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ABSTRACT

The performance of processor-centric von Neumann architectures is greatly hindered by data

movement between memory and processor, especially when encountering data-intensive tasks.

Memory-centric process-in-memory (PIM) architectures perform computations directly within

the memory modules. Hence, the performance and energy penalty associated with data access

can be mitigated by minimizing data movement and leveraging high internal bandwidth. In

addition to the benefits in performance and energy efficiency, PIM architectures facilitate extensive

computing parallelism and scalability, while also provide enhanced security resilience against

bus-snoop attacks. PIM architectures have shown their capability in many machine learning

applications. Nonetheless, effectively accommodating ultra-large deep neural network (DNN)

models, like Transformer, remains an ongoing challenge, and with the continued adoption of PIM

architectures, security and vulnerability issues are poised to become looming threats.

This dissertation focuses on high-performance PIM architecture design for data-intensive appli-

cations. To facilitate PIM architecture design and security studies, the dissertation first proposes

event-driven, cycle-accurate simulators and their implementations for PIM architectures based on

dynamic random-access memory (DRAM) and resistive random-access memory (RRAM), along

with how these simulators can be used for architecture design.

The PIM-GPT architecture is then introduced, which offers high performance, high energy

efficiency and end-to-end acceleration of GPT inference. PIM-GPT leverages DRAM-based PIM

solutions to perform multiply-accumulate (MAC) operations on the DRAM chips, working together

with an application-specific integrated chip (ASIC) which supports data communication and other

necessary arithmetic computations. At the software level, the mapping scheme is designed to max-

imize data locality and computation parallelism by partitioning a matrix among DRAM channels
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and banks to utilize all in-bank computation resources concurrently. Overall, PIM-GPT achieves

41−137×, 631−1074× speedup and 123−383× and 320−602× energy efficiency over GPU and

CPU baseline, respectively, on 8 GPT models.

Two security and vulnerability investigations are then conducted on RRAM-based analog PIM

architectures. These studies employ a dynamic power trace modeling approach at runtime, en-

abling efficient power and timing side-channel analysis. The susceptibility of PIM architectures to

side-channel attacks is analysed. And the study reveals the possibility of extracting complete DNN

model architectural information solely from power trace measurements, without prior DNN knowl-

edge. Furthermore, another potential security vulnerability is identified, wherein an adversary can

reconstruct a user’s private input data through a power side-channel attack, given proper data acqui-

sition and pre-processing. The study employs a machine learning-based attack approach utilizing

a generative adversarial network (GAN) to enhance data reconstruction. Notably, these findings

illustrate the effectiveness of specific attack methodologies in extracting DNN model structures and

user inputs from analog PIM accelerator power leakage, even in the presence of substantial noise

levels. Countermeasures against these side-channel attacks are also discussed.

In light of these security challenges, there is a growing demand for hardware secure systems

capable of providing robust solutions for identification, authentication, and protection against

counterfeiting and unauthorized modifications. Physical unclonable functions (PUFs) emerge as a

valuable technique for hardware root-of-trust. A PUF system built upon fingerprint-like random

planar structures is developed, demonstrating compatibility with the back-end-of-line (BEOL)

process and presenting promising potential as a hardware security primitive in the IoT industry.

In the end, guiding principles and proposals for future work are deliberated, focusing on three key

aspects: 1) hardware modeling and simulation of emerging PIM architectures; 2) hardware/software

co-optimization for Transformer models; and 3) security and vulnerabilities in neuromorphic

computing systems.
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CHAPTER 1

Introduction

1.1 Background

Modern computing systems, stemming from the von Neumann architecture, are processor-

centric architectures. As illustrated in Figure 1.1(a), the conventional CPU architecture emphasizes

data processing within the arithmetic logic units (ALU). Consequently, data must traverse the

memory hierarchy to reach the processor. However, the transmission of data through multi-level

caches introduces substantial latency. Moreover, external memory access incurs energy costs

approximately two orders of magnitude higher than those associated with typical ALU processing

tasks, such as floating-point multiplication [1][2]. The latency and energy costs associated with

external memory access, commonly denoted as the von Neumann bottleneck, significantly curtail

the performance of contemporary computing systems, particularly when handling extensive data

[3][4].

In the era of big data, data-intensive applications such as machine learning [5], graph processing

[6][7][8] and genome sequence analysis [9] require more efficient data processing. Effectively

managing data emerges as the paramount challenge [10]. Modern computing architectures face

several intrinsic challenges that impede their effectiveness. For example, their fundamental design

prioritizes data storage and movement, lacking the nuanced optimization necessary for efficient data

consumption. More specifically, a significant portion of the chip area is allocated to accommodate

data through the use of cache or scratchpad memory, aiming to minimize data access latency.
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Figure 1.1: (a) CPU based on conventional von Neumann architecture. (b) Process-near-memory
(PNM) architecture. (c) Process-using-memory (PUM) architecture.

But the memory access latency of individual piece of data can not be optimized. Moreover, the

architectures struggle to harness the diverse applications and inherent properties of data effectively.

The current general purpose processors often fall short in capitalizing on the rich and varied nature

of data and applications, hindering their ability to cater to the specific needs of different applications

and exploit the unique characteristics of distinct datasets. Consequently, the future trajectory lies in

the redesign of architectures to unlock their full potential in handling the complexities of modern

data processing challenges.

To resolve the aforementioned challenges, computing architectures should pivot towards a data-

centric and application-driven design. Bringing processing elements (PE) in proximity to the

location where data resides or is generated emerges as a straightforward and potent strategy. This

principle underlies the motivation behind process-in-memory (PIM) architectures.

1.2 Process-in-Memory (PIM) Architectures

PIM architectures are categorized as memory-centric computing paradigms, with the primary

goal of conducting computation within or in close proximity to data. Therefore, it can potentially
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alleviate the performance and energy penalties associated with data movement. The root of

PIM can be traced back to the 1960s, when the concept of logic-in-memory was first proposed

[11][12]. In recent years, PIM has gained prominence in both industry and academia. This

upswing is distinctly propelled by the burgeoning need for handling data-intensive tasks such as

artificial intelligence and machine learning, a demand fueled by the exponential growth in data-

driven applications. Simultaneously, the ascent of PIM has been bolstered by significant strides in

memory technology. Besides implementing computation capability into the mainstream DRAM

chips [2][13][14][15][16], other emerging memory technologies also pave brand new avenues for

high performance and low power computing architectures that directly utilize the memory devices

to perform computation [17][18][19].

PIM architectures can be fundamentally divided into process-near-memory (PNM) and process-

using-memory (PUM), as shown in Figure 1.1(b) and (c). The two approaches can also be combined

to enhance overall performance [20]. The architecture of PNM does not deviate significantly from

traditional processor-centric systems. As shown in Figure 1.1(b), PNM architectures still have

distinct processing units and memory arrays. However, the strategic placement of processing

units closer to memory significantly mitigates the cost associated with data movement. Moreover,

near-memory logic can take advantage of the high internal bandwidth, surpassing that of off-chip

memory interfaces. As for DRAM chip, such a near-memory logic can be placed near memory

banks [13][14], close to memory sub-arrays [21][22] or on the logic layers in 3D-stacked dies

[23]. Besides DRAM technologies, PNM can also be employed for caches [24] and storage devices

[25]. This versatility underscores the adaptability of PNM architectures across a spectrum of

memory-intensive components in computing systems.

PUM harnesses the analog behaviors inherent in device operations. Specifically, some analog

devices exhibit stateful transition behaviors that provide a foundation for computation directly

within memory devices [26]. In the PUM paradigm, computation takes place within the memory

cells without the need for additional peripheral arithmetic circuitry, as shown in Figure 1.1(c). This

fundamentally distinguishes the computing approach of PUM from that of modern computer archi-
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tectures. Despite the precision limitations in analog computing when compared to floating-point

operations, the performance of certain tasks, notably machine learning inference, can potentially

tolerate the reduced precision [27]. Analog PUM computations have been widely supported by

emerging memory technologies, which will be elaborated more in the Section 1.3. PUM has also

been deployed with conventional memory types, including SRAM [28][29], DRAM [30] and Flash

[31] to accelerate machine learning applications. Since PUM architectures rely more on internal

behaviors of memory devices, the design and optimization of the devices become critical.

PIM-enabled memory-centric computing architectures have four primary advantages. First of

all, it can essentially reduce the data movement between the processor and memory, ensuring

that all data are consumed at storage location. This mitigates performance bottlenecks arising

from processor-memory speed mismatches, resulting in substantial improvements. Secondly, PIM

architectures exhibit lower latency and energy requirements for accessing individual data since the

PEs are much closer to data. Many recent works have shown that PIM architectures can improve

both performance and energy efficient by more than one order of magnitude [6][20][32]. Thirdly,

PIM architectures facilitate extensive parallel computing. By integrating PEs at bank or array

level, parallel operation of all submodules can be achieved with the same instruction, concurrently

reducing instruction overhead. Lastly, PIM architectures are considered more secure compared

to processor-centric architectures. Specifically, they are more resilient against bus-snoop attacks

[33][34]. Co-locating memory and processing eliminates data movement through the system

bus, making it more challenging for malicious users to compromise the security of these hardware

architectures. The limited memory access of stationary weights adds an additional layer of security,

enhancing the robustness of PIM architectures.

Memory-centric PIM architectures can accelerate data-intensive tasks such as large language

model (LLM), convolution neural network (CNN) for computer vision, graph processing, cryptog-

raphy computing and genome analysis [6][7][9][20][32][35]. Moreover, emerging devices offers a

novel approach to utilize their intrinsic dynamic state behaviors [36], which introduces an avenue

for new computation paradigms such as neuromorphic computing, spiking neural networks and
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reservoir computing [37][38][39].

1.3 Devices and Micorarchitectures for PIM

1.3.1 DRAM-based PIM Architectures

SRAM and DRAM have been considered for PIM architectures due to their maturity. By

redesigning cache peripheral circuitry and the instruction set architecture (ISA), instructions can

be prompted in-cache [28][29]. Using dual port SRAM decouples read and write, which makes

it possible to utilize intrinsic analog behavior of SRAM cells to accelerate multiply-accumulation

(MAC) operation in-situ [40][41]. However, the density of SRAM is restricted by its 6T (transistor)

cell design (which can add up to 8T or 10T to enable more complex functions), so the capacity of

SRAM-based PIM is bounded by the area constrains and poor scalability.

As a comparison, the capacity of DRAM chips is much larger, ranging from several GB to tens

of GB. State-of-the-art GPU NVIDIA A100 can be equipped with 80 GB high-bandwidth memory

(HBM) [42][43][44]. Moreover, multiple DRAM channels and chips can be easily scaled at the

board level. Enhanced inter-DRAM communication can further improve its scalability [45].

A DRAM chip composes of multiple banks. Figure 1.2(a) shows the DRAM bank architecture,

with inset shows a single 1T1C DRAM cell. The capacitor cell represents the binary value of 0 or 1

by the absence or presence of charge. The transistor is driven by word-line voltage to access the cell.

Bit-lines of a bank are connected to the row-buffer. After opening a bank row, the entire row’s data

are read and temporarily stored in the row-buffer. Subsequently, the target data is accessed using

the column address. Read and write operations of a certain DRAM cell are shown in Figure 1.2(b).

To start with, all bit-lines are maintained at a voltage-level of 1
2𝑉𝐷𝐷 . An activation command is

received along with the row address, the corresponding word-line voltage will be raised to𝑉𝑃𝑃 from

0. The data from the entire row will be sensed by the row-buffer. After that, the memory controller

will issue a read or write command, along with the column address to fetch the corresponding data

in the row-buffer. If the next request tries to access the same row, it can directly access the row
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Figure 1.2: (a) DRAM bank architecture, inset: 1T1C single cell. (b) Schematic of DRAM
read/write operations. (c) DRAM channel with arithmetic logic. (b) Multipliers and an adder tree
for MAC operation.

buffer without activate the row again. By doing so, the latency can be greatly reduced. In the end,

if a new row needs to be activated, the memory controller must precharge the current row. The

word-line voltage will be lowered to 0 and bit-line voltage will be driven to 1
2𝑉𝐷𝐷 . The latency of

DRAM operation must follow DRAM timing constraints [46].

To enable PUM in DRAM, extensive modifications to the subarray microarchitecture are needed

[30][47][48]. And only a limited instruction set can be supported. Therefore, adopting PNM to

DRAM is a better option, which adds computation logic near DRAM bank and takes advantages

of high internal bandwidth. Adding computation logic will sacrifice the memory capacity since

the die area cannot be expanded. Moreover, the DRAM fabrication process is highly constrained

for logic integration. It only contains three metal layers which severely limits the complexity of

the circuit, and the transistors are 3× slower than those in logic chips at the same node [5]. Hence,

adding complex logic components into DRAM is not practical.
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Due to the above-mentioned technical difficulties, PIM architectures are not integrated into

memory products until recently. UPMEM is the first reported PIM product using standard dual in-

line memory module (DIMM) modules, with a large number of processors combined with DRAM

chips [16][49]. However, the throughput per processing unit (PU) is 4 GOPS and it only supports

INT8 data type. DRAM vendors including Samsung [2][14] and SK Hynix[13][15] have recently

announced DRAM-based PIM technologies. Samsung’s PIM architecture is based on HBM2,

which offers high bandwidth of 307.2 GBps to tackle data-intensive tasks. The design integrates

PIM dies on a buffer die through TSV. Inside each PIM die, a processing unit (PU) is shared by two

banks, operating at 9.6GFLOPS per PU. However, the high cost of HBM limits the application to

server level. SK Hynix’s GDDR6-based PIM prototype, Accelerator-in-Memory (AiM), uses the

standard GDDR6 interface. AiM supports VMM with a high throughput of 32GFLOPS per PU.

Figure 1.2(c) shows a representative DRAM-based PIM microarchitecture design. A global

buffer stores intermediate data and broadcast to every bank. MAC units are integrated at bank-level

to maximize parallel computing. MAC units can be implemented by multipliers and an adder tree,

as shown in Figure 1.2(d).

1.3.2 Emerging Memory-based PIM Architectures

Besides standard memory devices that store information using charge, emerging memory tech-

nologies typically store data using other mechanisms. Some of these emerging devices are optimized

for non-volatile storage and analog switching behavior, while others with dynamic properties can

mimic synaptic functions [37][50][51][52]. Figure 1.3 illustrates representative emerging memory

devices. Resistive random-access memory (RRAM) operates based on internal ion redistribution.

Given the different type of filament, based on either oxygen vacancy [53][54] or active metals

such as Ag [55][56], RRAM can be categorized into valence change memory (VCM) and conduc-

tive bridge random-access memory (CBRAM), in Figure 1.3(a) and (b) respectively. The gradual

formation and rupture of the filament can represent analog conductance states [57]. Besides mem-

ory application, the nanoscale filament structure offers a platform for fundamental chemical and

7



Figure 1.3: Illustration of emerging memory devices. (a) RRAM, (b) CBRAM, (c) STT-MRAM,
(d) PCM, (e) FeFET, (f) ECRAM.

physical effect studies [58][59][60][61]. Spin-transfer-torque magnetic random-access memory

(STT-MRAM) stores information using the magnetization direction between a free layer and a

pinned layer [62], and the parallel/anti-parallel directions of these layers can be modified by spin

current injection. Phase change memory (PCM) operates on the conversion of chalcogenide-based

material between crystalline and amorphous forms through joule heating [63][64]. It can also

achieve analog conductance states. Ferroelectric field-effect transistors (FeFETs) have a structure

similar to that of conventional transistors but utilize a ferroelectric insulator layer as the dielectric

layer [65][66]. The application of a gate voltage induces polarization switching in the ferroelec-

tric layer, modulating the conductance of the channel in FeFETs. Electrochemical random-access

memory (ECRAM) can achieve more stable analog conductance. Under the electric field induced

by the applied gate voltage, ionic transporting between the electrolyte and the channel modulates

the channel conductance [67][68].

Among these emerging memory technologies, RRAM is one of the most promising candidates

for its low power, high speed, non-volatile storage, superior scalability and CMOS-compatible
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Figure 1.4: (a) Spatial-multiplex RRAM-based PIM architecture. (b) Timing-multiplex GPU
architecture. (c) RRAM array with peripheral circuitry.

process [69][70][71]. RRAM, also referred to as the memristor, was first proposed theoretically

in 1971 [72]. Memristor was proven to support synaptic functions in 2010 and broadened the

way for neuromorphic computing [73]. Later in 2015, crossbar array formed by memristors was

experimentally used for neural network operations [74]. RRAM will be one of the main focuses of

the thesis.

Figure 1.4 shows a representative RRAM-based PIM microarchitecture, where mixed-signal

circuits are integrated within RRAM crossbar macros, and analog computation is achieved through

bit-line current summation or charge accumulation. Co-locating memory and processing in a

tiled architecture eliminates data movement between memory and processor, as shown in Figure

1.4(a). In this case, different layers can be processed concurrently in space-multiplexed fashion.

In contrast, conventional deep neural network (DNN) accelerators, such as GPUs, use single-

instruction-multiple-threads (SIMT) execution and must therefore time multiplex operations that

take place across different DNN layers, as depicted in Figure 1.4(b).

Analog PIM architectures offer significant advantages in throughput and power efficiency by
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minimizing data movement, and offer a high degree of parallelism at runtime with respect to MAC

operations [75][76]. Figure 1.4(c) shows a detailed schematic of an analog RRAM crossbar array-

based PIM. The analog RRAM PIM can perform vector-matrix multiplication (VMM) directly in

a single step based on current summation: Ohm’s law is used for multiplication and Kirchhoff’s

current law is used for accumulation. More specifically, the input vectors are encoded as voltage

pulses and the entries of matrices are mapped as RRAM device conductance values. The outputs of

the VMM are returned as bit-line currents, subsequently sampled by peripheral read-out circuitry,

and converted to binary digital values using analog-to-digital converters (ADC) for further down-

stream communication and processing. As the weight precision is often higher than the device

precision, typically a single weight value is mapped across multiple RRAM cells, and the VMM

result is reconstructed using digital shifter and adder circuits [77].

1.4 Security and Vulnerability of PIM Architectures

Although DNN models are implemented on a wide range of platforms, from datacenter GPUs

to edge devices, the importance of data security cannot be overstated. Attacks on DNN data used in

critical applications such as medical diagnosis, autonomous driving, and financial transactions can

compromise the user privacy as well as proprietary algorithm information [78]. The main areas of

concern in DNN security include model extraction, adversarial attacks, and privacy breaches [78]

[79] [80]. Model extraction involves extracting the DNN architecture and reconstruct weights to

reproduce its functionality, which can be used to breach the intellectual property of DNN design

[79]. Adversarial attacks involve manipulating the input data deliberately to make the modification

invisible to human but causing misclassification or other unexpected behavior to the DNN model

[80]. Privacy breaches involve reconstructing sensitive private input or training data by an attacker

[78] [81].

A typical attack of the DNN hardware is through side-channel, as schematically shown in

Figure 1.5. Side-channel attack analysis is based on physical phenomena during execution, such
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Figure 1.5: Schematics of side-channel attack. (a) Side-channel leakage measurement of PIM chip.
(b) Power side-channel leakage with potential sensitive data.

as electromagnetic emanation, power dissipation and timing, as well as mathematical analysis. By

carefully measuring and analyzing the power dissipation of the chip, attackers may be able to reverse

engineer sensitive data or architectural information [82]. Figure 1.5(b) shows privacy breach and

model extraction attack by analyzing the power traces of PIM system at runtime.

While the above-mentioned security attacks on DNN hardware have been extensively evaluated

on systems such as GPUs, CPUs and FPGAs [79] [81] [83] [84] [85] [86], security and vulnerability

analysis of analog PIM accelerators is largely lacking. While PIM macros reduce the number of

possible attack vectors, the risk of side-channel attack remains a looming threat, as information

leaks may still occur via power profiling and electromagnetic emanations. Timing analysis of

thread-level execution may also offer an unintended window into architectural insights. Like the

developments of RowHammer [87] changes the whole DRAM industry, studying the vulnerability

in PIM systems will empower the security considerations in PIM architecture design.

1.5 Organization of the Thesis

This thesis targets on high-performance PIM architecture design, as well as security and vulner-

ability analysis of PIM systems. PIM designs based on two representative memory technologies,

mainstream DRAM and emerging RRAM, are studied in this thesis. The thesis will start with PIM
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architecture modeling and high-performance PIM architecture design. A DRAM-based PIM archi-

tecture will then be introduced for large Transformer model inference acceleration. For emerging

memory technology such as RRAM, two side-channel attack and reverse engineering approaches,

model extraction attack and private input breach, will be introduced, followed by discussing poten-

tial countermeasures. To further secure the chips, hardware security primitive physical unclonable

functions (PUF) will also be discussed.

The content of each chapter is summarized below.

Chapter 2 discusses how to design and implement event-driven, clock-cycle-accurate simulators

for PIM architectures based on DRAM and RRAM. The simulators offer fast architecture evaluation

along with accurate latency results for different benchmark analysis. An example of designing

RRAM-based analog PIM architecture guided by simulation will be elaborated.

Chapter 3 proposes a DRAM-based PIM design, PIM-GPT, that aims to achieve high throughput,

high energy efficiency and end-to-end acceleration of GPT inference. PIM-GPT leverages DRAM-

based PIM solutions to perform MAC operations on the DRAM chips, along with a compact

application-specific integrated chip (ASIC) to support data communication and necessary arithmetic

computations.

Chapter 4 proposes a side-channel attack methodology on RRAM-based PIM architectures. It

shows the feasibility to extract model architectural information from power trace measurements

without any prior knowledge of the neural network. Practical side-channel measurement method-

ologies are also discussed. Potential countermeasures for building secure PIM systems are studied.

Chapter 5 identifies a potential security vulnerability wherein an adversary can reconstruct

the user’s private input data from a power side-channel attack, under proper data acquisition and

pre-processing conditions even without knowledge of the DNN model. A machine learning-based

attack approach is further demonstrated using a generative adversarial network (GAN) to enhance

the data reconstruction.

Chapter 6 discusses a PUF implementation based on a fingerprint-like random planar structure

evolved from binary polymer mixture phase separation. The fingerprint PUF is compatible with
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back-end-of-line (BEOL) process and provides great potential for hardware security primitive in

IoT industry.

Chapter 7 summarizes the thesis and provides outlooks for future research directions. One future

project covers defining, architecting, designing, implementing and deploying bit-accurate, cycle-

accurate and transaction level simulators for PIM architectures based on DRAM, RRAM and other

memory technologies, such as 3D NAND Flash. With more comprehensive simulators, hardware-

software co-optimization of PIM architectures can be further studied to support Transformer-type

of models. As for security perspective, outlook for security in neuromorphic systems will be

discussed along with the security in PIM architectures.
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CHAPTER 2

Event-Driven Cycle-Accurate Simulators for PIM

Architecture Study

2.1 Background and Motivation

Recent years have witnessed rapid developments of PIM architecture prototypes from both

academia and industry. These PIM architectures are based on multiple memory technologies, such

as the mainstream DRAM and emerging non-volatile memory including RRAM, and are proven

effective in a wide range of machine learning applications. To facilitate these new architectures,

there is a growing need of accurate PIM simulators. Simulators play a crucial role in PIM archi-

tecture research by providing a flexible, cost-effective, and scalable platform for experimentation,

analysis, and optimization of diverse hardware architecture designs.

Several simulators for PIM architectures based on DRAM [88][89][90] and RRAM [91][92][93]

have been proposed. They are developed for multiple DRAM standards with insightful information

in circuit, architecture and system. And some of these frameworks can integrated with widely-

known simulators, such as gem5 [94] and Ramulator [95]. However, existing PIM simulators

lack customization for machine learning applications, making them less flexible and efficient

for evaluating the performance of various machine learning models, especially when integrating

advanced model mapping techniques. Moreover, DRAM-based PIM cannot accelerate non-linear

functions efficiently. Optimal acceleration of these functions necessitates lightweight FPGAs or

ASICs rather than CPUs or GPUs typically used in the PIM systems. Consequently, the system-level
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Figure 2.1: (a) RRAM-based PIM architecture design. (b) Processing element organization.

simulators must contend with data transfer and computation occurring on separate chips to fulfill

these requirements. On the other hand, current simulators designed for PIM architectures utilizing

non-volatile memory, such as RRAM, have different focuses. Given the relatively immature status

of these technologies compared to DRAM, some simulators provide circuits-level modeling tools

to benchmark the overall hardware performance, such as area, power, energy, and latency. While

others target on gauging the impact of device non-ideality on machine learning inference accuracy.

However, transaction-level modeling is frequently overlooked in these simulations.

Given the above limitations in existing PIM simulators, there is a strong need in developing a

comprehensive, full-system, and clock-cycle-accurate transaction-level PIM simulator specifically

tailored for machine learning applications. This chapter focuses on the development of a PIM

simulator based on RRAM and DRAM. The simulation methodology presented herein serves as

the foundational framework for the subsequent chapters, spanning from Chapter 3 to Chapter 5.

The simulators employed in this research are event-driven simulators. Each hardware component

is extracted as a state machine, with functions for requesting, executing and sending events. All

events will be scheduled for execution on the global time stamp. Hence, the simulator will

provide detailed transaction-level information as well as an accurate latency results with various

reconfigurable hardware settings.
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Figure 2.2: Chained data flow architecture.

2.2 PIM Simulator Design

2.2.1 Simulator for RRAM-based PIM Architecture

Figure 2.1(a) shows the schematic of an RRAM-based PIM architecture designed to support

the end-to-end machine learning applications. The system contains an instruction scheduler,

procesesing elements (PEs) for MAC operations, Network-on-Chip (NoC) for data forwarding and

logic units for other arithmetic functions in DNNs. A specific logic unit is responsible for simple

logic functions such as pooling and ReLU. As for non-linear functions such as tanh, softmax, the

MAC results will be decoded into the indices of the lookup table (LUT), and return the results

with the given precision. A PE in Figure 2.1(b) contains an SRAM buffer to store input activation

functions, and RRAM crossbar arrays having the same hardware implementation as in Figure

1.4(c). For large neural network layers, the weight matrix needs to be partitioned and split to

multiple crossbar arrays, and the accumulator will accumulate and concatenate partial results for

downstream computations.

RRAM-based analog PIM systems employ data flow architectures for DNN inference. The pre-

trained model weights are flattened and mapped on RRAM tiles. From the DNN layers perspective,

PEs, along with other components are allocated spatially to compose different DNN layers, and

these layers connect through the NoC based on the model configuration, as shown in Figure 2.2.

PEs accelerate the VMM operation in the convolution and dense layers. The partial results from

each tile will be accumulated and executed with an activation function before forwarding to the

next layer. This defines how hardware resources are utilized with a given machine learning model.

A special consideration of the convolution layer is data reuse. As a pixel will be used for multiple
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convolution windows, it should be kept in the buffer until fully utilized. As the input feature map of

convolution layer can be large in the first few layers, and be with deeper channels in the later layers,

holding all data of the input feature map in the buffer will be area-consuming, power hungry and

impractical. An efficient way to solve this problem is to store the data required for a convolution

execution only. As the convolution is executed in row-major fashion, the buffer is implemented

with a ring structure to fetch the input to its entry with a head and a tail pointer to indicate the valid

data. Figure 2.3 shows how the input feature maps of a 2D image are stored in the SRAM buffer.

Figure 2.3(a) shows the buffer only stores the data required for a convolution window. Once the

buffer has the sufficient data for a convolution execution, the data will be forwarded to the RRAM

crossbar array. In the meantime, the tail pointer will also move based on stride configuration,

discarding the consumed data. And the new data in the feature map can be filled into the head of

the buffer. Once the convolution window reaches the end of the row, the tail pointer will discard

all data of that row. Take Figure 2.3(a) as an example, where the convolution kernel size is three,

three pixel data will be discard before the convolution window sweeping the next row. Similarly,

when the convolution window reaches the end of the feature map, the tail pointer will discard all

data in the current feature map. Compared to storing all data in the input feature map showing

in Figure 2.3(b), dynamic buffer allocating can greatly save the required hardware resources and

better handle pipeline execution. On the other hand, since there is data size and execution latency

mismatch among all layers, the buffer size should be carefully evaluated to balance latency and size

requirements.

The simulator is implemented in C++ and executed following top-down procedure, i.e. from

neural network architecture to allocated hardware resources. All layers, including convolution

layers, dense layers and pooling layers, are inherited from an abstract layer class to control sub-

modules. The layers form a chained data flow architecture, as shown in Figure 2.2. Data are always

forwarded from previous layers to later ones. Each layer, as well as each sub-module embedded

in the layers, shares similar data flow. The member functions of all modules can be divided into

four categories, data requesting, data forwarding, execution and state update. As shown in Figure
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Figure 2.3: Buffer size configurations. (a) Minimum and (b) maximum buffer size for the input
feature map.

2.4(a), each layer or module can only request data from the adjacent front one, and the layer can

send data only when its data is ready and received a request. Once achieving such a handshake,

data will be send and the associated event will be recorded. The simulator is driven by the event

communication at clock-level precision. All events of each module will be recorded for statistical

analysis. Besides the transaction-level events, data computation will also be supported in each

sub-moduel, such as PEs for VMM and LUT for non-linear functions. Meanwhile, the simulator

supports multiple system configurations at the DNN model level, the architecture level as well as

the circuit level. Table 2.1 summarizes the reconfigurable hardware settings.

At runtime, the next layer will be ready to request data when the bus is not busy and the buffer

or tile input register is at the Ready state. Then it will request data from the previous layer. As

shown in Figure 2.4(a), only when the previous layer has the output data, meaning computation

event has completed, data will be forwarded and an event will be scheduled in the next layer based

the event firing time. The scheduled event ready time is based on the current clock and the latency

of the execution time. A similar data requesting scheme is employed inside each layer for the

sub-modules. At every clock cycle, each layer and module will check the event time and the global

clock. If the event execution is done at this clock cycle, there will be a state change.
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Figure 2.4: (a) Event passing between adjacent hardware components. (b) Event scheduling on the
global time stamp.

Table 2.1: Default system configuration

Module Bus Width Buffer Size LUT# ADC#

Default Configuration 256 Just-right 2 4

Module ADC Type Array Size Model Device

Default Configuration SAR ADC 256 × 64 8 bit 4 bit

2.2.2 Simulator for DRAM-based PIM Architecture

To evaluate the DRAM-based PIM system performance, a transaction-level simulator is devel-

oped for modeling. Since DRAM-based PIM runs digital computation, the simulator only models

transaction-level information rather than bit accurate computing for fast system modeling. The

machine learning instructions and computation flows are deterministic, i.e. computation blocks

follow a certain sequence and the later one will only start after previous execution is completed.

For large machine learning model acceleration, multiple DRAM channels are required to com-

pose a PIM fleet. Given the DRAM organization, the PIM fleet is organized as a tree structure,

as shown in Figure 2.5. The PIM hierarchy is at levels of fleet, channel and bank. The PIM fleet

node refers to the entire PIM portion that contains 8 channels as child nodes. Each channel consists

of 16 banks as leaves. Every bank has a memory array and PE, which are stateless. The state
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Figure 2.5: Tree structure of DRAM-based PIM fleet, each node is a state machine.

update will traverse down the tree from the root to the leaves. Each node maintains its own states

and state-transition sequences. The same organization hierarchy can be found in other memory

simulators, such as Ramulator [95]. Scaling can be evaluated by attaching more channel nodes to

the fleet node, as well as equipping banks with different processing hardware configuration.

However, the DRAM fabrication process is highly constrained. It only contains three metal

layers that severely limit the complexity of the circuit, and the transistors are 3× slower than those

in logic chips at the same node [16][49]. As a result, only limited logic and buffers can be integrated

on DRAM-based PIM. Therefore, PIM architecture should collaborate with other components, such

as a host, to achieve end-to-end machine learning acceleration, as shown in Figure 2.6(a).

As shown in the flowchart in Figure 2.6(b), the simulator takes both machine learning model

and DRAM configurations as inputs to determine the model mapping and instruction compilation.

Both DRAM and the host are treated as state machines. At every clock cycle, the simulator checks

the status of the host and the PIM. The next instruction in the specific instruction stream will be

fetched by the controller only when the current instruction is completely consumed, that is, both the

host and DRAM are in Idle state and no command is pending in the queue. The new instruction is

compiled into a sequence of commands based on the mapping and appended to the command queue.
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Figure 2.6: (a) System of DRAM-based PIM, containing DRAM channels and a host. (b) Flowchart
of PIM system for machine learning acceleration.

The command packets contain information of the operation type, input and output vector lengths,

and DRAM address. The compilation considers the hardware resource details. For example, when

the size of the input vector exceeds the maximal length of supported VMM operation, the vector will

be sliced into smaller chunks and fed to the memory sequentially, followed by adding accumulation

operations to the host command queue.

The state machines of a DRAM-based PIM fleet and the host are shown in Figure 2.7. Two

sequences are defined for the PIM fleet node for VMM and write operations, respectively. They

both start with Idle→ Receive→ Execute. The VMM results from PIM should be transferred

back to the host for arithmetic computation or inter-PIM communication. The state changes from

Execute → Transmit → Idle. For write, the fleet node directly switches from Execute →

Idle, since no data needs to be sent to the host. While the host supports multiple functions rather

than VMM, the input data need to be stored in the local storage, followed by forwarding to required

processing engine. Hence, the state machine will switch to Idle before Execute. Similarly, as
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Figure 2.7: State machines of (a) DRAM-based PIM fleet, (b) host.

for data forwarding, the host needs to allocate and packet all data for a vector to DRAM, the state

changes from Execute→ Idle→ Transmit.

The transition of states follows the DRAM timing constraints. At every clock cycle, the simulator

checks the status of the host and the PIM fleet. If both are in Idle state, the current instruction is

completely consumed. It then fetches the next instruction, which will be decoded into command

sequences. The host chip or the PIM chip will be put into Execute state after the instruction is

issued. The simulator will compute the firing time fire t that the host or relevant PIM banks

will take to complete the triggered events based on the latency model. The simulator keeps track

of the status of all hardware components. If the clock t reaches the event t, the status of the

corresponding node will be changed back to Idle.

The DRAM-based PIM simulator will be used in Chapter 3 to evaluate the system performance.

2.3 Event-Driven RRAM PIM Simulator – Case Studies

In this section, we brings up case studies for the RRAM-based PIM simulator on 4 different

CNN models: LeNet, AlexNet, VGG-8 and VGG-11 with 2 different input sizes: 28 × 28 and

224 × 224, as summarized in Table 2.2. This analysis focuses on different ADC numbers per array

and different buffer sizes, providing insights at multiple design levels for DNNs with different
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structures. The default configuration of the system is adopted from Table 2.1. The RRAM PIM

simulator developed here will be used in Chapter 4 to perform the power simulation.

Table 2.2: CNN benchmark architectures.

Model Name Structure Input Size Kernel

LeNet 2Conv + 3FC 32 × 32 Large Kernel

AlexNet 5Conv + 3FC 224 × 224 Large Kernel

VGG-8 6Conv + 2FC 32 × 32 3 × 3 Kernel

VGG-11 8Conv + 3FC 224 × 224 3 × 3 Kernel

The CNN benchmark analysis is helpful for design space exploration of RRAM-based PIM

architectures as the CNN architectures in Table 2.2 cover a wide range of CNN configurations.

Deeper CNN models will have deeper channel depth as the layer increasing. This will require

more crossbar arrays to map the pretrained weights. Larger input image size means there will be

a lot more convolution executions, especially in the first few layers. This will potentially lead to a

layer-wise execution latency mismatch. VGG models have 3 × 3 convolution kernel size of every

layer. However, LeNet and AlexNet have larger kernel sizes in the first few layers. For example,

convolution kernels of the first CNN layer are 5 × 5 in LeNet, and 11 × 11 in AlexNet. Hence,

the input activation buffer needs to hold more data to initiate convolution execution. With analysis

of these models, we are expected to get architecture design and resource allocation guidance for

CNNs with different application features.

To start with, inference latency with different buffer sizes and ADC sharing schemes are ex-

plored. To fully consider the pipeline at inference runtime, five input images are fed to the system

consecutively. The total latency is studied as shown in Figure 2.8, where N means the minimum

allowed buffer size for holding data for a convolution window, as shown in Figure 2.3(a). The buffer

sizes are scanned from the minimum size to the maximum. And the number of columns sharing

an ADC is changed from 1 to 64, i.e. 1 ADC per column to 1 ADC per crossbar array.

From the results in Figure 2.8, we can draw three conclusions for the execution of different CNN

benchmarks on RRAM-based PIM architectures. 1) According to Figure 2.8(a) and (b), increasing
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Figure 2.8: Inference latency with different buffer sizes and ADC sharing schemes of (a) LeNet,
(b) AlexNet, (c) VGG-8, (d) VGG-11.

buffer size helps for CNNs with larger kernels, especially when the ADC number is limited. 2)

For these CNN benchmarks, only increasing buffer sizes to slightly larger than the minimum value

will lead to a decent inference latency. In both LeNet and AlexNet, the performance of 1.5N buffer

size is comparable to the max buffer with capability of holding the whole input feature map. 3)

According to Figure 2.8(c) and (d), increasing ADC number is more helpful for CNNs with 3 × 3

kernels. And these improvements can always be witnessed until each column is arranged with an

ADC. However, there is a saturation effect in LeNet and AlexNet when an ADC is shared by less

than 8 columns.
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Figure 2.9: Speed up and power consumption of SRAM buffer with different buffer size for (a)
AlexNet, (b) VGG-11.

Given the inspiration from above results, a fine-grained buffer size scanning is conducted to

find the optimal buffer size in trade-off between inference latency and power of buffers. In this

experiment, the ADC sharing scheme is fixed at 1 ADC shared by 64 columns due to the area

constrain. Buffers are made up with SRAM arrays of TSMC 28 nm technology node. The power

data is directly extracted from the memory cell datasheet. The speed up and power consumption

of buffer with different buffer size configurations of AlexNet and VGG-11 are shown in Figure

2.9(a) and (b), respectively. For AlexNet, the speed up over baseline buffer configuration increases

tremendously to 30% when the buffer size increases to 1.3× of the minimum buffer size. Further

increasing buffer size only has minimum effect in performance improvement, but add great overhead

in power and area of the buffer. While for the VGG-11, increasing buffer size only has negligible

improvement in latency, less 0.03% of the baseline, which aligns with the results in Figure 2.8(d).

However, for deeper CNN models, later convolution layers will require large buffers to hold input

feature map with large channel depth. This will increase power and area greatly.

2.4 Summary

PIM systems have the potential to accelerate data intensive tasks including machine learning

models, and previous simulation and real-chip measurements have proved their effectiveness in

25



VMM acceleration. However, careful system-level considerations need to be performed to verify

their practical impacts. In this chapter, we introduce the full system, clock-cycle-accurate PIM

system simulators driven by the data flow event. The initial simulation results give fruitful design

considerations at the architecture, circuit and model levels. At the system level, many factors will

constrain the data communication and execution, and simulation strategies proposed in this chapter

helps both the design and evaluation of PIM systems. These simulators will be as the foundation

of Chapter 3 to 5 in this thesis.
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CHAPTER 3

PIM-GPT: A Hybrid Process-in-Memory

Accelerator for Autoregressive Transformers

3.1 Background and Motivation

3.1.1 Background

Attention-based Transformer models have revolutionized natural language processing (NLP) by

capturing long-term dependencies in the input data [96]. Transformer models including GPT and

BERT have demonstrated superior performance in many NLP tasks such as text generation [97][98],

text classification [99][100][101], and machine translation [102][103] compared to convolution

neural networks (CNNs) or recurrent neural networks (RNNs) [97][104][105]. GPT in particular

has attracted widespread public interest in text generation. It is a decoder-only Transformer model

that generates context in an autoregressive manner by producing a single token at one time [98].

However, the sequential processing feature of GPT will result in notable under-utilization of parallel

processing resource on the GPU, particularly when accelerating small batch inference.

Compared to CNNs, GPT has two main features: 1) extremely large model size and 2) low

compute-to-memory-ratio. As shown in Figure 3.1, the GPT3-XL model consists of 1.15 billion

parameters [105], more than a hundred times higher than common CNNs such as ResNet-18 [106],

while the arithmetic intensity per parameter (ops/parameter) is only 2.1, much lower than 48.4

in ResNet-18. These features impede the efficiency of GPU and other accelerators. The on-chip
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Figure 3.1: (a) Parameter and computation cost comparison of GPTs and ResNet-18. (b) Opera-
tion/parameter ratios for CNN and GPT models.

memory is insufficient to store all weights in large GPT models, leading to extensive off-chip

memory access. This imposes penalties in both performance and energy consumption. In the

context of single token generation in GPT, self-attention relies on vector-matrix multiplication

(VMM) instead of matrix-matrix multiplication used for processing the entire sentences. Self-

attention, along with feed-forward network (FFN) are based on VMM, characterized by low data

reuse as the weight value in the matrix are employed only once, in contrast to reuse the same weight

multiple times in convolution operations.

Recently, several Transformer accelerators have been proposed to accelerate GPT inference

[20][107][108]. However, these designs generally suffer from the following drawbacks: 1) ex-

pensive hardware overhead such as the usage of HBM and dense in-memory logic; 2) model

customization such as model and token pruning, which will make the architecture less flexible and

cause accuracy loss; 3) incapability of long token length generation due to inefficient intermedi-

ate data management; 4) lack of end-to-end acceleration as most studies only focus on attention

computation and feed-forward layers. Moreover, many of the existing Transformer accelerators

are only designed for encoder-only model like BERT, instead of decoder-only models like GPT
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[109][110][111][112][113][114][115].

DRAM-based PIM architecture is a promising architecture to accelerate memory-bounded tasks

[3][116]. The high storage capacity of DRAM allows all model parameters to be stored. Integrating

computing elements onto the DRAM chip, PIM enables the localized consumption of data, utilizing

high internal bandwidth and minimizing the need for external DRAM data access. The placement

of computation units for MAC operation can be distributed across various regions, including

sub-array, bank, I/O driver and logic die. Among these choices, siting MAC units at the bank

level provides a favorable balance between performance, energy consumption and area cost [117].

Recent PIM developments further demonstrate the efficient acceleration of MAC operation with

integrating computation components at bank level of DRAM chips [2][13][14][15]. However,

only limited, low-density logic circuits can be fabricated on DRAM chips due to the significant

constraints in memory fabrication process [6][118]. Developments to date are limited to generic

MAC operations, and efficient end-to-end PIM acceleration of GPT inference still needs to be

developed with practical and feasibility considerations.

In this chapter, we will discuss PIM-GPT [32], a complete solution for GPT inference accel-

eration. At the hardware level, PIM-GPT is a hybrid system that includes DRAM-based PIM

chips to accelerate VMM near data and an application-specific integrated circuit (ASIC) to support

other functions that are too expensive for PIM including necessary non-linear functions, data com-

munication and initiating instructions to the PIM chips. At the software level, mapping scheme

is optimized to efficiently support the GPT dataflow. To accommodate the large model size and

improve performance, the computation workloads are evenly distributed across PIM channels and

banks to maximize the utilization of available computation resources and on-chip bandwidth. A

high-level mapping scheme for VMM operation is shown in Figure 3.2. As each row of the matrix

must be multiplied by the same vector, the rows are distributed across all banks, as indicated by

colors. When the VMM begins, the vector is broadcasted to all banks and multiplied with matrix

data from each bank in parallel. If the matrix dimension exceeds the physical storage of bank row, it

will be divided into chunks for mapping and computation. Multi-attention heads are concatenated
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Figure 3.2: Mapping scheme for VMM operation.

to large matrix to utilize parallel computing capability as well as maximize data locality. Com-

pared to existing Transformer accelerators [20][107][108], the proposed PIM-GPT supports large

GPT models end-to-end without the need of expensive HBM, making it an efficient and practical

solution for GPT acceleration. Benchmarking analysis shows the proposed PIM-GPT achieves

state-of-the-art speedup and energy efficiency for GPT inference tasks.

3.1.2 Transformer Models

Figure 3.3 illustrates the typical structure of a Transformer model. Different from CNNs

and RNNs, the Transformer model uses a self-attention mechanism that captures the relationship

between different words in the whole sentence [96]. The original Transformer model consists of

an encoder and a decoder, both containing N number of identical transformer blocks. Each block

includes a self-attention module and a feed-forward network (FFN). Among them, BERT and GPT
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Figure 3.3: Transformer model architectures of BERT and GPT.

are the two most popular language models. BERT is an encoder-only model, which processes all

input tokens at once and attends to content in both directions [97]. In contrast, GPT is a decoder-

only model, which typically handles a single token at one time and generates the next token in a

sequential manner by attending to all previous tokens [105]. Despite the differences, these two

models share similar blocks, as shown in Figure 3.3. For GPT, the input token is first transformed

into a vector of dimension 𝑑𝑚 by the input embedding layer, where 𝑑𝑚 is the feature dimension of

the model. Positional information of the token with respect to the sentence is also added to the

input embeddings. The processed token is then fed into the Transformer blocks.

The input token is first multiplied with three linear transformation matrices (𝑊𝐾,𝑄,𝑉 ) to obtain

Query (q) , Key (k) and Value (v) vectors, where 𝑊𝐾 ∈ R𝑑𝑚×𝑑𝑘 , 𝑊𝑄 ∈ R𝑑𝑚×𝑑𝑘 , 𝑊𝑉 ∈ R𝑑𝑚×𝑑𝑣 .
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The current Key and Value vectors k, v are then concatenated to the key, value matrices computed

from the previous inputs to form the updated Key, Value matrices. The q vector and Key, Value

matrices are then passed to the self-attention head to capture the dependencies between tokens with

the following equation:

Attention (𝑞, 𝐾,𝑉) = softmax( 𝑞𝐾
𝑇

√
𝑑𝑘

)𝑉 (3.1)

The scaled dot product between q and 𝐾𝑇 is first computed to obtain the attention score, which

measures the relation between the current token and all previous tokens. Then a softmax operation

is applied to normalize the attention score between 0 and 1. In the next step, the attention score is

multiplied with the value matrix to produce the head output. To allow the model to learn different

relationships for each token, multi-head attention technique is adopted. The input vectors are split

across attention heads, and each chunk goes through a separate head in parallel. All head outputs

are combined by a linear projection layer to produce the final attention output.

Following the multi-head attention, the attention output is fed into a FFN network, which

consists of two fully-connected networks with Gaussian Error Linear Unit (GELU) activation

function [119] in between. The attention and FFN layers both contain a layer normalization and a

residual connection, as shown in Figure 3.3. The output from the attention block is then applied as

inputs to the next attention block for subsequent processing, and the process is repeated through N

attention blocks. Afterwards, a final output layer is used to predict the next token. The content is

generated autoregressively by repeating this process until it reaches the required token length.

Unlike GPT, BERT processes all input tokens in parallel and produces the outputs at once. There-

fore, the core computation is matrix-matrix multiplication, and the performance is computation-

bounded. In contrast, for GPT the core computation is VMM and the arithmetic intensity is

relatively low but the required memory access is high. As a result, throughput optimized architec-

tures such as GPUs are not efficient for GPT inference, while PIM techniques that leverage compute

capabilities on DRAM chips are promising for GPT inference hardware acceleration.
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3.1.3 Motivation

As shown in Figure 3.1, the computation primitive of GPT has a low ops/parameter ratio and

is memory-bounded since it processes and generates a single token at one time. Compared to

computation-bounded models, the sequential feature of decoder cannot utilize parallel processing

cores in GPU efficiently, particularly for inference tasks without batching. Recently, several

Transformer accelerators have been proposed. However, most of them still lack end-to-end model

acceleration of GPT autoregressive token generation. And these works still suffer from intensive

data transfer of large weight matrices. The on-die data movement and DRAM interface have a

significant energy consumption overhead [1][120].

PIM is a promising approach to relieve the memory bottleneck by storing matrix and performing

computation in memory. With weight matrices stationary in memory, only the input and output

vectors will be transferred though the DRAM interface. Hence, the memory access complexity

can be reduced from O(𝑛2) to O(𝑛). Instead of incessantly adding computation units to DRAM

to support all instructions, it is more efficient to execute non-VMM operations in a separate

custom designed chip for achieving end-to-end GPT acceleration. At the software level, efficient

workload distribution and dataflow management are required to fully exploit the advantage of PIM.

The proposed PIM-GPT is such an end-to-end GPT accelerator with practical considerations in

hardware implementation.

3.2 PIM-GPT Architecture

PIM-GPT is a memory-centric acceleration system aimed to support Transformer-based autore-

gressive token generation models including GPT. The PIM-GPT system is shown in Figure 3.4,

which composes of PIM chips and a custom designed ASIC. The design principle of PIM is to

maximally leverage data locality and parallelism to achieve high system performance and energy

efficiency during VMM in attention and FFN. To achieve efficient VMM, PIM-GPT strategically

partitions GPT model, taking hardware resources into account. It achieves parallel computing
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Figure 3.4: PIM-GPT system overview. (a) Hardware-aware GPT model partition. (b) Compilation
of computation stream to command stream. (c) PIM-GPT hardware architecture.

by broadcasting a single vector and reducing instruction overhead. PIM-GPT employs a specific

mapping scheme for attention mechanism, as shown in Figure 3.4(a). Weight values from multiple

attention heads are concatenated to accommodate the physical capacity of DRAM banks. The

concatenated attention matrices, along with weights in FFN layers, are distributed to all channels

and banks for parallel operation, following the mapping scheme in Figure 3.2, details of which will

be elaborated in Section 3.3. PIM-GPT integrates 8 channels. And all chips are equipped with

MAC units, executing VMM locally by broadcasting the vector from the global buffer and loading

matrices from DRAM bank arrays, as shown in Figure 3.4(c).

To facilitate end-to-end acceleration of large GPT models, non-linear functions are executed on

the ASIC chip. It is essential to highlight that PIM-GPT targets on eliminating memory access

of matrix data, requiring only the transfer of input/output vectors between PIM and ASIC for

downstream computations, as well as data communication and intermediate data storage. This

integrated approach leverages the strengths of both PIM and ASIC, optimizing their capabilities

to accelerate various computation tasks in the GPT computation stream with minimized data

movement between them. Figure 3.4(b) illustrates the compilation of ➍Attention and ➎Softmax

to command streams for PIM and ASIC, respectively. All data in PIM-GPT are in bfloat16 (BF16)

format, which preserves the approximate dynamic range of 32-bit floating point number to balance

performance and accuracy.
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Table 3.1: PIM-GPT baseline hardware configuration.

Timing
Constraint

tRCD=12ns, tRP=12ns, tCCD=1ns, tWR=12ns, tRFC=455ns,
tREFI=6825ns

IDD IDD2N=276mA, IDD3N=262mA, IDD0=366mA,
IDD4R=1590mA, IDD4W=1410mA, IDD5B=831mA

GDDR6
Specification

Channel = 8, Banks/channel = 16, Capacity/channel = 4Gb, Row
size = 2KB, Column number = 16k, Frequency = 1GHz, Pins =
16/channel, Data rate = 16Gb/s/pin, I/O Power = 5.5 pJ/bit

PIM Buffer = 2KB/channel, MAC unit = 1/bank, Frequency = 1GHz,
Power = 149.29mW

AISC Technology 28nm, Frequency = 1GHz, SRAM = 128KB, # of Adders
= 256, # of Multipliers = 128, Area = 0.64mm2, Power = 304.59mW

3.2.1 DRAM-based PIM for VMM

Placing MAC units and SRAM buffer inside DRAM modules has been widely used in PIM

architectures for machine learning applications to minimize the memory access [13][14][117][121].

MAC units can be placed at sub-array level or bank level. But for the practical architecture design,

we need to balance the budget for internal bandwidth utilization and area overhead. Residing MAC

units at sub-array has the bandwidth advantage since it is the closest place to data. However, this will

add intolerable area overhead, up to 120% [117]. Moreover, sub-array level modification requires

complex DRAM command redevelopment. Hence, PIM-GPT placing the MAC units at every

bank. And all 16 banks can perform MAC simultaneously, as shown in Figure 3.5(a). Such MAC

units arrangement has been proved feasible in both GDDR6 and HBM prototypes [13][14]. Take

GDDR6-based PIM as an example, placing MAC unit per bank offers 512 GB/s peak bandwidth per

channel at 1 GHz (256 bits/bank × 16 banks). SRAM buffer has been used to store and broadcast

the input vector. However, integrating large SRAM buffer into DRAM is expensive and impractical.

To provide a practical solution of GPT acceleration, we adopt 2 KB buffer size from [13], which will

broadcast vectors to all MAC units simultaneously. When the input length exceeds the buffer size,

vectors will truncated into chunks, as shown in Figure 3.2. Partial MAC results will be computed

and forwarded to the SRAM on ASIC, followed by downstream partial sum execution on the ASIC.
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Figure 3.5: DRAM PIM organization. (a) A channel is composed of a global buffer and 16 banks.
A bank contains (b) a conventional DRAM bank and (c) a MAC unit with multipliers and an adder
tree.

Compared to writing back to DRAM, forwarding the subportion of VMM results to ASIC reduces

overall latency. Eliminating writing back also frees DRAM banks to perform subsequent parallel

VMM.

The bank organization is identical to conventional DRAM architectures, as shown in Figure

3.5(b). Once a row address is decoded, the entire corresponding row will be activated and all stored

data will be forwarded to the row buffer. Herein, if the bank is not closed (precharged), data will

be preserved in the row buffer. Reading data from the row buffer is much faster than from the bank

array, since it skips the long latency row activation step. Hence, to maximize the utilization of

peak internal bandwidth, data should be consumed from the row buffer as extensively as possible.

This requires bank scheduling adheres to the open-row policy, wherein a row is not immediately

precharged after data access. By employing this policy and appropriately mapping weight data, the

MAC unit can more rapidly consume data from the bank. In our optimized mapping scheme, matrix

rows for VMM are partitioned and directly mapped to the same row addresses, thereby maximizing
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Figure 3.6: ASIC architecture of the PIM-GPT system.

the row hit rate, as outlined at a high level in Figure 3.2. Further details will be discussed in Section

3.3.

Inside each bank, only multipliers and an adder tree are implemented for MAC operation, as

shown in Figure 3.5(c). Similar architecture has been proven to be effective in prior designs

[13][121][122]. During MAC operation, 16 vector values and corresponding weights are fetched

from the buffer and banks in the PIM channel, respectively. The 16 multipliers multiply the

vector data with weights. The adder tree accumulates the multiplication results for downstream

computation, as shown in Figure 3.5(c). The MAC units are operated in a pipelined fashion to

maximize the throughput of the system, i.e. once the multiplication is done, the multipliers fetch

the next chunk of vector and weight in the next clock cycle. The same principle is used for the

adder stages. To minimize hardware cost and improve efficiency, PIM-GPT only performs VMM

operations in the PIM while assigning all other computations, such as data bypassing, division and

activation functions, to the ASIC. By doing so, the design allows the integration of lightweight

MAC units to the DRAM chip to consume data locally without significantly sacrificing the memory

capacity.
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3.2.2 ASIC Architecture

The ASIC in PIM-GPT is used to manage data communication and support non-VMM arithmetic

computations and intermediate data storage. The ASIC architecture is shown in Figure 3.6. Since

VMM operations are performed in the PIM channels, data will only be read from DRAM PIM

when a VMM operation is done and requires downstream computation or communication. The

PIM channels communicate with the ASIC through the memory bus and crossbar interconnects.

The interconnects support data fetching from any DRAM channel and sending memory requests to

a single channel or broadcasting data to all channels after packeting data with address. Data read

from PIM have two possible paths on the ASIC: 1) writing back to banks in other PIM channels,

such as Key, Value matrices for subsequent VMM operations, and 2) going through computation

blocks in the ASIC, such as layer normalization, softmax, etc.

If the data require downstream computation, they will be temporarily stored in the on-chip

SRAM buffer. The SRAM buffers and computation engines in the ASIC of the proposed PIM-

GPT are designed for billion-parameter level models such as GPT3-XL. For smaller models or

instructions that only utilize portions of the computation resources, power gating schemes will be

applied to SRAM arrays or unused computation blocks to lower the ASIC power consumption.

The adders and multipliers in the computation engines follow the standard floating-point unit

design to support summation and multiplication. For design reuse and performance considerations,

other computation tasks are all implemented with approximation algorithms using only addition

and multiplication to achieve the required precision.

Three functions that require approximation are shown in Equation 3.2−3.4: softmax, layer

normalization and activation function GELU further approximated using Equation 3.4.

𝑠(𝑥𝑖) =
𝑒𝑥𝑖

Σ𝑁
𝑗=1𝑒

𝑗
(3.2)

𝑦 =
𝑥 − 𝐸 [𝑥]√︁
𝑉𝑎𝑟 [𝑥] + 𝜖

× 𝛾 + 𝛽 (3.3)
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Figure 3.7: Pipelined Taylor series approximation scheme.

GELU(𝑥) = 𝑥

2
× [1 + 𝑒𝑟 𝑓 ( 𝑥√

2
)]

=
𝑥

2
×[1 + tanh

√︁
2/𝜋(𝑥 + 0.044715 × 𝑥3)]

(3.4)

The nonlinear function 𝑒𝑥 , tanh 𝑥, division and square root in these functions cannot be naively

computed using addition and multiplication. Under given precision and data range, they can be

efficiently approximated and converge in rapid iterations. Here 𝑒𝑥 and tanh 𝑥 are computed using

Taylor series approximation with the first six items, which can be computed with addition and

multiplication, as shown in Equation 3.5 and 3.6. To improve the throughput, a pipelined Taylor

series approximation block is implemented in the ASIC. Figure 3.7 shows how the 𝑒𝑥 is computed

by the Taylor series approximation.

𝑒𝑥 = 1 + 𝑥 + 𝑥
2

2!
+ 𝑥

3

3!
+ 𝑥

4

4!
+ 𝑥

5

5!
+ O(𝑥6) (3.5)

𝑡𝑎𝑛ℎ(𝑥) = 𝑥 − 𝑥
3

3
+ 2𝑥5

15
+ O(𝑥7) (3.6)

The division operation is computed by multiplying the numerator with the inverse of the de-

nominator. Both the reciprocal and inverse square root operations can be calculated with addition

and multiplication following Newton’s method. A proper initial value is required to ensure the fast

convergence. For reciprocal, we take advantage of Newton-Raphson division algorithm as shown
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in Figure 3.8. The fast inverse square root algorithm is adopted from Quake III Arena’s source

code [123], as shown in Figure 3.9.

Figure 3.8: Newton-Raphson division algorithm.

Figure 3.9: Fast inverse square root algorithm.

The Newton-Raphson Division algorithm is friendly for floating point numbers since it requires

the input D to scale to a value close to 0, which can be easily done with exponent subtraction and

mantissa shift in floating point data format. The P in line 3 is the precision of P binary places.

Hence, for a 16-bit floating point number, it will take three iterations to get an accurate result.
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The fast inverse square root algorithm unpacks the BF16 data into 16-bit integer data and padding

16-bit zeros to get an accurate approximation, followed by shift and subtraction from a constant.

The pack step utilizes the 16 high bits of INT32 𝐿′ to assemble a BF16 data’s sign bit, exponent

and mantissa. In the fast square root algorithm, it can converge in a single step iteration. Here we

take a conservative two step iteration.

3.3 PIM-GPT Dataflow

PIM-GPT distributes workloads among all PIM banks and ASIC efficiently. For VMM operation,

the input vector is stored in the ASIC SRAM buffer and broadcast to the buffer of all PIM

channels, as depicted in Figure 3.10. All MAC units will execute the same MAC instruction

on different matrix partitions in parallel to fully utilize the PIM computation resources without

instruction overhead. The subvectors from channels will be sent back to ASIC for concatenation

and downstream communication and computation. PIM-GPT implements the following techniques

to coordinate workload between the PIM channels and the ASIC: 1) The partial outputs of VMM can

be forwarded to the ASIC before the whole computation is completed, which effectively eliminates

the data write back to DRAM banks; 2) When input vector length exceeds the buffer size, SRAM

buffer on the ASIC are reserved to store intermediate data and the ASIC will accumulate partial

VMM results from DRAM; 3) Pipelining between data transmission and computation, i.e. the

ASIC will start operations on partially received vector while the rest are in transmission.

The model mapping includes storing the weights to the allocated banks, as well as reserving space

for the intermediate data (Key, Value matrices) for attention computation since they are dynamically

expanded with token generation. To enhance the system performance, the mapping scheme is

optimized to: 1) maximize row hit rate by exploiting data locality; 2) increase computational

parallelism by balancing the workload across DRAM banks; and 3) reduce latency by minimizing

data movement. During runtime, the system automatically computes the bank address in the

reserved space to write back the generated Key and Value vectors. The high-level description of
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Figure 3.10: Mapping strategy for Key Matrix. (a) Multi-head attention. (b) Concatenate multi-
head to exploit data locality. (c) Distribute weight matrix evenly across channels and banks to
maximize computation parallelism.

the mapping scheme is shown in Figure 3.11.

3.3.1 Attention Head Mapping

As shown in Figure 3.10, the mapping scheme leverages data locality and maximizes computation

parallelism. Since activation (ACT) and precharge (PRE) commands are expensive in both latency

and energy, achieving a high row-hit rate is preferred. To this end, matrix data used for MAC

operations need to be mapped to consecutive physical DRAM cells. This approach means the

corresponding row only needs to be activated once to transfer all required data to the row buffer,

and the MAC units can keep consuming data already in the opened row to minimize ACT and PRE

operations.

To take advantage of the data locality, it is desired that a row is fully mapped with data. However,
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Figure 3.11: PIM-GPT mapping algorithm.

a single attention head can be much smaller than the DRAM array dimension. As shown in Figure

3.10(a), attention head width of GPT2-small is 64 while a bank row can store 1024 16-bit data.

To maximize the row hit rate, all attention heads in the same layer are concatenated to fill up the

DRAM bank. Take GPT2-small as an example, 12 attention heads are concatenated to a wider

matrix with the width of 768, along with the concatenation of the input vector, as shown in Figure

3.10(b). To maximize the utilization of MAC units, rows of the matrix are evenly distribute across

PIM channels and banks, as indicated by the rainbow color in Figure 3.10(b) and (c). Figure 3.10(c)

is a detailed example showing how 𝐾 matrix are mapped through 8 PIM channels, assuming the

token length is 256 in GPT2-small model. First, attention heads in a layer are concatenated along

column direction to form a larger matrix, with the dimension of 256×768. The concatenated matrix

is mapped following the row major approach and evenly distributed 32 matrix row to all available

channels, as indicated by the rainbow colors in Figure 3.10(b) and (c). Inside each channel, all 16
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Figure 3.12: (a) Write k row-wise. (b) Write v column-wise.

banks are mapped with 2 rows of the matrix and execute MAC operations with the same vector in

parallel. The computation is similar when it comes to VMM in the attention projection and FFN

layers. This mapping scheme distributes matrices evenly to achieve the highest possible DRAM

channel-wise and bank-wise parallelism and run as many MAC units at the same time as possible.

3.3.2 Intermediate Data Memory Reservation

Key and Value results need to be written back to the PIM banks and append to the existing Key

and Value matrices. In the mapping stage, PIM-GPT reserves the required space in PIM banks for

these intermediate data. The write back scheme of key and value results are shown in Figure 3.12(a)

and (b), respectively. Key and Value write back are in row-major and column-major, respectively,

since the transpose of Key matrix is required in Equation 3.1, while no transpose of Value matrix

is required.

PIM-GPT exploits data locality during write. During runtime, the Key vectors produced by

multi-attention heads will be concatenated together, which is corresponding to 𝑁 = 1 in Figure
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3.10(a). As shown in Figure 3.12(a), Key vectors with length of 64 from 12 heads are concatenated

to form a vector with length of 768, and written to the corresponding PIM bank row reserved for the

current token, as highlighted by magenta in Figure 3.12(a). The write command can be executed

consecutively after one ACT to store the whole Key vector, as shown in the timing diagram in

Figure 3.12(a). The concatenated Key vectors produced by all token generation steps are evenly

stored across all channels, as indicated by the color blocks in Figure 3.12(a). Within each channel,

they are evenly distributed to all banks.

Value results are stored in column-major fashion. As shown in the timing diagram of Figure

3.12(b), in this case we can only write one data in an activated row. Then we close the row and move

to the next row for the next data. Hence, data locality cannot be leveraged in Value result write

back. To maximize the write throughput and computation parallelism in the subsequent VMM step,

we distribute the Value matrix to all channels and banks, as shown in Figure 3.12(b).

3.3.3 Weight Matrix Tiling

For larger GPT models, widths of both concatenated multi-head matrices and weight matrices

in FFN layers can exceed the capacity of a bank row. In this circumstance, the input vector length

also exceeds the buffer size. Hence, both the matrix and the vector need to be truncated for VMM

operation as shown in Figure 3.2, followed by accumulating the partial result. The partial sum is

executed in ASIC for alleviating DRAM to execute VMM restlessly in the meanwhile. Take the

input length of 2048 in Figure 3.2 as an example, the matrix and the vector are sliced into two

chunks. The elements in the same row will always mapped to the same bank, as indicated by the

faded color. Computation on the second chunk starts after the first chunk is complete to avoid

frequently overwriting the SRAM buffer.
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3.4 System Evaluation

3.4.1 Evaluation Method

As DRAM fabrication process is highly constrained compared to the CMOS process, we refer

GDDR6-based PIM prototype reported from SK Hynix for performance evaluation, since it only

integrated lightweight MAC units near banks. The area of one processing unit (PU) is 0.19 𝑚𝑚2

[13]. All logic components of the ASIC are synthesized with SystemVerilog using Synopsys

Design Compiler at TSMC 28nm HPC+ process node. Area and power of the logic components

are obtained from the synthesis results. The area and power of SRAM buffer are extracted from the

TSMC 28nm datasheet based on Synopsys Memory Compiler. The ASIC only consumes a core

area of 0.64 𝑚𝑚2, and the peak power is 304.59 𝑚𝑊 .

For DRAM energy benchmark analysis, we synthesized the optimized MAC units at 28 nm

technology, followed by scaling the voltage to 1.25V to match the GDDR6 supply voltage [13].

Since routing is more complex in DRAM due to the limited metal layers compared to CMOS logic

process, we conservatively multiply the power by 1.5, which comes to 149.29 𝑚𝑊 for 16 MAC

units. Since GDDR6 can be fabricated in 1ynm technology [13], the actual power consumption is

expected to be lower than this estimate. Table 3.1 lists the timing constraints and current values used

to model the PIM behavior for each command. For PIM related commands, the timing constraints

are obtained from [13]. For normal DRAM commands, we adopt GDDR5 timing constrains in [95]

to make a conservative estimation due to the lack of detailed information of GDDR6. Similarly,

the current values are obtained from DDR5 datasheet [124] and multiplied by 3 due to the current

consumption increases during all bank parrallel operation [15]. The GDDR6 I/O access energy

5.5 pJ/bit is adopted from GDDR6 datasheet [125]. The system performance in latency and power

efficiency is evaluated based on these conservative assumptions. Detailed hardware configuration

is summarized in Table 3.1.

The performance and energy efficiency of the proposed PIM-GPT system are evaluated using

the simulator and compared to GPU (NVIDIA T4) and CPU (Intel Xeon Gold 6154 with 16Gb
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DDR4). 4 GPT2 [104] and 4 GPT3 [105] models with up to 1.4 billion parameters are implemented

on the proposed PIM-GPT system, and used for the benchmark analysis, as summarized in Table

3.2. The simulator reports the total latency and the command sequences that are performed by the

PIM channels and the ASIC. For PIM power, we multiply the IDD values consumed during each

command with the corresponding latency and VDD, following the standard procedure [124][126].

DRAM refresh operations are also included. The energy consumed by the PIM MAC units and by

the ASIC are computed by multiplying the latency reported by the simulator with the synthesized

power consumption.

Table 3.2: Sizes, architectures, and floating points operations of 8 GPT models.

Model Name 𝑛𝑙𝑎𝑦𝑒𝑟 𝑑𝑚𝑜𝑑𝑒𝑙 𝑛ℎ𝑒𝑎𝑑 𝑑ℎ𝑒𝑎𝑑 Params(M) FLOPs(M)

GPT2-small 12 768 12 64 81 180

GPT2-medium 24 1024 16 64 288 624

GPT2-large 36 1280 20 64 675 1440

GPT2-XL 48 1600 25 64 1406 2963

GPT3-small 12 768 12 64 81 180

GPT3-medium 24 1024 16 64 288 624

GPT3-large 24 1526 16 96 648 1368

GPT3-XL 24 2048 16 128 1152 2400
Notes: The input embedding layer is not included in the number of parameters and FLOPs.

We select NVIDIA T4 as the GPU benchmark as it also uses GDDR6 as memory for a fair

comparison. For GPU, latency is recorded using torch.cuda.Event(), and power is measured

with pynvml, which is a wrapper around the NVIDIA management library. The dynamic power

consumption is tracked at each token generation and multiplied with the corresponding latency to

get the total energy. For CPU characterization, we use python package time.time() for latency

measurement and an open-source terminal tool s-tui for power monitor. In each measurement,

we generate 1024 tokens and repeat 10 times, and report average energy and latency values.
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Figure 3.13: Speedup w.r.t. GPU and CPU.

3.4.2 Overall System Performance

As shown in Figure 3.13, the PIM-GPT system achieves remarkable performance improvements

over GPU and CPU: 41−137× speedup over GPU T4 and 639−1074× speedup over CPU Xeon

for the 8 GPT models. The high speedup originates from three aspects: 1) Memory bottleneck is

effectively removed by performing the memory-intensive VMM operations inside PIM channel; 2)

The mapping strategy maximizes computation parallelism and data locality; 3) Different workloads

are efficiently distributed between PIM and ASIC. In comparison, GPU is not suitable for sequential

token generation, since the large memory footprint and low data reuse rate under-utilize the GPU

computation resources [108].

We also compare the PIM-GPT performance with previously reported Transformer accelerators,

as shown in Table 3.3. SpAtten [107] accelerates GPT2-medium by 35× over GPU, and TransPIM

[20] obtains similar speedup of 33×. Both ignore the layer normalization and residual connections

in Transformer models. DFX [108] provides 3.2× latency reduction on average. PIM-GPT achieves

state-of-the-art performance with 89× speedup over GPU. We also want to highlight that the PIM-

GPT testing result is based on 1024 tokens, which cannot be supported by these prior prototypes.

Figure 3.14 shows that the PIM-GPT system achieves energy reduction of 123−383× and

320−602× over GPU and CPU, respectively. PIM-GPT effectively eliminates the energy con-
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Figure 3.14: Energy efficiency improvement w.r.t. GPU and CPU.

sumption of DRAM data transmission by using PIM to locally consume data. Additionally, the

mapping method leverages data locality and minimizes the row ACT and PRE operations that are

energy consuming. The ASIC only contributes a very small fraction of the total system energy, but

provides highly efficient arithmetic computations.

In comparison, DFX only achieves 3.99× higher energy efficiency compared to the GPU baseline

[108]. TransPIM reports ∼250× energy reduction [20]. SpAtten reports 382× over GPU [107],

but only the attention layer is considered for energy consumption while others including FFN

layers are not considered. Speedup and energy efficiency for the above mentioned accelerators are

summarized in Table 3.3.

3.4.3 Detailed Performance Analysis

The layerwise latency breakdown of GPT3-small and GPT3-XL in Figure 3.15 shows that VMM

operations dominate the total execution time for PIM-GPT. All other arithmetic computations only

account for 1.16% of total latency in GPT3-XL. For larger Transformer models, the improvement

of PIM-GPT over GPU is reduced. This is because larger GPT models allow better utilization of

GPU computation resources, while PIM has limited computation resources and the performance

of PIM-GPT is computation-bounded. As a result, the gain over GPU is reduced when compared
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Table 3.3: Comparison with other GPT accelerators.

SpAtten [107] TransPIM [20] DFX [108] PIM-GPT [32]

Memory HBM HBM HBM+DDR4 GDDR6

End-to-end ✗ ✗ ✓ ✓

PIM ✗ ✓ ✗ ✓

Data Type INT INT FP16 BF16

Largest Model GPT2-medium GPT2-medium GPT2-XL GPT2/3-XL

Longest Token 32 - 128 8096

Speedup 35× 33× 3.2× 89×
Energy
Efficiency

- ∼250× 3.99× 221×

Notes: Speedup and energy efficiency are over GPU. PIM-GPT results are based on 1024 token generation.
Other architectures generate the specified token lengths.

with smaller GPT models, although the performance gain (>40×) is still significant.

The data locality is optimized during model mapping to reduce the memory access time and

enhance the computation throughput, which is evaluated by row hit rate. If a data is access from

the row buffer without activating the bank row, such an access is a row hit. The row hit rate is

calculated by number of hit over total data access. Figure 3.16 plots the row hit rates, achieving

∼ 98% for all tested GPT models.

Figure 3.15: Layer-wise latency breakdown of (a) GPT3-small and (b) GPT3-XL.
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Figure 3.16: Row hit rate of bank access for 8 PGT models.

For PIM-GPT, the VMM computation occurs on the same DRAM chip that stores the required

weights and Key, Value mactrices. Therefore, a significant amount of data movement can be

eliminated. The data movement only happens when VMM results are transmitted to the ASIC for

downstream processing or data synchronization. Figure 3.17(a) shows the data transfer reduction

can be as large as 110−259×. In PIM-GPT, data movement no longer becomes the bottleneck and

consumes a very small proportion of the total latency, as illustrated by the layerwise breakdown

in Figure 3.15. We also evaluated the reduction of energy consumption of DRAM I/O compared

to HBM2, which is commenly used in the state-of-the-art GPUs for large language models. The

HBM2 access energy 3.9 pJ/bit is adopted from [120]. PIM-GPT achieves 78−184× I/O energy

reduction by eliminating external matrix data accessing, as shown in Figure 3.17(b).

Since weight matrices reside in DRAM, only the input and output vectors will be transferred

though the I/O. Hence, the memory access complexity can be reduced from O(𝑛2) to O(𝑛). As a

result, the energy consumption through DRAM I/O in PIM-GPT is less then 10% of total DRAM

energy consumption in PIM-GPT, as shown in DRAM energy consumption breakdown in Figure

3.18. MAC operation consumes most of the DRAM energy, since VMM is the core part of the GPT.

Other DRAM operations, such as ACT, PRE and REF, along with the standby energy consumption

consumes more the around 30% of DRAM energy.
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Figure 3.17: (a) Reduction of data movement. (b) Reduction of DRAM I/O energy consumption.

Figure 3.18: DRAM energy consumption breakdown of all models.

3.4.4 Sensitivity Study

We conduct sensitivity studies on the ASIC clock frequency and data transfer rate between PIM

and ASIC to prove the robustness of the PIM-GPT design.

The PIM-GPT ASIC is designed with TSMC 28 nm technology at 1 GHz clock frequency.

However, frequency scaling is an important technique to optimize the power consumption, especially

for edge devices. We conduct a sensitivity study of ASIC frequency by varying the latency setting

in our simulator. Figure 3.19 shows the latency at different clock frequencies for the 8 GPT

models, where the latency is normalized with respect to the 1 GHz results. Overall there is only
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Figure 3.19: Sensitivity of performance to ASIC clock frequency.

a small latency increase when the ASIC frequency scales down from 1 GHz to 200 MHz for all

models. Even when further scaling down the frequency to 100 MHz, which is 10 times slower

than the baseline, the worst case only incurs a performance slowdown of 20%. Moreover, the

larger models are less sensitive to the ASIC frequency scaling, since their operations are more

dominated by VMM and the proportion of ASIC arithmetic computation is less than in smaller

models. Therefore, the PIM-GPT design is not sensitive to ASIC clock frequency, which justifies its

use for edge applications where power often needs to be optimized by reducing clock frequencies.

The memory interface can be a bottleneck for many computation tasks, even for PIM imple-

mentations. In [127], SK Hynix reported accelerating fully connected layers in GPT models using

GDDDR6-AiM system. The system with 4 channels experienced ∼3× slowdown when memory

interface bandwidth changes from 16 Gb/s/pin to 2 Gb/s/pin. We test the PIM-GPT’s sensitivity to

the memory interface by changing the bandwidth configuration in our simulator. Figure 3.20 shows

the latency as a function of memory interface bandwidth for 8 GPT models. When the memory

interface bandwidth changes from 16 Gb/s/pin to 2 Gb/s/pin, the end-to-end GPT inference time

is increased ∼1.5× on average. That is 2× better than reported in [127], where only VMM and

GELU in GPT are considered. Even when the data transfer rate is decreased to 1 Gb/s, all models

are slowed down by ∼2× on average. These results show PIM-GPT is not sensitive to the memory

interface bandwidth, since most data are consumed locally and the data transfer requirements are
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Figure 3.20: Sensitivity of performance to data transfer rate.

significantly reduced.

3.4.5 Scalability

As Transformer model sizes and token lengths increase, the required computation grows quadrat-

ically with the sequence length [128]. A lot of efforts have been devoted to reduce the computation

and memory footprint for longer sequences by exploiting the sparsity and quantization of Trans-

former models [107] [129][130]. Another approach is to approximate the softmax attention, e.g.

linear Transformer [128], Performer [131] and spikeGPT [132], which reduces the space com-

plexity of attention from quadratic to linear. However, approximations can impact the accuracy

of large Transformer models, while dynamic pruning at runtime adds hardware design complexity

[107][122]. The proposed PIM-GPT mapping scheme evenly distributes model parameters across

PIM channels, therefore can support more than 8k token generation for GPT3-XL. Figure 3.21

shows normalized latency of different token lengths with respect to 1k tokens.

Since the performance of PIM-GPT is computation-bounded, the latency can be reduced by

adding more computation resources. Figure 3.22 evaluates the scalability of the system. When the

computation throughput of the MAC unit is increased from processing 16 MACs to 64 MACs at a

time, the latency is reduced by 1.8× and 2.0× for GPT3-small and GPT3-XL, respectively, as shown
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Figure 3.21: PIM-GPT latency with increased token length.

Figure 3.22: Scalability of PIM-GPT with increased number of (a) MAC units and (b) channels.

in Figure 3.22(a). The speedup is sub-linear. This is because when PIM performs MAC operations

on a bank row, the row needs to be activated and precharged, which consumes a significant amount

of time. We also evaluate performance enhancement by increasing computation parallelism, as

shown in Figure 3.22(b). More memory channels can be attached to the ASIC with relatively minor

modifications to the ASIC data port. The improvement scales almost linearly with the number of

channels. The speedup slightly reduces for longer sequences, because longer sequence requires

more arithmetic computation for ASIC to process.
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3.5 Conclusion

In this work, we propose a hybrid hardware system, PIM-GPT, to accelerate the memory-bounded

GPT token generation tasks. PIM-GPT consists of GDDR6-based PIM chips and a lightweight

ASIC chip to support end-to-end GPT acceleration. Model mapping and workload distribution are

optimized to maximize computation parallelism and data locality. The proposed system achieves

41−137×, 631−1074× speedup and 123−383× and 320−602× energy efficiency over GPU and

CPU on 8 GPT models. We highlight that the design only requires light modifications to the

DRAM architecture, which offers a practical solution for edge applications. PIM-GPT exhibits

other favorable characteristics, including low sensitivity to ASIC clock frequency and memory

interface specs, capable of long token generation and excellent scalability.
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CHAPTER 4

Model Extraction Attack on PIM Architectures by

Side-Channel Analysis

4.1 Background and Motivation

PIM architectures can circumvent the von Neumann’s bottleneck when accelerating

communication-limited tasks, such as deep learning workloads [75][76][133]. However, the se-

curity vulnerabilities of analog PIM architectures are yet to be evaluated, and this becomes of

paramount importance when the target market of low-power PIM accelerators are in ubiquitous,

edge-based computing that transmit and receive information from a variety of sensors [134] [135].

In theory, side-channel attack can be used to extract and infer information pertaining to the on-chip

DNN model deployed during inference [83], as shown in Figure 4.1.

When PIM is coupled together with mixed-signal computation, as with RRAM crossbar hard

macros, it is thought that analog computation via bit-line current summation or charge accumulation

offers a further layer of obfuscation. Co-locating memory and processing in a tiled architecture

eliminates data movement between memory and processor [4][75]. Since the weights are stationary,

weight memory access can be further limited. Hence, it is more challenging for malicious users

to compromise the security of these hardware accelerators. Conventional DNN accelerators, such

as GPUs, use single-instruction-multiple-threads/data (SIMT/SIMD) execution and must therefore

time multiplex operations that take place across different DNN layers. Rich data-dependent infor-

mation, such as read/write volume, memory address track, and execution latency, can be obtained
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Figure 4.1: Schematic of side-channel attack on PIM chip.

from a bus-snoop attack or side-channel attack [79]. As DNN models are generally highly propri-

etary, the neural network architectures become valuable targets for attacks. In PIM systems, since

the whole model is mapped on chip and weight memory read can be restricted, the pre-mapped

DNN model acts as a “black box” for users. However, the localized and stationary weight and data

patterns may subject PIM systems to other attacks.

In this chapter, we demonstrate that the complete network architecture for DNN models stored

inside the isolated memory blocks in a PIM system may be extracted from the power trace of

each tile, without prior knowledge of the model [33]. Our side-channel attack was performed

by simulating the dynamic power trace of the mixed-signal RRAM PIM macros. By analyzing

the power trace of the different PIM macros, the layer type and sequence, output channel/feature

size of convolutional/fully connected layers as well as kernel size of convolutional layers, can be

inferred. As an example, we demonstrate how we are able to reverse engineer the full LeNet

[136] architecture from a mixed-signal RRAM accelerator by side-channel analysis, without prior

additional knowledge of the neural network model in use. We also propose several countermeasures

that can potentially make the PIM systems resistant to such side-channel attacks, which should be

considered during hardware and compiler design.
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4.2 Simulation Framework

4.2.1 Overview

Modern PIM applications such as DNNs for machine learning may require a large number of

RRAM PIM tiles, making it impractical to perform analog SPICE simulations that can account for

all parasitics [137]. Instead, the hardware performance is often estimated through simulators that

integrate simplified device and circuit models to produce inference accuracy, hardware power and

area, with rapid iteration times.

Architecture-level simulators such as MNSIM [93] and NeuroSim [91] provide a flexible inter-

face for a wide range of design options, and can effectively simulate hardware performance (e.g.

power, area, and latency) based on simulator-embedded circuit-level models. However, these works,

amongst other simulators [138] [139] [140] [141] [92], mainly focus on inference accuracy and

global hardware performance. Time dependent data, e.g. dynamic power traces, are less explored.

As we will demonstrate, dynamic power and other related time-varying information that is available

from read-out ports of RRAM macros can prove to be useful in performing side-channel attack,

and thus expose an underexplored vulnerability in mixed-signal PIM accelerators. Furthermore,

dynamic power information is also helpful for thermal aware optimization [142] [143].

To analyze the dynamic power information of PIM systems, we first developed a mixed-signal

power simulator. The overall simulator framework is shown in Figure 4.2. The simulator offers two

interfaces: i) one during configuration that allows users to define hardware-level properties (system

configurations), and perform mapping of a pre-trained neural network model through a PyTorch

[144] interface, and ii) another during runtime simulation, which takes a dataset as an input. The

pre-trained weights are mapped to RRAM conductance values based on weight and device precision,

as well as the permissible device conductance range, following standard approaches [133] [145].

Each feature (or pixel) of the input data samples, e.g., images, is scaled and converted to a bit-serial

input, across a given number of clock cycles determined by the specified input precision.

Different from prior efforts that aimed to simulate the hardware performance as a whole, or
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Figure 4.2: Dynamic power simulator framework.

the performance of each component at runtime, we target the time dependent power data that

can be used to reverse engineer the tasks being performed in the PIM systems. The simulator

is designed to provide reliable dynamic power information based on the input and memory data

patterns, while enabling rapid experimental iterations. In particular, the dynamic switching power

is calculated at each clock cycle, since the transition power is data dependent and will be critical

for power trace analysis [146]. To provide reliable power simulations, we synthesized the deployed

digital components (e.g. adder, register) and custom-designed analog components (e.g. ADC,

MUX) using a TSMC 28 nm technology. Complex digital circuit components were modeled by

sub-dividing them into basic units that can process 1 bit data, where high-to-low and low-to-high

transition powers are extracted based on the technology database. For analog components such

as the comparator in the ADC, the dynamic power of each input voltage is recorded at 100 mV

intervals. The recorded power data is used to generate a built-in lookup table (LUT). The circuit

modules subsequently refer to the LUT and generate their power transition states. For simpler

resistive and capacitive circuits, such as RRAM and capacitive digital-to-analog converter (CDAC)

in successive approximation registers (SAR) ADC, we developed a built-in power simulator to

compute their power traces. Each circuit component will generate its own power trace which is

subsequently merged as the full trace for a given tile.
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Figure 4.3: RRAM tile for VMM.

4.2.2 RRAM Array and ADC

Schematic of the RRAM array model are provided in Figure 4.3. During the inference phase, the

word-line drivers turn on the select transistors in the 1T1R structure. The input data are converted

into voltage pulses in bit-serial fashion, and applied to each source-line. The currents through the

RRAM devices are accumulated along the vertical bit-lines. We include the effect of the parasitic

capacitance seen from the bit-line which introduces a propagation delay during the inference phase.

To account for positive and negative weights, we implement a current mirror-based subtractor

circuit, which subtracts the output current from the positive and negative weight columns. The

subtracted current will charge or discharge a sampling capacitor, which has been pre-charged to

VDD/2. The capacitor will hold the analog voltage for the ADC, before the outputs are digitized.

Figure 4.4(a) shows the schematic of a synthesized 8-bit charge redistribution SAR ADC design

in the simulation, and Figure 4.4(c) depicts its timing diagram. During the sampling phase, the

switch 𝑆 is closed and all capacitors are connected to 𝑉𝑖𝑛. Next, the switch 𝑆 is opened and all

capacitors are grounded via their bottom terminals, raising the voltage at the positive input terminal
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Figure 4.4: (a) Schematic of an 8-bit SAR ADC. (b) DAC switching energy with respect to output
codes. (c) Timing diagram of the SAR ADC.

of the comparator to −𝑉𝑖𝑛. During the conversion phase, SAR logic controls the switches to 𝑉𝑟𝑒 𝑓

one by one to perform a binary search. The conversion takes 8 cycles and the energy consumption

of the 𝑛-th step can be calculated from the change in 𝑉𝑥 , and the capacitance connected to 𝑉𝑟𝑒 𝑓

using Equation 4.1.

𝐸 =


−𝐶1𝑉𝑟𝑒 𝑓 (Δ𝑉𝑥 −𝑉𝑟𝑒 𝑓 ), 𝑛 = 1

−𝑉𝑟𝑒 𝑓 (Δ𝑉𝑥
∑𝑛−1
𝑖=1 𝐶𝑖𝐷𝑖 + 𝐶𝑛 (Δ𝑉𝑥 −𝑉𝑟𝑒 𝑓 )), 𝑛 ≠ 1

(4.1)

where 𝐷𝑖 is the 𝑖 th MSB output code. When 𝐷𝑖 = 1, the 𝑖-th switch connects to 𝑉𝑟𝑒 𝑓 , otherwise,

it connects to ground.

The dynamic power from the transitions in the DAC is the dominant contribution to the total

power consumed by the SAR ADC [147] [148]. Figure 4.4(b) shows the switching energy with

respect to the output code, and it has a clear data pattern dependency. In our simulator setup, the

unit capacitor in the DAC array is set as 1 fF, and each capacitor can be charged and settled within

a worst-case interval of 20 ps.
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4.2.3 Digital Components

The digital components of the PIM system include input and output registers, shifters and adders

within a tile, as well as inter layer logic functions such as ReLU activations, pooling operators,

and routing circuits. As mentioned above, the transition power of digital components are based

on a built-in LUT which stores the extracted transition power data of the basic digital units from

the TSMC 28 nm technology process. To fully simulate the data flow in the hardware, all data

movement between circuit modules in our simulator are performed in a binary, time-multiplexed

fashion. Hence, the total dynamic power of each switching event from all digital components can

be calculated based on each input bit of data.

4.2.4 Model Mapping

For inference tasks, the pre-trained weights are mapped across tiled RRAM arrays, and remain

stationary during operations. To benefit from inference efficiency, the weights and input activations

are quantized to 8 bits. It has been demonstrated that 8-bit weight precision does not incur a signif-

icant accuracy degradation, especially when coupled with quantization-aware training techniques

[27][149] [150]. However, RRAM cells do not have sufficient internal precision to support 8-bit

weights, which requires reliable programming of 256 conductance levels. As a result, it is often

more practical to map a given weight across multiple cells, e.g. using 2 cells each offering 4

bits. Figure 4.5(a) shows the mapping approach used in our simulation for the convolution kernels.

Other mapping strategies can be employed similarly through the configuration interface shown in

Figure 4.2. Each kernel is flattened to a 1D vector, followed by splitting positive and negative

values across columns. Next, each weight is quantized to 8 bits, mapped between the 4 MSBs and

4 LSBs separately. For a PIM system with 8-bit weight precision and 4-bit device precision, the

total column number is thus 4 times that of the output channel size (2 for positive and negative

weights, and 2 for splitting the 8-bit weights into 2 cells), and the number of mapped rows is the

flattened kernel size 𝐾2𝐶𝑖𝑛, where 𝐾 is a single kernel dimension and 𝐶𝑖𝑛 is the input channel size.

The output of the convolutional layer is computed by sliding the input activation across the
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Figure 4.5: (a) Convolution kernel mapping. (b) Input data mapping.

kernels, as illustrated in Figure 4.5(b). The input to each kernel is flattened to match the kernel,

and outputs from all kernels are computed simultaneously through the PIM module outputs. For

each 8-bit input, we employ bit-serial representation and it takes 8 consecutive steps to compute 1

input.

The weights and inputs to a fully connected layer can be quantized and mapped directly without

any reshaping. Similarly, vector outputs of the fully connected layer can be acquired simultaneously

through the PIM outputs.

4.3 Experiment and Analysis

4.3.1 Experimental Setup

After model mapping, we simulate the DNN inference in the PIM system at the circuit-level, and

use the extracted power traces to analyze the feasibility of model extraction attacks through the side-

channel leakage. Side-channel attack analysis is based on physical phenomena during execution, as

well as mathematical analysis. By carefully measuring and analyzing the power dissipation of the

chip, attackers may be able to reverse engineer sensitive data or architectural information [82]. A

64



general assumption for the proposed attack is that the attacker already knows hardware parameters

of the PIM tiles, i.e., the RRAM array size, the ADC type and the number of ADCs per tile, but

has no knowledge about the mapped NN. This is a realistic assumption since memory access to the

stored weights in PIM systems can be restricted and physically separated from other programs the

attacker may gain access to. The attacker, as a user, however has access to the input and output

ports of the chip, i.e., can control the input data supplied to the PIM system during runtime. For

example, most of inference tasks of RRAM-based PIM system are pipelined during processing to

improve the throughput [75] [145] [151], i.e., starting to process the second input as the first input

passes through the first layer. This will blur valuable power and timing information of a single

runtime. However, as the attacker has the full control of the input and output data ports, she/he

can halt the next input to the system until the previous inference completion to gain more accurate

power measurements.

Side-channel attack can be classified into invasive and non-invasive attacks [152] [153], based

on whether decapsulation of the chip is used. Carefully designed invasive attacks make it possible

to measure the power trace of each single RRAM tile on chip. In our experiment, the assumption

is the attacker can only measure the power traces of each tile for side-channel attack, and does

not have access to individual RRAM devices. Figure 4.6 illustrates a simplified flow for model

extraction attack, which will be discussed in the following sections.

We first initialize the hardware design with the system configuration parameters shown in Figure

4.2. The conductance range of the RRAM devices is set between 1 𝜇𝑆 and 100 𝜇𝑆. Each cell has

16 conductance levels. A 50 MHz clock is used to drive the bit-serial inputs, limited by the RRAM

read operation speed. The other digital logic is assumed to operate at 500 MHz. Before inference,

the pre-trained neural network model is mapped to RRAM arrays through the interface between

the simulator and PyTorch, without any sensitive information leakage. The model is deemed

‘inaccessible’ to a user once the model is compiled onto the PIM accelerator, for the entirety of the

side-channel attack. At the very end of the experiment, we validate the extracted model structure

through side-channel attack with the ground truth.
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Figure 4.6: Overview of side-channel attack flow for DNN model extraction.

In this experiment we use CIFAR-10 [154] as the dataset during inference, which consists of a

set of 60,000 natural color images that are 32×32 in size.

Before elaborating attack approach, we summarized the assumption for the attacker’s knowledge

as follows.

• The attacker knows the hardware implementation details of a PIM tile, including array size,

ADC type and number of ADCs per tile. However, the attacker has no knowledge of the

neural network mapped on chip.

• The attacker has the full control of the input and output ports of the chip. Hence, the next

input can be halted until the completion of the previous input, allowing the attacker to control

the input pipeline to get more accurate power trace of each inference.

• The attacker has no access to individual RRAM cells, but can measure the power trace of

each tile as a whole.

4.3.2 Power Traces

We test the side-channel attack on the PIM system that has an unknown neural network already

mapped on chip. Based on the power traces extracted from the simulator, it is found that 23 PIM
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Figure 4.7: Simulated output power traces from 4 different PIM tiles during one inference task.

tiles are utilized to store the pre-trained model. Figure 4.7 displays the power traces of 4 of those

tiles during an inference. Examining the power traces, we can first identify when a bit-serial input

is applied to the RRAM array. As can be seen in Figure 4.7, processing a 1-bit input in the PIM

module is accompanied by the characteristically transient IR power draw from the array, followed

by a stable period during data passing the RRAM cells, and a switching-dense period for data

conversion in the ADC along with the execution of other digital components. By inspecting the

power traces, the following hardware hints can be extracted.

• Start time: corresponding to when a tile starts execution. Tiles with identical start times are

expected to belong to the same neural network layer (e.g. Figure 4.7(c) and (d)). Grouping

tiles with the same start time will provide information on the layer size and the number of

layers that perform VMMs.
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• Execution time: corresponding to how many bit-serial inputs are executed at the layer for

a given inference. The number of input bits sent to a module can be inferred by identifying

the arrival of a new input bit, which has the distinguishing feature of the transient IR power

draw followed by a stable period of a few nanoseconds corresponding to data passing through

the RRAM cells. Figure 4.7(a) illustrates this by including labels for the bit-serial inputs of

the first data sample. The execution time of convolutional (Conv) layers are typically much

longer than that of fully connected (FC) layers due to the larger number of computational

cycles required in convolutions.

• ADC execution time: corresponding to how long it takes for the ADC to convert all analog

outputs from the RRAM array. ADC execution time can be extracted by inspecting the

dynamic power consumption of the ADC after data has passed the RRAM cells. During ADC

conversion, the successive approximation steps lead to decrementing voltage changes, and

the overall tendency of ADC transition power during a single conversion is also decreasing.

The ADC execution time indicates how many columns are being utilized in an array.

• Average Power: 1
𝑇

∫ 𝑇2
𝑇1
𝑃(𝑡)𝑑𝑡. For arrays with the same number of utilized columns, the

ratio of average power is statistically proportional to the number utilized RRAM rows.

Using these features, we will show how to extract the full neural network architecture in Section

4.4.

4.4 Neural Network Extraction

4.4.1 Layer Property Extraction

The number of neural network layers that perform VMM operations and their corresponding

layer types can be identified first, based on the start time and execution duration. The extraction

algorithm of these layer properties is summarized in Figure 4.8. The algorithm first extracts the

start time and execution time of each tile. Whether a tile belongs to a Conv layer or a FC layer
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Figure 4.8: Layer property extraction algorithm.

can then be identified based on how many VMM operations are executed. The number of VMM

operations for a Conv layer corresponds to the output feature map size, but is fixed at ‘1’ for a FC

layer. Finally, tiles with the same start time are grouped, and the layer sequence is generated by

sorting the start time of these grouped tiles.

In our experimental test case, using this approach, the 23 tiles utilized in the network inference

were found to belong to 2 Conv layers and 3 FC layers.

4.4.2 Output Channel Size Extraction

Based on the mapping approach in Section 4.2.4, we know that the output channel size of a

given Conv layer and the output feature size of a FC layer are directly related to the number of the

utilized RRAM columns in the PIM modules. The number of utilized columns in each module

can be extracted from the ADC execution time. In the system design we analyzed, each tile has

128 columns and generates 64 output currents, where the subtraction of positive and negative bit

line currents is performed in the analog domain. Each tile also has 4 ADCs. Hence, each of the

4 ADCs will execute 16 times to convert the 64 outputs for a fully mapped array. In a partially
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mapped tile, shorter ADC execution time will be observed, so the ADC execution time can be

utilized to estimate the output channel size. The algorithm is summarized in Figure 4.9. We first

extract the ADC execution time from the power traces. If the ADC execution time is smaller than

the maximum execution time, which is 16 in our case, it will be labeled as a column-wise partially

mapped tile (i.e., the array is not fully utilized). The number of partially mapped tiles and fully

mapped tiles are counted, which then allows us to calculate how many columns are mapped and

the output channel size for the given layer.

Figure 4.9: Output channel size extraction algorithm.

As an example, Figure 4.10 plots the extracted utilization and power traces identified from the

first FC layer in the unknown neural network model. From the algorithm, we can conclude there

are 4 column-wise partially mapped tiles. The mapping information of the 16 tiles used to map

the FC layer is shown in Figure 4.10(a). Figures 4.10(b) and (c) display the ADC execution time

traces for the two tiles marked in (a) for a given input. From inspection, the ADCs in the tile

marked by the red line executed 16 times, indicating it is fully mapped and utilized. The ADCs

from the tile marked by the blue line only executed 12 times, indicating 96 columns are mapped.
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By analyzing the power traces from the 16 tiles, we can calculate the output feature size to be

(3 × 128 + 96)/4 = 120.

Figure 4.10: (a) PIM tiles mapped with weights from the first FC layer. (b) ADC execution time of
a column-wise fully mapped tile, and (c) a column-wise partially mapped tile.

Using the same approach, the output channel sizes of the first two identified Conv layers can

be uncovered and found to be 6 and 16 from power traces in Figure 4.10 (a) and (b). The output

feature size of the second identified FC layer is 84. The output feature of the third identified FC

layer corresponds to the number of classification classes, and is 10 for the CIFAR10 dataset.

4.4.3 Kernel Size Extraction

The weights of the Conv kernels are mapped across 𝐾2𝐶𝑖𝑛 rows. Therefore, there are two

possible cases: 𝐾2𝐶𝑖𝑛 is either smaller than (or equal to) the number of rows of a single RRAM

tile, or it exceeds the number of rows available and must be distributed across multiple tiles. The

number of input channels characteristically increases with deeper Conv layers, so the first case of

a kernel fitting within a single array typically only happens with the first layer.

For the first Conv layer, the size of the input image is known to be 𝑊𝑖𝑛 ×𝑊𝑖𝑛. As the Conv

layer computes one output pixel with one input vector, the output feature map size of the first Conv

layer can be speculated from the VMM execution time in Algorithm 1. Furthermore, the input and
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output feature maps follow the relationship shown in Equation 4.2:

𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛 − 𝐾 + 2𝑃

𝑆
+ 1, (4.2)

where 𝑊𝑜𝑢𝑡 and 𝑊𝑖𝑛 are the output and input widths (equal to the heights), 𝐾 is the kernel size, 𝑃

and 𝑆 are for padding and striding.

The first identified Conv layer was fully mapped within an array. Since the total row number is

𝐾2𝐶𝑖𝑛 < 128, where 𝐶𝑖𝑛 is 3 for RGB images, and 𝐾2 must be a square number, only a few kernel

sizes are possible. Thus, we can uncover the kernel size of the first Conv layer by testing the range

of possible kernel sizes iteratively using Equation 4.2. Most kernels use odd-numbered dimensions

which further narrows the search space to 𝐾 = 1, 3, 5. By testing all cases and comparing with the

output shape, we found the kernel size is 5 × 5. This approach is also helpful when analyzing the

pooling layer, which will be discussed in further detail in the next subsection.

Figure 4.11: Kernel size extraction algorithm.

In most cases beyond the first Conv layer, the input activation includes many channels, and the

kernel must be mapped across multiple tiles. Figure 4.12(a) shows how the identified second Conv
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Figure 4.12: (a) Tiles mapped with weights from the identified second Conv layer and possible
kernel sizes. (b) Average power and predicted kernel sizes with respect to different input images.

layer utilizes 2 RRAM tiles. For deeper kernels, the kernel size can be extracted by analyzing

the average power consumption of all tiles in the Conv layer, with extraction steps summarized in

algorithm in Figure 4.11. We first extract the average RRAM array power of each tile from the

obtained power traces. Next, if the columns are mapped across multiple tiles like in Figure 4.10(a),

the average power of each tile row is summed. The reference power is generated by calculating the

average power of row-wise fully mapped tiles. The number of utilized rows is obtained from the

ratio of the average power of row-wise partially and fully mapped tiles. With this approach, it is not

feasible to extract exactly how many rows are mapped. However, as discussed earlier, the total row

number is 𝐾2𝐶𝑖𝑛, and𝐶𝑖𝑛 has been extracted by Algorithm 2 from the previous layer while 𝐾2 must

be a square number. Hence, we only need to find the nearest possible square number that matches

the row number estimated from Algorithm 3. Figure 4.12(b) shows the average array power of two

tiles in the identified second Conv layer with respect to the input image number. While the average

power varies among different inputs, the algorithm always predicts the correct kernel size due to

the limited number of permissible kernel sizes.

Using the same approach, the input feature size of the first FC layer can be extracted from the

input data dimension which takes the form 𝑁2𝐶𝑜𝑢𝑡 , where 𝐶𝑜𝑢𝑡 is the number of output channels in

the previous Conv layer and has been extracted by Algorithm 2.
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4.4.4 Pooling Layer Analysis

A 2D pooling layer is typically square-shaped, and placed between two Conv layers, or between

a Conv and a FC layer. For the latter case, the pooling layer can be easily extracted since the output

shape from the Conv layer and the input shape for the FC layer are both known. The ratio of these

two indicates how the shape shrinks after the pooling layer and the size of the pooling operation.

Figure 4.13: Pooling layer detection algorithm.

However, the information of the pooling layer between two Conv layers cannot be trivially

extracted as the input shape of the Conv layer is unknown. Therefore, we propose an iterative

search approach summarized in Figure 4.13. With the output kernel size of the second Conv layer,

we can reconstruct a series of input shapes with different padding and stride properties. As the

output shape of the first Conv layer is known, we can estimate the output shape of the pooling

layer based on different pooling shapes, which is then compared with the reconstructed input shape

for the second Conv layer. Table 4.1 summarizes possible input shapes. Among all of them, only

dimensions 14×14 and 28×28 can be supported with 2×2 pooling or without pooling, respectively.

The pooling layer is implemented in digital logic, and will incur a delay in the execution start time

of the next Conv layer. Hence, based on the above analysis and the delay observed in the start times,
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we can speculate that a 2 × 2 pooling layer exists between two Conv layers.

Table 4.1: Pooling layer detection attempt

Padding Stride Input Size Pooling

0 1 14 × 14 2 × 2
1 1 12 × 12 -
2 1 10 × 10 -
· · · · · · · · · · · ·
2 3 28 × 28 1 × 1
3 3 26 × 26 -
4 3 24 × 24 -

4.4.5 Discussion

Figure 4.14 shows the extracted neural network architecture based on the analysis above. The

colored labels indicate the architectural information that has been extracted from which proposed

algorithm. The extracted neural network architecture matches the ground truth – a LeNet model,

using only side-channel attack without any prior knowledge of the model. The model comparison is

further validated with the original PyTorch model file. We expect this approach can be generalised

to any neural network model that consists of Conv, FC, and 2D pooling layers. Key results of this

work and comparison with prior studies are listed in Table 4.2.

Figure 4.14: Extracted complete neural network architecture for the unknown model. The colors
label the algorithm used to obtain the architecture information.
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Table 4.2: Comparison of different works performing model extraction attack on DNN accelerators.

Platform Leaked Data Data Acquisition Extraction result

DAC’18
[84]

FPGA accelera-
tor + off-chip
memory

Memory and
timing

Simulation Layer features,
sizes

USENIX
Security’19
[85]

ARM Cortex-
M3 microcon-
troller

electromagnetic
emanation and
timing

Electromagnetic
probe measure-
ment

Layer features,
sizes, activation
functions

ASPLOS’20
[79]

GPU Memory access
volume and tim-
ing

Monitoring
PCIe and GDDR
memory bus

Layer features,
sizes, connec-
tions, activation
functions

TCSII
[83]

Raspberry Pi Power External power
data acquisition
card

DNN architec-
ture type, param-
eter sparsity

TIFS
[86]

FPGA accelera-
tor

Power Ring Oscillator
Power sensor

Layer features,
sizes, activation
functions

This Work
[33]

RRAM-based
analog PIM
accelerator

Power and tim-
ing

Simulation Layer features,
sizes

4.5 Feasibility Analysis

The above-mentioned side-channel attack methodology is proven capable to reverse engineer the

unknown neural network architecture from the power traces. To validate our approach, real-world

constraints need to be considered. In this section, we discuss potential data acquisition solutions,

sampling rate requirements and circuit noise effects when attacking a real PIM system using the

proposed theoretical methodology.

Two measurement techniques can be considered for these data dependent signals. One technique

is using electromagnetic probes. As RRAM tiles with different weights are spatially located on the

chip, electromagnetic probes with sufficient spatial resolution can measure the side-channel leakage

of individual tiles. Tile areas of RRAM-based PIM prototype chips vary due to different array sizes
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Figure 4.15: Power traces of the same tile for convolution execution with different sampling rates
and noise levels. The sampling rates and noise standard deviation levels are labeled in (a) – (d).

and peripheral circuit designs, but most demonstrated tile areas are on the millimeter scale [155]

[156] [157] [158]. For example, the reported overall area of a tile with 128 × 128 array size, same

as our system configuration, is 0.5 × 0.5 𝑚𝑚2 [156]. The spatial resolution of electromagnetic

probes can achieve sub-millimeter [159] [160] [161], to make it possible to measure the leakage

signal of a tile with no overlapping of adjacent tiles. The second technique is measuring the signal

through the power lines of each tile directly. Such techniques have been experimentally used to

attack a spin-transfer torque MRAM system for Advanced Encryption Standard (AES) executions

[135] [162]. Like MRAM systems, RRAM devices are fabricated in the back-end-of-line so etching
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away the passivation layers can potentially provide immediate access to top-level metal lines for

probing. Off-the-shelf oscilloscopes can offer 256𝐺𝑆𝑎/𝑠 sampling rate and noise floor of hundreds

of microvolts [163]. Such equipment can be used to extract the power data.

We further analyzed the proposed attacking scheme after considering real-world artifacts, sam-

pling rate and electrical noise. Algorithm 1 is based on extracting the total execution time of each

tile. The execution can be easily distinguished from the idle state, and the convolution execution

is much longer than the fully connected layer execution. Hence, we expect this timing analysis

is robust even with artifacts. Algorithm 4 is an analysis of other extracted results without new

physical signal measurements, so signal disturbance will not affect it. However, Algorithm 2 and

Algorithm 3, which are based on timing and power analysis, may be affected by the artifacts. Low

sampling rate and high noise level may make it difficult to distinguish the ADC execution period

from the analog computation period of the crossbar array. Timing analysis in Algorithm 2 will fail

in this scenario. These conditions will also lead to an unreliable average power estimate, which

may affect the power analysis in Algorithm 3.

Table 4.3: Algorithm 2 results with non-ideality.

Sample

Rate

Noise

Std
0 1 mW 2 mW 3 mW

10 GSa/s Success Success Success Fail at FC

1 GSa/s Success Success Fail at FC Fail at FC

500 MSa/s Success Fail at FC Fail Fail

200 MSa/s Fail at FC Fail Fail Fail

To test the robustness of the proposed side-channel attack approach in real-word scenarios, we

simulated power traces with different sampling rates and noise levels. In our initial simulation

power traces without artifact injection are sampled at a rate of 10 GSa/s, and the analog operation

and ADC execution periods exhibit significant differences, as shown in Figure 4.10(b) and (c). In
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Figure 4.15, the power traces of the same tile for convolution execution with different sampling rates

and noise levels are displayed. Thanks to the time required to achieve a stable read output in the

analog operation, the analog operation can still be identified even with these artifacts considered,

as indicated by the red arrows. The ADC execution time can then be calculated from the intervals

of these analog operations to execute Algorithm 2. We noticed that at low sampling rate rates or

high noise levels, the ADC and analog operation power signatures can become indistinguishable, as

shown in Figure 4.15(d). In Table 4.3, we summarized the failure/success of Algorithm 2 at different

artifact levels. We found the attack is more likely to fail at fully connected layers where VMMs are

only executed once compared to repeated executions in convolution layers. Hence, there are fewer

opportunities to identify the correct analog array execution period at fully connected layers.

Figure 4.16: (a) Power traces for a convolution tile with 1GSa/s sampling rate and 2 mW noise
standard deviation. The red region is the interested period for average power computation. (b)
Average power of 2 convolution tiles and predicted kernel sizes with respect to different input
images at 2 mW noise standard deviation and sampling rates from 500 MSa/s to 10 GSa/s.

The success of Algorithm 2 is the prerequisite for Algorithm 3, since we need to identify the

analog operation region before extracting its average power, as illustrated in the red regions of
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Figure 4.16(a). We performed kernel size extraction tasks following Algorithm 3, in the presence

of artifacts injection. Even at noise levels of 2 mW standard deviation, the correct kernel size can

still be extracted at sampling rates from 500 MSa/s to 10 GSa/s, as shown in Figure 4.16(b). The

failure/success of Algorithm 3 at different sampling rates and noise levels are summarized in Table

4.4. An interesting result is when the sampling rate is reduced to 500 MSa/s, where it becomes

difficult to identify the analog operation period, as shown in Figure 4.15(d). However, if assuming

the average power can still be calculated, the correct kernel size can still be obtained (Figure 4.16

(b)). These results prove the kernel size extraction method is robust against artifacts, likely due

to the fact that effect of white noise can be effectively averaged out across multiple convolution

executions.

Table 4.4: Algorithm 3 results with non-ideality.

Sample

Rate

Noise

Std
0 1 mW 2 mW 3 mW

10 GSa/s Success Success Success Success

1 GSa/s Success Success Success Success

500 MSa/s Success Success - -

200 MSa/s Fail - - -

In summary, the timing and power side-channel attack methods are robust after considering real-

world non-idealities, such as sampling rate and electrical noise. Table 3 and Table 4 summarize

the required sampling rate for the proposed approaches to work well at different noise levels.

The required specs can be offered by off-the-shelf measurement equipment [163]. The required

sampling rate can be further relaxed if the attacker can control the clock frequency of the system or

effectively filter out noise from the measured signals.
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4.6 Countermeasures

Techniques for preventing side-channel attack can be based on eliminating the correlation

between the leaked information and the secret information [164], which is the DNN model in our

case. For the proposed attacking algorithms, the countermeasures fall into three categories.

The first approach is to eliminate sensitive information leaked from timing analysis. For instance,

scrambling the start time of the tiles or invoking dummy tiles with random delay times can obfuscate

the layer sequence analysis. If the execution time of tiles are scrambled, we may find all tiles has the

same start/end time and execution duration. This will make it impossible to differentiate the layer

sequence and layer type. Inserting dummy input bits can increase the Conv layer execution latency.

Dummy inputs can make it impractical to retrieve the output feature size from the execution time

analysis, and make the iterative algorithm that searches the padding size ineffective. However, the

above-mentioned techniques add penalties to both power consumption and latency of the system.

The second approach is to eliminate sensitive information leaked from ADC execution. The

ADC execution time is directly related to the number of mapped columns in a tile and used to

extract the layer size. Thus, one can add fake inputs to the ADCs in the partially mapped tile to

match the ADC execution time as fully mapped tiles. Tiles will all have the same ADC execution

time and the attack method based on ADC execution latency will fail. This approach will increase

latency and the ADC power consumption.

The final approach is to mask the crossbar power consumption differences among tiles used in

the same DNN layer, which will make the kernel size extraction algorithm ineffective. A potential

technique is to add dummy conductance values to devices in unused columns. However, this

method does not work if all tiles are column-wise fully mapped. Another approach is to devise

other mapping schemes to balance and equalize the power consumption at analog computing. For

example, thermal-aware weight mapping methods discussed in [142] shows potential in balancing

and reducing power consumption. Equalization techniques reduce the power leakage information

by creating a consistent power side-channel profile. Equalization has been proved reliable to

enhance the resistance of AES engines to power side-channel attacks [165] [166] [167]. One can
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apply different weight mapping methods to different tiles to conceal the correlation between power

consumption and mapped rows. However, this will introduce more workload in data pre-processing.

4.7 Conclusion

DNN accelerators are increasingly susceptible to malicious model extraction attacks, which

expose the network architectural information. Several initial studies on model extraction attacks

have been proposed on GPU, CPU and other DNN accelerator platforms [83] [79] [84] [85]

[86][168] . DeepSniffer [79] and ReverseCNN [84] extract DNN models from GPUs and general

DNN accelerators. However, their attack model heavily relies on data movement in the memory

bus, and cannot be generalized over to PIM architecture. Model extraction attacks with power or

electromagnetic side-channel attack have also been reported on ARM cortex-based systems and

FPGAs [83] [85] [86]. This work first perform model extraction attack on analog PIM-based DNN

accelerators.

While mixed-signal PIM architectures may potentially assist with the obfuscation of sensitive

data by reducing the degree of data movement and limit memory access, we demonstrate how

measurable electrical characteristics can still pose a security vulnerability. To perform reliable

power trace analysis, we developed a dynamic power simulator based on a TSMC 28 nm process.

We scrutinized the security vulnerability of analog PIM systems for DNN inference acceleration

by proposing a series of side-channel attack analysis algorithms. Our analysis showed it is possible

to uncover the complete model architecture information without any prior knowledge of the neural

network model.

Using the proposed techniques, we were able to systematically uncover all layers in the example

model and successfully reconstruct the full neural network model. The proposed approach showed it

is feasible to probe a PIM inference engine using algorithms that can work with other convolutional

and dense DNN architectures. This study highlights the nature of security patches that may be

required at the hardware abstraction, such as scrambling the timing information, adding dummy
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cycles to the ADC, and masking crossbar power using different weight mapping methods.
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CHAPTER 5

PowerGAN: A Machine Learning Approach for

Power Side-Channel Attack on PIM Accelerators

In Chapter 4, we have shown that the DNN architecture mapped on RRAM-based PIM accelerator

can be fully extracted from side-channel power and timing leakage. This chapter will focus on

data privacy concerns at the user end. As shown in Figure 5.1, a potential security vulnerability

is identified in analog PIM systems wherein an adversary can reconstruct the user’s private input

data from a power side-channel attack. Machine learning-based attack methodology will be shown

to achieve high quality data reconstruction from power leakage measurements, even at large noise

Figure 5.1: Schematic of privacy breach by side-channel profiling.
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levels and after countermeasures [34].

5.1 Background and Motivation

5.1.1 Data Privacy in Machine Learning

Machine learning, especially deep neural networks (DNNs), are being used in a broad range

of applications, including language processing, computer vision, speech recognition and financial

analysis [98][106][169][170]. As the usage of DNN models expands, the importance of data

security grows. Attacks on DNN data used in critical applications such as medical diagnosis,

autonomous driving, and financial transactions can compromise user privacy as well as proprietary

algorithm information [78]. Protecting user data privacy in machine learning is not only an ethical

imperative but also a legal requirement and a strategic necessity for building and maintaining trust,

ensuring fairness, and promoting the responsible use of technology. The main areas of concern in

DNN security include model extraction, adversarial attacks, and privacy breaches [33][78][79][80].

These security attacks on DNNs have been extensively evaluated on systems such as GPUs, CPUs

and FPGAs [79] [81] [83] [84] [85] [86], security and vulnerability analysis of analog PIM

accelerators is largely lacking.

In Chapter 4, a model extraction attack methodology based on side-channel leakage analysis has

been proposed for RRAM-based analog PIM architecture. The users’ private input data is also of

considerable importance. As a potential solution for prevalent low-power edge-based computing,

understanding security vulnerabilities of PIM systems including data privacy becomes paramount.

In this chapter, we first propose a machine learning-based approach to reconstruct users’ private

input data from power side-channel profiling of PIM systems, without prior knowledge of the DNN

model mapped on chip.
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5.1.2 PIM Architecture for Medical Image Processing

In recent years, RRAM-based PIM systems have been widely studied for DNN inference appli-

cations due to their ability to perform in-situ single-step VMM through bit-line current summation

[4][76] [74]. One area that has greatly benefited from this technology is computer vision, specifi-

cally CNNs, which require intensive VMM operations. Moreover, the RRAM-based PIM systems

can incorporate transposed convolution for up-sampling in encoder-decoder networks [171] [172].

This has been shown to improve efficiency and support various DNN models, as evidenced by

several studies [173] [174] [175] [176].

Figure 5.2: Schematic of the medical imaging U-Net model used in this analysis.

Medical diagnosis, which is a subset of computer vision, involves medical image reconstruction,

segmentation, and super-resolution [177], and PIM schemes are promising platforms for medical

image processing [178]. The U-Net architecture, one of the most widely used CNN architectures,

has been extensively used for image segmentation tasks [179] [180]. U-Net, shown in Figure

5.2, has a “U”-shaped architecture composed of a down-sampling encoder and an up-sampling

decoder, which perform feature extraction and reconstruction through convolution and transposed

convolution layers, respectively. The skip connections in U-Net connect down-sampling and up-

sampling paths by concatenating the feature maps to preserve spatial information and improve

accuracy. U-Net has been proven effective for multiple medical image segmentation tasks, such
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Figure 5.3: U-Net brain MRI image segmentation results.

as identifying tumors or lesions in magnetic resonance imaging (MRI) scans, even with limited

training data. Figure 5.3 shows the output results of the U-Net, where the green line represents the

ground truth and the red line represents the network prediction results.

In this study, U-Net for MRI segmentation contains the following layers, U-Net Encoder:

C32–C32–MP–C64–C64–MP–C128–C128–MP–C256–C256–MP–C512; U-Net Decoder: C512–

C256–C256–C256–C128–C128–C128–C64–C64–C64–C32–C32–C32, where C is for convolution

layer, followed numbers are channel depth and MP is for max pooling layer. The MRI dataset used

in this study is from [181].

5.1.3 Problem Statement

PIM systems use pre-trained models for inference acceleration on chip. Any potential security

threat can be exploited by a malicious adversary who could launch a side-channel attack on the

system through the side-channel leakage. Side-channel attacks aim at extracting private data from

a hardware system by measuring and analyzing physical parameters during execution [82] [164].
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Figure 5.4: (a) PIM chip and the system board. An adversary can potentially perform power side-
channel attacks through power trace measurements on the chip’s power lines. (b) A representative
power trace of a PIM accelerator at inference runtime. Examples of (c) a user’s private input sent
to the PIM inference accelerator running the U-Net, and (d) reconstructed image from the power
side-channel attack using techniques proposed in this section.

Such parameters include supply power, execution time, and electromagnetic emission. Attackers

can reverse engineer the sensitive data or architectural information by deliberately measuring and

analyzing the side-channel dissipation of the chip. As RRAM devices are fabricated in the back-

end-of-line, invasively etching away the passivation layers of PIM macros can provide immediate

access to the top-level metal lines of each tile for potential probing. The adversary can then probe

the power lines directly and extract the power data using an oscilloscope, as shown in Figure 5.4(a).

The side-channel attack is performed on measured leaked traces, with one such example shown in

Figure 5.4(b), where the power trace of a PIM module at inference runtime is shown. In this work,

the goal is to reconstruct the user’s private input data from power traces measurements. Figure

5.4(c) and (d) show an example of the original private input and the reconstruction result using the

proposed approach, respectively.

Accurately measuring side-channel leakage signals requires sophisticated data acquisition

scheme design and high-precision measurement equipment. To study the vulnerability of the

chip design and secure it iteratively, it is more practical to simulate the attack scenarios using real

device measurement data, followed by redesigning the chip with security considerations before

massive production, especially for the emerging PIM systems. In this chapter, the hardware config-
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Figure 5.5: Overview of the power side-channel attack flow for private input data reconstruction.

uration, adversarial knowledge assumption and simulation logic are the same as in Chapter 4 and

[33]. To fast generate power feature information, we developed a fast power feature simulator using

GPU to process every bit input in the bit-serial fashion, which will be discussed later.

5.2 Side-channel Privacy Leakage

5.2.1 Attacking Flow and Power Modeling

Figure 5.5 illustrates the attack flow aimed at reconstructing private input data from the power

side-channel leakage. The attack targets the first layer of the DNN model since it is the closest

layer to the input port and directly executes the input data. The methodologies proposed in Chapter

4 can be used to extract the property of the first layer, i.e., structure of the convolution layer and

the associated PIM tiles used to execute the layer. As DNN models are trained on specific tasks,

an adversary can collect power traces using similar input data and learn the dependency between

them. In this case, the adversary can feed other MRI images and collect their own power traces

to train an attack model before attacking unknown inputs. Once power traces are allocated, power

feature extraction and data preprocessing are required to find the correlation between input and

leakage. We refer to the data after preprocessing as power feature matrices, which can be utilized

to train a machine learning model for input data reconstruction. In our study, we employed a

generative adversarial network (GAN) for reconstruction since it shows good noise tolerance and
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Figure 5.6: Block diagram utilizing CUDA SIMT execution for fast simulation of the crossbar
analog computing power and ADC switching energy.

can overcome noise-injection countermeasures.

The power trace simulator proposed in Chapter 4 provides valuable insights into dynamic power

and timing data. However, processing every single data point in a large dataset is impractical due to

the time-consuming nature of simulating power dissipation at sub-nanosecond-level precision, as

well as the generation of tremendous data files. To address this, we developed a fast power feature

simulator based on NVIDIA Compute Unified Device Architecture (CUDA), leveraging modern

GPU’s single instruction multiple threads (SIMT) to process every bit input in the bit-serial fashion,

as shown in Figure 5.6. The CUDA kernel functions simulate power dissipation and total energy

of RRAM arrays and ADCs at each execution, respectively. Both kernels take bit-serial inputs and

conductance weight matrices as inputs. The kernel function for array power simulation computes

the power using applied input voltage and device conductance values. The kernel function for ADC

is more complex. First, we compute the switching energy of each output code (Figure 4.4(b)) and

store them in a lookup table (LUT). Then, the kernel function computes the analog current of each

bit-line, followed by scaling it into the proper range to index the ADC energy from the LUT. Due
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Figure 5.7: (a) Timing diagram of a PIM tile at inference runtime. (b) The simulated power traces
of a PIM tile during execution.

to ADC sharing, the ADC energy in one execution is the sum of four ADCs.

To convert all outputs in an array with 128 columns and 4 ADCs requires 32 executions.

However, the ADC traces are similar to each other, making it impractical to distinguish every

execution with measurement noise, as shown in the noisy trace Figure 5.7(b). Therefore, we treat

the energy of all 32 ADC executions as a whole for further data preprocessing.

5.2.2 Privacy Leakage

When an input image is processed by the model stored on the PIM chip, the convolution window

in the first convolution layer slides through the entire input image. Here we define two power

feature matrices, corresponding to the analog array computation and ADC conversion energy when

performing the convolution operation, respectively. The power feature matrices will have the

same size as the output feature map of the first convolution layer. An entry in a power feature

matrix corresponds to the collected power information during the convolution operation at the

corresponding position in the input feature map. Within each convolution window, the input data

are reshaped and scaled into 8 bits before being applied to the crossbar array. Processing an input bit
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in PIM can be divided in two steps: analog array computation and analog-to-digital conversion, as

shown in Figure 5.7(a). Because the eight input bits are of varying significancy, the input-dependent

power leakage at each bit computation should not be treated equally. To recover the input-dependent

power data, we used a weighted sum approach for the array power and ADC energy according to

the bit significance, as shown in Equation 5.1, 5.2 and Figure 5.8.

𝑃𝑎𝑟𝑟𝑎𝑦 =

7∑︁
𝑖=0

𝑃𝑎𝑟𝑟𝑎𝑦 [𝑖] × 2𝑖 (5.1)

𝐸𝐴𝐷𝐶 =

7∑︁
𝑖=0

𝐸𝐴𝐷𝐶 [𝑖] × 2𝑖 (5.2)

Once the weighted sum results of each convolution window have been computed, they are then

populated into the two power feature matrices. Figure 5.9(a) and (b) show examples of the obtained

array power feature matrix and the ADC power feature matrix, respectively, without considering

noise in the power data measurement. The power side-channel leakage exhibits a strong dependency

on the input data and reveals a security risk.

Both the array power dissipation and ADC energy consumption are functions of the inputs and

weights, which explains the strong dependency between the power side-channel leakage and input

data. During inference, the weights are held constant leading to a linear relationship between the

power feature matrices and the original input, as shown in Equation 5.3,

𝑦𝑖, 𝑗 = F
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(5.3)

where i, j are indices of the entry from power feature matrices, r is the radius of the convolution

window, x is the the input data and y is the corresponding entry in the power feature matrices. The

function F is used to convert the input data into power feature data after weighted sum. Regardless

of whether F represents array or ADC, it is always a one-to-one projection. As a result, the input
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Figure 5.8: Data preprocessing steps after power trace acquisition

information is preserved in the power feature matrices and leading to a severe security issue.

Additionally, as shown in Figure 5.9(a) and (b), the array power feature matrix contains more

detailed information than the ADC power feature matrix. This is because each entry in the ADC

power feature matrix represents the total energy of 32 executions, with each execution involving

four ADCs operating together. Compared with the array computation power feature matrix which

entries indicating single execution, the ADC power feature matrix produces coarser granularity.

Furthermore, from the weight mapping scheme in Figure 4.5(a), the energy consumption of the

four ADCs are associated with a weight value in four representations of MSB+, MSB–, LSB+ and

LSB–. Since the LSBs and MSBs have different impacts on the weight value, the ADC energy

output is not a direct linear transformation of the input data, where the array power feature matrix

corresponds to a linear transformation of the input data (directly proportional to the product of the

input and the weight matrix).

5.2.3 Countermeasures

The power side-channel attack approach mentioned above is capable of reverse engineering

private inputs. However, for a real-world applications non-ideal effects such as noise during data

acquisition must be considered. Noise can originate from multiple sources of the chip, including
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Figure 5.9: (a) Array power feature matrix and (b) ADC power feature matrix obtained in an ideal
simulation without adding noise, normalized into 8-bit unsigned integer range. (c) Power feature
matrices with different levels of noise injection. The noise level refers to the ratio of the standard
deviation to the maximum value in the power feature matrix.

thermal noise and human-made noise [182] [183] [184]. Thermal noise is a physical phenomenon

that cannot be eliminated. Thermal noise can be found on RRAM devices. Although ideal

capacitors have no thermal noise, when they are coupled with other components in the circuit, there

will be a combination of kTC noise. Other noise from power lines or measurement equipment

may have higher noise power and will lower the signal-to-noise ratio when the adversary measures

the power side-channel leakage. The power feature data, accounting for the presence of noise, are

obscured by a noise term N, which can be mathematically described by Equation 5.4.
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Noise can also be used to protect the system. One common countermeasure to mitigate power

analysis side-channel attacks is noise injection. Noise injection works by adding a random noise

signal to the original signal to mask the correlation between the leaked information and the secret

information [185] [186]. The noise signal is designed to be random and uncorrelated with the

original signals, so statistical analysis methods for denoising may not be valid anymore.

In Figure 5.9(c), we simulate different noise levels from 5% to 20% at side-channel data

acquisition. The percentage levels here are defined as the ratio of the noise’s standard deviation

to the maximum measured signal in the power feature. As the noise level increases, details of the

cerebrum region in the power feature matrices are lost. It is noteworthy that when the noise level

reaches 20%, the cerebrum region was effectively masked from the power feature matrices, and

only noise is circled by the skull. Hence, noise injection is a powerful countermeasure to mitigate

the side-channel leakage in the PIM system. To deal with noise injection, at the adversary end, a

more effective attack approach is required.

5.3 Machine Learning-Assisted Side-channel Attack

5.3.1 Generative Adversarial Network (GAN)

Adversaries often attempt to design elaborate denoising schemes to stripe the noise signal

and expose the valuable original signal [81]. However, using conventional denoising techniques

requires considerable effort in denoising design at both the hardware and algorithm levels. The

adversary needs to specify the noise frequency and apply a low-pass filter to cut off high-frequency

noise during measurement. Then, the adversary needs to identify the working spectrum of the

PIM system, and recover the distortion induced by the power measurement circuit. To establish the
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Figure 5.10: Schematic of the pix2pix cGAN for reconstructing image from noisy power traces.
The two power feature matrices are concatenated as the input to the generator, which is based on
a U-Net architecture. The generated image, along with the original image and the power feature
matrices, is fed to the PatchGAN discriminator for differentiation.

relationship between the restored power curve and the original data, the adversary is required to

conduct circuit analysis of the power data at each execution frame, which can be inefficient when

dealing with large volumes of input. Therefore, a flexible attacking approach with noise tolerance is

essential for efficient side-channel attacks and for prompting to designing more secure and reliable

PIM systems.

Machine learning approaches have recently been explored for side-channel attacks since they can

be highly automated and scalable, allowing attackers to extract sensitive information with minimal

human intervention from large volumes of data [187] [188] [189]. Machine learning-based side-

channel attacks involve a training phase and an attack phase. The training phase can be controlled

by the adversary by building a leakage model from the trace collected earlier using known input

data, which alleviates the requirement of collecting sufficient traces from limited resources. The

adversary can design a system-specific model to prompt a side-channel attack and recover the target

data from newly measured trace during the attack phase.

GANs are a type of DNN architecture consisting of two neural networks for generating synthetic

data: a generator and a discriminator [190]. In conventional GANs, the generator takes random

noise as input and tries to generate data to mimic the training data, while the discriminator takes
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both the real data and generated data and tries to distinguish between them. During training, the

two networks are trained together in a min-max game, where the generator tries to produce data that

can fool the discriminator, and the discriminator tries to evaluate the authenticity of the generated

data. Unlike conventional GANs, which take random noise as input, conditional GANs (cGANs)

take extra information as input, such as image features or text description [191] [192] [193] [194],

as shown in Figure 5.10. The target of cGANs is to generate more controlled outputs belonging to

a certain category or containing certain desired features. cGANs have many potential applications

in various fields such as image-to-image translation, text-to-image synthesis, and style transfer.

In a side-channel attack, the adversary’s goal is to train a neural network to reconstruct the input

information from side-channel leakage, making cGANs a good fit for this task.

Noise is required during training of both conventional GANs and cGANs because it provides

the generator with a source of randomness, allowing it to produce diverse and realistic data and

improve the model performance. Consequently, GANs are excellent candidates for coping with

noise (and leveraging the noise) during side-channel data measurement, enabling the elimination

of complex conventional denoising schemes for data acquisition. GAN-based DNNs can make

side-channel attacks more flexible and enhance attack success rate.

5.3.2 Experiment Setup

We note the reconstruction of the original image from power feature matrices is analogous to

image-to-image translation. In this study, we adopted the pip2pix cGAN [193] architecture to

reconstruct the input images from side-channel leakage. Pix2pix is a specialized version of cGANs

designed to map an input image from one domain to an output image in another domain.

The pix2pix architecture used in our experiment is shown in Figure 5.10. The generator

is a standard U-Net architecture, similar to the one discussed in Figure 5.2 for medical image

segmentation. The array power feature matrix and ADC power feature matrix, shown above and

below in the left of Figure 5.10, are concatenated in the channel direction before being fed into

the neural network. The discriminator is a patch-based CNN called PatchGAN. Two discriminator
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Figure 5.11: The PatchGAN discriminator architecture.

networks are used in the discrimination phase, by analyzing pairs of images, a real MRI image and

a fake image generated by the generator, along with the stacked power feature matrices as input,

and outputs a patch-level prediction. The architecture of the PatchGAN discriminator is shown in

Figure 5.11. For a input image, the PatchGAN takes a patch of the image as input and outputs a

matrix of values, where each value in the matrix indicates the probability that the corresponding

patch in the input image is real. For the 256×256 images, patch size of 70×70 can achieve realistic

reconstruction results. In this case, the prediction map size is 4 × 4. By computing the average of

the values in the prediction map, the PatchGAN can measure the overall realism of the generated

images.

PatchGAN has several advantages in reconstructing the lost details in the power feature matrices.

Firstly, it encourages the generator to produce more detailed and high-frequency information in

the output, as it has to fool the discriminator at the smaller patch level (vs the larger image

level). Secondly, the discriminator can provide more fine-grained feedback to the generator since it

evaluates images at the patch level. Thirdly, by using smaller patches rather than the entire image,

PatchGAN can capture local image features.

Both generator and discriminator use modules of the convolution-BatchNorm-ReLU. The gen-

erator takes a U-Net architecture with convolution kernel size of 4 × 4 with a stride of 2. In the
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encoder part of the U-Net, the convolution layer down samples the input by a factor of 2. And in the

decoder part, it up samples by a factor of 2 using transpose convolution. The U-Net in the generator

consists following layers, where the skip connections concatenate features from layer 𝑖 to layer 𝑛–𝑖,

which doubles the channel in the decoder and 𝐷 indicates the layer with a dropout rate of 50%. The

generator U-Net contains the following layers, Generator Encoder: C64–C128–C256–C512–

C512–C512–C512–C512, Generator Decoder: CD512–CD1024–CD1024–CD1024–CD1024–

C512–C256–C128, where CD denotes a Convolution-BatchNorm-Dropout-ReLU layer with a

dropout rate of 50%.

The power feature matrices and MRI images (generated or orginal) are concatenate before feeding

into the discriminator with the architecture of C64-C128-C256-C512, followed by a convolution

layer to map to a 1-dimensional output with Sigmoid function.

The brain MRI image dataset is randomly split into train, validation and test with the ratio of

0.8:0.1:0.1. A total of 3143 MRI image data are used in 200 training epochs with batch size of

1. Both original MRI images and power feature matrices are used to train the pix2pix GAN. To

incorporate the channel depth of 3 in RGB images, the power feature matrices are concatenate as

[Array, ADC, ADC]. The model is trained on an NVIDIA Tesla A40 GPU with 200 epochs, batch

size 1. We applied an Adam solver with a learning rate of 0.0002 and momentum parameters

𝛽1 = 0.5 and 𝛽2 = 0.999.

5.3.3 Result and Discussion

Figure 5.12 shows the image reconstruction results as a function of training epochs. The test

image used for reconstruction was injected with a 20% noise level in the power feature matrices.

The model is capable of generating a high-level brain structure, including a highlighted tumor

region, in just 5 epochs. However, some tiling artifacts can be observed in the reconstructed images

when the epoch number is below 20, and the detailed information of brain lobes has not been

fully reconstructed. The model is fine-tuned in the subsequent epochs to achieve more precise

reconstructions of the MRI images. Human brains are characterized by a folded cerebral cortex,
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Figure 5.12: An example showing evolution of the reconstructed images from power feature
matrices with a high noise level of 20%, over 150 training epochs.

which exhibits diverse details across different MRI images, which makes it hard to reconstruct

all detailed information. As the epoch number increases, the model was able to reconstruct more

details of sulci and gyri in the cerebral cortex, along with more precise locations of the tumor

region.

Figure 5.13 shows reconstruction results for brain MRI images corresponding to different hori-

zontal sections of the brain scan, and different tumor types and brain lobes structures, with varying

levels of noise during measurements. The original images are shown on the left, and the recon-

structed counterparts with different noise levels are shown on the right. All the reconstructed

images demonstrate accurately restored large-scale structures, including tumor type, tumor region,

and brain lobes structures. Furthermore, local details such as sulci and gyri in the cerebral cortex are

also well preserved in the reconstruction results, and closely resemble the original MRI images. The

quality of the reconstruction is evaluated using the structure similarity (SSIM) value [195], which

is calculated using a Python package skimage.metrics.structure similarity(). SSIM

replicates the behavior of human visual perception system, which is highly adapted for extracting

structural information from a scene. SSIM evaluates images based on three comparison measures:

luminance, contrast and structure. SSIM value ranges from –1 to 1, where 1 indicates perfect

similarity, 0 indicates no similarity and –1 indicates perfect anti-correlation. SSIM values of the
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Figure 5.13: Image reconstruction of four representative brain MRI images. The left column shows
the original MRI images, and the right columns show reconstruction results from power traces
measured at different injected noise levels.

example images are shown in Figure 5.13. We calculate SSIM values of all 393 test cases with

different noise levels during power trace acquisition. The results are summarized in Table 5.1. To

validate the efficacy of the input reconstruction approach, we compare the reconstruction SSIM

values with SSIM values from noisy images by adding Gaussian noise with the same standard

deviation to the original images directly. The reconstruction SSIM values show significantly better

results over the noise images, as shown in Table 5.1. It should be noted that as the noise level

increases, the quality of the reconstructed images slighted decreases, leading to blurred images

and missing or added sulci and gyri. However, most of significant information from the original
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images remains intact, even at high noise levels of up to 20%. Consequently, the cGAN-assisted

side-channel attack is effective in defeating this level of noise injection countermeasures in PIM

systems.

Table 5.1: SSIM of reconstruction results and image with Gaussian noise.

Noise Level 5% 10% 15% 20%

SSIM (reconstruction) 0.8193 0.7993 0.7826 0.7505

SSIM (noise image) 0.4295 0.2079 0.1286 0.0889

5.4 Conclusion

In this chapter, we analyzed power side-channel attacks on PIM accelerators, and show carefully

designed side-channel attacks can reverse engineer private input data from the user without any

prior knowledge of the DNN model used on the chip, thus revealing a potential significant security

vulnerability. We propose an automated input reconstruction scheme based on pix2pix cGAN for

input image reconstruction from power side-channel leakage, and demonstrate the effectiveness

of the proposed attack method on a brain MRI dataset. Our experiments show the power side-

channel attack can tolerate a high noise level in power data acquisition, and defeat conventional

noise-injection countermeasures. This work highlights a critical vulnerability in PIM systems and

underscores the need for greater attention to security considerations in PIM architecture design.
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CHAPTER 6

Physical Unclonable Function Systems Based on

Pattern Transfer of Fingerprint-like Patterns

In Chapter 4 and 5, we have discussed PIM architecture security vulnerability and potential

countermeasures. To secure chips from intrinsic physical entity, physical unclonable functions

(PUFs) are potential candidates. A PUF exploits inherent random variations introduced by man-

ufacturing processes to form secret keys on the fly [196]. In this chapter, we demonstrate a PUF

system based on fingerprint-like random planar structures through pattern transfer of self-assembled

binary polymer mixtures [197]. The proposed fingerprint PUF is compatible with back-end-of-line

(BEOL) process and offers potential for hardware security primitive in IoT industry.

6.1 Background and Motivation

Hardware secure systems used for identification, authentication, private key generation, anti-

counterfeiting as well as advanced protocols are highly desired [198][199]. PUFs are important

hardware security primitives that have been increasingly used as the hardware root-of-trust for

securing chips [196][200]. A PUF exploits the variations introduced during the manufactur-

ing process as an entropy source to offer a unique “fingerprint” to each individual chip. When

applying a challenge (input) to a PUF, it will generate a unique and unpredictable response (out-

put). As challenge-response pairs (CRPs) are device specific, the PUF technique can be used

for authentication and private key generation, as shown in Figure 6.1. So far, numerous PUF
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Figure 6.1: PUF for secret key generation.

systems have been constructed, such as optical PUF [201], coating PUF [202], arbiter PUF [203],

ring-oscillator PUF [199], SRAM PUF [204][205] as well as non-volatile memory based PUFs

[206][207][208][209][210]. However, most of conventional PUFs rely on small variations from

unknown factors during fabrication and require complex test schemes, pre-processing or post-

processing units to compensate for the minor variation [211][212]. Additionally, PUFs based on

active devices suffer from instability as they are sensitive to voltage, temperature, humidity and

prone to output errors [213]. Hence, a PUF system based on native properties of passive devices

that can be easily implemented and tested is valuable to the semiconductor industry [214].

Figure 6.2 shows the schematic of a secure-aware chip featuring a combination of a PIM

engine and a PUF. This innovative design facilitates lightweight and energy-efficient security

protocols tailored for edge AI/ML applications. The PUF, with capabilities in authentication and

cryptography key generation, ensuring secure access and data protection for PIM engine, guarding

against side-channel attacks discussed in Chapter 4 and 5. The control flow for the secure-aware

AI chip is shown in Figure 6.2. When PUF serves as an authentication control for the PIM engine,

only authorized users can access the system. The secure verification flow initiates by sending a

challenge and an external ID to the PUF. Subsequently, the PUF compares the external ID with

the internal ID derived from the PUF response. The PIM engine is activated only when the

comparison passes, preventing malicious users without a valid ID from waking up the PIM engine.
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Figure 6.2: Secure PIM chip with the PUF implementation.

This prohibits attackers from querying the system to extract confidential model information, such

as model architectures and weights. Certain side-channel leakages are known to be correlated

with plaintext. The PUF-generated key can be used to encrypt and decrypt sensitive information,

ensuring that only the ciphertext is susceptible to extraction via side-channel attacks. While PEs

must execute computations on plaintext, encryption can be applied to the data communication

process of PIM engine, thereby mitigating the side-channel leakage at the NoC, I/O buffers and

off-chip communications. The ciphertext remains encrypted until the downstream computation

commences, offering protection for sensitive data and thwarting attempts by attackers to breach

private data.

In this chapter, we develop a PUF system by taking advantage of the unique fingerprint-like

features originated from the phase separation of a polystyrene (PS) and poly (methyl methacrylate)

(PMMA) polymer mixture during self-assembly. Phase separation of binary polymer mixtures

is driven by the system to reduce its total free energy, and results in fingerprint-like or dot-like

microstructure [215][216]. The large shape variation is transferred to the conductance variation

through pattern transfer. The proposed PUF attains the requirement for uniqueness, entropy, and

reliability at high temperature. By tuning the area ratio of the electrode size to the feature size,
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Figure 6.3: PUF device fabrication process.

the proposed fingerprint PUF can function in either differential mode or on/off mode. Since the

fingerprint PUF can be integrated at BEOL, it allows additional security features to be added at a

separate fab after the front-end processes, providing flexibility and full control for the end users.

6.2 Device Fabrication and Characteristics

The fabrication process is shown in Figure 6.3. The PUF devices are constructed by sandwiching

fingerprint patterns between top electrodes (TE) and bottom electrodes (BE). After BE fabrication

and SiO2 film deposition, phase separation of the PS and PMMA domains are formed. The random

domains are then transferred to conductive and insulating regions by the following steps. First,

PMMA is removed by acetic acid wet etch. Then, the remaining PS acts as a mask for CF4/CF3

plasma etch of SiO2 to transfer the domain patterns. The PS is then removed by oxygen plasma

strip. To define the active area in the PUF devices, a blank SiO2 layer is deposited, followed by a via

structure formation through CF4/CF3 plasma etch. The active region is defined by the via structure

(highlighted in Figure 6.4(a) as the dashed circle). Conductive TiOx (𝑥 < 2) is then deposited in

the exposed regions in the via (Figure 6.4(a)). Since the conductance of TiOx is much higher than

SiO2, the fingerprint-like PMMA domain pattern is transferred to the effective conductive area,
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Figure 6.4: (a) Scanning electron micrograph (SEM) image of a device after fabrication. Scale
bar: 10 𝜇𝑚. Inset: device cross-section schematic. (b) Schematic of the PUF system. Showing the
device pair used to generate a single binary output.

and variations in the PMMA domains are reflected in variations in device conductance values. An

SEM image of a device with 10 𝜇𝑚 contact is shown in Figure 6.4(a). As the PMMA domain

formation is random, the effective conductive TiOx area of each device is expected to have a large

variation. The PUF chip generates random bits using adjacent differential pairs, as Figure 6.4(b)

illustrates. The large device conductance variations, originated from the fingerprint pattern, allows

us to implement PUF using differential pairs, schematically described in Figure 6.4(b). Briefly,

the output current value of two adjacent devices will be read and generate a single bit (1 or 0),

depending on the sign of the output current difference. The unique output patterns from CRPs

where the challenge is the row addresses, and the response is the binary outputs.

Figure 6.5(a) shows the I–V characteristic of 50 devices from a single chip. The read current

at 0.1 V exhibits a large variation range from 20 𝜇𝐴 to 100 𝜇𝐴 . The conductance values of these

devices correlate well with the areas of the TiOx region, extracted from the SEM images. The SEM

images of 4 typical device (labeled in Figure 6.5(b)) are shown in Figure 6.5(c), with the conductive

and insulating regions colored blue and red, respectively. Figure 6.5(d) shows the conductance

distribution of 350 devices with 10 𝜇𝑚 via diameter. Here the diameter of the contact via is about

twice of the fingerprint pattern width. The measured conductance exhibits a Gaussian distribution
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Figure 6.5: (a) I–V characteristic of 50 devices. (b) Conductance values of devices with respect
to the exposed TiOx areas. (c) SEM image of 4 devices in (b) with different exposed TiOx areas.
Scale bar: 5 𝜇𝑚. (d) Histogram and fitting curve of conductance extracted from 350 devices.

with the mean value of 397 𝜇𝑆 and standard deviation of 132 𝜇𝑆.

6.3 PUF Construction and Evaluation

6.3.1 Baseline PUF Performance Evaluation

In our experiment, each chip contains an 8 × 64 array. The address sets of two adjacent rows

are used as challenges, and the 64 pairs of devices in the two rows produce a 64-bit response, by

comparing the conductance of the two devices in the corresponding rows (Figure 6.4(b)). Hence,

7 CRPs with 64-bit length can be extracted from one chip. 21 CRPs from 3 chips were used to

evaluate the PUF performance. The uniqueness of a PUF represents how distinct of a response

comparing to others. It is measured by evaluating the fractional inter Hamming distance (HD)
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Figure 6.6: (a) Histogram of inter-HD. (b) Correlation matrix of all CRPs. (c) Entropy of 21 CRPs.
(d) Intra-HD at 25 °C and 90 °C.

among a group of CRPs. The ideal value of inter-HD is 50% and it is calculated by Equation 6.1,

where HD(r𝑖, r 𝑗 ) is the HD of i-th and j-th response, and m is the length of response strings:

inter-HD =
2

𝑛(𝑛 + 1)

𝑛∑︁
𝑖= 𝑗+1

𝑛−1∑︁
𝑗=1

HD(𝑟𝑖, 𝑟 𝑗 )
𝑚

× 100%. (6.1)

Figure 6.6(a) shows the probability density function of inter-HD among 210 (𝐶21
2 ) pairs of CRPs.

The mean value of inter-HD is 51%, corresponding to a nearly ideal uniqueness. Figure 6.6(b)

shows the correlation matrix of these CRPs. Only the value on the diagonal entries of the matrix

is 1, and the others are all close to 0, suggesting no correlation between different responses.

Entropy is the metric to measure the unpredictability of responses. It follows Equation 6.2,

where p represents the probability of finding 1s in the binary bit stream:
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𝐸 = −
[
𝑝 log2 𝑝 + (1 − 𝑝) log2 (1 − 𝑝)

]
. (6.2)

The optimal probability of finding 1s and 0s in a response should be 50%, and the ideal value of

entropy is 1. Figure 6.6(c) shows the entropy of 21 CRPs. All of them are close to the ideal value

of 1, verifying random bits generated by the fingerprint PUF are unbiased.

We evaluated the reliability of the PUF at both room temperature and elevated temperature.

The same challenges were used to obtain responses from the same PUF in different trials. The

reliability is evaluated by calculating the intra-HD at different trials. Figure 6.6(d) shows the

intra-HD at 25 °C and 90 °C. At 25 °C, the average intra-HD is 2.4%, close to the ideal value 0.

High temperature reliability was then measured after the chip was baked at 90 °C for 30 minutes.

The average intra-HD at 90 °C degrades to 5.3%, which can be explained by the decrease of the

TiOx film resistance at elevated temperatures, so the measurements are more affected by parasitics

including contact resistance and line resistance. We expect the performance will be improved by

integrating the PUF with sensing circuitry to minimize the parasitics. The bit fluctuation can be

additionally compensated by temporal majority voting, masking vulnerable bits or applying other

error correction code [211][217][218]. Better control in the fabrication process that improves the

film uniformity will further improve the PUF behavior at both room temperature and elevated

temperatures.

Key results of the fingerprint PUF and comparison with prior studies are listed in Table 6.1.

Our fingerprint PUF achieves almost desired uniqueness (Inter-HD close to 0.5) and entropy (close

to 1). Intra-HD of our PUF is also comparable with other’s results at both room and elevated

temperature. Compared to other works integrated with advanced technology node, our fingerprint

PUF has more simple structure, low-cost fabrication process, and compatible with back-end-of-line

process. Besides, our approach does not require any additional stabilization strategies, e.g. error

correction code in SRAM PUF, SET/RESET for splitting resistance in RRAM PUF.
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Table 6.1: Comparison of different PUF designs.

Technology Inter-HD Intra-HD Intra-HD
(HT)

Entropy ID Length

SRAM
[219]

130 nm 0.6470 0.0304 N/A N/A 128

RRAM
[220]

130 nm 0.4999 0 0 (150 °C) 0.9999 128

RRAM
[221]

N/A 0.51 0.0122 0.0593
(90 °C)

N/A 64

Inverter
[220]

65 nm 0.4998 0.0300 ∼0.045
(125 °C)

0.9998 128

MRAM
[222]

N/A 0.47 0.0225 N/A N/A 64

Graphene
FET [207]

N/A 0.47 < 0.07 ∼0.07 N/A 64

This Work
[197]

N/A 0.51 0.024 0.053
(90 °C)

0.987 64

6.3.2 Dual Mode Function

By adjusting the via size with respect to the polymer pattern size, a different distribution can be

obtained using the same fabrication process. For example, we decreased the via diameter to 1 𝜇𝑚

and measured the conductance of 350 devices, as shown in Figure 6.7(a). In this case, almost 50%

of the devices are insulating due to the via completely misses the TiOx region. The conductance of

the conductive ones still shows a large variation due to variations of the TiOx region area within the

via. This distribution allows us to use a different approach to build PUF, as shown in Figure 6.7(b).

Unlike the differential mode, each device is compared with a pre-determined reference current of

0.9 𝜇𝑆 equivalent conductance. The output bit is either 1 or 0, based on whether the read current

is higher than the reference current.

Based on this concept, we implemented 20 PUF instantiates with 16-bit length. We evaluated

the uniqueness of the PUF by examining the inter-HD and the correlation matrix, which are shown

in Figure 6.7(c) and Figure 6.7(d), respectively. The inter-HD achieves a mean value of 51%. In
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Figure 6.7: (a) Histogram of conductance extracted from 350 devices with 1 µm via. (b) Schematic
of PUF system based on the on/off mode. (c) Histogram of inter-HD among CRPs. (d) Correlation
matrix of all CRPs.

the correlation matrix, except the entries in diagonal, most other entries are close to 0. Therefore,

the on/off mode fingerprint PUF also meets the uniqueness requirement.

6.4 Simulation Analysis

To get more thorough understanding of bit-error rate (BER) and how the reliability can be

improved, we studied the BER distribution and how masking vulnerable bits can improve the

reliability by simulation. The masked cells are selected from ones with minimum difference in

read out current values. The parameters of the simulation are set up by the area distribution of

the measured fingerprint patterns. We further assumed different noise levels in the measurement.

We simulated 1024 64-bit length responses with 10000 measurements at different noise levels with
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Figure 6.8: Masking syndrome bits to enhance bit-error rate (BER). (a) Noise std = 0.05, masking
8 bits. (b) Noise std = 0.1, masking 8 bits. (c) Noise std = 0.1, masking 12 bits.

Figure 6.9: (a) Fourier extrapolation prediction on 8 bits. (b) Color map showing prediction
accuracy vs. 𝑁 𝑓 and predicted bits.

standard deviation 0.05 and 0.1. As shown in Figure 6.8(a) when the noise standard deviation is

0.05, the BER of fingerprint PUF maintains a low average value below 0.035. With masking 8

syndrome bits, the BER will be lowered to 0.005. When the noise level increased to 0.1 standard

deviation, BER will increased to 0.068 accordingly. As shown in Figure 6.8(b) and (c) by masking

out 8 and 12 syndrome bits, BER will decreased to 0.025 and 0.015, respectively. Therefore, by

properly choosing the number of masked bits, the BER can be decreased to lower than 0.02 even at

large noise levels.

At last, we proved our fingerprint PUF against machine learning attack by implementing a
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Fourier extrapolation algorithm with different training bits and Fourier series order 𝑁 𝑓 . Fourier

extrapolation is an effective technique to predict periodic data. If the self-assembled polymer

pattern is periodic instead of fully random, then the latter bits can be predicted from the previous

ones. The equation used for Fourier extrapolation is shown in Equation 6.3, 𝑓 (𝑡) is the estimation

function that is based on each binary bit of a CRP generated by fingerprint PUF.

𝑓 (𝑡) = 1
2
𝑎0 +

𝑁 𝑓∑︁
𝑛=1

(𝑎𝑛 cos 2𝜋𝑘𝑡 + 𝑏𝑛 sin 2𝜋𝑘𝑡). (6.3)

Figure 6.9(a) shows an example of the prediction. The parameters in the estimation function

are determined by the training bits. The function will then be extrapolated to predict the predicted

bits. We examined the prediction accuracy with Fourier series order from 1 to 10, as well as the

number of predicted bits from 1 to 10. Figure 6.9(b) shows the color map of prediction accuracy,

which lies between 35–65%. In most scenarios, the prediction accuracy is close to 50%, meaning

no better than random guess.

6.5 Conclusion

In this chapter, we show that the intrinsic randomness in fingerprint-like patterns from PS/PMMA

polymer phase separation can be used as an entropy source for PUF system design. With properly

designed device structure, different conductance distributions can be obtained and used for PUF

implementation. The fingerprint PUF achieves excellent uniqueness, entropy, and reliability, and

is secure enough to defend machine learning attacks.
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CHAPTER 7

Summary and Future Work

7.1 Performance Analysis of DNN Accelerators

In this dissertation, performance modeling and power modeling are done with event-driven,

cycle-accurate simulators. These simulators consider the full system of the architecture, and

abstract each sub-module as state machine. The simulators are driven by events of each sub-

module. All events, such as data forwarding and execution will be recorded with an associated

latency. The future plans will further optimize simulators for PIM architectures based on DRAM and

RRAM. The optimization will cover defining, architecting, designing, implementing and deploying

bit-accurate, cycle-accurate transaction level simulators.

As for DNN accelerators, early-stage simulation provides a systematic methodology of under-

standing the performance improvement and limitation for DNN accelerators as a function of specific

characteristics of the workload and architecture design [223]. Therefore, an architecture simulator

should consider the crucial metrics of DNN accelerators. Key metrics of DNN accelerators are

listed and analyzed below, which are not constrained to PIM architectures only.

• Accuracy: The quality of how well the accelerator performs on certain tasks. Besides tasks

under test, a DNN accelerator should be designed with redundancy and reconfigurability

to support emerging and more complex models. Accuracy can also represent arithmetic

accurate with different data precision, which means it needs to support various data type such

as BF16, TF32, FP16, INT8, etc.
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• Latency: We expect to lower the latency for inference tasks and interactive application.

Latency can be optimized by optimizing bandwidth and hiding memory access latency.

• Throughput: For high volume data with large batch size, throughput is an important metric

at both training and inference. Optimizing peak computation capability or adding more PEs

can not improve the throughput solely. We should also maximize the PE utilization rate.

• Power/Energy: Power and energy are important for both IoT devices and servers due

to the limited battery and cooling capability. Adopting low power design methodology at

simulation phase can greatly help analyzing.

• Flexibility/Scalability: At the software level, the DNN accelerator should support multi-

ple machine learning frameworks for easy development. At the hardware level, the DNN

accelerator should offer scalability at different platforms.

• Cost: Besides architecture and chip design cost, cost at system level integration should also

be considered. In most cases, this is not required to be covered in the simulator.

The simulators developed in this thesis are flexible for adding new features besides supporting

baseline benchmark analysis. Some features that can potentially improve the functionality for future

studies are summarized below. 1) Support neural networks with sparse data and model pruning.

2) Allow asynchronous communication among sub-modules and dynamic voltage and frequency

scaling. 3) Optimize control flow to reduce instruction overhead. 4) Add more PEs to improve

peak computation capability and increase memory bandwidth using more advanced technology

node and memory technology. 5) Distribute workload to balance computation and memory, further

improve PE utilization rate.

In this dissertation, the skeleton of the PIM simulators for DRAM and RRAM are implemented

and improvements will be made the future. The future work will mainly be in three directions:

1) develop simulators to support PIM architectures based on other type of memory, such as 3D

NAND flash; 2) implement more functions to the simulator and 3) analyze the event results from

the simulation. The detailed future works are summarized as follows.
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• New Memory: Adopt the feature of event-driven simulators to support PIM architectures

with other memory. Besides using the simulation framework for event recording, dataflow,

computation logic and weight value mapping should also be tailored based on different

memory features.

• Digital Logic: Implement simulation functions for digital components for control and data

communication. For example, the simulator can have digital logic to support machine

learning model advancement such as sparse data processing and model pruning.

• Model Loading Automation: Load various pre-trained DNN models directly from PyTorch

model files with the specified system configuration. A plan for it is to use PyTorch C++ API

to load model weight and model connection diagram. This will be helpful for develop PIM

architectures for general machine learn applications.

• Event Data Analysis: Dynamic event data can provide many detailed information in hard-

ware architecture design. Automatic analytical methods will make heterogeneous system

design more efficient.

7.2 Hardware/Software Co-design of Transformer Accelerator

In Chapter 3, we propose a DRAM-based PIM architecture for GPT acceleration. Besides the

autoregressive generation stage, where tokens are generated one by one, a summarizing stage that

processes the user’s input is also needed. In this step, the model typically processes the input by

matrix multiplication in the attention layers. Similarly, encoder-only Transformers such as BERT

[97] process the entire sentence at once. PIM-GPT is optimized for decoder-only Transformers. In

the future work, we will optimize the system, architecture, dataflow and mapping scheme to support

both encoder and decoder architectures. A potential direction is exploiting high storage capability

of 3D NAND flash for LLM mapping and tiling. Hence, more diverse models inherited from

Transformer are expected to be supported in the future. As for hardware optimization, the dataflow
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and mapping scheme of PIM-GPT are inspiring for future architecture development. The ideas of

improving computation parallelism and utilizing data locality are transferable to other Transformer

accelerators. The future work can take advantage of memory chips with higher storage capability to

support larger Transformer models. Moreover, if the memory capacity is sufficient, weight matrices

can have multiple copies to support computation parallelism.

Besides hardware optimization, optimizing the Transformer model and algorithm can also boost

the performance of accelerators. LinearTransformer [128] developed a linearized attention, which

express the self-attention as a linear dot-product of kernel feature maps. By doing so, the memory

complexity is reduced from O(𝑁2) to O(𝑁), where 𝑁 is the sequence length. Hence, it offers

great potential to accelerate very long sequences. Attention Free Transformer [224] does not

need to compute and store the expensive attention matrix, instead the result is multiplied in an

element-wise fashion. The memory complexity of this operation is linear with respect to both

the context size and the dimension of features, rendering it compatible with both large input and

model sizes. The removal of FFN layers in the decoder and the utilization of a shared FFN across

the encoder in [225] significantly reduces the number of parameters, leading to substantial gains

in computational efficiency with only a marginal decrease in accuracy. These approaches can be

potentially adopted for Transformer inference acceleration. Moreover, recent studies have shown

that the size of Transformer models can be greatly reduced by quantizing the weight to 8-bit [226],

4-bit [227] or even binary [228] without significant degradation in accuracy. The quantization

approach can be used to reduce the computation and memory overheads. Redesign floating point

arithmetic unit to integer counterpart can also alleviate area and power overheads.

As a summary, the future work on PIM architectures for Transformer beyond PIM-GPT can

target on the optimization at hardware level, model level and data level. At hardware level,

using memory technology with higher capacity can load and store larger models. At model level,

adopting Transformer model optimization can greatly reduce the required computation and memory

resources. At data level, training the Transformer model with quantized data can also make the

computation more efficient.
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7.3 Security of PIM and Neuromorphic Computing System

In Chapter 4 and 5, security vulnerability of 1) model extraction attack and 2) privacy breach

are investigated on RRAM-based PIM architecture. In this thesis, we mainly focus on the privacy

concerns of PIM architecture for machine learning inference. However, there are also concerns

on trustworthiness of the machine learning applications, which can also be used to attack PIM

architectures. Attacks targeting trustworthiness aim to influence model behavior during inference

or training phases by manipulating or inserting input data, potentially causing malfunctions during

inference or the evolving of a compromised model during training. Such attacks are pervasive

across various machine learning systems. These types of threats affect the accuracy of models, and

can be applied at both inference and training phases. At inference, input data are forwarded to PIM

system from sensors or data memory, after necessary preprocessing. Adversaries attempt to deceive

the machine learning systems by perturbing the input data or pre-processing pipeline. The goal of

adversaries is to make the perturbations imperceptible to system users, but cause the production of

incorrect outputs. At training, adversaries have more options to poison the dataset, such as injecting

malicious data or manipulating labels. The objective of the adversaries is to generate vulnerable

machine learning systems for inference users. Adversarial attacks and poisoning attacks are most

representative attacks on machine learning models at inference and training, respectively. The

future work on security can analyze the vulnerabilities in the trustworthiness of PIM architectures

and study the mitigation strategies to overcome them.

Besides PIM architectures, RRAMs are also used in a wide range of emerging neuromor-

phic computing schemes, such as spiking neural networks (SNNs) and reservoir computing

[229][230][231]. Drawing inspiration from the human brain, recent advancements in neuromor-

phic computing technologies have emerged as viable alternatives to address the power and latency

limitations inherent in traditional digital computing. The implementation of sparse activations ef-

fectively minimizes data movement within and beyond the chip, thereby accelerating neuromorphic

workloads and resulting in significant gains in both power efficiency and latency when compared

to analogous tasks executed on conventional hardware [232]. Given the fundamental difference of

119



SNN and conventional neural networks, SNNs may have risks in unaware vulnerabilities.

However, due to the involved sparsity feature, low power side-channel leakage and reduced bus

access, the security of the neuromorphic computing systems have not been evaluated. Hence, me-

thodically analyzing vulnerabilities of the neuromorphic computing systems from the device, circuit

and architecture levels is of high importance and value to the neuromorphic computing community.

Potential directions include 1) adversarial attacks on neuromorphic systems, 2) identifying privacy

concerns and designing privacy-preserving techniques, 3) investigating vulnerabilities related to the

hardware components of neuromorphic chips, 4) modeling side-channel leakage and implementing

countermeasures. The research on vulnerability can in turn provide a guideline for designing more

reliable neuromorphic computing systems.
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