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Abstract 

Cyanobacterial harmful algal blooms (cHABs) pose significant ecological and public 

health concerns in freshwater ecosystems. Viruses, specifically phages (viruses that 

infect bacteria), are increasingly recognized as influential players in microbial 

community dynamics, yet their roles within cHABs remain poorly understood. This 

dissertation explores the intricate interactions between phages and their microbial hosts 

within the context of cHABs, revealing their potential impacts on bloom dynamics and 

genetic diversity. Chapter 2 delves into the temporal dynamics of phages infecting 

bloom-forming Microcystis aeruginosa populations in Lake Erie, a region susceptible to 

recurrent cHABs. Through extensive genomic analyses and a novel machine-learning 

model, we unveil the complex web of viral interactions within cHABs, highlighting the 

potential for cross-species exchange of genetic material and potential phage-driven 

alterations in key metabolic pathways crucial for Microcystis persistence in cHABs. 

Chapter 3 further explores the role of phages in cHABs more broadly by unraveling the 

viral community structure and its relationship with the bacterial host community beyond 

Microcystis. Using metagenomic data, we identify and characterize thousands of viral 

operational taxonomic units (vOTUs), decipher their metabolic functions, and predict 

their bacterial hosts. This chapter underscores the dynamic nature of viral communities 

within cHABs and emphasizes the impact of spatiotemporal variation on viruses and 

how community turnover affects virus-host interactions. Chapter 4 shifts focus to how 

Microcystis host evolutionary distance affects their infection profiles, by using a 

collection of Lake Erie Microcystis multispecies enrichments. We reveal a significant 

association between Microcystis strain phylogenetic relatedness and infection profiles, 

suggesting that hosts with similar phylogenies share comparable infection profiles. 

Furthermore, evidence of infection dynamics within the multispecies colonies formed by 

Microcystis and its associated bacteria assemblage emerges, as multiple phages are 

predicted to infect both Microcystis and non-Microcystis hosts within a culture. 



 xi 

Collectively, this dissertation advances our understanding of the intricate interplay 

between phages and their bacterial hosts within cHABs. As such, it provides valuable 

insights into viral ecology as it pertains to cHABs, paving the way for future research to 

bolster our understanding of viruses in the wild. 
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Chapter 1: Introduction 

1.1 Toxic algal blooms and subsequent effects in Lake Erie 

 

Causes of cHABs in Lake Erie and why these phenomenon matter 

1.1.1 Cyanobacterial harmful algal blooms plague Lake Erie annually 

 

“Lake Erie suffered immensely throughout the late 19th and 20th centuries as a receptacle for human, 

industrial and agricultural wastes. But nothing compares to what is happening today. Those millions of 

acres of destroyed wetlands, the overapplication of farm fertilizer, an increase in spring deluges and a 

lakebed smothered with invasive mussels have all conspired to create massive seasonal toxic algae 

blooms that are turning Erie’s water into something that seems impossible for a sea of its size: poison.” 

Dan Egan, The Death and Life of the Great Lakes (2017) 

 

The Lake Erie watershed, with approximately 12 million residents, contributes 

significantly to the economy, generating at least $7.4 billion annually from tourism and 

another $1 billion from seaports along the lake (French et al., 2011; Steffen et al., 2014; 

Wortman, 2014). Since the early twentieth century, Lake Erie has experienced annual 

toxic cyanobacterial harmful algal blooms (cHABs) during the summer months, primarily 

in its western basin (Fig. 1). These persistent blooms are driven by factors such as 

shallow waters, warm temperatures (>25 °C), anthropogenic impacts, and short water 

residence times (~2.1 years) (Harke et al., 2015). Approximately 64% of Lake Erie's 

shoreline is adjacent to agricultural lands, contributing to nutrient loading and availability 

(United States Department of Agriculture, 2014). Industrial runoff and agricultural inputs, 

especially from the Maumee River drainage basin, provide substantial amounts of 

phosphorus and nitrogen, promoting the proliferation of these blooms (Dolan and 

Chapra, 2012; Solomon et al., 2010). Despite international efforts to reduce nutrient 
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levels, particularly phosphorus from the Maumee River, cyanobacterial blooms continue 

to plague Lake Erie (Lewis et al., 2011; Schindler, 2012). In fact, over the past few 

decades, the intensity of cyanobacterial blooms in Lake Erie has significantly increased 

(Bridgeman et al., 2012; Stumpf et al., 2012).  

 

Figure 1. A satellite image of Lake Erie overlaid on a map of the lake and its tributaries. Initially, the bloom forms in 
the western basin of Lake Erie before radiating out towards the central basin. Image from Michalek et al., 2013. 
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The importance of Microcystis aeruginosa in cHABs 

1.1.2 Microcystis aeruginosa: a key member of a complex cHAB community 

 

Microcystis aeruginosa, a globally-distributed cyanobacterium known for forming 

cHABs, has the potential to produce microcystin, a hepatotoxin regulated by the World 

Health Organization for drinking and recreational water standards (Beasley et al., 1989; 

Jochimsen et al., 1998; Yoshida et al., 2008). In 2014, a toxic Microcystis blooom in 

Lake Erie led to a water crisis in Toledo, Ohio, affecting nearly half a million residents by 

disrupting the drinking water supply for more than three days. While the role of 

phosphorus and nitrogen in influencing Microcystis populations is well-documented 

(Harke et al., 2015; Harke & Gobler, 2013), the investigation of interactions between 

Microcystis and other bloom members remains ongoing.  

While Microcystis may dominate these complex communities, recent studies 

have shown that cHABs maintain numerous forms of cyanobacteria and heterotrophic 

bacteria across seasons (Harke et al., 2016; Cook et al., 2020; Smith et al., 2021). 

Though the cooccurrence and interactions between Microcystis and various bloom 

members remains largely unknown, evidence shows Microcystis grows better in the 

presence of heterotrophic bacteria and that Microcystis growth affects environmental 

parameters such as pH and light availability (Kim et al., 2019; Cook et al., 2020; Smith 

et al., 2021), consequently impacting accompanying bacterial populations. Furthermore, 

these bacterial populations can live either freely (as unattached individuals) or attached 

to particles, in part created by Microcystis colonial growth, and these size fraction-

specific assemblages have genomic and physiological differences (Rieck et al., 2015, 

Yung et al., 2016; Suzuki et al., 2017). These free-living and particle-associated 

bacterial populations are influenced by different ecological drivers. Even so, few studies 

have differentiated them, and most are relegated to how different size fractions are 

correlated with environmental conditions (Buchan et al., 2014; Rieck et al., 2015; 

Schmidt et al., 2015; Yung et al., 2016; Mestre et al., 2017).  
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The role of viruses in cHABs 

1.1.3 Impacts of viral infection in cHAB community contexts 

 

Viruses are omnipresent members of Earth’s various environments and are known to 

influence the population dynamics and functional profiles of microbial communities 

(Fuhrman, 1999; Suttle, 2007; Weitz & Wilhelm, 2012; Koskella & Brockhurst, 2014). 

Bacteriophages, viruses that infect bacteria, manipulate microbial populations by way of 

infection and lysis, and by metabolic reprogramming via auxiliary metabolic genes 

(Breitbart, 2011; Hurwitz & Sullivan, 2013; Rosenwasser et al., 2016; Enav, 2018; 

Howard-Varona et al., 2020; Zimmerman et al, 2020) and mediating gene transfer 

between hosts (McDaniel et al., 2010; Soucy et al., 2015). As viral replication hinges 

upon successful infection of a microbial host, so too do the abundances of viral 

populations and the viral community structure in a given environment. Therefore, the 

abundances and community structure of viruses are unequivocally coupled with the 

coexisting microbial host populations upon which they prey (Srinivasiah et al., 2008; 

Flores et al., 2011, 2013; Mihara et al., 2016; Dion et al., 2020; Kauffman et al., 2022). 

Viruses can directly contribute to the collapse of algal blooms or indirectly influence their 

persistence by driving nutrient and organic matter turnover (Wilhelm and Suttle 1999). 

Cyanobacterial viruses, known as cyanophages, have been proposed to regulate the 

progression of cyanobacterial blooms, including Microcystis (Brussaard, 2004; 

Wommack and Colwell, 2000; Yoshida et al., 2008, Yoshida et al., 2012). These 

cyanophages require further study in terms of infection dynamics if we are to 

understand how phage predation influences the progression of Microcystis blooms, not 

only in Lake Erie, but globally. 

The increased levels of both toxic and non-toxic Microcystis strains in Lake Erie 

are primarily attributed to agricultural runoff from the Maumee River (Davis et al., 2010; 

Han et al., 2012). Elevated nutrient loading can also lead to an increase in viral 

abundance, resulting in higher bacterial mortality rates within the ecosystem (Béchette 

et al., 2013; Hewson et al., 2001; Tapper and Hicks, 1998; Wilhelm and Smith, 2000). 

Although nitrogen and phosphorus loading can influence the relative abundance of 
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Microcystis and its phages, the combined effects of nutrient-driven (bottom-up) and 

viral-driven (top-down) controls on Microcystis populations, as well as the dynamics 

between toxic and non-toxic strains, remain poorly understood (Berry et al., 2017; Harke 

et al., 2016). 

1.2 Viral Infection and Viral Community Dynamics 

Strategies used by viruses to infect hosts 

1.2.1 Phage infection strategies 

 

“It is also reasonable to speculate that the capacity of prophages to be induced at a low frequency must in 

itself be advantageous to the phage genome. It is attractive to think of this as a hedging strategy, in which 

the genetically identical phage population can simultaneously exploit two different phenotypes - in this 

case, to optimize its probability of genetic success. Lysogeny can be considered as phage conservatism, 

a strategy suited to survival in adverse conditions, Lytic replication is high-stakes gambling that pays off 

with confident prediction of outcomes. A phage that never takes advantage of the rewards of the high-

stakes game (except under dire and uncertain circumstances) will not be as evolutionary successful as 

the generally conservative phage with an occasionally successful flutter that rewards with a burst of more 

rapid amplification. It seems likely then that phages have evolved to spontaneously induce, in a stochastic 

manner, in order to take advantage of lytic replication while not jeopardizing the genetically identical 

population of prophages still languishing in the chromosomes of their slowly dividing hosts.” Michael G 

Cordingley, Viruses: Agents of Evolutionary Invention (2017) 

 

There exist two well-established modes of viral infection, known as lytic and lysogenic 

cycles (Fig. 2). In the lytic cycle, replication of bacterial viruses commences upon phage 

entry into the host cell, leading to the production of phage progeny and eventual host 

cell lysis. Conversely, phages may follow the lysogenic route, characterized by the 

integration of temperate phage genomes into the host genome and the vertical 

transmission of phages to daughter cells during host cell division. These phages are 

often referred to as prophages. Lysogeny can result in changes to the host phenotype 

and provide immunity against subsequent viral infections. Temperate phages have the 

ability to switch between lysogenic and lytic replication through a process called 
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induction, which can occur spontaneously or in response to biological or chemical cues 

(Ptashne, 2004). 

 

 

Figure 2. Lytic and lysogenic phage cycles. Lytic cycle: 1) Virus attaches to the host cell and injects DNA. 2) Phage 
DNA circularizes and enters the lytic cycle. 3a) New phage DNA and proteins are synthesized and assembled into 
virions. 4a) Cell lyses, releasing phage virions. Lysogenic cycle: 1) Virus attaches to the host cell and injects DNA. 2) 
Phage DNA circularizes and enters the lysogenic cycle. 3b) Phage DNA integrates within the bacterial chromosome. 
4b) Virocell reproduces normally. 5) On occasion, the prophage excises from the bacterial chromosome and enters 
the lytic cycle. Image generated in BioRender. 

 

This genetic switch of temperate phages has been extensively studied in 

systems involving Escherichia coli and Escherichia phage lambda (Ptashne, 2004). 

Upon phage attachment and genome insertion into the E. coli cell, a set of "early" genes 

are transcribed, including transcriptional regulators that promote either the lytic or 

lysogenic pathway (Weitz, 2015). Early genes associated with lysis typically encode 

structural components like phage tail sheaths or phage collars, while lysogeny-related 

genes include an integrase gene and a cI repressor gene. The balance of early gene 

expression determines whether the phage enters the lytic or lysogenic cycle. While we 

possess a detailed molecular understanding of this switch in well-defined systems, our 

comprehension of the environmental factors influencing this switch is still in its infancy. 
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Environmental impacts on the genetic switch 

1.2.2 Environmental impacts on the switch between lysis and lysogeny 

 

The switch between lytic and lysogenic replication strategies in phage has presumably 

evolved as a result of trade-offs between the relative costs of lysis and lysogeny 

(Goldhill and Turner, 2014).  In general, lysogens are hypothesized to be more 

abundant as a result of low bacterial density, which may stem from low nutrient 

availability and low temperatures in the system (Ghosh et al., 2007, McDaniel and Paul, 

2005; Middleboe, 2000; Shan et al., 2014). Bacterial cells are typically smaller under 

poor growth conditions and thus provide fewer nutrients for the generation of viral 

progeny (Akerlund et al., 1995; Volkmer and Heinemann, 2011). Unfavorable host 

growth conditions can also reduce concentrations of susceptible hosts, leading to 

suboptimal foraging and ultimately reducing the benefits of lysis for phage.  

Consequently, low temperatures and reduced nutrient availability may lead to gene 

acquisition and provide a selective advantage for host survival in these unfavorable 

conditions (Touchon et al., 2016). In recent studies however, conflicting dynamics 

between phage and host have been reported in what remains a contentious argument 

(Knowles and Rowher, 2017; Knowles et al., 2016; Weitz et al., 2017). Due to the direct 

effects of lysogeny on host behavior and fitness, discerning the role of prophages is a 

crucial step towards grasping a better understanding of phage-host interactions in 

freshwater ecosystems like the Laurentian Great Lakes.  

Understanding phage-host interactions in the wild 

1.2.3 Seed-bank theory in phage-host dynamics 

“There is nothing so patient, in this world or any other, as a virus searching for a host.” Mira Grant, 

Countdown: A Newsflash Novella (2011) 

Factors driving temporal and spatial variations in viral communities are key to 

detangling complex host-virus interactions and the ecological implications of viruses. 



 8 

Kill-the-winner (Winter et al., 2010), piggyback-the-winner (Knowles et al., 2016) and 

the seed bank theory (Breitbart et al., 2005) are all hypotheses that describe phage-host 

dynamics. Similar to traditional Lotka-Voltera equations, the kill-the-winner hypothesis 

posits that viruses target and lyse the more dominant and rapidly growing hosts in a 

system, while the piggyback-the-winner hypothesis suggests viruses delay host lysis to 

allow for host proliferation and avoid competition from other viruses capable of lysis. 

Seed bank theory (Fig. 3) suggests that the majority of viruses persist in an “inactive” 

state for extended periods, resulting in a reservoir of inactive individuals known as a 

"seed bank.” Seed banks increase the effective population size and reduce genetic drift, 

thereby buffering lineages from extinction and maintaining genetic diversity. 

Additionally, seed banks can alter species interactions by allowing competing species to 

coexist through the storage effect. Knowledge of which hypothesis is observed through 

Lake Erie’s cHABs would provide important insights into mechanistic underpinnings of 

viral community dynamics and their impacts on cHAB progression and functionality. 
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Figure 3. Traditional example of rank-abundance curve demonstrating vOTU abundance in a community. The most 
abundant vOTU is ranked as 1, the next highest is 2, and so on and so forth. According to seed bank theory, only a 
few of the most abundant vOTUs are in the active fraction at any given point. As new hosts rise in abundance in 
response to changing environmental conditions, the viral predators of those hosts may also become abundant. The 
vOTUs that were previously in the active fraction become part of the bank fraction. Adapted from Breitbart, 2005. 

 

 

Defining coevolution and its importance in phage-host dynamics 

1.2.4 Detangling the coevolutionary arms race between host and phage 

“Because the thing about viruses is that they're easily manipulated. The DNA they inject doesn't have to 

be destructive. It can be replaced with almost any kind of DNA you want, and it can be programmed to 
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only replace certain parts of the host's genetic code. In other words, viruses are perfect vectors for 

genetic engineering.” Christian Cantrell 

Coevolution, characterized as the reciprocal adaptation and counter-adaptation 

between interacting species, plays a pivotal role in shaping the population dynamics of 

hosts and their infecting phages (Buckling and Rainey, 2003; Janzen, 1980; Laine and 

Tellier, 2008). Many ecosystems host diverse populations of hosts and phages engaged 

in persistent cycles of coevolution. In these cycles, phage-resistant hosts maintain 

bacterial lineages, while counter-resistant phages drive the evolution of surviving host 

strains (Labrie et al., 2010). However, studying coevolution can be challenging when 

organisms have long generation times or are difficult to culture. Furthermore, viruses 

and their hosts are not isolated entities but dynamic components woven into the fabric 

of all microbial communities.  

Viruses and their hosts engage in a perpetual co-evolutionary arms race, marked 

by the continual development of new infection and defense strategies (Koskella and 

Brockhurst, 2014, van Houte et al., 2016). Over time, this relentless struggle between 

viruses and their hosts shapes the structure of microbial communities and profoundly 

influences host fitness. The influence of viruses extends beyond causing cell death; 

they also significantly shape microbial community structure and function by facilitating 

gene transfer between and across species, a process known as transduction (Jiang and 

Paul, 1998). Some viruses go a step further by encoding auxiliary metabolic genes 

(AMGs), which enhance host metabolic pathways to favor viral particle production 

(Warwick-Dugdale et al., 2019). Additionally, certain prophages establish mutualistic 

relationships by preventing other phages from successfully infecting the same cell, an 

occurrence referred to as "superinfection exclusion" (Rostol and Marraffini, 2019). Thus, 

virus-host interactions represent a pivotal aspect of comprehensive microbial ecology 

studies, impacting both hosts (Ogilvie and Jones, 2015) and their surrounding 

environments (Coutinho et al., 2018; Davenport et al., 2019). 
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1.3 Tools for Diagnostics and Virus Discovery 

Approaches to study viruses in the wild 

1.3.1 Virus Discovery Before Metagenomics 

“...on opening the incubator I experienced one of those rare moments of intense emotion which rewarded 

the research worker for all his pains: at first glance I saw that the broth culture, which the night before had 

been very turbid, was perfectly clear: all the bacteria had vanished... As for my agar spread it was devoid 

of all growth and what caused my emotion was that in a flash I understood: what causes my spots was in 

fact an invisible microbe, a filterable virus, but a virus parasitic on bacteria.” Felix D’Herelle, In Allan 

Chase, Magic Shots: A Human and Scientific Account of the Long and Continuing Struggle to 

Eradicated Infectious Diseases by Vaccination (1982) 

Prior to the metagenomics era, the discovery of viruses heavily relied on classical 

experimental techniques, which required pure cultures of viruses and their potential 

hosts for spot and plaque assays. Other methods involved viral tagging that utilized 

fluorescent labeling and sorting of viruses (Edwards et al., 2016). These traditional 

approaches enabled researchers to delve into the morphology, host range, and 

replication cycles of cultured viruses, contributing significantly to the classification of 

viral lineages defined by the International Committee for the Taxonomy of Viruses 

(ICTV). However, these classical methodologies had limitations, including being low-

throughput and requiring pure cultures, rendering them impractical for studying viruses 

in complex environmental samples where the isolation of both bacteria and viruses 

posed formidable challenges. 

To address the need for detecting and categorizing microbes in environmental 

samples, scientists turned to universal prokaryotic marker genes, notably the small 

subunit rRNA gene (16S) (Woese et al., 1990), as well as domain-specific marker 

genes used in the Genome Taxonomy Database (GTDB) (Parks et al., 2018). In the 

quest to target specific viral groups, researchers employed marker genes associated 

with these groups for the purpose of virus detection and the assessment of diversity in 

environmental samples, primarily employing PCR-based fingerprinting methods 
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(Drosten et al., 2003). Such viral marker genes included major capsid proteins (for T4-

like myoviruses), auxiliary metabolic genes like those encoding photosynthesis proteins 

in cyanophages, and DNA/RNA polymerases (Adriaenssens and Cowan, 2014). 

Nonetheless, the use of marker genes for virus detection and classification 

presented challenges. Primer sets designed for marker genes were highly degenerate 

and required low annealing temperatures, indicating that even conserved group-specific 

genes exhibited diversity. This made them less suitable for quantitative PCR (Duhaime 

and Sullivan, 2012). Moreover, given the high variability of viral gene content, these 

primer sets were typically designed for specific viral groups, leaving a substantial 

portion of the virome unaccounted for. Additionally, PCR-based fingerprinting fell short 

when it came to identifying entirely novel viruses that lacked known marker genes.  

Cultivating a diverse range of viruses was often hindered by the initial necessity 

of cultivating the host organisms in pure culture, presenting a significant bottleneck in 

virology research. This limitation stemmed from the fact that many microorganisms 

remained uncultured (Lloyd et al., 2018). The challenge of obtaining pure host cultures 

restricted the variety of viruses that could be successfully isolated and studied under 

controlled laboratory conditions. Even when host cultures were accessible, not all of 

them could be grown to the point of confluence on agar plates, which was a prerequisite 

for the formation of viral plaques (Chen and Novick, 2009; Willner and Hugenholtz, 

2013). 

For viruses lacking the ability to form plaques, alternative strategies were 

devised, particularly for detection purposes. These strategies included culture clearing 

methods, which involved inducing lysis of the host culture in a broth (Sullivan et al., 

2003, Waterbury and Valois, 1993) and routine test dilution, where culture clearing on a 

plate occurred with near-confluent lysis (Thomas and Corbel, 1977). Notably, culture 

clearing could be automated and carried out in multi-well plates, enabling high-

throughput monitoring of viral growth dynamics (Henry et al., 2012). 
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Furthermore, it is noteworthy that the host organism originally used for isolation, 

often obtained from a different sample than the virus isolate, might not always serve as 

the primary host for a virus. In some cases, it represented a suboptimal host, potentially 

leading to inaccuracies in estimating viral growth parameters (Howard-Varona et al., 

2017, Enav et al., 2018). These challenges associated with cultivating virus hosts in the 

laboratory posed significant obstacles to the isolation, propagation, and ecological 

characterization of viral isolates under controlled conditions. In subsequent years, 

alternative methods to study viruses were not only sought, but considered inescapable 

in order to gain perspective on their roles in complex ecosystems. 

Using modern approaches like metagenomics to study viruses 

1.3.2 Capturing Viral Genomes Through Sequencing Technologies 

In contrast to isolation procedures, which primarily target individual viruses or specific 

microbial clones, metagenomics offers a more comprehensive approach by involving 

the extraction of DNA from a given sample. The extracted DNA is subsequently 

fragmented into numerous smaller pieces and subjected to shotgun sequencing, 

resulting in a wealth of sequence data analyzed collectively to reconstruct the genomes 

of both bacteria and viruses present within a given environmental sample (Handelsman, 

2004; Edwards and Rowher, 2005; Roux, 2019). Unlike virus isolation, metagenomics 

does not rely on the need for culturing, which provides an advantage when studying 

uncultivable microbes. This approach significantly broadened our understanding of 

microbial life in various environments and, notably, provided valuable insights into the 

presence and diversity of viruses within ecosystems (Handelsman, 2004; Daniel, 2005; 

Edwards and Rowher, 2005; Roux, 2019). 

1.3.3 Resolving Virus Genomes amidst Abundant Sequence Data 

In this section, we address several challenging aspects related to characterizing viruses 

in metagenomes. The foundation of these challenges lies in the fact that there are an 

estimated 1031 phages on Earth (Suttle, 2005), and there are thought to be hundreds of 
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thousands of viral genotypes in our oceans alone (Angly et al., 2006). The sheer 

magnitude of these numbers underscores the appeal of metagenomics as a method, as 

it is impossible to isolate all or even a majority of these biological entities. However, this 

abundance of data generated by metagenomic analyses can sometimes hinder our 

ability to precisely differentiate individual types of organisms, and this has been 

particularly problematic in resolving virus genomes. Regardless, two general 

approaches exist to enhance the resolution of virus genomes in metagenomic analyses: 

improved sequencing depth and enhanced sequence analysis. To be sure, these 

approaches include biases in terms of the DNA that is sequenced or analyzed. 

Metagenomic analysis of random DNA samples can introduce biases stemming 

from various factors, including (1) the specific methodologies used for sample collection 

and storage, (2) the physical and chemical techniques employed for DNA extraction and 

subsequent amplification, and (3) the choice of bioinformatic tools used for 

metagenome reconstruction (Delmont et al., 2011). Many of these biases, however, can 

be mitigated through the implementation of standardized methodologies (Kunin et al., 

2008; Roux et al., 2017; McLaren et al., 2019). 

When collected, DNA sequences are often fragmented and diverse, making it 

difficult to assemble sequenced fragments into complete or nearly complete genomes. 

Less abundant genomes are often overlooked and result in a lack of fully sequenced 

genomes. Consequently, a constructed metagenome may not precisely reflect the 

actual collection of sequences in the original sample. To address the aforementioned 

issues, increasing the number of sequencing reads for a sample can enhance the 

recovery of metagenome-assembled genomes (MAGs) with lower error rates (Martinez-

Hernandez et al., 2017,Sieradzki et al., 2019). Similar challenges are observed with 

viral genomes, despite their smaller size in comparison to bacterial genomes. 

Additionally, viral DNA is often less abundant in natural systems, making them less 

likely to be captured by sequencing efforts. Consequently, this results in far fewer virus 

sequences and genomes generated in metagenomes compared to their bacterial hosts. 
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Identifying viruses within metagenomes is further complicated by the immense diversity 

of viruses present, which can pose challenges in de novo assembly of viral contiguous 

sequences (contigs) (Sutton et al., 2019). Contig assembly algorithms rely on 

overlapping sequences (e.g., De Bruijn graph assembly) and are less effective when 

there are fewer copies of specific viral DNA sequences present in a sample. In 

particular, the scarcity of overlapping stretches of sequenced nucleotides can hinder the 

assembly of viral genomes without pre-existing templates (Sutton et al., 2019). As a 

result, virus sequences often constitute a small proportion of assembled sequences, 

and only partial virus genomes are typically obtained (Emerson et al., 2018). 

1.3.4. The importance of sequence read depth and coverage 

Sequencing efforts are often evaluated in two distinct ways: read coverage and read 

depth. Coverage pertains to the portion of a contig or genome that possesses aligned 

reads, indicating how complete an assembled genome is concerning a reference 

genome. In the case of bacterial and archaeal MAGs, researchers rely on the 

identification of universal marker genes to estimate completeness (Bowers et al., 2017). 

On the other hand, read depth represents the average number of reads aligning to each 

base in a contig or assembled genome. Read depth serves as a measure of the relative 

abundance of microbes or viruses within environments and is essential for assessing 

the reliability of certain analyses. In general, higher read depth is preferred as shallow 

read depth can result in the omission of less abundant viruses and their hosts. This 

limitation can impact estimates of metagenomic diversity. Nonetheless, interpreting the 

ecological implications solely based on read depth of sequencing reads can be 

challenging and misleading. While higher relative abundance in a metagenome 

suggests a potentially greater impact of certain viruses on an ecosystem due to a higher 

read depth, abundance alone does not provide qualitative insights into their impact. 

Metagenomes represent a snapshot of a community and lack information about 

community dynamics over time unless generated as part of a time series.  
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1.3.5 Needles in a haystack: Identifying viruses in large metagenomic datasets 

Distinguishing viral genomic sequences from cellular genomic sequences presents a 

fundamental challenge in metagenomic analyses of large quantities of environmental 

DNA used to study virus ecology. Significant progress has been made in addressing 

this challenge,as tools have been developed to identify viral hallmark genes (e.g., 

VirSorter (Roux et al., 2015) or virus-specific motifs (e.g., VirFinder/DeepVirFinder (Ren 

et al., 2017, Ren et al., 2020)) to identify likely viral contigs in metagenomes. VirSorter 

relies on a database of known viral genes for category prediction and is particularly 

effective for marine viruses, given their better genomic characterization. DeepVirFinder 

also relies on a virus reference database and utilizes a machine learning approach for 

robust detection of virus fragments ≥3 kb. It offers conservative and sensitive 

approaches for selecting contigs based on scores and p-values. VirSorter and 

DeepVirFinder can be used in parallel to optimize viral identification from metagenomic 

data. Since the introduction of these tools, a cascade of viral identification tools have 

been developed to address challenges in identifying viral contigs in metagenomes and 

combinations of these tools have been analyzed to provide recommendations for users 

based on their sampling environment and research goals (Hegarty et al., 2023; Wu et 

al., 2023). 
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1.3.6 Benefits and Limitations of Viromics 

Viromes, or metagenomes primarily consisting of sequence data obtained from the viral 

fraction (<0.22 µm) of environments, involves the separation of viruses from cells, 

followed by the lysis of these particles and subsequent sequencing of the liberated 

nucleic acid. Essentially, a virome can be viewed as a "targeted metagenome," focusing 

on a specific aspect of a metagenome to provide a more detailed description of the 

taxonomic content and related characteristics of that fraction. The first virome, published 

in 2002 (Breitbart et al., 2002), originated from marine water samples, and since then, 

this approach has become one of the predominant methods for characterizing viruses 

across diverse environments (Pratama and van Elsas, 2018; Breitbart et al., 2018). 

Viromes offer a notable advantage over the extraction of viral signals from less 

specific metagenomes in that they provide enhanced coverage of viral genomes. This 

increased coverage is made possible by the prior removal of both prokaryotic and 

eukaryotic DNA, as these entities possess larger genomes that account for a significant 

portion of sequencing reads. By specifically targeting the viral fraction for sequencing, 

viromes can yield a greater recovery of viral contigs than larger, less-targeted fractions 

(Wing et al., 2024a in prep). As a result, greater read depth is achieved, leading to a 

more encompassing snapshot of viral diversity and the revelation of micro-diversity 

within viral populations (Gregory et al., 2019). These benefits translate into the 

acquisition of complete or nearly complete viral genomes that can subsequently serve 

as reference genomes. Reference genomes are valuable for identifying new viruses 

from metagenomic or viromic data, determining viral taxonomic affiliations, and 

facilitating the prediction of viral gene functions. 

However, viromics shares several drawbacks with metagenomic studies These 

include biases introduced during sample preparation, high costs due to the extensive 

number of required sequencing reads (although costs are continually decreasing), 

computational intensity (Roux, 2019), and the challenge of annotating most predicted 

genes. Unlike untargeted metagenomic approaches where DNA is collectively 
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extracted, viromics necessitates additional wet lab procedures to separate viruses from 

various forms of environmental DNA before viral DNA itself can be extracted. 

1.3.7 Short- and Long-Read Sequencing: Different Sized Pieces of the Same 

Puzzle 

The choice between short- and long-read sequencing in metagenomic studies carries 

both advantages and drawbacks concerning explorations into virus diversity and 

distribution. High-throughput sequencing of short reads, typically spanning 100 to 250 

base pairs, represents the most prevalent and cost-effective sequencing platform. It 

also benefits from extensively refined computational tools for the detection and 

characterization of viral genomes. In recent years, significant endeavors have been 

invested in enhancing long-read sequencing in terms of quality and throughput, with 

certain platforms now generating reads exceeding 2,000,000 base pairs in length 

(Payne et al., 2018).  

The merits of employing long reads encompass several aspects including 

enhanced sensitivity, identification of hypervariable regions, detection of recombinants 

and perhaps most importantly, improved genome assemblies. The enhanced sensitivity 

of long-read sequencing can capture taxa that might elude detection by short reads, 

including less common viral Operational Taxonomic Units (vOTUs). Long reads also 

facilitate the identification of hypervariable regions within viral genomes, shedding light 

on their genetic diversity. Furthermore, the extended read lengths provided by long-read 

sequencing aid in the identification of recombinants within viral populations, uncovering 

genetic exchanges that may impact virus evolution. Finally, long reads contribute to 

more robust assemblies of viral genomes, increasing opportunities to recover complete 

viral genomes (Zablocki et al., 2020).  

To unlock the full potential of metagenomic studies and comprehensively explore 

virus diversity and distribution, a compelling strategy emerges: the integration of both 

short and long-read sequencing approaches. This combined approach harnesses the 

strengths of each technology, providing a more comprehensive view of the virome. 
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Short reads excel at efficiently identifying abundant vOTUs, while long reads enhance 

sensitivity to less common vOTUs, uncover hypervariable regions, detect genetic 

exchanges, and enable more robust genome assemblies. By synergizing these 

capabilities, researchers can delve deeper into the intricate world of viruses, ultimately 

advancing our understanding of viral ecology and evolution in complex microbial 

communities. 

Applying network-based approaches to viral ecology 

1.3.8 Constructing Networks in Viral Ecology 

1.3.8.1 Who is Who? Viral Taxonomy in the Age of Networks 

While viral phylogenomics, the study of reconstruction and analysis of evolutionary 

relationships and diversification among viruses, is valuable for understanding viral 

relatedness and taxonomy, this methodology faces limitations in representing the 

mosaic and highly diverse nature of viral genomes (Lima-Mendez et al., 2008). 

Additionally, hierarchical tree structures often inadequately portray the actual 

evolutionary trajectories of viruses, and different viral lineages may not fit onto the same 

phylogram if they lack common genes (Low et al., 2019, Iranzo et al., 2017, Corel et al., 

2016). To address these limitations, the field of virology has increasingly turned to 

network-based approaches (Lima-Mendez et al., 2008). These networks use shared 

proteins to establish links between viral genomes. In some networks, known as 

monopartite networks, nodes, which represent viral genomes, are connected by edges, 

which are weighted based on the total protein sequence similarity between two given 

nodes (Lima-Mendez et al., 2008). VConTACT2 is an example of a tool that employs 

monopartite networks of reference viral genomes to classify the taxonomy of user-

provided viral sequences (Bin Jang et al., 2019). Sequences that share proteins with 

reference viruses cluster together within the network, allowing for the identification of 

novel viral sequences as outliers (Bolduc et al., 2017). On the other hand, bipartite 

networks not only show relatedness between viral genomes but also indicate which 

proteins are shared between groups of viruses (Bolduc et al., 2017). These networks 
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have facilitated the identification of hallmark genes commonly shared by double-

stranded DNA (dsDNA) viruses, providing valuable insights into the evolutionary history 

of viruses (Iranzo et al., 2016a, Iranzo et al., 2016b). 

1.3.8.2 Who Infects Whom? Virus-Host Interactions as Networks 

In viral ecology, disentangling virus-host interactions is paramount (Mihara et al., 2016). 

The effects of viruses are observed through interactions with their hosts. Virus-host 

interactions are often considered as part of vast ecological networks capable of varying 

across environmental gradients (Tylianakis et al., 2017). These networks are invaluable 

as they provide mathematical foundations to quantify interactions between members of 

ecosystems, where members are represented by nodes and interactions between 

members are represented by edges (Bascompte, 2009). 

When applying network thinking to viral ecology, nodes become hosts and 

viruses and the edges become potential interactions between hosts and viruses based 

on a metagenomic data (Mihara et al., 2016). The Virus-Host Database is a valuable 

resource for virus-host information, compiling data from sources like RefSeq, GenBank, 

UniProt, ViralZone, and manual literature surveys (Brister et al., 2015; Benson et al., 

2013; Consortium TU, 2019; Hulo et al., 2011). The remarkable diversity of viruses, 

encompassing variations in structure, genetic material, host ranges, and habitats, 

presents challenges for both traditional molecular methods and computational 

techniques. To address these challenges, viral ecologists currently use three genomic 

features to identify interactions between hosts and their viral predators. Those features 

are described in the following sections. 

 

1.3.8.2.1 CRISPR-Cas System 

 

In recent years, a bacterial defense mechanism based on a region of DNA known as 

clustered regularly interspaced short palindromic repeats (CRISPR) has emerged as a 

powerful tool for studying coevolution through DNA sequence analysis. The CRISPR-

Cas system, a form of adaptive immunity present in over 40% of bacteria and over 90% 
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of archaea, targets and degrades recognized phage DNA, preventing infection, and 

simultaneously keeps a record of phage infections (Fig. 4) (Dutilh et al., 2014; Koskella 

and Brockhurst, 2014; Staals and Brouns, 2012). Several sequenced Microcystis 

genomes contain arrays of CRISPR spacers, some with over 70 spacers, indicating 

persistent infections and providing a valuable tool for studying the rapid evolution of this 

cyanobacterium (Grissa et al., 2007; Makarova and Koonin, 2012; Makarova et al., 

2013). Additionally, analyzing spacers within the CRISPR-Cas systems of community 

genomes, referred to as metagenomes, helps establish links between Microcystis and 

its phages and sheds light on their infection dynamics by identifying patterns in CRISPR 

spacers that persist within populations and across communities (Berg-Miller et al., 

2011). 

 

Figure 4. Three stages of CRISPR-mediated phage immunity. New spacers from the phage genome are integrated 
into the host CRISPR array (acquisition), separated by palindromic repeats (white rectangles). The array is 
transcribed and processed by Cas proteins to generate small crRNAs (adaptation). crRNA leads Cas protein complex 
to matching target to induce cleavage of exogenous nucleic acid (interference). Adapted from Heler et al. 2014. 

 

Although spacer acquisition depends on the host microorganism, numerous 

studies have used CRISPR arrays to study the chronological order of phage infections. 

Newly incorporated spacers, acting as proxies for the most recent infections, are 

typically found at the leader end of the CRISPR array (Andersson and Banfield, 2008; 

Barrangou and Dudley, 2016; Stern and Sorek, 2010). Researchers have also utilized 
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the CRISPR-Cas system to differentiate between closely related strains (Heidelberg et 

al., 2009; Held et al., 2013; Tyson and Banfield, 2007). Coevolutionary dynamics 

between phages and hosts, including selective sweeps and bottlenecks that can shape 

species composition within bacterial populations, have been investigated using this 

system (Paez-Espino, 2013; Pride et al., 2010; Touchon and Rocha, 2010). For 

example, an analysis of spacer sequences within a Microcystis population in a small 

pond during a cyanobacterial bloom revealed multiple coexisting CRISPR types, defined 

as groups of CRISPR sequences sharing at least two trailer-end spacers, suggesting 

that the population did not experience a complete selective sweep but rather an 

incomplete one, allowing specific genotypes to persist over two years (Kuno et al., 

2014). While the spacer-repeat arrays of the CRISPR-Cas system have been used to 

identify sweeps in various bacterial populations in other studies, the seasonal variation 

experienced by many Microcystis populations during Lake Erie blooms presents a 

unique challenge (Paerl and Otten, 2013). These blooms may undergo annual 

bottleneck effects due to harsh winter conditions, preventing a typical selective sweep 

from occurring (Kimura et al., 2012; Kimura et al., 2018; Yoshida et al., 2010). 

1.3.8.2.2 Hi-C: The Power of Physical Linkage 

High-Throughput Chromosome Conformation Capture (Hi-C) has been applied to 

investigate virus-host interactions by capturing the 3D architecture of chromosomes 

through proximity-based fixation and high-throughput sequencing (Marbouty et al., 

2017; Marbouty et al., 2021). Although it characterizes prophages and slow-growing 

lytic phages, it may not capture highly virulent phages. Sequencing of viromes remains 

necessary to generate a comprehensive inventory of viral genomes. Single-cell Hi-C 

enables studies of chromosome-viral genome interactions at a single-cell level, 

facilitating the identification of virus-host physical linkages (Kim et al., 2020, Nagano et 

al., 2015). 
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1.3.8.2.3 Sequence Homology, AMG homology and k-mer frequency 

Recombination sites with recognition sequences and the identification of auxiliary 

metabolic genes (AMGs) in viral sequences have also been used for host prediction 

(Edwards et al., 2016; Roux et al., 2016). Abundance profiles, which reflect the 

sequencing coverage of viral or host sequences across multiple samples, offer another 

approach for host prediction, especially effective with time-series metagenomic data 

(Thingstad, 2000; Van Goethem et al., 2019; Arkhipova, 2018). K-mer (oligonucleotide) 

frequency profiles have been employed to predict virus-host relationships, as viruses 

often exhibit similar profiles to their hosts (Ahlgren et al., 2017; Villarroel et al., 2016; 

Galan et al., 2019). Tools like VirHostMatcher, HostPhinder, Host Taxon Predictor and 

VHIP leverage k-mer frequency distributions for host prediction (Ahlgren et al., 2017; 

Villarroel et al., 2016; Galan et al., 2019; Bastien et al., 2023). Tetranucleotide (4-mer) 

frequency profiles have been particularly useful for alignment-free host prediction 

(Coutinho, 2018; Emerson et al., 2018; Roux et al., 2015; Roux et al., 2016). 

In practice, combining multiple approaches, both homology-based and non-

homology-based, and considering consensus results is common to achieve 

comprehensive and accurate predictions of virus-host associations (Edwards et al., 

2016). In summary, advancements in virology have been driven by computational 

approaches that leverage genomic data, including sequence homology, abundance 

profiles, and k-mer frequency profiles, to predict virus-host interactions and enhance our 

understanding of viral dynamics within microbial communities (Mihara et al., 2016). 

1.4 Dissertation Overview 

In the realm of freshwater ecosystems, Cyanobacterial Harmful Algal Blooms (cHABs) 

present considerable ecological and public health concerns. While their significance is 

well-recognized, the roles of viruses, particularly phages, in shaping microbial 

communities within cHABs remain enigmatic. This dissertation embarks on a journey to 

unravel the intricate interactions between phages and their bacterial hosts within the 

context of cHABs, unveiling their potentially profound impacts on bloom dynamics. 
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Chapter 2 of this dissertation reports on the temporal dynamics of phages 

infecting Microcystis aeruginosa, a predominant bloom-forming cyanobacterium in Lake 

Erie—an area prone to recurring cHABs. Through comprehensive metagenomic 

analyses and the innovative application of a machine-learning model, this chapter 

unravels the complex web of viral interactions within cHABs. It illuminates the potential 

for cross-species exchange of genetic material and unveils phage-driven alterations in 

crucial metabolic pathways essential for Microcystis adaptation. 

 

Chapter 3 takes us further into the world of phages in cHABs by dissecting the 

viral community structure and its relationships with the host community. Leveraging 

metagenomic data, this chapter identifies and characterizes thousands of viral 

populations. It deciphers their metabolic functions and predicts their microbial hosts. 

The focus here lies on highlighting the dynamic nature of viral communities within 

cHABs at the smallest of spatial scales and underlying factors that impact viral 

community structure and function, and how this variation can lead to changes in virus-

host interactions. 

 

Chapter 4 shifts our attention to exploring the correlation between host genome 

evolution and how it affects their infection profiles, using a collection of Lake Erie 

Microcystis isolates. This chapter uncovers a significant association between 

phylogenetic relatedness and infection profiles. This suggests that more evolutionary 

related hosts share comparable infection dynamics. Additionally, intriguing evidence 

emerges regarding intra-colony infection dynamics, as multiple phages are predicted to 

infect both Microcystis and non-Microcystis hosts within a culture. 

 

In summation, this dissertation advances our comprehension of the intricate 

interplay between bacterial hosts and their viral predators within cHABs. These 

revelations provide invaluable insights into the viral ecology of cHABs, planting seeds 

for future research aimed at a more complete understanding of viruses in all natural 

systems. 
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Abstract 

Given the impact of viruses on microbial community composition and function, viruses 

have the potential to play a significant role in the fate of freshwater cyanobacterial 

harmful algal blooms (cHABs). Yet the role of viruses in complex bloom communities 

remains poorly understood. As the frequency and intensity of cHABs are increasing 

globally, we sought to address this knowledge gap by tracking viruses of bloom-forming 

Microcystis aeruginosa through a cHAB in the western basin of Lake Erie. We identified 

Microcystis virus Ma-LEF01, a relative of the well-studied Microcystis virus Ma-LMM01, 

and tracked the temporal succession of its population variants through the Lake Erie 

bloom, highlighting the local provenance and persistence of Ma-LEF01-like viruses in 

the lake over a five year period. Size-fractionation of the water allowed us to identify 

significant fraction-specific trends in viral diversity, which corresponded with Microcystis 

genetic diversity. Using a new machine-learning model, we predicted infections between 

viral and microbial host populations. We found hundreds of viral populations shared 

between Microcystis and non-Microcystis hosts, suggesting extensive interconnectivity 

and the potential for virus-mediated cross-species exchange of genetic material within 
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cHABs communities. Abundant viral genes belonging to predicted Microcystis viruses 

revealed their potential role in key metabolic pathways involved in carbohydrate 

biosynthesis, photosynthesis, nitrogen metabolism, and adaptation to environmental 

changes.  These findings advance our understanding of uncultivated Microcystis virus 

diversity, their potential effects on host metabolism, and their potential influence on the 

complex microbial communities associated with Microcystis-dominated cHABs. 

Importance 

Understanding interactions between viruses, their hosts, and environmental parameters 

is central to identifying the triggers and mechanisms underlying the onset, persistence, 

and demise of cyanobacterial harmful algal blooms. In this study we describe the viral 

diversity, metabolic potential, and host ranges of viruses predicted to infect Microcystis, 

describing the distribution of these properties across time, space, and different bloom-

associated size fractions. These findings contribute to a better understanding of the 

interplay between viruses, Microcystis, and their accompanying bacterial communities, 

shedding light on the mechanisms driving bloom dynamics, species interactions, and 

coevolutionary processes. 

2.1 Introduction 

Microcystis aeruginosa is a cyanobacterium that can form toxic blooms in freshwater 

and estuarine systems worldwide (Yoshida et al., 2008; Preece et al., 2017). 

Microcystins, the most prolific in a suite of toxins produced by Microcystis aeruginosa 

(Perez-Carrascal et al., 2019), have toxic effects on humans and diminish drinking 

water quality and overall aquatic ecosystem health (Paerl et al., 2013b; Steffen et al., 

2017; Huisman et al., 2018). The frequency and intensity of M. aeruginosa blooms are 

increasing (Paerl and Huisman, 2009; Harke et al., 2016), largely due to climate change 

and eutrophication of aquatic habitats (Paerl and Huisman, 2008; O’Neil et al., 2012; 

Michalek et al., 2013; Pearl and Otten; 2013b; Visser et al., 2016). While the role of 

such abiotic controls on Microcystis bloom progression has been the focus of study for 

years, elucidating the role of biotic controls, such as predator-prey relationships, has 
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been less explored, partly owing to the challenges of studying microbial interactions in 

complex community contexts. 

Viruses profoundly influence microbial communities by infecting and lysing 

microbial host populations (Fuhrman, 1999; Suttle, 2007; Weitz & Wilhelm, 2012; 

Koskella & Brockhurst, 2014), reprogramming host metabolisms (Breitbart, 2011; 

Hurwitz & Sullivan, 2013; Rosenwasser et al., 2016; Enav, 2018; Howard-Varona et al., 

2020; Zimmerman et al, 2020), and facilitating gene transfer (McDaniel et al., 2010; 

Soucy et al., 2015). Evidence suggests that Microcystis in the annual Lake Erie cHABs 

of the lake’s western basin is susceptible to viral infection and subsequent lysis (Steffen 

et al., 2017; Jiang et al., 2019; McKindles et al., 2020), and release of microcystins from 

cells due to viral lysis contributed to the Toledo drinking water crisis in 2014 (Steffen et 

al., 2017). Yet, much of what is known of Microcystis viruses is through tracking the 

abundance and distribution of viral marker genes of a single Microcystis virus isolate, 

Ma-LMM01, and its close relatives (e.g. Yoshida et al., 2007; Mankiewicz-Boczek et al., 

2016; Steffen et al., 2017; McKindles et al., 2020; Rozon and Short; 2013; Yoshida-

Takashima et al., 2012). In contrast, a community genomic approach captures the 

complex system of microbial populations interacting with one another, their viral 

predators, and their environment. 

In this study, we sought to address (1) How do the diversity and distribution of 

viruses infecting Microcystis vary across time, space, and different size fractions during 

a cHAB in Lake Erie, and (2) What are the possible implications of Microcystis virus 

infection in terms of host metabolisms and gene flow with other host taxa? With a 

combination of metagenomic analyses of viral and cellular communities, we set out to 

detail the viral diversity and potential host range of viruses predicted to infect 

Microcystis, the distribution of these viruses across time, space, and different size 

fractions, and explored their metabolic potential. These findings will contribute to a 

better understanding of the mechanisms driving cHAB dynamics, species interactions, 

and potential coevolutionary processes. 

https://ami-journals.onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.15615#emi15615-bib-0374
https://ami-journals.onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.15615#emi15615-bib-0177
https://ami-journals.onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.15615#emi15615-bib-0299
https://ami-journals.onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.15615#emi15615-bib-0182
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2.2 Results and Discussion 

2.2.1 Tracking Microcystis during the 2014 Lake Erie cHAB 

We analyzed metagenomic data obtained from cyanobacterial harmful algal blooms 

(cHABs) in the western region of Lake Erie (Fig. 5A) that persisted from July to October 

in 2014 (Cory et al., 2016; Berry et al., 2017; Smith et al., 2021). Concentrations of 

particulate phycocyanin (used as a proxy for cyanobacteria) and microcystin (indicative 

of bloom toxicity) revealed a toxic Microcystis bloom at all three sampling locations 

(WLE12, WLE2, WLE4) in early August (Fig. 5A-B). The cyanobacterial bloom, in late 

September occurred primarily at the nearshore stations (WLE12 and WLE2), showed 

lower microcystin concentrations than August 4, and was dominated by Microcystis 

genotypes that contained a partial operon of mcy genes or lacked mcy genes altogether 

(Yancey et al. 2022). To investigate the viruses and virus-host interactions associated 

with these blooms, we analyzed metagenomic data from each station at the two bloom 

peaks and across five size fractions chosen to target Microcystis in both free-living and 

colony forms and their viruses (Fig. 5C). From these data, we reconstructed 17 

Microcystis metagenome assembled genomes (‘MAGs’; Fig. 5D-E; SI Table 1) and 

27,086 viral contigs >3 kb. Relative abundances of Microcystis ranged from 0-29%, 

based on proportion of the total reads in each sample that mapped to the Microcystis 

MAGs in the cellular fraction metagenomes (0.22-100 µm; Fig. 5E). Highest relative 

abundances of Microcystis MAGs were observed in the 100 µm fraction where large 

Microcystis colonies that typify blooms are expected. The greatest variability in 

abundances between Microcystis MAGs was also observed in this fraction (Fig. 5E), 

which we suspect is due to the sporadic rise and fall of different colony-forming 

Microcystis populations captured in the 100 µm fraction. Viral contigs identified across 

all size fractions were clustered into 15,461 viral operational taxonomic units (vOTUs), 

which approximate viral species, based on broadly accepted thresholds (95% ANI 

across 85% of the contig length (Roux, 2019). 
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Figure 5. Lake Erie 2014 sampling overview and Microcystis MAG diversity and dynamics. (A) A map of 
sampling sites located in the western basin of Lake Erie. Three sites were sampled bi-monthly in June 
and weekly from July to October of 2014. (B) Phycocyanin, chlorophyll-a and microcystin measurements 
for the 2014 bloom. (C) Sampling filter size fractionation schematic of how samples were collected from 
the western basin of Lake Erie in 2014. (D) Heatmap of average nucleotide identity (% ANI) between 26 
Microcystis MAGs reconstructed from samples July through August across three stations and four sample 
fractions. Bottom row and right column list the MAG identifiers. Sample fraction, station and date are 
identified by color of left panel. Dendrogram depicts the clustering of MAGs based on %ANI. (E) Relative 
abundances of Microcystis MAGs based on fraction of reads from each sample that mapped to each 
MAG in a competitive read mapping to all assembled MAGs from that sample. No data exist for 4 Aug 
100 µm at WLE12 and 53 µm at WLE4. 

2.2.2 Lake Erie-specific populations of known globally distributed Microcystis 

viruses 

2.2.2.1 Four previously isolated Microcystis viruses identified in Lake Erie cHAB bloom 

peaks 

We first sought to identify and track known Microcystis virus OTUs (vOTUs) in Lake 

Erie. To date, 10 freshwater Microcystis viral lab isolates have been sequenced and 

described (Tucker and Pollard, 2005; Yoshida et al., 2008; Ou et al., 2015; Lin et al., 

2020; Yang et al., 2020; Naknaen et al., 2021; Cai et al., 2022; Qian et al., 2022; Wang 

et al., 2022; Zhang et al., 2022). We identified four Lake Erie vOTUs (vOTU_4, 

vOTU_1398, vOTU_4148, vOTU_6227) with a high degree of similarity to four 

Microcystis virus isolates (SI Fig. 1; SI Table 2): Microcystis aeruginosa viruses Ma-

LMM01 (Lake Mikata, Japan, 2006), MaMV-DC (Lake Dianchi, China, 2012), and Mic1 

(freshwater estuary, China) and Microcystis weisenbergii virus vB-MweS-Yong2. 

Most stretches of homology between Lake Erie vOTUs and known viruses were 

short, ranging from 3-10 kb (SI Fig. 1). A notable exception was the representative virus 

of vOTU4, which we renamed as Ma-LEF01 (Microcystis aeruginosa Lake Erie 

Fukuivirus-01). Ma-LEF01 has high similarity along the full length of its genome to a 

viral contig, MVGF-J-19, that was previously assembled from a 2019 Lake Erie cHAB 

metagenome (McKindles et al., 2020; Fig. 6A-C). While not members of vOTU4, MVGF-

J-19 and Ma-LEF01 were also highly similar to Microcystis isolates MaMV-DC and Ma-

LMM01 (Fig. 6A-C). That Ma-LEF01 and MVGF-J19 have nearly identical genomes, yet 

were detected 5 years apart, aligns with similar observations in a marine system, where 

nearly identical viral genomes (>99% shared ANI) were found over the course of a 
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decade (Marston and Martiny, 2016). Overall, the detection of these vOTUs highly 

similar to Microcystis viruses isolated from around the world and spanning decades, 

suggests the study of Lake Erie Microcystis virus-host dynamics may provide insights 

into persistent predator-prey relationships relevant for cHAB dynamics in other regions 

as well.  
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Figure 6. Genome similarity and spatiotemporal distribution of four closely related Microcystis viruses 
found in Lake Erie. (A) Pairwise genome similarity between the Lake Erie Ma-LEF01 and three closely 
related known Microcystis viruses (Ma-LMM01 and MaMV-DC) and viral contig (MVGF-J19). Similarity 
reported as average nucleotide identity (%) and alignment fraction (%) relative to the shortest of the two 
being compared. (B) Genome synteny plot of Ma-LMM01 and Lake Erie Ma-LEF01 and MVGF-J19 
sequences. Gene color indicated DRAM gene function annotations for Ma-LEF01. ‘Unknown’ is assigned 
when there is a lack of information, which could arise from no sequence hits. ‘Unknown functional’ is 
assigned when a sequence has been identified, but its functional role is unidentified or uncharacterized. 
‘Hypothetical’ is assigned when the function is not well-characterized or solely predicted computationally. 
Gray tracks linking portions of the genome represent nucleotide identity. Red box indicates the sequence 
portion unique to Lake Erie vOTUs. Red asterisk indicates nblA gene; purple asterisk indicates 
pentapeptide repeat proteins (C) Circos genome synteny and coverage plots of the four closely related 
Microcystis viruses/contig from panel A. Gray links in the inner circle represent the shared ANI between 
the viruses. Outer tracks represent read mapping coverage for different fractions on 4 August (left) and 29 
September (right) collected at station WLE12. Colored stars on Sept 29 indicate genome regions with 
spikes in mapped reads. Colors indicate gene clusters with host homologues described in SI Table 3.  (D) 
Strain-resolved population dynamics of the Microcystis viruses at two bloom peaks. Distribution of 
normalized read counts and percent identity when reads from each date and fraction were competitively 
mapped to Ma-LEF01 and Ma-LMM01 (all viruses mapped in SI Fig. 2-9). Histogram bar color represents 
the sampling fraction. 

 

2.2.2.2 Genome characterization of Lake Erie Microcystis virus Ma-LEF01 

Given the length, high degree of synteny with Microcystis virus isolates, and high 

coverage of the vOTU_4 in the Lake Erie metagenomes at bloom peaks, we further 

characterized this population. We renamed vOTU_4 as Ma-LEF01 for Microcystis 

aeruginosa Lake Erie (candidate) Fukuivirus number 01. Ma-LEF01 has a 193,457 bp 

long genome with 243 predicted genes (SI Table 4), 223 of which were genes shared 

with MVGF-J-19, and 168 and 173 shared with the less closely related Ma-LMM01 and 

MaMV-DC viruses, respectively (SI Table 3). Seven genes are unique to Ma-LEF01 and 

missing from MVGF-J-19, Ma-LMM01 and MaMV-DC (genes 58, 59, 128, 199, 238, 239 

and 241), all of which are of unknown function (SI Table 4). Ma-LEF01 has genes 

characteristic of both lytic (viral tail sheath) and lysogenic (putative phage anti-

repressors, site-specific recombinase, resolvase, lysis inhibition proteins rIIA and B) 

replication strategies. Prior study of its Ma-LMM01 relative in Lake Tai (China) used 

patterns in the transcription levels of these genes to make inferences about the 

population-wide infection status (i.e., lytic vs. lysogenic) in the sampled community 

(Stough et al., 2017). Neither Ma-LEF01 nor its relatives were identified as integrated 

prophages in the 32 Microcystis MAGs reconstructed in this study, but we cannot rule 

out that integration may be a strategy the viruses used in undetected Microcystis 

populations or at other times of the year. As with its relatives, Ma-LEF01 has a 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184146
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homologue of nblA that encodes a phycobilisome degradation protein (red asterisk, Fig. 

6B). If this enzyme is active during infection, phage-mediated degradation of the light-

harvesting complex may benefit viral fitness by recycling biomolecules needed for 

replication (especially N) or, as others have proposed, by reducing absorption of light 

energy and thus photodamage to the new phage particles (Yoshida et al., 2008). The 

Ma-LEF01 genome also encodes three pentapeptide repeat proteins (purple asterisks, 

Fig. 6B). PRPs are found in bacteria and with high frequencies in cyanobacteria, though 

their biochemical functions are unknown (Zhang et al., 2020). Notably, the PRPs are 

specific to the Lake Erie viral strains Ma-LEF01 and MVGF-J-19, but are not found in 

Ma-LMM01 and MaMV-DC isolated in Asia. Also unique to the Lake Erie strains is a 

gene cluster of hypothetical genes not seen in existing sequence databases (red box, 

Fig. 6B), which is preceded by an adenylyltransferase-encoding gene found only in Ma-

LEF-01 (purple gene in red box), but not MVGF-J-19. The lack of annotations regarding 

many of these strain-specific loci make it impossible to infer fitness consequences, if 

any, but their presence is evidence of either viral strain diversity (multiple variants 

arising to detection in different years and locations) or strain diversification at different 

spatial (Lake Erie compared to lakes in China and Japan) and temporal (Lake Erie 

population in 2014 compared to 2019) scales. 

 

2.2.2.3 Local spatiotemporal patterns of Microcystis virus Ma-LEF01 

When sequence reads were mapped back to the genomes of Ma-LEF01 and its close 

relatives, distinct date- and fraction-specific coverage patterns were observed that offer 

insights into their population ecology. Average genome coverage of Ma-LEF01, 

normalized by per sample sequencing effort, was the highest in the >0.22 µm and 3 µm 

fractions on August 4 (Fig. 6C) and an order of magnitude lower in the viral and 53 µm 

fractions on that date. Ma-LEF01 was not present on Sept 29 (Fig. 6C; SI Fig. 3; SI 

Table 5). The high standard deviation relative to read depth on Sept 29 was attributed to 

a few high coverage spikes across the genome (Fig. 6C). All of these regions contained 

viral genes with homologues in the Lake Erie Microcystis MAGs also assembled from 

those dates (SI Table 3). We attributed these spikes to narrow bands of non-specific 

recruitment of reads that originated from Microcystis populations, rather than from the 

https://journals.asm.org/doi/10.1128/jb.01534-07
https://pubmed.ncbi.nlm.nih.gov/32092202/
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viruses themselves. When these spikes occur, they are found exclusively in the cellular 

fractions (not ‘viral’), supporting the cellular origins of their reads. These regions of 

Microcystis virus-host homology included pentapeptide repeats (a family of motifs found 

at high frequencies in cyanobacterial genomes) and genes involved in sulfatase 

modification, DNA replication and repair, and energy metabolism (SI Table 3). 

The disappearance of the Ma-LEF01 population from August 4 to September 29, 

despite the persistent detection of Microcystis MAGs from July through October (Fig. 

5D), is consistent with other observations of dynamic rise and fall of Microcystis viral 

populations. For example, the frequency of Ma-LMM01-infected Microcystis cells 

throughout a bloom in Japan varied between 0.002 to 1.5% and usually remained below 

0.3% during the year long study (Kimura-Sakai et al., 2015). The authors proposed the 

perpetual replacement of phage-sensitive populations with phage-resistant populations, 

whereby viruses promoted host diversification (Kimura et al., 2013). We also observed 

spatial patterns emerge in the relative abundances of the Ma-LEF01 population. On 

August 4, Ma-LEF01 was nearly two orders of magnitude more abundant at station 

WLE12 than WLE4, despite those stations being only seven nautical miles apart (SI Fig. 

7). This spatial variability could be related to varying abundance of the specific 

Microcystis population infected by Ma-LEF01, however the distribution of the 

Microcystis MAGs across the stations for which sequence data exists was remarkably 

consistent (Fig. 5D). This discordance could be explained by (i) Ma-LEF01 may have 

infected a host population at WLE12 not captured in our reconstructed MAGs, (ii) Ma-

LEF01 infection is occurring at WLE4, but is below the detection limit of metagenomics, 

(iii) Microcystis populations at WLE4 acquired resistance encoded at finer scales that 

MAGs (e.g., CRISPR), or (iv) Ma-LEF01 may engage in a relationship with its host that 

differs from the canonical lytic infection system where a host boom is expected to be 

followed by (or depending on the infection timing, coincident with) a viral boom and host 

bust. 

 

2.2.2.4 Microcystis viruses show strain-level population dynamics 

The current standard for vOTU definition (95% ANI across 85% alignment fraction 

relative to the shorter sequence (Roux, 2019)) would place Ma-LEF01 and MVGF-J19 
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in a group and Ma-LMM01 and MaMV-DC in a group (Fig. 6A). We sought to evaluate 

these groupings through the lens of population genomics and thus inform future 

applications of the vOTU definition in wild communities. 

While read alignment to the four close-relatives of Lake Erie Ma-LEF01 (Fig. 6A) 

showed similar patterns through the bloom (Fig. 6C; SI Fig. 2-9), tracking each strain 

revealed temporal and spatial patterns conserved within two groups. On August 4, the 

read alignment identity was heavily right-skewed in a broad peak ranging from 88-98% 

ANI for the Ma-LMM01/MaMV-DC group, whereas the Ma-LEF01/MVGF-J19 group 

showed only a prominent narrow peak near 100% identity (Fig. 5D; SI Fig. 10). We 

interpret this as the presence of the Ma-LEF01/MVGF-J19 at this date, but not the Ma-

LMM01/MaMV-DC group. By the second bloom on September 29 the Ma-

LEF01/MVGF-J19 group disappeared. The wide low identity peak during this second 

bloom suggested that a close-relative emerged (Fig. 5D), but we were not able to 

reconstruct its genome from these data. We attributed the narrow high identity peak that 

appeared with the wide low identity peak in the cellular fractions (but missing from the 

viral) to the non-specific mapping to cellular homologues (gene spikes from Fig. 6C).  

Considering the sequence similarity thresholds proposed for distinguishing viral 

species (Roux et al., 2016) supported by infection and fitness profiles of cultured virus-

host systems (Duhaime et al., 2017), we proposed that Ma-LEF01 and MVGF-J19 are 

different strains of the same viral OTU, whereas MaMV-DC and Ma-LMM01 belong to a 

different vOTU. Further, these findings indicated that the Microcystis Ma-LEF01/MVGF-

J19 viral OTU persisted over a five-year period in Lake Erie’s western basin cHABs, 

suggesting either sustained infection of local host populations or persistence without 

infection in the local viral ‘bank’ (Breitbart et al., 2005). The sporadic detection of the 

Ma-LEF01/MVGF-J19 vOTU (present in the August 4 bloom, but not the Sept 29 bloom) 

provides evidence for the latter. Overall, this analysis demonstrated how tracking read 

abundances and identities offers insights into population cohesion among wild virus 

populations and can be used to delineate ecologically meaningful boundaries between 

uncultured vOTUs reconstructed from metagenomic datasets. 
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2.2.3 Microbial virus-host interaction networks at toxic and nontoxic bloom peaks. 

2.2.3.1 Linking uncultivated viral and host populations using genomic signals of 

coevolution 

Much of what we know of the ecology and diversity of Microcystis viruses in natural 

systems has been limited to marker gene analyses. These studies have been 

performed near exclusively using the gp91 tail sheath gene of only one viral population 

Ma-LMM01/MaMV-DC (described in detail the prior section) (Takashima et al., 2007; 

Yoshida et al., 2008; Kimura et al., 2012; Mankiewicz-Boczek et al., 2016; McKindles et 

al., 2020; Pound 2020). This approach cannot account for the existence, diversity, host 

range, and ecology of all viruses infecting Microcystis, especially those yet to be 

discovered. This can lead to a fragmentary and biased view of Microcystis virus-host 

dynamics in cHABs. Some studies have leveraged metagenomic data to study 

uncultivated Microcystis viruses and hosts in cHABs by identifying virus-host pairs 

linked by CRISPR spacers (Morimoto et al., 2019; Morimoto et al., 2023) or by relying 

on coassociations between viral and Microcystis marker genes (Pound 2020). However, 

these approaches are limited. Relying on CRISPR has limited utility in a whole 

community context, as roughly 50% of bacterial genomes do not encode detectable 

CRISPR systems (Burstein et al., 2016). When coassociation studies are used to link 

viruses with hosts they oversimplify ecological complexities, e.g., assuming interactions 

between species are binary (presence/absence) and that positive linear correlations of 

species abundances imply predator-prey relationships, when in reality these ecological 

relationships are varied and rarely linear (Hevroni et al., 2020; Correa et al., 2021). 

We sought to identify likely infection linkages between uncultivated viruses and 

Microcystis population genomes (MAGs) reconstructed from the two 2014 Lake Erie 

cHAB bloom peaks using a method not restricted by the limitations of marker gene, 

CRISPR, or coassociation analyses. For this we used Virus-Host Interaction Predictor 

(VHIP) (Bastien et al., 2023), a machine learning-based infection prediction tool that 

leverages genome-encoded signals of coevolution (e.g., nucleotide frequencies, %G+C 

patterns, shared nucleotide and protein sequences, etc.) in a model trained and tested 

on 8,849 lab-verified infection/no-infection data. We expanded the VHIP analysis to also 

include non-Microcystis MAGs that were predicted to be infected by identified 

https://www.pnas.org/doi/10.1073/pnas.2010783117
https://www.nature.com/articles/s41579-021-00530-x
https://www.biorxiv.org/content/10.1101/2023.11.03.565433v1
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Microcystis viruses. While interpreting these networks, it is helpful to consider them as a 

superposition of all past infection networks, rather than as a snapshot of active 

infections captured at the time of sampling. Because VHIP relies on signals of 

coevolution detected between viral and putative host genomes and because different 

coevolutionary signals establish and degrade at different rates, there will be remnant 

signals linking populations that may not be able to carry out infections. Nonetheless, 

when tested on lab-verified infection pairs, the model predicts species-level virus-host 

linkages with 87.8% accuracy. We applied VHIP to gain a better understanding of the 

diversity, turnover, and metabolic impacts of Microcystis viruses at the bloom peaks. 

 

2.2.3.2 Hundreds of viral OTUs predicted to infect Microcystis at bloom peaks.  

At the August 4 toxic bloom peak, a total of 2,026 virus-host pairs were predicted 

between 454 vOTUs and 17 bacterial MAGs (9 of which were Microcystis MAGs; SI 

Table 1) (Fig. 7A). On the September 29 non-toxic bloom peak, 1,995 virus-host pairs 

were predicted between 339 vOTUs and 24 bacterial MAGs (8 Microcystis MAGs; SI 

Table 1) (Fig. 7B). The majority of viruses predicted to infect Microcystis were present at 

low abundances in the bloom peak samples, particularly on August 4. Abundant vOTUs 

(vOTUs that recruited >0.1% of the total reads mapped to vOTUs) represented 6.6% 

and 13.9% of the total Microcystis vOTUs on 4 Aug and 29 Sept, respectively. This 

trend of majority low abundance and few high abundance populations is common in 

microbial virus assemblages, which tend to have long tailed rank-abundance curves like 

their bacterial and archaeal hosts (Breitbart, 2002; Luque et al., 2020; Dart et al.,  2023; 

Cai et al., 2023). The most numerically abundant Microcystis vOTUs that emerged on 

the bloom peaks (labeled in Fig. 7A-B) are discussed in the context of assemblage 

evenness and turnover in later sections. 

 

https://www.pnas.org/doi/full/10.1073/pnas.202488399
https://journals.asm.org/doi/10.1128/msystems.00353-20
https://www.mdpi.com/1999-4915/15/2/581
https://journals.asm.org/doi/10.1128/spectrum.05203-22


 50 

 

 

Figure 7. Networks of predicted infections between Microcystis viruses (>10 kb viral contigs) and bacterial 
host MAGs identified on the 4 Aug and 29 Sept bloom metagenomes. (A) Predicted infection network of 4 
August toxic bloom peak. (B) Predicted infection network of 29 September non-toxic bloom peak. Circle 
nodes are host MAGs; circle size represents the number of viruses predicted to infect a given host. 
Triangle nodes are viruses. Node size represents TPM abundance. Node colors represent assigned 
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taxonomy; for viruses, “Unknown” indicates the vOTU has no hit in the reference database, “Unassigned” 
indicates the vOTU has a hit to something unassigned in the reference database. Only predictions with 
>93% infection probability and viruses predicted to infect at least Microcystis are shown. The most 
abundant vOTUs are labeled in each network (described in SI Table 6 and Fig. 6) (C) Heat map of hosts 
with shared virus predictions on 4 August. (D) Heat map of hosts with shared virus predictions on 4 
August. Axis colors represent host taxonomy (as in panels A-B) and heat map cell color represents the 
amount of shared phages between any two given hosts. 

 

While we have no available methods to determine the true number of uncultivated 

viruses infecting a given uncultivated host, these numbers of predicted Microcystis 

viruses are higher than previously reported from metagenomic studies that used other 

approaches to identify putative Microcystis-infecting viruses (McKindles et al., 2020, 

Morimoto et al., 2023, Pound et al., 2020). Given the 88% accuracy of VHIP in 

predicting infections (Bastien et al., 2023), we are confident that a substantial portion of 

the co-evolutionary associations identified in these data reflect true virus-host 

interactions. In addition, the elevated number of predicted Microcystis vOTUS may be a 

consequence of the incomplete nature of metagenome-reconstructed population 

genomes. We presume there is a substantial number of genomic “shrapnel”, i.e., 

genome fragments that could not be linked with their corresponding parts, owing to the 

challenges of binning viral genomes (Roux, 2016; Kieft et al., 2022), which would 

elevate the number of predicted infections (e.g., one virus could be counted as many). 

So while the numbers of predicted viruses are not likely to reflect the true number of 

viruses in a given sample, the overall data structures are informative. These linkages 

provide important and novel perspectives regarding the structure of the predator-prey 

networks (e.g., narrow versus broad host ranges), the potential for gene flow between 

host and virus populations (e.g., “which host populations are or have been evolutionarily 

connected via viral infection?”), and insights into how viral diversity fluctuates through 

time and space over the course of a bloom. 

 

2.2.3.3 Most Microcystis vOTUs host ranges are within-genus, some span phyla 

To evaluate Microcystis vOTU host range and potential for virus-mediated cross-host 

gene transfer, we identified the predicted Microcystis vOTUs that were also predicted to 

infect non-Microcystis MAGs. The vast majority of shared viruses were between 

Microcystis populations (Fig. 7C-D). In addition, eight and 16 non-Microcystis hosts 
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were predicted on Aug 4 and Sept 29, respectively (Fig. 7). Most notably, on August 4, 

four prominent host nodes representing four non-Cyanobacteria phyla emerged with a 

relatively high number of Microcystis viruses predicted to infect them (Fig. 7A). While 

Microcystis viruses have been shown to infect multiple cyanobacterial genera in lab 

studies (Watkins et al., 2014), tests across higher phylogenetic levels have not been 

reported. However, viral isolates of other host taxa are known to infect across multiple 

phyla (Malki et al., 2015); we suspect the dearth of cross-phyla reports is not only due to 

evolutionary constraints that underlie host range, but also because of how extremely 

rare it is for cross-phyla infections to be tested (Bastien et al., 2023). 

A previous study relying on qPCR to track metagenome-identified viral groups 

showed how narrow host range Microcystis viruses were observed at markedly lower 

abundances than broad host range viruses, which tended to be more dominant 

(Morimoto et al., 2023). We tested whether similar observations were observed in the 

Lake Erie bloom. A range of host range breadths was identified that depended on 

whether only Microcystis hosts were considered (as in the Morimoto et al., 2023 study) 

or all hosts were considered (Fig. 9A). When only Microcystis hosts were considered, 

most vOTUs were predicted to infect only one host at the bloom peak and 60% of the 

viruses were predicted to infect only one or two other Microcystis MAGs (Fig. 8A); these 

would be classified as “narrow” host range viruses by Morimoto et al., 2023. When all 

hosts were considered, the mode shifted to three predicted hosts per vOTU with 76% of 

the vOTU belonging to Morimoto’s “broad” host range category (Fig. 8A). However, 

unlike Morimoto et al., 2023, we found no or only extremely weak correlations between 

vOTU host range breadth (i.e., number of hosts) and abundance (Pearson R2 <0.05 for 

all tests; SI Table 7). 

In discussions of host range, it is important to consider that the terms “broad” and 

“narrow” are operational and often defined relative to a given study. In the Morimoto 

study, despite delineating narrow and broad host range groups, all host diversity was 

constrained to a single host genus. Here, we report Microcystis virus-host pairs with 

genomic evidence that suggests past infections that span phyla. While rampant 

recombination can spread these signal across the reticulate phylogeny of viruses, there 

is also culture-based evidence to support these signals could reflect true cross-phyla 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906167/
https://virologyj.biomedcentral.com/articles/10.1186/s12985-015-0395-0
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infections (Malki et al., 2015) and community genomic evidence to support cross-

domain infections (Hwang et al., 2023). 

 

 

 

Figure 8. Proportion of vOTUs infecting bloom peak hosts and proportion of abundant viral genes at bloom 
peaks. (A) Comparison of host ranges. (B) Proportion of viral genes encoded by predicted Microcystis 
vOTUs at 4 August bloom peak (x-axis) and 29 September bloom peak (y-axis). Shape represents 
whether viral genes were identified in a single bloom peak or both. Point color reflects the assigned 
KEGG Ontology (KO) metabolic module. Points labels are derived from assigned protein family (Pfam) 
annotations for select functions of interest. 

 

2.2.3.4 Metabolic genes encoded by predicted Microcystis vOTUs can be bloom peak-

specific 

The coevolutionary signals that underlie the predicted virus-host interaction networks 

represent paths of potential virus-mediated gene flow between bacterial populations. 

Viruses are well known to encode genes involved in myriad metabolic processes, e.g., 

photosynthesis, nitrogen (Roux et al., 2016), and sulfur metabolism (Anantharaman et 

al., 2014; Kieft and Zhou, 2020). When viruses facilitate the cross-taxa (virus and host) 

transfer of genes central to bacterial metabolism, there are potential consequences for 

the evolutionary trajectory of proteins with important biogeochemical functions (Lindell 

et al., 2004). Further, during infection, virus-encoded auxiliary metabolic genes (AMGs) 

rewire host metabolisms in ways that influence the flow of matter and energy during 

infection (Zimmerman et al., 2020; Howard-Varona et al., 2020). To evaluate this 

https://virologyj.biomedcentral.com/articles/10.1186/s12985-015-0395-0
https://www.nature.com/articles/nature19366
https://www.science.org/doi/10.1126/science.1252229
https://www.science.org/doi/10.1126/science.1252229
https://www.pnas.org/doi/10.1073/pnas.0401526101
https://www.pnas.org/doi/10.1073/pnas.0401526101
https://www.nature.com/articles/s41579-019-0270-x
https://www.nature.com/articles/s41396-019-0580-z
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potential, we identified the metabolic genes carried by the viruses predicted to interact 

with Microcystis. 

Most identified Microcystis vOTU genes encode proteins with unknown metabolic 

functions (Fig. 8B; SI Table 8). Of the AMGs that could be annotated, some were 

shared at the bloom peaks and some were specific to the peaks on either August 4th or 

September 29th (Fig 8B). Virus-encoded AMGs shared at the bloom peaks included the 

biosynthesis of complex carbohydrates important for cell wall biosynthesis, cell-to-cell 

communication, and biofilm formation (GDP-Mannose 4,6 dehydratase; Kehr et al., 

2015), the production of phycobiliprotein light-harvesting pigments and secondary 

metabolites (2OG-Fe(II) oxygenase superfamily; Jia et al., 2017; Herr and Hausinger, 

2018) and the regulation of phosphate metabolism (2OG-Fe(II) oxygenase superfamily; 

Wanner, 1993; Morohoshi et al., 2002). Virus-encoded functions abundant on 4 August 

included those central to photosynthesis (photosynthetic reaction center proteins), 

nitrogen, amino acids, and energy metabolism (Glutamine synthetase; Bolay et al., 

2018; NAD-dependent epimerase/dehydratase), and the cellular responses to nutrient, 

light and temperature fluctuations (S-adenosylmethionine decarboxylase; Jantaro et al., 

2003; Zhu et al., 2016). Virus-encoded metabolic functions on 29 September included 

the viral takeover of host protein synthesis (peptidyl-tRNA hydrolase PTH2 enzymes; 

Garcia-Villegas et al., 1991) and cellular responses to oxidative stress, such as can 

arise from exposure to high light intensity and reactive oxygen species generated during 

photosynthesis (peroxidase enzymes; Zinser, 2018). Of the latter, a recent study of the 

2014 Lake Erie bloom found anomalously high expression of the peroxidase subunit 

ahpC in Microcystis on 29 September in the >100 µm fraction at stations WLE12 and 

WLE2 (Smith et al., 2022). Our observation of high peroxidase gene abundance among 

vOTUs on 29 September suggests a potential role of viral AMGs in supplementing 

Microcystis ROS defense during bloom peaks. Overall, the functional gene analysis of 

the Microcystis vOTUs indicated that there are date-dependent consequences for how 

viruses may be supplementing or rewiring host metabolisms. These findings are 

motivation for future work to better resolve the degree to which viruses shape the 

genotypic and phenotypic changes that manifest in the cyanobacterial populations that 

dominate Lake Erie’s cHABs. 

https://www.embopress.org/doi/epdf/10.1002/j.1460-2075.1991.tb04919.x
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2.2.4 Turnover of predicted Microcystis vOTUs depends on colony formation 

2.2.4.1 Diversity of predicted Microcystis vOTUs is highest in the viral fraction, lowest in 

the colony-associated fraction 

vOTU abundances estimated based on sequence read recruitment were used to 

evaluate trends in diversity within the subset of vOTUs predicted to infect Microcystis. 

Within this Microcystis vOTU assemblage, evenness was the highest in the virus 

fraction and decreased with each consecutively larger pore size filter fraction (Fig. 9A). 

This trend is consistent with observed host strain diversity; the Microcystis MAGs were 

less evenly distributed in the larger colony-associated fraction (100 µm) than the smaller 

size fractions (>0.22 and 3 µm) (Fig. 5E). We considered 53 and 100 µm to be ‘colony-

associated’ fractions, while those ‘not colony-associated’ were viral, 3 µm and >0.22 

µm, the latter of which has been shown in other lake systems to be numerically 

dominated by the free-living cells (Schmidt et al., 2020). The genomic variation 

observed in the Microcystis MAGs from Lake Erie showed a distinct partitioning by size 

fraction.  Such within-species genotypic differences that associate with different filter 

fractions have been observed in ocean taxa as well, such as Vibrio splendidus (Hunt et 

al., 2008). Notably, a significant clustering of genotypes was evident in the 100 µm 

fraction (Fig. 5D). This aligns with previous reports by Yancey et al., 2023, who also 

documented similar patterns of Microcystis strain diversity within the 100 µm fraction 

during the 2014 bloom in the western basin of Lake Erie.   

The observed fraction-specific genotypic variation in Microcystis combined with 

patchy representation of the Microcystis MAGs in the colony-associated fractions can 

be explained by the proliferation of single phylotypes leading to colony formation during 

bloom development. Such episodes may occur frequently through the Lake Erie bloom, 

with distinctive phylotypes emerging at each sampling date among 100 µm fraction 

samples (Fig. 5C). In line with a ‘Kill the Winner’ dynamic (Winter et al., 2010), each 

such episode may select for a subset of viruses able to infect the dominant phylotype 

causing a bottleneck in viral diversity in the colony-associated fractions, which is 

supported by a corresponding drop in vOTU diversity in the 100 µm fraction (Fig. 9A). In 

contrast, the non-colony associated hosts may sustain infection relationships with more 

https://academic.oup.com/femsec/article/96/4/fiaa029/5762669
https://www.science.org/doi/10.1126/science.1157890
https://www.science.org/doi/10.1126/science.1157890
https://journals.asm.org/doi/full/10.1128/mmbr.00034-09?casa_token=za3AUJnUgjwAAAAA%3A8363JYtX6AWDthRQYys4GANX1YRmXeZ28YX2jDDnrS_beC2C8GB0cDuJzNRkziCFysn62mEnx0JSuuY
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members of the viral “seed bank” (Breitbart, 2005; Hevroni et al., 2020; Dart et al., 

2023), thus maintaining a higher overall Microcystis vOTU assemblage diversity.  

 

 

Figure 9. Microcystis virus diversity, turnover, and abundant vOTU temporal dynamics through the 2014 
Lake Erie bloom season. (A) Diversity of predicted Microcystis vOTU assemblage across fractions. (B) 
NMDS ordination based on Bray-Curtis dissimilarities in distributions of predicted Microcystis vOTUs at 
the cHAB peaks. Point color represents the sampling fraction; shape represents sampling date. Dashed 
ovals indicate whether a point belongs to the free-living or colony-associated community. The ordinations 
are overlaid with the gradient of fit between measured environmental parameters and Bray-Curtis 
dissimilarities. Vector length of the environmental parameter represents the strength of the correlation 
with the data variation. (C) Temporal relative abundance dynamics of the ten most abundant predicted 
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Microcystis vOTUs in terms of fraction of total metagenomic reads mapped to each vOTU per sample. 
Point shape represents the sampling station and point color represents a specific Microcystis virus OTU. 
Dates of sampled bloom peaks are highlighted in bold with double asterisk. 

 

2.2.4.2 Sampling fraction correlates with turnover of vOTUs predicted to infect 

Microcystis 

Between-sample variation in the Microcystis vOTU assemblage structure significantly 

correlated with filter fraction (Fig. 9B; PERMANOVA R2=0.21, p-value = 0.0001; SI 

Table 9) and to a lesser extent sampling date (R2=0.06, p-value = 0.001). There was 

colony-dependent partitioning of the variation between the Microcystis vOTU 

assemblages (Fig. 9B). This pattern may be explained by the discussed fraction-specific 

differences in relative abundances of Microcystis genotypes (Fig. 5E). Even though 

free-living and colony-associated communities exist within the same aquatic matrix, they 

represent distinct ecological contexts allowing for distinct dynamics in host populations 

(Rosenberg et al., 2021), which we posit also extends to distinct virus-host interactions. 

These fraction-associated Microcystis genotypic differences may have implications for 

viral host range; viral mediated top down control on Microcystis may depend on whether 

the Microcystis host is colonial or single cellular.  

Sample location was not significantly correlated with turnover in the Microcystis 

vOTU assemblage, (R2=0.08, p-value = 0.30). This was surprising, given the station 

specificity of Ma-LEF01 (SI Fig. 2-3). This insignificance of station in explaining variation 

in Microcystis vOTU assemblage turnover, despite station impacting the presence of 

Ma-LEF01 when sampled on the same date, points to the importance of disentangling 

dynamics at multiple scales. In understanding top down controls on Microcystis, factors 

that underlie the dynamics of a single Microcystis virus population (let alone a single 

gene) will not reflect the dynamics of the total assemblage of Microcystis viruses. Of the 

environmental variables tested, only photoactive radiation (PAR) was significantly 

correlated with variation in Microcystis vOTU turnover (R2= 0.06, p-value = 0.0014; SI 

Table 10). Given that Microcystis growth and physiology are influenced by variations in 

light intensity and duration (Wilson et al., 2006), it is understandable that a parameter 

that affects host population fitness may also indirectly affect the viruses of that host 

https://ami-journals.onlinelibrary.wiley.com/doi/10.1111/1462-2920.15611
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population. This trend may also suggest light availability as a driver of Microcystis 

infection during high bloom densities. 

 

2.2.4.3 High turnover of abundant Microcystis virus populations 

We next sought to better understand the seasonal fluctuation and host ranges of the 

numerically important Microcystis vOTUs in the 2014 Lake Erie cHAB. We identified the 

ten Microcystis vOTUs most abundant across the entire sample set (SI Table 6). 

Notably, Ma-LEF01 (Fig. 6), relative of Ma-LMM01 whose gp91 gene has been used as 

the sole proxy for quantifying Microcystis viruses in some studies, was not among these 

abundant vOTUs. The numerically dominant Microcystis vOTUs were never abundant in 

the viral fraction (Fig. 5C). When they peaked, they were most abundant at the bloom 

peaks (Fig. 9C). The dominant Microcystis vOTUs peaked in abundance in either the 

colony-associated or not-colony associated fractions, but not both (Fig. 9C). In both 

fractions, most vOTUs peaked on either Aug 4 or Sept 29, with only three of the 10 

vOTUs peaking at both dates (Fig. 9C). 

The sporadic peaks of these abundant Microcystis vOTUs offers more support 

for Bank dynamics in this system, while only a select few are abundant at any given 

moment throughout the seasons (Breitbart, 2005; Hevroni et al., 2020). These changes 

in viral community composition over time are likely influenced by factors such as shifts 

in host availability, environmental conditions, and the viral populations' specific 

interactions with Microcystis and other host populations. Indeed, even at the coarse 

level of oligotypes, different Microcystis genotypes were present at the two bloom peaks 

(Berry et al., 2016). Of the 10 most abundant Microcystis viral populations identified, 

80% were primarily found in either the 53 µm or 100 µm fraction, which represents the 

Microcystis colony-associated viral community. As host cells within colonies are tightly-

packed, the opportunity to infect and increase in abundance is more likely to occur here 

than in those viral populations that persist in the free-living microbial community, where 

host interactions may be scarce. Alternatively, colonies may also provide defense 

against infection (Wucher, 2023). Understanding the turnover and dynamics of these 

viral populations is essential for comprehending their roles in regulating harmful algal 

blooms and the broader dynamics of aquatic ecosystems in Lake Erie. 
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2.3 Conclusions and outlook 

Previous research has established that the two 2014 bloom peaks represented different 

Microcystis genotypes (Yancey et al., 2022), including the transition from toxin-

producing to non-toxin producing genotypes.  This was hypothesized to be in part due 

to the low ammonium and nitrate availability in September relative to August coupled 

with the nitrogen-rich nature of microcystin metabolites. Our work suggests viral activity 

as an additional control on Microcystis strain succession in the 2014 bloom. Distinct 

assemblages of Microcystis vOTUs were predicted to infect the Microcystis genotypes 

at the two bloom peaks, suggesting strain specificity among predicted Microcystis 

viruses. Strain-specific viral predation and the diversity and ecological dynamics of 

Microcystis populations are inextricably connected, likely influencing one another over 

the course of the bloom.  

The patterns uncovered in this work describing the spatial and temporal 

dynamics of Microcystis viruses in the 2014 Lake Erie cHAB help to reveal the intricate 

dynamics of cyanobacterial blooms and their ecological implications. Additional 

molecular techniques, such as metatranscriptomics, metaproteomics, metabolomics, 

will help to identify viral gene and protein expression patterns and to identify 

relationships between viral activity and community-level metabolite (including toxin) 

production through the blooms. These omics approaches can also shed light on viral 

strategies for manipulating host metabolism, toxin regulation, and avoiding host antiviral 

strategies within cHABs. Moreover, longitudinal studies encompassing multiple bloom 

seasons and locations will contribute valuable insights into the temporal and spatial 

dynamics of Microcystis vOTUs. Understanding connections between the Microcystis 

viruses, the total virus community, environmental parameters, and overall bloom 

progression is essential for unraveling the complex dynamics of these cHABs. 
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2.4 Materials and Methods 

2.4.1 Field Sampling and Collection 

Field sites were sampled with the joint NOAA Great Lakes Environmental Research 

Laboratory / University of Michigan Cooperative Institute for Great Lakes Research 

weekly sampling program for Lake Erie. In 2014, three sites were sampled bi-monthly in 

June then weekly from July through October. Bloom stages were determined by 

phycocyanin fluorescence and relative abundance. Metagenomic data were generated 

from samples collected from three regularly sampled stations (WE2, near the mouth of 

Maumee River, 41° 45.743’ N, 83°19.874’ W; WE4, offshore towards the center of the 

western basin, 41°49.595’ N, 83°11.698’ W; and WE12, adjacent to the water intake crib 

for the city of Toledo, 41°42.535’ N, 83°14.989’ W). All samples were collected upon 

arriving on-station using a peristaltic pump to obtain 20 L of water from 0.1 m below the 

surface. Water was filtered onto 100 μm polycarbonate filters. This size was used to 

concentrate Microcystis colonies retained on the filter while excluding smaller particles. 

Previous work has shown that in Lake Erie the >100 μm assemblage comprised over 

90% of all Microcystis cells in the water column (Chaffin et al., 2011). The filtered water 

was subsequently passed through a 53 µm and 3 µm polycarbonate filter to collect 

smaller colonies and large single-celled microbes, including Microcystis, whose cell 

sizes range from 1.7 to 7 µm in diameter (Xiao, 2018). Whole water was passed through 

a 0.22 µm filter to collect the total cellular microbial community; community structure of 

whole community fractions have been shown to be dominated by single cells (Schmidt 

et al., 2020). To enrich for viruses 10 g/L iron chloride stock solution (0.966 g FeCl3-

6H2O in 20 mL 0.02 µm-filtered autoclaved MilliQ-H2O) was added to the <0.22 µm 

(“viral”) fraction (Poulos, 2017). The flocculant incubated overnight to maximize virus 

recovery before being passed through a 0.45 µm 142 mm Millipore Express Plus filter 

and stored at 4°C. 

 

https://onlinelibrary.wiley.com/doi/full/10.1111/brv.12401#:~:text=Microcystis%20cells%20are%20microscopic%2C%20ranging,to%207%20%C2%B5m%2C%20while%20M.
https://academic.oup.com/femsec/article/96/4/fiaa029/5762669
https://academic.oup.com/femsec/article/96/4/fiaa029/5762669
https://link.springer.com/protocol/10.1007/978-1-4939-7343-9_4
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2.4.2 DNA Extraction and Sequencing of Hosts and Viruses 

DNA was extracted from samples using the DNeasy Mini Kit (QIAGEN) according to the 

manufacturer's instructions. Shotgun sequencing of DNA was performed on the 

Illumina® HiSeq™ platform (2000 PE 100, Illumina, Inc., San Diego, CA, USA) at the 

University of Michigan DNA Sequencing Core. 

 

2.4.3 Host Assembly and Binning 

BBDuk (https://sourceforge.net/projects/bbduk/) was used to identify and remove 

contaminated sequences and denoised reads were evaluated using FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). The reads were dereplicated 

using BBnorm (https://sourceforge.net/projects/bbnorm/). Reads of all 36 samples were 

assembled on a per-sample basis into contigs using Megahit (Li et al., 2015). Following 

contig assembly, Centrifuge (Kim et al., 2016) was used to taxonomically classify 

contigs to the species level, or lowest resolution available. Automated binning was 

performed on the contigs using Concoct on default settings (Alneberg et al., 2013) to 

generate metagenome assembled genomes (MAGs). Quality trimmed raw reads were 

mapped to each individual assembly using bwa (https://sourceforge.net/projects/bio-

bwa/) with bwa-mem on default settings. SAMtools (Li et al., 2009) was used to convert, 

sort, and index compressed BAM files. Quality trimmed reads were mapped to MAGs 

using a pileup shell script provided by BBtools 

(https://sourceforge.net/projects/bbtools/). The Anvi’o platform v2.3.0 (Eren et al., 2021) 

was used to manually refine the unique MAGs identified through Vizbin (Laczny et al., 

2015) by evaluating differential coverage patterns across the samples. Bins with >50% 

completeness (completeness statistics inferred from a CheckM (Parks et al., 2015)), 

>10% contamination, and <75% strain heterogeneity were manually refined in Anvi’o 

based on differential coverage and contamination. Multiple rounds of Anvi’o refinement 

were performed to curate bins until they passed the aforementioned thresholds (SI 

Table 11). 

 

https://sourceforge.net/projects/bio-bwa/
https://sourceforge.net/projects/bio-bwa/
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2.4.4 Viral Population Identification and Taxonomic Assignment 

CheckV v0.7.0 (Nayfech et al., 2021), VIBRANT v1.2.1 (Kieft et al., 2020), VirFinder 

v1.1 (Ren et al., 2017), VirSorter v1.0.6 (Roux et al., 2015) and VirSorter2 v2.1 (Guo et 

al., 2021) were used to predict presumed viral contigs. Contigs from each tool were 

preserved according to recently established rules for viral contig identification (Hegarty 

et al., 2022). Additionally, only contigs >3kb were kept from the viral prediction tools and 

used to identify viral populations. Viruses were then binned using vRhyme default 

settings (Kieft et al., 2022) to create a collection of viral bins and high-quality unbinned 

contigs for population clustering.  Viral bins and unbinned contigs were clustered (Roux 

and Bolduc, 2016; stampede-clustergenomes) according to previously established 

standards defining viral populations (Roux  et al. 2019). Contigs sharing an average 

nucleotide identity (ANI) of 95% across 85% of the contig length were clustered and the 

longest sequence of each cluster was considered the representative for a cluster, 

referred to as a viral operational taxonomic unit (vOTU). Taxonomy of viral populations 

from the two Lake Erie bloom peaks was estimated using the Phage Taxonomy Tool 

approach (PTT; Kieft et al., 2021). 

2.4.5 Viral Community Read Mapping, Quantification and Alpha/Beta Diversity 

Filtered and trimmed reads were assembled from the same sample and quantified using 

Samtools v1.11 (Li et al., 2009). These reads were then competitively mapped to all 

contigs using Bowtie2 (Langmead and Salzberg, 2012). Reads mapped to trimmed viral 

sequences were quantified using BLAST v2.9.0 (NCBI, 2019) to align trimmed viral 

sequences to the contigs and then using FeatureCounts (Liao et al., 2014) from the 

Subread package (Liao et al., 2013) to quantify reads overlapping this region. The viral 

reads for each sample were downsampled by 1,000,000 reads for alpha diversity 

analyses using seqtk v1-3 (http://github.com/Ih3/seqtk). Only viral contigs with reads 

covering at least 3 kb of their length were extracted and included in diversity analyses. 

Alpha diversity measures were calculated using the vegan v2.5-2 package in R v4.0.2 

based on downsampled reads. Transcripts per million (TPM) was determined for each 

viral population and used to calculate the Bray-Curtis distance between samples in R 

using the vegan package and then NMDS ordination was performed. PERMANOVA 

http://github.com/Ih3/seqtk
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using the adonis function in vegan was used to test the effects of sampling location, 

sampling date, sampling fraction as well as effects of environmental parameters on the 

full viral community structure and metabolic potential. Viral contig information and NCBI 

accession numbers can be found in SI Table 12. 

2.4.6 Viral Metabolic Potential Analyses 

KEGG and Pfam databases (Shaffer et al., 2020) were accessed to assign viral contig 

gene metabolic annotations using Distilled and Refined Annotation of Metabolism 

(DRAM; Shaffer et al., 2020) following the generation of open reading frames (ORFs) 

using Prodigal (Hyatt et al., 2010). FeatureCounts (Liao et al., 2014) from the Subread 

package (Liao et al., 2013) were then used to calculate read coverages of the ORFs 

generated by DRAM. Bray Curtis distances between samples were calculated using the 

vegdist function followed by an NMDS ordination with the vegan package in R. Water 

quality parameters were then applied to a PERMANOVA model to evaluate their effects 

on the abundance of protein families (Pfams). Parameters were considered significantly 

correlated with a p-value ≤ 0.05.  

2.4.7 Virus-Host Infection Prediction Network 

To better understand potential phage infections associated with bacterial hosts in the 

bloom, we applied VHIP (v.1.), a gradient-boosted machine learning model informed by 

signals of coevolution embedded in sequences between viruses and hosts. (Bastien et 

al, 2023). All possible virus-host combinations were considered initially. For network 

visualization, only viral sequences larger than 10kb and prediction scores higher than 

0.93 were considered.  (viral sequences >10kb and a >93% probability of infection) 

were plotted using Gephi 0.9.0 software (Bastian et al., 2009).   

 

2.4.8 Microcystis phage comparisons 

Normalized read coverage values of Microcystis viruses from 4 August and 29 

September were obtained and formatted using circos-0.69-9 (Krzywinski et al., 2009). 

FastANI (Jain et al., 2018) was performed on Microcystis viruses to determine shared 
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ANI between genomes. Configuration files specifying the layout, colors, labels and data 

tracks for the circos plot were generated prior to creating the circos plot (Fig. 3). 

EasyFig (Sullivan et al., 2011) was used to generate synteny plots between Microcystis 

viruses and NCBI Blast hits (Fig. 2B; SI Fig. S1). 

 

For a complete list of SI Tables, visit: 

https://docs.google.com/spreadsheets/d/1aQf2AOnYSl5cXsjzXj8ub3xF2Q8m625lTLLMhY96nr8

/edit?usp=sharing 

 

For a complete list of SI Figures, visit: 

https://docs.google.com/document/d/1ItKAGaSW3aKXZe2jcEv7Q51qgZt0xC-

WnGllfgvdJ3I/edit?usp=sharing 
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Abstract 

Viruses play a vital role in microbial communities and cyanobacterial harmful algal 

blooms (cHABs) are no exception. However, the viral community structure and microbial 

predator-prey dynamics in freshwater cHABs are largely undescribed. We used a 

community genomics approach to better understand the role of viruses in the 2014 Lake 

Erie cHAB event, a bloom often dominated by toxigenic, colony-forming 

cyanobacterium, Microcystis aeruginosa. We sequenced four virus-enriched 

metagenomes (<0.22 µm) and 32 cellular metagenomes from four filter fractions that 

were either colony-associated (53 and 100 µm) or not (>0.22 and 3 µm).  We identified 

15,461 viral operational taxonomic units (vOTUs), tracked viral community ecology, 

elucidated their metabolic functions, and predicted potential microbial hosts from the 

same samples. We identified a significant correlation between viral community structure 

and sampling date and filter size fraction, but not station. Our study offered a novel 

perspective by tracking viral abundances and virus-host interactions across five size 

fractions. The observations are consistent with fraction-specific Kill-the-Winner 

dynamics that give rise to trends that support the ‘viral bank’ model. We observed a 



 76 

diverse viral fraction containing the viral bank, with rare instances of ‘active’ viruses 

becoming abundant in the cellular, and especially colony-associated, fractions. Notably, 

virus-host interactions predominantly varied by both date and size fraction. Despite the 

presumed dominance of Microcystis, most virus-host interactions occur independently 

of this cyanobacterium. This study sheds new light on the ecological and evolutionary 

aspects of cHABs emphasizing the significance of genomic novelty and predator-prey 

interactions contributed by viruses.  

3.1 Introduction 

Climate change and anthropogenic nutrient inputs have led to greater occurrence and 

intensity of cyanobacterial harmful algal blooms (cHABs; Paerl and Huisman, 2009; 

Michalek et al., 2013; Visser et al., 2016). A cHAB occurs in the western basin of Lake 

Erie each year that is often attributed to Microcystis, a toxin-producing cyanobacteria 

that can comprise a substantial portion of the bloom community (Berry et al., 2017). 

While phosphorus and nitrogen inputs are thought to be primary drivers of bloom 

dynamics (Harke and Gobler, 2013; Harke et al., 2015), top-down controls on 

Microcystis, such as viral infection known to control aquatic phytoplankton blooms 

(Schroeder et al., 2003; Sorensen et al., 2009; Trainic et al., 2018), have been less 

explored. Evidence suggests that Lake Erie Microcystis is infected by viruses (Jiang et 

al., 2019; McKindles et al. 2020; Meyer et al., 2017; Steffen et al., 2015), but the impact 

of infection on the bloom dynamics is not known. We lack a comprehensive 

understanding of the viral community dynamics tied to cHAB progression, specifically 

the prevalence and diversity of viral populations that comprise these complex viral 

communities. 

While Microcystis can dominate the Lake Erie cHABs, they do not comprise a 

majority of the community (Berry et al., 2017). In the Great Lakes and elsewhere, these 

blooms are far from homogeneous (Cook et al., 2020; Eiler and Bertilsson, 2004; Smith 

et al., 2021). The specific interactions between Microcystis and these co-existing 

community members remain enigmatic, though lab and field-based evidence suggests 

Microcystis tends to proliferate in the presence of heterotrophic bacteria (Kim et al., 

2019). It is believed that Microcystis-induced changes in the environmental conditions 
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can play a role in shaping the ecology of its mutualistic partners (Bullerjahn et al., 2016, 

Paerl and Otten, 2013, Smith et al., 2021). The unknown effects of ecological 

interactions, mutualistic and otherwise, among members of the bloom community limits 

our understanding of cHAB dynamics. 

In addition to infecting Microcystis, viruses can also exert an indirect "top-down" 

influence by infecting other community members. Research efforts have predominantly 

focused on Microcystis and its viruses, with less attention given to the broader viral 

community. The potential for viruses to suppress the growth of competitive species is 

explained through the "kill the winner" (KtW) hypothesis (Winter et al., 2010), a 

framework developed to understand the role viruses may play in equilibrium dynamics 

in plankton communities. In a KtW scenario, viral infections can lead to population 

reductions in competitive species, thereby creating opportunities for the proliferation of 

new competitors (Thingstad and Lignell, 1997). In this way, expanding our knowledge of 

viruses at the community level, not just viruses of Microcystis, holds promise for 

improving our ability to understand and predict overall cHAB dynamics in Lake Erie. 

In this study, we described the viral community across time, space and size 

fractions through the 2014 Lake Erie cHAB season. We observed that abundant vOTUs 

are rare and sporadically observed, suggesting that cHAB viral activity is fraction-

specific. We demonstrate virus-host network turnover through cHAB progression, where 

we observe few shared virus-host pairs between colony and non-colony associated 

fractions on the same dates. This study provides novel insights into the Lake Erie cHAB 

viral community, and in a broader context, contributes to a more comprehensive 

understanding of the ecological and evolutionary impact of vOTUs on complex microbial 

communities in cHABs. 

3.2 Results and Discussion 

3.2.1 Lake Erie cHAB viral community ecology 

3.2.1.1 Thousands of undescribed viral OTUs highlight the novelty of Lake Erie viral 
communities 

In the western basin of Lake Erie (Fig. 10A), a multispecies cHAB persisted between 

July and October of 2014. Particulate phycocyanin (proxy for cyanobacteria) and 
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microcystin (proxy for bloom toxicity) concentrations indicated a toxic Microcystis bloom 

occurred at all three sampling stations (WLE12, WLE2 and WLE4) in early August, 

followed by a non-toxic cyanobacterial bloom that occurred primarily at the nearshore 

stations late September (WLE12 and WLE2) (SI Fig. 1). The dual peak 2014 Lake Erie 

bloom pattern, whereby only the first peak was toxin-producing, has been described 

(Cory et al., 2016; Berry et al., 2017; Smith et al., 2021; Yancey et al., 2022; Wing et al., 

2024a). To study the viruses associated with the bloom, we sampled the WLE12, 

WLE2, and WLE4 stations across time and different fractions (Fig 10B), resulting in 36 

metagenomes that were individually assembled to form 155,025 contigs longer than 3 

kb, 27,086 (20%) of which were identified as viral (Fig. 10B; SI Fig. 2). The fraction of 

contigs identified as viral from the cell-enriched fractions ranged from 1-12% (Fig. 10B). 
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Figure 10. Lake Erie viral community sampling overview and abundant vOTU taxonomic classification. (A) A map of 
sampling sites located in the western basin of Lake Erie. Three sites were sampled bi-monthly in June and weekly 
from July to October of 2014. (B) Sampling filter size fractionation breakdown. Percentage in pink box indicates 
fraction of total contigs derived from each fraction identified as viral.  (C) Scatterplot showing the 148 vOTUs 
identified as abundant (mapping >0.5% of reads in a given sample) and the relationship between the number of 
samples where a vOTU was abundant and the number of sampling dates in which that vOTU was found. 

 

Based on sequence similarity, 14,744 (54%) of the viral contigs formed 3,527 viral 

clusters (Bin Jang et al., 2019) that approximate genus-level groups (80% ANI across 

80% of the contig; Bolduc et al., 2017) (SI Fig. 3) and 15,461 viral operational 

taxonomic units (vOTUs) (Table S1) that approximate species-level groups (95% ANI 

across 85% of the contig; Roux et al., 2019). Of the 3,527 viral clusters that 

approximated genus level groups, 3,447 of these genus level groups were novel. Only 

80 clustered with known reference viruses from the database used for vConTACT2. 
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Only 26% of the 148 abundant and ubiquitous vOTUs were identified as known based 

on sequence similarity to viruses, both isolated and not, in the NCBI viral sequence 

database, 15 of which were Synechococcus phages (Fig. 10C). The prevalence of 

Synechococcus phages suggests active infection of Synechococcus hosts. This is 

plausible given that Synechococcus was the genera detected in greatest relative 

abundance in a study of the 2014 bloom’s bacterial community (Berry et al., 2016); its 

cooccurrence with Microcystis has been reported previously in this (Ouellette et al., 

2006; Smith et al., 2021) other lakes (Ye et al., 2011). We next sought to describe 

spatial and temporal diversity of Lake Erie cHAB vOTUs through the bloom season. 

 

3.2.1.2 Virome diversity greatest in the viral fraction, lowest in colony-associated 
fractions during bloom peaks 
 

We first examined trends in within-sample diversity (alpha-diversity) across dates, 

locations and sample filter fractions. The diversity (Shannon’s H) of the viral fraction did 

not display major shifts from July to October (Fig. 11A). The bacterial community 

diversity, assessed using metagenomic data, showed a decreasing trend for the entire 

bacterial community (>0.22 µm fraction). This is consistent with the overall seasonal 

trend in bacterial community evenness, though opposite to increasing richness 

measured using 16S rRNA gene sequencing (Berry 2017). However, the viral and 

metagenomic bacterial sampling used here lacked the same temporal resolution of 

Berry et al., 2017. As could be expected, the bacterial diversity was highest in the full 

community fraction (>0.22 µm) and lower in other fractions enriched for portions of the 

entire community (Fig. 11B; SI Table S2).  

The viral diversity patterns were more complex: diversity observed in the colony-

associated fractions (53 and 100 µm; Fig. 10B) was lower than that of the non-colony-

associated fractions (viral, >0.22 and 3 µm). Significant differences in alpha diversity 

were most common between fractions that were colony associated and not colony 

associated (Fig. 11A; Table S3). Size-fractionation virome studies are rare, but one 

other such report of ocean viruses similarly observed greater viral diversity in the viral 

fraction than cellular fractions (Dart et al., 2023). This trend, which was supported by 

our Lake Erie data, was attributed to seed bank theory, whereby a highly diverse ‘bank’ 
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of viruses persists in the submicron size fraction from which infections are drawn when 

a virus meets a sensitive host. 

Notably, the lowest viral diversity observed at nearly every station was in the 

colony-associated fractions on the dates of the bloom peaks (Aug 4, Sept 29; Fig. 11A). 

We attribute this to active infection of colony-associated host cells captured on those 

filter fractions; a reduction in host diversity caused by the bloom led to a corresponding 

reduction in viral diversity not seen in the lake at other points in the bloom. The low 

diversity of the colony-associated fraction on the bloom peaks was similar to that of 

bathypelagic and mesopelagic polar ocean viral communities (Gregory et al., 2019), 

which are among the lowest reported using the same community genomic approach. 

The high diversity of the Lake Erie viral fraction is on par with those of viromes from 

freshwater reservoirs in China (Shannon H’ mean 10.4; richness >20,000; Gu et al., 

2018). These Shannon H’ measures are higher than those reported in polar and ocean 

studies where they range ~3-8 for arctic lakes (Aguirre De Carcer et al., 2015), ~8 for 

the global ocean (Brum, 2016), ~6-8.5 in the South China Sea (Liang et al., 2019). 

Though comparing Shannon H’ measures using virome data can be challenging given 

constraints on data acquisition, quality, and quantity and the myriad bioinformatic 

approaches used to generate these estimates, our Lake Erie whole viral community 

data support a trend of temperate lake systems having among the most diverse viral 

communities described thus far. 

 

https://www.sciencedirect.com/science/article/pii/S0043135418302136?via%3Dihub#sec3
https://www.sciencedirect.com/science/article/pii/S0043135418302136?via%3Dihub#sec3
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01951/full
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Figure 11. Lake Erie viral community overview. (A) Shannon diversity of viral community through time and space. (B) 
Shannon diversity of bacterial community across time and station. Panel A-B color indicates sampling fraction. (C) 
Non-metric multidimensional scaling (NMDS) (stress-value = 0.14) ordination based on Bray-Curtis dissimilarities in 
vOTU abundances. (D) NMDS (stress-value = 0.09) ordination based on Bray-Curtis dissimilarities in viral metabolic 
gene abundances.  Panels C-D color represents the sampling date; shape represents sample fraction; ordinations 
are overlaid with the gradient of the fit between the significant environmental parameters and the Bray-Curtis 
dissimilarities; vector lengths represent strength of the correlation with the data variation.  

 

3.2.1.3 Viral community turnover correlates with with date and fraction, not station 
 

We next evaluated trends in vOTU turnover between sample dates, stations, and 

fractions, i.e., viral community beta diversity. Both date and fraction significantly 

correlated with viral community turnover, correlating with 25% and 18% of the total 

between-sample variation, respectively, thereby together explaining nearly half of the 

total variability (Fig. 11C; Table S4). Time has been identified as a significant factor in 

explaining shifts in viral community structure in the ocean (Chow & Fuhrman, 2012; 

Brum, 2016) and freshwater springs (Malki et al., 2021), likely due to shifts in host 

communities as microbes respond to seasonal physiochemical changes. Of the 
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environmental parameters tested, temperature, chlorophyll a, ammonia, soluble reactive 

phosphate, and total dissolved phosphate measurements were significantly correlated 

with variation in viral community structure but had little explanatory power (each with R2 

<0.05; Table S5). Variation in the taxonomic representation of viruses across different 

filter fractions has been reported in ocean (Williamson et al., 2012), soil (Santos-

Medellin et al., 2021; Palermo et al., 2021, Dart et al., 2023), though the difference is 

not always significant (Hegarty et al. 2022). Such partitioning of viral community 

variability by filter fractions can be explained by changes in host microbial populations, 

as aquatic bacterial communities collected across different filter pore size fractions in 

freshwater and marine systems are reported to partition by fraction (Schmidt et al., 

2016; Salazar et al., 2015).  

Sampling location was not significantly correlated with variation in whole viral 

community structure (Table S4). In a 2014 Lake Erie study of viruses predicted to infect 

Microcystis (rather than total viral community reported here) it was similarly observed 

that despite being only seven miles apart, the station did not significantly influence 

variability of Microcystis viral assemblage structure in Lake Erie (Wing et al., 2024a). 

These trends in viral community composition align with previous analyses of broader 

Lake Erie bloom community dynamics, whereby bacterial community structure was 

found to vary more seasonally than spatially (Berry et al., 2017a; Smith et al., 2021). 

This may be due to the fact that Lake Erie, especially the western basin, is known for its 

high turbulent kinetic energy that can contribute to mixing, especially at the lake surface 

(Lin et al., 2021). Combined with the influx of water to the western basin from the 

Maumee and Detroit Rivers (Fig. 10A), turbulent eddies can move water on short 

length, time, and velocity scales that are significant for dispersal of plankton (Lin et al., 

2021), including bacterioplankton and blooming biomass. Mixing could also explain why 

there is only weak correlation between viral community structure and environmental 

parameters. While temporal trends and fraction-specific patterns in viral diversity were 

observed at the micron scale, the western basin appears to have been mixed well 

enough to dissipate station-driven influences on viral community structure. 
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3.2.1.4 Viral metabolic diversity correlates with date only, suggesting viral functional 
redundancy across fractions 
 

In addition to vOTUs, the distribution of viral-encoded auxiliary metabolic genes (AMGs) 

was tracked through space (stations and fractions) and time. As with viral community 

structure, viral genes were found to cluster by sampling date (Fig. 11D; Table S6) and 

to not significantly vary with sampling location (Table S6). Conductivity, ammonia, and 

pH significantly correlated with variation in viral AMG distribution but had little 

explanatory power (each with R2 <0.04; Table S7). Unlike for vOTUs distributions, 

sampling fraction did not significantly correlate with viral metabolic gene distributions 

(Table S6). While size fractionation has previously been found in early pyrosequencing 

virome studies to distinguish viruses with different functional potentials (Williamson et 

al., 2012), our findings are consistent with those of a drinking water study that found that 

size fractionation had no significant effect on viral metabolic gene distribution (Hegarty 

et al., 2022). Notably, the drinking water study and our work here used a shared 

Illumina sequencing approach; we suspect that the ability to more deeply sequence the 

functional virome in each fraction (rather than only the dominant viruses detected in 

Williamson et al.) can explain why we saw similar trends as Hegarty et al. These 

patterns could be explained by functional redundancy across fractions that arises even 

when taxonomic differences are found. Functional redundancy is known to exist in 

microbial communities and thought to emerge as a consequence of biotic, 

environmental, and spatial processes (Louca et al., 2021), though is not often 

considered in viral communities. Alternatively, this trend may be a consequence of 

undersampling functions, given that most viral genes identified in this study shared little 

to no homology with reference genes in public databases; a common finding for 

environmental metagenomes and metaviromes (Deboutte et al., 2020; Gregory et al., 

2019). 

 

3.2.2 Viral ‘Bank’ framework suggests cHAB viral activity is fraction-specific 

3.2.2.1 Abundant Lake Erie vOTUs were rare and sporadically observed 

Only 5.7% (n=889) of the vOTUs were ever considered highly abundant (defined here 

as >0.5% of viral reads) in any sample (Table S8). The vOTUs identified as abundant 
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on a given date were rarely abundant in following dates, as indicated by the prominent 

diagonal lines as vOTUs rise and fall based on their abundance score (Fig. 12A). The 

abundant viruses ranged from 0.1-5.7% relative abundance of viral reads, with the 

highest reached by vOTU_596 on 4 August in the 100 µm fraction (Fig. 12B; Table S9). 

This virus had reads mapped across the full length of its genome (SI Fig. 4) and is a 

novel virus with no sequence homology to known viruses in NCBI.  

 

 
Figure 12. Lake Erie vOTU dynamics. (A) Tracking abundant vOTUs through time by fraction at site WLE12 (only site 
where viral fraction was sampled). Each line tracks a single vOTU. If >0.5% of the total reads that mapped to viruses 
map to a given vOTU on the specified date, it was assigned an abundance score of “1”; if <0.5% viral reads map to 
the vOTU it was assigned “0.” Sample sizes (n) on the y-axis in red font report the number of ‘not abundant’ and 
‘abundant’ vOTUs, as well as percentage of abundant vOTUs, in each fraction. (B) Temporal relative abundance 
dynamics of the thirty most abundant vOTUs across the entire dataset separated by sampling fraction. (C) vOTUs 
depicted in panel B are listed to the right of the plots in which they rise above the zero line. Conceptual model 
depicting infection of bacteria in colonies by “Active” viruses that are colony-associated (53 and 100 µm), infection of 
bacteria by “Active” viruses not colony-associated (>0.22 and 3 µm), and free viruses of the Viral “Bank.” 

 

3.2.2.2 Succession in Lake Erie vOTUs explained by Viral Bank model 

We hypothesized that if the Lake Erie viral community adheres to principles of viral 

Bank theory, seasonal succession of vOTUs would arise through the progression of the 

bloom and abundant vOTUs would sporadically rise to dominance in the colony-

associated size fractions. The virus ‘Bank’ model was proposed by Breitbart and 

Rohwer (2005) to reconcile the observed global dispersal and high local diversity of 
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viruses. It is premised on the assumption that in a given system the majority of viruses 

exist in a non-active state, while only a small subset of this ‘bank’ are active at any 

given time (Breitbart et al., 2005), similar to seed bank theory (Lennon et al., 2021). 

Indeed, among the Lake Erie cHAB viruses, few vOTUs (0.02-0.37% vOTUs in a 

fraction) ever reach an ‘abundant’ level (Fig. 12A-B), at which point they represented 

the active fraction of the community (Fig. 12B-C). Meanwhile, the majority of the viruses 

existed at low abundance in the viral bank (Fig. 12B-C). Not all active vOTUs were 

observed in the viral bank across sampling points, as Bank model would predict, but 

that is likely due to the inability of metagenomics to capture all rare members of the viral 

community. 

Previous studies have used the Bank theory framework to understand marine 

viral community dynamics (Breitbart et al., 2005; Aylward et al., 2017; Hevroni et al., 

2020; Dart et al., 2023). Given our study design, our work expanded on these previous 

findings by offering a unique opportunity to distinctly describe the viruses of the colony-

associated and not-colony-associated cellular fractions. We found that each fraction 

contained different sets of active viruses (Fig. 12B-C). After infection, we posit that the 

newly released free virions were released to the viral bank, contributing to its high local 

diversity (Fig. 11A-B). As for similar results described by Dart et al., 2023, this 

observation can be explained through the ‘Kill the Winner’ framework (Winter et al., 

2010), whereby the viruses that dominated in the different cellular fractions were 

infecting the distinct colony-associated/not colony-associated “winner” hosts (Table 

S10). This is supported by the observation that the highest vOTU relative abundances 

were observed near the bloom peaks (Fig. 12B; SI Fig. 1). We propose that the dense 

colonies, which are composed of cyanobacteria and their associated heterotrophic 

bacteria (Smith et al., 2021), may be hotspots of viral activity. Colonies may serve as 

multi-species islands that increase the opportunities for viruses to encounter new hosts 

in close proximity without needing to “forage” as planktonic viruses in the bank. Further 

work to examine virus-host dynamics within individual colonies can evaluate the 

potential for cross-species infection and how microbial dynamics at the microscale may 

impact cHAB seasonal progression. 
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3.2.3 Predicted virus-host networks underscore the complexity of 

interactions in the diverse Lake Erie cHAB community 

3.2.3.1 The majority of virus-host interactions are among non-Microcystis community 
members 

Virus-Host Infection Predictor (VHIP) (Bastien et al., 2023), a machine-learning 

approach, was used to predict infection-related interactions between bacterial 

metagenome assembled genomes (MAGs; Table S11-Table S12) and the vOTUs from 

the 2014 Lake Erie bloom community). 29,976 infection interactions were predicted 

between 4,090 vOTUs and 31 bacterial MAGs reconstructed from samples collected on 

Aug 4 at station WLE12 (Fig. 13A). Similarly, 26,615 infection interactions were 

predicted between 4,147 vOTUs and 32 bacterial MAGs on Sept 29 at WLE 12 (SI Fig. 

5). Hundreds of vOTUs were predicted to infect the two Microcystis MAGs (Ma_MAG_1 

and Ma_MAG_2), yet over 9,000 vOTUs were predicted to infect other community 

members and formed a dense cluster far from Microcystis in the network (Fig. 13A). 

This supports the growing recognition that though Microcystis can at times be observed 

as the most abundant genus (Berry et al., 2017), it exists in a diverse community 

context. Our observations further highlight the diversity of virus-host interactions that 

exist as well, an appreciation of which may be critical to understanding the underpinning 

of cHAB progression. 
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Figure 13. Predicted virus-host interactions between bacterial metagenome assembled genomes (MAGs) and vOTUs 
of the 2014 Lake Erie bloom community. (A) Predicted virus-host network from 4 August bloom peak in the station 
WLE 12 sample, all fractions combined. Circle nodes are host MAGs; sizes represent the MAG relative abundance in 
the sample. Triangle nodes are viruses; sizes represent the average relative abundance of the vOTUs across 
fractions. Node colors represent assigned taxonomy. For vOTUs, taxonomy was assigned according to the Phage 
Taxonomy Tool (PTT; Kieft et al., 2020); for viruses, “Unknown” indicates the vOTU has no hit in the PTT reference 
database, “Unassigned” indicates the vOTU has a hit to something unassigned in the reference database, and 
“Ambiguous” refers to a situation in which a protein or virus had significant hits to multiple proteins within the 
database, but the program could not distinguish between taxonomic assignments. Only predictions with >93% 
infection probability are shown. Sept 29 virus-host network in SI Fig. 5. (B) Relationship between host relative 
abundance and the number of viruses predicted to infect a given host, separated by date. Line and point colors 
represent filter fractions. Grey shading represents 95% confidence interval of the linear regression. 
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3.2.3.2 The majority of predicted Microcystis viruses are present at low abundance 
through the bloom 

Though hundreds of vOTUs were predicted to infect each Microcystis MAG, most 

remained at low abundance throughout the bloom. Two exceptions were vOTU_2187 

and vOTU_44, which rose to abundance in colony-associated fractions on Aug 4 (Fig. 

12B-C). These were only two of the top 30 most abundant vOTUs across the entire 

dataset (Fig. 12), further supporting the importance of non-Microcystis virus-host 

dynamics in understanding the community ecology. Notably, Ma_MAG_2, the more 

abundant Microcystis MAG at each bloom peak, had fewer predicted viruses than 

Ma_MAG_1, suggesting that the VHIP viral predictions for Microcystis are strain-specific 

and that host relative abundance may not be predictive of the number of viruses of a 

given host. To expand upon this observation, we evaluated the relationship between all 

hosts and their predicted viruses. 

3.2.3.3 Fraction-specific trends in predicted viral host ranges 

The number of viruses predicted to infect host MAGs depended on the fraction in which 

the viruses were observed. The greatest number of predicted viruses per host was 

observed among the >0.22 µm fraction, followed by the 3, 53, and 100 µm fractions 

(Fig. 13B). In most cases, the number of viruses predicted per host showed no trend or 

was slightly negatively correlated with the host relative abundance (Fig. 13B; Table 

S13). A notable exception was the case of the 100 µm samples from the Aug 4 and 

Sept 29 bloom peaks, which showed a positive correlation between host relative 

abundance and the number of viruses predicted to infect the host MAG (Fig. 13B; Table 

S13). We propose that this trend can be explained through the lens of a fraction-

dependent Kill-the-Winner and Bank frameworks. When a given host population is more 

abundant (a ‘winner’), it draws more viruses from the viral ‘bank’, thereby moving them 

to the active pool. Here they are detected in the colony-associated fractions where the 

“winner” host taxa are thriving. The colony may provide new hosts in close proximity 

that can lead to an increase in the number of viruses infecting a given host, thereby 
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representing a unique fraction-specific dynamic that occurs in the context of the cHAB 

colonies. 

 

3.2.3.4 Virus-host interaction dynamics reflect vOTUs dynamics through the cHAB 
season 

We next looked at the turnover of networks through time at spatial scales of miles 

(cross-station comparison) and microns (cross-filter comparison) to better understand 

constraints on virus-microbe interactions. To do this, we tracked the occurrence of each 

predicted virus-host pair across dates, stations, and sample fractions. Examining these 

trends between stations, the networks collected from different stations shared more 

virus-host pairs than those collected on different dates but at the same station (Fig. 

14A). A notable exception is the limited overlap between WLE4 compared to WLE2 and 

WLE12 (Fig. 14A), in line with the limited bloom at WLE4 at that time (Berry et al., 

2017). The importance of date in structuring these interactions is consistent with the 

significant role of date in explaining variation in viral community structure (Fig. 11C). 

This observation underscores the dynamic nature of these interactions, where 

ecological (assembly and turnover of host populations based on environmental 

conditions, competitive and consumer-prey interactions) and coevolutionary processes 

continually shape the relationships between viruses and their bacterial hosts. 
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Figure 14. Turnover of Lake Erie cHAB virus-host pairs. (A) Network of predicted virus-host pairs shared between 
different sampling dates and stations. Black nodes represent predicted virus-host networks of individual samples 
(individual networks are not visualized here; composite networks for Aug 4 and Sept 29 are in SI Fig. 5). Lines 
(edges) connecting nodes represent a virus-host pair shared between two samples. Numbers on nodes are the total 
number of virus-host pairs predicted in a sample. (B) Heatmap depicting the proportion of virus-host pairs shared 
between different samples scaled by the total number of virus-host pairs in the row sample. Dendrogram depicts 
hierarchical clustering of samples by proportion of shared virus-host pairs. Color blocks on the right indicate sample 
date and station. (C) Network of predicted virus-host pairs shared between different sampling dates and fractions. All 
else as described for panel A. (D) Heatmap depicting the proportion of virus-host pairs shared between different 
samples scaled by the total number of virus-host pairs in the row sample. Color blocks on the right indicate sample 
date and fraction. Dashed box indicates a cluster of colony-associated samples from the Lake Erie 2014 bloom 
peaks. 

 

3.2.3.5 Distinct virus-host interactions emerge in colony- and not colony-associated 
assemblages 

In contrast, there were marked differences in how these virus-host interactions 

were distributed across fractions, even when collected on the same date (Fig. 14C-D). A 

greater percentage of pairs were shared within the colony-associated fractions (17% on 

average) and within the non-colony-associated fractions (8% on average), than between 
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colony- and not-colony-associated fractions (2.4% on average). Our previous work 

(Wing et al., 2024a) described colony-dependent partitioning among Microcystis vOTU 

assemblages and how this pattern may be explained by observed fraction-specific 

differences in relative abundances of Microcystis genotypes. The observed partitioning 

of variation between host-virus assemblages based on the presence of distinct 

ecological contexts (Rosenberg et al., 2021), such as free-living and host-associated 

communities, is a pattern that can be generalized beyond just Microcystis to various 

host-virus systems. This phenomenon underscores the importance of considering 

different ecological niches within a larger ecosystem when studying host-virus 

interactions. Overall, the network of networks representation (Fig. 14A,C) provides a 

novel approach to capture the high-dimensional data in a framework suitable to study 

the dynamism of viral-host interactions across spatial scales (microhabitats to lake 

regions) and time. 

Across ecosystems, microbial hosts exist in various forms and associations, such 

as single-cell organisms and multicellular colonies or biofilms (Schmidt et al., 2020; Li et 

al., 2021; Rosenberg et al., 2021). These different ecological contexts offer unique 

dynamics that impact the interactions between hosts and their viral predators. The 

variation in host populations within these ecological niches may, in turn, influence the 

range of viruses that can infect and influence these hosts. This partitioning suggests 

that the dynamics of host-virus interactions can be context-dependent, where the same 

host species may exhibit different susceptibility or resistance to viruses depending on 

whether it exists as a free-living individual or forms more complex structures (Palermo 

et al., 2021). In the case of cHABs, the presence of colonies versus single cells may 

result in distinct virus-host interactions. We recommend future considerations of micro 

and macro spatial contexts when studying virus-host interactions, as these unique 

ecological constraints likely influence the dynamics and outcomes of virus-host 

interactions. 

3.3 Outlook/Future Directions 

The characterization of Lake Erie’s vOTUs and their metabolic potential presented here 

is an important step towards understanding viral community dynamics in a freshwater 
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cHAB. Our work detailed thousands of undescribed vOTUs, revealing the novelty of 

Great Lakes viral communities. Our findings support the application of the Bank model 

to describe the seasonal succession of vOTUs, with a small portion of abundant viruses 

representing the “active” fraction while the majority of populations remain in a dormant 

“bank” state. This viral bank likely contributes to the high level of viral richness and 

evenness observed in the cHAB viral community. We identified abundant vOTUs in the 

cellular, especially colony-associated, fractions that appeared on multiple dates, 

suggesting their active role in shaping bloom community dynamics. Overall, sampling 

date and size fractionation primarily shaped the spatiotemporal dynamics of the viral 

community, highlighting the necessity to incorporate different sampling fractions through 

time to better understand the interplay between local and global processes that shape 

viral community dynamics. Further analysis of the ecological roles of virally encoded 

metabolic functions will provide a deeper understanding of host-virus interactions and 

their implications for the rise and demise of harmful algal blooms. Our findings suggest 

that the standard approach of studying viruses in only one filter fraction results in the 

underestimation of viral diversity and a skewed representation of their ecology, as viral 

community analysis is restricted to only those viruses that are physically captured. 

Together, our results highlight the importance of incorporating different sampling 

fractions into future studies aimed at describing the ecological importance of viruses in 

ecosystems. 

3.4 Materials and Methods 

3.4.1 Field Sampling and Collection 

For full field sampling methods, refer to Wing et al., 2024a. Briefly, The field sampling 

was conducted in cooperation with the NOAA Great Lakes Environmental Research 

Laboratory sampling program for Lake Erie in 2014. Three sampling sites were 

selected, and samples were collected bi-monthly in June and weekly from July through 

October. Metagenomic data were generated from samples collected at three regularly 

sampled stations (WE2, WE4, and WE12) located at different positions in Lake Erie. 

Water samples were collected from 0.1m below the water surface using a peristaltic 

pump, yielding 20 liters of water. Samples were filtered using 100μm polycarbonate 
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filters to concentrate Microcystis colonies while excluding smaller particles. This 

>100μm Microcystis community constituted over 90% of all Microcystis cells in Lake 

Erie. Additional filtration steps were employed to collect single-celled microbes, the bulk 

bacterial community, and viruses associated with the bloom stages. Iron chloride stock 

solution was added to the <0.22µm fraction to create a flocculant containing iron 

chloride and viruses, which was allowed to sit overnight to maximize virus recovery. 

Finally, the flocculant was filtered through a 0.45µm filter and stored at 4°C. 

 

 

3.4.2 DNA Extraction and Sequencing of Hosts and Viruses 

Host DNA was extracted from samples using the DNeasy Mini Kit (QIAGEN) according 

to manufacturer’s instructions. All sequencing was performed at the University of 

Michigan Sequencing Core. Paired-end DNA sequencing (2 125) was conducted on 

Illumina HiSeq 2000 with V4 chemistry reagents with “low-input prep” using the Rubicon 

ThruPlex kit. For viral DNA, refer to our process described in protocols.io 

(https://www.protocols.io/view/iron-chloride-flocculation-resuspension-and-dna-ex-

c4ygyxtw). Metagenome information can be found in Table S14. 

 

3.4.3 Host Assembly and Binning 

For full host assembly and binning instructions, refer to Wing et al., 2024a. 

Metagenomic data from 36 samples were processed to create high-quality Metagenome 

Assembled Genomes (MAGs). Contaminated sequences were removed using BBDuk, 

and denoised reads were assessed for quality with FastQC. Dereplication was 

performed with BBnorm, followed by contig assembly using Megahit. MAGs were 

generated using Concoct (Alneberg, 2013). Host bins were dereplicated using dRep 

default settings (Olm, 2017). Manual refinement of MAGs was carried out using Anvi'o 

(Eren, 2021). MAGs meeting specific criteria for completeness, contamination, and 

strain heterogeneity were retained as the final results. Multiple rounds of refinement 

were performed, and CheckM was used to estimate MAG quality (Table S15). Read 

mapping was conducted to determine host relative abundance, where bins with 70% 

coverage at 1x read depth were considered present in a given sample. 
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3.4.4 Viral vOTU Generation, mapping and community diversity (alpha and beta) 

For full viral vOTU methods, mapping and diversity metrics, refer to Wing et al., 2024a.  

Briefly, a combination of viral identification tools were employed to predict potential viral 

contigs from metagenomic data obtained from 2014 Lake Erie samples. Only contigs 

exceeding 3 kilobases in length were retained and used to identify viral operational 

taxonomic units (vOTUs). These vOTUs were defined by clustering contigs with an 

average nucleotide identity (ANI) of 95% across 85% of their length. The longest 

sequence within each vOTU was designated as the representative sequence for 

subsequent analyses. Reads from each sample were mapped to these contigs, and 

quantification was performed using Bowtie2 and Samtools. Alpha diversity measures 

were calculated based on downsampled reads, and Bray-Curtis distances were used to 

assess the viral community structure among samples. PERMANOVA analysis was 

conducted to evaluate the impact of various factors, including sampling location, date, 

fraction, and environmental parameters, on the viral community structure. Taxonomy of 

vOTUs from Lake Erie was estimated using an approach previously described in Kieft et 

al. (2021). Briefly, Prodigal v2.6.3 (Hyatt et al., 2010) was used to generate open 

reading frames (ORFs) for viral contigs and DIAMOND v0.9.14.115 (Buchfink et al., 

2015) was used to generate a custom NCBI GenBank reference database. DIAMOND 

BLASTp (Altschul et al., 1990) was then used to match proteins from viral contigs to the 

custom database, providing hits that were then filtered and assigned a taxonomic 

lineage according to DIAMOND BLASTp hit counts. Assignments were provided 

beginning at the Order level and subsequently assigned down to the Subfamily when 

available. 

 

3.4.5 Viral Metabolic Potential Analyses 

For full viral metabolic potential analyses methods, refer to Wing et al., 2024a. Viral 

contig gene metabolic annotations were assigned using the KEGG and Pfam databases 

through the DRAM (Distilled and Refined Annotation of Metabolism) tool (Shaffer et al., 

2020), which was preceded by the generation of open reading frames (ORFs) with 
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Prodigal (Hyatt et al., 2010). Read coverages of these ORFs were calculated using 

FeatureCounts (Liao et al., 2014). Bray-Curtis distances were computed between 

samples, followed by NMDS ordination using the vegan package in R. The impact of 

water quality parameters on the abundance of protein families (Pfams) was assessed 

using a PERMANOVA model, with parameters showing significant correlations at a p-

value of ≤ 0.05.  

 

3.4.6 Virus-Host Predictions 

Virus-Host Infection Predictor VHIP (v.1.0) was used to predict virus-host pairs from the 

2014 Lake Erie cHAB metagenomic data. VHIP is a gradient-boosted machine learning 

model that relies on sequence-based signals of coevolution detected in viral and 

putative host genomes (Bastien et al., 2023). vOTUs were binned using vRhyme (Kieft 

et al., 2022). Viral bin representative sequences >10 kb were and virus-host pairs with 

VHIP prediction score >0.93 were used for interaction network analysis. Networks were 

visualized with Gephi 0.9.0 (Bastian et al., 2009).  

 

For a full list of SI Tables, visit: 

https://docs.google.com/spreadsheets/d/1Vn4FnikvIpvI40X-

DpH4S3vJYZ5JJ4qcfFjYk1HjmCQ/edit?usp=sharing 

 

For a full list of SI Figures, visit: 

https://docs.google.com/document/d/1dZqx40UssIb_n5lqqZonhAZ8e4h6JQcU1uld7EG

87tE/edit?usp=sharing 
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Abstract 

As the importance of viruses continues to be underscored in the context of 

cyanobacterial harmful algal blooms (cHABs), it is imperative to gain a better 

perspective on the role of phage-host interactions in these complex communities. 

Despite ongoing research efforts, our understanding of phage-host dynamics in cHABs 

remains limited. While cHABs are increasing in intensity and frequency across the 

globe, our study aims to address the lack of knowledge in cHAB phage-host dynamics 

across eight separate blooms in the western basin of Lake Erie. We identified a 

significantly positive correlation between the phylogenetic distances of Western Lake 

Erie Culture Collection (WLECC) Microcystis strains and their infection profiles. 

Underscoring the role of shared genetic and physiological traits among closely related 

Microcystis strains in influencing their susceptibility or resistance to specific phages. 

Intra-colony infection dynamics within WLECC cultures are examined, providing 

evidence for intra-colony infections between Microcystis and other consortia members. 
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Viral OTU (vOTU) 17663 and Microcystis strain LE19-12.2 emerge as a meaningful 

phage-host pair as their predator-prey relationship is tracked across multiple blooms, 

linking phage, host and bloom dynamics in Lake Erie cHABs. This work advances our 

understanding of Microcystis-phage dynamics during cHABs and provides a powerful 

stepping stone to further explore the importance of phage-host dynamics in the rise and 

demise of cHABs. 

Graphical Abstract 
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4.1 Introduction 

Microcystis aeruginosa, a globally distributed cyanobacterium, forms toxic blooms in 

freshwater systems, estuaries, and coastal systems worldwide (Yoshida et al., 2008; 

Preece et al., 2017). As M. aeruginosa can produce microcystins, which are potent 

hepatotoxins, the ability to predict when and where toxic blooms occur is critical to 

ensuring public health in at-risk habitats. While the importance of nutrient availability for 

M. aeruginosa bloom proliferation has been established (Harke et al., 2016; Dolan and 

Chapra, 2012; Pearl and Huisman 2009), these bottom-up influences are not able to 

explain finer resolution changes within a bloom, such as shifts from toxin- to non-toxin 

producing blooms (Bozarth et al., 2010; Davis et al., 2010). These shifts may be better 

explained by top-down controls that function at strain-level resolution (Yoshida et al., 

2006, Yoshida et al. 2020), such as viral predation. Cyanophage, phage that specifically 

infect cyanobacteria, are capable of regulating bloom diversity and community structure 

via lysis-induced mortality and the reprogramming of host metabolisms during infection 

(Gao et al., 2016; Howard-Varona et al., 2020, Thompson et al., 2011, Wang et al., 

2022). While the role of viruses as top-down controls of marine phytoplankton blooms is 

well-established (Schroeder et al., 2003; Sorensen et al., 2009; Trainic et al., 2018), the 

impact of viral infection on freshwater algal blooms and bloom toxicity is less well 

understood. 

  In 2014, proliferation of a toxic Microcystis bloom in Lake Erie led to the drinking 

water shut-off of Toledo, Ohio. More than 400,000 residents were left without access to 

potable water for over three days. Broad-scale viral infection of Microcystis has been 

suggested to have contributed to the high concentration of dissolved microcystin during 

this period, presumably by releasing the toxin following cell lysis (Steffen et al., 2015; 

McKindles et al., 2020). Previous studies have revealed that Microcystis is targeted by a 

wide array of cyanophage (Kuno et al., 2012; Yang et al., 2015), suggesting 

Microcystis-infecting phage are likely to play a role in determining cyanobacterial bloom 

dynamics. Though paramount to understanding bloom progression, the interactions 

between viral infection and Microcystis strain-type remain poorly resolved. 

Due to the clear public health implications associated with Microcystis-dominated 

cyanobacterial harmful algal blooms (cHABs), numerous studies on the diversity of 
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Microcystis have focused on the presence of toxigenic and non-toxigenic strains, which 

often cohabitate in these blooms. Often, these blooms display a temporal strain 

succession, as toxigenic strains dominate early bloom peaks while non-toxigenic strains 

persist in the later stages (Davis et al., 2010; Bozart et al., 2010; Singh et al., 2015; 

Gobler et al.; 2016), though this succession cannot always explain bloom toxicity 

dynamics (Kardinaal et al., 2007; Rinta-Kanto et al., 2009). While this strain succession 

remains ambiguous, it is evident that ecologically distinct strains of Microcystis exist and 

delineate from one another based on adaptations to temperature conditions (Xiao et al., 

2017), light availability (Fontana et al., 2019), oxidative stressors (Dziallis and Grossart, 

2011; Zilleges et al., 2011; Schuurmans et al., 2018) and nitrogen requirements 

(Alexova et al., 2011; Alexova et al., 2016; Monchamp et al., 2014). Yet, previous work 

has failed to adequately explain these delineations in terms of top-down controls such 

as viral predation. While prior research has proposed viral resistance in one of two 

distinct Microcystis populations identified in separate cHABs peaks based on 

presence/absence of viral marker genes (Yoshida et al., 2007), marker gene analyses 

and qPCR targets alone are not enough to establish virus-host interactions. While virus-

driven intraspecific diversification could impact bloom toxicity, the addition of ‘omics-

based approaches like community level genomic sequencing (Morimoto et al., 2019) are 

required to better elucidate the susceptibility of Microcystis strains to viral infection as 

well as the host range of cultured and uncultured Microcystis viruses.  

In this study, we described the relationship between viral predation and 

Microcystis population diversification as a means to explore the potential impacts of viral 

infection on toxin production. We sought to answer the following research questions: 1) 

Are Microcystis isolates’ phylogenetic distances correlated with infection profiles? If so, 

what host traits explain the variation in infection profiles between isolates? 2) Do we see 

intra-colony infection dynamics? Using high quality toxic and non-toxic xenic Microcystis 

isolates from the Western Lake Erie Culture Collection (WLECC) (Yancey et al., 2023), 

we establish a relationship between Microcystis strains and wild viral populations from 

the same season and location. Furthermore, we assess whether wild viral populations 

predicted to infect Microcystis are also predicted to infect other consortia members 

associated with these isolates. To date, these linkages have only been made between 
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Microcystis viruses and reference genomes isolated from different temporal and 

geographic contexts. By leveraging Microcystis isolates, their well-described genome 

content, their characterized toxigenic potential, and their inferred infection profiles, we 

link host, toxin production, and viral predation for the first time.  

4.2 Results/Discussion 

4.2.1 Phylogenetic distance and predicted viral infection profiles of 

Microcystis isolates from Lake Erie are correlated 

Understanding the factors that shape the genetic diversity of Microcystis and 

interactions with members of the phycosphere community are necessary to better 

understand microbial community dynamics in cHABs. In this context, we examined the 

relationship between Microcystis strain phylogenetic distances and infection profile 

distances, with the hypothesis that: If phylogenetic distances are correlated with 

infection profiles, then Microcystis isolates with greater phylogenetic similarity will share 

similar infection profiles. This similarity in infection profiles may be explained by shared 

host traits as isolates belonging to the same phylogenetic cluster or lineage are 

expected to display more similar infection profiles due to their shared genetic and 

physiological characteristics, ultimately influencing their susceptibility or resistance to 

specific viruses. 

To test our hypothesis, we calculated phylogenetic distances among 21 

Microcystis isolates (Table 1) and also calculated their infection profile distances 

resulting from infection predictions generated with VHIP, a novel infection prediction 

model with 87% accuracy in predicting phage-host pairs (Bastien et al., 2023), using 

23,347 virus OTUs (vOTUs) identified in Lake Erie samples and the 21 Microcystis 

cultures. We then performed a Spearman rank correlation analysis to assess the 

relationship between phylogenetic distances and infection profile distances. Our 

analysis revealed a statistically significant correlation (r-squared = 0.1955, p-value = 

0.0223) between Microcystis isolate phylogenetic distances and infection profile 

distances (Fig. 15).  
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Table 1. Summary of Lake Erie Microcystis isolate culture collection. 

 

 

Microcystis 

Isolate 

Culture 

Key Mcy genotype 

Associated 

Bacteria 

Catalase 

Collection 

Date Station Latitude Longitude 

LE19-41.2 ND-100 complete_C1 yes 7/15/2019 WE2 41.7621 -83.33 

LE19-10.1C ND-101 partial_C1 yes 7/8/2019 WE8 41.8357 -83.359 

LE19-12.2C ND-102 absent yes 7/8/2019 WE8 41.8357 -83.359 

LE17-10A ND-78 absent yes 9/18/2017 WE8 41.8357 -83.359 

LE18-22.4A ND-79 complete_C1 yes 6/25/2018 WE12 41.7035 -83.2537 

LE19-114.1A ND-80 absent yes 7/22/2019 WE8 41.8354 -83.3584 

LE18-13.4 ND-81 absent no 6/12/2018 WE2 41.7621 -83.33 

LE19-196.1 ND-82 absent yes 8/5/2019 WE6 41.7057 -83.3831 

LE19-338.1 ND-84 absent yes 8/20/2019 WE6 41.7109 -83.3668 

LE19-55.1 ND-85 absent yes 7/15/2019 WE2 41.7621 -83.33 

LE19-8.1 ND-86 absent yes 7/8/2019 WE8 41.8357 -83.359 

LE19-84.1 ND-87 complete_B1 no 7/29/2019 WE4 41.8261 -83.1946 

LE19-131.1A ND-89 absent yes 7/29/2019 WE8 41.8328 -83.3625 

LE19-195.1B ND-90 complete_B1 yes 8/5/2019 WE6 41.7057 -83.3831 

LE19-197.1 ND-91 absent no 8/5/2019 WE8 41.8347 -83.3587 

LE19-4.1 ND-93 absent yes 7/8/2019 WE8 41.8357 -83.359 

LE19-59.1 ND-94 complete_C1 yes 7/15/2019 WE12 41.7035 -83.2537 

LE19-98.1 ND-95 absent yes 7/29/2019 WE4 41.8261 -83.1946 

LE17-20C ND-97 absent yes 9/18/2017 WE8 41.8357 -83.359 

LE19-251.1 ND-98 partial_C1 yes 8/12/2019 WE8 41.8325 -83.3598 

LE19-388.1 ND-99 absent yes 7/29/2019 WE6 41.7049 -83.3869 
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Figure 15. Spearman Rank Correlation Coefficient between Microcystis isolate phylogenetic distances and 
infection profile distances. Each point represents a comparison between two Microcystis isolates’ 
phylogenetic distance and infection profile distance. The purple line represents a linear regression and 
the gray shading represents 95% confidence intervals. 

 

This finding suggests a moderately strong positive correlation between these 

variables. While phylogenetic distances and infection profile distances are not directly 

proportional, they are linked, and the significance of the correlation suggests that 

underlying biological or ecological factors may drive this association. Our findings build 

on previous work that temperate phages are more likely to infect bacteria from the same 

clade as their original host, relative to bacteria from distantly related clades (Wendling et 

al., 2018). Our study delves even deeper into the intricacies of this phenomenon. We 
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discovered correlations between phylogenetic distance and infecting viruses within sub-

species of bacteria, highlighting a finer level of specificity in the relationships between 

phages and their bacterial hosts. This nuanced understanding suggests that phage-host 

interactions are not solely dictated by broad taxonomic affiliations but can be influenced 

by more subtle genetic and ecological factors within bacterial populations.  We next 

sought to identify and determine which host traits and environmental parameters might 

explain the variation observed between Microcystis isolate phylogenetic distances and 

infection profiles. 

 

4.2.1.1 Collection date is significant predictor of predicted viral infection profiles 

for Microcystis isolates 

We conducted a comprehensive ANOVA analysis, focusing on several environmental 

and spatiotemporal variables. Our results, as summarized in SI Table 2, reveal insights 

into the significance of these variables in shaping the Microcystis community. Among 

the variables examined, the collection date (month_year) emerged as the sole 

statistically significant predictor of Microcystis infection profiles. This finding highlights 

the crucial role of temporal dynamics in Microcystis-phage interactions within the 

western basin of Lake Erie. The significant F-statistic (F = 1.9357, p = 0.0438*) 

associated with the collection date variable underscores its importance in explaining this 

variation and the positive R-squared value (R2 = 0.28271) suggests that approximately 

28.27% of the variability in the infection profiles between Microcystis strains can be 

attributed to changes over time. 

Contrastingly, the remaining environmental variables, including sampling site 

(Station), mcy cassette genotype (mcy_genotype), host-associated catalase activity, 

temperature (temp_c), dissolved oxygen concentration (do_mg_L), specific conductivity 

(SpCond_uS_cm), photosynthetically active radiation (PAR_uE_cm2_s), total 

phosphorus (TP_ug_L), and total dissolved phosphorus (TDP_ug_L), did not exhibit 

statistically significant relationships with the Microcystis strain infection profiles within 

our dataset. While our PCOA ordination based on Jaccard dissimilarity in Microcystis 

isolate infection profiles captured 48% of the variation observed in infection profiles 
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between Microcystis isolates (Fig. 16), it is essential to acknowledge that there are likely 

other unexplored factors contributing to the unexplained variation. 

 

 

Figure 16. PCOA ordination based on Jaccard dissimilarities in distributions of Microcystis isolate infection 
profiles. Point color represents the collection date; shape represents station sampled.  

 

These findings underscore the importance of specific factors, including the 

temporal relationship between Microcystis isolate infection profiles, in shaping the 

coevolutionary arms race between Microcystis and its predicted phages, while 

highlighting the limited influence of tested environmental parameters in the context of 

our study. As we consider the dynamic nature of microbial communities in Lake Erie, it 

is crucial to recognize that multiple factors could be at play, influencing Microcystis 

strain diversity over time. Thus, further investigations are warranted to explore the 

nuanced interplay between these variables, as well as the potential impacts of 

unexamined factors on Microcystis ecology and virus-host interactions. This holistic 

approach will contribute to a more comprehensive understanding of the temporal 
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dynamics of Microcystis strain diversity in Lake Erie and its broader ecological 

implications. 

 

4.2.2 WLECC offers foundations for phage-host dynamics in the wild 

4.2.2.1 Analysis of Western Lake Erie Culture Collection reveals 41 isolate vOTUs 

 

After exploring the relationship between Microcystis isolate phylogenetic distances and 

infection profiles, we investigated the Western Lake Erie Culture Collection for vOTUs. 

Using the high MCC ruleset recommended in Hegarty et al., 2023, we identified 57 viral 

contigs ranging from 3,000 to 350,000 base pairs in length. Clustering these viral 

contigs with one another and wild viral contigs identified in Lake Erie samples between 

2014-2021 resulted in 41 isolate vOTUs. Of the 57 viral contigs identified in culture, only 

6 (82--ND_82_k141_3083, 93--ND_93_k141_2167, 94--ND_94_k141_2606, 97--

ND_97_k141_135, 86--ND_86_k141_3379 and 92--ND_92_k141_17537) clustered with 

wild vOTUs. Of the 41 isolate vOTUs, 3 sequences from wild vOTUs 

(vRhyme_175__447--samp_447_157055, vRhyme_259__449--samp_449_49203, and 

vRhyme_37__448--samp_448_44905) from their respective clusters were used as 

isolate vOTU representatives given these were the longest sequence within the cluster. 

To contextualize these isolate vOTUs within the confines of Lake Erie, we performed 

competitive mapping of metagenomic reads from Lake Erie samples to these isolate 

vOTUs and 24,218 vOTUs identified in the wild to gain insight into the relative 

abundances of these isolates within the viral community (Fig. 17).  
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Figure 17. Relative abundance of isolate vOTUs in Lake Erie samples between 2014-2021. Only relative 
abundance of vOTUs at stations WLE12, WLE2 and WLE4 for the >0.22 µm fraction are shown.  

 

4.2.2.2 Within the Lake Erie viral community, isolate vOTU 17663 registers the 

highest relative abundance through eight cHABs 

 

Among the relative abundances generated for vOTUs in the >0.22 µm fraction, only one 

isolate vOTU was found to eclipse 1% relative abundance within the viral community at 

the primary sampling stations WLE12 (nearshore site by Toledo water intake crib), 

WLE2 (nearshore site by outlet of Maumee River) and WLE4 (offshore site closest to 

the Detroit River outlet). This vOTU, vRhyme_175__447--samp_447_157055, is 

13,280bp in length and is referred to hereon as vOTU 17663. Derived from its cluster 

number within the Lake Erie viral community, vOTU 17663 was detected at all sampling 

stations except WLE6. When investigating vOTU 17663 in other sampling fractions 

collected during the 2014 Lake Erie cHAB, we found this vOTU peaked at 22% relative 
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abundance in the 100 µm fraction collected September 29th at WLE2 (data not shown). 

vOTU 17663 reached 18% and 9.6% relative abundance in the 100 µm fraction at 

WLE12 on September 29th and WLE2 on August 4th, respectively.  

This was not unexpected as previous work (Wing et al., 2024a, Wing et al., 

2024b) has shown the most abundant members of the viral community often reside in 

the larger colony associated fractions. That said, vOTU 17663 registered a relative 

abundance of <0.5% in all 3 and 53 µm fractions, likely indicating the virus-host 

dynamics of this vOTU are best captured in the 100 µm fraction. Furthermore, vOTU 

17663 had a relative abundance <0.0001% in all viral fractions (<0.22 µm) collected 

demonstrating this vOTU likely reaches peak abundance when infecting hosts that are 

part of dense, colony-associated communities. To better understand why vOTU 17663 

registered the highest relative abundance of all isolate vOTUs in Lake Erie, we next 

determined whom this vOTU was predicted to infect.  

 

4.2.2.3 Isolate vOTU 17663 predicted to infect 5 Microcystis isolates, dozens of 

other consortia members 

 

Using VHIP, vOTU 17663 was predicted to infect a host MAG in 18 of 21 WLECC 

cultures. Across 18 cultures, vOTU was found to infect 96 isolate host metagenome 

assembled genomes (MAGs) with a 93% predicted probability of infection. Of the 96 

predicted hosts in culture, 5 of these were Microcystis MAGs (LE18-13.4, LE19-12.2, 

LE19-131.1, LE19-55.1 and LE19-98.1). Intriguingly, each of these Microcystis MAGs 

lacked an mcy operon, preventing the production of microcystin. To visualize these 

interactions between vOTU 17663 and these 5 Microcystis MAGs, in addition to other 

isolate vOTUs and isolate MAGs in these cultures, we generated 5 separate interaction 

networks (Fig. 18) complete with assigned host taxonomy and the date in which isolate 

vOTUs’ cultures were collected. 
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Figure 18. Isolate infection networks containing Microcystis and abundant vOTU 17663 ( 
vRhyme_175__447--samp_447_157055). These cultures include: ND-81, ND-85, ND-89, ND-95 and ND-
102. Circular nodes represent isolate host MAGs and triangular nodes represent isolate vOTUs. Host 
nodes are colored by GTDB taxonomic classification. vOTU nodes are colored by the date the culture 
sample was originally collected. All nodes are sized by the number of interactions they have. vOTU 17663 
is specified with a specific color and stroke in the legend.  

 

In addition to a Microcystis host, vOTU 17663 was predicted to infect at least one 

other host in 3 of the 5 cultures in which it was predicted to infect Microcystis. It is worth 

noting that Culture ND-81 had no high-confidence (93% infection probability) predicted 

infections outside of Microcystis, resulting in only one host being plotted from this 

culture. Nevertheless, these observations begin to address the research question: Do 
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we see intra-colony infection dynamics? Even when we introduce the bottleneck of 

visualizing only those cultures with a Microcystis MAG that vOTU 17663 was predicted 

to infect, we observe intra-colony infection dynamics. In fact, we observe that multiple 

vOTUs within these 5 networks are predicted to infect multiple host MAGs.  

With VHIP demonstrating an 87% accuracy in predicting infections (Bastien et 

al., 2023), we hold confidence that a substantial portion of the identified co-evolutionary 

associations genuinely represent virus-host interactions, whether they be past or 

current. We suspect numerous genomic fragments, often referred to as genomic 

"shrapnel," could not be effectively matched with their corresponding sequences due to 

the challenges associated with binning viral genomes (Roux, 2016; Kieft et al., 2022). 

This circumstance might lead to an inflation in the number of predicted infections, as a 

single virus could be counted multiple times. Therefore, although the predicted virus 

counts may not precisely reflect the actual number of infections in each culture, the 

overall data structures offer valuable insights. These networks offer novel perspectives 

on virus-host network structures, including host range characteristics (e.g., narrow 

versus broad host ranges), the potential for gene exchange between host and vOTUs 

(e.g., identifying which host populations have been evolutionarily connected through 

viral infections), and insights into how viral diversity fluctuates over time and space 

throughout a bloom. 

These culture-derived networks highlight the diversity of isolate vOTUs predicted 

to infect high quality Microcystis MAGs, and predictions of cross-infection of diverse 

hosts by the same vOTU. As Microcystis occurs in densely packed colonies with a 

closely associated and even physically attached, complex microbiome mainly 

composed of heterotrophic bacteria (Smith et al., 2021; Yancey et al., 2023), there is 

high potential for interactions with other bacterial taxa. Unlike specialist viruses that 

infect only a few host strains, generalist viruses can infect a broad range of hosts (de 

Jonge et al., 2019). This includes infections of different bacterial genera (Cazares et al., 

2021) and phyla (Malki et al., 2015) and even cross-domain infections (Hwang et al., 

2023). A virus’ host range has been discovered to be a highly evolvable trait (Heineman 

et al., 2008; Meyer et al., 2012; Meyer et al., 2016; Holtzman et al., 2020; Sant et al., 

2021; De Sordi et al., 2017; Cornuault et al., 2020); a trait that can either narrow or 
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expand (Heineman et al., 2008; Meyer et al., 2012). Prior meta-analyses have 

demonstrated nested patterns that allow for the coexistence of generalist and specialist 

phages (Flores et al., 2011; Flores et al., 2013; Weitz et al., 2013). To provide additional 

context to the dynamics of these isolate vOTUs and their predicted isolate host MAGs in 

the environment, we next tracked the relative abundances of isolate MAGs across eight 

bloom years. 

 

4.2.2.4 Isolate vOTU 17663 tracks abundance of Microcystis MAG LE19-12.2 

through blooms  

 

To gain insights into the dynamics of WLECC isolate MAGs in the wild, we first 

dereplicated 210 isolate MAGs with 424 wild MAGs from environmental samples using 

Galah (99% ANI across 50% of the genome), resulting in a non-redundant set of 579 

hosts to track moving forward. We competitively mapped this non-redundant set of host 

MAGs to samples’ reads across eight different bloom seasons. The relative abundances 

of all isolate MAGs (SI Fig. 1) within the non-redundant host set were collected and 

tracked across seasons. When we restricted tracking relative abundance to only the 

Microcystis isolate MAGs (Fig. 19), a clear pattern emerged between vOTU 17663 and 

Microcystis MAG LE19-12.2. Like vOTU 17663, LE19-12.2 was by far the most 

abundant member of its respective community, reaching a relative abundance of 16.8% 

in the 100 µm fraction at station WLE2 during October 20th of the 2014 bloom. In the 

>0.22 µm fraction, LE19-12.2 had relative abundance peaks surpassing 15% on August 

10th of the 2015 bloom. When comparing relative abundance peaks between vOTU 

17663 (Fig. 17) and LE19-12.2, we see a clear tracking pattern at nearly every peak 

outside of vOTU 17663’s final relative abundance peak during September 13th of the 

2021 bloom. While uncertain, this boom peak may have been the result of a host 

switching event or the detection of vOTU in the >0.22 µm fraction following a final lysis 

event of LE19-12.2.  

Given our results of 96 predicted isolate hosts for vOTU 17663, it is intriguing to 

see this vOTU follow the dynamics of one specific host, LE19-12.2, so closely. While 
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our work continues to support that these abundant community members likely rise to the 

peak of their relative abundances in the 100 µm fraction, one might expect an increased 

likelihood of host switching in a densely-populated colonial host community space. Yet, 

vOTU 17663 continued to track the dynamic abundance of LE19-12.2 year after year, 

bloom after bloom. Our findings suggest a fascinating level of consistency in the 

interactions between vOTU 17663 and its specific host, LE19-12.2, despite the 

potentially dynamic and competitive environment of a densely-populated colonial host 

community. This persistent tracking of host dynamics over multiple years and blooms 

raises intriguing questions about the mechanisms and selective pressures that govern 

such associations. It beckons further exploration into the coevolutionary processes, 

ecological advantages, and potential adaptations that allow vOTU 17663 to maintain a 

close relationship with LE19-12.2. Understanding these dynamics could provide 

valuable insights into the stability and intricacies of virus-host interactions within cHABs. 

We next explored whether these phage-host dynamics coincided with cHAB dynamics 

across eight seasons. 

 

 

Figure 19. Relative abundance of Lake Erie culture isolate MAGs between 2014-2021. Top row displays all 
isolate host MAGs. These were dereplicated with wild MAGs and competitively mapped to samples’ reads 
with wild MAGs. Line color pertains to each individual isolate MAG’s relative abundance. Bottom row 
displays only Lake Erie culture isolate Microcystis MAGs between 2014-2021. The original 21 Microcystis 
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MAGs from isolates were dereplicated to only the 10 shown here. Note this only shows relative 
abundance of isolate MAGs at stations WLE12, WLE2 and WLE4 for the >0.22 µm fraction. 

 

4.2.2.5 Isolate vOTU 17663 - LE19-12.2 dynamics track particulate microcystin 

measurements in cHABs 

 

We characterized eight different bloom seasons in the western basin of Lake Erie using 

measurements of chlorophyll-a (used as a proxy for primary productivity), particulate 

phycocyanin (used as a proxy for cyanobacteria) and microcystin (indicative of bloom 

toxicity) (Fig. 20). Using these bloom proxies, we identified at least 12 toxic bloom 

peaks across the eight sampling seasons. Microcystin concentrations predominantly 

mirror phycocyanin and chlorophyll-a measurements across stations WLE12, WLE2 and 

WLE4, suggesting that as biomass of bacterial community members increases at these 

locations, so too do microcystin concentrations. While this has been known for some 

time (Cory et al., 2016; Berry et al., 2017), it reiterates the importance of knowledge 

regarding phage-host dynamics, as these predator-prey interactions may be key to the 

release of intracellular host toxins into the system. 
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Figure 20. Bloom proxy for Lake Erie cHABs dynamics between 2014-2021. B) Chlorophyll-a, phycocyanin 
and microcystin measurements across bloom seasons for sampling stations WLE 12, WLE2 and WLE4 
(refer to graphical abstract for sampling map). 

 

When comparing the relative abundances of vOTU 17663 and predicted 

Microcystis host LE19-12.2, we see a clear relationship between the abundances of 

these community members and toxin concentration in the form of microcystin (Fig. 21; 

SI Table 5). Infection dynamics of vOTU 17663-LE19-12.2 provide a specific example of 

the importance in monitoring phage-host interactions in cHABs, as this relationship may 

have substantial impacts in Microcystis strain diversification and toxin release in the 

western basin of Lake Erie. However, LE19-12.2 was found to lack an mcy operon, 

indicating its lack of potential microcystin production. While the potential infection of 

LE19-12.2 by vOTU 17663 isn’t expected to result in increased microcystin 

concentrations, this infection may drive down LE19-12.2 abundances, providing an 

opportunity for toxic Microcystis strains to increase in their respective abundances.  It is 

also important to consider this is one of many phage-host interactions in a complex 

bloom community, leaving the door open to explore the broader implications of such 

interactions within the intricate web of microbial relationships in cyanobacterial harmful 

algal blooms (cHABs). While the vOTU 17663-LE19-12.2 interaction is a compelling 

case study, it represents just a single thread in the rich tapestry of phage-host dynamics 

within these ecosystems. 
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Figure 21. Correlation between microcystin concentration, (A) vOTU 17663 and (B) LE19-12.2 relative 
abundance. Each point represents the community member at a given date, station and fraction. Purple 
line depicts linear regression line and gray shadow represents 95% confidence intervals. 

 

Understanding the nuances of virus-host interactions, like the one observed here, 

can provide valuable insights into the ecology and evolution of bacterial populations and 

their associated phages, especially as we continue to explore non-cyanobacterial 

populations like those heterotrophs described in previous studies (Smith et al., 2021; 

Yancey et al., 2023). These interactions may play a pivotal role not only shaping 

Microcystis strain diversification and toxin release, but ultimately the overall health and 

stability of cHABs in freshwater systems. Therefore, continued research into the myriad 
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phage-host interactions in cHABs is essential to grasp the full scope of their impact on 

these complex microbial communities and the ecosystems they inhabit. 

  

4.3 Conclusion 

Our study provides a glimpse into the intricate world of virus-host interactions within 

cHABs and highlights the importance of considering both genetic and temporal 

dimensions in these microbial ecosystems. As we continue to uncover the complexities 

of these interactions, we move one step closer to unraveling the mysteries of cHABs 

and their ecological implications. We established a correlation between the phylogenetic 

distances of Microcystis isolates and their infection profiles, suggesting that Microcystis 

strains with greater genetic similarity tend to share similar infection profiles. This 

correlation underscores the importance of shared genetic and physiological 

characteristics among closely related Microcystis strains in influencing their 

susceptibility or resistance to specific viruses. 

Furthermore, our analysis highlighted the significant role of temporal dynamics in 

Microcystis-phage interactions. The collection date emerged as the primary predictor of 

infection profiles among Microcystis strains, emphasizing the importance of considering 

the temporal dimension when studying these microbial communities. While other 

environmental parameters were examined, they did not exhibit significant relationships 

with infection profiles, indicating that additional unexplored factors likely contribute to 

the variation observed. The study also revealed a specific case of a phage-host 

interaction between vOTU 17663 and Microcystis MAG LE19-12.2, which exhibited 

remarkable consistency over multiple bloom seasons. This persistence in tracking the 

host's dynamics raises intriguing questions about the underlying mechanisms and 

selective pressures governing such associations. It highlights the need for further 

exploration into the coevolutionary processes and potential adaptations that allow 

phages like vOTU 17663 to maintain close relationships with specific hosts. 
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4.4 Future Directions 

Our study has paved the way for several promising avenues of research in the field of 

cyanobacterial harmful algal blooms (cHABs) and virus-host interactions. One critical 

direction involves expanding our understanding of the intricate phage-host network 

within these complex microbial communities. While our study focused on a specific 

phage-host interaction, it is essential to acknowledge that numerous other interactions 

are occurring concurrently. Thus, future research efforts should aim to uncover and 

characterize additional phage-host relationships to provide a more comprehensive view 

of the network's structure and dynamics both in the lab and in the wild. 

The results of this work emphasize the importance of continuous monitoring and 

long-term studies to capture the full extent of temporal variations in these blooms. 

Understanding how phage-host interactions evolve over time is essential if we are to 

better understand the importance of viruses in ecosystems. Future investigations should 

prioritize the incorporation of temporal dimensions into the long-term study of virus-host 

dynamics. 

Exploring the mechanisms behind host range expansion and contraction in 

phages, particularly in the context of cHABs, represents another crucial area of 

research. Understanding how phages switch hosts and the ecological consequences of 

such events is essential for comprehending the adaptability and persistence of these 

viruses. Investigating the broader microbial community dynamics, including interactions 

beyond cyanobacteria, such as heterotrophic bacteria, is equally vital. Phages play 

multifaceted roles in shaping these communities, and exploring these interactions can 

offer a more holistic view of cHAB stability and function. 

Furthermore, efforts should be directed towards isolating more phages and hosts 

from cHABs. The improvement of inputs for infection networks depends on expanding 

the catalog of isolated phages and their respective hosts. This initiative will enhance our 

ability to construct more comprehensive and accurate phage-host interaction networks, 

allowing for a deeper understanding of the dynamics within these complex microbial 

ecosystems. In conclusion, our study has shed light on the complexities of virus-host 

interactions within cHABs, offering valuable insights into genetic and temporal 

dimensions. As we delve deeper into these intricacies, we move closer to unraveling the 
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mysteries of cHABs and their ecological implications. Future research endeavors in this 

field will undoubtedly contribute to a more comprehensive understanding of these vital 

ecosystems and perhaps guide strategies for managing and mitigating cHABs in 

freshwater systems. 
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4.6 Methods 

4.6.1 Field Sampling, Culture Collection, Extraction and Sequencing 

For the full methods of collection and cultivation of xenic cultures containing Microcystis 

from western Lake Erie during various sampling expeditions in 2017, 2018, and 2019, 

refer to Yancey et al., 2023 . Briefly, The isolation work involved plating samples, 

incubating them under specific light and temperature conditions, and serial streaking of 

Microcystis colonies onto agarose plates. Cultures were cryopreserved for long-term 

storage. Cultures were maintained at room temperature under controlled light conditions 

and reported successful growth at various temperature and light ranges. Several culture 

media, including BG-11 2N, LE BG11–2 N, unmodified BG-11, and WC medium, were 

used during isolation and maintenance. 

Cultures were homogenized and centrifuged to obtain DNA. DNA extraction was 

performed using the DNeasy Blood and Tissue Kit with the QIAshredder adapter. DNA 

concentrations were quantified using the Quant-iT™ PicoGreen™ DNA Assay Kit. The 

sequencing was conducted at the University of Michigan's Advanced Genomic Core 

using an Illumina NovaSeq (S4) platform with 300 cycles for 150bp paired-end reads, 

maximizing insert size without compromising read quality. 
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4.6.2 Host Assembly and Binning 

For full host assembly and binning methods, refer to Yancey et al., 2023. Briefly, bbtools 

software was used to remove adapters, quality trim reads, and eliminate contamination 

with the Univec reference collection. Duplicate reads were removed using clumpify and 

dedupe tools. Each sample was independently assembled using Megahit with the meta-

sensitive parameter. Contigs longer than 1kb were used to create Anvi'o databases for 

each sample. Microcystis and associated bacterial bins were generated and manually 

refined using Concoct and Anvi'o. The taxonomies of these bins were determined using 

single-copy genes in Anvi'o and further evaluated with GTDBtk and the GTDB release 

202 database. A pangenome analysis involving 159 Microcystis reference genomes and 

21 obtained genomes identified 26 single-copy genes common to all 180 genomes, and 

these genes were used to construct a phylogenetic tree. Additionally, genomic pairwise 

average nucleotide identity (gANI) between each Microcystis MAG was calculated using 

pyani. 

 

4.6.3 Viral Contig Identification, Clustering and Taxonomy 

For full viral identification tools and accompanying rule sets to choose a specific set of 

tools, refer to Hegarty et al., 2023. Briefly, CheckV (v0.9.0) (Nayfach et al., 2020), 

DeepVirFinder (v1.0) (Ren et al., 2020), Kaiju (v1.9.0) (Menzel et al., 2016), VIBRANT 

(v1.2.1) (Kieft et al., 2020), VirSorter (v1.0.6) (Roux et al., 2015), and VirSorter2 (v2.2.3) 

(Guo et al., 2021) were executed on the University of Michigan Great Lakes 

Supercomputing Cluster to identify viral contigs from wild Lake Erie samples between 

2014-2021 in addition to viral contigs in WLECC cultures collected between 2017-2019. 

For Kaiju taxonomic classification, the Kaiju nr_euk database (updated from NCBI 05-

23-2022) was employed. Default parameters were generally used for all tools, with the 

exception of specifying a 3 kb contig length cutoff. Viruses were then binned using 

vRhyme default settings (Kieft et al., 2022) to create a collection of viral bins and high-

quality unbinned contigs for population clustering. Viral contigs greater than 10kb  were 

clustered (Roux and Bolduc, 2016; stampede-clustergenomes) according to previously 

established standards defining viral populations (Roux  et al. 2019). Contigs sharing an 
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average nucleotide identity (ANI) of 95% across 85% of the contig length were clustered 

and the longest sequence of each cluster was considered the representative for a 

cluster, referred to as a viral OTU (vOTU) moving forward for downstream analyses. 

Taxonomy of vOTUs was estimated using the Phage Taxonomy Tool approach (PTT; 

Kieft et al., 2021). 

4.6.4 Virus-Host Infection Prediction Network 

For full methods of phage-host infection predictions, refer to Bastien et al., 2023. Briefly, 

a gradient-boosted machine learning model was employed, incorporating various 

feature classes related to virus-host interactions. These features included calculating 

the percent G+C content for both viral and host genomes and determining the 

differences between them (viral%G+C - host%G+C). Additionally, k-mer profiles were 

generated for viral and host genomes, considering two k-mer lengths: 3 and 6. Two 

distance metrics, namely euclidean and d2*, were applied to assess the distances 

between the k-mer frequencies of viruses and hosts. Sequence homology was 

evaluated between viral and host sequences to identify evidence of prior infections. 

Viral genome sequences were compared to all bacterial and archaeal sequences using 

default BLASTn parameters. Rare events involving the presence of hits against either 

bacterial genomes or spacers were combined into a single feature termed "homology." 

CRISPRCasFinder was used to identify CRISPR spacers in host species. Spacer 

sequences were collected, and viruses were subjected to a BLAST search against this 

spacer database. Hits with either 0 or 1 mismatch were retained as part of the CRISPR 

feature in the analysis. Model outputs were visualized using Gephi 0.9.0 (

https://gephi.org/). 

4.6.5 Microcystis MAG phylogenetic distance and infection profile 

correlation 

Phylogenetic distances were extracted for 21 Microcystis isolate MAGs originally 

provided from Yancey et al., 2023. Next, the Jaccard method was used to calculate 

distances between infection profiles (presence/absence data generated from the 

number of infections/non-infections for all wild and isolate vOTUs against Microcystis 
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MAGs). Spearman Rank Correlation Coefficient on relationship between phylogenetic 

distances and infection profiles (non-parametric measure used to assess the strength 

and direction of the monotonic (non-linear) relationship between two variables) was 

performed using the v2.5-2 package in R v4.0.2 to assess the correlation between these 

data. PERMANOVA using the adonis function in vegan was used to test the effects of 

sampling location, sampling date, sampling fraction as well as effects of environmental 

parameters on the variation between infection profiles. 

4.6.6 Isolate MAG and vOTU read mapping and relative abundance 

Isolate host MAGs were dereplicated with all wild MAGs between 2014-2021 using 

dRep default settings (Olm, 2017). Isolate vOTUs were also clustered (see Viral Contig 

Identification, Clustering and Taxonomy section) to provide a non-redundant set of 

vOTUs. Filtered and trimmed reads were assembled from the same sample and 

quantified using Samtools v1.11 (Li et al., 2009). These reads were then competitively 

mapped to all vOTUs and then all MAGs (both wild and culture-based) using Bowtie2 

(Langmead and Salzberg, 2012). Relative abundances of vOTUs and MAGs mapped 

reads were determined by summarizing reads mapped to vOTUs and MAGs using 

CoverM v.0.6.1 (Li, 2018).  

 

For a full list of SI Tables, visit: https://docs.google.com/spreadsheets/d/1LAULNraVgo6q-

WxefVKCZLuv4fRuWdnaVJiG29KxdZc/edit?usp=sharing 

 

For a full list of SI Figures, visit: 

https://docs.google.com/document/d/166ohRVRmGyGcQxZe9GIpFY5MlVwvqUe8O91TffgadVA

/edit?usp=sharing 
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Chapter 5: Conclusions and the Road Ahead 

Summary 

 

This comprehensive investigation into the viral community dynamics within Lake Erie's 

cyanobacterial harmful algal blooms (cHABs) has yielded profound insights into the 

intricate interplay between viruses and their hosts. These findings not only provide a 

deeper understanding of Lake Erie’s cHAB ecology but also contribute to the broader 

knowledge of viral dynamics in aquatic ecosystems. This dissertation took a 

bioinformatic approach to expand current knowledge of viral ecology in cHABs by: 

 

● Identifying Lake Erie-specific populations of known globally distributed 

Microcystis viruses. 

● Spatiotemporal patterns of Microcystis virus Ma-LEF01 in Lake Erie reveal strain-

level population dynamics in Microcystis viruses. 

● Predicting infection interactions between hundreds of viral operational taxonomic 

units (vOTUs) and Microcystis, with most vOTU host ranges within the genus and 

some spanning phyla. 

● Identifying metabolic genes encoded by predicted Microcystis vOTUs can be 

specific to bloom peaks. 

● Observing turnover of predicted Microcystis vOTUs is related to colony formation 

and sampling fraction. 

● Noting that the diversity of predicted Microcystis vOTUs is highest in the viral 

fraction and lowest in colony-associated fractions during bloom peaks. 

● Applying the viral 'Bank' framework, observing that abundant vOTUs are rare and 

sporadically observed, and suggesting that cHAB viral activity is fraction-specific 

● Demonstrating virus-host network turnover through cHAB progression  
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● Establishing a correlation between the phylogenetic distance of Microcystis 

isolates from Lake Erie and their predicted viral infection profiles. 

● Identifying that collection date as a predictor of predicted viral infection profiles 

for Microcystis isolates. 

● Analyzing the Western Lake Erie Culture Collection (WLECC) to identify 41 

isolate vOTUs, with isolate vOTU_17663 being the most abundant of the isolate 

vOTUs in Lake Erie. 

● Identifying predicted virus-host pair from isolates, Microcystis MAG (LE19-12.2) 

and vOTU_17663, that reach high relative abundances in Lake Erie across eight 

bloom seasons. 

● Observing that the virus-host isolate pair vOTU_17663/LE19-12.2 relative 

abundances correspond with particulate microcystin measurements in cHABs. 

 

These findings collectively advance our understanding of virus-host interactions, strain-

level dynamics, and the ecological complexities of cyanobacterial harmful algal blooms 

in Lake Erie. They also highlight the significance of temporal factors, fraction-specific 

viral activity, and the need for long-term monitoring in studying these ecosystems. 

 

5.1 Tracking the viral predators of Microcystis through the 2014 cHAB: 

novel insights from novel viruses 

 

This dissertation adopted a multifaceted approach, utilizing genomic signals of 

coevolution, to significantly advance our understanding of the complex interactions 

between viruses and their Microcystis hosts within the context of cHABs. 

 

5.1.1 Ma-LEF01: a Microcystis cyanophage specific to Lake Erie 
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Our work identified four Lake Erie viral operational taxonomic units (vOTUs) highly 

similar to known Microcystis viruses from various geographic regions and time periods 

(Tucker and Pollard, 2005; Yoshida et al., 2008; Ou et al., 2015; Lin et al., 2021; Yang 

et al., 2020; Cai et al., 2022; Qian et al., 2022; Wang et al., 2022; Zhang et al., 2022). 

This finding suggests the persistence of predator-prey relationships with broader 

implications for cHAB dynamics beyond Lake Erie. 

 

A detailed examination of Ma-LEF01, one of the identified viruses, revealed a complex 

genome structure with characteristics of both lytic and lysogenic replication strategies. 

Unique gene clusters and loci specific to Ma-LEF01 suggested potential viral strain 

diversity and adaptation to local conditions. Spatiotemporal dynamics of Ma-LEF01 

unveiled distinct patterns in its abundance, emphasizing the importance of considering 

strain-level population dynamics within viral communities. Furthermore, the strain-level 

analysis indicated that Ma-LEF01 and MVGF-J19 likely belong to the same vOTU, while 

MaMV-DC and Ma-LMM01 form a separate vOTU, aligning with the 95% ANI threshold 

proposed for distinguishing viral species (Roux et al., 2016). This finding underscores 

the significance of accounting for strain-level diversity when defining viral species. The 

study contributes significantly to our understanding of viral-host interactions, strain-level 

diversity, and the potential ecological consequences of Microcystis viruses in shaping 

cHAB dynamics.  

 

The addition of future omics-centric approaches will offer a more comprehensive view of 

viral communities within Lake Erie, enabling the identification of novel viral genes, 

metabolic pathways, and potential interactions with other microbial communities. 

Transcriptomics and metabolomics, can provide an additional layer of insight into viral 

ecology in cHABs. Transcriptomics can help reveal gene expression patterns in 

response to viral infections, shedding light on host-virus interactions and the molecular 

mechanisms involved. Metabolomics, on the other hand, can elucidate the metabolic 

changes within Microcystis populations during viral infections, aiding in our 

understanding of the broader biochemical consequences of viral predation. Together, 

these multi-omics approaches can provide a more comprehensive and integrated 
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understanding of the intricate dynamics between Microcystis, Ma-LEF01 and cHAB 

progression. 

 

 

5.1.2 Moving beyond marker gene analyses to track viral dynamics 

 

This dissertation challenges the limitations of previous knowledge, which primarily relied 

on marker gene analyses focused on the gp91 tail sheath gene of the Ma-

LMM01/MaMV-DC viral population, by unveiling the extensive and dynamic nature of 

Microcystis virus-host interactions (Takashima et al., 2007; Yoshida et al., 2008; Kimura 

et al., 2012; Mankiewicz-Boczek et al., 2016; McKindles et al., 2020; Pound et al., 

2020). By leveraging the Virus-Host Interaction Predictor (VHIP) (Bastien et al., 2023), a 

machine learning-based tool that harnesses genomic signals of coevolution, a vast 

network of predicted virus-host interactions emerged, encompassing numerous viral 

operational taxonomic units (vOTUs) and bacterial population genomes (MAGs). 

 

The analysis of viral abundance during the August 4 toxic and September 29 non-toxic 

bloom peaks revealed a substantial number of vOTUs predicted to infect Microcystis, 

challenging previous metagenomic studies and emphasizing the importance of 

accounting for strain-level diversity and fragmented viral genomes (McKindles et al., 

2020; Morimoto et al., 2023, Pound et al., 2020). These predicted associations, while 

reflecting past infection networks, do not necessarily imply current infections but 

demonstrate the existence of both narrow and broad host range Microcystis viruses. 

Some vOTUs span different phyla, suggesting a potential for gene flow between host 

and virus populations. Furthermore, our work identified virus-encoded auxiliary 

metabolic genes (AMGs) linked to various metabolic processes, such as 

photosynthesis, nitrogen metabolism, and response to environmental stress, 

underscoring the role of viruses in potentially rewiring host metabolisms and influencing 

matter and energy flow during infections (Roux, 2016; Anantharaman et al., 2014; Kieft 

and Zhou, 2020; Zimmerman et al., 2020; Howard-Varona et al., 2020). 
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Our work unveiled high turnover among the most abundant Microcystis vOTUs during 

the cHAB, with dominant viral populations peaking in abundance at specific bloom 

stages and displaying preferences for either colony-associated or free-living Microcystis 

populations. This observation aligns with the "Kill the Winner" hypothesis and highlights 

the influence of shifts in host availability, environmental conditions, and specific host-

virus interactions on viral dynamics (Breitbart, 2005; Hevroni et al., 2020). Importantly, 

these findings provide evidence that viruses play a role in shaping the succession of 

Microcystis strains during cHABs, impacting the diversity and ecological dynamics of 

Microcystis populations (Berry et al., 2016; Yancey et al., 2023). 

 

Future studies will leverage these findings to ask questions such as:  

 

i) What are the specific mechanisms that drive strain-level diversity within Microcystis 

viruses, and how do these strains adapt to local conditions?  

 

Investigating the specific mechanisms that drive strain-level diversity within Microcystis 

viruses can provide insights into the genetic and evolutionary processes that underpin 

their adaptation to local conditions. This knowledge can aid in predicting how viral 

populations might respond to changing environmental factors, including temperature, 

nutrient levels, and host diversity.  

 

ii) How does strain-level diversity influence virus-host interactions and the overall 

dynamics of cHABs in Lake Erie? 

 

The role of strain-level diversity in influencing virus-host interactions and the overall 

dynamics of cHABs is crucial for managing and mitigating harmful algal blooms. By 

uncovering how different viral strains interact with their hosts and how this affects 

Microcystis populations, researchers can develop more accurate models to predict the 

timing, severity, and persistence of cHABs. 
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iii) What are the cascading effects of virus-host interactions on nutrient cycling, other 

planktonic organisms, and overall ecosystem health? 

 

Understanding the cascading effects of virus-host interactions on nutrient cycling, other 

planktonic organisms, and overall ecosystem health is essential for comprehending the 

broader ecological impacts of Microcystis viruses. This knowledge can help assess the 

resilience of Lake Erie's ecosystem to cHABs and inform strategies for preserving water 

quality and the well-being of aquatic life. 

 

Overall, answering these questions can enhance our ability to predict and manage the 

ecological and environmental impacts of harmful algal blooms in Lake Erie and similar 

freshwater systems. It can also contribute to the development of more effective 

strategies for mitigating the negative consequences of cHABs, ultimately benefiting both 

the ecosystem and human communities that rely on these waters to survive. 

 

5.2 Broadening horizons beyond Microcystis: why all members of the 

cHABs microbial community matter 

 

The investigation into the viral community ecology during the 2014 Lake Erie 

cyanobacterial harmful algal bloom (cHAB) has revealed a wealth of novel information 

about the intricate dynamics of viruses in this ecosystem, highlighting the importance of 

future considerations aimed at assessing virus-host interactions among all available 

community members. 

 

5.2.1 Characterizing Lake Erie viral community results in thousands of novel 

viruses, and more importantly, an emphasis on the importance of size in aquatic 

matrices  
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A total of 36 metagenomes were collected from these stations and fractions, resulting in 

the identification of 27,086 viral contigs, which were further classified into 3,527 novel 

viral genus clusters and 15,461 viral operational taxonomic units (vOTUs). The 

observed viral diversity exhibited intriguing patterns across time and filter fractions. The 

viral fraction consistently displayed the highest diversity, which is in line with previous 

findings in oceanic viromes (Dart et al., 2023). This trend was attributed to the seed 

bank theory, where a diverse reservoir of viruses persists in submicron size fractions, 

contributing to infections when a suitable host is encountered. Interestingly, the viral 

diversity in colony-associated fractions (53 and 100 µm) was notably lower than that in 

non-colony-associated fractions, particularly during the bloom peaks. This lower 

diversity in the colony-associated fractions was attributed to active infections of host 

cells within colonies, resulting in reduced viral diversity due to the dominance of specific 

host-virus interactions during these critical periods (Gregory et al., 2019). 

 

Conducting a more extended and continuous temporal analysis could provide insights 

into the stability and resilience of viral communities over multiple years. Addressing 

these questions will add the next layer to our understanding of viral ecology in cHABs:  

 

How do viral communities change in response to interannual variations in environmental 

conditions and Microcystis dynamics? Are there recurrent patterns in viral diversity and 

community structure? 

 

Our analysis of viral community turnover revealed that both time and fraction 

significantly correlated with viral community structure, collectively explaining a 

significant portion of the variation. Temporal shifts in viral communities have been 

observed in various aquatic environments, reflecting changes in host communities as 

microbes respond to seasonal environmental fluctuations (Chow & Fuhrman, 2012; 

Brum et al., 2016). In contrast, the sampling location did not significantly influence viral 

community structure, aligning with previous studies in Lake Erie that emphasized 

seasonal rather than spatial variation in microbial communities (Berry et al., 2017a; 

Smith et al., 2021). This phenomenon could be attributed to the frequent mixing in Lake 
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Erie, which tends to dissipate station-driven influences on viral communities (Lin et al., 

2021). 

 

Furthermore, the distribution of viral-encoded auxiliary metabolic genes (AMGs) was 

tracked over time and across fractions. Similar to viral community structure, viral AMGs 

clustered primarily by sampling date and were not significantly affected by sampling 

location. These findings indicate a potential functional redundancy across different 

fractions, suggesting that the potential viral community metabolic function remains 

relatively consistent, even when taxonomic differences are observed. This may be due 

to the undersampling of functions, as many viral genes identified in this study had 

limited homology with reference genes in public databases (Deboutte et al., 2020; 

Gregory et al., 2019). Investigating the functional redundancy observed in viral-encoded 

auxiliary metabolic genes (AMGs) across fractions and time can lead to the discovery of 

novel functions, addressing questions such as: 

 

 What are the specific metabolic pathways and processes facilitated by these AMGs, 

and how do they impact microbial communities and ecosystem functioning in Lake Erie? 

 

Comparing the viral community dynamics and AMG distributions in Lake Erie with other 

aquatic ecosystems can provide insights into the uniqueness or commonality of these 

patterns, where a future question may be posed such as: What distinguishes Lake 

Erie's viral ecology from other freshwater bodies, and what can we learn from cross-

system comparisons?  

 

 Examining the interactions between viral communities and other microbial 

communities, such as bacteria and algae, can provide a more holistic understanding of 

ecosystem dynamics, leading to the research question: How do viral infections influence 

the composition and function of these microbial communities, and how do these 

interactions shape the overall health of Lake Erie's ecosystem? 
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5.2.2 Lake Erie evidence substantiates the Viral Bank model: how to apply this 

thinking moving forward 

 

One of the central findings of this study is the compelling evidence that substantiates 

the "Viral Bank" model, as initially proposed by Breitbart and Rohwer (2005). This model 

provides a framework to comprehend the observed temporal dynamics and population 

fluctuations of Lake Erie's viral communities. According to this model, the majority of 

viruses in an ecosystem exist in a non-active state, comprising a viral bank, while only a 

small subset are actively infecting hosts at any given time, similar to the seed bank 

theory (Breitbart and Rowher, 2005). This concept is validated in the Lake Erie context, 

where a mere 5.7% of viral operational taxonomic units (vOTUs) were ever considered 

highly abundant (>0.5% of viral reads). These highly abundant vOTUs exhibit transient 

dominance, rising and falling in abundance over time, highlighting the dynamic nature of 

viral populations. Furthermore, this study reveals that the majority of viruses in Lake 

Erie's cHAB ecosystem exist at low abundance, contributing to the overall richness and 

evenness of the viral community, consistent with the observations in studies by Breitbart 

et al. (2005) and Dart et al. (2023). 

 

The application of the Viral Bank model in this context offers valuable insights into the 

seasonal succession of vOTUs. Few vOTUs ever reach the "abundant" level, 

representing the active fraction of the community. As active viruses infect their hosts 

and are released as free virions, they contribute to the local viral diversity, enriching the 

viral bank. This phenomenon is further expounded through the "Kill the Winner" 

framework (Winter et al., 2010), whereby dominant viruses infect the prevailing 

"winners" within the microbial community, especially during bloom peaks. This pattern is 

consistent with the findings of Dart et al. (2023). The colonies captured on larger filter 

fractions, with their dense and diverse microbial populations, serve as hotspots of viral 

activity, facilitating infection and potentially influencing microbial community structure 

within the bloom. This observation underscores the importance of considering different 

ecological niches within a larger ecosystem when studying host-virus interactions. 
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Further research can focus on refining and expanding the Viral Bank model's 

applicability in different aquatic ecosystems, answering questions such as: How does 

the Viral Bank model manifest in other freshwater bodies, coastal regions, or marine 

environments? Are there variations in the proportions of active and inactive viral 

populations, and what drives these differences? 

 

Investigating the triggers and mechanisms that lead to the activation of specific vOTUs 

from the viral bank is essential and future questions asked include: What environmental 

cues or host-related factors influence the transition from a non-active to an active state 

for viruses in Lake Erie and other ecosystems? How do these activations impact 

microbial community dynamics? 

 

Expanding the temporal scope of studies can provide insights into the stability and 

persistence of viral banks over multiple years, asking multi-year questions including: 

How do viral banks evolve seasonally and interannually, and what are the 

consequences for ecosystem functioning and resilience? Are there recurrent patterns in 

the activation of specific vOTUs? 

 

Investigating the influence of viral banks on microbial community structure, diversity, 

and succession during cHABs is crucial. How do active viruses impact the composition 

and function of microbial communities, and how does this influence ecosystem health? 

Can viral bank dynamics be integrated into predictive models for cHAB occurrence and 

impact? 

 

Exploring the role of ecological niches, such as the microbial hotspots associated with 

larger filter fractions and bloom-forming colonies, in shaping viral activity and microbial 

community interactions is vital. How do these hotspots facilitate viral infections and 

potentially influence microbial community structure within cHABs? What are the 

consequences for nutrient cycling and overall ecosystem dynamics? 
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Developing innovative methods for monitoring and characterizing viral banks in aquatic 

ecosystems can improve our ability to study their dynamics. How can cutting-edge 

technologies and high-throughput sequencing be leveraged to capture a more 

comprehensive view of viral populations, including those in the non-active state? 

 

By addressing these future research questions, researchers can advance our 

understanding of the Viral Bank model's applicability in various ecosystems, unravel the 

mechanisms governing viral activation, and gain deeper insights into the dynamic 

interplay between viruses, hosts, and microbial communities. 

 

5.2.3 Microcystis-virus interactions are not alone in cHABs: moving past the 

Microcystis minority 

Predictive modeling identified thousands of potential host-virus interactions, with host 

specificity playing a significant role. Importantly, not all active vOTUs were observed in 

the viral bank across sampling points, suggesting that metagenomics may not capture 

all rare members of the viral community, a limitation also acknowledged in studies by 

Deboutte et al. (2020) and Gregory et al. (2019). The analysis highlighted that while 

hundreds of vOTUs were predicted to infect Microcystis, the dominant cyanobacterial 

genus in the bloom, only a small fraction of these phages ever exceeded 0.1% in 

relative abundance. This observation emphasizes the complexity of virus-host 

relationships and suggests that most phages capable of infecting Microcystis remain at 

low abundance throughout the bloom. The concept of context-dependent virus-host 

interactions was further supported by the observation that different ecological niches, 

such as colony-associated and non-colony-associated fractions, were targeted by 

different sets of active viruses. This context-dependent variation in host populations has 

implications for our understanding of viral-mediated top-down control in ecosystems. 

 

Furthermore, this study contributes to our understanding of viral community structure 

and dynamics by considering temporal factors and size fractionation. The observed 

turnover in virus-host interactions over time underscores the dynamic nature of these 
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relationships, a pattern also identified in studies by Chow & Fuhrman (2012), Brum 

(2016), and Malki et al. (2021). While sampling station did not significantly explain the 

variation in viral community structure, sampling date played a crucial role, indicating the 

importance of incorporating temporal dynamics into studies of viral communities. Future 

research in this field can now delve deeper into the specific host-virus interactions, their 

implications for harmful algal blooms, and their broader significance in aquatic 

ecosystems.  

 

Future research can explore the detection and ecological roles of rare viral community 

members that may not be well-captured by metagenomics. How do these rare viruses 

contribute to ecosystem dynamics, and what factors govern their emergence and 

persistence? 

Investigating the context-dependent nature of virus-host interactions in greater detail 

can provide insights into the factors driving variations in host populations and viral 

communities. How do different ecological niches, such as colony-associated and non-

colony-associated fractions, shape the diversity and dynamics of active viruses? What 

environmental cues influence these context-dependent interactions? 

 

Extending temporal analyses of viral communities can elucidate recurring patterns and 

long-term trends in virus-host interactions. How do virus-host interactions change over 

multiple years, and are there consistent temporal patterns in the dominance and 

turnover of active viruses? Advancing methods for viral community analysis, including 

improved techniques for capturing rare viruses and characterizing their functions, can 

enhance our ability to study virus-host interactions comprehensively. What innovative 

approaches can be developed to overcome limitations in detecting and characterizing 

rare virus-host interactions and what implications might these interactions have? 
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5.3 A worker is only as good as their tools: encouraging phage and host 

isolation methods in a bioinformatics-driven field 

5.3.1 The correlation between evolutionary distance, suites of infection and time 

 

"There is a unity that makes us all one, and there is a diversity that makes us each our own unique 

selves." - Fred Rogers 

 

The investigation into the relationship between Microcystis phylogenetic distances and 

viral infection profiles within Lake Erie's cyanobacterial harmful algal bloom (cHAB) 

ecosystem has provided valuable insights into the intricate dynamics of host-virus 

interactions. This study reveals a statistically significant positive correlation between 

Microcystis isolate phylogenetic distances and infection profile distances. This 

correlation suggests that shared genetic and physiological characteristics among 

closely related Microcystis isolates may influence their susceptibility or resistance to 

specific viruses, resulting in similar infection profiles. Importantly, this finding extends 

the understanding of phage-host interactions beyond broad taxonomic affiliations to 

finer levels of specificity within bacterial populations. 

 

The role of temporal dynamics in shaping Microcystis-phage interactions within the 

western basin of Lake Erie emerges as a crucial theme in this study. The collection date 

was identified as the sole statistically significant predictor of Microcystis infection 

profiles, explaining approximately 28% of the variability in infection profiles between 

Microcystis strains. These findings highlight the coevolutionary arms race between 

Microcystis and its predicted phages, where temporal changes in infection profiles may 

reflect ongoing adaptations and responses to environmental conditions and viral 

pressures. 

 

While the study explored various environmental variables, such as sampling site, mcy 

cassette genotype, and several physicochemical parameters, their limited influence on 

Microcystis infection profiles in this specific dataset suggests that other unexamined 
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factors may be at play. These unexplored variables could potentially contribute to the 

unexplained variation in infection profiles. Therefore, it is essential to adopt a holistic 

approach in future investigations, considering a broader range of factors, including biotic 

and abiotic parameters, microbial interactions, and ecological contexts, to gain a more 

comprehensive understanding of the complex dynamics governing Microcystis strain 

diversity in Lake Erie. 

 

Future research can delve deeper into the mechanisms underlying the observed 

correlation between Microcystis phylogenetic distances and viral infection profiles. What 

specific genetic and physiological characteristics drive susceptibility or resistance to 

viruses within closely related Microcystis isolates? Expanding the investigation into the 

temporal dynamics of Microcystis-phage interactions can reveal the ongoing 

coevolutionary arms race between these organisms. How do Microcystis strains and 

their predicted phages adapt and counter-adapt over time, and what role do 

environmental conditions play in shaping these adaptations? 

 

Investigating the broader ecological context of Microcystis-phage interactions within 

Lake Erie's cHAB ecosystem can provide a more holistic understanding of community 

interactions. How do interactions with other microbes, such as bacteria and protists, 

influence the infection dynamics of Microcystis strains and their predicted phages? 

Integrating functional genomic analyses can uncover the molecular mechanisms 

underlying virus-host interactions at a finer scale. How do specific genes or gene 

clusters in Microcystis strains and their predicted phages contribute to the observed 

infection profiles? What are the functional consequences of these interactions for both 

host and virus? 

 

5.3.2 Expanding our understanding of phage-host interactions and their 

contributions to overall cHAB dynamics 
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This dissertation presented a specific case of a phage-host interaction involving vOTU 

17663 and Microcystis MAG LE19-12.2. This interaction exhibited remarkable 

consistency over multiple bloom seasons and tracked particulate microcystin during 

blooms, despite LE19-12.2's lack of an mcy operon associated with microcystin 

production. The research suggests that the phage-host networks within cHABs are 

complex and interconnected, extending beyond cyanobacteria to encompass 

interactions with heterotrophic bacteria. These findings illuminate several promising 

avenues for future research, including further exploration of phage-host networks, 

investigation into the mechanisms governing host range expansion and contraction, 

examination of interactions with other bacterial taxa, and the expansion of the catalog of 

isolated phages and hosts from cHABs. 

 

The isolation of host organisms and their interacting phages through culturing methods 

remains a critical avenue for future research. Culturing approaches allow for in-depth 

characterization of specific phage-host pairs, including their physiology, genetics, and 

ecological roles. The continued isolation of novel phages and hosts from cHABs can 

expand our understanding of microbial interactions in these ecosystems. What insights 

can be gained from studying the coevolutionary dynamics of isolated phage-host pairs? 

How do these interactions evolve over time, and how does coevolution shape the 

genetic and functional traits of both hosts and phages within cHAB environments? 
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