	48.54	1.97	0.186	0.016	0.39	Mag Vein	
C52_31_3	731	43.96	2.87	0.171	0.014	0.24	Mag Vein	
C52_32_1	731	49.48	2.1	0.137	0.009	0.27	Mag Vein	
C52_32_2	731	47.36	1.72	0.143	0.008	0.41	Mag Vein	
C52_33_1	731	38.83	2.99	0.254	0.019	0.22	Mag Vein	

~~~~	<b>-</b> 2.1		a 1a	0.4.54	0.01.6	0.10		
<u>C52_33_2</u>	731	45.45	2.42	0.171	0.016	0.12	Mag Vein	
C52_33_3	731	45.98	2.31	0.171	0.011	0.21	Mag Vein	
C52_33_4	731	43.64	2.39	0.192	0.006	0.44	Mag Vein	
C52_33_5	731	43.32	2.5	0.187	0.017	0.07	Mag Vein	
C52_34_2	731	28.78	4.52	0.335	0.038	0.4	Mag Vein	
C52_34_4	731	33.99	4.2	0.288	0.022	0.2	Mag Vein	
C52_34_5	731	40.4	3.36	0.216	0.008	0.35	Mag Vein	
C52_34_6	731	37.97	2.87	0.281	0.025	0.29	Mag Vein	
C52_35_1	731	50.21	5.55	0.203	0.027	0.26	Mag Vein	
C52_35_2	731	44.44	7.13	0.226	0.034	0.07	Mag Vein	
C52_35_3	731	33.61	2.81	0.378	0.033	0.12	Mag Vein	
C52_36_1	731	42.84	1.71	0.218	0.017	0.2	Mag Vein	
C52_36_2	731	47.06	2.41	0.169	0.01	0.21	Mag Vein	
C61_01_1	840	3.47	0.66	0.78	0.022	0.29	Vein 3	
C61_01_2	840	14.12	6.48	0.556	0.07	0.12	Vein 3	
C61_02	840	40.13	1.68	0.329	0.025	0.25	Vein 3	
C61_03	840	22.22	11.12	0.46	0.13	0.35	Vein 3	
C61_04	840	30.77	8.7	0.282	0.072	0.49	Vein 3	
C61_05_2	840	30	9.02	0.34	0.17	0.13	Vein 3	
C61_06	840	6.49	0.71	0.768	0.024	0.24	Matrix	
C61_07	840	34.88	1.49	0.368	0.025	0.4	Vein 3	
C61_08	840	44.94	2.52	0.237	0.019	0.25	Vein 3	
C61_09_1	840	49.75	2.16	0.182	0.013	0.49	Vein 3	
C61_09_2	840	45.11	1.39	0.169	0.007	0.26	Vein 3	
C61_10	840	62.5	10.49	0.67	0.32	0.17	Matrix	Х
C61_11	840	25.53	14.13	0.5	0.25	0.08	Matrix	
C61_12_2	840	12.12	5.76	0.47	0.1	0.1	Matrix	Х
C61_13	840	29.13	4.42	0.443	0.035	0.2	Vein 3	
C61_14	840	23.3	2.35	0.476	0.027	0.25	Vein 3	
C61_15	840	67.42	4.02	0.081	0.014	0.66	Vein 3	Х
C61_16	840	35.29	3.4	0.36	0.034	0.13	Matrix	
C61_18_2	840	20	13.01	0.305	0.095	0.07	Vein 1	
C61_19_1	840	17.65	8.57	0.287	0.046	0.17	Vein 1	Х
C61_19_10	840	37.38	10.97	0.3	0.11	0.04	Vein 1	
C61_19_2	840	29.27	15.72	0.237	0.073	0.1	Vein 1	
C61_19_3	840	29.27	8.59	0.273	0.048	0.11	Vein 1	
C61_19_5	840	37.15	7.63	0.33	0.089	0.07	Vein 1	
C61_19_7	840	44.61	11.48	0.313	0.068	0.03	Vein 1	
C61_19_9	840	15.58	10.53	0.53	0.12	0.09	Vein 1	
C61_22	840	31.09	2.26	0.365	0.017	0.1	Matrix	
C61_23	840	23.9	1.55	0.461	0.021	0.2	Matrix	
C62_05_1	871	47.58	2.04	0.209	0.021	0.36	Vein 1	
C62_05_2	871	41.5	2.14	0.271	0.028	0.37	Vein 2	
C62_01	871	40.53	2.68	0.276	0.021	0.18	Vein 3	
C62_03_1	871	47.25	1.49	0.179	0.007	0.41	Vein 4	
C62_03_2	871	48.05	1.61	0.156	0.007	0.22	Vein 5	
----------	-----	-------	------	-------	-------	------	----------------------	
C62_03_3	871	47.96	1.38	0.178	0.009	0.23	Vein 6	
C62_02	871	9.24	1.07	0.703	0.021	0.41	Vein 7	
C62_04	871	39.14	1.34	0.288	0.015	0.5	Brecciated Matrix	







Figure A-8: Apatite C34 (Low U) Tera-Wasserburg Diagram (UCSB)



Figure A-9: Apatite C43 Tera-Wasserburg Diagram (UCSB)



Figure A-10: Apatite C52 in Mushketovite vein Tera-Wasserburg Diagram (UCSB)



Figure A-11: Apatite C52 in Volcanic Groundmass Tera-Wasserburg Diagram (UCSB)



Figure A-12: Apatite C61 Tera-Wasserburg Diagram (UCSB)





au36.1e.bio.12a.txt								au36.1a.bio.5a.txt			au36.1a.bio.7a.txt			au36.1a.bio.3a.txt			au36.1a.bio.6a.txt			au36.1a.bio.4a.txt	Irradiation Filename	Table A-6: Moni
2.2								2.2			2.2			2.2			2.2			2.2	Р	tor Da
10								10			10			10			10			10	t	ta (G
0.000897	₽	1.28331				0.000731	₽	2.14265	0.001543	₽	2.89165	0.001262	₽	3.51508	0.002015	₽	3.22746	0.001562	₽	4.35175	40 V	A-1550 Bi
0.000194	₽	0.09313				0.000195	₽	0.15813	0.000417	₽	0.19935	0.000420	₽	0.26712	0.000306	₽	0.24206	0.000326	₽	0.32421	39 V	otite, ca. 20
0.000014	₽	0.00151				0.000024	₽	0.00252	0.000016	₽	0.00327	0.000022	₽	0.00410	0.000013	₽	0.00360	0.000031	₽	0.00517	38 V	)0 µm diam
0.000018	₽	0.00075				0.000017	₽	0.00048	0.000009	₽	0.00088	0.000015	₽	0.00137	0.000018	₽	0.00057	0.000019	₽	0.00086	37 V	eter flakes
0.000007	₽	0.000246				0.000009	₽	0.000241	0.000016	₽	0.001050	0.000006	₽	0.000194	0.000009	₽	0.000331	0.000008	₽	0.000569	36 V	provided by
8.73E-15			MSWD = 0	Wtd by data	Mean: 0.004			1.46E-14			1.97E-14			2.39E-14			2.20E-14			2.96E-14	Moles 40Ar*	/ M. Cosca
94.33%			.95, probab	ι-pt errs onl	$43199{\pm}0.00$			96.67%			89.27%			98.37%			96.97%			96.14%	% Rad	of USGS
12.99831			lity = 0.41	y, 0 of 4 rej.	00072 [0.1]			13.09904			12.94944			12.94486			12.92906			12.90439	R	
$\pm 0.000012$	0.00429492				7%] 2σ		$\pm 0.000008$	0.00426189		$\pm 0.000013$	0.00431113		$\pm 0.000007$	0.00431265		$\pm 0.000007$	0.00431792		$\pm 0.000005$	0.00432618	$J \pm 1s$	
0.3%								0.2%			0.3%			0.2%			0.2%			0.1%	% s.d.	

Representative	Table A-5: 40 Ar/ ³
Р	Ar
t	repi
40 V	resentat
40 V	ive air ai
39 V	nd represe
39 V	intative bi
38 V	lank

0.3%	$\begin{array}{c} 0.00428847 \\ \pm \ 0.000011 \end{array}$	13.01787	98.03%	8.12E-15	$\pm$ 0.000006	$^{\pm}$ 0.000015	$^{\pm}$ 0.000012	$\stackrel{\pm}{0.000163}$	$\stackrel{\pm}{0.001238}$	10	2.2	au36.1s.bio.24a.txt
					0.000080	0.00019	0.00141	0.08991	1.19394			
0.1%	$\pm 0.000005$	12.92021	97.91%	5.67E-14	0.000015	0.000129	0.000041	0.000527	0.003399	10	2.2	au36.1s.bio.20a.txt
	0.00432088				₽	⊬	⊬	₽	⊬			
					0.000589	0.02805	0.01036	0.63185	8.33497			
0.2%	$\pm 0.0000010$	12.91005	96.94%	2.22E-14	$\stackrel{\scriptscriptstyle \perp}{0.000012}$	$\frac{1}{0.000018}$	$^{\pm}$ 0.000021	$^{\pm}$ 0.000364	$\stackrel{\scriptscriptstyle \perp}{0.003851}$	10	2.2	au36.1s.bio.22a.txt
	0 00432428				0.000337	0.00067	0.00385	0.24457 +	3.25711			
		sility = $0.35$	.09, probab	MSWD = 1								
		ly, 0 of 4 rej.	1-pt errs on	Wtd by data								
	19%] 2σ	0000080 [0.	043283±0.(	Mean = 0.00								
0.2%	$\pm 0.000011$	12.91056	94.23%	1.65E-14	0.000011	0.000022	0.000019	0.000314	0.001378	10	2.2	au36.1i.bio.19a.txt
	0.00432411				0.000474 +	0.00199	0.00286	0.17692	2.42395 +			
0.2%	$\pm 0.000008$	12.86651	95.13%	3.06E-14	0.000010	0.000033	0.000042	0.000446	0.003640	10	2.2	au36.1i.bio.18a.txt
	0.00433892				0.000/40 ±	±	0.00338 ±	0.33214 ±	4.49204 ±			
0.3%	$\pm 0.000011$	12.89343	94.16%	1.58E-14	0.000014	0.000015	0.000019	0.000273	0.001268	10	2.2	au36.1i.bio.17a.txt
	0.00432986				+	+	+	+	+		,	
					0.000460	0.00110	0.00274	0.16984	2.32549			
0.1%	$\pm 0.000006$	12.90888	97.14%	1.89E-14	0.000006	0.000012	0.000046	0.000229	0.000421	10	2.2	au36.1i.bio.16a.txt
	0.00432467				4.000203	±	±	0.20099 ±	±			
0.3%0	$\pm 0.000012$	12.93304	94.44%	1.//E-14	0.0000.0	0.00118	0.000021	0.000398	0.001039	10	2.2	au30.11.010.13a.1X1
70E U	0.00431660	17 03304	0/ //0%	1 77E-14		± 0 000013			±	10	、 、	an26 li hin 15a tet
					0.000488	0.00077	0.00294	0.18945	2.59444			
		sility $= 0.61$	.61, probab	MSWD = 0								
		ly, 0 of 4 rej.	1-pt errs on	Wtd by data								
	13%] 2σ	0000054 [0.	042955±0.0	Mean = 0.00								
0.1%	$\pm 0.00429441$ $\pm 0.000006$	12.99985	96.14%	1.74E-14	$\stackrel{\scriptscriptstyle \perp}{0.000006}$	$\frac{1}{0.000040}$	$^{\pm}$ 0.000030	$\stackrel{\scriptscriptstyle \perp}{0.000201}$	$\frac{1}{0.001269}$	10	2.2	au36.1e.bio.8a.txt
	1//00/00 0				0.000335	0.00490	0.00309	0.18925	2.55864 +			
0.2%	$\pm 0.000008$	13.02741	94.39%	4.94E-14	0.000014	0.000059	0.000102	0.000787	0.006947	10	2.2	au36.1e.bio.14a.txt
	0.00428533				H	H	H	₽	H			
					0.001378	0.00642	0.00876	0.52592	7.25783			
0.1%	$\pm 0.000003$	12.99050	94.85%	5.71E-14	0.000012	0.000083	0.000070	0.000233	0.003961	10	2.2	au36.1e.bio.13a.txt
	0.00429750				0.001460	0.00849	0.00946	0.61255	8.38807 ±			
					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~	> >>> 1	>	>>>>>			

Irradiation	Ð	•		20 V/	20 V/	27 V/	26 V)	Moles	0/ D^4	J	<b>I</b> + 12	0/ 6
Filename	-	-	101	1	JU 1		00 1	40Ar*	/0 IVau	7	0 ± 13	2
			0.00411	0.00002	-0.00002	-0.00001	0.000013	7 0NE			52.7	
au36.1c.act.1a.txt	0.5	30	₽	₽	₽	₽	₽	2.00E-	3.9%	6.6790	₽	47
			0.000144	0.000031	0.000009	0.000168	0.000006	17			2493.5	
			0.05363	0.00010	0.00008	0.00101	0.000150	3 65E			634.2	
au36.1c.act.1b.txt	0.6	30	₽	₽	₽	₽	₽	3.03E-	17.4%	94.6974	₽	23
			0.000289	0.000030	0.000010	0.000321	0.000012	10			1468.7	
			0.05474	0.00028	0.00008	0.00030	0.000134	2 775			7 002	
au36.1c.act.1c.txt	0.7	30	₽	₽	₽	₽	₽	3.72E-	27.6%	54.7187	1 222.1	57
			0.000245	0.000033	0.000010	0.000150	0.000011	10			± 224.8	
			0.03704	0.00043	0.00005	0.00123	0.000102	J 27E			175 0	
au36.1c.act.1d.txt	0.8	30	₽	₽	₽	₽	₽	2.32E-	18.7%	16.2809	120.7	709
			0.000242	0.000040	0.000011	0.000156	0.000006	IU			± 00.4	
			0.05044	0.00049	0.00004	0.00071	0.000133	3 13E-			177 8	
au36.1c.act.1e.txt	0.9	30	₽	₽	₽	₽	₽	16 16	22.1%	22.6348	1/2.0	48%
			0.000308	0.000035	0.000010	0.000141	0.000009	IU			$\pm$ 0.0.0	
			0.01505	0.00032	0.00000	0.00036	0.000031	1 07E-			141 7	
au36.1c.act.1f.txt		30	₽	₽	₽	₽	₽	1.02E-	38.9%	18.3336	141.2	57%
			0.000167	0.000043	0.000021	0.000174	0.000008	IU			± 00.0	
			0.02053	0.00045	0.00003	0.00132	0.000042	1 40E-			138 5	
au36.1c.act.1g.txt	1.1	30	₽	₽	₽	₽	₽	16 16	39.5%	17.9760	$\pm 173$	34%
			0.000223	0.000039	0.000008	0.000204	0.000006	υ			±4/.J	
			0.04411	0.00071	0.00002	0.00594	0.000101	2 NNE			1526	
au36.1c.act.1h.txt	1.2	30	₽	₽	₽	₽	₽	16 16	32.1%	20.0234	+ 10 0	32%
			0.000279	0.000040	0.000009	0.000246	0.000011	10			エ <del>4</del> 0.ソ	
au36.1c.act.1i.txt	1.3	30	0.02369	0.00094	0.00002	0.00754	0.000027	1.61E-	65.9%	16.5581	128.0	20%

			au36.1s.bio.23a.txt			au36.1s.bio.21a.txt		
			2.2			2.2		
			10			10		
			0.001869	₽	2.56169	0.002837	₽	4.45157
			0.000493	₽	0.17544	0.000401	₽	0.32077
			0.000034	₽	0.00270	0.000034	₽	0.00496
			0.000013	⊬	0.00014	0.000013	₽	0.00037
			0.000006	₽	0.000717	0.000016	₽	0.000927
MSWD = 6	Wtd by data	Mean = 0.00	1.74E-14			3.03E-14		
.5, probabil	ı-pt errs onl	$04311 \pm 0.00$	91.73%			93.85%		
ity = 0.000	y, 0 of 4 rej.	0029 [0.67	13.39382			13.02416		
		%] 95% conf.	$\pm 0.000014$	0.00416809		$\pm 0.000008$	0.00428640	
			0.3%			0.2%		

		bility = $0.90$	0.61, probal	MSWD =		20	s 1 through	e 39Ar, step	100% of th			
		of .1%)	ding J-error	(lo, inclue			6	$7 \pm 0.00000$	J = 0.0043			
		Ma	$0.51 \pm 0.54$ N	Age = 120			8	K = 0.18128	Total 39Ar			
	Ξ 2.JU			10	$-\pi$ 0.000001	0.000324	0.000005	0.000048	0.000691			
2.1%	+ 3 50	15.3803	100.3%	1.40E-	±	₩	₽	₽	₽	30	2.6	au36.1c.act.1t.txt
	110 1/			7 405	-	0.02865	0.00006	0.00709	0.10884			
	+ 2.70			01	0.000018	0.000663	0.000005	0.000067	0.000510			
2.3%	+ 7 76	15.8265	109.0%	16	+ 0.0000 15	₽	₽	₽	₽	30	2.5	au36.1c.act.1s.txt
	177 48			9 54F-	- 0 000043	0.06072	0.00009	0.00920	0.14019			
	$\pm 2.27$			10	0.000002	0.000541	0.000004	0.000045	0.000617			
1.9%	120.25	15.5285	97.6%	8.38E-	0.000010	0.08649 ±	0.00010	0.00775 ±	0.12324 ±	30	2.4	au36.1c.act.1r.txt
	± 1.40			CT	0.000002	0.003413	0.000013	0.000107	0.000336			,
1.2%	121.79	15.7337	96.5%	2.08E-	+	±	±	±	±	30	2.2	au36.1c.act.1q.txt
				Ī	0 000037	0 497 19	0 00045	0 01879	0 30645			
0.8%	$\pm 1.04$	12.8809	93.3%	15	$\pm 0.000003$	$\pm 0.004025$	$^{\pm}$ 0.000015	$\pm 0.000077$	$^{\pm}$ 0.000643	30	~	au36.1c.act.1p.txt
000	122.89	17 0000	00 70/	3.19E-	0.000104	0.81579	0.00082	0.02762	0.46928	2	)	
	± 2.20			CT	0.000008	0.002118	0.000013	0.000102	0.000449			
1.8%	124.00 + 0 08	16.0395	84.0%	17	₽	₽	₽	₽	₽	30	1.9	au36.1c.act.1o.txt
	80 VCI			2 12E	0.000169	0.46296	0.00051	0.01640	0.31315			
	$\pm 1.14$			15	0.000005	0.002626	0.000009	0.000087	0.000875	U C		
0 Q%	120.66	15 5833	85 20%	2.76E-	0.000200	0.69014 +	0.00063 +	0.02225	0.40567 +	30	-1 8	au36 1c act 1n txt
	± 1.J0			CT CT	0.000010	0.007281	0.000043	0.000249	0.000795			
1.3%	124.58	16.1063	85.2%	5.00E-	+	+	+	+	+ 2000	30	1.7	au36.1c.act.1m.txt
				Ī	0 000367	1 263 11	0 00138	0 03880	0 73503			
	$\pm 3.07$			15	0.000017	0.004886	0.000012	0.000062	0.000749			
2.6%	119.94	15.4873	57.9%	3.00E-	$\pm 0.000628$	0.51442	0.00065	0.01645	0.44029 ±	30	1.6	au36.1c.act.11.txt
	Ξ /.13			01	0.000009	0.000872	0.000011	0.000037	0.000323			
5.9%	± 7 15	15.7735	57.1%	16	₽	₽	₽	₽	₽	30	1.5	au36.1c.act.1k.txt
	177 00			6 80E	0.000145	0.07261	0.00011	0.00362	0.10000			
	$\pm 3.46$			15	0.000010	0.002118	0.000011	0.000067	0.000496	e c		
2.8%	125.49	16.2284	62.4%	1.68E-	₽	₽	₩	₽	₽	30	1.4	au36.1c.act.1i.txt
	10-10				0.000313	0.26587	0.00033	0.00948	0.24641			
					0.000009	0.000273	0.000007	0.000038	0.000216			
	±25.7			16	₽	⊬	⊬	⊬	⊬			

1.1%	122.31	16.0411	91.0%	2.53E-	0.000113	0.73760	0.00067	0.02111	0.37207	30	1.8	au36.1f.act.2n.txt
	$\pm 1.23$			15	0.000005	0.004437	0.000013	0.000139	0.000451			
1.0%	119.60	15.6736	79.5%	3.14E-	+	+	+	+	+ ;	30	1.7	au36.1f.act.2m.txt
					0.000319	0.82501	0.00077	0.02339	0.46093			
	± 1.97			10	0.000015	0.002997	0.000013	0.000159	0.000679			
1.6%	121.30	15.9148	71.9%	4.34E-	⊬	₽	₽	₽	⊬	30	1.6	au36.1f.act.21.txt
	171 20			1 2/1	0.000605	0.99614	0.00103	0.02881	0.63729			
	± 2.39			CI	0.000010	0.001853	0.000009	0.000066	0.000668			
1.9%	123.90	16.2630	77.7%	2.2/E-	₽	₽	₽	₽	₽	30	1.5	au36.1f.act.2k.txt
	177 05			<b>い</b> いう	0.000251	0.56597	0.00055	0.01594	0.33339			
	± 1.15			CI	0.000006	0.003120	0.000016	0.000097	0.000652			
0.9%	122.18	16.0231	72.6%	3.04E-	₽	₽	₽	₽	₽	30	1.4	au36.1f.act.2j.txt
	177 10			3 (AE	0.000497	0.83084	0.00089	0.02426	0.53577			
	$\pm 4.05$			15	0.000021	0.001982	0.000013	0.000060	0.000644	0		
3 3%	123.23	16 1665	%0 0£	3.83E-	+ 0.001144	0.45706 +	0.00079 +	+ 0.01391	0.56304	30	د ۱	au36 1fact ?i txt
	+ 			10	0.000008	0.000304	0.000008	0.000042	0.000317			
31.4%	+ 33	13.8803	16.7%	16	₽	₽	₽	₽	₽	30	1.2	au36.1f.act.2h.txt
	106			6.63E-	0.000275	0.02167	0.00010	0.00117	0.09743			
	+ /			01	0.000005	0.001165	0.000007	0.000037	0.000254			
6.8%	107 + 7	14.2020	43.5%	1か 1	₽	₽	₽	₽	₽	30	1.1	au36.1f.act.2g.txt
	100			5 27E-	0.000151	71640.0	0.00011	0.00242	0.07899			
	$\pm 208$			10	0.000008	0.000368	0.000008	0.000043	0.000283			
247%	- 04	10.9106	8.8%	2.3/E-	₽	₽	₽	₽	₽	30	1	au36.1f.act.2f.txt
	0/			0 27E	0.000107	0.00246	0.00004	0.00028	0.03481			
	± 186			16	0.000007	0.000305	0.000007	0.000030	0.000276			
249%	10	9.6942	4.9%	4.83E-	₽	⊬	₽	⊬	⊬	30	0.9	au36.1f.act.2e.txt
	31			1075	0.000229	0.00175	0.00007	0.00036	0.07106			
107770	± 1229	7.1 271	1	15	$^+$ 0.000009	$^{\pm}$ 0.000239	$\frac{+}{0.000012}$	$^+$ 0.000043	0.000377	UU UU	0.0	au30.11.act.20.tAt
16270%	75	0 77/1	1 50%	1.08E-	0.000531	0.00139	0.00017	0.00025	0.15944	20	0 0	and a lf and od tet
	± 408			10	0.000006	0.000142	0.000009	0.000030	0.000275			
1739%	- 10	3.4406	1.7%	2.08E-	⊬	₽	₽	₽	₩	30	0.7	au36.1f.act.2c.txt
	77			2 NOE	0.000102	0.00017	0.00005	0.00015	0.03059			
	± 2988			16	0.000013	0.000153	0.000012	0.000040	0.000389			
432%	769	106.5756	13.2%	3.0/E-	₽	₽	₽	₽	H	30	0.6	au36.1f.act.2b.txt
	600			5 07E	0.000219	0.00040	0.00008	0.00009	0.07456			
	$\pm 30596$			17	0.000008	0.000178	0.000008	0.000032	0.000142			
2346%	1304	241.1535	19.1%	7.73E-	₩	₩ 9	₩ 9	₩ 9	H 9	30	0.5	au36.1f.act.2a.txt
				1	0.000031	0.00020	0.00001	0.00001	0.01136			

356%	46	5.9352	4.8%	2.54E-	0.000120	0.00145	0.00004	0.00030	0.03732	30	1	au36.1f.act.3f.txt
	έcc ±			10	0.000007	0.000123	0.000007	0.000042	0.000239			
335%	100	21.9122	7.6%	4.30E-	₽	₽	₽	₽	⊬	30	0.9	au36.1f.act.3e.txt
	165			1 355	0.000200	0.00108	0.00009	0.00022	0.06398			
				01	0.000010	0.000110	0.000008	0.000033	0.000342			
%88	+ 220	52.5005	22.0%	16	₽	₽	₽	₽	₽	30	0.8	au36.1f.act.3d.txt
	373			3 50E	0.000139	0.00112	0.00008	0.00022	0.05272			
				01	0.000007	0.000086	0.000009	0.000033	0.000211			
343%	± 1025	41.6108	8.0%	16	₽	₽	₽	₽	₽	30	0.7	au36.1f.act.3c.txt
	202			5 80E-	0.000266	0.00054	0.00011	0.00016	0.08527			
	± 3243			10	0.000008	0.000170	0.000012	0.000034	0.000192			
10144%	52	6.6512	1.0%	2.29E-	₩	₩	₩	₩	⊬	30	0.6	au36.1f.act.3b.txt
	5			2	0.000113	-0.00007	0.00006	0.00005	0.03373			
	293430			1/	0.000009	0.000166	0.000008	0.000031	0.000169			
4915%	+ ;	5824.6750	57.8%	7.70E-	+	+	+	₩	+	30	0.5	au36.1f.act.3a.txt
	5970				0.000016	0.00006	0.00002	0.00000	0.01131			
		bility $= 0.68$	0.82, probal	MSWD =		20	s 1 through	e 39Ar, step	100% of th			
		of .1%)	ling J-error	lσ, incluc			909	$0.0000 \pm 0.0000$	J = 0.0043(			
		Ma	$.05\pm0.61$ N	Age = 121			5	K = 0.1546t	Total 39Ar			
	$\pm 0.10$			10	0.000003	0.000564	0.000009	0.000047	0.000203			
7.0%	110.32 + 0 16	15.2304	85.0%	2. <del>44</del> 0-	₽	₽	₽	₽	⊬	30	2.7	au36.1f.act.2t.txt
	116 37			3 11E	0.000018	0.06319	0.00007	0.00200	0.03585			
	Ξ4.12			01	0.000003	0.000740	0.000009	0.000030	0.000210			
4.2%	113.04	14.7869	87.8%	3.30E-	₽	₽	₽	₽	₽	30	2.6	au36.1f.act.2s.txt
	112 01			2 20E	0.000021	0.09436	0.00011	0.00295	0.04975			
	± 0.30			10	0.000003	0.000686	0.000007	0.000034	0.000218			
5.3%	124.41	16.3263	93.5%	3./1E-	₽	₽	₽	₽	₽	30	2.4	au36.1f.act.2r.txt
	17/11			2 71 5	0.000012	0.09605	0.00013	0.00313	0.05460			
	$\pm 4.16$			16	0.000003	0.001661	0.000008	0.000041	0.000298			
3.6%	114.25	14.9504	85.5%	4.50E-	$\pm 0.000032$	0.11197 ±	0.00010	0.00378 ±	0.06613 ±	30	2.2	au36.1f.act.2g.txt
				10	0.000003	0.001200	0.000007	0.000055	0.000273			
4.3%	+ 5.23	16.1054	94.1%	16	₽	₽	₽	₽	H	30	2	au36.1f.act.2p.txt
	177 78			ና ና4F-	0.000016	0.15268	0.00014	0.00476	0.08143			
	$\pm 2.70$			10	0.000004	0.001689	0.000010	0.000045	0.000455			
2.3%	110.07	15.4670	80.2%	1. / JE-	₽	₽	₽	₩	₽	30	1.85	au36.1f.act.2o.txt
	110 07			7 721	0.000076	0.19366	0.00019	0.00591	0.11390			
					0.000004	0.003667	0.000014	0.000072	0.000331			
	$\pm 1.35$	_		15	₽	₩	₽	₽	₽			

6.5%	118.12 ±7.70	15.4737	85.0%	2.56E- 16	0.000019 ±	0.07493 ±	0.00009 ±	0.00207 ±	0.03769 ±	30	2.5	au36.1f.act.3s.txt
4.5%	$\pm 5.53$	16.3084	87.4%	3.14E- 16	$\pm$ 0.000004	$^{\pm}$ 0.001390	$^\pm$ 0.000010	$^{\pm}$ 0.000037	$^{\pm}$ 0.000285	30	2.4	au36.1f.act.3r.txt
	10/ 00			6 1/I.	0.000032	0.14160	0.00015	0.00405	0.07555			
	$\pm$ 0.20			10	0.000007	0.000959	0.000011	0.000033	0.000294			-
5.3%	116.84	15.3012	75.7%	5.41E-	±	0.13003 ±	0.00013 ±	0.00393 ±	0.07932 ±	30	2.2	au36.1f.act.3q.txt
					0.00000	0.12005	0.000011	0.00000	0.07050			
1.4%	$\pm 1.70$	15.7647	85.6%	15		± 0.000130	± 0 000011	± 0 000064	± 0,000,080	30	2	au36.1f.act.3p.txt
	120.27			1.68E-	0.000120	0.46147	0.00041	0.01345	0.24763	1		
	± 0./0			CI	0.000003	0.003461	0.000014	0.000082	0.000673			
0.6%	121.18	15.8883	89.6%	3.79E-	0.000196 ±	1.09478 ±	0.00100	0.03137 ±	0.55640 ±	30	1.9	au36.1f.act.3o.txt
	+ 1.00			1.7	0.000009	0.003976	0.000013	0.000085	0.000463			
1.1%	$\pm 1.3.22$	16.1651	76.6%	15	₽	₽	₽	₽	₽	30	1.8	au36.1f.act.3n.txt
	172 77			2 05E	0.000460	0.99812	0.00096	0.02749	0.58044			
	± 1.92			CI	0.000006	0.003735	0.000016	0.000104	0.000283			
1.6%	123.26	16.1703	66.2%	2.38E-	₩	+	+	+ ;	+	30	1.7	au36.1f.act.3m.txt
					0.000401	0.53015	0.00058	0.01434	0.35039			
	± 1.39			CI	0.000005	0.003550	0.000009	0.000096	0.000700			
1.1%	122.07	16.0089	81.1%	2.39E-	₽	₽	₽	₽	₽	30	1.6	au36.1f.act.31.txt
	100 07			っ <u>&lt;</u> のE	0.000244	0.67807	0.00067	0.01930	0.38120			
	$\pm 1.68$	10.000		15	0.000011	0.003959	0.000011	0.000061	0.000612	0		
1.4%	120.81	15.8374	67.7%	3.35E-	0.000.38 ±	U./3/31 ±	0.00080 ±	$\pm$	0.49289 ±	30	1.5	au36.1f.act.3k.txt
					0.000570	0.020201	0.000012	0.000000	0.000000			
1.370	$\pm 1.63$	10.2445	01.770	15	0.000007	± 0.002896	± 0.000012	0.000058	+ 0.000358	Ŭ		au.20.11.act.2J.txt
1 20%	123.81	160115	61 00%	2.70E-	0.000512	0.54082	0.00067	0.01513	0.39720	20	1 1	m26 1foot 2; test
	Ξ 2.90			CT CT	0.000006	0.001576	0.000009	0.000034	0.000357			
2.4%	121.34	15.9366	46.3%	1.30E-	₽	⊬	₽	₽	⊬	30	1.3	au36.1f.act.3i.txt
	101 51			1 201	0.000401	0.20948	0.00034	0.00642	0.22094			
	$\pm 21$			10	0.000006	0.000317	0.000006	0.000030	0.000258			
30%		9.1724	17.9%	1.401-	₽	₽	₽	₽	₽	30	1.2	au36.1f.act.3h.txt
	71			3 18E	0.000142	0.02407	0.00006	0.00100	0.05121			
	± 10/			10	0.000008	0.000208	0.000008	0.000036	0.000268			¢
484%	- 1 5 7	4.1615	3.2%	3.U/E-	₽	⊬	₽	₽	₽	30	1.1	au36.1f.act.3g.txt
	22			2 N7E	0.000148	0.00276	0.00006	0.00035	0.04519			
				_	0.000006	0.000116	0.000008	0.000035	0.000227			
	$\pm 165$			16	⊬	₽	₽	₽	₽			

	Average			Data summary of all sample sets						au36.1f.act.3t.txt 2.6 30		
	across all sam		7B-52 Acti	7B-52 Acti	7B-52 Acti	100% of the	J = 0.00430	Total 39ArK	0.000243	₩	0.01789	0.000223
	ples combi		nolite (2n	nolite (1st	nolite (1st	39Ar, step	$77 \pm 0.0000$	$\zeta = 0.16175$	0.000029	₽	0.00081	0.000031
	ined		d aliquot) (	aliquot du	aliquot) (a	s 1 through	909		0.000008	₽	0.00004	0.000008
			(au36.1c.ac	ıplicate) (aı	au36.1f.act.	20			0.000393	₽	0.02979	0.000822
			t)	136.1f.act.3	2)				0.000005	₽	0.000022	0.000003
MSWD =	Wtd by da	Mean = 12				MSWD =	(1σ, inclue	Age = 121	01	16	1 22E-	
1.5, probab	ta-pt errs or	$21.15 \pm 0.63$	Age = 12(	Age = 121	Age = 12	0.71, proba	ling J-error	$.76\pm0.50$ ]		64.2%		
11ty = 0.23	<u>11y, 0 of 3 re</u>	6 [0.52%] 2σ	$0.51 \pm 0.54$	$1.76 \pm 0.50$	$1.05\pm0.61$	ability = 0.81	of $.1\%$ )	Ma		14.2455		
	÷.		Ma	Ma	Ma				± 10.77	$\pm 100.02$	100 02	
										17%		

Table A-7: Magnetite sample ID information and associated depth at which the magnetite originated,  ${}^{238}\text{U}/{}^{206}\text{Pb}$  ratios and error,  ${}^{207}\text{Pb}/{}^{206}\text{Pb}$  ratios and error, rho, the textural relationship of the magnetite within the overall sample, and whether samples fell off the discordia line discordant and therefore omitted from further calculation, data taken at UCSB.

Samula Labal	Depth	²³⁸ U	2	²⁰⁷ Pb	2		Textural	Omitted
Sample Laber	(m)	/ ²⁰⁶ Pb	zse	/ ²⁰⁶ Pb	2se	rno	Relationship	point? (x)
C12_49_m1_1	133	8.99	0.62	0.705	0.022	0.52	Undifferentiated	
C12_49_m1_3	133	5.24	0.32	0.762	0.018	0.44	Undifferentiated	
C12_49_m1_4	133	2.24	0.31	0.802	0.018	0.62	Undifferentiated	
C12 49 m1 5	133	8.06	0.67	0.720	0.021	0.45	Undifferentiated	
C12 49 m1 6	133	23.64	2.45	0.467	0.030	0.24	Undifferentiated	
C12 50 m2	133	1.53	0.10	0.816	0.017	0.39	Undifferentiated	
C12 39 m3 1	133	1.00	0.12	0.827	0.018	0.28	Undifferentiated	
C12 39 m3 2	133	7.58	1.21	0.737	0.021	0.59	Undifferentiated	
C12 39 m3 3	133	1.48	0.17	0.820	0.017	0.25	Undifferentiated	
C12 39 m3 4	133	7.35	2.11	0.701	0.041	0.19	Undifferentiated	
C12 33 m4 1	133	1.54	0.19	0.819	0.017	0.22	Undifferentiated	
C12 33 m4 2	133	3.93	0.16	0.781	0.017	0.56	Undifferentiated	
C12 33 m4 3	133	1.19	0.05	0.821	0.017	0.41	Undifferentiated	
C12 33 m4 4	133	2.78	0.11	0.798	0.016	0.60	Undifferentiated	
C12 33 m4 5	133	2.22	0.42	0.806	0.020	0.10	Undifferentiated	
C12 33 m4 6	133	1.65	0.12	0.808	0.018	0.29	Undifferentiated	
C12 33 m4 7	133	2.83	0.46	0.797	0.016	0.12	Undifferentiated	
C12 36 m5 1	133	1.49	0.19	0.823	0.019	0.23	Undifferentiated	
C12_36_m5_2	133	2.36	0.27	0.809	0.018	0.60	Undifferentiated	
C12_36_m5_3	133	2.62	0.15	0.793	0.017	0.28	Undifferentiated	
C12_25_m6_1	133	3.26	0.42	0.804	0.018	0.34	Undifferentiated	
C12_25_m6_2	133	4.46	0.27	0.775	0.017	0.49	Undifferentiated	
C12_25_m6_3	133	3.42	0.22	0.791	0.017	0.44	Undifferentiated	
C12_25_m6_4	133	5.35	0.69	0.762	0.019	0.57	Undifferentiated	
C12_25_m6_5	133	6.06	0.64	0.748	0.021	0.38	Undifferentiated	
C12_25_m6_6	133	7.58	0.65	0.717	0.017	0.35	Undifferentiated	
C34_12_m1_1	486	0.17	0.09	0.835	0.018	0.31	Undifferentiated	
C34_12_m1_2	486	0.12	0.03	0.840	0.018	0.60	Undifferentiated	
C34_12_m2_4	486	0.09	0.02	0.839	0.017	0.43	Undifferentiated	
C34_12_m2_5	486	0.08	0.01	0.840	0.017	0.61	Undifferentiated	
C34_12_m2_6	486	0.14	0.06	0.845	0.017	0.17	Undifferentiated	
C34_12_m2_7	486	0.03	0.02	0.842	0.018	0.61	Undifferentiated	
C34_12_m2_8	486	0.23	0.04	0.836	0.017	0.39	Undifferentiated	
C34_12_m2_9	486	0.16	0.03	0.837	0.017	0.52	Undifferentiated	
C34_12_m2_10	486	0.18	0.03	0.839	0.017	0.36	Undifferentiated	
C34_12_m2_11	486	0.33	0.11	0.838	0.019	0.64	Undifferentiated	
C34_12_m3_1	486	3.16	0.64	0.787	0.021	0.44	Undifferentiated	

<u>C34_12_m3_2</u>	486	0.24	0.04	0.833	0.018	0.50	Undifferentiated	
C34_37_m5_1	486	0.07	0.02	0.842	0.017	0.29	Undifferentiated	
C34_37_m5_2	486	0.01	0.00	0.843	0.017	0.19	Undifferentiated	
C34_37_m5_3	486	0.08	0.02	0.842	0.017	0.70	Undifferentiated	
C34_37_m5_5	486	3.05	0.61	0.808	0.019	0.50	Undifferentiated	
C34_37_m5_6	486	0.59	0.24	0.833	0.019	0.18	Undifferentiated	
C34 37 m5 7	486	0.07	0.04	0.841	0.018	0.30	Undifferentiated	
C34 36 m6 1	486	0.67	0.24	0.823	0.019	0.67	Undifferentiated	
C34 36 m6 2	486	0.15	0.04	0.843	0.017	0.42	Undifferentiated	
C34 36 m6 3	486	0.40	0.05	0.836	0.017	0.66	Undifferentiated	
C34 36 m6 4	486	1.05	0.09	0.834	0.017	0.64	Undifferentiated	
C34 36 m6 5	486	0.34	0.06	0.838	0.017	0.39	Undifferentiated	
C34 32 m7 1	486	0.27	0.05	0.840	0.018	0.36	Undifferentiated	
C34 32 m7 2	486	0.49	0.08	0.841	0.018	0.20	Undifferentiated	
C34_32_m7_4	486	0.35	0.12	0.833	0.018	0.46	Undifferentiated	
C34 32 m7 5	486	0.24	0.14	0.842	0.018	0.31	Undifferentiated	
C34_32_m7_6	486	0.30	0.10	0.837	0.017	0.54	Undifferentiated	
C34_35_m8_1	486	0.10	0.03	0.839	0.018	0.36	Undifferentiated	
C34_35_m8_2	486	1.11	0.28	0.830	0.021	0.37	Undifferentiated	
C34_35_m8_3	486	0.05	0.01	0.842	0.017	0.40	Undifferentiated	
C43_01_m1_1	618	4.44	1.21	0.775	0.045	0.13	Undifferentiated	
C43_01_m1_2	618	3.27	0.82	0.781	0.027	0.44	Undifferentiated	
C43_01_m2_1	618	3.28	0.45	0.815	0.026	0.14	Undifferentiated	
C43_01_m2_2	618	0.91	0.83	0.817	0.047	0.16	Undifferentiated	
C43_01_m2_3	618	3.52	1.03	0.820	0.027	0.23	Undifferentiated	
C43_01_m2_4	618	5.15	0.36	0.759	0.019	0.46	Undifferentiated	
C52_17_m05	731	6.17	0.44	0.731	0.024	0.56	Mag Vein	
C52_24_m11	731	1.32	0.54	0.812	0.026	0.48	Mag Vein	
C52_24_m15	731	8.70	1.75	0.676	0.026	0.41	Mag Vein	
C52 17 m08	731	4.31	0.79	0.774	0.026	0.53	Mag Vein	
C52_24_m18	731	20.41	3.07	0.511	0.027	0.27	Mag Vein	
C52 24 m17	731	14.71	2.61	0.655	0.027	0.48	Mag Vein	
C52_24_m20	731	12.99	2.38	0.598	0.028	0.49	Mag Vein	
C52 17 m09	731	8.62	2.16	0.683	0.032	0.34	Mag Vein	
C52 17 m07	731	6.90	1.15	0.743	0.034	0.33	Mag Vein	
C52_24_m12	731	12.17	1.17	0.652	0.035	0.52	Mag Vein	
C52 24 m16	731	24.57	2.52	0.462	0.036	0.16	Mag Vein	
C52_17_m01	731	19.57	3.74	0.563	0.037	0.30	Mag Vein	
C52_24_m14	731	9.09	3.97	0.679	0.053	0.35	Mag Vein	
C52_24_m13	731	12.50	2.82	0.626	0.054	0.24	Mag Vein	
C52_24_m19	731	20.83	4.79	0.574	0.055	0.18	Mag Vein	
C52_17_06	731	8.93	4.71	0.760	0.111	0.15	Mag Vein	
C58_10_m11	817	4.24	0.67	0.763	0.021	0.17	Undifferentiated	
C58_03_m03	817	34.01	1.76	0.308	0.023	0.52	Undifferentiated	
C58_31_m17	817	35.34	4.18	0.243	0.027	0.54	Undifferentiated	

C58_31_m20	817	0.81	0.61	0.820	0.028	0.11	Undifferentiated	
C58_03_m04	817	2.94	0.55	0.756	0.034	0.03	Undifferentiated	
C58_31_m18	817	8.47	2.09	0.713	0.040	0.29	Undifferentiated	
C58_26_m14	817	7.69	0.84	0.722	0.041	0.33	Undifferentiated	
C58_26_m15	817	3.70	2.47	0.825	0.045	0.11	Undifferentiated	
C58_31_m16	817	24.51	4.11	0.426	0.068	0.52	Undifferentiated	
C61 17 m06	840	0.29	0.13	0.830	0.018	0.15	Vein 1	
C61 17 m07	840	0.82	0.35	0.823	0.019	0.45	Vein 1	
C61 05 m03	840	2.47	0.20	0.790	0.020	0.41	Vein 3	
C61 18 m20	840	2.28	0.26	0.801	0.020	0.58	Vein 1	
C61 17 m11	840	0.38	0.30	0.831	0.021	0.35	Vein 1	
C61 17 m08	840	6.71	0.40	0.734	0.022	0.35	Vein 1	
C61 18 m16	840	5.88	0.63	0.736	0.022	0.64	Vein 1	
C61 17 m13	840	2.47	0.36	0.792	0.023	0.35	Vein 1	
C61 18 m19	840	2.70	0.54	0.799	0.023	0.58	Vein 1	
C61 17 m10	840	0.16	0.26	0.819	0.024	0.34	Vein 1	
C61 05 m02	840	12.33	1.35	0.637	0.025	0.50	Vein 3	
C61_18_m15	840	6.25	0.64	0.743	0.026	0.27	Vein 1	
C61_18_m18	840	12.35	1.85	0.638	0.026	0.40	Vein 1	
$C61 \ 17 \ m09$	840	3 34	0.76	0.775	0.029	0.64	Vein 1	
C61 14 m04	840	9.71	1 71	0.686	0.030	0.01	Vein 3	
C61 17 m12	840	1 19	0.65	0.000	0.036	0.20	Vein 1	
C61 14 m05	840	6.37	1 43	0.715	0.039	0.20	Vein 3	
$C61 \ 18 \ m14$	840	0.87	0.65	0.715	0.035	0.22	Vein 1	
C61 18 m17	840	6.54	0.05	0.007	0.040	0.32	Vein 1	
$C61_10_m17$	840	0.26	0.76	0.820	0.070	0.25	Vein 3	
	040	0.20	0.20	0.020	0.020	0.23	Magnetite	
C62_01_m1_1	871	11.63	5.95	0.690	0.101	0.09	Breccia	
C62_01_m1_2	871	3.23	1.25	0.807	0.042	0.42	Magnetite	
	0,1	0.20	1.20	0.007			Breccia	
C62 01 m1 3	871	0.70	0.26	0.834	0.018	0.42	Magnetite	
							Breccia	
C62 01 m1 4	871	1.22	0.58	0.820	0.027	0.47	Magnetite	
	0,11		0.00	0.020			Breccia	
C62 03 m2 1	871	2.08	0.65	0.797	0.026	0.52	Magnetite	
	0,1	2.00	0.02	0.191	0.020	0.02	Breccia	
C62 03 m2 2	871	1.82	0.40	0 788	0.031	0.36	Magnetite	
	0,1	1.02	0.10	0.700	0.001	0.20	Breccia	
C62 03 m2 3	871	4 02	0.78	0 771	0.027	0.28	Magnetite	
	071	1.02	0.70	0.771	0.027	0.20	Breccia	
C62 03 m2 5	871	0.71	0 71	0 814	0.030	0.22	Magnetite	
	0,1	0.71	0.71	0.011	0.050	0.22	Breccia	
C62 03 m2 6	871	2.04	1.29	0.840	0.067	0.45	Magnetite	
					0.007	0.10	Breccia	
<u>C62_03_m2_11</u>	871	5.05	0.77	0.766	0.018	0.39	Magnetite	

							Breccia	
C62 03 m2 12	871	1 30	0.05	0 783	0.031	0.21	Magnetite	
C02_05_1112_12	0/1	4.39	0.95	0.785	0.031	0.21	Breccia	
C62 03 m2 13	871	0.30	0.23	0.832	0.022	0.14	Magnetite	
C02_05_1112_15	0/1	0.50	0.23	0.832	0.022	0.14	Breccia	
C62 03 m2 14	871	1 47	1 21	0 755	0.035	0.57	Magnetite	v
02_05_1112_14	0/1	1.4/	1.21	0.755	0.055	0.57	Breccia	Λ
C62 03 m2 15	871	0.22	0.12	0 708	0.020	0.12	Magnetite	
C02_05_1112_15	0/1	0.22	0.13	0.798	0.020	0.15	Breccia	
C62 03 m2 16	871	1 75	0.50	0 808	0.022	0.50	Magnetite	
	0/1	1.75	0.39	0.000	0.025	0.30	Breccia	



Figure A-14: Magnetite C12 Tera-Wasserburg Diagram (UCSB)







Figure A-16: Magnetite C43 Tera-Wasserburg Diagram (UCSB)



Figure A-17: Magnetite C52 Tera-Wasserburg Diagram (UCSB)



Figure A-18: Magnetite C58 Groundmass Tera-Wasserburg Diagram (UCSB)



Figure A-19: Magnetite C61 Tera-Wasserburg Diagram (UCSB)



Figure A-20: Magnetite C62 Tera-Wasserburg Diagram (UCSB)

Table A-8: Magnetite sample ID information and associated depth at which the magnetite originated,  ${}^{238}\text{U}/{}^{206}\text{Pb}$  ratios and error,  ${}^{207}\text{Pb}/{}^{206}\text{Pb}$  ratios and error, rho, the textural relationship of the magnetite within the overall sample and whether samples fell off the discordia line and therefore omitted from further calculation, data taken at UCSB.

Sample	Depth	²³⁸ U	2se	²⁰⁷ Pb	2se	rho	Textural	Omitted
	(m)	/200Pb		/200Pb			Relationship	point? (x)
C34_Mag_ Rim-1	486	1.5826	0.3823	0.7916	0.0273	0.4503	Magnetite Breccia	
C34_Mag_ Core-2	486	0.0986	0.0493	0.8474	0.0172	0.4876	Magnetite Breccia	
C34_Mag_ Rim-3	486	1.9133	0.4727	0.8139	0.0311	0.4251	Magnetite Breccia	
C34_Mag_ Core-3	486	0.5962	0.1668	0.8290	0.0174	0.3083	Magnetite Breccia	
C34_Mag_ Rim-4	486	0.7699	0.1143	0.8406	0.0177	0.6159	Magnetite Breccia	
C34_Mag_ Rim-5	486	14.650 6	2.9447	0.5595	0.0377	0.1722	Magnetite Breccia	
C34_Mag_ Core-4	486	0.0610	0.0175	0.8445	0.0172	0.1434	Magnetite Breccia	
C34_Mag_ Core-5	486	0.0817	0.0248	0.8411	0.0170	0.5467	Magnetite Breccia	
C34_Mag_ Rim-6	486	0.4578	0.0985	0.8372	0.0198	0.3828	Magnetite Breccia	
C34_Mag_ Rim-7	486	0.2817	0.0499	0.8271	0.0179	0.4435	Magnetite Breccia	
C34_Mag_ Core-6	486	0.0625	0.0168	0.8423	0.0171	0.3676	Magnetite Breccia	
C34_Mag_ Core-7	486	0.1654	0.0609	0.8382	0.0187	0.1587	Magnetite Breccia	
C34_Mag_ Rim-9	486	1.1981	0.1807	0.8244	0.0187	0.6431	Magnetite Breccia	
C34_Mag_ Rim-11	486	2.0844	1.0515	0.7503	0.0390	0.2580	Magnetite Breccia	
C34_Mag_ Core-11	486	0.0541	0.0081	0.8609	0.0177	0.5332	Magnetite Breccia	
C34_Mag_ Core-12	486	0.1349	0.0853	0.8495	0.0176	0.6186	Magnetite Breccia	
C34_Mag_ Core-14	486	0.0466	0.0153	0.8461	0.0171	0.6225	Magnetite Breccia	
C34_Mag_ Rim-16	486	0.4662	0.4578	0.8086	0.0258	0.1147	Magnetite Breccia	
C34_Mag_ Core-15	486	0.0722	0.0091	0.8496	0.0171	0.4542	Magnetite Breccia	
C34_Mag_	486	0.8379	0.1842	0.8087	0.0186	0.5153	Magnetite	

Rim-17							Breccia
C34 Mag	100	0.04(1	0.1025	0.0271	0.0170	0.2200	Magnetite
Core-16	480	0.9461	0.1825	0.8271	0.0170	0.2289	Breccia
C34 Mag	100	1.0000	0 (511	0.7((0	0.0100	0.5014	Magnetite
Rim-18	486	4.0696	0.6511	0.7669	0.0180	0.5914	Breccia
C34 Mag	10.0	0.1500	0.0466	0.0421	0.0177	0.1(00	Magnetite
Core-17	486	0.1592	0.0466	0.8431	0.0177	0.1622	Breccia
C34 Mag	10.0	0.10.40	0.0000	0.0400	0.0154	0.450	Magnetite
Rim-19	486	0.1942	0.0239	0.8409	0.0174	0.6472	Breccia
C34 Mag	10.0	0.0541	0.00.50		0.0150	0.0010	Magnetite
Core-18	486	0.0741	0.0053	0.8570	0.0176	0.6046	Breccia
C34 Mag	10.6	0.0044	0.4-4.6			0.6670	Magnetite
Rim-20	486	0.8841	0.1716	0.8282	0.0182	0.6679	Breccia
C34 Mag							Magnetite
Core-19	486	0.0759	0.0056	0.8594	0.0173	0.6052	Breccia
C34 Mag	10.6		0.0040				Magnetite
Core-20	486	0.0200	0.0049	0.8767	0.0182	0.5493	Breccia
C34 Mag	10.6						Magnetite
Core-21	486	0.0099	0.0038	0.8459	0.0179	0.4317	Breccia
C34 Mag	10.6			0.010.6	0.0404	0.40.64	Magnetite
Rim-22	486	0.4273	0.0717	0.8196	0.0181	0.4861	Breccia
C34 Mag	10.0	0.001.0	0.0010	0.0200	0.0150	0.00(1	Magnetite
Core-22	486	0.3016	0.0818	0.8300	0.0170	0.2961	Breccia
C34 Mag	100	0.5000	0 1 1 7 0	0.9207	0.0200	0 4102	Magnetite
Rim-23	480	0.5232	0.11/9	0.8297	0.0209	0.4183	Breccia
C34_Mag_	196	0.0592	0.0172	0 0 1 20	0.0171	0.4215	Magnetite
Core-23	400	0.0385	0.0175	0.0420	0.0171	0.4313	Breccia
C34_Mag_	186	1 2/0/	0 7817	0 7048	0.0655	0.0506	Magnetite
Rim-24	400	1.3494	0.7817	0.7940	0.0055	0.0390	Breccia
C34_Mag_	186	1 6/35	0 1332	0.8011	0.0233	0 3354	Magnetite
Rim-25	-00	1.0433	0.7332	0.0011	0.0233	0.3334	Breccia
C34_Mag_	186	0.2084	0.0764	0.8676	0.0106	0.3626	Magnetite
Core-24	400	0.2004	0.0704	0.8070	0.0190	0.3020	Breccia
C34_Mag_	186	0.0122	0.0033	0.8673	0.0176	0 1763	Magnetite
Core-25	-00	0.0122	0.0033	0.0075	0.0170	0.1705	Breccia
C34_Mag_	186	0.6855	0 1017	0 8287	0.0203	0 3/32	Magnetite
Rim-27	-00	0.0855	0.1017	0.8287	0.0203	0.3432	Breccia
C34_Mag_	486	0.0325	0.0042	0.8512	0.0171	0.4960	Magnetite
Core-26	100	0.0325	0.0042	0.0512	0.0171	0.4700	Breccia
C34_Mag_	186	0 1831	0 1/30	0.8611	0.0174	0 5056	Magnetite
Core-27	-00	0.1051	0.1437	0.0011	0.0174	0.5050	Breccia
C34_Mag_	186	0.0777	0.0330	0.8610	0.0180	0.4807	Magnetite
Core-28	00	0.0777	0.0550	0.0017	0.0100	0.7007	Breccia
C34_Mag_	486	0 3827	0 1 2 0 2	0 8428	0.0182	0 2255	Magnetite
Core-29	100	0.3027	0.1202	0.0720	0.0102	0.2233	Breccia
C34_Mag_	486	14.087	4.8072	0.6581	0.0847	0.4140	Magnetite

Rim-30		1					Breccia
C43_Mag-	618	1 1761	0 2/30	0.8117	0.0194	0.4113	Undifferentia
1	010	1.1701	0.2737	0.0117	0.0174	0.4115	ted
C43_Mag-	618	0.6410	0 1927	0.8160	0.0201	0.6666	Undifferentia
2	010	0.0410	0.1727	0.0100	0.0201	0.0000	ted
C43_Mag-	618	1 2200	0.6081	0.8117	0.0250	0.6598	Undifferentia
3	010	1.2207	0.0701	0.0117	0.0250	0.0578	ted
C43_Mag-	618	3 8266	0 7464	0.7640	0.0270	0.4003	Undifferentia
4	010	5.8200	0.7404	0.7040	0.0270	0.7775	ted
C43_Mag-	618	0.4662	0 2206	0.8255	0.0208	0.6615	Undifferentia
5	010	0.4002	0.2200	0.8233	0.0208	0.0015	ted
C43_Mag-	618	2 0522	0 4043	0.8086	0.0258	0 1858	Undifferentia
6	018	5.0522	0.4043	0.8080	0.0238	0.4636	ted
C43_Mag-	610	5 0 1 9 6	0 7820	0 7290	0.0200	0 2020	Undifferentia
7	010	5.9480	0.7820	0.7280	0.0208	0.3938	ted
C43_Mag-	610	10.772	1 0600	0 6655	0.0444	0 4796	Undifferentia
8	018	5	1.0002	0.0055	0.0444	0.4/80	ted
C43 Mag-	(10	( 5740	1 (000	0.7402	0.0214	0.5(27	Undifferentia
9	618	6.5/40	1.6908	0.7492	0.0314	0.5627	ted
C43 Mag-	(10	( )777	0.0240	0.7010	0.0226	0 4466	Undifferentia
10	618	6.3///	0.8348	0./810	0.0326	0.4466	ted
C43 Mag-	(10	4.0274	1 0015	0.7400	0.0520	0.0000	Undifferentia
11	618	4.83/4	1.2815	0.7429	0.0520	0.2068	ted
C43 Mag-	(10	1.4000	0.1044	0.0241	0.0101	0.5000	Undifferentia
12	618	1.4906	0.1844	0.8241	0.0181	0.5889	ted
C43 Mag-	(10		0 ( 1 - 1	0 5005		0.5400	Undifferentia
13 - 0	618	5.3976	0.6454	0.7397	0.0233	0.5429	ted
C43 Mag-	(10	15.352		0	0.0001		Undifferentia
14	618	4	1.1451	0.5680	0.0231	0.4444	ted
C43 Mag-	(10)	0.4	0.446		0.010.6		Undifferentia
15	618	0.1756	0.1167	0.8357	0.0196	0.4285	ted
C43 Mag-							Undifferentia
16	618	2.1545	1.1957	0.6888	0.0476	0.1519	ted
C43 Mag-							Undifferentia
17	618	5.9624	1.5299	0.7376	0.0419	0.2309	ted
C43 Mag-		29 134					Undifferentia
18	618	6	4.0154	0.3274	0.0492	0.3884	ted
C43 Mag-		0					Undifferentia
19	618	1.2692	0.3027	0.8315	0.0194	0.3379	ted
C43 Mag-							Undifferentia
20	618	4.4128	0.6441	0.7715	0.0271	0.3678	ted
C43 Mag-							Undifferentia
21	618	0.6442	0.1608	0.8353	0.0181	0.6530	ted
C43 Mag		12 620					Undifferentia
23	618	8	1.0874	0.6316	0.0172	0.6290	ted
C/3 Mag	618	1 8825	0.7505	0 7600	0.0226	0 5500	Undifferentia
C+J_wag-	010	7.0033	0.7505	0.7009	0.0230	0.5590	Unumercintia

24							ted
C43_Mag-	618	11.497	1 2070	0.6205	0.0265	0 5063	Undifferentia
25	018	1	1.2079	0.0303	0.0203	0.3003	ted
C43_Mag-	618	11.601	1 2810	0.6379	0.0247	0 5864	Undifferentia
26	010	1	1.2010	0.0377	0.0247	0.5004	ted
C43_Mag-	618	2.9812	0.3860	0.7831	0.0195	0.6265	Undifferentia
27	010	2.0012	0.2000	017001	0.0170	0.0200	ted
C43_Mag-	618	10.296	1.5028	0.6475	0.0276	0.6259	Undifferentia
28		6					ted
C43_Mag-	618	0.7987	0.1923	0.8361	0.0224	0.3953	Undifferentia
29							ted
C43_Mag-	618	6.5238	0.6442	0.7354	0.0209	0.5992	Undifferentia
30							ted
C43_Mag-	618	2.6431	0.4392	0.8096	0.0227	0.5276	Undifferentia
<u>31</u>							ted
C43_Mag-	618	2.8487	0.7618	0.7874	0.0364	0.4829	Undifferentia
32 C(1 Max							led Matrix zone
Col_Mag-	840	4.9210	0.6685	0.7407	0.0189	0.4761	Matrix Zone
I C61 Mag							1 Matrix zona
COT_Mag-	840	7.0825	1.3379	0.7153	0.0349	0.3307	
$\frac{2}{C61}$ Mag							1 Matrix zona
cor_wag-	840	2.3739	0.2249	0.8096	0.0227	0.4154	
C61 Mag-							1 Matrix zone
$\frac{1}{4}$	840	9.6749	2.1263	0.6379	0.0494	0.1203	
C61 Mag-		10 507					Matrix zone
5	840	6	2.3349	0.5934	0.0349	0.3958	1
C61 Mag-		16.330					Matrix zone
6	840	2	1.7982	0.5765	0.0318	0.4544	1
C61 Mag-	0.40	<b>a</b> 000 C	0.40.00	0.7.00	0.0105	0.0041	Matrix zone
7	840	3.8096	0.4369	0.7609	0.0185	0.3841	1
C61 Mag-	0.40		0.0505	0 7007			Matrix -
8 2	840	4.6615	0.8527	0.7397	0.0233	0.5737	dissemenated
C61 Mag-	0.40	21.838	1 1 ( 10	0.5024	0.0254	0 4270	Matrix -
9	840	6	1.1640	0.5034	0.0254	0.43/8	dissemenated
C61 Mag-	040	12.692	1 1501	0 (002	0.02(2	0.4900	Matrix -
10	840	3	1.1391	0.6083	0.0263	0.4890	dissemenated
C61_Mag-	940	2 2201	0 6252	0 7974	0.0200	0.2940	Matrix -
11	840	2.2891	0.0555	0.7874	0.0308	0.3849	dissemenated
C61_Mag-	840	1 2020	1 5970	0 7206	0.0220	0 1// 10	Vein 3
12	040	4.2030	1.30/0	0.7200	0.0339	0.1440	
C61_Mag-	840	3 1652	1 1740	0 7630	0.0334	0 13/0	Vein 3
13	0-10	5.1052	1.1/40	0.7030	0.0334	0.1349	
C61_Mag-	840	1 4404	0 41 37	0 7982	0.0180	0 1770	Vein 3
14	0-0	1.7704	0.713/	0.7962	0.0100	0.1//3	
C61_Mag-	840	4.6279	0.8073	0.7545	0.0243	0.1799	Matrix -

15							dissemenated	
C61_Mag- 16	840	7.4530	0.8580	0.6909	0.0262	0.5819	Vein 2	
C61_Mag- 17	840	7.8405	0.7597	0.6952	0.0196	0.6333	Vein 2	
C61_Mag- 18	840	12.150 9	0.7871	0.6379	0.0204	0.5144	Matrix - dissemenated	
C61_Mag- 19	840	9.7115	0.9399	0.6454	0.0257	0.6182	Matrix - dissemenated	
C61_Mag- 20	840	2.7045	0.1822	0.6485	0.0164	0.5189	Matrix - dissemenated	Х
C61_Mag- 21	840	6.8552	0.4433	0.7139	0.0177	0.4563	Matrix - dissemenated	
C61_Mag- 22	840	1.3784	0.3420	0.7969	0.0225	0.5969	Vein 2	
C61_Mag- 23	840	5.1900	0.3519	0.7515	0.0174	0.4729	Vein 2	
C61_Mag- 24	840	11.815 0	0.6438	0.6252	0.0178	0.6126	Vein 2	
C61_Mag- 25	840	14.125 9	0.5931	0.5807	0.0206	0.5288	Vein 2	
C61_Mag- 26	840	5.0272	1.5803	0.7015	0.0387	0.2629	Vein 3	
C61_Mag- 27	840	2.3098	0.6052	0.7989	0.0189	0.5416	Vein 3	
C61_Mag- 28	840	4.9305	1.5203	0.7227	0.0378	0.5904	Matrix zone 1	
C61_Mag- 29	840	10.863 8	1.5345	0.6464	0.0295	0.5762	Matrix zone 1	
C61_Mag- 30	840	9.3914	1.1507	0.6613	0.0250	0.5826	Matrix zone	
C61_Mag- 31	840	6.2839	0.7347	0.7280	0.0266	0.5649	Matrix zone 1	
C61_Mag_ V-32	840	1.5538	0.2281	0.8027	0.0176	0.4397	Vein 1	
C61_Mag_ V-33	840	7.8646	1.5760	0.6983	0.0328	0.2863	Vein 1	
C61_Mag_ V-34	840	12.326 2	3.6233	0.5818	0.0553	0.2705	Vein 1	
C61_Mag_ V-35	840	1.8714	0.9706	0.7757	0.0354	0.5772	Vein 1	
C61_Mag_ V-36	840	19.571 4	2.5698	0.4779	0.0435	0.2969	Vein 1	
C61_Mag_ V-37	840	1.3148	0.3852	0.8255	0.0252	0.1788	Vein 1	
C61_Mag_	840	5.6225	0.3748	0.7422	0.0164	0.6326	Vein 1	

V-38							
C61_Mag_	840	2 5385	0 5302	0.8022	0.0257	0 4753	Vein 1
V-39	010	2.0000	0.0002	0.0022	0.0207	0.1755	
C61_Mag_	840	8.3786	0.7047	0.7111	0.0213	0.4647	Vein 1
V-40	010	0.5700	0.7017	0.7111	0.0215	0.1017	
C61_Mag_	840	9 2 5 5 8	0 4416	0 6814	0.0201	0 5323	Vein 1
V-41	0.0	2000	0	0.0011	0.0201	0.0020	
C61_Mag_	840	6.4581	1.0007	0.7460	0.0313	0.4850	Vein 1
V-42	0.10	011001	1.0007	017 100	0.0515	011020	
C62_Mag_	871	4.4204	1.5268	0.7524	0.0420	0.3058	Undifferentia
Vein-3	0,1		1.0200		0.0.20	0.0000	ted
C62_Mag_	871	1.1497	0.2024	0.8064	0.0250	0.3730	Undifferentia
Vein-4	0,1		0.2021		0.0200	0.0700	ted
C62_Mag_	871	4.2030	1,9999	0.6846	0.0376	0.3398	Undifferentia
Vein-5	0,1			0.0010	0.0270	0.000000	ted
C62_Mag_	871	2.6162	0.8559	0.7831	0.0264	0.5245	Undifferentia
Vein-6	0,1		0.00003	017001	0.020.	0.02.0	ted
C62_Mag_	871	0.7063	0.1118	0.8262	0.0182	0.5782	Undifferentia
Vein-7	0,1	0.7005	0.1110	0.0202	0.0102	0.0702	ted
C62_Mag_	871	7.3253	2.7248	0.7323	0.0479	0.6087	Undifferentia
Vein-8	0,1	,	,	017020	0101.75	0.0007	ted
C62_Mag_	871	11.195	1.4354	0.5998	0.0262	0.1974	Undifferentia
Vein-9		8				•••••	ted
C62_Mag_	871	7.9376	1.8010	0.7227	0.0378	0.2065	Undifferentia
Vein-10							ted
C62_Mag_	871	6.1631	1.0002	0.7312	0.0350	0.4281	Undifferentia
Vein-11							ted
C62_Mag_	871	6.8369	0.8317	0.7259	0.0248	0.5526	Undifferentia
Vein-12							ted
C62_Mag_	871	20.676	4.8532	0.5299	0.1593	0.1379	Undifferentia
Vein-13		2					ted
C62_Mag_	871	11.294	0.6851	0.6528	0.0231	0.5521	Undifferentia
Vein-14	0,1	5	0.0001	0.0020	0.0201	0.0021	ted
C62_Mag_	871	1.7092	0.6390	0.7948	0.0240	0.2664	Undifferentia
Vein-15							ted
C62_Mag-	871	6.5404	1.6570	0.6655	0.0384	0.5326	Undifferentia
1							ted
C62_Mag-	871	3.7704	1.7205	0.7513	0.0410	0.3711	Undifferentia
3	0,1	017701	1., 200	017010	010.110	0.0711	ted
C62_Mag-	871	3.6626	0.7883	0.7725	0.0402	0.4963	Undifferentia
4							ted
C62-mush-	871	14.650	0.8870	0.5892	0.0189	0.6237	Undifferentia
		6					ted
C62-mush-	871	4.5620	0.3923	0.7556	0.0197	0.5981	Undifferentia
2			0.50.55	0	0.0177	0.000	ted
C62-mush-	871	4.8928	0.5963	0.7545	0.0269	0.6382	Undifferentia

3							ted
C62-mush-	971	11.601	0.9714	0.6607	0.0251	0.5092	Undifferentia
4	0/1	1	0.0/14	0.0097	0.0231	0.3083	ted
C62-mush-	971	5.0624	0 7445	0.7450	0.0106	0.6045	Undifferentia
5	0/1	5.9024	0.7443	0.7430	0.0190	0.0045	ted
C62-mush-	871	26.349	1 2776	0.4101	0.0257	0.4100	Undifferentia
6	0/1	9	1.3770	0.4101	0.0237	0.4190	ted
C62-mush-	871	2 5807	0.6821	0 7058	0.0211	0.5514	Undifferentia
7	0/1	2.3897	0.0621	0.7938	0.0211	0.5514	ted
C62-mush-	871	4 2020	1 1056	0 7620	0.0244	0.5717	Undifferentia
8	0/1	4.2030	1.1050	0.7030	0.0244	0.3717	ted
C62_Mag-	871	7 2252	1 6068	0.6824	0.0722	0.0750	Undifferentia
5	0/1	1.3233	4.0008	0.0824	0.0723	0.0739	ted
C62_Mag-	871	5 0660	0 7075	0 7354	0.0240	0.6355	Undifferentia
6	0/1	5.0009	0.7975	0.7334	0.0249	0.0355	ted
C62_Mag-	871	7 7458	0 7876	0.6708	0.0251	0.4450	Undifferentia
7	0/1	1.1430	0.7870	0.0708	0.0231	0.4430	ted
C62_Mag-	871	2 5600	0.6060	0 7778	0.0208	0 6222	Undifferentia
8	0/1	3.3009	0.0900	0.7778	0.0208	0.0225	ted
C62_Mag-	871	41.756	4 2217	0 2077	0.0270	0 2751	Undifferentia
9	0/1	5	4.2317	0.2077	0.0279	0.3731	ted



Figure A-21: Magnetite C34 All Spots Tera-Wasserburg Diagram (UCSB)



Figure A-22: Magnetite C34 "Rims" Tera-Wasserburg Diagram (UCSB)


Figure A-23: Magnetite C34 "Cores" Tera-Wasserburg Diagram (UCSB)



Figure A-24: Magnetite C43 Tera-Wasserburg Diagram (UCSB)



Figure A-25: Magnetite C61 All Spots Tera-Wasserburg Diagram (UCSB)



Figure A-26: Magnetite C61 In Matrix Tera-Wasserburg Diagram (UCSB)



Figure A-27: Magnetite C61 Vein 1 Tera-Wasserburg Diagram (UCSB)



Figure A-28: Magnetite C61 Vein 2 Tera-Wasserburg Diagram (UCSB)



Figure A-29: Magnetite C62 All Spots Tera-Wasserburg Diagram (UCSB)



Figure A-30: Magnetite C62 In Matrix Tera-Wasserburg Diagram (UCSB)



Figure A-31: Magnetite C62 Vein Tera-Wasserburg Diagram (UCSB)

## **Appendix B: Chapter 3 Supplemental**

Table B-1: Operating conditions for LA-ICP-MS analysis at the Gemological Institute of America

<b>Operation conditions for LA-ICP-MS analy</b>	sis
Material	Emerald
ICP-MS conditions	
Plasma power	1550 W
Cool gas flow	14 L/min Argon
Auxiliary gas flow	0.8 L/min Argon
Nebulizer gas flow (argon gas)	1.01 L/min Argon
Sampling depth	5 mm
Extraction Lens 2	-172 V
CCT Focus Lens	0.24 V
Detector type	Dual (analog and pulse counting)
Laser parameters	
Wavelength	213 nm
Fluence (energy density)	8-10 J/cm ²
Repetition rate	10 Hz
Ablation style	Single circular spot
Ablation spot size	55 μm diameter
Carrier gas flow (helium gas)	0.8 L/min Helium

Note: Argon and helium gas flow rate, torch position, sampling depth and lens voltage were optimized to achieve maximum sensitivity (counts per concentration) and low oxide production rates (232Th16O/232Th < 1%).

	7Li	9Be	23Na	25Mg	28Si	39K	43Ca	45Sc	46Ti
East : Count Numeric	1044	1044	1044	798	798	960	791	1044	862
East : Minimum	24.77834	40500	545	358	291000	0.640423	110	5.31	3.16
East : Maximum	356	64900	54400	17300	373000	1090	34000	2020	166
East : Mean	78.25891	52631.67	3033.389	2555.125	316809.5	20.5291	325.7598	162.1952	10.1131
East : Median	71.55	52800	2630	2290	316000	8.87	199	113	8.13
East : Range	331.2217	24400	53855	16942	82000	1089.36	33890	2014.69	162.84
East : Interquartile Range	28.425	5942.586	1542.301	1495	0006	16.61411	88	136.8733	2.29
East : Standard Deviation	37.93142	3543.19	2372.758	1381.236	7412.987	44.89352	1241.125	180.9885	10.06205
East : 1 percentile	30.78297	44045	804.7	553.82	300990	0.997749	123.92	7.0245	5.259
East : 5 percentile	39.18191	46700	1073.129	1009.1	306000	1.942394	142	12.15	6.1295
East : 10 percentile	44.06676	47900	1509.497	1280	308000	2.707	151.4	23.65677	6.578
East : 25 percentile	58.525	50000	2041.261	1670	312000	4.46089	171	60.7	7.27
East : 75 percentile	86.95	55942.59	3583.562	3165	321000	21.075	259	197.5733	9.56
East : 90 percentile	111	56749.27	4790	4243	326000	48.38	454.2	335	13.1
East : 95 percentile	127	57043.98	5732.5	5162	330000	79.5	727	493.5	18.61
East : 99 percentile	266.55	60865	8637	6800.9	336000	163.56	1891.2	1004.15	63.224
West : Count Numeric	1240	1240	1240	959	959	1208	931	1236	959
West : Minimum	20.9	40800	546	273	294000	1.220894	92.9	2.738814	3.45
West : Maximum	421	67100	41600	10700	342000	270	61800	1480	144
West : Mean	46.84693	52944.66	2885.593	3422.827	318597.5	22.63852	369.7142	102.374	12.24342
West : Median	39.06416	52800	3710	3150	318000	19.1	184	59.03575	8.82
West : Range	400.1	26300	41054	10427	48000	268.7791	61707.1	1477.261	140.55
West : Interquartile Range	24.175	6300	2487.5	2580	9000	23.98514	46	79.83696	3.16
West : Standard Deviation	25.14421	4144.177	2024.451	1776.212	7052.194	21.43585	2466.719	145.1851	12.03458
West : 1 percentile	23.8	44141	883.9632	646.8	304000	1.69175	117.32	4.659106	5.074
West : 5 percentile	27.4	45800	1370	1100	308000	2.8845	135.6	10.385	6.1
West : 10 percentile	29.6	47700	1760	1420	310000	4.145478	146.2	14.27	6.71

Table B-2: Summary Stats for the full Colombian emerald geochemical database

5.266329	2.34	19.4	19.075	274.7896	0.498185	1183	1265	1694.87	3.085	West : Interquartile Range
32.1	11.449	57.05205	87.16681	2626.3	216.9535	6734.038	6093.6	11208.43	226.7265	West : Range
9.087381	2.02	22.2	21.9	364.5953	0.42	786.4167	808	1240	3.58	West : Median
9.33832	2.223855	24.06822	23.60317	420.2553	1.850976	1163.639	1192.056	1691.715	7.038639	West : Mean
32.5	11.5	61.57172	91.7	2680	217	6780	6150	11300	227	West : Maximum
0.4	0.051	4.519671	4.533194	53.7	0.046514	45.96175	56.4	91.56541	0.273505	West : Minimum
1240	1239	1240	1240	1240	895	1240	959	1240	1238	West : Count Numeric
33.91	4.3821	36.775	36.04	1772.18	36.224	7678.5	7305.4	4432	58.727	East : 99 percentile
25.775	2.69	30.6	29.6	1050	16.2	5207.5	4881	2240	13.38	East : 95 percentile
21	2.17	26.8	26.16312	774.7637	10.68	4449.141	4211	2029.7	7.101	East : 90 percentile
16.4	1.6825	22.4099	21.9	570	3.69	3300	3262.5	1330.926	4.18	East : 75 percentile
7.97	0.795262	15.6	15.1	242.2001	0.194159	1052.5	986.5	642.9973	2.2075	East : 25 percentile
6.05	0.401323	10.7	10.59943	162	0.065711	551.6482	484.9	361.3128	0.524864	East: 10 percentile
5.286627	0.31	9.690351	9.62302	134.8817	0.053576	310.25	290.55	271.676	0.351141	East : 5 percentile
3.951332	0.184792	8.246513	8.181642	95.17007	0.036443	34.045	32.991	120.35	0.168605	East : 1 percentile
6.48966	0.907663	6.197062	6.032815	385.8585	25.90265	1636.706	1587.387	777.3125	11.44851	East : Standard Deviation
8.43	0.887238	6.809903	6.8	327.7999	3.495841	2247.5	2276	687.9291	1.9725	East : Interquartile Range
38.94	12.57	46.31	45.09	7455.2	637.9679	9064.6	8463.8	5002.5	165.9294	East : Range
11.6	1.23	19	18.56366	377	0.67	1926.604	1795	982.966	3.075	East : Median
12.97815	1.332818	19.16175	18.726	455.8384	4.681771	2309.857	2215.25	1120.442	4.971517	East : Mean
41.6	12.7	49.1	47.9	7500	638	9080	8480	5040	166	East : Maximum
2.66	0.13	2.79	2.81	44.8	0.032124	15.4	16.2	37.5	0.070583	East : Minimum
1044	1042	1044	1044	1044	731	1044	798	1044	1042	East : Count Numeric
133Cs	85Rb	71Ga	69Ga	57Fe	55Mn	53Cr	52Cr	51V	47Ti	
	74.18	772.26	1707.2	90.356	338000	8556	8685.9	62636	134.59	West : 99 percentile
	36	364.6	413.2	51.2	332000	6780	89 6929.5	4 59197.8	82.7636	West : 95 percentile
	18.9	219	13 268	44.6034	328000	5920	6164	57538.5	68.99	West : 90 percentile
	7 10.7	109.83	12 208	31.7747	323000	4550	4960	56300	57.075	West : 75 percentile
	7.54	30	3 162	7.78958	314000	1970	2472.5	50000	32.9	West : 25 percentile

20.69048	6.646	50.913	50.259	1390	32.736	5505.9	5120	7860	65.381	West : 99 percentile
16.495	5.16	44.995	44.1	897.5354	5.588	3717.906	3760	4918	28.625	West : 95 percentile
14.4	4.29	41.09	40.39	692.8	3.118	2854.054	2830	3570	14.52	West : 90 percentile
11.7	3.22	33.4	32.8	516.0396	0.78	1550	1630	2267.5	5.6025	West : 75 percentile
6.433671	0.88	14	13.725	241.25	0.281815	367	365	572.6301	2.5175	West : 25 percentile
4.384	0.52	9.787	9.411	184.8635	0.2	162	166	331.2075	1.398044	West : 10 percentile
3.7005	0.41	8.2515	8.074984	145.0238	0.136663	128	141	251.1614	0.883581	West : 5 percentile
2.0664	0.17	6.34	6.4305	102.41	0.071327	73.051	74.4	130	0.49845	West : 1 percentile
4.040221	1.561621	11.73145	11.72244	262.6584	9.348681	1179.441	1164	1585.245	12.42979	West : Standard Deviation

	71:	vov	7211-	7777~	1 1 2 1	200:	2017	1200	1400	16T:
Chivor District : Count Numeric	484	484	484	370	484	370	454	367	484	370
Chivor District : Minimum	24.778	41200	545	358	75800	291000	0.6404	124	8.4361	5.08
•	34						23		00	
Chivor District : Maximum	351	58800	21500	9200	111000	341000	1090	4450	624	166
Chivor District : Mean	66.104	52373.	2611.3	2099.2	94614.	316708	27.442	332.17	111.69	10.055
	26	54	88	76	61	.1	33	44	98	98
Chivor District : Median	62.05	52800	2422.2	1945	94300	316000	10.147	217	99.45	7.92
	~~~~	17/00	20055	0017	25200	50000	1000 0	1001	(15 51	10000
Chivor District : Range	326.22 17	17600	20955	8842	35200	50000	1089.3 6	4326	615.56 39	160.92
Chivor District : Interquartile Range	30.325	6132.0 6	1013.8 51	825	5200	0006	26.242 5	140	88.225	2.13
Chivor District : Standard Deviation	34.000	3579.3	1471.2	997.86	5158.4	7259.8	60.651	383.86	79.699	12.039
	89	23	04	75	53	83	92	67	26	13
Chivor District : 1 percentile	28.524	43470	729.13	503.15	81785	297420	1.0944	133	10.525	5.3978
2))					
Chivor District : 5 percentile	34.210 23	46025	998.71 4	892.2	84500	306000	2.205	152.6	15.425	6.031
Chivor District : 10 percentile	38.468 27	47300	1415	1260	00628	308000	3.0946 04	167.8	23.809 91	6.36
Chivor District : 25 percentile	46.55	49700	1996.1 49	1625	92500	312000	5.6575	186	58.525	6.975
Chivor District : 75 percentile	76.875	55832. 06	3010	2450	97700	321000	31.9	326	146.75	9.105
Chivor District : 90 percentile	88.3	56611. 19	3620	2908	101000	326000	71.7	576.8	202.5	11.48
Chivor District : 95 percentile	104	56865. 02	4145	3273.5	103000	330000	93.75	849.2	239.13 42	15.735
Chivor District : 99 percentile	270.9	57515	9706.5	7770.7	108000	336580	191.4	2308.8	432.06 1	75.326
Coscuez District : Count Numeric	255	255	255	182	255	182	253	173	254	182
Coscuez District : Minimum	22.9	45000	833.84	664	78400	297000	1.2208	105	6.5592	5.48

Table B-3: Table B-3: Summary Stats for mining district Colombian emerald geochemistry

			99				94		37	
Coscuez District : Maximum	180	00665	41600	0868	111000	334000	82.6	8680	1040	61
Coscuez District : Mean	58.209	53497.	4229.3	3899.4	94983.	316192	13.866	243.20	106.29	11.130
	5	<u>96</u>	37	18	86	.3	18	81	89	38
Coscuez District : Median	59.051	53400	3715.2	3340	94220.	316000	7.5910	172	62.9	8.49
	78		23		1		52			
Coscuez District : Range	157.1	14900	40766.	8316	32600	37000	81.379	8575	1033.4	55.52
Coscuez District : Interquartile Range	20.1	5640.1	2268.3	2392.5	6100	7500	17.877	38	88.021	2.9
		66	16				35		35	
Coscuez District : Standard Deviation	24.194	3074.3	0.6287	1536.5	5364.1	6024.9	13.124	662.59	157.61	8.8932
	39	14	19	22	97	34	09	43	85	04
Coscuez District : 1 percentile	23.268	47112	983.72	1009.2	81856	300320	2.0038	109.44	7.962	5.7041
			26	×			3			
Coscuez District : 5 percentile	28.1	48300	1624	1990.5	86520	305000	3.0578 77	129.4	10.644 94	6.22
Coscuez District : 10 percentile	31.135	49500	2345.8	2400	89260	308300	3.854	140	13.8	6.656
	26		11							
Coscuez District : 25 percentile	44.3	50900	2950	2740	91800	312750	5.0255 19	154	30	7.425
Coscuez District : 75 percentile	64.4	56540. 17	5218.3 16	5132.5	97900	320250	22.902 86	192	118.02 13	10.325
Coscuez District : 90 percentile	71.94	57351. 37	6374	6197	102000	324000	31.46	206.6	203	15.4
Coscuez District : 95 percentile	111.4	57613. 54	6946	6758.5	105000	326000	40.74	293.2	299.25	30.55
Coscuez District : 99 percentile	161	58542. 79	8624	7735	110440	329850	58.396	3574	965.55	59.34
Gachalá District : Count Numeric	383	383	585	251	383	251	331	249	383	251
Gachalá District : Minimum	56.3	44500	802	478	77800	294000	0.8519 02	110	5.31	3.16
Gachalá District : Maximum	356	64900	9618.4 46	6100	109000	338000	214	3090	794.12 74	116
Gachalá District : Mean	94.175 56	53745. 67	3102.7	2842.3	94544. 37	315784 0	11.286	268.91	139.10	10.024
	56	62	62	03	37	.9	55	16	09	18

	Maripí District : Standard Deviation	Maripí District : Interquartile Range	Maripí District : Range	Maripí District : Median		Maripí District : Mean	Maripí District : Maximum	Maripí District : Minimum	Maripí District : Count Numeric	Gachalá District : 99 percentile	Gachalá District : 95 percentile	Gachalá District : 90 percentile	Gachalá District : 75 percentile	Gachalá District : 25 percentile	Gachalá District : 10 percentile	Gachalá District : 5 percentile	Gachalá District : 1 percentile		Gachalá District : Interquartile Range	Gachalá District : Range	Gachalá District : Median
80	8.4696	8.55	48.5	33.3	92	35.231	69.4	20.9	213	310.16	151	124	105	72.002 95	67.040 73	64.753 95	58.452	85	32.997 05 36 570	299.7	84.934 85
46	3095.2	4100	15800	52600	99	52530.	59100	43300	213	61780	57859. 09	57043. 44	56561. 28	51200	49300	48420	45268	81 81	5361.2 75 3364.4	20400	53600
54	1676.4	2385	8320	4500	97	4813.8	10100	1780	213	6816.4	5634	5046	4000	2130	1394.7 77	1038.8 76	854.59 4	88	1870	8816.4 46	2787.9 66
77	1694.3	2550	7390	3940	45	4428.5	8920	1530	213	5739.2	4874	4562	3760	1750	1204	1096	552.6	6	2010	5622	2930
61	5791.8	8350	27900	96000	51	95184.	106000	78100	213	107160	104000	102000	96100	92200	89200	87800	79188	37	3900	31200	94119. 87
55	5917.6	7000	38000	318000	.6	318375	341000	303000	213	336480	331000	327000	320000	311000	307000	305000	298640	92	9000	44000	315000
62	19.981	16.9	223.7	23.7	4	27.355	228	4.3	213	114.8	36.98	25.7	10.5	3.5847 55	1.9613 38	1.2535 89	0.9131 47	20.705 24	6.9152 45 20 065	213.14 81	5.0141 49
55	87.964	42	1187.1	185	6	194.95	1280	92.9	207	2150	715.5	364	231.5	167	149	137	115.5	89	64.5	2980	196
99	175.16	192.85	945.6	117	49	189.25	957	11.4	213	465.02 62	317.97 86	278.47 55	211	58.7	14.317 48	9.85	5.6888	78	152.3	788.81 74	119
63	9.3138	2.595	84.17	8.12	13	10.974	89.6	5.43	213	28.408	19.3	14.5	10	7.44	6.564	5.924	4.6408	32	2.56	112.84	8.5

Maripí District : 1 percentile	23.3	44298	1887	1621.2	81442	304280	5.0046	122.16	11.912	5.4928
Maripí District : 5 percentile	25	47070	2284	2051	84470	309000	8.34	134.4	16.36	5.837
Maripí District : 10 percentile	26.48	48400	2898	2574	86640	312000	11.96	147.8	42.1	6.388
Maripí District : 25 percentile	29.9	50600	3585	3230	91150	315000	16.15	165	61.65	7.2
Maripí District : 75 percentile	38.45	54700	5970	5780	99500	322000	33.05	207	254.5	9.795
Maripí District : 90 percentile	44.56	56400	7130	6732	102000	325000	46.44	235	456.6	22.12
Maripí District : 95 percentile	55.59	57400	8161	7597	104000	328300	54.73	261	585.3	29.62
Maripí District : 99 percentile	62.572	58758	9601.6	8875.8	106000	339720	95.834	465.76	765.92	48.17
Muzo District : Count Numeric	424	424	424	216	424	216	418	203	421	216
Muzo District : Minimum	21.9	40800	700.69 03	975	77800	294000	1.2817 32	115	2.7388 14	3.9
Muzo District : Maximum	421	67100	10700	10700	118000	342000	270	1680	815.87 01	111
Muzo District : Mean	42.976	55054.	3874.5	3318.6	95611.	323745	27.908	195.86	81.978	14.617
	83	95	78	16	56	.4	9	21	14	64
Muzo District : Median	37.25	56308. 14	3827.7 73	3060	93748. 32	325000	25.949 64	183	51.866 4	9.515
Muzo District : Range	399.1	26300	9999.3	9725	40200	48000	268.71	1565	813.13	107.1
			1				83		13	
Muzo District : Interquartile Range	9.2834 74	5963.0 3	1946.0 53	1977.5	6092.9 61	12750	24.244 89	40	68	4.635
Muzo District : Standard Deviation	29.460	4563.3	1516.3	1601.7	5699.2	8053.5	20.177	112.05	95.403	15.260
	87	69	65	64	16	98	2	81	23	94
Muzo District : 1 percentile	25.228 97	43375	791.19 02	980.08	82825	307170	1.6841 52	117.36	3.7194 75	4.0968
Muzo District : 5 percentile	27.847 13	46600	1421.6 92	1515.5	88928. 29	311000	6.044	137	6.3202 33	5.323
Muzo District : 10 percentile	29.85	48450	1850	1635	90675. 99	312700	8.596	148.4	11.46	6.295
Muzo District : 25 percentile	32.616 53	51425	2842.5	2150	92182. 04	317000	13.944 47	165	25.15	7.94
Muzo District : 75 percentile	41.9	57388. 03	4788.5 53	4127.5	98275	329750	38.189 36	205	93.15	12.575
Muzo District : 90 percentile	58.181	60800	5700	5193	105000	333000	46.801	227.6	212.78	32.06

	46						85		57	
Muzo District : 95 percentile	76.085 62	61800	6348.3 93	6091.5	107000	337000	51.225	263.4	281.35 18	48.295
Muzo District : 99 percentile	146.80 94	64500	7917.5	9814.1	112000	341830	94.955	414.44	470.63 4	80.103
Pauna District : Count Numeric	208	208	208	208	208	208	190	208	208	208
Pauna District : Minimum	23.5	43000	546	273	73300	304000	1.37	115	7.66	5.5
Pauna District : Maximum	260	57000	9010	8180	111000	339000	263	747	329	77.4
Pauna District : Mean	51.243	49511.	2536.6	2093.1	92241.	317620	16.777	210.28	51.953	13.011
	75	54	89	73	83	.2	74	37	17	39
Pauna District : Median	41.75	49750	2140	1670	91500	317000	6.41	190	36.65	9.145
Pauna District : Range	236.5	14000	8464	7907	37700	35000	261.63	632	321.34	71.9
Pauna District : Interquartile Range	33.825	5400	865	847.5	8575	0008	14.975	50.75	33.975	3.0975
Pauna District : Standard Deviation	25.814	3347.2	1336.2	1275.5	6870.7	6317.2	29.984	82.152	38.907	12.256
	64	7	99	98	13	93	54	22	75	3
Pauna District : 1 percentile	24.6	43163	817.17	603.62	76200	304090	1.3791	128	10.563	5.628
Pauna District : 5 percentile	28.545	44200	1379	965.9	81260	308450	1.9855	146.9	20.31	6.7815
Pauna District : 10 percentile	30.29	44890	1559	1160	83860	310000	2.442	151.9	23.98	7.253
Pauna District : 25 percentile	33.425	46600	1815	1420	87825	313000	3.075	165	29.025	8.0775
Pauna District : 75 percentile	67.25	52000	2680	2267.5	96400	321000	18.05	215.75	63	11.175
Pauna District : 90 percentile	79.27	54000	4132	3308	102000	327000	38.97	282.6	102.5	24.42
Pauna District : 95 percentile	84.975	54855	5351	4852.5	106000	330000	53.04	397.2	132.95	37.655
Pauna District : 99 percentile	180.26	56900	8217.4	7345.5	107000	335820	209.31	645.32	187.02	76.474
Peñas Blancas District : Count Numeric	140	140	140	140	140	140	134	140	140	140
Peñas Blancas District : Minimum	29.2	44700	637	324	83600	303000	1.4	102	4.6	3.45
Peñas Blancas District : Maximum	114	59600	7570	7320	110000	330000	114	61800	1480	144
Peñas Blancas District : Mean	49.010	51275.	3884.6	3409.4	95663.	315571	23.573	1273.3	99.314	10.817
Pañas Blancas District : Madian	40 47	<u>51000</u>	14	4065	05550	.4 316000	20 00	180 5	50 27 10	43 8 75
Penas Blancas District : Median	42.I 07.0	14000	4010	4005	76400	000016	202	109.0	C7.C0	0.70
Peñas Blancas District : Range	84.8	14900	6933	9669	26400	27000	112.6	61698	14/5.4	140.55
Peñas Blancas District : Interquartile Range	16.25	3750	3577.5	3265	7725	6000	21.047 5	161.25	81.925	2.3925

Ubalá District : Minimum	Ubalá District : Count Numeric	Somondoco District : 99 percentile	Somondoco District : 95 percentile	Somondoco District : 90 percentile	Somondoco District : 75 percentile	Somondoco District : 25 percentile	Somondoco District : 10 percentile	Somondoco District : 5 percentile	Somondoco District : 1 percentile		Somondoco District : Standard Deviati	Somondoco District : Interquartile Rar	Somondoco District : Range	Somondoco District : Median		Somondoco District : Mean	Somondoco District : Maximum	Somondoco District : Minimum	Somondoco District : Count Numeric		Peñas Blancas District : 99 percentile	Peñas Blancas District : 95 percentile	Peñas Blancas District : 90 percentile	Peñas Blancas District : 75 percentile	Peñas Blancas District : 25 percentile	Peñas Blancas District : 10 percentile	Peñas Blancas District : 5 percentile	Peñas Blancas District : 1 percentile	Deviation	Peñas Blancas District : Standard
44.8	132	123	121.	88.8	64.9	55.6	52.2	50.2	50.1	25	on 17.5	ge 9.3	72.9	59.6	22	64.7	123	50.1	45		113	93.7	75.5	54.3	38.1	36.0	33.5	29.6	26	17.3
			.2	88	35	55		23			501		•	5		102					.59	15	7	35	,)1	525	592		315
44600	132	54300	54210	53380	52150	47200	46000	43980	40500	28	3079.2	4950	13800	49600	68	49448.	54300	40500	45		58903	55395	54780	52975	49225	48400	47525	45438	3	2508.8
1570	132	54400	24585	2692	2125	1610	1456	1066.9	862	84	8942.1	515	53538	1830	44	3810.6	54400	862	45		7537.2	6648	6075	5332.5	1755	1172	1031	733.76	06	1924.4
1190	132	2340	2115	1898	1705	1280	1176	771	570	49	332.35	425	1770	1450	44	1482.4	2340	570	45		7274.9	5977	5438	4727.5	1462.5	747.8	658.7	385.91	65	1841.0
78700	132	147000	108700	104800	103000	96000	90540	87620	86000	47	8825.2	7000	61000	101000	.6	100095	147000	00098	45		109180	105000	103000	99725	92000	00888	86930	84379	28	5328.6
308000	132	373000	334700	328800	323000	312000	308000	305300	303000	28	11112.	11000	70000	316000	:1	318511	373000	303000	45		329180	322950	321000	319000	313000	309100	306000	303410	69	4780.2
3.47	130	177	83.5	57	9.015	4.01	3.348	2.366	1.56	79	31.255	5.005	175.44	5.03		16.098	177	1.56	45		103.36	56.8	47.4	30.975	9.9275	4.145	2.3825	1.4105	38	18.272
118	130	530	320.7	238.4	199	167.5	156.4	150.9	145	28	62.070	31.5	385	181	68	195.68	530	145	45		50812	1718	949.7	318.25	157	140.1	129.05	102.41	95	6257.5
24.9	132	115	94.29	85.92	72.3	34.95	9.502	8.851	8.65	38	26.590	37.35	106.35	56.6	68	53.010	115	8.65	45		1447.2	172.8	128.3	98.525	16.6	9.468	7.7275	4.8337	55	220.99
6.1	132	48.3	28.86	12.9	10.3	7.625	7.19	6.997	6.43	18	7.1064	2.675	41.87	9	56	10.593	48.3	6.43	45	8	111.52	17.59	12.38	10	7.6075	6.865	6.4175	4.2577	01	12.774

	Chivor District : Interquartile Range 1.795	94	Chivor District : Range 165.92		Chivor District : Median 2.98	74	Chivor District : Mean 4.8011		Chivor District : Maximum 166	83	Chivor District : Minimum 0.0705	Chivor District : Count Numeric 484	47Ti	
	528.25	04	2177.3		794		842.06	17	2319.8	28	142.51	484	51V	
	2047.5		5276		1525	57	2000.0		5450		174	370	52Cr	
86	2068.5	28	6578.2		1670	11	2154.2	28	6750.2		172	484	53Cr	
ω	5.8868	79	218.96		1.67	26	5.2994		219	24	0.0321	343	55Mn	
	228	76	1753.1		274	58	312.41		1820	64	66.823	484	57Fe	
72	6.2589		31.41	29	16.856	96	16.448		39		7.59	484	69Ga	
80	6.4252		21.51		17.3	92	16.780		29.3		7.79	484	71Ga	
96	0.7272		12.54	67	1.2393	7	1.3219		12.7		0.16	483	85Rb	
80	4.5487	29	35.393		7.915	38	8.9468		38.4	15	3.0067	484	133Cs	

	Ubalá District : 99 percentile	Ubalá District : 95 percentile	Ubalá District : 90 percentile	Ubalá District : 75 percentile	Ubalá District : 25 percentile	Ubalá District : 10 percentile	Ubalá District : 5 percentile	Ubalá District : 1 percentile		Ubalá District : Standard Deviation	Ubalá District : Interquartile Range	Ubalá District : Range	Ubalá District : Median		Ubalá District : Mean	Ubalá District : Maximum
	282.08	198.2	105.7	80.575	62.4	56.17	52.115	44.932	38	42.772	18.175	245.2	70.05	15	81.265	290
	56902	55500	54970	53775	49200	47660	46700	44996	63	2778.1	4575	12500	51500	06	51431.	57100
	8532.6	6707	6330	5502.5	3012.5	2542	2139.5	1708.6	78	1494.3	2490	7220	3755	7	4114.4	8790
6	14204.	6164	5814	4722.5	2425	2053	1762	1308.8	49	1862.7	2297.5	16110	3105		3652.5	17300
	104670	102350	100000	95475	87500	83280	81330	78997	01	5981.4	7975	26300	92650		92075	105000
	334020	329000	325700	321000	315000	312000	310000	308000	32	5081.6	0000	28000	318000	.1	318462	336000
	99.99	49.635	40.28	27.95	10.175	8.478	7.5465	3.7273	2	14.564	17.775	79.93	18.55	77	21.452	83.4
97	23672.	362	287.9	213.5	158	135.6	127.1	118.93	41	2965.7	55.5	33882	175	15	461.56	34000
	1732.9	1040	969.9	566.5	222.5	64.89	45.615	27.573	84	321.24	344	1995.1	409	5	451.57	2020
	72.781	21.895	12.9	9.525	7.51	6.905	6.683	6.1033	39	8.6909	2.015	71.4	8.265	79	10.278	77.5

Coscuez District : 5 percentile		Coscilez District · 1 nercentile		Coscuez District : Standard Deviation		Coscuez District : Interquartile Range		Coscuez District : Range		Coscuez District : Median		Coscuez District : Mean	Coscuez District : Maximum		Coscuez District : Minimum	Coscuez District : Count Numeric		Chinan District : 00 momentile	Chivor District : 95 percentile		Chivor District : 90 percentile	ŀ	Chivor District : 75 percentile		Chivor District : 25 percentile	1	Chivor District: 10 percentile	-	Chivor District : 5 percentile	ſ	Chivor District : 1 percentile		Chivor District : Standard Deviation
0.5271	48	0 2916	91	15.991		3.47	65	226.72		3.7	81	6.8076	227	05	0.2735	255	פ42.92	50 510	11.85		6.135		3.9575		2.1625	74	0.4431	34	0.2538	99	0.1312	54	11.267
578.16		309 64	22	1765.1	65	1587.4	52	11041.		0641	6	2255.9	11300	13	258.48	255	2190.1 35	2106 1	1720	76	1374.2		1060		531.75	61	326.40	42	269.66	19	194.34	38	421.54
212.9	7 7	115 91	29	1334.9		1342		5778.9		932	31	1425.7	5870		91.1	182	0240.0	0 21 62	4282.5		3889		3077.5		1030		614.2		486.55		261.41	06	1273.3
211.4	45	106 78	72	1289.5	52	1141.3	06	6075.8	95	856.77	22	1267.3	6160	73	84.193	255	0090.3 15	5 UUU7	4797.5	98	4269.1	86	3148.5		1080		661.5		513.5	51	286.37	14	1419.0
0.0997	0.0007	0 0667	66	5.8334		0.41	1	83.147		0.39	61	1.0844	83.2	86	0.0528	207	32.928	50 070	18.06		13.6		5.97	7	0.0831	47	0.0533	67	0.0433	23	0.0345	38	14.594
179.35	36	120.00	23	333.33		281	44	2375.5		450	24	530.41	2490	62	114.45	255	CCUT	1022	628		512		404		176	44	133.25	91	114.72	69	878.67	93	186.72
17.14	3	12 263	98	9.5471	18	14.516	78	43.948		31.5	33	32.069	55.8	22	11.851	255	67 cen.oz	200 20	23.033 77	90	21.374	97	19.558		13.3	1	10.159		9.1525	85	8.2073	86	4.4095
17.68	83	12 367	57	9.7490	60	14.373	18	45.533		32.1	53	32.701	57.4	82	11.866	255	20.343	21070	23.575	83	22.103	74	19.864	53	13.439		10.4		9.5625	94	8.2783	1	4.4151
0.4571	0.2072	0 2592	6	1.2288	22	1.6346	32	5.7454		1.19	90	1.7317	5.91	89	0.1645	255	3./112	2 71 17	2.346		2.016	96	1.6072	0	0.88	04	0.4576	18	0.3588	85	0.2452	78	0.9412
5.4754	84	4 6670	02	3.3500		4.06		18.44		10	62	10.480	22.9		4.46	255	20.20	00 20	15.3		14.15	21	10.861		6.3125		5.225	86	4.5154		3.8485	31	4.1773

	17	18			43	56			01	22
Coscuez District : 10 percentile	0.9746 31	737.34 78	308.3	299.03 24	0.1475 96	213.62 23	20.2	20.425 83	0.5870 56	6.4107 64
Coscuez District : 25 percentile	2.53	1180	468	418.64 83	0.27	328	25.1	25.610 87	0.83	8.34
Coscuez District : 75 percentile	9	2767.4 65	1810	1560	0.68	609	39.616 18	39.983 96	2.4646 22	12.4
Coscuez District : 90 percentile	10.605 96	3862	3321	2850	1.136	1054	45.48	46.52	3.77	15.44
Coscuez District : 95 percentile	20.158 75	6176	5001	4840	3.234	1204	47.46	48.62	4.342	17.12
Coscuez District : 99 percentile	55.76	10476	5745.5	5724.4	9.478	1757.6	52.356	52.78	5.3988	21.128
Gachalá District : Count Numeric	382	383	251	383	272	383	383	383	382	383
Gachalá District : Minimum	0.2181 32	37.5	16.2	15.4	0.0529 14	44.8	2.81	2.79	0.13	2.66
Gachalá District : Maximum	158	2240	5220	5690	70.1	3350	37.351 22	38.4	7.27	41.6
Gachalá District : Mean	5.2385 41	1140.1 73	2304.2 78	2295.7 14	2.3025 41	637.04 17	21.176 52	21.618 59	1.0719 76	16.038 94
Gachalá District : Median	3.02	1172.6 82	2220	2144.7 73	0.31	685	21.6	21.981 31	0.94	14.6
Gachalá District : Range	157.78 19	2202.5	5203.8	5674.6	70.047 09	3305.2	34.541 22	35.61	7.14	38.94
Gachalá District : Interquartile Range	3.8725 14	699.85 05	2746	2130	1.3647 02	380	6.4	6.2803 18	0.9015 58	7.8
Gachalá District : Standard Deviation	13.095 82	507.42 13	1475.8 42	1437.1 17	6.2563 47	394.58 19	6.2797 32	6.4618 6	0.7365 01	6.5505 7
Gachalá District : 1 percentile	0.2834 23	40.604	16.852	16.684	0.0641 87	129.72 8	2.9324	3.0692	0.1483	5.7012
Gachalá District : 5 percentile	0.3953 53	245.02 04	48.38	92.6	0.0757 37	231.2	9.656	9.6369 89	0.2290 78	8.8340 34
Gachalá District : 10 percentile	0.4649 72	480.65 14	372	607.87 15	0.0869 43	282	10.84	11.48	0.3064 19	9.6944 41
Gachalá District : 25 percentile	0.9613 75	707	934	1070	0.1827 98	359	18.3	18.7	0.58	11.3

Gachalá District : 75 percentile	4.8338	1406.8	3680	3200	1.5475	739	24.7	24.980	1.4815	19.1
Gachalá District : 90 percentile	9.64	1870	4338	4478.6 67	6.72	1122.1 35	29.336 17	30.18	1.907	25.58
Gachalá District : 95 percentile	13.77	2016	4634	4918	10.535	1370	31.54	32.62	2.4285	30.5
Gachalá District : 99 percentile	71.907	2131.6	4934.8	5403.6	33.412	2021.2	36.448	37.507 97	3.4540 42	36.3
Maripí District : Count Numeric	212	213	213	213	124	213	213	213	213	213
Maripí District : Minimum	1.52	190	116	116	0.24	116	12.6	12.4	0.83	4.7
Maripí District : Maximum	84.3	8140	0519	6780	89	644	53.6	53.6	5.82	22.6
Maripí District : Mean	6.6411	2587.8	1520.8	1628.2	2.0751	294.13	31.884	32.868	2.7845	9.55
	32	12	83	3	61	15	04	80	54	60
Maripí District : Median	3.625	1700	997	1070	0.49	283	33.3	34.3	2.59	9.24
Maripí District : Range	82.78	7950	6034	6664	67.76	528	41	41.2	4.99	17.9
Maripí District : Interquartile Range	2.5275	2935	1864	2001	0.5025	130.5	11.95	12.3	1.3	3.51
Maripí District : Standard Deviation	9.3137	2166.2	1311.5	1451.5	7.1117	83.545	8.6097	8.8058	1.0722	2.67
4 - - - -	06	76	47	80	94	56	97	41	8	49
Maripi District : 1 percentile	1.6017	191	118.28	120.42	0.2425	128.84	12.628	13.1	0.8628	4.85
Maripí District : 5 percentile	2.0265	430.7	164.7	163.1	0.26	175.7	17.01	17.37	1.097	5.37
Maripí District : 10 percentile	2.272	464.6	180.8	180.4	0.28	192.4	18.58	19.34	1.482	6.69
Maripí District : 25 percentile	2.8025	1035	456	469	0.34	228	25.2	26.05	2.13	7.59
Maripí District : 75 percentile	5.33	3970	2320	2470	0.8425	358.5	37.15	38.35	3.43	11.1
Maripí District : 90 percentile	19.89	6336	3628	4068	4.56	397.4	42.3	43.7	4.306	13.2
Maripí District : 95 percentile	26.455	7548	4183	4514	7.79	436.8	44.59	45.69	4.836	13.8
Maripí District : 99 percentile	40.962	8080.2	5815	5722	60	494.88	51.09	52.03	5.6086	19.5
Muzo District : Count Numeric	423	424	216	424	345	424	424	424	424	424
Muzo District : Minimum	0.2907 05	91.565 41	56.4	45.961 75	0.0465	68	4.5331 04	4.5196	0.2203 87	2.57
Muzo District : Maximum	86	7548.5	1970	3718.8	73.1	1390	91.7	61.571	11.5	32.5
		25		48				72		
Muzo District : Mean	7.3525	942.76	434.55 10	635.51 0°	0.8776	408.86 87	22.160 07	22.257 76	2.9299	10.4
	21		19	08	81	82	82	76	81	24

	Pauna District : Standard Deviation	Pauna District : Interquartile Range	Pauna District : Range	Pauna District : Median		Pauna District : Mean	Pauna District : Maximum	Pauna District : Minimum	Pauna District : Count Numeric	Muzo District : 99 percentile		Muzo District : 95 percentile		Muzo District : 90 percentile		Muzo District : 75 percentile	-	Muzo District : 25 percentile		Muzo District : 10 percentile		Muzo District : 5 percentile	-	Muzo District : 1 percentile		Muzo District : Standard Deviation	,	Muzo District : Interquartile Range		Muzo District : Range		Muzo District : Median
56	12.691	2.7175	70.12	3.51		7.99	71.3	1.18	208	/1.208	1. 2/0	33.071 77	11	19.095	73	6.2598	05	1.6674	68	0.9424	16	0.6482	33	0.4469	61	12.618	68	4.5924	3	97.709		3.01
24	435.89	677.25	2509	906	87	992.40	2810	301	208	51 51		3041.9 45	74	2412.4	86	1190.7		329		206.5		145		108.5	25	1047.3	64	861.78	6	7456.9		464
71	378.85	519.75	2019	598	23	660.44	2160	141	208	0.9601	1 100 7	1446	1100	1185	000	533		152		89.06		75.48		59.793	83	418.24		185		9.5161		257.5
80	411.60	566.25	2162	611	13	691.09	2300	138	208	2828.1 81	2020 1	1702.6 44	99	1429.8	78	901.22		164	13	107.45		83.15		56.075	02	586.83	78	737.22	98	3672.8		483.5
41	4.9915	2.435	40.3	0.96	92	2.5600	40.5	0.2	109	8.002		1.307	0.01	0.67		0.46	22	0.2300	6	0.1478	05	0.1044	71	0.0639	43	5.4242	79	0.2299	49	73.053	51	0.3174
48	333.01	346.25	2556	407	27	479.43	2680	124	208	1190	1100	792.75		691.5	93 	536.94		237.25	02	177.95		148.25		122.5	33	215.21	93	299.69		1301	86	370.87
90	2.8084	3.4625	20.19	10.65	24	10.465	25	4.81	208	87 87		43.784 76	68	39.521	98	26.981	43	14.934		9.925	43	8.5133		6.4225	66	11.235	43	12.047	81	87.166		19.2
65	2.9684	3.555	20.7	10.9	74	10.817	25.6	4.9	208	34.079 12		43.265 85	55	39.250	79	26.897		15.325		10.5	14	8.6210		6.57	79	10.639	79	11.572	05	57.052	97	19.421
77	0.6152	0.2975	4.347	0.63	72	0.8085	4.43	0.083	208	8.2410 33	0 2 1 1	5.98		5.29	54	3.7749	02	1.5973		1.025	61	0.7126	46	0.2907	58	1.6822	52	2.1776	61	11.279	45	2.7991
48	3.2436	3.6275	23.2	5.885	5	6.8487	23.6	0.4	208	23.1	2 L 1	18.318 23	10.10	16.15		13.4	73	6.6844	4	4.2706	22	3.9403		2.895	39	4.6385	27	6.7155		29.93	78	10.297

Somondoco District : Maximum	Somondoco District : Minimum	Somondoco District : Count Numeric	Peñas Blancas District : 99 percentile	Peñas Blancas District : 95 percentile	Peñas Blancas District : 90 percentile	Peñas Blancas District : 75 percentile	Peñas Blancas District : 25 percentile	Peñas Blancas District : 10 percentile	Peñas Blancas District : 5 percentile	Peñas Blancas District : 1 percentile	Deviation	Peñas Blancas District : Standard	Penas Blancas District : Interquartile Range	Penas Blancas District : Kange		Dañas Blancas District · Madian		Peñas Blancas District : Mean	Peñas Blancas District : Maximum	Peñas Blancas District : Minimum	Peñas Blancas District : Count Numeric	Pauna District : 99 percentile	Pauna District : 95 percentile	Pauna District : 90 percentile	Pauna District : 75 percentile	Pauna District : 25 percentile	Pauna District : 10 percentile	Pauna District : 5 percentile	Pauna District : 1 percentile
43.7	1.72	45	57.136	12.235	8.329	5.36	3.3025	2.932	2.6355	2.4205	7	6.9887	2.0575	20177	2.702	3 082	29	5.6994	61.4	2.4	140	69.592	35.355	21.81	5.3975	2.68	2.358	2.139	1.5918
795	117	45	4810	3736.5	3569	3367.5	1785	1371	1201	850.63	37	908.67	1382.5	3911	2710	01710	71	2607.8	4810	833	140	1997.3	1831	1604	1300	622.75	553.7	471.7	410.44
830	691	45	5245.4	4662.5	3758	2877.5	1660	1053	872.25	573.09	23	1007.7	1217.5	4/38	0117	2175	36	2346.5	5270	512	140	1957.3	1453	1071	870.75	155	224.9	187.35	144.36
881	171	45	5791.8	5219.5	4070	3177.5	1765	1122	889.45	578.84	81	1149.3	1412.5	7170	2000	0360 22	93	2569.4	0085	528	140	2096.4	1568.5	1163	918.5	352.25	233.7	189.35	145
16.6	0.23	10	198.87 2	14.8	9.511	3.8125	0.5025	0.36	0.3155	0.2622	02	21.461	3.31	210./4	1.000	1 035	36	5.3906	217	0.26	110	39.19	8.13	5.52	2.945	0.51	0.33	0.21	0.2
510	156	45	938.8	727.9	579.7	462.25	179.5	111.1	87.475	55.914	87	197.47	282.75	893.3	100	207	64	358.06	947	53.7	140	2188.7	1125.5	761.5	596.5	250.25	204.7	188.45	144.25
29.3	8.2	45	29.118	27.29	25.79	23.9	14.55	11.12	9.7615	7.9246	36	5.5628	9.35	21.3	21.2	01 0 51 0	36	19.471	29.2	7.9	140	22.368	15.12	13.7	11.875	8.4125	7.27	6.599	4.9749
31.6	8.18	45	30.895	28.295	26.59	24.675	14.625	11.63	10.2	7.8063	92	5.7791	10.05	23.47	21.12	51 75	2	20.124	31.1	7.63	140	23.687	16.1	14	12.3	8.745	7.379	6.448	5.1212
6.21	0.4	45	7.068	4.73	4.3	3.15	0.7	0.24	0.13	0.0518	61	1.6140	2.45	/.189	1 1 1	ر د د	17	2.2314	7.24	0.051	139	3.7121	2.1465	1.586	0.8075	0.51	0.38	0.349	0.1709
26.5	8.16	45	16.013	13.635	11.3	9.5475	3.6625	2.371	1.883	1.5305	83	3.6168	5.88.C	14./9	0.110	<u>و 11</u>	98	7.2607	16.3	1.51	140	20.076	13.62	10.8	8.2325	4.605	3.989	3.3635	2.5334

Ubalá District : 95 percentile	12.08	4632	7843.5	8381	14.095	1017	34.69	36.22	3.731	26.64
Ubalá District : 99 percentile	60.752	5036.7	8430.5	9066.8	595.79	5411.1	46.019	47.516	5.1382	30.102

Г