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ABSTRACT

Deep learning-based lossy signal compression methods have achieved substantial

progress and significantly enriched signal compression methodologies in recent years.

There are two major aspects that signal source coding can benefit from learned meth-

ods. Firstly, the data-intense nature of deep signal compression methods allows a

good capture of the probabilistic distribution of feature representations, which leads

to efficient entropy coding with proper modeling. Secondly, neural network architec-

tures can provide powerful solutions to feature extraction and representation learning,

therefore enabling the elimination of spatial and temporal redundancies by mapping

the raw signal to compacter feature domains. This thesis presents four related works

addressing the compression problem of different data formats, including speech audio,

image, video, and point cloud.

The first work introduces a unified compression method that uses generative ad-

versarial networks (GAN) to compress speech audio and images. The compressed

signal is represented by a latent vector fed into a generator network, which is trained

to produce high-quality signals that minimize a target objective function. The alter-

nating direction method of multipliers (ADMM) based non-uniform quantization is

incorporated to effectively discretize the resulting latent vectors.

The second work presents a deep video coding framework that predicts and com-

presses video sequences in the latent vector space. The proposed method first learns

the efficient feature domain representation of each video frame and then performs

inter-frame prediction in that lower-dimensional space. To exploit the temporal cor-

relation among the feature space frames, it employs a convolutional long short-term

x



memory (ConvLSTM) based network to predict the representation of the future frame.

The transmitted bitstream is obtained by quantizing and entropy encoding the feature

space residual. The application of the proposed video prediction scheme is studied in

the anomaly detection task.

The third work aims to address the motion pattern adaptability issue that widely

exists in video codecs by a block wise mode ensemble deep video compression frame-

work. It selects the optimal mode for feature domain prediction adapting to different

motion patterns. Proposed multi-modes include ConvLSTM-based feature domain

prediction, optical flow conditioned feature domain prediction, and feature propaga-

tion to address a wide range of cases from static scenes without apparent motions

to dynamic scenes with a moving camera. Guided by a binary density map, dense

and sparse post-quantization residual blocks are coded in separate entropy coding

schemes. On top of that, applying optional run-length coding to sparse residuals can

further improve the compression rate.

The last work focuses on exploring methods to compress light detection and rang-

ing (LiDAR) data, which extends the study of deep signal compression problems from

2D to 3D domain. LiDAR sensors are widely adopted in a number of applications in

the autonomous navigation, virtual reality (VR), and augmented reality (AR) indus-

tries, where communication bandwidth is one of the top concerns but understudied.

With point clouds and range images being two interchangeable LiDAR data repre-

sentations, a hybrid framework is introduced to take the best of both worlds. The

proposed pipeline mostly relies on a prediction-based approach to exploit spatial and

temporal correlations in range images, while providing an octree-based path as an

important fallback in certain cases to preserve the reconstruction quality. A content

adaptive point cloud sampling technique is also introduced to promote extra com-

pression gains while proving to have minimal impact on machine perceptual tasks.

xi



CHAPTER I

Introduction

1.1 Big Data

The era of big data [99] has emerged as an evolutionary force in various industries,

ranging from business and healthcare to scientific research and social media. Rapid

technology advancements and the widespread adoption of digital platforms have led

to an unprecedented generation of vast amounts of data from diverse sources such as

text, image, video, and 3D representations. Big data is characterized not only by its

volume but also by its variety, velocity, and veracity. This wealth of information has

opened up new opportunities for data-driven decision-making and insights, but it also

presents significant challenges that need to be addressed. No matter if we target all

the data or just a little, we need to compress the data for less streaming bandwidth

and memory requirements.

Recent studies have highlighted the dominance of streaming audio and video con-

tent in internet traffic for the year 2022, accounting for a significant majority of the

total data volume (over 80% as reported by Cisco). As internet traffic continues to

grow, the issue of signal compression becomes increasingly critical in people’s daily

lives. The size of compressed signals varies based on factors such as resolution, sam-

pling rate, and compression method. As summarized in Table 1.1, the file size indeed

increases progressively from audio to video, with point cloud having the largest stor-
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Table 1.1: Averaged file size of various media contents, the data amount, resolu-
tion/sampling rate, and file format are picked based on their common use cases.

Media Content Amount/Duration Resolution/Sampling Rate File Format File Size

Audio
1 hour 24 bit & 96 kHz FLAC 2.02 GB
1 hour 256 kbps MP3 0.12 GB

Image
1000 1024×768 pixels PNG 0.44 GB
1000 1024×768 pixels JPG 0.08 GB

Video
1 hour 2160p / 30 fps AVC 20.51 GB
1 hour 2160p / 30 fps HEVC 10.36 GB

Point Cloud
640 billion 1000×1250 m2 ASCII XYZ 0.51 TB
640 billion 1000×1250 m2 Octree 0.28 TB

age requirement among all the types of signals. While audio signals generally require

less storage space than more complex data types, the average file size for audio ranges

from approximately 0.12 GB to 2.02 GB for a 1-hour duration, indicating considerable

storage demands. Video data, in comparison, has even larger file sizes than audio,

underscoring the growing importance of signal compression to manage data volumes

effectively. To tackle this challenge, compression techniques are utilized to effectively

reduce the size of raw data while retaining essential information, catering to both hu-

man perception and machine vision needs. Therefore, the subsequent section presents

an overview of signal compression across various types of data.

1.2 Signal Compression and Its Challenges

Signal compression is a fundamental problem in the field of digital signal process-

ing, aiming to efficiently represent and store data while minimizing information loss,

as discussed in the paper [59]. Traditional compression techniques, such as transform

coding and statistical modeling, have been widely used to achieve high compression

ratios for multiple types of signals. However, these methods [118, 14, 136] often re-

quire handcrafted designs and may not fully exploit the underlying feature, leading

to sub-optimal compression performance for complex signals.

Audio compression is possible due to the inherent redundancy and limitations in

2



human auditory perception. In audio signals, there are often areas of redundancy,

where certain frequencies or temporal patterns repeat, making the representation

inefficient. Compression algorithms [56, 118] exploit this redundancy to remove un-

necessary information while preserving essential perceptual features. Additionally,

the human auditory system has limited sensitivity outside of the 20Hz-20kHz sound

frequency range. By employing perceptual coding techniques, audio compression al-

gorithms [130] can prioritize preserving perceptually important information, allowing

for more efficient data representation without significant loss in quality. Overall,

audio compression takes advantage of both signal properties and human perceptual

characteristics to achieve efficient storage or transmission, while still maintaining sat-

isfactory audio fidelity for most practical applications.

Image compression is made possible by the wide presence of spatial and spectral

redundancies in images. Spatial redundancy refers to the repeating patterns or similar

pixel values within neighbor regions in an image. Spectral redundancy occurs when

the same information is present in multiple color channels or spectral bands. Image

codecs [14, 126, 150] leverage these redundancies to efficiently represent images with

reduced file size. By employing various compression techniques, such as transform

coding [10], quantization [45, 17], and entropy coding [71, 124], image compression

achieves significant data reduction while preserving essential visual information. This

allows for faster data transfer, reduced storage requirements, and efficient handling

of large-scale datasets without compromising the overall visual quality for various

applications in computer vision and image processing domains.

Video compression is feasible given the presence of temporal and spatial redundan-

cies. Video compression [160] techniques, such as inter-frame prediction and motion

compensation, leverage the similarities between frames due to slow motion or gradual

changes in objects and scenes. As a result, only the differences or motion information

between them need to be encoded. Based on the above insights, compression methods

3



such as the popular AVC and HEVC [136] standards, achieve substantial code size

reduction while maintaining acceptable visual quality for various applications. This is

crucial for video streaming services, video conferencing, video surveillance, and social

media, where efficient data handling and transmission are essential for seamless user

experiences.

Point cloud compression leverages spatial redundancies in 3D point cloud data.

This comes from the extensive presence of adjacent 3D points sharing similar geo-

metric attributes, such as coordinates and color information. Various point cloud

compression techniques [132], such as octree-based encoding [128], geometry sim-

plification, and predictive coding [47], leverage spatial correlations and inter-point

relationships to compactly represent the point cloud while preserving the geometric

features. Efficient point cloud compression is essential for a number of applications,

including 3D modeling, AR/VR, and driving assistance, in that it facilitates real-time

processing and enhances the overall performance of systems relying on 3D spatial in-

formation.

Signal compression poses several challenges that researchers and engineers contin-

uously strive to overcome and achieve performance improvements [102, 80, 85, 57].

Finding a balanced solution between high compression efficiency and maintaining

acceptable signal quality is a fundamental problem in data compression problems.

Different applications may have varying requirements for signal fidelity, making it

necessary to optimize the compression technique accordingly. Many advanced com-

pression algorithms involve complex mathematical operations and transforms, leading

to high computational requirements. Developing compression techniques that find a

good feature representation for downstream tasks is crucial, especially for real-time

and resource-constrained applications. In this way, it is possible to exercise various

downstream tasks with more compact data representations in the lower-dimensional

space.
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Figure 1.1: Left: Rate-distortion tradeoff visualized as a curve. Right: Image quality vs.
file size.

In lossy signal compression, the information cost of the discretized representa-

tions and the quantization error are two competing costs that must be traded off [11].

This tradeoff describes the inherent relationship between the compression rate and

the distortion introduced during the compression process. As visualized in Figure

1.1, Shannon’s unconstrained R-D curve depicts a scenario where the code length

expectation is equal to its theoretical lower bound (entropy). The actual achievable

tradeoff gives a higher bit rate under the same level of distortion, or more distortion

under the same bit rate. Signal compression methods aim to achieve a tradeoff that

is as close to the theoretical one as possible. While the goal of signal compression

is to reduce the data rate and maintain an acceptable level of reconstruction qual-

ity, the notion of latency is another key player that is worth studying. It generally

requires more exhaustive searching or exploration to approach the optimal R-D trade-

off, which usually takes longer encoding time. For instance, different configurations

of the presets in AVC/HEVC will lead to widely diverse encoding latencies. There-

fore, achieving the right balance between rate, distortion, and time efficiency is key

to developing effective signal compression systems that cater to the specific needs of

various applications.
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1.3 Deep Neural Networks and Representation Learning

Deep Neural Networks (DNN) emerged as a novel approach in the field of com-

puter vision, ushering in a new era of intelligent data processing and analysis. By

leveraging the power of deep learning, [51] has demonstrated remarkable capabili-

ties in understanding and interpreting visual data, rivaling or even surpassing human

performance in various vision tasks. From image classification [31] and object de-

tection [120] to semantic segmentation and image generation, DNNs have become

indispensable tools in addressing diverse challenges in the vision domain.

The success of DNNs in vision tasks can be attributed to their ability to abstract

feature representations from raw data. By composing multiple layers of simple, non-

linear processing units, [139] progressively extracts features that capture intricate

patterns and semantic information. The inherent capacity to learn from vast amounts

of labeled data enables DNNs to generalize well across different visual domains and

adapt to diverse imaging conditions.

There have been significant advancements in machine learning in recent years,

showing revolutionary impact in numerous fields, including recommendation systems

and content filtering on social networks. Popular algorithms like Logistic Regression

[38, 107], Decision Trees [69], Support Vector Machines [129], and Gaussian Mixture

Models [158] have been widely adopted. However, these conventional machine learn-

ing methods face limitations when dealing with data from a wide range of sources,

given that they heavily rely on manually crafted feature extractors to transform the

raw data into appropriate internal representations [76]. For instance, in diagnosing

breast cancer, traditional machine learning algorithms require human-defined inter-

mediate features, like tumor radius, texture, smoothness, and area, for prediction.

Nonetheless, these algorithms may struggle with advanced tasks like visual under-

standing, making it non-trivial to encapsulate semantic meanings in these features.

Deep learning establishes a new paradigm by enabling the transformation of low-
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level raw inputs into high-level abstract representations through the composition of

multiple non-linear modules. This approach allows DNNs to implicitly learn param-

eterized functions by chaining together these transformations. In recent years, the

success of deep models has inspired the exploration of deep learning based compres-

sion methodologies. Specifically, deep learning allows for more complex and flexible

mappings from data to feature space, hence encouraging more accurate estimations

or predictions [55, 80, 152] to reduce the information entropy (the theoretical lower

bound of bitrate). More importantly, building an end-to-end trainable deep frame-

work that incorporates both the data compression model and the entropy estimation

model [12, 105] fundamentally resolves the rate-distortion joint optimization prob-

lem. The above breakthroughs have now made learning-based codecs become the

state-of-the-art methods for compression in a wide range of data formats, and further

encourage studies in representation learning and probability modeling.

1.4 Dissertation Organization

This dissertation demonstrates the study of compression schemes targeting four

signal types: image, speech, video, and point cloud. The proposed methodologies

center on deep learning-based algorithms for lossy signal compression and their subse-

quent feature space applications. The signal compression process encompasses several

stages, including signal pre-processing, decorrelation, quantization, entropy coding,

and post-processing, grounded in the uttermost goal of reducing code size while en-

suring acceptable quality degradation. With the focus on finding optimal compact

feature representations and leveraging signal redundancies via different techniques in

each of these stages, the details of each work are elucidated in the following chapters.

In Chapter II, a novel approach, BPGAN [84], is explored for signal compression

using a unified framework for speech and image. In this GAN-based framework, the

signal is compressed into a latent vector representation, which is then used as input
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to a generator network. The generator is trained to produce high-quality, realistic

signals that minimize a specified target objective function. To efficiently quantize

the compressed signal, BPGAN employs an iterative back-propagation method with

an alternating direction method of multipliers optimization. This iterative process

helps identify non-uniformly quantized latent vectors optimized for the best quality

at target compression rates. The framework achieves a relatively high compression

ratio while maintaining a high-quality reconstructed signal with intricate details. Per-

formance of the proposed algorithm using various metrics, which collectively demon-

strate the effectiveness and superiority of BPGAN compared to existing methods.

Chapter III presents LVC [85], a deep video coding framework designed to predict

and compress video sequences in the latent vector space, effectively addressing spatial

and temporal redundancies by obtaining optimal lower-dimensional representations

of video frames. The proposed codec first learns efficient feature representations for

each video frame and then performs inter-frame prediction in this domain. To lever-

age the temporal correlation within the video frame sequence, a convolutional long

short-term memory network predicts the latent vector representation of future frames.

The versatility and effectiveness of this approach are demonstrated through two key

applications: video compression and abnormal event detection. Remarkably, both ap-

plications share the same latent frame prediction network. Comparative evaluations

on the UVG and VTL datasets reveal that the proposed method achieves superior

or competitive performance when compared to existing algorithms tailored for ei-

ther video compression or anomaly detection. These promising results underscore

the potential of implementing vision tasks in the latent domain with well-learned

representations, signifying a significant step forward in enhancing the efficiency and

accuracy of video compression and abnormal event detection algorithms.

A follow-up work in video compression is introduced in Chapter IV, where a

dynamic mode selection-based deep video compression approach is attempted. The
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proposed framework, MMVC [86], adapts to different motion and contextual patterns

with a Skip mode in the pixel domain, and multiple block-based prediction paths in

the feature domain. To improve the residual sparsity without losing much quality

while minimizing the bitrate, the framework involves a block wise channel removal

scheme and a density-adaptive entropy coding strategy. Extensive experiments and

a comparative study are performed to showcase that MMVC exhibits better perfor-

mance compared to state-of-the-art learning-based methods and conventional codecs.

The ablation study confirms the effectiveness of the proposed scheme by quantifying

the utilization of different modes that vary by video content and scenes.

Chapter V concludes the dissertation with studies on LiDAR data compression

in the 3D domain. LiDAR sensors are usually equipped on automobile and wearable

devices. Managing the substantial volume of point cloud is essential for real-world

use cases, posing a need for efficient compression algorithms. Similar to other data

compression task domains, point cloud compression seeks to spatially and temporally

decorrelate the information while preserving the reconstruction quality. There are

existing methods that adopt the range image representation and use frameworks

similar to the deep video coders to effectively achieve this goal. However, an obscured

sensor pose retrieval practice or failures in motion estimation in real scenarios can

result in considerable quality degradation in certain cases. Compensating for either

kind of information loss in the range image space is non-trivial. In light of resolving

the above issue, a hybrid point cloud compression pipeline, H-PCC, is proposed. H-

PCC allows the fallback of the compression scheme to a new octree-based method

supported by clustering. Further, the point cloud density can be adaptively reduced

via fusion with the detected region of interest (RoI) in color images associated with

the LiDAR data, which makes little impact on the performance of machine perception

tasks.
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CHAPTER II

Unified Signal Compression Using Generative

Adversarial Networks

2.1 Introduction

1 Image resolution and audio quality are continually increasing in today’s data

streams; however, limited communication bandwidth and storage space have posed

substantial challenges to practical applications. Indeed, raw image and audio data can

occupy significant storage space due to the inherent redundancy present in the data.

In both images and audio, there are often repeating patterns and similarities between

neighboring pixels or samples, leading to redundant information. It is impractical

to store and communicate the large data streams generated in this information-rich

world, and therefore signal compression is essential. In a typical image, lower spatial

frequency components carry more information than higher spatial frequency ones.

This property is exploited in a number of image compression algorithms, such as

JPEG and BPG. For audio information, humans can hear frequencies ranging from

20 Hz to 20 kHz but are most sensitive to sounds between 1 kHz and 5 kHz while the

speech signals have a strong correlation in the temporal domain allowing prediction

of future signals. These properties are used by several algorithms for speech com-

1The content of this chapter is based on [84].
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pression such as Code-excited linear prediction (CELP) [130] and adaptive multi-rate

wideband (AMR-WB) [15].

A typical signal compression framework consists of three core components: an

encoder, decoder, and quantizer. The encoder maps the target signals to the latent

space, and the decoder reverses these latent representations back into target signals.

The quantizer maps the signal representations to a stream of discretized symbols to

reduce the bitrate of the compressed signals.

Inspired by the recent remarkable success of generative adversarial networks [44]

in various applications, this work proposes a unified signal compression framework

named back-propagated GAN (BPGAN). The compressed signal is represented by

a latent vector fed into a generator network that is trained to produce high-quality

realistic signals (either image or speech). The core idea of BPGAN is to ‘search’

for the optimal latent vector through iterative back-propagation during the encoding

process for a given generator (with fixed weights) and compress the target signal.

This process minimizes a loss function computed based on the generator output and

the target signal, enabling a high-quality compressed signal represented by the latent

vector input to the generator. This framework is generally applicable to different

types of signals including speech and image as long as a GAN is trainable in that

signal domain.

Recently, deep autoencoder structures have provided promising results in signal

compression tasks. These methods have achieved better performance compared with

many traditional (non-learning based) compression techniques. One of the key chal-

lenges of DNN-based signal compression is optimizing the bitrate of latent representa-

tion in the auto-encoder fashion, which requires a careful design of the quantizer. Such

designs commonly employ either uniform or non-uniform quantization. Deep com-

pression [49] first proposed the k-means non-uniform quantization in the DNN weight

compression task, by updating the centroid of each cluster during the retraining pro-
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cess, to dramatically reduce the bit length of fixed point DNN weights. However,

the cluster centroid values in this method vary for different compression targets, and

the dynamic cluster centroid values are required during the decompression process,

which adds a non-trivial overhead to the communication bandwidth. Extreme im-

age compression [79] proposed a differentiable quantization module inserted in the

bottleneck of an encoder-decoder style network, and it optimizes the quantization

center and minimizes the bitrate in an end-to-end style during the training process.

In the proposed quantization section, BPGAN formulates the quantization task as

a manifold optimization problem with quantization constraints and puts forward an

alternating direction method of multipliers solution.

2.2 Related Work

2.2.1 Image Compression

Pioneering deep autoencoder and neural network-based image compression meth-

ods include [11] and [122]. The focus of [11] is to optimize the mean squared error

(MSE) and multi-scale structural similarity for image quality assessment (MS-SSIM)

between decompressed images and the originals. In [141], the images are compressed

through an encoder, and a traditional quantization method is applied to reduce the

bitrate. GAN-based models are widely explored in image compression tasks. Prior

works such as [100, 5] apply adversarial training on deep autoencoder networks to

learn the underlying distribution of images and achieve extremely high compression

rates with aesthetically pleasing details on the generated image. However, those ‘real-

istic’ details generated by the decoder often distort the ‘actual’ details of the original

image. Recently, there has been a notable trend of using context-adaptive entropy

models for image compression [105, 78, 26], where hyperpriors allocate additional

bits to more complex and bit-consuming contexts, whereas autoregressive models are
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applied to the contexts that can be easily inferred. Unlike the aforementioned prior

works, this proposed method uses a generator network for image/speech compression

as well as decompression by iteratively searching the optimum latent input represen-

tation for the generator during the encoding process.

2.2.2 Speech Compression

Traditional speech codecs such as CELP [130], Opus [144], and AMR-WB [15]

commonly employ hand-engineered encoder-decoder datapaths. These datapaths

heavily rely on crafted audio representation features and therefore require high bi-

trates (typically higher than 16 kbps) for acceptable speech quality. Recent DNN-

based approaches including [66] have demonstrated the feasibility of training an end-

to-end speech codec that exhibits performance comparable to a hand-crafted AMR-

WB codec at 9–24 kbps. In [20], paired phonological analyzers and synthesizers using

deep and spiking neural networks report a 369 bps bitrate speech codec by only

keeping the content and speaker identifier information to achieve a very low bitrate.

Another important strategy to realize a high-quality speech codec is to use a fine-

tuned DNN-based vocoder such as Wavenet [111] or WaveRNN [64] to synthesize

speech with high-quality. For example, a prior work [70] employs a learned Wavenet

as an encoder to generate audio given a traditional parametric codec with audio

quality that is on par with that produced by AMR-WB at 23.05 kbps. Furthermore,

[146] demonstrates that the Wavenet vocoder can generate satisfactory speech given a

discrete latent representation of audio generated by the vector-quantized variational

autoencoder (VQ-VAE) framework. And [40] extends this work to reach 1.6 kbps.

These methods, however, do not scale well to a very low bit-rate (e.g., 1 kbps).

The BPGAN for speech compression overcomes the limitations of the aforementioned

prior works by achieving lower bitrates for the same quality while providing excellent

scalability to tradeoff bitrate vs. signal quality.
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The application of GAN has been studied for speech processing. In [113], speech

enhancement GAN (SEGAN) is proposed, which demonstrates that GAN can achieve

promising results in speech processing tasks. Furthermore, [34, 97, 36] show that it

is possible for GAN to synthesize instrumental audio signals and simple speech with

limited contexts. Nonetheless, it is still considerably difficult to generate high-quality

speech audios with arbitrary latent input signals.

2.2.3 ADMM Optimization

The idea of the ADMM was first introduced in the 1970s to solve convex optimiza-

tion problems with additional constraints. Later work found that ADMM can also be

used for non-convex problems and can achieve sufficiently good, if not globally opti-

mal, solutions. The principle of the ADMM method is splitting difficult problems into

several sub-problems and solving these sub-problems efficiently by updating variables

alternatively. Therefore, ADMM has been widely used in distributed optimization

problems and neural network pruning tasks [17, 79, 171], achieving remarkable re-

sults.

2.3 Method

The proposed BPGAN compression framework is applicable to any signal type as

long as it is possible to train a generative model that produces realistic outputs of

that type. The overall framework of BPGAN compression is shown in Figure 2.1.

The target signal x is encoded as an initialization of the compressed signal z0 = E(x)

in the first step. Then, the latent vector z is updated and optimized to minimize a

specific objective function F (·) via iterative back-propagation through a pre-trained

generator G(·). A typical objective function is the similarity measure between the tar-

get signal x and the reconstructed signal G(z). During the iterative back-propagation

process, the optimal latent variable z̃ is discretized under the quantization scheme
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Figure 2.1: Overview of the unified compression framework. The target signal is first
encoded as an initialization to the latent representation by an encoder. Then the latent
vector z is optimized according to a reconstruction criterion through iterative ADMM back-
propagation (BP).

Q(·). Before transmitting to the receiver, the compressed signal is entropy encoded

for further code size reduction. In the proposed framework, the generator parameters

are pre-trained (i.e., fixed during the iterative back-propagation to find z̃) and shared

between the transmitter and the receiver. At the receiver, the same generator decodes

the latent signal G(z̃), and this reconstructed image/speech is converted back to its

original format via post-processing. The overall compression process is summarized

in Algorithm 1.

Unlike other GAN-based approaches [5] relying on an encoder to provide a com-

pressed signal, compression in BPGAN is performed by iteratively searching and

updating the generator input latent vector through back-propagation to minimize a

target objective function at the output of the generator. In the proposed scheme,

the main purpose of the encoder is to accelerate the back-propagation processing by

initializing the latent vector using the output of the encoder. This initialization tech-

nique reduces the number of iterations significantly. Selecting a proper optimization

criterion and progressively updating the lower-dimensional representation through

back-propagation for that criterion is the key step to significantly improve the qual-

ity and/or compression ratio of the signal. As this compression framework allows

the application of various optimization objectives for latent representation searching,
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Algorithm 1 BPGAN Compression Algorithm

Require: well trained generator G(·), encoder E(·)
pre-defined quantization function Q(·)
signal to be compressed x
objective function F (·)
quantized set S

Ensure: latent vector quantization z̃
1: latent vector initialization z0 = E(x)
2: quantize latent elements into the discrete space S

z1 = Q(z0), z1 ∈ S
3: repeat
4: calculate the objective function: F (x,G(zk))
5: gradient descent: zk+1 = zk − α · ∇F (zk)
6: quantize latent elements into the discrete space S

zk+1 = Q(zk+1), zk+1 ∈ S
7: until convergence to optimal latent variable z̃ or maximum iteration number

satisfied
8: apply Huffman Coding to z̃

it enables objective-aware signal compression to obtain the optimized compression

results tailored for a target application such as signal classification and recognition.

2.3.1 Training Methodology

The proposed network training is in a two-stage manner: pre-compression training

and post-compression fine-tuning. The detailed process and objectives are discussed

as follows.

Stage one: Train a GAN with unquantized (floating-point) latent vectors for the

target signal type. This step is similar to a typical GAN training procedure [155],

where a generator G(·) and discriminator D(·) are adversarially trained. In addition,

an encoder E(·) is cascaded by the generator to form an autoencoder structure, where

the encoder is trained to learn mappings from the signal space to a latent space. The

encoder and generator are optimized end-to-end under the following cost function:

min
E,G

max
D

E[D(x)]− E[D(G(E(x)))] + λ1 · E[d(x,G(E(x)))], (2.1)
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where G(·), E(·), D(·) refer to the generator, encoder, and discriminator respectively,

and d(·) is the similarity measure between the raw and reconstructed signals. Note

that the similarity measure is different for image and speech compression and dI and

dS are used to distinguish them in the following section respectively. The loss function

is thus a weighted combination of the original GAN loss and the distortion loss.

For image compression, the similarity measure dI is defined as a weighted combi-

nation of MSE and MS-SSIM loss [174]:

dI(x,G(E(x))) = LMS-SSIM(x,G(z)) + γ ·MSE(x,G(z)). (2.2)

And the LMS-SSIM(x, y) is defined as:

LMS-SSIM(x, y) =
1

N

∑
(1−MS-SSIM(p))

=
1

N

∑
(1− lαM(p) ·

M∏
j=1

csj
βj(p)),

(2.3)

where

lj(p) =
2µxµy + C1

µ2
x + µ2

y + C1

, (2.4)

csj
βj(p) =

2σxy + C2

σ2
x + σ2

y + C2

. (2.5)

In the above expressions, p denotes a pixel located in the reference patch x and

the processed patch y, N represents the total number of pixels in x. lj(p) and csj(p)

are terms at the scale j ∈ {1, 2, ...M}. The means (µ) and standard deviations (σ)

are computed with Gaussian filters centering at pixel p for each scale j. The stan-

dard deviation σjG of each Gaussian filter corresponds to the level of the constructed

Gaussian pyramid. Following [174], the parameter setting is γ = 0.1 and α = βj = 1,

for j ∈ {1, 2, ...M}.
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For speech compression, dS(·) is defined as the MSE loss:

dS(x,G(z)) = MSE(x,G(z)). (2.6)

Stage two: Fine-tune the trained model with quantized latent vectors. After

the first stage, signal compression is performed on the training set images through

iterative back-propagation and quantization. Then the generator and discrimina-

tor models are retrained only using quantized/discretized latent vectors z̃ for model

refinement in the quantized latent space. This procedure is formulated as follows:

min
G

max
D

E[D(x)]− E[D(G(z̃))] + λ2 · E[d(x,G(z̃))], (2.7)

where z̃ denotes the quantized latent vector generated by the proposed compression

algorithm (using the first stage training result).

After the above two-stage training process, the network parameters are fixed for

signal compression and decompression. The generator is viewed as a fixed mapping

function from the abstract latent domain to the spatial/frequency domain for im-

age/speech during the compression process for iterative latent space searching through

back-propagation.

2.3.2 Objective Functions

Compared with prior compression methods, a noticeable advantage of this pro-

posed compression lies in the fact that BPGAN can control the optimization direction

of the optimal latent representations by applying different objective functions, so that

the compression can be adjusted for various application tasks without the need of re-

training. From this viewpoint, the trained generator is treated as a projector mapping

the latent feature space to the target signal domain.

With a well-trained generator G(·), the signal compression process is expressed as
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an optimization problem:

z̃ = argmin
z

F (x,G(z)), (2.8)

where z̃ is the optimal lower-dimensional representation of the original signal x and

F (·) is the objective function. Under a selected objective, this work proposes to solve

this problem with an iterative back-propagation process based on the gradient ∇Fz

where z is initialized by the encoder and regularized by the reconstruction quality

criterion.

In this work, similarity measures between the reconstructed signals and the target

signals are used as the optimization objectives. The conventional choices of similar-

ity metrics are typically L1 or L2 distances; however, they are not perfectly suited

for the properties of some signals and are prone to poor performance in real-world

applications. For instance, in image compression tasks, minimizing MSE would often

produce blurry images and depress perceptual quality. Therefore, it is important to

select/design a proper objective function that considers signal properties and back-

end quality metrics.

According to the experiments, discriminator loss gives satisfactory results in the

image compression task and feature loss is advantageous for the speech compression

task.

1Discriminator Loss for Image Compression: After the adversarial training

procedure for the generator and discriminator, the resulting discriminator can be re-

garded as a data-driven quality indicator function evaluated by a deep neural network.

Therefore, the discriminator loss is combined in the compression objective function,

which depicts the confidence of the discriminator in the quality of the (de)compressed

signal. By introducing this loss to the compression back-propagation process, BP-

GAN takes advantage of the complex quality measures evaluated by the discriminator

for better reconstruction quality (at the cost of increased computational overhead).
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The total loss function used in image compression can be defined as:

F (x,G(z)) = −D(G(z))) + λ3 · dI(x,G(z)), (2.9)

where the first term gives the discriminator objective, and the second term is the

combination of MS-SSIM loss and MSE between the reconstructed image and the

original image.

Feature Loss for Speech Compression: Inspired by the remarkable success of

feature loss in image stylization and synthesis [61, 155], BPGAN adopts and designs

the feature loss in the presented framework to improve the performance in speech

signal compression. The core idea of feature loss is to apply a pre-trained classifi-

cation network to the original signal and compressed signal, and compute internal

activations in the network to be compared. This loss is defined in terms of the dis-

similarity between those internal activations, and it is shown to yield state-of-the-art

performance for various tasks without the need for prior expert knowledge or added

complexity.

For better human sound perceptual quality and better back-end recognition per-

formance, the proposed method adopts the speech feature loss to represent the content

difference. Similar to image feature loss, speech feature loss measures the feature map

(activation) distance between generated and real speech using a speech recognition

neural network. For feature loss evaluation, a VGG-BLSTM [83] network is employed

and trained for a phoneme recognition task on the TIMIT dataset using joint CTC-

attention loss [67]. For faster inference speed of applying feature loss, the scheme only

extracts feature maps of the convolution layers rather than the recurrent networks.

The inputs for the VGG-BLSTM network are 40-dimensional log-mel spectrograms,

therefore the loss is calculated in the spectral domain. The total objective function
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used in speech compression is defined as:

F (x,G(z)) = Lfeat(x,G(z)) + λ4 ·MSE(x,G(z)) (2.10)

where Lfeat denotes the speech feature loss.

2.3.3 Quantization and Entropy Coding

To reduce the bitrate of the compressed signal, it is necessary to incorporate

quantization in the compression strategy, which projects the original unquantized

signal onto a discrete set of numeric values. There exists a fundamental tradeoff

between the number of quantization levels (bitrate) and signal quality: reducing

the number of quantization levels negatively affects the compression quality while

reducing the required bitrate. This work adopts a non-uniform quantization strategy

which requires transmitting/storing the non-uniform quantization center points. Non-

uniform quantization in general allows for achieving higher signal quality given a

fixed bitrate. However, the proper quantization centers must be chosen ahead of

signal compression, which poses an additional challenge for BPGAN. To accommodate

non-uniform quantization, the ADMM back-propagation algorithm is adopted, where

the quantization problem is formulated as a constrained optimization task with two

sub-problems. To quantify the performance of the ADMM-based quantization, the

comparison with alternative algorithms such as the direct quantization method is

evaluated.

ADMM Quantization: The latent vector search problem in the non-uniform quan-

tized space could be formulated as an optimization problem with a quantization con-

straint solved by ADMM [17]. That is, given G(·), x, and F (x,G(z)), the problem of

finding an optimal quantized latent vector z is formulated as follows:
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argmin
z,u

F (x,G(z) + I(u ∈ S) s.t. u = z (2.11)

where S is a non-convex set whose elements are (non-uniformly) quantized vectors, u

is an auxiliary variable, and I(·) is an indicator function. This optimization problem

with non-convex constraints is difficult to solve directly, therefore it can be rewritten

as an augmented Lagrangian function and apply ADMM to solve it.

The augmented Lagrangian of the above optimization problem is given by:

L(z, u, η, µ) = F (x,G(z)) + I(u ∈ S) +
µ

2
(∥z − u+ η)∥22 − ∥η∥22). (2.12)

ADMM is designed to minimize L(z, u, η, µ) by updating variables z, u, η alternatively

in every iteration to approach the optimal values that minimize the quantization error.

The ADMM updating procedure for k = 0, 1, 2, . . . is given by:

zk+1 = argmin
z

F (x,G(z)) +
µ

2
∥z − uk + ηk∥22 (2.13)

uk+1 = argmin
u

I(u ∈ S) +
µ

2
∥zk+1 − u+ ηk∥22 (2.14)

ηk+1 = ηk + zk+1 − uk+1. (2.15)

The optimization criteria for the compressed signal z described in Equation 2.12 is

additionally regularized with an L2 term. This can be easily translated to an updating

rule with stochastic gradient descent (SGD) or Adam [68] optimizer.

For the updating objective of u depicted in the Equation 2.14, the analytical

solution is uk+1 = Q(zk+1 + ηk) where Q(·) is a non-uniform quantization function

that directly projects into the set of quantized set S. The non-uniform quantization

centers of S are obtained by K-means clustering based on the distribution of the

unquantized value of the latent vectors corresponding to the entire training dataset.

The quantization centers are obtained during the training and unchanged for each
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signal reconstruction to avoid separately transmitting the quantization codebook for

each target signal. To ensure that the latent z is quantized after the alternating

operations, this method projects the latent vector to the discrete set S directly as the

final step of ADMM quantization.

Algorithm 2 ADMM-based BPGAN Compression Algorithm

Require: well trained generator G(·), encoder E(·)
pre-defined quantization function Q(·)
signal to be compressed x
objective function F (·)
set hyperparameters µ, α

Ensure: quantized latent vector z̃
1: latent vector initialization z0 = E(x)
2: auxiliary variables initialization: u0 = Q(z0), η0 = 0
3: repeat
4: calculate the optimization objective:

O(zk) = F (x,G(zk)) +
µ
2
∥zk − uk + ηk∥22

5: gradient descent: zk+1 = zk − α · ∇O(z)
6: u update: uk+1 = Q(zk+1 + ηk)
7: dual ascent: ηk+1 = ηk + zk+1 − uk+1

8: until convergence to z̃ or maximum iteration number satisfied
9: apply Huffman Coding to z̃

With ADMM quantization being specified, the proposed algorithm is refined as

described in Algorithm 2. The idea behind ADMM back-propagation is that this

algorithm searches for the optimal point or local optimal point in the discretized

latent space to preserve signal fidelity after reconstruction.

Direct Quantization: A baseline method to be compared with the proposed ADMM-

based approach is direct quantization, where an unquantized latent vector is first

obtained by back-propagation and then each element is projected to the nearest nu-

merical value in the quantized set. Then the iteration continues by updating the latent

by back-propagation to a new unquantized vector. Applying this direct quantization

one-time only to the final latent vector will degrade the fidelity of the reconstructed

signal. Therefore, quantization and back-propagation steps are operated in an alter-

nating order.
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Entropy Coding: To further reduce the code size, the proposed scheme applies

Huffman coding to the quantized latent vectors. The Huffman coding is a widely

used prefix-free entropy coding method [147] that assigns different lengths of codes to

encoded symbols depending on the relative frequency of the corresponding symbols.

By assigning shorter codes to symbols with frequent occurrence, Huffman coding

reduces the bitrate without losing any information.

2.4 Experimental Setup

The BPGAN compression is a unified signal compression method for different

types of signals (e.g., image and speech). To apply the unified approach, pre-

processing, and post-processing are crucial for this algorithm during the training

phase and the compression process. In this section, a detailed explanation of how to

apply image and speech signals into the BPGAN framework is introduced and also

includes the hyperparameter settings during training.

2.4.1 Latent Initialization with Trained Encoder

Finding sufficiently good latent vectors by back-propagation with random initial-

ization could require many iteration steps and might consume excessive computation

resources. To accelerate this process, this work proposes to train an encoder that

learns mappings from target signals to (optimal) latent vectors. The output latent

vectors of the encoder often cannot be exactly the same as the target optimal vectors

but are expected to approximate them so that they provide good initialization for

iterative back-propagation. The encoder is trained with the generator and discrimi-

nator in the training stage and it produces unquantized latent vectors to initiate the

optimization process.
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2.4.2 Image Compression Setup

The Adam optimizer is adopted for training and sets the batch size to 128. The

network is trained for 100 epochs in total, with a fixed learning rate of 0.0005 in the

first 50 epochs and a linear decayed learning rate in the following 50 epochs. To better

evaluate the performance of the proposed algorithm on different datasets, images in

the training dataset are resized to a pre-defined resolution (768×512) in RGB format.

2.4.3 Speech Compression Setup

Training Settings: The Adam optimizer and batch size follow the image compres-

sion setup. The framework is trained for 200 epochs in total, with a fixed learning rate

of 0.0002 in the first 100 epochs and a linear decayed learning rate in the following

100 epochs.

Speech Pre-processing: For BPGAN compression, speech signals sampled in the

time domain are converted to spectral domain representations using short-time Fourier

transform (STFT) with 128-sample stride and 512-sample frame size, resulting in 75%

frame overlap. BPGAN only uses the magnitude information of the STFT output

(i.e., spectrogram) for signal compression. The experiments show that a higher over-

lap ratio can lead to better audio quality with a higher bit rate, which supports the

claim of [97]. To further reduce the bit rate of the compressed signal, spectrograms

are transformed into mel spectrograms with 128 mel frequency bins for each frame.

This algorithm collects 128 frame mel frequency bins to make up one 128×128 mel

spectrogram, which corresponds to one second of speech audio at a sample rate of 16

kHz.

For human sound perception-oriented compression, the log-magnitude of mel-

spectrograms is calculated and normalized for compression [97]. BPGAN first nor-

malizes the magnitudes of mel-spectrograms to have a maximum value of 1, limiting

the log-magnitude value to the range of [−∞, 0]. Then the proposed method limits
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the dynamic range of the log magnitude into [−r, 0] by truncating by −r. Finally,

the compressed signal is scaled and shifted back to [−1, 1] for the generator. In the

experiments, r is set as 8.

Speech Post-processing for Phase Recovery: Inverse STFT requires magnitude

and phase information to recover the time domain speech audio signals. However,

phase information is removed in the pre-processing and the following back-propagated

compression. Therefore the estimation of phase information given magnitudes is

necessary, which can be regarded as an additional decoding process.

In this work, the Phase Gradient Heap Integration (PGHI) [116] method is em-

ployed to recover the phase from the amplitude-only signal. This technique relies on

magnitude-phase gradient integration relations for phase reconstruction. PGHI often

significantly outperforms Griffin-Lim [114] and shows superior robustness because it

avoids integrating through phase instability areas.

2.4.4 Datasets and Metrics for Image Compression

Open Images Dataset V5: The proposed image compression framework is trained

on Open Images Dataset V5, which contains 9 million images belonging to 600 cat-

egories. The images in this dataset are diverse and contain complex scenes with 8

objects per image on average. Comprising an abundant amount of various contents,

it helps the generator model to learn the diversity of real-world objects. As the GAN

network uses the same sized images for its training input, images are rescaled to 768

× 512 pixels prior to training.

Kodak Dataset: The Kodak dataset comprises 25 landscape or portrait RGB images

of size 768× 512 pixels. It is widely used in image compression tasks and serves as a

generic benchmark data collection. The Kodak dataset is used to evaluate PSNR and

MS-SSIM of (de)compressed images using the generator trained with Open Images

Dataset V5. The Kodak dataset is not used during the training of the generator,
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discriminator, and encoder.

ImageNet Dataset: The ImageNet 2012 classification dataset consists of images

belonging to 1,000 classes. It is split into three sets: training (1.3M images), valida-

tion (50K images), and testing (100K images with held-out class labels). ImageNet

dataset is used to quantify the image quality by performing ImageNet classification

on (de)compressed images using a VGG-16 network pre-trained with raw images.

Evaluation Metrics: The quantitative performance of the proposed image compres-

sion method is primarily measured by PSNR and MS-SSIM on the Kodak dataset

which is a widely used generic benchmark data collection to evaluate image compres-

sion. A significant drawback of Kodak is the limited amount of data which may intro-

duce biases to the quality measurement. To alleviate this issue, the image compression

method is evaluated from the machine perspective by comparing the classification ac-

curacy on ImageNet using the original test dataset and the dataset decompressed by

BPGAN. For subjective image quality evaluation, the sample reconstructed images

are presented in Figure 2.2 and Figure 2.5.

2.4.5 Datasets and Metrics for Speech Compression

TIMIT Dataset: The speech audio experiments of this chapter are performed on

the TIMIT dataset, which contains a total of 6,300 sentences spoken by 630 speakers

from 8 major dialect regions of the United States at a sample rate of 16 kHz. The

training and testing subsets are mutually exclusive.

PESQ Metrics: The perceptual speech quality is evaluated by PESQ [125], which

is an objective metric designed to predict the mean opinion score (MOS) for speech

quality by an algorithm. It is adopted by ITU-T as a recommended standard metric.

PESQ values range from -0.5 to 4.5, of which larger is better. PESQ is proposed

for predicting the perceptual quality with acceptable accuracy for waveform-based

compression and CELP codec for bit rates larger than 4 kilo-bits per second (kbps).
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Subjective Evaluation: The subjective quality of the (de)compressed speech is

quantified with an experiment involving 20 users guided by Multiple Stimuli with

Hidden Reference and Anchor (MUSHRA) [148]. The users are asked to listen to 5

sets of audio clips. Each set of clips is presented with a labeled reference audio, a set

of test samples, a hidden version of the reference, and one anchor. Based on their

perceptual evaluation, the users are asked to score these test samples from 0 to 100.

Phoneme Recognition Evaluation: In addition, this work performs phoneme

recognition tests to measure the phoneme error rate (PER, the lower the better).

Phoneme recognition was performed on (de)compressed speech signal using the com-

bination of SGMM and Dans deep neural networks in Kaldi [115], and also using

MLP and LSTM networks [119]. These network models take MFCC as the input and

are trained with raw (uncompressed) audio data.

2.5 Experimental Results

In this section, the proposed approach is compared with conventional and learning-

based image/speech compression methods from the perspective of various evaluation

metrics. To quantify the impact of various techniques incorporated in this scheme,

the ablation studies on ADMM quantization, latent representation optimization ob-

jectives, and latent initialization with a trained encoder are involved in the following

subsections.

2.5.1 Image Compression Results

This section compares the proposed method with conventional codecs such as

BPG [14] and JPEG, and an existing GAN-based method [5]. Notably for extremely

low-bpp (bit per pixel) regimes, PSNR and MS-SSIM are usually inadequate to reflect

the perceptual image fidelity. Thus, the classification error rate metric is applied to

quantify the image quality from the machine’s perspective. To fit the input size of
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Figure 2.2: Visualization of decompressed image from Kodak dataset. Compared with other
existing methods, the lossy reconstruction of the proposed method exhibits higher fidelity
with a similar or lower bitrate.

the ImageNet dataset, the generator is modified and trained to match the dimension

of ImageNet images (256×256 in RGB format).

The experimental results for image compression are shown in Figure 2.2 and sum-

marized in Table 2.1. PSNR and MS-SSIM evaluations are performed on the Kodak

dataset with 768×512 resolution images in RGB format (24 bit per pixel, bpp). A

compressed image of 0.286 bpp is obtained by using a latent vector z of 20,000 dimen-

sions and non-uniform quantization with 256 levels for each element before Huffman

coding.

Table 2.1: Image compression performance comparison.

Method
Bitrate

PSNR MS-SSIM
ImageNet Top-1 ImageNet Top-5

(bpp) error rate % error rate %

Original 24 - - 23.7 6.8
BPGAN 0.286 32.9 0.968 23.7 6.8

Agustsson et al. [5] 0.305 28.2 0.922 26.0 7.9
JPEG 0.306 26.9 0.864 42.5 16.6
BPG 0.298 32.3 0.961 25.8 7.4

In Table 2.1, this method adopts an extremely high compression ratio (84×) to

show the performance comparison between different methods. Results measured by

the classification accuracy metric (error rate) are listed in the last two columns.
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Table 2.1 indicates that the proposed compression scheme produces higher quality

images measured by PSNR and MS-SSIM with a compressed rate of ≈ 0.3 bpp com-

pared to other existing compression methods. This approach manages to maintain

the same classification accuracy before and after the compression of the ImageNet

test images. The result shows that BPGAN compression, unlike other approaches,

successfully preserves the perceptual features of the target images after compression

without significantly affecting deep visual learning.

The compressed images generated by BPAGN have higher subjective quality for

the same/similar bitrate compared to other methods. In Figure 2.2, the compressed

image comparison of BPG, JPEG, and [5] are visualized with a high compression

ratio (0.036 bpp) using Kodim21 in the Kodak dataset. In the region bounded by

the white box, the proposed approach exhibits the best quality in terms of preserving

the color and shape of objects at a very low bit per pixel (bpp) regime. With severe

block artifacts, JPEG fails to compress this image at the target bpp of 0.036. BPG

handles the high-frequency contents better (e.g., the fence in the image), however,

it loses some of the features of the rocks and waves. The image generated by the

method described in [5] provides smoother features, especially in regions containing

clouds. It is worth noting that a GAN-based method [5] sometimes ‘creates’ realistic

details in the compressed image that are non-existent in the original. The actual

details are better preserved in the BPGAN compression output because of the joint

loss (discriminator score, MSE, and MS-SSIM) used to find the optimal compressed

latent in the compression stage.

2.5.2 Speech Compression Results

The speech compression evaluation results are summarized in Table 2.2 and Figure

2.3. In this experiment, the original speech is sampled at 16k samples per second with

16-bit per sample, thus the original bit rate is 256 kbps. The compressed speech rate
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Figure 2.3: Compressed audio on Timit dataset in the form of spectrogram. With un-
quantized latent vectors, the reconstructed audio (middle) preserves most of the detailed
information. ADMM quantization (right) shows negligible quality degradation after quan-
tization.

of 2 kbps is achieved by using a latent vector z size of 512 and 16 non-uniform

quantization levels for each element. While the proposed BPGAN-based compression

provides the lowest data rate of 2 kbps, it exhibits a better MUSHRA subjective

quality score than the other methods with higher data rates except for Opus at 9

kbps (4.5× higher data rate than ours). It is worth pointing out that while the

PESQ scores are similar among multiple methods, they do not accurately predict

the (subjective) quality of the speech when the bit rate is low. The PER measured

by phoneme recognition tests indicates that the error rate for the proposed audio

compression is superior (less PER degradation) to other compression methods while

providing the lowest data rate.

Table 2.2: Speech compression performance comparison.

Method Bitrate (bps) PESQ MUSHRA
Kaldi MLP LSTM

Percentage % Percentage % Percentage %

Original 256k 4.50 95.0 18.7 18.6 15.4
BPGAN 2k 3.25 64.1 20.9 20.8 18.6
CELP 4k 2.54 32.0 28.2 27.6 27.3
CELP 8k 3.39 59.4 23.0 23.6 21.2
Opus 9k 3.47 79.3 22.7 23.7 21.2

AMR-WB 6.6k 3.36 58.9 22.6 23.6 22.3
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Figure 2.4: Image and audio compression parameter sensitivity evaluation: rate-distortion
tradeoff is obtained by adjusting the latent vector size and number of quantization levels.
Compared with direct quantization, ADMM leads to substantially lower optimization loss
under the same latent dimension and quantization level.

The experimental results in Table 2.2 show that the proposed compression method

significantly outperforms traditional codecs in both objective and subjective evalua-

tions. For phoneme recognition tasks, this method demonstrates a clear advantage

for all inference models even with at least 2× smaller bit rate. This is because this

method compresses audio in the spectral domain, preserving more context informa-

tion with optimized feature loss through BP unlike other methods working in the

time domain without an explicit objective function.

2.5.3 Ablation Studies

Quantization Analysis: Figure 2.4 visualizes the tradeoff between bitrate (without

Huffman coding, lower is better) and optimization (quality) loss. BPGAN offers a

wide rate-distortion tradeoff space. The gain of ADMM-based non-uniform quanti-

zation is shown in the same figure. In all investigated cases, ADMM quantization

manages to reduce the quality loss compared to direct quantization. One can no-

tice that along the pareto-optimal line, the combination of the optimal latent vector
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Figure 2.5: Visualization of decompressed images optimized according to MSE and the joint
objective that combines MSE with discriminator output.

dimension and the number of quantization levels per element changes for different

bitrate targets.

Effect of Different Latent Optimization Objectives: For image compression,

this work investigates the impact of using the combined objective function that in-

cludes the quality measure provided by the discriminator compared to the MSE-only

objective function. The results are visualized in Figure 2.5. Images on the right

are substantially better than the middle ones with higher PSNR and better visual

quality. In both cases (top and bottom), using the joint objective facilitates sharper

and better-defined details in the reconstructed images. The MSE-only objective of-

ten induces blurry effects in the decompressed images leading to the loss of details.

The observation indicates that incorporating perceptual objectives with the per-pixel

similarity measure enables the search of latent representations that can capture more
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Figure 2.6: Signal quality measured by PSNR vs. number of back-propagation iterations.
Left: image compression, right: speech compression.

accurate features for visually pleasing reconstructions.

To study the influence of speech feature loss during the compression process,

an ablation experiment on different back-propagation objectives (Equation 2.10) is

evaluated. The decompressed speech quality/performance in PESQ and PER for

the same 2 kbps rate with feature-loss-only, MSE-loss-only, and a combination of

MSE and feature losses are tested. Table 2.3 shows that adding feature loss can

significantly improve the performance on speech recognition tasks compared with

MSE-loss-only, and the combination loss achieves a good tradeoff between PESQ and

phoneme recognition error rate. It is worth noting that the feature loss is calculated

using VGG-BLSTM neural network [83] that does not share the same structure in

the phoneme recognition task evaluation networks, implying that the gain from the

feature loss is not because of overfitting.

Latent Initialization with Trained Encoder: This work evaluates the effective-

ness of using an encoder for latent initialization by showing the compressed signal

quality vs. the number of back-propagation iterations during image/speech com-

pression tasks in Figure 2.6. Initializing latent vectors with an encoder before back-
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Table 2.3: Speech compression results with various loss functions during optimal latent
vector search back-propagation.

Method PESQ Kaldi PER (%) MLP PER (%) LSTM PER (%)

Original 4.50 18.7 18.6 15.4
Feature Loss 2.92 21.0 20.6 18.1
MSE Loss 3.29 21.5 21.7 19.9

Combined Loss 3.25 20.9 20.8 18.6

propagation (BP) can effectively reduce the number of iterations needed to find a

good latent representation and achieve better quality. The same figure also illus-

trates that the proposed iterative back-propagation brings significant gain compared

to the one-shot encoder output.

2.6 Conclusion

This chapter introduces the BPGAN compression scheme, a GAN-based unified

signal compression method that produces compressed data with high fidelity at low

bitrate by searching the optimal latent vector through iterative back-propagation.

To improve the compression ratio, the proposed method applies ADMM with non-

uniform quantization to search for an optimal latent representation of the signal. The

proposed method first trains the generator network model in a GAN setup, and then

it iteratively updates and discretizes the optimal latent code through the pre-trained

generator for each signal input for compression. Experiment results demonstrate that

BPGAN-compressed signal exhibits significantly lower data rate and/or better signal

quality compared to other methods evaluated with various metrics including neural

network based image classification and speech phoneme recognition.
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CHAPTER III

Deep Learning in Latent Space for Video

Prediction and Compression

3.1 Introduction

1 Video data transmission occupies the majority of the internet data traffic nowa-

days. With the trend of extensive mobile device usage worldwide, video data stream-

ing is extensively used for productivity tools and entertainment platforms that assist

people’s work and life in various aspects. On top of the ubiquitous video engage-

ment, superior video quality standards such as 4k UHD, and VR 360 became more

widely available, which makes high-performance video compression even more critical.

Traditional video coding standards such as MPEG, AVC/H.264 [160], HEVC/H.265

[136], and VP9 [108] have achieved impressive performance on video compression

tasks. However, as their primary applications are human perception driven, those

hand-crafted codecs are likely suboptimal for machine-related tasks such as deep

learning-based video analytics.

In recent years, a growing trend of employing DNNs for image compression tasks

has been witnessed. Prior works [143, 11, 105] have provided a theoretical basis for the

application of deep autoencoders (AEs) on image codecs that attempt to optimize the

1The content of this chapter is based on [85].
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Figure 3.1: Reconstructed frame with the conventional codecs (H.264, H.265) and LVC
approach. Information and details are well preserved in the frame generated from a purely
prediction-based latent representation (top right).

rate-distortion tradeoff, and they have shown the feasibility of latent representation

as a format of compressed signal.

While image compression reduces the redundancy only in the spatial domain,

video compression exploits the temporal correlation among consecutive frames as

well. Using learned video prediction to substitute traditional block-based motion

prediction/estimation methods has become a critical part of deep learning based video

compression. Related recent works [32, 77, 89] address the uncertainties of real-world

videos with stochastic video prediction networks using autoencoders and/or GAN

structures in recurrent settings. Learned video compression is a relatively recent

topic. Early works [21, 162] either directly interpolate the key-frames or emulate the

functional units in hand-crafted codecs with neural networks. Later proposed deep

neural video codecs [94, 90, 48, 33, 123, 4, 165, 42, 93, 53] mainly target on learning

data-driven algorithms that take advantage of the end-to-end trainability of DNNs.

Most of them [90, 48, 33, 123, 4, 165, 42] adopt autoencoder style structures that

encode frame and residual representations in latent space.

This chapter presents a novel end-to-end deep learning video codec, LVC, that

benefits from video prediction in latent space. The proposed method obtains the

compressed frames in latent space by searching for the optimal latent representations
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[84], and then it learns temporal correlation within the latent space sequential data

under a recurrent network setting. As opposed to previous approaches, the training

and inference processes of the proposed prediction network are entirely performed

in the latent domain. The presented video coding method shares the same predic-

tor between the sender and receiver, and only transmits (stores) the quantized and

entropy-coded prediction error (residual). The residual corrected latent frames are

fed back to the prediction network for progressive estimation on consecutive latent

representations of the data sequence.

Video compression evaluation results validate that this technique achieves superior

performance compared to the state-of-the-art video codes. The proposed prediction

method demonstrates its application in abnormal event detection, which is triggered

when the prediction error exceeds a predefined threshold that represents a normal

event. Anomaly detection evaluation results confirm the superiority/competitiveness

of the proposed method compared to recent algorithms specifically designed for that

task.

3.2 Related Work

3.2.1 Learning-based Image Compression

There has been extensive study on applying DNNs to image compression tasks.

Most approaches typically seek compression gain from translating images to lower-

dimensional representations through either recurrent neural networks (RNNs) [142,

8, 62, 143] or autoencoder style networks [11, 141, 12, 100, 105]. Recent approaches

use GAN-based structures for image compression [127, 5, 84] aiming to enhance

the subjective quality of image reconstructions from deep encoder-decoder pairs and

take advantage of the qualification feedback provided by a discriminator. These ap-

proaches often target optimizing distortion indicators such as mean squared error
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(MSE), PSNR, and MS-SSIM between the raw and reconstructed image, or the hy-

brid objective function including the perceptual loss. This work adopts a GAN-based

structure to search for the optimal latent vectors that minimize distortion via back-

propagation through a pre-trained generator (decoder).

3.2.2 Learning-based Video Compression

Video coding benefits from exploiting the temporal correlation between subsequent

frames. Similar to the conventional codecs, learned video compression leverages the

temporal correlation through inter-frame prediction. Chen et al. [21] first predicts a

frame and then encodes the residual (error between the prediction and actual) with

a CNN. This approach shares great similarities with block-based codecs. Arguably,

however, DNNs are less efficient to learn from small image blocks. To overcome that

issue, Wu et al. [162] propose a codec that captures temporal redundancy through

hierarchical interpolation between keyframes. The method uses a non-learning based

optical flow to generate motion information, and it is not jointly optimized with the

rest of the model.

Lu et al. [94] construct a DNN-based video compression pipeline close to the

conventional codecs and optimize compression rate in conjunction with distortion.

Lombardo et al. [90] presents a learning-based video codec that performs end-to-

end optimization on rate-distortion tradeoff, quantization, and entropy coding. The

framework is built with sequential variational autoencoder (VAE) where the encoded

global state based prediction is used to tackle the temporal redundancy. Similarly,

Rippel et al. [123] proposes to represent all prior memory as a generic and learnable

state that will continuously be updated during its propagation. The flow-residual in-

formation between two consecutive frames is generated from the state representation.

Habibian et al. [48] use a 3D spatiotemporal autoencoder network that temporally

decorrelates the latent vectors. Based on the encoder-decoder pair proposed in [11] for
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image compression, Djelouah et al. [33] encode displacement and blending coefficients

into latent space representations. To address the failure cases typically observed in

the flow-residual paradigm, Agustsson et al. [4] propose a scale-space flow that trilin-

early warps the frame stack constructed by the previous frame as well as its variations

obtained by applying different levels of Gaussian blurring. Following the hierarchical

prediction approach, Yang et al. [165] design a framework that encodes video frames

with different quality levels, and refines the coarsely predicted frames by leveraging

the temporal correlation contained in the high quality frames. In this work, unlike

the prior works mentioned above, spatial redundancy is primarily exploited by finding

the optimal low dimensional latent vectors to represent each video frame. Then LVC

performs temporal predictions on successive frames in latent space. The residuals

between the directly compressed frames (i.e., latent vectors) and the predicted ones

are quantized, entropy coded, and transmitted to the receiver.

3.2.3 Video Prediction and Motion Compensation

The study on deep neural video prediction has led to a number of design choices.

Early works are usually devoted to predicting small frame patches. To reduce the

blurry reconstruction effect, Mathieu et al. [98] train a multi-scale network in an ad-

versarial setting. Whereas Finn et al. [37] present an LSTM-based network to learn

the motion dynamics and to construct motion information with the content mask

to form a predicted frame. Other approaches such as [7, 32, 77] propose variational

methods to address the embedded stochasticity in real-world videos. Motion com-

pensated prediction is an essential sub-task of video compression. Chen et al. [21]

present a DNN-based implementation that resembles block motion estimation in tra-

ditional codecs while others [94, 48] incorporate an optical flow encoder network into

the compression system. Unlike prior approaches, the proposed framework employs

ConvLSTM based frame prediction in latent space for motion compensation. With
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a well-learned prediction network, the experimental results demonstrate that very

sparse residuals can be obtained in latent space to produce extremely compressed

video sequences.

3.2.4 Anomaly in the Scene Detection

Anomaly detection can be treated as an application of video prediction. A network

structure in [27] includes cascaded convolutional LSTM networks in the autoencoder

to learn the spatio-temporal features of the video frames. Liu et. al [89] is the first

to introduce a video prediction framework adversarially trained under a temporal

constraint for anomaly detection. Park et. al [112] proposes to further enhance the

performance by adopting a memory module to record representative normal patterns.

Different from these works, this approach targets predicting the next frame in the

latent domain. This work demonstrates that the video representation learned from

latent space temporal redundancy can be adopted to perform reliable abnormal event

detection.

3.3 Method

3.3.1 Video Compression Framework

Figure 3.2 depicts the proposed video compression framework. The flow first en-

codes each frame to an optimal latent representation using the technique in [84]. This

image compression technique searches for an optimal latent representation through

the frame-by-frame back-propagation using a pre-trained generator network. The

LVC scheme trains the generator (which serves as the decoder in the proposed video

coding framework) such that it can reconstruct a close-to-original frame from a latent

representation. Once the optimal latent representation is produced for each frame,

the end-to-end video compression framework learns temporal correlation among the
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Figure 3.2: The operational flow of the proposed codec. Each frame of the video sequence
is first individually compressed to a latent representation by the method in [84]. The
predicted next-frame latent (output of the prediction network) is conditioned on the former
reconstructed latent representations.

latent space representations of consecutive video frames. To achieve this goal, this

method predicts the next frame’s latent representation based on the sequence of la-

tent of previous frames using a ConvLSTM. The prediction network takes the optimal

latent vectors of each frame as the input and it is trained to predict the latent vector

for the next frame as close as possible to the actual one. The element-wise difference

between the predicted and actual latent is stored as the residual. Given a successfully

trained latent space predictor, the residual is sparse with low entropy. Hence LVC

attains the inter-frame compression gain from prediction on top of the intra-frame

compression of compact latent representations.

To further reduce the video code size, the proposed algorithm encodes the residual

with quantization and entropy coding. A desired compression rate is controlled by the

size of the latent dimension in the image compression stage as well as the number of

quantization levels used in the residual encoding. The quantized and entropy-coded

residuals are sent from the transmitter to the receiver as the compressed representa-

tion of the video.

The reconstructed latent is obtained by adding the compressed residual to the
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predicted latent. The transmitter and the receiver share the same prediction net-

work, which produces the identical reconstructed latent for the next frame using the

previously reconstructed latent frames. At the beginning stage of the proposed video

compression flow, the predictor on both sides is initialized with the latent vectors

of several initial frames (zopt,1:k, with k = 6 in the experiment) that are generated

without prediction. This ensures the prediction for successive latents on both sides

starts with the same recurrent state. Using the same generator (decoder) adopted in

the image compression stage, the reconstructed latent (z̃t) is translated to the spatial

domain video frame, xt.

The image compression problem can be formulated as a joint model of a raw image

x and its discrete latent representation z with θ representing model parameters:

pθ(x, z) = pθ(z) · pθ(x|z) (3.1)

In the above formula, pθ(x|z) is the prior model, and pθ(z) is the likelihood. Under the

scheme of video compression, the proposed ConvLSTM prediction network exploits

temporal correlation, resulting in a likelihood model given the former latent repre-

sentations in the sequence. Therefore, the prior model and the likelihood expression

can be redefined as

pθ(x1:T , z1:T ) =
T∏
t=1

pθ(zt|z<t) · pθ(xt|zt) (3.2)

where t is the time index for a frame. The following sections address the main

functional units of the proposed framework.

3.3.2 Video Prediction

The adopted image compression method [84] provides an optimal lower-dimensional

representation zopt in latent space for each image by minimizing a distortion function.
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Figure 3.3: The latent space video prediction network estimates the next-frame latent with
the understanding of latent space temporal correlation. A discriminator conditioned on the
preceding frames provides feedback to the predictor so that it learns the mapping from the
latent domain to the image space as well as the correlation of the previous and current
frames.

As such, the image compression model learns a lossy transformation from spatial do-

main to latent space. Temporal correlation between subsequent frames in the latent

domain is exploited with a ConvLSTM-based predictive model. An accurate inter-

frame prediction model is a critical component in time-series data compression to

capture the temporal correlation in the frame sequence and thereby achieve small

cross-entropy between the original and compressed data. A well-trained predictor

learns the capability to predict the normal inter-frame content of the video such as

the movement of an object and the translation of the camera. This characteristic of

the predictor allows abnormal event detection as a byproduct of video compression

as discussed in Section 4.5.

Similar to existing video codecs, the introduced approach only encodes and trans-

mits the residual between the predicted latent vector and the optimal latent zopt

obtained from the image compression process. Next frame prediction hinges on the

conditional prior model learned by the prediction network, whose cells retain the
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memory of previous data distribution. The generic prior model is defined as

pθ(zT |z<T ) =
T∏
t=2

pθ(z1:t)

pθ(z1:t−1)
. (3.3)

Given the complexity of stochastic data distribution in videos and the possible rapid

transition between frames, training a good prior model is a main challenge to ob-

tain satisfying compression performance. This method proposes a GAN-based adver-

sarially trained ConvLSTM network to make predictions ẑ on zopt for video frame

reconstruction.

As opposed to previously proposed methods, the prediction model P (·) produces

estimated latent vectors instead of frames. This method requires significant attention

to define a proper reconstruction objective function since element-wise error in latent

space is often insufficient to measure spatial domain image reconstruction fidelity.

The proposed prediction network is trained under an adversarial setup to exploit

the complex similarity metric implicitly learned by a discriminator [75], which plays

a critical role under the latent space prediction regime. Involving the discriminator

objective [106] in the cost function improves the LSTM cells to establish more effective

memory in terms of learning the temporal correlation. The loss function in the

framework is expressed as

L = λ ·
{
Ez∼pz

[
log (1−D(G(P (z<t|x<t))))

]
+Ez∼popt

[
log (D(G(zopt|x<t)))

]}
+(1− λ) · Ep(z<t)

[
log p(zt|z<t)

]
,

(3.4)

where G(·) is the generator network that reconstructs a frame x from a latent z

and D(·) is the discriminator network that judges whether a frame belongs to a valid

frame sequence as shown in Figure 3.3. The first term of the above loss function refers

to the cross entropy of the discriminator cost function and the second term indicates
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the prediction error. Crucially, the image and video compression frameworks share

the same generator (decoder) to reconstruct a frame x from a latent z. The generator

parameters are inherited from image compression and thus fixed when training the

prediction network. As shown in Figure 3.2, the reconstructed latent vectors, z̃ =

ẑ+Q(r), inevitably lose some information from the optimal ones, zopt = ẑ+ r, due to

discretization Q(r). Note that the quantization distortion metric is not presented in

the prediction network loss, thus a well-trained generator G(z) is crucial to minimize

the loss between the target frame xt and x̃t synthesized/generated from z̃t.

3.3.3 Quantization and Entropy Coding

The quantization and entropy coding of the residual rt from latent prediction

incorporated in the proposed video compression framework are deconstructed below.

Quantization: This scheme applies ADMM [121] quantization to find discretized

vectors with minimal degradation of quality compared to the original frames. A

generic quantization problem can be described as follows:

min
r

f(r) subject to r ∈ S, (3.5)

where S is a quantized set and f is a loss function. In the context of residual quan-

tization, the loss function (Equation 3.6) is defined as

f(r) = dl(zopt, (ẑ + r)) + ds(x,G(ẑ + r)) subject to r ∈ S. (3.6)

The optimization problem above is given by a combination of a) the latent space

distortion dl given the optimal zopt, and b) the distortion ds(·) in spatial domain

reconstruction. It is non-convex and not solvable with stochastic gradient descent

(SGD) due to the quantization constraint. Moreover, direct quantization is likely

to cause gradient vanishing. Recent works address these issues with ADMM using
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an indicator function and combining it with a differentiable loss function. During

iterations, the ADMM method projects all elements of residual latent vectors to

different quantized levels and minimizes the loss function in parallel. This guarantees

that all elements are quantized in the process to find the optimal level.

In ADMM quantization, the problem (3.5) is redirected to optimizing the cost

function minr f(r) + g(u) subject to r = u by introducing u as an auxiliary variable.

The indicator function g(u) is 0 if u ∈ S or ∞ otherwise.

min
r

f(r) + g(u) subject to r = u (3.7)

g(u) =

 0 if u ∈ S

+∞ otherwise
(3.8)

Then, the augment Lagrangian method decomposes the dual variable optimiza-

tion problem into two partial updating tasks performed iteratively and separately

as described in (Equations 3.9, 3.10, and 3.11). With the addition of a convex and

differentiable regularization term, the optimal solution is iteratively approximated

through SGD with Adam optimizer.

rk+1 = argmin
r

f(r) +
µ

2
· ∥r − uk + ηk∥22 (3.9)

uk+1 = argmin
u

g(u) +
µ

2
· ∥rk+1 − u+ ηk∥22 (3.10)

ηk+1 = ηk + rk+1 − uk+1 (3.11)

Equation 3.10 is solved by the Euclidean projection of rk+1+ηk onto the quantized set

S, which is formulated as uk+1 := ΠS (rk+1 + ηk) where ΠS is the projection function.

The proposed method adopts an adaptive non-uniform quantization scheme where

the quantization set is determined specifically for each video clip and transmit-

ted together with the compressed data. Non-uniform quantization is implemented
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by selecting a subset of uniformly quantized levels and the proposed codec only

stores/transmits the entropy-coded indices of the selected quantization levels instead

of the original value.

Entropy Coding: A well-trained prediction model produces very sparse (with few

non-zero elements) residual latent representations after quantization. The quantized

residual vector is reshaped and stored in the compressed sparse row format and finally

entropy coded with Adaptive Arithmetic Coding [161]. After this final step, the

proposed codec achieves extremely high compression ratios with superior/competitive

reconstruction quality compared to conventional codecs.

3.3.4 Rate-distortion Control

In order to allow a wide range of rate-distortion tradeoffs, the compression rate (or

bit-per-pixel, bpp) of LVC is controlled by changing the number of elements in the la-

tent vector and the number of quantization levels for the residuals. The transmitter in

this approach continuously monitors the quality of the reconstructed (decompressed)

frame using a distortion metric d(xt, x̃t) shown in Figure 3.2 to adjust the compression

method on-the-fly. Note that the prediction based residual encoding can occasionally

fail when the scene changes abruptly. In rare occasions, the generator (decoder) may

yield an inferior reconstructed frame x̃t due to limitations of the trained generator

model. The frames that cause these issues are defined as key-frames and LVC en-

codes key-frames using a conventional image codec BPG [14]. These key frames are

equivalent to intra-coded frames in conventional video codecs. This adaptive encod-

ing prevents catastrophic failures in the proposed method that is designed to cover a

wide range of rate-distortion tradeoff space.
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3.4 Experimental Setup

The previous section introduces the loss function (Equation 3.4) that combines the

loss of the latent reconstruction and the discriminator loss to enhance the quality of

the reconstructed image from the prediction network. This work empirically chooses

λ = 0.1 during the training to balance the first and second terms. Adding the

discriminator loss term does not necessarily improve the PSNR/SSIM metric but

it does enhance the subjective quality of video/image. The number of iterations

typically needed for ADMM quantization in compression tasks is 50. The structure

of DNNs (including the number of layers and kernel sizes, etc.) used in the experiment

is specified in the supplementary material.

3.4.1 Datasets

The proposed framework is trained with the Kinetics dataset [19] and the UGC

dataset [156]. In the Kinetics dataset, roughly 98,000 videos each lasting for around

10 seconds with a resolution higher than 720p are used for training. The UGC dataset

has a rich collection of content such as lectures, animation, and music videos with

more than 1,500 clips for an average length of 20 seconds. Training and evaluation

datasets are mutually exclusive. The evaluation is tested on Video Trace Library

(VTL) [2] and Ultra Video Group (UVG) [103] datasets. The VTL dataset contains

20 videos with around 40,000 frames of resolution 352× 288. The UVG dataset has

16 videos, and the evaluation is tested on the original 8 videos with an overall 3,900

frames of resolution 1920× 1080 to compare with other existing methods.

3.4.2 Metrics

This work quantitatively compares the experimental results with the most prevail-

ing hand-crafted video codecs as well as the learning-based codecs recently proposed.

The quality distortion is measured by PSNR and MS-SSIM of decompressed frames.
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For the conventional codecs, H.264 and H.265, the experiment applies the ffmpeg

very-fast mode with a GOP of 10/12 for the VTL/UVG dataset.

Figure 3.4: Comparison of the proposed approach with H.264, H.265, and learning-based
codecs [162, 94, 33, 165, 4] for PSNR, and [162, 94, 48, 25, 165, 4] for MS-SSIM on UVG
and VTL datasets. LVC video codec is not optimized specifically for PSNR or MS-SSIM.

3.5 Experimental Results

3.5.1 Video Compression Performance Analysis

The experimental results on VTL and UVG datasets in Figure 3.4 show that this

method outperforms AVC/H.264, HEVC/H.265, and the state-of-the-art DNN-based

codecs for most of the tested bits-per-pixel rates in terms of PSNR and MS-SSIM.
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Figure 3.1 is the visualization of a frame from the UVG dataset showing that the in-

troduced approach gives equally if not more visually appealing reconstructed frames

under a lower/same bpp compared with other codecs. The experimental result in-

dicates that incorporating discriminator loss in training can provide more complex

details and realistic quality. Although this subjective quality gain is not always

captured by the commonly adopted pixel-wise distortion metrics such as PSNR and

MS-SSIM, this method still achieves better results in the rate-distortion tradeoff mea-

sured by PSNR and MS-SSIM compared to other video codecs. Note that this scheme

is flexible to adopt a different set of zopt,t that minimizes an application-specific target

metric (instead of generic MSE) such as a CNN feature loss or discriminator loss if the

decompressed video is intended for machine learning based applications. The result

shows that LVC’s PSNR in a very low bpp regime can be lower than that of some

other codecs (Figure 3.4 second left). It is mainly because of two factors: 1) there

is a resolution mismatch between training and evaluation datasets, and 2) the target

z is minimized by a combined loss as shown in Equation 3.4 for superior subjective

quality on reconstructed frames although it may result in slightly degraded PSNR.

3.5.2 Ablation Studies

Latent Space Video Prediction: This work presents an example video frame

directly generated from the predicted latent ẑt (without residual compensation) in

Figure 3.1 and Figure 3.5. The result shows that the proposed approach produces

effective next-frame prediction to achieve high compression rates. Figure 3.6 right

shows the quality of video entirely generated from the predicted latent ẑt in terms of

PSNR on UVG [103] dataset. For this experiment, the prediction-only mode produces

the video sequences from predicted next-frame latent ẑt without residual compensa-

tion whereas the input to the predictor is the reconstructed latent z̃<t. The result in

Figure 3.6 right shows that this approach provides high quality next-frame prediction
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while the average prediction quality saturates as the bit rate increases. Note that the

bit rate for the prediction-only mode is overstated because it is mostly dominated by

residuals that are unused in the prediction-only mode. The observation implies that

while the reconstructed latents, z̃t, can learn the spatial domain correlation within

a frame very well, there remain non-negligible inter-frame temporal prediction er-

rors caused by complex motion dynamics. In the video compression task, this work

alleviates this issue and achieves significant quality improvements by saving and trans-

mitting keyframes and residuals. For the majority of normal video frame sequences

that have strong temporal correlations, the proposed prediction method provides re-

liable and accurate prediction for compression. For occasional abnormal sequences,

the limitation of the prediction network is exploited for the task of abnormal event

detection.

Compressed Data Size Distribution: As described in the framework, the codec

first transmits k = 6 initial frames without prediction in their latent representa-

tion zopt, and they are fed to the prediction ConvLSTM network to initialize the

latent sequence. During the regular codec operation after initialization, the proposed

scheme keeps monitoring the quality of reconstructed frames x̃t compared with the

raw frame by evaluating the MSE distortion d(xt, x̃t) = ∥xt − x̃t∥2. When the dis-

tortion exceeds a predefined threshold, the scheme declares this frame is a key-frame

and transmits the BPG-coded frame directly to the receiver (without using the la-

tent domain residual). To further inspect the implication of this proposed approach,

analysis of the distribution of code length for different bit-rates is shown in Figure

3.6. The result shows that residual latent vectors dominate the overall compressed

data as expected. The proportion of key-frames is dependent on the video content

(abrupt scene changes incur more key-frames) but it is less significant, especially for

very low or high compression rates.

A lower distortion threshold is set for the higher image quality target. Thus it
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Figure 3.5: Visualization of LVC model results. The prediction network predicts the next-
frame latent according to several preceding latent. The residual in the latent space is added
to the predicted latent for final reconstruction via the generator.

is likely to encounter more intra-coded key-frames for higher quality video compres-

sion. On the other hand, allowing more bits per pixel reduces the distortion, thereby

decreasing the number of bits for key-frame transmission. Because of these two coun-

teracting effects, the bit allocation for the key-frames shown in Figure 3.6 left shows

a non-monotonic pattern with relatively fewer bits at two extremes (lowest and high-

est rates), while more bits are allocated to key-frames when the compression is at a

medium level.

The evaluation of the UVG dataset confirms that the key-frames occupy on average

only 8.73% of the total code length. The bit streams for prediction residual encoding

account for 84.8% of the total compressed bit sequence on average, while the rest

6.48% contributes to the initial frames. According to the inspection of the composition

of the compressed signal, the residual rt is 8× more sparse (fewer non-zero values)
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Figure 3.6: Code length distribution for different compression ratios (left) and evaluation of
next-frame prediction performance (right). The prediction-only method generates the video
sequences from predicted next-frame latent ẑt without residual compensation whereas the
input to the predictor is the reconstructed latent z̃t. Note that bpp values for the prediction-
only curve do not reflect the actual code size (which should be very close to 0 as residuals
are discarded). They are just proportional to the latent space dimension adopted for the
experiment.

than the target latent representation zopt,t on average. This validates that generating

accurate predictions is a key enabler for LVC codec.

3.5.3 Application: Anomaly Detection

The ablation study and experiment are extended to anomaly detection on surveil-

lance video clips, which mostly contain homogeneous contents with relatively small

changes between scenes. With the assumption that the proposed prediction model re-

liably predicts the next frame in normal scenes, an anomalous event is detected when

the difference between the predicted latent vector and the target zopt of the frame is

substantial. The error of prediction caused by the abnormal event is quantified by

computing the Euclidean distance between the predicted and target latent vector.

Following the regularity score proposed in [27], e(t) is the L2 distance between the

prediction and target latent at frame index t. The score S(t) reflects the normality

54



Figure 3.7: Regularity score (blue curve in the figure) along the frame sequence. Normal
scenes typically score > 0.9 whereas abnormal events cause steep score degradation.

of the frame within the sequence of time duration T .

e(t) = ∥zopt − z̃t∥2

S(t) = 1− e(t)−minτ (e(τ))
maxτ (e(τ))

, τ=t−T,t−T+1,··· ,t

(3.12)

The regularity score (Equation 3.12) indicates that a relatively small prediction

error produces a score close to 1, while it will drop significantly when a large predic-

tion error is encountered because of an abnormal (i.e., unseen during the prediction

training) event in the scene. Figure 3.7 visualizes the change of the regularity score

in a video clip.

This work tests the anomaly detection performance on several widely used datasets

with distinctive features. UCSD [96] Ped1 contains 40 abnormal events in 70 video

clips, and UCSD Ped2 has 12 abnormal events in 28 videos. The Subway entrance/exit

dataset [3] has 96/43 minutes of video with 66/19 abnormal events. Avenue dataset

[92] comprises overall 47 abnormal events. The proposed predictor network is solely

trained for the video compression task, and it has not been retrained for anomaly

detection. This approach is evaluated on the test sequences of those datasets in

terms of area under the Receiver Operation Characteristic (ROC) curve (AUC), which
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Table 3.1: Anomaly detection performance evaluated by area under ROC curve (AUC %).

Methods
UCSD UCSD Subway Subway CUHK
Ped 1 Ped 2 Entrance Exit Avenue

Wang et al. [154] 72.7 87.5 81.6 84.9 –
Hasan et al. [50] 81.0 90.0 94.3 80.7 70.2
Chong et al. [27] 89.9 87.4 84.7 94.0 80.3
Liu et al. [89] 83.1 95.4 – – 84.9
Gong et al. [43] – 94.1 – – 83.3

LVC 90.9 93.6 88.2 94.5 85.4

cumulatively reflects the ROC metric. Generally, a higher AUC indicates better

performance.

In this scheme, normal scenes with learned patterns mostly do not trigger false

alarms as they create small fluctuations in the regularity score S(t). However, when an

abnormal event happens, the regularity score significantly drops with a high probabil-

ity. This abnormal event detection is just a byproduct of the compression algorithm.

Nonetheless, the event detection performance shown in Table 3.1 exhibits compara-

ble/superior accuracy compared with others specifically designed for the task.

3.6 Conclusion

This chapter proposes a GAN-based framework that accomplishes video prediction

and compression. The method simultaneously learns a transform of the original video

into a lower-dimensional latent representation as well as a temporally-conditioned

probabilistic model. Performance evaluations show that this work achieves supe-

rior/competitive results compared to other (learning-based) codecs for a wide range

of rate-distortion tradeoffs. The LVC performance gain is majorly attributed to the

approach that reduces both spatial and temporal redundancy by combining image

compression and video prediction in latent space. The study additionally applies the

proposed video prediction scheme to abnormal event detection, showing competitive

accuracy compared to algorithms specifically optimized for that task.
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CHAPTER IV

MMVC: Learned Multi-Mode Video Compression

with Block-based Prediction Mode Selection and

Density-Adaptive Entropy Coding

4.1 Introduction

1 Over the past several years, with the emergence and booming of short videos

and video conferences across the world, video has become the major container of in-

formation and interaction among people on a daily basis. Consequently, we have

been witnessing a vast demand increase on transmission bandwidth and storage

space, together with the vibrant growth and discovery of handcrafted codecs such

as AVC/H.264 [136], HEVC [136], and the recently released VVC [135], along with a

number of learning based methods [162, 94, 123, 48, 4, 55, 85, 167, 166, 80, 101, 81].

Prior works in deep video codecs have underlined the importance of utilizing

and benefiting from deep neural network models, which can exploit complex spatial-

temporal correlations and have the ability of ‘learning’ contextual and motion fea-

tures. The main objective of deep video compression is to predict the next frame

from previous frames or historical data, which results in the reduction of the amount

of residual information that needs to be encoded and transmitted. This has so far

1The content of this chapter is based on [86].
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led to two directions: (1) to build efficient prediction or estimation models, and ex-

tract motion information by leveraging the temporal correlation across the frames

[94, 4, 167, 55]; (2) to make an accurate estimation of the distribution of residual

data and push down the information entropy statistically by appropriate condition-

ing [48, 166, 80]. The existing works usually fall in one or a combination of the above

two realms. In the light of the learning capability that deep neural networks can of-

fer, the results in this work argue and demonstrate that some measures of adaptively

selecting the right mode among different available models in the encoding path can

be advantageous on top of the existing schemes, especially when the adaptive model

selection is applied at the block level in the feature space.

Drawing wisdom from conventional video codec standards that typically address

various types of motions (including the unchanged contextual information) in the unit

of macroblocks, this work presents a learning-based, block wise video compression

scheme that applies content-driven mode selection on the fly. The proposed method

consists of four modes targeting different scenarios:

• Skip mode (S) aims to utilize the frame buffer on the decoder and find the

most condensed representation to transmit unchanged blocks to achieve the

best possible bitrate. This mode is particularly useful for static scenes where

the same backgrounds are captured by a fixed-view camera.

• Optical Flow Conditioned Feature Prediction mode (OFC) leverages the tem-

poral locality of motions. This mode captures the optical flow [140] between

the past two frames, and the warped new frame is treated as a preliminary

prediction of the current frame. This warping serves as the condition to provide

guidance to the temporal prediction DNN model.

• Feature Propagation mode (FPG) applies to blocks where changes are detected,

but there is no better prediction mode available. This mode copies the previ-
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ously reconstructed feature block as the prediction, and encodes the residual

from there.

• For other generic cases, MMVC proposes the Feature Prediction mode (FP) for

feature domain inter-frame prediction with a ConvLSTM network to produce a

predicted current frame (block).

Prior to the mode selection step, The transmitter produces the optimal low-

dimensional representation of each frame using a learned encoder and decoder pair

based on the image compression framework in [84] for the mapping from pixel to

feature space. The block by block difference between the previous frame and the

current frame represents the block wise motion. Unlike some state-of-the-art video

compression frameworks that separately encode motions and residuals, the presented

method does not encode the motion as it is automatically generated by the prediction

using the information available on both the transmitter and receiver. To adapt to

different dynamics that may exist even within a single frame for different blocks, this

method evaluates multiple prediction modes that are listed above at the block level.

As a result, this codec can always obtain residuals that have the highest sparsity

thereby the shortest code length per block. Furthermore, MMVC proposes a residual

channel removing strategy to mask out residual channels that are inessential to frame

reconstruction, exploiting favorable tradeoffs between noticeably higher compression

ratio and negligible quality degradation.

4.2 Related Work

4.2.1 Learned Video Compression

Pioneering works in learned video compression generally inherit the concept and

methodology in conventional codecs. Wu et al. [162] propose to hierarchically interpo-

late the frames between a predefined interval, where both the forward and backward
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motions are represented by block motion vectors. DVC [94] and Agustsson et al.

[4] adopt optical flow based motion estimation and warping schemes. Habibian et

al. [48] map a patch of frames with 3D spatial-temporal convolutions to a lower-

dimensional space and make temporal predictions on the prior distribution through

GRU. With the progress in designing autoencoder-based feature extraction and re-

construction as a stepping stone, recent works have achieved better performance by

performing motion prediction or estimation in the feature domain (as opposed to

the pixel domain), which naturally represents both motion and residual in a more

information-dense form to benefit compression. FVC [55] learns a feature space offset

map as motion representation, and the motion compensation step is accomplished by

deformable convolution [30].

4.2.2 Mode Selection

As a widely adopted tool in the conventional video coding standards, the idea of

mode selection intends to evaluate different schemes on the fly to address the inter-

frame temporal correlations in a context-dependent manner. Based on this concept,

Ladune et al. [72] proposes a network that learns the pixel wise weighting to determine

whether or not to skip encoding the respective pixel. Hu et al. [54] presents a hyper-

prior guided mode selection scheme that compresses motion in different resolutions,

and it uses a learned mask to skip the encoding of some residual features.

4.2.3 Entropy Coding

Most existing works in learned video coding adopt a learned entropy coding scheme

as presented in [11] originally for image compression to facilitate end-to-end rate-

distortion optimization. This method then evolved to provide more flexible and accu-

rate entropy modeling by learning the distribution parameters [12, 105]. Additionally

for video sequences, incorporating temporal cues to obtain more accurate entropy
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estimation can lead to higher compression gains. RLVC [166] proposed a probability

model that approximates the distribution of encoded residuals to a parameterized lo-

gistic distribution, conditioned on the feature of previous frames propagated under a

recurrent setup to establish a richer temporal prior. With a similar insight, DCVC by

Li et al. [80] proposes building an entropy model with temporal conditions. Recently,

Mentzer et al. [101] introduces a novel transformer-based framework that establishes

a temporally conditioned entropy model and abstracts all decorrelation efforts by

one-shot model execution.

4.2.4 Quantization and Channel Removal

Adjusting the bin size or quantization granularity is a technique to address the

uneven redundancy between channels, allowing the content of greater importance

to occupy more quantized bits and the rest with fewer bits for the maximum quality

under a similar bitrate. Cui et al. [29] propose scaling the residual feature with learned

channel wise factors before quantization and inverse-scaling before reconstruction as

an effective way of rate adaptation. In this work, to simplify the datapath but still

benefit from the same concept, a channel wise binary masking (0 or 1 scaling) is

applied to remove disposable channels in the feature blocks when it offers a favorable

tradeoff in the achievable rate vs. quality.

4.3 Method

The original temporal sequence of raw frames is denoted as the setX = {x1, x2, · · · ,

xt−1, xt, · · · }. Correspondingly, on the receiver (and also on the transmitter), the re-

constructed previous frames are available as x̂ = {x̂1, x̂2, · · · , x̂t−1}. The whole system

flow of the proposed video compression scheme, MMVC, is shown in Figure 4.1. The

system can be divided into four main parts: feature extraction, temporal prediction,

channel removal, and quantization plus entropy coding.
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Figure 4.1: Overview of the proposed multi-mode video coding method. The current and
previous frames are fed into the feature extractor and then go through branches of prediction
modes followed by residual channel removal, quantization, and entropy coding process. The
proposed codec then selects the optimal prediction and entropy coding schemes for each
block that lead to the smallest code size.

4.3.1 Pixel Space Preprocessing

As an initial step, MMVC partitions two consecutive frames into k×k blocks and

calculate the block wise differences to form n = {n1,2, n2,3, · · · , nt−1,t, · · · }, where

ni,jt−1,t =
∥∥xi,jt−1 − xi,jt

∥∥2

2
, i, j ∈ {1, · · · , k}, (4.1)

and the superscripts i, j denote the 2D position of a block. At each time step, the

MMVC scheme examines the numerical values in the block wise difference. The

blocks with all-(near)zero differences are encoded using the Skip mode, where only the

block (positional) index information is recorded and transmitted. With an algorithm

parameter ϵ ≈ 0, this step generates a binary mask m = {m1,2,m2,3, · · · ,mt−1,t, · · · }
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each of k × k elements, where

mi,j
t−1,t =

 0, ni,jt−1,t < ϵ,

1, otherwise.
(4.2)

The unchanged blocks are masked out, indicating that no prediction will be performed

and no residual will be stored. Instead, they can be recovered directly from the

previously reconstructed frames by copying their pixel blocks at the corresponding

positions.

To capture the pixel level motion information and utilize its temporal locality,

the proposed scheme obtains the optical flow [140] O(·) between the previous two

reconstructed frames (e.g., x̂t−2, x̂t−1) and warp it to the latter one to form a set

{x̄2, · · · , x̄t} that is commonly available on both the transmitter and the receiver.

This step can be described as:

x̄t = warp(O(x̂t−2, x̂t−1), x̂t−1). (4.3)

4.3.2 Feature Extraction

To this point, the pixel space preparation and optical flow based warping are

accomplished. To extract rich features across the frames in a compact representation,

a set of auto-encoders is trained together with an entropy modeling network to achieve

different rate-distortion tradeoff points. Given a trained encoder E(·) and decoder

pair D(·), each raw frame xt is encoded to an optimal feature set f optt using a back-

propagation based iterative scheme [84] that refines the one-shot encoding output

ft = E(xt) through a coupled decoder D(·) to obtain f optt by minimizing the MSE

distortion:

f optt = argmin
ft

d(xt, D(ft)). (4.4)
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Note that f optt is only available at the transmitter since the raw frame xt is not

available at the receiver. Previously reconstructed frames {x̂t−k, · · · , x̂t−1}, as well as

the warped frame x̄t are encoded (without iterative optimization) to corresponding

feature sets f̂t = E(x̂t) and f̄t = E(x̄t) using the same encoder. These are commonly

available on both the transmitter and receiver.

4.3.3 Feature Prediction

Figure 4.1 depicts the feature space prediction and mode selection strategy. Prior

to the mode selection step, this work assumes the optimal low-dimensional represen-

tation of current frame f optt and the binary mask mt−1,t for Skip mode indication

are ready at the transmitter. The proposed method replaces conventional motion

estimation, compression, and compensation steps with feature domain prediction op-

tionally conditioned by pixel-domain optical flow. Residual is the difference between

the optimal feature f optt and the predicted feature. However, this might lead to large

residuals when the prediction is not accurate. To accommodate the rich variety of

motions, a prediction method consisting of three mode branches is introduced, and

mode selections for each block (not for the entire frame) are selected based on the

entropy of residuals.

The Feature Prediction branch is implemented with a ConvLSTM network, where

the predictor PFP takes the reconstructed features {f̂t−k, · · · , f̂t−1} as inputs, and

produces a predicted current frame feature representation, capturing temporal corre-

lation in the feature domain:

f̃FPt = PFP(f̂<t), with rFPt = f optt − f̃FP
t . (4.5)

To augment this prediction process with more contextual cues from certain scenes,

MMVC forms another prediction path, called Optical Flow Conditioned Feature Pre-
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diction. It uses the optical flow warped feature f̄t as a conditional input for a predic-

tion network POPC:

f̃OFC
t = POFC(f̂<t|f̄t), with rOPC

t = f optt − f̃OFC
t . (4.6)

The experimental results indicate that in some cases neither of the above modes

can outperform directly copying/propagating the respective block in reconstructed

features at time t−1 such that f̂t = f̂t−1. Hence, this Feature Propagation is adopted

as the third prediction type described as:

f̃FPG
t = f̂t−1, with rFPGt = f optt − f̃FPG

t . (4.7)

After having the predicted feature representations under the above modes for all

non-skip blocks, the residuals (rFPt , rOFC
t , rFPGt ) are partitioned to equal-sized residual

blocks (rFP,i,jt , rOFC,i,j
t , rFPG,i,jt ) so that each block indexed by i and j has a set of

residuals from different modes. The residual block partition side is determined to

keep the number of blocks unchanged from that of pixel domain blocks (i.e., k × k).

To determine the optimal prediction mode, this codec quantizes and entropy encodes

(introduced in Section 4.3.5) each of the block partitioned residuals respectively, and

proceeds with the one that has the shortest code length. Therefore, the output of this

step is a block-based residual map ri,jt constructed by block wise optimal prediction

mode selection. This process is described as:

ri,jt = argmin
r̂i,jt

(R(Q(r̂i,jt ))), with

r̂i,jt ∈ {rFP i,jt , rOFC i,j
t , rFPG i,j

t } and i, j ∈ {1, · · · , k},
(4.8)

where Q(·) and R(·) represent the quantization step and the bitrate after entropy

coding respectively.
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4.3.4 Block Wise Channel Removal

An adaptive residual channel removal technique is adopted to ensure that more

bits are allocated to quality-critical residual elements. Carefully designed channel

removal criteria can guarantee the reconstruction quality while reducing the number

of bits consumed by unimportant residual feature channels. In an effort to only pre-

serve feature channels carrying essential residuals and maintain the reconstruction

quality after channel removal, the proposed method inspects each channel in a block

separately. For one residual block and the predicted block along with it, the least im-

portant channel is selected by evaluating the PSNR degradation per channel removal.

Channels are evaluated and removed iteratively in this manner as long as the quality

degradation is within a predefined limit.

4.3.5 Density Adaptive Entropy Coding

The entropy coding is highlighted with the blue background in Figure 4.1. This

datapath operates in accordance with the adaptive channel removal strategy, where

pruned residual channels are set to zeros. It also considers sparse non-zero residuals as

a result of efficient prediction. The proposed density-adaptive entropy coding method

consists of a block wise sparse path and a dense path as shown in Figure 4.1. The

density of each non-zero residual block is first evaluated, and the block is fed into the

sparse path when the density is under a predefined threshold. Otherwise, the block

is fed into the dense path. This mode selection is recorded as a block wise binary

density map.

In the sparse residual path, the non-zero residual positions are run-length coded

prior to conventional arithmetic encoding, and non-zero residuals are gathered to-

gether for separate arithmetic encoding. The dense path consists of two options: (1)

a learned entropy codec model guided by the hyperpriors followed by direct quanti-

zation [105], and (2) a conventional arithmetic coding method coupled with ADMM
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[17] quantization trained to non-uniformly discretize the residuals and optimized for

minimal quantization error. This work proceeds with the option that leads to a lower

rate and records the corresponding block wise entropy coding mode map wt for the

receiver as side information.

Note that MMVC maintains the same entropy coding path across all channels in

each block to limit the cost of bits to encode wt. To further reduce the bitrate, the bi-

nary density map (sparse vs. dense path) is also entropy-coded with Huffman coding.

This method incurs additional bits for conveying the side information (density map

and wt), the experiments in Section 4.5.3 confirm that the overall bitrate reduction

offsets the side information overhead.

4.3.6 Model Training Strategy and Losses

The mode selection scheme requires a uniform feature space for different prediction

modes. Therefore both predictors (PFP and POFC) need to be optimized under the

same pixel-feature space mapping. To get this mapping regularized under different

rates, the Optical Flow Conditioned Feature Prediction model POFC is optimized by:

min
γ,η,ϕ,φ

Rγ(f
opt
t − POFC

η (Eϕ(x̂<t)|Eϕ(x̄t)))+

λ · d(Dφ(f̃
OFC
t + r̂OFC

t ), xt),

(4.9)

where E(·) and D(·) are the auto-encoder pair, and d(·) is the distortion calculated

by MSE.

After this mapping is fixed (i.e., the weights of encoder/decoder pair are trained)

for POFC at a specific rate point, then the Feature Prediction model PFP is optimized

to minimize distortion between the predicted and optimal features, measured by both
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MSE and discriminator loss. This optimization process is expressed as:

min
θ

max
ψ

(1− α) · {Ef∼popt(f)[log Sψ(D(f optt ))]+

Ef∼pf (f)[log
(
1− Sψ(D(PFP

θ (f̂<t)))
)
]}+

α · d(D(PFP
θ (f̂<t)), xt),

(4.10)

where S(·) is the discriminator network optimized in the GAN setting together with

the prediction model to judge whether the reconstructed frame from the feature set

is original (i.e., raw frame) or not. This discriminator model makes the training of

the prediction model converge faster.

4.4 Experimental Setup

4.4.1 Training Details

Two prediction modes are trained separately so that the training procedure can

be divided into two stages. First, the encoder-decoder pair, the context and entropy

model, together with the Optical Flow Conditioned Feature Prediction model POFC

(Feature Predictor path is disabled) are end-to-end trained till convergence. The

model involved in the experiments is only optimized with MSE as the distortion loss.

To achieve different bitrates for rate-distortion tradeoffs, this work curates a set of

Lagrange multipliers as λ = {2, 64, 256, 1024, 2048, 4096}. The model is optimized for

10M steps with a batch size of 16. The learning rate is initialized to be 10−4, which

is scaled to half every 2M steps. As each individual value λi leads to a unique bitrate

along with the quality, MMVC ends up having a set of trained encoder-decoder pairs

for various rates. During the second stage in the training procedure, the parameters

are fixed in the trained encoder-decoder pair, and the optimal feature representations

f optt are obtained from iterative back-propagation through the decoder. These ob-

tained optimal features serve as the input to train the Feature Prediction model PFP,
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which is optimized by discriminator loss in addition to the MSE loss for enhanced

visual quality. This work trains PFP model at an initial learning rate of 5× 10−4 for

20M steps with a batch size of 8, and the learning rate is decayed by half for every

2M steps after training 10M steps.

4.4.2 Datasets

Training Datasets: The Vimeo-90k dataset, Kinetics dataset, and UGC dataset

are used for training purposes. The Optical Flow Conditioned Feature Prediction

mode is trained with the Vimeo-90k Septuplet [164], which contains 89,800 short

video sequences, with each sequence having 7 consecutive frames of size 488 × 256

pixels. To enlarge the training set, random cropping of each original sequence to

four 256 × 256-pixel aggregated sequences is implemented. The Feature Prediction

mode is trained with part of the Kinetics dataset and the UGC dataset. The Kinetics

dataset has 98,000 videos, each of 10 seconds with a resolution higher than 720p.

The UGC dataset is composed of clips each lasting for 20 seconds. The videos in

Kinetics and UGC that have resolutions higher than 1080p are collected and cropped

to 1024× 1024 pixels for the training process.

Testing Datasets: To evaluate the performance of the presented method quantita-

tively and qualitatively, this work performs experiments on three datasets: the UVG

dataset [104], the MCL-JCV dataset [151] and the HEVC class B dataset [136]. All

testing videos that are chosen have the same 1080p resolution. To showcase the bene-

fit of the Optical Flow Conditioned Feature Prediction mode, the presented work also

adopts part of the Kinetics dataset for ablative experiments. Video frames used for

testing are not included in the training dataset.
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Figure 4.2: Reconstruction with standard codecs (HEVC, VVC) and MMVC method. De-
tails of the static background and dynamic objects are well preserved in the frame generated
from the predicted features and entropy-coded residuals that are block wise selected from
multiple modes.

4.4.3 Metrics

PSNR and MS-SSIM are used as the quantitative evaluation metrics in the exper-

iments. PSNR is a standard way to reflect the degree of distortion in reconstruction

whereas MS-SSIM often serves as a proxy indicator for perceptual quality.

4.5 Experimental Results

4.5.1 Quantitative Results

To demonstrate the performance of the proposed codec, this work evaluates the

rate and distortion tradeoff curves and PSNR-based BD-bitrate measurements with

the state-of-the-art learned video compression algorithms published in recent years.

Specifically, the comparison includes results from DVC [94], FVC [55], Liu et al. [85],

DCVC [80], C2F [54], VCT [101], Li et al. [81], HLVC [165], M-LVC [82], Agustsson

et al. [4], and RLVC [166]. The measurements from traditional codec standards:

AVC [160], HEVC [136], and the latest VVC [135] are also included.
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Figure 4.3: Rate-distortion curves measured on UVG, MCL-JCV, and HEVC Class B
datasets in terms of PSNR and MS-SSIM.
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Table 4.1: Performance results evaluated by BD-Bitrate (BDBR) with PSNR metric (%).
The VVC (low delay P mode) is used as the anchor (i.e., BDBR = 0 for VVC). Negative
values imply bitrate saving compared to VVC, while positive values imply the opposite.

Dataset MMVC AVC HEVC C2F FVC DVC DCVC VCT Li et al. Liu et al. HLVC M-LVC Agustsson et al. RLVC

UVG 0.81 246.70 171.98 12.59 112.14 210.75 98.19 65.49 -2.58 73.97 183.90 161.38 175.24 148.72
MCL-JCV -16.73 188.00 124.56 19.44 72.45 150.08 67.71 44.92 -11.25 – – – 118.78 –

HEVC Class B -28.28 198.79 127.10 14.59 108.01 176.82 66.14 – -20.29 – – 63.72 – –

Following the prior work [80], this work chooses to encode AVC and HEVC under

veryslow mode with a GoP of 12/10. Compared with veryfast, the veryslow mode

compresses video frames to a lower bitrate at the cost of longer encoding time, which

aligns better with the target to generate high quality frames with the lowest bitrate

but potentially longer latency. For VVC encoding, the low delay P mode is applied

with a GoP size of 100 and set the IntraPeriod to be 4.

Figure 4.3 presents the rate-distortion curves measured with PSNR and MS-SSIM

on UVG, MCL-JCV, and HEVC Class B datasets. The performance curves demon-

strate that the proposed method outperforms the state-of-the-art learning-based ap-

proaches and conventional codecs in terms of PSNR for most of the bitrates covered.

Particularly at 0.1 bit per pixel, this approach achieves 2dB quality improvement

on average compared with HEVC (veryslow) for all testing datasets. Although not

specially trained or fine-tuned for MS-SSIM, the presented method achieves compar-

ative performance under the MS-SSIM metric consistently across all test datasets,

especially in higher bpp regions. Table 4.1 shows the BD-Bitrate (BDBR) results in

terms of PSNR anchored to VVC. The evaluation is based on UVG, MCL-JCV, and

HEVC Class B datasets. The proposed method demonstrates competitive or superior

performance compared to other schemes in Table 4.1.

4.5.2 Qualitative Analysis

Figure 4.2 shows example reconstructed frames from the UVG dataset. This ap-

proach exhibits similar quality (if not more visually appealing) with a bpp comparable

to other codecs. The details of dynamic motions are well preserved at less than 0.1
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Figure 4.4: Reconstruction of multiple prediction modes without using the information from
residual, where FP and OFC stand for Feature Prediction and Optical Flow conditioned
Feature Prediction respectively.

bpp, demonstrating that MMVC can accurately predict the next frame by a combina-

tion of different modes. For the background field, the sharpness of the reconstructed

frame is (subjectively) better than other standard codecs. The complementary na-

ture of different prediction modes in the proposed scheme is visualized in Figure 4.4,

which shows the decoded scenes directly obtained from the predicted features using

a specific mode for the entire frame without residual compensation. Using FP mode

only leads to sharper details in general, but it loses some contents such as the ve-

hicle behind the fountain and the rider’s leg. On the contrary, applying OFC mode

only results in unfaithful reconstructions near the horse’s legs. By adopting multiple

prediction modes that complement each other (FP + OFC), the prediction is able to

cover content variety in the original frame. The resulting residual is sparse and can

be condensed to a shorter bitstream.

4.5.3 Ablation Studies

Mode Utilization: The result of mode utilization is summarized for the UVG

dataset and 20 selected video sequences from the Kinetics dataset at relatively low

bitrates of 0.081 and 0.088, respectively. As presented in Table 4.2, this analysis

involves evaluating the separate performance of each prediction mode, examining
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Table 4.2: Mode utilization and performance on the UVG dataset and Kinetics dataset,
where FP, OFC, FPG, and S stands for Feature Prediction, Optical Flow Conditioned Fea-
ture Prediction, Feature Propagation, and Skip mode respectively.

Dataset UVG Kinetics

Prediction mode PSNR (dB)
Removed

Bpp
Bitrate

PSNR (dB)
Removed

Bpp
Bitrate

channels saving channels saving
FP 38.0 23% 0.146 0% 37.7 29.8% 0.136 0%
OFC 36.9 47% 0.118 19.2% 37.4 49.3% 0.106 22.1%

FP+OFC 38.1 27% 0.096 34.3% 37.7 41.6% 0.099 27.2%
FP+OFC+FPG 38.2 27% 0.084 42.5% 37.7 43.5% 0.096 29.4%

FP+OFC+FPG+S 38.2 44% 0.081 44.5% 37.8 50.8% 0.088 35.3%

Mode utilization
FP OFC FPG S FP OFC FPG S

78.1% 10.6% 6% 5.3% 37.6% 38.3% 12% 11.6%

the impact of utilizing multiple prediction modes, and quantifying gains provided by

skipping the encoding of unchanged blocks (i.e., Skip mode).

As shown in Table 4.2, the Feature Prediction (FP) and Optical Flow Conditioned

Feature Prediction (OFC) modes achieve comparable performance. For the UVG

dataset, FP slightly outperforms OFC with 1dB higher PSNR and only 20% higher

bitrate. Meanwhile, OFC is more favorable than FP for the Kinetics dataset. By

adopting the ensemble of both modes (FP + OFC), the quality is preserved with

an even lower bitrate, indicating that these two prediction modes can complement

each other by capturing different motion patterns. Including the Feature Propagation

(FPG) mode as an alternative prediction path further reduces the bitrate without

degrading the quality. The compression ratio improves noticeably by introducing the

Skip (S) mode as the final additional mode.

For sequences in the UVG dataset, the results showcase that usage of FP surpasses

other modes significantly. However, the Kinetics dataset where the scenes are cap-

tured mostly by a fixed-view camera showcases higher utilization of the other modes.

Fixed backgrounds in Kinetics sequences enable higher utilization of the Skip mode

for significant bitrate reduction. In general, introducing S mode reduces the required

bitrate for the same quality.
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Table 4.3: Percentage of additional bitrate saving from density-adaptive entropy coding
module compared to the baseline of using FP mode and dense path only on the Kinetics
dataset. Note that the S mode is not included because it does not involve any residual
coding.

Prediction mode Dense path only Dense + sparse paths

FP 0% 4.1%
FP+OFC 6.3% 21.2%

FP+OFC+FPG 6.5% 23.9%

Channel Removal and Adaptive Entropy Coding: One column in Table 4.2

shows the percentage of removed residual channels for various prediction modes. It

shows that the percentage of removed residual channels is generally higher as the

prediction becomes more accurate with mode selections from the full ensemble of

available prediction modes (FP+OFC+FPG+S) compared to the single mode case

(FP only).

Table 4.3 summarizes the additional bitrate saving by the density-adaptive en-

tropy coding compared to the baseline of using FP mode and dense-path only. The

evaluation is based on the Kinetics dataset at a relatively low bpp of 0.165, where the

utilization of each prediction mode is well balanced. Allowing more prediction modes

generally reduces the density of the residual. Thus the proposed density-adaptive en-

tropy coding provides more significant savings (an additional 23.9% saving) when it

is combined with the full ensemble of available prediction modes (FP+OFC+FPG).

This saving includes the overhead of sending the density map and mode selection side

information.

4.6 Conclusion

A dynamic mode selection-based video coding scheme, MMVC, is presented in

this chapter. It can dynamically switch between multiple prediction paths adapting

to distinct motion patterns that appear on different blocks within a frame. To further
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reduce the required bitrate for the prediction residual encoding, this work proposes a

channel removal approach together with a density-adaptive entropy coding scheme to

attain more compact residual representations when the residual entropy and density

significantly vary block wise. Evaluations with various test datasets confirm that this

method can attain outstanding rate-distortion tradeoffs.
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CHAPTER V

H-PCC: Point Cloud Compression with Hybrid

Mode Selection and Content Adaptive

Down-sampling

5.1 Introduction

Light detection and ranging (LiDAR) sensor measures the travel time of laser

beams to calculate the distances from the sensor to targets. It has been widely used

in autonomous driving and augmented/virtual reality industries to provide a rich

3D understanding of the scene. However, as the resolution of LiDAR sensors keeps

rising, the size of LiDAR data scales up to millions of points per ‘frame’, which poses

a significant challenge for both memory and computation bandwidth. Thus, it is

of great importance to develop an efficient LiDAR data compression algorithm to

facilitate real-world 3D applications.

LiDAR data is commonly represented as 3D point clouds and can be directly used

for various downstream tasks such as 3D object detection [73, 133, 22] and semantic

segmentation [157, 172, 169]. Several works [57, 39, 117, 1] have been proposed to

directly compress the LiDAR 3D points with octree structures. Despite the impressive

performance of octree-based methods to compress a single frame, it is non-trivial to

eliminate the temporal redundancy of consecutive LiDAR frames as the points in
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Figure 5.1: Mode selection results in a sequence from the Oxford dataset. The octree-
based static point cloud compression path backs up in situations where sensor poses are not
accurately measured or dynamic motion is not well estimated.

adjacent frames lie in different coordinate systems. To deal with the coordinate

misalignment, Que et al. [117] utilizes the ground truth vehicle poses to map points

to the same coordinate system for multiple frames. However, such pose information

is not always available in real-world scenarios.

A straightforward representation for raw LiDAR measurements is through range

images, where each pixel corresponds to a laser beam and stores the depth informa-

tion. Compared with the 3D point cloud representation, range images are naturally

more suitable for modeling the temporal correlation since they can be treated as a

sequence of depth frames. Motivated by recent learning-based image and video com-

pression frameworks [84, 85, 86], prior work [138, 153, 87] adopt similar techniques

to compress LiDAR data as range image sequences. These methods mainly rely on

the keyframe interpolation between past and future frames to handle sequential data,

which is not directly applicable in a streaming setup where future frames are generally

not available. Moreover, their keyframe selection policy is fixed to certain intervals

regardless of the content of the scene.

A notable limitation in the majority of existing LiDAR data compression meth-

78



ods is their emphasis on reconstructing all LiDAR points and upholding consistent

scanning density across the entire scene to comply with human visual perception

and/or classical quality metrics. Yet, this focus overlooks the fact that point clouds

are mostly meant to be consumed for machine vision tasks in practical usage, making

it often unnecessary to retain all points in realistic applications. Recently, several

works have delved into adaptive point cloud sampling strategies for various down-

stream tasks such as classification [24, 35] and 3D object detection [149]. Such adap-

tive down-sampling strategies can potentially enhance LiDAR data compression but

remain unexplored in this field.

This paper presents a hybrid learning-based framework for sequential LiDAR data

compression that benefits from both the point cloud octree-based static method and

the range image-based dynamic method. Static LiDAR data compression involves

a novel octree-based method, where 3D points are clustered and compressed using

separate octrees. Dynamic LiDAR data compression adopts the range image represen-

tation and introduces an optical flow-based range image prediction network leveraging

the approaches in recent video compression works [85, 86], where the residuals between

the raw and the predicted range images are encoded. Besides, a novel image-guided

point cloud adaptive sampling scheme is proposed to further enhance compression ef-

ficiency by reducing the point density in less important regions for downstream tasks.

The method exhibits state-of-the-art performance compared to other baselines across

multiple metrics. Additionally, the ablation study highlights the efficacy of combin-

ing the down-sampling with the hybrid compression scheme. The contributions are

summarized as follows:

• This work introduces H-PCC, a hybrid LiDAR data compression framework

adopting both point cloud (static) and range image (dynamic) representations.

It primarily relies on a predictive method on the dynamic path to better exploit

inter-frame correlations while engaging a quality-driven fallback to the more
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robust static path when needed (illustrated in Figure 5.1).

• Meanwhile there are existing works dedicated to either the static or dynamic

form of LiDAR data compression methods adopted in H-PCC, this proposal

improves both with new approaches. The clustering method on the static path

can meaningfully reduce the depth of individual octree and also allow a paral-

lelized execution scheme for a shorter decoding time. H-PCC dynamic path is

the first work in this field that adopts a predictive model to deal with sequential

range images to enable real-time streaming applications.

• To enhance compression for point clouds used in machine applications, a content-

adaptive point cloud sampling approach is presented, which effectively removes

redundant points in regions less critical to downstream tasks.

5.2 Related Work

5.2.1 LiDAR Point Cloud Compression

Octree based Methods: The octree structure has been widely adopted to compress

any quantized point clouds not limited to LiDAR measurements. Various methods

[41, 128, 58, 65, 46] have been proposed to combine the octree structure with hand-

crafted entropy models. Recently, with the success of deep learning in image and

video compression, several works [57, 16, 117, 134] propose to replace the hand-crafted

entropy model with learning-based entropy estimation networks and have achieved

impressive performance gains. Among these approaches, OctSqueeze [57] is the first

learning-based method that uses a neural network to model the conditional entropy for

each node based on its parent nodes. Following this method, MuSCLE [16] explores

the spatial-temporal correspondence in LiDAR data streams. The VoxelContext-Net

[117] further expands the context of each node in the entropy model to its local voxel,

which can also be extended to LiDAR sequences by combining the information of
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temporally adjacent voxels. OctAttention [39] introduced an auto-regressive entropy

model that utilizes a self-attention mechanism to explore dependencies in the con-

text. Lately, EHEM [134] proposes a hierarchical attention structure that replaces

the autoregressive contextual network with a grouped structure that allows linear

complexity to the context scale.

Range Image based Methods: For LiDAR point clouds, another popular repre-

sentation converts 3D points to the polar system and forms the range image. Since

range images have regular grids, classical image compression methods (e.g., JPEG,

and PNG) and video compression methods (e.g., H.264 [131], and H.265 [136]) have

been explored to compress static range images [6, 145, 52] or sequential range im-

ages [109]. Rather than relying on classical codecs, Sun et al. [137] and R-PCC

[152] utilize clustering algorithms to segment instance-based regions and encode the

residual between the ground truth and averaged depth for each region. Recently,

learning-based methods have also been explored. RIDDLE [175] proposes to train a

pixelCNN-style decoder for autoregressive point predictions and encode the residual

between ground truth and predictions. BIRD-PCC [87] mimics modern deep video

compression systems to encode range image streams.

5.2.2 Point Cloud Down-Sampling

Point cloud down-sampling aims at reducing memory and computation costs for

large-scale point cloud processing and analysis. Previous works [35, 110, 74, 24, 149,

173, 159, 163] focus on exploiting geometric and topological features directly from

the point cloud itself, with the down-sampling results validated by downstream tasks

such as classification and 3D object detection. Rather than abiding by this rationale

of using LiDAR data only, there are works arguing that LiDARs often co-exist with

other sensors such as a camera on typical real-world platforms, encouraging the use

of fused information for point cloud compression. Jovanov et al. [63] come up with
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Figure 5.2: H-PCC framework with hybrid modes. It first down-samples the point cloud
based on the object bounding boxes detected from the corresponding camera image. The
compression process undergoes either: (a) octree-based single point cloud frame compres-
sion, or (b) point cloud to range image conversion followed by a prediction-based encoder
adopted to reduce spatial and temporal redundancies. Mode selection is performed by
examining the resulting bitrate and quality of the reconstruction.

a LiDAR sensor scanning scheme that picks up hints from the segmented camera

images. In alignment with this idea, this work proposes an approach to detect RoIs

in corresponding images and adaptively down-sample LiDAR points outside the RoI.

This adaptive down-sampling strategy is demonstrated to have substantially improved

the proposed point cloud compression framework by achieving a lower bitrate with

almost no performance degradation in downstream tasks.

5.3 Method

5.3.1 H-PCC Framework

The H-PCC framework takes the point cloud data sequence {Pt}Nt=1 captured by

the LiDAR sensor as input, and produces a compressed bitstream B output that

conveys essential information with minimal storage requirement. H-PCC is versatile,

supporting both lossy and lossless configurations.

As illustrated in Figure 5.2, the proposed pipeline has two distinctive pathways

side by side, both culminating in the selection of the better mode. The upper path is

designed to compress single-frame point cloud data based on 3D geometrical analyt-
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ics. The other is the dynamic compression path that exploits temporal and spatial

correlations among sequential range images.

Based on the fact that point cloud data are mostly consumed by machine per-

ception systems, the H-PCC pipeline is augmented with a content-adaptive point

cloud down-sampling method. This strategy promotes point sparsity in less criti-

cal regions while maintaining the original density across areas pertinent to RoI. As

evaluated in various experiments, the proposed down-sampling approach retains es-

sential information with reduced data amount, attuning to the diverse requirements

of machine-oriented vision applications.

5.3.2 Static Point Cloud Compression

The static point cloud compression module serves as a reliable fallback in scenarios

where substantial errors arise in the alternative dynamic compression approach that

operates based on a prediction model in the range image space to exploit the tem-

poral redundancy. Unlike the dynamic counterpart, the static mode independently

compresses a point cloud frame directly in the point cloud domain without using any

previous frames.

Existing approaches such as OctSqueeze [57] employ an octree structure that uses

positional correlation for storing point cloud data. However, such approaches may

suffer information loss from quantization when the octree depth is insufficient, and

adding more octree levels leads to an exponential increase in compressed data space

and decoding time. The proposed approach differs from existing approaches as points

are grouped to form smaller clusters and it explores correlations in relevant local

contexts to offer a more bit-efficient solution.

As an initial step, the points are voxelized to foster a 3D geometry representation.

With P representing the global point cloud, k clusters are formed and denoted by P1,

P2, · · · , Pk. The process commences by clustering points at time step t into k classes
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using the iterative self-organizing data analysis technique Algorithm (ISODATA) [9].

ISODATA solves the classification problem iteratively by merging clusters when their

separation in the multispectral feature space is below a certain threshold. It also

outlines rules for splitting a single cluster into two, enhancing adaptability to complex

multispectral patterns.

All points in each cluster P i, i ∈ {1, 2, · · · , k} are then enclosed in a cube, with the

centroid ci of the cluster and the X, Y, and Z dimensions of the cube are recorded.

This cluster-based representation achieves a balance between the tree sparsity and

voxel quantization resolution, therefore mitigating information loss while efficiently

managing the data space.

Following OctSqueeze [57], H-PCC translates each point cluster P i to an octree

by progressively partitioning the corresponding cube space to finer octants until all

points are represented in this hierarchy or the maximum number of tree levels is

reached. To represent this spatial data structure, every internal node is assigned an

8-bit value to denote children’s occupancy (each node in an octree has 8 children and

each bit indicates the occupancy of a child node). The proposed approach incorporates

learning-based entropy models to encode each node’s 8-bit occupancy code, which is

conditioned on the grid coordinates, level, and parent’s occupancy. The occupancy

data bitstream is separately encoded for each cluster and it is arranged for the level-

order (i.e., breadth-first) octree traversal.

To overcome octree depth limitations and promote proximity within each cluster,

a two-stage global-to-local filtering step is adopted to sort out the outliers. Those

outliers do not belong to any cluster and they are encoded separately so that the

tree depth of each cluster does not grow excessively to include those outliers. The

first global filtering stage identifies all points whose distance to the nearest neighbor
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exceeds a specified threshold tg. This outlier collection can be represented as

Pg = {p | d(p, q) > tg, ∀q ∈ P (p ̸= q)}, (5.1)

where d(·, ·) is the Euclidean distance. The second stage performs cluster-level filter-

ing to identify and remove outliers from each cluster to prevent the over-expansion of

voxels. The outliers in this stage are determined by evaluating the point-to-centroid

distance with a threshold tl. The set of points obtained by this process is described

as

P l =
k⋃
i=1

{p | d(p, ci) > tl, ∀p ∈ P i}. (5.2)

The outlier sets are combined with Pg and P l, and compressed together using the

LZ77 method, separately from the ‘regular’ (non-outlier) points in the clusters P i, i ∈

{1, 2, · · · , k}.

5.3.3 Dynamic Point Cloud Compression

Exploring the temporal correlation of consecutive LiDAR frames in the domain of

point clouds is a complicated problem due to the sparsity of the point cloud in the 3D

coordinate space. This challenge is addressed by adopting range images It ∈ RH×W as

LiDAR data representations over time, where W refers to the width (i.e., the number

of beam columns in one sweep/frame) and H denotes the height (i.e., number of

beams in one column) of the range image. Each pixel in a range image stores the

corresponding depth value of the laser beam. In reality, however, many datasets

lack the raw sensor data in the range image format, posing a unique challenge for

the implementation of the proposed algorithm. H-PCC works this around with a

pre-processing procedure to convert point cloud data into range images, ensuring

algorithm compatibility across diverse datasets.
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Figure 5.3: The range image prediction network operates by estimating the future frame
based on the optical flow-warped frame and previously reconstructed frames. The prediction
and reconstruction process is recurrently applied across the frame sequence.

Each valid pixel at position (i, j) with a finite depth in the range image of reso-

lution h×w corresponds to a reflected laser shot with beam angle (θ, γ) in the point

cloud. This relationship can be represented as:

i =

[
δmax − γ

δmax − δmin
· h

]
, j =

[
θ

2π
· w

]
, (5.3)

where the leaser beam diverges from δmin to δmax. Pixels that do not correspond

to any points in the point cloud are set to zero. The conversion between a point

p = (x, y, z) in the 3D space point cloud and a range value ρ with laser beam angles

(θ, γ) for the range image in the azimuth and elevation system is formulated as follows,

where the mapping from a range image pixel value It(i, j) to 3D space is denoted as

f(·):

p =


x

y

z

 =


ρ · cos θ · cos γ

ρ · sin θ · cos γ

ρ · sin γ

 (5.4)
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The mismatch between the point cloud and range image arises when there are

fewer points in the point cloud than the total number of pixels in the range image

due to unreflected laser beams. A binary mask M is employed to remark this, where

0 denotes a valid pixel belonging to the raw data Pt, and 1 indicates an invalid point

in order to address the data disparity.

mt(i, j) =


0, f(It(i, j)) ∈ Pt

1, otherwise

(5.5)

The proposed dynamic method leverages the schemes in deep video compres-

sion which have shown significantly enhanced compression performance. In recent

learning-based video compression methods [55], each frame is initially encoded into a

lower-dimensional feature domain, and motion prediction compensation is performed

in the feature domain. However, the aspect ratio of LiDAR range images often sig-

nificantly differs from that of regular camera video frames as LiDAR range images

usually have a much lower vertical resolution of only 32 or 64. This gap is closed

by referring to pixel-level motion information to capture temporal locality. The opti-

cal flow O(·) between consecutive range image frames (It−2, It−1) is computed using

[140], and then warped to the latter frame, leading to a preliminary estimation of the

current frame t following Equation 5.6:

Īt = Warp
(
O(Ît−2, Ît−1), Ît−1

)
. (5.6)

Figure 5.3 visualizes the proposed dynamic compression method using an optical

flow and prediction model in the range image domain. The predictor neural network

E(·) forecasts the current range image frame using information from the previous

l reconstructed frames Î<t together with the optical flow warped frame Īt. As an

outcome, a refined estimation of the current range image frame Ĩt is attained as the
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output of the predictor. The prediction process is written as follows where rt is the

residual error after prediction.

Ĩt = E(Î<t, Īt), with rt = It − Ĩt. (5.7)

An accurate prediction yields a sparse residual rt between the prediction and

the raw frame. The invalid pixels are masked out to indicate that no residual is

stored after the prediction for those pixels. Quantization and entropy coding are

then performed to further reduce the size of the encoded residual r̂t.

Following [12], H-PCC incorporates an adaptive entropy coding model regulated

by learned distribution parameters. Initially, the residual undergoes quantization to

the nearest bin, replacing the values with the bin centroids. An arithmetic encoder

then entropy codes the residual, guided by the estimated probabilities. Note that the

binary point mask is also quantized and entropy coded under a similar procedure,

albeit with distinct parameters for mask coding compared to residual image coding.

Equation 5.8 defines the network training process. The first term corresponds

to the residual bitrate estimated by the parameterized entropy model network R.

The second term signifies the weighted distortion between the reconstruction and the

original range image frame. The distortion metric can be either MSE or PSNR. By

adjusting the weight term λ, the models can be trained to achieve different bitrates.

In Equation 5.8, ϕ and φ represent the model parameters for networks R and E,

respectively.

min
ϕ,φ

Rϕ

(
It − Eφ(Î<t, Īt)

)
+ λ · d

(
(Ĩt + r̂t), It

)
, (5.8)

In the final step, the quantized and entropy-coded residual undergoes decoding,

and it is added to the prediction result to form a reconstructed range image frame.

Afterward, the reconstructed frame is converted back to the point cloud in 3D coor-

dinates using Equation 5.4, allowing for quality evaluation using various metrics or

downstream tasks.
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5.3.4 Static vs. Dynamic Mode Selection

The dual path compression scheme allows the choice of either the static or dynamic

mode to proceed with at each time step. However, finding a strategy to reliably

identify a better mode for coding efficiency, rate, and distortion tradeoff is challenging,

especially when the quality and bitrate are proportional to each other. This work

presents three strategies for choosing a preferred mode for each frame.

Ideal RD-Tradeoff (Optimized) Strategy: This strategy weighs achieving a bet-

ter rate-distortion tradeoff than coding efficiency. To facilitate a reasonable com-

parison between rate and distortion per frame, a tradeoff from the dynamic path is

established by running multiple passes on every frame with different target bpps. The

rate and distortion result obtained from a single run in the static path is then com-

pared against this tradeoff to determine the best compressed bitstream to proceed

with.

High-Quality (HQ) Driven Strategy: This strategy first collects the average per-

formance of the octree-based static compression method acquired from a few samples

in the test set and establishes a baseline bitrate vs. PSNR tradeoff from the static

mode. The bitrate and PSNR results from the dynamic mode are compared to this

baseline to encode each frame. If the dynamic mode turns out to provide a strictly

better tradeoff to attain higher quality (i.e., higher PSNR at equal or lower bitrate)

for a particular frame compared to the baseline tradeoff curve, it selects the dynamic

mode for that frame. The framework falls back to the static mode otherwise. This

strategy generally improves the rate-distortion tradeoff compared to the baseline.

Low-Bitrate (LB) Driven Strategy: This strategy targets aggressive bitrate sav-

ing. Hence in this mode, all frames are compressed using the dynamic compression

path, except for frames whose reconstruction quality from the dynamic mode is lower

than a pre-defined threshold. The static compression path serves as a fallback method

for those frames where the prediction method in the dynamic mode does not perform
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Figure 5.4: Top left: original image. Bottom left: detection results from YOLOv8x [60].
Top right: original point cloud projected onto the image. Bottom right: point cloud down-
sampled with the proposed approach projected onto the image.

well, leading to significant quality degradation compared to the average case.

Note that the first strategy can achieve the best quality overall but sacrifices

runtime efficiency, it is therefore undesired in practice and only used for reference in

experiments. Both HQ and LB strategies always execute the dynamic mode for each

frame, but the static mode is optionally executed only when a particular condition

specified in each strategy is met.

5.3.5 Content Adaptive Point Cloud Down-Sampling

Point cloud is a fundamental 3D representation used in a variety of vision tasks,

such as 3D object detection [73, 168], 3D segmentation [176], and simultaneous local-

ization and mapping (SLAM) [170]. However, not all points within the point cloud

contribute significantly to these tasks. Take 3D object detection as an example, the

points situated on and near the objects of interest are of paramount importance but

points outside are not. There exists an opportunity to lower the point cloud density

across regions with no interest. Subsequently, the H-PCC framework has an optional

pre-processing block as shown in Fig. 5.2 to adaptively down-sample the input point

cloud before compression with a goal to achieve a reduced bitrate without compro-

mising the performance of downstream tasks. To assist the adaptive down-sampling
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process, the proposed method detects the RoI from camera images and integrates this

information into the point cloud compression flow. This LiDAR-camera fusion tech-

nique forges a more informed down-sampling approach, contributing to the coding

effectiveness of the H-PCC framework.

RoI Detection: Both 2D object detection [120, 60, 88] and semantic segmentation

[91] are capable of identifying camera image RoIs. Learning-based 2D object detection

is well-studied with numerous state-of-the-art algorithms publicly available, and it is

proven to be sufficient for the intended purpose. In the experiments, the YOLOv8x

model [60] is employed to detect object bounding boxes, as illustrated in the bottom

left quarter of Figure 5.4. The 2D image RoIs are represented by bounding boxes

surrounding the detected objects.

Point Cloud Down-sampling: All 3D points are projected onto the corresponding

camera image domain, preserving the ones that are within a detected RoI while

uniformly down-sampling those that are falling outside the ROIs. This process is

facilitated by converting all points into polar coordinates before compression, leading

to a straightforward implementation of sampling of points outside the RoI. Figure

5.4 illustrates the outcome of the proposed down-sampling strategy (bottom right) in

contrast with the projected original point cloud (top right).

5.4 Experimental Setup

5.4.1 Implementation and Training Details

The static point cloud compression path incorporates the ISODATA approach

for point clustering. The parameters required by ISODATA are listed as follows:

the initial number of clusters (Nc), the minimum number of points in each cluster

(Tn), the maximum standard deviation in each cluster (Te), and the lower bound

of the distance between two clusters (Tc). The parameters are set empirically as
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{Nc, Tn, Te, Tc} = {5, 100, 2.16, 8} to produce effective clustering results. Note that

K-means clustering is employed to replace ISODATA at extremely low bitrate config-

urations, where the number of clusters is constrained to a small K (< 5). The octree

in each cluster is parameterized by the depth level D to govern the tradeoff between

bitrate and precision, with D ∈ {6, 8, 10, 12, 14, 16}. The entropy model network and

hyperparameter settings are aligned with those detailed in [57].

For the dynamic compression mode, H-PCC adopts an optical flow-based predictor

and a learning-based entropy model for range image sequence compression. The two-

stage training flow is initiated by training the predictor independently on regular

video frames. Subsequently, the predictor is fine-tuned using a pre-trained optical flow

model [140] on range images. In the second stage, both the predictor and the entropy

model are trained jointly to minimize Equation 5.8. The tradeoff between bitrate and

quality is balanced by adjusting the weight term λ from {16, 64, 256, 1024, 2048, 4096}.

The predictor is optimized for 2 million steps with a batch size of 16, followed by

fine-tuning for an additional 1 million steps. The initial learning rate is 10−4 and is

decayed by half every 0.1 million steps.

Evaluation of the proposed adaptive point cloud down-sampling technique is con-

ducted with the PointPillars [73] model. This experiment selects 3D object detection

as the downstream task for performance benchmarking, and all models are trained

and evaluated with the MMDetection3D toolbox [28].
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Figure 5.5: Rate-distortion performance of different methods on the KITTI dataset (top)
and the Oxford dataset (bottom).
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5.4.2 Datasets

The performance of H-PCC compression flow is assessed with the SemanticKITTI

[13] and Oxford [95] datasets. The SemanticKITTI dataset comprises 23,311 LiDAR

scans from 22 sequences collected in vehicle driving scenes. The Velodyne LiDAR

on the KITTI vehicle captures 64 beam scans per frame. This dataset is a subset of

the KITTI dataset with semantic labels. For a fair comparison, sequences 00 to 10

are designated for training and the remaining sequences for evaluation as in previous

approaches [23, 134].

The Oxford Robotcar dataset features raw LiDAR data gathered from dual Velo-

dyne HDL-32E sensors in driving scenes around Oxford, UK. The raw data is stored

in a range image format with depth information, reflection intensity, and timestamps

stored in separate channels. The range image in the Oxford dataset has an original

resolution of 1080× 32, covering over 1,000 km of recorded driving.

For evaluation based on downstream tasks, the Pointpillars 3D object detection

model is trained using the original point cloud data from all training samples. The

adaptive point cloud down-sampling strategy is then assessed using all validation

samples.

5.4.3 Metrics

Three metrics are selected to gauge the reconstruction quality: point-to-point

PSNR, point-to-plane PSNR, and Chamfer distance, all designed to measure the dis-

tortion of the reconstruction. To guarantee a fair comparison, the PSNR calculation

method is similar to previous works [57, 16, 134], which sets the peak value to be 59.7

for evaluation on the KITTI dataset. However, for the Oxford dataset evaluation,

there is no reference peak value reported in prior works. Hence this work dynamically

sets the peak value for each frame as the maximum value in that frame. Addition-

ally, BDBR is employed to reflect the relative bitrate savings under similar quality
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Table 5.1: Performance results evaluated by BDBR (%). G-PCC is set as the anchor (i.e.,
BDBR = 0) for evaluation on both datasets. Negative values imply relative bitrate savings.

Dataset Method Point-to-point PSNR Point-to-plane PSNR Chamfer Distance

KITTI

Draco 133.17 134.18 167.90
OctSqueeze 0.79 3.52 25.64
VoxelContext -13.83 -24.22 -2.63
OctAttention -16.36 -16.30 -9.69

EHEM -32.82 -32.84 -25.83

H-PCC Static -26.73 -26.18 -19.53
H-PCC Dynamic -33.96 -33.57 -26.82
H-PCC LB -38.58 -38.14 -32.49
H-PCC HQ -37.35 -38.80 -30.92

Oxford

Draco 5.88 8.20 4.86
R-PCC -53.96 -44.55 -39.57
RICNet -56.26 -54.13 -58.59

H-PCC Static -46.23 -46.87 -47.87
H-PCC Dynamic -55.18 -55.69 -57.63
H-PCC LB -58.27 -59.97 -61.51
H-PCC HQ -57.43 -59.18 -61.89

within the tested range. For the evaluation of 3D object detection, mean average

precision (mAP) is reported on all instances of moderate difficulty for three classes

(cars, pedestrians, and cyclists) in the KITTI dataset.

5.5 Experimental Results

5.5.1 Quantitative Results

Figure 5.5 presents quantitative results for R-D tradeoffs. The H-PCC hybrid

mode outperforms existing conventional and learning-based algorithms. Across vari-

ous measurements such as point-to-point PSNR, point-to-plane PSNR, and Chamfer

distance, H-PCC consistently achieves superior performance over a wide range of

bitrates measured in bits per point (bpp), manifesting the flexibility of the hybrid

approach.

The H-PCC framework achieves a 38.58% gain in BDBR (in terms of point-to-

point PSNR) compared to G-PCC in the KITTI dataset, indicating a remarkable
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Figure 5.6: Visualized compression results of OctAttention [39], G-PCC [46], and the pro-
posed method on the SemanticKITTI dataset. The unit of error distance is mm.

average bitrate saving under similar quality. The state-of-the-art performance on the

KITTI and Oxford datasets underscores the effectiveness of the proposed compression

method, especially from the dynamic mode, and the advantages of encoding point

cloud temporal correlation in the range image domain.

5.5.2 Qualitative Analysis

Figure 5.6 visualizes the reconstruction of a compressed point cloud from the

KITTI dataset, and it color-codes each point based on the reconstruction error. For

a valid comparison, the reconstruction results from other compression schemes oper-

ating under a similar bitrate are also included. The visualization reveals that H-PCC

attains higher quality with less bitrate, showcasing the effectiveness of the proposed

H-PCC.

5.5.3 Runtime Analysis

Table 5.2 presents the average encoding and decoding time for components in

the H-PCC pipeline, which runs with an Nvidia A40 GPU and an Intel Xeon Gold

6226R CPU. It is worth noting that the average decoding time on the static path

is significantly shorter than that of other existing octree compression methods, due

to simplifications and tree-depth reduction contributed by the clustering-based ap-
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proach. The run time of this hybrid strategy is shorter than the sum of the run

times of the static and dynamic modes because it executes both modes only when the

dynamic mode fails to attain the target quality. This experiment also confirms that

the execution rate of the static mode is relatively low (11.5% on average) per frame.

Therefore, the overall complexity of the hybrid scheme does not significantly increase

beyond that of the dynamic mode.

Table 5.2: Average runtime of encoder/decoder components.

Static Dynamic Hybrid Down-sample Overall

Encoder 67.5 ms 57.9 ms 65.4 ms 3.5 ms 68.9 ms

Decoder 496.8 ms 71.3 ms 113.9 ms N/A 113.9 ms

5.5.4 Ablation Studies

Mode Selection: For both selection strategies, H-PCC predominantly relies on the

dynamic mode, given that the range image based predictive approach performs well

in the majority of the testing frames. While the static path is not as effective from

the average performance perspective, it supplements the quality loss appearing in

the dynamic mode from time to time to obtain the enhanced combined performance

reported in Table 5.1.

Content Adaptive Down-Sampling: Various adaptive down-sampling ratios (2×

or 3× both horizontally and vertically) are explored for the regions that are not RoIs.

This experiment compares the 3D object detection performance against the raw point

cloud without down-sampling or with 2× uniform down-sampling. Figure 5.7 reports

the bitrate vs. mAP results. The same set of H-PCC models is adopted with different

compression ratios to compress and reconstruct all examined point clouds (remarked

as H-PCC in Figure 5.7) regardless of setups. Note that on average the numbers of

remaining points in the adaptive 3×3 case and the uniform 2×2 case are roughly equal.

The reconstructed point clouds exhibit similar mAP with adaptive down-sampling to
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achieve 1.7-2.5× higher compression ratios compared to the vanilla H-PCC without

adaptive down-sampling.

Figure 5.7: 3D object detection mAP for Pointpillars with the uncompressed and recon-
structed point cloud, along with the corresponding compression gain on the KITTI dataset.

5.6 Conclusion

This work introduces a hybrid LiDAR data compression scheme that dynami-

cally switches between static point cloud compression and a dynamic compression

path, adapting to different scenarios. Considering that machine vision is the pri-

mary consumer of LiDAR data in realistic situations, a content-guided point cloud

sampling strategy is proposed to enhance the hybrid mode compression framework.

Experiments with various test datasets consolidate the proposed method from several

practical perspectives.
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CHAPTER VI

Conclusions and Future Work

6.1 Summary

This thesis presents a set of deep networks and methods for signal representation

learning and compression. It covers the investigation of various signal types, includ-

ing speech audio, image, video, and 3D LiDAR data, which almost span the majority

of web and media traffic nowadays. Driven by the fact that machine/downstream

neural networks would be the main consumer of signal in certain contexts, some of

these works not only dedicate to finding the high fidelity solution from the human per-

spective but also explore ways to preserve the reconstruction quality in downstream

applications, and treat the later as a crucial offering of the learned compression frame-

works.

Chapter II introduces a GAN-based speech and image compression algorithm that

produces compressed data by iteratively searching for the optimal representation

through back-propagation. ADMM is incorporated into this flow to perform non-

uniform quantization progressively. This method unifies speech audio and image by

transforming the audio signal from temporal to frequency domain, and it guaran-

tees the reconstruction quality by including the discriminator loss term in the loss

function. Extensive studies validate that this approach is efficacious under a wide

collection of subjective and objective metrics, as well as the metrics induced from the
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learning-based phoneme recognition and image classification tasks.

Chapter III presents a deep framework that accomplishes video prediction and

compression in feature domain. The method simultaneously learns a transform of

the spatial domain video frames into a lower-dimensional representation as well as

a temporally-conditioned probabilistic model. In-depth experiments and analysis

consolidate that prediction in feature domain can well capture the temporal correla-

tions without the loss of generality, which can be leveraged to accomplish meaningful

perceptual tasks such as anomaly detection without the need to obtain the spatial

domain reconstructions. This finding can potentially reduce the latency, bandwidth,

and power requirements with the presence of the proposed codec as part of the system.

A dynamic mode selection-based video coding scheme, MMVC, is presented in

Chapter IV. It switches between multiple prediction paths on the fly to fit different

motion patterns that appear on each block within a frame. To further reduce the

required bitrate for the prediction residual encoding, this work proposes a channel

removal approach together with a density-adaptive entropy coding scheme to attain

more compact residual representations when the residual entropy and density signif-

icantly vary block wise.

Chapter V proposes a deep LiDAR data compression pipeline that addresses the

weakness in existing works with several innovative designs. Given that LiDAR data

naturally has a point cloud representation and a range image representation, this

framework uses a dual path construction to leverage both the robustness offered

by point clouds and the high compression ratio offered by range images. On the

static path that deals with point clouds, the proposed approach significantly improves

decoding efficiency by clustering. On the dynamic path that deals with range images,

a predictive method is presented to be applicable to a streaming setup. An adaptive

point cloud sampling unit is introduced to aggressively reduce the point density while

retaining the quality in machine perception when sensor fusion is at hand.
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6.2 Future Work

In recent years, learning-based image and video compression techniques have

achieved significant advancements. However, one disadvantage of these approaches

compared to conventional codecs is the encoding and decoding time efficiency. It is

crucial and intriguing to address this issue by streamlining network architectures in

the future. Techniques such as network distillation and Neural Architecture Search

(NAS) have shown promising achievements in overcoming this challenge.

The growing interest in 3D representation has led to exploration across various

types, including Signed Distance Functions (SDF), Neural Radiance Fields (NeRF),

and Mesh data. Investigating the spatial and temporal correlations within these

domains holds the potential for developing applications for VR/AR devices and en-

hancing the reconstruction of real-world scenes with improved speed and quality.

As Large Language Models (LLM) gain popularity, translating images or videos

into prompts offers the possibility of achieving extremely high compression ratios.

Utilizing LLM, a single frame or video sequence can be condensed into a concise set

of words. Identifying crucial latent representations is pivotal in this process.

Recent research indicates that video content generation heavily relies on learning

feature representations, with optimal mapping from the latent domain to the pixel

domain. Methods like Sora [18] leverage diffusion models to generate video clips,

demonstrating the strong temporal correlations present in the feature domain. Thus,

effective feature representation learning significantly enhances the quality of generated

videos.
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