
On Algorithmic Advances for Maximum-Entropy Sampling

by

Zhongzhu Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in the University of Michigan
2024

Doctoral Committee:

Professor Marcia Fampa, Co-Chair
Professor Jon Lee, Co-Chair
Professor Nikhil Bansal
Professor Albert S. Berahas

Zhongzhu Chen

zhongzhc@umich.edu

ORCID iD: 0000-0003-4998-4293

© Zhongzhu Chen 2024

ACKNOWLEDGEMENTS

During my Ph.D. journey, I have been incredibly fortunate to receive support and help

from wonderful advisors, collaborators, colleagues, family, and friends. Initially, I want to

express my profound gratitude to Prof. Jon Lee, my advisor, and Prof. Marcia Fampa, my

co-advisor. They granted me the opportunity to embark on my journey in optimization,

provided continuous guidance in my academic research, and offered invaluable assistance in

life decisions and job seeking. I wouldn’t have grown as a researcher without their inspiring

advice and steadfast support. The passion for research and the charisma of Prof. Lee and

Prof. Marcia Fampa have motivated me to persist in my research in optimization, and their

influence will profoundly shape my future.

In addition to my advisor, I would like to extend my gratitude to my committee members,

Prof. Nikhil Bansal and Prof. Albert Berahas, for their invaluable participation and sugges-

tions throughout my Ph.D. journey. My sincere thanks also go to all the professors at the

University of Michigan – Prof. Xiuli Chao, Prof. Marina Epelman, Prof. Viswanath Nagara-

jan, Prof. Siqian Shen, and others – from whom I have had the privilege of learning. Their

insights have significantly broadened my knowledge and strengthened my understanding of

research. I am equally grateful to all the staff at the University of Michigan for their im-

mense support and for making my research life much more convenient. Additionally, I would

like to offer a special thank you to Prof. Xiuli Chao for introducing me to the University of

Michigan in the summer of 2018, a pivotal moment in my academic journey.

During my time at the University of Michigan, I have had the privilege of working with

many wonderful researchers: Prof. Anima Anandkumar, Prof. Amélie Lambert, Prof. Bo

Li, Prof. Chaowei Xiao, Prof. Dawn Song, Prof. Huan Zhang, Prof. Mingyan Liu, Prof.

Xueru Zhang, Prof. Yang Liu, Dr. Kun Jin, Dr. Weili Nie, Jiongxiao Wang, Jiawei Zhang,

Tongxin Yin. I am deeply grateful for your insights, from which I have learned immensely.

Finally, I must express my profound gratitude to my parents and family for their uncondi-

tional love and support. Thank you for always having my back, believing in me unwaveringly

regardless of the decisions I made or the paths I chose.

In addition, the work was supported in part by ONR grant N00014-17-1-2296, AFOSR

grants FA9550-19-1-0175 and FA9550-22-1-0172, and a University of Michigan Rackham

Predoctoral Fellowship.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

LIST OF TABLES . vii

ABSTRACT . viii

CHAPTER

1 Introduction . 1

1.1 Literature review for MESP and CMESP 1
1.2 The linx, BQP, and NLP upper bounds for CMESP 5
1.3 Key improving techniques for the upper bounds 6

1.3.1 Scaling . 7
1.3.2 Complementation . 8
1.3.3 Masking . 9

1.4 Notations . 10
1.5 Dissertation organization . 12

2 Mixing Convex-Optimization Bounds . 14

2.1 Introduction . 14
2.2 General mixing . 15
2.3 Mixing the BQP bound with the complementary BQP bound 20

2.3.1 Mixing BQP and its complement 21
2.3.2 Valid equations in the extended spaces 24
2.3.3 Choosing good parameters (α, γ1, γ2) 26

2.4 Mixing the NLP bound with the complementary NLP bound 35
2.5 On the linx bound and mixing with it . 36

2.5.1 Optimizing the linx bound on the scaling parameter γ 37
2.5.2 Improvements on the linx bound 41

2.6 Mixing an NLP bound and a BQP bound 42
2.7 Mixing across a family of instances . 43
2.8 Concluding remarks . 44

3 On Computing with some Convex Relaxations for the Maximum-Entropy
Sampling Problem . 47

iii

3.1 Introduction . 47
3.2 Upper bounds . 49

3.2.1 Fact . 49
3.2.2 DFact . 50
3.2.3 DDFact . 54
3.2.4 linx . 56
3.2.5 Mixing . 57

3.3 Implementation and experiments . 59
3.3.1 Setup for the computational experiments 59
3.3.2 Test instances . 60
3.3.3 Numerical experiments for n = 63, 90, 124 60
3.3.4 Analysis of the results for n = 63, 90, 124 62
3.3.5 Numerical experiments with the large instance (n = 2000) 63
3.3.6 More specifics about the computational time 64
3.3.7 Some experiments with CMESP . 65

3.4 Concluding remarks . 66

4 Generalized Scaling for the Constrained Maximum-Entropy Sampling
Problem . 75

4.1 Introduction . 75
4.2 g-scaled BQP bound . 76
4.3 g-scaled linx bound . 82
4.4 g-scaled factorization bound . 87
4.5 Computing optimal g-scaling parameters 102
4.6 Experiments . 104
4.7 Concluding remarks . 111

5 Masking Anstreicher’s linx Bound for Improved Entropy Bounds 112

5.1 Introduction . 112
5.2 Linear gap for the linx bound . 113
5.3 Optimal scaling parameter: some special cases and general behavior 123
5.4 Linear gap under optimal scaling . 133
5.5 Concluding remarks . 135

6 On Algorithms for Mask Optimization for Anstreicher’s linx Bound . . . 136

6.1 Introduction . 136
6.2 Mask properties for the linx bound . 137
6.3 Algorithms for mask optimization for the linx bound 139
6.4 Experiments . 145
6.5 Concluding remarks . 147

BIBLIOGRAPHY . 150

iv

LIST OF FIGURES

FIGURE

2.1 Gap vs. α (optimized γi) . 24
2.2 Gap vs. s (optimized α and γi) . 26
2.3 Gap vs. s (optimized α and γi) . 27
2.4 Variation of f1, f2, and the (strengthened) mBQP, with ψ1, ψ2 (n = 63, s = 10) . 34
2.5 Mixing the NLP bound with complementary NLP bound 37
2.6 Mixing the complementary NLP bound with the linx bound 41
2.7 Mixing the complementary BQP bound with the linx bound 42
2.8 Mixing the NLP bound with the complementary BQP bound 44

3.1 Bounds/times comparison and effect of the mixing and variable-fixing method-
ologies for n = 63 . 69

3.2 Bounds/times comparison and effect of the mixing and variable-fixing method-
ologies for n = 90 . 70

3.3 Bounds/times comparison and effect of the mixing and variable-fixing method-
ologies for n = 124 . 71

3.4 Bounds/times comparison and effect of the variable-fixing methodology for n =
2000 . 72

3.5 Newton/BFGS time for linx . 73
3.6 Bounds/times comparison and effect of the mixing and variable-fixing method-

ologies for n = 63 with 5 side constraints (CMESP) 74

4.1 Comparison between g-scaling and o-scaling for MESP 107
4.2 Comparison between g-scaling and o-scaling for CMESP 108

6.1 Integrality gaps for un-masked linx bound (Gap-J) and masked linx bound with
extended onion, vine, random Cholesky, Matlab gallery, and Matlab gallery with
specified eigenvalues initialization respectively. 146

6.2 Integrality gaps for un-masked linx bound (Gap-J), masked linx bound with ex-
tended onion initialization, and complemented masked linx bound with extended
onion initialization. 147

6.3 Integrality gaps for un-masked linx bound (Gap-J), masked linx bound with ex-
tended onion initialization, and complemented masked linx bound with extended
onion initialization. 148

v

6.4 Integrality gaps for un-masked linx bound (Gap-J), masked linx bound with ex-
tended onion initialization, and complemented masked linx bound with extended
onion initialization. For readability, we truncate the y-axis range to [0, 5] because
we only care about relatively small and large s. 149

vi

LIST OF TABLES

TABLE

1.1 Summary of notations used in this dissertation. 11
1.2 Summary of notations used in this dissertation. 12

2.1 Mixing the NLP with the complementary NLP bound (n = 51) 45

3.1 Iterated fixing for n = 2000 . 68
3.2 Wallclock time (sec) . 68

4.1 Impact of g-scaling on variable fixing . 109
4.2 Average converging time of each algorithm for solving gscaling-DDFact. 110
4.3 % of s on which the algorithm converges within no more than 105% converging

time of the best algorithm (i.e., optimal under 5% tolerance). 111
4.4 Average % of iterates with x having any zero components, which is equivalent to

the singularity of FDDFact(x; Υ). 111

vii

ABSTRACT

The maximum-entropy sampling problem (MESP) is a fundamental and challenging

combinatorial-optimization problem, at the intersection of information theory, machine learn-

ing, and optimization. The goal is to find a maximum-entropy subset of s random variables,

from a universe of n correlated Gaussian random variables, which is a means of choosing

the s-subset with maximum information. MESP finds application in experimental design

(Shewry and Wynn, 1987), spatial statistics (Zidek, Sun, and Le, 2000), financial portfolio

selection (Bera and Park, 2008), feature selection (Song and Liò, 2010), active learning (Qiu,

Miller, and Kesidis, 2016), and many references in (Fampa and Lee, 2022, Chapter 4).

MESP is an NP-hard problem. Research in this area often focuses on exact algorithms

within a branch-and-bound (B&B) framework, as introduced by (Ko, Lee, and Queyranne,

1995). This framework involves the implicit enumeration of potential solutions while main-

taining upper and lower bounds on the optimal value of MESP to efficiently discard non-

optimal solutions. Consequently, the solution speed of the B&B method heavily relies on

the tightness of these bounds. In this dissertation, we propose enhanced upper- and lower-

bounding techniques to expedite the branch-and-bound framework when applied to MESP,

facilitating the handling of large-size instances. Our approach includes a “mixing” method-

ology for combining multiple convex-relaxation upper bounds of MESP to derive superior

bounds. We also present a generalization of upper bounds from (Nikolov, 2015; Li and Xie,

2023), which turns out to be the best for many instances. Moreover, we introduce a “general

scaling” technique for reducing the integrality gap further, compared to one of the most pow-

erful techniques, “scaling” (Anstreicher, Fampa, Lee, and Williams, 1996). We also address

the theoretical void in the “masking” technique, a promising method without much explo-

ration. Additionally, we introduce an efficient, limited-memory quasi-Newton algorithm for

finding nearly optimal masks.

viii

CHAPTER 1

Introduction

1.1 Literature review for MESP and CMESP

The maximum-entropy sampling problem, a fundamental problem in optimal statistical de-

sign, was formally introduced in the “design of experiments” literature by (Shewry and

Wynn, 1987) and then applied in many areas such as the re-design of environmental-

monitoring networks (Zidek, Sun, and Le, 2000). It aims to find a subset of cardinality

s with maximum information from a ground set of n continuous random variables. The

concept of information can be measured by the so-called differential entropy, as introduced

in (Shannon, 1948). In the Gaussian case, the problem can be cast as

z(C, s) := max
{
ldetC[S(x), S(x)] : eTx = s, x ∈ {0, 1}n

}
. (MESP)

where ldet denotes the natural logarithm of the determinant, C is an n×n covariance matrix

(of Gaussian random variables), s < n is a positive integer with 0 < s ≤ rank(C) so that

MESP always has a feasible solution with finite objective value, and S(x) is a subset of

{1, 2, . . . , n} with support vector x. C[S(x), S(x)] denotes the submatrix of C having rows

and columns indexed by S(x). We further assume that C[j, j] > 0 for all j ∈ N , because if

we had any C[j, j] = 0, then such a j could not be in any feasible solution of MESP having

objective value greater than −∞. In the constrained version CMESP, we also have m ≥ 0

side constraints: Ax ≤ b where A ∈ Rm×n

z(C, s, A, b) := max
{
ldetC[S(x), S(x)] : eTx = s, x ∈ {0, 1}n, Ax ≤ b

}
. (CMESP)

In this work, we will use CMESP when introducing the upper bounds and the techniques

for completeness. While elsewhere, we will choose to work with MESP when the linear

constraints do not matter, so as to for simplify notation.

In the environmental-monitoring application of MESP, we collect time-series observations

1

from n environmental monitoring stations, and we prepare a sample covariance matrix C,

see (Al-Thani and Lee, 2020a,b), for details on how this can be done effectively. In many

situations, keeping all n of the monitoring stations running is too costly, and so we wish to

select a subset of size s, and continue monitoring only at them. Maximizing the “differential

entropy” of the s sites is a means of choosing the s-subset with maximum information. Take,

for instance, the National Acidic Deposition Program’s (NADP) National Trends Network

(NTN) (NADP, 2018), which monitors precipitation chemistry across the United States. Out

of 379 NTN monitoring sites, 255 are currently active, chosen based on spatial distribution

criteria to ensure even coverage. However, by integrating this selection process into the

MESP framework, it can be discovered that the current spatial distribution approach is not

the most effective. The optimal solution to MESP suggests a better allocation of active

sites, such as removing a less impactful site in western Tennessee in favor of multiple sites

in northern Colorado. This optimized selection does not increase costs but significantly

enhances the breadth and immediacy of pollution data collection.

In finance, we want to maximize the degree of portfolio diversification, measured by en-

tropy (Hoskisson, Hitt, Johnson, and Moesel, 1993; Bera and Park, 2008; Jana, Roy, and

Mazumder, 2007), in a combinatorial Markowitz-style setting, where we want to choose s

go/no-go investments from n, subject to a lower limit on yield mean and an upper limit on

yield variance. The whole problem can be formulated into MESP. In recommendation sys-

tems or search engines, it is crucial to ensure the first few pages feature diverse, information-

rich items. This can be achieved by maximizing entropy, which enhances information content

while minimizing the recommendation of similar items (Jin, Mobasher, and Zhou, 2005; Qin

and Zhu, 2013).

In the context of machine learning and data science, the application of MESP is also

extensive. In feature selection processes, machine learning models are typically confronted

with a large set of features that are not mutually independent. An increase in the count

of features selected for model fitting can enhance the model’s accuracy on training data.

However, more features may increase the risk of feature collinearity, which escalates the un-

certainty in parameter estimation, thus precipitating overfitting and diminishing accuracy

on test datasets. A strategy to mitigate these challenges is to formulate feature selection

into MESP. This approach can maximize information retention in the chosen features while

concurrently minimizing feature collinearity, thus increasing prediction accuracy while cur-

tailing uncertainty and overfitting risks (Basu, Micchelli, and Olsen, 2000; Song and Liò,

2010). Another key application of MESP is its use in active learning, a critical area in the

era of big data. For the training of a reliable machine learning model, a large volume of high-

quality labeled data is essential. While data is plentiful, high-quality labels are limited to a

2

smaller subset of this data, and their generation requires costly human effort. It is recognized

that not all data equally contribute to the training of a machine learning model. Leveraging

a small set of labeled data and the predictions from multiple models trained on this data,

we can effectively select the most informative and diverse unlabeled data for human labeling

through the formulation of an MESP (Qiu, Miller, and Kesidis, 2016). This method aims

to enhance model accuracy with the least additional effort. Additionally, MESP also plays

an important role in compressive sensing (Hoch, Maciejewski, Mobli, Schuyler, and Stern,

2014), image sampling (Zilly, Buhmann, and Mahapatra, 2017), and the many references in

(Fampa and Lee, 2022, Chapter 4).

Furthermore, MESP serves as a nice example of a “non-factorable” mixed-integer non-

linear program. When C is a diagonal matrix, CMESP reduces to a general cardinality-

constrained binary linear program. (Al-Thani and Lee, 2021, 2023) established that when

C is tridiagonal (or even when the support graph of C is a spider with a bounded number

of legs), MESP is then polynomially solvable by dynamic programming.

Despite the widespread application of MESP in various fields, solving it is generally NP-

hard (proved by reduction from the stable set decision problem in (Ko, Lee, and Queyranne,

1995)). MESP was first approached for global optimization by (Ko, Lee, and Queyranne,

1995) and CMESP was first algorithmically approached by (Lee, 1998) and then by (Anstre-

icher, Fampa, Lee, and Williams, 1996, 1999). The “branch-and-bound” method (B&B) is

a key technique for tackling the MESP, as it implicitly enumerates potential solutions while

maintaining upper and lower bounds of the optimal value to efficiently discard non-optimal

solutions (Fampa and Lee, 2022, chapter 2).

Specifically, the B&B algorithm maintains a list of subproblems of CMESP having the

form

z(C, s, A, b;F0, F1) := max

{
ldetC[S(x), S(x)] : eTx = s,

x ∈ {0, 1}n, xi = 0, i ∈ F0, xi = 1, i ∈ F1, Ax ≤ b

}
,

(CMESP-sub)

where F0 (F1) is the set of indices fixed into (out of) a potential solution of CMESP. In

the context of the B&B algorithm, two primary structures are identified: branching and

bounding. The branching mechanism involves selecting a branching index j ∈ {0, 1}n\F0\F1,

leading to the creation of two child subproblems: z(C, s, A, b;F0, F1+j) and z(C, s, A, b;F0+

j, F1). This process is iterated until subproblems become trivial for enumeration or can be

dismissed. Concurrently, the bounding structure plays a crucial role. The global upper

bound is defined as the maximum of the upper bounds of all subproblems, while the global

lower bound is the maximum of the objective values of all feasible solutions so far (i.e., the

3

so-called incumbent). Employing bounding techniques, a subproblem is discarded if it is

infeasible or if its optimal value’s upper bound is lower than the global lower bound. The

termination of the B&B algorithm occurs either when the list of subproblems is exhausted

or when the gap between the global upper and lower bounds is sufficiently small. In such

cases, the feasible solution corresponding to the global lower bound is considered optimal

or approximately optimal. Therefore, with effective bounds, we can significantly reduce the

total running time of B&B from years to minutes for many practical instances.

For the lower bound, it can be observed that MESP is intrinsically a non-monotone

submodular maximization problem with cardinality constraints. The work by (Lee, Mirrokni,

Nagarajan, and Sviridenko, 2009/10) presents an approximation algorithm with a 1
6
-ratio,

utilizing a local-search approach under the assumption of a consistently positive objective

function. Subsequently, (Li and Xie, 2023) enhanced this methodology by introducing a

min{s log s, s log(n − s − n/s + 2)}-gap approximation algorithm, by similarly employing a

local-search framework.

For the upper bound, (Ko, Lee, and Queyranne, 1995) introduced the “spectral bound”.

(Lee, 1998) extended the spectral approach to CMESP. (Anstreicher, Fampa, Lee, and

Williams, 1996) and (Anstreicher, Fampa, Lee, and Williams, 1999) developed a bound,

the so-called “NLP bound”, employing a novel convex relaxation. (Anstreicher, 2018) de-

veloped the “BQP bound”, using an extended formulation based on the Boolean quadric

polytope. (Anstreicher, 2020) introduced the “linx bound”, based on a clever convex re-

laxation. (Nikolov, 2015) gave a novel “factorization bound” based on a subtle convex

relaxation. This was further developed by (Li and Xie, 2023). There are also a lot of

improvement techniques for upper bounds proposed in the literature, such as “scaling” and

“complementation” ((Anstreicher, Fampa, Lee, and Williams, 1996, 1999)) as well as “mask-

ing” ((Anstreicher and Lee, 2004)). All of these convex-optimization based bounds admit

variable fixing methodology based on convex duality (see (Fampa and Lee, 2022), for exam-

ple). In computational practice, the best bounds appear to be the linx bound and the NLP

bound. The BQP bound is generally too time-consuming to compute. However, the BQP

bound can be better than the others in some cases.

My research mainly focuses on enhancing the upper bounds for MESP, making many

instances solvable in a reasonable time for practical applications.

4

1.2 The linx, BQP, and NLP upper bounds for

CMESP

We present in detail several key upper bounds from the literature here, which are fundamental

to our analysis throughout this dissertation.

Linx Bound: The linx bound was first analyzed and developed in (Anstreicher, 2020) (see

(Fampa and Lee, 2022, Section 3.3) for more details).

For x ∈ [0, 1]n, we define

flinx(C;x) :=
1
2

(
ldet (C Diag(x)C +Diag(e− x))

)
with domain

dom (flinx) :=
{
x ∈ Rn : C Diag(x)C +Diag(e− x) ≻ 0

}
.

We then define the linx bound

zlinx(C, s, A, b) := max
{
flinx(C, x) : x ∈ Plinx(n, s, A, b)

}
, (linx)

where Plinx(n, s, A, b) := {eTx = s, 0 ≤ x ≤ e, Ax ≤ b}. We say that x is feasible to linx if

x satisfies all the constraints in linx.

BQP Bound: The Boolean-Quadratic-Polytope (BQP) bound was first analyzed and de-

veloped in (Anstreicher, 2018) (see (Fampa and Lee, 2022, Section 3.6) for more details).

We lift to matrix space, by defining the convex set

PBQP(n, s, A, b) :=
{
(x,X) ∈ Rn×Sn : X−xxT ⪰ 0, diag(X) = x, eTx = s, Xe = sx, Ax ≤ b

}
.

We define

fBQP(C;x,X) := ldet
(
C ◦X +Diag(e− x)

)
,

with domain

dom (fBQP) :=
{
(x,X) ∈ Rn × Sn : C ◦X +Diag(e− x) ≻ 0

}
.

The BQP bound is defined as

zBQP(C, s, A, b) := max {fBQP(C;x,X) : (x,X) ∈ PBQP(n, s, A, b)} . (BQP)

5

We say that x is feasible to BQP if x satisfies all the constraints in BQP.

NLP Bound: The first upper bound based on a convex-relaxation is the “NLP bound”

proposed in (Anstreicher, Fampa, Lee, and Williams, 1996, 1999). Let

PNLP(n, s, A, b) :=
{
x ∈ Rn : 0 ≤ x ≤ e, eTx = s, Ax ≤ b

}
.

We now define

fNLP(C, d, p;x) := ldet
(
Diag(xp/2)C Diag(xp/2) + Diag(dx − dxp)

)
,

where xp/2 := (x
p1/2
1 , . . . , x

pn/2
n), dx−dxp := (dx11 −d1xp11 , . . . , dxnn −dnxpnn), and the parameters

di > 0 and pi ≥ 1 with domain

dom (fNLP) :=
{
x ∈ Rn : Diag(xp/2)C Diag(xp/2) + Diag(dx − dxp) ≻ 0

}
.

The NLP bound is then defined as

zNLP(C, d, p, s, A, b) := max {fNLP(C, d, p;x) : (x,X) ∈ PNLP(n, s, A, b)} . (NLP)

Notice that when x ∈ {0, 1}n, this reduces to ldet(Diag(x)C Diag(x) + Diag(e − x)); that

is, the parameters disappear, giving us again an exact relaxation. But it turns out that the

parameters can be chosen to gain concavity on the feasible region (see (Anstreicher, Fampa,

Lee, and Williams, 1999) for the very technical details).

Throughout this dissertation, for notations associated with the above upper bounds, such

as flinx, zlinx, Plinx, symbols such as C, s, p, d will be omitted for brevity when they are apparent

from the context. We may also omit linx, BQP, and NLP for brevity or saving space for other

subscripts when it should not confuse the readers. Moreover, we will also omit A and b when

the linear constraints do not matter.

1.3 Key improving techniques for the upper bounds

Besides the upper bounds themselves, we are also interested in various techniques for im-

proving these upper bounds. In the following, we review several such techniques proposed

in the literature.

6

1.3.1 Scaling

The first important general technique for potentially improving some of the entropy upper

bounds is “scaling”, based on the simple observation that for a positive constant γ, and S

with |S| = s, we have that det(γC)[S, S] = γs detC[S, S]. With this identity, we can easily

see that

z(C, s, A, b) = z(γC, s, A, b)− s log γ. (scaling)

So upper bounds for z(γC, s, A, b) yield upper bounds for z(C, s, A, b), shifted by −s log γ.
It is important to note that many bounding methods are not invariant under scaling; that

is, the bound does not generally shift by −s log γ (notable exceptions being the spectral and

factorization bounds for MESP). Scaling was first introduced in (Anstreicher, Fampa, Lee,

and Williams, 1996, 1999), and then exploited in (Anstreicher, 2018, 2020; Al-Thani and

Lee, 2020a; Chen, Fampa, Lambert, and Lee, 2021; Chen, Fampa, and Lee, 2022, 2023).

Scaling can be seen as a technique aimed at adjusting the shape of concave continuous

relaxations of the objective of MESP in order to decrease the gap between the upper bounds

and z(C, s, A, b); see (Chen, Fampa, and Lee, 2022) for an exploration of this in the context

of the linx bound. In this dissertation, we employ the scaled version of several upper bounds,

which are delineated herein.

Scaled linx Bound: We define

flinx(C, s; γ;x) :=
1
2

(
ldet (γC Diag(x)C +Diag(e− x))− s log γ

)
,

with

dom (flinx; γ) :=
{
x ∈ Rn : γC Diag(x)C +Diag(e− x) ≻ 0

}
.

We then define the scaled linx bound

zlinx(C, s, A, b; γ) := max
{
flinx(C, s; γ;x) : x ∈ Plinx(n, s, A, b)

}
. (scaled linx)

Scaled BQP Bound: We define

fBQP(C, s; γ;x,X) := ldet
(
γC ◦X +Diag(e− x)

)
− s log γ,

with domain

dom (fBQP; γ) :=
{
(x,X) ∈ Rn × Sn : γC ◦X +Diag(e− x) ≻ 0

}
.

7

The scaled BQP bound is defined as

zBQP(C, s, A, b; γ) := max {fBQP(C, s; γ;x,X) : (x,X) ∈ PBQP(n, s, A, b)} .
(scaled BQP)

Scaled NLP Bound: We define

fNLP(C, s, d, p; γ;x) := ldet
(
γDiag(xp/2)C Diag(xp/2) + Diag(dx − dxp)

)
− s log γ,

where xp/2 := (x
p1/2
1 , . . . , x

pn/2
n), dx−dxp := (dx11 −d1xp11 , . . . , dxnn −dnxpnn), and the parameters

di > 0 and pi ≥ 1 with domain

dom (fNLP; γ) :=
{
x ∈ Rn : γDiag(xp/2)C Diag(xp/2) + Diag(dx − dxp) ≻ 0

}
.

The scaled NLP bound is then defined as

zNLP(C, s, d, p, A, b; γ) := max {fNLP(C, s, d, p; γ;x) : (x,X) ∈ PNLP(n, s, A, b)} .
(scaled NLP)

1.3.2 Complementation

The second key technique for obtaining bounds is “complementation”, first utilized by

(Anstreicher, Fampa, Lee, and Williams, 1996, 1999). If C is invertible, we have

z(C, s) = z(C−1, n− s) + ldetC. (MESP-comp)

where z(C−1, n − s) denotes the optimal value of MESP with C, s replaced by C−1, n − s.

Similarly, we also have

z(C, s, A, b) = z(C−1, n− s,−A, b− Ae) + ldetC. (CMESP-comp)

where z(C−1, n−s,−A, b−Ae) denotes the optimal value of CMESP with C, s, A, b replaced

by C−1, n−s,−A, b−Ae, respectively. So we have a complementary MESP (CMESP) prob-

lem and complementary bounds (i.e., bounds for the complementary problem plus ldetC)

immediately give us bounds on z. Some upper bounds on z also shift by ldetC under comple-

menting (notably, (Ko, Lee, and Queyranne, 1995; Anstreicher, 2020)), in which case there

is no additional value in computing the complementary bound. But other upper bounds

((Anstreicher, Fampa, Lee, and Williams, 1999; Hoffman, Lee, and Williams, 2001; Lee and

Williams, 2003; Anstreicher and Lee, 2004; Anstreicher, 2018; Chen, Fampa, and Lee, 2023))

8

are generally not invariant under complementation. Details on all of this can be found in

(Fampa and Lee, 2022).

1.3.3 Masking

The third important technique for potentially improving some of the entropy upper bounds

is “masking”. Given a positive integer n, a mask (also known as a “correlation matrix”)

is an n × n symmetric positive-semidefinite matrix with diag(M) = e. We denote the set

of order-n masks as Mn. Masking for MESP, introduced in full generality in (Anstreicher

and Lee, 2004), is based on the observation that for any S ⊆ N and mask M , we have

detC[S, S] ≤ det(C ◦M)[S, S]. That is, masking cannot decrease entropy. Therefore, for

any mask M ∈ Mn, we have

z(C, s, A, b) ≤ z(C ◦M, s,A, b). (masking)

This implies that upper bounds for z(C ◦M, s) are also upper bounds for z(C, s). In this

dissertation, we employ the masked version of several upper bounds, which are delineated

herein.

Masked Linx Bound: We define

flinx(C, s;M ;x) :=1
2

(
ldet ((C ◦M)Diag(x)(C ◦M) + Diag(e− x))

)
,

with

dom (flinx;M) :=
{
x ∈ Rn : (C ◦M)Diag(x)(C ◦M) + Diag(e− x) ≻ 0

}
.

We then define the masked linx bound

zlinx(C, s, A, b;M) := max
{
flinx(C, s;M ;x) : x ∈ Plinx(n, s, A, b)

}
. (masked linx)

Maksed BQP Bound: We define

fBQP(C, s;M ;x,X) := ldet
(
(C ◦M) ◦X +Diag(e− x)

)
,

with domain

dom (fBQP;M) :=
{
(x,X) ∈ Rn × Sn : (C ◦M) ◦X +Diag(e− x) ≻ 0

}
.

9

The masked BQP bound is defined as

zBQP(C, s, A, b;M) := max {fBQP(C, s;M ;x,X) : (x,X) ∈ PBQP(n, s, A, b)} .
(masked BQP)

Masked NLP Bound: We define

fNLP(C, s, p, d;M ;x) := ldet
(
Diag(xp/2)(C ◦M)Diag(xp/2) + Diag(dx − dxp)

)
,

where xp/2 := (x
p1/2
1 , . . . , x

pn/2
n), dx−dxp := (dx11 −d1xp11 , . . . , dxnn −dnxpnn), and the parameters

di > 0 and pi ≥ 1 with domain

dom (fNLP;M) :=
{
x ∈ Rn : Diag(xp/2)(C ◦M)Diag(xp/2) + Diag(dx − dxp) ≻ 0

}
.

The masked NLP bound is then defined as

zNLP(C, s, p, d, A, b;M) := max {fNLP(C, s, p, d;M ;x) : (x,X) ∈ PNLP(n, s, A, b)} .
(masked NLP)

1.4 Notations

We introduce the notations that will be used throughout this work in Tables 1.1 and 1.2. In

the following, we will omit n when it is clear from the context.

10

Notation Description

det determinant

log natural logarithm

ldet natural logarithm determinant

⊆ subset

◦ Hadamard (i.e., element-wise) product

A •B matrix dot-product, i.e., Trace(ATB)

z(C, s, A, b) optimal objective of MESP with parameter C, s, A, b

C covariance matrix of MESP

s size of chosen subset in MESP

A, b parameters of linear constraints Ax ≤ b

n size of ground set in MESP

|S| cardinality of set S

S(x) support of x

C[S(x), S(x)] principal submatrix of C with rows and columns indexed by S(x)

{0, 1}n set of length-n binary vectors

[0, 1]n set of length-n vectors with elements between 0 and 1

e vector of all-ones

ei i-th standard unit vector in Rn

xT transpose of a vector x

xi i-th element of x

xS subvector of x indexed by S
√
x vector whose elements are square of the corresponding elements of x

xp (xp11 , x
p2
2 , . . . , x

pn
n), x, p are two n-vectors

Diag(x) diagonal matrix having diagonal elements from x

diag(X) vector obtained from the diagonal elements of matrix X

Rm×n set of real matrices of size m× n

Rn set of real vectors of size n

Rn
+ (Rn

++) set of vector with nonnegative (positive) elements

Sn+ (Sn++) set of positive-semidefinite (definite) symmetric matrices

A ≻ B A−B is positive-definite

A ⪰ B A−B is positive-semidefinite

Table 1.1: Summary of notations used in this dissertation.

11

Notation Description

γ scaling parameter in the scaling technique

ψ natural logarithm of γ

Υ general scaling parameter in the general scaling technique

M mask in the masking technique, i.e., a correlation matrix

Mn set of masks of order n

Jn / En all-ones matrix of order n

In identity matrix of order n the only nonzero component

En
ij order-n square matrix with being a one in the (i, j) position

λℓ(A) ℓ-th greatest eigenvalue of a matrix A ∈ Sn+
Ai· i-th row of A

A·j j-th column of A

A† Moore-Penrose (generalized) inverse of A

∥ · ∥ 2-norm of a vector or a matrix

dom(f) domain of a function f

∂f(·) subdifferential of f

∂f(·; d) directional derivative of f in the direction d

Table 1.2: Summary of notations used in this dissertation.

1.5 Dissertation organization

In this work, we will not only establish new upper bounds for MESP and CMESP, but we

also expand existing methodologies and introduce new techniques to improve these bounds.

Furthermore, we develop rigorous theories and efficient algorithms to determine optimal

or near-optimal parameters for the implementation of these techniques, which can also be

extended to techniques that may be proposed in the future.

In Chapter 2, we present a methodology for combining different upper bounds of MESP

based on convex relaxation to obtain better upper bounds. In Chapter 3, we propose a mild

generalization of an upper bound of (Nikolov, 2015) and (Li and Xie, 2023), based on a

factorization of an input covariance matrix, which turns out being the state-of-art among

many problem instances. In Chapter 4, we extend the scaling technique to generalized scaling,

employing a positive vector of parameters, which allows much more flexibility to adjust the

shape of continuous relaxations of CMESP, and thus significantly reduces the gap between

the upper bounds and the optimal value of CMESP further compared to scaling. In Chapter

12

5, we establish that for many instances, the linx bound can be improved via masking by an

amount that is at least linear in the problem size n, even when optimal scaling parameters

are employed. We also extend an earlier result that the linx bound is convex in the logarithm

of a scaling parameter, making a full characterization of its limiting behavior and providing

an efficient means of calculating its limiting behavior in all cases. In chapter 6, we further

introduce an advanced limited memory quasi-Newton algorithm to compute an improved

mask over the baseline all-ones mask (original bound) for the linx bound, which turns out

to achieve state-of-art performance over many benchmark instances.

13

CHAPTER 2

Mixing Convex-Optimization Bounds

This chapter has been published as:

Zhongzhu Chen, Marcia Fampa, Amélie Lambert, Jon Lee. Mixing convex-optimization

bounds for maximum-entropy sampling. Mathematical Programming, Series B. 188:539-568

(2021). https://doi.org/10.1007/s10107-020-01588-w

2.1 Introduction

Numerous established upper bounds for the optimal value in MESP are derived from convex

optimization techniques. This chapter introduces a general methodology for amalgamating

these bounds to attain superior ones named “mixing”. We provide a universal formula

for combining any set of convex optimization-based upper bounds and propose a quasi-

Newton method to calculate the optimal combination coefficient. This approach allows the

integration of additional improving techniques like scaling, complementing, and masking,

to enhance the quality of upper bounds in conjunction with the mixing. Additionally, we

present an innovative finding related to the convexity of linx and BQP bounds in the context

of the logarithmic scale of the scaling parameter, facilitating the determination of optimal

scaling parameters. We implemented this mixing methodology on linx, BQP, and NLP

upper bounds using benchmark instances. The empirical data indicates that this mixing

strategy substantially improves the upper bounds in numerous instances, particularly when

individual bounds exhibit close similarities.

In §2.2, we describe a very simple general idea for “mixing” bounds. In §2.3, we apply

the simple idea to MESP by mixing the so-called “BQP bound” (Anstreicher, 2018) with

the same bound applied to the complementary problem. In §2.4, we mix the so-called “NLP

bound” (Anstreicher, Fampa, Lee, and Williams, 1999) with the same bound applied to the

complementary problem. Because the BQP bound and the NLP bound are not invariant

under complementation, we can potentially get improved bounds with these mixings. In

14

https://doi.org/10.1007/s10107-020-01588-w

§2.5, we look at tuning the so-called “linx bound” (Anstreicher, 2020) and mixing with it.

In §2.6, we investigate mixing the NLP bound (or its complement) with the BQP bound

(or its complement) — this is not a simple matter because of incompatibility between ex-

isting solvers. In §2.7, we present the results of an experiment designed to demonstrate the

usefulness of our techniques across a family of instances. In §2.8, we make some concluding

remarks.

2.2 General mixing

The idea described here is so simple that we do not dare claim that it is original. We are

however confident that it is new in the context of the MESP.

We start with a combinatorial maximization problem

z := max{f(S) : S ∈ F},

where F is an arbitrary subset of the power set of {1, 2, . . . , n}.
We consider upper bounds for z based on convex relaxation in a possibly lifted space of

variables. The compact and convex set Pi uses variables (x,X i) (ignore the i for now; we will

use it later). The vector x ∈ [0, 1]n relaxes x ∈ {0, 1}n and is used to model F . Specifically,

we assume that if we project Pi onto the x coordinates, we get a subset of [0, 1]n, and then

if we intersect with Zn, we get precisely the characteristic vectors of F .

Next, we have a concave function fi, possibly depending on a parameter (vector) ψi,

taking (x,X i) ∈ Pi to R. We assume that for (x,X i) ∈ Pi such that x ∈ {0, 1}n, we have

fi(ψi;x,X i) = f(S(x)). In this sense, fi on Pi is an exact relaxation (possibly in an extended

space) of f on F .

Now, we consider having m ≥ 2 relaxations, indexed by i = 1, . . . ,m. So, for i =

1, 2, . . . ,m, we have the convex programs

vi(ψi) := max
{
fi(ψi;x,X i) : (x,X i) ∈ Pi

}
,

yielding m upper bounds on z. Associated with each of these bounds vi(ψi) is the convex

relaxation max {fi(ψi;x,X i) : (x,X i) ∈ Pi}.
Next, for α ∈ Rm

+ , such that eTα = 1, and ψ := (ψT
1 , . . . , ψ

T
m)

T, we define the mixing

bound

v(α, ψ) := max

{
m∑
i=1

αifi(ψi;x,X i) : (x,X i) ∈ Pi , 1 = 1, 2, . . . ,m

}
. (2.1)

It is a natural goal to optimize the mixing bound over both of the parameters α and ψ.

15

But generally this is not tractable. We will soon see that generally we can optimize on α,

and in some situations we can optimize on ψ.

The following is very simple to establish.

Proposition 2.1. For fixed ψ, the function v(α, ψ) is convex on {α ∈ Rm : α ≥ 0}, and
for all α ∈ Rm such that eTα = 1, we have v(α, ψ) ≥ z.

Owing to this, a natural goal is to seek the best mixing bound by solving the convex

problem

minα
{
v(α, ψ) : eTα = 1, α ∈ Rm

+

}
. (2.2)

The power of the mixing bound is that the same variable x is appearing in each of the Pi .
If it were not for this, then the minimum value in (2.2) would trivially be minmi=1 vi(ψi) .

Of course each Pi can be strengthened to improve the mixing bound. But very impor-

tantly, we note that the mixing bound can be strengthened by introducing valid equations

and inequalities across the entire variable space: x,X1, . . . ,Xm. We exploit both of these

observations in the next section.

Before continuing, we wish to mention that a slightly different formulation for finding an

optimal mixing is as the following convex program.

max v

subject to:

v ≤ fi(ψi;x,X i), i = 1, 2, . . . ,m;

(x,X i) ∈ Pi , 1 = 1, 2, . . . ,m.

The equivalence can easily be seen by Lagrangian duality. We prefer our formulation

because by aggregating the nonlinearities into the objective, in the style of a surrogate

dual, we get a formulation that is more easily handled by solvers and more easily optimized

in terms of selecting good mixing (and other bound) parameters. Related to this, in the

context of branch-and-bound, we can expect that child subproblems will be able to inherit

good parameters from their parents, leading to faster computations.

Next, we discuss strategies for solving (2.2). Let

(x∗,X ∗) := (x∗,X 1∗, . . . ,Xm∗) := (x∗(α, ψ),X 1∗(α, ψ), . . . ,Xm∗(α, ψ))

be an optimal solution of (2.1), for given α and ψ, and let f ∗
i (α, ψ) := fi(ψi;x

∗,X i∗),

16

i = 1, . . . ,m. Then,

v(α, ψ) =
m∑
i=1

αif
∗
i (α, ψ) .

We have the following simple but useful result.

Proposition 2.2. For fixed ψ,

gα(α, ψ) := (f ∗
1 (α, ψ), f

∗
2 (α, ψ), . . . , f

∗
m(α, ψ))

T

is a subgradient of v (with respect to α) at α ∈ Rm
+ such that eTα = 1.

Proof. For α̃ ∈ Rm such that eTα̃ = 1,

v(α, ψ) + (α̃− α)Tgα(α, ψ) =
m∑
i=1

αif
∗
i (α, ψ) +

m∑
i=1

α̃if
∗
i (α, ψ)−

m∑
i=1

αif
∗
i (α, ψ)

=
m∑
i=1

α̃if
∗
i (α, ψ) ≤

m∑
i=1

α̃if
∗
i (α̃, ψ) = v(α̃, ψ).

where the inequality holds because (x∗,X ∗) need not be optimal for α̃.

Via the standard projected subgradient algorithm (optimizing v(α, ψ) over the simplex

{α ∈ Rm
+ : eTα = 1}), this already gives us a convergent algorithm for (2.2). Additionally,

when m = 2, we can rewrite v as a function of α1 alone (α2 = 1 − α1), and then the

subgradient for the now univariate v becomes the scalar f ∗
1 (α1, ψ)−f ∗

2 (α1, ψ). With this, we

can use a simple bisection search for α1 ∈ [0, 1], considering the sign of f ∗
1 (α1, ψ)− f ∗

2 (α1, ψ)

at each iteration, to get an improved algorithm when m = 2.

However, we have found that even for m = 2, we can get better practical convergence

with an interior point algorithm aimed at (2.2). We solve (2.2) with a logarithmic barrier

method, considering

min

{
v(α, ψ)− µ

m∑
i=1

log(αi) : eTα = 1, α > 0, α ∈ Rm

}
, (2.3)

where µ > 0 is the barrier parameter.

We note that v is not everywhere differentiable, but it is at α for which (2.1) has a

unique optimum (Fiacco, 1983, Corollary 3.4.2) or (Fiacco and Ishizuka, 1990a, Theorem

4.1), in which case the subgradient identified is the gradient. In the implementation of the

barrier method, we use the subgradient gα from Proposition 2.2 to replace the gradient of v.

We then approximate the Hessian of v by a positive definite matrix B, which is initialized

17

as the identity matrix and updated at each iteration with a BFGS approach. Working

in the affine set {α ∈ Rm : eTα = 1}, we can apply the classical result that under

sufficient smoothness, BFGS converges with weak Wolfe line searches for unconstrained

convex minimization (Powell, 1976). In this way, we get a convergent algorithm (under

smoothness assumptions)1, for any fixed barrier parameter. If the barrier parameter is

slowly reduced, then in theory we converge to the solution of (2.1) (Fiacco and McCormick,

1968).

For practical purposes, we work a bit differently. In Algorithm 1, we present, in detail, one

inner iteration of our barrier method. At an inner iteration, µ is fixed, and we are carrying

out one iteration of a quasi-Newton method, working toward the solution of the barrier

problem (2.3). The search direction of the barrier method is given by the projection of the

quasi-Newton direction computed over B and gα, onto the null space of eT. To compute the

direction at each iteration, we need to compute f ∗
i (α, ψ), for i = 1, . . . ,m, and therefore we

need the optimal solution (x∗,X ∗) of (2.1), for the current α. Rather than doing a Wolfe

line search, we take a constant fraction τ of the full step if we can, otherwise a constant

fraction of the distance to the boundary. The (inner) iteration presented is repeated for a

fixed value of the barrier parameter µ, for a prescribed number of times or until the norm of

the residual r is small enough. The parameter µ is then reduced and the process repeated,

until µ is also small enough.

Next we consider situations in which fi(ψi;x,X i) is convex in ψi, for each fixed (x,X i),

i = 1, . . . ,m, and we wish to optimize the bound v(α, ψ) over the parameter ψ, for fixed

α ∈ Rm
+ , such that eTα = 1:

minψ{v(α, ψ)} . (2.4)

Proposition 2.3. For fixed α ∈ Rm
+ , such that eTα = 1, let gψi

be a subgradient of

fi(ψi;x
∗,X i∗) with respect to ψi. Then

gψ(α, ψ) :=
(
α1g

T
ψ1
, . . . , αmg

T
ψm

)T
is a subgradient of v (with respect to ψ) at ψ.

Proof. For arbitrary ψ̃,

v(α, ψ) + (ψ̃ − ψ)Tgψ(α, ψ) =
m∑
i=1

αif
∗
i (α, ψ) +

m∑
i=1

(ψ̃i − ψi)
Tαigψi

1We note that even in the nondifferentiable case, quasi-Newton methods have very good convergence
properties (Lewis and Overton, 2013).

18

Algorithm 1: Updating α

Input: k, αk, gα(α
k, ψ) = (f ∗

1 (α
k, ψ), f ∗

2 (α
k, ψ), . . . , f ∗

m(α
k, ψ))T, Bk.

Compute the residual:

ri := f ∗
i (α

k, ψ)− µ

αki
, i = 1, . . . ,m.

Solve for δα:
Bµδα = −r,

where
Bµ := Bk + µDiag(αk)−2.

Let δ̂α be the projection of δα onto the null space of eT.
Update α:

αk+1 := αk + θ̂δ̂α,

where
θ̂ := τ ×min{1, argmaxθ{αk + θδ̂α ≥ 0}}.

Obtain the optimal solution (x∗,X ∗) of (2.1), considering α = αk+1, and let

f ∗
i (α

k+1, ψ) := fi(ψi;x
∗,X i∗), i = 1, . . . ,m.

Compute:

gα(α
k+1, ψ) := (f ∗

1 (α
k+1, ψ), f ∗

2 (α
k+1, ψ), . . . , f ∗

m(α
k+1, ψ))T,

yk := gα(α
k+1, ψ)− gα(α

k, ψ),

sk := αk+1 − αk.

if sTk yk > 0 then

Bk+1 := Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
,

else

Bk+1 := Bk.

k := k + 1.
Output: k, αk, gα(α

k, ψ), Bk.

≤
m∑
i=1

αifi(ψ̃i;x
∗,X i∗) ≤

m∑
i=1

αif
∗
i (α, ψ̃) = v(α, ψ̃),

where the first inequality holds because gψi
is a subgradient of fi(ψi;x

∗,X i∗) (for i =

1, . . . ,m), and the second inequality holds because (x∗,X ∗) need not be optimal for ψ̃.

19

We solve (2.4) by a quasi-Newton method. We note that v is not everywhere differentiable,

but when the fi are continuously differentiable, v is differentiable at ψ for which (2.1) has a

unique solution; in which case the subgradient referred to in Proposition 2.3 is the gradient.

Similarly to what we do in Algorithm 1, we approximate the Hessian by a positive definite

matrix B, which is initialized as the identity matrix and updated at each iteration with a

BFGS approach. In Algorithm 2, we present an iteration of the quasi-Newton method. The

iteration presented is repeated for a prescribed number of times or until the absolute value

of the residuals, components of gψ(α, ψ), are small enough.

Remark. We have been assuming that there are no constraints on the parameters ψi, because

that is the case in our applications to MESP. But if for example each ψi were constrained

to be in a polyhedron, we could adapt Algorithm 2 with barrier terms, in the manner of

Algorithm 1.

Remark. When (2.1) has a unique optimal solution, the gradients gα and gψ asked for

by Algorithms 1 and 2, respectively, are correctly identified. Though, as we have mention,

BFGS has nice convergence properties even in nonsmooth situations (Lewis and Overton,

2013). In any case, it is natural to ask whether the ‘unique-optimum property’ holds for

given mixing bounds — it is easy to construct artificial situations where it does not hold. A

simple and often checkable sufficient condition is that each of the bounds to be mixed has a

strictly concave objective function, which implies the same for the mixed bound, for α ≥ 0,

eTα = 1. We will consider this in the next sections, as we investigate various mixing bounds

for MESP.

2.3 Mixing the BQP bound with the complementary

BQP bound

In this section, we apply the simple mixing idea from §2.2, mixing the (scaled) BQP bound

for MESP (Anstreicher, 2018) with the same bound applied to the complementary problem.

We will see that minimizing this bound over α gives us a bound that is sometimes stronger

than the two bounds that it is based upon — it is always at least as strong. In fact, we will

see that the bound will tend to be stronger when the two bounds being mixed have similar

values.

20

Algorithm 2: Updating ψ

Input: k, ψk, gψ(α, ψ
k) = (α1g

T
ψ1
, . . . , αmg

T
ψm

)T, Bk.
Compute the residual:

ri := gψi
, i = 1, . . . ,m,

r := (rT1 , r
T
2 , . . . , r

T
m)

T.

Solve for δψ:
Bkδψ = −r.

Update ψ:
ψk+1 := ψk + δψ.

Obtain the optimal solution (x∗,X ∗) of (2.1) considering ψ = ψk+1, and let gψi

be a subgradient of fi(γi;x
∗,X i∗) with respect to ψi, i = 1, . . . ,m. Normally:

gψi
:= ∇ψi

fi(ψ
k+1
i ;x∗,X i∗), i = 1, . . . ,m.

Compute:

gψ(α, ψ
k+1) := (α1g

T
ψi
, . . . , αmg

T
ψm

)T,

yk := gψ(α, ψ
k+1)− gψ(α, ψ

k),

sk := ψk+1 − ψk.

if sTk yk > 0 then

Bk+1 := Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
,

else

Bk+1 := Bk.

k := k + 1.
Output: k, ψk, gψ(α, ψ

k), Bk.

2.3.1 Mixing BQP and its complement

Let

P (n, s) :={(x,X) ∈ Rn × Sn(R) :

X − xxT ⪰ 0, diag(X) = x, eTx = s, Xe = sx}

Q(n, n− s) : = {(y, Y) ∈ Rn × Sn(R) :

21

Y − yyT ⪰ 0, diag(Y) = y, eTy = n− s, Y e = (n− s)y}.

The set P (n, s) (respectively, Q(n, n − s)) is the well-known SDP relaxation of the binary

solutions to X − xxT = 0, eTx = s (respectively, Y − yyT = 0, eTy = n− s).

We introduce the mixed BQP (mBQP) bound :

v(C, s;α, γ1, γ2) :=

max (1− α) (ldet (γ1C ◦X +Diag(e− x))− slogγ1)

+ α
(
ldet

(
γ2C

−1 ◦ Y +Diag(e− y)
)
− (n− s)logγ2 + ldetC

)
,

subject to:

(x,X) ∈ P (n, s), (y, Y) ∈ Q(n, n− s), x+ y = e,

where 0 ≤ α ≤ 1 is a “weighting” parameter, and γ1, γ2 > 0 are “scaling parameters”

(Anstreicher, 2018) for the first treatment of scaling for a BQP bound). We will see that

this mBQP bound is a manifestation of the idea from §2.2, mixing the scaled BQP bound

with its complement.

It is almost immediate that the mBQP bound is a mixing in the precise sense of §2.2, but
because of the way that we have formulated it with different variables for the complementary

part, there is a little checking to do.

We define an invertible linear map Φ by

Φ(x,X) = (e− x,X + eeT − exT − xeT).

Notice that if (ŷ, Ŷ) := Φ(x̂, X̂), then Ŷij = X̂ij + 1− x̂j − x̂i.

We have the following useful result.

Lemma 2.4. (x̂, X̂) ∈ P (n, s) if and only if Φ(x̂, X̂) ∈ Q(n, n− s).

Proof. We check the constraints:

Ŷ − ŷŷT = X̂ + eeT − ex̂T − x̂eT − (e− x̂)(e− x̂)T = X̂ − x̂x̂T ⪰ 0 .

diag(Ŷ) = diag(X̂) + diag(eeT)− diag(ex̂T)− diag(x̂eT) = x̂+ e− x̂− x̂ = ŷ .

eTŷ = eT(e− x̂) = n− s .

Ŷ e =
(
X̂ + eeT − ex̂T − x̂eT

)
e = sx̂+ ne− se− nx̂ = (n− s)(e− x̂) = (n− s)ŷ .

The other direction is similar.

22

For α = 0 and α = 1, the mBQP reduces to the bounds of (Anstreicher, 2018)2:

Proposition 2.5. vBQP(C, s;α = 0, γ1, γ2) is equal to the scaled BQP bound

−slogγ1 + max ldet (γ1C ◦X +Diag(e− x)) ,

subject to:

(x,X) ∈ P (n, s),

and vBQP(C, s;α = 1, γ1, γ2) is equal to the scaled complementary BQP bound

ldetC − (n− s)logγ2 + max ldet
(
γ2C

−1 ◦ Y +Diag(e− y)
)

subject to:

(y, Y) ∈ Q(n, n− s).

Proof. When α = 0, for any (x̂, X̂) ∈ P (n, s), Lemma 2.4 allows us to always be able to

choose a (ŷ, Ŷ), which together with (x̂, X̂) is feasible for the mBQP optimization formu-

lation. And because α = 0, the choice of (ŷ, Ŷ) has no impact on the mBQP objective

function. Similarly, when α = 1, for any (ŷ, Ŷ) ∈ Q(n, n−s), Lemma 2.4 allows us to always

be able to choose a (x̂, X̂) which together with (ŷ, Ŷ) is feasible for the mBQP optimization

formulation. And because α = 1, the choice of (x̂, X̂) has no impact on the mBQP objective

function.

Of course we have

Proposition 2.6. For all γ1 > 0, γ2 > 0, 0 ≤ α ≤ 1,

z(C, s) ≤ v(C, s;α, γ1, γ2) .

We can see from the convexity of v that there is a good potential to improve on the

minimum of the scaled BQP bound and the scaled complementary BQP bound precisely

when these two bounds are similar. See Figure 2.1 where this is illustrated using the “n = 63”

benchmark covariance matrix from the literature. This matrix (and an “n = 124” one that

we use later), obtained from J. Zidek (University of British Columbia), coming from an

application to re-designing an environmental monitoring network, has been used extensively

in testing and developing algorithms for MESP; see (Ko, Lee, and Queyranne, 1995; Lee,

1998; Anstreicher, Fampa, Lee, and Williams, 1999; Lee and Williams, 2003; Hoffman, Lee,

2Helmberg suggested (essentially) the BQP bound in 1995 (Lee, 2012; Fedorov and Lee, 2000) to Anstre-
icher and Lee, but no one developed it at all until (Anstreicher, 2018) did so extensively, drawing in and
significantly extending some techniques from (Anstreicher, Fampa, Lee, and Williams, 1999).

23

and Williams, 2001; Anstreicher and Lee, 2004; Burer and Lee, 2007; Anstreicher, 2018,

2020). The case of s = 10 shows the improvement from mixing when the two individual

bounds are approximately equal. The case of s = 16 shows that mixing can give some

improvement even when one bound is substantially higher than the other. A good value for

α can be found using a univariate search or by applying the logarithmic-barrier algorithm

to (2.3), using Algorithm 1 to update α. Moreover, in the context of branch-and-bound for

exact solution of the MESP, a good (starting) value of α can be inherited from a parent.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.00 0.20 0.40 0.60 0.80 1.00

ga
p

α

n=63, s=10

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

0.00 0.20 0.40 0.60 0.80 1.00

ga
p

α

n=63, s=16

Figure 2.1: Gap vs. α (optimized γi)

2.3.2 Valid equations in the extended spaces

Next, we will see that we can strengthen the mBQP bound, using equations that link the

extended variables from the two bounds that we mix, and then even eliminate the variables

(y, Y).

Proposition 2.7.

v(C, s;α, γ1, γ2) ≥ v̌(C, s;α, γ1, γ2) :=

max (1− α) (ldet (γ1C ◦X +Diag(e− x))− slogγ1)

+ α
(
ldet

(
γ2C

−1 ◦ (X + eeT − exT − xeT) + Diag(x)
)

−(n− s)logγ2 + ldetC
)
,

subject to:

24

(x,X) ∈ P (n, s).

The result follows from Lemma 2.4 and the following simple lemma.

Lemma 2.8. For the solutions of x + y = e, X = xxT, Y = yyT, the equations Y =

X + eeT − exT − xeT are valid.

Proof. Under x+ y = e, we have that

0 = Y − yyT = Y − (e− x)(e− x)T = Y − eeT + exT + xeT − xxT .

Subtracting 0 = X − xxT, we obtain the desired equations.

We experimented further with the “n = 63” covariance matrix. Considering now Figure

2.2, the unmixed bounds are indicated by the lines for “α = 0” and “α = 1”. We first

optimized the γi for these bounds (see §2.3.3). We chose an interesting range of s, where

the unmixed bounds transition between which is stronger (i.e., the lines cross). The line

indicated by “α∗” is the optimal mixing of the BQP bound and its complement. Note

that we only optimized v(C, s;α, γ1, γ2) on α, keeping the optimal γi from the unmixed

bounds. A (probably small) further improvement could be obtained by iterating between

optimizing on α and the γi; this is considered in detail in §2.3.3.2. The line indicated

by “α∗ strengthened” is the optimal mixing of the BQP bound and its complement, but

now with the valid equations in the extended space. Note that again we only optimized

v̌(C, s;α, γ1, γ2) on α, keeping the optimal γi from the unmixed bounds.

We can also seek to improve the mBQP bound by adding RLT, triangle and other in-

equalities, valid for the BQP, for both (x,X) and (y, Y). We could do this directly (like

(Anstreicher, 2018)), but the conic-bundle method (Fischer, Gruber, Rendl, and Sotirov,

2006) seems more promising, due to the large number of inequalities to be potentially ex-

ploited. So we dynamically include triangle inequalities via a bundle method; specifically

we use the solver SDPT3 (see (Toh, Todd, and Tütüncü, 1999)) together with the Conic

Bundle Library (Helmberg, 2005–2019) for solving the associated semidefinite programs,

as described in (Billionnet, Elloumi, Lambert, and Wiegele, 2017). In the figure, the line

“α∗ strengthened + triangles” indicates the bound obtained.

We repeated this experiment for the larger “n = 124” benchmark covariance matrix from

the literature. The results, exhibiting a similar behavior, are indicated in Figure 2.3.

25

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

4 5 6 7 8 9 10 11 12 13 14 15 16

ga
p

s

n=63

α=0

α=1

α*

α* strengthened

α* strengthened + triangles

Figure 2.2: Gap vs. s (optimized α and γi)

2.3.3 Choosing good parameters (α, γ1, γ2)

Toward designing a reasonable algorithm for jointly minimizing v̌(C, s;α, γ1, γ2), over α ∈
[0, 1] and γ1, γ2 > 0, we establish convexity properties.

2.3.3.1 Convexity properties

Theorem 2.9. For fixed γ1, γ2 > 0, the function v̌(C, s;α, γ1, γ2) is convex in α ∈ [0, 1]. For

fixed α ∈ [0, 1], the function v̌(C, s;α, exp(ψ1), exp(ψ2)) is jointly convex in (ψ1, ψ2) ∈ R2.

26

35

36

37

38

39

40

41

42

43

44

72 73 74 75 76 77 78

ga
p

s

n=124

α=0

α=1

α*

α* strengthened

α* strengthened +
triangles

Figure 2.3: Gap vs. s (optimized α and γi)

Proof. We already know from general principles that our mixing bounds are convex in α.

So in this section, we begin by establishing joint convexity in the logarithms of the scaling

parameters γ1, γ2.

Let

F1(C, s; γ1;x,X) := (γ1C − I) ◦X + I = γ1C ◦X +Diag(e− x), (2.5)

F2(C, s; γ2;x,X) := γ2C
−1 ◦ (X + eeT − exT − xeT) + Diag(x), (2.6)

f1(C, s; γ1;x,X) := ldetF1(C, s; γ1;x,X)− s log γ1,

27

f2(C, s; γ2;x,X) := ldetF2(C, s; γ2;x,X)− (n− s) log γ2 + ldetC,

f(C, s;α, γ1, γ2;x,X) := (1− α)f1(C, s; γ1;x,X) + αf2(C, s; γ2;x,X).

So, with this notation,

v̌(C, s;α, γ1, γ2) = max
(x,X)∈P (n,s)

(1− α)f1(C, s; γ1;x,X) + αf2(C, s; γ2;x,X).

The function v̌(C, s;α, exp(ψ1), exp(ψ2)) is the point-wise maximum of f(C, s;α ,

exp(ψ1), exp(ψ2);x,X), over (x,X) ∈ P (n, s). So it suffices to show (Boyd and Vanden-

berghe, 2004, top of p. 81, §3.2.3) that f(C, s;α, exp(ψ1), exp(ψ2);x,X) is itself convex for

each fixed (x,X) ∈ P (n, s).

In what follows, for i = 1, 2, we use fi and fi(γi;x,X) as short forms for fi(C, s; γi;x,X),

and we use Fi(γi;x,X) as a short form for Fi(C, s; γi;x,X). We have

∂f1
∂γ1

=
∂

∂γ1
(ldetF1(γ1;x,X)− s log γ1)

=
∂

∂γ1
(ldet(γ1C ◦X +Diag(e− x))− s log γ1)

= F1(γ1, ;x,X)−1 • (C ◦X)− s

γ1

=
1

γ1

(
F1(γ1;x,X)−1 • (γ1C ◦X)− s

)
=

1

γ1

(
F1(γ1;x,X)−1 • F1(γ1;x,X)− F1(γ1;x,X)−1 •Diag(e− x)− s

)
=

1

γ1

(
n− s− F1(γ1;x,X)−1 •Diag(e− x)

)
.

Letting ψ1 := log γ1, by the chain rule we have

∂f1
∂γ1

=
∂f1
∂ψ1

dψ1

dγ1
=
∂f1
∂ψ1

1

γ1
.

So we have

∂f1
∂ψ1

= γ1
∂f1
∂γ1

= n− s− F1(exp(ψ1);x,X)−1 •Diag(e− x) =: g1(γ1) .

Next, we calculate

∂2f1
∂γ21

=
∂

∂γ1

(
1

γ1

(
n− s− F1(γ1;x,X)−1 •Diag(e− x)

))

28

= − 1

γ21

(
n− s− F1(γ1;x,X)−1 •Diag(e− x)

)
+

1

γ1
(e− x)T diag(F1(γ1;x,X)−1(C ◦X)F1(γ1;x,X)−1) .

So we have

γ21
∂2f1
∂γ21

= −n+ s+ F1(γ1;x,X)−1 •Diag(e− x)

+ γ1(e− x)T diag(F1(γ1;x,X)−1(C ◦X)F1(γ1;x,X)−1) .

Finally, again taking ψ1 := log γ1, using the chain rule we have

∂2f1
∂ψ2

1

=
∂g1
∂ψ1

= γ1
∂g1
∂γ1

= γ1

(
∂f1
∂γ1

+ γ1
∂2f1
∂γ21

)
= γ1

∂f1
∂γ1

+ γ21
∂2f1
∂γ21

= n− s− F1(exp(ψ1);x,X)−1 •Diag(e− x)

− n+ s+ F1(exp(ψ1);x,X)−1 •Diag(e− x)

+ exp(ψ1)(e− x)T diag(F1(exp(ψ1);x,X)−1(C ◦X)F1(exp(ψ1);x,X)−1)

= exp(ψ1)(e− x)T diag(F1(exp(ψ1);x,X)−1(C ◦X)F1(exp(ψ1);x,X)−1) .

It remains to demonstrate that this last expression is nonnegative. We have C ≻ 0 and

X ⪰ 0, and therefore C ◦X ⪰ 0 (Zhang, 2005, page 175). Then, it is also clear from (2.5)

that F1(exp(ψ1;x,X) ≻ 0. Therefore

F1(exp(ψ1);x,X)−1(C ◦X)F1(exp(ψ1);x,X)−1 ⪰ 0.

So we have
∂2f1
∂ψ2

1

≥ 0,

and we can conclude that f1(exp(ψ1);x,X) is convex in ψ1.

Similarly, f2(exp(ψ2);x,X) is convex in ψ2. Finally, for fixed α and (x,X),

F (α, exp(ψ1), exp(ψ2);x,X) is jointly convex in ψ1 and ψ2 because it is a nonnegative

weighted sum of f1(exp(ψ1);x,X) and f2(exp(ψ2);x,X)

Remark. By working with ψ = (ψ1, ψ2) := (log(γ1), log(γ2)) ∈ R2 and establishing convex-

ity, under smoothness assumptions, we are able to rigorously find the best γ (for a given α)

using our BFGS-based Algorithm 2. Moreover, even in an unmixed setting, where we only

want to optimize the single scaling parameter for the BQP bound or the complementary BQP

29

bound, Algorithm 2 applies, and we get a convergent algorithm (under smoothness assump-

tions). We note that (Anstreicher, 2018) does not work that way; he applies an approximate

Newton’s algorithm, working directly with the scaling parameters γi (separately for the BQP

bound and the complementary BQP bound), approximating the relevant second derivative,

and it is not clear that this converges.

2.3.3.2 Optimizing the parameters

The (strengthened) mBQP bound depends on the parameters (α, γ1, γ2). We do not have

any type of full joint convexity. But based on Theorem 2.9, to find a good upper bound, we

are motivated to formulate two convex problems.

First, for given ψ̂1 and ψ̂2, we consider the convex optimization problem

min{Vψ̂1,ψ̂2
(α) : α ∈ [0, 1]} , (2.7)

where

Vψ̂1,ψ̂2
(α) := v̌(C, s;α, exp(ψ̂1), exp(ψ̂2))

= (1− α)f1(C, s; exp(ψ̂1);x
∗, X∗) + αf2(C, s; exp(ψ̂2);x

∗, X∗),

and (x∗, X∗) = (x∗(α), X∗(α)) solves the maximization problem in Proposition 2.7 for the

given α, when γ1 = exp(ψ̂1), and γ2 = exp(ψ̂2).

We solve (2.7) with the logarithmic barrier method described in §2.2 and detailed in

Algorithm 1.

Then, we also define for given α̂ ∈ [0, 1], the convex problem

min{Vα̂(ψ1, ψ2) : (ψ1, ψ2) ∈ R2} , (2.8)

where

Vα̂(ψ1, ψ2) := v̌(C, s; α̂, exp(ψ1), exp(ψ2))

= (1− α̂)f1(C, s; exp(ψ1);x
∗, X∗) + α̂f2(C, s; exp(ψ2);x

∗, X∗),

and (x∗, X∗) = (x∗(ψ1, ψ2), X
∗(ψ1, ψ2)) solves the maximization problem in Proposition 2.7

for α = α̂, γ1 = exp(ψ1), and γ2 = exp(ψ2).

We solve (2.8) with the quasi-Newton method described in §2.2 and detailed in Algorithm

2. The subgradients gψi
, i = 1, 2 used in Algorithm 2 are specifically given by

30

gψ1 =
∂f1(exp(ψ1);x

∗, X∗)

∂ψ1

= n− s− F1(exp(ψ1);x
∗, X∗)−1 •Diag(e− x∗),

gψ2 =
∂f2(exp(ψ2);x

∗, X∗)

∂ψ2

= s− F2(exp(ψ2);x
∗, X∗)−1 •Diag(x∗).

Next, we briefly establish a ‘unique-optimum property’ for the BQP relaxation that is

relevant to the behavior of Algorithms 1 and 2; see Remark 2.2. Let

B(γ;X) := γC ◦X + I −Diag(X),

for γ > 0, (diag(X), X) ∈ P (n, s).

Lemma 2.10. Suppose that C ≻ 0 and γ > 0. Then

B(γ;X) ≻ 0, for all (diag(X), X) ∈ P (n, s).

Proof. Let x := diag(X). For 0 ≤ x < e, we have Diag(e− x) ≻ 0 and γC ◦X ⪰ 0.

Now suppose that, xi = 1, for i ∈ U ⊂ N , and xi < 1, for i ∈ V := N \ U . After a

symmetric permutation of indices we can write

γC ◦X +Diag(e− x)

= γ

(
CUU ◦XUU CUV ◦XUV

(CUV ◦XUV)
T CV V ◦XV V

)
+

(
0 0

0 Diag(e− xV)

)
.

We have γC ◦ X + Diag(e − x) ⪰ 0 (because γ > 0, C ≻ 0, X ⪰ 0, and x ≤ e). By

Oppenheim’s inequality, we have

det(γCUU ◦XUU) ≥ det(γCUU)
∏
i∈U

xi = det(γCUU) > 0.

This together with γCUU ◦XUU ⪰ 0 implies that

γCUU ◦XUU ≻ 0. (2.9)

Next, we calculate the Schur complement

γCV V ◦XV V − (γCUV ◦XUV)
T(γCUU ◦XUU)

−1(γCUV ◦XUV) ⪰ 0,

31

by (Zhang, 2005, Theorem 1.12). Hence

γCV V ◦XV V − (γCUV ◦XUV)
T(γCUU ◦XUU)

−1(γCUV ◦XUV)

+ Diag(e− xV) ≻ 0. (2.10)

Then, from (2.9) and (2.10), considering again (Zhang, 2005, Theorem 1.12), we have

γC ◦X +Diag(e− x) ≻ 0.

Theorem 2.11. Suppose that C ≻ 0 and γ > 0. If γC − I has no zero entries, then

ldetB(γ; ·) is strictly concave for (diag(X), X) ∈ P (n, s), and therefore the BQP relaxation

has a unique optimal solution.

Proof. It is easy to verify that the inverse function of B(γ; ·) is

G(γ;Y) := (γC − I)(−1) ◦ (Y − I),

where the superscript ‘(−1)’ denotes Hadamard inverse (i.e., element-wise reciprocals). So

clearly the condition for the inverse to be defined is that γC−I has no zero entries. Therefore,
B(γ; ·) is a one-to-one function.

Now, for each (diag(X), X) ∈ P (n, s), we can write

ldetB(γ;X) = max
Z≻0

{ldetZ | Z ⪯ B(γ;X)} . (2.11)

Considering that B(γ;X) ≻ 0 (Lemma 2.10) and the monotonicity of log(·), we have that

the maximizing Z ≻ 0 satisfying the equality in the constraint in (2.11) gives the value of

ldetB(γ;X), for each (diag(X), X) ∈ P (n, s). We note that the constraint Z ≻ 0 can be

relaxed to the positive semidefinite constraint Z ⪰ 0 without changing the optimal solution

and the corresponding value of (2.11). Therefore, as the constraint set in (2.11) with the

relaxed constraint Z ⪰ 0 is compact for any given B(γ;X) ≻ 0, and ldet : Sn++ → R is strictly

concave (Bakonyi and Woerdeman, 2011, Corollary 1.4.2), we have that the optimal solution

of (2.11), denoted in the following by Z∗(X), exists and is unique for all (diag(X), X) ∈
P (n, s).

Then, considering the linearity of B(γ; ·), the optimality of Z∗(·), and the strict concavity

32

of ldet(·), we have

ldetB(γ; τX1 + (1− τ)X2)

= maxZ≻0{ldetZ | Z ⪯ B(γ; τX1 + (1− τ)X2)}
= maxZ≻0{ldetZ | Z ⪯ τB(γ;X1) + (1− τ)B(γ;X2)}
≥ ldet(τZ∗(X1) + (1− τ)Z∗(X2))

> τ ldetZ∗(X1) + (1− τ) ldetZ∗(X2) (because B(γ; ·) is one-to-one),

for all τ ∈ (0, 1) and X1 ̸= X2. We conclude that ldetB(γ; ·) is strictly concave for

(diag(X), X) ∈ P (n, s).

Remark. We note that for any C ≻ 0 with all entries nonzero, there are at most n values of

γ for which the hypothesis of Theorem 2.11 fails to hold; specifically, γ := 1/Cii, for i ∈ N .

Finally, in order to obtain a good bound, we propose an algorithmic approach where

we start from given values for the parameters α, ψ1, and ψ2 and alternate between solving

problems (2.7) and (2.8), applying respectively, the procedures described in Algorithms 1

and 2.

In Figure 2.4 we illustrate how f1, f2, and the (strengthened) mBQP bound v̌ vary with

each of the parameters ψ1, and ψ2, separately, for the instance with n = 63, s = 10. To

construct the first plot in Figure 2.4, we fix α and ψ2, and vary ψ1. In the second plot, we fix

α and ψ1 and vary ψ2. The values of the two parameters that are fixed were obtained by the

procedure described above, i.e., alternating between the execution of Algorithms 1 and 2. The

interval in which the third parameter varies in each plot is centered at the value also obtained

with the alternating algorithm; so the best bound obtained by the algorithm is depicted in

the figure. As the mBQP relaxation has a unique optimal solution, v̌ is differentiable with

respect to ψ1 and ψ2. In this case, the subgradient presented in Proposition 2.3 is the

gradient, and ∂v̌/∂ψi is equal to αi∂fi/∂ψi, for i = 1, 2. These identities are illustrated

in Figure 2.4. The gradient of v̌ is used in Algorithm 2 to optimize the selection of the

parameters.

33

‐20

‐16

‐12

‐8

‐4

0

‐0.1 0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9

ψ1

bound

f1

f2

‐20

‐16

‐12

‐8

‐4

0

‐4.2 ‐3.7 ‐3.2 ‐2.7 ‐2.2 ‐1.7 ‐1.2 ‐0.7 ‐0.2

ψ2

bound

f1

f2

Figure 2.4: Variation of f1, f2, and the (strengthened) mBQP, with ψ1, ψ2 (n = 63, s = 10)

34

2.4 Mixing the NLP bound with the complementary

NLP bound

With the (scaled) NLP bound in mind, we introduce the mixed NLP (mNLP) bound :

w(C, s;α, γ1, γ2) :=

max (1− α)
(
ldet

(
γ1X

p/2(C −D)Xp/2 + (γ1D)x
)
− slogγ1

)
+ α

(
ldet

(
γ2Y

p̄/2(C−1 − D̄)Y p̄/2 + (γ2D̄)y
)
− (n− s)logγ2 + ldetC

)
,

subject to:

eTx = s, x+ y = e,

where 0 ≤ α ≤ 1 is a weighting parameter.

The objective function of the mNLP relaxation is defined over the order-n diagonal ma-

trices D := Diag(d1, . . . , dn) and D̄ := Diag(d̄1, . . . , d̄n), the order-n vectors p and p̄, and

the scaling parameters γ1, γ2 > 0. The following notation is also employed in its definition:

X := Diag(x), Y := Diag(y), and (V u)i,i := V ui
i,i , i = 1, . . . , n, for a diagonal matrix V and

a vector u.

In (Anstreicher, Fampa, Lee, and Williams, 1999), three different strategies are presented

for choosingD, p, and γ1, in order to have the NLP relaxation proven to be a convex program.

Analogously, the strategies also apply to the selection of the parameters D̄, p̄, and γ2, for

the complementary problem. In our numerical experiments with the NLP bound, we have

chosen these parameters based on the so-called “NLP-Trace” strategy, where D minimizes

the trace ofD−C, subject toD−C being positive semidefinite. OnceD is chosen, the scaling

parameter γ1 should be selected in the interval [1/dmax, 1/dmin] (Anstreicher, Fampa, Lee,

and Williams, 1999). In our experiments, we have tested 100 values for γ1 in this interval and

report results for the best one. The same strategy is applied to the complementary problem.

Once D and γ1 (D̄ and γ2) are fixed, the parameter p (p̄) can be determined to generate the

best possible bound (Anstreicher, Fampa, Lee, and Williams, 1999, Eq. (15)). We note that

the optimal scaling factors for the mBQP bound were obtained with quasi-Newton steps

in the previous section, as described in Algorithm 2. The same methodology could not be

applied here, because the objective function of the mNLP relaxation is neither convex in

the scaling parameters nor in the logarithms of the scaling parameters. Therefore, for the

results we present on the mNLP bound, we choose γ1 to be the best scaling parameter for

the original NLP bound (α = 0), among the 100 values tested, we choose γ2 to be the best

scaling parameter for the complementary NLP bound (α = 1), among the 100 values tested.

Once γ1 and γ2 are chosen, we apply Algorithm 1 to select α for each instance. The results

35

reported correspond to the optimal α obtained.

Finally, we note that unlike the mBQP bound, the mNLP bound cannot be computed

by SDPT3, via Matlab and Yalmip. So, to compute it, we have coded an interior-point

algorithm, also in Matlab. The solution procedure is the same as described in (Anstreicher,

Fampa, Lee, and Williams, 1999, Section 3), where the NLP bound and the complemen-

tary NLP bound are considered. Later, the procedure was also applied in the related work

(Anstreicher, Fampa, Lee, and Williams, 2001). The procedure employs a long-step path

following methodology, using logarithmic barrier terms for the bound constraints on x (i.e.,

0 ≤ x ≤ e). For a fixed value of the barrier parameter µ, the barrier function is approx-

imately minimized on {x ∈ Rn : eTx = s}. The parameter µ is then reduced and the

process is repeated, until µ is small enough for an approximate minimizer to be within a

prescribed tolerance of optimality. The tolerance is certified by a dual solution generated by

the algorithm, providing a valid upper bound for the optimal value of NLP.

Next, we briefly establish the ‘unique-optimum property’ that is relevant to the behavior

of Algorithms 1 and 2; see Remark 2.2.

Proposition 2.12. Let D ≻ C, pi ≥ 1, 0 < di ≤ exp(pi −
√
pi), for i ∈ N . Then

f(x) := ldet
(
Xp/2(C −D)Xp/2 + (D)x

)
is strictly concave for 0 < x ≤ e.

Proof. The result follows directly by replacing D ⪰ C by D ≻ C in (Anstreicher, Fampa,

Lee, and Williams, 1999, Theorem 1).

Corollary 2.13. If the hypotheses in Proposition 2.12 are satisfied for the NLP relaxation

and for its complement, then the associated mNLP relaxation has a unique optimal solution.

In Figure 2.5, we illustrate our approach. By mixing the NLP-Trace bound and the

complementary NLP-Trace bound, we were able to obtain an improvement for the n = 124

problem in the vicinity of s = 73.

2.5 On the linx bound and mixing with it

In this section, we take a different notation from scaled linx for simplicity. Formally, we

define the (scaled) linx bound is

max

{
1

2
v(γ;x) | eTx = s, 0 ≤ x ≤ e

}
, (2.12)

36

114

118

122

126

130

71 72 73 74 75

ga
p

s

n=124

NLP_Tr
comp NLP_Tr
mix

Figure 2.5: Mixing the NLP bound with complementary NLP bound

where

v(γ;x) := ldetF (γ;x)− s log γ,

and

F (γ;x) := γC Diag(x)C +Diag(e− x).

The linx bound has excellent performance, and it is a challenge to improve upon it. In

the remainder of this section, we consider fine tuning the bound via its scaling parameter.

In §2.5.2, we are able to get an improvement on the linx bound by mixing it both with the

NLP bound and with the BQP bound. Note that we do not consider mixing the linx bound

with the “complementary linx bound” because the linx bound with scaling parameter γ1 is

equivalent to the complementary linx bound with scaling parameter γ2 = 1/γ1.

2.5.1 Optimizing the linx bound on the scaling parameter γ

The linx bound depends on the scaling parameter γ. (Anstreicher, 2020) observed that the

linx bound is particularly sensitive to the choice of γ. This is probably due to the fact

that the bound is derived by bounding the square of the determinant of an order-s principal

submatrix of C. So for mixing with the linx bound, it is very useful to be able to efficiently

optimize on γ.

37

To find the best bound, we now define ψ := log(γ) and formulate the problem

min
ψ

{H(ψ)} , (2.13)

where

H(ψ) := v(exp(ψ);x∗) ,

and where x∗ is a maximizer of (2.12), with γ(= exp(ψ)) fixed.

Theorem 2.14. The function H(ψ) is convex in ψ ∈ R.

Proof. Based on the same argument used in the proof of Theorem 2.9, we show that

v(exp(ψ);x) is convex in ψ, for fixed x in the feasible set of (2.12).

We have

∂
∂γ
v(γ;x) = F (γ;x)−1 • (C Diag(x)C)− s

γ

= 1
γ
(F (γ;x)−1 • (F (γ;x) + Diag(x− e))− s)

= 1
γ
(F (γ;x)−1 •Diag(x− e) + n− s)

∂2

∂γ2
v(γ;x) = ∂

∂γ

(
1
γ
(F (γ;x)−1 •Diag(x− e) + n− s)

)
= − 1

γ2
(F (γ;x)−1 •Diag(x− e) + n− s)

+ 1
γ
(e− x)T diag(F (γ;x)−1(C Diag(x)C)F (γ;x)−1).

Therefore
∂
∂ψ
v(γ;x) = γ ∂

∂γ
v(γ;x)

= F (γ;x)−1 •Diag(x− e) + n− s,

and
∂2

∂ψ2v(γ;x) = γ ∂
∂γ
v(γ;x) + γ2 ∂2

∂γ2
v(γ;x)

= γ(e− x)T diag(F (γ;x)−1(C Diag(x)C)F (γ;x)−1).
(2.14)

Now, it remains to show that

∂2

∂ψ2
v(exp(ψ);x∗) ≥ 0, ∀ψ.

Considering (2.14), it suffices to show that

diag(F (exp(ψ);x∗)−1(C Diag(x∗)C)F (exp(ψ);x∗)−1) ≥ 0.

We have C ≻ 0 and Diag(x∗) ⪰ 0, therefore C Diag(x∗)C ⪰ 0. Then, it is also clear from

38

(2.5) that F (exp(ψ);x∗) ≻ 0 and, therefore,

F (exp(ψ);x∗)−1(C Diag(x∗)C)F (exp(ψ);x∗)−1 ⪰ 0,

which completes the proof.

We solve (2.13) with the quasi-Newton method described in §2.2 and detailed in Algorithm

2, for m = 1 and α1 = 1. The subgradient gψ1 , used in Algorithm 2 is specifically given by

gψ1 =
∂v(exp(ψ);x∗)

∂ψ
= F (γ;x∗)−1 •Diag(x∗ − e) + n− s.

Remark. By working with ψ := log(γ) and establishing convexity, under smoothness as-

sumptions, we are able to rigorously find the best value of γ using our BFGS-based Algorithm

2. We note that (Anstreicher, 2018) does not work that way; he applies an approximate New-

ton’s algorithm, working directly with the scaling parameter γ, approximating the relevant

second derivative, and it is not clear that this converges.

Next, we briefly establish the ‘unique-optimum property’ that is relevant to the behavior

of Algorithms 1 and 2; see Remark 2.2.

Lemma 2.15. Suppose that C ≻ 0 and γ > 0. Then

F (γ;x) ≻ 0, for all 0 ≤ x ≤ e.

Proof. For 0 ≤ x < e, we have Diag(e− x) ≻ 0 and γC Diag(x)C ⪰ 0.

Now suppose that, xi = 1, for i ∈ U ⊂ N , and xi < 1, for i ∈ V := N \ U . After a

symmetric permutation of indices we can write

γC Diag(x)C +Diag(e− x)

= γ

(
CUU CUV

CT
UV CV V

)(
I 0

0 Diag(xV)

)(
CUU CUV

CT
UV CV V

)
+

(
0 0

0 Diag(e− xV)

)

= γ

(
CUV

CV V

)
Diag(xV)

(
CT
UV CV V

)
+ γ

(
CUU

CT
UV

)
(CUU CUV) +

(
0 0

0 Diag(e− xV)

)
. (2.15)

39

(2.15) simplifies to (
γC2

UU γCUUCUV

γCT
UVCUU γCT

UVCUV +Diag(e− xV)

)
,

and then applying the Schur determinant formula (Horn and Johnson, 1985, p.21-22), we

obtain that its determinant is

det(γC2
UU)× det(γCT

UVCUV +Diag(e− xV)− γCT
UVCUUC

−2
UUCUUCUV)

= det(γC2
UU)× det(Diag(e− xV)) > 0.

Therefore, we conclude that F (γ;x) ≻ 0, for all 0 ≤ x ≤ e.

Theorem 2.16. Suppose that C ≻ 0 and γ > 0. If λi(γC ◦ C) ̸= 1 for all i ∈ N , then

ldetF (γ; ·) is strictly concave for 0 ≤ x ≤ e, and therefore (2.12) has a unique optimal

solution.

Proof. For x, y ∈ Rn, we have

γC Diag(x)C +Diag(e− x) = γC Diag(y)C +Diag(e− y) ⇐⇒

γC Diag(x− y)C −Diag(x− y) = 0. (2.16)

Note that

diag(γC Diag(x− y)C −Diag(x− y)) = (γC ◦ C − I)(x− y).

Therefore, if γC◦C−I has full rank, (2.16) only holds for x = y. Equivalently, if λi(γC◦C) ̸=
1, for all i ∈ N , F (γ; ·) is a one-to-one function.

Now, for each x ∈ [0, 1]n, we can write

ldetF (γ;x) = max
Z≻0

{ldetZ | Z ⪯ F (γ;x)} .

From Lemma 2.15, we have that F (γ;x) ≻ 0, for all 0 ≤ x ≤ e. Then, considering the

linearity of F (γ; ·), the strict concavity of ldet(·), and the fact that F (γ; ·) is a one-to-one

function, we can use the same argument used in the proof of Theorem 2.11, to verify that

ldetF (γ; ·) is strictly concave for 0 ≤ x ≤ e.

Remark. We note that for any C ≻ 0, there are at most n values of γ for which the

hypothesis of Theorem 2.16 fails to hold; specifically, γ := 1/λi(C ◦ C), for i ∈ N .

40

2.5.2 Improvements on the linx bound

By mixing the complementary NLP-Trace bound and the linx bound, we were able to obtain

an improvement for the n = 63 problem in the vicinity of s = 25; see Figure 2.6. By

mixing the complementary BQP bound and the linx bound, we were able to obtain an

improvement for the n = 63 problem in the vicinity of s = 41; see Figure 2.7. The results

shown in the figures, were obtained with α given by Algorithm 1. To obtain the best α,

we fixed both scaling parameters in each mixed relaxation. The scaling parameters were

obtained separately, each selected to optimize the corresponding unmixed bound. For the

complementary NLP-Trace bound, the selection was done by enumerating 100 different values

and selecting the best, as explained in §2.4. For the other bounds, the scaling parameter

was optimized with Algorithm 2. When mixing the complementary NLP-Trace bound and

the linx bound, we solved the relaxation with an interior-point algorithm that we have

implemented in Matlab. When mixing the complementary BQP bound and the linx bound,

we solve the relaxation with SDPT3, via Matlab and Yalmip.

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

23 24 25 26 27

ga
p

s

n=63

linx

comp NLP_Tr

mix

Figure 2.6: Mixing the complementary NLP bound with the linx bound

41

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

38 39 40 41 42 43 44

ga
p

s

n=63

comp BQP

linx

mix

Figure 2.7: Mixing the complementary BQP bound with the linx bound

2.6 Mixing an NLP bound and a BQP bound

A convenient solver for calculating the BQP bound and its complement (and also for cal-

culating the linx bound) is SDPT3 via Yalmip. But the NLP bound and its complement

are not amenable to solution by SDPT3 via Yalmip. So we developed our own IPM for

calculating the NLP bound. Because of this dichotomy between available solvers, we need a

special approach for mixing the NLP bound or its complement, with the BQP bound or its

complement.

At this point, we are not very concerned with efficiency. Rather, we only seek a practical

method for calculating these particular mixed bounds to see if we can get an improvement

on the unmixed bounds by mixing. In this sense, it is a proof of concept for this particular

mixing.

Our idea is simply to apply Lagrangian relaxation to the mixing bound, in its form with

42

duplicated variables, as follows:

v(α) :=max {αf1(x,X) + (1− α)f2(y,Y) : (x,X) ∈ P , (y,Y) ∈ Q, x+ y = e}

= min
π∈Rn

{
max

{
αf1(x,X) + (1− α)f2(y,Y) + πT (e− x− y) :

(x,X) ∈ P , (y,Y) ∈ Q}

}
.

= min
π∈Rn

{
πTe+max

{
αf1(x,X)− πTx : (x,X) ∈ P

}
+max

{
(1− α)f2(y,Y)− πTy : (y,Y) ∈ Q

}}
.

In this form, we apply subgradient optimization to find an optimal π ∈ Rn, and at each step

the Lagrangian subproblem decouples into the (x,X) ∈ P maximization problem and the

(y,Y) ∈ Q maximization problem. So we can apply separate solvers to each.

In Figure 2.8, we illustrate some success with our approach. For the n = 124 problem, we

were able to successfully mix the NLP-Trace bound and the complementary BQP bound, in

the vicinity of s = 51, 52, to obtain an improvement over either bound alone.

2.7 Mixing across a family of instances

So far, we have carried out computations aimed at demonstrating the applicability of our

mixing idea across many different bounds for MESP. In this section, we report on an ex-

periment aimed at demonstrating that our ideas can be fruitful across a family of instances.

We generated 10 dense random instances of MESP, using the Matlab function sprandsym()

to obtain our random symmetric matrix C. We chose the eigenvalues of the generated C

to be λi(C) := M
(n+1−i)−i

n−1 , for i = 1, . . . , n, for some M > 0. This gives us a nice convex

sequence of decreasing eigenvalues, with the added property that C and C−1 have the same

eigenvalues. In this way, C and C−1 are sampled from the same distribution, and we might

expect bounding methods to behave similarly on them when s is chosen to be near n/2. For

each instance, we consistently see modest but significant bound improvements for an s near

n/2. We note that improvements of this magnitude can lead to a significant increase in the

ability to prune subproblems in a branch-and-bound search. For our experiments, we chose

n := 51 and M := 4, and we mixed the NLP bound with the complementary NLP bound

(for both, we use the “NLP-Ident” strategy, which comes with a unique scaling parameter;

43

69

70

71

72

73

74

75

76

50 51 52 53

ga
p

s

n=124

comp BQP

NLP_Tr

mix

Figure 2.8: Mixing the NLP bound with the complementary BQP bound

see (Anstreicher, Fampa, Lee, and Williams, 1999)), using the optimal mixing parameter α∗.

Our results are summarized in Table 2.1, where ‘Improvement’ (%) is the improvement in

gap relative to the best of the two unmixed bounds.

2.8 Concluding remarks

It is a challenge to efficiently employ our ideas in the context of branch-and-bound. We need

to find effective mixing parameters α quickly. Note that in our notation, (Anstreicher, 2018)

is using m = 2 and α = 0 or 1, and in the context of branch-and-bound, each child inherits α

from its parent, only updating the choice occasionally. In the context of branch-and-bound,

we would now expect that for many subproblems, we would have α = 0 or 1. But we can

further expect that for many we would have 0 < α < 1, and we would then gain from our

approach. The guidance of (Anstreicher, 2018) is: “we use a simple criterion based on the

number of fixed variable and depth in the tree to decide when to check the other bound”. So

we would proceed similarly, doing a search for a good α (see §2.2) after an inherited value

becomes stale.

It is not clear at all how our mixing idea could be adapted to “spectral and masked

44

Inst s gap gap gap α∗ Improvement
(α = 0) (α = 1) (α∗) (%)

1 24 4.1160 5.0785 4.1160 0 0
1 25 4.3390 4.6437 4.2886 0.25 1.1610
1 26 4.5991 4.2445 4.2044 0.78 0.9458
2 24 4.1762 5.1444 4.1762 0 0
2 25 4.4746 4.7894 4.4074 0.28 1.5031
2 26 4.9186 4.5778 4.5007 0.77 1.6847
3 24 3.9669 5.1077 3.9669 0 0
3 25 4.2585 4.7247 4.2526 0.08 0.1387
3 26 4.6242 4.4146 4.3635 0.71 1.1575
4 24 4.1022 5.3773 4.1022 0 0
4 25 4.1731 4.7654 4.1303 0.17 1.0249
4 26 4.4525 4.3601 4.1708 0.55 4.3419
5 24 3.8534 5.1652 3.8534 0 0
5 25 4.1871 4.8372 4.1871 0 0
5 26 4.6224 4.6080 4.5131 0.55 2.0605
6 24 3.9116 4.8674 3.9116 0 0
6 25 4.2430 4.5111 4.1577 0.31 2.0101
6 26 4.5895 4.1688 4.1262 0.78 1.0217
7 24 3.5030 4.0796 3.4829 0.14 0.5754
7 25 3.8599 3.7607 3.6162 0.57 3.8426
7 26 4.2283 3.4520 3.4508 0.96 0.0357
8 24 4.4715 4.9430 4.4281 0.18 0.9716
8 25 4.8435 4.6521 4.5153 0.70 2.9389
8 26 5.2018 4.3473 4.3382 0.92 0.2095
9 24 4.5169 5.5164 4.5169 0 0
9 25 4.7287 5.0820 4.7055 0.21 0.4910
9 26 4.9817 4.6871 4.6444 0.75 0.9107
10 24 3.2562 4.0135 3.2515 0.06 0.1432
10 25 3.7414 3.8177 3.5976 0.44 3.8449
10 26 4.1017 3.4959 3.4757 0.89 0.5759

Table 2.1: Mixing the NLP with the complementary NLP bound (n = 51)

spectral bounds” (Ko, Lee, and Queyranne, 1995; Anstreicher and Lee, 2004; Burer and

Lee, 2007; Hoffman, Lee, and Williams, 2001; Lee and Williams, 2003), because these are

apparently not based on convex relaxation. We would like to highlight this as an interesting

area to explore.

Very recently, (Li and Xie, 2023) presented new results on a relaxation and on an approx-

imation algorithm for MESP. It would be interesting to see if some of those results can be

exploited in our context.

45

Finally, our general mixing idea, although well suited for MESP, should find application

to other combinatorial-optimization problems with nonlinearities. It is a challenge to find

other good applications.

46

CHAPTER 3

On Computing with some Convex Relaxations

for the Maximum-Entropy Sampling Problem

This chapter has been published as:

Zhongzhu Chen, Marcia Fampa, Jon Lee. On computing with some convex relaxations for

the maximum-entropy sampling problem. INFORMS Journal on Computing, 35(2):368-385,

2023. https://doi.org/10.1287/ijoc.2022.1264

3.1 Introduction

In this chapter, based on a factorization of an input covariance matrix, we define a mild

generalization of an upper bound of (Nikolov, 2015) and (Li and Xie, 2023) for CMESP. We

demonstrate that this factorization bound is invariant under scaling and also independent

of the particular factorization chosen. We give a variable-fixing methodology that could be

used in a branch-and-bound scheme based on the factorization bound for exact solution of

CMESP, and we demonstrate that its ability to fix is independent of the factorization chosen.

We report on successful experiments with a commercial nonlinear-programming solver. We

further demonstrate that the known “mixing” technique (chapter 2) can be successfully

used to combine the factorization bound with the factorization bound of the complementary

CMESP, and also with the (scaled) linx bound.

In §3.2, we discuss some upper bounds for CMESP. In particular, we present the “fac-

torization bound” for CMESP, as a convex formulation DFact of the Lagrangian dual of

a nonconvex formulation Fact, and some of its important properties from a computational

point of view. In particular: (i) We demonstrate that the factorization bound changes by

the same amount as the objective of CMESP, when C is scaled by some γ > 0. (ii) We

give a variable fixing methodology based on a feasible solution of DFact. Variable fixing has

also been studied for CMESP in the context of other convex relaxations; see (Anstreicher,

47

https://doi.org/10.1287/ijoc.2022.1264

Fampa, Lee, and Williams, 1996, 1999, 2001; Anstreicher, 2018, 2020). (iii) We demonstrate

that the factorization bound and its ability to fix variables, based on a matrix factorization

C = FFT, is independent of the factorization (and so mathematically, it provides the same

bound as that of (Nikolov, 2015) and (Li and Xie, 2023)). (iv) We demonstrate that the

factorization bound dominates the well-known “spectral bound”. (v) Although it is possible

to directly attack DFact to calculate the factorization bound, it is much more fruitful to

work with DDFact, a convex formulation of the Lagrangian dual of DFact. In connection

with this, we provide a mechanism to get a minimum-gap feasible solution of DFact, relative

to a feasible (and possibly non-optimal) solution of DDFact (which is useful for getting a

true upper bound for CMESP). We also describe how to get the gradient of the objective

function of DDFact (under a technical condition), which is necessary for applying any rea-

sonable technique for efficiently solving DDFact. (vi) We review the linx bound for CMESP,

and we present some of its key properties that are useful for computing. (vii) We review the

“mixing” bound of (Chen, Fampa, Lambert, and Lee, 2021), and we work out a dual for it,

as well as a fixing methodology in an important case that generalizes what we can do for the

DDFact, complementary DDFact, and linx bounds.

In §3.3, we discuss the numerical experiments where, using a commercial nonlinear-

programming solver, we calculate upper bounds for benchmark instances of MESP from

the literature with the three relaxations presented, namely DDFact, complementary DDFact

and linx, and with the “mixing” strategy described in (Chen, Fampa, Lambert, and Lee,

2021). Generally, we found that a commercial nonlinear-programming solver is quite viable

for our relaxations, even for DDFact which may have nondifferentiabilty. Our main find-

ings: (i) We compared integrality gaps given by the difference between the upper bounds

computed with the relaxations and the lower bounds computed with a greedy/interchange

heuristic or with the optimal value when we could obtain it by branch-and-bound. We found

that all the three relaxations, DDFact, complementary DDFact, and linx, achieve the best

bounds for some of the instances, however DDFact and linx achieve together most of the

best bounds. (ii) We compared the times to solve the relaxations and analyzed the impact

of two factors in the times: the smoothness of the objective functions of the relaxations

and the ranks of the covariance matrices. The possibility of DDFact and complementary

DDFact encountering points at which the objective function is nondifferentiable led us to

the application of a BFGS-based algorithm to solve these relaxations, and the smoothness

of linx results in the application of a Newton-based algorithm to solve it. We see a better

convergence of the Newton-based algorithm, resulting in best times for linx and with less

variability among the different values of s, except for our largest instance with n = 2000 and

a covariance matrix with rank r = 949. In this case, linx presents the drawback of dealing

48

with an order-n matrix in its objective function, while DDFact deals with an order-r matrix.

(iii) We demonstrated how the “mixing” procedure can decrease the bounds obtained with

the three relaxations when we mix two relaxations that obtain very similar bounds when

applied separately. This is mostly observed when we mix DDFact and linx. For the majority

of the instances, DDFact presents better bounds for values of s up to an intermediate value,

and for larger values of s, linx presents better bounds. For values of s close to this interme-

diate value, the mixing strategy effectively decreases the bound obtained by each relaxation.

(iv) We demonstrated how the fixing methodology can fix a significant number of variables,

especially when applied iteratively, to our largest instance.

In §3.4, we summarize our results and point to future work.

3.2 Upper bounds

There are a wide variety of upper bounding methods for CMESP. The tightest bounds, from

a practical computational viewpoint, seem to be Anstreicher’s “linx bound” (Anstreicher,

2020) and the “factorization bound”. In this section, we describe and develop these bounds,

with an eye on practical and efficient computation.

3.2.1 Fact

We begin by introducing a mild generalization of a nonconvex programming bound developed

by (Nikolov, 2015) and (Li and Xie, 2023). Suppose that the rank of C is r ≥ s. Then we

factorize C = FFT, with F ∈ Rn×k, for some k satisfying r ≤ k ≤ n. We note that this could

be a Cholesky-type factorization (i.e., k := r and F lower triangular), as in (Nikolov, 2015)

and (Li and Xie, 2023). But it could alternatively be derived from a spectral decomposition

of C; that is, C =
∑r

ℓ=1 λℓvℓv
T
ℓ , where we put

√
λℓvℓ as column ℓ of F , ℓ = 1, . . . , k := r.

Another very useful possibility is to let k := n, and choose F to be the matrix square root,

C1/2, which is always symmetric.

Next, for x ∈ [0, 1]n, we define F (x) :=
∑

j∈N F
T
j·Fj· xj = FT Diag(x)F and

zFact(C, s, A, b;F) := max
∑s

ℓ=1 log (λℓ(F (x)))

subject to:

eTx = s, Ax ≤ b, 0 ≤ x ≤ e.

(Fact)

It is easy to check that the objective of CMESP z(C, s, A, b) ≤ zFact(C, s, A, b;F), for any

factorization of C (c.f. (Ko, Lee, and Queyranne, 1995)). Unfortunately, Fact is not a convex

program, so it is not practical to work with.

49

3.2.2 DFact

We define

fDFact(Θ, ν, π, τ) := −
∑k

ℓ=k−s+1 log (λℓ (Θ)) + νTe+ πTb+ τs− s,

and the factorization bound

zDFact(C, s, A, b;F) := min fDFact(Θ, ν, π, τ)

subject to:

diag(FΘFT) + υ − ν − ATπ − τe = 0,

Θ ≻ 0, υ ≥ 0, ν ≥ 0, π ≥ 0.

(DFact)

DFact is equivalent to the Lagrangian dual of Fact, and it is a convex program. The

objective function of DFact is analytic at every point (Θ̂, υ̂, ν̂, π̂, τ̂) for which λk−s(Θ̂) >

λk−s+1(Θ̂). In fact, we have seen in our experiments, a good solver can get to an optimum,

even when this condition fails.

It turns out that the factorization bound for MESP has a close relationship with the

spectral bound of (Ko, Lee, and Queyranne, 1995):
∑s

ℓ=1 log λℓ(C). First, we establish that

like the spectral bound for MESP, the factorization bound for CMESP is invariant under

multiplication of C by a scale factor γ, up to the additive constant −s log γ, a property that

is not shared with other convex-optimization bounds.

Theorem 3.1. For all γ > 0 and factorizations C = FFT, we have

zDFact(C, s, A, b;F) = zDFact(γC, s, A, b;
√
γF)− s log γ.

Proof. We simply observe that for every feasible solution (Θ̂, υ̂, ν̂, π̂, τ̂) of DFact, we have

that (1
γ
Θ̂, υ̂, ν̂, π̂, τ̂) is a feasible solution of DFact with F replaced by

√
γF . Then we observe

that λℓ

(
1
γ
Θ̂
)
= 1

γ
λℓ(Θ̂), for all ℓ. This mapping between feasible solutions is a bijection, so

the result follows.

Because the factorization bound shifts by the same amount as z(C, s, A, b), under scaling

of C, we cannot improve on the factorization bound by scaling. In contrast, the linx bound

is very sensitive to the choice of the scale factor, and while we can compute an optimal scale

factor for the linx bound (see (Chen, Fampa, Lambert, and Lee, 2021)), it is a significant

computational burden to do so.

Next, we present another useful result that guides practical usage.

50

Theorem 3.2. Let C = FjF
T
j , for j = 1, 2, be two different factorizations of C, and let

(Θ̂1, υ̂, ν̂, π̂, τ̂) be a feasible solution to DFact, for F := F1. Then, there is a feasible solution

(Θ̂2, υ̂, ν̂, π̂, τ̂) to DFact, for F := F2, such that fDFact(Θ̂1, ν̂, π̂, τ̂) = fDFact(Θ̂2, ν̂, π̂, τ̂).

Proof. Let r be the rank of C, and let C =
∑n

ℓ=1 λℓuℓu
T
ℓ be a spectral decomposition of C.

Suppose that C = FFT, with F ∈ Rn×k, and r ≤ k ≤ n. Our preliminary goal is to build a

special singular-value decomposition of F .

Let σℓ :=
√
λℓ, for 1 ≤ ℓ ≤ k. Now define vℓ ∈ Rk, for 1 ≤ ℓ ≤ r by vℓ :=

1
σℓ
FTuℓ.

We can easily check that for 1 ≤ i ≤ ℓ ≤ r, we have

vTi vℓ =
1

σiσℓ
uTi FF

Tuℓ =
1

σiσℓ
uiCuℓ =

λℓ
σiσℓ

uTi uℓ =

{
1, for i = ℓ;
0, for i < ℓ.

That is, {vℓ : 1 ≤ ℓ ≤ r} is a set of r orthonormal vectors in Rk. So, for r < ℓ ≤ k, we can

now choose vi so as to complete {vℓ : 1 ≤ ℓ ≤ r} to an orthonormal basis of Rk.

Next, we have
∑k

ℓ=1 σℓuℓv
T
ℓ =

∑r
ℓ=1 σℓuℓv

T
ℓ =

∑r
ℓ=1 uℓu

T
ℓ F =

∑n
ℓ=1 uℓu

T
ℓ F = InF = F,

and so we can conclude that F =
∑k

ℓ=1 σℓuℓv
T
ℓ is a singular-value decomposition for F .

The important takeaway is that the uℓ ∈ Rn (1 ≤ ℓ ≤ n) and the nonzero σℓ (1 ≤ ℓ ≤ r)

in the singular-value decomposition that we constructed for F only depend on C, not on the

particular factorization C = FFT.

It is convenient now to establish that in a factorization matrix F , we can without loss of

generality take k = n, by appending 0 columns to F if needed, and this will not affect the

bound zDFact(C, s, A, b;F). Let F̄ := [F | 0n×(n−k)], and consider

Θ̄ =

(
Θ̂ ×
× ×

)
∈ Sn+ .

It is easy to check that F̄ Θ̄F̄T = F Θ̂FT. By Cauchy’s eigenvalue interlacing inequalities

(see (Horn and Johnson, 1985), for example), we have λℓ+n−k(Θ̄) ≤ λℓ(Θ̂), for 1 ≤ ℓ ≤ k.

Therefore, we have zDFact(C, s, A, b; F̄) ≥ zDFact(C, s, A, b;F). Conversely, suppose that Θ̂ ∈
Sk+ . Now define

Θ̄ :=

(
Θ̂ 0T

0 λ1(Θ̂)In−k

)
∈ Sn+ .

As above, we have F̄ Θ̄F̄T = F Θ̂FT. And by construction, we have λℓ+n−k(Θ̄) = λℓ(Θ̂), for

1 ≤ ℓ ≤ k. And therefore, we have zDFact(C, s, A, b; F̄) ≤ zDFact(C, s, A, b;F).

With this we can now conclude that if we have two different factorizations of C, say

C = FjF
T
j for j = 1, 2, we can without loss of generality assume for each that Fj has

k = n columns, and further that we can choose singular-value decompositions of the form

51

Fj = UΣV T
j , where here we now take U , Σ, V1 and V2 to all be n × n. Right multiplying

UΣV T
2 = F2 by V2V

T
1 , we get UΣV T

2 V2V
T
1 = F2V2V

T
1 and so F1 = F2V2V

T
1 .

Finally, for Θ1 ≻ 0, we have F1Θ1F
T
1 = F2V2V

T
1 Θ1V1V

T
2 F

T
2 , and so by taking Θ2 :=

V2V
T
1 Θ1V1V

T
2 , we get F1Θ1F

T
1 = F2Θ2F

T
2 , with Θ2 being similar to Θ1. Therefore, we have

that λℓ(Θ1) = λℓ(Θ2), for all ℓ, and so we can transform any feasible solution of DFact with

respect to factor F := F1 into a feasible solution of DFact having the same objective value

with respect to factor F := F2. The result follows.

Corollary 3.3. The value of the factorization bound is independent of the factorization.

Remark. Cor. 3.3 follows directly from Thm. 3.2. We note that the proof of Thm. 3.2 not

only confirms the statement in Cor. 3.3, but also presents a methodology for constructing

a feasible solution (Θ̂2, υ̂, ν̂, π̂, τ̂) to DFact for a given factorization of C, from a feasible

solution (Θ̂1, υ̂, ν̂, π̂, τ̂) to DFact for any other factorization, where both solutions have the

same objective value with respect to the corresponding factor. In §3.2.3, we also present a

short proof for Cor. 3.3.

Next, we establish that the factorization bound for MESP dominates the spectral bound

for MESP. While the spectral bound is much cheaper to compute, because of this result,

there is never any point of computing the spectral bound if we have already computed

the factorization bound. In another way of thinking, if the spectral bound comes close to

allowing us to discard a subproblem in the context of branch-and bound, it should be well

worth computing the factorization bound to attempt to discard the subproblem.

Theorem 3.4. Let C ∈ Sn+, with r := rank(C), and s ≤ r. Then, for all factorizations

C = FFT, we have zDFact(C, s, ·, · ;F) ≤
∑s

ℓ=1 log λℓ(C) .

Proof. Let C =
∑n

ℓ=1 λℓ(C)uℓu
T
ℓ be a spectral decomposition of C. Because λℓ = 0 for

ℓ > r, C =
∑n

ℓ=1 λℓ(C)uℓu
T
ℓ =

∑r
ℓ=1 λℓ(C)uℓu

T
ℓ . By Thm. 3.2, it suffices to take F to be the

symmetric matrix
∑r

ℓ=1

√
λℓ(C)uℓu

T
ℓ .

We consider the solution for DFact given by: Θ̂ := C† + 1
λr(C)

(
I − CC†), where C† :=∑r

ℓ=1
1

λℓ(C)
uℓu

T
ℓ is the Moore-Penrose pseudoinverse of C, υ̂ := e − diag(F Θ̂FT), ν̂ := 0,

π̂ := 0, and τ̂ := 1. We can verify that the r least eigenvalues of Θ̂ are 1
λ1(C)

, 1
λ2(C)

, . . . , 1
λr(C)

and the n− r greatest eigenvalues are all equal to 1
λr(C)

. Therefore, Θ̂ is positive definite.

The equality constraint of DFact is clearly satisfied at this solution. Additionally, we can

verify that F Θ̂FT =
∑r

ℓ=1 uℓu
T
ℓ . As the positive semidefinite matrix

∑n
ℓ=r+1 uℓu

T
ℓ is equal

to I −
∑r

ℓ=1 uℓu
T
ℓ , we conclude that diag(F Θ̂FT) ≤ e. Therefore, υ̂ ≥ 0, and the solution

constructed is a feasible solution to DFact. Finally, we can see that the objective value of

this solution is equal to the spectral bound. The result then follows.

52

Remark. We note that when C is nonsingular, then F = C1/2, and using the symmetry of

C1/2, it is easy to directly check that with Θ̂ := C−1, τ̂ := 1, υ̂ := ν̂ := 0, and π̂ := 0, we

have a feasible solution of DFact with objective value equal to the spectral bound.

Next, we consider variable fixing, in the context of solving CMESP.

Theorem 3.5. Let

• LB be the objective-function value of a feasible solution for CMESP,

• (Θ̂, υ̂, ν̂, π̂, τ̂) be a feasible solution for DFact with objective-function value ζ̂.

Then, for every optimal solution x∗ for CMESP, we have:

x∗j = 0, ∀ j ∈ N such that ζ̂ − LB < υ̂j ,

x∗j = 1, ∀ j ∈ N such that ζ̂ − LB < ν̂j .

Proof. Consider Fact with the additional constraint xi = 1. The dual becomes then,

min −
∑k

ℓ=k−s+1 log (λℓ (Θ)) + νTe+ πTb+ τs− s− ω

subject to:

diag(FΘFT) + υ − ν − ATπ − τe+ ωej = 0,

Θ ≻ 0, υ ≥ 0, ν ≥ 0, π ≥ 0.

(3.1)

where ω is the new dual variable. Notice that, as long as υ̂j − ω ≥ 0, (Θ̂, υ̂ − ωej, ν̂, π̂, τ̂ , ω)

is a feasible solution of the modified dual, with objective value ζ̂ − ω. So, to minimize

the objective value of our feasible solution of the modified dual, we set ω equal to υ̂j. We

conclude that ζ̂ − υ̂j is an upper bound on the objective value of every solution of CMESP

that satisfies xj = 1. So if ζ̂ − υ̂j < LB, then no optimal solution of CMESP can have

xj = 1.

Similarly, consider Fact with the additional constraint xj = 0. In this case, the new dual

problem is equivalent to (3.1), except that the objective function does not have the term

−ω. Therefore, as long as ν̂j + ω ≥ 0, (Θ̂, υ̂, ν̂ + ωej, π̂, τ̂ , ω) is a feasible solution of this

modified dual with objective value ζ̂ +ω, and to minimize the objective value of the feasible

solution, we set ω equal to −ν̂j. Now, we conclude that ζ̂ − ν̂j is an upper bound on the

objective value of every solution of CMESP that satisfies xj = 0. So if ζ̂ − ν̂j < LB, then

no optimal solution of CMESP can have xj = 0.

Remark. Thm. 3.2 implies that all factorizations have the same power to fix variables.

53

3.2.3 DDFact

While it turns out that the bound given by DFact is generally quite good, and it has the

potential to fix variables at 0/1 values via Thm. 3.5, the model DFact is not easy to solve

directly. We instead present its (equivalent) Lagrangian dual, DDFact, which is much easier

to work with computationally.

Lemma 3.6. (see (Nikolov, 2015, Lem. 13)) Let λ ∈ Rk
+ with λ1 ≥ λ2 ≥ · · · ≥ λk and let

0 < s ≤ k. With the convention λ0 = +∞, there exists a unique integer ι, with 0 ≤ ι < s,

such that

λι >
1
s−ι
∑k

ℓ=ι+1 λℓ ≥ λι+1.

Suppose that λ ∈ Rk
+, and assume that λ1 ≥ λ2 ≥ · · · ≥ λk. Given an integer s with

0 < s ≤ k, let ι be the unique integer defined by Lem. 3.6. We define

ϕs(λ) :=
∑ι

ℓ=1 log (λℓ) + (s− ι) log
(

1
s−ι
∑k

ℓ=ι+1 λℓ

)
.

Next, for X ∈ Sk+, we define Γs(X) := ϕs(λ1(X), . . . , λk(X)). Finally, we define

zDDFact(C, s, A, b;F) := max Γs(F (x))

subject to:

eTx = s, Ax ≤ b, 0 ≤ x ≤ e.

(DDFact)

It is a result of (Nikolov, 2015) that DDFact is a convex program, and that it is in fact

equivalent to the Lagrangian dual of DFact. Checking a Slater’s condition, we have that

zDDFact(C, s, A, b;F) = zDFact(C, s, A, b;F). The advantage of solving DDFact instead of DFact

is that it has many fewer variables. But, variable fixing (see Thm. 3.5) relies on a good

feasible solution of DFact. Moreover, certifying the quality of a feasible solution of DDFact

also requires a good feasible solution of DFact. Motivated by these points, we show how

to construct a feasible solution of DFact from a feasible solution x̂ of DDFact with finite

objective value, with the goal of producing a small gap.

We consider the spectral decomposition F (x̂) =
∑k

ℓ=1 λ̂ℓûℓû
T
ℓ , with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂r̂ >

λ̂r̂+1 = · · · = λ̂k = 0. Notice that rank(F (x̂)) = r̂ ≥ s. Following (Nikolov, 2015), we define

Θ̂ :=
∑k

ℓ=1 β̂ℓûℓû
T
ℓ , where

β̂ℓ :=


1/λ̂ℓ, 1 ≤ ℓ ≤ ι̂;

1/δ̂, ι̂ < ℓ ≤ r̂;

(1 + ϵ)/δ̂, r̂ < ℓ ≤ k,

(3.2)

54

for any ϵ > 0, where ι̂ is the unique integer defined in Lem. 3.6 for λℓ = λ̂ℓ, and δ̂ :=
1
s−ι̂
∑k

ℓ=ι̂+1 λ̂ℓ . From Lem. 3.6, we have that ι̂ < s. Then,

−
∑s

ℓ=1 log
(
β̂ℓ

)
=
∑ι̂

ℓ=1 log
(
λ̂ℓ

)
+ (s− ι̂) log(δ̂) = Γs(F (x̂)). (3.3)

The minimum duality gap between x̂ in DDFact and feasible solutions of DFact of the

form (Θ̂, υ, ν, π, τ) is the optimal value of

min νTe+ πTb+ τs− s

subject to:

υ − ν − ATπ − τe = − diag(F Θ̂FT),

υ ≥ 0, ν ≥ 0, π ≥ 0.

(G(Θ̂))

Note that G(Θ̂) is always feasible (e.g., υ := 0, ν := diag(F Θ̂FT), π := 0, τ := 0). Also,

G(Θ̂) has a closed-form solution for MESP, that is with no side constraints (see (Li and Xie,

2023)).

Next, we restrict our attention to MESP, and we consider the behavior of the optimal value

of G(Θ̂) as a function of ϵ. Let x∗ ∈ {0, 1}n be the support vector of the s greatest elements

of diag(F Θ̂FT). Then the optimal value of G(Θ̂) (and its dual) is diag(F Θ̂FT)Tx∗ − s =∑k
ℓ=1 diag((FÛ)

T Diag(x∗)(FÛ))ℓβ̂ℓ − s, where Û is the matrix having ℓ-th column equal to

ûℓ, for 1 ≤ ℓ ≤ k. It is easy to see that the diagonal elements of (FÛ)TDiag(x∗)(FÛ) are

nonnegative. Therefore, with x∗ fixed,
∑k

ℓ=1 diag((FÛ)
TDiag(x∗)(FÛ))ℓβ̂ℓ is non-decreasing

in ϵ. Now the optimal value of the dual of G(Θ̂), is the point-wise max, over the choices of

x∗ ∈ {0, 1}n satisfying eTx∗ = s. So, the optimal value of the dual of G(Θ̂) is the point-wise

max of linear functions, each of which is non-decreasing in ϵ. And so the optimal value of

the dual is also non-decreasing in ϵ.

For developing a reasonable nonlinear-programming algorithm for DDFact, we need an

expression for the gradient of its objective function.

Theorem 3.7. Let F (x̂) =
∑k

ℓ=1 λ̂ℓûℓû
T
ℓ be a spectral decomposition of F (x̂). Let ι̂ be the

value of ι in Lem. 3.6, where λ in Lem. 3.6 is λ̂ := λ(F (x̂)). If 1
s−ι̂
∑k

ℓ=ι̂+1 λ̂ℓ > λ̂ι̂+1, then,

for j = 1, 2, . . . , n,

∂

∂xj
Γs(F (x̂)) =

ι̂∑
ℓ=1

1

λ̂ℓ
(Fj·ûℓ)

2 +
k∑

ℓ=ι̂+1

s− ι̂∑k
i=ι̂+1 λ̂i

(Fj·ûℓ)
2 .

Proof. Under the hypothesis 1
s−ι̂
∑k

ℓ=ι̂+1 λ̂ℓ > λ̂ι̂+1, in an open neighborhood of λ̂, the value

of ι̂ is constant. We can further check that λ̂ι̂ > λ̂ι̂+1. Therefore, at the associated x̂, we can

55

employ (Tsing, Fan, and Verriest, 1994, Thm. 3.1), and we calculate

∂
∂xj

Γs(F (x̂)) =
∑k

ℓ=1
∂ϕs(λ(F (x̂)))

∂λℓ
hℓj(x̂) ,

where

hℓj(x̂) = ûTℓ
∂F (x̂)

∂xj
ûℓ = ûTℓ F

T
j·Fj·ûℓ = (Fj·ûℓ)

2 .

Calculating

∂ϕs(λ̂)

∂λℓ
=

 1/λ̂ℓ , if ℓ ≤ ι̂;

s−ι̂∑k
i=ι̂+1 λ̂i

, if ℓ > ι̂,

the result follows.

Without the technical condition 1
s−ι̂
∑k

ℓ=ι̂+1 λ̂ℓ > λ̂ι̂+1, the formulae above still give a

subgradient of Γs (see (Li and Xie, 2023) for details).

Finally, considering DDFact, we can now present a short proof for Cor. 3.3.

Proof [Cor. 3.3]. As zDDFact(C, s, A, b;F) = zDFact(C, s, A, b;F), it suffices to show that the

objective value of DDFact at any feasible solution x̂, does not dependent on the factorization

C = FFT. We have that F (x̂) := FT Diag(x̂)F has the same non-zero eigenvalues as

(Diag (x̂))
1
2 FFT (Diag (x̂))

1
2 = (Diag (x̂))

1
2 C (Diag (x̂))

1
2 . The result follows.

3.2.4 linx

For x ∈ [0, 1]n and γ > 0, we define Kγ(x) := γC Diag(x)C +Diag(e− x) in linx.

It turns out that the linx bound is invariant under complementing ((Anstreicher, 2020);

also see (Fampa and Lee, 2022)), while the factorization bound is not; therefore, we can

obtain a different bound value for CMESP by considering the factorization bound on the

complementary problem.

We can give an expression for the gradient and the Hessian of the linx objective func-

tion. Using well-known facts, we can work out that for all x̂ in the domain of the ob-

jective function, we have ∇
(
1
2
ldetKγ(x̂)

)
= 1

2
(diag(γCKγ(x̂)

−1C)− diag(Kγ(x̂)
−1)) , and

∇2
(
1
2
ldetKγ(x̂)

)
=

1
2

(
− γ2(CKγ(x̂)

−1C) ◦ (CKγ(x̂)
−1C)

+ γ
(
(Kγ(x̂)

−1C) ◦ (Kγ(x̂)
−1C) + ((Kγ(x̂)

−1C) ◦ (Kγ(x̂)
−1C))T

)
−Kγ(x̂)

−1 ◦Kγ(x̂)
−1

)
.

56

3.2.5 Mixing

We consider m ≥ 1 convex relaxations for CMESP, indexed by i = 1, . . . ,m:

vi := max
{
fi(Li(x)) : eTx = s, Ax ≤ b, 0 ≤ x ≤ e

}
,

where, for i = 1, . . . ,m, ki ≤ n, Li : Rn → Ski+ are affine functions, and fi : Ski+ → R are

concave functions. We write Li(x) := Li0+Li1x1+ · · ·+Linxn and Lij ∈ Ski , for i = 1, . . . ,m

and j = 0, . . . , n, and we note that the objective functions of DDFact, complementary

DDFact, and linx can be written as fi(Li(x)) (see §3.2.5.1).
For a “weight vector” α ∈ Rm

+ , such that eTα = 1, we define the mixing bound (see (Chen,

Fampa, Lambert, and Lee, 2021) for a more general setting):

v(α) := max
{∑m

i=1 αifi(Li(x)) : eTx = s, Ax ≤ b, 0 ≤ x ≤ e
}
. (mix)

The goal is to minimize the mixing bound over α (and any parameters for the bounds).

We construct the Lagrangian dual of mix for a broad class of cases that covers our ap-

plications of mixing. For i = 1, . . . ,m, we assume that for any given Θ̂i ∈ Ski++, there is a

closed-form solution Ŵi to sup{fi(Wi)− Θ̂i •Wi : Wi ⪰ 0}, such that Θ̂i •Ŵi =: ρi ∈ R and

Ωi : Ski++ → R, is defined by Ωi(Θ̂i) := fi(Ŵi). Furthermore, we assume that the supremum

is +∞ if Θ̂i ⊁ 0.

With the assumptions above, the Lagrangian dual problem of mix is equivalent to

zDmix(C, s, A, b) := min
∑m

i=1 αi

(
Ωi(Θi)− ρi +Θi • Li0

)
+ νTe+ πTb+ τs

subject to:∑m
i=1 αi

(
Θi • Lij

)
+ υj − νj − πTA·j − τ = 0, for j ∈ N,

Θ1 ≻ 0, . . . ,Θm ≻ 0, υ ≥ 0, ν ≥ 0, π ≥ 0.

(Dmix)

Theorem 3.8. Let

• LB be the objective-function value of a feasible solution for CMESP,

• (Θ̂1, . . . , Θ̂m, υ̂, ν̂, π̂, τ̂) be a feasible solution for Dmix with objective-function value ζ̂.

Then, for every optimal solution x∗ for CMESP, we have:

x∗j = 0, ∀ j ∈ N such that ζ̂ − LB < υ̂j ,

x∗j = 1, ∀ j ∈ N such that ζ̂ − LB < ν̂j .

57

Proof. Analogous to the proof of Thm. 3.5.

Next, we generalize to Dmix, the procedure presented in §3.2.3 to construct a feasible

solution of DFact from a feasible solution of DDFact. A good feasible solution for Dmix

can be used to validate the quality of the solution obtained for mix, and to fix variables by

applying the result of Thm. 3.8.

We let x̂ be a feasible solution of mix in the domain of fi and define Ŵi := Li(x̂), for

i = 1, . . . ,m. First, we assume that it is possible to compute Θ̂i, such that Ωi(Θ̂i) = fi(Ŵi),

for i = 1, . . . ,m. Then, the minimum duality gap between x̂ in mix and feasible solutions of

Dmix of the form (Θ̂1, . . . , Θ̂m, υ, ν, π, τ) is the optimal value of the linear program

min νTe+ πTb+ τs−
∑m

i=1 αi

(
ρi − Θ̂i • Li0

)
subject to:

υj − νj − πTA·j − τ = −
∑m

i=1 αi

(
Θ̂i • Lij

)
, for j ∈ N,

υ ≥ 0, ν ≥ 0, π ≥ 0.

(G(Θ̂1, . . . , Θ̂m))

Analogously to G(Θ̂), we can verify that G(Θ̂1, . . . , Θ̂m) is always feasible and has a simple

closed-form solution for MESP; the only differences between G(Θ̂) and G(Θ̂1, . . . , Θ̂m) are

the constant in the objective function and the right-hand side of the constraints.

3.2.5.1 Considering DDFact, complementary DDFact, and linx in mix

Considering fi(Li(x)) as the objective function of DDFact we have fi(·) := Γs(·) and Li(x) :=
FTDiag(x)F , so ki := k, Li0 := 0 and Lij := FT

j·Fj· , for j = 1, . . . , n. We also have

ρi := s and Ωi(Θi) := −
∑k

ℓ=k−s+1 log(λℓ(Θi)). For a given feasible solution x̂ of mix in the

domain of fi and Ŵi := Li(x̂), construct Θ̂i as discussed in §3.2.3, and we see in (3.3), that

Ωi(Θ̂i) = fi(Ŵi).

Considering fi(Li(x)) as the objective function of complementary DDFact we have

fi(·) := Γn−s(·) + ldetC and Li(x) := F−1Diag(e− x)F−T, so ki := k(= n), Li0 := F−1F−T

and Lij := −F−1
j· F

−T
j· , for j = 1, . . . , n. We also have ρi := n − s and Ωi(Θi) :=

−
∑k

ℓ=k−n+s+1 log(λℓ(Θi)) + ldetC. For a given feasible solution x̂ of mix in the domain

of fi and Ŵi := Li(x̂), construct Θ̂i as discussed in §3.2.3, and we see in (3.3), that

Ωi(Θ̂i) = fi(Ŵi).

Considering fi(Li(x)) as the objective of linx we have fi(·) := 1
2
(ldet(·)− s log γ) and

Li(x) := γC Diag(x)C + Diag(e − x), so ki := n, Li0 := I and Lij := γCT
j·Cj· − eje

T
j

, for j = 1, . . . , n. We have ρi := n/2 and Ωi(Θi) := −1
2
(ldet(2Θi) + s log γ). For a

feasible solution x̂ of mix in the domain of fi and Ŵi := Li(x̂), set Θ̂i := 1
2
Ŵ−1
i , and

58

then Ωi(Θ̂i) = fi(Ŵi).

We note that if the objective of mix is a weighted combination of the three functions

mentioned above and x̂ is an optimal solution to mix, then the optimal objective value of

G(Θ̂1, . . . , Θ̂m) is zero, that is, the dual solution constructed to Dmix is also optimal.

3.3 Implementation and experiments

3.3.1 Setup for the computational experiments

(Li and Xie, 2023) worked with solving DDFact with respect to MESP, using a custom-built

Frank-Wolf (see (Frank and Wolfe, 1956)) style code, written in Python. They only worked

with the relaxation, and did not seek to solve MESP to optimality. The linx bound for

CMESP was introduced by (Anstreicher, 2020), where bound calculations were carried out

with the conical-optimization software SDPT3 (see (Toh, Todd, and Tütüncü, 1999)), within

the very-convenient Yalmip Matlab framework (see (Lofberg, 2004)), and a full branch-and-

bound code for MESP was written in Matlab.

In our experiments, we calculate all of our bounds using a single state-of-the-art commer-

cial nonlinear-programming solver, to facilitate fair comparisons between bounding methods,

and also to see what is possible in such a computational setting.

We experimented on instances of MESP and CMESP with linx, DDFact and comple-

mentary DDFact (i.e, DDFact applied to CMESP-comp). We ran our experiments under

Windows, on an Intel Xeon E5-2667 v4 @ 3.20 GHz processor equipped with 8 physical

cores (16 virtual cores) and 128 GB of RAM. We implemented our code in Matlab using

the commercial software Knitro, version 12.4, as our nonlinear-programming solver. Knitro

offers BFGS-based algorithms and Newton-based algorithms to solve nonlinear programs.

In the first case, Knitro only needs function values and gradients from the user, in the lat-

ter, Knitro also needs second derivatives. By experimenting on top of one state-of-the-art

general-purpose nonlinear-programming code, we hoped to get good and rapid convergence

and get running times that can reasonably be compared for the different relaxations. In all

of our experiments we set Knitro parameters1 as follows: algorithm = 3 to use an active-set

method, convex = 1 (true), gradopt = 1 (we provided exact gradients), maxit = 1000. We

set opttol = 10−10, aiming to satisfy the KKT optimality conditions to a very tight toler-

ance. We set xtol = 10−15 (relative tolerance for lack of progress in the solution point) and

feastol = 10−10 (relative tolerance for the feasibility error), aiming for the best solutions

that we could reasonably find.

1see https://www.artelys.com/docs/knitro/2_userGuide.html, for details

59

https://www.artelys.com/docs/knitro/2_userGuide.html

3.3.2 Test instances

To compare the bounds obtained with the three relaxations, we consider four covariance ma-

trices from the literature, with n = 63, 90, 124, 2000. For each matrix, we consider different

values of s defining a set of test instances of MESP. The n = 63 and n = 124 matrices

are benchmark covariance matrices obtained from J. Zidek (University of British Columbia),

coming from an application to re-designing an environmental monitoring network; see (Gut-

torp, Le, Sampson, and Zidek, 1993) and (Hoffman, Lee, and Williams, 2001). The n = 90

matrix is based on temperature data from monitoring stations in the Pacific Northwest of

the United States; see (Anstreicher, 2020). These n = 63, 90, 124 matrices are all nonsingu-

lar. All of these matrices have been used extensively in testing and developing algorithms

for MESP; see (Ko, Lee, and Queyranne, 1995; Lee, 1998; Anstreicher, Fampa, Lee, and

Williams, 1999; Lee and Williams, 2003; Hoffman, Lee, and Williams, 2001; Anstreicher and

Lee, 2004; Burer and Lee, 2007; Anstreicher, 2018, 2020). The largest covariance matrix that

we considered in our experiments is an n = 2000 matrix with rank 949, based on Reddit data,

used in (Li and Xie, 2023) and from (Dey, Mazumder, and Wang, 2022) (also see (Bagroy,

Kumaraguru, and De Choudhury, 2017)). To ameliorate some instability in running times,

for n = 63, 90, 124 we repeated every experiment ten times, and for n = 2000, we repeated

every experiment five times, and present average timing results.

3.3.3 Numerical experiments for n = 63, 90, 124

For the three nonsingular covariance matrices used in our experiments, we solved linx,

DDFact and complementary DDFact, for all 2 ≤ s ≤ n − 1. For each matrix, we present

four plots. In the first plots of Figures 3.1, 3.2 and 3.3, we present the integrality gap for

each bound and each s. Each such gap is given by the difference between the upper bound

computed by solving the relaxation and a lower bound obtained using a heuristic of (Lee,

1998, §4) followed by a simple local search (see (Ko, Lee, and Queyranne, 1995, §4)).
In the second plots of those figures, we present the average wall-clock times (in seconds)

used by Knitro to solve the relaxations. Some observations about the times presented are

important. First, we note that the times depicted on the plots correspond to the applica-

tion of a BFGS-based algorithm to solve DDFact and complementary DDFact, and to the

application of a Newton-based algorithm to solve linx. As an experiment, we also applied a

BFGS-based algorithm to solve linx, not passing the Hessian to the solver, but, as expected,

the results were worse concerning both time and convergence of the algorithm. The differ-

ence between the times can be seen in Table 3.2 (aggregated over s) and Figure 3.5. On

the other hand, we did not apply a Newton-based algorithm to DDFact and complemen-

60

tary DDFact because we cannot guarantee that the objective function of these relaxations

is differentiable at every iterate (of the nonlinear-programming solver). We should also note

that the times shown in the plots for linx do not include the times to compute the value

of the parameter γ in the problem formulation. This parameter value has a great impact

on the linx bound. We present the times to compute them, aggregated over s, in Table

3.2. Finally, we should mention that Knitro did not prove optimality for several instances

solved. However, we could confirm the optimality of all solutions returned by Knitro, up

to the optimality tolerance considered, by constructing a dual solution with duality gap less

than the tolerance, with respect to the primal solution obtained by Knitro. To construct

the dual solutions, we solved various special cases of the linear program G(Θ̂1, . . . , Θ̂m) (see

§3.2.5). For DDFact, the construction uses (3.2), where we took ϵ = 0, which gives us a dual

solution that is feasible within numerical accuracy.

On our experiments with instances of MESP (i.e., no side constraints), these linear pro-

grams have closed-form solutions and the times to compute them are not significant.

In the third plots of Figures 3.1, 3.2 and 3.3, we demonstrate the capacity of the mixing

methodology described in §3.2.5 to decrease the integrality gap. As observed in (Chen,

Fampa, Lambert, and Lee, 2021), the methodology is particularly effective when considering

in mix, a weighted sum of the objective functions of two relaxations, such that the bounds

obtained by each relaxation are close to each other. We exploit this observation in our

experiments. For each covariance matrix, we select one or more pairs of relaxations for

which the integrality-gap curves (presented in the first plots of the figures) cross each other

at some point. Then, we mix these two relaxations and compute new mixed bounds for

all values of s in a promising interval, approximately centered at the point where the two

curves cross. To select the parameter α that weights the objective in mix, we simply apply

a bisection algorithm.

Finally, in the fourth plots of Figures 3.1, 3.2, and 3.3, we demonstrate how effective

the strategy described in Thm.s 3.5 and 3.8 can be to fix variables (e.g., the context could

be fixing variables at the root node of the enumeration tree in applying a branch-and-

bound algorithm). In all of our experiments, we use a fixing threshold of 10−10 which can

be considered as rather safe in the context of the accuracy that we use to compute the

relevant quantities. Although the mixing strategy can decrease the integrality gap for some

instances, in our experiments this improvement is not enough to allow more variables to be

fixed. Therefore, we do not consider the mixed bounds in these plots.

61

3.3.4 Analysis of the results for n = 63, 90, 124

The analysis of the plots for the n = 63 and n = 90 covariance matrices are very similar to

each other and are summarized in the following.

• We see from the first plots of Figures 3.1 and 3.2 that the complementary DDFact

bound is not competitive with the DDFact and linx bounds for these instances. For

most values of s the first bound is much worse than the two others. The complementary

DDFact bound is only a bit better than the DDFact bound for very large values of s

and it is never better than the linx bound. The integrality-gap curves for DDFact and

linx cross at points close to an intermediate value of s. For smaller s, DDFact gives

the best bound and for larger s, linx is the winner.

• Concerning the wall-clock time to compute the bounds, we see again a big disadvantage

of complementary DDFact in the second plots of Figures 3.1 and 3.2. Although it is

faster than DDFact on some instances with large s, we see that on most instances its

time is much longer than the times for the two other relaxations, and with the greatest

variability among the different values of s. The solution of linx is always significantly

faster than the solution of the two other relaxations for these instances. Finally, we

note that the variation in the time to solve linx for all values of s is less than 1%, while

there is a great variability for the other two relaxations.

• We see in the first plots of Figures 3.1 and 3.2 that the curves corresponding to DDFact

and linx cross at points close to intermediate values of s, indicating a promising interval

of values to mix these relaxations for both n = 63 and n = 90. Considering such

intervals, we see in the third plots of Figures 3.1 and 3.2, how mixing DDFact and linx

can in fact, decrease the integrality gap for some instances, being mostly effective for

the values of s for which the DDFact bound and the linx bound are very close to each

other.

• In the fourth plots of Figures 3.1 and 3.2 we verify the increasing capacity to fix

variables as the bound gets stronger. Interestingly, we see that for large values of

s, complementary DDFact bounds can lead to more variables fixed than the better

DDFact bound.

For n = 124, we have a slightly different analysis because, as we see in the first plot of

Figure 3.3, the complementary DDFact bound becomes better than the DDFact bound for

all s larger than an intermediate value. We note that we can observe this same behavior

with the “NLP” relaxation for CMESP used in (Anstreicher, Fampa, Lee, and Williams,

62

1999). Moreover, we see in the first plot of Figure 3.3, two points where the curves cross,

showing three interesting intervals for s, where each one of the three relaxations gives the

best bound. Concerning the wall-clock time, the observations about the second plot of Figure

3.3 are similar to the ones about the second plots of Figures 3.1 and 3.2, confirming that

the time to solve linx is shorter and with a smaller variability with s, when compared to

the two other relaxations. In the third plot of Figure 3.3, we exploit the three crossing

points of the integrality-gap curves for n = 124, and show separately the capacity of the

mixing methodology to decrease the gaps when we mix the two relaxations corresponding to

each crossing point. It is interesting to note that the mixing methodology is more effective

when the crossing curves are less flat at those points, that is, when the gaps change faster

as s changes. Finally, we have different observations about the fourth plot of Figure 3.3

when compared to the smaller instances, concerning the capacity of the relaxations to fix

variables. As DDFact and complementary DDFact lead to very small integrality gaps at

both ends of the curves, we observe in the fourth plot of Figure 3.3 their stronger capacity

of fixing variables on the corresponding values of s, when compared to linx. For n = 124,

we see that linx gives the best bounds for intermediate values of s only. These are clearly

the most difficult instances for n = 124. Therefore, the integrality gap is usually not small

enough on these instances to allow variable fixing.

3.3.5 Numerical experiments with the large instance (n = 2000)

The bounds computed for the n = 2000 matrix are analyzed in Figure 3.4. As this larger

matrix is singular, we could not apply the complementary DDFact relaxation to obtain

a bound. In the first plot, we present the integrality gaps for DDFact and linx for all

20 ≤ s ≤ 200 that are multiples of 20. For lower bounds in computing the gaps, we obtained

them by the same heuristic applied to our smaller instances with n = 63, 90, 124. We clearly

see the superiority of DDFact for this input matrix, for these relatively small values of s,

following the behavior observed for the smaller instances. Concerning the wall-clock time,

we still see in the second plot that linx can be solved faster on the most difficult instances

with s ≥ 100, and once more, we see a very small variability in the times for linx, unlike

what we see for DDFact. The significant rank deficiency of the covariance matrix of these

instances would seem to be a disadvantage for linx relative to DDFact, with regard to the

computational time needed to solve them; this is because the order of the matrix considered

in the objective function of linx is always equal to the order of the covariance matrix, while

for DDFact it is given by its rank. As linx could not fix variables for any value of s, we present

in the third plot only the number of variables fixed for each s, considering the DDFact bound,

63

and we can see that the fixing procedure is very effective when s ≤ 80 .

Our success with fixing using the DDFact bound on the n = 2000 matrix, for s =

20, 40, 60, 80, gave us some hope to solve these instances to optimality, or at least reduce

them to a size where we could realistically hope that branch-and-bound could succeed. So

we devised an iterative fixing scheme, applying fixing to a sequence of reduced instances,

with the goal of solving to optimality or at least fixing substantially more variables. At

each iteration, we calculated and attempted to fix based on the DDFact bound and the

linx bound. We re-applied the heuristic for a reduced problem, in case it could improve on

the lower bound of its parent. Even though the linx bound cannot fix any variables at the

first iteration, for s = 20, 40, 60, it enabled us to fix more variables for reduced problems.

For s = 20, 40, 60, we could solve to optimality. The results are summarized in Table 3.1,

where s′ and n′ are the parameters for reduced problems, by iteration, and ∗ indicates the

iteration where we can assert that fixing identified the optimal solution. Unfortunately, for

s = 80, linx could not fix anything after one round of DDFact fixing. We noted that for

s = 20, 40, 60, the heuristic applied to the n = 2000 root instance gave what turned out to

be the optimal solution. It is possible that we did not succeed on s = 80 because our lower

bound is not strong enough.

We carried out some additional experiments for the n = 2000 matrix, with s =

860, 880, . . . , 940 (recall that the rank of C is 949). For these instances, DDFact is very

hard for Knitro to solve: the solution times for DDFact are an order of magnitude larger

as compared to the instances with 20 ≤ s ≤ 200; this is not the case for linx. Additionally,

Knitro failed to converge for s = 920. In any case, for all of these problems that we could

solve, we had huge integrality gaps, and no variables could be fixed based on either linx or

DDFact.

3.3.6 More specifics about the computational time

In Table 3.2, we show means and standard deviations of the average wall-clock times (in

seconds) for the main procedures considered in our experiments and for each n. For n =

63, 90, 124, the statistics consider the solution for all 2 ≤ s ≤ n − 1. For n = 2000, the

statistics consider all 20 ≤ s ≤ 200 that are multiples of 20.

In Table 3.2, the columns “DDFact”, “DDFactcomp” and “linx (Newton)” summarize

information depicted in the second plots of Figures 3.1, 3.2, and 3.3. For each n, the mean

and standard deviation of the times increase in the order: linx, DDFact, complementary

DDFact, and the means and standard deviations are all significantly better for linx.

In Table 3.2, the column “linx (BFGS)” presents the mean and standard deviation of

64

the times (across all s) when linx is solved by Knitro without passing the Hessian of the

objective function to the solver, i.e., with the application of a BFGS-based algorithm. We

see that not passing the Hessian of the objective function to the solver leads to a significant

increase in the solution time, and also in the variability of the times across the different

values of s. Although we can see performance aggregated over s in the “linx (Newton)” and

“linx (BFGS)” columns, in Figure 3.5, we get a more complete view of the strong dominance,

across most s for each input matrix C. We have plotted the time for linx (Newton) divided

by time for linx (BFGS), against s/n. With the vast majority of the ratios being less than

one for each input matrix, and this emphatically being the case for the n = 2000 matrix, we

can confidently recommend passing the Hessian to Knitro when solving linx.

In Table 3.2, the column “γ (Newton)” in Table 3.2 presents statistics for the time used

to compute the value of the parameter γ used in linx across the different s. To optimize

γ we do a one-dimensional search, exploiting the fact that the linx bound is convex in the

logarithm of γ (see (Chen, Fampa, Lambert, and Lee, 2021)), and we use Knitro passing

the Hessian at each iteration of the one-dimensional search. We observe that, compared to

solving linx, optimizing γ is very expensive, however, we should note that the optimization

procedure applied had no concern with time. When time is relevant, as in the context of

a branch-and-bound algorithm, we can apply a faster procedure, like the one applied in

(Anstreicher, 2020). Furthermore, we should notice that in a branch-and-bound context, the

linx bound is computed for each subproblem considered, but the parameter γ should not be

optimized for every one of them. As done in (Anstreicher, 2020), it would be more efficient

to use the same parameter value as the one used on the parent node most of the times.

3.3.7 Some experiments with CMESP

To illustrate the application of our bounds to CMESP, we repeated the experiments per-

formed with the instances of MESP with covariance matrix of dimension n = 63 and

5 ≤ s ≤ 47, but now including five side constraints aTi x ≤ bi, for i = 1, . . . , 5. The left-hand

side of constraint i is given by a uniformly-distributed random vector ai with integer compo-

nents between 1 and 5. The right-hand side of the constraints was selected so that, for every

5 ≤ s ≤ 47, the best known solution x∗(s) of the instance of MESP is violated by at least one

constraint. For that, each bi was selected as the 80-th percentile of the values aTi x
∗(s) − 1,

for all 5 ≤ s ≤ 47. We note that when considering side constraints, the linear program

G(Θ̂1, . . . , Θ̂m) does not have a closed-form solution. In this case, we solve it with Knitro.

The time needed to calculate the dual solution with the Knitro linear-programming solver is

no more than 5% of the time needed to calculate the DDFact bound or the complementary

65

DDFact bound. However, for the linx bound, the variability of the times is large; for some

instances, the time needed to construct the dual solution can even exceed the time needed

to calculate the linx bound.

In Figure 3.6 we present plots for CMESP, analogous to those shown in Figure 3.1 for

MESP, considering our instances of dimension n = 63. We have a very similar analysis of the

results presented in both figures, illustrating the robustness of our approach when including

side constraints to MESP.

3.4 Concluding remarks

We developed useful properties of the DDFact bound, aimed at guiding computational prac-

tice. In particular, we saw that (i) the DDFact bound is invariant under the factorization of

the input matrix C, (ii) the DDFact bound cannot be improved by scaling C, and (iii) the

DDFact bound dominates the spectral bound. We developed a fixing scheme for DDFact, we

showed how to mix DDFact with linx and with complementary DDFact (see (Chen, Fampa,

Lambert, and Lee, 2021, §7)) for general comments on how and when mixing could poten-

tially be employed within B&B), and we gave a general variable-fixing scheme for mixings.

Overall, we found that working with a general-purpose NLP solver is quite practical for

solving linx and DDFact relaxations of CMESP. For DDFact, this is despite the fact that

its objective function is not guaranteed to be smooth at all iterates (of the NLP solver).

We found that for linx, which has a smooth objective function, passing the Hessian to the

NLP solver is quite effective; the running times are much better, in mean and variance,

compared to a BFGS-based approach. We found that various mixings of linx, DDFact and

complementary DDFact can lead to improved bounds. We found that fixing can be quite

effective for DDFact and complementary DDFact. Unfortunately, we did not find mixing

to be useful for fixing additional variables, as compared to fixing variables based on each

relaxation separately, on the benchmark instances that we experimented with. But we did

find iterative fixing, employing the linx and DDFact fixing rules in concert, to be quite

effective on large and difficult instances; for the n = 2000 matrix and s = 20, 40, 60, we

could find and verify optimal solutions for the first time, and without any branching.

In future work, we plan to develop a full B&B implementation aimed at solving difficult

instances of CMESP to optimality. Our experiments on benchmark covariance matrices

indicate that such an approach should use both the linx and DDFact bounds. In particular,

linx often seems to be valuable for the large values of s (where DDFact deteriorates). We

can hope that variable fixing can be exploited for subproblems, and we expect mixing to be

most valuable for subproblems having s near the middle of the range.

66

Additionally, we plan on working further on improving the algorithmics for the DDFact

relaxation, for modern settings in which the order n of the covariance matrix greatly exceeds

its rank r. Specifically: (i) we plan to take better advantage of the fact that the matrix in

the objective function of DDFact is order r while in linx it is order n; (ii) while the objective

function of DDFact is not guaranteed to be smooth at all iterates, we found that it usually

is, and so we plan to use second-order information to improve convergence.

67

Iter s′ n′ s′ n′ s′ n′ s′ n′

0 20 2000 40 2000 60 2000 80 2000
1 20 28 40 58 60 110 80 442
2 2 7 6 13 22 68
3 ∗ ∗ 3 4 16 24
4 1 2 1 2
5 ∗ ∗ ∗ ∗

Table 3.1: Iterated fixing for n = 2000

n
DDFact DDFactcomp linx (Newton) linx (BFGS) γ (Newton)

mean std mean std mean std mean std mean std

63 0.1807 0.0828 0.2756 0.2496 0.0459 0.0061 0.0518 0.0092 0.4202 0.0832
90 0.3653 0.1327 0.4163 0.2398 0.0629 0.0094 0.0849 0.0202 0.6727 0.1376
124 0.5023 0.2373 0.7451 0.3892 0.0874 0.0142 0.1005 0.0177 1.3043 0.2675
2000 461.49 536.37 - - 133.69 17.54 542.93 530.50 2242.90 645.37

Table 3.2: Wallclock time (sec)

68

10 20 30 40 50 60

s

0

0.5

1

1.5

2

2.5

In
te

gr
al

ity
 G

ap

DDFact
DDFactcomp
Linx

10 20 30 40 50 60

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
al

lC
lo

ck
 T

im
e

(s
ec

on
ds

)

DDFact
DDFactcomp
Linx

15 20 25 30 35 40

s

0.35

0.4

0.45

0.5

0.55

0.6

0.65

In
te

gr
al

ity
 G

ap

DDFact
Linx
Mix_DDFact_Linx

10 20 30 40 50 60

s

0

10

20

30

40

50

60

70

N
um

be
r

of
 F

ix
ed

 V
ar

ia
bl

es

DDFact
DDFactcomp
Linx

Figure 3.1: Bounds/times comparison and effect of the mixing and variable-fixing method-
ologies for n = 63

69

10 20 30 40 50 60 70 80

s

0

0.5

1

1.5

2

2.5

3

3.5

4

In
te

gr
al

ity
 G

ap

DDFact
DDFactcomp
Linx

10 20 30 40 50 60 70 80

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
al

lC
lo

ck
 T

im
e

(s
ec

on
ds

)

DDFact
DDFactcomp
Linx

35 40 45 50 55 60

s

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

In
te

gr
al

ity
 G

ap

DDFact
Linx
Mix_DDFac_Linx

10 20 30 40 50 60 70 80

s

0

10

20

30

40

50

60

70

80

90

N
um

be
r

of
 F

ix
ed

 V
ar

ia
bl

es

DDFact
DDFactcomp
Linx

Figure 3.2: Bounds/times comparison and effect of the mixing and variable-fixing method-
ologies for n = 90

70

20 40 60 80 100 120

s

0

1

2

3

4

5

6

In
te

gr
al

ity
 G

ap

DDFact
DDFactcomp
Linx

20 40 60 80 100 120

s

0

0.5

1

1.5

2

2.5

W
al

lC
lo

ck
 T

im
e

(s
ec

on
ds

)

DDFact
DDFactcomp
Linx

45 50 55 60 65 70
s

4

4.5

5

5.5

6

In
te

gr
al

ity
 G

ap

39 40 41 42 43 44 45 46
s

2.5

3

3.5

4

In
te

gr
al

ity
 G

ap

72 74 76 78 80 82 84 86 88 90
s

2.5

3

3.5

4

In
te

gr
al

ity
 G

ap DDFact
DDFactcomp
Linx
Mix DDFact_DDFactcomp
Mix DDFact_Linx
Mix DDFactcomp_Linx

20 40 60 80 100 120

s

0

20

40

60

80

100

120

140

N
um

be
r

of
 F

ix
ed

 V
ar

ia
bl

es

DDFact
DDFactcomp
Linx

Figure 3.3: Bounds/times comparison and effect of the mixing and variable-fixing method-
ologies for n = 124

71

20 40 60 80 100 120 140 160 180 200

s

0

5

10

15

20

25

In
te

gr
al

ity
 G

ap

DDFact
Linx

20 40 60 80 100 120 140 160 180 200

s

0

200

400

600

800

1000

1200

1400

1600

1800

W
al

lC
lo

ck
 T

im
e

(s
ec

on
ds

)

DDFact
Linx

20 40 60 80 100 120 140 160 180 200

s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N
um

be
r

of
 F

ix
ed

 V
ar

ia
bl

es

DDFact

Figure 3.4: Bounds/times comparison and effect of the variable-fixing methodology for n =
2000

72

s/n
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
ew

to
n/

B
F

G
S

 ti
m

es

n=63
n=90
n=124
n=2000

Figure 3.5: Newton/BFGS time for linx

73

5 10 15 20 25 30 35 40 45

s

0

0.5

1

1.5

2

2.5

In
te

gr
al

ity
 G

ap

DDFact
DDFactcomp
Linx

5 10 15 20 25 30 35 40 45

s

0

0.2

0.4

0.6

0.8

1

1.2

W
al

lC
lo

ck
 T

im
e

(s
ec

on
ds

)

DDFact
DDFactcomp
Linx

39 40 41 42 43 44 45 46 47
s

0.4

0.6

0.8

1

1.2

In
te

gr
al

ity
 G

ap

15 20 25 30 35 40
s

0.4

0.45

0.5

0.55

0.6

In
te

gr
al

ity
 G

ap

DDFact
DDFact_comp
Linx
Mix DDFact_DDFactcomp
Mix DDFact_Linx

5 10 15 20 25 30 35 40 45

s

0

5

10

15

20

25

30

35

40

45

N
um

be
r

of
 F

ix
ed

 V
ar

ia
bl

es

DDFact
DDFactcomp
Linx

Figure 3.6: Bounds/times comparison and effect of the mixing and variable-fixing method-
ologies for n = 63 with 5 side constraints (CMESP)

74

CHAPTER 4

Generalized Scaling for the Constrained

Maximum-Entropy Sampling Problem

An early/short version of the work in this chapter was published as:

Zhongzhu Chen, Marcia Fampa, Jon Lee. Generalized scaling for the constrained maximum-

entropy sampling problem. Proceedings of ACDA 2023, 110-118. https://doi.org/10.

1137/1.9781611977714.10

A complete version was distributed as:

Zhongzhu Chen, Marcia Fampa, Jon Lee. Generalized scaling for the constrained maximum-

entropy sampling problem. https://arxiv.org/abs/2302.04934

4.1 Introduction

A standard and computationally-important bound-enhancement technique for CMESP is

scaling, as introduced in chapter 1. Scaling adjusts the shape of continuous relaxations to

reduce the gaps between the upper bounds and the optimal value. We extend this technique

to generalized scaling, employing a positive vector of parameters, which allows much more

flexibility and thus significantly reduces the gaps further. Specifically, we generalize the

idea of scaling to the vector case and apply it to three different upper bounds: the BQP

bound, as well as the state-of-the-art linx and factorization bounds. Throughout, we let

Υ := (γ1, γ2, . . . , γn)
T ∈ Rn

++ be a “scaling vector”. We refer to our technique as g-scaling

(i.e., general scaling) and the corresponding bounds as g-scaled (i.e., generalized scaled), and

when all elements of Υ are equal, we say o-scaling (i.e., ordinary scaling) and o-scaled (i.e.,

ordinary scaled). If all elements of Υ are equal to 1, we say un-scaled. In general, setting all

of the elements of Υ to be equal, g-scaling reduces to o-scaling. This means that g-scaling can

provide an upper bound that is at least as good as o-scaling. Moreover, as we will see later,

g-scaling can often provide significantly improved upper bounds compared to o-scaling. We

75

https://doi.org/10.1137/1.9781611977714.10
https://doi.org/10.1137/1.9781611977714.10
https://arxiv.org/abs/2302.04934

give mathematical results aimed at supporting algorithmic methods for computing optimal

generalized scalings, and we give computational results demonstrating the performance of

generalized scaling on benchmark problem instances.

In §4.2, we introduce the g-scaled BQP bound and establish its convexity in the log of

the scaling vector, generalizing an important and practically-useful result for o-scaling (see

(Chen, Fampa, Lambert, and Lee, 2021, Theorem 11)). In §4.3, we introduce the g-scaled linx

bound and establish its convexity in the log of the scaling vector, generalizing another very

important and practically-useful result for o-scaling (see (Chen, Fampa, Lambert, and Lee,

2021, Theorem 18)). These convexity results are key for the tractability of globally optimizing

the scaling, something that we do not have for general bound “masking”1 (see (Anstreicher

and Lee, 2004; Burer and Lee, 2007) for this, in the context of the “spectral bound”). In

§4.4, we introduce the “g-scaled factorization bound”. Here, we also establish “generalized-

differentialbility” results for the factorization bound (for the first time), which are essential

for the fast and stable calculation of the factorization bound (even using general-purpose

nonlinear-optimization software) and for globally optimizing the scaling vector. We are also

able to establish that for MESP, the all-ones vector is a stationary point for the “factorization

bound” as a function of the scaling vector. Therefore, in contrast to the “BQP bound” and

the “linx bound”, g-scaling is unlikely to help the factorization bound for MESP. Despite

this, through numerical experiments, we observe that g-scaling can significantly improve

the “factorization bound” for CMESP, while o-scaling cannot help it (see (Chen, Fampa,

and Lee, 2023, Theorem 2.1)). In §4.6, we present results of computational experiments,

demonstrating the improvements on upper bounds and on the number of variables that can

be fixed (using convex duality) due to g-scaling. In §4.7, we make some brief concluding

remarks.

4.2 g-scaled BQP bound

The g-scaled BQP bound is defined as follows. For Υ ∈ Rn
++ and (x,X) ∈ PBQP(n, s), we

now define

fBQP(x,X; Υ) := ldet
(
(Diag(Υ)C Diag(Υ)) ◦X +Diag(e− x)

)
− 2

∑n
i=1 xi log γi ,

1This is a related bound-improvement technique where we preprocess C by taking its Hadamard product
with a correlation matrix.

76

with domain

dom (fBQP; Υ) :=
{
(x,X) ∈ Rn × Sn :

(
Diag(Υ)C Diag(Υ)

)
◦X +Diag(e− x) ≻ 0

}
.

The g-scaled BQP bound is defined as

zBQP(Υ) := max {fBQP(x,X; Υ) : (x,X) ∈ PBQP(n, s)} . (gscaling-BQP)

We say x is feasible to gscaling-BQP if x satisfies all the constraints in gscaling-BQP.

Note that we can interpret gscaling-BQP as applying the un-scaled BQP bound to the

symmetrically-scaled matrix Diag(Υ)C Diag(Υ), and then correcting by −2
∑n

i=1xi log γi .

Theorem 4.1. For all Υ ∈ Rn
++ , the following hold:

4.1.i. zBQP(Υ) is a valid upper bound for the optimal value of CMESP, i.e., z(C, s, A, b) ≤
zBQP(Υ);

4.1.ii. the function fBQP(x,X; Υ) is concave in (x,X) on dom (fBQP; Υ) and continuously dif-

ferentiable in (x,X,Υ) on dom (fBQP; Υ)× Rn
++ ;

4.1.iii. for fixed (x,X) ∈ dom (fBQP; Υ), fBQP(x,X; Υ) is convex in log Υ, and thus zBQP(Υ) is

convex in log Υ.

Remark. (Anstreicher, 2018) established Theorem 4.1.i for Υ := γe, with γ ∈ R++ . We

generalize this result to Υ ∈ Rn
++ . The concavity in Theorem 4.1.ii is a result of (Anstre-

icher, 2018), with details filled in by (Fampa and Lee, 2022, Section 3.6.1). Theorem 4.1.iii

significantly generalizes a result of (Chen, Fampa, Lambert, and Lee, 2021), where it is es-

tablished only for o-scaling: i.e., on {Υ := γe : γ ∈ R++}. The proof of Theorem 4.1.iii

requires new techniques (see the proof below). Additionally, the result is quite important

as it enables the use of readily available quasi-Newton methods (like BFGS) for finding the

globally-optimal g-scaling vector for the gscaling-BQP bound.

Proof of Theorem 4.1. 4.1.i: It is enough to prove that there is a feasible solution to gscaling-

BQP with objective value equal to the optimal value of CMESP. In fact, let x∗ ∈ {0, 1}n

be an optimal solution to CMESP with support S (x∗), and define X∗ := x∗ (x∗)T.

Without loss of generality, we assume that S (x∗) = {1, . . . , s}, i.e., x∗ =

(
es

0

)
and

X∗=

(
Is 0

0 0

)
. Clearly, (x∗, X∗) ∈ dom (fBQP; Υ) and is feasible to gscaling-BQP. Let

77

ΥS(x∗) be the sub-vector of Υ indexed by S (x∗), then

fBQP (x
∗, X∗; Υ)

= ldet
((

Diag(Υ)C Diag(Υ)
)
◦X∗ +Diag(e− x∗)

)
− 2

∑n
i=1 x

∗
i log γi

= ldet

(
ΥS(x∗)C (S(x∗), S(x∗))ΥS(x∗) 0

0 In−s

)
− 2

∑
i∈S(x∗) x

∗
i log γi

= ldetC (S(x∗), S(x∗)) .

4.1.ii: The concavity is essentially a result of (Anstreicher, 2018), with details filled in by

(Fampa and Lee, 2022, Section 3.6.1). The continuous differentiability comes from the

analyticity of fBQP (x,X; Υ) in (x,X,Υ) ∈ dom (fBQP; Υ)× Rn
++ .

4.1.iii: We sketch the proof first:

1. for fixed (x,X) ∈ dom (fBQP; Υ), we derive the Hessian of fBQP (x,X; Υ) with

respect to logΥ and show that it is positive-semidefinite, which implies the con-

vexity of fBQP (x,X; Υ) in logΥ;

2. The convexity of zBQP(Υ) in logΥ then follows because zBQP(Υ) is the point-

wise maximum of fBQP (x,X; Υ) over feasible (x,X) for gscaling-BQP in domain

dom (fBQP; Υ).

The detailed proof is as follows. For convenience, let

FBQP(x,X; Υ) :=
(
Diag(Υ)C Diag(Υ)

)
◦X +Diag(e− x), and

ABQP(X; Υ) :=
(
Diag(Υ)C Diag(Υ)

)
◦X.

In the following derivation, we will consider (x,X) ∈ dom
(
fBQP; Υ

)
fixed, and regard Υ

as a variable. Thus, for simplicity, we write FBQP(x,X; Υ) and ABQP(X; Υ) as FBQP(Υ)

and ABQP(Υ), respectively.

Let x̌ := x− e, and we use the identities

FBQP(Υ)−1ABQP(Υ) = I + FBQP(Υ)−1Diag(x̌), (4.1)

ABQP(Υ)FBQP(Υ)−1 = I +Diag(x̌)FBQP(Υ)−1. (4.2)

78

We first derive the gradient of fBQP (x,X; Υ) with respect to Υ.

∂fBQP(x,X;Υ)

∂γi
= FBQP(Υ)−1 • ∂ABQP(Υ)

∂γi
− 2xi

γi

= FBQP(Υ)−1 • 1
γi
(EiiABQP(Υ) + ABQP(Υ)Eii)− 2xi

γi

= 1
γi

(
ABQP(Υ)i·FBQP(Υ)−1

·i + FBQP(Υ)−1
i· ABQP(Υ)·i − 2xi

)
= 1

γi

(
2FBQP(Υ)−1

i· ABQP(Υ)·i − 2xi
)
,

where the last identity follows from the symmetry of FBQP(Υ) and ABQP(Υ). Then,

applying (4.1), we obtain

∂fBQP(x,X;Υ)

∂Υ
= 2Diag(Υ)−1 (diag (FBQP(Υ)−1Diag(x̌))− x̌) .

Next, we derive the Hessian of fBQP (x,X; Υ) with respect to Υ. Note that

1
2

∂2fBQP(x,X;Υ)

∂Υ∂γi
= 1

2
∂
∂γi

(
∂fBQP(x,X;Υ)

∂Υ

)
= ∂Diag(Υ)−1

∂γi
(diag (FBQP(Υ)−1Diag(x̌))− x̌)

+ Diag(Υ)−1 ∂(diag(FBQP(Υ)−1 Diag(x̌))−x̌)
∂γi

= ∂Diag(Υ)−1

∂γi
(diag (FBQP(Υ)−1Diag(x̌))− x̌)

−Diag(Υ)−1 diag
(
FBQP(Υ)−1 ∂FBQP(Υ)

∂γi
FBQP(Υ)−1Diag(x̌)

)
= − 1

γ2i
Eii (diag (FBQP(Υ)−1Diag(x̌))− x̌)

−Diag(Υ)−1 diag

(
FBQP(Υ)−1 (EiiABQP(Υ)+ABQP(Υ)Eii)

γi
FBQP(Υ)−1Diag(x̌)

)
.

The first term in this last expression can be reformulated as

− 1
γ2i
Eii (diag (FBQP(Υ)−1Diag(x̌))− x̌)

= −Diag (Υ)−1Diag
(
diag

(
FBQP(Υ)−1Diag(x̌)

)
− x̌
)
Diag (Υ)−1 ei ,

while for the second term, we use (4.1) and (4.2), and we obtain

diag
(
FBQP(Υ)−1 (EiiABQP(Υ) + ABQP(Υ)Eii)FBQP(Υ)−1Diag(x̌)

)
= diag

(
FBQP(Υ)−1EiiDiag(x̌)

)
+ diag

(
EiiFBQP(Υ)−1Diag(x̌)

)
+ diag

(
FBQP(Υ)−1EiiDiag(x̌)FBQP(Υ)−1Diag(x̌)

)
+ diag

(
FBQP(Υ)−1Diag(x̌)EiiFBQP(Υ)−1Diag(x̌)

)

79

= 2 (xi − 1)
((
FBQP(Υ)−1

)
ii
ei
)

+ 2 (xi − 1)
(
diag

(
FBQP(Υ)−1EiiFBQP(Υ)−1Diag(x̌)

))
= 2Diag (x̌)Diag

(
diag

(
FBQP(Υ)−1

))
ei

+ 2Diag (x̌)
(
FBQP(Υ)−1 ◦ FBQP(Υ)−1

)
Diag(x̌)ei ,

which implies that

−Diag(Υ)−1 diag

(
FBQP(Υ)−1 (EiiABQP(Υ)+ABQP(Υ)Eii)

γi
FBQP(Υ)−1Diag(x̌)

)
= −2Diag(Υ)−1Diag (x̌)Diag

(
diag

(
FBQP(Υ)−1

))
Diag(Υ)−1ei

− 2Diag(Υ)−1Diag (x̌)
(
FBQP(Υ)−1 ◦ FBQP(Υ)−1

)
Diag(x̌)Diag(Υ)−1ei .

Then, we obtain

∂2fBQP(x,X;Υ)

∂Υ2

= −2Diag (Υ)−1Diag
(
diag

(
FBQP(Υ)−1Diag(x̌)

)
− x̌
)
Diag (Υ)−1

− 4Diag(Υ)−1Diag (x̌)Diag
(
diag

(
FBQP(Υ)−1

))
Diag(Υ)−1

− 4Diag(Υ)−1Diag (x̌)
(
FBQP(Υ)−1 ◦ FBQP(Υ)−1

)
Diag(x̌)Diag(Υ)−1.

Finally, we have

∂2fBQP(x,X;Υ)

∂(logΥ)2
= Diag(Υ)

∂fBQP(x,X;Υ)

∂Υ
+Diag(Υ)

∂2fBQP(x,X;Υ)

∂Υ2 Diag(Υ)

= −4Diag (x̌)Diag
(
diag

(
FBQP(Υ)−1

))
− 4Diag (x̌)

(
FBQP(Υ)−1 ◦ FBQP(Υ)−1

)
Diag(x̌)

= 4Diag (e− x)Diag
(
diag

(
FBQP(Υ)−1

))
− 4Diag (e− x)

(
FBQP(Υ)−1 ◦ FBQP(Υ)−1

)
Diag(e− x).

Next, we will show the positive semidefiniteness of
∂2fBQP(x,X;Υ)

∂(logΥ)2
for all 0 ≤ x ≤ e, X ⪰ 0

such that (x,X) ∈ dom (fBQP; Υ). Note that we will not require (x,X) to be feasible

for gscaling-BQP. We analyse two cases.

Case 1: when 0 ≤ x < e and X ⪰ 0, let DBQP(x) := (Diag(e− x))1/2 ≻ 0, and

let HBQP(x,X; Υ) := (DBQP(x))
−1ABQP(Υ) (DBQP(x))

−1 ⪰ 0. Again, for simplicity, we

write DBQP(x) and HBQP(x,X; Υ) as DBQP and HBQP(Υ), respectively. First, we note

80

that

DBQPFBQP(Υ)−1DBQP =
(
D−1

BQPABQP(Υ)D−1
BQP + I

)−1
.

Then, we have

1
4

∂2fBQP(x,X;Υ)

∂(logΥ)2

= Diag
(
diag

(
DBQPFBQP(Υ)−1DBQP

))
−

Diag
(
DBQPFBQP(Υ)−1DBQP

)
◦Diag

(
DBQPFBQP(Υ)−1DBQP

)
=
(
DBQPFBQP(Υ)−1DBQP

)
◦ I−

Diag
(
DBQPFBQP(Υ)−1DBQP

)
◦Diag

(
DBQPFBQP(Υ)−1DBQP

)
= (HBQP(Υ) + I)−1 ◦ I − (HBQP(Υ) + I)−1 ◦ (HBQP(Υ) + I)−1

= (HBQP(Υ) + I)−1 ◦
(
I − (HBQP(Υ) + I)−1) ⪰ 0.

The last inequality holds because HBQP(Υ) + I≻0 and the Schur Product Theorem.

Case 2: now, we discuss the general case 0 ≤ x ≤ e, X ⪰ 0. Note that for Υ ∈
Rn

++,
∂f2BQP(x,X;Υ)

∂(logΥ)2
is analytic in 0 ≤ x ≤ e, X ⪰ 0 such that (x,X) ∈ dom (fBQP; Υ).

Therefore, given 0 ≤ x ≤ e, X ⪰ 0, assume that
∂f2BQP(x,X;Υ)

∂(logΥ)2
̸⪰ 0. Then by the

analyticity (continuity) of
∂f2BQP(x,X;Υ)

∂(logΥ)2
, there exists small enough ϵ > 0 such that for

any 0 ≤ x′ ≤ e, X ′ ⪰ 0 in the intersection of the neighbourhood

Nϵ(x,X) := {(x′, X ′) : ∥x− x′∥∞ + ∥X −X ′∥F ≤ ϵ} ,

(where ∥·∥∞ is the vector infinity-norm, and ∥·∥F is the Frobenius norm) and {(x′, X ′) :

0 ≤ x′ ≤ e, X ′ ⪰ 0, (x′, X ′) ∈ dom (fBQP; Υ)}, we have
∂f2BQP(x

′,X′;Υ)

∂(logΥ)2
̸⪰ 0. On the other

hand, this intersection contains some (x′, X ′) such that 0 ≤ x′ < e, X ′ ⪰ 0, e.g.

(x′, X ′) = (x−
∑

i:xi=1 ϵei, X). This is a contradiction to Case 1.

In conclusion, for each fixed (x,X) ∈ {(x,X) : 0 ≤ x ≤ e, X ⪰ 0, (x,X) ∈
dom (fBQP; Υ)}, we have that fBQP (x,X; Υ) is convex in logΥ. In particular, for

(x,X) ∈ dom (fBQP; Υ) and feasible to gscaling-BQP, fBQP (x,X; Υ) is convex in logΥ.

Finally, as zBQP(Υ) is the point-wise maximum of fBQP (x,X; Υ) over all such (x,X),

then zBQP(Υ) is convex in logΥ.

81

4.3 g-scaled linx bound

The g-scaled linx bound is defined as follows. For Υ ∈ Rn
++ and x ∈ [0, 1]n, we now define

flinx(x; Υ) :=1
2

(
ldet (Diag(Υ)C Diag(x)C Diag(Υ) + Diag(e− x))

)
−
∑n

i=1 xi log γi

with

dom (flinx; Υ) :=
{
x ∈ Rn : Diag(Υ)C Diag(x)C Diag(Υ) + Diag(e− x) ≻ 0

}
.

We then define the g-scaled linx bound

zlinx(Υ) := max
{
flinx(x; Υ) : x ∈ Plinx(n, s)

}
. (gscaling-linx)

We say that x is feasible to gscaling-linx if x satisfies all the constraints in gscaling-linx.

It is very important to note, in contrast to g-scaling for the gscaling-BQP bound, that we

are not applying the ordinary gscaling-linx bound to a symmetric scaling of C. In this way,

g-scaling for the gscaling-linx bound is more subtle. Rather, we are symmetrically scaling

Diag(Υ)C Diag(x)C Diag(Υ). This point would not apply to o-scaling, as scalars commute

through matrix multiplication.

Theorem 4.2. For all Υ ∈ Rn
++ in gscaling-linx, the following hold:

4.2.i. zlinx(Υ) is a valid upper bound for the optimal value of CMESP, i.e.,

z(C, s, A, b) ≤ zlinx(Υ);

4.2.ii. the function flinx(x; Υ) is concave in x on dom (flinx; Υ) and continuously differentiable

in (x,Υ) on dom (flinx; Υ)× Rn
++ ;

4.2.iii. for fixed x ∈ dom (flinx; Υ), flinx(x; Υ) is convex in log Υ, and thus zlinx(Υ) is convex in

log Υ.

Remark. (Anstreicher, 2020) established Theorem 4.2.i for Υ := γe, with γ ∈ R++ . We

generalize this result to Υ ∈ Rn
++. The concavity in Theorem 4.2.ii is a result of (Anstreicher,

2020), with details filled in by (Fampa and Lee, 2022). Theorem 4.2.iii generalizes a result of

(Chen, Fampa, Lambert, and Lee, 2021), where it is established only for o-scaling: i.e., on

{Υ = γe : γ ∈ R++}. The proof of Theorem 4.2.iii requires new techniques (see the below).

Additionally, the result is quite important as it enables the use of readily available quasi-

Newton methods (like BFGS) for finding the globally optimal g-scaling for the gscaling-linx

82

bound.

Proof of Theorem 4.2. 4.2.i: It is enough to prove that there is a feasible solution to gscaling-

linx with objective value equal to the optimal value of CMESP. In fact, let x∗ ∈ {0, 1}n

be one optimal solution to CMESP with support S (x∗), and define X∗ := x∗ (x∗)T.

Without loss of generality, we assume that S (x∗) = {1, . . . , s}, i.e., x∗ =

(
es

0

)
. Let

T (x∗) := N\S(x∗) be the complementary set of S(x∗). For convenience, we denote

C̃ := Diag(Υ)C, C̃ST := C̃(S(x∗), T (x∗)), and so on. Note that C̃ is not symmetric.

Also, note that C̃ depends on Υ, and C̃ST depends on Υ, x∗, S(x∗), and T (x∗). We can

write

C̃ Diag(x)C̃T=

(
C̃SS C̃ST

C̃TS C̃TT

)(
Is 0

0 0

)(
C̃T
SS C̃T

TS

C̃T
ST C̃T

TT

)
=

(
C̃SSC̃

T
SS C̃SSC̃

T
TS

C̃T
TSC̃

T
SS C̃TSC̃

T
TS

)
,

and therefore

C̃ Diag(x)C̃T +Diag(e− x) =

(
C̃SSC̃

T
SS C̃SSC̃

T
TS

C̃T
TSC̃

T
SS C̃TSC̃

T
TS + In−s

)
.

Applying the well-known Schur-complement determinant formula, we then obtain

ldet
(
C̃ Diag(x)C̃T +Diag(e− x)

)
= 2 ldet C̃SS + ldet

(
C̃T
TSC̃TS + In−s − C̃T

TSC̃
T
SSC̃

−T
SS C̃

−1
SS C̃SSC̃

T
TS

)
= 2 ldet C̃SS .

Let ΥS(x∗) be the sub-vector of Υ indexed by S(x∗). Then, we have

flinx(x
∗; Υ) = 1

2
ldet

(
C̃ Diag(x)C̃T +Diag(e− x)

)
−
∑

i∈N x
∗
i log γi

= ldet C̃SS −
∑

i∈S(x∗) log γi

= ldet
(
Diag

(
ΥS(x∗)

)
C (S(x∗), S(x∗))

)
−
∑

i∈S(x∗) log γi

= ldetC (S(x∗), S(x∗)) .

4.2.ii: The concavity is essentially a result of (Anstreicher, 2020), with details filled in by

(Fampa and Lee, 2022, Section 3.3.1). The continuous differentiability comes from the

analyticity of flinx(x; Υ) in (x,Υ) ∈ dom (flinx; Υ)× Rn
++ .

4.2.iii: We sketch the proof first:

83

1. for fixed x ∈ dom (flinx; Υ), we derive the Hessian of flinx (x; Υ) with respect to

logΥ and show that it is positive-semidefinite, which implies the convexity of

flinx (x; Υ) in logΥ;

2. The convexity of zlinx(Υ) in logΥ then follows because zlinx(Υ) is the point-wise

maximum of flinx (x; Υ) over feasible x for gscaling-linx in domain dom (flinx; Υ).

The detailed proof is as follows: for convenience, let

Flinx(x; Υ) := Diag(Υ)C Diag(x)C Diag(Υ) + Diag(e− x), and

Alinx(x; Υ) := Diag(Υ)C Diag(x)C Diag(Υ).

In the following derivation, we will fix x and regard Υ as a variable. Thus, for simplicity,

we will write Flinx(x; Υ) and Alinx(x; Υ) as Flinx(Υ) and Alinx(Υ), respectively. Let x̌ :=

x− e, and we note that

Flinx(Υ)−1Alinx(Υ) = I + Flinx(Υ)−1Diag(x̌), (4.3)

Alinx(Υ)Flinx(Υ)−1 = I +Diag(x̌)Flinx(Υ)−1. (4.4)

Given x ∈ dom (flinx; Υ), we first derive the gradient of flinx (x; Υ) with respect to Υ.

We have

∂flinx(x;Υ)
∂γi

= 1
2
Flinx(Υ)−1 • ∂Alinx(Υ)

∂γi
− xi

γi

= 1
2
Flinx(Υ)−1 • 1

γi
(EiiAlinx(Υ) + Alinx(Υ)Eii)− xi

γi

= 1
2γi

((
Alinx(Υ)i·Flinx(Υ)−1

·i + Flinx(Υ)−1
i· Alinx(Υ)·i

)
− 2xi

)
= 1

γi

(
Flinx(Υ)−1

i· Alinx(Υ)·i − xi
)
,

where the last identity follows from the symmetry of Flinx(Υ) and Alinx(Υ). Then,

applying (4.3), we obtain

∂flinx(x;Υ)
∂Υ

= Diag(Υ)−1 (diag (Flinx(Υ)−1Diag(x̌))− x̌) .

Next, we derive the Hessian of flinx (x; Υ) with respect to Υ. We have

∂2flinx(x;Υ)
∂Υ∂γi

= ∂
∂γi

(
∂flinx(x;Υ)

∂Υ

)
= ∂Diag(Υ)−1

∂γi
(diag (Flinx(Υ)−1Diag(x̌))− x̌)

84

+Diag(Υ)−1 ∂(diag(Flinx(Υ)−1 Diag(x̌))−x̌)
∂γi

= ∂Diag(Υ)−1

∂γi
(diag (Flinx(Υ)−1Diag(x̌))− x̌)

−Diag(Υ)−1 diag
(
Flinx(Υ)−1 ∂Flinx(Υ)

∂γi
Flinx(Υ)−1Diag(x̌)

)
= − 1

γ2i
Eii (diag (Flinx(Υ)−1Diag(x̌))− x̌)

−Diag(Υ)−1 diag
(
Flinx(Υ)−1 (EiiAlinx(Υ)+Alinx(Υ)Eii)

γi
Flinx(Υ)−1Diag(x̌)

)
.

For the first term, we can reformulate

− 1
γ2i
Eii (diag (Flinx(Υ)−1Diag(x̌))− x̌)

= −Diag (Υ)−1Diag
(
diag

(
Flinx(Υ)−1Diag(x̌)

)
− x̌
)
Diag (Υ)−1 ei ,

while for the second term, we can reformulate

diag
(
Flinx(Υ)−1 (EiiAlinx(Υ) + Alinx(Υ)Eii)Flinx(Υ)−1Diag(x̌)

)
= diag

(
Flinx(Υ)−1Eii

(
I +Diag(x̌)Flinx(Υ)−1

)
Diag(x̌)

)
+ diag

((
I + Flinx(Υ)−1Diag(x̌)

)
EiiFlinx(Υ)−1Diag(x̌)

)
= diag

(
Flinx(Υ)−1EiiDiag(x̌)

)
+ diag

(
EiiFlinx(Υ)−1Diag(x̌)

)
+ diag

(
Flinx(Υ)−1EiiDiag(x̌)Flinx(Υ)−1Diag(x̌)

)
+ diag

(
Flinx(Υ)−1Diag(x̌)EiiFlinx(Υ)−1Diag(x̌)

)
= 2 (xi − 1)

((
Flinx(Υ)−1

)
ii
ei
)

+ 2 (xi − 1)
(
diag

(
Flinx(Υ)−1EiiFlinx(Υ)−1Diag(x̌)

))
= 2Diag (x̌)Diag

(
diag

(
Flinx(Υ)−1

))
ei

+ 2Diag (x̌)
(
Flinx(Υ)−1 ◦ Flinx(Υ)−1

)
Diag(x̌)ei ,

which implies that

1
γi
Diag(Υ)−1 diag (Flinx(Υ)−1 (EiiAlinx(Υ) + Alinx(Υ)Eii)Flinx(Υ)−1Diag(x̌))

= 2Diag(Υ)−1Diag (x̌)Diag
(
diag

(
Flinx(Υ)−1

))
Diag(Υ)−1ei

+ 2Diag(Υ)−1Diag (x̌)
(
Flinx(Υ)−1 ◦ Flinx(Υ)−1

)
Diag(x̌)Diag(Υ)−1ei .

Finally, we obtain

∂2flinx(x;Υ)
∂Υ2 = −Diag (Υ)−1Diag (diag (Flinx(Υ)−1Diag(x̌))− x̌)Diag (Υ)−1

85

− 2Diag(Υ)−1Diag (x̌)Diag
(
diag

(
Flinx(Υ)−1

))
Diag(Υ)−1

− 2Diag(Υ)−1Diag (x̌)
(
Flinx(Υ)−1 ◦ Flinx(Υ)−1

)
Diag(x̌)Diag(Υ)−1.

Then, we have

∂2flinx(x;Υ)

∂(logΥ)2
= Diag(Υ)∂flinx(x;Υ)

∂Υ
+Diag(Υ)∂

2flinx(x;Υ)
∂Υ2 Diag(Υ)

= −2Diag (x̌)Diag
(
diag

(
Flinx(Υ)−1

))
− 2Diag (x̌)

(
Flinx(Υ)−1 ◦ Flinx(Υ)−1

)
Diag(x̌)

= 2Diag (e− x)Diag
(
diag

(
Flinx(Υ)−1

))
− 2Diag (e− x)

(
Flinx(Υ)−1 ◦ Flinx(Υ)−1

)
Diag(e− x).

Next, we are going to show the positive semidefiniteness of ∂
2flinx(x;Υ)

∂(logΥ)2
for all 0 ≤ x ≤ e

such that x ∈ dom (flinx; Υ). Note that we will not require x to be feasible to gscaling-

linx. We divide the discussion into two cases.

Case 1: when 0 ≤ x < e, let Dlinx(x) := (Diag(e− x))1/2 ≻ 0, and Hlinx(x; Υ)

:= (Dlinx(x))
−1Alinx(Υ) (Dlinx(x))

−1 ⪰ 0. Again for simplicity, we write Dlinx(x) and

Hlinx(x; Υ) as Dlinx and Hlinx(Υ). First, we note

DlinxFlinx(Υ)−1Dlinx =
(
D−1

linxAlinx(Υ)D−1
linx + I

)−1
.

Then, we have

1
2
∂2flinx(x;Υ)

∂(logΥ)2

= Diag
(
diag

(
DlinxFlinx(Υ)−1Dlinx

))
−Diag

(
DlinxFlinx(Υ)−1Dlinx

)
◦Diag

(
DlinxFlinx(Υ)−1Dlinx

)
=
(
DlinxFlinx(Υ)−1Dlinx

)
◦ I

−Diag
(
DlinxFlinx(Υ)−1Dlinx

)
◦Diag

(
DlinxFlinx(Υ)−1Dlinx

)
= (Hlinx(Υ) + I)−1 ◦ I − (Hlinx(Υ) + I)−1 ◦ (Hlinx(Υ) + I)−1

= (Hlinx(Υ) + I)−1 ◦
(
I − (Hlinx(Υ) + I)−1) ⪰ 0.

The last inequality holds because HBQP(Υ) + I≻0 and the Schur Product Theorem.

Case 2: We now discuss general 0 ≤ x ≤ e. Note that given Υ ∈ Rn
++ ,

∂f2linx(x;Υ)

∂(logΥ)2
is

analytical in 0 ≤ x ≤ e such that x ∈ dom (flinx; Υ). Therefore, given 0 ≤ x ≤ e,

assume that
∂f2linx(x;Υ)

∂(logΥ)2
̸⪰ 0. Then by the analyticity (continuity) of

∂f2linx(x;Υ)

∂(logΥ)2
, there

86

exists small enough ϵ > 0 such that for any 0 ≤ x′ ≤ e in the intersection of neigh-

bourhood Nϵ(x) := {x′ : ∥x− x′∥∞ ≤ ϵ} (where ∥ · ∥∞ is the vector infinity norm) and

{x′ : 0 ≤ x′ ≤ e, x′ ∈ dom (flinx; Υ)}, we have
∂f2linx(x;Υ)

∂(logΥ)2
̸⪰ 0. On the other hand, this

intersection contains some x′ such that 0 ≤ x′ < e, e.g. x′ = x −
∑

i:xi=1 ϵei. This

contradicts Case 1.

In conclusion, for each fixed x ∈ {(x,X) : 0 ≤ x ≤ e, x ∈ dom (flinx; Υ)}, flinx (x; Υ)

is convex in logΥ. In particular, for x ∈ dom (flinx; Υ) and feasible to gscaling-

linx, flinx (x; Υ) is convex in logΥ. Finally, as zlinx(Υ) is the point-wise maximum

of flinx (x; Υ) over all such x, we have that zlinx(Υ) is convex in logΥ.

4.4 g-scaled factorization bound

The factorization bound was first analyzed in (Nikolov, 2015), and then developed further in

(Li and Xie, 2023) and in (Chen, Fampa, and Lee, 2023) (see (Fampa and Lee, 2022, Section

3.4) for more details). The definition of the factorization bound is based on the following

key lemma.

Lemma 4.3. (see (Nikolov, 2015, Lemma 14)) Let λ ∈ Rk
+ with λ1 ≥ λ2 ≥ · · · ≥ λk , and let

0 < s ≤ k. There exists a unique integer ι, with 0 ≤ ι < s, such that λι >
1
s−ι
∑k

ℓ=ι+1 λℓ ≥
λι+1 , with the convention λ0 := +∞.

Now, suppose that λ ∈ Rk
+ with λ1 ≥ λ2 ≥ · · · ≥ λk . Given an integer s with 0 < s ≤ k,

let ι be the unique integer defined by Lemma 4.3. We define

ϕs(λ) :=
∑ι

ℓ=1 log λℓ + (s− ι) log
(

1
s−ι
∑k

ℓ=ι+1 λℓ

)
.

Next, for X ∈ Sk+ , we define Γs(X) := ϕs(λ1(X), . . . , λk(X)) where λ1(X) ≥ λ2(X) ≥ · · · ≥
λk(X) are the eigenvalues of X.

Suppose that the rank of C is r ≥ s. Then we factorize C = FFT, with F ∈ Rn×k,

for some k satisfying r ≤ k ≤ n. It has been established (Chen, Fampa, and Lee, 2023,

Theorem 2.2) that the value of the factorization bound is independent of the choice of F .

Consequently, for the sake of simplicity, while certain terms may feature F in their defining

equations, it will not be included as a parameter for such terms.

Now, for Υ ∈ Rn
++ and x ∈ [0, 1]n, we define

FDDFact(x; Υ) :=
∑n

i=1 γixiF
T
i· Fi· , and

87

fDDFact(x; Υ) := Γs(FDDFact(x; Υ))−
∑n

i=1 xi log γi .

Finally, we define the g-scaled factorization bound

zDDFact(Υ) := max
{
fDDFact(x; Υ) : eTx = s, 0 ≤ x ≤ e, Ax ≤ b

}
. (gscaling-DDFact)

The reason for the nomenclature gscaling-DDFact is because it is obtained from the La-

grangian dual of the Lagrangian dual of a nonconvex continuous relaxation of CMESP (see

(Chen, Fampa, and Lee, 2023)). Note that

FDDFact(x; Υ) = FTDiag(
√
Υ)Diag(x)Diag(

√
Υ)F.

So, we can interpret gscaling-DDFact as applying the un-scaled gscaling-DDFact bound to

the symmetrically-scaled matrix Diag(
√
Υ)F Diag

(√
Υ
)
FTDiag(

√
Υ) = C Diag

(√
Υ
)
, and

then correcting by −
∑n

i=1 xi log γi .

In what follows, the following notations will be employed:

dom (Γs) := {X : X ⪰ 0, rank(X) ≥ s} , and

dom (fDDFact; Υ) := {x : FDDFact(x; Υ) ∈ dom (Γs)}

being the domains of Γs(X) and fDDFact(x; Υ), respectively. Moreover, we denote

dom (fDDFact; Υ)+ := {x : x ≥ 0, FDDFact(x; Υ) ∈ dom (Γs)}

as the intersection of dom (fDDFact; Υ) and Rn
+ . Because the feasible solutions of gscaling-

DDFact with finite objective values are evidently confined in dom (fDDFact; Υ)+ , it is enough to

concentrate on dom (fDDFact; Υ)+ instead of dom (fDDFact; Υ).We wish to highlight the following

important point.

Remark. Generally, we must choose a factorization with k being at least the rank of C,

but it is natural to choose one with k equal to the rank of C; for example, via a spectral

decomposition of C. In this case, FDDFact(x; Υ) is full-rank if and only if x ∈ Rn
++ . In light of

this, we can fully understand where on the boundary of the feasible region of gscaling-DDFact,

we can encounter solutions not in the interior of dom (fDDFact; Υ)+ .

It is commonly assumed in the literature that the function fDDFact(x; Υ) may exhibit non-

smooth behavior in x, and toward this end, the supdifferential is characterized. In their

work, (Li and Xie, 2023) utilized a Frank-Wolfe algorithm to tackle gscaling-DDFact for the

MESP case. Subsequently, (Chen, Fampa, and Lee, 2023) employed a BFGS-based algorithm

88

of Knitro for gscaling-DDFact, to handle both MESP and CMESP, wherein they utilized

supgradient information to update the Hessian approximation. This algorithm achieved su-

perior performance in terms of both speed and accuracy, in the spirit of (Lewis and Overton,

2013) which investigated the excellent performance of BFGS on non-smooth problems. In

the following section, we will establish that fDDFact(x; Υ) is actually in a certain generalized

sense “differentiable” in x ∈ dom (fDDFact; Υ)+ . These findings serve as a theoretical founda-

tion for the efficiency of algorithms (e.g., those employed by (Chen, Fampa, and Lee, 2023))

that rely on smoothness for their convergence. We will introduce two necessary definitions

to facilitate the establishment of our “differentiability” results.

Definition 4.1. For x ∈ dom (fDDFact; Υ)+ , let the eigenvalues of FDDFact(x; Υ) are λ1 ≥ · · · ≥
λr > λr+1 = · · · = λk = 0, and FDDFact(x; Υ) = QDiag(λ)Q with an orthonormal matrix Q.

Define β := (β1, β2, . . . , βk)
T such that

βi :=
1
λi
, ∀ i ∈ [1, ι],

βi :=
s−ι∑

i∈[ι+1,k] λi
, ∀ i ∈ [ι+ 1, k],

where ι is the unique integer defined in Lemma 4.3.

In cases where an explicit analytic formula is unavailable for a function, such as the

objective of gscaling-DDFact, the conventional definition of (Fréchet) differentiability only

applies to points that exist within the interior of the function domain. This restriction

presents challenges when attempting to analyze the properties of a function for points where

the conventional definition of (Fréchet) differentiability is not defined, e.g., points at the

boundary of the function domain, which is important for understanding the behavior of

algorithms having iterates at such points. For our particular function, when we choose

a factorization with k equal to the rank of C, such points are precisely the ones with zero

components (see Remark 4.4), and might well be visited by active-set methods.2 To overcome

this difficulty, we will extend the definition of (Fréchet) differentiability, in a natural way, to

include points at the boundary of a (convex) set.

Definition 4.2. We define a function f : Rn → R to be generalized differentiable with

respect to a set A ⊆ dom(f) if a linear operator g(x) : Rn → R exists for all x ∈ A, such

that for all d with x+ d ∈ A, we have f(x+ d)− f(x)− g(x)Td = o (∥d∥). We refer to g(x)

as the generalized gradient with respect to A. We will omit “with respect to A” when it is

clear from the context.

2In fact we will see in our computational results (Table 4.4) that they are frequently visited by active-set
methods.

89

Remark. We would like to highlight that our concept of generalized differentiability is al-

most as potent as differentiability on A. Specifically, it possesses identical capabilities as

differentiability if we use feasible-point optimization algorithms. The reasons are as follows:

1. if x lies in the interior of A, then the generalized differentiability and generalized gra-

dient are exactly differentiability and gradient, respectively;

2. if x lies on the boundary of A, then the Whitney Extension Theorem guarantees the

existence of a compact neighborhood Nc(x) ⊂ A such that the restriction of f on

Nc(x) has a continuously differentiable extension f̂ on Rn, with prescribed derivative

information on Nc(x). In other words, f̂(x) = f(x), ∂f̂(x)
∂x

= g(x) for all x ∈ Nc(x).

Consequently, the generalized differentiability of f is equivalent to its differentiability

at the boundary point x, as long as we examine a larger open set that contains a local

neighborhood of the boundary point;

3. The equation f(x + d) − f(x) − g(x)Td = o (∥d∥) implies that as d approaches the

zero vector, the expression f(x+ d)− f(x)− g(x)Td approaches zero, regardless of the

path taken by d. This statement is essentially the definition of differentiability, except

that x + d ∈ A. Consequently, if an optimization algorithm that always confines its

iterates within A is utilized, the capabilities of generalized differentiability are identical

to those of differentiability. Specifically, if this optimization algorithm converges under

differentiability, it should also converge under generalized differentiability.

In the subsequent analysis, we aim to establish the continuous generalized differentiability

of the objective of gscaling-DDFact concerning its dependence on dom (fDDFact; Υ)+ . This will

give some theoretical understanding of the good performance of algorithms that empirically

have many iterates at the boundary of the feasible region, where smoothness was in question.

Such algorithms were observed to outperform interior-point algorithms, which will be shown

in the experiments.

Theorem 4.4. For all Υ ∈ Rn
++ in gscaling-DDFact, the following hold:

4.4.i. zDDFact(Υ) yields a valid upper bound for the optimal value of CMESP, i.e.,

z(C, s, A, b) ≤ zDDFact(Υ);

4.4.ii. the function fDDFact(x; Υ) is concave in x on dom (fDDFact; Υ)+;

4.4.iii. the function fDDFact(x; Υ) is generalized differentiable with respect to

dom (fDDFact; Υ)+ , with generalized gradient

gx(x; Υ) := Υ ◦ diag
(
FQDiag (β)QTFT

)
− log Υ,

90

where C = FFT is a factorization of C and Q, β are defined in Definition 4.1. In

particular, gx(x; Υ) is invariant to different choices of F,Q as long as we change β

accordingly;

4.4.iv. given x ∈ dom (fDDFact; Υ)+ , the function fDDFact(x; Υ) is differentiable in Υ with gradi-

ent

gΥ(x; Υ) := x ◦ diag
(
FQDiag (β)QTFT

)
−Diag(Υ)−1x,

where C = FFT is a factorization of C and Q, β are defined in Definition 4.1. In

particular, gΥ(x; Υ) is invariant to different choices of F,Q, as long as we change β

accordingly. Additionally, for MESP, let x∗ be an optimal solution to gscaling-DDFact;

then we have

gΥ(x
∗; Υ)|Υ=e = 0

(which does not generally hold for CMESP, as we will see in §4.6).

4.4.v. the function fDDFact(x; Υ) is continuously generalized differentiable in x and continu-

ously differentiable in Υ on dom (fDDFact; Υ)+ ×Rn
++ , i.e., gx(x; Υ) and gΥ(x; Υ) are

continuous on dom (fDDFact; Υ)+ × Rn
++ .

Remark. (Nikolov, 2015) established Theorem 4.4.i for Υ := e, and hence only regarded

as a function of x, which was developed further in (Li and Xie, 2023). We generalize this

result to the situation where Υ ∈ Rn
++ and is varying. We note that the o-scaled factorization

bound for CMESP is invariant under the scale factor (see (Chen, Fampa, and Lee, 2023)),

so the use of any type of scaling in the context of the gscaling-DDFact bound is completely

new. Theorem 4.4.ii is a result of (Nikolov, 2015), with details filled in by (Fampa and

Lee, 2022, Section 3.4.2). Theorem 4.4.iii is the first differentiablity result of any type for

the gscaling-DDFact bound. These results illuminate the success of BFGS-based methods for

calculating the gscaling-DDFact bound, not fully anticipated by previous works which exposed

only supgradients connected to gscaling-DDFact. Theorem 4.4.iv provides the potential for

fast algorithms leveraging BFGS-based methods to improve the gscaling-DDFact bound by g-

scaling, as we will see in experiments §4.6. These observations and Theorem 4.4.iv leave open

the interesting question of whether g-scaling can help the gscaling-DDFact bound for MESP;

we can interpret Theorem 4.4.iv as a partial result toward a negative answer. Theorem 4.4.v

is a consequence of Theorems 4.4.iii,iv.

Proof of Theorem 4.4.i,ii. These are essentially results of (Nikolov, 2015); see also (Fampa

91

and Lee, 2022, Section 3.4). Intuitively, gscaling-DDFact is the Lagrangian dual of the

Lagrangian dual of a nonconvex continuous relaxation of CMESP (see (Chen, Fampa, and

Lee, 2023)). Therefore, gscaling-DDFact has a concave objective function, and the optimal

value zDDFact(Υ) serves as valid upper bound for the optimal value of CMESP.

Toward establishing the generalized differentiability of fDDFact(x; Υ), we begin by charac-

terizing the directional derivatives. Toward this end, our first step is to derive the supdiffer-

ential of the objective of Γs(X) with respect to X ∈ dom(Γs).

Proposition 4.5. (Li and Xie, 2023, Proposition 2) Given X ∈ dom(Γs) with rank r ∈ [s, k],

suppose that its eigenvalues are λ1 ≥ · · · ≥ λr > λr+1 = · · · = λk = 0 and X = QDiag(λ)QT

with an orthonormal matrix Q. Then the supdifferential of the function Γs(X) at X denoted

by ∂Γs(X) is

∂Γs(X) =
{
QDiag(β)QT : X = QDiag(λ)QT, Q is orthonormal,

λ1 ≥ · · · ≥ λr > λr+1 = · · · = λk = 0,

β ∈ conv
{
β : βi =

1
λi
,∀i ∈ [ι], βi =

s−ι∑
i∈[ι+1,k] λi

,∀i ∈ [ι+ 1, r],

βi ≥ βr, ∀i ∈ [r + 1, k]
}}

,

where ι is the unique integer defined in Lemma 4.3.

Remark. If X ≻ 0, then β is uniquely determined, resulting in a singleton supdifferential

∂Γs(X) and differentiability of Γs(X) at X. This further implies the differentiability of

fDDFact(x; Υ) in x by the chain rule when FDDFact(x; Υ) ≻ 0. However, the supdifferential

∂Γs(X) is not a singleton when X is located on the boundary of the positive-semidefinite cone.

This indicates that Γs(X) is not differentiable at such points. However, as we will show later,

such non-differentiability does not really transfer to x. In fact, fDDFact(x; Υ) is generalized

differentiable at every x ∈ dom (fDDFact; Υ)+ . In other words, even if Γs(FDDFact(x; Υ)) is

non-differentiable in FDDFact(x; Υ), fDDFact(x; Υ) = Γs(FDDFact(x; Υ)) −
∑n

i=1 xi log γi is still

generalized differentiable in x.

The subsequent step involves computing the directional derivative of Γs(X) at X, using

the supdifferential characterized in Proposition 4.5. It is a well-known fact that if X is

located in the interior of dom(Γs), then

Γ′
s(X;D) = inf

G∈∂Γs(X)
Trace(GTD),

92

where D is a feasible direction at X in dom(Γs); see e.g. (Rockafellar, 1997, Theorem 23.4).

However, in our current context, X might lie on the boundary of dom(Γs). Fortunately,

(Moreau, 1966, p. 65) provides a result that ensures that the same formula holds if Γs(X) is

continuous at X. Thus, our first step is to establish the continuity of Γs(X) at X ∈ dom(Γs).

Lemma 4.6. Γs(X) is continuous on its domain.

Proof. Consider X ∈ dom (Γs) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 and ι defined in

Lemma 4.3. Let P ∈ Sn be such that X + P ∈ dom (Γs) and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k be the

eigenvalues of X + P with ι̂ again defined in Lemma 4.3. We will use the continuity of

eigenvalues (with respect to entries of the matrix) to prove the result.

We discuss two sub-cases:

1. λι >
1
s−ι
∑k

ℓ=ι+1 λℓ > λι+1 . Then for ∥P∥ small enough, by the continuity of eigenval-

ues, we have λ̂ι >
1
s−ι
∑k

ℓ=ι+1 λ̂ℓ > λ̂ι+1 , which implies ι̂ = ι. Again by the continuity

of eigenvalues and log(·), Γs(X) is continuous at X on dom (Γs).

2. λι >
1
s−ι
∑k

ℓ=ι+1 λℓ = λι+1 . We have to be more careful in this case as any small ∥P∥
can make ι̂ different from ι. We first characterize a range where ι̂ should lie within.

Let ιe := max{i : λi = λι+1, s > i ≥ ι+1}. We claim that ι̂ ∈ [ι+1, ιe]. Before proving

this claim, we demonstrate three preliminary results:

(a) For any i ≤ ι, λi >
1
s−i
∑k

ℓ=i+1 λℓ ;

(b) For any i ≤ ι− 1, 1
s−i
∑k

ℓ=i+1 λℓ < λi+1 ;

(c) For any s > i > ιe, λi <
1
s−i
∑k

ℓ=i+1 λℓ .

Note that (a) holds for i = 0. Assume that there exists some i ≤ ι such that λi ≤
1
s−i
∑k

ℓ=i+1 λℓ . Without loss of generality, let i be the minimum integer satisfying this

condition. Obviously i ≥ 1. Furthermore,

1
s−i+1

∑k
ℓ=i λℓ =

(
∑k

ℓ=i+1 λℓ)+λi
s−i+1

≥ 1
s−i+1

((s− i)λi + λi) = λi .

By assumption, we also have that λi−1 >
1

s−i+1

∑k
ℓ=i λℓ , which together with the above

deduction, implies that ι = i − 1 ≤ ι − 1, a contradiction. For (b), if there exists

i ≤ ι − 1 with 1
s−i
∑k

ℓ=i+1 λℓ ≥ λi+1 , together with (a), we have ι = i ≤ ι − 1, a

contradiction. Finally, (c) comes from

(s− i)λi < (s− i)λι+1 = (s− ι)λι+1 − (i− ι)λι+1

≤
∑k

ℓ=ι+1 λℓ − (i− ι)λι+1

93

=
∑i

ℓ=ι+1(λi − λι+1) +
∑k

ℓ=i+1 λℓ

≤
∑k

ℓ=i+1 λℓ .

With (a–c), and the continuity of eigenvalues with respect to the entries of a matrix,

for ∥P∥ small enough, we have:

(â) For any i ≤ ι, λ̂i >
1
s−i
∑k

ℓ=i+1 λ̂ℓ ;

(b̂) For any i ≤ ι− 1, 1
s−i
∑k

ℓ=i+1 λ̂ℓ < λ̂i+1 ;

(ĉ) For any s > i > ιe, λ̂i <
1
s−i
∑k

ℓ=i+1 λ̂ℓ .

(â − ĉ) suggest that ι̂ ∈ [ι + 1, ιe], otherwise the condition λ̂ι̂ >
1
s−ι̂
∑k

ℓ=ι̂+1 λ̂ℓ ≥ λ̂ι̂+1

in Lemma 4.3 will be violated.

From 1
s−ι
∑k

ℓ=ι+1 λℓ = λι+1 and the definition of ιe , we also have

λι+1 =
1

s−ι−1

∑k
ℓ=ι+2 λℓ = λι+2 =

1
s−ι−2

∑k
ℓ=ι+3 λℓ

= · · ·

= λιe =
1

s−ιe

∑k
ℓ=ιe+1 λℓ . (4.5)

We are now ready to prove the continuity results. Because ι̂ ∈ [ι+ 1, ιe] and (4.5), we

have

∑ι
ℓ=1 log(λℓ) + (s− ι) log

(
1
s−ι
∑k

ℓ=ι+1 λℓ

)
=
∑ι

ℓ=1 log(λℓ) + (ι̂− ι) log
(

1
s−ι
∑k

ℓ=ι+1 λℓ

)
+(s− ι̂) log

(
1
s−ι
∑k

ℓ=ι+1 λℓ

)
=
∑ι

ℓ=1 log(λℓ) +
∑ι̂

ℓ=ι+1 log(λℓ) + (s− ι̂) log
(

1
s−ι̂
∑k

ℓ=ι̂+1 λℓ

)
=
∑ι̂

ℓ=1 log(λℓ) + (s− ι̂) log
(

1
s−ι̂
∑k

ℓ=ι̂+1 λℓ

)
.

Note that the above equation holds for any ∥P∥ small enough, and with its correspond-

ing ι̂ and at X + P , we have

Γs(X + P) =
∑ι̂

ℓ=1 log(λ̂ℓ) + (s− ι̂) log
(

1
s−ι̂
∑k

ℓ=ι̂+1 λ̂ℓ

)
.

Then by the continuity of eigenvalues (with respect to elements of the matrix) and

log(·) function, we conclude that Γs(X) is continuous on dom(Γs).

94

The continuity of Γs(X) in X together with the continuity of eigenvalues in matrix elements

also implies the following.

Corollary 4.7. fDDFact(x; Υ) is continuous in (x,Υ) on dom (fDDFact; Υ)+ .

Utilizing the above results, we can characterize the directional derivative of Γs(X) and further

characterize the directional derivative of fDDFact(x; Υ).

Proposition 4.8. For X ∈ dom (Γs), let D ∈ Sn be such that X +D ∈ dom (Γs); then the

directional derivative of Γs(X) at X in the direction D, denoted Γ′
s(X;D), exists and

Γ′
s(X;D) = inf

G∈∂Γs(X)
Trace(GTD).

Proof. By definition, (Li and Xie, 2023, Lemma 3) and Lemma 4.6, Γs(X) is convex, finite,

and continuous in X over dom(Γs). Then the conclusion follows by (Moreau, 1966, p. 65).

Proposition 4.9. For x ∈ dom (fDDFact; Υ)+ , let d ∈ Rn be such that x + d ∈
dom (fDDFact; Υ)+ ; then the directional derivative of fDDFact(x; Υ) at x in the direction d exists,

and

f ′
DDFact(x; Υ; d) =

(
Υ ◦ diag

(
FQDiag (β)QFT

))T
d− log(Υ)Td,

where C = FFT is a factorization of C, and Q, β are defined in Definition 4.1. In particular,

FQDiag (β)QFT and thus f ′
DDFact(x; Υ; d) is invariant to the choice of F,Q, as long as we

change β accordingly.

Proof. By Theorem 4.4.ii, we have that fDDFact(x; Υ) is concave. Then by (Rockafellar, 1997,

Theorem 23.1), the directional derivative f ′
DDFact(x; Υ; d) exists and

f ′
DDFact(x; Υ; d)

= limt→0+
fDDFact(x+td;Υ)−fDDFact(x;Υ)

t

= limt→0+
Γs(FDDFact(x+td;Υ))−Γs(FDDFact(x;Υ))+t log(Υ)Td

t

= limt→0+
Γs(FDDFact(x;Υ)+tFDDFact(d;Υ))−Γs(FDDFact(x;Υ))+t log(Υ)Td

t

= Γ′
s (FDDFact(x; Υ);FDDFact(d; Υ)) + log(Υ)Td

= inf
G∈∂Γs(FDDFact(x;Υ))

Trace
(
GTFDDFact(d; Υ)

)
+ log(Υ)Td,

where the last equation is due to Proposition 4.8. Let Θ(x,Υ) denote the set of (Q, β) in

95

the characterization of ∂Γs (FDDFact(x; Υ)), as described in Proposition 4.5. In particular,

Θ(x,Υ) =
{
(Q, β) : FDDFact(x; Υ) = QDiag(λ)QT, Q is orthonormal,

λ1 ≥ · · · ≥ λr > λr+1 = · · · = λk = 0,

β ∈ conv
{
β : βi =

1
λi
,∀i ∈ [ι], βi =

s−ι∑
i∈[ι+1,k] λi

, ∀i ∈ [ι+ 1, r],

βi ≥ βr,∀i ∈ [r + 1, k]
}}

,

where ι is the unique integer defined in Lemma 4.3. According to the former derivation,

f ′
DDFact(x; Υ; d)

= inf
G∈∂Γs(FDDFact(x;Υ))

Trace
(
GTFDDFact(d; Υ)

)
+ log(Υ)Td

= inf
(Q,β)∈Θ(x;Υ)

Trace
(
FQDiag(β)QTFT Diag(Υ ◦ d)

)
+ log(Υ)Td

= inf
(Q,β)∈Θ(x;Υ)

(
Υ ◦ diag

(
FQDiag(β)QTFT

))T
d+ log(Υ)Td. (4.6)

We now show that the infimum of (4.6) is obtained by (Q, β) characterized in Definition 4.1.

For simplicity, we let

g(Q, β; Υ) := Υ ◦ diag
(
FQDiag(β)QTFT

)
;

gj(Q, β; Υ) := γiFi·QDiag(β)QTFT
i· , the ith element of g(Q, β; Υ);

qj := Q·j , the jth column of Q

(4.7)

(where Fi· denotes the ith row of F). By the definition of Θ(x,Υ), we also have that if

j1 > j2 , the eigenvalues λj1 , λj2 associated with qj1 , qj2 satisfy λj1 ≤ λj2 .

We claim that for any 1 ≤ i ≤ n, r < j ≤ k where xi > 0, Fi·qj = 0. First by the

characterization of Q in Θ(x,Υ), we have that qTj1qj2 = 0 for all 1 ≤ j1 ≤ r < j2 ≤
k, because qj1 , qj2 lie in eigenspaces corresponding to different eigenvalues. Therefore, it

is enough to prove that Fi· lies in the space spanned by {qj : 1 ≤ j ≤ r}. Notice

that FDDFact(x; Υ) =
∑n

i=1 γixiF
T
i· Fi· = FT Diag(Υ ◦ x)F . Therefore, the column space of

FDDFact(x; Υ) is equal to the row space of Diag(Υ ◦ x) 1
2F , which is in turn equal to the space

spanned by {FT
i· : 1 ≤ i ≤ n, xi > 0}. On the other hand, FDDFact(x; Υ) = QDiag(λ)QT,

and thus the column space of FDDFact(x; Υ) is equal to the row space of Diag(λ)
1
2QT, which

is in turn equal to the space spanned by {qj : 1 ≤ j ≤ r}. Therefore, we have proved that

span{FT
i· : 1 ≤ i ≤ n, xi > 0} = span{qj : 1 ≤ j ≤ r},

96

which implies that for all 1 ≤ i ≤ n, r < j ≤ k where xi > 0, Fi·qj = 0. With this result, we

have when xi > 0,

gi(Q, β; Υ) = γiFi·QDiag(β)QTFT
i· = γi

∑r
j=1 βj∥Fi·qj∥2,

which is invariant to (Q, β) ∈ Θ(x; Υ) because βj, 1 ≤ j ≤ r are fixed and Q is not contained

in the right-hand side formula.

We choose some (Q̂, β̂) defined in Definition 4.1. Note that the choice of (Q̂, β̂) is not

unique. Then we can write the directional derivative as

f ′
DDFact(x; Υ; d)

= inf
(Q,β)∈Θ(x;Υ)

∑
xi>0 gi(Q, β; Υ)di +

∑
xi=0 gi(Q, β; Υ)di + log(Υ)Td

=
∑

xi>0gi

(
Q̂, β̂; Υ

)
di + inf

(Q,β)∈Θ(x;Υ)

∑
xi=0 γi

∑n
j=1 βj∥Fi·qj∥2di + log(Υ)Td

=
∑

xi>0gi

(
Q̂, β̂; Υ

)
di + inf

(Q,β)∈Θ(x;Υ)

∑n
j=1 βj

∑
xi=0 γi∥Fi·qj∥2di + log(Υ)Td.

Note that if xi = 0, we must have di ≥ 0 to make x + d ∈ dom (fDDFact; Υ)+ . Therefore,

for each r < j ≤ k,
∑

i:xi=0 γi∥Fi·qj∥di ≥ 0, and the infimum is achieved if and only if each

βj , r < j ≤ k takes the minimum value in Θ(x; Υ), which is easy to see that is just the value

in Definition 4.1. In particular, (Q̂, β̂) is such a choice. Specifically, we have

f ′
DDFact(x; Υ; d)

=
∑

xi>0 gi

(
Q̂, β̂; Υ

)
di + γi

∑n
j=1 β̂j

∑
xi=0 ∥Fi·q̂j∥2di + log(Υ)Td

=
∑

xi>0 gi

(
Q̂, β̂; Υ

)
di + γi

∑
xi=0 gi

(
Q̂, β̂; Υ

)
di + log(Υ)Td

= gi

(
Q̂, β̂; Υ

)T
d+ log(Υ)Td.

Note that Q̂ can be any Q defined in Definition 4.1, and the value of g(Q, β; Υ) is invariant

as long as we change β̂ accordingly. The invariance relative to F is due to the invariance of

fDDFact(x; Υ) relative to F (see (Chen, Fampa, and Lee, 2023, Theorem 2.2)).

With the characterization of directional derivative in Proposition 4.9, we can prove the

general differentiability with respect to dom (fDDFact; Υ)+ as defined in Definition 4.2.

Proof of Theorem 4.4 iii, iv, and v. We continue the proof of Theorem 4.4 here.

4.4.iii: By Proposition 4.9, let gx(x; Υ) := Υ ◦ diag
(
FQDiag(β)QFT

)
+ log(Υ) for any (Q, β)

defined in Definition 4.1. Proposition 4.9 shows that (x; Υ) is invariant to the choice

97

of (Q, β) and F . Then the directional derivative of fDDFact(x; Υ) with respect to x ∈
dom (fDDFact; Υ)+ and feasible direction d ∈ Rn such that x + d ∈ dom (fDDFact; Υ)+ is

gx(x; Υ)Td.

We first demonstrate two preliminary results:

(a) Given x ∈ dom (fDDFact; Υ)+, we define the neighbourhood of x with radius r with

respect to dom (fDDFact; Υ)+ as

Nr(x) :=
{
y : ∥y − x∥ ≤ r, y ∈ dom (fDDFact; Υ)+

}
.

We claim that for r small enough, Nr(x) is a compact set. Recall that:

dom (Γs) := {X : X ⪰ 0, rank(X) ≥ s} , and

dom (fDDFact; Υ)+ := {x : x ≥ 0, FDDFact(x; Υ) ∈ dom (Γs)} .

By the continuity of eigenvalues, there is some small enough r̃ > 0 such that

when r ≤ r̃, FDDFact(y; Υ) has at least the same number of nonzero eigenvalues

as FDDFact(x; Υ), and so rank (FDDFact(y; Υ)) ≥ s. Moreover, note that the set

{x : FDDFact(x; Υ) ⪰ 0} and the non-negative cone Rn
+ = {x : x ≥ 0} are closed.

So Nr(x) can be seen as the intersection of {x : FDDFact(x; Υ) ⪰ 0}, Rn
+, and

the sphere {y : ∥y − x∥ ≤ r}, thus is closed and bounded, and thus compact.

Furthermore, we have shown in Corollary 4.7 that fDDFact(x; Υ) is continuous over

dom (fDDFact; Υ)+, thus uniform continuous over Nr(x) for r ≤ r̃.

(b) Given x ∈ dom (fDDFact; Υ)+, we define the circle of x with radius r with respect

to dom (fDDFact; Υ)+ as

Cr(x) :=
{
y : ∥y − x∥ = r, y ∈ dom (fDDFact; Υ)+

}
.

With similar logic to the above, when r ≤ r̃, Cr(x) is closed and bounded. Then

by Heine-Borel Theorem, for any ϵ > 0, there exists a finite set F ⊂ Cr̃(x) such
that for any y ∈ Cr̃(x), there exists u ∈ F such that ∥y − u∥ < ϵ.

Now we are ready to establish generalized differentiability of fDDFact(x; Υ) with respect

to dom (fDDFact; Υ)+ . In particular, we want to demonstrate that for any ϵ > 0, there

exists some δ > 0 such that whenever y ∈ dom (fDDFact; Υ)+ and ∥y − x∥ < δ, we have

∣∣fDDFact(y; Υ)− fDDFact(x; Υ)− gx(x; Υ)T(y − x)
∣∣ < ϵ.

98

We will assume that gx(x; Υ) ̸= 0, because the case where gx(x; Υ) = 0 is implied by

the continuity of fDDFact(x; Υ) (see Corollary 4.7). We have the following four facts:

(1) from (a), fDDFact(x; Υ) is uniformly continuous on Nr̃(x). Then given ϵ > 0, there

is some δ1 > 0 such that for any x1, x2 ∈ Nr̃(x) such that ∥x1 − x2∥ < δ1
∥gx(x;Υ)∥ ,

we have |fDDFact(x1; Υ)− fDDFact(x2; Υ)| < ϵ
3
.

(2) given δ1 > 0, by (b), there is some finite set F ⊂ Cr̃(x) such that for every

y ∈ Cr̃(x), there exists u ∈ F such that ∥y − u∥ < min{ϵ,δ1}
3·∥gx(x;Υ)∥ .

(3) because of the finiteness of F and the existence of the directional derivative in

direction u− x, ∀u ∈ F , given ϵ > 0, there exists some δ2 ≤ 1 such that for any

u ∈ F , when t < δ2, we have

∣∣fDDFact(x+ t(u− x); Υ)− fDDFact(x; Υ)− tgx(x; Υ)T(u− x)
∣∣ < ϵ

3
.

Note that t < δ2 is equivalent to that t · ∥u− x∥ < δ3 := δ2 · r̃.

(4) for every y ∈ Nr̃(x), we have that x + y−x
∥y−x∥ · r̃ ∈ Cr̃(x). By (2), there is some

u ∈ F such that ∥∥∥x+ y−x
∥y−x∥ · r̃ − u

∥∥∥ < min{ϵ,δ1}
3·∥gx(x;Υ)∥ ,

and thus

∥∥y − (x+ u−x
r̃

· ∥y − x∥
)∥∥ = ∥y−x∥

r̃
·
∥∥∥x+ y−x

∥y−x∥ · r̃ − u
∥∥∥ < min{ϵ,δ1}

3·∥gx(x;Υ)∥ .

From (1–4), given ϵ > 0, there exists δ3 > 0 and a finite set F ⊂ Cr̃(x) such that for

any y ∈ dom (fDDFact; Υ)+ and ∥y − x∥ < δ3, there exists some u ∈ F such that

∣∣fDDFact(y; Υ)− fDDFact(x; Υ)− gx(x; Υ)T(y − x)
∣∣

≤ |fDDFact(y; Υ)− fDDFact(ŷ; Υ)|

+
∣∣fDDFact(ŷ; Υ)− fDDFact(x; Υ)− gx(x; Υ)T(ŷ − x)

∣∣
+
∣∣gx(x; Υ)T(y − ŷ)

∣∣
<
ϵ

3
+
ϵ

3
+ ∥gx(x; Υ)∥ min{ϵ, δ1}

3∥gx(x; Υ)∥
< ϵ,

where ŷ = x + u−x
r̃

∥y − x∥. Finally, the invariance of gx(x; Υ) to F,Q as long as we

change β accordingly follows from Proposition 4.9.

4.4.iv: For the first part, note that FDDFact(x; Υ) =
∑n

i=1 γixiF
T
i· Fi·, and for every x ∈

99

dom (fDDFact; Υ)+ and Υ ∈ Rn
++, FDDFact(x; Υ) ∈ dom(Γs), and is thus well defined.

On the other hand, by switching the value of x and Υ, we find that FDDFact(Υ;x) =

FDDFact(x; Υ). We can use the same method which we used to derive the generalized

gradient with respect to x to derive the generalized gradient with respect to Υ. This

means that fDDFact(x; Υ) is generalized differentiable at Υ with generalized gradient

gΥ(x; Υ) = x ◦ diag
(
FQDiag (β)QTFT

)
−Diag(Υ)−1x,

where C = FFT is a factorization of C and (Q, β) are defined in Definition 4.1.

In particular, gΥ(x; Υ) is invariant to different choices of F,Q and thus well defined.

Moreover, because Υ ∈ Rn
++ lies in the interior of Rn

++ , the generalized differentiability

reduces to differentiability. Moreover, the invariance of gΥ(x; Υ) to F,Q as long as we

change β accordingly follows the same logic as Theorem 4.4.iii.

For the second part, note that gΥ(x
∗; Υ)|Υ=e = 0 is equivalent to x∗◦(g∗(Q; β; e)− e) =

0, where g∗(Q; β; e) = diag
(
FQDiag (β)QTFT

)
as defined in (4.7), specifically for x∗.

This is further equivalent to

g∗i (Q; β; e) = 1, ∀x∗i > 0.

In the following proof, we will leverage the KKT conditions of gscaling-DDFact which

we present here: for any optimal solution x∗ to gscaling-DDFact, there is some υ∗ ∈
Rn, ν∗ ∈ Rn, π∗ ∈ Rm such that

eTx∗ = s, Ax∗ ≤ b, 0 ≤ x∗ ≤ e,

υ∗ ≥ 0, ν∗ ≥ 0, π∗ ≥ 0,

g∗(Q, β; Υ) + υ∗ − ν∗ − ATπ∗ − τ ∗e = 0,

π∗ ◦ (b− Ax∗) = 0, υ∗ ◦ x∗ = 0, ν∗ ◦ (e− x∗) = 0,

(DDFact-KKT)

where g∗(Q, β; Υ) = Υ◦diag
(
FQDiag (β)QTFT

)
as defined in (4.7), specifically for x∗.

The existence of υ∗ ∈ Rn, ν∗ ∈ Rn, τ ∗ ∈ R, π∗ ∈ Rm is due to that: (1) gscaling-DDFact

is a generalized differentiable convex-optimization problem; (2) Slater’s condition holds

because of the affine constraints describing the feasible region of gscaling-DDFact.

By (Li and Xie, 2023, Section 3.1), when Υ = e and there are not linear contraints

Ax ≤ b, then there is a closed-form solution (υ∗, ν∗, τ ∗) to DDFact-KKT given x∗.

Suppose that σ is a permutation of {1, 2, · · · , n} such that

(g∗(Q; β; e))σ(1) ≥ (g∗(Q; β; e))σ(2) ≥ · · · ≥ (g∗(Q; β; e))σ(n) ,

100

where (g∗(Q; β; e))i denotes the i
th element of g∗(Q; β; e). Then

τ ∗ = (g∗(Q; β; e))σ(s) ,

ν∗σ(i) =

(g∗(Q; β; e))σ(i) − τ ∗, ∀ 1 ≤ i ≤ s;

0, ∀ s+ 1 ≤ i ≤ n,

υ∗ = ν∗ + τ ∗e− g∗(Q; β; e).

We claim that

∑
i∈{1,2,...,n} x

∗
σ(i) (g

∗(Q; β; e))σ(i) =
∑

i∈{1,2,...,s} (g
∗(Q; β; e))σ(i) = s.

In fact, by DDFact-KKT, we have

0 = x∗ ◦ (g∗(Q; β; e) + υ∗ − ν∗ − τ ∗e)

= x∗ ◦ g∗(Q; β; e) + x∗ ◦ υ∗ − x∗ ◦ ν∗ − τ ∗x∗

= x∗ ◦ g∗(Q; β; e)− x∗ ◦ ν∗ − τ ∗x∗

= x∗ ◦ g∗(Q; β; e)− ν∗ − τ ∗x∗,

and further

0 = eT (x∗ ◦ g∗(Q; β; e)− ν∗ − τ ∗x∗)

=
∑

i∈{1,2,...,n} x
∗
σ(i) (g

∗(Q; β; e))σ(i) +
∑

i∈{1,2,...,s} ν
∗
σ(i) + τ ∗s

=
∑

i∈{1,2,...,n} x
∗
σ(i) (g

∗(Q; β; e))σ(i) −
∑

i∈{1,2,...,s} (g
∗(Q; β; e))σ(i) .

On the other hand, by (Chen, Fampa, and Lee, 2023), the duality gap of gscaling-

DDFact is eTν∗ + τ ∗s− s = 0 and thus∑
i∈{1,2,...,n}

x∗σ(i) (g
∗(Q; β; e))σ(i) =

∑
i∈{1,2,...,s}

(g∗(Q; β; e))σ(i) = s. (4.8)

Furthermore, we claim that if x∗σ(i) = 1, then gσ(i)(x
∗) ≤ 1. Note that by the proof of

Proposition 4.9, letting qj be the jth column of Q, we have

(g(Q; β; e))σ(i) = Fσ(i)·QDiag (β)QTFT
σ(i)·

=
∑r

j=1 βjFσ(i)·qjq
T
j Fσ(i)·

≤
∑r

j=1
1
λj
Fσ(i)·qjq

T
j Fσ(i)·

101

= Fσ(i)· (FDDFact(x; e))
† FT

σ(i)·

= Fσ(i)·

(
FT
σ(i)·Fσ(i)· +

∑
j ̸=σ(i) x

∗
jF

T
j·Fj·

)†
FT
σ(i)·

≤ Fσ(i)·
(
FT
σ(i)·Fσ(i)·

)†
FT
σ(i)· = 1, (4.9)

where the first inequality is due to Lemma 4.3 and Definition 4.1, and the second

inequality is due to the Sherman–Morrison formula for the Moore-Penrose inverse.

(4.8) and (4.9) together imply that

(g(Q; β; e))σ(1) = · · · = (g(Q; β; e))σ(s) = 1.

Moreover, for i > s such that x∗σ(i) > 0, we must have (g(Q; β; e))σ(i) = (g(Q; β; e))σ(s),

otherwise we contradict (4.8), due to the non-increasingness of (g(Q; β; e))σ(i) in i.

4.4.v: By the generalized gradients characterized for x and gradients characterized for ψ in

Theorem 4.4.iii,iv, we only need to prove the continuity of g(Q; β; Υ) as defined in (4.7)

with respect to (x,Υ). Because of the invariance of g(Q; β; Υ) to F,Q as long as we

change β accordingly, we can fix F,Q; then the conclusion follows from the continuity

of eigenvalues in the matrix elements.

4.5 Computing optimal g-scaling parameters

In this section, we discuss our algorithms for determining optimal g-scaling vectors for

gscaling-BQP and gscaling-linx, as well as for the selection of good g-scaling vectors for

gscaling-DDFact. For gscaling-DDFact, we can only aim for good, because of the lack of

a convexity result concerning the g-scaling vector for gscaling-DDFact; despite this, results

presented in §4.6 demonstrate that, in many cases, the gscaling-DDFact bounds computed

with the best g-scaling vectors obtained are the strongest that we have, demonstrating the

effectiveness of such algorithms.

For notational generality, we consider an upper-bound form for CMESP, which encom-

passes gscaling-BQP, gscaling-linx, and gscaling-DDFact as particular instantiations. Specif-

ically, we define a general upper bound for CMESP of the form:

z(ψ) := max f(x;ψ)

s.t. gi(x) ≤ 0, ∀i = 1, 2, · · · ,m1 ;

hj(x) = 0, ∀j = 1, 2, · · · ,m2 ,

(CMESP-UB)

102

where f : dom(f) → R, gi : dom(gi) → R, and hj : dom(hj) → R (with the data C, s, A, b

being absorbed into these functions). We assume that T , the set of possible values for the

parameter vector ψ to be open. We also assume that f(x;ψ) is concave in x for each ψ

and continuously generalized differentiable in x and continuous differentiable in ψ on its

domain. Finally, we assume that CMESP-UB is a convex program and that its maximum

is attained on the feasible set. We let S denote the feasible set of CMESP-UB, we let

S∗(ψ) := {x ∈ M : f(x;ψ) = z(ψ)} (the optimal x given ψ), and we say that ψ∗ is optimal

if z(ψ∗) = minψ∈T z(ψ).

Remark. gscaling-linx and gscaling-DDFact can naturally be viewed as an instantiation of

CMESP-UB with ψ := logΥ. For gscaling-BQP, we can view X ∈ Sn as a vector in Rn(n+1)/2,

therefore it can also be regarded as an instantiation of CMESP-UB with ψ := logΥ. The con-

tinuous generalized differentiability and continuous differentiability of the objective functions

is established in the proofs of Theorem 4.1, 4.2, and 4.4.

We first focus on the cases where f(x;ψ) is convex in ψ, which encompasses gscaling-

BQP and gscaling-linx as particular cases. For such cases, z(ψ) becomes a convex function

in ψ. Our algorithm relies on the following theorem, tailored from (Zalinescu, 2002, Theorem

2.4.18) to our specific context.

Theorem 4.10. (Zalinescu, 2002, Theorem 2.4.18) Assume that f(x;ψ) is convex in ψ for

every x ∈M , then the subdifferential of z(ψ) at ψ ∈ T is

∂z(ψ) = conv

{
f(x;ψ)

∂ψ
: x ∈ S∗(ψ)

}
,

where conv denotes the convex closure. Furthermore, if S∗(ψ) is a singleton, then the unique

subgradient becomes the gradient of z(ψ) at ψ.

Remark. (Fampa and Lee, 2022, Propositions 3.3.7 and 3.6.9) provide sufficient conditions

for S∗(ψ) to be a singleton for gscaling-BQP and gscaling-linx, respectively.

Theorem 4.10 allows the calculation of the subgradient (or gradient) of z(ψ) by solving

CMESP-UB. Thus, a standard subgradient algorithm can achieve convergence to an optimal

ψ∗. However, due to the well-known sluggishness of the subgradient algorithm, we employ

a BFGS-type algorithm that utilizes the subgradient (or gradient) to update the Hessian

approximation.

For cases where f(x;ψ) is not necessarily convex in ψ, we cannot aim for verified global

optimality. Nevertheless, we still use a BFGS-type algorithm, where we use ∂f(x;ψ)
∂ψ

for any

x ∈ S∗(ψ) to update the Hessian approximation. Under some smoothness assumption,

103

∂f(x;ψ)
∂ψ

becomes the differential of z(ψ), and this algorithm will converge to a stable point of

z(ψ). The following theorem provides a sufficient condition for the differentiability of z(ψ),

tailored from (Oyama and Takenawa, 2018, Proposition 2.1) to our specific context.

Theorem 4.11. (Oyama and Takenawa, 2018, Proposition 2.1) We define a selection to

be a function mapping from ψ to x selected from S∗(ψ), denoted as x∗(ψ). Given ψ̄ ∈ T , if

there is a selection x∗(ψ) continuous at ψ̄, then z(ψ) is differentiable at ψ̄ with

∂z(ψ̄)

∂ψ
=
∂f(x∗(ψ̄); ψ̄)

∂ψ
.

In particular, if M∗(ψ̄) is a singleton, the unique selection x∗(ψ) is always continuous at ψ̄.

Additionally, BFGS has been shown to possess good convergence properties under non-

smooth settings, e.g., locally Lipschitz and directionally differentiable (see (Lewis and Over-

ton, 2013)). The following theorem guarantees this property for zDDFact(Υ), tailored from

(Fiacco and Ishizuka, 1990b, Theorem 4.1) to our specific context.

Theorem 4.12. For any ψ ∈ T , z(ψ) is locally Lipschitz near ψ and directionlly differen-

tiable at ψ in any feasible direction v with formula

∂z(ψ; v) = max
x∈S∗(ψ)

(
∂f(x;α)

∂α

)T

v.

Remark. Theorem 4.10, 4.11, and 4.12 hold based on the continuous differentiability of

f(x;ψ) in ψ and the continuity of f(x;ψ) in x for CMESP-UB. The continuously generalized

differentiability of f(x;ψ) in x ensures good convergence behavior of algorithms for obtaining

x∗ ∈ S∗(ψ).

4.6 Experiments

We experimented on benchmark instances of MESP, using three covariance matrices that

have been extensively used in the literature, with n = 63, 90, 124 (see, e.g., (Ko, Lee, and

Queyranne, 1995; Lee, 1998; Anstreicher, Fampa, Lee, and Williams, 1999; Anstreicher, 2018,

2020)). For testing CMESP, we included five side constraints aTi x ≤ bi, for i = 1, . . . , 5, in

MESP. As there is no benchmark data for the side constraints, we have generated them

randomly. For each n, the left-hand side of constraint i is given by a uniformly-distributed

random vector ai with integer components between −2 and 2. The right-hand side of the

constraints was selected so that, for every s considered in the experiment, the best known

solution of the instance of MESP is violated by at least one constraint.

104

For each n (which refers always to a particular benchmark covariance matrix), we consider

different values of s defining a set of test instances of MESP and CMESP. We ran our

experiments under Windows, on an Intel Xeon E5-2667 v4 @ 3.20 GHz processor equipped

with 8 physical cores (16 virtual cores) and 128 GB of RAM. We implemented our code in

Matlab using the solvers SDPT3 v. 4.0 for gscaling-BQP, and Knitro v. 12.4 for gscaling-linx

and gscaling-DDFact. When instantiating the gscaling-DDFact bound, the selection of F is

made as F := UΛ1/2, where C = UΛUT represents a spectral decomposition of C omitting

eigenvalues of zero, so that U ∈ Rn×rank(C) and diagonal matrix Λ ∈ Rrank(C)×rank(C). This

choice gives the number of columns of F equal to the rank of C, so that Remark 4.4 applies.

We optimized scaling vectors Υ using a BFGS algorithm, and o-scaling parameters γ using

Newton’s method. In all of our experiments we set Knitro parameters3 as follows: convex =

1 (true), gradopt = 1 (we provided exact gradients), maxit = 1000. We set opttol =

10−10, aiming to satisfy the KKT optimality conditions to a very tight tolerance. We set

xtol = 10−15 (relative tolerance for lack of progress in the solution point) and feastol =

10−10 (relative tolerance for the feasibility error), aiming for the best solutions that we

could reasonably find. In our first set of experiments, we set the the Knitro parameter

algorithm = 3 to use an active-set method. Besides solving the relaxations to get upper

bounds for our test instances of MESP and CMESP, we compute lower bounds with a

heuristic of (Lee, 1998, Section 4) and then a local search (see (Ko, Lee, and Queyranne,

1995, Section 4)).

In Figure 4.1, we show the impact of g-scaling on the linx bound for MESP on the three

benchmark covariance matrices. For the n = 63 matrix, we also show the impact of g-scaling

on the gscaling-BQP bound. The gscaling-DDFact and complementary gscaling-DDFact

bounds are only considered in the experiments for CMESP, as the g-scaling methodology

was only able to improve these bounds when side constraints were added to MESP. The

plots on the left in Figure 4.1 present the “integrality gap decrease ratios”, given by the

difference between the integrality gaps using o-scaling and the integrality gaps using g-

scaling, divided by the integrality gaps using o-scaling. The integrality gaps are given by

the difference between the upper bounds computed with the relaxations and lower bounds

given by heuristic solutions. We see that larger n leads to larger maximum ratios. We also

see that the g-scaling methodology is effective in reducing all bounds evaluated, especially

the linx bound. Even for the most difficult instances, with intermediate values of s, we have

some improvement on the bounds, which can be effective in the branch-and-bound context

where the bounds would ultimately be applied. The plots on the right in Figure 4.1 present

the integrality gaps, and we see that even when the integrality gaps given by the o-scaling

3see https://www.artelys.com/docs/knitro/2_userGuide.html, for details

105

https://www.artelys.com/docs/knitro/2_userGuide.html

are less than 1, g-scaling can reduce them.

In Figure 4.2, we show for CMESP, similar results to the ones shown in Figure 4.1,

except that now we also present the effect of g-scaling on the gscaling-DDFact and the

complementary gscaling-DDFact bounds. We see from the integrality gap decrease ratios

that when side constraints are added to MESP, the g-scaling is, in general, more effective in

reducing the gaps given by o-scaling. We also see that, it is particularly effective in reducing

the gscaling-DDFact and complementary gscaling-DDFact bounds that were not improved

by o-scaling. Especially for the n = 124 matrix, we see a significant reduction on the gaps

given by complementary gscaling-DDFact and gscaling-DDFact, for s smaller and greater

than 50, respectively.

We also investigated how the improvement of g-scaling over o-scaling for the linx bound

can increase the possibility of fixing variables in MESP and CMESP. The methodology

for fixing variables is based on convex duality and has been applied since the first convex

relaxation was proposed for these problems in (Anstreicher, Fampa, Lee, andWilliams, 1996).

When a lower bound for each instance is available, the dual solution of the relaxation can

potentially be used to fix variables at 0/1 values (see (Fampa and Lee, 2022), for example).

This is an important feature in the B&B context. The methodology may be able to fix a

number of variables when the relaxation generates a strong bound, and in doing so, it reduces

the size of the successive subproblems and improves the bounds computed for them.

In Table 4.1, for MESP, we consider (un-scaled) gscaling-DDFact and (un-scaled) comple-

mentary gscaling-DDFact, and we show the impact of using g-scaled gscaling-linx, compared

to o-scaled gscaling-linx, on an iterative procedure where we solve gscaling-linx, gscaling-

DDFact, and complementary gscaling-DDFact, fixing variables at 0/1 whenever possible.

While for CMESP, we show the impact of using g-scaled linx, g-scaled gscaling-DDFact, and

g-scaled complementary gscaling-DDFact, compared to o-scaled linx, (un-scaled) gscaling-

DDFact, and (un-scaled) complementary gscaling-DDFact, on the same iterative procedure

where we solve gscaling-linx, gscaling-DDFact, and complementary gscaling-DDFact, fixing

variables at 0/1 whenever possible. In both cases, we update the scaling parameters of the

scaled bounds at every iteration. For o-scaling, we optimize the scalar γ by applying Newton

steps until the absolute value of the derivative is less than 10−10. For g-scaling, we optimize

the vector Υ by applying up to 10 BFGS steps, taking γe as a starting point. We limit the

number of BFGS steps in this experiment to get closer to what might be practical within

B&B. We present in the columns of Table 4.1, the following information from left to right:

The problem considered, n, the range of s considered, the scaling, the number of instances

solved (one for each s considered), the number of instances on which we could fix at least one

variable (“inst fix”), the total number of variables fixed on all instances solved (“var fix”),

106

0 10 20 30 40 50 60

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

De
cr

ea
se

 ra
tio

Integrality gap decrease ratio: g-scaling vs o-scaling (n=63)

linx
BQP
c-BQP

0 10 20 30 40 50 60

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

In
te

gr
al

ity
 g

ap

Integrality gap: (n=63)

linx-g
BQP-g
c-BQP-g

linx-o
BQP-o
c-BQP-o

0 10 20 30 40 50 60 70 80 90

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

De
cr

ea
sin

g
ra

tio

Integrality gap decrease ratio: g-scaling vs o-scaling (n=90)

linx

0 10 20 30 40 50 60 70 80 90

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

In
te

gr
al

ity
 g

ap

Integrality gap: (n=90)

linx-g linx-o

0 20 40 60 80 100 120

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

De
cr

ea
sin

g
ra

tio

Integrality gap decrease ratio: g-scaling vs o-scaling (n=124)

linx

0 20 40 60 80 100 120

s

0

0.5

1

1.5

2

2.5

3

3.5

4

In
te

gr
al

ity
 g

ap

Integrality gap: (n=124)

linx-g linx-o

Figure 4.1: Comparison between g-scaling and o-scaling for MESP

107

0 10 20 30 40 50 60

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

De
cr

ea
se

 ra
tio

Integrality gap decrease ratio: g-scaling vs o-scaling (n=63)

linx
DDFact
c-DDFact
BQP
c-BQP

0 10 20 30 40 50 60

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

In
te

gr
al

ity
 g

ap

Integrality gap: (n=63)

linx-g
DDFact-g
c-DDFact-g
BQP-g
c-BQP-g

linx-o
DDFact-o
c-DDFact-o
BQP-o
c-BQP-o

0 10 20 30 40 50 60 70 80 90

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

De
cr

ea
se

 ra
tio

Integrality gap decrease ratio: g-scaling vs o-scaling (n=90)

linx
DDFact
c-DDFact

0 10 20 30 40 50 60 70 80 90

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

In
te

gr
al

ity
 g

ap

Integrality gap: (n=90)

linx-g
DDFact-g
c-DDFact-g

linx-o
DDFact-o
c-DDFact-o

20 40 60 80 100

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

De
cr

ea
se

 ra
tio

Integrality gap decrease ratio: g-scaling vs o-scaling (n=124)

linx
DDFact
c-DDFact

20 40 60 80 100

s

0

2

4

6

8

10

12

14

16

18

In
te

gr
al

ity
 g

ap

Integrality gap: (n=124)

linx-g
DDFact-g
c-DDFact-g

linx-o
DDFact-o
c-DDFact-o

Figure 4.2: Comparison between g-scaling and o-scaling for CMESP

108

the %-improvement of g-scaling over o-scaling for the two last statistics. Additionally, to

better understand how well our methods works for MESP as n grows, we also experimented

with a covariance matrix of order n = 300, which is a principal submatrix of the covariance

matrix of order n = 2000 used as a benchmark in the literature (see (Li and Xie, 2023; Chen,

Fampa, and Lee, 2023)). First, we see that, except for the number of instances of MESP

with n = 124 and n = 300 on which we could fix variables, there is always an improvement.

The improvement becomes very significant when side constraints are considered. We note

that the number of variables fixed, reported on Table 4.1, refers only to the root nodes of

the B&B algorithm and indicates a promising approach to reduce the B&B enumeration.

Number of Improvement
inst var inst var

n s scal s fix fix fix fix
MESP 63 [2,62] o 61 41 1123

g 61 42 1140 2.44% 1.51%
90 [2,89] o 88 41 1741

g 88 42 1790 2.44% 2.81%
124 [2,123] o 122 35 3322

g 122 35 3353 0.00% 0.93%
300 [80,120] o 41 41 8382

g 41 41 10753 0.00% 28.3%
CMESP 63 [3,52] o 50 22 371

g 50 28 537 27.27% 44.74%
90 [4,87] o 84 26 606

g 84 37 1048 42.31% 72.94%
124 [11,110] o 100 9 197

g 100 33 1120 266.67%468.53%

Table 4.1: Impact of g-scaling on variable fixing

The experiments with the fixing methodology show that g-scaling can effectively lead to

a positive impact on the solution of MESP and CMESP, especially of the latter.

We carried out further experiments to investigate the relevance of our generalized differ-

entiability for gscaling-DDFact. For these experiments, we only worked with MESP, because

we wanted to better expose the non-negativity constraints to the algorithms, and we chose

(again) factorizations with k equal to the rank of C, taking advantage of Remark 4.4. For

these experiments, we employed all four of the Knitro algorithmic options: Interior/Direct,

Interior/Conjugate-Gradient(CG), Active Set, Sequential Quadratic Programming (SQP),

and chose all of the other Knitro parameters as described for our first experiments. The

first two algorithms have all of their iterates in the interior of dom (fDDFact; Υ)+ , while the

109

n Interior Interior(CG) Active-set SQP
63 0.09 0.42 0.11 0.18
90 0.19 0.83 0.20 0.29
124 0.40 1.63 0.37 0.44
2000 1292.2 2227.39 96.30 304.60

Table 4.2: Average converging time of each algorithm for solving gscaling-DDFact.

latter two can have iterates at the boundary of dom (fDDFact; Υ)+ . We collected average con-

verging times of the four algorithms in Table 4.2. In particular, the converging times are

averaged over 5 ≤ s ≤ n− 5 for the n = 63, 90, 124 benchmark covariance matrices and over

s = 20, 40, 60, 80, 100 for the (full) n = 2000 benchmark covariance matrix. To mitigate the

impact of some variance in the run time for each instance, we also included in Table 4.3 the

percentage of instances s for each n where the convergence time of the algorithm is within

105% of the convergence time of the best-performing algorithm among the four. This crite-

rion implies that the algorithm is considered the best within a tolerance of 5%. Additionally,

in Table 4.4, we gathered the average iterates that lie on the boundary of dom (fDDFact; Υ)+
for each algorithm to exhibit the relevance of generalized differentiabiliy in Definition 4.2.

We use the rank function of MATLAB to determine the boundary iterates by singularity of

FDDFact(x; Υ) (equivalently, when x has any zero components; see Remark 4.4). In particular,

MATLAB asserts a matrix to be singular if the matrix has some singular value smaller than the

product of the maximum of dimension lengths and the exponential of the matrix 2-norm.

Table 4.2 exhibits that the active-set algorithm consistently achieves the minimum, or

near-minimum, average converging time. Table 4.3 shows that the active-set algorithm has

the greatest winning percentages except for n = 124, where the combined winning percent-

ages of the active-set and SQP algorithms still exceed those of the other two algorithms.

These outcomes indicate the superiority of algorithms that produce iterates lying on the

boundary of dom (fDDFact; Υ)+ , thereby emphasizing the relevance of generalized differen-

tiability in justifying their use. Table 4.4 reveals that for both the active-set and SQP

algorithms, nearly all iterates are on the boundary of dom (fDDFact; Υ)+ . We note that even

the interior-point methods display iterates on the boundary of dom (fDDFact; Υ)+ within the

tolerance. These findings underscore the relevance of generalized differentiability across all

algorithms.

110

n Interior Interior(CG) Active-set SQP
63 46.3 0 55.6 0
90 48.8 0 57.3 1.2
124 48.3 0 44.8 13.8
2000 0 0 100.0 0

Table 4.3: % of s on which the algorithm converges within no more than 105% converging
time of the best algorithm (i.e., optimal under 5% tolerance).

n Interior Interior(CG) Active-set SQP
63 27.6 1.3 97.7 97.2
90 35.5 0.8 98.7 98.6
124 61.1 22.4 93.0 93.6
2000 69.2 29.5 100.0 100.0

Table 4.4: Average % of iterates with x having any zero components, which is equivalent to
the singularity of FDDFact(x; Υ).

4.7 Concluding remarks

We have seen that g-scaling can lead to improvements in upper bounds and variable fixing

for MESP and very good improvements for CMESP. In future work, we will implement this

in an efficient manner, within a B&B algorithm. In that context, it is important to efficiently

use parent scaling vectors to warm-start the optimization of scaling vectors for children (see

(Anstreicher, 2020), where this was an important issue for o-scaling in the context of the

gscaling-linx bound). An open question that we wish to highlight is whether g-scaling can

help the gscaling-DDFact bound for MESP. Theorem 4.4.iv is a partial result toward a

negative answer.

Finally, we remark that there is room to do g-scaling for other bounds for CMESP.

We did not work with g-scaling for the NLP bound. Besides the fact that we do not have a

convexity result for o-scaling of the NLP bound as a starting point for generalizing the theory,

the o-scaling parameter is entangled with other parameters of the NLP bound which must

be selected properly (even for the NLP bound to be a convex optimization problem). For

these reasons, we have left exploration of g-scaling for the NLP bound for future research.

Additionally, we did not attempt to merge the ideas of g-scaling with bound “mixing”

(see (Chen, Fampa, Lambert, and Lee, 2021)); this looks like another promising area for

investigation.

111

CHAPTER 5

Masking Anstreicher’s linx Bound for

Improved Entropy Bounds

This chapter has been published as:

Zhongzhu Chen, Marcia Fampa, Jon Lee. Technical Note: Masking Anstreicher’s linx bound

for improved entropy bounds. Operations Research, appeared online, 2022. https://doi.

org/10.1287/opre.2022.2324

5.1 Introduction

The main goal of this chapter is to demonstrate the strong potential for masking to improve

the linx bound, even in the presence of scaling. In fact, we show that for a large class of

problem instances, masking can improve the linx bound by an amount that is at least linear

in the problem size n. In detail, we exhibit sequences {Ck, sk;Mk, γk, γ̂k}∞k=1, with Ck ⪰ 0 of

order nk, Mk ∈ Mnk
, nk → ∞, such that zlinx(Ck, sk; γk) − zlinx(Ck, sk;Mk, γ̂k) ≥ αk, where

αk grows linearly with nk. First we do this for γk = γ̂k = 1 (i.e., no scaling). Then, at the

expense of a worse lower bound αk, we do this when γk and γ̂k are the optimal scale factors.

To get such lower bounds on the gap zlinx(Ck, sk; γk)− zlinx(Ck, sk;Mnk
, γ̂k), we need a good

lower bound on zlinx(Ck, sk; γk) and a good upper bound on zlinx(Ck, sk;Mnk
, γ̂k). In fact, to

establish these gaps, we will take Mnk
= Ink

, and so to get our needed upper bounds, we

use an exact characterization of the linx bound and the optimal scaling for the linx bound,

when C is diagonal (useful because Cnk
◦ Ink

is diagonal).

Because we are going to use masking and scaling simultaneously, we introduce the masked

scaled linx bound here. For x ∈ [0, 1]n, we define

flinx(x;M,γ) :=1
2

(
ldet (γ(C ◦M)Diag(x)(C ◦M) + Diag(e− x))− s log γ

)

112

https://doi.org/10.1287/opre.2022.2324
https://doi.org/10.1287/opre.2022.2324

with

dom (flinx;M,γ) :=
{
x ∈ Rn : γ(C ◦M)Diag(x)(C ◦M) + Diag(e− x) ≻ 0

}
.

We then define the masked scaled linx bound

zlinx(M,γ) := max
{
flinx(x;M,γ) : x ∈ Plinx(n, s)

}
. (masked scaled linx)

where Plinx(n, s) := {eTx = s, 0 ≤ x ≤ e, Ax ≤ b}.
Moreover, we also extend an earlier result that the scaled linx bound is convex in the

logarithm of a scaling parameter, making a full characterization of its behavior and providing

an efficient means of calculating its limiting behavior in all cases. Therefore, we introduce

a basic results here for following use. Because the scaled linx is an “exact relaxation” (i.e.,

the objective of the relaxation on an x ∈ {0, 1}n is exactly ldetC[S, S] for S equal to the

support of x), for every scaling parameter γ > 0, the following useful fact (true for any exact

relaxation) is easy to see.

Proposition 5.1. If x̂ ∈ {0, 1}n is an optimal solution of the scaled linx for γ = γ̂, then γ̂

is optimal. That is, zlinx(C, s; γ̂) = minγ>0 zlinx(C, s; γ).

We note that masking does not generally produce an exact relaxation, so Proposition 5.1

does not extend to a sufficient condition for optimal masks.

In §5.2, we establish that using a mask but no scaling parameter (i.e., γ = 1), the best-

case improvement in the linx bound is at least linear in n; specifically, ≈ .0312n. In §5.3,
we study the behavior of the linx bound as we vary the scaling parameter γ > 0. It was

already established that the linx bound is convex in log(γ) (see (Chen, Fampa, Lambert,

and Lee, 2021)). We establish the limiting behavior, as γ goes to 0 and to infinity. When

s = rank(C), the limit as γ goes to infinity can be better than any finite choice of γ; in this

case, we establish that the limit can be calculated by solving a single convex optimization

problem. In §5.4, we establish that using a mask and optimal scaling parameters, the best-

case improvement in the linx bound remains at least linear in n; specifically, ≈ .024n. §5.5
contains some final remarks.

5.2 Linear gap for the linx bound

Our main goal in this section is to establish a linear lower bound on the best-case gap between

the linx bound and the masked linx bound, giving a good justification for considering mask

optimization. Specifically, we will give a sequence {Cn, sn;Mn}, for all even positive integers

113

n, with Cn ⪰ 0 of order n, and Mn ∈ Mn, such that zlinx(Cn, sn) − zlinx(Cn, sn;Mn) ≥
1
4
log
(
4
3

)
n. In fact, we will take sn := n

2
, and Mn := In. Because we use Mn := In, we

will have zlinx(Cn, sn;Mn) = zlinx(Diag(d(n)), sn), where d(n) = diag(Cn). Hence it is useful

to characterize, in general, the optimal solution of linx when C is diagonal. Additionally,

beyond our own use in the present work, we believe that such a characterization can be

useful in future work on gaps for the linx bound.

Without loss of generality, we assume that C := Diag(d) where d ∈ Rn and d1≥d2≥· · ·≥
dn>0. Then

flinx(C, s;x) =
1
2
log
∏
i∈N

(
(d2i − 1)xi + 1

)
.

Lemma 5.2. Let C := Diag(d), where d ∈ Rn satisfies d1 ≥ d2 ≥ · · · ≥ dn > 0. There exists

an optimal solution x̂ of linx such that x̂1 ≥ x̂2 ≥ · · · ≥ x̂n and x̂i = x̂j, for all i, j ∈ N ,

such that di = dj.

Proof. Clearly, linx has an optimal solution x̂. And

(
(d2i − 1)x̂i + 1

) (
(d2j − 1)x̂j + 1

)
−
(
(d2i − 1)x̂j + 1

)(
(d2j − 1)x̂i + 1

)
=(d2i − d2j)(x̂i − x̂j).

If di > dj, from the identity above we see that x̂i ≥ x̂j, otherwise, by exchanging compo-

nents i and j of x̂, we would increase the objective value of linx.

If di = dj, let δ := x̂i + x̂j. Then,(
(d2i − 1)x̂i + 1

) (
(d2j − 1)x̂j + 1

)
=
(
(d2i − 1)x̂i + 1

) (
(d2j − 1)(δ − x̂i) + 1

)
.

In this case, if di = 1, the above function is constant. Otherwise, it is a univariate concave

quadratic in x̂i, and its maximum is uniquely attained at x̂i = δ/2. Therefore, by setting

x̂i = x̂j = δ/2, the maximum of the function is always attained.

Definition 5.1. We refer to an optimal solution x̂ of linx which satisfies the properties in

Lemma 5.2 as a uniform optimal solution.

Lemma 5.3. Let C := Diag(d), where d ∈ Rn satisfies d1 ≥ d2 ≥ · · · ≥ dn > 0 and

0 ≤ x ≤ e. Then flinx(C, s;x) strictly increases with xi, if di > 1, does not change with xi,

if di = 1, and strictly decreases with xi, if di < 1. Furthermore, flinx(C, s;x) is concave in

[0, 1]n and strictly concave if di ̸= 1, for all i ∈ N .

114

Proof. For all i ∈ N , di > 0 and 0 ≤ xi ≤ 1 implies that (d2i − 1)xi+1 > 0. Then, for i ∈ N ,

∂flinx(C, s;x)

∂xi
=

d2i − 1

2((d2i − 1)xi+1)


< 0, if di < 1,

= 0, if di = 1,

> 0, if di > 1,

∂2flinx(C, s;x)

∂x2i
=

−(d2i − 1)2

2((d2i − 1)xi+1)2

{
< 0, if di ̸= 1,

= 0, if di = 1,

and

∂2flinx(C, s;x)

∂xi∂xj
= 0, for 1 ≤ i ̸= j ≤ n.

Remark. From Lemmas 5.2 and 5.3, we see that if C = Diag(d), with 0 < di ̸= 1,∀i ∈ N ,

then linx has a unique optimal solution, which is a uniform optimal solution.

Next, we establish necessary conditions for x̂ to be a uniform optimal solution for linx

when C is diagonal, based on checking a finite set of feasible directions; we could also get

these conditions from the KKT conditions for linx, also establishing their sufficiency, but

our approach is simpler and suits our purpose.

Lemma 5.4. Let C := Diag(d), where d ∈ Rn satisfies d1 ≥ d2 ≥ · · · ≥ dn > 0. Let x̂ be a

uniform optimal solution of linx. For 1 ≤ i < j ≤ n, we have

d2j − 1

(d2j − 1)x̂j + 1
≤ d2i − 1

(d2i − 1)x̂i + 1
. (5.1)

Additionally, if 1 > x̂i ≥ x̂j > 0, then

d2j − 1

(d2j − 1)x̂j + 1
=

d2i − 1

(d2i − 1)x̂i + 1
. (5.2)

Proof. (5.1) is clear when x̂i = x̂j, from the fact that di ≥ dj > 0. So we may assume that

x̂i > x̂j. In this case ej − ei is a feasible direction for x̂ relative to linx. Because x̂ is optimal

for linx, we must have that ∇flinx(C, s; x̂)
T(ej − ei) ≤ 0, which is equivalent to (5.1).

(5.2) follows from the fact that, in this case, ei−ej is also a feasible direction for x̂ relative

to linx.

We have a corollary of Lemma 5.4 for two special cases: dn > 1 and d1 < 1. We will

see later that the characterization of the optimal solution in general can be reduced to the

characterization of the optimal solution in these two special cases.

115

Corollary 5.5. Let C := Diag(d), where d ∈ Rn satisfies either d1 ≥ d2 ≥ · · · ≥ dn > 1 or

1 > d1 ≥ d2 ≥ · · · ≥ dn > 0. Let x̂ be a uniform optimal solution of linx. Then,

x̂i − x̂j ≤
1

d2j − 1
− 1

d2i − 1
. (5.3)

Additionally, if 1 > x̂i ≥ x̂j > 0, then

x̂i − x̂j =
1

d2j − 1
− 1

d2i − 1
. (5.4)

Proof. If either dn > 1 or d1 < 1, we have d2i − 1 ̸= 0,∀i ∈ N . Also, both d2i − 1 and d2j − 1

have the the same sign ∀i, j ∈ N . Together with (d2i − 1)x̂i + 1 > 0,∀i ∈ N , we have that

(5.1) and (5.2) equal (5.3) and (5.4), respectively.

To characterize an optimal solution of linx when C is diagonal, we first establish a lemma

that characterizes an optimal solution of linx in the two special cases discussed in Corol-

lary 5.5.

Lemma 5.6. Let C := Diag(d), where d ∈ Rn satisfies either d1 ≥ d2 ≥ · · · ≥ dn > 1

or 1 > d1 ≥ d2 ≥ · · · ≥ dn > 0. Let x̂ be a uniform optimal solution of linx for a given

0 < s < n. We have,

(i) if 1
d2s+1−1

− 1
d2s−1

≥ 1, then

x̂i :=

{
1, for 1 ≤ i ≤ s,

0, for s+ 1 ≤ i ≤ n,

(ii) if 1
d2s+1−1

− 1
d2s−1

< 1, then 0 < x̂s < 1, and

x̂i :=



min
{
1, x̂s +

1
d2s−1

− 1
d2i−1

}
,

for 1 ≤ i ≤ s− 1,

max
{
0, x̂s +

1
d2s−1

− 1
d2i−1

}
,

for s+ 1 ≤ i ≤ n.

(5.5)

Proof. We have already shown that under the hypotheses, linx has a unique optimal solution

x̂, where x̂1 ≥ x̂2 ≥ · · · ≥ x̂n. Thus, for (i), we only need to show that x̂s = 1. Suppose

that x̂s < 1; then 1 > x̂s ≥ x̂s+1 > 0, i.e., x̂s − x̂s+1 < 1 ≤ 1
d2s+1−1

− 1
d2s−1

, which violates the

necessary condition (5.4) in Corollary 5.5.

116

For (ii), we see that if x̂s = 1, then x̂s+1 = 0 and x̂s − x̂s+1 = 1 > 1
d2s+1−1

− 1
d2s−1

, which

violates the necessary condition (5.3) in Corollary 5.5. If x̂s = 0, then
∑n

i=1 x̂i ≤
∑s−1

i=1 x̂i ≤
s− 1, which contradicts the feasibility of x̂. Therefore, 0 < x̂s < 1. Finally, by the necessary

conditions in Corollary 5.5, the other parts of (ii) must hold.

In case (ii) in Lemma 5.6, we can solve the equation eTx = s for x̂s:

s−1∑
i=1

min

{
1, x̂s +

1

d2s − 1
− 1

d2i − 1

}
+ x̂s

+
n∑

i=s+1

max

{
0, x̂s +

1

d2s − 1
− 1

d2i − 1

}
= s ,

where 0 < x̂s < 1. Note that the left-hand side of this equation is increasing, piecewise

linear, and continuous in x̂s, so the equation is easy to solve. Once x̂s is determined, all x̂i,

with i ̸= s are also uniquely determined by (5.5).

Finally, we have the following characterization of optimal solutions when C is diagonal.

Below, we use L(C̃, s̃) to denote linx with (C, s) replaced by (C̃, s̃).

Theorem 5.7. Let C := Diag(d), where d ∈ Rn satisfies d1 ≥ d2 ≥ · · · ≥ dn > 0. Let

L := {i ∈ N : di < 1}, E := {i ∈ N : di = 1}, and G := {i ∈ N : di > 1}. Then x̂ defined

below is an optimal solution for linx.

(i) If s ≤ |G|, let x̃ ∈ R|G| be the optimal solution of L(C̃, s̃) with C̃ := Diag(d̃), where

d̃ ∈ R|G|, d̃i := di, 1 ≤ i ≤ |G|, and s̃ := s. Then,

x̂i :=

{
x̃i, for i ∈ G,

0, for i ∈ E ∪ L.

(ii) If |G| < s ≤ |G ∪ E|, let x̃i, i ∈ E be any value such that 0 ≤ x̃i ≤ 1 and
∑

i∈E x̃i =

s− |G|. Then,

x̂i :=


1, for i ∈ G,

x̃i, for i ∈ E,

0, for i ∈ L.

(iii) If |G∪E| < s, let x̃ ∈ R|L| be the optimal solution of L(C̃, s̃) with C̃ := Diag(d̃) where

d̃ ∈ R|L|, d̃i = di+|G∪E|, 1 ≤ i ≤ |L|, and s̃ := s− |G ∪ E|. Then,

x̂i :=

{
1, for i ∈ G ∪ E,
x̃i, for i ∈ L.

117

Proof. We will prove (i) in detail; (ii) and (iii) can be proved in a similar manner. The

feasibility of x̂ is obvious. We will prove that x̂ is optimal as well. Let us assume otherwise,

i.e., we assume that x∗ is an optimal solution to linx and

flinx(C, s;x
∗) > flinx(C, s; x̂). (5.6)

We first claim that x∗i = 0, ∀i ∈ E ∪ L. Otherwise let x∗i > 0, for some i∈E ∪ L. Then, as

s ≤ |G|, by feasibility of x∗, we have x∗j < 1 for some j ∈ G. Therefore ej − ei is a feasible

direction from x∗ in linx. However, by Lemma 5.3, we have that ∇flinx(C, s;x
∗)T(ej−ei) > 0,

contradicting the optimality of x∗.

Now, define x̃∗ ∈ R|G| such that x̃∗i = x∗i , ∀i ∈ G. As x∗i = 0, ∀i ∈ E ∪ L, it is

straightforward to see that x̃∗ is feasible to L(C̃, s̃). Thus flinx(C̃, s̃; x̃) ≥ flinx(C̃, s̃; x̃
∗). Note

also that x̂i = 0, ∀i∈E ∪ L, so flinx(C, s; x̂) = flinx(C̃, s̃; x̃) ≥ flinx(C̃, s̃; x̃
∗) = flinx(C, s;x

∗),

contradicting (5.6).

Having characterized an optimal solution for linx when C is diagonal, we will now consider

the more general case where C is any positive-semidefinite matrix and establish a simple lower

bound on zlinx(C, s), by considering the eigenvalues of C.

Lemma 5.8. For any positive-semidefinite order-n matrix C and integer 0 < s < n,

zlinx(C, s) ≥ 1
2
log

n∏
i=1

(
s
n
λ2i + 1− s

n

)
,

where λ1, ..., λn are the eigenvalues of C.

Proof. We diagonalize C: That is, we choose an orthogonal matrix Q so that QTCQ = Λ :=

Diag(λ1, λ2, ..., λn). Let x̄ = s
n
e. Then

zlinx(C, s) ≥flinx(C, s; x̄)

=1
2
ldet

(
s
n
C2 +

(
1− s

n

)
I
)

=1
2
ldet

(
s
n
QΛ2QT +

(
1− s

n

)
I
)

=1
2
ldet

(
s
n
Λ2 +

(
1− s

n

)
I
)

=1
2
log

n∏
i=1

(
s
n
λ2i + 1− s

n

)
.

118

We now study the efficacy of using a mask M for the linx bound (versus choosing M =

J). We will show that there is an infinite sequence of {Cn}n∈I such that zlinx(Cn,
n
2
) −

zlinx(Cn,
n
2
; I) ≥ 1

4
log(4

3
)n ≈ .0312n. The results show that by choosing an appropriate mask

M different from J , we can decrease the linx bound by at least an amount that is linear in

n.

Recall that we have characterized an optimal solution of linx when C is diagonal in

Theorem 5.7 and a lower bound of zlinx(C, s) when C is any positive-semidefinite matrix in

Lemma 5.8. Note that C ◦ I is diagonal. Then we have the following gap.

zlinx(C, s)− zlinx(C, s; I) ≥ (5.7)

1
2
log

n∏
i=1

(
s
n
λ2i+1− s

n

)
− 1

2
log

n∏
i=1

(
d2i x̂i+1−x̂i

)
where λi, i ∈ N are the eigenvalues of C, di, i ∈ N are diagonal elements of C, and x̂ is an

optimal solution of linx with C replaced by C ◦ I. We will employ this lower bound on the

gap in what follows.

Before presenting our main result, we will characterize the optimal mask when n = 2 and

s = 1. We will use this to construct a gap between zlinx(C, s) and zlinx(C, s; I) that is linear

in the order of C.

Theorem 5.9. Let C2 :=

(
a c

c b

)
be positive-semidefinite where we assume, without loss

of generality, a ≥ b. Let M∗
2 =

(
1 m∗

m∗ 1

)
be an optimal mask for zlinx(C2, 1;M2). We

have,

(i) if c = 0, thenm∗ is any value in [−1, 1];

(ii) if ab−1
c2

≥ 1, then m∗ = ±1;

(iii) if ab−1
c2

≤ 0, then m∗ = 0;

(iv) if 0 < ab−1
c2

< 1, then m∗ = ±
√

ab−1
c2
.

Proof. Let M2 :=

(
1 m

m 1

)
∈ M2. Let m∗ = argmin−1≤m≤1

{
(c2m2 + 1− ab)

2
}
. Con-

sidering that x1 + x2 = 1, we obtain

ldet((C2 ◦M2)Diag(x)(C2 ◦M2)+I2−Diag(x))

= log((c2m2 + 1− ab)2x1x2 + (ax1 + bx2)
2)

≥ log((c2(m∗)2 + 1− ab)2x1x2 + (ax1 + bx2)
2)

= ldet((C2 ◦M∗
2)Diag(x)(C2 ◦M∗

2)+I2−Diag(x)),

119

which implies that M∗
2 is an optimal mask.

The values of m∗ in cases (i − iv) can be easily obtained from m∗ =

argmin−1≤m≤1

{
(c2m2 + 1− ab)

2
}
.

For simplicity of the following discussions, we introduce the next lemma.

Lemma 5.10. With the same hypotheses and notations as Theorem 5.9, define g(a, b, c) :=

exp(2zlinx(C2, 1;M
∗
2)) and

∆zlinx(C, s;M) := zlinx(C, s)− zlinx(C, s;M).

Then

∆zlinx(C2, 1;M
∗
2) ≥ 1

2
log (c2+1−ab)2+(a+b)2

4g(a,b,c)
.

Proof. Let λ1 ≥ λ2 ≥ 0 be the two eigenvalues of C2. Considering that λ1 + λ2 = a+ b and

λ1λ2 = ab− c2, the result follows directly from Lemma 5.8.

Note that for cases (i − ii) in Theorem 5.9, there is no mask better than J2. So we

focus on cases (iii− iv). For case (iv), we can calculate from the proof of Theorem 5.9 that

zlinx(C2, 1;M
∗
2) =

1
2
log (a2). By Lemma 5.10, we have

∆zlinx(C2, 1;M
∗
2) ≥ 1

2
log (c2+1−ab)2+(a+b)2

4a2
.

Note that ab−1
c2

> 0 and a ≥ b imply a > 1. Further, a > 1, ab−1
c2

< 1 and ab ≥ c2 imply

0 < c2 + 1− ab ≤ 1 < a. So,

1
2
log (c2+1−ab)2+(a+b)2

4a2
< 1

2
log
(
5
4

)
.

Moreover, by choosing a = b = c > 1, we are in case (iv), and the gap becomes 1
2
log(1 +

1/4a2), which we can make as close to 1
2
log(5/4) as we like.

For case (iii), the optimal mask is I2, and we can find a greater gap than we could for

case (iv). We prove this and our main result in the following theorem.

Theorem 5.11. There is an infinite sequence of positive-semidefinite matrices {Cn}n∈2Z
such that

zlinx
(
Cn,

n
2

)
−zlinx

(
Cn,

n
2
; I
)
= 1

4
log
(
4
3

)
n.

Moreover, for n = 2, this is the maximum possible lower bound on the gap that can be

achieved using the lower bound from Lemma 5.8.

120

Remark. As we have indicated above in our analysis of case (iv), and proceeding similarly

to how we proceed below, we can also get linear gaps with masks that are different from the

identity mask, albeit with a worse constant (strictly less than 1
4
log(5

4
)).

Proof. (Theorem 5.11) First, consider n = 2, s = 1. We use the same notations as in

Theorem 5.9 and consider its case (iii), where ab ≤ 1, so that the optimal mask is I2. In the

following, we will use x̂ to denote the optimal solution of (masked scaled linx) for C := C2,

s = 1, M := I2, and γ = 1; so zlinx(C2, 1; I2) = zlinx(C2, 1; I2, 1) = flinx(C2, 1; I2, 1; x̂).

We have two sub-cases to analyze:

(i) a ≥ 1 ≥ b: by Theorem 5.7, x̂ = (1, 0)T is an optimal solution and zlinx(C2, 1; I2) =
1
2
log (a2). By Lemma 5.10, we have

∆zlinx(C2, 1; I2) ≥ 1
2
log (c2+1−ab)2+(a+b)2

4a2
. (5.8)

Note that (c2 + 1− ab)2 + (a+ b)2 ≤ 5a2, so (c2+1−ab)2+(a+b)2

4a2
≤ 5

4
. The equality can be

obtained when a = b = c = 1.

(ii) 1 > a ≥ b: there are still two sub-cases:

1
b2−1

− 1
a2−1

≥ 1 and 1
b2−1

− 1
a2−1

< 1.

• If 1
b2−1

− 1
a2−1

≥ 1, then by Theorem 5.7, we also have x̂ = (1, 0)T and

zlinx(C2, 1; I2) = 1
2
log (a2). Thus, (5.8) also holds. From 1

b2−1
− 1

a2−1
≥ 1 and

b2 ≥ 0, we can see that 1
2
≤ a2 < 1 and b ≤

√
2− 1

a2
. Together with c2 ≤ ab < 1,

letting t := 1
a2

∈ (1, 2], we get

max (c2+1−ab)2+(a+b)2

4a2
= max

1+
(
a+

√
2− 1

a2

)2

4a2

= max 1
4
+ 3

4
t− 1

4
t2 + 1

2

√
2t− t2

≤ max 1
4
+ 3

4
t− 1

4
t2 +max 1

2

√
2t− t2

= 13
16

+ 1
2
< 4

3
.

In the next sub-case, we will build a 1
2
log
(
4
3

)
gap, so the gap in the present

sub-case is sub-optimal.

• If 1
b2−1

− 1
a2−1

< 1, then by Theorem 5.7, x̂ = 1
2

(
1 + 1

b2−1
− 1

a2−1
, 1− 1

b2−1
+ 1

a2−1

)T

121

is an optimal solution, and we have

zlinx(C2, 1;I2)=
1
2
log
(
1
4

(
a2+ a2−1

b2−1

)(
b2+ b2−1

a2−1

))
.

By Lemma 5.10, we have

∆zlinx(C2, 1; I2) ≥ 1
2
log (c2+1−ab)2+(a+b)2(

a2+a2−1

b2−1

)(
b2+ b2−1

a2−1

) .
We claim that

(c2+1−ab)2+(a+b)2(
a2+a2−1

b2−1

)(
b2+ b2−1

a2−1

) ≤ 1+(a+b)2(
a2+a2−1

b2−1

)(
b2+ b2−1

a2−1

) ≤ 4
3
.

The first inequality holds because c2 ≤ ab < 1 and the second holds for being

equivalent to

(1−2ab)2 + (a−b)2 + 4(a2−b2)
(

1
b2−1

− 1
a2−1

)
≥ 0,

We get equality in both with a = b = c =
√
2
2
.

In the analysis above, we see that we can create the largest gap in the last case. Therefore,

we define

C2 :=

(√
2
2

√
2
2√

2
2

√
2
2

)
.

Then λ1 =
√
2, λ2 = 0, the optimal solution for C2 ◦ I2 is

(
1
2
, 1
2

)T
, and

zlinx(C2, 1)− zlinx(C2, 1; I2)

= 1
2
log
((

1
2
· (
√
2)2 + 1− 1

2

) (
1
2
· 02 + 1− 1

2

))
− 1

2
log

((
1
2
·
(√

2
2

)2
+1− 1

2

)(
1
2
·
(√

2
2

)2
+1− 1

2

))
= 1

2
log
(
4
3

)
.

For n = 2k, we construct a block-diagonal matrix Cn with k = n
2
blocks, and each block

is such a C2 matrix. Then we take s = n
2
. In this way, Cn has k eigenvalues of

√
2 and k

eigenvalues of 0. Also, all diagonal elements of Cn are
√
2
2
. By (5.7), we have

zlinx
(
Cn,

n
2

)
− zlinx

(
Cn,

n
2
; I
)

= n
4
log
((

1
2
(
√
2)2 + 1− 1

2

) (
1
2
(0)2 + 1− 1

2

))
122

− n
4
log

((
1
2

(√
2
2

)2
+ 1− 1

2

)(
1
2

(√
2
2

)2
+ 1− 1

2

))
= 1

4
log
(
4
3

)
n.

Remark. It is easy to check that with respect to the sequence of Cn in the proof of Theorem

5.11, we have zlinx
(
Cn,

n
2

)
= n

2
log
(√

2
2

)
. From this and the other calculations in the proof,

we can further calculate

zlinx
(
Cn,

n
2
; I
)
− zlinx

(
Cn,

n
2

)
zlinx

(
Cn,

n
2

)
− zlinx

(
Cn,

n
2

) =
log(9

8)
log(3

2)
≈ 0.29

So we can get a 71% reduction in the integrality gap, for all of the instances in this sequence,

by masking.

5.3 Optimal scaling parameter: some special cases and

general behavior

In this section, we first show how an appropriate scaling parameter γ can help improve the

linx bound by forcing one optimal solution of scaled linx to lie in {0, 1}n when C is diagonal

or C is non-singular of order 2. Next, we show the following results: (i) if s < rank(C), then

an optimal scaling parameter γ for scaled linx can always be obtained, (ii) if s = rank(C)

and γ̂ is an optimal scaling parameter for linx, then so is any γ ≥ γ̂, (iii) if s > rank(C),

there is no optimal γ. In fact, in this case we show that the linx-bound has the nice property

of recognizing the behavior of MESP; it tends to minus infinity as γ tends to infinity.

Proposition 5.12. For diagonal positive-definite matrix C := Diag{d1, ..., dn}, where d1 ≥
... ≥ dn > 0 and 0 < s < n, the scaling parameter γ̂ = 1

d2s
forces an optimal solution of scaled

linx to lie in {0, 1}n. Therefore γ̂ is an optimal scaling parameter.

Proof. Note that

flinx(C, s; γ;x) =
1
2
log

n∏
i=1

(γd2ixi + 1− xi)− 1
2
s log γ.

Partition N as N = L′ ∪ E ′ ∪G′, where γd2i < 1, i ∈ L′; γd2i = 1, i ∈ E ′; γd2i > 1, i ∈ G′. As

we have seen in Lemma 5.3, flinx(C, s; γ;x) strictly decreases with xi, i ∈ L′, does not change

with xi, i ∈ E ′ and strictly increases with xi, i ∈ G′. So, if there is a γ > 0 such that |G′| ≤ s

123

while |E ′ ∪ G′| ≥ s. By Theorem 5.7, (eTs , 0)
T is an optimal solution for scaled linx which

lies in {0, 1}n. In fact, γ̂ := 1
d2s

is such a scaling parameter. Therefore, by Proposition 5.1,

γ̂ is optimal.

Proposition 5.13. Let C2 :=

(
a c

c b

)
be positive-definite where we assume, without loss

of generality, a ≥ b. Let s = 1. Then the scaling parameter γ̂ = a2−c2
(ab−c2)2 forces an optimal

solution of scaled linx to lie in {0, 1}2. Therefore γ̂ is an optimal scaling parameter.

Proof. We have

flinx(C2, 1;x)

= 1
2
ldet(C2Diag(x)C2 + I2 −Diag(x))

= 1
2
log((c2 + 1− ab)2x1x2 + (ax1 + bx2)

2).

Because flinx(C2, 1;x) is concave, and the null space of e2 is {(t,−t)T : t ∈ R}, to prove

that one optimal solution lies in {0, 1}2 (in particular, we assume this optimal solution is

x̂ = (1, 0)T), we only need to prove

flinx(C2, 1; x̂− t(e1 − e2))

∂t

∣∣∣∣
t=0

≤ 0

which is equivalent to
∂flinx(C2, 1; x̂)

∂x1
− ∂flinx(C2, 1; x̂)

∂x2
≥ 0, (5.9)

and finally 2(a2 − c2)− (c2 − ab)2 − 1 ≥ 0.

Because flinx(C2, s; γ;x) = flinx(
√
γC2, s;x) +

1
2
log γ, we have that

∂flinx(C2, 1; γ; x̂)

∂x1
− ∂flinx(C2, 1; γ; x̂)

∂x2
≥ 0,

is equivalent to
∂flinx(

√
γC2, 1; x̂)

∂x1
−
∂flinx(

√
γC2, 1; x̂)

∂x2
≥ 0,

and finally

2(a2 − c2)γ − (c2 − ab)2γ2 − 1 ≥ 0. (5.10)

The left-hand side of (5.10) is maximized by γ̂ = a2−c2
(ab−c2)2 and the corresponding value is

(a2−c2)2
(ab−c2)2 −1 which is nonnegative because a2 ≥ ab > c2. Note that if a > b then (a2−c2)2

(ab−c2)2 −1 > 0,

which means there is an ϵ > 0 such that for any γ ∈ [γ̂− ϵ, γ̂+ ϵ], (a2−c2)2
(ab−c2)2 −1 ≥ 0 and x̂ is an

124

optimal solution, i.e., the optimal scaling parameter is not unique. Finally, by Proposition

5.1, γ̂ is optimal.

Not unexpectedly, there also exists a large and simple class of C where no optimal solution

of scaled linx lies in {0, 1}n for any 0 < s < n and any scaling parameter γ, as we will see in

Theorem 5.15.

First, note that when C = τ1I, for any τ1 > 0, in all cases of Theorem 5.7, x̂ := s
n
e is an

optimal solution of linx. The same observation can be extracted from Lemma 5.2. In fact,

this observation is also a special case of the following result, which follows immediately from

the concavity of flinx(C, s;x) and its symmetry in this case.

Proposition 5.14. Suppose that τ1 > 0, τ2 ≥ 0, and 0 < s < n integer. Let C = τ1I + τ2J ,

then x̂ = s
n
e is an optimal solution for linx.

Theorem 5.15. For any order n ≥ 3, any 0 < s < n and C = τ1I + τ2J , τ1 > 0, τ2 > 0,

and for any scaling parameter γ > 0, the optimal solution of scaled linx cannot lie in {0, 1}n.

Proof. By Proposition 5.14, one optimal solution for scaled linx is s
n
e under the setting of

this theorem. From the proof of [Theorem 21, (Chen, Fampa, Lambert, and Lee, 2021)], we

have that if

γC Diag(y)C −Diag(y) ̸= 0, (5.11)

when eTy = 0, −e ≤ y ≤ e, y ̸= 0,

then flinx(C, s; γ;x) is strictly concave with a unique optimal solution on the feasible region

of scaled linx. Because s
n
e is already optimal in this case, we see that the optimal solution

cannot lie in {0, 1}n. Now we prove that (5.11) holds.

Substituting τ1I + τ2J for C in (5.11) and dividing by γ, we get(
τ 21 − 1

γ

)
Diag(y) + τ1τ2(ey

T + yeT) ̸= 0 (5.12)

It is easy to see that if (5.12) is not satisfied, then yi + yj = 0 for all i ̸= j. But this cannot

be true when n ≥ 3 for y ̸= 0.

Interestingly, there is also a very simple example for which no γ > 0 can be an optimal

scale factor:

Proposition 5.16. For C := J2, s := 1, there is no optimal scaling factor γ for scaled linx.

In fact, for all γ > 0,

zlinx(J2, 1; γ) =
1
2
log
(
1 + 1

4γ

)
.

125

which monotonically decreases as γ increases.

Proof.

zlinx(J2, 1; γ)

= 1
2

max
x1+x2=1

0≤x1,x2≤1

{log (γ(x1 + x2)(2− x1 − x2) + (1− x1)(1− x2))− log γ}

≤ 1
2

max
x1+x2=1

0≤x1,x2≤1

{
log
(
γ(x1 + x2)(2− x1 − x2) +

(
2−x1−x2

2

)2)− log γ
}

= 1
2

(
log
(
γ + 1

4

)
− log γ

)
= 1

2
log
(
1 + 1

4γ

)
.

Note that both maximums are achieved at x1 = x2 = 1/2, and so the inequality is an

equation.

Based on Proposition 5.16, our interest is in what cases, we are guaranteed to have a

finite optimal scaling parameter γ. In fact, a broad sufficient condition is s < rank(C) by

the following theorem.

Theorem 5.17. For all positive-semidefinite C and 0 < s < n, we have

lim
γ→0

zlinx(C, s; γ) = +∞.

If we further assume that s < rank(C), then

lim
γ→+∞

zlinx(C, s; γ) = +∞.

Proof. For all γ > 0, by setting x̄ := s
n
e, we have

zlinx(C, s; γ) ≥ flinx(C, s; γ; x̄)

= 1
2

(
ldet

(
γ s
n
C2 +

(
1− s

n

)
I
)
− s log γ

)
.

When γ → 0, γ s
n
C2 +

(
1− s

n

)
I →

(
1− s

n

)
I. So

limγ→0 ldet
(
γ s
n
C2 +

(
1− s

n

)
I
)
= n log

(
1− s

n

)
,

and lim
γ→0

−s log γ = +∞.

126

Therefore, limγ→0 zlinx(C, s; γ) = +∞.

But we can also write flinx(C, s; γ; x̄) =

1
2

(
ldet

(
s
n
C2 + 1

γ

(
1− s

n

)
I
)
+(n−s) log γ

)
.

Note that limγ→+∞(n− s) log γ = +∞. Further, if C is non-singular, then

lim
γ→+∞

ldet
(
s
n
C2 + 1

γ

(
1− s

n

)
I
)
= ldet

(
s
n
C2
)
.

So we can conclude that limγ→+∞ zlinx(C, s; γ) = +∞, when C is nonsingular.

If C is singular, then we have

limγ→+∞ ldet
(
s
n
C2 + 1

γ

(
1− s

n

)
I
)
= −∞,

and we cannot immediately conclude anything useful. So we proceed differently. When

s < rank(C), without loss of generality, we can write C = QΛQT, where Q is orthogonal

and Λ := Diag(λ1, ..., λn) with λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. We have λi ̸= 0 for i ≤ rank(C) and

λi = 0 for i > rank(C). By L’Hôptital’s rule,

lim
γ→+∞

ldet(s
n
C2+ 1

γ (1−
s
n)I)

(n−s) log γ

= lim
γ→+∞

∂(ldet(s
n
C2+ 1

γ (1−
s
n)I))/∂γ

∂((n−s) log γ)/∂γ

= lim
γ→+∞

tr
(
(s
n
C2+ 1

γ (1−
s
n)I)

−1
(1− s

n)I
)

−1

γ2

(n−s) 1
γ

= lim
γ→+∞

−1
nγ
tr

((
s
n
C2 + 1

γ

(
1− s

n

)
I
)−1
)

= lim
γ→+∞

−1
n
tr
((
γ s
n
C2 +

(
1− s

n

)
I
)−1
)

= lim
γ→+∞

−1
n
tr
((
γ s
n
QΛ2QT +

(
1− s

n

)
QQT

)−1
)

= lim
γ→+∞

−1
n
tr
(
Q
(
γ s
n
Λ2 +

(
1− s

n

)
I
)−1

QT
)

= −1
n−str

(
Diag

{
01×rank(C), e

T
n−rank(C)

})
=− n−rank(C)

n−s .

This means for every ϵ > 0, there exists γϵ > 0 such that when γ > max{γϵ, 1},

1
2

(
ldet

(
s
n
C2 + 1

γ

(
1− s

n

)
I
)
+ (n− s) log γ

)

127

≥ 1
2

(
−n−rank(C)

n−s − ϵ+ 1
)
(n− s) log γ.

So

lim
γ→+∞

zlinx(C, s; γ)

≥ lim
ϵ→0

lim
γ→+∞

(
−n−rank(C)

n−s − ϵ+ 1
)
(n− s) log γ

= lim
ϵ→0

lim
γ→+∞

(
rank(C)−s

n−s − ϵ
)
(n− s) log γ

=+∞.

Corollary 5.18. For all positive-semidefinite C and 0 < s < n where s < rank(C), we can

find a finite optimal scaling parameter γ̂ such that

zlinx(C, s; γ̂) = min
γ>0

zlinx(C, s; γ).

Proof. By (Chen, Fampa, Lambert, and Lee, 2021), if we replace γ with eψ, then zlinx(C, s; e
ψ)

is convex and continuous in ψ and by Theorem 5.17,

lim
ψ→−∞

zlinx(C, s; e
ψ) = lim

γ→0
zlinx(C, s; γ) = +∞

lim
ψ→+∞

zlinx(C, s; e
ψ) = lim

γ→+∞
zlinx(C, s; γ) = +∞.

We can conclude that a minimizing ψ̂ exists, and then we have the minimizer γ̂ := eψ̂.

When s = rank(C), the following result establishes that limγ→∞ zlinx(C, s; γ) exists and is

finite, and zlinx(C, s; γ) is monotonically non-increasing in γ. This implies that if γ̂ > 0 is

optimal, then all γ ≥ γ̂ are optimal.

Theorem 5.19. When s = rank(C), without loss of generality, we can write C as C =

QΛQT, where Q is orthogonal and Λ := Diag(λ1, ..., λn) with λ1 ≥ ... ≥ λs > λs+1 = ... =

λn = 0. Denote Λs := Diag(λ1, ..., λs). Denote P = QTDiag(x)Q, Ps as the principal sub-

matrix of P indexed by (1, ..., s), Pn−s as the principal sub-matrix of P indexed by (s+1, ..., n)

and Ps,n−s as the sub-matrix of P with rows indexed by (1, ..., s) and columns indexed by

(s+ 1, ..., n) (Pn−s,s similarly).

Then the value limγ→+∞ zlinx(C, s; γ) exists and is the optimal value of the following convex

128

program:

max 1
2
(ldet (ΛsPsΛs)+ldet (In−s − Pn−s))

s.t. eTx = s

0 ≤ x ≤ 1.

(5.13)

Furthermore, zlinx(C, s; γ) is monotonically non-increasing in γ.

Proof. By the conditions,

ldet(γC Diag(x)C + I −Diag(x))− s log γ

= ldet(γΛPΛ + I − P)− s log γ.

Because C, s are fixed, let Fs(γ;x) := γΛsPsΛs + Is − Ps be the principal sub-matrix of

γΛPΛ + I − P indexed by (1, ..., s). We first prove that for any γ > 0 and any x feasible,

Fs(γ;x) is positive-definite so that we can use Schur complement formula to represent the

determinant of γΛPΛ + I − P .

The construction of P implies its eigenvalues are {x1, x2, ..., xn} so all eigenvalues of P lie

in [0, 1]. Because Ps is a principal sub-matrix of P , by [Theorem 4.3.17, (Horn and Johnson,

1985)], all eigenvalues of Ps lie in [0, 1]. Decompose Ps as Ps = Q̂Λ̂Q̂T where Q̂ is orthogonal

and Λ̂ is the diagonal matrix of eigenvalues of Ps. In particular, all elements of diag(Λ̂) are

in [0, 1]. Let Ĉ = Q̂TΛsQ̂, then

Fs(γ;x) = Q̂
(
γĈΛ̂Ĉ + Is − Λ̂

)
Q̂T.

Because Λs is positive-definite, so is Ĉ. By [Lemma 20, (Chen, Fampa, Lambert, and Lee,

2021)], Fs(γ;x) is positive-definite for any Λ̂ where 0 ≤ diag(Λ̂) ≤ e.

We only need to consider x in the feasible region such that γΛPΛ + I − P , (equiva-

lently, γC Diag(x)C + I − Diag(x)) is positive-definite. So we assume that γΛPΛ + I − P

is positive-definite in the following. Then the Schur complement of γΛPΛ + I − P in

Fs(γ;x), which is In−s − Pn−s − Pn−s,sFs(γ;x)
−1Ps,n−s, is also positive-definite. Further-

more, Pn−s,sFs(γ;x)
−1Ps,n−s is positive-semidefinite by the positive-definiteness of Fs(γ;x)

and we get that In−s − Pn−s is positive-definite. On the other hand, because the feasible

region of x is compact, and the objective value of (5.13) is upper bounded, the optimal value

of (5.13) is attainable by some x such that the corresponding ΛsPsΛs and In−s − Pn−s are

positive-definite. So we justify the definition of (5.13), and

ldet(γΛPΛ + I − P)− s log γ

= ldet(Fs(γ;x))− s log γ

129

+ldet(In−s−Pn−s−Pn−s,sFs(γ;x)−1Ps,n−s)

= ldet
(
ΛsPsΛs +

1
γ
(Is − Ps)

)
+ldet(In−s−Pn−s−Pn−s,sFs(γ;x)−1Ps,n−s).

Denote the optimal solution of (5.13) as x∗ and P ∗ = QT Diag(x∗)Q. We claim that

limγ→+∞ zlinx(C, s; γ) =

1
2

(
ldet(ΛsP

∗
s Λs) + ldet(In−s − P ∗

n−s)
)
.

We now prove this claim. In fact, for any x feasible to scaled linx such that γΛPΛ+I−P
is positive-definite and that Fs(γ;x) is positive-definite, we have

ldet(ΛsPsΛs +
1
γ
(Is − Ps)) (5.14)

+ ldet(In−s−Pn−s−Pn−s,sFs(γ;x)−1Ps,n−s)

≤ ldet(ΛsPsΛs +
1
γ
Is) + ldet(In−s − Pn−s).

We further assume that ΛsPsΛs is positive-definite otherwise the right-hand-side of (5.14)

goes to minus infinity as γ goes to infinity because ldet(In−s − Pn−s) is clearly upper

bounded by 0 for any x. Decompose ΛsPsΛs as Q′Λ′Q′T where Q′ is orthogonal and

Λ′ := Diag(λ′1, ..., λ
′
s) where λ′1 ≥ λ′2 ≥ . . . ≥ λ′s > 0 is the diagonal matrix of eigenval-

ues of ΛsPsΛs. Then

ldet
(
ΛsPsΛs +

1
γ
Is

)
= log

(
s∏
i=1

(
λ′i +

1
γ

))
.

Because every element of ΛsPsΛs is bounded by a uniform number for any x, by Gershgorin

circle theorem, λ′i, i ∈ {1, ..., s} are bounded by a uniform number for all x. We pick a positive

number L1 > 0, when γ ≥ L1, there is a compact set H ⊂ Rs (independent of γ) such that

for all x feasible to scaled linx, (λ′1 +
1
γ
, ..., λ′s +

1
γ
)T as well as (λ′1, ..., λ

′
s)

T belongs to H.

Because the function
∏s

i=1 yi is continuous differentiable in y on Rs, it is Lipschitz continuous

on H, then, ∃ L2 > 0 such that∣∣∣∣∣
s∏
i=1

(
λ′i +

1
γ

)
−

s∏
i=1

λ′i

∣∣∣∣∣ ≤ L2
√
s

γ
.

Because In−s − Pn−s is positive-definite and every element is bounded by a uniform number

130

for any x, there exists L3 > 0,

0 < det(In−s − Pn−s) ≤ L3.

With the above arguments, when γ ≥ L1, we have

det
(
ΛsPsΛs +

1
γ
Is

)
det(In−s−Pn−s)

=

(
s∏
i=1

(
λ′i +

1
γ

))
det(In−s−Pn−s)

≤

(
s∏
i=1

λ′i +
L2

√
s

γ

)
det(In−s−Pn−s)

= det(ΛsPsΛs)det(In−s−Pn−s)

+ L2
√
s

γ
det(In−s−Pn−s)

≤ det(ΛsP
∗
s Λs)det(In−s−P ∗

n−s)

+ L2
√
s

γ
det(In−s−Pn−s)

≤det(ΛsP
∗
s Λs)det(In−s−P ∗

n−s)+
L2L3

√
s

γ
.

For any x such that ΛsPsΛs is singular, because the eigenvalues of ΛsPsΛs are upper

bounded uniformly for all x feasible, clearly there is some L4 > 0 such that when γ ≥ L4,

any such x cannot be an optimal solution for scaled linx.

Because log(·) is monotonically increasing, the above implies that when γ ≥ max{L1, L4},
we have

zlinx(C, s; γ)

= max
eTx=s,

0≤x≤e

1
2

(
ldet

(
ΛsPsΛs +

1
γ
(Is − Ps)

)

+ ldet(In−s − Pn−s − Pn−s,sFs(γ;x)
−1Ps,n−s) +

L2L3
√
s

γ

)
.

Taking limits on both sides, we have

lim
γ→+∞

zlinx(C, s; γ) ≤

lim
γ→+∞

1
2
log
(
det(ΛsP

∗
s Λs)det(In−s−P ∗

n−s) +
L2L3

√
s

γ

)
= 1

2

(
ldet(ΛsP

∗
s Λs) + ldet(In−s − P ∗

n−s)
)
.

131

On the other hand, the optimal solution x∗ of (5.13) is feasible to scaled linx and

we have proved before that ΛsP
∗
s Λs and In−s − P ∗

n−s are positive-definite, we have

limγ→∞ Fs(γ;x
∗)−1 = On where On is an all-zeros order-n matrix and zlinx(C, s; γ) ≥

f(C, s; γ;x∗). Furthermore,

lim
γ→+∞

zlinx(C, s; γ) ≥ lim
γ→+∞

f(C, s; γ;x∗)

= lim
γ→+∞

1
2

(
ldet

(
ΛsP

∗
s Λs +

1
γ
(Is − P ∗

s)
)

+ ldet(In−s − P ∗
n−s − P ∗

n−s,sFs(γ;x
∗)−1P ∗

s,n−s)
)

= 1
2

(
ldet(ΛsP

∗
s Λs) + ldet(In−s − P ∗

n−s)
)
.

In all, we have lim
γ→+∞

zlinx(C, s; γ)

= 1
2

(
ldet(ΛsP

∗
s Λs)+ldet(In−s−P ∗

n−s)
)
.

Finally, because zlinx(C, s; e
ψ) is convex in ψ (see [Theorem 18, (Chen, Fampa, Lambert,

and Lee, 2021)]) and has a finite limit as ψ → +∞, we can conclude that zlinx(C, s; e
ψ) is

non-increasing in ψ, and hence zlinx(C, s; γ) is non-increasing in γ.

At the outset, we assumed s ≤ rank(C). Of course, the case where s > rank(C) is a bit

strange because the optimal value of MESP is always −∞. But by the following theorem,

the linx-bound problem can recognize these cases.

Theorem 5.20. If s > rank(C), then lim
γ→+∞

zlinx(C, s; γ) = −∞, and there is no optimal γ.

Proof. Let r = rank(C). We use similar notations as in Theorem 5.19, but with the a little

difference. Here we have Λr := Diag(λ1, λ2, . . . , λr) and Pr, Pn−r, Pn−r,r, Pr,n−r similarly

because r < s. Then

ldet(γC Diag(x)C + I −Diag(x))− s log γ

= ldet
(
ΛrPrΛr +

1
γ
(Ir − Pr)

)
− (s− r) log γ

+ ldet(In−r − Pn−r − Pn−r,rFr(γ;x)
−1Pr,n−r).

We consider the convex program

max 1
2
(ldet (ΛrPrΛr)+ldet(In−r−Pn−r)) (5.15)

s.t. eTx = s, 0 ≤ x ≤ 1.

132

Similar to that in Theorem 5.19, (5.15) is well-defined. Denote the optimal solution of (5.15)

as x∗ and we have corresponding P ∗
r and P ∗

n−r, by similar arguments as in Theorem 5.19,

there exists L1, L2, L3, L4 > 0 such that when γ ≥ max{L1, L4},

lim
γ→+∞

zlinx(C, s; γ)

= lim
γ→+∞

max
eTx=s,

0≤x≤e

1
2

(
ldet

(
ΛrPrΛr +

1
γ
(Ir − Pr)

)

+ ldet(In−r − Pn−r − Pn−r,rFr(γ;x)
−1Pr,n−r)

− (s− r) log γ
)

≤ lim
γ→+∞

1
2

(
ldet(ΛrP

∗
r Λr) + ldet(In−r − P ∗

n−r)

+L2L3
√
r

γ
− (s− r) log γ

)
= −∞.

5.4 Linear gap under optimal scaling

In Theorem 5.11, we constructed an infinite sequence {Cn}n∈2Z where by choosing mask I,

we decreased the linx bound by an amount that is at least linear in n (specifically, ≈ .0312n).

This is even the case when we choose optimal scaling parameters γ (separately), with some

sacrifice in the constant.

Theorem 5.21. There is an infinite sequence of positive-semidefinite matrices {Cn}n∈4Z,
such that

min
γ>0

zlinx
(
Cn,

n
2
; γ
)
−min

γ̄>0
zlinx

(
Cn,

n
2
; I, γ̄

)
≥ bn

for some positive scalar b ≥ 0.024036.

Proof. We consider a crafted sequence of Cn. Assuming n = 4k, and Cn is block diagonal

with k blocks as

(
1 c1

c1 1

)
and k blocks as

(
1 c2

c2 1

)
where c1 ̸= c2, c

2
1 ≤ 1, c22 ≤ 1.

By Lemma 5.8,

zlinx
(
Cn,

n
2
; γ
)

≥
k∑
i=1

(
1
2
log
(

(1−c21)2
4

γ +
1+c21
2

+ 1
4γ

)
133

+1
2
log
(

(1−c22)2
4

γ +
1+c22
2

+ 1
4γ

))
= k

(
1
2
log
(

(1−c21)2
4

γ +
1+c21
2

+ 1
4γ

)
+1

2
log
(

(1−c22)2
4

γ +
1+c22
2

+ 1
4γ

))
.

If c21, c
2
2 < 1, the minimum of

(1−c21)2
4

γ +
1+c21
2

+ 1
4γ

is 1, achieved by the unique minimizer

γ̂1 = 1− c21, and the minimum of
(1−c22)2

4
γ +

1+c22
2

+ 1
4γ

is 1, achieved by the unique minimizer

γ̂2 = 1− c22. If c
2
1 = 1, then no matter what value γ is,

(1−c22)2
4

γ +
1+c22
2

+ 1
4γ

is always greater

than 1. The case for c22 = 1 is similar.

Thus we can choose c21 ̸= c22, then for all possible values of c1, c2,

bc1,c2 := min
γ>0

2∑
i=1

log
(

(1−c2i)2
4

γ +
1+c2i
2

+ 1
4γ

)
>0. (5.16)

Then we have

min
γ>0

zlinx
(
Cn,

n
2
; γ
)
≥ 1

2
kbc1,c2 =

bc1,c2
8
n.

On the other hand, by Proposition 5.12, we have minγ̄ zlinx
(
Cn,

n
2
; I, γ̄

)
= zlinx

(
Cn,

n
2
; I, 1

)
=

0. So,

min
γ
zlinx

(
Cn,

n
2
; γ
)
−min

γ̄
zlinx

(
Cn,

n
2
; I, γ̄

)
≥ bc1,c2

8
n.

Letting b :=
bc1,c2

8
, we get what we want. In particular, if we set c1 := 0, c2 := 1, the optimal

γ for (5.16) is γ̂ = 1+
√
3

2
and b0,1

8
=

1
8

(
log
(
1+ 1

2(1+
√
3)

)
+log

(
1
2
+ 1

2(1+
√
3)
+ 1+

√
3

8

))
≥ 0.024036.

Remark. It is easy to check that with respect to the sequence of Cn in the proof of Theorem

5.21, we have z(Cn,
n
2
) = 0. From this and other calculations in the proof, we can see that

with masking, we fully close the integrality gap, for all of instances in this sequence.

134

5.5 Concluding remarks

For a positive integer s, let n := 2s. Now, for all n′ ≥ n, consider an n′ × n′ block-diagonal

matrix, with one diagonal block being Cn (from Theorem 5.21 or 5.11), and another diagonal

block being ϵIn′−n, for small ϵ > 0. Then, using Lemma 5.6, it can be shown that the gaps

that we established (in Theorem 5.21 or 5.11) extend to gaps that are linear in s, on the

sequences of matrices n′×n′ that we construct. For example, if s ∼ log(n′), then we produce

gaps that grow logarithmically in the order n′ of the covariance matrix.

Our technical results establish the strong potential for masking to improve on the (scaled)

linx bound. So the next logical step is to work on optimizing the mask in this context. Similar

work was carried out successfully for the spectral bound (see (Anstreicher and Lee, 2004)

and (Burer and Lee, 2007)), where nonconvexity and nondifferentiability were the main

difficulties to overcome. In the context of the linx bound, even at smooth points, it is not

easy to get a handle on the necessary derivative information. There is also the potential to

incorporate the “mixing” technique of (Chen, Fampa, Lambert, and Lee, 2021) on top of

mask optimization. We are currently working in this direction, and we plan to report on

algorithmic results (with experimentation on benchmark data) for mask optimization in a

future paper.

135

CHAPTER 6

On Algorithms for Mask Optimization for

Anstreicher’s linx Bound

6.1 Introduction

From Chapter 5, it is established that masking can significantly enhance the linx bound,

independent of other methods. That chapter detailed the optimization of masking patterns

for specific matrix classes, notably diagonal and 2-by-2 block diagonal matrices, illustrating

substantial improvements in the linx bound proportional to the problem size n for many

instances. This chapter steps further by introducing an advanced quasi-Newton algorithm

designed to compute an improved mask over the baseline all-ones mask (original bound) for

the linx bound. Due to the Hadamard product interaction between the covariance matrix

C and mask M , the masked linx bound presents nonconvexity and nondifferentiability chal-

lenges, alongside large-scale optimization issues. To address these complexities, we utilized

the Limited Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm, which has

demonstrated efficiency in our context, as supported by multiple references (Liu and Nocedal,

1989; Nash and Nocedal, 1991; Morales, 2002; Lewis and Overton, 2013; Berahas, Nocedal,

and Takác, 2016). An interior point method is adopted to handle the positive-semidefinite

constraint. This chapter presents a comprehensive exposition of the adapted L-BFGS al-

gorithm, including hyperparameter configurations. Our numerical experiments validate the

algorithm’s capability to consistently identify more effective masks than the all-ones mask

across various instances, thereby confirming its practical utility.

In Section 6.2, we investigate several key properties of the masking for the linx bound.

This includes the confirmation of an optimal mask’s existence, the nonconvex nature of the

mask, and the analysis of its directional derivative. These insights lay the groundwork for

the subsequent development of the L-BFGS algorithm. Section 6.3 transforms the masking

optimization problem into a barrier problem to handle the positive-semidefinite constraint.

136

We also develop the specific formula of the directional derivative for the linx bound with

respect to the mask. This formula is then used to develop the pseudo-gradient that is pivotal

for updating the Hessian approximation within our tailored L-BFGS algorithm. This section

also details each step of the algorithm and outlines the hyperparameter configuration. To

address the critical impact of initialization diversity on algorithm performance, owing to

the nonconvexity, we introduce four distinct mask initialization methods. In Section 6.4,

the algorithm’s efficacy is evidenced through extensive numerical experiments. Notably, our

approach yields superior masks compared to the standard all-ones mask for many instances,

particularly when the subset size s is small relative to n (smaller than 20 for n = 63, smaller

than 25 for n = 90, and smaller than 40 for n = 124), even with optimal scaling applied. This

enhanced masking capability, coupled with scaling and complementation (CMESP-comp),

further elevates the linx bound for cases where s is relatively large compared to n (larger

than 42 for n = 63). Additionally, our results demonstrate the algorithm’s stability across

various mask initializations. In §6.5, we present some concluding remarks.

6.2 Mask properties for the linx bound

The masked linx bound can be represented by replacing C with C ◦M in linx. Our primary

objective is to determine the optimal mask, which entails solving the corresponding problem:

z∗mlinx(C, s) = min {zlinx(C, s;M) : M ∈ Mn} . (mopt)

Initially, we demonstrate that when z(C, s) > 0, the optimal value specified in mopt is

attainable.

Proposition 6.1. Provided that the optimal value of MESP is finite, there exists an M∗ ∈
Mn for which the equality z∗mlinx(C, s) = zlinx(C, s;M

∗) holds true.

Proof. We first establish that for any continuous function f defined over a compact domain

S, which possesses a lower bound and is not infinity everywhere, there necessarily exists a

point within S at which f achieves its minimum value. Specifically, there is a point x∗ ∈ S
satisfying the condition:

f(x∗) = min
x∈S

f(x).

We prove by contradiction. Given that f is both lower bounded and not infinity everywhere,

assume, contrarily, that no point x ∈ S exists such that f(x) equals the minimum of f over

S. This assumption implies the existence of an infinite sequence {xk} ⊂ S, where {f(xk)}

137

monotonically decreases and converges to the minimum of f over S as k approaches infinity.

Due to the compactness of S, the sequence {xk} contains a convergent subsequence {xki}
converging to some x̂ ∈ S. Since f is continuous, it follows that f(x̂) = f (limi→∞ xki) =

limi→∞ f(xki), which equals the minimum of f over S, thus leading to a contradiction.

In light of the preceding discussion, our proof hinges on demonstrating thatMn is compact

and that zlinx(C, s;M) is continuous, possesses a lower bound, and is not infinity everywhere

across Mn.

The compactness of Mn is attributed to two key factors: firstly, the boundedness of the

eigenvalues as per the Gershgorin circle theorem (Horn and Johnson, 1985, Theorem 6.1.1),

and secondly, the continuity of eigenvalues relative to matrix elements, a concept detailed

in (Horn and Johnson, 1985, Appendix D). Furthermore, the continuity of zlinx(C, s;M) is

established by Theorem 4.12. The lower boundedness of zlinx(C, s;M) is inferred from the

inequality zlinx(C, s;M) ≥ z(C, s), combined with the finiteness of z(C, s). Lastly, the finite-

ness of the eigenvalues of the matrix within the ldet(·) function of flinx(x), and consequently,

the non-infinite nature of zlinx(C, s;M) across Mn, are deduced from the Gershgorin circle

theorem and the fact that x ∈ [0, 1]n.

Unfortunately, the masked linx bound (and, in fact, most upper bounds of MESP) is not

always convex in the mask M even when the dimension of C is 2.

Proposition 6.2. Given C :=

(
a 1

1 a

)
where a ≥ 1 and s := 1, and M2 ={(

1 m

m 1

)
: m2 ≤ 1

}
. When a is large enough, zlinx(C, s;M) is not always convex in

M ∈ M2.

Proof. By (Chen, Fampa, and Lee, 2022, Theorem 2.10), we know

zlinx(C, s;M) = max
x1+x2=1;x1,x2≥0

1
2
log
(
(m2 + 1− a2)

2
x1x2 + (ax1 + ax2)

2
)

= 1
2
log

(
(m2+1−a2)

2

4
+ a2

)
.

It is straightforward to confirm that zlinx(C, s;M) is convex in M if and only if zlinx(C, s;M)

is convex in m. We now compute the second derivative of zlinx(C, s;M) with respect to m,

∂zlinx(C, s;M)

∂m
= 1

2

m(m2+1−a2)
(m2+1−a2)2/4+a2 ,

∂2zlinx(C, s;M)

∂m2
= 1

8

(3m2+1−a2)
(
(m2+1−a2)

2
+4a2

)
−4m2(m2+1−a2)

2

((m2+1−a2)2/4+a2)
2 . (6.1)

138

Because m2 ≤ 1, when a is sufficiently large, the numerator of the right-hand side of (6.1)

is dominated by the negative term O(−a6). This dominance implies that ∂2zlinx(C,s;M)
∂m2 is

negative when a is large enough, and thus, zlinx(C, s;M) is not always convex in m.

Nonetheless, even in the absence of convexity, we can still employ strategies from noncon-

vex optimization to enhance the masked linx bound. This is because the masked linx bound

is locally Lipschitz in the mask by Theorem 4.12, and thus differentiable almost everywhere

by Rademacher’s theorem, a direct application of Theorem 4.12.

Theorem 6.3. For anyM ∈ Mn, the masked linx bound zlinx(C, s;M) is locally Lipschitz and

differentiable almost everywhere around M , and directly differentiable at M in any feasible

direction ∆M with formula

∂zlinx(C, s;M ; ∆M) = max
x∈S∗(C,s;M)

(
∂flinx(C, s;M ;x)

∂M

)T

∆M

where S∗(C, s;M) is the set of optimal solutions of masked linx. Furthermore, if S∗(C, s;M)

is a singleton, then zlinx(C, s;M) is differentiable at M .

Theorem 2.16 provides a sufficient condition for S∗(C, s;M) to be a singleton. It can be

easily inferred from there that zlinx(C, s;M) is actually differentiable almost everywhere.

Corollary 6.4. zlinx(C, s;M) is not differentiable only on a zero-measure subset of Mn.

6.3 Algorithms for mask optimization for the linx

bound

Leveraging the above properties, we can formulate effective algorithms for mopt. Notably,

considering the constraint M ∈ Mn of positive-semidefiniteness, we employ the interior

point method by addressing a barrier problem instead of tackling mopt directly. This is

represented as:

zmlinx(C, s;µ) = min
{
zlinx(C, s;M)− µ ln det(M) :M ∈ M̃n

}
. (mopt-barrier)

Here, µ > 0 is the barrier parameter, and M̃n denotes the set of symmetric matrices of order

n with unit diagonals. As per established understanding (Nocedal and Wright, 2006), as µ

increases, the optimal solution and optimal value of mopt-barrier asymptotically converge

to those of mopt.

139

To circumvent the complexities associated with tensor notation in matrix derivatives, we

adopt the vectorization technique described in (Anstreicher and Lee, 2004). This method

transforms the off-diagonal elements of a matrix M in M̃n into a vector y ∈ R
n(n−1)

2 using

the operation y = svec(M) := (M21,M31, . . . ,Mn1,M32, . . . ,Mn(n−1))
T. Specifically, the

n(j − 1)− j(j−1)
2

+ i− jth element of y is represented as yij, where yij =Mij. Additionally,

we define smat(y) as the inverse of the vectorization process, satisfying smat(y) :=M when

y = svec(M). These notations facilitate the conversion of derivatives with respect to matrix

M into derivatives with respect to vector y, simplifying the computation of second-order

derivatives or its approximations.

The problem delineated in mopt-barrier may manifest as a nonconvex and nonsmooth

optimization challenge, albeit with differentiability in almost all regions. Notably, the ex-

pression n(n−1)
2

exhibits a quadratic rate of increase relative to n, surpassing 10,000 when

n reaches a mere 142. This observation categorizes mopt-barrier as a large-scale optimiza-

tion problem. In such contexts, the Limited Memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) algorithm emerges as an good solution strategy. This method is reputed for

its efficacy in handling large-scale, non-convex, and possibly nonsmooth problems, as sup-

ported by numerous studies (Liu and Nocedal, 1989; Nash and Nocedal, 1991; Morales, 2002;

Lewis and Overton, 2013; Berahas, Nocedal, and Takác, 2016). L-BFGS specifically targets

extensive problems where Hessian matrix computation is either infeasible or prohibitively

expensive, or where such matrices are neither sparse nor readily computable. Distinct from

conventional methods that necessitate a full Hessian approximation, L-BFGS conserves com-

putational resources by storing a limited number (m, typically between 3 and 20, and 17 in

our analysis) of vector pairs that implicitly represent the Hessian approximation (Nocedal

and Wright, 2006). This strategy effectively reduces the computational complexity per itera-

tion from O(n4) to O(mn2), with m being significantly smaller than n. We want to point out

here that although some findings by (Asl and Overton, 2021) indicate potential shortcomings

in the L-BFGS method. In contrast, our numerical experiments consistently demonstrate

the superiority of L-BFGS over the full memory BFGS method, as evidenced by reduced

computational time and memory requirements, alongside lower linx bounds. These results

suggest that our experimental framework differs from that of (Asl and Overton, 2021), thus

validating the selection of L-BFGS for our purposes.

In the implementation of the L-BFGS algorithm, the gradient approximation is necessi-

tated for updating the Hessian approximation. According to Theorem 6.3, we can choose

x∗ ∈ S∗(C, s;M) and employ ∂flinx(C,s;M ;x∗)
∂y

as the gradient approximation. Theorem 6.3 fur-

ther asserts that, should S∗(C, s;M) be a singleton, ∂flinx(C,s;M ;x∗)
∂y

coincides with the exact

gradient. The subsequent proposition details the expression of ∂flinx(C,slM ;x)
∂yij

.

140

Proposition 6.5. Given M ∈ Mn, define F (C, s;M ;x) := (C ◦ M)Diag(x)(C ◦ M) +

Diag(e − x), A(C, s;M ;x) := F (C, s;M ;x)−1(C ◦ M), and B(C, s;M ;x) := (C ◦
M)F (C, s;M ;x)−1(C ◦ M). For simplicity, we will denote F (C, s;M ;x), A(C, s;M ;x),

and B(C, s;M ;x) as F , A, and B respectively when it is clear from the context. Denote

y = svec(M), where svec(M) := (M21,M31, . . . ,Mn1,M32, . . . ,Mn(n−1))
T. Specifically, the

n(j − 1)− j(j−1)
2

+ i− jth element of y is represented as yij, where yij =Mij. Then for any

1 ≤ i < j ≤ n, we have

∂flinx(C,s;M ;x)
∂yij

= Cij (xjAij + xiAji) .

Proof. Note that

∂flinx(C,s;M ;x)
∂yij

= ∂flinx(C,s;M ;x)
∂M

• ∂M
∂yij

= ∂flinx(C,s;M ;x)
∂M

• (Eij + Eji)

= ∂flinx(C,s;M ;x)
∂Mji

+ ∂flinx(C,s;M ;x)
∂Mij

= 1
2
F−1 •

(
CjixiEji(C ◦M) + (C ◦M)xjCjiEji+

CijxjEij(C ◦M) + (C ◦M)xiCijEij
)
.

where Eij is an order-n matrix with the ith row and jth column element equal one and other

elements equal zero. We can further simplify

F−1 • (CijxjEij(C ◦M)) = Cijxj Trace
(
F−1eie

T
j (C ◦M)

)
= Cijxj Trace

(
eTj (C ◦M)F−1ei

)
= CijxjAij

where the equations comes from the symmetry of F and C ◦M . Similarly, we have

F−1 • ((C ◦M)xiCijEij) = CijxiAji

F−1 • (CjixiEji(C ◦M)) = CjixiAji

F−1 • ((C ◦M)xjCjiEji) = CjixjAij.

Aggregating all the above gives us the first-order derivative

∂flinx(C,s;M ;x)
∂yij

= Cij (xjAij + xiAji) .

141

According to the derivation of Proposition 6.5, we can also derive the formula of
∂flinx(C,s;M ;x)

∂y
.

Corollary 6.6. Given M ∈ Mn and y = svec(M), let F,A,B be that defined in Proposition

6.5. Then

∂flinx(C,s;M ;x)
∂y

= svec
(
C ◦

(
ADiag(x) + Diag(x)AT

))
.

We also present ∂ ldet(M)
∂y

here for completeness.

Proposition 6.7. Given M ∈ Mn and y = svec(M), let F,A,B be that defined in Propo-

sition 6.5. Then

∂ ldetM
∂y

= svec(M +MT).

Proof. Note that

∂ ldetM
∂yij

= ∂ ldetM
∂M

• ∂M
∂yij

= ∂ ldetM
∂M

• (Eij + Eji)

= ∂ ldetM
∂Mji

+ ∂ ldetM
∂Mij

= Trace (M−1(Eji + Eij)) =M−1
ij +M−1

ji .

In the following, we delineate a single iteration of the L-BFGS algorithm as applied to

the barrier problem mopt-barrier, which is reiterated below for clarity:

zmlinx(C, s;µ) = min
{
zlinx(C, s;M)− µ ln det(M) :M ∈ M̃n

}
.

Adhering to the methodologies delineated in (Nocedal and Wright, 2006, Chapter 7.2), we

use m to represent the number of historical vector pairs retained for computing the Hessian

approximation in each L-BFGS iteration. Notably, during the initial k iterations, the L-

BFGS algorithm operates analogously to the standard BFGS algorithm, as described in

(Nocedal and Wright, 2006, Chapter 6).

For notation clarity, we denote gy(C, s;M ;µ) := ∂flinx(C,s;M ;x∗)
∂y

− µ∂ ldet(M)
∂y

where y =

svec(M) and x∗ ∈ S∗(C, s;M). At the kth iteration, we denote the mask as Mk, yk =

svec(Mk), and gk := gy(C, s;Mk;µ) for simplicity. We further denote sk := yk+1 − yk,

tk := gk+1 − gk, and ρk :=
1

sTktk
.

In the kth iteration of the algorithm, the Hessian approximation H0
k is initialized as an

142

identity matrix scaled by the factor γk, computed as

γk =
sTk−1yk−1

yTk−1yk−1
.

This scaling factor γk aims to approximate the magnitude of the actual Hessian matrix in the

direction of the latest search, as elucidated in (Nocedal and Wright, 2006, Chapter 6). Such

a strategic selection of γk is instrumental in ensuring the search direction’s appropriateness,

typically allowing the algorithm to accept a unit step length αk = 1 in the majority of

iterations. There could be some cases that the curvature information in the last iteration

fails, i.e., sTk−1yk−1 is too small (typically smaller than 10−6), in which case,
sTk−1yk−1

yTk−1yk−1
is not

an appropriate scaling factor anymore, and we set γk = γk−1 instead (γ0 = 0 in default).

In the L-BFGS framework, we update H0
k by collecting the last k vector pairs {si, yi},

where i = k − m, . . . , k − 1. The difference between L-BFGS and the traditional BFGS

lies in the limited-memory feature intrinsic to L-BFGS. Contrary to the BFGS algorithm,

which initially computes the Hessian approximation Hk and then its product with gk, L-

BFGS directly ascertains the search direction rk := −Hkgk (see (Nocedal and Wright, 2006,

Algorithm 7.4)), which reduces both memory and computational overhead, curtailing the

complexity from O(n4) to O(mn2). Importantly, in our methodology, we omit any si, yi

pairs where the curvature information is insufficient, specifically when sTk−1yk−1 falls below

a threshold, usually set at 10−6, as suggested in (Nocedal and Wright, 2006).

Upon computing the search direction rk in the L-BFGS algorithm, we first evaluate the

applicability of the unit step length, adhering to the standard protocol in Newton-type

methods. If feasible, this step length is adopted. Otherwise, the procedure engages the weak-

Wolfe line search as delineated in (Nocedal and Wright, 2006, Algorithm 3.5), to determine a

step length αk. This step length ensures the positive-definiteness of Mk + αkRk, with Rk :=

smat(rk) − I representing the matrix format of rk. The function ϕk(αk) := flinx(C, s;Mk +

αkRk) − µldet(Mk + αkRk) is formulated correspondingly. The weak Wolfe conditions are

subsequently formalized as follows:

ϕk(αk) ≤ ϕk(0) + c1g
T
k rk, (6.2)

gy(C, s;Mk + αkR;µ)
Trk ≥ c2g

T
k rk, (6.3)

where c1 and c2 are parameters for the weak-Wolfe conditions, typically set to 10−6 and 0.95,

respectively. The line search concludes upon satisfying these conditions or when the search

interval contracts below a certain threshold, e.g., 10−2. In the latter case, we adopt the

midpoint of the final interval as the step length. This approach, often necessitated by the

potential non-convexity of mopt-barrier, facilitates progression beyond local minima, thus

143

increasing the likelihood of finding a superior mask. We also employ y∗ to record the best

mask encountered during the running of the algorithm.

In employing the interior point method, efficiency is contingent upon defining the update

rules for the barrier parameter µ and the termination criteria for the inner iteration in solving

mopt-barrier. We set the initial barrier parameter µ1 = 10−1 and update µj = 10−1µj−1

following each outer iteration until µ10 = 10−10. The inner iteration is terminated under any

of the following conditions:

1. The norm of the approximate gradient is below a threshold, 10−8;

2. The number of inner iterations reaches a predetermined limit, 20 iterations;

3. A certain number of consecutive inner iterations, which is set to 20, fail to achieve an

objective value decrease greater than 10−8.

Finally, the potential nonconvex nature of the optimization problem as outlined in mopt

necessitates the selection of an effective initial condition. This strategy is pivotal for achiev-

ing expedited convergence and minimizing the final mask values. The most naive way to

do initialization is to generate an m-by-n matrix A, populated with elements that are in-

dependent Gaussian random variables, each with zero mean and unit variance. A diagonal

matrix D is then defined, with diagonal elements being the square roots of the inverse of the

diagonal elements in A. The mask initialization is computed as M = SAS. A notable limi-

tation of this method is the tendency for many off-diagonal elements to approach zero when

m and n are large, diminishing the diversity in mask initialization and potentially impacting

the effectiveness of mask optimization under nonconvexity. The following three alternative

methods address this issue from diverse perspectives, yielding random correlation matrices

that uniformly populate the space Mo
n := {X : X ∈ Mn, X ≻ 0}.

1. randcorr exOnion(m, n): (Ghosh and Henderson, 2003) introduced a technique for

constructing a correlation matrix, commencing with a unidimensional matrix and pro-

gressively expanding it by adding dimensions sequentially. This approach was further

refined by Lewandowski (2009), who termed it the ”extended onion method”, designed

to generate random correlation matrices that uniformly occupy the specified space

Mo
n := X : X ∈ Mn, X ≻ 0.

2. randcorr vine(m, n): (Joe, 2006) proposed a method for parameterizing positive-

definite correlation matrices using correlations and partial correlations. By indepen-

dently sampling these (partial) correlations from a beta distribution, they achieved

uniform generation of random correlation matrices over Mo
n. Notably, this approach

144

incorporates the use of D-vine, a graphical model for delineating dependence structures

in high-dimensional probability distributions, as detailed in (Lewandowski, Kurowicka,

and Joe, 2009).

3. randcorr Cholesky(m, n): Pourahmadi et al. (Pourahmadi and Wang, 2015) devel-

oped an algorithm to generate random correlation matrices, utilizing Cholesky factor-

ization and n(n−1)
2

hyperspherical coordinates. This method involves sampling angles

from a specific distribution and subsequently converting them into standard correlation

matrix form.

4. randcorr MatlabGallery(m, n): Matlab gallery toolbox implemented an algorithm

to construct correlation matrices, with the option to specify predetermined eigenvalues.

This methodology is rooted in the algorithm proposed by (Bendel and Mickey, 1978)

and later refined by (Davies and Higham, 2000). It entails modifying a matrix to

have specified eigenvalues (randomly generated if not specified) using a series of Givens

rotations, resulting in a diagonal matrix of ones. Our rationale for selecting this method

is its ability to produce correlation matrices with a varied eigenvalue pattern.

Last but not least, we will employ the advantages of scaling identified in (Anstreicher,

2020), supplemented by the findings of (Chen, Fampa, Lambert, and Lee, 2021; Chen, Fampa,

and Lee, 2022). The research demonstrates that appropriate scaling parameters markedly

enhance the linx bound, a trend persisting despite masking interventions (Chen, Fampa, and

Lee, 2022). Notably, scaling and masking effects are distinct and non-overlapping techniques

for improving linx bound. Our approach involves initially determining the optimal scaling

parameter γ for linx in the absence of masking. This parameter γ is then integrated into the

constant C, modifying it to
√
γC. Subsequently, we apply the proposed algorithm to resolve

mopt, holding γ constant. Upon determining the final mask M , it is incorporated into C,

reformulating it as C ◦M . Finally, we recalibrate the optimal scaling parameter under this

definitive mask, thereby establishing the final masked linx bound.

6.4 Experiments

In our research, we assessed the efficacy of the L-BFGS algorithm across various parameters,

applied to benchmark datasets. These evaluations employed three established covariance

matrices of sizes n = 63, 90, 124 (as detailed in (Anstreicher, 2018, 2020; Anstreicher, Fampa,

Lee, and Williams, 1999; Ko, Lee, and Queyranne, 1995; Lee, 1998)). For each matrix

dimension n, signifying a distinct benchmark covariance matrix, we explored a range of s

145

values, creating diverse MESP and CMESP cases. We repeated the experiments for each

instance five times and record the best results. The experiments were executed on an Intel

Xeon E5-2667 v4 @ 3.20 GHz system with Windows OS, featuring 8 physical cores (16 virtual

cores) and 128 GB RAM.

In the context of masked linx bounds, the all-ones mask J , replicates the unmasked linx

bound. This mask will serve as the fundamental baseline in our analysis and the integrality

gap (the difference between the masked linx bound and the best lower bound we can obtain)

associated with J (Gap-J) will be computed for comparative analysis. For each instance, we

compute the integrality gap (Gap) to assess the found mask’s quality.

10 20 30 40 50 60

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

In
te

gr
al

ity
 G

ap

Gap-J
Gap-ExOni
Gap-Cholesky
Gap-Vine
Gap-Gallery
Gap-GalleryEig

Figure 6.1: Integrality gaps for un-masked linx bound (Gap-J) and masked linx bound with
extended onion, vine, random Cholesky, Matlab gallery, and Matlab gallery with specified
eigenvalues initialization respectively.

The initial phase of our study involved assessing the impact of various initializations on our

algorithm’s performance, as depicted in Figure 6.1. Furthermore, we observed that the unit

step length was employed most of the time. These results demonstrated uniform integrality

gaps across different initializations, underscoring the algorithm’s robustness. Consequently,

the extended onion initialization was selected as the standard for subsequent analyses. It

should be noted that our initialization strategy does not involve an all-ones mask, despite its

dominance over the mask in our algorithm’s outputs for some instances. This is attributed to

our utilization of the interior point method for managing positive-semidefinite constraints.

Initiation at the boundary of the positive-semidefinite cone is deliberately avoided, as it

would impede algorithmic progress in high-dimensional contexts, primarily due to the search

direction frequently pointing outside the positive-semidefinite cone.

Additionally, it was observed that, in scenarios where the subset size s is relatively smaller

146

than the data size n (smaller than 20 for n = 63, smaller than 25 for n = 90, and smaller than

40 for n = 124), our algorithm could generate masks that yield superior upper bounds com-

pared to unmasked scenarios. However, for relatively large subset sizes, the algorithm failed

to produce a mask that outperforms the all-ones mask. An analysis of the algorithm’s opera-

tional dynamics revealed that termination typically occurred as the mask iterate approached

the positive-semidefinite cone’s boundary. This proximity hindered further algorithmic pro-

gression due to its intrinsic interior properties.

10 20 30 40 50 60

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

In
te

gr
al

ity
 G

ap

Gap-J
Gap-ExOni
Gap-ExOniComp

Figure 6.2: Integrality gaps for un-masked linx bound (Gap-J), masked linx bound with
extended onion initialization, and complemented masked linx bound with extended onion
initialization.

Building on the efficacy demonstrated by our algorithm for relatively small subset sizes

s, we explored its application to the complementary linx bound. Notably, despite the es-

tablished invariance of the linx bound under complementation as outlined in (Anstreicher,

2020), this property does not extend to scenarios involving masking. Our findings indicate

that, with the application of our algorithm on the complementary linx bound, masks can

be identified that yield similar or improved masked linx bounds for relatively large s val-

ues (larger than 42 for n = 63), as evidenced in Figures 6.2, 6.3, and 6.4. However, for

intermediate subset sizes, neither the masked linx bound nor its complementary counterpart

surpasses the unmasked linx bound in terms of achieving superior upper bounds.

6.5 Concluding remarks

Our findings indicate that the application of masking can significantly enhance the linx bound

for a broad range of benchmark instances, particularly when the subset size s is relatively

147

10 20 30 40 50 60 70 80

s

0

1

2

3

4

5

6

7

8

In
te

gr
al

ity
 G

ap

Gap-J
Gap-ExOni
Gap-ExOniComp

Figure 6.3: Integrality gaps for un-masked linx bound (Gap-J), masked linx bound with
extended onion initialization, and complemented masked linx bound with extended onion
initialization.

small in comparison to the overall problem size n. This improvement could be particularly

beneficial in a branch-and-bound framework, especially in branches where these conditions

prevail.

We have also developed a comprehensive L-BFGS algorithm to compute an effective

mask for general problem instances. While this algorithm is specifically designed for the

linx bound, its conceptual framework is versatile and can be readily adapted to other upper

bounds in MESP, such as BQP, NLP, and Fact bounds. Extending this approach to these

bounds can be a subject for future work.

Finally, it is observed that the interior point method might face limitations in facilitating

further progress, especially at iterations near the boundary of the positive-semidefinite cone.

Thus, there is room for enhancing the algorithm by permitting iterations at, or even beyond,

the boundary, followed by projecting back. This adjustment may allow the use of an all-ones

mask as the initial point, potentially leading to consistent improvements in the upper bounds

over the original (all-ones mask) bound for all instances.

148

20 40 60 80 100 120

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

In
te

gr
al

ity
 G

ap

Gap-J
Gap-ExOni
Gap-ExOniComp

Figure 6.4: Integrality gaps for un-masked linx bound (Gap-J), masked linx bound with
extended onion initialization, and complemented masked linx bound with extended onion
initialization. For readability, we truncate the y-axis range to [0, 5] because we only care
about relatively small and large s.

149

BIBLIOGRAPHY

Hessa Al-Thani and Jon Lee. An R package for generating covariance matrices for maximum-
entropy sampling from precipitation chemistry data. SN Operations Research Forum,
Volume 1:Article 17 (21 pages), 2020a. https://doi.org/10.1007/s43069-020-0011-z.

Hessa Al-Thani and Jon Lee. MESgenCov, 2020b. https://github.com/hessakh/

MESgenCov.

Hessa Al-Thani and Jon Lee. Tridiagonal maximum-entropy sampling and tridiagonal masks.
LAGOS 2021 proceedings, Procedia Computer Science, 195:127–134, 2021.

Hessa Al-Thani and Jon Lee. Tridiagonal maximum-entropy sampling and tridiagonal masks.
Discrete Applied Mathematics, 337:120–138, 2023.

Kurt M. Anstreicher. Maximum-entropy sampling and the Boolean quadric polytope. Jour-
nal of Global Optimization, 72(4):603–618, 2018.

Kurt M. Anstreicher. Efficient solution of maximum-entropy sampling problems. Operations
Research, 68(6):1826–1835, 2020.

Kurt M. Anstreicher and Jon Lee. A masked spectral bound for maximum-entropy sampling.
In mODa 7—Advances in Model-Oriented Design and Analysis, Contrib. Statist., pages
1–12. Physica, Heidelberg, 2004.

Kurt M. Anstreicher, Marcia Fampa, Jon Lee, and Joy Williams. Continuous relaxations
for constrained maximum-entropy sampling. In Integer Programming and Combinatorial
Optimization (Vancouver, BC, 1996), volume 1084 of Lecture Notes in Computer Science,
pages 234–248. Springer, Berlin, 1996.

Kurt M. Anstreicher, Marcia Fampa, Jon Lee, and Joy Williams. Using continuous nonlin-
ear relaxations to solve constrained maximum-entropy sampling problems. Mathematical
Programming, Series A, 85(2):221–240, 1999.

Kurt M. Anstreicher, Marcia Fampa, Jon Lee, and Joy Williams. Maximum-entropy remote
sampling. Discrete Applied Mathematics, 108(3):211–226, 2001.

Azam Asl and Michael L. Overton. Behavior of limited memory bfgs when applied to nons-
mooth functions and their nesterov smoothings. In Numerical Analysis and Optimization:
NAO-V, Muscat, Oman, January 2020 V, pages 25–55. Springer, 2021.

150

https://doi.org/10.1007/s43069-020-0011-z
https://github.com/hessakh/MESgenCov
https://github.com/hessakh/MESgenCov

Shrey Bagroy, Ponnurangam Kumaraguru, and Munmun De Choudhury. A social media
based index of mental well-being in college campuses. In Proceedings of the 2017 CHI
Conference on Human factors in Computing Systems, pages 1634–1646, 2017.

Mihály Bakonyi and Hugo J. Woerdeman. Matrix completions, moments, and sums of Her-
mitian squares. Princeton University Press, Princeton, NJ, 2011. ISBN 978-0-691-12889-4.

Sankar Basu, Charles A. Micchelli, and Peter Olsen. Maximum entropy and maximum
likelihood criteria for feature selection from multivariate data. In 2000 IEEE International
Symposium on Circuits and Systems (ISCAS), volume 3, pages 267–270. IEEE, 2000.

Robert B. Bendel and M. Ray Mickey. Population correlation matrices for sampling experi-
ments. Communications in Statistics-Simulation and Computation, 7(2):163–182, 1978.

Anil K. Bera and Sung Y. Park. Optimal portfolio diversification using the maximum entropy
principle. Econometric Reviews, 27(4–6):484–512, 2008.

Albert S. Berahas, Jorge Nocedal, and Martin Takác. A multi-batch L-BFGS method for
machine learning. Advances in Neural Information Processing Systems, 29, 2016.

Alain Billionnet, Sourour Elloumi, Amélie Lambert, and Angelika Wiegele. Using a Conic
Bundle method to accelerate both phases of a Quadratic Convex Reformulation. IN-
FORMS Journal on Computing, 29:318–331, 2017.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

Samuel Burer and Jon Lee. Solving maximum-entropy sampling problems using factored
masks. Mathematical Programming, Series B, 109(2–3):263–281, 2007.

Zhongzhu Chen, Marcia Fampa, Amélie Lambert, and Jon Lee. Mixing convex-optimization
bounds for maximum-entropy sampling. Mathematical Programming, Series B, 188:539–
568, 2021.

Zhongzhu Chen, Marcia Fampa, and Jon Lee. Masking Anstreicher’s linx bound for improved
entropy bounds. Operations Research, 2022.

Zhongzhu Chen, Marcia Fampa, and Jon Lee. On computing with some convex relaxations
for the maximum-entropy sampling problem. INFORMS Journal on Computing, 35(2):
368–385, 2023.

Philip I. Davies and Nicholas J. Higham. Numerically stable generation of correlation ma-
trices and their factors. BIT Numerical Mathematics, 40:640–651, 2000.

Santanu S Dey, Rahul Mazumder, and Guanyi Wang. Using ℓ1-relaxation and integer pro-
gramming to obtain dual bounds for sparse PCA. Operations Research, 70(3):1914–1932,
2022.

151

Marcia Fampa and Jon Lee. Maximum-Entropy Sampling: Algorithms and Applica-
tion. Springer International Publishing, 2022. URL https://doi.org/10.1007/

978-3-031-13078-6.

Valerii Fedorov and Jon Lee. Design of experiments in statistics. In Handbook of semidefinite
programming, volume 27 of Internat. Ser. Oper. Res. Management Sci., pages 511–532.
Kluwer Acad. Publ., Boston, MA, 2000.

Anthony V. Fiacco. Introduction to sensitivity and stability analysis in nonlinear program-
ming, volume 165 of Mathematics in Science and Engineering. Academic Press, Inc.,
Orlando, FL, 1983. ISBN 0-12-254450-1.

Anthony V. Fiacco and Yo Ishizuka. Sensitivity and stability analysis for nonlinear program-
ming. Annals of Operations Research, 27(1-4):215–235, 1990a.

Anthony V. Fiacco and Yo Ishizuka. Sensitivity and stability analysis for nonlinear program-
ming. Annals of Operations Research, 27(1):215–235, 1990b.

Anthony V. Fiacco and Garth P. McCormick. Nonlinear Programming : Sequential Uncon-
strained Minimization Techniques. JohnWiley & Sons, New York, NY, USA, 1968. Reprint
: Volume 4 of SIAM Classics in Applied Mathematics, SIAM Publications, Philadelphia,
PA 19104–2688, USA, 1990.

Ilse Fischer, Gerald Gruber, Franz Rendl, and Renata Sotirov. Computational experience
with a bundle approach for semidefinite cutting plane relaxations of max-cut and equipar-
tition. Mathematical Programming, 105:451–469, 2006.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Re-
search Logistics Quarterly, 3(1–2):95–110, 1956.

Soumyadip Ghosh and Shane G. Henderson. Behavior of the NORTA method for correlated
random vector generation as the dimension increases. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 13(3):276–294, 2003.

Peter Guttorp, Nhu D. Le, Paul D. Sampson, and James V. Zidek. Using entropy in the
redesign of an environmental monitoring network. In G.P. Patil, C.R. Rao, and N.P. Ross,
editors, Multivariate Environmental Statistics, volume 6, pages 175–202. North-Holland,
1993.

Christoph Helmberg. The ConicBundle Library for Convex Optimization. https://

www-user.tu-chemnitz.de/~helmberg/ConicBundle/, 2005–2019.

Jeffrey C. Hoch, Mark W. Maciejewski, Mehdi Mobli, Adam D. Schuyler, and Alan S.
Stern. Nonuniform sampling and maximum entropy reconstruction in multidimensional
nmr. Accounts of Chemical Research, 47(2):708–717, 2014.

Alan Hoffman, Jon Lee, and Joy Williams. New upper bounds for maximum-entropy
sampling. In mODa 6—Advances in Model-Oriented Design and Analysis (Puch-
berg/Schneeberg, 2001), Contrib. Statist., pages 143–153. Physica, Heidelberg, 2001.

152

https://doi.org/10.1007/978-3-031-13078-6
https://doi.org/10.1007/978-3-031-13078-6
https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/
https://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,
Cambridge, First edition, 1985. ISBN 0-521-38632-2.

Robert E. Hoskisson, Michael A. Hitt, Richard A. Johnson, and Douglas D. Moesel. Con-
struct validity of an objective (entropy) categorical measure of diversification strategy.
Strategic Management Journal, 14(3):215–235, 1993.

P. Jana, T.K. Roy, and S.K. Mazumder. Multi-objective mean-variance-skewness model for
portfolio optimization. Advanced Modeling and Optimization, 9(1):181–193, 2007.

Xin Jin, Bamshad Mobasher, and Yanzan Zhou. A web recommendation system based on
maximum entropy. In International Conference on Information Technology: Coding and
Computing (ITCC’05)-Volume II, volume 1, pages 213–218. IEEE, 2005.

Harry Joe. Generating random correlation matrices based on partial correlations. Journal
of Multivariate Analysis, 97(10):2177–2189, 2006.

Chun-Wa Ko, Jon Lee, and Maurice Queyranne. An exact algorithm for maximum-entropy
sampling. Operations Research, 43(4):684–691, 1995.

Jon Lee. Constrained maximum-entropy sampling. Operations Research, 46(5):655–664,
1998.

Jon Lee. Encyclopedia of Environmetrics, A.H. El-Shaarawi and W.W. Piegorsch, eds.,
chapter Maximum entropy sampling, 2nd edition, pages 1570–1574. Wiley, 2012.

Jon Lee and Joy Williams. A linear integer programming bound for maximum-entropy
sampling. Mathematical Programming, Series B, 94(2–3):247–256, 2003.

Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing
nonmonotone submodular functions under matroid or knapsack constraints. SIAM Journal
on Discrete Mathematics, 23(4):2053–2078, 2009/10.

Daniel Lewandowski, Dorota Kurowicka, and Harry Joe. Generating random correlation
matrices based on vines and extended onion method. Journal of Multivariate Analysis,
100(9):1989–2001, 2009.

Adrian S. Lewis and Michael L. Overton. Nonsmooth optimization via quasi-Newton meth-
ods. Mathematical Programming, 141:135–163, 2013.

Yongchun Li and Weijun Xie. Best principal submatrix selection for the maximum entropy
sampling problem: Scalable algorithms and performance guarantees. Operations Research,
2023. https://doi.org/10.1287/opre.2023.2488.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1):503–528, 1989.

Johan Lofberg. Yalmip: A toolbox for modeling and optimization in matlab. In 2004 IEEE
international conference on robotics and automation (IEEE Cat. No. 04CH37508), pages
284–289. IEEE, 2004.

153

https://doi.org/10.1287/opre.2023.2488

José Luis Morales. A numerical study of limited memory BFGS methods. Applied Mathe-
matics Letters, 15(4):481–487, 2002.

Jean-Jacques Moreau. Fonctionnelles convexes. Séminaire Jean Leray, 2:1–108, 1966.

NADP. National Acidic Deposition Program, National Trends Network. https://nadp.

slh.wisc.edu/ntn/, 2018.

Stephen G. Nash and Jorge Nocedal. A numerical study of the limited memory BFGS
method and the truncated-Newton method for large scale optimization. SIAM Journal on
Optimization, 1(3):358–372, 1991.

Aleksandar Nikolov. Randomized rounding for the largest simplex problem. In Proceedings
of the 47th Annual ACM Symposium on Theory of Computing, pages 861–870, 2015.

Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business
Media, 2006.

Daisuke Oyama and Tomoyuki Takenawa. On the (non-)differentiability of the optimal value
function when the optimal solution is unique. Journal of Mathematical Economics, 76:
21–32, 2018.

Mohsen Pourahmadi and Xiao Wang. Distribution of random correlation matrices: Hyper-
spherical parameterization of the Cholesky factor. Statistics & Probability Letters, 106:
5–12, 2015.

Michael J.D. Powell. Some global convergence properties of a variable metric algorithm for
minimization without exact line searches. In Nonlinear programming (Proc. Sympos., New
York, 1975), pages 53–72. SIAM–AMS Proc., Vol. IX, 1976.

Lijing Qin and Xiaoyan Zhu. Promoting diversity in recommendation by entropy regularizer.
In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.

Zhicong Qiu, David J Miller, and George Kesidis. A maximum entropy framework for semisu-
pervised and active learning with unknown and label-scarce classes. IEEE Transactions
on Neural Networks and Learning Systems, 28(4):917–933, 2016.

R. Tyrrell Rockafellar. Convex Analysis. Princeton Mathematical Series. Princeton Univer-
sity Press, 1997.

Claude E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948.

Michael C. Shewry and Henry P. Wynn. Maximum entropy sampling. Journal of Applied
Statistics, 46:165–170, 1987.

Yuedong Song and Pietro Liò. A new approach for epileptic seizure detection: sample entropy
based feature extraction and extreme learning machine. Journal of Biomedical Science and
Engineering, 3(06):556, 2010.

154

https://nadp.slh.wisc.edu/ntn/
https://nadp.slh.wisc.edu/ntn/

Kim-Chuan Toh, Michael J. Todd, and Reha H. Tütüncü. SDPT3: A Matlab software
package for semidefinite programming, version 1.3. Optimization Methods and Software,
11(1-4):545–581, 1999.

Nam-Kiu Tsing, Michael K.H. Fan, and Erik I. Verriest. On analyticity of functions involving
eigenvalues. Linear Algebra and its Applications, 207:159 – 180, 1994.

Constantin Zalinescu. Convex Analysis in General Vector Spaces. World Scientific, 2002.

Fuzhen Zhang, editor. The Schur complement and its applications, volume 4 of Numerical
Methods and Algorithms. Springer-Verlag, New York, 2005.

James V. Zidek, Weimin Sun, and Nhu D. Le. Designing and integrating composite networks
for monitoring multivariate Gaussian pollution fields. Journal of the Royal Statistical
Society. Series C. Applied Statistics, 49(1):63–79, 2000.

Julian Zilly, Joachim M Buhmann, and Dwarikanath Mahapatra. Glaucoma detection using
entropy sampling and ensemble learning for automatic optic cup and disc segmentation.
Computerized Medical Imaging and Graphics, 55:28–41, 2017.

155

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Literature review for MESP and CMESP
	The linx, BQP, and NLP upper bounds for CMESP
	Key improving techniques for the upper bounds
	Scaling
	Complementation
	Masking

	Notations
	Dissertation organization

	Mixing Convex-Optimization Bounds
	Introduction
	General mixing
	Mixing the BQP bound with the complementary BQP bound
	Mixing BQP and its complement
	Valid equations in the extended spaces
	Choosing good parameters (,1,2)
	Convexity properties
	Optimizing the parameters

	Mixing the NLP bound with the complementary NLP bound
	On the linx bound and mixing with it
	Optimizing the linx bound on the scaling parameter
	Improvements on the linx bound

	Mixing an NLP bound and a BQP bound
	Mixing across a family of instances
	Concluding remarks

	On Computing with some Convex Relaxations for the Maximum-Entropy Sampling Problem
	Introduction
	Upper bounds
	Fact
	DFact
	DDFact
	linx
	Mixing
	Considering DDFact, complementary DDFact, and linx in mix

	Implementation and experiments
	Setup for the computational experiments
	Test instances
	Numerical experiments for n=63,90,124
	Analysis of the results for n=63,90,124
	Numerical experiments with the large instance (n=2000)
	More specifics about the computational time
	Some experiments with CMESP

	Concluding remarks

	Generalized Scaling for the Constrained Maximum-Entropy Sampling Problem
	Introduction
	g-scaled BQP bound
	g-scaled linx bound
	g-scaled factorization bound
	Computing optimal g-scaling parameters
	Experiments
	Concluding remarks

	Masking Anstreicher's linx Bound for Improved Entropy Bounds
	Introduction
	Linear gap for the linx bound
	Optimal scaling parameter: some special cases and general behavior
	Linear gap under optimal scaling
	Concluding remarks

	On Algorithms for Mask Optimization for Anstreicher's linx Bound
	Introduction
	Mask properties for the linx bound
	Algorithms for mask optimization for the linx bound
	Experiments
	Concluding remarks

	Bibliography

