
On the Development of Tools for the Study of Colloidal Self-Assembly

by

Brandon Butler

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Chemical Engineering and Scientific Computing)

in the University of Michigan
2024

Doctoral Committee:
Professor Sharon Glotzer, Chair
Professor Rebecca Lindsey
Professor Liang Qi
Professor Robert Ziff

Brandon Butler
butlerbr@umich.edu

ORCID iD: 0000-0001-7739-7796

© Brandon Butler 2024

DEDICATION

I dedicate this thesis to my wife Kristen for her continual support and encouragement.

ii

ACKNOWLEDGEMENTS

As in any large project, the task was not the isolated work of one man or woman. Instead, I

have been guided, aided, encouraged and strengthened by those around me. And while fully

enumerating such a list would be an impossible task, I will attempt to convey my gratitude

below.

First, I thank my parents for raising me with love and instilling in me an unabating

curiosity. The hours of answering my incessant cries of why, the 1,000’s of dollars in books

and the encouragement to not settle academically established the foundation of knowledge

and thinking on which I now stand. I thank my teachers throughout my education for

giving their lives to the often thankless teaching of youths. In particular, I thank Prof. Seth

Oppenhiemer and Prof. Albert Bisson at Mississippi State University for challenging me to

think in critical ways.

I am grateful to Prof. Sharon Glotzer for letting me join her lab and giving me the

freedom to discover my love for methods/algorithms and scientific development. Thank you

for also guiding and improving my scientific writing. To Dr. Bradley Dice, Dr. Simon Adorf,

Dr. Vyas Ramasubramani and Dr. Joshua Anderson, I grateful for teaching me the gold

standard of scientific software development. Similarly, gratitude is due to Dr. Allen LaCour,

Dr. Tim Moore and Dr. Domagoj Fijan for guiding my research and serving as scientific

mentors. Karen Coulter thank you for ensuring things did not fall through the cracks and

always keeping the lab and us individually afloat.

Thank you to my friends and family I made along the way. The connection you provided

gave color to my days in Ann Arbor. To my wife, Kristen, you have always been a sure

iii

refuge through any of life’s storms. You have been my most prized companion on this

journey. Finally, I thank my Creator from whom all these blessings have flowed.

Financial Acknowledgements
I wish to acknowledge the National Science Foundation which through a number of grants

provided support for this research: a Computational and Data-enabled Science and Engineer-

ing Award # DMR 1808342 & DMR 2302470 for algorithm and performance development (PI

Glotzer); Office of Advanced Cyberinfrastructure Award # OAC 1835612 for HOOMD-blue

pythonic architecture for MoSDeF integration (PI Glotzer); and a competitive Seed Fellow-

ship from the Molecular Science Software Institute (MolSSI) (NSF grant OAC-1547580) for

development of HOOMD-blue version 3.0.

Additionally I received significant support in the form of computational resources and

services provided by Advanced Research Computing at the University of Michigan, Ann

Arbor, and the National Science Foundation grant number ACI-1548562; / XSEDE award

DMR 140129; and specialized hardware provided by NVIDIA Corp.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . xii

LIST OF PROGRAMS . xiii

LIST OF APPENDICES . xiv

ABSTRACT . xv

CHAPTER

1 Introduction . 1

2 Methods . 4
2.1 Voronoi Tessellation . 4
2.2 Molecular Dynamics . 6

3 Change Point Detection of Events in Molecular Simulations Using dupin 7
3.1 Introduction . 7
3.2 Results . 9

3.2.1 Detection Scheme . 9
3.2.2 Online Detection . 19

3.3 Example Applications . 20
3.3.1 Nucleation and growth of a binary crystal of particles 20
3.3.2 Collapse of polymer in poor solvent 22

3.4 Discussion and Conclusions . 24
4 PGOP: A Point group Order Parameter for Analyzing Local Crystal Sym-

metry . 27
4.1 Introduction . 27
4.2 Results . 29

4.2.1 Method Derivation . 29

v

4.2.2 Testing . 34
4.2.3 Application of PGOP to Example systems 35

4.3 Conclusion . 44
5 New Continuous Coordination Number . 46

5.1 Introduction . 46
5.2 Results . 47

5.2.1 Derivation . 47
5.2.2 Analysis . 50

5.3 Conclusion . 52
6 HOOMD-blue Version 3.0 A Modern, Extensible, Flexible, Object-

Oriented API for Molecular Simulations . 54
6.1 Introduction . 54
6.2 General API Design . 57

6.2.1 Simulation, Device, State, Operations 59
6.2.2 Deferred C++ Initialization . 62

6.3 Logging and Accessing Data . 64
6.4 User Customization . 66

6.4.1 Triggers . 66
6.4.2 Variants . 67
6.4.3 ParticleFilters . 68
6.4.4 Custom Actions . 69

6.5 Conclusion . 71
6.6 Acknowledgements . 71

7 Conclusions . 72
7.1 Dissertation Summary . 72
7.2 Outlook . 73
7.3 Final Thoughts . 74

APPENDICES . 75

BIBLIOGRAPHY . 87

vi

LIST OF FIGURES

FIGURE

2.1 A colored Voronoi tessellation of a perturbed square lattice. The Voronoi cells
are colored by the number of sides in the polygon. 5

3.1 An example detection of a protein transitioning between conformers A and B.
At frame 40, the protein goes from conformer A to B and back to A at frame 60.
The background colors and dashed black line indicate these two change points,
and the corresponding three sub-signals are S[0, 40), S[40, 60), S[60, 100). θ rep-
resents an exemplar order parameter along which a structural change happens.
. 10

3.2 An illustration of the typical pipeline for event detection in a particle trajectory.
We use the same numbers as the protein conformer example (change points are
40 and 60 and the total frames are 100). Arrows indicate steps and small col-
ored rectangles represent individual per-particle feature values generated from
the trajectory. Green boxes separate steps into three general stages: data col-
lection, data augmentation and detection. Data is generated from the frame
and mapped to a new distribution and to itself (note the replication of the orig-
inal features after mapping). The distributions are then reduced into one scalar
feature each. For the generate, map and reduce steps underneath the arrows,
we provide potential functions/applications of the step. The features are then
aggregated across frames and transformed with either feature selection or dimen-
sionality reduction. Finally, the change points as well as the number of change
points are detected. The transform step is not required, and the aggregate step
could immediately precede the final step, detect. The figure assumes per-particle
features only. For global features, the generate step immediately precedes the
aggregate step — they could also optionally be mapped first. 12

3.3 An example highlighting the use of classifiers to reduce a three-dimensional signal
to one dimension. The process was stopped with a window center frame of 200
for instructive purposes. (a) A plot of the three-dimensional signal. Change
points are located at 75, 275 and 350. The box centered at frame 200 represents
the two window halves: [190, 200) and [200, 210). (b) The zero-one loss from the
start of the signal to the current window. Notice the drop towards zero loss near
frame 75, which corresponds to a mean-shift in (a) (blue line). 17

vii

3.4 Change point detection applied to binary system of particles interacting via the
Mie potential. (a-d) Images corresponding to the beginning of the simulation,
the locations of the change points for the linear detector and the end of the
simulation. Particles are colored according to their type. (e-f) Plot of all MSM
l = 12 (e) and Voronoi polyhedra volumes (f) that pass the mean-shift filter
(sensitivity 10e−4). Solid lines are the (rolling mean) smoothed features and
the translucent dots are the actual data points. The smoothing is purely for
visualization and all calculations were done using the actual data points. The
detected change points for the linear cost function are the dashed light purple
lines and the change points for the ML method (Section 3.2.1.3) are dotted-
dashed dark purple. An L1 mean-shift cost function was used for detection in
the ML approach. (g) Plot of the cost associated with the optimum n change
points computed using features that pass through a mean-shift filter with the
linear cost function. (h) Plot of the smoothed (averaged over three neighbors
on each side) mean zero-one loss function as well as the change points from the
classifier approach (dotted-dashed dark purple vertical lines). 23

3.5 Change point detection (offline and online) applied to polymer trajectory. (a-e)
Images corresponding to the beginning of the simulation, change points and end
of the simulation. (b-c) Online-only change points. (d) Both offline (125) and
online (140) have very similar values of change points and only frame 140 is
shown. (f-g) Plot of Voronoi polytope volumes (f) and the number of clusters
in the simulation according to freud’s clustering algorithm with a 1.2σ cutoff
(g). Solid lines are the (rolling mean) smoothed features and the translucent
dots are the actual data points. The smoothing is purely for visualization and
all calculations were done using the actual data points. The light purple solid
line is the change point determined by dupin’s offline detection. The dark purple
dashed dotted lines are the change points determined by dupin’s online detection.
(h) Plot of the cost associated with the optimum n change points computed
on all features for offline detection. (i) Plot of relative improvement of costs
from adding a second change point in online detection. The formula used is
ξ = (c1 − c2)/c0 where ci is the cost for selecting i change points. Individual
curves represent independent detections (i.e. after the window is cleared). . . . 25

4.1 Plot of κ’s effect on the evaluation of icosahedrally ordered environments, both
perfect and noisy. Each line is the average over 25 optimizations at various
random rotations. The shaded region above and below the line is one standard
deviation. (a) Plot of the PGOP of a perfectly icosahedral neighbor shell with
various κ. (b) Plot of the PGOP of noisy icosahedral neighbor shells with various
κ. (c-d) Plots of the PGOP divided by the mean PGOP of 25 ideal gas samples
for perfect (c) and noisy (d) neighborhoods. These plots (c-d) emphasize the
distinctiveness of ideal gas and ordered environments. 31

viii

4.2 (a-d) Plots of the PGOP and MSM6 for two different crystals (FCC and BCC).
Plots show the 0.25, 0.5 and 0.75 quantiles in dashed, solid and dotted lines,
respectively. The PGOP values have been normalized by the median of ideal
gas, so 0.0 is the median PGOP of the ideal gas. Gray lines correspond to the
0.25, 0.5 and 0.75 quantiles of the ideal gas with the same line style designations
as the crystal lines. Crystals have a unit cell of length 1 and go from a standard
deviation of 0 to 0.2. 36

4.3 (a-b) The particle’s PGOP values projected into the first two dimensions of a
LDA projection using Wykoff sites as class labels. The PGOP is computed for
Oh, Th, Ih, D3, D4, D5, D6, D7 and Ci. (a) Particles are colored by cluster labels
assigned by GMM clustering. (b) Particles are colored by the Wykoff site they
belong to. (c) The silhouette score given by the scikit-learn [100, 21] is plotted
over number of clusters. 38

4.4 (a-b) Visual snapshots of the two systems at the end of the simulation. (a)
Visual snapshot of the end of the quenched system. (b) Visual snapshot of the
end of the slow-cooled system. (c-d) Plots of various quantiles of full icosahedral
ordering across the simulation. (c) Plot of the quenched system. (d) Plot of the
slow-cooled system. The inset which zooms in on the transition (black boxed
region) and is plotted and colored the same as the main plot. (e) A color legend
of which color represents which quantile. The figures clearly shows the utility of
the PGOP at analyzing soft matter self-assembly. 40

4.5 (a) Image of the last frame in the simulation with the icosahedrally ordered en-
vironment colored dark teal and other particles are translucent blue and orange.
(b) Plot of particles in the last frame in the first two PCA dimensions from the
PGOP analysis. The clusters corresponds their color in (a). (c) The dendro-
gram of the AHC with the Ward’s linkage distance on the y-axis. (d) Plot of
the evolution of glassy environments in the last frame over the simulation. The
line colors corresponds to the colors in (a-b). (e) Plot of the size of the largest
contiguous cluster of icosahedrally ordered particles. 42

4.6 (a) Image of the last frame in the simulation colored by the PGOP clustering
labels. (b) Plot of particles in the last frame in the first two PCA dimensions
from the PGOP analysis. The colors correspond to (a). (c) Confusion matrix of
PTA and PGOP AHC labels. Squares are normalized by column (PGOP label).
Color bar is shown for the plot underneath. (d) Bar graph of the fraction of
particles in the category with N neighbors labeled Other by PTA. 45

5.1 Normalized histogram of CN0 and CN2. CN0 is simply counting Voronoi neigh-
bors, while CN2 is from Equation 5.1. The left y-axis represent CN0 and the
right represents CN2. The data is from a snapshot of perfect FCC with 4,000
particles perturbed by Gaussian noise with standard deviation of 0.05. We can
see that the data is much narrower for CN2 than for CN0. The x-axis is shared
between the two plots to allow for an easier comparison. The histogram for CN2

does not span the entire axis. 48

ix

5.2 (a-c) Confusion matrices for three different definitions of CN . The y-axis repre-
sents the actual label of a sample while the x-axis is the predicted label by the
model. For example, the value on the FCC row and SC column represents the
fraction of FCC test samples predicted to be SC. Values in the confusion matrix
are labeled and colored by their occupancy. For example, a perfect classification
would be a yellowish-white diagonal and black off-diagonals. (a) Confusion ma-
trix for CN0. (b) Confusion matrix for CN2. (c) Confusion matrix for CNV⃗ for
V⃗ = [2.0, 4.0, 6.0, 8.0, 12.0, 16.0, log(), expσ(100.0)]. (d) Color bar for (a-c). . . . 51

5.3 (a-c) Confusion matrices for CNV⃗ and/or PGOP. The y-axis represents the ac-
tual label of a sample while the x-axis is the predicted label by the model. For
example, the value on the FCC row and SC column represents the fraction of
FCC test samples predicted to be SC. Values in the confusion matrix are labeled
and colored by their occupancy. For example, a perfect classification would be a
yellowish-white diagonal and black off-diagonals. (a) Confusion matrix for CNV⃗

for V = [2.0, 4.0, 6.0, 8.0, 12.0, 16.0, log(), expσ(100.0)]. (b) Confusion matrix for
PGOP for point groups [Ih, Oh, Th, T,D5, D6, D7, D8, D10, Ci]. (c) Confusion ma-
trix for classifier trained on CNV⃗ and PGOP from (a-b). (d) Color bar for (a-c).
. 52

6.1 A rendering of the Lennard-Jones fluid simulation script output. Particles are
colored by the Lennard-Jones potential energy that is logged using the HOOMD-
blue Logger and GSD class objects. Figure is rendered in OVITO [124] using the
Tachyon [123] renderer. 57

6.2 Diagram of core objects with some attributes and methods. Classes are in bold
and orange; attributes and methods are blue. Figure is made using Graphviz [38,
47]. 59

A.1 Two detections of change points on a generated mean-shift signal with three
shifts. The alternating blue and green regions represent the correct partitioning
of the system. (a) Plot of the best three change points according to the dynamic
programming optimizer and L1 mean-shift cost function. (b) Plot of the best six
change points according to the dynamic programming optimizer and L1 mean-
shift cost function. Notice that when n > 3, we fit to spurious change points.
Any reduction of cost is sufficient to fit to a new point. Thus highlighting the
need for method of determining an appropriate n. 76

B.1 Violin plots of the ideal gas distributions for (a) PGOP and (b) Minkowski
Structure Metrics. The 0.0, 0.2, 0.25, 0.5, 0.75, 0.98, 1.0 quantiles are shown for
each (a) point group and (b) ℓ. 80

x

B.2 Plots of MSM behavior with respect to ℓ and noise. Plots show the 0.25, 0.5
and 0.75 quantiles in dashed, solid and dotted lines. A legend for the individual
crystals is not shown as the behavior is identical among them and individual lines
cannot be discerned. The PGOP values have been normalized by the median
of IG, so 0.0 is the median PGOP of the IG. Red lines correspond to the 0.25,
0.5 and 0.75 quantiles with the same line style designations as the crystal lines.
Crystals have a unit cell of length 1 and go from a standard deviation of 0 to 0.2. 81

B.3 Plot of the MSD of the binary LJ glass system run for an additional 3 million
steps. 82

xi

LIST OF TABLES

TABLE

5.1 Table of the CNm values for various perfect crystals and m. 49
5.2 Table of the E[CNm] values for various crystals (and ideal gas) with noise added

across m. Each expected value was computed from a system of 4,000 particles
with Gaussian noise with 0 mean and 0.025 standard deviation. 49

xii

LIST OF PROGRAMS

PROGRAM
6.1 Full script from initialization to run of a Lennard-Jones particle MD simulation. 58
6.2 Example of the global snapshot in use. 60
6.3 Example of local snapshots in use. 61
6.4 Examples of creating and using a type parameter for hard particle Monte Carlo

with spheres. 63
6.5 Example of using a SyncedList object. 63
6.6 Code to initialize simulation state from an extant GSD file. 66
6.7 Example of a custom trigger that recreates the hoomd.trigger.Periodic class’s

behavior. 67
6.8 Example of custom variant which oscillates according to a sin wave. 68
6.9 Example of a custom particle filter which only selections particles with positive

charge. 69
6.10 Example of a custom action which updates particle types across a simulation. . 70

C.1 A more complicated example of a custom trigger which check the Steinhardt
order parameter l = 6 and triggers when Q6 reaches a defined threshold. 84

C.2 Example of a custom action which writes data actively to a pandas.DataFrame
object. 86

xiii

LIST OF APPENDICES

A Change Point Detection of Events in Molecular Simulations using dupin:
Supplementary Information . 75
Change Point Detection . 75
Kneedle Algorithm . 76
Feature Selection . 77

B PGOP Supplemental Information . 79
Ideal Gas Baselines . 79
Minkowski Structure Metrics Noise Behavior . 79
Binary LJ Glass Mean Squared Displacement . 79

C Further HOOMD Programs . 83
Trigger that detects nucleation . 83
Pandas Logger Back-End . 83

xiv

ABSTRACT

Self-assembly is the process by which a material organizes itself without the need for external

stimuli. This process spans a broad range of phenomena, from the crystallization of solids

from atoms and molecules to the formation of micelles and cell membranes by amphiphilic

molecules to the organization of colloidal crystals from nanoparticles. Understanding these

phase transitions is essential to the intelligent development of new materials and structures

and in particular for controlling the thermodynamic and kinetic pathways for assembly.

Enabling such control will allow for currently impossible to access phases, precision in defect

sizes and amounts and control of other knobs of phase design at various length scales.

In Chapter 1, we describe the phenomena and challenges to detailed investigation of

assembly pathways that this dissertation addresses.

In Chapter 2, we outline two methods used throughout the dissertation.

In Chapter 3, we present a six-step pipeline and Python package, dupin, we developed

for detecting events from particle trajectories. The detection of transitions in particle-based

(e.g. molecular) simulations is typically handled in an ad hoc way, while dupin provides a

generalized detection scheme that maintains interpretability and permits comparison among

disparate systems and pathways. Furthermore, by automating the detection of events asso-

ciated with phase transformations, dupin enables self-assembly studies at larger length and

time scales than previously feasible by removing the operator from the data-processing loop.

We conclude Chapter 3 with example applications of dupin to the study of self-assembly.

In Chapter 4, we outline and discuss a new order parameter that quantifies the symmetry

of local particle environments. During the formation of crystals, particles organize themselves

locally into motifs with new symmetries that may or may not be present in the fluid or the

xv

final crystal structure. The “Point Group Order Parameter”, PGOP, identifies the point

group symmetry of an individual particle’s local environment. By identifying these local

motifs and how they change over time, we can learn how a fluid chooses a particular kinetic

pathway to follow. We compare PGOP to other commonly used local order parameters

and, through examples, show how it provides a useful level of description not accessible to

other order parameters. The chapter begins with an outline of the algorithm that is quickly

followed by various demonstrations of PGOP’s ability to detect and quantify local order in

noisy crystalline systems with/without defects and even amorphous phases.

In Chapter 5, we present another new order parameter we developed for studying phase

transformations. This new order parameter consists of a group of functions that form a

vector of continuous local coordination numbers, CNV⃗ , in a system of particles. The well-

known local coordination number, CN , is defined for particle-based systems as the number of

particles that are first nearest neighbors to a given particle. Consequently, CN takes on only

discrete integer values, which can be problematic when used as a local order parameter due

to fluctuations from thermal effects. CNV⃗ smooths CN into a continuous value – essentially

a dimensionless local density – making it useful in self-assembly studies in which thermal

noise and other forces can cause discontinuous changes in CN . To do this, CNV⃗ uses the area

of facets in Voronoi tessellation polytopes to weigh neighbor contributions to a coordination

shell. We provide a detailed description of CNV⃗ and demonstrate its usefulness in noisy

systems and in combination with PGOP.

In Chapter 6, we discuss our software development contributions to HOOMD-blue, our

group’s open source Python simulation toolkit, for its version 3 release. This release included

a complete redesign of the application programming interface, various ways to extend molec-

ular dynamics and Monte Carlo simulations of particle-based systems in Python and direct

access to HOOMD-blue’s internal data buffers. These advancements facilitated numerous

new simulation protocols and methodologies while reducing the human capital necessary for

the design of new simulation techniques.

xvi

We conclude my dissertation in Chapter 7 with a summary of the preceding chapters

and provide a forward-looking perspective regarding further work and the potential new

applications of our work in the field of self-assembly.

xvii

CHAPTER 1

Introduction

Self-assembly is the process by which a system without external guidance or force arranges

into some ordered phase such as a crystal. This transition to an ordered state is of interest

in various communities such as the colloidal community. In the colloidal community, we

have discovered particles that assembly computationally and/or experimentally into various

complex phases: quasi-crystals [67, 45], clathrates [82], hierarchical assemblies [110, 119], etc.

These assemblies can be used for applications in optics [72], catalysis [83] and sensors [60]

among other use-cases.

Studies in these self-assemblies abound, but notable holes in capabilities exist. Most

studies fit into one of two types: a deep-dive of one or a few system types [81] or a broad

study on multiple systems with less depth [29]. A “Pareto front” between the study scope and

depth exists. Scientists need tools to improve simultaneously scope and depth to expand

upon our understanding of self-assembly and increase researcher capacities. These tools

need to be interpretable by experts and must automate tasks currently necessitating human

intervention. In my dissertation, we present a body of work aimed at creating and developing

such tools to push the bounds of what questions scientists studying self-assembly can ask.

We begin in Chapter 2 by describing two methods, Voronoi tessellation and molecular

dynamics, which are often used or referenced across this dissertation.

Following the overview of methods, We start discussing our original contributions in

Chapter 3, outlining a six-step pipeline implemented in the form of a software package dupin

1

which can detect autonomously the transition points within a pathway. We define the path

in configuration space through the dynamics of the arrangement of particles going from one

state to another state as a pathway. When studying pathways, methods like transition path

sampling [30], aimless shooting [96] or forward flux sampling [7] are used. However, these

require a priori knowledge of the final phase and an order parameter to bias the simulation

and inherently preclude other phases or states. When studying unbiased pathways, system-

specific approaches are used to study the system, which prevents comparison across systems.

dupin enables automated, comparable and generic event detection for molecular systems

without the need to know the “correct” order parameters or phases. The approach enables

larger scope studies that are currently infeasible due to the human time investment. Likewise,

dupin enables the curation of transition states for machine learning applications.

Continuing in Chapter 4, we derive and showcase a new order parameter that preserves

information lacking in similar order parameters. In studying the self-assembly of crystals,

current bond-orientational (symmetries in a local particle’s neighborhood) approaches lack

information about the exact symmetries formed [122, 92]. This lack of information leads to

an interpretability problem when using the order parameters. Our order parameter, Point

Group Order Parameter (PGOP), detects the formation of point group symmetries around

a central particle and thus the symmetries formed locally are known. This formation or

degradation of local point group ordering is well suited to study crystals and quasicrystals

and can provide novel insights into the self-assembly process.

Chapter 5 is similar in approach to Chapter 4; we derive a family of interpretable con-

tinuous coordination numbers. In the previous chapter, we developed an order parameter

for identifying local bond-orientational ordering while necessarily discarding local density

information. To obtain a complementary measure of local density to analyze self-assembly

in tandem with PGOP, we need to find a continuous and dimensionless order parameter.

The order parameter must be dimensionless to be comparable across systems, and it must be

continuous and resilient to thermal noise to be useful for machine learning applications. By

2

extending a continuous coordination number developed in a previous work [24], we provide

such an order parameter. The method uses Voronoi tessellation and approaches the discrete

coordination number in the limit of identical neighbors. We maintain the interpretability of

a local coordination number with the utility of continuous order parameters. In this chapter,

we also showcase its utility demonstrating it’s performance in simple machine learning tasks

with PGOP.

For Chapter 6, we describe and outline the changes we led in HOOMD-blue (a molecu-

lar simulation engine) for its version 3 release. Scientific software often focuses, rightly, on

computational efficiency. However, this can come at the expense of software extensibility

and usability. In this chapter, we highlight changes that increase the software’s usability,

extensibility, flexibility and interoperability particularly within the Python ecosystem. By

optimizing for human use, computational researchers can save time that would be spent

scripting or debugging to instead address higher order questions/problems. Such optimiza-

tion requires careful thought as to the nature of the problem being solved and determining

idiomatic use patterns while not limiting software capabilities. In addition, these changes

make possible the use of advanced simulation controls and techniques such as selective data

storage upon crystal nucleation.

We conclude the thesis with an overview of the chapters and a future outlook on the

techniques outlined.

3

CHAPTER 2

Methods

2.1 Voronoi Tessellation

Voronoi tessellation [134, 133] partitions space into N subsets, where N is the number of

points in the tessellation. Voronoi tessellation serves as the dual of the Delaunay triangula-

tion. Formally, each Voronoi cell (subset) is defined for point k as,

Sk = {x ∈ X : d(x, L(k)) ≤ d(x, L(i))∀i ∈ [1, N], i ̸= k}, (2.1)

where d is a distance metric and L is the locator function (i.e. L(i) returns the location of

i). The common definition of Voronoi tessellation comes directly from Equation 2.1. Each

Voronoi cell partitions the space closest to one of the N points. These sets can be shown

to be convex and are also known as Voronoi polytopes or polyhedra (in 3D). An example

tessellation can be seen in Figure 2.1, which depicts a Voronoi tessellation of a slightly

perturbed square lattice.

Voronoi tessellation is used often in the self-assembly community as a means of finding

a particle’s first neighbor shell. Neighbors are those that share a face in the tessellation.

A prominent example of this is the Minkowski Structure Metrics [92], which use Voronoi

tessellation neighbors to compute and weight Steinhardt order parameters [122].

One popular implementation of Voronoi tessellation is Voro++ [109], which is used by

freud [104, 33] and is the implementation used throughout this dissertation.

4

Figure 2.1: A colored Voronoi tessellation of a perturbed square lattice. The Voronoi cells
are colored by the number of sides in the polygon.

5

2.2 Molecular Dynamics

Molecular dynamic uses Newton’s equations of motion to simulate the evolution of atoms,

molecules and/or particles into time. To do so, molecular dynamics integrates F = ma given

a molecular force field. As a tool, molecular dynamics was invented in the 1950’s as com-

puters were becoming more prevalent in the academic field [42, 6], though the mathematical

framework for molecular dynamics was discovered centuries earlier. Originally molecular

dynamics algorithms simulated the microcanonical ensemble, keeping the number of atoms,

system volume and energy constant using the velocity verlet algorithm; however, extensions

such as thermostats [59, 58] were created to allow studying other statistical mechanical en-

sembles. Molecular dynamics complements Monte Carlo simulations in studying phase space

at a particle level. Since their inception these tools have been used to study numerous sys-

tems; examples include colloids [29], metallic glasses [41] and proteins [35], among many

others.

Many implementations for molecular dynamics exist: LAMMPS [102], GROMACS [18, 3],

OpenMM [37], ESPResSo [135, 52] and Amber [111, 25], etc. In this work, we will use

simulations generated by HOOMD-blue [11, 10, 22].

6

CHAPTER 3

Change Point Detection of Events in

Molecular Simulations Using dupin

This chapter is adapted from a manuscript currently under review authored by Brandon L.

Butler, Domogoj Fijan and Sharon C. Glotzer to at a peer-reviewed journal.

3.1 Introduction

Computer simulations of molecular systems from the atomic to colloidal particle scale are

a cornerstone of modern materials research. Given ongoing improvements in algorithms

and processor speed, newer studies may make routine use of thousands of simulations or

more [127, 129]. As a result, much work has been done to automate, streamline or otherwise

simplify the management of large-scale simulation studies from software that manages data

and workflows [4, 62] to packages used in data pipelines [104, 33, 87, 91, 51, 124].

We continue this trend by developing a software package that detects events (transitions)

within point cloud data, the kind of data produced in molecular simulations. Event detection

in point cloud data from particle trajectories is difficult because a priori information on

the nature of the transition, identifying features or precursors of the transition (if any)

is often missing. For studies involving multiple transitions or pathways, as well as large

systematic studies, detection is further complicated by the need to automate the task. This

paper addresses this problem using approaches collectively known as change point detection

7

(CPD) [9].

The techniques of CPD, which are commonly used in signal processing, have yet to infil-

trate materials research [9]. Change points are defined by abrupt changes beyond expected

fluctuations in a time-resolved dataset. In this paper, we will use particle trajectory data

as our starting dataset. Molecular dynamics simulation as well as experiments using dy-

namic (e.g. liquid phase) transmission electron microscopy [84, 98] or confocal laser scanning

microscopy [108, 2] — in conjunction with particle tracking software — can produce data

consisting of time resolved particle positions and orientations.

Many algorithms [9] have been introduced to detect events associated with change points

in data for the purpose of monitoring human activity [9], determining useful telemetry in

data centers [8] or predicting machine degradation [117]. Change point detection approaches

can be categorized as supervised [43, 54, 105] or unsupervised [14, 15, 69, 70, 71] as well as

offline or online. Supervised methods require external labelling of events to train on, while

unsupervised do not. Offline methods require the entire dataset as input. In contrast, online

methods analyze the data as a stream while data is generated so that signals are screened

in real time. The approach we take casts event detection as an optimization problem where

the objective is minimized over change point locations [20].

Current practices in molecular simulations for event detection involve system or particle

level order parameters (e.g. Minkowski structure metrics (MSM) [92], nematic order param-

eter and local density, to name a few). These local order parameters can be used to classify

particles into environments using machine learning (ML) [31, 19, 114, 5, 34, 120]. After com-

puting these parameters or environment labels, events are detected using system-specific or

problem-specific detection schemes or by visual inspection. Automating the detection of

meaningful events would significantly improve current workflows, facilitate “big data” stud-

ies in materials research and provide a consistent approach across studies.

In this paper, we present a new, open-source Python package dupin (named after Edgar

Allen Poe’s detective C. Auguste Dupin) for generic, autonomous event detection in parti-

8

cle trajectories with local or system-wide transitions. We show how dupin can partition a

system’s trajectory into regions of transition and stable (or metastable) states through the

use of generic order parameters. In the following section, we outline dupin’s multi-stage

procedure for detecting a set of change points from a system trajectory. We discuss options

available to the user at each stage of the process. We then present two example applications

using dupin and show its utility in determining the temporal bounds of system-wide struc-

tural transitions and particle-level events. We conclude with a general discussion of dupin

and potential extensions. dupin is available on GitHub and distributed through conda-forge

and the Python Package Index (PyPI).

3.2 Results

3.2.1 Detection Scheme

dupin’s detection scheme is based on CPD [9, 130]. CPD seeks to assign a set of points,

K, where a signal, S : {s0, s1, . . . , sN}, undergoes a change. We denote a single point in a

signal (e.g. si) as a frame. We define two operators - indexing and slicing - that act on the

signal. The indexing operator returns a single value such that S[i] = si. The slicing operator

produces a sub-signal using a semi-closed interval S[i, j) : {si, si+1, . . . , sj−1}. Using the

slicing operation, we can see that the set of points K encompass |K|+1 sub-signals between

[ki, ki+1), where k0 = 0 and k|K| is the last frame in the signal. The first and last change

points, k0 and k|K| are trivial, so the number of change points is often written as |K| − 2

instead of |K|. We adopt this convention from this point on in the paper.

As an example of CPD, imagine a 100-frame trajectory of a protein with two conformers,

A and B, and a signal S comprising data representing the conformation of the protein in

each frame. If the protein changes conformation at frames 40 and 60, then the signal S can

be sliced into three sub-signals (Figure 3.1): S[0, 40), S[40, 60), and S[60, 100). In this case,

there are two change points K = {40, 60}.

9

Figure 3.1: An example detection of a protein transitioning between conformers A and B. At
frame 40, the protein goes from conformer A to B and back to A at frame 60. The background
colors and dashed black line indicate these two change points, and the corresponding three
sub-signals are S[0, 40), S[40, 60), S[60, 100). θ represents an exemplar order parameter along
which a structural change happens.

We employ a class of CPD algorithms that use the paradigm of optimization and loss/cost

functions to select change points from S [130]. A loss or cost function penalizes some notion

of error, which is then optimized to minimize the cost. We find a set of change points K of

size n, such that choice of each single change point k ∈ K minimizes the cost function C,

K = arg min
k

n+1∑
i=1

C(S[ki−1, ki)), (3.1)

where S[ki−1, ki) is the partition of the signal S between potential change points ki−1 and

ki. Notice that the number of change points expected, n, in the signal must be known in

advance. A more detailed exploration of this issue is provided in the subsequent discussion.

Further elaboration of this class of CPD algorithms is given in A.1.

3.2.1.1 Overview of Method

To develop a generic protocol for event detection in molecular trajectories, we must answer

three fundamental questions (i) how to generate a signal from a trajectory, (ii) what cost

10

function(s) best partition the trajectory into sub-signals and (iii) how to determine the cor-

rect number of change points in a signal to ensure detection of all events. To address these

problems, dupin uses an approach in which different steps are grouped into stages (see Fig-

ure 3.2). We group the steps into three separate stages: data collection, data augmentation

and detection. The data collection stage includes the generate, map, reduce and aggregate

steps. The data augmentation stage includes the transform step. The detection stage in-

cludes the detect step. The generate, aggregate and detect steps within the data generation

and detection stages are always required. The reduce steps can be required or optional de-

pending on the data generated while the map and transform steps are always optional. The

schematic of a typical pipeline for event detection in dupin is presented in Figure 3.2.

3.2.1.2 Data Collection

We begin by constructing feature vectors for every frame up to a total number of frames

Nframes. A feature vector is a set of n features used to describe a data point in an n-

dimensional space. Order parameters (MSM, local density, etc.) are examples of features.

For our case, we refer to features that describe aspects of a given point/time in a trajectory.

We combine the feature vectors into a signal S, which is a matrix of size Nframes ×Nfeatures.

Each matrix element sij in S contains the value of one of the features in one of the frames

of the trajectory. We assume that any change in a molecular system can be adequately

described by a such a signal. Changes in the system are thus indicated by changes in the

feature vectors over time/frames.

The generate step requires us to choose the class of features that will be computed for every

frame. Once the feature data is generated, non-scalar or vector features (e.g. per-particle

quantities such as Steinhardt order parameters [122]) must first be reduced. Reduction takes

a vector feature and converts it through a variety of reducers (functions) to a finite number of

scalar features representative of the distribution. Scalar features are never reduced (they are

already scalar). The reduce step cannot be used on global properties (scalar features) such

11

Figure 3.2: An illustration of the typical pipeline for event detection in a particle trajectory.
We use the same numbers as the protein conformer example (change points are 40 and 60
and the total frames are 100). Arrows indicate steps and small colored rectangles represent
individual per-particle feature values generated from the trajectory. Green boxes separate
steps into three general stages: data collection, data augmentation and detection. Data is
generated from the frame and mapped to a new distribution and to itself (note the replication
of the original features after mapping). The distributions are then reduced into one scalar
feature each. For the generate, map and reduce steps underneath the arrows, we provide
potential functions/applications of the step. The features are then aggregated across frames
and transformed with either feature selection or dimensionality reduction. Finally, the change
points as well as the number of change points are detected. The transform step is not required,
and the aggregate step could immediately precede the final step, detect. The figure assumes
per-particle features only. For global features, the generate step immediately precedes the
aggregate step — they could also optionally be mapped first.

12

as system potential energy but is required for per-particle or high dimensional properties

(vector features) like the per-particle potential energy. Examples of scalar features resulting

from a reduce step include the maximum value, minimum value, mean, mode, median, range,

n-th greatest, n-th least, etc. Reducers that operate on the extrema of multi-dimensional

features are often an appropriate choice because transitions often occur at extrema (minima

or maxima) of a feature.

As an example, consider the utility of the n-th greatest and n-th least reducers in the

context of a study of crystallization. The process of homogeneous nucleation and growth

of a crystal from a metastable fluid phase starts when local fluctuations cause a group of

neighboring particles to form an ordered cluster. If this cluster reaches or exceeds a critical

size, it begins to grow, leading to the production of the crystal phase [68]. This process

is known as classical nucleation theory. Ideally, CPD would have access to information on

the initial fluctuations conspiring to produce the cluster as well as the cluster’s subsequent

growth. In the following analysis, we assume (i) we have already constructed or defined

features that adequately distinguish the solid and fluid phases and (ii) the initial fluctuation

is small compared to the system size. To detect the nucleation event, we must use reducers

closer to the extrema such as the 1st and 10th greatest or least values (e.g. for local densities).

Selecting near the extrema is necessary as most particles are fluid when a nucleus forms and

selecting reductions that average over the distribution or select near the mean will not register

a nucleation event. On the other hand, as the nucleus grows to 10 then 20 then 50 then 100

particles, more particles assume the approximate feature vector of the crystal. Thus, the

100th greatest or least reducers would capture the growth of a cluster up to a size of 100

particles.

While never required, vector features can be mapped to other distributions before aggre-

gating. An example of a useful mapping is spatial averaging of a feature over its neighbors

as is sometimes done with Steinhardt order parameters [77].

After a set of scalar features describing a single frame of the trajectory is generated, the

13

process repeats across all trajectory frames and the results are aggregated into a single multi-

dimensional, time-dependent signal. This signal can be sent directly to the detect step or

to the transform step. The transformation step can involve any combination of three tasks:

feature selection, dimensionality reduction and signal filtering. Next, we describe each of

these data augmentation tasks as they pertain to dupin.

3.2.1.3 Data Augmentation

After features have been reduced, the number of features may easily be in the hundreds.

In particle trajectories, each feature incurs noise due to thermal fluctuations — the same

fluctuations involved in, e.g., nucleation and growth events in crystallization. As a result,

this thermal noise increases the chance of spurious or undetected events for two related

reasons. First, one or more features may fluctuate enough to be mistaken as an event. If

we assume a baseline chance for such a fluctuation to be 1%, then a signal of 200 features

has an 86.6% chance of recording such a spurious event. Second, given n features, if the

event appears in only one feature, then as n → ∞ the relative reduction in cost to fitting to

that one feature decreases drastically. Assuming comparable noise in each feature, then for

n features each feature contributes 1/n to the cost. For 200 features, the reduction in cost

for fitting to a single feature’s change point is at most 0.5% percent of the original cost.

To prevent the noise in high feature dimensions from leading to poor event detection,

data augmentation through feature selection or dimensionality reduction can improve per-

formance. The amount of improvement depends on the dimension of the feature set, noise

level and other characteristics of the signal. Furthermore, data augmentation drastically

improves computational performance of the event detection scheme without diminishing de-

tection performance. The cost of the detection algorithm used in this paper is linear in

the dimensionality of the feature set; that is, doubling the number of features reduces the

performance by half.

dupin currently implements two different approaches to feature selection: (a) “mean-shift”

14

filtering and (b) feature correlation. Mean-shift filtering requires an event-signifying shift in

the mean value of the feature distribution and is determined by examining the beginning

and end of a signal. We compare their means and standard deviation to each other and filter

features based on the likelihood that either end’s distribution would produce the mean of the

other. Thus, the mean shift filtering is different from a mean-shift cost function detection.

Here, we are making a yes/no decision to include a feature rather than targeting the exact

location of any change.

Feature selection via feature correlation is done through spectral clustering [13], where the

similarity matrix is computed based on the correlation matrix of the signal. A pre-determined

number of features from each cluster is taken based on a provided feature importance score or

is randomly selected from a cluster. More information on these methods for feature selection

can be found in A.3. Other feature selection methods such as forward selection or backward

selection seamlessly interoperate with dupin and can be used as well. Both methods can be

found in scikit-learn [100].

For dimensionality reduction, dupin implements a machine learning (ML) classifier to

reduce the signal to one dimension based on local signal similarity; this approach is a slight

variation from the one found in Reference [56]. Signal reduction is accomplished by taking a

sliding window across the original signal and using an ensemble (collection) of weak learners

to determine the similarity of the window’s left and right halves. A weak learner is one with

limited ability to discriminate between classes (e.g. a decision stump [64] that classifies based

on a single yes/no condition). Thus, weak learners cannot distinguish window halves based

solely on noise due to their limited discrimination ability. This limitation is a desirable

property as we only want the classifier to discriminate on significant differences between

window halves. Each learner in the ensemble is trained and tested on different data within

the window via a stratified shuffle split (from scikit-learn), which reduces the chance that a

bad data partition will decrease the test loss. To determine the local signal similarity, we

label each frame in the left window half with the class label zero and each frame in the right

15

window half with class label one. The classifiers within the ensemble are then trained on

a subset of the data and tested on the remaining data. The testing loss (e.g. the zero-one

loss) is used as a metric of dissimilarity. When there is no event, the classifiers should have

nothing but random noise to train on, resulting in the classifier being wrong on test data

∼50% of the time. However, when an event occurs within the window, a classifier can train

on differences between the window halves and accuracy tends towards 100% (i.e. 0.0 loss).

For each window position, we take the average loss as our one-dimensional signal (here,

the zero-one loss). Event detection can then be performed along this single dimension,

using, for example, a simple mean-shift (see A.1) or linear cost function. Figure 3.3 shows a

graphical depiction of the dimensionality reduction implemented in dupin. Other schemes

and algorithms for dimensionality reduction such as principal component analysis (PCA),

uniform manifold approximation and projection (UMAP) [88], etc. can be used to reduce

the number of features into a few information-dense dimensions as well.

Signal filtering is commonly used for smoothing a signal and is similar to the mapping

step in the data generation stage. Here, the completed signal is transformed along the

temporal dimension into a new signal. Signal filtering is commonly used for smoothing a

signal. dupin has a rolling mean signal filter, which smooths noise by averaging the signal

across neighboring frames. Other signal filters are available in packages like SciPy and can

be used easily with dupin.

3.2.1.4 Detection

The final stage in dupin’s pipeline is event detection. To detect local events, two cost

functions are available for use in dupin. Both are based on piecewise linear fits of time

versus signal features, and both have increased cost when this fit has a higher summed p-

norm error |y−f(x)|p. In the examples in Section 3.3, we use the summed and square rooted

2–norm.

The first cost function, C1, in dupin computes the p-norm loss of the piecewise, least-

16

Figure 3.3: An example highlighting the use of classifiers to reduce a three-dimensional signal
to one dimension. The process was stopped with a window center frame of 200 for instructive
purposes. (a) A plot of the three-dimensional signal. Change points are located at 75, 275
and 350. The box centered at frame 200 represents the two window halves: [190, 200) and
[200, 210). (b) The zero-one loss from the start of the signal to the current window. Notice
the drop towards zero loss near frame 75, which corresponds to a mean-shift in (a) (blue
line).

17

squared linear fit of each feature as a function of time. This procedure minimizes the p-norm

via a least-squared fit on the slope m and intercept b for the given sub-signal S[i, j). To

prevent units or feature magnitudes from contributing to faulty detection, we map all features

to the unit square independently so that the range for each feature is [0, 1]. After mapping

to the unit square, C1 is given by:

C1(S[i, j)) = min
m,b

j∑
x=i

|S[x]− (mx+ b)|p, (3.2)

where ||p is the p-norm, S[x] is the signal value at frame x, and mx + b is the linear fit of

the signal where m is the slope of the linear fit and b is the y-intercept.

The second cost function, C2, is similar to the first, but the linear fit is determined simply

by drawing a line from the beginning point to the end point of the sub-signal, without any

fitting. As a result, this cost function is more sensitive to sudden shifts and changes in slope

in the signal compared to C1. The C2 cost function is given by:

C2(S[i, j)) =

j∑
x=i

|S[x]− (mx+ b)|p (3.3)

m =
S[j]− S[i]

j − i

b = S[i]−mi,

The only optimizable parameters in Equation 3.3 are the locations of the change points.

In cases where greater sensitivity is desired, C2 is a viable alternative.

Any detection algorithm can be used in dupin. For this work we use the Python package

ruptures [130], which implements various algorithms for solving the optimization problem

already posed (see A.1 for more information). dupin provides the implemented cost functions

above to the detection class from ruptures (we use the dynamic programming solver in this

work). Using ruptures, we find the optimal change points for a given number of change

18

points.

After detection, we still have one more problem to solve: finding the optimum number

of change points. To do this, we find an elbow in the total cost function as a function of

the number of change points n. The elbow is defined as the point of maximum curvature

but can be expanded to discrete points. dupin can use any elbow detection method that

works with discrete points. We choose for this work the kneedle algorithm [113] found in the

kneed Python package; kneedle behaves well with the test systems studied and provides a

hyperparameter allowing for sensitivity control in elbow detection. The sensitivity parameter

also means the algorithm can return no elbow, allowing dupin to select zero change points

as the correct CPD. More details on the kneedle algorithm and its usage in dupin can be

found in A.2.

3.2.2 Online Detection

The above outlined event detection approach can also be used for online detection (i.e. while

the particle trajectories are still being generated). In online detection, the detection step is

applied on-the-fly to the set of frames generated up until the moment of detection. This set

of frames can extend to the beginning of the trajectory or be a sliding window of the last N

generated frames. To use dupin online, a predefined set of features is calculated on-the-fly

at the desired frequency leading to a continuous application of generate to aggregate steps.

If using a sliding window rather than the whole trajectory, the order parameters are placed

into a “first-in first-out” (FIFO) queue, so that the sliding window moves with the time

evolution of the data. Sliding window is the preferred approach for online detection, due

to improved performance and easier CPD setup for detection. Using the queue approach

allows CPD to be run on only part of the trajectory, which dramatically speeds up detection,

making it more viable for online use. Each time a new frame is added to the signal, CPD

can be run on the current data in the queue. The algorithm works best when the window

size is commensurate with the size of a single event. Either way, dupin should be run with

19

the assumption that we are expecting to detect up to one event. However, in practice we

run CPD up to a change point set size of approximately four as any elbow detection scheme

will need some points beyond the elbow to detect it. To detect multiple events, the queue

should be cleared after detecting an event. If this is not done that event will continue to be

detected in consecutive runs, leading to undesirable behavior.

3.3 Example Applications

We now demonstrate dupin’s event detection scheme step-by-step using dupin for two exam-

ple systems to highlight its usefulness and versatility. All trajectory data was produced by

molecular dynamics (MD) simulations run using HOOMD-blue [11, 10, 22]. Feature vector

construction (generation) was carried out using freud [104, 33] in conjunction with dupin.

The data was organized and managed using the signac framework [4, 103, 32]. System

visualization was performed using OVITO [124].

3.3.1 Nucleation and growth of a binary crystal of particles

Our first example is a binary system of point particles interacting via the Mie potential [93]

(n = 50, m = 25) with a size ratio of 0.55. The simulation was run using MD for 36.8 million

time steps in the isothermal isobaric ensemble (T = 0.35, P = 0.052, Np = 27, 000, in reduced

units) to simulate the solidification of a liquid into a crystal by homogeneous nucleation and

growth. The simulation was initialized in a NaCl lattice with random placement of the two

species, which quickly dissolves upon thermalizing at slightly higher temperature prior to a

quench to the target T .

To generate the signal we compute the Voronoi polyhedron volume [134, 133] and

MSM [92] for spherical harmonics l = 2, 4, 6, 8, 10, 12 for each particle. For each feature,

we map to two distributions — itself (no transformation) and the Voronoi tessellation neigh-

bor average [77]. We then reduce each distribution (raw and averaged) to six features: the

20

1st, 10th and 100th greatest and least values. After reducing, the MSM for each l produces

twelve features, six from the raw distribution and six from spatial averaging. Following

aggregation, we transform the signal via feature selection through a mean-shift filter with

sensitivity of 10e−4. After the mean shift filter, we perform two different analyses. First, we

take the filtered signal and detect the change points using C1 with rupture’s dynamic pro-

gramming algorithm, using kneed for elbow detection with a sensitivity of 1, for |K| ∈ [1, 10].

For the second analysis, we follow filtering with the ML classifier dimensionality reduction

(window size 80) introduced in Subsection 3.2.1.3. We used 200 decision stumps (decision

trees of depth one) on features selected by the mean-shift filter to classify windows halves.

The zero-one loss is then smoothed over the neighboring three errors on each side with the

mean signal filter. We then detect events using an L1 mean shift cost function [66].

The first detection scheme (without the ML classifier) detects two change points — see

Figure 3.4 (e, f). The linear detection was dominated by a region of sharp change in several

properties ≈160–200 during crystallization. We note that the continuing shift of some of the

Voronoi polyhedra volumes or MSMs at the end of the simulation is roughly linear, meaning

C1 does not penalize grouping them into a single sub-signal.

On the other hand, the classifier approach results in a much larger transition event window

(i.e. the change points are farther apart). Such a partitioning is expected as the dimensional-

ity reduction scheme picks up on any deviation across the window. As a consequence, dupin

detected change points at frames 90 and 210, in contrast to the linear cost function approach.

We note that the reason for the change point locations can be seen in Figure 3.4 (h) where

the smoothed average zero-one loss is plotted. The system is still undergoing structural

changes at frame 210, indicated by the value of average loss which while higher than 0.0

is lower than the expected value outside a transition of 0.5. This behavior is explained by

the observed trends in some Voronoi polyhedra volumes and MSMs, which are still not in

equilibrium (flat) after frame 210. The final slice of the trajectory (frame 210 till the end)

is thus associated with a new phase of the ongoing transition, which is not finished by the

21

end of the trajectory as indicated by the average loss value.

These same schemes can be followed to apply dupin to simulations of molecules, nanopar-

ticles, colloids, polymers or other ”particle”-based systems that generate particle positions

(and possibly orientations) as a function of time, making dupin highly extensible and gen-

eralizable.

3.3.2 Collapse of polymer in poor solvent

Our second example demonstrating the use of dupin to detect transition events involves

detecting the collapse of an isolated polymer chain in an implicit solvent following a change

from good to poor solvent. We simulated a polymer comprised of 5000 connected polymer

beads interacting via a Lennard-Jones pairwise interaction, with bonds between beads mod-

eled by a simple harmonic potential U = −0.5k(r− r0). The MD simulation was performed

in the canonical ensemble (N = 5, 000, V = 106, T = 1). Following equilibration (1.2 mil-

lion steps) in good solvent, the simulation was run for 2.5 million steps, where the ε of the

Lennard-Jones potential was increased to mimic a change in the Flory χ parameter to a

poor solvent. Over the 2.5 million steps, ε was increased from 0.1 to 1.25 over 50 intervals

of 30,000 steps, running at the final ε for 1 million steps. Increasing the ε parameter causes

the polymer beads to start aggregating. Several stages of aggregation are observed in which

the number of lobes decreases in stages until final metastable configuration of two lobes is

obtained.

We generate the signal using the polymer end-to-end distance, the local density defined

as Voronoi polytope volume and the number of clusters of neighboring beads using freud’s

clustering algorithm (r = 1.2). Because Voronoi polytope volume is the only non-scalar

feature, we reduce only it. We reduce the volumes to six features: the 10st, 100th and

1,000th greatest and least values. We do not transform the data due to low dimensionality.

Finally, for offline detection, we detect the change points using C1 with rupture’s dynamic

programming algorithm, using kneed for elbow detection with a sensitivity of 1, for |K| ∈

22

Figure 3.4: Change point detection applied to binary system of particles interacting via the
Mie potential. (a-d) Images corresponding to the beginning of the simulation, the locations of
the change points for the linear detector and the end of the simulation. Particles are colored
according to their type. (e-f) Plot of all MSM l = 12 (e) and Voronoi polyhedra volumes
(f) that pass the mean-shift filter (sensitivity 10e−4). Solid lines are the (rolling mean)
smoothed features and the translucent dots are the actual data points. The smoothing is
purely for visualization and all calculations were done using the actual data points. The
detected change points for the linear cost function are the dashed light purple lines and the
change points for the ML method (Section 3.2.1.3) are dotted-dashed dark purple. An L1

mean-shift cost function was used for detection in the ML approach. (g) Plot of the cost
associated with the optimum n change points computed using features that pass through a
mean-shift filter with the linear cost function. (h) Plot of the smoothed (averaged over three
neighbors on each side) mean zero-one loss function as well as the change points from the
classifier approach (dotted-dashed dark purple vertical lines).

23

[1, 10]. We also perform online detection using the sliding window approach with a window

size of 50. All steps up to detection are identical though the signal is fed to the detector

as a stream rather than simultaneously. The detector used for the online detection uses the

same cost function, algorithm and elbow detection but only goes to |K| = 6. We clear the

window whenever an event is detected.

Figure 3.5 shows the CPD analysis for this system. The collapse of the polymer due to

poor solvent can be seen in Figure 3.5 (a-e). The collapse looks visually continuous, although

the images show a collapse mediated by multiple intermediate, discrete steps and the shape

of the order parameter with time is sigmoidal. The offline detection scheme only detects the

transition to the final snapshot of the simulation because fitting to the individual sections of

the collapse does not sufficiently decrease the cost function. On the other hand, the “ramp

up”, “growth” and “slow down” behavior of the sigmoid leads to three events detected with

online detection at frames 65, 95 and 140. This granularity results from the max signal length

of 50, which increases the relative reduction in cost for fitting to the three sections of the

polymer collapse. Processing the entire trajectory for online detection took 820 milliseconds

(±3.12µs) on a single core of a 3.0 GHz Intel Xeon Gold 6154. This speed is sufficiently fast

to use in real time applications such as autonomously triggering simulation protocols during

a simulation. Figure 3.5 (f-g) shows dupin’s ability to detect the collapse and its component

parts in the case of online detection. Figure 3.5 (h) shows the cost associated with the choice

of optimum n (number of change points) for offline detection. Likewise Figure 3.5 (i) shows

the attempt to detect an elbow in the online case with a proxy for the cost plot, which

otherwise would need to be shown for every frame.

3.4 Discussion and Conclusions

We’ve demonstrated how the procedure described in Section 3.2.1 allows for detection of

transition points within a simulation trajectory with a high degree of accuracy. The obvious

24

Figure 3.5: Change point detection (offline and online) applied to polymer trajectory. (a-
e) Images corresponding to the beginning of the simulation, change points and end of the
simulation. (b-c) Online-only change points. (d) Both offline (125) and online (140) have very
similar values of change points and only frame 140 is shown. (f-g) Plot of Voronoi polytope
volumes (f) and the number of clusters in the simulation according to freud’s clustering
algorithm with a 1.2σ cutoff (g). Solid lines are the (rolling mean) smoothed features and
the translucent dots are the actual data points. The smoothing is purely for visualization
and all calculations were done using the actual data points. The light purple solid line is the
change point determined by dupin’s offline detection. The dark purple dashed dotted lines
are the change points determined by dupin’s online detection. (h) Plot of the cost associated
with the optimum n change points computed on all features for offline detection. (i) Plot of
relative improvement of costs from adding a second change point in online detection. The
formula used is ξ = (c1 − c2)/c0 where ci is the cost for selecting i change points. Individual
curves represent independent detections (i.e. after the window is cleared).

25

benefit from this approach is the automation of structural transition detection within a study.

In studies with hundreds and thousands of simulations the dividends of this approach increase

exponentially. Our method does, however, require informative descriptors for the transition.

This requirement can be met by selecting a wide variety of descriptors and applying feature

selection tools to the signal afterwards.

From the examples presented, we conclude that the classifier approach results in a larger

partitioning of the detected events compared to results produced using the linear cost func-

tion approach. However, the classifier approach falls short in cases where multiple events are

overlapping or in cases where there are abrupt changes at the end of the signal. For instance,

if we were to apply the ML method to a system with only one frame into a transition, no

event would be detected. The linear approach is better suited for detection in such scenarios

and in scenarios where multiple events are expected as showcased in the online polymer

example.

dupin opens the doors for new ML applications to phenomena such as crystallization

pathways, defect formation and active matter, all of which involve structural transitions. By

curating the transition data for ML applications, large scale studies that would have been

prohibitively costly in terms of human hours are now accessible. Furthermore, leveraging

dupin for online event detection holds promise to lessen data storage and processing demands

and provide a powerful avenue for real-time control over simulations and experiments.

The source code can be found at GitHub at https://github.com/glotzerlab/dupin.

The documentation hosted by Read the Docs, https://dupin.readthedocs.io, also con-

tains three additional examples of event detection: one for a simple simple of WCA spheres

forming FCC, one of hard truncated tetrahedra forming cF432 and one of ionic beryllium

and chlorine forming a nematic then crystalline phase. The analysis code and data will be

available on on Deep Blue Documents following publication.

26

https://github.com/glotzerlab/dupin
https://dupin.readthedocs.io

CHAPTER 4

PGOP: A Point group Order Parameter for

Analyzing Local Crystal Symmetry

This chapter is adapted from a manuscript authored by Brandon L. Butler, Maria W. Rashidi

and Sharon C. Glotzer to be submitted to a peer-reviewed journal.

4.1 Introduction

Molecular simulations can provide a rich collection of information: particle positions, mo-

menta, forces, etc. However, the shear volume of information is a double-edged sword ne-

cessitating the meticulous sifting of data to extract the pertinent details. This “sifting” is

conducted using order parameters. Order parameters distill multiple degrees of freedom into

one or a few numbers that measure ordering or the departure from randomness in a system.

OPs are particularly useful for analyzing crystals [76, 16, 26, 92, 122].

A crystal is defined as a solid that forms a lattice when considering particle positions. The

fundamental unit of a crystal is the unit cell consisting of two items: (1) the lattice vectors

that are the n directions and lengths of translational symmetry and (2) the basis positions

that define occupied points within the unit cell created by the lattice vectors. The unit cell

exhibits various symmetries, the set of which is called a space group. Unit cells also have

a point group, which accounts for a subset of symmetries of a space group, removing screw

axes and glide planes in three dimensions. Symmetry is also a feature of a crystal’s one or

27

more Wykoff site(s). A Wykoff site is a subset of positions from the basis positions that are

invariant under specific rotations, reflections and/or inversion. Each basis position occupies

one Wykoff site within a crystal. The fixing of basis positions across unit cell translations

and intra-unit cell Wykoff site symmetries leads to the local bond orientational ordering

of a crystal. Discerning the point group and space group directly from simulations is an

important step in identifying a crystal.

The most popular OP that analyzes bond-orientational symmetry is the Steinhardt

OP [122], Qℓ, where ℓ is the spherical harmonic number. The Steinhardt OP depends

on the bond order diagram (BOD) of a particle. A BOD is a projection of neighbor bonds,

vectors pointing from a central particle to a neighbor, onto the unit sphere. The spherical

harmonic expansion of the BOD is taken, and the coefficients are combined in a rotationally

invariant way. Therefore, the Steinhardt OP is translationally invariant due to the BOD

and rotationally invariant due to the specific combination of spherical harmonic expansion

coefficients. However, due to this combination of coefficients, the Steinhardt OPs cannot

specify what symmetry is forming — only that one compatible with a given spherical har-

monic number ℓ does. Another problem comes from discontinuous changes in OP values

when the neighbor finding method changes. An extension to the Steinhardt OPs, Minkowski

Structure Metrics (MSM), address this specific issue by (1) computing neighbors via Voronoi

tessellation [134, 133] and (2) weighting the BOD by the polytope facet area.

We improve upon this class of OPs by developing one that can detect the local formation

of specific point group symmetries. To create the OP, we modify an OP developed by

Michael Engel [39] that quantifies at global ordering. Our algorithm, the Point Group Order

Parameter, successfully handles noisy local environments while providing local per-particle

information on the exact kinds of symmetry formed, unlike MSM or Steinhardt OPs. The

PGOP preserves the full information of the bond order diagram by avoiding the coefficient

combinations of Steinhardt or MSM. The combining of coefficients removes the point group

specific information, and in preserving them, the PGOP can quantify specific point group

28

ordering. We developed the OP to study nucleation events and what precedes them with a

particular interest towards which polymorphs exist in the liquid prior to crystallization.

We begin by presenting a full derivation of the PGOP. From there, we proceed to compare

the PGOP’s behavior to MSM [92]. We continue by looking at the PGOP behavior in

a complicated crystal (γ-brass); a system of particles interacting via the oscillating pair

potential [94] forming A15; a binary system of LJ-interacting particles forming a glass; and

a system of LJ-interacting particles that crystallize into a defected FCC. Finally, we conclude

with some closing remarks about PGOP and its potential utility.

4.2 Results

4.2.1 Method Derivation

We begin with a derivation of the PGOP algorithm — for a derivation of the global OP

inspiring this work, see [39].

The first step of the algorithm is to compute a weighted bond order diagram (BOD), an

extension of a BOD is where a weight is assigned to all neighbor bonds. The weighted bond

order diagram is defined as,

BOD(θ, ϕ) =
4π

sin(θ)

N∑
i=1

wi

w
δθi,ϕi

(θ, ϕ), (4.1)

where wi are optional weights per neighbor bond and w =
∑N wi and δ is the dirac-delta

function. A prefactor 4π/ sin(θ) is added to the weighted BOD to simplify the coefficients

of a spherical harmonic expansion: The coefficients with this prefactor work out to,

Qlm =
∑
i

wi

w
Ylm(θi, ϕi). (4.2)

In this work we ignore the prefactor as it has no bearing on the final order parameter because

29

we ultimately only compare correlations BOD where the prefactor would always be identical

between BOD.

The choice of neighbors can lead to very different results, so we must carefully choose the

method for neighbor finding. With systems of known and constant (among basis positions)

coordination number, the n nearest neighbors neighbor-list will suffice. However, when

dealing with crystals of multiple Wykoff sites and coordination numbers, a more general

approach is warranted. For this purpose, we adopt the Voronoi tessellation [134, 133] as it is

parameterless and has equivalent behavior in simple cases like FCC and SC to the informed

n nearest neighbors approach. Also, weighting the Voronoi tessellation neighbor list by the

area of the Voronoi polytope facets reduces sensitivity to thermal noise because points far

away from the central particle have small weights.

However, even with a well-thought-out neighbor definition, the BOD would be highly

susceptible to thermal noise due to its use of delta functions. Thus, we further modify the

BOD by changing the delta function to a broader distribution. One example distribution

and the one used for this work is the von-Mises Fisher [46] distribution, the analog of a

Gaussian on the surface of the sphere:

p(x) =
κ

2π(eκ − e−κ)
eκµ

T x, (4.3)

where κ is known as the concentration parameter and µ is the unit vector pointing to the

center of the distribution. The concentration parameter functions something like an inverse

standard deviation and large values serve to narrow the distribution. Because the von-Mises

Fisher distribution is spread out, thermal effects will be muted. The effect of using the

Fisher distribution can be seen in Figure 4.1. We would expect a flat line in Figure 4.1

(a-b) if the broadness of the distribution didn’t matter (κ → ∞ recovers the delta function).

However, we can clearly see that the ability to detect order deteriorates past an intermediate

κ. Figure 4.1 (a) has a sensitivity to κ due to optimization being more difficult with highly

30

peaked distributions.

Figure 4.1: Plot of κ’s effect on the evaluation of icosahedrally ordered environments, both
perfect and noisy. Each line is the average over 25 optimizations at various random rotations.
The shaded region above and below the line is one standard deviation. (a) Plot of the PGOP
of a perfectly icosahedral neighbor shell with various κ. (b) Plot of the PGOP of noisy
icosahedral neighbor shells with various κ. (c-d) Plots of the PGOP divided by the mean
PGOP of 25 ideal gas samples for perfect (c) and noisy (d) neighborhoods. These plots (c-d)
emphasize the distinctiveness of ideal gas and ordered environments.

With the modified BOD, we proceed to take a spherical harmonic expansion like Stein-

hardt OPs or Engel’s OP. Spherical harmonics expansions are summations of Y m
ℓ (i.e.

f(θ, ϕ) =
∑∞

l=1 Q
m
ℓ Y

m
ℓ) and are the equivalent of a Fourier expansion in Euclidean space.

Just like Fourier expansions, the coefficients must be computed. The coefficients are defined

through an inner product of the spherical harmonics, Y m
ℓ , and the function being expanded.

For the BOD the expansion coefficients are

Qm
ℓ =

1

4π

∫ π

θ=0

∫ 2pi

ϕ=0

BOD(θ, ϕ)Y m
ℓ (θ, ϕ)∗ sin(θ)dϕdθ. (4.4)

31

We solve the integral by a Gaussian-Legendre quadrature with fineness m resulting in 2m2

integrand evaluations. Here we note that the use of distributions over delta functions in the

BOD also allows for more accurate expansions for a fewer numbers of neighbors.

With the spherical harmonic expansion of the BOD, we can symmetrize the BOD with

respect to a point group. To accomplish the symmetrization, we take the Wigner D-

matrix [136] for a symmetry group, G, of interest and apply it to the BOD via a specific

formula (the semidirect product),

BODsym =
∞∑
ℓ=1

ℓ∑
m′=−l

l∑
m=−ℓ

Dm′,m
ℓ (G)Qm∗

ℓ . (4.5)

This results in a symmetrized BOD that has the desired point group symmetry. A Wigner D-

matrix is an encoding of one or more symmetry operations in O(3) as finite matrix; thus, all

point groups have associated Wigner D-matrices. Importantly, if the original BOD started

with the desired symmetry, then the symmetrized BOD will have a normalized Pearson

correlation of 1 with the original BOD [39, 136].

We can then compare BODs through a normalized functional inner product between the

original and symmetrized BOD. The inner product results in an OP that is 1 if the original

BOD exhibits perfect symmetry with respect to a chosen point group and 0 if there is no

semblance of a point group in the BOD. We can calculate the inner product (due to the

spherical harmonic expansion) as,

K(fi, fj) =
∞∑
ℓ

m=ℓ∑
m=−ℓ

Qm
ℓ,iQ

m
ℓ,j. (4.6)

To normalize the inner product, we compute

K̂(fi, fj) =
K(fi, fj)√

K(fi, fi)K(fj, fj)
, (4.7)

which also gives the Pearson correlation between the two functions.

32

Thus, the degree of point group ordering for group G is K̂(BOD,BODsym). We note

here that a value of 0 just as surprising as 1 is; even the ideal gas has a non-zero value

for finite numbers of neighbors (see the paper [39] for a more complete explanation). To

better ascertain the deviation of PG ordering from a random distribution of points, we can

normalize the PGOP by using its value in the ideal gas,

PGOPnorm =
PGOP−⟨PGOPIG⟩

1− ⟨PGOPIG⟩
, (4.8)

where PGOP is the PGOP for the system of interest and ⟨PGOPIG⟩ is the mean or expected

value of PGOP for the ideal gas with the current neighbor finding method. Due to the use

of the ideal gas to normalize other system’s PGOP, PGOPnorm can go below 0.0.

The algorithm does not conclude here; point groups have defined axes of rotation and

reflection and, thus, are not rotationally invariant like their Steinhardt [122] cousins. Hence,

we have to align optimally the rotation of the original BOD with the axes chosen in the

calculation of the Wigner D-matrix. As the optimization over SO(3) (we only need to

consider the optimal rotation and not inversions/reflections) is in the general case very

bumpy (non-convex), we perform a two-step optimization: a global search over SO(3) and

a local one-dimensional gradient descent into a local minimum.

Our global search consists of uniform rotations in SO(3) which, without prior information,

is the most unbiased choice for a global search. To obtain uniform rotations, we perform two

steps. First, we find uniformly distant points on the sphere for rotational axes. To find uni-

form points on the sphere, we take the numerical solutions to the Tammes problem [125, 101]

in three dimensions for n points. We then take m angles according to the Haar measure [53],

which amounts to selecting angles that are equidistant along 1/π(θ − sin θ). The Haar

measure accounts for nonlinearities between rotation angles. Combining equidistant angles

of rotation along the Haar measure with the Tammes problem solution results in uniform

rotations in SO(3) of n ·m points [95].

33

Following this global search, we take the current optimal rotation and perform three gra-

dient descents in series over the three dimensions of rotation. In developing the algorithm

and implementation, we found three one-dimensional optimization to be more stable and

to result in higher PGOP values than a single three-dimensional optimization. We repre-

sent the rotation by a three-dimensional vector α⃗ which can be converted to the axis-angle

representation (x⃗ and θ) via

θ = ||α⃗||

x⃗ =
α⃗

||α⃗||
.

These conversions show that the representation is continuous, allowing for continuous opti-

mization schemes. We cycle through these three one-dimensional optimizations of α indices

until we converge to a solution.

This solution is not the symmetry of the Wykoff site of a particle as this is a function

of the unit cell. Similarly, the output is not the symmetry of the lattice itself as in [39].

The final output is an OP that detects of point group order within local arrangements of

particles.

4.2.2 Testing

We show a simple test of the behavior of the PGOP against MSM. We first look at con-

figurations of perfect FCC and BCC with various levels of added Gaussian noise. We use

Gaussian noise because it is uncorrelated between particles and therefore is more destructive

on average than thermal noise. The behavior of the PGOP by itself would not be particularly

illuminating, so we also perform all these calculations with MSM [92], computed using the

Python package freud [33, 104], as well. In seeing how the PGOP compares to a standard

and well-used OP, we can better evaluate the performance of the PGOP in perfect and noisy

conditions.

34

First we look at the values for MSM and the PGOP on random configurations (i.e. ideal

gases). For neighbor-finding, we use Voronoi tessellation [134, 133], which is required in

MSM but optional for the PGOP. The distributions can be found in Appendix B.1. After

deriving the baseline values for various PGOP and MSM, we then take the three crystals

and create uncorrelated perfect and noisy configurations at various levels of Gaussian noise

and compute the PGOP and MSM. For the PGOP, we use the Oh point group, which is the

point group symmetry for the local FCC and BCC — the Voronoi neighbors for FCC form a

cuboctahedron and BCC a truncated octahedron both of which have octahedral symmetry

as their names suggest. For MSM, we use l = 6, which has generally been used to detect

crystallization for FCC and BCC [126, 44] (for other l see Appendix B.2). In Figure 4.2,

we can see that generally the PGOP detects the original ordering for higher levels of noise

that MSM. Thus, the PGOP can still discern order even in high noise environments whereas

for MSM the average particle is indistinguishable from an ideal gas particle. Note that in

Figure 4.2, rather than plotting the PGOP or MSM directly, we plot the value normalized

by the median of the PGOP for an ideal gas via,

Y =
PGOP−PGOPIG,med

PGOPIG,med

, (4.9)

which is a slight variant of Equation 4.8. We use this variant to better access how likely a

value of PGOP could be from the ideal gas versus an ordered structure.

4.2.3 Application of PGOP to Example systems

Having shown the general behavior of PGOP and MSM with respect to simple crystals, we

now look exclusively at the PGOP of various systems crystalline and otherwise.

35

Figure 4.2: (a-d) Plots of the PGOP and MSM6 for two different crystals (FCC and BCC).
Plots show the 0.25, 0.5 and 0.75 quantiles in dashed, solid and dotted lines, respectively.
The PGOP values have been normalized by the median of ideal gas, so 0.0 is the median
PGOP of the ideal gas. Gray lines correspond to the 0.25, 0.5 and 0.75 quantiles of the ideal
gas with the same line style designations as the crystal lines. Crystals have a unit cell of
length 1 and go from a standard deviation of 0 to 0.2.

36

4.2.3.1 γ-brass

Next we examine a configuration of noisy (Gaussian noise with standard deviation 0.0025

with a lattice vectors length one) γ-brass (CuZn). The crystal has four Wykoff sites, two

of which have the same symmetry (one occupied by Cu and another by Zn). We show that

PGOP can linearly separates the distinct sites, providing insight into the local symmetries of

particles. Figure 4.3 shows a Gaussian mixture model (GMM) clustering [106, 27] of the raw

data as well as a corresponding plot showing points colored by Wykoff site. For the clustering,

we varied the number of clusters from two to seven and chose the clustering that had the

highest silhouette score [107]. The plot uses the first two dimensions of a linear discriminant

analysis (LDA) projection [55, 78] given the Wykoff sites as class labels. LDA was chosen

as it finds a linear projection, which tends to make clusters spherical and separate them

among the defined axes, aiding visualization. We also note that LDA cannot manufacture

difference; the separation of the clusters in (a-b) is due to the Wykoff sites being linearly

separable in PGOP space. Regardless, the projection is done purely for visualization because

we performed the GMM clustering on the raw data. The LDA projection and GMM were

calculated using scikit-learn [100, 21]. Figure 4.3 part (a) shows a clear ability to distinguish

between three of the four Wykoff sites in the original space. The two combined Wykoff sites

are those that possess the same site symmetry and have nearly identical local environments.

4.2.3.2 Crystallization of A15

To further demonstrate the utility of our new OP, we look at two simulations of particles

interacting via the oscillating pair potential [94]. This pair potential exhibits a diverse phase

behavior and can be used to study the self-assembly of complex crystals, including even

quasi-crystals [36, 40]. Here, we focus on a set of parameters that in molecular dynamics

(MD) simulations lead to A15 (Cr3Si Pearson symbol cP8). In A15, two Wykoff sites exist;

one corresponding to each species in the metallic specification, Cr and Si. The simulation

is run in MD and scripted using HOOMD-blue [11, 10, 22] and is either slowly-cooled or

37

Figure 4.3: (a-b) The particle’s PGOP values projected into the first two dimensions of a
LDA projection using Wykoff sites as class labels. The PGOP is computed for Oh, Th, Ih,
D3, D4, D5, D6, D7 and Ci. (a) Particles are colored by cluster labels assigned by GMM
clustering. (b) Particles are colored by the Wykoff site they belong to. (c) The silhouette
score given by the scikit-learn [100, 21] is plotted over number of clusters.

38

quenched. The analyses of the systems is in Figure 4.4.

We find that the PGOP for Ih (full icosahedral symmetry) can clearly detect the onset

location of crystallization because the Si environment is perfectly icosahedral. The Cr en-

vironment has incomplete icosahedral ordering. Thus, in Figure 4.4 (c-d), we can observe

a sharp increase in icosahedral ordering upon crystallization. We also see that in both the

quenched and slow-cooled system, crystallization happens very quickly (with respect to the

period between analyzed microstates). However, the inset of Figure 4.4 (d) suggests that the

transition is similarly “quick” even when viewed at shorter time frames. Furthermore, the

quenched system results in a crystal with large swaths of defects, whereas the slow cool has

very good assembly with only two grains and two grain boundaries. Interestingly, in both

the quenched and slow-cooled cases we can see from the lower quantiles that the icosahedral

ordering of the entire system begins at the same time.

4.2.3.3 Formation of Binary Lennard-Jones Glass

We now move to an amorphous phase of matter glass. Specifically, we will use the PGOP

to analyze the formation of a binary LJ glass from a linear temperature quench. It is known

that binary systems of LJ-interacting particles within certain parameters are good glass

formers [61]. We take the protocol from [61] and simulate particles with a size ratio of

0.97, a cohesive energy of -0.8 and a mixing energy of 2.0 dimensionless quantities defined

in Equation 4.10. The cohesive energy and mixing energy are defined in terms of the LJ

interaction parameters,

Eco =
(ϵBB − ϵAA)

(ϵBB + ϵAA)
(4.10)

Emix =
2ϵAB

(ϵBB + ϵAA)
. (4.11)

We use a cooling rate of 1e-6 kT per step from kT = 5 to kT = 0.1 at a constant pressure

of 10 with the box constrained to remain cubic. We verified that the system does transition

39

Figure 4.4: (a-b) Visual snapshots of the two systems at the end of the simulation. (a)
Visual snapshot of the end of the quenched system. (b) Visual snapshot of the end of the
slow-cooled system. (c-d) Plots of various quantiles of full icosahedral ordering across the
simulation. (c) Plot of the quenched system. (d) Plot of the slow-cooled system. The inset
which zooms in on the transition (black boxed region) and is plotted and colored the same
as the main plot. (e) A color legend of which color represents which quantile. The figures
clearly shows the utility of the PGOP at analyzing soft matter self-assembly.

40

into a glass by looking at the mean squared displacement. The results confirming the glassy

confinement can be seen in Appendix B.3.

We compute all cyclic and dihedral point groups from order three to twelve (except 11)

and I, Ih, O, Oh, T and Th for all frames in the trajectory. To evaluate system evolution

and the final glass we use the PGOP as the input to an agglomerative hierarchical clustering

algorithm (AHC), using Ward’s linkage, from scikit-learn [100, 21] on the final frame. Ward’s

linkage defines distance as the increase in intra-cluster variance. We determine the final

number of clusters to use by recursively applying the KNEEDLE [113] algorithm for elbow

finding on the distance between clusters according to AHC. After each elbow detection, the

distance vector is truncated to the last detected elbow and KNEEDLE is rerun until it fails

to detect an elbow. Elbow detection resulted in three options for the number of clusters

three, ten and fifty-two; we chose to analyze to three clusters. To analyze the development

of environments, we train a gradient boosted classifier [86] with 40 trees from scikit-learn on

the cluster labels from the cluster algorithm. We achieved an accuracy score of 0.95 on a

test-set size of 10% of the data.

In Figure 4.5, we show the results of this analysis. As we can see in (a, d-e), the icosahedral

ordering of the system in general and individual particles in particular increases as the

system cools. Specifically in (a), we note the clustering of icosahedrally ordered particles

into elongated clusters as has been reported in glasses before [79, 118] as the system cools.

We also note the development of icosahedral ordering as can be seen in (d). To further

analyze this, we look at the size of the largest icosahedrally ordered particle cluster in (e).

We determine clusters via freud’s [33, 104] clustering algorithm, which finds all connected

components with a set minimum edge length (r = 1.15σ in this case). From (e) then, we see

that the highest icosahedrally ordered environment produces larger and larger clusters over

time before peaking and decreasing. The decrease in cluster size may be due a to relaxation

processes in the glass.

41

Figure 4.5: (a) Image of the last frame in the simulation with the icosahedrally ordered
environment colored dark teal and other particles are translucent blue and orange. (b) Plot
of particles in the last frame in the first two PCA dimensions from the PGOP analysis. The
clusters corresponds their color in (a). (c) The dendrogram of the AHC with the Ward’s
linkage distance on the y-axis. (d) Plot of the evolution of glassy environments in the last
frame over the simulation. The line colors corresponds to the colors in (a-b). (e) Plot of the
size of the largest contiguous cluster of icosahedrally ordered particles.

42

4.2.3.4 Crystalline Defects

For our final example, we look at the crystallization of LJ-interacting particles into a FCC

crystal with HCP stacking faults and other defects. Our purpose in this analysis is to show

the effectiveness of the PGOP in detecting deviations in local ordering consistent with defects

in a crystal. We ran the system in the NPT ensemble under a pressure of 0.1, a temperature

ramp from 5.0 to 0.1 with a cooling rate of 1e-6 kT per step and 3375 particles. The system

after cooling was run for an additional 500,000 steps.

As in Subsection 4.2.3.3, we compute all cyclic and dihedral point groups from order

three to twelve (except 11) and I, Ih, O, Oh, T and Th for all frames in the trajectory. We

also perform the same clustering method (AHC) resulting in three or twenty clusters as the

reasonable options. For our analysis we use three clusters (see Figure 4.6).

We display the results of the analysis in Figure 4.6. We begin by coloring the final

frame using the labels assigned by the clustering algorithm (a). We label the clusters FCC,

HCP and Other to aid with the comparison (to be made) to polyhedral template analysis

(PTA) [76]. “Plates” of the HCP environment can clearly be see in (a) with the bulk

consisting of FCC.

To verify the clustering produced meaningful distinctions, we computed the labels of PTA

with a RMSD (root mean squared deviation) of 0.15. We also limited the possible environ-

ments to FCC, HCP, BCC and Other; although for the analysis, we moved all BCC particles

into the Other label. Figure 4.6 (c-d) show the comparison between the automatically cho-

sen clusters and PTA. We chose the optimal mapping from the PGOP determined clusters

to the PTA ones and then looked at the confusion matrix between the two labellings (c).

This optimal mapping is how we label the clusters in Figure 4.6. We note great agreement

between the PGOP clustering’s FCC label and the PTA FCC label; however, PTA labels

many particles FCC that the PGOP clustering labels as Other. To investigate if this is

due to more disorder in these particles, we look at the number of disordered neighbors for

particles labeled FCC by PTA that our clustering clustered as the FCC or Other label. We

43

quantity this by counting the number of neighbors labeled Other by PTA. We compute the

neighbors using Voronoi tessellation. As hypothesized, the PGOP Other particles have on

average many more PTA Other neighbors, suggesting they are more disordered themselves.

Thus, we achieve a meaningful partitioning of the system into environments without need-

ing to know the structures to search for unlike PTA, and we could easily determine the

nature of the environments by looking at which point group symmetry an environment most

possessed. Finally, we emphasize that the clustering was done without PTA in mind or

PTA labels and all comparison was done post hoc to illustrate the effectiveness of PGOP.

We would not expect the clusters to be identical as the two methods are different, and the

RMSD hyperparameter was not tuned to best match the AHC clustering.

4.3 Conclusion

In this paper we show that the PGOP can detect the presence and beginnings of crystalline

order by analyzing local point group ordering. Through comparisons with MSM, we em-

phasize the robustness of the PGOP and its ability to distinguish local environments. The

PGOP promises increased ability to analyze the nucleation and formation of crystals, defects

and even amorphous structures. In Subsection 4.2.3.2, we present the use of the PGOP in an

ongoing research project. Such pathways studies are needed to facilitate pathway engineer-

ing that enables micro-control of macroscopic systems. However, PGOP and other bond-

orientational order parameters remove information on local density. We address this deficient

in the next chapter. An optimized CPU software package implementing this method written

in C++ and Python is available on GitHub (https://www.github.com/glotzerlab/pgop).

44

https://www.github.com/glotzerlab/pgop

Figure 4.6: (a) Image of the last frame in the simulation colored by the PGOP clustering
labels. (b) Plot of particles in the last frame in the first two PCA dimensions from the
PGOP analysis. The colors correspond to (a). (c) Confusion matrix of PTA and PGOP
AHC labels. Squares are normalized by column (PGOP label). Color bar is shown for the
plot underneath. (d) Bar graph of the fraction of particles in the category with N neighbors
labeled Other by PTA.

45

CHAPTER 5

New Continuous Coordination Number

5.1 Introduction

One weakness of PGOP, discussed in the previous chapter, is that distance information is

discarded when creating the BOD. Order parameters that capture this information are quan-

tities like local density and coordination number. Local densities have the difficulty in that

they are unit sensitive and, thus, require normalization when comparing across disparate

systems. However, local coordination numbers are inherently dimensionless quantities, al-

lowing for comparison across systems and phases. The local coordination number is the

number of particles a central particle is in contact with or “bonded” to. The difficulty in us-

ing coordination number in all but perfect or high density structures, though, is that small

perturbations in particle positions can lead to jumps or dips in the coordination number

given its discrete nature. The jumps and dips make the relationship between the instan-

taneous coordination number and a given local environment weaker. This discrete nature

makes coordination numbers more difficult to use in machine learning applications as well.

The natural solution would be to modify the local coordination number to something more

well-behaved (i.e. smoother). One such approach would be to relax the integer coordination

number to the reals, R, and allow non-integers such as 8.5. In this chapter, we take one

such approach and generalize it to a family of continuous coordination numbers. We begin

by deriving the family of coordination numbers. To analyze their effectiveness, we compare

46

our approach to the conventional coordination number from Voronoi tessellation as well

as the coordination number algorithm inspiring this work from [24] in classifying particles

into simple crystals like FCC. We also highlight PGOP’s and CNV⃗ ’s improved combined

effectiveness in the same classification task.

5.2 Results

5.2.1 Derivation

The new coordination number is a generalization of a coordination number developed in

1978 by Forest L. Carter [24]. The original formula is,

CN2 =

[
N∑(

Vi

V

)2
]−1

, (5.1)

where V is the volume of a particle’s Voronoi polytope and Vi is the volume of the pyramid

formed by taking the face between two particles and creating lines to the central particle from

the vertices. In systems where the local environment has N equivalent particles (Vi/V) →

(1/N), and Equation 5.1 becomes simply N where N is the number of Voronoi neighbors.

We calculate the CN2 of some simple monoatomic crystals without noise in Table 5.1 and

with noise in Table 5.2. We also show the effectiveness of the method compared to the more

straight-forward direct counting of neighbors through Voronoi tessellation in Figure 5.1. As

Figure 5.1 indicates, CN2 is much more concentrated (narrow) than CN0 (counting Voronoi

neighbors), as expected.

We make two generalizations of Equation 5.1 to arrive at a family of coordination numbers

that can readily delineate the differences in local environments with appreciable noise. The

first generalization comes from generalizing the power of the expression (Vi/V) to m. This

47

Figure 5.1: Normalized histogram of CN0 and CN2. CN0 is simply counting Voronoi neigh-
bors, while CN2 is from Equation 5.1. The left y-axis represent CN0 and the right represents
CN2. The data is from a snapshot of perfect FCC with 4,000 particles perturbed by Gaussian
noise with standard deviation of 0.05. We can see that the data is much narrower for CN2

than for CN0. The x-axis is shared between the two plots to allow for an easier comparison.
The histogram for CN2 does not span the entire axis.

48

results in (once accounting for normalization),

CNm = N2−m

[
N∑(

Vi

V

)m
]−1

. (5.2)

Our generalized coordination number is given for various powers of m for perfect crystals

in the Table 5.1 and noisy crystals (σ = 0.025) in Table 5.2. Notice crystals with identical

Voronoi neighbors (FCC, SC) maintain identical CN across m for the perfect crystals while

for BCC and the ideal gas, IG, go to zero due to non-uniform first neighbor shells. This

trend towards zero becomes universal in the presence of thermal noise (Table 5.2).

Table 5.1: Table of the CNm values for various perfect crystals and m.

System / m 0.0 0.5 1.0 2.0 4.0 8.0 16.0
FCC 12.00 12.00 12.00 12.00 12.00 12.00 12.00
BCC 14.00 14.26 14.00 12.39 8.02 2.78 0.32
SC 6.00 6.00 6.00 6.00 6.00 6.00 6.00
IG 15.46 17.37 15.46 9.36 2.36 0.13 0.00

Table 5.2: Table of the E[CNm] values for various crystals (and ideal gas) with noise added
across m. Each expected value was computed from a system of 4,000 particles with Gaussian
noise with 0 mean and 0.025 standard deviation.

System / m 0.0 0.5 1.0 2.0 4.0 8.0 16.0
FCC 14.00 14.91 14.00 11.97 8.64 4.43 1.18
BCC 14.00 14.27 14.00 12.34 7.94 2.69 0.27
SC 15.88 21.15 15.88 6.71 1.13 0.04 0.00
IG 15.46 17.39 15.46 9.35 2.37 0.13 0.00

The second generalization comes in recognizing (Vi V)m as one of many possible functions

and generalizing Equation 5.2 to,

CNf = αf,g g

(
N∑

f

(
Vi

V

))
, (5.3)

49

where f operates on every neighbor, g operates on the sum of f overall neighbors and αf,g

handles any normalization. This form by itself is useless, but opens up the possibilities for

creating new algorithms that have the expected behavior in the limit of a uniform neighbor

shell. One extension is f(x) = log(x):

CNlog =
−1

logN

N∑
log(Vi/V)

=
−1

logN

(
log

N∏
Vi −N log V

)
. (5.4)

Another extension is f(x) = exp(x):

CNexp =
N∑

exp

[(
Vi

σV
− 1

N

)]
. (5.5)

These extensions open the possibility for using functions like the Huber loss which is

quadratic around 0 but linear past a point determined by the user. The advantage of such

an approach would be to assign higher weight to neighbors farther away than CNm, m ≥ 2

while still going to zero as distance increases.

5.2.2 Analysis

Having looked at the different forms of CN we introduce, we next analyze the information

that they provide. We consider a simple classification task where the classifier is given

features for a single particle belonging to a noisy FCC, BCC, SC or IG system and returns

the predicted phase. We train a linear discriminant analysis (LDA) model using scikit-

learn [100, 21]. We chose LDA because its creates linear decision boundaries, preventing

overfitting. For features, we first pass three sets of CN as seen in Figure 5.2. We note

that CNV⃗ refers to a vector of coordination numbers given by the two generalizations in

Equations 5.2 and 5.3. Here the data is 8,000 particles with 2,000 for each label with

σ = 0.05 Gaussian noise added to the crystals. LDA is trained on 6,400 points and tested

50

on 1,600 (400 from each label). As we can see in Figure 5.2 (a-c), the addition of the higher

order m and log and exp in CNV⃗ leads to a much better fit than simply CN0 or CN2.

Figure 5.2: (a-c) Confusion matrices for three different definitions of CN . The y-axis rep-
resents the actual label of a sample while the x-axis is the predicted label by the model.
For example, the value on the FCC row and SC column represents the fraction of FCC
test samples predicted to be SC. Values in the confusion matrix are labeled and colored by
their occupancy. For example, a perfect classification would be a yellowish-white diagonal
and black off-diagonals. (a) Confusion matrix for CN0. (b) Confusion matrix for CN2. (c)
Confusion matrix for CNV⃗ for V⃗ = [2.0, 4.0, 6.0, 8.0, 12.0, 16.0, log(), expσ(100.0)]. (d) Color
bar for (a-c).

Our next comparison looks at CNV⃗ and PGOP (see Section 5.1) combined. The dataset

here has 4,000 particles with 1,000 of each class at a higher noise level (standard deviation

of 0.1) than the previous analysis. Training was on 3,200 points and testing on 800. We

trained a random forest classifier [57] on CNV⃗ and/or PGOP (see Figure 5.3 (a,b)) because

as here we are not concerned with overfitting since we have fewer data. Furthermore, we

limit leaf nodes in the tree to at least 4 points and only use 100 trees. We used Voronoi

tessellation for the PGOP’s neighbor list. Figure 5.3 (c) shows that the combination of

CNV⃗ with PGOP significantly improves the classification accuracy of the random forest

51

model compared to each feature independently. This improvement in performance signifies

orthogonal information present in the two OPs.

Figure 5.3: (a-c) Confusion matrices for CNV⃗ and/or PGOP. The y-axis represents the ac-
tual label of a sample while the x-axis is the predicted label by the model. For example, the
value on the FCC row and SC column represents the fraction of FCC test samples predicted
to be SC. Values in the confusion matrix are labeled and colored by their occupancy. For ex-
ample, a perfect classification would be a yellowish-white diagonal and black off-diagonals.
(a) Confusion matrix for CNV⃗ for V = [2.0, 4.0, 6.0, 8.0, 12.0, 16.0, log(), expσ(100.0)]. (b)
Confusion matrix for PGOP for point groups [Ih, Oh, Th, T,D5, D6, D7, D8, D10, Ci]. (c) Con-
fusion matrix for classifier trained on CNV⃗ and PGOP from (a-b). (d) Color bar for (a-c).

5.3 Conclusion

We have shown our generalized coordination number (specifically CNV⃗) to be a viable addi-

tion to PGOP in analyzing local order in a generic way while maintaining interpretability.

Furthermore, the CNV⃗ vector is significantly more effective at classifying particles into crys-

tal structures than CN0 or CN2 by themselves. Finally, we show that CNV⃗ presents distinct

particle environment information than PGOP in Figure 5.3. By their design, PGOP captures

information on the arrangement of neighbors, and CNV⃗ the effective number of neighbors.

52

Thus, combined they are able interpretability capture bond-orientational (PGOP) and local

density information in a dimensionless manner. The combination will serve as useful tools

to use in automated but in-depth studies of self-assembly.

This feature will be added to the open-source analysis package freud [33, 104] to allow

for use in the field. With PGOP and freud installed, both analyses can be computed on a

given system.

53

CHAPTER 6

HOOMD-blue Version 3.0 A Modern,

Extensible, Flexible, Object-Oriented API for

Molecular Simulations

This chapter is adapted from Ref: “HOOMD-blue version 3.0 A Modern, Extensible, Flex-

ible, Object-Oriented API for Molecular Simulations”, Brandon L. Butler, Vyas Ramasub-

ramani, Joshua A. Anderson, Sharon C. Glotzer, Proceedings of the 19th Python in Science

Conference (2020) [22]

6.1 Introduction

Molecular simulation has been an important technique for studying the equilibrium proper-

ties of molecular systems since the 1950s. The two most common methods for this purpose

are molecular dynamics and Monte Carlo simulations [90, 6]. Molecular dynamics (MD) is

the application of Newton’s laws of motion to molecular system, while Monte Carlo (MC)

methods employ a Markov chain to sample from equilibrium configurations. Since their in-

ception these tools have been used to study numerous systems, examples include colloids [29],

metallic glasses [41] and proteins [35], among others.

Today many software packages exist for these purposes. LAMMPS [102], GRO-

MACS [18, 3], OpenMM [37], ESPResSo [135, 52] and Amber [111, 25] are a few exam-

54

ples of popular MD packages, while Cassandra [115] and MCCCS Towhee [85] provide MC

simulation capabilities. Implementations on high performance GPUs [121], parallel architec-

tures [97] and the greater accessibility of computational power have tremendously improved

the length [23] and time [116] scales of simulations from those conducted in the mid 1900s.

The flexibility and generality of such tools has dramatically increased the usage of molecular

simulations, which has in turn led to demands for even more customizable software packages

that can be tailored to very specific simulation requirements. Different tools have taken

different approaches to enabling this, such as the text-file scripting in LAMMPS, the com-

mand line interface provided by GROMACS and the Python, C++, C and Fortran bindings

of OpenMM. Recently, programs that have used other interfaces have also added Python

bindings such as LAMMPS and GROMACS.

In the development of these tools, the requirements for the software to enable good science

became more obvious. Having computational research that is Transferable, Reproducible,

Usable (by others) and Extensible (TRUE) [128] is necessary for fully realizing the potential

of computational molecular science. HOOMD-blue is part of the MoSDeF project which

seeks to bring these traits to the wider computational molecular science community through

packages like mbuild [73] and foyer [74] which are Python packages that generalize gener-

ating initial particle configurations and force fields respectively across a variety of simulation

back ends [28, 128]. This effort in increased TRUEness is one of many motivating factors

for HOOMD-blue version 3.0.

HOOMD-blue [12, 48, 11], an MD and MC simulations engine with a C++ back

end, provides to use a Python API facilitated through pybind11. The package

is open-source under the 3-clause BSD license, and the code is hosted on GitHub

(https://github.com/glotzerlab/hoomd-blue). HOOMD-blue was initially released in 2008

as the first fully GPU-enabled MD simulation engine using NVIDIA GPUs through CUDA.

Since its initial release, HOOMD-blue has remained under active development, adding nu-

merous features over the years that have increased its range of applicability, including adding

55

support for domain decomposition (dividing the simulation box among MPI ranks) in 2014

and recent developments that enable support for AMD in addition to NVIDIA GPUs.

Despite its great flexibility, the package’s API still has certain key limitations. In par-

ticular, since its inception HOOMD-blue has been designed around some maintenance of

global state. The original releases of HOOMD-blue provided Python scripting capabili-

ties based on an imperative programming model, but it required that these scripts be run

through HOOMD-blue’s modified interpreter that was responsible for managing this global

state. Version 2.0 relaxed this restriction, allowing the use of HOOMD-blue within ordinary

Python scripts and introducing the SimulationContext object to encapsulate the global state

to some degree, thereby allowing multiple largely independent simulations to coexist in a

single script. However, this object remained largely opaque to the user, in many ways still

behaving like a pseudo-global state, and version 2.0 otherwise made minimal modifications

to the HOOMD-blue Python API, which was largely inspired by and reminiscent of the

structure of other simulation software, particularly LAMMPS.

In this paper, we describe the upcoming 3.0 release of HOOMD-blue, which is a complete

redesign of the API from the ground up to present a more transparent and Pythonic interface

for users. Version 3.0 aspires to match the intuitive APIs provided by other Python packages

like SciPy [132], NumPy [131], scikit-learn [100] and matplotlib [63], while simultaneously

adding seamless interfaces by which such packages may be integrated into simulation scripts

using HOOMD-blue. Global state has been completely removed, instead replaced by a

highly object-oriented model that gives users explicit and complete control over all aspects

of simulation configuration. Where possible, the new version also provides performant,

Pythonic interfaces to data stored by the C++ back end. Over the next few sections, we

will use examples of HOOMD-blue’s version 3.0 API (which is still in development at the

time of writing) to highlight the improved extensibility, flexibility and ease of use of the new

HOOMD-blue API.

56

6.2 General API Design

Rather than beginning with abstract descriptions, we will introduce the new API by example.

The script below illustrates a standard MD simulation of a Lennard-Jones fluid using the

version 3.0 API. Each of the elements of this script is introduced throughout the rest of this

section. We also show a rendering of the particle configuration in Figure 6.1.

Figure 6.1: A rendering of the Lennard-Jones fluid simulation script output. Particles are
colored by the Lennard-Jones potential energy that is logged using the HOOMD-blue Logger
and GSD class objects. Figure is rendered in OVITO [124] using the Tachyon [123] renderer.

57

1 import hoomd
2 import hoomd.md
3 import numpy as np
4

5 device = hoomd.device.Auto()
6 sim = hoomd.Simulation(device)
7

8 # Place particles on simple cubic lattice.
9 N_per_side = 14

10 N = N_per_side ** 3
11 L = 20
12 xs = np.linspace(0, 0.9, N_per_side)
13 x, y, z = np.meshgrid(xs, xs, xs)
14 coords = np.array((x.ravel(), y.ravel(), z.ravel())).T
15

16 # One way to define an initial system state is
17 # by defining a snapshot and using it to
18 # initialize the system state.
19 snap = hoomd.Snapshot()
20 snap.particles.N = N
21 snap.configuration.box = hoomd.Box.cube(L)
22 snap.particles.position[:] = (coords - 0.5) * L
23 snap.particles.types = ['A']
24

25 sim.create_state_from_snapshot(snap)
26

27 # Create integrator and forces
28 integrator = hoomd.md.Integrator(dt=0.005)
29 langevin = hoomd.md.methods.Langevin(hoomd.filter.All(), kT=1., seed

=42)
30 integrator.methods.append(langevin)
31

32 nlist = hoomd.md.nlist.Cell()
33 lj = hoomd.md.pair.LJ(nlist, r_cut=2.5)
34 lj.params[('A', 'A')] = {"sigma": 1.0, "epsilon": 1.0}
35 integrator.forces.append(lj)
36

37 # Set up output
38 gsd = hoomd.output.GSD('trajectory.gsd', trigger=100)
39 log = hoomd.logging.Logger()
40 log += lj
41 gsd.log = log
42

43 sim.operations.integrator = integrator
44 sim.operations.analyzers.append(gsd)
45 sim.run(100000)
46

Program 6.1: Full script from initialization to run of a Lennard-Jones particle MD simulation.

58

6.2.1 Simulation, Device, State, Operations

Each simulation in HOOMD-blue is now controlled through three main objects which are

joined together by the Simulation class: the Device, State and Operations classes. Figure 6.2

shows this relationship with some core attributes/methods for each class. Each Simulation

object holds the requisite information to run a full molecular dynamics or Monte Carlo

simulation, thereby circumventing any need for global state information. The Device class

denotes whether a simulation should be run on CPUs or GPUs and the number of cores/G-

PUs it should run on. In addition, the device manages custom memory tracebacks, profiler

configurations and the MPI communicator among other things.

Simulation

State Operations Device

run()
timestep

snapshot
cpu_local_snapshot
gpu_local_snapshot
particle_types
bond_types

integrator
updaters
analyzers
tuners
computes

communicator
num_ranks
mode
notice_level

Figure 6.2: Diagram of core objects with some attributes and methods. Classes are in bold
and orange; attributes and methods are blue. Figure is made using Graphviz [38, 47].

The State class stores the system data (e.g. particle positions, orientations, velocities,

the system box). As shown in our example, the state can be initialized from a snapshot,

after which the data can be accessed and modified in two ways. One option is for users to

59

1 snap = sim.state.snapshot
2 # snapshot only stores data on rank 0
3 if snap.exists:
4 # set all z positions to 0
5 snap.particles.position[:, 2] = 0
6 sim.state.snapshot = snap
7

Program 6.2: Example of the global snapshot in use.

operate on a new Snapshot object, which exposes NumPy arrays that store a copy of the

system data. To construct a snapshot, all system data distributed across MPI ranks must be

gathered and combined by the root rank. Setting the state using the snapshot API requires

assigning a modified snapshot to the system state (i.e. all system data is reset upon setting).

The advantages to this approach come from the ease of use of working with a single object

containing the complete description of the state. The following snippet showcases how this

approach can be used to set the z position of all particles to zero.

The other API for accessing State data is via a zero-copy, rank-local access to the state’s

data on either the GPU or CPU. On the CPU, we expose the buffers as numpy.ndarray-like

objects through provided hooks such as __array_ufunc__ and __array_interface__. Similarly,

on the GPU we mock much of the CuPy [1] ndarray class if it is installed; however, at present

the CuPy package provides fewer hooks, so our integration is more limited. Whether or not

CuPy is installed, we use version 2 of the __cuda_array_interface__ protocol for GPU access

(compatibility with our GPU buffers in Python therefore depends on the support of version 2

of this protocol). This provides support for libraries such as Numba’s [75] GPU just-in-time

compiler and PyTorch [99]. We chose to mock NumPy-like interfaces rather than expose

ndarray objects directly out of consideration for memory safety. To ensure data integrity,

we restrict the data to only be accessible within a specific context manager. This approach

is much faster than using the snapshot API because it uses HOOMD-blue’s data buffers

directly, but the nature of providing zero-copy access requires that users deal directly with

the domain decomposition since only data for a MPI rank’s local simulation box is stored by

60

1 with sim.state.cpu_local_snapshot as data:
2 data.particles.position[:, 2] = 0
3

4 # assumes CuPy is installed
5 with sim.state.gpu_local_snapshot as data:
6 data.particles.position[:, 2] = 0
7

Program 6.3: Example of local snapshots in use.

a given rank. The example below modifies the previous example to instead use the zero-copy

API.

The last of the three classes, Operations, holds the different *operations* that will act

on the simulation state. Broadly, these consist of 3 categories: updaters, which modify

simulation state; analyzers, which observe system state; and tuners, which tune the hyper-

parameters of other operations for performance. Although updaters and analyzers existed in

version 2.x (tuners are a version 3.0 split from updaters), these *operations* have undergone

a significant API overhaul for version 3.0 to support one of the more far-reaching changes to

HOOMD-blue: the deferred initialization model.

Operations in HOOMD-blue are generally implemented as two classes, a user-facing

Python object and an internal C++ object which we denote as the *action* of the operation.

On creation, these C++ objects typically require a Device and a C++ State in order to,

for instance, initialize appropriately sized arrays. Unfortunately this requirement restricts

the order in which objects may be created since devices and states must exist first. This

restriction could create potential confusion for users who forget this ordering and would

also limit the composability of modular simulation components by preventing, for instance,

the creation of a simple force field without the prior existence of a Device and a State. To

circumvent these difficulties, the new API has moved to a deferred initialization model in

which C++ objects are not created until the corresponding Python objects are *attached*

to a Simulation, a model we discuss in greater detail below.

61

6.2.2 Deferred C++ Initialization

The core logic for the deferred initialization model is implemented in the Operation class,

which is the base class for all operations in Python. This class contains the machinery

for attaching/detaching operations to/from their C++ counterparts, and it defines the user

interface for setting and modifying operation-specific parameters while guaranteeing that

such parameters are synchronized with attached C++ objects as appropriate. Rather than

handling these concerns directly, the Operation class manages parameters using specially

defined classes that handle the synchronization of attributes between Python and C++: the

ParameterDict and TypeParameterDict classes. In addition to providing transparent dict-like

APIs for the automatically synchronized setting of parameters, these classes also provide

strict validation of input types, ensuring that user inputs are validated regardless of whether

or not operations are attached to a simulation.

Each class supports validation of their keys, and they can be used to define the structure

and validation of arbitrarily nested dictionaries, lists and tuples. Likewise, both support

default values, but to a varying degree due to their differing purposes. ParameterDict acts

as a dictionary with additional validation logic. However, the TypeParameterDict represents

a dictionary in which each entry is validated by the entire defined schema. This distinction

occurs often in simulation contexts as simulations with multiple types of particles, bonds,

angles, etc. must specify certain parameters for each type. In practice this distinction means

that the TypeParameterDict class supports default specification with arbitrary nesting, while

the ParameterDict has defaults but these are equivalent to object attribute defaults. An

example TypeParameterDict initialization and use of both classes can be seen below.

The specification defined above sets defaults for ignore_statistics and orientable (the

purpose of these is outside the scope of the paper), but requires the setting of the diameter

for each type.

To store lists of operations that must be attached to a simulation, the analogous SyncedList

class transparently handles attaching of operations.

62

1 # Specification of Sphere's shape TypeParameterDict
2 TypeParameterDict(
3 diameter=float, ignore_statistics=False,
4 orientable=False, len_keys=1)
5

6 from hoomd.hpmc.integrate import Sphere
7

8 sphere = Sphere(seed=42)
9 # Set nselect parameter using ParameterDict

10 sphere.nselect = 2
11 # Set shape for type 'A' using TypeParameterDict
12 sphere.shape['A'] = {'diameter': 1.0}
13 # Set shape for types 'B', 'C' and 'D'
14 sphere.shape[['B', 'C', 'D']] = {'diameter': 0.5}
15

Program 6.4: Examples of creating and using a type parameter for hard particle Monte Carlo
with spheres.

1 import hoomd
2

3 ops = hoomd.Operations()
4 gsd = hoomd.output.GSD('example.gsd')
5 # Append to the SyncedList ops.writers
6 ops.writers.append(gsd)
7

Program 6.5: Example of using a SyncedList object.

63

These classes also have the ancillary benefit of improving error messaging and handling.

An example error message for trying to set sigma for *A-A* interactions in the Lennard-Jones

pair potential to a string (i.e. lj.params[('A', 'A')] = {'sigma': 'foo', 'epsilon': 1.} would

provide the error message,

TypeConversionError: For types [(’A’, ’A’)], error In key sigma: Value foo of

type <class ’str’> cannot be converted using OnlyType(float). Raised error:

value foo not convertible into type <class ’float’>.

Previously, the equivalent error would be “TypeError: must be real number, not str”, the

error would not be raised until running the simulation, and the line setting sigma would not

be in the stack trace given.

6.3 Logging and Accessing Data

Logging simulation data for analysis is a critical feature of molecular simulation software

packages. Up to now, HOOMD-blue has supported logging through an analyzer interface

that simply accepted a list of quantities to log, where the set of valid quantities was based on

what objects had been created at any point and stored to the global state. The creation of

the base Operation class has allowed us to simultaneously simplify and increase the flexibility

of our logging infrastructure. The Loggable metaclass of Operation allows all subclasses to

expose their loggable quantities by marking Python properties or methods to query.

The actual task of logging data is accomplished by the Logger class, which provides an

interface for logging most HOOMD-blue objects and custom user quantities. In the example

script from the General API Design section above, we show that the Logger can add an

operation’s loggable quantities using the += operator. The utility of this class lies in its

intermediate representation of the data. Using the HOOMD-blue namespace as the basis for

distinguishing between quantities, the Logger maps logged quantities into a nested dictionary.

For example, logging the Lennard-Jones pair potentials total energy would produce this

64

dictionary by a Logger object {'md': {'pair': {'LJ': {'energy': (-1.4, 'scalar')}}}} where

'scalar' is a flag to make processing the logged output easier. In real use cases, the dictionary

would likely be filled with many other quantities.

Version 3.0 of HOOMD-blue uses properties extensively to expose object data such as the

total potential energy of all pair potentials, the trial move acceptance rate in MC integrators

and thermodynamic variables like temperature or pressure, all of which can be used directly

or stored through the logging interface. To support storing these properties, the logging

is quite general and supports scalars, strings, arrays and even generic Python objects. By

separating the data collection from the writing to files and by providing such a flexible

intermediate representation, HOOMD-blue can now support a range of back ends for logging;

moreover, it offers users the flexibility to define their own. For instance, while logging data

to text files or standard out is supported out of the box, other back ends like MongoDB,

Pandas [89] and Python pickles can now be implemented on top of the existing logging

infrastructure. Consistent with the new approach to logging, HOOMD-blue version 3.0

makes simulation output an opt-in feature even for common outputs like performance and

thermodynamic quantities. In addition to this improved flexibility in storage possibilities, for

HOOMD-blue version 3.0 we have exposed more of an object’s data than had previously been

available through adding new properties to objects. For example, pair potentials now expose

per-particle potential energies at any given time (this data is used to color Figure 6.1.

In conjunction with the deferred initialization model, the new logging infrastructure also

allows us to more easily export an object’s state (not to be confused with the simulation

state). Due to the switch to deferred initialization, all operation state information is now

stored directly in Python, so we have made object state a loggable quantity. All operations

also provide a from_state factory method that can reconstruct the object from the state,

dramatically increasing the restartability of simulations since the state of each object can be

saved at the end of a given run and read at the start of the next.

This code block would create a Sphere object with the parameters stored from the last

65

1 from hoomd.hpmc.integrate import Sphere
2

3 sphere = Sphere.from_state('example.gsd', frame=-1)
4

Program 6.6: Code to initialize simulation state from an extant GSD file.

frame of the gsd file example.gsd.

6.4 User Customization

A major improvement in HOOMD-blue version 3 is the ease with which users can customize

their simulations in previously impossible ways. The changes that enable this improvement

generally come in two flavors, the generalization of existing concepts in HOOMD-blue and

the introduction of a completely new Action class that enables the user to inject arbitrary

actions into the simulation loop.In this section, we first discuss how concepts like periods and

groups have been generalized from previous iterations of HOOMD-blue and then show how

users can inject completely novel routines to actually modify the behavior of simulations.

6.4.1 Triggers

In HOOMD-blue version 2.x, everything that was not run on every timestep had a period and

phase associated with it. The timesteps the operation was run on could then be determined

by the expression, timestep \% period - phase == 0. In our refactoring and development,

we recognized that this concept could be made much more general and consequently more

flexible. Objects do not have to be run on a periodic timescale; they just need some indication

of when to run. In other words, the operations needed to be *triggered*. The Trigger class

encapsulates this concept, providing a uniform way of specifying when an object should

run without limiting options. Trigger objects return a Boolean value when called with a

timestep (i.e. they are functors). Each operation that requires triggering is now associated

with a corresponding Trigger instance which informs the simulation when the operation

66

1 from hoomd.trigger import Trigger
2

3 class CustomTrigger(Trigger):
4 def __init__(self, period, phase=0):
5 super().__init__()
6 self.period = period
7 self.phase = phase
8

9 def __call__(self, timestep):
10 return timestep % self.period - self.phase == 0
11

Program 6.7: Example of a custom trigger that recreates the hoomd.trigger.Periodic class’s
behavior.

should run. The previous behavior is now available through the Periodic class in the hoomd

.trigger module. However, this approach enables much more sophisticated logic through

composition of multiple triggers such as Before and After which return True before or after a

given timestep with the And, Or and Not subclasses that function as logical operators on the

return value of the composed Triggers.

In addition to the flexibility the Trigger class provides by abstracting out the concept

of triggering an operation, we use pybind11 to easily allow subclasses of the Trigger class

in Python. This allows users to create their own triggers in pure Python that will execute

in HOOMD-blue’s C++ back end. An example of such a subclass that reimplements the

functionality of HOOMD-blue version 2.x can be seen below.

User-defined subclasses of Trigger are not restricted to simple algorithms or even stateless

ones; they can implement arbitrarily complex Python code as demonstrated in the Large

Examples section’s first code snippet.

6.4.2 Variants

Variant objects are used in HOOMD-blue to specify quantities like temperature, pressure

and box size which can vary over time. Similar to Trigger, we generalized our ability to

linearly interpolate values across timesteps (hoomd.variant.linear_interp in HOOMD-blue

67

1 from math import sin
2 from hoomd.variant import Variant
3

4 class SinVariant(Variant):
5 def __init__(self, frequency , amplitude , phase=0, center=0):
6 super().__init__()
7 self.frequency = frequency
8 self.amplitude = amplitude
9 self.phase = phase

10 self.center = center
11

12 def __call__(self, timestep):
13 tmp = sin(self.frequency * timestep + self.phase)
14 return self.amplitude * tmp + self.center
15

16 def _min(self):
17 return self.center - self.amplitude
18

19 def _max(self):
20 return self.center + self.amplitude
21

Program 6.8: Example of custom variant which oscillates according to a sin wave.

version 2.x) to a base class Variant which generalizes the concept of functions in the semi-

infinite domain of timesteps t ∈ Z+
0 . This allows sinusoidal cycling, non-uniform ramps and

other behaviors. Like Trigger, Variant can be a direct subclass of the C++ class. An example

of a sinusoidal cycling variant is shown below.

6.4.3 ParticleFilters

Unlike Trigger or Variant, ParticleFilter is not a generalization of an existing concept but the

splitting of one class into two. However, this split is also targeted at increasing flexibility and

extensibility. In HOOMD-blue version 2.x, the ParticleGroup class and subclasses served to

provide a subset of particles within a simulation for file output, application of thermodynamic

integrators and other purposes. The class hosted both the logic for storing the subset of

particles and filtering them out from the system. After the refactoring, ParticleGroup is only

responsible for the logic to store and perform some basic operations on a set of particle tags (a

means of identifying individual particles), while the new class ParticleFilter implements the

68

1 from hoomd.filter import CustomParticleFilter
2

3 class PositiveCharge(CustomParticleFilter):
4 def __init__(self, state):
5 super().__init__(state)
6

7 def __hash__(self):
8 return hash(self.__class__.__name__)
9

10 def __eq__(self, other):
11 return type(self) == type(other)
12

13 def find_tags(self, state):
14 with state.cpu_local_snapshot as data:
15 return data.particles.tag[data.particles.charge > 0]
16

Program 6.9: Example of a custom particle filter which only selections particles with positive
charge.

selection logic. This choice makes ParticleFilter objects lightweight and provides a means

of implementing a State instance-specific cache of ParticleGroup objects. The latter ensures

that we do not create multiples of the same ParticleGroup which can occupy large amounts

of memory. The caching also allows the creation of many of the same ParticleFilter object

without needing to worry about memory constraints.

ParticleFilter can be subclassed (like Trigger and Variant), but only through the

CustomParticleFilter class. This is necessary to prevent some internal details from leaking

to the user. An example of a CustomParticleFilter that selects only particles with positive

charge is given below.

6.4.4 Custom Actions

In HOOMD-blue, we distinguish between the objects that perform an action on the simula-

tion state (called *Actions*) and their containing objects that deal with setting state and the

user interface (called *Operations*). Through composition, HOOMD-blue offers the ability

to create custom actions in Python and wrap them in our _CustomOperation subclasses (di-

vided on the type of action performed) allowing the execution of the action in the Simulation

69

1 import hoomd
2 from hoomd.filter import Intersection , All, Type
3 from hoomd.custom import Action
4

5 class SwapType(Action):
6 def __init__(self, initial_type , final_type , rate, filter=All()):
7 self.final_type = final_type
8 self.rate = rate
9 self.filter = Intersection([Type(initial_type), filter])

10

11 def act(self, timestep):
12 state = self._state
13 final_type_id = state.particle_types.index(self.final_type)
14 tags = self.filter(state)
15 with state.cpu_local_snapshot as snap:
16 tags = np.intersect1d(tags, snap.particles.tag, True)
17 part = data.particles
18 filtered_index = part.rtags[tags]
19 N_swaps = int(len(tags) * self.rate)
20 mask = np.random.choice(
21 filtered_index , N_swaps, replace=False)
22 part.typeid[mask] = final_type_id
23

Program 6.10: Example of a custom action which updates particle types across a simulation.

run loop. The feature makes user created actions behave indistinguishably from native C++

actions. Through custom actions, users can modify state, tune hyperparameters for perfor-

mance or observe parts of the simulation. In addition, we are adding a signal for Actions to

send that would stop a Simulation.run call. This would allow actions to stop the simulation

when they complete, which could be useful for tasks like tuning MC trial move sizes. With

respect to performance, with zero copy access to the data on the CPU or GPU, custom ac-

tions can also achieve high performance using standard Python libraries like NumPy, SciPy,

Numba, CuPy and others. Below we show an example of an Action that switches particles

of type initial_type to type final_type with a specified rate each time it is run. This action

could be refined to implement a reactive MC move reminiscent of [49] or to have a variable

switch rate. These exercises are left to the reader.

70

6.5 Conclusion

With modern simulation analysis packages such as freud [104], MDTraj [87] and MDAnal-

ysis [51, 91], initialization tools such as mbuild and foyer and visualization packages like

OVITO and plato using Python APIs, HOOMD-blue, built from the ground up with Python

in mind, fits in seamlessly. Version 3.0 improves upon this and presents a Pythonic API that

encourages customization. Through enabling Python subclassing of C++ classes, introduc-

ing custom actions and exposing data in zero-copy arrays/buffers, we allow HOOMD-blue

users to utilize the full potential of Python and the scientific Python community.

6.6 Acknowledgements

This research was supported by the National Science Foundation, Division of Materials

Research Award # DMR 1808342 (HOOMD-blue algorithm and performance development)

and by the National Science Foundation, Office of Advanced Cyberinfrastructure Award #

OAC 1835612 (Pythonic architecture for MoSDeF). Hardware provided by NVIDIA Corp.

is gratefully acknowledged. This research was supported in part through computational

resources and services supported by Advanced Research Computing at the University of

Michigan, Ann Arbor.

71

CHAPTER 7

Conclusions

Conceptually, computational studies in soft matter can answer a near limitless number of

questions. However, practically, computational power, current methods, human interaction

time and other factors limit the scale and depth of studies. To increase the scope of questions

accessible to the computational researcher, in this dissertation we present multiple points

of improvement in methods for the analysis of self-assembly simulations in soft matter with

potential utility far outside the field.

7.1 Dissertation Summary

In Chapter 3, we developed and tested a pipeline to detect events from the raw data generated

by molecular simulations. We highlighted the general pipeline as well as described various

options at each step. By applying this pipeline to two simulations of disparate types and

physics, we showed that dupin’s pipeline can accurately partition simulations into regions

of transition.

In Chapter 4, we derived a new order parameter for detecting the formation of point

group symmetry in local environments, PGOP. After deriving the parameter, we showed its

behavior compared to MSM and in two complex (multiple Wykoff site) crystals. The new

order parameter allows one to directly probe the nature of the disorder-order transitions as

bond-orientational ordering develops throughout the system.

72

In Chapter 5, we complement PGOP with a generalized measure of local coordination

number CNV⃗ . We show its inspiration and derive our extension to the original order pa-

rameter. Following that, we tested the information in CNV⃗ by training machine learning

classifiers to distinguish between noisy FCC, BCC, SC and ideal gas particles. We also

compared CNV⃗ to PGOP and test them both separately and together in the aforementioned

machine learning task. Through that test, we confirmed that CNV⃗ contains distinct informa-

tion from the information present in PGOP and that when combined, can further elucidate

local order.

In Chapter 6, we outlined the changes to the molecular simulation engine and library

HOOMD-blue for its version 3.0 release that heavily increased its extensibility, flexibility and

interoperability. We outlined the new object-oriented API, extensibility through composition

and inheritance and accessibility to HOOMD’s data buffers on the GPU and CPU. These

changes allow for new simulation protocols and techniques to be developed and deployed in

HOOMD-blue more quickly and easily.

7.2 Outlook

The future is bright for soft matter. More building blocks in the form of nanoparticles

are being created each year [112, 65]. Progress in manufacturing techniques also continues

unabated [80]. The promise of full control over both structure and material looms ever

larger, and we are closer than ever to revolutionizing various technologies from electronic to

biosensors.

The ideas presented in this dissertation provide new tools for computationalists to further

aid experimentalists in the field. We believe the need for more automated analysis and

execution of computational studies is vital to help propel research further. By enabling

larger studies per researcher hour, we can iterate over more possible materials quicker and

achieve results in fractions of the current time studies take.

73

Furthermore, there is work that can be done to improve upon our contributions. For our

detection pipeline dupin, work on more complicated cost functions such as cross-entropy [50]

should be explored. In addition, adding built-in methods to reduced features based on spatial

dependence would further improve dupin’s utility in analyzing self-assembly simulations. For

PGOP, although the algorithm is developed, the software implementation could utilize GPU

computing to make real-time/online analysis possible.

7.3 Final Thoughts

Tool-making made humanity. That fact hasn’t stopped even in our modern era. In research,

we depend on tools developed by scientists, engineers and others every day. My work has

provided very specific tools for the field of computational soft matter to enable heretofore

impossible studies. My desire is that this work would serve as a crucial aid to my fellow lab

members and scientists around the world as we push the boundaries of what is known.

74

APPENDIX A

Change Point Detection of Events in

Molecular Simulations using dupin:

Supplementary Information

This appendix is adapted from a manuscript currently under review authored by Brandon

L. Butler, Domogoj Fijan and Sharon C. Glotzer to at a peer-reviewed journal.

A.1 Change Point Detection

The problem of computing the change point locations in the given signal can be cast as the

following optimization problem:

K = arg min
k∈K,|K|=m

m+1∑
i=1

C(S[ki−1; ki)), (A.1)

where C is the cost function, m is the number of change points, k0 is 0 and km+1 is the

signal length. The Python package ruptures [130] implements various algorithms that ei-

ther optimally or approximately solve this optimization problem. For this paper we utilize

ruptures’s optimal dynamic programming algorithm which was first introduced for another

problem [17]. The ruptures package uses a single thread/process and the dynamic program-

ming algorithm has a N2 time complexity in trajectory length.

75

Another common problem in CPD is detecting a mean shift in random variables. Mean

shift cost functions are functions such as

C(S[i, j)) =

j−1∑
l=i

|µS[i,j) − S[l]|p, (A.2)

which penalize deviations from the mean with some norm, p. Figure A.1 shows the behavior

of the dynamic programming method on a generated mean-shift signal where |K| = n and

|K| ̸= n where n is the correct number of change points.

Figure A.1: Two detections of change points on a generated mean-shift signal with three
shifts. The alternating blue and green regions represent the correct partitioning of the
system. (a) Plot of the best three change points according to the dynamic programming
optimizer and L1 mean-shift cost function. (b) Plot of the best six change points according
to the dynamic programming optimizer and L1 mean-shift cost function. Notice that when
n > 3, we fit to spurious change points. Any reduction of cost is sufficient to fit to a new
point. Thus highlighting the need for method of determining an appropriate n.

76

A.2 Kneedle Algorithm

To solve the problem of selecting the optimal number of change points n shown in Figure A.1,

we apply elbow detection over various change point set cardinalities. We use the kneedle

algorithm [113] as implemented in the kneed Python package. First step to detect an elbow

is to transform the data (xi, yi) → (xmax − xi, ymax − yi) which is automatically handled

by kneed with appropriate settings. The algorithm starts with fitting the discrete data to a

smoothing spline. The spline is then normalized to the unit square to prevent magnitude from

determining elbow location. A new set of points Dd is then created where (x, y) → (x, y−x).

The local maxima (minima for an elbow) is filtered out into Dlmx = (xlmx, ylmx), where

xlmxi
= xdi (A.3)

ylmxi
= ydi where ydi−1

< ydi , ydi > ydi+1
(A.4)

For each entry in Dlmx a threshold is determined using a sensitivity parameter S, where the

threshold equals

Tlmx = ylmx − S ·
∑n−1

i=1 xdi+1
− xdi

n− 1
(A.5)

A knee is detected if for any maximum ylmx, the value of a consecutive yd is less than Tlmx

before a value greater than ylmx is observed.

A.3 Feature Selection

A.3.1 Mean Shift

The mean shift filter determines the mean and standard deviation for all features at the

signal’s start and finish. Subsequently, these values are employed to calculate the probability

that the means of the distributions at either end might be derived from the distribution

established at the signal’s other end, assuming Gaussian random variables. To do this, we

77

pick a set number of end points at either end, (a, b), which we will use to generate the two

distributions. We then compute a’s and b’s mean and standard deviation and compute the

following value

nσ =
|µa − µb|

min (σa, σb)
(A.6)

which is the maximum number of standard deviation’s of one side’s mean from the other’s.

We finally compute the likelihood this difference would be generated by an iid sampling of

the distribution, l and compare this to a sensitivity s, using the error function. If l < s, we

keep the feature otherwise we discard it.

A.3.2 Feature Correlation

To remove redundant features dupin provides a feature selection method that uses the cor-

relation between features to select uncorrelated features. First dupin creates a similarity

matrix S which uses the absolute value of the Pearson correlation coefficient. This matrix is

then fed into the Spectral clustering algorithm from scikit-learn [21, 100]. To compute the

optimal number of features, we compute a spectral clustering for all number of clusters up

to a specified maximum ([2, Nmax]) and take the clustering that has the highest silhouette

score. We then take n features from each cluster. Features are selected from a cluster either

randomly or through a provided feature importance score.

78

APPENDIX B

PGOP

This appendix is adapted from a draft paper authored by Brandon L. Butler, Maria W.

Rashidi and Sharon C. Glotzer to be submitted to a peer-reviewed journal.

B.1 Ideal Gas Baselines

In Figure B.1, we give the distributions of PGOP and Minkowski Structure Metrics for the

ideal gas distribution with Voronoi tessellation neighbor list. This figure shows the expected

range of outputs for a random input to both order parameters and can serve as a basis of

normalization and distinguishing a true signal of order from noise.

B.2 Minkowski Structure Metrics Noise Behavior

We look at the behavior of various values of ℓ’s in MSM with respect to noise in systems of

SC, FCC and BCC (cf. Figure 4.2). As we can see in general MSM behave similarly with

respect to ℓ and noise.

B.3 Binary LJ Glass Mean Squared Displacement

To show that we have reached the glass using the mean squared displacement (MSD), we ran

the simulation in Section 4.2.3.3 for an additional 3 million steps at the final temperature of

79

Figure B.1: Violin plots of the ideal gas distributions for (a) PGOP and (b) Minkowski
Structure Metrics. The 0.0, 0.2, 0.25, 0.5, 0.75, 0.98, 1.0 quantiles are shown for each (a)
point group and (b) ℓ.

0.1 kT. We then computed the MSD with a window increment size of 50,000 timesteps. The

results can be seen in Figure B.3. The MSD shows immediate caging in the given timescales

indicating the simulation is indeed in the glass.

80

Figure B.2: Plots of MSM behavior with respect to ℓ and noise. Plots show the 0.25, 0.5
and 0.75 quantiles in dashed, solid and dotted lines. A legend for the individual crystals is
not shown as the behavior is identical among them and individual lines cannot be discerned.
The PGOP values have been normalized by the median of IG, so 0.0 is the median PGOP
of the IG. Red lines correspond to the 0.25, 0.5 and 0.75 quantiles with the same line style
designations as the crystal lines. Crystals have a unit cell of length 1 and go from a standard
deviation of 0 to 0.2.

81

Figure B.3: Plot of the MSD of the binary LJ glass system run for an additional 3 million
steps.

82

APPENDIX C

Further HOOMD Programs

This chapter is adapted from the appendix of Ref: “HOOMD-blue version 3.0 A Modern,

Extensible, Flexible, Object-Oriented API for Molecular Simulations”, Brandon L. Butler,

Vyas Ramasubramani, Joshua A. Anderson, Sharon C. Glotzer, Proceedings of the 19th

Python in Science Conference (2020) [22]

In the appendix, we will provide more substantial applications of features new to

HOOMD-blue.

C.1 Trigger that detects nucleation

This example demonstrates a Trigger that returns true when a threshold Q6 Steinhardt order

parameter [122] (as calculated by freud) is reached. Such a Trigger could be used for BCC

nucleation detection which could trigger a decrease in cooling rate, a more frequent output

of simulation trajectories or any other desired action. Also, in this example we showcase

the use of the zero-copy rank-local data access. This example also requires the use of ghost

particles, which are a subset of particles bordering a MPI rank’s local box. Ghost particles

are known by a rank, but the rank is not responsible for updating them. In this case, ghost

particles are required for computing the Q6 value for particles near the edges of the current

rank’s local simulation box.

83

1 import numpy as np
2 import freud
3 from mpi4py import MPI
4 from hoomd.trigger import Trigger
5

6 class Q6Trigger(Trigger):
7 def __init__(self, simulation , threshold , mpi_comm=None):
8 super().__init__()
9 self.threshold = threshold

10 self.state = simulation.state
11 nr = simulation.device.num_ranks
12 if nr > 1 and mpi_comm is None:
13 raise RuntimeError()
14 elif nr > 1:
15 self.comm = mpi_comm
16 else:
17 self.comm = None
18 self.q6 = freud.order.Steinhardt(l=6)
19

20 def __call__(self, timestep):
21 with self.state.cpu_local_snapshot as data:
22 part = data.particles
23 box = data.box
24 aabb_box = freud.locality.AABBQuery(
25 box, part.positions_with_ghosts)
26 nlist = aabb_box.query(
27 part.position,
28 {'num_neighbors': 12, 'exclude_ii': True})
29 Q6 = np.nanmean(self.q6.compute(
30 (box, part.positions_with_ghosts),
31 nlist).particle_order)
32 if self.comm:
33 return self.comm.allreduce(
34 Q6 >= self.threshold , op=MPI.LOR)
35 else:
36 return Q6 >= self.threshold
37

Program C.1: A more complicated example of a custom trigger which check the Steinhardt
order parameter l = 6 and triggers when Q6 reaches a defined threshold.

84

C.2 Pandas Logger Back-End

Here we highlight the ability to use the Logger class to create a Pandas back end for simulation

data. It will store the scalar and string quantities in a single pandas.DataFrame object while

each array-like object is stored in a separate DataFrame object. All DataFrame objects are

stored in a single dictionary.

85

1 import pandas as pd
2 from hoomd.custom import Action
3 from hoomd.util import (
4 dict_flatten , dict_filter , dict_map)
5

6 def is_flag(flags):
7 def func(v):
8 return v[1] in flags
9 return func

10

11 def not_none(v):
12 return v[0] is not None
13

14 def hnd_2D_arrays(v):
15 if v[1] in ['scalar', 'string', 'state']:
16 return v
17 elif len(v[0].shape) == 2:
18 return {
19 str(i): col for i, col in enumerate(v[0].T)}
20

21

22 class DataFrameBackEnd(Action):
23 def __init__(self, logger):
24 self.logger = logger
25

26 def act(self, timestep):
27 log_dict = self.logger.log()
28 is_scalar = is_flag(['scalar', 'string'])
29 sc = dict_flatten(dict_map(dict_filter(
30 log_dict, lambda x: not_none(x) and is_scalar(x)),
31 lambda x: x[0]))
32 rem = dict_flatten(dict_map(dict_filter(
33 log_dict, lambda x: not_none(x) and not is_scalar(x)),
34 hnd_2D_arrays))
35

36 if not hasattr(self, 'data'):
37 self.data = {
38 'scalar': pd.DataFrame(
39 columns=['.'.join(k) for k in sc]),
40 'array': {'.'.join(k): pd.DataFrame()
41 for k in rem}}
42

43 sdf = pd.DataFrame(
44 {'.'.join(k): v for k, v in sc.items()},
45 index=[timestep])
46 rdf = {'.'.join(k): pd.DataFrame(v, columns=[timestep]).T
47 for k,v in rem.items()}
48 data = self.data
49 data['scalar'] = data['scalar'].append(sdf)
50 data['array'] = {
51 k: v.append(rdf[k]) for k, v in data['array'].items()}
52

Program C.2: Example of a custom action which writes data actively to a pandas.DataFrame
object.

86

BIBLIOGRAPHY

[1] CuPy, 2015. https://cupy.chainer.org/.

[2] Salma M. Abdel-Hafez, Rania M. Hathout, and Omaima A. Sammour. Tracking the
transdermal penetration pathways of optimized curcumin-loaded chitosan nanopar-
ticles via confocal laser scanning microscopy. International Journal of Biological
Macromolecules, 108:753–764, 03 2018. https://www.sciencedirect.com/science/
article/pii/S0141813017329100.

[3] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C.
Smith, Berk Hess, and Erik Lindahl. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to supercomputers. Soft-
wareX, 1-2:19–25, 09 2015. http://www.sciencedirect.com/science/article/
pii/S2352711015000059.

[4] Carl S. Adorf, Paul M. Dodd, Vyas Ramasubramani, and Sharon C. Glotzer. Simple
data and workflow management with the signac framework. Computational Materials
Science, 146:220–229, 04 2018. http://www.sciencedirect.com/science/article/
pii/S0927025618300429.

[5] Carl S. Adorf, Timothy C. Moore, Yannah J. U. Melle, and Sharon C. Glotzer. Analysis
of Self-Assembly Pathways with Unsupervised Machine Learning Algorithms. J. Phys.
Chem. B, 124(1):69–78, 01 2020. https://doi.org/10.1021/acs.jpcb.9b09621.

[6] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics. I. General Method.
J. Chem. Phys., 31(2):459–466, 08 1959. https://aip.scitation.org/doi/abs/10.
1063/1.1730376.

[7] Rosalind J. Allen, Chantal Valeriani, and Pieter Rein ten Wolde. Forward flux sampling
for rare event simulations. Journal of Physics: Condensed Matter, 21(46):463102,
October 2009.

[8] Daniel Alves, Katia Obraczka, and Rick Lindberg. Identifying relevant data center
telemetry using change point detection. In 2020 IEEE 9th International Conference
on Cloud Networking (CloudNet), pages 1–4, 2020.

[9] Samaneh Aminikhanghahi and Diane J. Cook. A survey of methods for time series
change point detection. Knowl Inf Syst, 51(2):339–367, 05 2017. https://doi.org/
10.1007/s10115-016-0987-z.

87

https://cupy.chainer.org/
https://www.sciencedirect.com/science/article/pii/S0141813017329100
https://www.sciencedirect.com/science/article/pii/S0141813017329100
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S0927025618300429
http://www.sciencedirect.com/science/article/pii/S0927025618300429
https://doi.org/10.1021/acs.jpcb.9b09621
https://aip.scitation.org/doi/abs/10.1063/1.1730376
https://aip.scitation.org/doi/abs/10.1063/1.1730376
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1007/s10115-016-0987-z

[10] Joshua A. Anderson, M. Eric Irrgang, and Sharon C. Glotzer. Scalable Metropo-
lis Monte Carlo for simulation of hard shapes. Computer Physics Communica-
tions, 204:21–30, 07 2016. https://www.sciencedirect.com/science/article/
pii/S001046551630039X.

[11] Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer. HOOMD-blue: A Python
package for high-performance molecular dynamics and hard particle Monte Carlo
simulations. Computational Materials Science, 173:109363, 02 2020. http://www.
sciencedirect.com/science/article/pii/S0927025619306627.

[12] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose molecu-
lar dynamics simulations fully implemented on graphics processing units. Journal of
Computational Physics, 227(10):5342–5359, 05 2008. http://www.sciencedirect.
com/science/article/pii/S0021999108000818.

[13] Andrew Y. Ng, Micheal I. Jorden, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in Neural Information Processing Systems, pages 849–856,
2002.

[14] Alexander Aue, Siegfried Hörmann, Lajos Horváth, and Matthew Reimherr. Break
detection in the covariance structure of multivariate time series models. The Annals
of Statistics, 37(6B):4046 – 4087, 2009. https://doi.org/10.1214/09-AOS707.

[15] Daniel Barry and J. A. Hartigan. A bayesian analysis for change point problems.
Journal of the American Statistical Association, 88(421):309–319, 1993.

[16] Albert P. Bartók, Risi Kondor, and Gábor Csányi. On representing chemical environ-
ments. Phys. Rev. B, 87(18):184115, 05 2013. https://link.aps.org/doi/10.1103/
PhysRevB.87.184115.

[17] Richard Bellman. On a routing problem. Quart. Appl. Math., 16(1):87–90, 1958.
https://www.ams.org/qam/1958-16-01/S0033-569X-1958-0102435-2/.

[18] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen. GROMACS: A message-
passing parallel molecular dynamics implementation. Computer Physics Communi-
cations, 91(1):43–56, 09 1995. http://www.sciencedirect.com/science/article/
pii/001046559500042E.

[19] Emanuele Boattini, Marjolein Dijkstra, and Laura Filion. Unsupervised learn-
ing for local structure detection in colloidal systems. The Journal of Chemical
Physics, 151(15):154901, 10 2019. http://aip.scitation.org/doi/abs/10.1063/
1.5118867.

[20] Marcel Bosc, Fabrice Heitz, Jean-Paul Armspach, Izzie Namer, Daniel Gounot, and
Lucien Rumbach. Automatic change detection in multimodal serial mri: application
to multiple sclerosis lesion evolution. NeuroImage, 20(2):643–656, 2003.

88

https://www.sciencedirect.com/science/article/pii/S001046551630039X
https://www.sciencedirect.com/science/article/pii/S001046551630039X
http://www.sciencedirect.com/science/article/pii/S0927025619306627
http://www.sciencedirect.com/science/article/pii/S0927025619306627
http://www.sciencedirect.com/science/article/pii/S0021999108000818
http://www.sciencedirect.com/science/article/pii/S0021999108000818
https://doi.org/10.1214/09-AOS707
https://link.aps.org/doi/10.1103/PhysRevB.87.184115
https://link.aps.org/doi/10.1103/PhysRevB.87.184115
https://www.ams.org/qam/1958-16-01/S0033-569X-1958-0102435-2/
http://www.sciencedirect.com/science/article/pii/001046559500042E
http://www.sciencedirect.com/science/article/pii/001046559500042E
http://aip.scitation.org/doi/abs/10.1063/1.5118867
http://aip.scitation.org/doi/abs/10.1063/1.5118867

[21] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler,
Robert Layton, Jake Vanderplas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API
design for machine learning software: Experiences from the scikit-learn project. http:
//arxiv.org/abs/1309.0238, 09 2013.

[22] Brandon L. Butler, Vyas Ramasubramani, Joshua A. Anderson, and Sharon C. Glotzer.
Hoomd-blue version 3.0 a modern, extensible, flexible, object-oriented api for molecular
simulations. In Meghann Agarwal, Chris Calloway, Dillon Niederhut, and David Shupe,
editors, Proceedings of the 19th Python in Science Conference, pages 24 – 31, 7 2020.

[23] Surendra Byna, Jerry Chou, Oliver Rubel, Prabhat, Homa Karimabadi, William S.
Daughter, Vadim Roytershteyn, E. Wes Bethel, Mark Howison, Ke-Jou Hsu, Kuan-
Wu Lin, Arie Shoshani, Andrew Uselton, and Kesheng Wu. Parallel I/O, analysis, and
visualization of a trillion particle simulation. In SC ’12: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis,
pages 1–12, 11 2012.

[24] Forest L. Carter. Quantifying the concept of coordination number. Acta Crys-
tallographica Section, 34(10):2962–2966, Oct 1978. https://doi.org/10.1107/
S0567740878009838.

[25] David A. Case, Thomas E. Cheatham, Tom Darden, Holger Gohlke, Ray Luo, Ken-
neth M. Merz, Alexey Onufriev, Carlos Simmerling, Bing Wang, and Robert J.
Woods. The Amber biomolecular simulation programs. Journal of Computational
Chemistry, 26(16):1668–1688, 2005. https://onlinelibrary.wiley.com/doi/abs/
10.1002/jcc.20290.

[26] Heejung W. Chung, Rodrigo Freitas, Gowoon Cheon, and Evan J. Reed. Data-centric
framework for crystal structure identification in atomistic simulations using machine
learning. Phys. Rev. Mater., 6(4):043801, 04 2022. https://link.aps.org/doi/10.
1103/PhysRevMaterials.6.043801.

[27] E. Clark and A. Quinn. A data-driven Bayesian sampling scheme for unsupervised
image segmentation. In 1999 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), volume 6, pages
3497–3500 vol.6, 03 1999.

[28] Peter T Cummings and Justin B Gilmer. Open-source molecular modeling software in
chemical engineering. Current Opinion in Chemical Engineering, 23:99–105, 03 2019.
http://www.sciencedirect.com/science/article/pii/S2211339819300073.

[29] Pablo F. Damasceno, Michael Engel, and Sharon C. Glotzer. Predictive Self-Assembly
of Polyhedra into Complex Structures. Science, 337(6093):453–457, 07 2012. https:
//science.sciencemag.org/content/337/6093/453.

89

http://arxiv.org/abs/1309.0238
http://arxiv.org/abs/1309.0238
https://doi.org/10.1107/S0567740878009838
https://doi.org/10.1107/S0567740878009838
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20290
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20290
https://link.aps.org/doi/10.1103/PhysRevMaterials.6.043801
https://link.aps.org/doi/10.1103/PhysRevMaterials.6.043801
http://www.sciencedirect.com/science/article/pii/S2211339819300073
https://science.sciencemag.org/content/337/6093/453
https://science.sciencemag.org/content/337/6093/453

[30] Christoph Dellago, Peter G. Bolhuis, Félix S. Csajka, and David Chandler. Transition
path sampling and the calculation of rate constants. The Journal of Chemical Physics,
108(5):1964–1977, February 1998.

[31] Bradley Dice. Complex Crystallization Pathways Analyzed in a Continuous Feature
Space. Thesis, University of Michigan, 2021. http://deepblue.lib.umich.edu/
handle/2027.42/170058.

[32] Bradley D. Dice, Brandon L. Butler, Vyas Ramasubramani, Alyssa Travitz, Michael M.
Henry, Hardik Ojha, Kelly L. Wang, Carl S. Adorf, Eric Jankowski, and Sharon C.
Glotzer. Signac: Data Management and Workflows for Computational Researchers.
Proceedings of the 20th Python in Science Conference, pages 23–32, 2021. https:
//conference.scipy.org/proceedings/scipy2021/bradley_dice.html.

[33] Bradley D. Dice, Vyas Ramasubramani, Eric S. Harper, Matthew P. Spellings,
Joshua A. Anderson, and Sharon C. Glotzer. Analyzing Particle Systems for Machine
Learning and Data Visualization with freud. Proceedings of the 18th Python in Sci-
ence Conference, pages 27–33, 2019. http://conference.scipy.org/proceedings/
scipy2019/bradley_dice.html.

[34] C. Dietz, T. Kretz, and M. H. Thoma. Machine-learning approach for local classifi-
cation of crystalline structures in multiphase systems. Phys. Rev. E, 96(1):011301, 07
2017. https://link.aps.org/doi/10.1103/PhysRevE.96.011301.

[35] Gregory L. Dignon, Wenwei Zheng, Young C. Kim, Robert B. Best, and Jeetain Mit-
tal. Sequence determinants of protein phase behavior from a coarse-grained model.
PLOS Computational Biology, 14(1):e1005941, 01 2018. https://journals.plos.
org/ploscompbiol/article?id=10.1371/journal.pcbi.1005941.

[36] Julia Dshemuchadse, Pablo F. Damasceno, Carolyn L. Phillips, Michael Engel, and
Sharon C. Glotzer. Moving beyond the constraints of chemistry via crystal struc-
ture discovery with isotropic multiwell pair potentials. Proceedings of the National
Academy of Sciences, 118(21):e2024034118, 05 2021. https://www.pnas.org/doi/
abs/10.1073/pnas.2024034118.

[37] Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao,
Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harri-
gan, Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande.
OpenMM 7: Rapid development of high performance algorithms for molecular dy-
namics. PLOS Computational Biology, 13(7):e1005659, 07 2017. https://journals.
plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659.

[38] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Gordon
Woodhull. Graphviz and dynagraph - static and dynamic graph drawing tools. In
Graph Drawing Software, pages 127–148. Springer-Verlag, 2003.

[39] Michael Engel. Point Group Analysis in Particle Simulation Data. arxiv (cond-mat),
06 2021. http://arxiv.org/abs/2106.14846.

90

http://deepblue.lib.umich.edu/handle/2027.42/170058
http://deepblue.lib.umich.edu/handle/2027.42/170058
https://conference.scipy.org/proceedings/scipy2021/bradley_dice.html
https://conference.scipy.org/proceedings/scipy2021/bradley_dice.html
http://conference.scipy.org/proceedings/scipy2019/bradley_dice.html
http://conference.scipy.org/proceedings/scipy2019/bradley_dice.html
https://link.aps.org/doi/10.1103/PhysRevE.96.011301
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005941
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005941
https://www.pnas.org/doi/abs/10.1073/pnas.2024034118
https://www.pnas.org/doi/abs/10.1073/pnas.2024034118
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005659
http://arxiv.org/abs/2106.14846

[40] Michael Engel, Pablo F. Damasceno, Carolyn L. Phillips, and Sharon C. Glotzer. Com-
putational self-assembly of a one-component icosahedral quasicrystal. Nature Mater,
14(1):109–116, 01 2015. https://www.nature.com/articles/nmat4152.

[41] Yue Fan, Takuya Iwashita, and Takeshi Egami. How thermally activated deformation
starts in metallic glass. Nat Commun, 5(1):1–7, 09 2014. https://www.nature.com/
articles/ncomms6083.

[42] Enrico Fermi, P Pasta, Stanislaw Ulam, and Mary Tsingou. Studies of the nonlinear
problems, 1955.

[43] Kyle D. Feuz, Diane J. Cook, Cody Rosasco, Kayela Robertson, and Maureen
Schmitter-Edgecombe. Automated detection of activity transitions for prompting.
IEEE Transactions on Human-Machine Systems, 45(5):575–585, 2015.

[44] L. Filion, M. Hermes, R. Ni, and M. Dijkstra. Crystal nucleation of hard spheres using
molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of
simulation techniques. The Journal of Chemical Physics, 133(24):244115, 12 2010.
https://doi.org/10.1063/1.3506838.

[45] Steffen Fischer, Alexander Exner, Kathrin Zielske, Jan Perlich, Sofia Deloudi, Walter
Steurer, Peter Lindner, and Stephan Förster. Colloidal quasicrystals with 12-fold
and 18-fold diffraction symmetry. Proceedings of the National Academy of Sciences,
108(5):1810–1814, February 2011.

[46] Ronald Aylmer Fisher. Dispersion on a sphere. Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences, 217(1130):295–305, January
1997. https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1953.0064.

[47] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-phong Vo. A
Technique for Drawing Directed Graphs. Ieee Transactions on Software Engineering,
19(3):214–230, 1993.

[48] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui, Filippo Spiga,
Jaime A. Millan, David C. Morse, and Sharon C. Glotzer. Strong scaling of general-
purpose molecular dynamics simulations on GPUs. Computer Physics Communi-
cations, 192:97–107, 07 2015. http://www.sciencedirect.com/science/article/
pii/S0010465515000867.

[49] Sharon C. Glotzer, Dietrich Stauffer, and Naeem Jan. Monte Carlo simulations of phase
separation in chemically reactive binary mixtures. Phys. Rev. Lett., 72(26):4109–4112,
06 1994. https://link.aps.org/doi/10.1103/PhysRevLett.72.4109.

[50] I. J. Good. Maximum entropy for hypothesis formulation, especially for multidimen-
sional contingency tables. The Annals of Mathematical Statistics, 34(3):911–934, 1963.
http://www.jstor.org/stable/2238473.

91

https://www.nature.com/articles/nmat4152
https://www.nature.com/articles/ncomms6083
https://www.nature.com/articles/ncomms6083
https://doi.org/10.1063/1.3506838
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1953.0064
http://www.sciencedirect.com/science/article/pii/S0010465515000867
http://www.sciencedirect.com/science/article/pii/S0010465515000867
https://link.aps.org/doi/10.1103/PhysRevLett.72.4109
http://www.jstor.org/stable/2238473

[51] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N.
Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M.
Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analy-
sis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. https://conference.scipy.org/proceedings/
scipy2016/oliver_beckstein.html.

[52] Horacio V. Guzman, Nikita Tretyakov, Hideki Kobayashi, Aoife C. Fogarty, Karsten
Kreis, Jakub Krajniak, Christoph Junghans, Kurt Kremer, and Torsten Stuehn.
ESPResSo++ 2.0: Advanced methods for multiscale molecular simulation. Com-
puter Physics Communications, 238:66–76, 05 2019. http://www.sciencedirect.
com/science/article/pii/S0010465518304399.

[53] Alfred Haar. Der Massbegriff in der Theorie der Kontinuierlichen Gruppen. Annals of
Mathematics, 34(1):147–169, 1933. https://www.jstor.org/stable/1968346.

[54] Manhyung Han, La The Vinh, Young-Koo Lee, and Sungyoung Lee. Comprehensive
context recognizer based on multimodal sensors in a smartphone. Sensors, 12(9):12588–
12605, 9 2012. http://dx.doi.org/10.3390/s120912588.

[55] Trevor Hastie, Jerome Friedman, and Robert Tibshirani. Linear Methods for Clas-
sification. In Trevor Hastie, Jerome Friedman, and Robert Tibshirani, editors, The
Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer
Series in Statistics, pages 79–113. Springer, 2001. https://doi.org/10.1007/
978-0-387-21606-5_4.

[56] Shohei Hido, Tsuyoshi Idé, Hisashi Kashima, Harunobu Kubo, and Hirofumi Mat-
suzawa. Unsupervised Change Analysis Using Supervised Learning. In Takashi Washio,
Einoshin Suzuki, Kai Ming Ting, and Akihiro Inokuchi, editors, Advances in Knowl-
edge Discovery and Data Mining, Lecture Notes in Computer Science, pages 148–159.
Springer, 2008.

[57] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference
on Document Analysis and Recognition, volume 1, pages 278–282 vol.1, 1995.

[58] William G. Hoover. Atomistic nonequilibrium computer simulations. Physica A:
Statistical Mechanics and its Applications, 118(1):111–122, 1983. https://www.
sciencedirect.com/science/article/pii/0378437183901802.

[59] William G. Hoover, Anthony J. C. Ladd, and Bill Moran. High-strain-rate plastic flow
studied via nonequilibrium molecular dynamics. Phys. Rev. Lett., 48:1818–1820, Jun
1982. https://link.aps.org/doi/10.1103/PhysRevLett.48.1818.

[60] Philip D. Howes, Rona Chandrawati, and Molly M. Stevens. Colloidal nanoparticles
as advanced biological sensors. Science, 346(6205):1247390, October 2014.

[61] Yuan-Chao Hu, Weiwei Jin, Jan Schroers, Mark D. Shattuck, and Corey S. O’Hern.
Glass-forming ability of binary Lennard-Jones systems. Physical Review Materials,
6(7):075601, July 2022.

92

https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://www.sciencedirect.com/science/article/pii/S0010465518304399
http://www.sciencedirect.com/science/article/pii/S0010465518304399
https://www.jstor.org/stable/1968346
http://dx.doi.org/10.3390/s120912588
https://doi.org/10.1007/978-0-387-21606-5_4
https://doi.org/10.1007/978-0-387-21606-5_4
https://www.sciencedirect.com/science/article/pii/0378437183901802
https://www.sciencedirect.com/science/article/pii/0378437183901802
https://link.aps.org/doi/10.1103/PhysRevLett.48.1818

[62] Sebastiaan P. Huber, Spyros Zoupanos, Martin Uhrin, Leopold Talirz, Leonid Kahle,
Rico Häuselmann, Dominik Gresch, Tiziano Müller, Aliaksandr V. Yakutovich,
Casper W. Andersen, Francisco F. Ramirez, Carl S. Adorf, Fernando Gargiulo, Sne-
hal Kumbhar, Elsa Passaro, Conrad Johnston, Andrius Merkys, Andrea Cepellotti,
Nicolas Mounet, Nicola Marzari, Boris Kozinsky, and Giovanni Pizzi. AiiDA 1.0,
a scalable computational infrastructure for automated reproducible workflows and
data provenance. Sci Data, 7(1):300, 09 2020. http://www.nature.com/articles/
s41597-020-00638-4.

[63] John D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering, 9(3):90–95, 05 2007.

[64] Wayne Iba and Pat Langley. Induction of one-level decision trees. In Derek Slee-
man and Peter Edwards, editors, Machine Learning Proceedings 1992, pages 233–240,
San Francisco (CA), 1992. Morgan Kaufmann. https://www.sciencedirect.com/
science/article/pii/B9781558602472500358.

[65] Prasad Govindrao Jamkhande, Namrata W. Ghule, Abdul Haque Bamer, and Mo-
han G. Kalaskar. Metal nanoparticles synthesis: An overview on methods of prepara-
tion, advantages and disadvantages, and applications. Journal of Drug Delivery Sci-
ence and Technology, 53:101174, 2019. https://www.sciencedirect.com/science/
article/pii/S1773224718308189.

[66] Venkata Jandhyala, Stergios Fotopoulos, Ian MacNeill, and Pengyu Liu. Inference for
single and multiple change-points in time series. Journal of Time Series Analysis,
34(4):423–446, 2013. http://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.
12035.

[67] Kwanghwi Je, Sangmin Lee, Erin G. Teich, Michael Engel, and Sharon C. Glotzer.
Entropic formation of a thermodynamically stable colloidal quasicrystal with negligible
phason strain. Proceedings of the National Academy of Sciences, 118(7):e2011799118,
February 2021.

[68] S. Karthika, T. K. Radhakrishnan, and P. Kalaichelvi. A Review of Classical and
Nonclassical Nucleation Theories. Crystal Growth & Design, 16(11):6663–6681, 11
2016. https://doi.org/10.1021/acs.cgd.6b00794.

[69] Yoshinobu Kawahara and Masashi Sugiyama. Sequential change-point detection based
on direct density-ratio estimation. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 5(2):114–127, 2012.

[70] Yoshinobu Kawahara, Takehisa Yairi, and Kazuo Machida. Change-point detection
in time-series data based on subspace identification. In Seventh IEEE International
Conference on Data Mining (ICDM 2007), pages 559–564, 2007.

[71] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting time
series. In Proceedings 2001 IEEE International Conference on Data Mining, pages
289–296, 2001.

93

http://www.nature.com/articles/s41597-020-00638-4
http://www.nature.com/articles/s41597-020-00638-4
https://www.sciencedirect.com/science/article/pii/B9781558602472500358
https://www.sciencedirect.com/science/article/pii/B9781558602472500358
https://www.sciencedirect.com/science/article/pii/S1773224718308189
https://www.sciencedirect.com/science/article/pii/S1773224718308189
http://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12035
http://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12035
https://doi.org/10.1021/acs.cgd.6b00794

[72] Shin-Hyun Kim, Su Yeon Lee, Seung-Man Yang, and Gi-Ra Yi. Self-assembled colloidal
structures for photonics. NPG Asia Materials, 3(1):25–33, January 2011.

[73] Christoph Klein, János Sallai, Trevor J. Jones, Christopher R. Iacovella, Clare Mc-
Cabe, and Peter T. Cummings. A Hierarchical, Component Based Approach to Screen-
ing Properties of Soft Matter. In Randall Q Snurr, Claire S. Adjiman, and David A.
Kofke, editors, Foundations of Molecular Modeling and Simulation: Select Papers
from FOMMS 2015, Molecular Modeling and Simulation, pages 79–92. Springer, 2016.
https://doi.org/10.1007/978-981-10-1128-3_5.

[74] Christoph Klein, Andrew Z. Summers, Matthew W. Thompson, Justin B. Gilmer,
Clare McCabe, Peter T. Cummings, Janos Sallai, and Christopher R. Iacovella. For-
malizing atom-typing and the dissemination of force fields with foyer. Computational
Materials Science, 167:215–227, 09 2019. http://www.sciencedirect.com/science/
article/pii/S0927025619303040.

[75] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A LLVM-based Python
JIT compiler. In Proceedings of the Second Workshop on the LLVM Compiler In-
frastructure in HPC, LLVM ’15, pages 1–6. Association for Computing Machinery, 11
2015. https://doi.org/10.1145/2833157.2833162.

[76] Peter Mahler Larsen, Søren Schmidt, and Jakob Schiøtz. Robust structural iden-
tification via polyhedral template matching. Modelling Simul. Mater. Sci. Eng.,
24(5):055007, 05 2016. https://dx.doi.org/10.1088/0965-0393/24/5/055007.

[77] Wolfgang Lechner and Christoph Dellago. Accurate determination of crystal structures
based on averaged local bond order parameters. J. Chem. Phys., 129(11):114707, 09
2008. https://aip.scitation.org/doi/full/10.1063/1.2977970.

[78] Olivier Ledoit and Michael Wolf. Honey, I Shrunk the Sample Covariance Matrix.
UPF Economics and Business Working Paper Working Paper No. 691, (433840), 06
2003. https://papers.ssrn.com/abstract=433840.

[79] Mirim Lee, Chang-Myeon Lee, Kwang-Ryeol Lee, Evan Ma, and Jae-Chul Lee. Net-
worked interpenetrating connections of icosahedra: Effects on shear transformations
in metallic glass. Acta Materialia, 59(1):159–170, January 2011.

[80] Qi Li, John Kulikowski, David Doan, Ottman A. Tertuliano, Charles J. Zeman,
Melody M. Wang, George C. Schatz, and X. Wendy Gu. Mechanical nanolattices
printed using nanocluster-based photoresists. Science, 378(6621):768–773, 2022.

[81] Yein Lim, Sangmin Lee, and Sharon C. Glotzer. Engineering the Thermodynamic
Stability and Metastability of Mesophases of Colloidal Bipyramids through Shape En-
tropy. ACS Nano, 17(5):4287–4295, March 2023.

[82] Haixin Lin, Sangmin Lee, Lin Sun, Matthew Spellings, Michael Engel, Sharon C.
Glotzer, and Chad A. Mirkin. Clathrate colloidal crystals. Science, 355(6328):931–
935, March 2017.

94

https://doi.org/10.1007/978-981-10-1128-3_5
http://www.sciencedirect.com/science/article/pii/S0927025619303040
http://www.sciencedirect.com/science/article/pii/S0927025619303040
https://doi.org/10.1145/2833157.2833162
https://dx.doi.org/10.1088/0965-0393/24/5/055007
https://aip.scitation.org/doi/full/10.1063/1.2977970
https://papers.ssrn.com/abstract=433840

[83] Pit Losch, Weixin Huang, Emmett D. Goodman, Cody J. Wrasman, Alexander Holm,
Andrew R. Riscoe, Jay A. Schwalbe, and Matteo Cargnello. Colloidal nanocrystals for
heterogeneous catalysis. Nano Today, 24:15–47, February 2019.

[84] Binbin Luo, John W. Smith, Zihao Ou, and Qian Chen. Quantifying the Self-Assembly
Behavior of Anisotropic Nanoparticles Using Liquid-Phase Transmission Electron Mi-
croscopy. Acc. Chem. Res., 50(5):1125–1133, 05 2017. https://doi.org/10.1021/
acs.accounts.7b00048.

[85] Marcus G. Martin. MCCCS Towhee: A tool for Monte Carlo molecular simulation.
Molecular Simulation, 39(14-15):1212–1222, 12 2013. https://doi.org/10.1080/
08927022.2013.828208.

[86] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting
Algorithms as Gradient Descent. In S. Solla, T. Leen, and K. Müller, ed-
itors, Advances in Neural Information Processing Systems, volume 12. MIT
Press, 1999. https://proceedings.neurips.cc/paper_files/paper/1999/file/
96a93ba89a5b5c6c226e49b88973f46e-Paper.pdf.

[87] Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harrigan, Christoph
Klein, Jason M. Swails, Carlos X. Hernández, Christian R. Schwantes, Lee-Ping
Wang, Thomas J. Lane, and Vijay S. Pande. MDTraj: A Modern Open Li-
brary for the Analysis of Molecular Dynamics Trajectories. Biophysical Journal,
109(8):1528–1532, 10 2015. http://www.sciencedirect.com/science/article/
pii/S0006349515008267.

[88] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction. http://arxiv.org/abs/1802.
03426, 09 2020.

[89] Wes McKinney. Data Structures for Statistical Computing in Python. Proceedings
of the 9th Python in Science Conference, pages 56–61, 2010. https://conference.
scipy.org/proceedings/scipy2010/mckinney.html.

[90] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of State Calculations by Fast Computing Ma-
chines. J. Chem. Phys., 21(6):1087–1092, 06 1953. https://aip.scitation.org/
doi/abs/10.1063/1.1699114.

[91] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beck-
stein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Jour-
nal of Computational Chemistry, 32(10):2319–2327, 2011. https://onlinelibrary.
wiley.com/doi/abs/10.1002/jcc.21787.

[92] Walter Mickel, Sebastian C. Kapfer, Gerd E. Schröder-Turk, and Klaus Mecke. Short-
comings of the bond orientational order parameters for the analysis of disordered par-
ticulate matter. J. Chem. Phys., 138(4):044501, 01 2013. http://aip.scitation.
org/doi/full/10.1063/1.4774084.

95

https://doi.org/10.1021/acs.accounts.7b00048
https://doi.org/10.1021/acs.accounts.7b00048
https://doi.org/10.1080/08927022.2013.828208
https://doi.org/10.1080/08927022.2013.828208
https://proceedings.neurips.cc/paper_files/paper/1999/file/96a93ba89a5b5c6c226e49b88973f46e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/96a93ba89a5b5c6c226e49b88973f46e-Paper.pdf
http://www.sciencedirect.com/science/article/pii/S0006349515008267
http://www.sciencedirect.com/science/article/pii/S0006349515008267
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://aip.scitation.org/doi/abs/10.1063/1.1699114
https://aip.scitation.org/doi/abs/10.1063/1.1699114
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21787
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21787
http://aip.scitation.org/doi/full/10.1063/1.4774084
http://aip.scitation.org/doi/full/10.1063/1.4774084

[93] Gustav Mie. Zur kinetischen Theorie der einatomigen Körper. Annalen der Physik,
316(8):657–697, 1903. http://onlinelibrary.wiley.com/doi/abs/10.1002/andp.
19033160802.

[94] Marek Mihalkovic̆ and C. L. Henley. Empirical oscillating potentials for alloys from
ab initio fits and the prediction of quasicrystal-related structures in the Al-Cu-Sc
system. Phys. Rev. B, 85(9):092102, 03 2012. https://link.aps.org/doi/10.1103/
PhysRevB.85.092102.

[95] R. E. Miles. On Random Rotations in R3. Biometrika, 52(3/4):636–639, 1965. https:
//www.jstor.org/stable/2333716.

[96] Ryan Gotchy Mullen, Joan-Emma Shea, and Baron Peters. Easy Transition Path Sam-
pling Methods: Flexible-Length Aimless Shooting and Permutation Shooting. Journal
of Chemical Theory and Computation, 11(6):2421–2428, June 2015.

[97] Christoph Niethammer, Stefan Becker, Martin Bernreuther, Martin Buchholz, Wolf-
gang Eckhardt, Alexander Heinecke, Stephan Werth, Hans-Joachim Bungartz,
Colin W. Glass, Hans Hasse, Jadran Vrabec, and Martin Horsch. Ls1 mardyn: The
Massively Parallel Molecular Dynamics Code for Large Systems. J. Chem. Theory
Comput., 10(10):4455–4464, 10 2014. https://doi.org/10.1021/ct500169q.

[98] Zihao Ou, Ziwei Wang, Binbin Luo, Erik Luijten, and Qian Chen. Kinetic pathways
of crystallization at the nanoscale. Nat. Mater., 19(4):450–455, 04 2020. http://www.
nature.com/articles/s41563-019-0514-1.

[99] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8026–8037. Curran Associates, Inc., 2019. http://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[100] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12(85):2825–2830, 2011. http://jmlr.org/
papers/v12/pedregosa11a.html.

[101] Bor Plestenjak and Vladimir Batagelj. Optimal arrangements of n points on a sphere
and in a circle. Proceedings of the 6th International Symposium on Operational Re-
search, pages 83–87, 2001.

96

http://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19033160802
http://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19033160802
https://link.aps.org/doi/10.1103/PhysRevB.85.092102
https://link.aps.org/doi/10.1103/PhysRevB.85.092102
https://www.jstor.org/stable/2333716
https://www.jstor.org/stable/2333716
https://doi.org/10.1021/ct500169q
http://www.nature.com/articles/s41563-019-0514-1
http://www.nature.com/articles/s41563-019-0514-1
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html

[102] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Sandia
National Labs., Albuquerque, NM (United States), (SAND-91-1144), 05 1993. https:
//www.osti.gov/biblio/10176421.

[103] Vyas Ramasubramani, Carl S. Adorf, Paul M. Dodd, Bradley D. Dice, and Sharon C.
Glotzer. Signac: A Python framework for data and workflow management. Proceedings
of the 17th Python in Science Conference, pages 152–159, 2018. https://conference.
scipy.org/proceedings/scipy2018/vyas_ramasubramani.html.

[104] Vyas Ramasubramani, Bradley D. Dice, Eric S. Harper, Matthew P. Spellings,
Joshua A. Anderson, and Sharon C. Glotzer. Freud: A software suite for high
throughput analysis of particle simulation data. Computer Physics Communica-
tions, page 107275, 03 2020. http://www.sciencedirect.com/science/article/
pii/S0010465520300916.

[105] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Sri-
vastava. Using mobile phones to determine transportation modes. ACM Trans. Sen.
Netw., 6(2), 3 2010. https://doi.org/10.1145/1689239.1689243.

[106] Sylvia. Richardson and Peter J. Green. On Bayesian Analysis of Mixtures with an
Unknown Number of Components (with discussion). Journal of the Royal Statistical
Society: Series B (Methodological), 59(4):731–792, 11 1997. https://doi.org/10.
1111/1467-9868.00095.

[107] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and val-
idation of cluster analysis. Journal of Computational and Applied Mathemat-
ics, 20:53–65, 11 1987. https://www.sciencedirect.com/science/article/pii/
0377042787901257.

[108] C. Patrick Royall, Ard A. Louis, and Hajime Tanaka. Measuring colloidal interactions
with confocal microscopy. J. Chem. Phys., 127(4):044507, 07 2007. http://aip.
scitation.org/doi/full/10.1063/1.2755962.

[109] Chris H. Rycroft. VORO++: A three-dimensional Voronoi cell library in C++. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 19(4):041111, 10 2009. https:
//doi.org/10.1063/1.3215722.

[110] Eric S. Harper, Brendon Waters, and Sharon C. Glotzer. Hierarchical self-assembly of
hard cube derivatives. Soft Matter, 15(18):3733–3739, 2019.

[111] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. An overview of the
Amber biomolecular simulation package. WIREs Computational Molecular Science,
3(2):198–210, 2013. https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.
1121.

[112] Devleena Samanta, Wenjie Zhou, Sasha B. Ebrahimi, Sarah Hurst Petrosko, and
Chad A. Mirkin. Programmable matter: The nanoparticle atom and DNA bond. Ad-
vanced Materials, 34(12):2107875, 2022. https://onlinelibrary.wiley.com/doi/
abs/10.1002/adma.202107875.

97

https://www.osti.gov/biblio/10176421
https://www.osti.gov/biblio/10176421
https://conference.scipy.org/proceedings/scipy2018/vyas_ramasubramani.html
https://conference.scipy.org/proceedings/scipy2018/vyas_ramasubramani.html
http://www.sciencedirect.com/science/article/pii/S0010465520300916
http://www.sciencedirect.com/science/article/pii/S0010465520300916
https://doi.org/10.1145/1689239.1689243
https://doi.org/10.1111/1467-9868.00095
https://doi.org/10.1111/1467-9868.00095
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
http://aip.scitation.org/doi/full/10.1063/1.2755962
http://aip.scitation.org/doi/full/10.1063/1.2755962
https://doi.org/10.1063/1.3215722
https://doi.org/10.1063/1.3215722
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202107875
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202107875

[113] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a ”Knee-
dle” in a Haystack: Detecting Knee Points in System Behavior. In 2011 31st Inter-
national Conference on Distributed Computing Systems Workshops, pages 166–171, 06
2011.

[114] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and A. J. Liu. A structural
approach to relaxation in glassy liquids. Nature Phys, 12(5):469–471, 05 2016. https:
//www.nature.com/articles/nphys3644.

[115] Jindal K. Shah, Eliseo Marin-Rimoldi, Ryan Gotchy Mullen, Brian P. Keene, Sandip
Khan, Andrew S. Paluch, Neeraj Rai, Lucienne L. Romanielo, Thomas W. Rosch,
Brian Yoo, and Edward J. Maginn. Cassandra: An open source Monte Carlo package
for molecular simulation. Journal of Computational Chemistry, 38(19):1727–1739,
2017. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24807.

[116] David E. Shaw, Ron O. Dror, John K. Salmon, J. P. Grossman, Kenneth M. Mackenzie,
Joseph A. Bank, Cliff Young, Martin M. Deneroff, Brannon Batson, Kevin J. Bowers,
Edmond Chow, Michael P. Eastwood, Douglas J. Ierardi, John L. Klepeis, Jeffrey S.
Kuskin, Richard H. Larson, Kresten Lindorff-Larsen, Paul Maragakis, Mark A. Moraes,
Stefano Piana, Yibing Shan, and Brian Towles. Millisecond-scale molecular dynamics
simulations on Anton. In Proceedings of the Conference on High Performance Comput-
ing Networking, Storage and Analysis, SC ’09, pages 1–11. Association for Computing
Machinery, 11 2009. https://doi.org/10.1145/1654059.1654126.

[117] Zunya Shi and Abdallah Chehade. A dual-lstm framework combining change point
detection and remaining useful life prediction. Reliability Engineering & System
Safety, 205:107257, 2021. https://www.sciencedirect.com/science/article/pii/
S0951832020307572.

[118] Masato Shimono and Hidehiro Onodera. Dynamics and Geometry of Icosahedral Order
in Liquid and Glassy Phases of Metallic Glasses. Metals, 5(3):1163–1187, September
2015.

[119] Aldo Spatafora-Salazar, Dana M Lobmeyer, Lucas HP Cunha, Kedar Joshi, and
Sibani Lisa Biswal. Hierarchical assemblies of superparamagnetic colloids in time-
varying magnetic fields. Soft Matter, 17(5):1120–1155, 2021.

[120] Matthew Spellings and Sharon C. Glotzer. Machine learning for crystal identifi-
cation and discovery. AIChE Journal, 64(6):2198–2206, 2018. https://aiche.
onlinelibrary.wiley.com/doi/abs/10.1002/aic.16157.

[121] Matthew Spellings, Ryan L. Marson, Joshua A. Anderson, and Sharon C. Glotzer. GPU
accelerated Discrete Element Method (DEM) molecular dynamics for conservative,
faceted particle simulations. Journal of Computational Physics, 334:460–467, 04 2017.
http://www.sciencedirect.com/science/article/pii/S0021999117300244.

98

https://www.nature.com/articles/nphys3644
https://www.nature.com/articles/nphys3644
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24807
https://doi.org/10.1145/1654059.1654126
https://www.sciencedirect.com/science/article/pii/S0951832020307572
https://www.sciencedirect.com/science/article/pii/S0951832020307572
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16157
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16157
http://www.sciencedirect.com/science/article/pii/S0021999117300244

[122] Paul J. Steinhardt, David R. Nelson, and Marco Ronchetti. Bond-orientational order
in liquids and glasses. Phys. Rev. B, 28(2):784–805, 07 1983. https://link.aps.org/
doi/10.1103/PhysRevB.28.784.

[123] John Edward Stone. An efficient library for parallel ray tracing and animation. Univer-
sity of Missouri, Thesis, 1998. http://jedi.ks.uiuc.edu/~johns/tachyon/papers/
thesis.pdf.

[124] Alexander Stukowski. Visualization and analysis of atomistic simulation data with
OVITO-the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng., 18(1):015012,
12 2009. https://doi.org/10.1088%2F0965-0393%2F18%2F1%2F015012.

[125] P. M. L. Tammes. On the origin of number and arrangement of the places of exit on
the surface of pollen-grains. Recueil des travaux botaniques néerlandais, 27(1):1–84, 01
1930. https://natuurtijdschriften.nl/pub/552640.

[126] Pieter Rein ten Wolde, Maria J. Ruiz-Montero, and Daan Frenkel. Numerical Evidence
for bcc Ordering at the Surface of a Critical fcc Nucleus. Phys. Rev. Lett., 75(14):2714–
2717, 10 1995. https://link.aps.org/doi/10.1103/PhysRevLett.75.2714.

[127] Stephen Thomas, Monet Alberts, Michael M Henry, Carla E Estridge, and Eric
Jankowski. Routine million-particle simulations of epoxy curing with dissipative
particle dynamics. J. Theor. Comput. Chem., 17(03):1840005, 05 2018. https:
//www.worldscientific.com/doi/abs/10.1142/S0219633618400059.

[128] Matthew W. Thompson, Justin B. Gilmer, Ray A. Matsumoto, Co D. Quach,
Parashara Shamaprasad, Alexander H. Yang, Christopher R. Iacovella, Clare Mc-
Cabe, and Peter T. Cummings. Towards molecular simulations that are transparent,
reproducible, usable by others, and extensible (TRUE). Molecular Physics, 118(9-
10):e1742938, 06 2020. https://doi.org/10.1080/00268976.2020.1742938.

[129] Matthew W. Thompson, Ray Matsumoto, Robert L. Sacci, Nicolette C. Sanders, and
Peter T. Cummings. Scalable Screening of Soft Matter: A Case Study of Mixtures
of Ionic Liquids and Organic Solvents. J. Phys. Chem. B, 123(6):1340–1347, 02 2019.
https://doi.org/10.1021/acs.jpcb.8b11527.

[130] Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline
change point detection methods. Signal Processing, 167:107299, 2020. https:
//www.sciencedirect.com/science/article/pii/S0165168419303494.

[131] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The NumPy Array: A
Structure for Efficient Numerical Computation. Computing in Science Engineering,
13(2):22–30, 03 2011.

[132] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C. J.

99

https://link.aps.org/doi/10.1103/PhysRevB.28.784
https://link.aps.org/doi/10.1103/PhysRevB.28.784
http://jedi.ks.uiuc.edu/~johns/tachyon/papers/thesis.pdf
http://jedi.ks.uiuc.edu/~johns/tachyon/papers/thesis.pdf
https://doi.org/10.1088%2F0965-0393%2F18%2F1%2F015012
https://natuurtijdschriften.nl/pub/552640
https://link.aps.org/doi/10.1103/PhysRevLett.75.2714
https://www.worldscientific.com/doi/abs/10.1142/S0219633618400059
https://www.worldscientific.com/doi/abs/10.1142/S0219633618400059
https://doi.org/10.1080/00268976.2020.1742938
https://doi.org/10.1021/acs.jpcb.8b11527
https://www.sciencedirect.com/science/article/pii/S0165168419303494
https://www.sciencedirect.com/science/article/pii/S0165168419303494

Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and Paul van Mulbregt. SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nat Methods, 17(3):261–
272, 03 2020. https://www.nature.com/articles/s41592-019-0686-2.

[133] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal
für die reine und angewandte Mathematik (Crelles Journal), 1908(134):198–287, 07
1908. https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/
html.

[134] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des
formes quadratiques. premier mémoire. sur quelques propriétés des formes quadratiques
positives parfaites. Journal für die reine und angewandte Mathematik (Crelles Journal),
1908(133):97–102, 01 1908. https://www.degruyter.com/document/doi/10.1515/
crll.1908.133.97/html.

[135] Florian Weik, Rudolf Weeber, Kai Szuttor, Konrad Breitsprecher, Joost de Graaf,
Michael Kuron, Jonas Landsgesell, Henri Menke, David Sean, and Christian Holm.
ESPResSo 4.0 - an extensible software package for simulating soft matter systems.
Eur. Phys. J. Spec. Top., 227(14):1789–1816, 03 2019. https://doi.org/10.1140/
epjst/e2019-800186-9.

[136] Eugene P. Wigner. Group Theory: And Its Application to the Quantum Mechanics of
Atomic Spectra. Elsevier, September 2013. Google-Books-ID: UITNCgAAQBAJ.

100

https://www.nature.com/articles/s41592-019-0686-2
https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html
https://www.degruyter.com/document/doi/10.1515/crll.1908.134.198/html
https://www.degruyter.com/document/doi/10.1515/crll.1908.133.97/html
https://www.degruyter.com/document/doi/10.1515/crll.1908.133.97/html
https://doi.org/10.1140/epjst/e2019-800186-9
https://doi.org/10.1140/epjst/e2019-800186-9

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Programs
	List of Appendices
	Abstract
	Introduction
	Methods
	Voronoi Tessellation
	Molecular Dynamics

	Change Point Detection of Events in Molecular Simulations Using dupin
	Introduction
	Results
	Example Applications
	Discussion and Conclusions

	PGOP: A Point group Order Parameter for Analyzing Local Crystal Symmetry
	Introduction
	Results
	Conclusion

	New Continuous Coordination Number
	Introduction
	Results
	Conclusion

	HOOMD-blue Version 3.0 A Modern, Extensible, Flexible, Object-Oriented API for Molecular Simulations
	Introduction
	General API Design
	Logging and Accessing Data
	User Customization
	Conclusion
	Acknowledgements

	Conclusions
	Dissertation Summary
	Outlook
	Final Thoughts

	Appendices
	Change Point Detection of Events in Molecular Simulations using dupin: Supplementary Information
	Change Point Detection
	Change Point Detection
	Kneedle Algorithm
	Kneedle Algorithm
	Feature Selection
	Feature Selection

	PGOP Supplemental Information
	Ideal Gas Baselines
	Ideal Gas Baselines
	Minkowski Structure Metrics Noise Behavior
	Minkowski Structure Metrics Noise Behavior
	Binary LJ Glass Mean Squared Displacement
	Binary LJ Glass Mean Squared Displacement

	Further HOOMD Programs
	Trigger that detects nucleation
	Trigger that detects nucleation
	Pandas Logger Back-End
	Pandas Logger Back-End

	Bibliography

