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ABSTRACT

There is an increasing demand for efficient electric propulsion technologies for

orbital station keeping and deep-space missions. Hall effect thrusters, as a leading

form of electric propulsion, exhibit superior propellant efficiency through high specific

impulse values, resulting in significant reductions in mission costs and propellant

mass. This has led to their extensive utilization for spacecraft applications, including

orbit-raising maneuvers, attitude control, and interplanetary propulsion. However,

despite their widespread use the underlying physics governing the operation of Hall

thrusters are not fully understood. Due to the lack of understanding of key physical

processes, currently Hall thrusters cannot be readily simulated, and the development

of new systems heavily relies on costly and time-consuming experimental testing.

Our research aims to delve into the first principles of Hall thruster physics and

address several deficiencies in our understanding that impede predictive simulations.

Notably, the transport of electrons across the magnetic field lines of Hall thrusters is

orders of magnitude greater than predicted by simple fluid models. The Hall thruster

modeling community has recently reached a consensus that plasma turbulence is the

most likely cause of this anomalous cross-field transport. In this work, we exper-

imentally validate the role of electron drift instability (EDI) in electron transport

within Hall thrusters. Despite widespread consensus on its significance, this topic has

predominantly relied on numerical simulations with limited experimental validation.

These simulations exhibit notable disparities concerning the formation of the EDI,

relevant oscillation frequencies and wavelengths, and the extent of the resulting elec-

tron transport. Such uncertainties impede the development of precise and universally

xi



applicable low-fidelity models that accurately represent electron transport. To ad-

dress these ambiguities, we employ experimental methodologies, including the direct

measurement of EDI using electrostatic probes inserted into a Hall thruster. These

probes measure high-speed plasma density oscillations, and subsequent spectral anal-

yses of these measurements offer insights into the dispersion relation of the EDI, its

growth and saturation patterns, and the level of induced electron transport. Our

measurements identified the presence of plasma waves characteristic of the electron

drift instability. Furthermore, through bispectral analysis, an inverse energy cascade

was identified whereby the EDI initially grows following its linear dispersion rela-

tion at discrete resonance frequencies. Subsequently, the resonances couple together,

transferring energy from high frequency and small wavelength to low frequency and

long wavelength. This energy cascade occurs as the waves propagate downstream

of the Hall thruster, where eventually most of the wave energy belongs to the long-

wavelength component. These experimental findings serve as validation for several

simulation and modelling effort the first proposed these mechanisms. Moreover, we

utilized these measurements of plasma wave properties to calculate the wave-driven

anomalous cross-field transport and validated these calculations through laser-based

measurement of the true cross-field transport levels. This provides the first experi-

mental proof that the EDI is the mechanism controlling electron transport in Hall

thruster plasma plumes. Overall, this investigation enhances the understanding of

the EDI’s characteristics, advances electron transport models, and brings the field

one step closer to predictive Hall thruster modeling.
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CHAPTER I

Introduction

1.1 Problem Statement

In the last few decades, there has been growing interest in electric propulsion for

use in spacecraft for orbital station keeping and deep-space missions. As the demand

for high-performance space missions continues to rise, electric propulsion technolo-

gies like Hall thrusters are increasingly being utilized for their remarkable capabilities.

One key aspect that sets electric propulsion apart from traditional chemical propul-

sion systems is the ability to achieve high specific impulse values, which translates

to a more efficient use of propellant mass. This results in significant reductions in

overall mission costs and propellant mass fractions, making electric propulsion partic-

ularly well-suited for long-duration satellite station-keeping and ambitious deep-space

exploration endeavors.

One of the key driving electric propulsion technologies pushing forward space

flight is the Hall effect thruster. Hall thrusters have gained considerable attention

within the electric propulsion domain due to their unique combination of operational

simplicity, scalability, and robust performance. These thrusters operate by ionizing

a propellant gas, typically xenon, within a magnetic field, and then accelerating the

resulting ions to generate thrust. The magnetic field configuration used in modern

Hall thrusters leads to efficient ion acceleration and minimal wall erosion, thereby
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promoting extended thruster lifetimes and high thrust-to-power ratios. As a result,

Hall thrusters have become an attractive choice for a broad range of satellite and

spacecraft applications, including orbit-raising maneuvers, attitude control, and in-

terplanetary propulsion.

Hall thrusters have been in use since the 1970s but recently have become the

workhorse of electric propulsion systems with over several thousand currently in or-

bit, mostly part of SpaceX’s Starlink constellation, providing station keeping and

orbit-raising capabilities on both LEO and GEO satellites. These systems are also

being implemented on long-duration deep-space missions, such as NASA’s Psyche

mission[80], and could potentially be used for human transport to Mars. However,

the widespread adoption of Hall thrusters has also highlighted the critical need for a

deeper understanding of the underlying physical processes governing their operation.

In particular, the development of accurate predictive models is essential for refining

thruster designs, optimizing performance parameters, and ensuring mission success

and reliability. The ability to accurately model Hall thruster physics would enable

engineers and mission planners to make informed decisions when selecting and im-

plementing propulsion systems, ultimately leading to more efficient and cost-effective

space missions. However, due to the lack of understanding of key aspects of the

underlying physics, currently, the development of new Hall thruster systems heavily

relies on experimental testing.

Generally, this experimental testing is a long and costly process, and there are

significant uncertainties regarding how well ground testing represents the on-orbit

environment and differences in operation[17, 77, 18]. In the development cycle of

adjacent fields, such as aircraft and rockets, there is significant use of simulations

that can reliably predict performance and operation from first principles and geom-

etry design, thereby rapidly accelerating the time between design iterations. While

there is a strong desire for these same capabilities in Hall thruster development, the
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lack of fundamental understanding about the underlying physics has thus far pre-

vented the use of any fast and reliable predictive models. Typically, Hall thruster

models used in testing new designs employ low-fidelity fluid-based codes due to their

low computation cost and high speed. These low-fidelity codes are similar in prin-

ciple to the CFD programs used in aerodynamics, but electric and magnetic forces

must be considered. These codes, such as Hall2DE[75], are capable of reproducing

many key features of Hall thruster operation, but only through the use of adjustable

parameters determined through experimental data. These empirically determined pa-

rameters are needed because the fluid model does not properly predict the transport

of electrons across magnetic field lines, the so-called ”anomalous electron transport”

problem. The origin of the anomalous transport is thought to come from kinetic

effects that are impossible for fluid codes to resolve and can only be observed with

higher-fidelity codes such as particle-in-cell (PIC) or direct kinetic simulations. While

there are many PIC simulations that have been able to accurately resolve cross-field

electron transport, due to the significantly higher computational power required for

these high-fidelity simulations, they often only operate in 1D or 2D and require long

run-times[93, 84]. Despite their inability to model a full thruster geometry for use

in predictive design, these high-fidelity codes provide insight about the underlying

physics governing electron transport. The increased understanding of the underlying

physics is being used to create lower-fidelity models that capture the relevant kinetic

effects but can be used in a fluid-based framework[71].

Despite several recent advancements, an adequate model for electron transport in

Hall thrusters remains elusive. Classically, the cross-field transport due to particle

collisions should scale with the inverse of the squared magnetic field (1/B2), but

numerous experiments have demonstrated that this scaling does not apply to Hall

thrusters[7]. Various theories have been proposed to explain the phenomenon of

anomalous electron transport in Hall thrusters, each attempting to shed light on the
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intricate mechanisms responsible for the observed behavior. Among these theories,

Bohm diffusion, particle-wall interactions, and instability-driven transport stand out

as the most prominent explanations.

Bohm diffusion is a theoretical model that has been widely considered in the con-

text of anomalous electron transport in many E×B devices such as Hall thrusters.

Originally formulated to explain plasma behavior in fusion devices, Bohm diffusion

predicts the cross-field transport is enhanced due to small-scale thermal fluctuations

and overall results in a weaker 1/B scaling compared to particle collision-based trans-

port. In the case of Hall thrusters, the Bohm diffusion coefficient has been considered

in many studies. While it is often found to be in reasonable agreement with experi-

mental observations in certain regions of the thruster plume, it thus far has not been

able to accurately reproduce electron transport[35, 50, 62].

Particle-wall interactions represent another proposed mechanism for anomalous

electron transport in Hall thrusters. In this theory, the presence of nearby walls in

the thruster discharge chamber influences the behavior of charged particles, leading

to enhanced electron transport rates[53]. The increased proximity of electrons to

the walls results in more frequent collisions, which in turn facilitate the diffusion

of electrons across the magnetic field. While particle-wall interactions undoubtedly

contribute to electron transport in Hall thrusters, their relative importance in the

overall transport process is not yet fully understood, and it remains unclear whether

they can solely account for the observed anomalous behavior.

The growing consensus in the community points toward the enhanced transport

being driven by small-scale instabilities present in the Hall thruster plume, and in

particular an instability known as the electron drift instability (EDI)[48]. Much of

the research surrounding the EDI and its impact on electron transport has focused

on numerical methods, and there have been extremely limited experimental results

demonstrating the presence of the EDI in Hall thrusters and its influence on transport.
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Furthermore, despite the extensive numerical research performed over the last two

decades, there remains a lack of consensus about many aspects of the EDI. The focus

of this work, which we outline in the next section, is to resolve several uncertainties

about the EDI in Hall thrusters through experimental techniques. With experimental

data, various models can be more accurately constructed and may finally produce a

fully predictive Hall thruster simulation.

1.2 Objectives

Our primary objectives for this work are to justify, or reject, the role of the EDI

in Hall thruster electron transport. As discussed in the previous section, despite

the wide-spread agreement concerning the importance of the EDI on Hall thruster

operation most of these conclusions are borne from numerical simulations and have

limited experimental validation. Furthermore, while nearly all recent simulations

demonstrate the formulation of the EDI and its impact of cross-field transport, there

remains many disagreements between simulations as to how the EDI forms, what

oscillation frequencies and wavelengths are most important to the instability, and the

magnitude of any induced electron transport. This uncertainty regarding the exact

nature of the EDI limits the ability to produce accurate and thruster agnostics low-

fidelity models that model electron transport. Our work aims to address several of

the ambiguities through experimental techniques. This includes direct measurement

of the EDI using electrostatic probes inserted into a Hall thruster to measure high-

speed plasma density oscillations. Through various spectral analysis methods we use

these plasma oscillation measurements to infer the EDI dispersion relation (how the

EDI behaves as a function of wavelength), how the EDI grows and saturates, and the

induced electron transport levels.
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1.3 Organization

This thesis is organized as follows, In Chapter II, we provide an overview of electric

propulsion and Hall thruster operation. We also present a framework for cross-field

electron transport and a review of previous modeling efforts. In Chapter III, we out-

line the experimental techniques we used to study the EDI and electron transport

in Hall thrusters. We provide details about the specific thruster used during exper-

imentation, the test facility, and the probing methodology, and we review the main

analysis techniques applied to our experimental data. Chapter IV details the results

of an experimental campaign to measure the dispersion relation of the EDI in a Hall

thruster plume. This information is used to address several of the uncertainties be-

tween various simulations about the nature of the EDI in Hall thrusters. In Chapter

V, we apply an advanced bispectral analysis technique with plasma oscillation mea-

surements that are used to determine fundamental properties of the EDI, such as the

growth rate and non-linear energy exchange. These properties are then used to infer

the electron transport induced by the EDI. Finally, in Chapter VI, we summarize our

findings and provide possible avenues for future research.
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CHAPTER II

Hall Thruster Operation

2.1 Overview

In this chapter, we first provide an overview of the role of electric propulsion in

space propulsion systems. Next, we introduce the Hall thruster and discuss its core

operating principles. We highlight the key research topics surrounding Hall thruster

technologies, with a specific focus on Hall thruster modeling and simulation. We

then present a framework for studying cross-field electron transport in Hall thrusters.

We review previous attempts to explain the observed anomalous transport and the

current prevailing theories. Finally, we discuss the specific gaps in knowledge that

this work addresses.

2.2 In-Space Propulsion

All current space propulsion systems operate on the same fundamental principle

of ejecting a reaction mass to generate a change in momentum by Newton’s third

Law. Therefore, the capabilities of any propulsion system are governed by how much

reaction mass can be utilized and how fast it is launched. This basic relationship is
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represented by Tsiolkovsky’s rocket equation:

mi

mf

= e∆V/uex . (2.1)

Here, mi is the initial spacecraft mass, mf is the final spacecraft mass after using

its propellant, ∆v is the change in velocity of the spacecraft, and vex is the velocity

of the ejected propellant mass. Often, the exhaust velocity is defined in terms of

specific impulse: Isp = vex/g0, where g0 is the Earth’s gravitational acceleration. This

simple equation governs the design goals of all space propulsion systems. For a given

mission that requires a fixed ∆V and maximum system mass—payload plus propellant

mass—a higher specific impulse yields better ratios of payload mass to propellant

mass. Due to the exponential relation in Eq. 2.1, it is extremely desirable to maximize

the specific impulse of any propulsion system. For rocketry, the specific impulse is

typically limited to the range of 200-400s due to the chemical energy density of the

propellant/fuel. This results in a situation where most of the rocket’s mass is taken up

by the propellant, and only a small fraction of the rocket is delivered to orbit. Electric

propulsion systems have the advantage of generating specific impulses of 1000-10000

(or higher), and allow for significantly more payload mass. From this perspective,

electric propulsion systems are functionally more ’fuel efficient’ and need less gas to

perform the mission as compared to rockets. However, this efficiency is only one half

of the picture. Despite the high specific impulse of electric propulsion systems, they

are not capable of launching from Earth as they generate vastly insufficient thrust to

escape Earth’s gravity.

The thrust of a propulsion system is given by the product of the propellant mass

flow rate ṁ and exhaust velocity

T = ṁuex (2.2)
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While electric propulsion systems generate high exhaust velocity, they are typically

limited to thrusts measured in millinewtons. This limitation primarily stems from the

restricted power available to the electric propulsion system. In rockets, the propellant

doubles as the power supply where fuel and oxidizer combust to generate thermal

energy. This energy is then converted into the kinetic energy of the reaction products

by a nozzle to generate thrust. In electric propulsion systems, the propellant is

typically composed of inert noble gases that only serve as the reaction mass. An

external power source is needed to ionize the propellant and then electrostatically

(or electromagnetically) accelerate ions to produce thrust. Rocket propellant is very

energy-dense, and when the mass flow is high, the engines can provide enormous

power output, if only for a limited time. For example, the Saturn V first-stage engine

generates power on the order of gigawatts, but only operates for a few minutes. Most

systems that use electric propulsion generate power using solar energy, and typically

these systems only have power on the order of hundreds of watts to low kilowatts

dedicated to the propulsion system. Compared to rockets, electric propulsion simply

doesn’t have the power to generate high thrust. While this does restrict electric

propulsion from providing launch system capabilities, once in orbit, the drawbacks of

low thrust are often outweighed by the increase in payload mass from high specific

impulse.

In orbit or deep-space missions, the trade-off centers on how quickly the mission

needs to be completed (thrust) and how much propellant can be brought to the mis-

sion (specific impulse). Typically, these missions have durations measured in years

where electric propulsion systems can provide thrust over the entire mission versus

combustion systems that only provide thrust on the order of minutes to hours. This

allows for electric propulsion to be competitive propulsion systems even with their

low thrust. Furthermore, the high specific impulse of electric propulsion systems

provides significant economic benefits. Due to the high cost of launching mass into
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orbit (>5000/kg) and limited overall launch payload mass, there is a strong incentive

to limit the portion of spacecraft mass that will be used as propellant for in-orbit

propulsion. The high specific impulse exhibited by electric propulsion allows for a

significant increase in useful payload mass compared to combustion systems, or re-

duces the overall system cost by reducing the propellant mass required to be launched

into orbit.

Electric propulsion systems also feature a much wider range of operating condi-

tions that allow easy conversion between thrust and specific impulse depending on

the mission requirements. The basic principle of electric propulsion thrusters is the

acceleration of ionized gas by electric and/or magnetic forces. Several examples of

modern electric propulsion technologies are found in Ref. [42], but for the purpose of

this discussion, we shall limit our focus to two of the most widely utilized technolo-

gies: the gridded ion thruster and Hall effect thruster. Although we shall overlook

differences in how ions are generated for now, both systems generate force through

the acceleration of ionized gas with electric fields. Gridded ion thrusters use a pair of

closely spaced semi-transparent electrode grids with a strong voltage applied between

the grids. This voltage is often referred to as the discharge voltage Vd. The applied

voltage generates a strong local electric field between the grids and any ions that

encounter this electric field will be accelerated to high velocity:

uex =

√
2qVd

mi

(2.3)

where q is the fundamental electric charge and mi is the ion mass. Typically voltages

are on the order of 10s of kilo-volts and result in ion velocities over 100 km/s with a

specific impulse of 10,000 s. The power of this system is governed by

P =
ṁu2

ex

2
=

ṁqVd

mi

. (2.4)
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and the thrust by:

T = ṁ

√
2qVd

mi

(2.5)

For a fixed system power, gridded thrusters, and generally all electric propulsion sys-

tems, have the capability of increasing specific impulse by raising the discharge voltage

and lowering the mass flow rate, but at the expense of reduced thrust. Historically,

gridded ion thrusters have been used where very high specific impulse is needed, and

low thrust levels are acceptable. Due to the physics of generating the electric field

(see Ref. [42]), gridded ion thrusters have a maximum space-charge limited current

and, for a given discharge voltage and grid size, a maximum possible thrust.

Hall thrusters are governed roughly by the same principles as gridded ion thrusters,

where thrust is generated by accelerating ions across an applied discharge voltage.

However, to first order, Hall thrusters do not have the same thrust limitations as

gridded thrusters. Hall thrusters are not space-charge limited and can output more

thrust at low discharge voltage and size while still achieving desirable levels of spe-

cific impulse (approximately 1000-3000s). Furthermore, these devices typically have

simpler designs with fewer components and lower risk of faults. For these reasons,

among others, Hall thrusters have quickly become the most widely used thrusters

for in-space propulsion. Despite these successes, as we discuss in the next section,

the fundamental physics governing Hall thruster operation are not fully understood.

While this limitation has not impeded their adoption, it does limit the ability to

simulate and rapidly iterate new designs. Most Hall thruster development is driven

through experimental methods which are both expensive and time-consuming.

2.3 Hall Thruster Overview

In this Section, the Hall effect thruster, also known as stationary plasma thrusters

(SPT) or thruster with anode layer (TAL), is introduced and its core operation ex-
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Figure 2.1: Overview of Hall Thruster operation.

plained. We start by providing an overview of the design of these thrusters including

the core components. Then we review their principle of operation and thrust genera-

tion mechanisms. Finally, we outline several of the current research topics important

to these devices, in addition to the main focus of this work that centers on electron

transport.

The Hall thruster consists of only a few core components (see Fig.2.1 and Fig.2.2).

An electrical circuit, consisting of a cylindrical anode (i) and downstream cathode (ii),

uses an applied potential difference between the anode and cathode to accelerate ions

and generate thrust. The cathode also serves as an electron source for ionization

and for keeping the spacecraft electrically neutral. A magnetic circuit (iii) is used

to create a magnetic field radially across the cylindrical channel to confine electrons

and prevent them from reaching the anode, thus increasing electron residence time

12



Figure 2.2: Cross-sectional view of a Hall thruster highlighting the primary com-
ponents. i: Gas distribution/anode, ii: Hollow Cathode, iii: Magnetic circuit, iv:
Discharge channel walls.

for efficient ionization. Lastly, the channel walls (iv) isolate the plasma from the

thruster.

The anode can become very hot during operation, in excess of several hundred

degrees, and is typically constructed out of a high-temperature metal such as stainless

steel. This annular anode is hollow and features a series of baffles and small orifices

facing the channel of the Hall thruster. In this way, the anode doubles as a gas

distributor for the propellant in addition to supplying voltage to the system. In a

similar manner, the hollow cathode flows a small fraction of the propellant, typically

less than 10%, which is ionized using seed electrons thermally emitted from a low-work

function material inside the cathode and the potential applied between the cathode

and either the anode or an electrode just downstream of the cathode, known as the

keeper. The potential at the keeper is only applied at thruster startup.

The magnetic circuit is typically create using two methods. For large Hall thrusters,

typically > 1kW, the field is generated by a pair of annular electromagnets. For lower

power systems the power draw of the electromagnets could become a significant por-

tion of the overall system and generally these smaller Hall thrusters use permanent

magnets to create the field shape. Although common to both designs is the use of
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(a) (b)

Figure 2.3: Example magnetic field shapes for unshielded (a) and shielded (b) Hall
thruster designs

cylindrical ferromagnetic components behind the Hall thruster channel walls. These

components assist in shaping the magnetic field to achieve a field such as the one

in Fig 2.3a. This field shape representative of historical Hall thruster designs where

main objective was to create a radial field across the channel. Recent advancements in

Hall thruster design have lead to so-called ‘shielded’ magnetic field topologies such as

those in Fig. 2.3b[25, 26, 49]. The magnetic field in shielded designs curves along the

edge of the channel walls deep in the channel before wrapping out along the opposite

channel face. The field shape shields the channel walls for the plasma and eliminates

the major erosion and failure mechanism for these devices[27].

Now, with a basic overview of the major Hall thruster components, we return

to a more in-depth discussion of the Hall thruster operating principles. A potential

difference applied between the anode and cathode creates an electric field that attracts

electrons emitted from the cathode to travel upstream toward the anode, as depicted

in Fig. 2.1. Electrons collide with neutral gas, typically Xenon or Krypton, emitted

from the anode, and generate ions that are accelerated across the potential difference

to generate thrust. The radial magnetic field is applied with sufficient field strength to

magnetize the electrons such that they are trapped in E×B drift, moving azimuthally

around the channel. The magnetic field strength is tailored so that only the electrons

are magnetized, while the much more massive ions are unmagnetized and travel out
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of the thruster solely due to electric forces. By trapping the electrons in this E × B

Hall current, from which the device gets its name, the electron current reaching the

anode is drastically reduced, lowering the necessary system power to continue the

ionization process. However, some electron current does make it to the thruster due

to electrons being knocked across field lines during ionization collisions. Additionally,

as the ions travel out of the thruster, some electrons follow from the cathode, so the

thruster remains electrically neutral.

While this description generally captures the operating principle of Hall thrusters,

there are several important nuances not addressed by this simplified view. Perhaps

most importantly, the electric field generated by the discharge is not evenly distributed

across the channel as shown in Fig. 2.1. The electric field is concentrated at the exit

plane of Hall thruster where most acceleration occurs across only a few centimeters,

see Fig.2.4. Generally, the electric field at the physical electrodes are weak and unlike

gridded ion thrusters the thrust generation mechanism cannot be viewed reaction

electric forces on the physical thruster. As highlighted in Ref. [42], the force mediation

occurs via the electromagnetic Lorentz force created by the electron Hall current and

the thruster’s magnetic field. Despite this nuance, Hall thrusters are still considered

electrostatic devices due to the ion acceleration, which can be thought of as a reaction

force to keep the electrons stationary.

Despite the addition of electric and magnetic forces, it might seem straightforward

to model a Hall thruster in a fluid simulation similar to CFD in aerodynamics, follow-

ing these principles. However, this is not the case. The Hall thruster hosts numerous

instabilities[24] that complicate the situation. For example, due to differing rates

of ions leaving the thruster and the neutral gas replenishing it, a predator-prey-like

instability occurs[35, 4, 28]. This leads to the thruster oscillating between periods

of high and low current, typically on the order of 10kHz. The various oscillations

and instabilities present in Hall thrusters play a crucial role in both thruster opera-
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Figure 2.4: Example distribution of plasma parameters inside a Hall thruster dis-
charge channel.
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tion and performance. Many of these aspects of Hall thruster operation have been

captured by numerical simulations capable of modelling the thruster geometry, but

with one major exception: the transport of electrons across magnetic field lines. As

discussed above, classically, electrons travel across field lines due to particle collisions,

but experimental measurements have shown that the axial electron current is orders

of magnitude larger than could be explained by collisions[54]. As we discuss in depth

in the next section, the leading theory for this behavior is the presence of a small-scale

instability, the electron drift instability (EDI), which acts as an anomalous drag force.

The origin of this instability is kinetic in nature; it requires resolving the electron pop-

ulation as individual particles instead of as a bulk fluid. While there are simulation

techniques—such as particle-in-cell—that can resolve the required level of detail such

that the instability is observed along with enhanced anomalous electron transport,

these high-fidelity codes are extremely computationally expensive. They either take

too long or only simulate limited dimensions of the Hall thruster geometry, mak-

ing them unsuitable for rapid iterative design in a new thruster development cycle.

While the timescale of plasma instabilities is often on the scale of microseconds, Hall

thrusters must be designed to operate for thousands of hours. Increasingly, there is a

desire to develop reduced-fidelity simulations that capture anomalous transport due

to instabilities through simplified models that predict the instability’s effect based on

local bulk plasma properties. In pursuit of this goal, significant research efforts have

focused on analyzing the instability using simulations, but there has been little ex-

perimental verification of both the instability and its impact on transport. Chapters

V and VI cover our experimental efforts to address these concerns. However, before

that, the next section will present a model for electron transport in a Hall thruster

discharge.
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Figure 2.5: Coordinate system used for modelling cross-field transport in a Hall
thruster.

2.4 Electron Transport Model

In Hall thrusters electron transport generally describes the process where electrons

are extracted from the cathode and travel upstream toward the anode. In an ideal

situation electrons would be perfectly constrained to magnetic field lines and only one

so-called ’golden electron’ would be needed from the cathode to start the ionization

process. Taking into account particle collisions—electrons with ions, neutrals, or

walls—there would an electron current toward the anode as the electron loses energy

from the collision as drops into an E × B orbit closer to the anode. This collision

based framework of electron mobility across magnetic field lines is often referred to

as “classical transport”. Following the classical derivations of cross-field transport—

such as those found in [21]—the electron transport process can be described by an

equation of motion for electrons in an axial electric field along the ’x-axis’ (E⃗ = Ex
⃗̂x)
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and a radial magnetic field along the ‘z-axis’(B⃗ = Br
⃗̂z):

men
dv⃗e
dt

= qn(E⃗ + v⃗e × B⃗)−∇p−meneνcv⃗ = 0. (2.6)

This equation describes the change in momentum for electrons. In order, the terms

on the right hand side represent the electric force, Lorentz force, electron pressure

(∇p), and force due to collisions at frequency νc. Following the typical procedure for

determining motion across field lines we ignore electron inertial (assume the left-hand-

side is zero) and the pressure can be describe an equation of state where temperature

is assumed constant ∇p = kBTe∇n). Solving this equation for electron particle flux

across field lines (Γe⊥ = nve⊥) yields:

Γe⊥ = neµ⊥E⃗⊥ −D⊥∇n. (2.7)

Here µ⊥ and D⊥ are the cross-field mobility and diffusion coefficients respectively.

These are given by

µ⊥ =
µ

1 + ω2
ce/ν

2
c

(2.8)

D⊥ =
D

1 + ω2
ce/ν

2
c

(2.9)

where ωce = eB/m is the electron cyclotron frequency and µ and D are the classical

mobility and diffusion coefficients defined as

µ =
e

meνc
(2.10)

D =
kBTe

meνc
(2.11)

Physically, this equation demonstrates that electrons travel across field lines due

to the axial electron field and density gradients, but are impeded by the magnetic
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field and enhanced by collisions. This dependence on magnetic field strength versus

collisions is reflected in the term ωce/ν called the Hall parameter Ω. In the ideal case,

neglecting collisions, both transport coefficients go to zero and there no cross-field

electron current. In terms of Hall thruster design, the magnetic field is sized such

that the Hall parameter is large: Ω2 >> 1. This corresponds to the situation where

the electrons make many cyclotron orbits in between collisions, if this were not the

case then collisions would lead to a demagnetization of the electrons. In this limited

the cross-field diffusion and mobility coefficients can be expressed as

µ⊥ ≈ meνc
eB2

(2.12)

D⊥ ≈ kBTeVmeνc
e2B2

(2.13)

This is the origin of the classical 1/B2 scaling originally predicted for electron trans-

port in Hall thrusters. While this model is a simplistic way to describe Hall thruster

operation and infer some design guidelines, it was quickly discovered that Hall thrusters

exhibit a particle flux of electrons across magnetic fields that is orders of magnitude

larger than could be explained by Equation 2.7[7, 54]. Much of the research on Hall

thrusters has focused on trying to explain this so-called ‘anomalous transport’. Most

theories can be divided into two groups: wall interactions and turbulence-driven trans-

port. While the major focus of this thesis centers around the turbulence transport

model, we note that there have been many investigations into wall-interactions and

their effect on cross-field transport[94, 96, 22, 23]. Generally, these research efforts

have shown that while wall-interactions have a role in electron transport, particularly

inside the channel of the thruster, they cannot fully model the observed transport.

Considering that recent magnetically-shielded Hall thruster designs have acceleration

zones outside of the channel[29], the growing consensus is that turbulence-induced

mechanisms primarily drive the anomalous electron transport[48]. However, both wall
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collisions and wave-driven turbulence have proven to be difficult to accurately repre-

sent in fluid codes/models. Ideally, an additional term could be added to Equation 2.7

that depends only on macroscopic properties, such as temperature and density, but

these anomalous effects have been shown to be generally kinetic in nature and would

require particle-in-cell (PIC) simulations or direct-kinetic (DK) simulations of the

Boltzmann equation to properly evaluate anomalous transport. Therefore, there are

generally two paths for numerically investigating electron transport that feed back

on each other. The first path is to take the difficult and time-consuming route of

PIC/DK simulations, often in vastly simplified geometry or system, to analyze the

physics driving anomalous transport. Next, with a hopefully greater understanding of

the first principles physics, a reduced fidelity model is generated that captures the rel-

evant anomalous transport dynamics in a way that can be evaluated by a fluid model.

This process has been ongoing for several decades now with significant advances, but

the final result of a predictive Hall thruster simulation model has remained elusive[93].

We briefly review the previous body of work advancing the state of electron transport

models in Hall thrusters.

2.4.1 Simulation and Modeling Efforts

The general methodology for including higher-order effects for electron transport

in fluid models focuses on evaluating an anomalous collision frequency (νAN). The

anomalous collision frequency would be a function of macroscopic properties that

can then be added to the classical term in the fluid equations to calculate cross-field

transport: ν = νc+nuAN . Later in this chapter, we will present an example derivation

of how azimuthal instabilities can be represented by an anomalous collision frequency,

but the same principle applies regardless of the primary physical mechanism: the

higher-order effects yield an additional path for electrons to lose momentum. Hence

the common reduction to an effective collision frequency.
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A logical next step to model a higher collision frequency than could be predicted

by particle-particle collisions would be to include collisions with the thruster channel

walls. This effect is often referred to as near-wall conductivity and was first pro-

posed and studied heavily by Morozov during early Hall thruster development[53].

Although, the situation is more complicated than solely considering ballistic collisions

with the walls because of stealth effects and secondary electron emissions(SEE)[4, 38].

Often, due to simplicity and speed these effects are collapsed to a single term where

the wall interactions can described by an effective collision frequency ανref , where

α is a fitting parameter and νref is a reference collision frequency. This type of

approach solely empirical in nature and depends heavily on experimental data for

tuning to a specific unit and generally is not effective as a predictive tool. When

using more first principles based models for wall interactions the effective collision

frequency typically reduces a function of the ion velocity to the walls, which is often

assumed to satisfy the Bohm condition for sheaths and therefore a function of temper-

ature, and also a function of the secondary electron emission yield which is material

and electron energy dependent. Despite being rooted in the underlying physics, this

methodology can yield simulations that are markedly less accurate than the empirical

approach[38]. Though wall effects certainly play a role in Hall thruster dynamics, it

has been demonstrated that it cannot explain the enhanced cross-field transport on

its own[3]. Other mechanisms, primarily plasma turbulence are thought to be the

more dominate source of anomalous transport.

One of the most common turbulence effects incorporated into fluid models to

evaluate anomalous diffusion is the so-called Bohm Diffusion, name after its discov-

erer David Bohm while studying cross-field transport during the Manhattan Project.

Based on observations, Bohm determined a semi-empirical representation for the
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cross-field diffusion coefficient as

D⊥ = DB =
1

16

kBTeV

eB
(2.14)

While Bohm’s formula is not derived from first principles, notably the value of 1/16 is

best-fit parameter, it has been shown to describe accurately the dynamics of several

E × B plasma systems. Notably the diffusion scaling now goes as 1/B rather than

1/B2 and is generally several orders greater in magnitude than the classical value.

This leads to increased difficulty in confining electrons to magnetic fields, a problem

for Hall thrusters and to a much greater extent the fusion community. As succinctly

discussed in Ref. [21], the physics governing Bohm diffusion in the context of E ×B

drift plasmas can be related to random fluctuations in the azimuthal electric field Ey

which has a mean zero value. Here the cross-field flux is then assumed proportional

to the induced Ey ×B drift:

Γex ∝ ne
Ey

B

The maximum value of the fluctuating electric field is assumed to be bounded by

Debye shielding:

Ey =
kBTeV

eLc

where Lc is the characteristic length of the plasma. Combining these equations yields

the Bohm diffusion coefficient with a constant of proportionality (α):

Γey = α
kbTeV

eB

ne

Lc

= DB∇n

Noting that α is typically assumed to be 1/16 based on historical data, but other

values are often used to recreate the dynamics of specific systems.

Upon inspection of Equations 2.13 and 2.14 it is evident that the Bohm mobility
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can be rearranged to be expressed as an effective collision frequency:

νB = αωce (2.15)

This representation for anomalous collision frequency has been used on several occa-

sions to model electron transport in Hall thruster, and often combined with electron-

wall collision inside the discharge channel[35, 46, 47, 3, 61, 39].

In addition to turbulence due to random fluctuations, Hall thrusters exhibit

many coherent oscillations and instabilities over a broad frequency domain (10kHz

to >10MHz) that all could conceivably contribute to some extent to anomalous

transport[24]. The most fundamental and well-known oscillation exhibited in Hall

thrusters is the breathing mode oscillation[98, 8, 5, 28]. This mode is ubiquitous in

all Hall thrusters and typically manifests between 10-100kHz as a global oscillation

where the thruster uniformly rises and falls in total discharge current. This instability

is often described as a predator-prey relationship where the neutral propellant gas is

ionized and then accelerated out of the channel faster than the replenishment rate of

the neutrals[36]. In this way, the ionization frequency will drop, as will the discharge

current, then the discharge channel will be replenished with fresh neutrals. After

sufficient neutrals accumulate, the ionization rate will increase once again leading to

more ions and a higher discharge current. This process then repeats indefinitely.

Despite this common description, it is not physically accurate. While the predator-

prey model reasonably predicts the oscillation frequency of the breathing mode, it

does not produce a stability criterion. Modern research has pointed to a more com-

plicated physics picture where the instability could be the result of variations in the

size of the ionization zone and phase lag between ionization near the anode and the

region near the thruster exit[28]. Furthermore, while this mode is not directly respon-

sible for anomalous electron transport in Hall thrusters, it has been demonstrated that
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the breathing mode oscillations play a role in the process[29]. The variation in plasma

parameters during a breathing mode oscillation can affect the growth or saturation

of other instabilities that directly influence the cross-field electron mobility.

The instabilities theorized to drive anomalous electron transport are generally

considered to be azimuthal instabilities propagating in the E × B direction that ex-

change energy and momentum with the E×B drifting electrons. In the next section,

we will present a framework for evaluating this interaction. The azimuthal instabil-

ities present in Hall thrusters are commonly separated into high and low frequency

oscillations. In the low frequency domain, the rotating spoke instability is the most

prominent. This instability manifests at wavelengths on the order of the Hall thruster

circumference, oscillating in a frequency range between 10 to 100kHz. The waves have

been directly observed using high-speed camera footage of thruster discharges when

the oscillations closely resembled bicycle spokes rotating around the channel, hence

the classification as a spoke instability[33]. Significant research was directed to the

study of these spokes, demonstrating that the spokes carry significant current and

their amplitude is correlated with Hall thruster performance[73]. These spoke waves

could influence electron transport through the interaction between azimuthal density

and electric field oscillations that give rise to cross-field transport due to an E × B

interaction, similar to the description for Bohm transport. However, despite some

experimental backing for the role of this instability on anomalous transport, it was

determined that these spokes are not ubiquitous in Hall thrusters. With the intro-

duction of magnetically shielded Hall thrusters, the spoke modes did not manifest in

these devices[88]. Similar to wall interactions, while the spoke mode likely plays a

role in anomalous transport, it is not the primary source.

High frequency azimuthal instabilities increasingly appear to play the most sig-

nificant role in anomalous transport. These instabilities are typically considered to

have oscillation frequencies greater than 1 MHz and wavelengths on the scale of the
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thruster circumference down to the Debye length, typically on the millimeter scale or

smaller. Until recently, most of the investigations into these modes have come from

modeling and simulations due to the difficulties in resolving oscillations at such high

frequencies and potentially very small wavelengths. Kinetic simulations performed

by Adam et al. in 2004 [2] suggested that a drift instability driven by the electron

E × B current is responsible for this anomalous cross-field transport. This is the

so-called electron drift instability. As we will review shortly, in the last decade, this

instability has received a lot of attention from the modeling and experimental Hall

thruster community as the origin of anomalous electron transport, and is the primary

focus of this dissertation. In a following section, we will provide a historical overview

of the recent investigation into the electron drift instability that led to our present

work, but first, in this section, we will demonstrate how these azimuthal instabilities

result in transport across magnetic field lines.

2.4.2 Wave-Induced Transport

The wave-driven cross-field transport of electrons can modeled by returning to the

drift-diffusion equation for electrons where we neglect electron inertia:

0 = − q2

me

ne(E⃗ + v⃗e × B⃗)− q

me

∇(pe) + j⃗eνc (2.16)

Here me is electron mass, ne is electron density, j⃗e is the electron current density, E⃗

and B⃗ are local electric and magnetic fields, pe = qneTe is electron pressure where Te

is expressed in units of energy, νc is the classical electron collision frequency, and q

is fundamental charge. The first term is the Lorentz force, the second is the pressure

force, and the third is the effective drag due to particle collisions. We introduce wave

effects into this equation by representing the electrostatic wave as rapid perturbations

in density, ne = δne+ne(0) and electric field, E⃗ = δE⃗+E⃗0, where δx terms denote the
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oscillating component against a background value x0. Then we rearrange Eq. 2.16 to

solve the axial and azimuthal electron current density.

je(x) =
q2

meνc
(δne + ne(0))

[
(δEx + Ex(0))− v⃗e(y) ×Br

]
− q2

meνc
∇x[(δne + ne(0))Te]

(2.17)

je(y) =
q2

meνc
(δne + ne(0))

[
(δEy + Ey(0)) + v⃗e(x) ×Br

]
− q2

meνc
∇y[(δne + ne(0))Te]

(2.18)

Next we take a phase average, taking the average value of the oscillating terms over

the period of the oscillations, of both equations. We assume the oscillations are si-

nusoidal such that taking the phase average will eliminate any individual oscillating

components: ⟨ne⟩ = ne(0). Additionally we assume that there is no steady state az-

imuthal electric field (Ey(0) = 0) or density gradient ⟨∇y(pe)⟩ = 0, and the instability

primarily oscillates in the azimuthal direction (δEx = 0). This yields

je(x) =
q2

meνc

[
ne(0)Ex(0) −∇x(ne(0)Te)

]
− ωce

νc
je(y) (2.19)

je(y) =
q2

meνc
⟨δneδEy⟩+

ωce

νc
je(x) (2.20)

In these equations, phase averaging has eliminated the oscillating components of

ne and E⃗ except for the term containing the product ⟨δneδE⃗⟩. If the density and

azimuthal electric field oscillations are in phase this term will be non-zero.

We now solve for the axial electron current density by combining Eq. 2.19 and

2.19 and assume the large Hall parameter Ω = ωce/νc >> 1:

je(x) =
q2ne(0)

meω2
ce

(
E0(x) +

∇x(ne(0)Te)

qne(0)

)(
νc − ωce

⟨δneδEy⟩
ne(0)Ex(0) +∇x(ne(0)Te)

)
. (2.21)

As we will show later for the instability under investigation ⟨δneδEy⟩ < 0 is less than
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zero and the effect of the azimuthal oscillations is to add to the classical collision

frequency and enhance cross field transport. For this reason, the wave-driven is often

related to an anomalous collision frequency νAN that adds to the classical term for

the overall effective collision frequency νe = νc + νAN :

je(x) =
q2ne(0)

meω2
ce

(
E0(x) +

∇x(ne(0)Te)

qne(0)

)
(νe), (2.22)

where the effective anomalous collision frequency is defined as

νAN = −ωce
⟨δneδEy⟩

ne(0)Ex(0) +∇x(ne(0)Te)
. (2.23)

This definition underscores the fact that from a fluid, phase-averaged perspective, the

propagation of the instability can be represented as an enhanced transport coefficient

for the electrons. Similarly, per the definition, we see that as the relative fluctuations

in electric field and density from the waves increase, the wave-induced cross-field

transport on the electrons will be higher. Physically, this scaling stems from the

fact that the growth of the instability can be interpreted as an effective drag on the

azimuthal drift in the plasma, which in turn promotes cross-field current.

2.5 The Electron Drift Instability

In previous section we demonstrated that an azimuthal wave can give rise in

enhanced cross-field dependence the phase and amplitude of the electric field and

density perturbations. In this section we provide an in-depth review of the instability

considered most likely to govern the anomalous transport phenomenon, the electron

drift instability(EDI). While research on the EDI dates back several decades with the

development of analytical models for fusion plasmas, most studies of this instability

as it applies to Hall thrusters have occurred in the last two decades. Much of this
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work has focused on theoretical analysis or particle-in-cell simulations, but in recent

years there have been an growing set of experimental studies giving insight into the

nature of the EDI in Hall thrusters. The major results from our research builds on the

tremendous layer of knowledge built by the research community. In order to provide

proper context for our work, in this section we will provide the theoretical framework

for the EDI in Hall thrusters, review the results of major simulation projects that

studied the EDI, and discuss the limited experimental data that existed for the EDI

prior our research.

2.5.1 EDI Simulations and Analytical Treatment

Spurred by the inability of wall effects to explain anomalous transport and grow-

ing evidence of micro-turbulence in Hall thrusters significant effort was placed on

developing high-fidelity models that could resolve small-scale instabilities that were

theorized to drive anomalous transport. The first major simulation that demonstrated

azimuthal micro-turbulence in Hall thrusters was the 2004 2D kinetic simulation of

Adam et. al[2]. This axial-azimuthal simulation treated the simulation domain as

a linear box was with periodic boundary conditions along the azimuthal direction

with an overall length of only a couple millimeters and the axial direction was only

a few centimeters. In with this massive reduction in geometry extent of the future

Hall thruster the computational cost as the time was extreme. Despite these limita-

tions, without any artificial tuning this kinetic model was able to resolve several key

features of Hall thruster operation, such as the Hall thruster breathing mode, spa-

tial variations in density and electric field, and relatively accurate magnitudes of the

various plasma parameters. A remarkable accomplishment for the field at the time.

Furthermore, and perhaps even more importantly, this simulation demonstrated the

formation of a strong high frequency and small wavelength azimuthal instability. It

was this instability that was responsible for the enhanced diffusion across magnetic
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field, which the authors strongly attribute to small wavelength of the instability which

was on the order of the electron Larmor radius. The instability appeared to develop

using the high speed E×B drift as an energy source for wave growth. This instability

would later be classified as the electron drift instability.

Following the promising work of Adam, effort turned towards classifying the in-

stability observed in the kinetic simulations. These works aimed at developing an

analytical dispersion relation for an instability that develops along an E × B drift

with frequency and wavelength matching those seen by Adam. The dispersion re-

lation for a plasma describes how an instability behaves as a function of oscillation

wavelength, both in terms in oscillation frequency and growth rate. This is a gross

simplification of the importance and complexity of plasma dispersion relations and

we direct the reader to the works of Stix[91] and Swanson[92] for a thorough descrip-

tion of plasma waves. The dispersion relation is typically described as a complex

function with a real part that denotes the frequency (ω(k)) of oscillations at a partic-

ular wavenumber (k), and an imaginary component that represents the growth rate

(γ(k)), that is the rate the amplitude of an oscillation increases. The dispersion is

determined by solving the dielectric plasma function, which for all but very simplified

situations is only possible through numerical techniques, again we direct the reader

to resources such those previously highlighted for a proper introduction these meth-

ods as it is well beyond the scope of this dissertation. For the Hall thruster plasma,

the linear dielectric function was developed by Ducrocq et.al[32] and later refined by

Cavalier et. al[19]:

ϵ(1) = 1 + k2λ2
De + g

(
ω − kyVd

ωce

, (k2
x + k2

y)ρ
2, k2

zρ
2

)
−

k2λ2
Deω

2
pi

(ω − kxvdi)2
, (2.24)

30



where g(Ω, X, Y ) is the Gordeev function defined as

g(Ω, X, Y ) = iΩ

+∞∫
0

e−X[1−cos(φ)]− 1
2
φ2+iΩφdφ. (2.25)

where ω is the oscillation frequency, ωce is the electron cyclotron frequency, ωpi is the

ion plasma frequency, k =
√
k2
x + k2

y + k2
z is the oscillation wavenumber, kx is the

wavevector component traveling in the axial direction, ky is the component in the

E × B direction, kz is the component in the radial direction (along magnetic field

lines), VD is the azimuthal electron drift velocity, vdi is the ion beam velocity in the

axial direction, λDe is the Debye length, and ρ = Vth/ωce is the electron Larmor radius

at thermal velocity Vthe =
√

Te/Me where Te is expressed in terms of energy. The

main assumptions invoked in this dispersion relation are

• The steady state electric field is only in the axial direction (E = Ex̂).

• The magnetic field is pure radial (B = Bẑ).

• Electrons are magnetized and have an azimuthal drift velocity of VD = VDŷ.

• Ions are unmagnetized.

• Magnetic field and density gradients are ignored

• The electron velocity distribution is assumed to be maxwellian.

• The instability is purely electrostatic with a perturbed potential of the form

ϕ = ϕ0 exp [i(k · r − ωt)].

While these assumptions can differ significantly for true Hall thrusters, and in

several ways also is restricting the variety of possible plasma waves, it is necessary

to apply these restrictions else the problem quickly becomes intractable.For plasma

parameters typical of Hall thrusters, this dispersion yields oscillations with frequencies
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in the megahertz domain and resonant wavelengths on the order of millimeters or

smaller; these occur at k ≈ mωce/Vd where m is the mode number. These are

the so-called cyclotron resonances that appear in Ω term of the Gordeev function:

(ω − kyVd)/ωce. This is the inverse Larmor radius of electrons traveling azimuthally

with E × B velocity Vd. Physically, this can be described as Bernstein waves being

Doppler-shifted to frequencies lower than the cyclotron frequency by the high electron

drift velocity such that they merge with the ion acoustic wave[40]. Characteristic

dispersion relations for the EDI are shown in Figure 2.6 highlighting several key

features. When the radial wavenumber is small distinct cyclotron resonances are

evident in both the real and imaginary components of the solution. Growth becomes

peaked at the resonance frequencies and the real frequency exhibits sharp changes in

azimuthal group velocity around the harmonics. In literature, this type of solution

to the EDI dispersion relation is often called the electron cyclotron drift instability

(ECDI). Although it is important to note that the first peak growth rate occurs

around kyλDe ≈ 0.1 is not the fundamental cyclotron resonance mode (m = 1). This

low frequency portion of the EDI dispersion is associated with an instability known as

the modified two-stream instability (MTSI)[56]. While the growth rate at these large

wavelengths is much smaller the cyclotron resonances, as well be discussed in more

detail later, the MTSI likely plays an important role in the non-linear saturation of

the overall EDI instability.

If there axial component of the wave (kx = 0) then the real frequency is bounded

by the ion plasma frequency. When there is wave propagation in the axial direction

the real frequency is Doppler-shifted by the term kxvp. As the radial wavenumber

increases the instability trends toward a so called modified ion acoustic instability

where the resonances have been smoothed out in both real frequency and growth

rate. This ion acoustic like solution results in a drastically simpler dispersion relation
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(a)

(b)

Figure 2.6: Solutions of the EDI dispersion relation, adapted from Cavalier et al[19]
with different radial wave components (kz). Frequency (a) and growth rate (b) are
normalized by the ion plasma frequency (ωpi) and wavenumber is normalized by the
Debye length(λDe).
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given by

ωr = k · vdi ±
kcs√

1 + k2λ2
De

(2.26)

γ = ±
√

πMe

8Mi

k · vD

(1 + k2λ2
De)

3/2
, (2.27)

with peak growth at the wavenumber kmax = 1/λDe

√
2. There is currently no con-

sensus as to what exact flavor of instability (ECDI, MTSI, ion-acoustic) the EDI

manifests itself as in Hall thruster plasmas and for the rest of the this work we will

refer to these different solutions of the dispersion relation collectively as the EDI.

Over the last decade many high fidelity Hall thruster simulations have resolved the

EDI instability and typically demonstrate that it results in the anomalous electron

transport. While it is not possible adequately cover every single reference[63, 55, 56,

81, 9, 52, 60, 32, 19, 64, 1, 59], we summarize here several of the major findings from

the last two decades of kinetic and particle-in-cell simulations and then highlight a

key works:

• Most simulations showed the ion acoustic form of the EDI where the oscillations

were dominated by a nearly monochromatic wave at the wavenumber of peak

growth estimated from Equation 2.27[63, 65].

• The EDI was shown to effectively enhance cross-field mobility

• The saturation mechanism, which determines the final amplitude of the insta-

bility, was mostly commonly observed as ion wave trapping in the azimuthal

direction and axial wave energy convection[65, 66]

• In direct contrast to the first point, a few very recent and high resolution sim-

ulations show an ECDI like instability with discrete resonances[55, 56].

Despite the substantial simulation work that occurred over the last two decades,

there have been little to no experimental evidence to confirm or reject any of the
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conclusions listed above. The primary focus of this dissertation centers around provide

this knowledge gap and resolve many of the ambiguities and disagreements seen across

the various models, but first in the following section we provide an overview the

current experimental evidence support the existence and role of the EDI prior to our

research efforts.

2.5.2 Experiential Work

Following the seminal work of Adam’s 2004 kinetic simulations, there were a hand-

ful of experiments that attempted to investigate high frequency oscillations in Hall

thruster plumes. In particular, Litvak[69] and Lazurenko[67] utilized high-speed elec-

trostatic probes situated in the Hall thruster walls and plume to investigate plasma

oscillations. Their techniques were very similar to those outlined in Chapter 3, but

with limited capabilities and resolution due to hardware restrictions. Litvak et al.

measured oscillations with appreciable amplitude in the 1-15MHz domain, but they

inferred the wavelength was on the order of the Hall thruster channel circumference,

substantially larger than the EDI, and attributed the waves to a Rayleigh-type in-

stability driven by gradients in density, magnetic fields, or drift velocities[34, 68].

Lazurenko et al. measured a similar frequency domain as Litvak and also saw high

amplitude content in the 1-30MHz domain. Notably from their work, they measured

the wave properties in the axial and azimuthal directions and determined the wave

was propagating in both directions, with phase velocities on the order of the electron

E × B drift velocity. Additionally, the dispersion relation was linear, like the ion

acoustic results for the EDI, but the phase velocities were well above the predictions

of the EDI, which would be close to the ion sound speed. While these works demon-

strated the existence of high-frequency oscillations in Hall thrusters, they implied the

waves were not from the EDI. Though as we discuss in later chapters, there were

several limitations to these experiments that likely limited the detection of the EDI,
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such as limited wavelength resolution due to probe design, and a limited measurement

domain due to hardware restrictions.

The first substantial experimental evidence for the existence of the EDI in Hall

thrusters came from the collective Thomson scattering (CTS) experiments of Tsikata

et al.[101, 100, 99]. This breakthrough experiment differed significantly from previous

experimental investigations by not relying on electrostatic probes that can distort the

thruster plasma and have several limitations on spatial and wavelength resolutions.

Instead, these experiments utilized laser-based diagnostics to infer the frequency,

wavelength, and strength of oscillations based on how they scatter electromagnetic

waves. While this diagnostic system is regularly used in the fusion plasma community,

it is extraordinarily difficult to develop a diagnostic for Hall thruster plasmas due to

their relatively low density and therefore weaker detection signal. The experimen-

tal apparatus itself represents a significant achievement, and the experiments yielded

substantial new insights into the high-frequency oscillations in Hall thrusters and the

nature of the EDI. In the measured wavenumber domain of 5000-12000 rad/m (wave-

lengths between 0.5 and 1.2mm), the wave had a linear dispersion with oscillation

frequencies between 2 and 6 MHz and a group velocity close to the ion sound speed.

This strongly resembled the ion-acoustic form of the EDI and had the correct length

scales and frequency. Furthermore, the experiment revealed the wave was not purely

azimuthal and was oriented 10 degrees axially towards the thruster and 4.6 degrees

radially outward. This data was compared against the theoretical dispersion relation,

and it was determined that the necessary plasma parameters required for the EDI

were within reasonable expectations for the Hall thruster plume. However, there were

some disagreements between theory and experiment, the most significant of which re-

lates to the amplitude of EDI oscillations. Firstly, the ion-acoustic form of the EDI

predicts the strongest oscillations should occur at the wavelength corresponding to

maximum growth, kmax = 1/λDe

√
2. Despite this being within the measurement do-
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main of the CTS diagnostic, no peak was observed in the experiment; in fact, the

wave amplitude was increasing exponentially at lower frequencies and larger wave-

lengths. Furthermore, the magnitude of the oscillations was appreciably smaller than

the levels predicted to be necessary to cause anomalous cross-field transport. Despite

the remarkable success of this experiment, the role of the EDI and its exact dispersion

relation remained inconclusive. These concerns, in addition to the numerous ambi-

guities among Hall thruster simulations of the EDI, spurred much of the motivation

for the experiments carried out in this work.

Overall, the body of knowledge prior to this work strongly suggested that the

electron drift instability was the primary mechanism resulting in anomalous trans-

port of electrons across magnetic field lines in Hall thrusters. Much of the evidence

supporting this theory was rooted in numerical simulations. However, due to the

numerous simplifications and assumptions employed in these simulations, there was

no consensus that the results accurately represented the real Hall thruster plasma.

Moreover, the simulations from different research groups showed several important

disagreements, and there was minimal experimental evidence validating these models.

Despite the promising CTS experiment that strongly pointed toward the existence of

the EDI in Hall thrusters, there was still no definitive description of the EDI in Hall

thrusters or its role in anomalous transport. The need for more experimental efforts

was apparent.

2.6 Conclusions

Hall thrusters are quickly becoming the dominant workhorse of the electric propul-

sion industry. Despite the technological maturity of these systems and their widespread

adoption, several fundamental aspects of their operation are not yet fully understood.

This gap in knowledge of the underlying physics greatly impedes the pace of devel-

opment for new systems and forces the Hall thruster community to rely primarily on
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lengthy and costly experimental test campaigns for design validation. Although Hall

thruster modeling efforts and simulation techniques have made great strides in the last

decade, they still cannot be reliably and expediently used as predictive design tools.

The primary knowledge gap holding back these efforts is the lack of understanding

about the anomalously high transport of electrons across magnetic field lines. High-

fidelity simulations can directly calculate this anomalous transport term by resolving

the instability-induced oscillations in density and electric field. However, as high-

lighted earlier, these simulations often do not resolve the full Hall thruster geometry,

meaning they cannot be used to validate Hall thruster designs. Nevertheless, they are

extremely useful in learning about the governing physics of instability-driven trans-

port. This leads to modeling techniques where the anomalous collision frequency is

estimated by a simplified model that does not simulate the instability and attempts to

capture its effect at a macroscopic level. A common method assumes the anomalous

collision frequency scales approximately with the cyclotron frequency νAN = αωce,

where α is a tunable parameter or a function of multiple variables. This ad hoc term

can be used to include wall interactions, Bohm diffusion, and wave-driven transport,

but these types of models heavily depend on experimental data to adjust the free pa-

rameters introduced through the simplified model and are often only valid for a unique

thruster. While many in the Hall thruster modeling community have looked to the

electron drift instability to explain anomalous transport, at the start of our research,

there was no definitive evidence proving these hypotheses. Outside of simulations,

wave-induced anomalous collision frequency can be directly evaluated with experi-

mental data using Eqn. 2.23, provided that the fast density and electric oscillations

can be measured. In practice, it is not possible to measure both of these quantities

simultaneously at the same position. Therefore, the technique is simplified by mea-

suring only density fluctuations and using an assumed dispersion relation for the EDI

to estimate the electric field perturbations. It is this method that we exploit in this
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work to evaluate anomalous cross-field transport in Hall thrusters. However, to do so,

the dispersion relation must be known, and numerical simulations have not reached

a consensus on the proper form of the dispersion relation. Our research efforts aim

to resolve these critical deficiencies. In Chapter III, we review the technique used to

experimentally measure high-speed density fluctuations in Hall thruster plumes and

determine the dominant instability. In Chapter IV, we present experimental data

demonstrating that the primary instability relevant to anomalous transport is the

Electron Drift Instability, and we estimate the correct dispersion relation. Finally, in

Chapter V, we combine all of this data to evaluate electron transport for comparison

to models and simulations.
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CHAPTER III

Experimental Techniques

3.1 Introduction

In this chapter, we describe the techniques used for investigating anomalous elec-

tron transport in Hall Thrusters. First, we present the thruster used for study and the

vacuum facility utilized for our experiments. Next we discuss the analysis techniques

employed used to infer characteristics of the electron drift instability and its influence

of cross-field transport. The analysis in broken into two main aspects, the first covers

the wide-breadth of methods that fall under the umbrella of spectral analysis. The

spectral analysis primary involves Fourier analysis, Beall analysis that outputs an in-

stability wavenumber, frequency, and amplitude from measured waveforms, and also

bispectral techniques that use advanced mathematical methods to infer the growth

and non-linear aspects of any measured instabilities. Then we describe the probing

methods used to generate the data applied to the aforementioned analysis techniques.

Finally, outline the specific implementation of these techniques in our experimental

campaigns.
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Figure 3.1: The H9 magnetically shield Hall thruster

3.2 The H9 Hall Thruster

For our experimental campaigns, we solely employed the H9 Hall thruster as

the test apparatus. The H9 is a relative new state-of-the-art Hall thruster developed

jointly by NASA’s Jet Propulsion Laboratory, the University of Michigan, and the Air

Force Research Laboratory [49, 25]. It features a center-mounted LaB6 hollow cathode

and operates with a 7% cathode flow fraction. The thruster body was electrically

connected to the cathode. It is designed to operate over many different operating

conditions ranging from approximately 1kW to 9kW, but most experiments covered

in work utilized a 4.5kW operating condition with nominally 300V discharge voltage

and 15A discharge current. The propellant is 99.9995% pure xenon and the flow rate

is commanded using a set of Alicat MC series mass flow controller, calibrated with a

Drycal Bios Definer fine-volume measurement unit.

The thruster is relatively unique, compared to many previous Hall thruster de-

signs, as it employs a magnetically shielded topography [76]. This shielding technol-

ogy shapes the magnetic field lines such that curve along edge of the channel walls and
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far into the channel toward the anode. For conditions typical of Hall thrusters, mag-

netic field are assumed to be isothermal and as such the potential along field lines scale

approximately as ϕ = ϕ0 + Te lnne/ne0, where ϕ0 and ne0 are notionally the plasma

potential and density at the channel centerline where it intersects with the field line.

By having the magnetic field lines curve along the wall and deep into the channel the

electron temperature on this field line is kept cold and the potential remains close the

anode potential. These two characteristics result in significantly lower ion kinetic en-

ergy directed towards the walls and virtually eliminates erosion of the channel walls.

This magnetic shielding has three additionally important effects that influence our

experimental techniques and analysis of instability measurements. First, the accel-

eration zone–the small region of high axial electric field—shifts downstream relative

to unshielded thrusters such that it lies just downstream of the thruster exit plane.

The electron drift instability is expected to grow where the electric field is strongest,

as it draws energy from the azimuthal electron E × B kinetic energy, therefore in

shielded thrusters it much easier to probe the regions of the plasma relevant to the

EDI formulation and growth. Second, the electron temperature in shielded thrusters

has been measured significantly hotter than unshielded designs, and since the EDI

dispersion relation is sensitive to this parameter there may be differences in the nature

of the EDI measured with the H9 compared to previous thrusters. Although, given

the ubiquitous nature of anomalous electron transport in Hall thrusters we expect the

EDI to still be present and critical to all Hall thruster designs. Additionally, due to

the advantages of shielded magnetic field topologies, we expect data from experiments

on the H9 to be particularly relevant to future Hall thruster development. Finally,

the dispersion relation of the EDI was derived assuming the magnetic field is purely

radial and therefore there are important differences in the nature of the instability

close to the walls compared to the centerline. All data in our experiments is collected

along the channel centerline and therefore we do not consider this nuance in much of

42



Figure 3.2: Large Vacuum Test Facility at the University of Michigan

analysis and discussion.

3.3 Test Facility

All experiments were performed in the Large Vacuum Test Facility (LVTF) at the

University of Michigan in the Plasmadynamics and Electric Propulsion Laboratory

(PEPL). LVTF is a 6 m diameter by 9 m long chamber (Fig. 3.2). LVTF uses 19

cryogenic pumps to achieve a pumping speed of approximately 500,000 L/s on xenon

including conductance losses. This results in a base pressure of 10−8 Torr-N2 and

typical working pressures in the range of 5 · 10−8 Torr-Xe. Following the guidelines

outlined in Ref [30] pressure is measured with a xenon calibrated Stabil ion gauge

mounted 1 meter offset from the thruster and in the same plane as the thruster exit

plane.
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3.4 Wave Probes

3.4.1 General Description

To measure plasma oscillations we made extensive use of so-called ‘wave probe’.

The wave probe consists of pairs of closely spaced Langmuir probe that are biased

to collect ion saturation current, see Figure 3.3. Langmuir probes have been used

extensively as critical plasma diagnostic to measure plasma density, potential, and

temperature[70]. The basic principle of operation for the probe is as follows, an elec-

trode is exposed to the plasma and collects some amount of ion and electron current.

The collected current of each species is proportional to several plasma parameters and

an applied potential to the electrode. By analyzing the collected current versus the

applied voltage the various parameters can be isolated and calculated. For probes bi-

ased with a strong negative voltage all electrons are repelled and only the probe only

collects ion current equal to the ion saturation current. In this ion saturated current

ions impact the probe at the Bohm speed, vB =
√

eTe/mi, and the total collected

ion current therefore is a function of the electron temperature, plasma density, and

collection surface area:

isat = − exp−1

2
eni0As

√
eTe

mi

. (3.1)

Here ni0 is background ion plasma density, As is the probe surface area, and exp−1/2

is a correction factor based on assumptions about the probe sheath—primarily that

the radius of the probe is significantly larger than the Debye length. If electron

temperature oscillations are assumed to be small then oscillations in the ion saturation

current are proportional plasma density oscillations:

ñ

n
≈ ĩsat

isat
, (3.2)
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Figure 3.3: An example wave probe diagnostic consisting of closely space Langmuir
probes biased to ion-saturation current.

Here x̃ denotes perturbations about a mean value x: x = x̃ + x. Therefore high

speed measurements of ion saturation current yield measurement of relative density

oscillations and can be used to the detect the presence of instabilities through the use

of the spectral analysis techniques we outline in the next several sections. Addition-

ally, the constant temperature assumption is only a weak requirement, however, since

as shown in Ref. [79], even large changes in electron temperature only marginally

perturb the relationship between density and ion saturation current.

3.4.2 Fourier Analysis

The main analysis technique applied to the measured ion saturation current

waveforms is the Discrete Fourier Transform (DFT or FFT). Given a waveform of

length N : xk, k = 0...N − 1, the FFT produces a new vector of complex numbers

ym,m = 0...N − 1, where

ym =
N−1∑
k=0

xk exp

(
−2πi

mk

N

)
,m = 0...N − 1. (3.3)
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For an input waveform of purely real numbers the vector ym obeys the following

property: yN−m = y∗m where ∗ denotes the complex conjugate, and if N is an even

number then y0 and yN/2 are purely real. The values above m = N/2 are ignored

due to their redundancy and for a time-dependent input waveform collected at a

sampling rate fs, each value at index m is representative of frequency bin given

fm = mfs/N,m = 0...N/2. The FFT can be related to physical properties if we

assume the plasma oscillations are composed of linear combinations such that

δn =
∑
f

|δnf | exp(−i(2πft)) (3.4)

where |δnf | is the amplitude of the oscillation at frequency f . Subject to this as-

sumption the ym values are related to the oscillation amplitudes by

|δnf | =
2

N

√
|ym|2,m = 0...N/2. (3.5)

This resulting vector can be thought of as the power spectrum of the oscillations,

although strictly the definition of power spectrum (and power spectrum density)

varies slightly. Nonetheless, by performing the FFT on a single ion-saturation probe,

the strength of plasma oscillations as a function of frequency can be determined.

By using two ion saturation probes the wavelength can also be calculated using

the FFT. We expanded Equation 3.4 to include variation in position as well as time:

ñ =
∑
f

|δnf | exp(−i(2πft− kfx)) (3.6)

where kf is the wavenumber at frequency f . The term kfx can be treated as a phase

difference (Θf ) between a signal measured at two locations x1 and x2: Θf2 − Θf1 =

kf (x2−x1) . By the properties of the Fourier transform the phase difference between
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two signals n1 and n2 can be calculated using the cross-correlation:

Θf2 −Θf1 = tan −1

(
Im [y∗m1ym2]

Re [y∗m1ym2]

)
(3.7)

where ym1 is the FFT of probe 1 and ym2 is the FFT of probe 2. If the distance

between the two probes is known (∆x) then the wavenumber can be calculated by:

kf =
Θf2 −Θf1

∆x
. (3.8)

The can also be visualized as measuring the delay between when a particular phase of

the oscillation passes probe one and then later reachs probe 2, see Figure 3.3. Since

the phase is bounded between −π and π, this technique can only measure a maximum

wavenumber of kmax = π/∆x. If wavenumbers greater than limit are present in the

measurement they are aliased into the measurable wavenumber bin by kmeasured =

ktrue−nkmax where is an integer number denoting how many times multiples of 2kmax

can be divided into the true wavenumber . For example if the maximum wavenumber

directly measurable was 100 rad/m and there was a wave at 125 rad/m the FFT

analysis would yield a calculated wavenumber of -75 rad/m and a wave at 275 rad/m

would yield 75 rad/m. It is also important to note that in the context of 3D wave

propagation this two-point analysis method only calculates the wavenumber along

the vector connecting the two probe tips. To fully characterize the dispersion relation

of a 3D instability this analysis must be repeated with measurements from probes

taken in three separate configurations to measure the wavenumber along the x, y, and

z-axes.

All together the FFT analysis yields three very important characteristics an in-

stability: amplitude, frequency, and wavenumber (wavelength). In principle, this in-

formation could be used to identity the dispersion relation of any instabilities present

in the plasma plume, but it is limited in a few key aspects. One major limitation of
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this simple analysis is that it does not on its own produce a clear result due the noise

environmental encountered in the plasma that distorts the measured waveforms. To

filter out noise, any recorded waveform is subdivided into a set of several smaller

waveforms, the Fourier analysis is applied on each sub-waveform and the results

are averaged together to get yield the statistical average power spectrum and cross-

correlation/wavenumber. For example, we show in Figure 3.4 a sample power spec-

trum density plot taken from a single wave probe tip where the sampling frequency

was 100 MHz and two millions samples were recorded, if no averaging is performed

the resulting power spectrum is extremely noise with the values jumping over several

orders of magnitude every couple hundred Hertz. If the wave is subdivided into 1000

smaller waveforms with 2000 samples, the computed average power spectrum is very

smooth function with little evident spurious noise. Although, by performing the FFT

on individual sub-waveforms with fewer sample points the frequency resolution of the

FFT is diminished, fres = fs/N . Therefore averaging should be performed until the

resulting frequency resolutions starts approaching the frequency domain expected of

the instability. This statistical averaging technique is further expanded upon to pro-

vide even more context about the uncertainty of the wavenumber calculation through

a process called Beall analysis. Later, we will also detail an advanced Fourier based

analysis method, generally referred to as bispectral analysis that can provide intricate

detail about a measured instability’s growth rate and non-linear properties.

3.4.3 Beall Analysis

Beall analysis is mostly an extension of the simple Fourier analysis discussed in the

previous section. Instead of calculating the wavenumber as a function of frequency

through the cross-correlation, the Beall method uses a binning technique to generate

a probability chart where the axes are frequency and wavelength. The amplitude of

each cell corresponding to the relative to its neighbors represents how likelihood that
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Figure 3.4: Sample power spectrum density plot demonstrating the effect of binning
and averaging on signal-noise.

the particular combination of frequency and wavenumber exists in the experimental

plasma. Mathematically, this is matrix is constructed as follows. The measured signal

is subdivided into a set of smaller waveforms as in the simple Fourier analysis, then the

power spectrum and wavenumber of oscillations are determined using the methods

of the previous sections. Each waveform produces two vectors, both a function of

frequency, representing the intensity of oscillations |δnf | and the wavenumber of the

oscillations kf . Next a wavenumber vector is proscribed that will form a set of l bins

that the previous results will be averaged within. The final Beall matrix is composed

of l columns and M rows, where M is determined by the frequency resolution from

the Fourier analysis. For each Fourier result on the sub-waveforms, the value of |δnf |

is added to a cell with the column corresponding to its frequency and row where

the measure wavenumber falls with in the bin width of the set wavenumber array.

Mathematically this can be expressed as

S(f, k) =
1

M

M∑
j=1

I0,∆l(k − kj(f))|nj(f)| (3.9)
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Here j indicates the sub-waveform number and I0,∆k(k− kj(f)) is a binning function

defined by

I0,∆k(k − kj(f)) = 1 if(k − kJ) < ∆k, and 0 otherwise. (3.10)

This way power is only added into a wavenumber bin k if the measured wavenumber

kj(f) falls within particular bin boundaries.The value at a particular frequency and

wavenumber combination, S(f, k), will continue to increase if it contains significant

power in the majority of sub-waveforms. Due to noise, and potential time-dependence

of the oscillation, any cell could get some amount of power added to it, but if there are

plasma waves in the measurement data the cells corresponding to noise will contain

significantly less power than those representing the wave. Two example Beall plots

are shown in Figure 3.5a and 3.5b that were created using two artificial waveforms

that represent a wave with linear dispersion (f ∼ k) and power inversely proportional

to frequency |δnf | ∼ 1/f . In these plots, the y-axis is frequency normalized by the

sampling rate and the x-axis is wavenumber normalized by the probe radius. Here

the aliasing effect described in the previous section is extremely evident with the

linear dispersion wrapping around the sides of the plot twice. The added statistical

information retained by the Beall analysis allows for aliasing to be more readily iden-

tified than simple cross-correlation analysis and even potential removed with further

post-processing known as anti-aliasing.

Although the waveforms used in constructed these figures used the same artificial

wave, the Beall plot in Fig. 3.5b was generated after adding broadband noise to the

signal. While the dispersion is still visible at low frequency, where the wave power

is higher, the high frequency component is obscured by the noise. When considering

actual experimental data, noise can come from several sources such as 1) background

electric noise that is generally broadband like the figure shown here 2) Spurious pick
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(a)

(b)

Figure 3.5: Examples of a Beall histogram chart constructed from artificial waveforms
with a linear dispersion, (a) High signal to noise ratio (b) Low signal to noise. The
x-axis is wavenumber, normalized by the probe radius to demonstrate aliasing, the
y-axis is frequency normalized by the sampling rate.
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Figure 3.6: H9 Hall thruster shown with axial electric field (Ē), radial magnetic field
(B̄), and probes placed in the E ×B direction.

of EM waves by the signal cable 3) effective noise set by the limiting resolution of

the measurement device, waves with amplitudes smaller than the resolution of the

analog-digital converter will be eliminated.

3.4.4 Bispectral Analysis

Bispectral analysis encompasses a broad range of methods that involve measuring

the phase correlation between three waves and generally is employed for investigating

non-linear wave-wave interactions. Bispectral analysis has been used extensively in

the fusion plasma community to quantity non-linear effects and to characterize the

growth and saturation of fusion instabilities. In this work we apply bispectral analysis

to the Hall thruster plasma to investigate potentially non-linear mechanisms govern-

ing the formulation of the EDI, and estimate the wave-driven anomalous transport

through instability growth rate measurements.

Our approach to measuring the EDI wave dynamics is based on formulating a

52



governing equation for the evolution of EDI wave amplitudes. We then use experi-

mental measurements of these amplitudes and a bispectral analysis method adapted

from the works of Ritz [82] and Kim [86] to infer the parameters in the wave equa-

tion that represent linear and nonlinear growth. The Ritz and Kim method has been

used extensively in the fusion community to great success to identity instabilities

and determine non-linear processes relevant to the instability growth and saturation.

While we follow the same general procedure of Ritz and Kim, our technique has some

important differences. To that end, first we shall derive the analytical treatment of

Ritz and Kim specific specific to our Hall thruster experiments.

First we consider oscillations that evolve in both time and space where each os-

cillation mode can be represented as

ϕ(k⃗, ω, r⃗, t) = ϕ̃0(k⃗, ω) exp
(
−i(ωr + iωi)t+ i(k⃗r − i⃗ki) · r⃗

)
(3.11)

where ϕ̃0(k⃗, ω) is the complex amplitude of the wave mode at a reference position and

time. The mode is represented with complex frequency ω = ωr+ iωi and wavenumber

k⃗ = k⃗r + i⃗ki where the imaginary components correspond temporary and spatial

growth or damping and the real components denote the propagation of the wave

in space and time. We implicitly assume that the complex contributions are small

compared to the real components. This is the two-scale approximation in which we

assume the evolution of the wave amplitude is gradual with respect to the evolution

of the phase of the wave. With this approximation we can rewrite this equation as

ϕ(k⃗, ω, r⃗, t) = ϕ̃(k⃗, ω) exp
(
−iωrt+ i⃗kr · r⃗

)
(3.12)

where we have grouped the complex terms with the amplitude:

ϕ̃(k⃗, ω) = ϕ̃0(k⃗, ω) exp
(
ωit+ k⃗i · r⃗

)
(3.13)
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This allows us to represent the temporal and spatially derivatives of ϕ(k⃗, ω, r⃗, t) as

∂ϕ(k⃗, ω, r⃗, t)

∂t
=

∑
k

(ωi − iωr)ϕ̃(k⃗, ω) exp
(
−iωrt+ i⃗kr · r⃗

)
(3.14)

∂ϕ(k⃗, ω, r⃗, t)

∂r⃗
=

∑
k

(k⃗i + i⃗kr)ϕ̃(k⃗, ω) exp
(
−iωrt+ i⃗kr · r⃗

)
(3.15)

Next following technique presented in Ref.[87] by Sagdeez and Galeev, we consider

the general electrostatic dispersion expanded around the complex frequency and

wavenumber. This equation governs the evolution of the complex amplitude of elec-

trostatic oscillations:

0 =
[
ϵ(1)r (ωr, k⃗r) + iϵ

(1)
i (ωr, k⃗r)

]
ϕ̃(k⃗, ω) + iωi

∂ϵ
(1)
r (ωr, k⃗r)

∂ω
ϕ̃(k⃗, ω)

− i⃗ki ·
∂ϵ

(1)
r (ωr, k⃗r)

∂k⃗
ϕ̃(k⃗, ω) + ϵ(2)ϕ̃(k⃗, ω) (3.16)

where ϵ(1) and ϵ(2) are the first and second order perturbations and the first order

term has been broken into its real and imaginary components. Next we consider the

imaginary components of this equation and divide by ∂ϵ
(1)
r (ωr ,⃗kr)

∂ω
to give:

ωiϕ̃(k⃗, ω) + k⃗i · v⃗gϕ̃(k⃗, ω) = γkϕ̃(k⃗, ω)− ϵ
(2)
i ϕ̃(k⃗, ω) (3.17)

Noting that we have following the conventions defined in Ref.[87] where we the linear

growth rate γk and group velocity are given by

γk = −ϵ
(1)
i (ωr, k⃗r)

∂ϵ
(1)
r (ωr ,⃗kr)

∂ω

v⃗g = −
∂ϵ

(1)
r (ωr ,⃗kr)

∂k⃗

∂ϵ
(1)
r (ωr ,⃗kr)

∂ω
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Then add (−iωi + i⃗kv⃗g)ϕ̃(k⃗, ω) to Eqn. 3.17, multiply by exp
(
−iωrt+ i⃗kr · r⃗

)
,

and use the definitions given in Eqns. 3.14 and 3.15 to recover:

∂ϕ(k⃗, ω)

∂t
+v⃗g·

∂ϕ(k⃗, ω)

∂r⃗
= γωϕ(k⃗, ω)+i

(
k⃗ · v⃗g − ω

)
ϕ(k⃗, ω)−ϵ(2) exp

(
−iωrt+ i⃗kr · r⃗

)
(3.18)

Finally, we make a substitution for the second order dielectric response that relates

the term to wave-wave coupling[87]:

−ϵ(2) =
∑

ω=ω1+ω2

k⃗=k⃗1+k⃗2

V Q
1,2ϕ(k⃗1, ω1)ϕ(k⃗2, ω2) (3.19)

This gives our primary governing equation:

∂ϕ(k⃗, ω)

∂t
+ v⃗g ·

∂ϕ(k⃗, ω)

∂r⃗
= γωϕ(k⃗, ω) (3.20)

+ i
(
k⃗ · v⃗g − ω

)
ϕ(k⃗, ω) +

∑
ω=ω1+ω2

k⃗=k⃗1+k⃗2

V Q
1,2ϕ(k⃗1, ω1)ϕ(k⃗2, ω2).

On the left hand side, the first term of Eq. 3.20 represents the change of the complex

wave amplitude in time while the second is the convection in space at the group

velocity. On the right hand side, the first term denotes the linear growth of the wave

γω. This physically is the rate at which energy is extracted from the background

plasma as the mode propagates. The second term corresponds to the dispersion of

the waves. The third term represents the change in the complex amplitude due to

three-wave coupling interactions that satisfy k⃗ = k⃗1 ± k⃗2 and ω = ω1 ± ω2. The

coefficient V Q
1,2 is a weighting function for the strength of each three-wave interaction

and is related to the second order dielectric response.

Eq. 3.20 is a framework for relating change in wave amplitude to linear growth

and nonlinear contributions. To translate this result into a form that can be analyzed
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experimentally, we take the Fourier transform with respect to time:

v⃗g ·
∂ϕ̂f

∂r⃗
=

(
γf + i⃗kr · v⃗g

)
ϕ̂f +

∑
f=f1+f2

V Q
1,2ϕ̂f1ϕ̂f2 , (3.21)

where we have introduced ϕf , the complex amplitude of the Fourier transform at

frequency, f = ω/2π in the EDI spectrum. We note that in translating Eq. 3.20 to

Eq. 3.21, we have made the approximation that if there is a set of frequencies f1, f2

that satisfies f1 ± f2 = f , there is only one set of wavevectors, k⃗1, k⃗2, that satisfies

k⃗1 ± k⃗2 = k⃗. This is consistent with the form of the EDI that applies to our plasma

and allows us to simplify the summation in Eq. 3.21 to frequency combinations.

As a next step, to arrive at a method for experimentally inferring the growth,

we consider Eq. 3.21 in the context of the configuration shown in Fig. 3.6 where two

electrostatic probes are separated in the azimuthal ŷ direction by distance, ∆y. These

probes simultaneously measure the time-based Fourier spectrum at each location to

yield Xf = ϕ̂f (y) and Yf = ϕ̂f (y +∆y). Based on these two measurement locations,

we can discretize Eq. 3.21 with respect to the azimuthal coordinate to find

Yf = LfXf +
∑

f=f1+f2

Q1,2
f Xf1Xf2 , (3.22)

where we have defined linear and nonlinear transfer functions Lf =
([
γf(y)/vg(y) + iky

]
∆y + 1

)
and Q1,2

f = (V Q
1,2/vg(y))∆y. Here we have introduced the azimuthal linear growth rate,

γf(y) = γf − Re
(
X−1

f

[
vg(x)∂xXf + vg(z)∂zXf

)]
). This reflects the fact that the ob-

served change in the amplitude of each mode in ŷ is a projection of the total growth

rate from three dimensions. Finally, we multiply Eq. 3.21 by the complex conjugate
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quantities, X∗
f and X∗

f1
X∗

f2
respectively, to yield

YfX
∗
f = LfXfX

∗
f +

∑
f=f1+f2

Q1,2
f Xf1Xf2X

∗
f (3.23)

YfX
∗
f1
X∗

f2
= LfXfX

∗
f1
X∗

f2
+

∑
f=f1+f2

Q1,2
f Xf1Xf2X

∗
f1
X∗

f2
.

The first equation is the complex form of a discretized wave energy equation. The

second represents the third moment of the wave-dynamics, also known as the cross-

bispectrum.

With experimental measurements of the moments in Eq. 3.23, the system can be

solved for the linear and nonlinear transfer functions. In turn, from these values, we

can infer key properties of the wave dynamics including the azimuthal growth rate,

γf(y) = (Re[Lf ]− 1)(vg(y)/∆y) and the nonlinear power transfer function:

Tf = (vg(y)/∆y)Re

[ ∑
f=f1+f2

Q1,2
f Xf1Xf2X

∗
f

]
. (3.24)

This last term physically represents the energy flux transferred to the mode of fre-

quency f by nonlinear coupling from other modes in the spectrum.

We solve the governing equations following the algorithmic approach developed

by Ritz [82] and later modified by Kim [86]. We note here that while in this previ-

ous work, the governing equations were inferred from a spatial Fourier transform of

Eq. 3.20, we have derived the governing equations in terms of the time-based Fourier

transform. We adopted this approach because it was not possible to insert a sufficient

number of probes in our small scale plasma to perform spatial Fourier transforms.

Despite our use of a different transform, the form of equations remains the same and

thus the same algorithm can be applied. To this end, this analysis method has two key

requirements. The first is ensemble averaging the various moments in Eq. 3.23 over

multiple measurements[85]. This reduces the stochastic noise such that the higher
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order moments can be accurately resolved. The second requirement is that the en-

semble averaged power spectra, Pf = ⟨XfX
∗
f ⟩ ≈ ⟨YfY

∗
f ⟩, are stationary between the

two probe locations[86]. This assumption is justified by the azimuthal symmetry of

the discharge (Fig. 3.6).

As a last step before we can leverage experimental data to solve the governing

equations for key terms like Lf and Tf , we need an estimate of the group velocity

of the waves. While in principle we could measure this group velocity directly from

experimental measurements of the dispersion, ω(ky), spatial aliasing from the probe

spacing precluded a direct measurement of the wavenumbers of interest. This aliasing

limitation is discussed at length in Ref. [15] and the previous section.

3.4.5 Design Guidelines and Probing Techniques

Based on the operating principles outline in the previous section we summarize

several key design guidelines used to construct the wave probe, configure the measure-

ment circuit, inject the probes into the plasma, and interpret the results. In terms of

physical construction we choose the probe radius and length such that it was much

longer than it was wide: r/L = 1/10. This kept the probe sheath at the tip small

relative to length of the probe so Equation 3.1 remains valid. On the other hand, the

assumptions about the thin-sheath can be violated. We note that for the the ratio of

our probe radius to the Debye length (10-15 throughout the plume), there are regions

where the ion collected current is in the so-called transitional sheath domain[70].

However, in applying the more complete expressions for ion saturation introduced in

Ref. [70], we found this only led to an error of less than 15% compared to the thin

sheath approximation. For the remainder of this work, we therefore assume ĩ/i ≈ ñ/n

valid to within ∼15%. Specifically, the probes consisted of 0.38 mm radius tungsten

rods with an exposed length of 3.8 mm. This radius is also small compared to the

width of the Hall thruster discharge channel which can help reduce perturbations to
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the plasma as the probes are inserted into the plume[90]. Tungsten is used as the

electrode because it can survive the high temperature expected in the Hall thruster

acceleration zone. The rest of probe consists of telescoping alumina rods (Fig. 3.3

that insulate the wire connected to the tungsten tip from the plasma. From the probe

the signal is passed through a double-shielded coaxial cable with low line inductance

and capacitance, this helps shields the probe signal wire from spurious pick-up of

noise. Finally, the circuit terminates inside an enclosed metal measurement box elec-

trically connected to ground. Inside the measurement box the bias voltage to the

probe supplied by four 9 Volt batteries connected in series and also in series with

100 Ohm low-inductance metal foil resistor. The combined -36V applied with batter-

ies place the probe potential well below the typical floating voltages observed in Hall

thrusters[44]. A metal foil resistor was chosen to allow high bandwidth measurements

into the 10 MHz domain that might otherwise be attenuated from the relative high

inductance in wire-wound resistors. The voltage drop across this resistor is measured

by an Alazar ATS9462 16-bit digitizer sampled at 100 MHz. This allow for measure-

ment of up to 50MHz signals based on the Nyquist criteria discussed in the previous

section. Additionally, the dimensions of our probe, combined with the expected mean

density level, provide a sufficiently large collected current to resolve less than 0.01%

fluctuations in relative density with our data acquisition system. In theory, resolution

of weaker fluctuations is possible with a larger probe area by making the probe tip

longer, but this decreases the overall spatial resolution of the measurement.

The final probe dimensions for the experimental setup were chosen to meet the

constraint that the probe can accurately measure the hypothesized plasma oscilla-

tions within the bit resolution of the digitizer circuit. Although our probe collects

ion saturation current, the actual measurement is the voltage drop across a sensing

resistor, typically ranging from 100 to 1000 Ohms. Therefore, the detection limit

of the diagnostic for small amplitude oscillations is determined by the measurement
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voltage resolution. As a general rule, we aim for the minimum expected signal size to

be at least 10 times the bit limit to ensure that we have a smooth signal for Fourier

analysis. The design equation is formulated as follows:

10Vbit < Rsense
ĩsat

isat
exp−1

2
eni0As

√
eTe

mi

. (3.25)

where Vbit is the limit set by the digitizer, Rsense is the resistance of the sense resistor,

and ĩsat
isat

is treated as an independent variable informed by prediction or simulation

of the expected plasma oscillations. Vbit is fixed based on available hardware and

Rsense has a limited allowable range for minimizing perturbations of probe voltage[70].

Therefore the probe area is sized to satisfy this relation based on the expected mean

plasma density and normalized oscillation amplitudes. Increasing probe area is the

only way of meeting this requirement outside of better measurement hardware, but

there are two limits on the maximum probe size the constrain the design.

The first limitation involves a simple trade-off between spatial resolution and signal

strength. Since we are using cylindrical Langmuir probes, we have the constraint that

r/L <= 1/10. As we increase the probe area, both the radius and length must also

increase, consequently reducing our spatial resolution because we are averaging the

oscillations over the physical area of the probe tip. The second limitation stems

from the effects of finite probe size on oscillation wavelengths that are on the order

of or smaller than the probe diameter. For example, as illustrated in Figure 3.7, if

the wavelength is significantly smaller than the probe, then the various peaks and

troughs of the plasma oscillations will be averaged across the surface of the probe

area, smoothing out and potentially obscuring the oscillations entirely. As discussed

in the previous chapter, we expect the relevant plasma oscillations to be very small,

on the order of millimeters or smaller. Therefore, it was highly likely that we would

encounter this issue in our experiments. To address this, we performed a suite of

simulations to infer how the effects of finite probe size might manifest in our measured
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Figure 3.7: Example of plasma oscillations with wavelength smaller than geometry
of measuring wave probe.

data.

Over a 3D grid we modelled two cylindrical wave probes arbitrarily spaced apart

by several probe diameters, see Figure 3.8, and simulated a family of propagating

plasma oscillations. To model the plasma oscillations we used Eqn.3.6 in reverse where

we supplied a set of oscillation wavenumbers, frequencies/phase speed, and amplitude

that represent a linear ion-acoustic like dispersion but with constant amplitude versus

wavelength. For each time point we took the simulation ion saturation current that

we would measure in experiment as the sum of the saturation current contribution

from each grid point, noting that each grid point will have varying local density due

the plasma oscillations. On top of this signal we also superimposed white noise to

better reflect laboratory conditions. From this data we can reconstruct a simulated

time-series of probe saturation current and perform the Fourier and Beall analysis

outlined in the previous sections.

The resulting analysis shown in Figures 3.9 and 3.10 demonstrates several of the

features discussed previously, such as aliasing around the edges of the wavenumber

bins, but also a new behavior in the measured amplitude. While we specified a

constant amplitude spectrum across wavenumber the simulation showed that once
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Figure 3.8: Simulated wave probes and plasma oscillations, spatial positions are nor-
malized by probe radius and relative plasma density is scaled arbitrarily.

Figure 3.9: Beall plot for simulated ion-acoustic like wave propagating across two
cylindrical probes. Frequency is normalized by the sampling frequency and wavenum-
ber is normalized by probe radius.
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Figure 3.10: Power spectrum density for simulated ion-acoustic like wave propagating
across two cylindrical probes. Frequency is normalized by the sampling frequency.

the wavenumber starts approaching krp = 0.2 the measured amplitudes begin to

decay. This occurs before encountering resonance points near multiples of the probe

diameter, where the amplitude is still diminished but to a lesser extent. Though even

across the various resonances the peak amplitude is still decaying with increasing

wavenumber. Since we expect the plasma oscillations of interest to have resonant

like behavior this means any data must be reviewed to infer if the observed spectrum

and amplitudes are due to plasma behavior or probe effects. In our experiments,

we verified this at multiple occasions by using two probes with different radii and

confirming that the measured spectra were the same amplitude for both probes. If

we were observing effects of finite probe geometry then the spectra should have been

noticeably different for each probe signal.

Finally, in order to provide spatially-resolved measurements, we implemented a

high-speed injection technique to insert probes into the thruster discharge. Following

Refs. [45, 57, 43], this high-speed reciprocating sampling helped limit probe damage

that can result from prolonged exposure to the energetic near-field plasma and min-
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Figure 3.11: Photo of the H9 experimental setup in the Large Vacuum Test Facility.
Diagnostics and motion stages are highlighted

imize perturbations to the plasma. The probes were mounted on a linear induction

motion stage (Fig. 3.11) that translated from the exit plane of the thruster at 50 cm/s

with the ion saturation current signal recording continuously at 100MS/s. For our

studies, we typically injected our probes along the thruster channel centerline from a

location of z/L = 1 to z/L = 3 where L denotes the length of the channel and z is

the distance from the anode. Refs. [45, 57, 43] have shown that active probing can

perturb thruster plumes. In order to assess whether the probes were impacting the

plasma in this experiment, we monitored two key global properties of the discharge,

the DC current and its oscillations, as the probes were inserted. The power spectrum

of the discharge current did not change with respect to the position of the probes

unless they were injected past the exit plane and into the discharge channel. For

all results presented in this work we restricted our measurement domain only to the

region downstream of the exit plane. We note, however, that as discussed in Jorns et

al.[57], global metrics do not necessarily indicate that the plasma is undisturbed. It

should be kept in mind that it is possible that the plasma in our configuration still was
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impacted by the probe insertion. In addition to the high-speed injection method, we

also collected wave fluctuation data at fixed positions between 0.5-1 channel lengths

downstream of the exit plane. Here the probes were far enough from the thruster

that they were able to sample data for longer periods without damage. These fixed

position measurements yielded an order of magnitude more samples at a particular

position than the high-speed method and thus provided higher spectral resolution.

These probes focused on lower frequency oscillations and were sampled at 10MS/s.

For both measurement methods the experiment was repeat with wave probes oriented

in the axial, azimuthal, and radial direction.

3.5 Laser-Induced Fluorescence Measurements

When making comparisons between the measured wave properties and the the-

oretical form of the EDI it is necessary to estimate the plasma parameters in the

EDI dispersion relation (Equation 2.24). Furthermore, when we calculate the wave-

driven electron transport we need a baseline value to validate against. Due to the

difficultly of using physical probes to directly measure several of these properties we

employed laser-induced-fluorescence(LIF) diagnostics make these measurements. LIF

is a technique commonly used for measuring the ion velocity distribution function in

Hall thrusters[72, 83, 29, 20]. LIF operates by exciting a metastable state with a laser

at wavelength λ0 and measuring the emitted fluorescence. By varying the laser wave-

length slightly from the transition wavelength some portion of the ion population will

still fluoresce because ions with the correct velocity will Doppler shift the detuned

laser wavelength to the proper transition. By measuring the signal as a function

of detuned wavelength ion velocity distribution function(IVDF) can be determined.

Additionally, by measuring the IVDF as several axial position and using an analy-

sis technique developed at the University of Michigan, by Ethan Dale, several other

plasma parameters can be inferred. We describe briefly here the analysis methodology

65



Figure 3.12: Experimental setup showing configuration of LIF diagnostics relative to
the Hall thruster and wave probes.

noting that a complete description can found in Ref. [28].

This analysis method, known as the ion Boltzmann implicit solution method

(IBIS), starts with the 1D ion Boltzmann equation where ionization collisions are

considered:

∂f

∂t
+ ui

∂f

∂x
+

e

mi

Ex
∂f

∂ui

=

(
∂f

∂t

)
iz

. (3.26)

In this equation ui is the axial ion velocity, Ex is the axial electric field, and the right

most term is the time rate of change in the IVDF due to ionization. Assuming the

IVDF is at steady state in time, higher order moments of the Boltzmann equation

can be taken to yield equations containing several of the need plasma parameters:

∂uin0

∂x
= n0fiz (3.27)
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Here ui is the mean ion velocity and Tn is the temperature of the neutral xenon gas.

With the spatial resolved LIF measurements, this system can be solved for Ex, fiz,

and d ln (n0)/dx. This last variable can then be integrated across the axial domain

to determine the ion density if the density is known at one of the boundary point xb:

n0(z) = exp

 xb∫
x

d lnn0

dx

+ n0(xb) (3.30)

This downstream density (ni(0)(xb) is estimated with the wave probes that also

function as ion saturation probes for measuring ion density. With this information,

in addition to the value of the applied magnetic field, we can calculate an effective

total electron collision frequency (νe = νc + νAN) using Ohm’s Law

νe =
Ξ±

√
Ξ2 −

[
2vex(0)Br

]2
2me

e
vex(0)

(3.31)

where vex(0) is the axial electron velocity and we define Ξ = Ex(0) +
∇qne(0)Te

ne(0)
− ηiji,

where ηi = miνc/q
2ni(0) is the classical ion resistivity due to collisions and ji is the

ion current density. All parameters in Eq. 3.31 are determined from the solution of

Eqs. 3.27-3.29 except for the classical collision frequency, axial electron velocity, and

electron temperature.

We determine the electron temperature from the calculated ionization frequency

fiz using tabled values of the ionization rate ξi(Te) = fiz/nn where nn is the neutral

density (cf. Ref. [42]). Although, this technique requires an estimation of the neutral

density profile. We calculate the neutral density using the conservation equations for

the neutral fluid combined with our calculated ionization frequency and an estimate

of the downstream neutral density. The boundary condition for the neutral density

was guided by previous experimental measurements in literature[51].

The axial electron velocity is determined through the ion and electron continuity
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equations. If the ions and electrons are restricted to one dimensional, axial, flow the

electron current density is the difference between the total discharge current density jd

and the ion current density: je = jd−ji. While the ion current density is known from

the measured beam velocity and plasma density, the discharge current is assumed to

be the total discharge current (Id) uniformly distributed over the channel area Ach of

the thruster: jd = Id/Ach. Subject to these assumptions the electron velocity is given

by

vex(0) =
Id

ni(0)Ach

− vi(0) (3.32)

where we have assumed ne(0) ≈ ni(0) by quasi-neutrality.

Finally, the classical collision frequency is calculated using the Spitzer collision

frequency equations for electron-neutral and electron-ion collisions(cf. Ref. [42]).

Therefore, the IBIS method provides an estimate of anomalous collision frequency

by subtracting the classical collision frequency from the calculated total collision fre-

quency in Eq. 3.31. This serves as a baseline value we shall compare our wave-driven

collision frequencies against. Additionally, the background plasma parameters deter-

mined by the IBIS method can be used to solve the dispersion relation of the EDI for

estimating a theory-driven anomalous collision frequency.

3.6 Conclusion

In summary our experimental methods breakdown into three core components.

First, we use ion saturation probes and Fourier analysis to determine the amplitude

and dispersion of any waves present in Hall thruster plumes. This information allows

us to identify what type of wave is present. Once the wave is identified we use the

bispectral analysis technique of Ritz and Kim to infer the linear growth rate and any

non-linear process governing the evolution of the observed instability. Finally, we

use LIF measurements and the IBIS method to infer background plasma parameters.
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Taken together these data sets allow for a calculation of the anomalous wave-induced

electron collision frequency. The IBIS method also calculates the actual anomalous

collision frequency for use in validate the results infered from the wave probe analysis.
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CHAPTER IV

Investigation of High Frequency Instabilities in

Hall Thruster Plume

4.1 Introduction

In this chapter, we present the results of wave probe study performed to investigate

the dispersion relation of instabilities in the Hall thruster plume. First, we highlight

the specifics experimental questions being addressed by this study. Second, we briefly

review the experimental setup and note and differences from the general experimental

setup described in Chapter III. Then present the spatial resolved measurements of

power spectrum and dispersion.

Despite the growing body of correlational evidence pointing to the important role

of the EDI for electron transport in Hall thruster, there are a number of questions

about the nature of this instability in the Hall thruster that have yet to be addressed

experimentally. Perhaps the most pressing is whether this wave actually exists in

the so-called acceleration region of the thruster. This is a critical consideration since

this zone, where the electric and magnetic fields are highest, is fundamental to the

operation of Hall thrusters. It is where the majority of ion acceleration occurs. Un-

derstanding the mechanisms driving transport in this region is therefore paramount.

With that said, although numerical simulations suggest that the EDI should be the
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dominant contributor to electron transport in this critical region, experimental mea-

surements have not been able to access it. Although there were a few Thomson scat-

tering experiments that have measured supposed EDI[101], the results were results

were incomplete as the accessible wavenumber range was limited, a peak in oscilla-

tion amplitude could not be found in the wavenumber domain, and all measurements

were performed downstream in the downstream plume where the electric and mag-

netic fields are weaker. As a result, it ultimately is not known if the EDI exists in

the acceleration zone, or even if it does appear in this region, it is not clear that it

would exhibit the same features (dispersion and energy content) as those reported for

measurements performed downstream. This is a crucial consideration as the shape of

the wave spectrum and its dispersion both mediate the interaction of the EDI with

the electrons. Faced with this uncertainty about the EDI in the acceleration zone,

there is a pressing need for experimental efforts to examine the plasma oscillations

in the thruster and to document if and how the measured properties are connected

to previous experimental and numerical work on this problem. To this end, the goal

of this work is to characterize the spatial evolution of the plasma oscillations–their

energy content and dispersion—as a function of position in a Hall effect thruster.

4.2 Experimental Setup

Our general procedure in this experiment matches the wave probe methods out-

lined in Chapter III, and thus we only summarize the key components here. We

employed a set of translating cylindrical Langmuir probes biased to ion saturation

current to characterize the plasma oscillations in the plume of the H9 thruster. The

probes consisted of 0.38 mm radius tungsten rods with an exposed length of 3.8 mm.

the current collected on these probes is proportional to the ion density, isat ∝ ni and

therefore measures oscillations in plasma density. We injected multiple, spatially-

separated probes into the plasma and measured correlations in their signals to infer
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(a) (b)

Figure 4.1: Schematic of Langmuir probes during interrogation of each wavevector
component: a) Azimuthal and radial b) Axial.

the dispersion of the fluctuations in ion saturation density. We employed two probes

in three orientations for this purpose (see Fig.4.1) to measure the axial, radial, and

azimuthal components of the oscillations. In each case, the tips were separated by 4.7

mm allowing direct measurement of wavenumbers between -688 and 688 rad/m. This

separation (several Debye lengths) was dictated by the need to prevent the sheaths

from the probes from overlapping.

In order to provide spatially-resolved measurements, we implemented a high-speed

injection technique to insert probes into the thruster discharge. The probes were

mounted on a linear induction motion stage that translated into plume of the thruster

at 50 cm/s. Measurements performed using two techniques. The first with the ion

saturation current signal recording continuously at 100MS/s. This long waveform

is then binned into smaller waveforms as a function of the motion stage position.

The allows high fidelity spatial resolved measurements of the power spectrum and

dispersion relation. We injected these probes along the thruster channel centerline

from a location of z/L = 1 to z/L = 3 where L denotes the length of the channel and

z is the distance from the anode. Refs. [45, 57, 43] have shown that active probing can
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perturb thruster plumes. In order to assess whether the probes were impacting the

plasma in this experiment, we monitored two key global properties of the discharge,

the DC current and its oscillations, as the probes were inserted. The power spectrum

of the discharge current did not change with respect to the position of the probes

unless they were injected past the exit plane and into the discharge channel. For

all results presented in this work we restricted our measurement domain only to the

region downstream of the exit plane. We note, however, that as discussed in Jorns et

al.[57], global metrics do not necessarily indicate that the plasma is undisturbed. It

should be kept in mind that it is possible that the plasma in our configuration still

was impacted by the probe insertion. Our second measurement technique collected

wave fluctuation data at fixed positions between 0.5-1 channel lengths downstream

of the exit plane. Here the probes were far enough from the thruster that they

were able to sample data for longer periods without damage. These fixed position

measurements yielded an order of magnitude more samples at a particular position

than the high-speed injection method and thus provided higher spectral resolution.

As we will discuss, these probes focused on lower frequency oscillations and were

sampled at 10MS/s.

4.3 Results

4.3.1 Spatially-resolved power spectra

We show in Fig. 4.2a an example of the raw ion saturation current collected by one

of wave probes as it was injected along thruster centerline. The decrease in magnitude

with normalized distance from the exit plane is an indication of the drop in density

as the plume is expelled from the thruster. The properties of interest to us in this

study, however, are the small-scale fluctuations that occur on top of this curve. In

order to analyze these properties and relate them to spatially-resolved measurements
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(a) (b)

Figure 4.2: a) Ion saturation current as function of position during probe injection.
An example of the spatial binning (vertical lines) used to generate spatially-resolved
dispersion relations is shown. b) The relative density perturbations as function of
time in one of the 200 time samples of a spatial bin.

of the wave properties, we employed the following analysis. First, we binned the data

from each probe by axial location (shown notionally as vertical lines in Fig. 4.2a)

into sixteen segments. We then subdivided the data in each bin into 200 sequential

time segments and divided the signal by the time-averaged density in each sample

(̃isat/isat). Per our discussion from the previous section, this yielded an estimate of

(ñi/ni). An example of one of these 200 time series from a spatial bin is shown in

Fig. 4.2b. We next applied a Fourier analysis on each of the 200 time-varying signals

in the spatial bin and averaged to yield a power spectrum of the average spectral

content of the fluctuations at each spatial location. Figure 4.3 shows a sample result

of this analysis, plotting the power spectrum intensity as a function of frequency and

position in the plume where the distance from the anode (z) has been normalized by

the length of discharge chamber (L).

As can be seen from Figure 4.3, the dominant feature consists of well-defined

fluctuation bands in the MHz domain that are spaced approximately 3MHz apart

up to 20MHz. Upstream of the peak magnetic field, denoted by the dashed black

line at z/L = 1.3, the spectral content of the lower frequency harmonics is at its
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Figure 4.3: Power spectrum as a function of normalized position along channel cen-
terline of the Hall thruster. Distance from the anode z is normalized by the discharge
chamber length L. The location of the peak magnetic field at z/L = 1.3 is indicated
by a dashed black line.
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Figure 4.4: Power spectra along channel centerline using only 4 spatial bins. Mega-
hertz peaks are highlighted with dashed red lines. The discharge current power spec-
trum is also shown for reference.
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weakest and approximately constant as a function of position. Half a channel length

downstream of the exit plane, the relative amplitudes of the megahertz fluctuations

spike before decaying downstream and oscillations spanning the 100-500 kHz domain

develop. The magnitude and spacing of these frequencies, which are below the local

ion plasma frequency, is qualitatively consistent with the linear dispersion of the

EDI introduced in Sec. II. This spectral content therefore is the central focus of this

investigation. As an aside, we note that this plot also shows that there is spectral

content in the vicinity of 45MHz before and after the location of peak magnetic field

strength (z/L = 1.3), but this frequency is well above the ion plasma frequency

which is considered the maximum for EDI oscillations. We therefore do not consider

it further for this investigation. With that said, we do note that these oscillations

occur in a similar frequency and wavenumber domain to previous high-frequency

measurements of Lazurenko et al[67].

Due to the low spectral resolution of Figure 4.3, it is difficult to see unambiguously

how the oscillations are changing at low (<1 MHz) frequencies. In order to better

resolve the spatial evolution of spectral content in this region, we repeated our analysis

with only four spatial bins. This yielded a finer frequency resolution of 1.4kHz. The

resulting power spectrum in each bin is shown in Figure 4.4 where we have marked

the resonances with red vertical lines. We now can see more clearly that the growth

of low frequency broadband oscillations coincides with a decrease in power of the

megahertz oscillations. We have also included for reference the power spectrum of

the discharge current during probe injection in Figure 4.4. As discussed previous,

the discharge current spectrum did not appreciably change in amplitude or spectral

content during probe injection. Additionally, this result also illustrates that besides

the breathing-mode oscillations at 10kHz, we do not observe the same high-frequency

spectral content in the discharge current. This suggests that the wave probes are

measuring plasma-borne modes. Lastly, although we see an evident sharp peak at 1
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MHz in all of the results, this likely was electrical noise in the measurement circuit.

Its unnormalized amplitude remained constant at all positions in the plume and was

present even when the thruster was off.

While we reserve a full discussion of the implications of these findings for later.,

we note that these initial measurements already suggest that the EDI has a funda-

mentally different character in the acceleration region of the thruster as compared to

the downstream. Indeed, we see in Fig. 4.4 that our measured spectrum downstream

of z/L = 1.75 is dominated by a broadband, incoherent content between 100-500 kHz

in agreement with previous experimental results that showed a broadband spectrum

downstream. Moving upstream, where presumably the instability initially first grows

due to the strong Hall drift in this region, we see that in fact the resonant structures

in the megahertz domain become more dominant. This is consistent with initial lin-

ear growth and is in line with the simulation results that have been reported to date

in 2D reduced dimensional kinetic models. Our results show an evident transition

between these two states as function of position in the plume.

4.3.2 Spatially-resolved dispersion

Expanding on the conclusions from the previous section, we can apply addi-

tional analysis, known as Beall analysis, to the spatially-resolved ion saturation probe

data to look for evidence of wave dispersion. Beall analysis follows from the cross-

correlation Fourier analysis covered in Chapter III where if there is a wavenumber, k,

along the line defined by the probes associated with oscillation frequency, ω:

k(ω) =
1

∆x
tan−1

[
Im(F [isat1(t)]F∗[isat2(t)])

Re(F [isat1(t)]F∗[isat2(t)])

]
, (4.1)

where ∆x is the distance between the probes, F ,F∗ denotes the Fourier transform

and its complex conjugate, and isat:1,2 is the ion saturation current from adjacent
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probes 1 and 2. Following the approach of Beall et al.[6] that we discuss in-depth in

Chapter III, we apply a histogram analysis to the same spatial and time bins from

Figure 4.2 to generate intensity plots of frequency versus wavenumber at each spatial

location. An example result taken from spatial location z/L = 1.5 is shown in Figure

4.5a with a frequency resolution of 22kHz and a wavenumber resolution of 27 rad/m−1.

The result in Figure 4.5a shows evident structure in the dispersion plots which are

correlated with the well-defined resonances in the megahertz frequency range we noted

in Figure 4.4. Indeed, at each band the wave is spread out across the wavenumber

domain and in many cases appears to exhibit aliasing, i.e. phase wrapping on the k-

axis. As we discussed in Chapter III this stems from cross-correlation having a finite

range of directly measurable wavenumbers: −π/∆x < k < π/∆x. Oscillations with

wavenumbers larger than the maximum value set by the probe spacing wrap around

the wavenumber domain as they force in the measurable range of wavenumbers. This

would suggest that the observed oscillations have dispersion, i.e. propagate, but the

wavelengths are too small to resolve with our finite probe spacing. While aliasing in

this context likely precludes us from making definitive comments on the dispersion

(i.e. it is difficult to resolve any evident patterns), we return to a discussion of this in

Section 4.4. where we show that the EDI could have a dispersion similar to the one

we observe here.

We show in Fig. 4.5b dispersion relations at a location (z/L = 2) further down-

stream of the discharge exit. In this case, as expected from the power spectrum

observations, the intensity plot is dominated by content at lower frequency. These

plots with 22kHz frequency resolution do not have sufficient detail to resolve nuances

in the dispersion structure, resulting only in an evident peak at the bottom of the

Beall plot around k = 200 rad/m−1. However, by using data from our fixed probes

(mounted downstream) with higher spectral resolutions, we can appropriately resolve

the dispersion features in this region. The Beall plots from this data are shown in

78



(a)

(b)

Figure 4.5: Beall plot for the azimuthal direction at (a) 1.5 L and (b) 2.0 L down-
stream of the anode and at channel centerline. The frequency resolution is 22kHz
and the wavenumber resolution is 27 rad/m.

Figure 4.6 for each wave direction: azimuthal, axial, and radial, and show a linear

dispersion in 50-500kHz domain. Although, this linear dispersion does not appear in

the Beall plots until after z/L = 1.5, and upstream of this location there is no visible
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dispersion in this frequency range. This linear behavior is consistent with the results

of Tsikata et al. who reported a linear dispersion downstream[101, 100], though we

note that our maximum resolve-able wavenumber is an order of magnitude lower than

the ranges they reported. Physically, this result lends further support to the notion

that the fundamental structure of the propagating oscillations changes with position,

transitioning from the complex dispersion at higher frequency and small wavelength

(Fig. 4.5a) to this more acoustic-like result downstream (Fig. 4.6a).

We can further quantify aspects of this acoustic-like dispersion by fitting lines to

the intensity plots and multiplying the resulting slope by 2π to determine the wave

speed. This yielded a phase velocity in each direction of 4, 10, and 50 km/s for

the azimuthal, axial, and radial components respectively. This result suggests that

the acoustic wave propagates primarily in the azimuthal direction but is tilted into

the axial direction (α) by 20 degrees and into the radial direction (β) by -5 degrees;

where negative wavenumbers denote propagation opposite the basis vector(see Figure

4.1). Functionally, this suggests that in addition to azimuthal propagation, the modes

are also directed axially away from the thruster and radially inward. This stands in

contrast to the work of Tsikata et al. [100] who measured that the modes propagate

axially inward. The reason for this discrepancy is not known, though we note that

physically, the fact that these acoustic modes in our measurements are directed away

from the thruster is consistent with the notion that these oscillations are carried by

the ions. In addition, the phase velocity in the azimuthal direction is commensurate

with the ion sound speed which qualitatively is consistent with the EDI in the acoustic

limit. This lends further support to the supposition that the modes have transitioned

in this region to the acoustic limit.
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(a) (b)

(c)

Figure 4.6: Beall intensity plots at z/L = 2 downstream of the thruster anode for each
wavevector component: a) azimuthal, b) axial, c) radial. The frequency resolution is
5 kHz and the wavenumber resolution is 9 rad/m
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4.4 Discussion

In light of the results presented in the previous section, we now can turn to the

governing questions for this experiment: does the EDI exist in the acceleration zone,

are its properties fundamentally different than EDI measurements downstream, and

ultimately, how are the waves measured in these two zones connected? To this end, in

the following section we begin by comparing the measured modes in the acceleration

zone to the linear dispersion and then discuss the transition of the wave in the context

of nonlinear transport across length-scales.

4.4.1 Comparison of measured dispersion and theory

We have shown the presence of two distinct oscillations: high-frequency resonant-

like waves dominant near the exit plane and low frequency ion acoustic-like oscillations

dominant further downstream. While we were able to demonstrate that the low-

frequency content is comparable to the measured acoustic-like waves that have been

reported in previous work, the nature of the high frequency modes at the exit plane

is less evident. As discussed previously, while the frequencies are the right order

of magnitude expected of EDI harmonics, the true wavenumber of our measured

waves is likely obscured by aliasing effects and prevents a definitive comparison to

the EDI. It is also important to acknowledge the possibility that these modes may be

nonphysical–a result of probe induced effects. To this latter point, we recall that in

monitoring the global metric for thruster operation, the discharge current, we found

that the probe insertion did not change the oscillating character of the thruster.

Moreover, this higher frequency content did not appear at any point in the discharge

current power spectrum. This suggests that the measured waves are in fact a plasma

borne mode. Even allowing for this fact, however, there is also the possibility that

this plasma mode may be a response to the probe presence, e.g. an effect of sheath-

induced oscillations. This does not seem consistent with the measurements since
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qualitatively we anticipate that such sheath-related oscillations should appear on the

time scale of sheath formation, i.e. the plasma frequency, whereas our measured

frequencies were below this limit. With that said, however, we cannot categorically

dismiss the possibility that these measured waves are probe-induced as we did not

have an independent, non-perturbative mechanism to assess them. As we discuss

in the following though, the mode number and dispersion content, if we attempt to

correct for the aliasing, are physically consistent with the linear dispersion of the EDI.

To this end, we would expect that the short wavelengths of the EDI mode in

this frequency range could not be measured directly with our setup. We thus can-

not make a direct comparison or validation against the theoretical description. As

an alternative, by using the known EDI dispersion relation with physically-informed

assumptions about the local plasma parameters, we can calculate the expected har-

monic frequencies of the EDI. Since we are able to measure these unambiguously we

can compare the predictions to our measured results. If the numerically solved reso-

nance frequencies closely match our measured values, we could take this as correlative

evidence that high frequency oscillations are attributable to the EDI.

As a reminder for the Hall thruster plasma, the dispersion relation for the electron

drift instability given by[32, 19]

ϵ(1) = 1 + k2λ2
De + g

(
ω − kyVd

ωce

, (k2
x + k2

y)ρ
2, k2

zρ
2

)
−

k2λ2
Deω

2
pi

(ω − kxvdi)2
, (4.2)

where g(Ω, X, Y ) is the Gordeev function defined as

g(Ω, X, Y ) = iΩ

+∞∫
0

e−X[1−cos(φ)]− 1
2
φ2+iΩφdφ. (4.3)

ere ω is the oscillation frequency, ωce is the electron cyclotron frequency, ωpi is the

ion plasma frequency, k =
√

k2
x + k2

y + k2
z is the oscillation wavenumber, kx is the
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Table 4.1: Assumed plasma parameters for solution of EDI dispersion

n0 × 1017 m−3 Te, eV ωce, MHz vp, km/s β, deg kzλde Vd, km/s
6 - 12 20 - 40 257 16 20 0.005 Vthe/2

wavevector component traveling in the axial direction, ky is the component in the

E × B direction, kz is the component in the radial direction (along magnetic field

lines), VD is the azimuthal electron drift velocity, vdi is the ion beam velocity in the

axial direction, λDe is the Debye length, and ρ = Vthe/ωce is the electron Larmor

radius at thermal velocity Vthe =
√
Te/Me where Te is expressed in terms of energy.

We elect to do this comparison between theory and experiment at conditions rep-

resentative of the acceleration region. This is driven primarily by the theory that this

is the region where the linear growth is expected to be highest (i.e. where the Hall

drift, the driving source for the instability, is highest). We calculated the theoretical

resonance frequencies at this location following the method used by Cavalier et al.[19]

to solve the dispersion relation. There are several free plasma parameters in EDI dis-

persion relation that could affect the calculation of the resonant frequencies, but

many can be estimated with reasonable assumptions based on previous Hall thruster

measurements[78, 29]. We consider a range of densities and electron temperatures

that could manifest in the acceleration region(Table 4.1), but fix all other quanti-

ties, except for the electron drift velocity Vd. The dispersion relation is extremely

sensitive to the electron drift velocity and we adjusted this parameter until a best

fit was achieved at about half the electron thermal speed which is of the order seen

in simulations.[66, 9]. Finally, as we were unable to measure the radial wavenumber

at high frequencies, for the theoretical dispersion we set the radial wavenumber (kz)

low enough to maintain distinct resonances. We used a value of kzλDe = 0.005, but

the exact value was not important for this analysis as long as the resonances were

still intact. This due to the real frequency at the resonances remaining constant with

radial wavenumber.
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The predicted EDI resonances from the analytical dispersion along with the mea-

sured resonant frequencies are presented in Figure 4.7. The error bars on the exper-

imental data correspond to the full width half max of each resonance peak in the

power spectrum(see Figure. 4.4), while the error bars for the numerical solution rep-

resent the range of possible results for the values listed in Table. 4.1. The markers for

the numerical solution show the overall best fit for n0 = 6.5× 1017 m−1 and Te = 25

eV. There is close agreement between experimental and numerical values across the

8 measured resonances with the numerical solution slightly over-predicting the fre-

quency for the first few modes and slightly under-predicting at the highest modes.

With that said, the close agreement across 8 mode numbers for a wide range of den-

sities and temperatures and with an electron drift velocity closely matching values

from simulations provides strong correlational evidence that the measured megahertz

oscillations are EDI cyclotron resonances.

Despite this agreement between theory and experiment in the acceleration zone,

there is one notable feature in the measured modes not anticipated by the linear

theory: the invariance of the frequency values of the resonances. Indeed, the back-

ground plasma properties (most significantly the electron cyclotron frequency) vary

as a function of spatial position, which would suggest from Eqn. 4.2 that in turn

the resonant frequencies also should vary. This is not reflected in our measurements

where the resonant frequencies remain relatively constant. While we do not have suf-

ficient data to conclusively identify why this occurs—in particular we cannot see if the

wavelength of the oscillation changes through the plume instead—there is a possible

explanation from the measurements and underlying theory. Linear saturation should

occur quickly in the acceleration region, and it is possible that further downstream,

where the linear growth rate is significantly diminished by the lower electric field and

E ×B drift velocity, the wave no longer has the energy to grow at different resonant

frequencies. This assumes that the original resonant frequencies still satisfy the real
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Figure 4.7: Comparison between experimentally measured resonance frequencies and
numerical solutions for values typical of the acceleration zone (Table. 4.1)

component of the dispersion relation in the far-field. While our measurements are

insufficient to determine the dispersion relation at every point in the plume we note

that parameters typical of the far-field region (Te = 3 eV, n0 = 1× 1017 m−3, vp = 20

km/s, VD = 50 km/s, and ωce = 209 MHz) yield a dispersion relation with a signifi-

cantly reduced growth rate (Fig.4.8a) and a real frequency very close to the original

resonances (Fig.4.8b).

With these caveats in mind, we ultimately conclude that at least correlationally,

the measured modes in the acceleration zone appear to be EDI. Though, they exist

with fundamentally different properties than the acoustic like EDI oscillations mea-

sured downstream. Indeed, the measured resonant-like waves actually seem to be

more in line with the predictions of linear growth. This result physically is intuitive

86



given that this region, i.e. the region of maximum Hall drift, is likely where the modes

originate in the thruster.

4.4.2 Quantifying transition from acceleration zone to downstream region

The previous two sections have shown that the observed waves appear to be consis-

tent with the EDI either in both the resonant and the acoustic-like limit depending on

where the measurement is made. The structure exhibits discrete wavelengths in the

upstream region and broadband oscillations downstream. The former, as discussed

above is consistent with the predictions of linear dispersion theory: the EDI power

spectrum should be dominated by discrete frequencies corresponding to cyclotron res-

onances of the EDI. The latter state with its broadband character, however, is not

intuitive and does not directly follow from linear theory. Indeed, even allowing for the

case of finite kz where the EDI becomes acoustic like resonances, the linear growth

still has a maximum coincident with the ion plasma frequency. We do not see such a

peak in the measured dispersion. With this in mind, we next turn to the question as

to if and how the EDI in the acceleration zone is connected to this downstream state.

To this end, the hypothesis we propose here is informed by the work of Janhunen

et al[55, 56]. The downstream state is the nonlinear result of an inverse energy

cascade from cyclotron resonances of the EDI toward the lowest mode numbers and

then into a long wavelength oscillation much larger than the fundamental resonance

wavelength. Physically, in this process, two high frequency resonances “beat” against

one another and couple energy between the resonances and the beat frequency of

the two waves. This process effectively transfers energy to lower frequencies and

thus larger lengthscales. For example, the m = 3 and m = 5 modes would beat

together and transfer energy to the m = 2 mode. This wave-wave coupling process

ultimately gives rise to a power law like decay in frequency spectrum. This hypothesis

is supported by the many similarities between our measured power spectra as function
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Figure 4.8: a) Growth rate and b) frequency for analytical solutions of the EDI
dispersion relation. The red curves are the best-fit solution for the parameters typical
of the acceleration zone (n0 = 6.5× 1017 m−1 and Te = 25 eV) while the blue curves
use values typical of the far-field plume: Te = 3 eV, n0 = 1×1017 m−3, vp = 20 km/s,
VD = 50 km/s, and Wce = 2 × 108 Hz, otherwise using the same parameters from
Table 4.1.

of position (Figure 4.3) and the numerical results of Janhunen (Figure 14 in reference

[56]) where the authors show the power spectrum as function of wavenumber vs

time. Both show clear resonances at high wavenumber/frequency that gradually decay

verses time/position as a low wavenumber/frequency oscillation appears. Since the

simulation of Janhunen did not model the axial direction we interpret the temporal

evolution of the EDI seen in 2D as equivalent to the spatial changes seen in our

experiment as the instability evolves while being carried downstream by the beam

plasma. This is supported by both the characteristic transient time of the beam

plasma traveling from the acceleration region to where we observe the broadband low

frequency oscillations and the time scale of the energy cascade seen in the simulation

being on the order of µs.

We can expand on this interpretation quantitatively by examining the spatial

evolution of the normalized wave-energy density, (W/n0Te). For electrostatic waves,
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Figure 4.9: The normalized wave energy density (a) and relative strength of modes(b)
at various points in the plume of the H9 along channel centerline are shown relative
to the location of peak magnetic field, denoted by the light blue vertical bar at z/L
= 1.3. Frequencies between 1 and 20 MHz are from the resonances and frequencies
between 100 and 500 kHz are due to the broadband acoustic oscillations.

this can be approximated as[87]

W

n0Te

=
∑
ω

(
ϕ(ω)

Te

)2

, (4.4)

where the summation is taken over the frequency domain corresponding to the wave

of interest and ϕ(ω) is the amplitude of plasma potential fluctuations. Physically, this

represents the relative magnitude of energy in the oscillation range compared to the

thermal background and is a measure of the relative strength of the oscillations. In

order to relate this quantity to the parameters we measured, we note that the plasma

density fluctuations for the electrostatic EDI waves can be related approximately as

potential fluctuations by the Boltzmann response, ñ/n ≈ ϕ̃/Te. This allows us to

write the normalized wave energy density exclusively as a function of our measured

property ñ/n and eliminates the requirement of concurrent temperature and density

measurements.

Armed with this definition, we show in Fig. 4.9a the normalized wave energy as
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a function of position along channel centerline for both classes of oscillations that we

have documented: the low frequency broadband (100-500kHz) and the resonances (1-

20MHz). The first notable feature is that the wave energy density is a finite fraction

(0.002) of the thermal energy density within the acceleration region. This suggests

that the mode may have reached a saturated state, i.e. the wave growth is limited.

This type of saturation is not unexpected in this region which is characterized by the

strongest E ×B drift. Indeed, reduced dimension numerical simulations have shown

that when the electron drift is strong (i.e. a substantial fraction of the Mach speed),

wave growth can be capped by effects such as ion wave trapping [64]. Downstream

of the acceleration zone, we see that the energy in the spectrum undergoes a change

coinciding with growth of the low frequency turbulence. In particular, upstream of

the peak magnetic field (z/L = 1.3), where we anticipate the EDI will first onset

due to the strong E × B drift, we see that the resonances are the primary source of

wave energy. Immediately downstream of the peak magnetic field, both the low and

high frequency modes grow together in strength until the high frequency waves reach

a maximum at about z/L = 1.6. After this location two transitions occur. First,

the low frequency broadband oscillations overtake the cyclotron resonances in terms

of relative strength. This is indicated in Fig. 4.9b where the relative amplitude of

the two oscillations are plotted with position. Second, as discussed in Sec. IV. this

location is where the linear dispersion becomes visible in the Beall plots. After this

point, the resonances decay in strength while the broadband oscillations continue to

grow until z/L = 3. Although, as shown in Fig. 4.4 the first and third resonances

are still visible downstream. These two figures thus show quantitatively the evident

interplay in energy between the oscillations described in our hypothesis.

With that said, one interesting caveat to our interpretation is that we see that the

resonant structure persists (Fig. 4.4) even when the broadband oscillations dominate.

On the other hand, in previous experimental work, Tsikata et al did not record any
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resonances even though they were measuring in the same frequency range. The work

by Janhunen may offer a resolution. Our probes measure fluctuations in ion density

while Thomson scattering instead measures electron fluctuations. According to this

previous numerical work, the nonlinear cascade towards long wavelength is signifi-

cantly stronger for electrons compared to the ions. While the ion oscillations retained

their resonant modes at the end of the simulation, in the electrons the presence of all

but the first mode had disappeared. Therefore, Thomson scattering measurements

downstream of the acceleration region would lead to different observations than elec-

trostatic probing, potentially without resonances.

From a practical perspective, if this inverse cascade is a real mechanism, our

results have implications for the understanding and approach to modeling of the

micro-turbulence that contributes to anomalous cross-field electron transport in Hall

effect thrusters. Indeed, as the growth and saturation of the EDI appears to be a

highly nonlinear process, it can be inferred that its interaction with the electrons

(and thus its drag-inducing effect) similarly must be nonlinear. Any model capable

of predicting the transport in a real thruster geometry must consider this effect,

either modeling it explicitly with a full kinetic approach or developing closures for

fluid approximations that reflect the inverse energy cascade across lengthscales. In

particular, it is prudent that all future kinetic simulations must use grids that are

sufficiently large to resolve our observed long wavelength oscillations.

In summary, the measured results correlationally support the hypothesis we have

proposed. Within the acceleration region, the EDI develops with a linear growth,

which results in discrete resonances from the EDI dispersion relation. As the in-

stability propagates downstream, its properties are dominated by nonlinear effects

that ultimately lead to broadband long wavelength oscillations. Thus, in addition to

showing in the previous section that EDI likely exists in the acceleration zone, we

have a plausible explanation for why and how the shape of the EDI power spectrum
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is causally connected to downstream measurements.

4.5 Conclusion

In this Chapter we have presented the results of an investigation of the electron

drift instability in a Hall thruster’s near field plume and acceleration region. In light

of previous experimental work that has been performed in studying this mode, the

driving considerations for our study were trying to determine if the EDI actually exists

in the thruster acceleration zone and how this EDI evolves as a function of position in

the thruster. We have found that in the acceleration region, the EDI does exist and

is characterized by cyclotron resonances of the EDI in the 1-20 MHz domain. This is

consistent with the predictions from linear growth theory. In the downstream region,

on the other hand, the power spectrum exhibits a fundamentally different character.

The resonances still persist but the dominant feature is that the power spectrum is

characterized by a broadband turbulent shape exhibiting an power law-like decay.

While we have shown that both types of waves can be consistent with EDI waves–one

in the discrete cyclotron resonance region and one in the acoustic limit–we have also

sought to propose an explanation for how the two might be linked. To this end,

we have proposed an explanation informed by previous numerical work[55, 56], which

suggests that the downstream measurements are an evolved nonlinear state of the EDI

which onsets in the upstream, acceleration zone. The resonances develop following

linear growth in the acceleration zone and could undergo an inverse energy cascade in

the downstream region that gives rise to the linear acoustic waves. We have plotted

the evolution of the energy associated with the resonances and broadband turbulence

to show correlationally that this type of interplay of energy across lengthscales may in

fact occur. We theorize that this cascade, which is enhanced for electrons compared

to ions, is responsible for the absence of resonances observed in Thomson scattering

measurements reported in previous studies[101].
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In the context of the central question for Hall thrusters about the role of insta-

bilities in driving cross-field transport, this work ultimately offers new insight into

the role of the EDI in these thrusters. The observation of its transition from linear

growth to a turbulent state suggests that the growth of this mode and interaction

with the plasma are ultimately a nuanced and complex process. Indeed, these nonlin-

ear effects ultimately will need to be considered self-consistently for efforts to relate

the EDI to the steady-state electron dynamics in these systems. In the next Chapter

will apply the bispectral analysis techniques discussed in Chapter III to investigate

these non-linear features and ultimate determine the cross-field transport induced by

the EDI.
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CHAPTER V

Determination of Instability Induced Cross-field

Transport

5.1 Introduction

From the results of Chapter IV, it is clear that the electron drift instability is

present in Hall thruster plumes, but there are several important questions that re-

main. Notably our results pointed toward the role of non-linear effects in the de-

velopment the EDI. While there are a wide range of theories for these aspects of

the EDI dynamics [32, 66, 55, 56, 15, 97], there has yet to be a direct experimental

measurement of the linear growth and nonlinear wave coupling processes that gov-

ern the EDI spectrum. This lack of experimental data speaks to a broader problem

commonly encountered in measuring wave dynamics in low temperature plasmas [58]:

established methods based on length-scale bispectral analysis[82, 86], developed for

higher energy density plasmas, do not translate well to space-based and low temper-

ature systems. In light of these obstacles and the importance of understanding the

processes that shape the EDI growth spectra, we present in this Chapter the results

of an experimental utilizing a frequency-based bispectral analysis technique to make

direct experimental measurements of the linear growth and nonlinear energy transfer

of the EDI in a laboratory Hall effect discharge. Building on these results, we then
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will apply this new data to directly calculate the wave-driven cross-field transport and

answer the primary question of this thesis: Is the electron drift instability responsible

for anomalous transport in Hall thrusters.

5.2 Determination of EDI induced cross-field electron trans-

port

As highlighted throughout this work, the cross-field electron transport in Hall

effect thrusters has yet to properly attributed to any specific mechanism, though there

are many strong theories. While most electrons are trapped in an azimuthal Hall effect

drift, classically some electron current parallel to the electric field, i.e in the cross-field

direction, can result from particle-particle collisions, experiments have shown that

the actual cross-field current is orders of magnitude higher [54, 7, 74].Practically, this

lack of understanding has impeded the development of fully predictive Hall thruster

models [7, 58]. In light of this limitation, several different theories have been proposed

to date to explain the transport. These include processes related to Bohm diffusion

as well as near-wall effects [74, 11, 4, 41, 73, 33]. There is a growing consensus,

however, that the transport may largely be attributed to the formation of small-scale

instabilities [10]. Recent kinetic simulations [63, 55, 56, 81, 9, 52, 60] and analytical

models [32, 19, 64] have suggested that the high E×B velocity of the electrons results

in the growth of the so-called electron drift instability (EDI). This EDI grows at the

expense of electron momentum, resulting in an effective drag on this species. This

force on the electrons, when combined with the radial magnetic field, promotes a

cross-field drift. Indeed, numerical simulations have indicated that this effect may

be sufficient to explain the anomalous transport. In parallel, experimental studies

have confirmed that the EDI exists in the thruster plasma[101, 100, 12, 15]. However,

despite this experimental evidence of the EDI, it has yet to be demonstrated if the
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instability as measured in experiment is sufficient to explain the transport. The role

of the EDI in real systems thus remains an open question.

In an effort to address this question, we employed in a previous work experimental

measurements of the EDI wave amplitude combined with quasi-linear theory in an

attempt to relate the EDI to an effective transport coefficient. We ultimately found,

however, that we were not able to recreate the experimentally-measured transport[13].

We subsequently hypothesized this discrepancy might be attributed to an oversim-

plification in our approximation of the growth rate, i.e. the rate at which the EDI

extracts energy from the Hall drift. Indeed, while we had employed the theoretical

form of the growth rate based on a linear expansion of the dielectric response in a

Maxwellian plasma, recent simulations have shown the growth and saturation of the

EDI is highly non-linear in nature[55, 56, 97]. These nonlinear features in turn can

lead to distortion of the electron velocity distribution function (EVDF) and cross-

lengthscale coupling–both effects that can lower the magnitude of the growth rate

and subsequent transport [32, 63, 64]. In light of these previous modeling results

and our direct experimental observation that the EDI growth exhibits non-linear fea-

tures (Chapter IV), we thus suspected we would need to amend our estimates for the

growth rate in our calculations for EDI-induced transport. In this section will detail

an experimental effort to directly measure the linear growth rates and non-linear en-

ergy exchange in the Hall thruster acceleration zone, the region of maximum axial

electric field and ion acceleration.

5.2.1 Relating anomalous collision frequency to EDI properties

Figure 5.1 shows a representative geometry of a Hall effect thruster. This cylin-

drical crossed-field device features a radial magnetic field, B⃗ = Brẑ, perpendicular to

an applied axial electric field, E⃗ = Ex(0)x̂. This field configuration induces a E × B

Hall drift of the electrons in the azimuthal direction, ŷ. Due to particle-particle colli-
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Figure 5.1: H9 Hall thruster shown with axial electric field (Ē), radial magnetic field
(B̄), and probes placed in the E ×B direction.

sions, electrons should exhibit some small mobility across magnetic field lines in the

direction of the electric field. However, as discussed in the preceding, the observed

electron transport levels are orders of magnitude larger than can be explained by

collisions.

The cross-field transport of electrons can modeled starting with a drift-diffusion

equation for electrons where we neglect electron inertia:

0 = − q2

me

ne(E⃗ + v⃗e × B⃗)− q

me

∇(pe) + j⃗eνc (5.1)

Here me is electron mass, ne is electron density, j⃗e is the electron current density, E⃗

and B⃗ are local electric and magnetic fields, pe = qneTe is electron pressure where Te

is expressed in units of energy, νc is the classical electron collision frequency, and q

is fundamental charge. The first term is the Lorentz force, the second is the pressure

force, and the third is the effective drag due to particle collisions. We represent

the electrostatic EDI waves as rapid perturbations in density, ne = δne + ne(0) and
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electric field, E⃗ = δE⃗ + E⃗0, where δx terms denote the oscillating component against

a background value x0. We then phase average Eq. 5.1 over the time scale of the

oscillation to yield

0 =
q2

me

[
⟨δneδE⃗⟩+ ne(0)E⃗0 + ne(0)v⃗e × B⃗

]
− q

me

∇(pe)− j⃗eνc (5.2)

In this equation, phase averaging has eliminated the oscillating components of ne and

E⃗ except for the term containing their product ⟨δneδE⃗⟩. If the density and electric

field oscillations are in phase this term will be non-zero.

We next assume the steady state electric field is only is the axial direction (E⃗0 =

Ex(0)x̂), the oscillating electric field induced by the EDI is in the azimuthal direction

(δE⃗ = δEyŷ), and the radial magnetic field strength is sufficiently large such that the

electron cyclotron frequency (ωce = qBr/me)is much larger than the classical particle

collision frequency to arrive at an equation for axial electron current density

je(x) =
q2ne(0)

meω2
ce

(
E0(x) +

∇x(ne(0)Te)

qne(0

)
νe, (5.3)

where we have defined a total electron collision frequency, νe = νc + νAN . The latter

parameter represents an effective anomalous collision frequency that arises from the

action of the waves:

νAN = −ωce
⟨δneδEy⟩

ne(0)Ex(0) +∇x(ne(0)Te)
. (5.4)

This definition underscores the fact that from a fluid, phase-averaged perspective, the

propagation of the EDI can be represented as an enhanced transport coefficient for

the electrons. Similarly, per the definition, we see that as the relative fluctuations

in electric field and density from the waves increase, the wave-induced cross-field

transport on the electrons will be higher. Physically, this scaling stems from the fact
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that the growth of the EDI can be interpreted as an effective drag on the azimuthal

drift in the plasma, which in turn promotes cross-field current.

In practice, it is prohibitively difficult in our plasma to measure fluctuating den-

sity and electric field simultaneously for the purpose of evaluating Eq. 5.4 directly.

Instead, we follow a linearized theory for wave propagation where we assume the EDI

oscillations can be represented as a summation over a spectrum:

δE⃗ = −i
∑
k⃗

k⃗ϕ(k⃗, ω), (5.5)

where ϕ(k⃗, ω) denotes the propagating oscillations in plasma potential associated with

the wavenumber (k) and frequency (ω) of the electrostatic wave. We in turn invoke

the eikonal approximation to write

ϕ(k⃗, ω) = ϕ̂(k⃗, ω) exp
[
i
(
k⃗ · r⃗ − ωt

)]
, (5.6)

where ϕ̂(k⃗, ω) denotes the complex amplitude of the potential oscillation.

Following the technique of Davidson and Krall[31], we then can show from a

linearization of the dielectric function of the plasma that averaging over the wave

phase yields:

⟨δneδEk⟩ =
∑
k

γe(k)kyk
2∂ϵ

(1)
r (k⃗, ω)

∂ω
|ϕ̂(k⃗, ω)|2. (5.7)

Here ky denotes the component of the wavevector of the kth mode in the Hall direction,

ϵ
(1)
r (k⃗, ω) is the real component of the dielectric response of the wave to the first order,

ω is the real component of the frequency, and we have performed the summation

over a spectrum of oscillations associated with the EDI. We also have introduced

the parameter γe(k) = −ϵ
(1)
i(e)(k⃗, ω)/(

∂ϵ
(1)
r (k⃗,ω)
∂ω

), which is the linear growth rate of the
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wave due to the electron contribution to the imaginary component, ϵ
(1)
i(e)(k⃗, ω), of the

dielectric function to the first order. Physically, this latter parameter represents the

rate at which electrons extract energy from the Hall drift.

As an additional simplification, we make the substitution ϕ(k⃗, ω)/Te = δni(k)/ni(0)where

Te is the electron temperature in electron volts and δni(k) is the variation in ion den-

sity associated with the kth element of this spectrum of the EDI. This relationship

is appropriate for the EDI dispersion [19] for cold ions, Ti ≪ Te, where Ti is ion

temperature. Invoking this simplification, we can express Eq. 5.4 as

νAN =
ωce

Ex(0) +
∇x(ne(0)Te)

ne(0)

Teλ
2
De

∑
k

γe(f)ky(f)k
2
f

∂ϵ
(1)
r (k⃗, ω)

∂ωr

∣∣∣∣δni(k)

ni(0)

∣∣∣∣2 , (5.8)

where λDe denotes the Debye length. This result shows that as the relative fluctuation

in ion density increases (an indication of stronger waves), the effective drag on the

electrons increases. Similarly, with a higher electron growth rate, i.e. rate at which the

waves extract momentum from the Hall drift, the transport coefficient also increases.

As a final simplification, we note that while Eqn. 5.8 is formulated in terms of a

summation over wavenumber, in practice, our experimental measurements are time-

based Fourier transforms of density fluctuations. To translate this result into a form

that is expermentally tractable, we assume that the relationship between frequency

and wavenumber is approximately one-to-one such that the kth wavenumber maps

to a unique real frequency, f = ω/2π. We therefore can make the substitutions

δni(k) → δni(f) and γe(k) → γe(f) to find

νAN =
ωce

Ex(0) +
∇x(ne(0)Te)

ne(0)

Teλ
2
De

∑
f

γe(f)ky(f)k
2
f

∂ϵ
(1)
r (k⃗, ω)

∂ω

∣∣∣∣δni(f)

ni(0)

∣∣∣∣2 , . (5.9)

This result ultimately is the expression we experimentally evaluate in order to relate
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the EDI properties to cross-field transport in the Hall thruster.

5.2.2 Theoretical dispersion and growth of the EDI

In order to estimate the transport coefficient experimentally from Eq. 5.9, we

require measurements of both the the dispersion and growth of the EDI. As a first

order approach to determine this properties, we consider the theoretical form of the

EDI dispersion that stems from a linearization of the Vlasov equation subject to the

assumption of cold ions and Maxwellian electrons [32, 19]:

ϵ(1)(k⃗, ω) = 1 + k2λ2
De + g

(
ω − kyVE×B

ωce

, (k2
x + k2

y)ρ
2, k2

zρ
2

)
−

k2λ2
Deω

2
pi

(ω − kxvi(o))
= 0 (5.10)

where g(Ω, X, Y ) is the Gordeev function, defined as

g(Ω, X, Y ) = iΩ

+∞∫
0

e−X[1−cos(φ)]− 1
2
φ2+iΩφdφ. (5.11)

Here ωpi is the ion plasma frequency, k =
√
k2
x + k2

y + k2
z is the oscillation wavenum-

ber, vi(0) is the ion beam velocity in the axial direction, VE×B is the azimuthal Hall

drift of the electrons, and ρ = Vthe/ωce is the electron Larmor radius at thermal

velocity, Vthe =
√

qTe/me. We show in Fig. 5.2 example solutions to this disper-

sion relation, adapted from Ref. [19], for different assumed radial wavenumbers. In

Fig. 5.10(a), we see the frequency is approximately linear but punctuated by peri-

odic peaks. The first of these peaks corresponds to the so-called modified two-stream

instability(MTSI)[55, 56] while the subsequent peaks are harmonics of the EDI re-

lated to the electron cyclotron resonance frequency by: ky = nωce/VE×B, where n in

the harmonic mode number. Fig. 5.10(b) shows the linear growth also exhibits peaks

at the wavenumbers of the MTSI and cyclotron harmonics. This physically stems
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(a) (b)

Figure 5.2: Solutions of the EDI dispersion relation, adapted from Cavalier et al[19]
with different radial wave components (kz). Frequency (a) and growth rate (b) are
normalized by the ion plasma frequency (ωpi) and wavenumber is normalized by the
Debye length(λDe).

from the fact that these modes have the highest degree of coupling with the Hall drift

at these resonances. As the the radial component of the wavenumber decreases, the

peaks in both the real frequency and growth rate reduce in amplitude and ultimately

disappear. In this limit, the EDI exhibits an ion-acoustic like dispersion [19].

Previous experimental work has shown that at high frequency (above 2 MHZ)

and in regions downstream of the acceleration zone, the real components of the wave

dispersion in a Hall thruster matches the EDI in the acoustic limit [101]. We also

demonstrated in recent experimental work that this real part of this dispersion relation

is consistent with measurements of the wave propagation in the thruster acceleration

zone [15]. In light of these previous findings, we employ in this work the theoretical

form of the real component of the dielectric response in the acoustic limit to evaluate

Eq. 5.9. Given this dispersion has a one-to-one relationship between frequency and

wavenumber, we similarly can justify the conversion we made in the preceding section.

On the other hand, with respect to the growth rate, previous numerical studies

and our experimental work have shown that the linearized theory does not accurately
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reflect the evolution of the EDI [66]. This disparity likely stems from nonlinear effects

impacting the wave growth and the kinetic velocity distribution of electrons. With this

in mind, while we still use the linear theory as a point of comparison for estimating

the transport in this work, we discuss in the following section a methodology we

developed to directly measure this growth rate.

5.2.3 Modelling non-linear processes of the EDI

As covered in Chapter III, our approach to measuring non-linear EDI wave dy-

namics is based on formulating a governing equation for the evolution of EDI wave

amplitudes. We then use experimental measurements of these amplitudes and a bis-

pectral analysis method adapted from the works of Ritz [82] and Kim [86] to infer the

parameters in the wave equation that represent linear and nonlinear growth. While

the full derivation of this method from first principles is provided in Chapter III

we provide an abbreviated review here for clarity. Figure 5.1 shows the geometry

of the Hall effect discharge we investigated with this approach. This device has az-

imuthal symmetry with an axial electric field and radial magnetic field. The resulting

azimuthal E × B drift is the energy source for driving the EDI unstable. For our

analysis, we adopt the local Cartesian coordinate system shown in Fig. 5.1. Where

two electrostatic probes are separated in the azimuthal ŷ direction by distance, ∆y.

These probes simultaneously measure the time-based Fourier spectrum at each loca-

tion to yield Xf = ϕ̂f (y) and Yf = ϕ̂f (y + ∆y). Based on these two measurement

locations, we generate an equation describing the linear and non-linear evolution of

the waves

Yf = LfXf +
∑

f=f1+f2

Q1,2
f Xf1Xf2 , (5.12)
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where we have defined linear and nonlinear transfer functions:

Lf =
([
γf(y)/vg(y) + iky

]
∆y + 1

)
(5.13)

Q1,2
f = (V Q

1,2/vg(y))∆y (5.14)

. Here we have introduced the azimuthal linear growth rate:

γf(y) = γf − Re
(
X−1

f

[
vg(x)∂xXf + vg(z)∂zXf

)]
) (5.15)

. This reflects the fact that the observed change in the amplitude of each mode in ŷ

is a projection of the total growth rate from three dimensions. Finally, we multiply

Eq. 5.12 by the complex conjugate quantities, X∗
f and X∗

f1
X∗

f2
respectively, to yield

YfX
∗
f = LfXfX

∗
f +

∑
f=f1+f2

Q1,2
f Xf1Xf2X

∗
f (5.16)

YfX
∗
f1
X∗

f2
= LfXfX

∗
f1
X∗

f2
+

∑
f=f1+f2

Q1,2
f Xf1Xf2X

∗
f1
X∗

f2
.

The first equation is the complex form of a discretized wave energy equation. The

second represents the third moment of the wave-dynamics, also known as the cross-

bispectrum.

With experimental measurements of the moments in Eq. 5.16, the system can be

solved for the linear and nonlinear transfer functions. In turn, from these values, we

can infer key properties of the wave dynamics including the azimuthal growth rate,

γf(y) = (Re[Lf ]− 1)(vg(y)/∆y) and the nonlinear power transfer function:

Tf = (vg(y)/∆y)Re

[ ∑
f=f1+f2

Q1,2
f Xf1Xf2X

∗
f

]
. (5.17)

This last term physically represents the energy flux transferred to the mode of fre-
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quency f by nonlinear coupling from other modes in the spectrum.

We solve the governing equations following the algorithmic approach developed

by Ritz [82] and later modified by Kim [86]. This analysis method has two key re-

quirements. The first is ensemble averaging the various moments in Eq. 5.16 over

multiple measurements[85]. This reduces the stochastic noise such that the higher

order moments can be accurately resolved. The second requirement is that the ensem-

ble averaged power spectra, Pf = ⟨XfX
∗
f ⟩ ≈ ⟨YfY

∗
f ⟩, are stationary between the two

probe locations[86]. As discussed in Ref. [86], this technique is susceptible to several

inaccuracies when applied to noisy experimental data. The Kim method improves on

the Ritz technique by separating the measured spectral content into a summation of

ideal terms driven solely by Equation 5.12 and non-ideal terms that come from both

systematic errors and plasma processes that do not follow Equation 5.12:

Xf = βf +Xni
f , Yf = αf + Y ni

f . (5.18)

Here β and α are the ideal terms and Xni and Y ni are the non-ideal terms. With the

introduction of the non-ideal terms, an additional equation is needed for closure of

the system of equations. Kim solved this closure problem by invoking a hypothesis

of local stationarity:
〈
αfα

∗
f

〉
=

〈
βfβ

∗
f

〉
. This is justified in our experiment by the

azimuthal symmetry of the Hall thruster plasma. It was this Kim technique that we

ultimately use to determined Lf and then γf(y).

As a last step before we can leverage experimental data to solve the governing

equations for key terms like Lf and Tf , we need an estimate of the group velocity

of the waves. While in principle we could measure this group velocity directly from

experimental measurements of the dispersion, ω(ky), spatial aliasing from the probe

spacing precluded a direct measurement of the wavenumbers of interest. We discussed

this aliasing limitation at length in Chapter III and Ref. [15]. Ultimately, we were able

105



to conclude through an analysis of the resonant peaks in the power spectra that the

dispersion of the oscillations in the test article we used for this study (Fig. 5.1)follows

the real component of the theoretical EDI dielectric response [37, 40, 19]:

ϵ(1) = 1 + k2λ2
De + g(Ω, X, Y )−

k2λ2
Deω

2
pi

(ω − kxvp)2
, (5.19)

where g(Ω, X, Y ) is the Gordeev function, Ω = (ω− kyVd)/ωce, X = (k2
x + k2

y)ρ
2, and

Y = k2
zρ

2. Here VD denotes the azimuthal electron drift, ωce is the electron cyclotron

frequency, ωpi is the ion plasma frequency,vp is the ion beam velocity in the axial

direction, λDe is the Debye length, and ρ = Vthe/ωce is the electron Larmor radius

at thermal velocity Vthe =
√
Te/Me where Te is expressed in terms of energy. To

evaluate Eq. 5.10, we employed plasma parameters from previous studies of the test

article we used for this study: n0 = 8 × 1017m−3, ωce = 53 GHz, VD = 526 km/s,

vp = 14 km/s, and Te = 15 eV (see Chapter IV). Furthermore, we have assumed

an axial wavenumber number of kx = ky sin(15
o) based on estimates of the wave

propagation angle[101, 15] and a radial wavenumber of kzλDe = 0.03, where λDe is

the Debye length. This corresponds to a wavelength on the order of the channel width

[89, 64, 95].

Fig. 5.3a) shows the dispersion inferred from the solution of Eq. 5.10 using these

experimental measurements of background properties. The result is approximately

linear with slight undulations at the cyclotron resonances: ky = nωce/Vd, where n

is the harmonic number. At wavenumbers below the first cyclotron resonance (f <

2 MHz), the dispersion transitions to the so-called modified two-stream instability

(MTSI) [55, 56]. We ultimately used the dispersion shown in Fig. 5.3a) to infer the

group velocity in the azimuthal direction.
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5.3 Measurement of non-linear dynamics and linear growth

rate

We now turn to experimentally assessing the non-linear wave properties of the

EDI. For our investigation, we employed the H9, a 9-kW class Hall effect thruster

(Fig. 5.1) with approximately 30 cm diameter and 15 cm depth. We operated this

system at a discharge voltage of 300 V and discharge current of 15 A on xenon gas and

performed our experiments in a 6 m × 9 m vacuum facility. Base pressures during

testing, as measured in the plane of the thruster, were 3× 10−6 Torr-xenon. We used

two ion saturation probes with a separation of 1 cm, following the method described

in Ref. [15], to estimate oscillations in ion density. For the dispersion relation of the

EDI [32] subject to the Hall thruster plasma properties it can be shown that these

density measurements are a direct proxy for potential oscillations: n̂i/ni0 ≈ ϕ̂/Te,

here x̂ is the perturbed density or potential.

We placed the probes 6 mm downstream of the thruster exit plane, which was

approximately 1-2 mm downstream of the location of peak E×B velocity. The probe

signals were sampled at 100 MHz for 2 mega-samples, and then subdivided into 2000

realizations for ensemble averaging. As discussed in Ref. [15], this probing method

relies on inserting an element into the plasma and thus may perturb the measurement.

While we cannot preclude the possibility of probe-induced effects, we found thruster

operation remained unchanged with probe insertion, and the features of the EDI

spectra persisted in the downstream spatial locations where probe perturbations are

expected to be less severe.

Leveraging these experimental methods, we first consider the ensemble averaged

power spectra, ⟨XfX
∗
f ⟩ and ⟨YfY

∗
f ⟩ at each probe location. As Figure 5.3b) shows,

the close correspondence between the two power spectra confirms our stationary as-

sumption in this direction. Each spectrum in turn is characterized by broadband
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Figure 5.3: (a) Dispersion relation of the EDI at the probe location (b) Experimen-
tally measured power spectra for both probe locations. (c) Comparison between the
measured azimuthal growth rate γf(y) (left axis) and the growth rate calculated from
the dispersion relation γf (right axis).
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Figure 5.4: (a) Nonlinear power transfer function as a function of frequency. (b)
Nonlinear transfer function (|Q1,2

f |).

turbulence in the 100 kHz - 2 MHz range with discrete peaks spaced approximately

7 MHz in the high frequency range. We previously showed that these peaks are

correlated with cyclotron resonances of the EDI (see Chapter IV).

Figure 5.3c) shows the azimuthal growth rate calculated from the adapted Ritz

and Kim algorithm, γf(y), compared to the growth rate predicted from the theoreti-

cal dispersion relation, γf , determined from Eq. 5.10. This result is, to the authors’

knowledge, the first experimental measurement of EDI growth in this type of crossed-

field device. We qualify this result though by noting we did not attempt to measure

spatial gradients of the spectra in the axial and radial directions—finite values of

these may lead to a difference in γf(y) and γf . Regardless, we find a number of novel

insights from the comparison of theory and measurement. First, there is qualita-

tive agreement in the curve shapes—both trends exhibit peaked growth at several of

the same frequencies. This is physically intuitive as these frequencies correspond to

the cyclotron resonances where energy is most efficiently extracted from the plasma.

Second, unlike the theoretical dispersion, the measured growth exhibits a negative

value at the frequencies related to the MTSI (f ∼ 1.5 MHz). This observation is a
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departure from previous numerical studies of the MTSI where active damping was

not observed, e.g [56]. Physically, our result suggests that the spectrum loses energy

to the plasma at this smaller frequency/ longer length-scale. This damping could

be attributed to a number of effects such as ion-neutral collisions or spatial gradi-

ents in the plasma preventing the propagation of long wavelength (low frequency)

EDI/MTSI modes. Third, the magnitudes of the experimentally-measured azimuthal

growth rates, γf(y), are an order of magnitude smaller than the values inferred from

the theoretical dispersion relation, γf .

We consider two limiting cases to interpret this last result. The first scenario

is if spatial growth in the axial and radial directions is negligible compared to the

azimuthal growth, γf = γf(y). This is plausible as the instability’s energy source

is primarily in the E × B direction. In this case, our result would suggest there

is a mechanism that maintains the shape of the theoretical growth but depresses

the magnitude. Previous numerical studies on the EDI, for example, have proposed

quasi-linear distortion of the electron distribution function by the waves may lead to

such a result [63, 64]. As a second interpretation, we consider the case where there is

finite spatial growth in the axial direction but neglect radial growth by symmetry. In

this case, it can be shown that γf ≈ γf(y) + (vp/2)P
−1
f ∂xPf—the total growth rate is

the combination of the measurement and a contribution dictated by axial convection

of wave energy. Assuming the typical gradient length-scales in the axial direction

are on the order of 1 mm [15], the convective term could dominate such that γf ≈

(vp/2)P
−1
f ∂xPf . This type of scaling, which is a major departure from linear theory,

is consistent with previous numerical investigations where it was suggested that after

quasi-linear distortion occurs, wave convection may dictate the growth [63, 64].

We next consider the nonlinear growth processes by showing in Figure 5.4a) the

magnitude of the nonlinear transfer function (|Q1,2
f |). The intensities in this result

indicate the degree to which the frequency combination, f1 and f2, couples to a third
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mode at f1±f2. Negative frequencies in Figure 5.4a) denote taking the difference be-

tween f1 and f2. The near-zero amplitudes in the upper right and lower left quadrants

generally indicate that there is no coupling from lower to higher frequency modes:

|f1| + |f2| > f1, f2. There is an exception along the line where f1 + f2 = 45 MHz,

but we suspect these results are non-physical as the spectral content in this region

approached the noise floor. On the other hand, the intensities are largest with clearly

defined peaks in the top-left and bottom-right quadrants and close to the -45◦ axis.

The content in these regions indicates strong coupling from high to low order modes

|f1|, |f2| > f . Physically, the combination of trends in Fig. 5.4a) are indicative of an

inverse cascade where energy is non-linearly coupled from higher to lower frequency

modes.

Fig. 5.4b) illustrates this inverse cascade explicitly by showing the total nonlinear

power transfer rate, Tf . The negative peak at the high frequencies commensurate

with the cyclotron resonances (f = 5-10 MHz) indicates that some of the energy that

is linearly coupled into the waves from the plasma(Fig. 5.3c) is then transferred away

through nonlinear processes. This energy is then deposited at the lower frequency

range where the dispersion transitions into the MTSI (f < 2 MHz). This transfer is

represented by the positive peak in Tf in this frequency range. The energy then is

removed from the spectrum through linear damping (Fig. 5.3c). This experimental

interpretation agrees with recent simulations that suggested the saturation of the EDI

involves an initial linear growth of high frequency resonances followed by a nonlinear

transfer of this energy to lower frequency oscillations[55, 56, 89]. Although, we note

that comparisons to simulation are only appropriate for the final stationary state

of the oscillations. Our experimental method only resolves the saturated state and

cannot detect the different stages of evolution explored in Ref[56] before the instability

reaches saturation.

In summary we have performed the first direct experimental measurements of
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the nonlinear and linear growth of the EDI in a Hall thruster discharge. We in

turn have shown that while the measured linear growth confirms the EDI is driven

unstable by cyclotron resonances, there are notable departures from simple linearized

theory. We also have found experimental evidence that a nonlinear energy cascade to

lower frequencies and larger length-scales exists. Both of these experimental insights

have direct implications for understanding the application-driven question of how

this instability interacts with the fundamental plasma state. Indeed, in order to

approximate “anomalous” wave-driven transport, we need to know both the effective

growth rate and shape/magnitude of the power spectra [31]. As numerical simulations

and experimental results have previously suggested, however, simple linear theory

based on assuming a thermalized distribution is not sufficient to capture the actual

growth rate[13]. Our experimental findings directly confirm this and moreover provide

a potential path for directly estimating the wave-driven transport. By combining our

measurements of the growth rate and power spectra, we can directly determine the

degree of contribution of the waves to transport. Furthermore, the measurement of

the growth rate as a function of position in the plasma could lead to simplified models

of cross-field transport that would enable predictive modelling of crossed-field devices.

To this point, one interpretation of our experimental results is that the growth rate

may simply depend on wave convection. As was previously discussed in Ref. [64],

this assumption may be leveraged to identify simple closure models. Finally, we

remark that in order to make our measurements, we have used a technique adapted

from previously derived bispectral analysis that is more conducive for use in low

temperature plasmas with smaller devices. This same methodology, in principle,

can be extended to a wide range of systems beyond the EDI to answer outstanding

questions about the physics of transport-inducing instabilities.

Previous experimental efforts employing measurements of instability amplitudes

to infer wave-driven electron transport showed disagreement with measured transport
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levels[13]. It was theorized the discrepancies are due to a reliance on linear theory

in the calculation of the wave driven transport while simulations indicate the growth

and saturation of the EDI is very non-linear in nature[55, 56, 97]. The impact of the

instability on transport is directly related to the magnitude of the instability’s growth

rate—the rate that energy is extracted from the electron E×B drift. Simulations have

indicted that non-linear effects, such as distortion of the electron velocity distribution

function (EVDF), can significant lower the magnitude of the growth rate[32, 63, 64].

Ref [63] demonstrated that these effects may be necessary to accurately predict the

instability driven transport, using the growth rate from the quasi-linear dispersion

relation consistently over-predicted cross-field transport. In the next section we apply

experimentally measured growth rates to determine the cross-field transport due to

the EDI in Hall thrusters.

5.4 Experimental Measurement of Collision Frequency

Building on the successful measurement of the non-linear wave properties of the

EDI in the acceleration zone, a follow-up experiment was done to extend the mea-

surement domain entirety of the near-field plume. This allows for calculation for the

wave-induced transport as a function of position and is significantly more insight-

ful than a singular value in the acceleration. As part of this new experiment some

additional modifications were made to our model of EDI growth that allowed us to

included additionally effects that were ignored in the previous experimental, such as

growth along the axial direction. Furthermore, in order to validate our wave-induced

transport value we needed to measure the actual cross-field transport in the thruster

plume. In the sections we outline these changes to our model and experimental setup

that enable us to measure and compare the EDI driven anomalous transport.
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5.4.1 Modifications of the EDI growth model

As a reminder, in context of our experimental setup the Ritz and Kim technique

allows us to calculate a term γf(y), which we denote as the “azimuthal” growth and

represents the projection of the total growth in the azimuthal direction:

γf(y) = γf −
1

2|Xf |2
([
vg(x)∂x|Xf |2 + vg(z)∂z|Xf |2

)]
). (5.20)

The “azimuthal” nomenclature stems from the fact that we are only measuring wave

properties as they propagate in this direction. The other two terms in Eq. 5.20

represent the change in amplitude of the mode in the two directions orthogonal to

the measurement.

Once we have measured the azimuthal growth rate, we in turn can relate it to the

total growth rate through Eq. 5.20 provided we have measurements of the evolution of

the magnitude of the wave amplitude as it evolves in the radial and axial directions.

We neglect in this work the radial convective term due to symmetry but we do measure

the change in power spectrum amplitude with axial location such that we approximate

γf = γf(y) +
1

2|Xf |2
(
vi(0)∂x|Xf |2

)
), (5.21)

where we have made the assumption that for the EDI the axial group velocity is

approximately the axial ion beam velocity[19]. As a final step, we remark that in the

plasma, we measure the total growth rate of the waves. However, in order to determine

the impact on the electron transport, we must isolate the electron contribution to the

total growth rate: γe(f) = γf + γi(f). This requires that we have an estimate for the

ion contribution to the total growth.

In the near plume of Hall thrusters ion temperatures can become high enough

that ion Landau damping terms, which are typically ignored in the EDI dispersion
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Figure 5.5: Schematic of experimental setup showing H9 Hall thruster installed in
LVTF with LIF optics and wave probes mounted on a fast motion stage.

relation, could become significant[75]. We calculate the ion Landau damping rate as

γi(k) = −
√

π

8

ωr(k)

(1 + k2λ2
D)

3/2

(
Te

Ti

)3/2

e

[
−Te

2Ti(1+k2λ2
D

)

]
(5.22)

where we assume the ion temperature is 0.25 eV throughout the measurement domain.

In summary, the wave driven collision frequency is calculated using Eq. 5.4 where

we determine the local plasma parameters using a LIF technique discussed in the

following section, the growth rate and oscillation amplitude using high speed probes

and the Ritz method, and lastly we estimate the wavenumber and real part of the

dielectric function for the EDI as functions of frequency using Eq. 5.10. Finally, we

estimate the electron growth rate from the measured azimuthal growth rate based

after considering axial wave energy convection and ion Landau damping.
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5.4.2 Diagnostics

We employed two core diagnostics in our experiment: ion saturation probes that

measure the oscillations used in the Ritz and Kim method, and laser-induced fluo-

rescence (LIF) used to measure the ion beam velocity. Additionally, we outline a

technique used to infer the background plasma parameters and anomalous collision

frequency from the LIF data.

5.4.2.1 Ion saturation probes

We employed two ion saturation probes for measuring the fluctuations in ion

density. The probes consisted of 0.38 mm radius tungsten rods with an exposed

length of 3.8 mm. These cylindrical probes were separated azimuthally by 1 cm and

mounted on fast motion stages to quickly the inject the probes in the plume and

minimize perturbative effects. The probes collected data at fixed locations along

channel centerline from 0.125 to 0.75 channel lengths downstream of the thruster exit

plane. The ion saturation probes are biased to -45V using batteries to collect only

ion current. The current is read across a low-inductance and low-capacitance 100Ω

resistor into a ATS9462 16-bit digitizer. The signal was sampled at 100 MHz for 2

Mega-samples and the resulting waveform was then subdivided into 2000 realizations

for averaging. The fluctuations in ion saturation are then related to fluctuations

in plasma potential by relate measured fluctuations in the ion saturation current to

plasma density fluctuations for use in Eq. 5.4 as δi/i0 ≈ δni/ni(0).

As we discuss in Section III.B.3, the ion saturation probes also provide an estimate

of the downstream plasma density for use as a boundary condition in calculating

the axial ion density profile. We determine the ion density from the measured ion

saturation current as

ni(0) =
isat

eApCs exp(1/2)
(5.23)
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where Ap is the area of probe and Cs =
√

eTeV /mi is the ion sound speed. The

electron temperature is determined using the LIF technique covered in Section III.B.3.

We will discuss in Section IV the uncertainties introduced with this equation that

propagate to the calculation of anomalous collision frequency.

5.4.2.2 IBIS method

Following the works of Perez-Luna and Dale, we determine plasma density, electric

field, electron temperature, ion beam velocity, and anomalous collision frequency

non-invasively through laser-induced fluorescence (LIF) measurements[83, 29]. This

analysis method, known as the ion Boltzmann implicit solution method (IBIS), starts

with the 1D ion Boltzmann equation where ionization collisions are considered:

∂f

∂t
+ vi

∂f

∂x
+

e

mi

Ex(0)
∂f

∂vi
=

(
∂f

∂t

)
iz

. (5.24)

In this equation vi is the axial ion velocity and the right most term is the time rate of

change in the IVDF due to ionization. Assuming the IVDF is at steady state in time,

higher order moments of the Boltzmann equation can be taken to yield equations

containing several of the need plasma parameters:

∂vini(0)

∂x
= ni(0)fiz (5.25)

∂v2i(0)ni(0)

∂x
− e

m
ni(0)Ex(0) = 0 (5.26)

∂v3i(0)ni(0)

∂x
− 2

e

m
ni(0)Ex(0)vi = 3

e

mi

Tini(0)fiz (5.27)

Here vi(0) is the mean ion velocity and Ti is the temperature of newly born ions which

we assume is equal to the neutral gas temperature. With the spatial resolved LIF

measurements, this system can be solved for Ex(0), fiz, and d ln (ni(0))/dx. This last

variable can then be integrated across the axial domain to determine the ion density
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if the density is known at one of the boundary points xb:

ni(0)(x) = − exp

 x∫
xb

d lnni(0)

dx

+ ni(0)(xb) (5.28)

This downstream density (ni(0)(xb) is estimated with the wave probes that also func-

tion as ion saturation probes for measuring ion density. With this information, in

addition to the value of the applied magnetic field, we can calculate an effective total

electron collision frequency (νe = νc + νAN) using Ohm’s Law

νe =
Ξ±

√
Ξ2 −

[
2vex(0)Br

]2
2me

e
vex(0)

(5.29)

where vex(0) is the axial electron velocity and we define Ξ = Ex(0) +
∇qne(0)Te

ne(0)
− ηiji,

where ηi = miνc/q
2ni(0) is the classical ion resistivity due to collisions and ji is the

ion current density.

5.4.3 Results

In this section we present the results of our investigation, starting first with plasma

parameters determined from the IBIS technique and then the wave estimated collision

frequency. Here we will also provide a brief discussion on the sources of uncertainty

in each diagnostic.

5.4.3.1 Background plasma properties

We show in Figure 5.6 four key plasma parameters inferred from the IBIS method—

ion velocity, electron temperature, electric field strength, and plasma density—as a

function of axial distance from the anode normalized by the channel length, L. As

can be seen, the electron field is peaked downstream of exit plane of the thruster at

x/L = 1.1. The majority of the ion acceleration subsequently occurs in this region of
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Figure 5.6: Plasma properties inferred from LIF measurements. a) Ion beam velocity,
b) axial electric field, c) electron temperature, and d) ion density as a function of
axial position normalized by the channel length where x/L = 1 is the exit plane of
the thruster.
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high electric field between x/L ≈ 1 and x/L ≈ 1.4. The majority of ionization occurs

at the start of the acceleration zone, and due to Ohmic heating results in the sharp

peak in electron temperature at this location. Similarly, the plasma density is peaked

at the exit plane and decays downstream as the ions are accelerated and diffuse down-

stream. For the plasma density profile, we show a range of possible values stemming

from different choices for the downstream boundary condition. We estimate a mean

plasma density of ≈ 2×1017 m3 from our ion saturation probe and Eq. 5.23, but con-

sider a range between 1× 1017 < ne < 3× 1017 due to uncertainty. This uncertainty

in the downstream density does not affect the other plasma parameters calculated

with the IBIS method as they are calculated directly from the ion-moments. The

only exceptions are the classical collision frequency that depends on ion density and

the total collision frequency (Eq. 5.29) that depends on ion density in the estimation

of the axial electron velocity. We discuss the influence of the uncertainty in density

on these two parameters in the following section.

5.4.3.2 Wave properties

In this section we consider the two measured wave properties used in Eq. 5.4: the

oscillation power spectrum
∣∣∣ δni(f)

ni(0)

∣∣∣2 and electron growth rate γe(f). We show the power

spectrum inferred by the wave probes in Figure 5.7 at various positions in the plume.

Here several distinct harmonics are visible starting at ∼7MHz. From our work in

Chapter IV. we know these are the frequencies corresponding to the electron cyclotron

resonances of the EDI[15, 16]. Along the channel centerline, the oscillations are at

their strongest in the acceleration zone and decay further downstream, but notably

the oscillations appear to start trending up in strength at the end of the domain.

Although, as we will show, the anomalous collision frequency is at its minimum value

in the acceleration region despite the oscillations being strongest at this location.

The measured and theoretical electron growth rates, γe, are given in Fig. 5.8
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Figure 5.7: Power spectrum of density oscillations as measured by wave probes at
various positions in the near-field plume.
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for a location in the acceleration zone (x/L = 1.25) and in the downstream plume

(x/L = 1.75). In these plots, the theoretical value is calculated from the dispersion

relation (Eq. 5.10) and the measured value is calculated from the Ritz and Kim

technique after considering axial energy convection (Eq. 5.21) and adding the ion

Landau damping term(γe = γf − γi). We also consider a result where we ignore ion

damping. This is equivalent to assuming the total growth rate is solely due to the

electron contribution (γe ≈ γf ).

In the theoretical growth rate curve, at the higher frequency there are small dips

in growth rate within the cyclotron harmonics, e.g. f ≈ 16 MHz in Fig. 5.8(a). These

dips are the result of the binning method discussed in Section II.B. we use to con-

vert between wavenumber and frequency space. Here, wavenumbers in the unstable

cyclotron harmonics have the same real frequency as wavenumbers in-between the

harmonics where the growth rate is low. The averaging within the frequency bin

yields the dip in the growth rate curve. Additionally, the discontinuities in the mea-

sured growth rate, without the ion Landau damping term, correspond to frequencies

where the total growth rate is near zero or negative—indicating the wave is damped

at those frequencies.

In the acceleration region (Fig. 5.8(a)), the cyclotron harmonics are visible in

both the theoretical and measured growth rates, and the amplitudes are generally

comparable. Without the ion Landau damping term, the measured growth rate is

weaker than the theoretical quasi-linear, but after adding ion Landau damping the

measured value is larger than the theoretical. This contrasts our initial results in Sec-

tion 5.1 that showed the azimuthal growth rate was almost order of magnitude lower

than the theoretical value in this region and highlights the importance of considering

axial wave energy convection and the ion contribution to the growth rate. In the

downstream region, the measured electron growth rate, both with and without ion

Landau damping, is significantly stronger than theoretical value. The smoothness of
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the measured growth rate curve, with ion Landau damping, stems from the ion term

being significantly larger than the total growth rate measured using the Ritz and Kim

method (|γi| >> |γf |). As we show in the next section, the increased amplitude from

the ion Landau damping term is necessary for calculating an accurate anomalous

collision frequency.

5.4.3.3 Anomalous collision frequency

Using the methods described in Section 5.2, we calculate the anomalous collision

with Eq. 5.4 using the measured power spectrum and growth rates shown in the

preceding section along with background plasma parameters calculated from the IBIS

technique and terms inferred from the real part of the theoretical EDI dispersion

relation. When solving the dispersion relation we have assumed an axial propagation

angle of 15 degrees (kx = ky sin(15
o)) based on previous measurements[101, 15] and

a radial wavenumber of kzλDe = 0.02. This radial wavenumber was selected such

that the radial wavelength is on the order of the channel width—as observed in

recent simulations[89, 64, 95, 56]. In Figure 5.9, we show possible collision frequency

profiles using the measured electron growth rate, both with and without ion Landau

damping, as well the quasi-linear result where we use the growth rate calculated

from the theoretical dispersion relation (Eq. 5.10). We compare these results with

the collision frequency determined from the IBIS method and the classical particle

based collision frequency. As discussed in Section III.B.3, there is uncertainty in the

density profile arising from different assumed boundary conditions for the downstream

density in the IBIS method. We propagate the uncertainty by repeating our analysis

and calculation of anomalous collision frequency for each possible density profile. For

the wave driven collision frequency, the uncertainty propagates due to the dependence

on density in the real part of the dispersion relation and the ion Landau damping

term. For the collision frequency inferred from the IBIS technique, the uncertainty
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(a)

(b)

Figure 5.8: Measured and theoretical growth rates in the acceleration region x/L =
1.25(a), and downstream plume x/L = 1.75 (b). Two curves are shown measured
growth rate, both with and without adding the ion Landau damping contribution.
The growth rate labelled ’Quasilinear theory’ is theoretical value determined from
the solution of the dispersion relation, Eq. 5.10
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comes from the influence of density in the estimation of the axial electron velocity

(see Chapter 3).

The collision frequency profile inferred from the IBIS method has a minimum

value approaching the order of the classical collision frequency at the location of peak

electric field (x/L = 1.125) and then increases monotonically by over an order of

magnitude going downstream. The theoretical result, using the quasi-linear growth

rate, overestimates the collision frequency slightly at the acceleration zone but quickly

decays to a roughly constant value downstream that significantly underestimates the

collision frequency. Without considering ion Landau damping, the measured wave-

driven anomalous collision frequency follows the same trend as the IBIS result, but

under-predicts the anomalous collision frequency by roughly an order of magnitude.

Although, there is slightly better agreement in the acceleration zone. After including

ion Landau damping, the wave-driven result matches the IBIS values to within the

uncertainty at nearly every axial position. We discuss possible reasons for these trends

in the next section.

5.4.4 Discussion

As expected the collision frequencies determined using the theoretical growth rate

from the EDI dispersion relation do not correlate with the actual collision frequency

profile. For the acceleration zone this can be explained by non-linear effects that would

lower the effective growth rate of the EDI, for example by changing the electron ve-

locity distribution function. This type of effect has been previously demonstrated in

simulations of the EDI in the Hall thruster channel[63, 64]. Downstream, where the

theoretical result significantly under-predicts the collision frequency, the situation is

more unclear. One potential explanation stems from the choice in radial wavenumber

when calculating the dispersion relation. We assumed a wavenumber that was on the

order of the channel width, but downstream this restriction does not necessarily hold.
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Figure 5.9: Anomalous collision frequency determined from LIF and wave measure-
ments as a function of normalized position in the Hall thruster plume. Two wave-
driven results are shown based on calculating the electron growth rate with and
without including ion Landau damping: (γe = γf − γi and γe = γf ). The theoretical
quasi-linear result using the growth rate calculated from Eq. 5.10 and the classical
particle collision frequency are also shown for reference.
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The radial wavenumber could be much smaller than at the acceleration zone. The

magnitude of the quasi-linear growth rate strongly depends on the radial wavenumber

and if the wavenumber is an order of magnitude smaller the growth rate would in-

crease by a similar scale. We show this effect in Fig. 5.10 by plotting the peak growth

for the theoretical dispersion at x/L = 1.75 for different values of kz. This would

raise the collision frequency profile up where the downstream value may be in agree-

ment with the LIF measurements. It is possible that the radial wavenumber changes

as the wave propagates downstream and would permit a large radial wavenumber

at the acceleration zone and a small wavenumber downstream such that agreement

with the measured IBIS collision frequency is possible everywhere in the plume, but

experimental efforts to measure the radial wavenumber have proven difficult[15, 14].

Regardless of whether the theoretical values can be adjusted to better align with

the measured collision frequencies, the result calculated using the growth rates in-

ferred from Ritz and Kim method, and including ion Landau damping, strongly agree

with the baseline IBIS result. While early in the acceleration region ion Landau damp-

ing is not extremely significant due to the locally high electron temperature, down-

stream the ion Landau damping amplitude entirely governs the calculated electron

growth rate and anomalous collision frequency. If we assume the EDI is marginally

stable, γf ≈ 0, the anomalous collision frequency can be predicted solely by Eq. 5.22,

the measured oscillations amplitudes, and estimates of the background plasma pa-

rameters. Furthermore, with the oscillation amplitude approximately constant in the

downstream plume (see Fig. 5.7), the wave energy can be approximated as saturated.

For example, the wave energy could be saturated at a fraction of the plasma thermal

energy (ne(0)Te) or azimuthal drift energy (mev
2
e(y)). With these assumptions, the col-

lision frequency can be determined almost solely with the local plasma parameters.

This could lead to a reduced order model of a Hall thruster that accurately captures

the effect of the EDI but without needing a high fidelity simulation of the electron
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Figure 5.10: Maximum linear growth predicted for the EDI by solving the quasi-
linear dispersion relation for the plasma parameters at the farthest downstream point
(x/L = 1.75) over a range of possible radial wavenumbers (kz)
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Figure 5.11: Relative contribution to anomalous collision frequency for low frequency
oscillations (f < 2.5MHz) and high frequency oscillations (f > 2.5MHz) at various
points in the plume.
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population.

In the context of recent simulations of the EDI, our results validate the impor-

tance of the EDI on anomalous transport in Hall thrusters, but we highlight some

key differences. While many simulations have demonstrated the EDI can be sufficient

to explain the anomalous transport seen Hall thrusters, most of these simulations

resolve the EDI with an ion-acoustic-like dispersion[63]. Only a subset of simulations

have resolved the EDI with distinct harmonics[55, 56], and these works also predicted

the non-linear cross-lengthscale energy exchange we observed in Ref. [16]. Although,

while those simulations did predict EDI enhanced transport they observed most of

the cross-field electron transport occurred at the low-frequency and long wavelength

features of the EDI—the MTSI component discussed in Section II.B. In this work

we observe most of the anomalous transport occurs due to the oscillations at the

high frequency cyclotron harmonics. In Fig. 5.11 we show the relative contribution

of to anomalous transport, in the case where we include ion Landau damping, due

to oscillations at frequencies below 2.5 MHz, corresponding to the MTSI, and above

2.5 MHz that represent the cyclotron harmonics. The relative contribution is calcu-

lated by performing the summation in Eq.5.4 over the frequency range of interest and

normalizing by the total summation. In the acceleration zone, there is virtually no

influence of the MTSI frequencies on the cross-field transport. Looking downstream

the low-frequency oscillations begin to play an increasingly important role, but the

high frequency oscillations remain dominant. Although, we are limited in this exper-

iment by the axial domain of the LIF measurements and cannot calculate collision

frequency further than x/L = 1.75, and previous measurements of have shown the

wave energy continues to increase at low frequency further downstream[15]. This

implies that the low frequency waves could become dominant in the far-field plume.
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5.5 Conclusion

We performed a novel calculation of wave driven anomalous collision frequency.

We utilized a bispectral analysis technique and ion Landau damping model to infer

the electron growth rate at several positions in the Hall thruster plume. We demon-

strated that the measured growth rates are indicative of the electron drift instability,

and through linear theory we used the measured growth rates to calculate a wave-

driven anomalous collision frequency. The wave-driven collision frequency showed

strong agreement with the true collision frequency profile inferred from LIF measure-

ments. While our results validate the large body of simulation work that demonstrate

the EDI controls the cross-field transport in Hall thrusters, there still remains some

ambiguity between simulation and experiment. Most notably, our results show the

anomalous transport is driven primarily by the EDI cyclotron harmonics while sim-

ulations show the transport is driven mostly by either an ion-acoustic-like form of

the EDI or the low-frequency MTSI component. Finally, we highlight that our re-

sults could lead to simplified Hall thruster models that self-consistently capture the

wave-driven transport without needing to resolve the EDI in high-fidelity simulations.
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CHAPTER VI

Conclusions and Future Work

6.1 Summary of Work

Hall thrusters are currently the workhorse of the electric propulsion system due to

their high efficiency, relatively simple design, and extensive testing heritage. Despite

their widespread use and technological maturity, the fundamental physics governing

Hall thruster operation remain unsettled, namely the anomalous cross-field electron

transport. While several mechanisms have been proposed to address this enhanced

transport, none have been successful in producing a model that can reliably and ac-

curately simulate and predict Hall thruster performance. Recent simulation work has

pointed toward instability-driven electron transport, but there has been virtually no

experimental evidence to support this theory. In this work, we have used experimen-

tal techniques to develop a stronger understanding of both the nature of instabilities

in Hall thrusters and their impact on cross-field transport.

First, we used ion saturation probes to measure the power spectrum and disper-

sion relation of plasma oscillations in the Hall thruster plume, and in particular at

the acceleration zone. The measured dispersion relation was determined to be char-

acteristic of the electron drift instability in a form with distinct cyclotron harmonics.

This contrasted with previous results that expected the EDI dispersion relation to be

ion-acoustic-like in nature. The spatially resolved power spectrum showed that as the
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instability travels downstream, it undergoes an energy exchange across length scales

where the cyclotron resonances appeared to give up their energy to oscillations at

frequencies significantly below the fundamental cyclotron resonance, later identified

as the modified two-stream instability.

We then applied quasi-linear theory to estimate the cross-field transport induced

by the measured instabilities. We found that using quasi-linear theory with our

measured wave amplitudes did not match the transport profile measured with laser-

induced fluorescence. In light of this result, and some recent simulations that highlight

the nonlinear nature of the EDI, we developed a bispectral analysis framework that

could measure nonlinear wave-wave interactions in a Hall thruster plasma. This work

revealed the highly nonlinear nature of the EDI, and in particular verified simulations

that predicted an inverse energy cascade from the EDI cyclotron resonances to the

low-frequency and long-wavelength MTSI. Additionally, this bispectral analysis tech-

nique was used to estimate the linear growth rate of the EDI. The measured linear

growth showed substantial deviation from the measured growth in both form and

amplitude. We next used the measured linear growth and different wave energy sat-

uration models to estimate cross-field transport. This methodology yielded electron

transport profiles that largely succeeded in matching the measured transport levels

that simple quasi-linear theory failed to reproduce, and agreed well with the expected

transport profile.

6.2 Impact of Work

At the beginning of our research, the root cause of anomalous electron transport in

Hall thrusters was a decidedly unsettled question. A growing number of simulations

were beginning to point towards plasma turbulence, and in particular the electron

drift instability, but there was limited experimental backing for any of these theories.

Our work set out to address these concerns and provide experimental insight into the
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EDI and its effect on Hall thrusters. While it was a bold endeavor, we attempted to

answer two short but difficult research questions: does the EDI exist in Hall thrusters,

and is it responsible for anomalous transport?

6.2.1 Does the Electron Drift Instability exist in Hall thrusters

As a reminder, prior to this work, the only experimental evidence for the EDI

came from a single series of Collective Thomson Scattering experiments[99] that,

while incredibly encouraging, were still inconclusive and invited just as many new

questions regarding the EDI in Hall thrusters as they answered. Chief among these

questions were 1) At what frequencies and wavelengths is the EDI the strongest? and

2) Should the EDI exhibit an ion-acoustic-like dispersion for the conditions of the

Hall thruster plasma? Our experimental research discussed in Chapter IV largely

addressed most of these concerns.

Our use of high-speed electrostatic probes allowed us to resolve a wider spectrum

of oscillations than were accessible to the Thomson Scattering diagnostic. While the

previous efforts of Livtak[69] and Lazurenko[67] took similar experimental approaches

with electrostatic probes, our diagnostic had several improvements that allowed us to

measure a much larger region of the thruster, particularly probing directly into the

acceleration zone, with greater signal resolution and resistance to perturbation of the

thruster. Chapter III provided an overview of this high-speed diagnostic system that

enabled most of the research data utilized throughout our work.

In Chapter IV, we used this new experimental diagnostic system to detect previ-

ously unmeasured plasma wave signatures. In the low-frequency domain, we presented

the first measurement of an ion-acoustic-like wave that appears to grow well past

the Hall thruster’s acceleration zone and contains a significant amount of wave en-

ergy. Additionally, we discovered distinct high-frequency wave content with harmonic-

like frequency spacing, with increasing wave energy closer to the acceleration zone.
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Through a rigorous analysis of the EDI dispersion relation, we were able to confidently

identify the high-frequency oscillations as the EDI with its cyclotron harmonics intact,

in contrast to the Thomson scattering results from a few years prior. We presented

several potential theories explaining this discrepancy, and more recently, simulations

have shown agreement with our experimental results as the numerical models are re-

fined and become more representative of the true thruster geometry and conditions.

Additionally, our data gave confidence to novel simulation results that demonstrate

the importance of non-linear dynamics in determining the final form of the EDI af-

ter growth and saturation. Most importantly, we concluded that the low-frequency

wave we observed grows non-linearly through an inverse energy cascade from the

high-frequency cyclotron harmonics.

Overall, our results provided a new perspective on the electron drift instability

that will continue to be a valuable reference point as simulations and models develop

further. Despite the limitations of our techniques, we were able to confidently answer

our first research question with a firm yes: the EDI does exist in Hall thrusters.

However, similar to the Thomson Scattering experiments, our research prompted just

as many questions as it addressed, mostly centering around the little-explored non-

linear nature of the EDI. In Chapter V, we addressed several of these questions and

used that information to answer the second core research question of our work: Is the

EDI that we measured sufficient to drive anomalous transport?

6.2.2 Does the Electron Drift Instability explain anomalous transport

Building on our promising early work where we were able to identify the electron

drift instability through electrostatic probing methods, we then turned to determine

how we can use our probe data to determine wave-induced electron transport. The

electron drift instability is not the only mechanism that could drive enhanced trans-

port, and it is not even the only instability present in Hall thrusters that could cause
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wave-induced transport. In Chapters II and V, we presented our transport model

linking the measured density perturbation amplitudes to anomalous electron trans-

port, and it quickly became apparent that due to significant non-linearity governing

the EDI, a simple linear model was insufficient.

We heavily used the Ritz and Kim bispectral analysis technique to determine the

growth dynamics of the EDI and relate it to anomalous transport levels. While the

numerical technique we applied is not novel, its usage in low-temperature and density

plasmas is a new development. The bispectral analysis technique has been used ex-

tensively in the fusion plasma community for years to characterize plasma turbulence,

but due to the sensitivity of the analysis method, it is not easily extendable to Hall

thruster plasmas where the signal levels are weak at low density and the noise floor

can be very high. In Chapter III, we discussed several features and experimental

techniques employed to make our system robust enough to overcome these shortcom-

ings that would otherwise doom the bispectral analysis to yield junk data. While

we used the diagnostics and technique to study the EDI in Hall thrusters, it could

be extended to allow new non-linear wave dynamics research in similar low-density

plasma systems.

Through the use of the bispectral analysis system, we were able to both yield

new insight into the non-linear behavior of the EDI and demonstrate that the EDI is

very likely responsible for the observed anomalous electron transport. While there is

still much work to be done before predictive Hall thruster modeling is fast, robust,

and accurate, the results and models presented here move us closer towards the final

goal. While we hope to have answered our central research questions—does the EDI

exist in Hall thrusters and is it responsible for anomalous transport—this work has

several limitations and has prompted more potential projects. In the next sections,

we discuss the limitations of our research and present several thoughts on what future

work may entail.
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6.3 Limitations of this work

Despite the several new insights borne out of this research endeavor, there were

several limitations to our experimental techniques and analysis methods that prevent

our conclusions from being completely definitive. At the heart of all of our experimen-

tal investigations, we relied primarily on electrostatic probes being inserted directly

into the thruster plume to record plasma waves. While we provide significant detail

in Chapter III about our efforts to minimize any potential perturbations of the sys-

tem, due to the complexity of the plasma system, it is impossible to fully characterize

what effect our diagnostic tools have on the plasma instabilities. Furthermore, most

of the waves we were analyzing possess length-scales smaller than what our probe

can directly measure (see the anti-alias discussion in Chapter III). While a signifi-

cant amount of work and modeling was presented in Chapter IV to give confidence

in our results, it would be more conclusive if we could directly probe the relevant

length-scales, but this is currently not possible, even for laser-based diagnostics.

Another limitation that might be more significant for interpreting our results

and comparing them to previous experiments is the specifics of the unit under test.

As we mention throughout this work, we performed our experiments on a magnet-

ically shielded Hall thruster, while virtually all previous research was conducted on

unshielded thrusters. We know that there are important differences in the dynamics

between shielded and unshielded thrusters beyond the ability to reduce erosion. Most

notably, the spoke mode commonly seen in unshielded thrusters is absent in shielded

configurations. In addition, the location and amplitude of key features such as peak

electric field and electron temperature differ, which can have a major influence on

instability development. While we assert that our results should hold in general for

thrusters of any configuration, given the ubiquitous nature of anomalous electron

transport, it is important to consider that system-level changes to the thruster may

alter dynamics of the various processes that could lead to enhanced transport or even
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just their relative strength. Furthermore, in the context of future development, our

results are most applicable since most new thrusters will almost certainly be built in

shielded configurations given the advantages.

Finally, in the process of analyzing the EDI, we have made numerous assumptions

and restrictions about the system in order to make it tractable. For example, nu-

merous restrictions were applied to formulate the EDI dispersion relation used in our

work, and various assumptions were made that allow the Ritz and Kim method to be

applicable to the Hall thruster plasma. These assumptions, and many more discussed

throughout this work, are necessary for any progress to be made but bring us a step

further away from the true physics, and it is not clear how that might impact our

conclusions, even in very subtle ways. Due to the difficulty in designing experiments

that do not require such assumptions, many of these questions will have to be left

to the realm of numerical simulations as they continue to advance and can better

represent the real system.

6.4 Future Work

Our findings in this work prompt several further experimental projects. While

we have sufficiently identified the EDI in our wave probe measurements, we must

highlight that all these experiments were performed at only one thruster operating

condition. There lies the possibility that at some other conditions, the EDI is no

longer the dominant instability in the thruster plume, or even if it is ubiquitous

for all operating conditions, the nature of its dispersion relation may change in a

significant way. Due to the sensitivity of the EDI dispersion relation to a plethora of

plasma parameters, such an experiment would require significant time to perform and

would yield a mountain of data to process and interpret. Despite these challenges, it

is possible that such an analysis might provide significant insight into the nature of

the instability and make tremendous progress towards the development of simplified
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and predictive Hall thruster models.

Further work may utilize better diagnostics that eliminate much of the uncertainty

in invoking so many assumptions in the formulation of our wave-induced transport

model. In particular, the use of incoherent Thomson scattering could directly mea-

sure the electron velocity distribution function for use in both measuring cross-field

transport and calculating the dispersion relation with minimal assumptions. The

slope of the EVDF may also provide greater insight into the saturation mechanisms

of the EDI, although this would require a much higher velocity resolution than what

is available with current Thomson scattering diagnostics.

Finally, as noted in Chapters IV and V, the radial wavenumber of the EDI is

of high importance in predicting the EDI dispersion and growth rate, but our at-

tempts to measure the dispersion in this direction using Beall techniques have not

been successful. While it is unclear why measurement in this direction has been so

unexpectedly challenging, perhaps due to the strong gradient in plasma parameters

along the radial axis, a definitive measurement of the radial wavenumber would put to

rest several uncertainties involved in this current work. Perhaps advances in coherent

Thomson scattering diagnostics that can measure a much wider range of wavenumbers

could fill this gap.
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