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Abstract 

Acute kidney injury (AKI), a frequent complication in hospitalized patients, poses significant 

challenges due to its high incidence, short-term mortality, and substantial economic burden. 

Current AKI models utilizing electronic health records (EHR) and machine learning (ML) 

confront limitations in external validation, the exclusion of urine output as a predictor, and a 

predominant reliance on single-center data. In this dissertation, I present a comprehensive 

exploration of ML applications for AKI, with a focus on crucial dimensions such as 

transportability, clinical applicability, and scalability. 

In Chapter II, I reproduce and evaluate the transportability of a leading AKI model originally 

developed by DeepMind for the veterans. Despite the model's high performance in predicting 

AKI, the predominantly male population on which it is trained have led to questions about its 

generalizability in other cohorts. I reproduce key aspects of their GBDT model and assess its 

performance in a sex-balanced patient population at the UM, revealing suboptimal discrimination 

and calibration in females. A continued training approach at UM partially addresses model 

differential performance in sex. An exploration of potential reasons for this model discrepancy 

by sex reveals that it is complex and cannot be simply explained by a low sample size or 

difference in patient characteristics. This study demonstrates that local fine-tuning may be a 

promising solution for mitigating sex and gender inequalities in healthcare ML models.  

In Chapter III, I investigate the urine output (UO) documentation pattern in the EHR and assess 

the role of UO as an AKI predictor. Analysis of a five-year inpatient cohort at UM reveals 



 xvii 

frequent and diverse UO documentation for non-ICU patients. Despite its value, the inclusion of 

UO as a predictor minimally improves the ability to predict AKI over a comprehensive model 

without UO. This study emphasizes the ongoing need for refining UO documentation practices to 

augment its clinical utility. 

In Chapter IV, I introduce a novel Federated Stacked Learning (FSL) framework to enhance the 

scalability of AKI models in multicenter settings where data sharing may not be permitted. 

Focusing on predicting cardiac surgery-associated AKI within a national perioperative research 

network, the study compares the performance of single-center models with both a pooled model 

and the proposed FSL approach. The single-center models perform worse than the multicenter 

approaches. The FSL approach demonstrates comparable performance with pooled models, 

suggesting that it is a practical alternative when patient-level data sharing is not an option. The 

study underscores the significance of collaborative research networks and illustrates how the size 

of both the hospital and the network can influence the optimal modeling strategy. 

Collectively, this dissertation contributes valuable insights into AKI prediction, advocating for a 

pragmatic model development approach encompassing transportability, clinical applicability, and 

scalability. The findings pave the way for future advancements in ML applications for AKI, 

promoting the development of models that are not only accurate but also accessible, 

generalizable, and adaptable across diverse healthcare settings. 
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Chapter 1 Introduction 

1.1 Acute Kidney Injury (AKI) 

Acute kidney injury (AKI) is a common complication that is associated with various etiologies 

and pathophysiological changes that can lead to a rapid decline in kidney function, often 

occurring among hospitalized patients. It is characterized by its high incidence, short-term 

mortality, and heavy economic burden. AKI complicates 10-20% hospitalized admissions in the 

United States and worldwide1–3. Its occurrence is higher in critically ill patients, about one-third 

to two-thirds, according to several multinational studies4–6. In the COVID-19 pandemic, two 

studies analyzed hospitalized COVID-19 patients in New York City metropolitan and found 

about 40% COVID-19 patients developed AKI7,8. AKI is also associated with worse health 

outcomes. The in-hospital mortality for AKI patients is estimated to be over 10%1,9; among 

COVID-19 patients in the Mount Sinai health system in New York, the in-hospital mortality was 

50% among AKI patients versus 8% among those without AKI8. In addition, patients with AKI 

have increased risk of developing chronic kidney disease (CKD), end-stage renal disease 

(ESRD) and cardiovascular disease10,11. Health-related quality of life among survivors of AKI 

patients in the intensive care unit (ICU) is also impaired compared to population norms12. In 

addition to its harm on patient health, AKI also imposes heavy economic burden on the society. 

AKI is associated with an increase in hospital length of stay and healthcare resource utilization13. 

An estimated 5.4 to 24.0 billion dollars increase in hospitalization cost was attributed to AKI in 

the U.S in 201213. Although a potentially life-threatening condition, a substantial proportion of 

cases are considered preventable with early identification, intervention and treatment14,15. 
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Therefore, AKI risk prediction models are needed to guide healthcare providers on identifying 

the right patients to prioritize treatments and allocate resources.  

1.2 Stages of AKI 

Currently, the international consensus on AKI staging uses the definitions published by the 

Kidney Disease Improving Global Outcomes (KDIGO) group in 201216. The KDIGO criteria 

defines AKI stages by changes in serum creatinine (sCr) and/or urine output (UO) (Table 1.1). 

Research has shown that use of the KDIGO definition identified more AKI patients and was 

more predictive for related in-hospital mortality17,18 when compared to previously used RIFLE 

(Risk, Injury, Failure, Loss, End-Stage Kidney Disease)- and Acute Kidney Network (AKIN)-

criteria19,20. From mild (stage 1) to moderate (stage 2) to severe (stage 3), the definition of the 

staging system is based on the finding that greater rises in serum creatinine are associated with 

poorer outcomes, including prolonged hospital stay, increased mortality and higher cost21. 

Choice of therapy, optimal timing for intervening and other patient management decisions may 

differ by AKI stages. Hence, it is important to evaluate the performance of an AKI risk 

prediction model for each stage to understand its potential impact on clinical use and patient 

management.  

Table 1.1 KDIGO definition of AKI stages. 

AKI Stage Changes in sCr Changes in UO 

Stage 1 
1.5-1.9 times baseline within 7 days 

or 
≥0.3 mg/dl increase within 48 h 

<0.5/ml/kg/h for 6-12h 

Stage 2 2.0-2.9 times baseline <0.5/ml/kg/h for ≥12h 

Stage 3(D) 

3 times baseline 
or 

≥4.0 mg/dl increase 
or 

initiation of RRT (Stage 3D) 

<0.3/ml/kg/h for ≥ 24h 
or 

anuria ≥12h 
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1.3 Electronic Health record (EHR) and Machine Learning (ML) for AKI Risk Prediction 

Risk prediction in healthcare is one of the most exciting frontiers in data science because it 

enables care to be tailored to a patient’s risk. The universal adoption of electronic health records 

(EHRs) in the United States has expanded the availability of digital clinical data and has made it 

possible to develop prognostic models and early warning systems using routinely collected data. 

Such models and early warning systems have the potential to serve as accurate, timely and cost-

effective alternatives for future AKI event prediction. An international nephrology group, Acute 

Dialysis Quality Initiative (ADQI), published an official document recognizing the significance 

of utilization of EHR and modern modeling tools for AKI risk prediction in this “big data” era, 

and outlined consensus statements on best approaches22. A prototype AKI prediction model 

should predict risk both for KDIGO Stage 2/3 AKI and patient-centered and clinically important 

AKI-related outcomes; well-established risk factors, together with novel risk factors identified by 

machine learning techniques should be used in prediction; and the model should be easily and 

effectively integrated into EHR and present clinical utility.  

A considerable amount of literature has shown promising results in predicting AKI in a more and 

accurate way by leveraging EHR and machine learning tools (Table 1.2)23–33. These studies 

share many similarities. Their models were developed based on large sample sizes and numerous 

predictors through routinely collected EHR data. Such rich information has also demonstrated 

the value of machine learning techniques, which are usually “data-hungry”34 and underperform 

traditional statistical methods in the absence of sufficient data. In prior work, the AUCs generally 

range from 0.7 to 0.8 across studies when predicting any AKI (i.e., AKI stage 1+), with the 

exception of the models developed by the Google DeepMind group, which reported AUCs from 

0.863 to 0.921 across the tested algorithms (see Supplementary Table 4)31. Although not every 
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study evaluated model performance for each AKI stage, when examined, the AUCs increase as 

AKI cases become more severe. Models developed by Koyner et al. demonstrated AUCs of 0.87 

for AKI Stage 2+, 0.93 for AKI Stage 3 and 0.96 for AKI requiring dialysis28. Demirjian et al. 

were able to predict AKI following cardiac surgery within 72 hours at AUCs of 0.860 for AKI 

Stage 2+ and 0.879 for AKI requiring dialysis, when validated externally.  

Despite the common characteristics, these studies differ in their choice of modeling strategies 

(Figure 1.1). One group of studies (Cheng et al.26, Mohamadlou et al.29, etc.) made the AKI risk 

prediction completely retrospectively, where AKI event time was first anchored and data within 

a certain period of time (e.g. 1 day) before AKI onset was excluded from prediction use (Figure 

1.1a). For example, Mohamadlou et al. trained and tested their GBM model on patient data from 

Stanford Medical Center and showed AUCs of 0.800, 0.795, 0.761 and 0.728 for predictions 

made at 0, 12, 24, 48, and 72 hours before onset of AKI stage 2+; when externally validated on 

the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, the model predicted 

AKI stage 2+ at AUCs of 0.844, 0.826 and 0.760 for 0, 12 and 24 hours before disease onset29. 

The model performance decreases when data closer to the AKI onset was excluded from the data 

collection window. Although this strategy is easy to understand in the modeling perspective, it is 

not clinically applicable as it is a one-time prediction but the prediction time varies for different 

patients. Additionally, ADQI recommends: “forecasting AKI within a horizon of 48 to 72 hours 

as it gives providers adequate time to modify practice optimize hemodynamics, and mitigate 

potential injury without sacrificing predictive power”22, hence, models that predict AKI at onset, 

12 or 24 hours prior do not provide sufficient time for providers to intervene.  

Another popular modeling strategy is to make a one-time prediction at a pre-determined time 

(e.g. admission, after procedure, etc.) for future AKI risk in a given period (Figure 1.1b). Cronin 
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et al. made the prediction at 48 h after admission to identify patient risk for AKI at VA hospitals 

in the next 7 days23. Demirjian et al. at Cleveland Clinic carried out the prediction when first 

postoperative metabolic panel results are available for cardiac surgery patients for AKI risk 

within 72 hours and 14 days after the procedure33. This is an approach that can be applied 

clinically because providers can use the model to evaluate patients’ AKI risk around admission 

or procedure time and make subsequent decisions accordingly. However, it may not offer enough 

granularity of the prediction window and only information at admission or the pre-defined time 

is used, which may not reveal patients’ most recent physiological changes near AKI onset. This 

may lead to patients’ AKI being missed at the defined time when it potentially could have been 

identified at a later time when the information would still be actionable. 

A more clinically applicable approach is to make the prediction dynamically (Figure 1.1c). The 

model should aim to predict the AKI onset in a fixed prediction window (e.g. next 48 hours) and 

the data collection window should move forward to include most recent data as new predictions 

are to be made. Koyner et al. at the University of Chicago follows this rationale and developed 

an GBM model that was able to make the prediction every 12 hours for AKI risk in the next 48 

hours28. The most successful example of such a modeling strategy was presented in the Google 

DeepMind research where Tomašev and colleagues designed the model to run every 6 hours to 

evaluate whether patients will develop AKI in the next 48 hours. Developed and validated using 

VA data, their models achieved AUCs from 0.863 to 0.921 for all algorithms tested, which 

outperformed previous studies31. This suggests that the dynamic prediction strategy should be the 

preferred method for future AKI risk prediction model development, both for clinical 

applicability and optimal model performance.  
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Table 1.2 Selected publications using EHR and ML for AKI risk prediction. 

Publication Study population N AKI definition Algorithms AUC Time of 
prediction 

Cronin et al.  
201523 

116 VA hospitals 
Adult inpatients 

1,620,898 KDIGO (sCr only) between d2 
and d9 of admission 
Dialysis procedure codes 

LR (best) 
LASSO 
RF 

Stage 1+: 0.746-0.758 
Stage 2+: 0.714-0.720 
Dialysis: 0.823-0.825 

48 h after 
admission 

Koyner et al. 
201624 

5 hospitals 
Adult inpatients 

202,961 KDIGO (sCr only) within next 
24 h 

LR Stage 1+: 0.74 
Stage 2+: 0.76 
Stage 3: 0.83 

Every 12 h 

Davis et al. 
201725 

All VA hospitals 170,675 KDIGO (sCr only) between 
48h and d9 of admission 

LR 
LASSO 
Ridge 
Elastic-Net 
RF 
ANN 
NB 

Stage 1+: 0.69-0.76 48 h after 
admission 

Cheng et al. 
201826 

1 hospital 
Adult inpatients 

48,955 KDIGO (sCr only) within next 
24 h 

LR 
RF 
AdaBoostM1 

Stage 1+:  
0.751-0.765 (1-day prior) 
0.727-0.733 (2-day prior) 
0.691-0.709 (3-day prior) 

1-5 days before 
AKI onset 

Huang et al. 
201827 

NCDR CathPCI 
registry, 1000+ 
hospitals 
PCI patients 

947,091 AKIN (sCr only) LR 
LASSO 
XGBoost 

Stage 1+: 0.711-0.759 Pre-procedure 

Koyner et al. 
201828 

1 hospital 
Adult inpatients 

121,158 KDIGO (sCr only) within 48 h GBM Stage 1+: 0.73 
Stage 2+: 0.87 
Stage 3+: 0.93 
Dialysis: 0.96 

Every 12 h 

Mohamadlou 
et al. 201829 

1 hospital 
Adult inpatients 

19,737 NHS England AKI algorithm/ 
KDIGO (sCr only) 

GBM Stage 2+:  
- Internal validation 
0.872 (onset) 
0.800 (12 h prior) 
0.795 (24 h prior) 
0.761 (48 h prior) 
0.728 (72 h prior) 
- External validation 
0.844 (onset) 
0.826 (12 h prior) 
0.760 (24 h prior) 

0/12/24/48/72 h 
before AKI onset 

He et al. 
201930 

1 hospital 76,957 KDIGO (sCr only) LR 
NB 
Bayes Net 
RF 
Emsemble 
(LR & RF, 
voting) 

Stage 1+:  
0.687-0.744 (1 day prior) 
0.676-0.734 (at admission, any 
time AKI) 
0.720-0.764(at admission, AKI 
within N days, N = 1, 2, 3, 7, 15, 
30) 
0.600-0.764 (daily after 
admission) 

1 day before AKI 
onset/at 
admission/daily 
after admission 

Tomašev et 
al. 201931 

114 VA centers 
Adult inpatients 

703,782 KDIGO (sCr only) within next 
48 h 

RNN 
LR 
RF 
GBM 
MLP 

Stage 1+: 0.863-0.921 
Stage 2+: 0.870-0.957 
Stage 3+: 0.930-0.980 

Every 6 h 

Zimmerman 
et al. 201932 

MIMIC-III 
Adult ICU stays 

23,950 KDIGO (sCr only) within 72 h LR 
RF 
MLP 

Stage 1+: 0.772-0.796 24 h following 
ICU admission 

Demirjian et 
al. 202233 

1 hospital 
Cardiac surgery 
adult patients 

58,526 KDIGO (sCr only) within 72 h 
and 14 d 
Dialysis information from 
registry data 

LR Stage 2+:  
- Internal validation 
0.876 (72 h) 
0.854 (14 d) 
- External validation 
0.860 (72 h) 
0.842 (14 d) 
Dialysis:  
- Internal validation 
0.916 (72 h) 
0.900 (14 d) 
- External validation 
0.879 (72 h) 
0.873 (14 d) 

When first 
postoperative 
metabolic panel 
results are 
available 

LR: logistic regression 
LASSO: least absolute shrinkage and selection operator 
XGBoost: Extreme gradient boosting 
RF: random forest 
NB: naïve Bayes 
NCDR: National Cardiovascular Data Registry 
PCI: percutaneous coronary intervention 
AKIN: Acute Kidney Injury Network 
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GBM: gradient boosting machine 
NHS: National Health Service 
RNN: recurrent neural network 
MLP: multilayer perceptron 
MIMIC-III: Medical Information Mart for Intensive Care III 

 

 

Figure 1.1 Different modeling strategies for AKI risk prediction.  

Visual representation of modeling strategies used by published studies. a) First anchor the AKI event time and exclude data 
within a certain period of time (e.g. 1 day) before AKI onset. b) Make a one-time prediction at a pre-determined time (e.g. 
admission) for future AKI risk in a given period (e.g. from admission to discharge). c) Dynamic prediction. The model predicts 
the AKI onset in a fixed prediction window (e.g. next 24 hours) and the data collection window moves forward to include most 
recent data as new predictions are to be made. This figure is recreated and adapted from Figure 1 presented in He et al30.  
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1.4 Gaps in Existing Work 

AKI risk prediction models are needed to improve patient outcomes through better targeting of 

interventions. An ideal AKI model should run dynamically to meet the clinical need while also 

having sufficiently high ability to discriminate between high- and low-risk patients. The model 

performance for different stages of AKI should also be considered to understand a model’s 

potential impact on clinical use and patient management. Despite recent improvements in model 

performance in the AKI domain, gaps remain in understanding and enhancing the 

transportability, clinical applicability, and scalability of AKI models.  

Firstly, the transportability of most developed AKI models is unclear. Model transportability 

refers to the ability of the model to maintain its predictive performance when applied to a 

different but related population or in a different context than the one it was originally developed 

for. In other words, it assesses the generalizability of the developed model across different 

datasets or settings. As shown in Table 1.2, most studies used patients from a single hospital and 

reported results from internal validation only. When models were externally validated (i.e., 

applied to a cohort that is different from the training cohort), the performance was often lower, 

suggestive of overfitting and raising concerns about model generalizability across health 

systems. DeepMind’s AKI model, although presenting the best AUC up to date, was trained 

based on VA population that is 94% male. Concerns have arisen about the generalizability of this 

model to females35, and to non-VA contexts where practice patterns may differ.  

Secondly, most AKI models exclude urine output as a predictor for AKI model in spite of it 

being an important AKI biomarker. This is primarily because it has historically been documented 

sparsely and inconsistently, especially in patients hospitalized in non-ICU settings26,36–38. When 
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AKI models are trained exclusively for ICU patients, urine output is more closely monitored, and 

thus urine output has historically been considered more useful. Zimmerman et al. used hourly 

rate of urine output during the first day of ICU admission as a predictor, but found it not 

significantly associated with increase in sCr or AKI event in their regression analyses32. As 

healthcare systems increasingly adopt EHR-based workflows, there is potential for urine output 

to emerge as a more valuable digital marker for AKI, with potential applicability across both 

ICU and non-ICU settings. Thus, the clinical utility of urine output in AKI risk prediction 

models remains an understudied but promising area worth investigating in the era of EHR-based 

documentation.  

Lastly, most published studies describe locally developed models (i.e. use data from one single 

hospital) rather than multicenter modeling efforts, as shown in Table 1.2. This results from 

restricted data sharing for privacy and lack of model generalizability across centers. While the 

single-center modeling strategy may suffice for centers with a sufficiently large patient 

population, it may lead to inequity issues among smaller centers that do not have a cohort size 

needed to develop a reliable AKI risk prediction model. While it is possible that the inclusion of 

multiple centers will improve model performance at smaller centers, this has not been 

established. There are two common approaches to multicenter modeling, data pooling and 

federated learning. In the data pooling approach, a centralized cohort of data is curated by 

pooling data from multiple centers. While this approach effectively boosts model performance 

and generalizability, it requires a substantial amount of work, and the risk of re-identifying 

patient information remains39 and is against patient privacy expectations40,41. Federated learning 

(FL) is an emerging approach to this multicenter modeling problem that aims to enhance privacy 

and improve model scalability. FL is a decentralized approach to train ML models, by removing 



 10 

the need to pool data into a central repository while allowing the development of a model to be 

informed by the information shared from participating centers. Recent studies have shown its 

application in COVID-19-associated AKI42 and AKI in the ICU43. It is worth noting that the FL 

approach that is most widely used typically requires numerous rounds of information exchange 

between participating centers and a central server and thus requires substantial infrastructure to 

perform.  

1.5 Overview 

Development and validation of clinically applicable risk prediction models to identify high-risk 

AKI patients is a compelling area in this big data era. Identifying gaps and selecting the 

modeling strategy accordingly based on existing work is essential to make AKI prediction one 

step closer to real-world model implementation for clinical AKI care. In this dissertation, I 

mainly focus on addressing three gaps identified in the field of AKI risk prediction modeling. In 

Chapter II, I evaluate the transportability of a reproduced version of DeepMind’s GBDT AKI 

model to a more sex-balanced population at the University of Michigan (UM) and update the 

model to correct the model performance discrepancy in sex. In Chapter III, I describe the pattern 

of urine output documentation in the UM EHR system and assess the clinical applicability of 

urine output as a predictor in AKI models. In Chapter IV, I propose a new federated learning 

framework, federated stacked learning (FSL), to improve AKI model scalability. I compare the 

FSL framework against the pooled approach and single-center approach, drawing on data from a 

large national perioperative research and quality improvement network using the prediction of 

cardiac surgery associated-acute kidney injury as a prototypical clinical scenario. Finally, 

Chapter V concludes this dissertation by summarizing the main findings, discussing the 
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implication of these studies, and proposing future directions towards model improvement and 

clinical implementation.  

 



 12 

Chapter 2 Generalizability of An Acute Kidney Injury Prediction Model Across Health 

Systems 

2.1 Background 

Delays in the identification of acute kidney injury (AKI) in hospitalized patients are a major 

barrier to the development of effective interventions for treatment44. By the time changes in 

typical kidney function biomarkers—serum creatinine (sCr) and blood urea nitrogen—are 

detected, damage that is not readily reversed is often already established. This is underscored by 

recent evidence that automated alerts generated upon AKI onset appear to be ineffective in 

changing the trajectory of AKI45. This has led to multiple efforts to develop early warning 

system scores that predict the onset of AKI with sufficient lead times to support potential 

intervention The most promising of these efforts was recent work by Tomašev and colleagues 

from DeepMind describing models for the continuous prediction of AKI that outperformed 

previously published models31. Developed and validated using data from 703,782 US veterans, 

the primary recurrent neural network model described in the paper achieved an area under the 

receiver operating characteristic curve (AUC) of 92.1% when predicting AKI in the next 48 h. 

This study was notable for several reasons, including its large sample size, high AUC and a 

longer lead time, all of which made this model a clear outlier as compared with previous studies.  

Despite its promise, the model has not been implemented within the Veterans Affairs (VA) 

health system. In this respect, this model represents an example of the ‘artificial intelligence (AI) 

chasm’, a term used to describe high-performing AI models that fail to reach the bedside due to 

challenges involved in real-world implementation46. The model described in this study is also not 
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publicly available, meaning that it cannot be readily reproduced and evaluated in other clinical 

settings despite knowledge of the underlying methods and software47,48. This lack of 

computational reproducibility among complex AI models in healthcare is a well recognized 

barrier to sustaining progress in clinical AI applications49–53. Because the model was developed 

in a veteran population that is 94% male, concerns have also arisen about the generalizability of 

this model to females35, and to non-VA contexts where practice patterns may differ. Recent work 

in medical imaging demonstrates that models trained in predominantly male populations fail to 

perform well in females54. This was suggested by the DeepMind study, where a lower AKI 

episode-level sensitivity was observed in females as compared with males (44.8% versus 56.0%, 

respectively).  

To address these concerns, we sought to evaluate the generalizability of an AKI model trained at 

the VA in patient populations with a more balanced sex composition. Due to computational 

constraints within the VA computing environment, we aimed to approximate the gradient-

boosted decision tree (GBDT) model reported in the DeepMind study rather than the primary 

recurrent neural network, with the rationale that even the GBDT outperformed previous models 

with an AUC of 88.9%. Drawing on electronic health record (EHR) data from 278,813 US 

veterans, we approximated aspects of this model, including data preprocessing, feature selection, 

transformation of hospitalization data to 6 h person–period intervals, and outcome definitions. 

Areas where our approach differed from the original study are detailed in Differences between 

our model and the DeepMind GBDT model. We further assessed the model’s generalizability in 

a large academic center using sex-balanced data from another 165,359 hospitalizations. Finding 

that the model performs worse in females, we evaluated an approach to updating the model to 
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correct for this discrepancy. Both our reconstructed model and the corrected model are publicly 

available55.  

2.2 Methods 

2.2.1 Study Cohorts 

Our study used data from two cohorts: a national VA cohort drawing on data from 118 VA 

hospitals, and a UM cohort. We have complied with all relevant ethical regulations. The study 

was approved by the institutional review boards of the VA Ann Arbor Healthcare System and the 

UM Medical School, and the need for informed consent was waived.  

2.2.2 National VA Cohort 

We collected clinical data on all adult patients admitted at a VA hospital between 1 October 

2016 and 30 September 2017. Starting with a cohort of 280,985 US veterans hospitalized 

between 1 October 2016 and 30 September 2017, we excluded patients who did not have 

creatinine checked at baseline or during their stay (defined in Predictor Variables), had pre-

existing end stage renal disease or had a baseline creatinine of >4.0 mg/dL (because they may 

have had pre-existing AKI stage 3). Only the first hospitalization for each patient was included in 

the analysis. The final VA cohort consisted of 278,813 patients, which was randomly divided 

into training (64%), validation (16%) and test (20%) sets at the patient level.  

2.2.3 UM Cohort 

We collected clinical data from all adult patients admitted to UM from 1 January 2016 to 31 

December 2020. The same exclusion criteria as used in the VA cohort were applied to the UM 

cohort, though all hospitalizations (not only the first) were included. The final UM cohort 
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consisted of 165,359 hospitalizations. Anticipating the need for updating of the VA model at 

UM, we randomly selected 60% of hospitalizations (sampled at the patient level) for the test set, 

and set aside the remaining 40% for model updating, which was divided equally into a training 

(20%) and a validation (20%) set.  

2.2.4 Predictor Variables 

We collected both fixed predictors (that is, baseline variables) and time-varying predictors (that 

is, variables measured on a repeated basis during a hospitalization) in both cohorts. Fixed 

predictors included age, height, weight, body mass index, 17 comorbidities, admission to a 

surgical service, intensive care unit status and baseline sCr, all of which were captured at the 

time of admission. Age was top-coded at 89 yr. Baseline height and weight were calculated as 

the mean value from the 3 yr preceding admission for VA patients, and the most recent value 

within the past year for UM patients. If no recent value was identified for UM patients, the first 

inpatient measurement was used. Height and weight measurements were converted into inches 

and pounds, respectively, and extreme values were removed. Baseline body mass index was 

calculated using the baseline height and baseline weight. Comorbidities were calculated with the 

Charlson comorbidity index using data from 1 yr before admission for VA patients and from the 

current encounter for UM patents56. Baseline sCr was determined by the following order of 

preference: (1) mean outpatient sCr between 7 and 365 d before admission and (2) within 7 d 

before admission, and (3) first inpatient sCr test for VA patients or first documented sCr value 

within 24 h of admission for UM patients.  

Time-varying predictors consisted of inpatient vital signs, laboratory test results and 

administration of medications. Twenty-six laboratory testing components (serum albumin, 

alkaline phosphatase, alanine aminotransferase, aspartate transaminase, total and direct bilirubin, 
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blood urea nitrogen, serum calcium, carbon dioxide, serum chloride, serum glucose, high-density 

lipoprotein cholesterol, hematocrit, hemoglobin A1c, hemoglobin, international normalized ratio, 

low-density lipoprotein cholesterol, microalbumin-to-creatinine ratio, serum phosphate, platelet 

count, serum potassium, sCr, serum sodium, total cholesterol, triglyceride and total white blood 

cell count) were selected due to universal use across different health systems. Eight vital signs 

(inpatient weight, systolic blood pressure, diastolic blood pressure, respiratory rate, temperature, 

pulse, blood oxygen level and central venous pressure) were pulled regardless of the frequency 

of measurement. Administration of medications was examined for 11 drug classes 

(aminoglycosides, sympathomimetics, beta blockers, alpha blockers, calcium channel blockers, 

antilipemic agents, loop diuretics, angiotensin-converting enzyme inhibitors, angiotensin II 

inhibitors, non-ionic contrast media and non-salicylate antirheumatic non-steroidal anti-

inflammatory drugs) as opposed to individual medications.  

2.2.5 Data Preprocessing and Feature Engineering 

Physiologically infeasible values (for example, due to a laboratory error) were excluded. 

Microalbumin-to-creatinine ratios were set to 0 when values were reported only in a text field 

based on the observation that the text fields reported such values as being below the detectable 

range. Data elements were time-stamped using the time when values became available to the 

EHR (that is, the observation time). The description of variables, the associated units and valid 

ranges are shown in Supplemental Table 2.1. 

After extracting the fixed and time-varying predictors, we captured patient states at 6 h intervals 

beginning with the time of admission for each patient in a manner similar to that of the 

DeepMind AKI study. Patient states were captured up until the final creatinine value, discharge 

or death, and truncated at 7 d of hospitalization due to computational constraints. For each 6 h 
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interval, summary statistics (length, minimum, mean, median, maximum) were calculated for the 

preceding 48 h divided into 6 h windows for vital signs and laboratory test results. Using these 

summary statistics, additional variables were created based on clinical relevance: the ratio of the 

most recent maximum sCr to baseline sCr, the difference between the most recent maximum sCr 

and baseline sCr, and the ratio of most recent maximum blood urea nitrogen to most recent 

maximum sCr. These three sCr-based predictors, time (h) from admission and current AKI stage, 

plus the summary statistics of temporal predictors in the given windowed lookback period, 

together with the fixed predictors, were used as the full set of 1,467 predictors. The preparation 

of predictors at the VA and UM followed the same procedures, with the only exception for 

central venous pressure predictors. Central venous pressure information is not available at UM. 

Hence, central venous pressure-based predictors were manually added to the predictor set and 

were all set to missing. The number of administered medications was calculated for the 

preceding week (7 d) divided into 24 h sliding windows. More details can be found in 

Supplemental Table 2.1. A visual representation of the feature engineering process 

is shown in Figure 2.1. 
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Figure 2.1 Representation of the EHR data for the proposed model.  

Representation of the EHR data for our model. EHR data available for each hospitalization were prepared to make an AKI risk 
prediction every 6 h from the time of hospital admission and up to 7 d from admission. For each prediction, baseline predictors 
and temporal predictors (medications; laboratory results and vital signs; time, current AKI stage, sCr difference from baseline 
sCr, sCr ratio to baseline sCr, and blood urea nitrogen (BUN) to sCr ratio) were prepared and used together to estimate the 
outcome (AKI stage) in the next 48 h.  

2.2.6 Outcome Definition 

AKI was defined and staged for severity according to the Kidney Disease: Improving Global 

Outcomes international guidelines16. The outcome was calculated on a rolling basis at 6 h 

intervals by comparing the maximum sCr value in the 48 h prediction window with the baseline 

sCr. Stage 1 AKI was defined as a sCr level increase of ≥0.3 mg/dL, but less than twice the 

baseline sCr or an increase of 1.5 times baseline. Stage 2 AKI reflected an increase of two to 

three times the baseline, and stage 3 AKI was an sCr level increase greater than three times 

baseline or an increase to ≥4.0 mg/dL. Stage 3D was determined based on the need for dialysis, 

where the time of first dialysis was determined based on diagnosis, procedure and clinic stop 

codes during hospitalization at the VA, and using procedure codes at UM. Thus, for every 6 h 

interval in which patient states were captured, outcomes were defined as one of five classes 
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based on the 48 h prediction window: no AKI, AKI stage 1, AKI stage 2, AKI stage 3 or AKI 

stage 3D. While models were trained using this multinomial outcome, results reported by AKI 

stages were grouped according to level of severity. For example, AKI stage 1+ is used to refer to 

any AKI stage, and AKI stage 2+ refers to AKI stage 2 or greater (including stages 3 and 3D).  

2.2.7 Model Development 

In the original study, Tomašev et al. selected a ‘simple’ recurrent neural network as their primary 

model, which achieved an AUC of 92.1% in their test set. Tomašev and colleagues also 

evaluated 11 other neural network architectures, two tree ensembles and a logistic regression 

model, all of which performed better than previous studies. For example, the GBDT achieved an 

AUC of 88.9%, which still outperforms previously published models. While Tomašev et al. had 

access to a deidentified dataset, which allowed them to use DeepMind’s computing infrastructure 

to train deep learning models, our team was restricted to using the VA’s VINCI platform, which 

lacks the graphical processing units needed to efficiently train deep learning models. Thus, we 

opted to approximate the GBDT model from the Tomašev study.  

The GBDT model was trained on the VA training set to predict AKI stage in the next 48 h as a 

multinomial outcome (that is, ‘no AKI’, ‘AKI stage 1’, ‘AKI stage 2’, ‘AKI stage 3’, ‘AKI stage 

3D’) using 1,467 predictors at each 6 h step with a maximum of 1,000 trees and a maximum 

depth of 5. The VA validation set was used to determine the need for early stopping based on an 

improvement in log loss lower than 0.0005 on five consecutive rounds based on a moving 

average calculated after every ten trees. The categorical predictors were reordered by the mean 

response of each level for more efficient training. Internally, a separate one-versus-all tree was 

trained for each outcome class. Using a learning rate of 0.1, the trained VA AKI model stopped 

training at 160 trees (internally represented as 160 trees per class). Lower learning rates (0.01 
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and 0.001) produced more trees (because more trees were needed to achieve convergence) but 

achieved similar results (that is, AUC), so will not be presented here.  

2.2.8 Differences between Our Model and the DeepMind GBDT Model 

There are differences worth highlighting between our modelling process and that in the work of 

Tomašev et al. First, whereas Tomašev et al. trained separate models for each stage of AKI as a 

binary outcome (for example, no AKI versus AKI 1+, up to AKI stage 1 versus 2+, and so on), 

we modelled the outcome as a multinomial outcome with five possible outcome states. Patients 

who developed stage 1 AKI were not excluded from model training because they were still at 

risk for developing AKI stages 2, 3 and 3D. The inclusion of post-AKI states also allowed the 

model to account for AKI recovery, which is important for generating well calibrated outcome 

probabilities. Indeed, whereas the DeepMind recurrent neural network model required 

recalibration in the original paper, our model’s probabilities were relatively well calibrated 

without recalibration (Supplemental Figure 2.1). Although we used a multinomial outcome, the 

H2O implementation of GBDT implements multinomial outcomes as a series of one-versus-all 

trees. Thus, internally, both our approach and the DeepMind GBDT considered the risk of each 

stage of AKI as a binary outcome. 

Second, whereas Tomašev et al. used 3,599 engineered features in their final model, our model 

used 1,467 features. These differences can be attributed to which features were included as well 

as how they were represented. Our model lacked billing and procedure codes due to 

computational constraints. While the DeepMind model represented each feature in each window 

using a series of histogram bins, we represented each feature using summary statistics. Because 

the VA dataset is quite sparse (any given 6 h window has very few observations), we do not 

believe that this approximation substantially harms the performance.  
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2.2.9 Model Evaluation 

The performance of the GBDT model was evaluated in both the VA test set and the UM test set. 

The model discrimination was assessed by using the AUC. The AUC was reported both as a 

multinomial outcome using the method of Hand and Till57, and as a series of binary AUCs where 

at-risk individuals were evaluated on their risk of progression to a higher AKI stage. For 

example, patients without any AKI to date were evaluated on their risk of developing any AKI 

(that is, stage 1 or greater), patients with no AKI or AKI stage 1 were evaluated on their risk of 

developing AKI stage 2 or greater, and so on. The 95% CIs were generated using 200 bootstrap 

resamples for the multiclass AUCs and DeLong’s method for binary AUCs58. Our primary 

finding is the AUC calculated when treating each prediction independently in its ability to 

predict AKI in the next 48 h, which is closely comparable to the way AUC was calculated in the 

DeepMind study. We evaluated model calibration by comparing deciles (ten bins) of predicted 

probabilities with observed risk. We also used expected calibration error (ECE) as a scalar metric 

to measure model calibration. ECE is defined as the weighted average over the absolute 

difference between observed risks and predicted probabilities, formulated as 

𝐸𝐶𝐸 = ∑ !!
"
|𝑅#$%&'(&) − 𝑃*'&)+,-&)./

01. | 

where m represents the number of the bin, nm, Robserved and Ppredicted represent total number of 

predictions, observed risk and predicted probability within each bin, respectively, and N 

represents the total number of predictions in the group (all/female/male) examined.  

Because the make-up of the VA population is different from other hospitals (for example, 94% 

male), we examined model performance across sexes and racial groups.  

2.2.10 Updating the Model with UM Data 
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Given previous concerns that models trained at the VA may not generalize to broader 

populations, we updated the VA model using a UM training/validation set that was set aside 

before model evaluation (as described in Study Cohorts). Starting with the original 160-tree 

GBDT model trained only in the VA population, we continued to train it using the UM training 

set, with a similar early stopping strategy based on a lack of log loss improvement of 0.0001 

after five consecutive rounds in the UM validation set. This updated model (which we refer to as 

the ‘extended model’ to indicate that it includes a portion of the original VA model) added 10 

more trees on top of the original 160 trees, resulting in a total of 170 trees. The updated model 

was then evaluated in both the UM and VA test sets.  

2.2.11 Matching UM Females to VA Female Patients 

To address whether these differences in patient characteristics could explain this performance 

discrepancy, we matched female patients in the UM test with females at the VA. We used the 

tilted bootstrap method (as implemented in the tboot R package59) to match UM test set female 

patients to VA female patients by mean age, proportion of white patients, proportion of baseline 

chronic kidney disease and proportion of baseline congestive heart failure. Because the method 

involves bootstrapping, patients may be included in the matched cohort multiple times. Matching 

at UM was performed using summary statistics from the VA. We could not perform 1:1 patient-

level matching because the VA and UM datasets could not be analyzed in the same computing 

environment due to security restrictions.  

2.2.12 Variable Importance 
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We assessed variable importance using each variable’s squared influence within the GBDT 

algorithm aggregated over the tree ensemble60. Variable importances for the original and 

extended models are provided in Supplemental Figure 2.2.  

2.2.13 Software 

SAS 9.3 was used to pull data from the VA, and R with dbplyr 2.1.1 was used to pull data from 

UM. All data processing and analyses were performed using R 4.0.5 at the VA and R 3.6.1 at 

UM61. Transformation of time-series data was performed using the Grammar of Prediction 

(gpmodels) R package62. H2O version 3.32.1.3 was used to fit the GBDT model63. We did not 

use XGBoost (which was used in the DeepMind study) because, while H2O and XGBoost 

achieve comparable performance for their respective GBDT implementations, H2O’s 

implementation is more memory efficient64, which was a requirement when using the VA’s 

VINCI computing platform. 

2.3 Results 

2.3.1 Cohort Characteristics 

We identified 278,813 VA hospitalizations (from 118 VA hospitals) and 165,359 University of 

Michigan (UM) hospitalizations meeting inclusion and exclusion criteria. Only the first 

hospitalization was included for VA patients, whereas all eligible hospitalizations were included 

for 97,506 UM patients. As compared with UM, patients with VA hospitalizations were more 

likely to be male (94% versus 50%), older (mean 69 versus 57) and Black (20% versus 11%) and 

to have diabetes (36% versus 29%). On the other hand, UM patients were more likely to have 

normal baseline kidney function (baseline estimated glomerular filtration rate (eGFR) ≥ 60 ml 

min−1/1.73 m2, 81% versus 73%) and a longer length of stay (mean 6.6 versus 5.3 d), leading to 
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more 6 h periods per patient (18 versus 15) calculated over a maximum of 7 d of hospitalization 

(Table 2.1).  

 

Table 2.1 Characteristics of the VA and UM cohorts. 

Cohort VA UM 

 Training Validation Test Training Validation Test 

Characteristic N = 178,453 N = 44,614 N = 55,746 
N = 33,077 (19,501 

patients) 

N = 33,034 (19,501 

patients) 

N = 99,248 (58,504 

patients) 

Age (years) 68.8 (13.1) 68.9 (13.1) 68.8 (13.1) 57.3 (18.2) 57.2 (18.2) 56.8 (18.2) 

Sex       

Female 10,083 (5.7%) 2,557 (5.7%) 3,119 (5.6%) 16,381 (49.5%) 16,605 (50.3%) 49,280 (49.7%) 

Male 168,370 (94.3%) 42,057 (94.3%) 52,627 (94.4%) 16,696 (50.5%) 16,429 (49.7%) 49,968 (50.3%) 

Race       

African American 35,171 (19.7%) 8,791 (19.7%) 10,990 (19.7%) 3,361 (10.2%) 3,794 (11.5%) 11,036 (11.1%) 

Caucasian 120,962 (67.8%) 30,308 (67.9%) 37,835 (67.9%) 27,594 (83.4%) 27,277 (82.6%) 82,164 (82.8%) 

Other 15,038 (8.4%) 3,742 (8.4%) 4,696 (8.4%) 1,733 (5.2%) 1,621 (4.9%) 4,899 (4.9%) 

Unknown 7,282 (4.1%) 1,773 (4.0%) 2,225 (4.0%) 389 (1.2%) 342 (1.0%) 1,149 (1.2%) 

Baseline BMI 29.6 (6.7) 29.6 (6.6) 29.5 (6.6) 28.8 (6.7) 28.8 (6.9) 28.9 (6.8) 

Unknown 12,519 (7.0%) 3,033 (6.8%) 3,808 (6.8%) 1,898 (5.7%) 1,944 (5.9%) 5,921 (6.0%) 

Baseline serum 

creatinine (mg/dL) 
1.1 (0.4) 1.1 (0.4) 1.1 (0.4) 1.0 (0.4) 1.0 (0.4) 1.0 (0.4) 

Baseline eGFR* 

(mL/min/1.73 m2) 
      

≥ 60 131,108 (73.5%) 32,836 (73.6%) 40,874 (73.3%) 27,016 (81.7%) 26,813 (81.2%) 80,530 (81.1%) 

45-59 27,100 (15.2%) 6,761 (15.2%) 8,651 (15.5%) 3,192 (9.7%) 3,339 (10.1%) 9,894 (10.0%) 

30-44 14,686 (8.2%) 3,631 (8.1%) 4,481 (8.0%) 1,957 (5.9%) 1,945 (5.9%) 5,988 (6.0%) 

15-29 5,470 (3.1%) 1,365 (3.1%) 1,706 (3.1%) 872 (2.6%) 905 (2.7%) 2,727 (2.7%) 

< 15 89 (0.0%) 21 (0.0%) 34 (0.1%) 40 (0.1%) 32 (0.1%) 109 (0.1%) 

Baseline diabetes 64,844 (36.3%) 16,174 (36.3%) 20,143 (36.1%) 9,707 (29.3%) 9,558 (28.9%) 28,922 (29.1%) 

Baseline congestive heart 25,905 (14.5%) 6,443 (14.4%) 8,019 (14.4%) 8,396 (25.4%) 8,747 (26.5%) 26,180 (26.4%) 
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failure 

Baseline liver disease 16,672 (9.3%) 4,214 (9.4%) 5,349 (9.6%) 6,469 (19.6%) 6,541 (19.8%) 19,606 (19.8%) 

Surgical service 41,673 (23.4%) 10,367 (23.2%) 13,035 (23.4%) 5,773 (17.5%) 5,666 (17.2%) 16,815 (16.9%) 

Admitted to ICU 13,075 (7.3%) 3,346 (7.5%) 4,180 (7.5%) 2,753 (8.3%) 2,917 (8.8%) 8,167 (8.2%) 

Length of stay (days) 5.3 (12.2) 5.3 (12.5) 5.4 (14.2) 6.6 (7.8) 6.7 (8.6) 6.6 (8.3) 

Number of 6-hour 

windows** 
15.1 (9.0) 15.1 (8.9) 15.1 (9.0) 18.4 (8.6) 18.3 (8.7) 18.3 (8.7) 

Statistics presented: mean (SD); n (%) 

* Calculated based on CKD-EPI Creatinine Equation (2021) 

** Calculated based on a maximum of 7-day hospitalization stay 

 

Table 2.2 AKI incidence in the VA and UM cohorts, by acute kidney injury stage, by sex. 

Outcome VA (all) UM (all) 

 All Female Male All Female Male 

Hospitalization level       

AKI-1+ 
10.39% 

(25,978/250,103) 

6.04% 

(890/14,741) 

10.66% 

(25,088/235,362) 

16.10% 

(26,529/164,774) 

13.79% 

(11,307/82,009) 

18.39% 

(15,222/82,765) 

AKI-2+ 
1.52% 

(4,127/271,850) 

1.11% 

(171/15,463) 

1.54% 

(3,956/256,387) 

3.93% 

(6,494/165,192) 

3.55% 

(2,917/82,184) 

4.31% 

(3,577/83,008) 

AKI-3+ 
0.82% 

(2,244/275,030) 

0.60% 

(94/15,613) 

0.83% 

(2,150/259,417) 

1.76% 

(2,914/165,276) 

1.46% 

(1,198/82,227) 

2.07% 

(1,716/83,049) 

AKI-3D 
0.31% 

(278,799) 

0.13% 

(21/15,758) 

0.33% 

(856/263,041) 

0.23% 

(388/165,338) 

0.18% 

(152/82,260) 

0.28% 

(236/83,078) 

Multiclass predictions, every 6 hours N = 4,213,375 N = 215, 923 N = 3,997,452 N = 3,033,165 N = 1,478,583 N = 1,554,582 

No AKI 
3,277,669 

(77.8) 

185,228 

(85.8) 

3,092,441 

(77.4) 

2,723,535 

(89.8) 

1,350,169 

(91.3) 

1,373,366 

(88.3) 

AKI-1 
737,264 

(17.5) 

22,690 

(10.5) 

714,574 

(17.9) 

231,626 

(7.6) 

94,951 

(6.4) 

136,675 

(8.8) 

AKI-2 
87,500 

(2.1) 

3,801 

(1.8) 

83,699 

(2.1) 

39,700 

(1.3) 

18,614 

(1.3) 

21,086 

(1.4) 

AKI-3 
93,376 

(2.2) 

3,757 

(1.7) 

89,619 

(2.2) 

30,444 

(1.0) 

11,912 

(0.8) 

18,532 

(1.2) 

AKI-3D 
17,566 

(0.4) 

447 

(0.2) 

17,119 

(0.4) 

7,860 

(0.3) 

2,937 

(0.2) 

4,923 

(0.3) 
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Binary predictions for each stage 

among patients who have not reached 

that stage, every 6 hours 

      

AKI-1+ 
3.55% 

(120,255/3,386,277) 

2.22% 

(4,191/189,054) 

3.63% 

(116,064/3,197,223) 

3.76% 

(97,197/2,583,269) 

3.18% 

(40,973/1,288,611) 

4.34% 

(56,224/1,294,658) 

AKI-2+ 
0.41% 

(16,323/4,029,154) 

0.35% 

(722/208,549) 

0.41% 

(15,601/3,820,605) 

0.87% 

(25,286/2,921,450) 

0.76% 

(10,922/1,428,256) 

0.96% 

(14,364/1,493,194) 

AKI-3+ 
0.21% 

(8,700/4,109,724) 

0.19% 

(404/212,042) 

0.21% 

(8,296/3,897,682) 

0.39% 

(11,767/2,983,230) 

0.31% 

(4,566/1,457,716) 

0.47% 

(7,201/1,525,514) 

AKI-3D 
0.12% 

(5,116/4,200,925) 

0.06% 

(140/215,616) 

0.12% 

(4,976/3,985,309) 

0.08% 

(2,367/3,027,672) 

0.06% 

(925/1,475,646) 

0.09% 

(1,442/1,549,659) 

 

The incidence of AKI differed in the two cohorts and in individual sex groups (Table 2.2). 

Among patients without AKI on presentation to the hospital, 10.4% (25,978/250,103) developed 

AKI during their hospitalization at the VA, whereas at UM AKI occurred in 16.1% 

(26,529/164,774) of hospitalizations. Male patients were more likely to experience AKI than 

females in both cohorts (10.6% versus 5.6% at the VA, and 18.4% versus 13.8% at UM).  

While the model was trained on all windows (including those in which AKI had already 

occurred), the model was evaluated on only those windows in which patients had not yet 

experienced the outcome. At the 6 h window level, the incidence of new-onset AKI in the test set 

was 3.53% at the VA and 3.76% at UM (Table 2.3).  

 

Table 2.3 Model performance (AUC) of the original VA model at VA and UM, by outcome stage, by sex. 

Outcome 
VA Test AUC 

(95% CI) 

UM Test AUC 

(95% CI) 

 All Female Male All Female Male 

Multiclass       

Original VA 

model 

0.9742  

(0.9718, 0.9770) 

0.9691 

 (0.9413, 0.9846) 

0.9744  

(0.9721, 0.9777) 

0.8685  

(0.8644, 0.8726) 

0.8689  

(0.8612, 0.8738) 

0.8680 

 (0.8620, 0.8740) 
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AKI-1+       

Incidence 
3.53% 

(23,957/678,516) 

2.00% 

(745/37,226) 

3.62  

(23,212/641,290) 

3.76%  

(58,382/1,551,354) 

3.18%  

(24,585/772,665) 

4.34%  

(33,797/778,689) 

Original VA 

model 

0.8196  

(0.8168, 0.8223) 

0.7943  

(0.7770, 0.8116) 

0.8194 

 (0.8166, 0.8222) 

0.8469 

 (0.8453, 0.8484) 

0.8477  

(0.8453, 0.8501) 

0.8439  

(0.8419, 0.846) 

AKI-2+       

Incidence 
0.41%  

(3,277/806,465) 

0.34%  

(139/40,855) 

0.41%  

(3,138/765,610) 

0.86%  

(15,076/1,753,474) 

0.75%  

(6,472/857,809) 

0.96%  

(8,604/895,665) 

Original VA 

model 

0.7741 

 (0.7656, 0.7825) 

0.7636  

(0.7191, 0.8080) 

0.7749 

 (0.7663, 0.7835) 

0.6550  

(0.6494, 0.6606) 

0.6504  

(0.6419, 0.6590) 

0.6622  

(0.6549, 0.6695) 

AKI-3+       

Incidence 
0.22%  

(1,775/821,316) 

0.21%  

(88/41,443) 

0.22%  

(1,687/779,873) 

0.39%  

(6,976/1,790,447) 

0.32%  

(2,780/875,621) 

0.46%  

(4,196/914,826) 

Original VA 

model 

0.8341 

 (0.8248, 0.8433) 

0.7111 

 (0.6520, 0.7703) 

0.8393 

 (0.8300, 0.8486) 

0.7981 

 (0.7919, 0.8044) 

0.7627 

 (0.7518, 0.7737) 

0.8271 

 (0.8198, 0.8345) 

AKI-3D       

Incidence 
0.11%  

(940/839,964) 

0.15%  

(61/42,071) 

0.11%  

(879/797,893) 

0.08%  

(1,412/1,817,604) 

0.07%  

(586/887,574) 

0.09%  

(826/930,030) 

Original VA 

model 

0.9497 

 (0.9429, 0.9565) 

0.8927 

 (0.8251, 0.9602) 

0.9537  

(0.9487, 0.9588) 

0.9558 

 (0.9507, 0.9609) 

0.9560  

(0.9480, 0.9641) 

0.9550 

 (0.9483, 0.9618) 

 

2.3.2 Model Discrimination and Calibration at the VA 

Among eligible 6 h windows (those in which the outcome had not already occurred), our GBDT 

model predicted any AKI in the next 48 h with an AUC of 82.0% (95% confidence interval (CI) 

81.7%, 82.2%) in the VA test set, which was lower than DeepMind’s observed AUC for a 

similar GBDT of 88.9% (95% CI 88.6%, 89.2%). The rationale behind our selection of a GBDT 

model is provided in Methods. The model’s AUCs for AKI stages 2+, 3+ and 3D were 77.4%, 

83.4% and 95.0%, respectively (full details in Table 2.3). The performance substantially varied 

between VA hospitals in the test set, with AUCs ranging from 61.5% to 98.5%, suggesting that 
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even a high-performing model may not generalize across all VA sites (Supplemental Figure 

2.3). Overall, the model was well calibrated for all levels of AKI (Supplemental Figure 2.1a).  

However, the model overestimated the risk of AKI-1+ in females as compared with males 

(Supplemental Figure 2.1a). The model also had worse discrimination in females when 

predicting AKI-3+ and 3D, with AUCs of 71.1% for AKI-3+ (as compared with 83.9% in males) 

and 89.3% for AKI-3D (as compared with 95.4% in males).  

2.3.3 Generalizability of the AKI Model at UM 

Among eligible windows, the GBDT model predicted any AKI in the next 48 h in the UM test 

set with an AUC of 84.7% (95% CI 84.5%, 84.8%), which was higher than the AUC of 82.0% 

we observed in the VA test set. In the UM test set, the model’s AUCs for AKI stages 2+, 3+ and 

3D were 65.5%, 79.8% and 95.6%, respectively (full details in Table 2.3). While the model 

appeared to generalize well overall, there was a marked difference in AUC for stage 2+ AKI 

(65.5% at UM versus 77.4% at the VA).  

The model generally overestimated the risk of AKI at all stages, and this finding was worse in 

females as compared with males (Supplemental Figure 2.1b and Supplemental Table 2.2). 

Also, similar to our finding in the VA test set, the model performed worse in females when 

predicting AKI stage 3+, with an AUC of 76.3% in females as compared with 82.7% in males 

(Table 2.3).  

2.3.4 Understanding the Differential Performance by Sex 

Because the VA population consists of 94% males, one potential reason for the worse 

performance observed in females is the relatively small number of females who progressed to 

AKI stage 3+ (n = 94 in the entire VA cohort, Table 2.2). If the worse performance in females 
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was primarily attributable to the lower number of events observed during training, then updating 

the model using data from a sex-balanced population should improve the model’s performance in 

females. Thus, starting with our 160-tree GBDT model, we continued to further train it using the 

UM training cohort (in which 50% are females), with early stopping determined based on the 

UM validation cohort (as described in Methods). This process added ten trees to the original 

model, and we refer to this updated model as the ‘extended model’ to highlight that this 170-tree 

model contains the original 160 trees within it, and is thus an extension of the original model.  

Remarkably, this small extension to the original model improved the performance in the UM test 

set both overall and between sexes (Table 2.4). Whereas the original model had poorly predicted 

AKI 2+ at UM (AUC 65.5%), the extended model performs much better on the UM test set 

(AUC 81.8%). At AKI stage 3+, where the original model exhibited the largest difference 

between females and males (AUC 76.3% versus 82.7%), the performances were much more 

similar in the extended model (AUC 85.5% for females and 88.6% for males). The overall 

calibration was also better in the UM test set (Supplemental Figure 2.4 and Supplemental 

Table 2.3). While this mechanism of updating a base model in a local population is a promising 

approach to correcting issues related to model generalizability, the small sample of females used 

to train the original model does not entirely explain the differential performance by sex. When 

the extended model was re-evaluated on the VA test set, its performance was worse in females, 

with an AUC for AKI 3+ of 69.1% in females as compared with 82.8% in males (Table 2.5).  

 

Table 2.4 Model performance (AUC) of the extended VA model at UM, by outcome stage, by sex. 

Outcome 
UM Test AUC 

(95% CI) 

 All Female Male 
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Multiclass    

Extended VA model 0.8780 (0.8749, 0.8826) 0.8757 (0.8697, 0.8813) 0.8795 (0.8752, 0.8850) 

AKI-1+    

Extended VA model 0.8523 (0.8508, 0.8538) 0.8535 (0.8512, 0.8559) 0.8490 (0.8470, 0.8510) 

AKI-2+    

Extended VA model 0.8181 (0.8138, 0.8224) 0.8135 (0.8070, 0.8200) 0.8236 (0.8179, 0.8292) 

AKI-3+    

Extended VA model 0.8722 (0.8666, 0.8778) 0.8554 (0.8461, 0.8647) 0.8858 (0.8790, 0.8927) 

AKI-3D    

Extended VA model 0.9346 (0.9258, 0.9433) 0.9402 (0.9271, 0.9532) 0.9297 (0.9178, 0.9415) 

 

Table 2.5 Model performance (AUC) of the extended VA models at VA, by outcome stage, by sex. 

Outcome 
VA Test AUC 

(95% CI) 

 
All Female Male 

Multiclass    

Extended VA model 
0.9530 

(0.9501, 0.9574) 
0.9474 

(0.9208, 0.9653) 
0.9531 

(0.9506, 0.9579) 

AKI-1+    

Extended VA model 
0.8178 

(0.8150, 0.8178) 
0.7892 

(0.7717, 0.8067) 
0.8178 

(0.8150, 0.8206) 

AKI-2+    

Extended VA model 0.7593 
(0.7507, 0.7679) 

0.7432 
(0.6976, 0.7888) 

0.7602 
(0.7515, 0.7690) 

AKI-3+    

Extended VA model 
0.8230 

(0.8131, 0.8329) 
0.6907 

(0.6318, 0.7495) 
0.8284 

(0.8184, 0.8384) 

AKI-3D    

Extended VA model 0.9355 
(0.9261, 0.9450) 

0.8925 
(0.8252, 0.9599) 

0.9385 
(0.9298, 0.9472) 
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Differences in model performance were not observed between racial groups (Table 2.6 and 

Table 2.7), potentially because the VA population includes a relatively high proportion of Black 

patients.  

 

Table 2.6 Model performance (AUC) of the original and extended VA models at VA, by outcome stage, by race. 

Outcome 
VA Test AUC 

(95% CI) 

 
All Caucasian African American Other Unknown 

Multiclass      

Original VA model 
0.9742 

(0.9718, 0.9770) 

0.9729 

(0.9686, 0.9759) 

0.9758 

(0.9704, 0.9812) 

0.9796 

(0.9740, 0.9842) 

0.9714 

(0.9603, 0.9809) 

Extended VA model 
0.9530 

(0.9501, 0.9574) 

0.9506 

(0.9450, 0.9544) 

0.9563 

(0.9498, 0.9633) 

0.9591 

(0.9528, 0.9664) 

0.9526 

(0.9375, 0.9638) 

AKI-1+      

Incidence 
3.53% 

(23,957/678,516) 

3.47% 

(16,115/463,936) 

3.78% 

(4,825/127,634) 

3.43% 

(2,017/58,830) 

3.56% 

(1,000/28,116) 

Original VA model 
0.8196 

(0.8168, 0.8223) 

0.8217 

(0.8184, 0.8250) 

0.8109 

(0.8047, 0.8171) 

0.8174 

(0.8078, 0.8269) 

0.8277 

(0.8137, 0.8417) 

Extended VA model 
0.8178 

(0.8150, 0.8206) 

0.8196 

(0.8162, 0.8230) 

0.8109 

(0.8046, 0.8171) 

0.8145 

(0.8048, 0.8241) 

0.8264 

(0.8124, 0.8404) 

AKI-2+      

Incidence 
0.41% 

(3,277/806,465) 

0.36% 

(1,997/548,168) 

0.49% 

(761/155,339) 

0.57% 

(393/69,438) 

0.38% 

(126/33,520) 

Original VA model 
0.7741 

(0.7656, 0.7825) 

0.7596 

(0.7485, 0.7707) 

0.7937 

(0.7767, 0.8107) 

0.8026 

(0.7820, 0.8233) 

0.8070 

(0.7625, 0.8514) 

Extended VA model 
0.7593 

(0.7507, 0.7679) 

0.7463 

(0.7351, 0.7575) 

0.7815 

(0.7644, 0.7986) 

0.7752 

(0.7525, 0.7980) 

0.7898 

(0.7423, 0.8373) 

AKI-3+      

Incidence 
0.22% 

(1,775/821,316) 

0.19% 

(1,040/557,294) 

0.27% 

(424/159,121) 

0.34% 

(238/70,859) 

0.21% 

(73/34,042) 

Original VA model 
0.8341 

(0.8248, 0.8433) 

0.8189 

(0.8067, 0.8312) 

0.8486 

(0.8281, 0.8691) 

0.8706 

(0.8524, 0.8889) 

0.8451 

(0.8042, 0.8861) 
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Extended VA model 
0.8230 

(0.8131, 0.8329) 

0.8103 

(0.7974, 0.8231) 

0.8375 

(0.8162, 0.8588) 

0.8442 

(0.8196, 0.8688) 

0.8418 

(0.7941, 0.8895) 

AKI-3D      

Incidence 
0.11% 

(940/839,964) 

0.10% 

(567/568,043) 

0.14% 

(225/164,387) 

0.12% 

(88/72,834) 

0.17% 

(60/34,700) 

Original VA model 
0.9497 

(0.9429, 0.9565) 

0.9500 

(0.9407, 0.9593) 

0.9332 

(0.9184, 0.9479) 

0.9696 

(0.9539, 0.9853) 

0.9684 

(0.9568, 0.9801) 

Extended VA model 
0.9355 

(0.9261, 0.9450) 

0.9350 

(0.9221, 0.9479) 

0.9153 

(0.8940, 0.9366) 

0.9644 

(0.9490, 0.9797) 

0.9632 

(0.9506, 0.9758) 

 

Table 2.7 Model performance (AUC) of the original and extended VA models at UM, by outcome stage, by race. 

Outcome 
UM Test AUC 

(95% CI) 

 All Caucasian African American Other Unknown 

Multiclass      

Original VA model 
0.8685 

(0.8644, 0.8726) 

0.8697 

(0.8649, 0.8742) 

0.8625 

(0.8500, 0.8714) 

0.8689 

(0.8421, 0.8861) 

0.8576 

(0.8375, 0.8916) 

Extended VA model 
0.8780 

(0.8749, 0.8826) 

0.8799 

(0.8755, 0.8850) 

0.8733 

(0.8622, 0.8806) 

0.8759 

(0.8529, 0.8936) 

0.8565 

(0.8385, 0.8885) 

AKI-1+      

Incidence 
3.76% 

(58,382/1,551,354) 

3.71% 

(47,489/1,281,347) 

4.22% 

(7,389/174,932) 

3.49% 

(2,688/77,092) 

4.54% 

(816/17,983) 

Original VA model 
0.8469 

(0.8453, 0.8484) 

0.8460 

(0.8443, 0.8477) 

0.8433 

(0.8390, 0.8476) 

0.8561 

(0.8491, 0.8631) 

0.8859 

(0.8762, 0.8957) 

Extended VA model 
0.8523 

(0.8508, 0.8538) 

0.8514 

(0.8497, 0.8531) 

0.8488 

(0.8446, 0.8530) 

0.8624 

(0.8555, 0.8693) 

0.8905 

(0.8811, 0.8999) 

AKI-2+      

Incidence 
0.86% 

(15,076/1,753,474) 

0.83% 

(12,064/1,445,319) 

1.01% 

(2,033/201,650) 

0.80% 

(686/86,207) 

1.44% 

(293/20,298) 

Original VA model 
0.6550 

(0.6494, 0.6606) 

0.6519 

(0.6456, 0.6581) 

0.6535 

(0.6383, 0.6687) 

0.6680 

(0.6412, 0.6948) 

0.7646 

(0.7312, 0.7980) 

Extended VA model 
0.8181 

(0.8138, 0.8224) 

0.8158 

(0.8110, 0.8205) 

0.8215 

(0.8101, 0.8330) 

0.8406 

(0.8210, 0.8601) 

0.8342 

(0.8040, 0.8644) 

AKI-3+      
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Incidence 
0.39% 

(6,976/1,790,447) 

0.37% 

(5,451/1,475,447) 

0.50% 

(1,038/206,309) 

0.40% 

(350/87,868) 

0.66% 

(137/20,742) 

Original VA model 
0.7981 

(0.7919, 0.8044) 

0.7925 

(0.7853, 0.7998) 

0.8187 

(0.804, 0.8333) 

0.8063 

(0.7776, 0.8349) 

0.8585 

(0.8190, 0.8979) 

Extended VA model 
0.8722 

(0.8666, 0.8778) 

0.8763 

(0.8701, 0.8826) 

0.8518 

(0.8366, 0.8670) 

0.8626 

(0.8367, 0.8885) 

0.8980 

(0.8632, 0.9327) 

AKI-3D      

Incidence 
0.08% 

(1,412/1,817,604) 

0.07% 

(981/1,496,642) 

0.12% 

(258/210,914) 

0.15% 

(134/89,093) 

0.19% 

(39/20,955) 

Original VA model 
0.9558 

(0.9507, 0.9609) 

0.9546 

(0.9483, 0.9609) 

0.9584 

(0.9503, 0.9666) 

0.9540 

(0.9354, 0.9725) 

0.9581 

(0.9082, 1) 

Extended VA model 
0.9346 

(0.9258, 0.9433) 

0.9375 

(0.9276, 0.9475) 

0.9332 

(0.9118, 0.9546) 

0.9299 

(0.9023, 0.9575) 

0.8748 

(0.7809, 0.9687) 

 

2.3.5 Role of Patient Characteristics in Performance Discrepancy 

The extended model’s worse performance in the VA population could be attributable either to 

differences in care patterns between females and males at the VA, or to differences in female 

patient characteristics at the VA and UM. As compared with females at the VA, females at 

UM were younger (UM, 55.2 (s.d. 19.1); VA, 58.4 yr (s.d. 14.6)) and less diverse (UM, 81.4% 

white; VA, 58.8% white), and were more likely to have baseline chronic kidney disease (eGFR < 

30 at UM, 3.1%; VA, 2.0%) and congestive heart failure (UM, 23.2%; VA, 6.5%), but had 

similar body mass indices (UM, 29.1 (s.d. 7.4); VA, 30.7 (s.d. 7.4)) and a similar rate of diabetes 

mellitus (UM, 26.2%; VA, 24.0%) (Supplemental Table 2.4).  

To address whether these differences in patient characteristics could explain this performance 

discrepancy, we matched female patients in the UM test with females at the VA. Details of the 

matching process are discussed in Methods. We then compared the extended model’s 

performance (which was updated on the UM training set) in the subgroup of UM test set females 
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who most closely resembled VA females (Supplemental Table 2.4). If the differences in patient 

characteristics accounted for the differences in model performance, then we would expect the 

model performance in this UM test set subpopulation to mirror the VA test set. On the contrary, 

the model performance in this matched UM test set was much more similar to the overall UM 

test set than to the VA population (Supplemental Table 2.5). 

2.4 Discussion 

In our study, drawing on a population of US veterans from over 100 VA hospitals, we observed 

an AUC for predicting any AKI in the next 48 h of 82.0% in a national VA cohort, which was 

lower than the AUC of 88.9% for a similar GBDT described in the DeepMind paper. At lower 

stages of AKI, we found the model to be miscalibrated in females, which could align with the 

DeepMind team’s finding of a lower sensitivity in females as compared with males. However, 

we also uncovered a lower AUC in females as compared with males in higher stages of AKI, a 

difference that was not evaluated in the DeepMind study. This difference persists when the VA-

trained model is transported to a large academic hospital. While further training on a sex-

balanced cohort improved the discrepancy in model performance at the academic hospital, it 

worsened the discrepancy in model performance at the VA, suggesting that the lower 

performance in females is related to factors other than simply a low number of events observed 

during training at the VA.  

Our finding that a modelling strategy relying on only VA data results in worse performance in 

females is troubling. Had the differences been attributable solely to the small sample size of 

females observed during training, these differences should have been correctable by updating the 

model using information from a sex-balanced cohort as was present at our academic hospital. 

However, updating the model actually worsened this discrepancy at the VA, which suggests that 
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other factors such as practice patterns or patient characteristics for females treated at the VA may 

account for this difference in the VA context. Practice patterns appear to be a more likely 

explanation because the updated model continued to perform better at UM even when the 

analysis was limited to a UM subgroup that most closely resembled VA females. A low number 

of events in the VA test set remains a possible source of measurement error.  

Our work has limitations that may affect our findings. While we approximated aspects of the 

DeepMind study, including similar inclusion and exclusion criteria, a similar modelling strategy 

and the inclusion of many of the same predictors (Supplemental Table 2.4), we were unable to 

include International Classification of Diseases, Ninth Revision (ICD-9) codes and clinical note 

headings as predictors in our model due to computational constraints within the VA computing 

environment. Billing codes also undergo periodic updates, which can result in models becoming 

outdated. By the time the DeepMind study was published, ICD-9 codes had been replaced with 

ICD-10 codes, and the implementation of ICD-11 codes is already underway65. ICD-9 codes 

were known to be an important component of the DeepMind AKI model. For example, 

‘malignant neoplasm of [the] kidney’ was reported as one of the top features in the original 

study31, possibly because this billing code foreshadows an imminent nephrectomy or renal artery 

embolization.  

Our work also has important implications. While sex and gender inequalities in healthcare 

machine learning models have long been suspected, we provide definitive evidence that this 

phenomenon can and does occur, and that it is complex, not simply explained away by a low 

sample size seen during model training. We also show promising results that some of these 

differences attributable to models trained in imbalanced populations can be mitigated through 

further training on a balanced population, which means that base models trained in a large 
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population may be capable of being fine-tuned through a relatively simple mechanism in tree 

ensemble models. In the interest of promoting transparency, we have made our original and 

extended models publicly available55. 

2.5 Data Availability 

This study used data from the national Veterans Health Administration’s Corporate Data 

Warehouse and the University of Michigan. Analyses were performed in secure locations within 

the VA and UM information systems, respectively. The data in this study are not publicly 

available because they contain protected health information, and restrictions apply to their use. A 

sample of processed data from six patients has been made available online55. Researchers 

interested in obtaining deidentified Michigan Medicine patient data should contact 

PHDataHelp@umich.edu to obtain guidance on which regulatory and compliance requirements 

need to be fulfilled to obtain access to the Precision Health data resources. More details about the 

data and the access process are available at https://precisionhealth.umich.edu/. Source data are 

provided with this paper. 

2.6 Code Availability 

Data preparation code, an example of prepared data, the original and extended models trained in 

this study, and code to generate predictions from the provided data are available online55. Data 

preparation requires the gpmodels R package62. 

2.7 Supplemental Materials 

2.7.1 Supplemental Tables 

Supplemental Table 2.1 Description of predictors used in the presented model. 

mailto:PHDataHelp@umich.edu
https://precisionhealth.umich.edu/
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Variable Description Fixed/Temporal 
Category/EHR 

domain 
Unit 

Valid 

Range 

Time 

windows 

used  

(in hours) 

Summary 

Statistics 

Number 

of 

predictors 

age Age Fixed Demographics year    1 

sex Sex Fixed Demographics  F, M   1 

baseline_scr 
Baseline Serum 

Creatinine 
Fixed Lab Results mg/dL 0-4   1 

ht Baseline Height Fixed Vital Signs inch 48-96   1 

wt Baseline Weight Fixed Vital Signs pound 60-700   1 

bmi Baseline BMI Fixed Vital Signs kg/m2 15-50   1 

myocardial_infarction 
Myocardial 

Infarction 
Fixed Comorbidities  0, 1   1 

congestive_heart_failure 

Congestive Heart 

Failure 

(CHF) 

Fixed Comorbidities  0, 1   1 

peripheral_vascular_disease 

Peripheral 

Vascular Disease 

(PVD) 

Fixed Comorbidities  0, 1   1 

cerebrovascular_disease 
Cerebrovascular 

Disease 
Fixed Comorbidities  0, 1   1 

chronic_pulmonary_disease 
Chronic Pulmonary 

Disease 
Fixed Comorbidities  0, 1   1 

dementia Dementia Fixed Comorbidities  0, 1   1 

paralysis Paralysis Fixed Comorbidities  0, 1   1 

diabetes_uncomplicated 
Diabetes Mellitus, 

Uncomplicated 
Fixed Comorbidities  0, 1   1 

diabetes_complicated 
Diabetes Mellitus, 

Complicated 
Fixed Comorbidities  0, 1   1 

kidney_disease Kidney Disease Fixed Comorbidities  0, 1   1 

mild_liver_disease Mild Liver Disease Fixed Comorbidities  0, 1   1 

mod_severe_liver_disease 
Moderate or Severe 

Liver Disease 
Fixed Comorbidities  0, 1   1 

peptic_ulcer_disease 
Peptic Ulcer 

Disease 
Fixed Comorbidities  0, 1   1 

rheumatic_disease Rhematoid Disease Fixed Comorbidities  0, 1   1 

hiv_aids HIV/AIDS Fixed Comorbidities  0, 1   1 

metastatic_cancer Metastatic Cancer Fixed Comorbidities  0, 1   1 

non-metastatic_cancer 
Non-Metastatic 

Cancer 
Fixed Comorbidities  0, 1   1 

surgical_service Surgical Service Fixed Service  0, 1   1 

icu_location ICU location Fixed Location  0, 1   1 
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time 
Time (hours) from 

Admission 
Temporal      1 

drug_AM300 Aminoglycosides Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

drug_AU100 
Sympathomimetics 

(Adrenergics) 
Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

drug_CV100 
Beta 

Blockers/related 
Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

drug_CV150 
Alpha 

Blockers/related 
Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

drug_CV200 
Calcium Channel 

Blockers 
Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

length 7 
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120,  

-168 to -

144, -192 

to -168 

drug_CV350 Antilipemic Agents Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

drug_CV702 Loop Diuretics Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

drug_CV800 ACE Inhibitors Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

drug_CV805 
Angiotensin II 

Inhibitor 
Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

drug_DX101 
Non-Ionic Contrast 

Media 
Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

length 7 
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-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

drug_MS102 

Nonsalicylate 

NSAIs, 

Antirheumatic 

Temporal Medications   

-24 to 0, -

48 to -24, -

96 to -48,  

-120 to -96, 

-144 to -

120,  

-168 to -

144, -192 

to -168 

length 7 

Albumin Serum Albumin Temporal Lab Results g/dL 0.5-8 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Alkaline 
Alkaline 

Phosphatase 
Temporal Lab Results IU/L 

1-

10000 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

ALT 
Alanine 

Aminotransferase 
Temporal Lab Results IU/L 

1-

10000 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

AST 
Aspartate 

Transaminase 
Temporal Lab Results U/L 

1-

10000 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

length, 

min, 

mean, 

40 
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30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

median, 

max 

Bilirubin_D Bilirubin (Direct) Temporal Lab Results mg/dL 0-50 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Bilirunbin Bilirubin (Total) Temporal Lab Results mg/dL 0-50 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

BUN 
Blood Urea 

Nitrogen 
Temporal Lab Results mg/dL 1-300 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Calcium Serum Calcium Temporal Lab Results mg/dL 3-20 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Carbon Carbon Dioxide Temporal Lab Results meq/dL 1-60 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

length, 

min, 

mean, 

median, 

max 

40 
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-42 to -36, -

48 to -42 

Chloride Serum Chloride Temporal Lab Results meq/dL 60-150 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Glucose Serum Glucose Temporal Lab Results mg/dL 
10-

1200 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

HDLC 

High-Density 

Lipoprotein 

Cholesterol 

Temporal Lab Results mg/dL 10-150 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Hematocrit Hematocrit Temporal Lab Results % 10-80 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Hemo_A1C 
Hemoglobin A1c 

(Glycohemoglobin) 
Temporal Lab Results % 0-24 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 
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Hgb Hemoglobin Temporal Lab Results g/dL 2-20 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

INR 
International 

Normalized Ratio 
Temporal Lab Results ratio 0.3-10 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

LDLC 

Low-Density 

Lipoprotein 

Cholesterol 

Temporal Lab Results mg/dL 10-300 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

MC_Ratio 
Microalbumin-to-

Creatinine Ratio 
Temporal Lab Results mg/g 

0-

30000 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Phosphate Serum Phosphate Temporal Lab Results mg/dL 0.1-20 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Platelet Platelet Count Temporal Lab Results count/volume 0-1000 

-6 to 0, -12 

to -6, -18 to 

-12,  

length, 

min, 

mean, 

40 
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-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

median, 

max 

Potassium Serum Potassium Temporal Lab Results 
meq/L or 

mmol/L 
1-10 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

sCr Serum Creatinine Temporal Lab Results mg/dL 0.4-20 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Sodium Serum Sodium Temporal Lab Results 
meq/L or 

mmol/L 
90-190 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Tot chole Total Cholesterol Temporal Lab Results mg/dL 
10-

1000 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Triglyceride Triglyceride Temporal Lab Results mg/dL 
10-

10000 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

length, 

min, 

mean, 

median, 

max 

40 
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-42 to -36, -

48 to -42 

WBC 
Total White Blood 

Cell Count 
Temporal Lab Results 

k/uL or 

k/mm^3 

0-

50000 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

WT Inpatient Weight Temporal Vital Signs pound 60-700 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Systolic 
Systolic Blood 

Pressure 
Temporal Vital Signs mmHg 50-240 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Diastolic 
Diastolic Blood 

Pressure 
Temporal Vital Signs mmHg 30-150 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

R Respiratory Rate Temporal Vital Signs breaths/minute 6-50 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 
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T Temperature Temporal Vital Signs Fahrenheit 80-110 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

Pulse Pulse Temporal Vital Signs beats/minute 30-200 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

PO2 
Partial Pressure of 

Oxygen 
Temporal Vital Signs mmHg 30-100 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

CVP 
Central Venous 

Pressure 
Temporal Vital Signs mmHg 0.5-30 

-6 to 0, -12 

to -6, -18 to 

-12,  

-24 to -18, -

30 to -24, -

36 to -24,  

-42 to -36, -

48 to -42 

length, 

min, 

mean, 

median, 

max 

40 

cr_ratio_to_baseline 
Fold Change from 

Baseline Creatinine 
Temporal Lab Results   -6 to 0  1 

cr_diff_to_baseline 

Absolute Value 

Change from 

Baseline Creatinine 

Temporal Lab Results mg/dL  -6 to 0  1 

bun_to_cr_ratio 
BUN-to-Serum 

Creatine Ratio 
Temporal Lab Results   -6 to 0  1 

current_aki_stage Current AKI Stage Temporal   

no_aki, 

aki_1, 

aki_2, 

 1 
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aki_3, 

aki_3d 

         

Total        1467 
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Supplemental Table 2.2 Expected calibration error (ECE) for the original VA model at VA and at UM.  

ECE 

VA UM 

All Female Male All Female Male 

AKI-1+ 0.20% 0.43% 0.21% 0.63% 0.67% 0.64% 

AKI-2+ 0.05% 0.10% 0.06% 0.59% 0.60% 0.58% 

AKI-3+ 0.02% 0.10% 0.02% 0.12% 0.16% 0.10% 

AKI-3D 0.01% 0.07% 0.02% 0.16% 0.14% 0.18% 
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Supplemental Table 2.3 Expected calibration error (ECE) for the extended VA model at UM. 

ECE 

UM 

All Female Male 

AKI-1+ 0.48% 0.47% 0.55% 

AKI-2+ 0.37% 0.43% 0.32% 

AKI-3+ 0.09% 0.14% 0.05% 

AKI-3D 0.11% 0.09% 0.12% 
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Supplemental Table 2.4 Patient characteristics of females at the University of Michigan (UM), the Veteran Affairs (VA), and a 
subpopulation of UM test set females matched to the VA females.  

UM test set female patients were matched to VA female patients by mean age, proportion of white race, proportion of baseline 
chronic kidney disease (CKD), and proportion of baseline congestive heart failure (CHF). Body mass index (BMI) and baseline 
diabetes mellitus (DM) were not used for matching but are shown below. 

 
UM 

N = 82,266 

(49,743 patients) 

VA 

N = 15,759 

UM test set  

(matched to VA) 

N = 3,119 

(same number as females in the VA test set) 

Age, mean (SD) 55.2 (19.1) 58.4 (14.6) 58.8 (18.4) 

White race 66,949 (81.4%) 9,259 (58.8%) 1,815 (58.2%) 

Baseline CKD (eGFR* < 30 

mL/min/1.73 m2) 
2,536 (3.1%) 311 (2.0%) 58 (1.9%) 

Baseline CHF 19,056 (23.2%) 1,026 (6.5%) 191 (6.1%) 

BMI, mean (SD) 29.1 (7.4) 30.7 (7.4) 28.8 (7.1) 

Baseline DM 21,594 (26.2%) 3,788 (24.0%) 825 (26.5%) 

Statistics presented: mean (SD); n (%) 

* Calculated based on CKD-EPI Creatinine Equation (2021) 
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Supplemental Table 2.5 Model performance for females in the University of Michigan (UM) test set, the Veterans Affairs (VA) 
test set, and a subpopulation of UM test set females matched to the VA females. 

Outcome Extended VA Model AUC 

(95% CI) 

 
UM test set 

N = 49,280 

VA test set 

N = 3,119 

UM test set  

(matched to VA) 

N = 3,119 

Multiclass 0.8757 

(0.8697, 0.8813) 

0.9474 

(0.9208, 0.9653) 

0.8781  

(0.8699, 0.8945) 

AKI-1+ 0.8535 

(0.8512, 0.8559) 

0.7892 

(0.7717, 0.8067) 

0.8402 

(0.8291, 0.8512) 

AKI-2+ 0.8135 

(0.8070, 0.8200) 

0.7432 

(0.6976, 0.7888) 

0.7980 

(0.7674, 0.8286) 

AKI-3+ 0.8554 

(0.8461, 0.8647) 

0.6907 

(0.6318, 0.7495) 

0.8564 

(0.8218, 0.8910) 

AKI-3D 0.9402 

(0.9271, 0.9532) 

0.8925 

(0.8252, 0.9599) 

0.9773 

(0.9583, 0.9963) 

 

2.7.2 Supplemental Figures 
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Supplemental Figure 2.1 Calibration of the original VA model a) VA test set b) UM test set. 

The calibration of the original model on the a) VA test set and b) UM test set. The predicted probabilities (deciles) are plotted 
against the observed probabilities with 95% confidence intervals. The diagonal line demonstrates the ideal calibration. The model 
calibration is examined for all patients (red), females only (green), and males only (blue). 
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Supplemental Figure 2.2 Predictor importance plot of the original and extended VA model. 

Top 20 important predictors of the original VA model (top) and the extended VA model (bottom). Predictors are ranked by their 
relative importance and expressed as a percentage. 
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Supplemental Figure 2.3 Model performance (AUC) of the original VA model at each VA hospital.  

Model performance of the original model at each VA hospital in the test set, along with characteristics of each VA hospital. A. 
Model performance with respect to area under the curve (AUC) with 95% CI of the original VA model for predicting AKI-1+ at 
each VA hospital. The center dot represents the AUC when the original model is applied to the hospital, and the 95% CI is 
calculated by the DeLong’s method24. B. Number of predictions (after excluding those with AKI-1+ at baseline) at each VA 
hospital. C. Hospitalization level AKI-1+ incidence in the test set (after excluding those with AKI-1+ at baseline) at each VA 
hospital. Five VA hospitals are not shown here due to small cohort sizes (<30 patients). 
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Supplemental Figure 2.4 Calibration of the extended VA model at UM. 

The calibration of the extended model in the UM test set. The predicted probabilities (deciles) are plotted against the observed 
probabilities with 95% CI. The diagonal line demonstrates the ideal calibration. The model calibration is examined for all patients 
(red), females only (green), and males only (blue). 
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Chapter 3 Assessing the Role of Urine Output in Acute Kidney Injury Risk Prediction 

3.1 Introduction 

Acute kidney injury (AKI) is a clinically significant condition associated with worse patient 

outcomes, including increased morbidity and mortality, imposing a substantial burden on 

healthcare resources1,8–11,13. The absence of a universally accepted definition for AKI has 

hindered research progress for a long period until the Kidney Disease Improving Global 

Outcomes (KDIGO) criteria emerged as the standard for AKI definition. KDIGO uses both 

serum creatinine (sCr) and urine output (UO) to define and stage AKI. UO, as a rapid bedside 

test for kidney function, is the oldest known biomarker for AKI, with a rapid reduction indicating 

potential kidney function decline66.  

Researchers have explored whether a rapid reduction of UO can serve as an early biomarker for 

AKI. In a prospective observation study, Macedo et al. assessed hourly UO in ICU patients, 

discovering oliguria as a sensitive and early marker for AKI, significantly associated with 

adverse outcomes67. Kellum et al. analyzed electronic health records (EHR) of ICU patients, 

classifying them by levels of sCr and/or UO, and found that UO assessment was a necessity for 

staging severe AKI, and low UO was associated with a long-term hazard for AKI 2+ patients. 

Conversely, Md Ralib et al. found that a UO criterion of 0.5 ml/kg/hour for 6 hours was not 

predictive of survival; instead, a 6-hour UO threshold of 0.3 ml/kg/hour demonstrated a better 

association with mortality and dialysis in the studied ICU patients68,69. Notably, several other 

studies also showed discordance between the UO-defined AKI and sCr-defined AKI70–73. It is 
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worth noting that these studies focused exclusively on critically ill patients, leaving uncertainty 

regarding the utility of UO in identifying high-risk AKI patients outside of the ICU setting. 

Many of these studies employed prospective designs, collecting hourly UO data for enhanced 

completeness, though this may not be practical in clinical settings. A more pragmatic 

understanding of the role of routinely collected UO data in AKI may be gleaned by exploring 

routinely documented EHR data. 

In addition to epidemiological studies exploring the association between UO criterion and AKI 

outcomes, recent efforts have turned to machine learning tools to further leverage EHR data for 

identifying high-risk AKI patients. However, despite the consensus of using the KDIGO 

definition for AKI, most of these studies developing AKI risk prediction models opt for a 

simplified version that relies solely on sCr, neglecting the UO criterion in defining the ground 

truth for AKI (Table 1.2)23–26,28,30–33,74. Researchers transparently acknowledge this limitation, 

often qualitatively citing it due to the incomplete and inconsistent documentation of UO in 

electronic health records (EHR)26,36–38 but provide no quantitative description of UO 

documentation availability and patterns. 

More recently, some studies have started to incorporate UO as a predictor, albeit in a limited set 

of hospitalized patients. Alfieri et al. developed a random forest model based on UO, 

biochemical and hematologic data collected during ICU stays, predicting AKI 2+ episodes75, and 

demonstrated that urine output trend was predictive of AKI 2+ at least 12 hours in advance76. 

Zhao et al. assessed intraoperative UO in patients undergoing major thoracic surgery but found 

its poor predictive ability for postoperative AKI77. However, these models utilized UO because 

data is closely monitored in critically ill or surgically treated patients, raising questions about the 

generalizability of UO's benefits in AKI risk prediction for the broader hospitalized population. 
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In this study, we used a five-year inpatient cohort at a large academic health system to examine 

the pattern of urine output documentation in EHR and assess its significance in predicting AKI. 

The objectives of the studies were to: 1) offer a quantitative description of the completeness and 

consistency of urine output documentation in the EHR for all hospitalized patients; 2) provide 

insights into the phenotyping of urine output documentation within the EHR; and 3) quantify the 

value of utilizing urine output documented in the EHR in AKI risk prediction models.  

 

3.2 Methods 

3.2.1 Study Cohort 

Clinical data from all adult patients admitted to the University of Michigan (UM) from January 

1, 2016 to December 31, 2020 were collected for the study. Patients who did not have creatinine 

checked at baseline or during their stay (defined in Predictor Variables), had pre-existing end 

stage renal disease or had a baseline creatinine of >4.0 mg/dL (pre-existing AKI stage 3) were 

excluded. Notably, in cases where a patient experienced multiple admissions during the study 

period, all hospitalizations were considered for inclusion, contributing to the final cohort of 

165,359 encounters. For each encounter within the cohort, clinical data spanning from arrival to 

the hospital through discharge or up to 7 days from admission, whichever occurred earlier, were 

utilized in the study. 

3.2.2 Urine Output and Urine Occurrence in EHR 

We retrieved both quantitative and qualitative UO documentation from the EHR system used by 

UM. The UO of patients who underwent surgical procedures were closely monitored during the 

perioperative period, and the amount was quantitatively documented in the perioperative notes. 
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When patients were in the general ward or the ICU, both quantitative urine output (with actual 

volume measured) and qualitative urine occurrence (where no specific volume was measured) 

were consistently documented in nursing flowsheets.  

3.2.3 AKI definition 

AKI was defined and staged for severity according to the Kidney Disease: Improving Global 

Outcomes international guidelines16. Stage 1 AKI was defined as a sCr level increase of ≥0.3 

mg/dL, but less than twice the baseline sCr or an increase of 1.5 times baseline. Stage 2 AKI 

reflected an increase of two to three times the baseline, and stage 3 AKI was an sCr level 

increase greater than three times baseline or an increase to ≥4.0 mg/dL. Stage 3D was 

determined based on the need for dialysis, where the time of first dialysis was determined using 

procedure codes.  

3.2.4 Clustering Analysis 

Clustering analysis was conducted on encounters with a minimum of two UO measurements 

with documented volumes. Each hospitalization was divided into 6-hour intervals, and the 

cumulative volume of UO recorded within these periods was computed. Summary statistics 

(minimum, mean, median, and max) of the number of UO measurements documented each day, 

time (h) between two consecutive UO measurements, total UO volume in the 6-h intervals were 

calculated as features. Each feature was scaled to the range from 0 to 1 by using the min-max 

normalization.  

We used density-based spatial clustering and application with noise (DBSCAN) for our 

clustering analysis because it is robust to outliers and the does not require the number of clusters 

to be specified78. Two parameters are required for DBSCAN, epsilon (𝜀) and minimum points 
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(MinPts). The parameter 𝜀 defines the radius of neighborhood around a data point, while MinPts 

designates the minimum number of neighbors within the 𝜀 radius required for a data point to be 

considered part of a cluster. If a data point lacks a neighbor count equal to or exceeding the 

specified MinPts and does not belong to the ε-neighborhood of any core point, it is categorized 

as an outlier in the analysis. 

Considering the extensive size of our dataset, we set the value of MinPts to 50 to ensure robust 

clustering. Epsilon was then determined by calculating the average of the distances of every 

point to its k (as specified by MinPts) nearest neighbors, plotting these k-distances in an 

ascending order on a plot, and finding the “knee” (sharp turning point).  

Since UO is typically monitored in ICU stays, and previous AKI predictions studies primarily 

focused on ICU patients, our clustering analysis focused on patients without ICU stays in this 

study.  

3.2.5 Evaluate the Role of Urine Output in AKI prediction 

3.2.5.1 Data Split 

In Chapter 2, we described an AKI model developed at the Veterans Affairs (VA) can be further 

trained to be a valuable model at UM. Given that the primary objective of the earlier study was 

to validate the generalizability of the VA model, we only allocated 20% of the entire UM cohort 

for training purposes. While this percentage may seem smaller compared to conventional 

training datasets, it is important to note that this subset of the UM cohort comprised 33,077 

hospitalizations, a sufficiently large size for robust model training. Hence, to facility 

comparability with the previous study, we maintained the same data split for this study—20% for 

training, 20% for validation, and the remaining 60% of hospitalizations for the test set. To 

prevent any information leakage, random splits were sampled at the patient level. 
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3.2.5.2 Predictor Variables 

Similar to the approach outlined in 2.2.4 Predictor Variables, we collected both fixed variables 

(i.e., baseline variables or those remain constant during a hospitalization) and time-varying 

variables (i.e., variables measured on a repeated basis and changed values during a 

hospitalization) for the construction of AKI predictors.  

Baseline variables included age, height, weight, body mass index (BMI), comorbidities, and 

baseline sCr. Note that we excluded two variables—admission to a surgical service and ICU 

status—that were part of the extended VA model discussed in Chapter 2. Age was top-coded at 

89 years old. Baseline height and weight were derived from the most recent values within the 

past year. In instances where no recent value was available, the first inpatient measurement was 

utilized. Height and weight measurements were converted into inches and pounds, respectively, 

with extreme values removed. Baseline BMI was calculated using the baseline height and 

baseline weight. Comorbidities were determined using the Charlson comorbidity index 

calculated using information from the current hospitalization. Baseline sCr was determined 

following a hierarchical order of preference: (1) mean outpatient sCr between 7 and 365 days 

before admission and (2) within 7 days before admission, and (3) first documented sCr value 

within 24 hours of admission.  

Time-varying variables consisted of inpatient vital signs, laboratory test results and 

administration of medications. Twenty-six laboratory testing components (serum albumin, 

alkaline phosphatase, alanine aminotransferase, aspartate transaminase, total and direct bilirubin, 

blood urea nitrogen, serum calcium, carbon dioxide, serum chloride, serum glucose, high-density 

lipoprotein cholesterol, hematocrit, hemoglobin A1c, hemoglobin, international normalized ratio, 

low-density lipoprotein cholesterol, microalbumin-to-creatinine ratio, serum phosphate, platelet 
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count, serum potassium, sCr, serum sodium, total cholesterol, triglyceride and total white blood 

cell count) were selected due to their universal use across different health systems. Seven vital 

signs (inpatient weight, systolic blood pressure, diastolic blood pressure, respiratory rate, 

temperature, pulse, blood oxygen level) were included, irrespective of the frequency of 

measurement. Administration of medications was examined for 11 drug classes 

(aminoglycosides, sympathomimetics, beta blockers, alpha blockers, calcium channel blockers, 

antilipemic agents, loop diuretics, angiotensin-converting enzyme inhibitors, angiotensin II 

inhibitors, non-ionic contrast media and non-salicylate antirheumatic non-steroidal anti-

inflammatory drugs) as opposed to individual medications. 

3.2.5.3 Data Preprocessing Feature Engineering 

Physiologically infeasible values, potentially arising from laboratory errors, were systematically 

excluded from the dataset. Microalbumin-to-creatinine ratios were set to 0 when values were 

reported only in a text field based on the observation that the text fields reported such values as 

being below the detectable range. Data elements were time-stamped using the time when values 

became available to the EHR (i.e., the observation time).  

After extracting the baseline and time-varying variables, we captured patient states at 6-hour 

intervals beginning with the time of admission for each patient. Patient states were captured up 

until the final creatinine value, discharge or death, and truncated at 7 days of hospitalization due 

to computational constraints.  

For each 6-hour interval, baseline variables were directly used as predictors since their values do 

not change during hospitalization. Time-varying variables were processed in three different ways 

(Supplemental Figure 3.1) to explore simplified versions of the AKI model without 

compromising performance.  
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As demonstrated in Supplemental Figure 3.1, we first replicated the strategy used in the VA 

AKI model. Summary statistics were calculated for time-varying variables on a rolling basis. 

Specifically, number of values, and first, last, minimum, mean, median and maximum values 

were calculated for the preceding 48 hours (lookback period) divided into 6-hour windows. The 

number of administered medications was calculated in the same manner. Secondly, temporal 

predictors were calculated on a rolling basis without breaking the lookback window into smaller 

windows (i.e., a 48-hour lookback period with a 48-hour window). Thirdly, summary statistics 

for time-varying variables were calculated in a cumulative manner, using data accumulated from 

arrival until the time of prediction.  

Based on clinical relevance, additional variables were created, including the ratio of the most 

recent maximum sCr to baseline sCr, the difference between the most recent maximum sCr and 

baseline sCr, and the ratio of most recent maximum blood urea nitrogen to most recent maximum 

sCr. These three sCr-based predictors, time (h) from admission and current AKI stage, plus the 

summary statistics of temporal predictors in the given windowed lookback period, together with 

the baseline predictors, made up a set of 1,467 predictors that were used in the extended VA AKI 

model.  

Due to the sparsity of microalbumin-to-creatinine ratio data and the unavailability of central 

venous pressure information in the UM dataset, relevant temporal predictors were removed, 

resulting in a starting model at UM consisting of 1,393 predictors. 

For UO predictors, the same lookback period (48 hours) and the same window intervals (6 hours 

or 48 hours) were applied to generate rolling UO predictors for the rolling strategy. The rolling 

UO predictors with a 48-hour lookback period windowed in 6-hour intervals was employed for 

models with growing predictors due to clinical relevance.  
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3.2.5.4 Outcome Definition 

The calculation of AKI outcomes was performed on a rolling basis at 6-hour intervals, 

comparing the maximum sCr value within a 48-hour prediction window with the baseline sCr. 

Each 6-hour interval in which patient states were captured resulted in outcomes categorized into 

one of five classes based on the 48-hour prediction window: no AKI, AKI stage 1, AKI stage 2, 

AKI stage 3, or AKI stage 3D. While models were trained using this multinomial outcome, 

results reported by AKI stages were grouped according to level of severity. For example, AKI 

stage 1+ is used to refer to any AKI stage, and AKI stage 2+ refers to AKI stage 2 or greater 

(including stages 3 and 3D). 

3.2.5.5 Model Training 

The gradient-boosted decision tree (GBDT) model was trained on training set to predict AKI 

stage in the next 48 h as a multinomial outcome (that is, ‘no AKI’, ‘AKI stage 1’, ‘AKI stage 2’, 

‘AKI stage 3’, ‘AKI stage 3D’) using different combinations of predictors (rolling predictors 

with and without smaller windowed intervals, growing predictors, UO predictors, see details 

discussed in 3.2.5.3) at each 6 h step with a maximum of 1,000 trees and a maximum depth of 5. 

The validation set was used to determine the need for early stopping based on an improvement in 

log loss lower than 0.0005 on five consecutive rounds based on a moving average calculated 

after every ten trees. The categorical predictors were reordered by the mean response of each 

level for more efficient training. Internally, a separate one-versus-all tree was trained for each 

outcome class.  

3.2.5.6 Model Evaluation 

The performance of the GBDT model was evaluated in the UM test set. The model 

discrimination was assessed by using the area under the receiver operating curve (AUROC or 
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AUC). The AUC was reported as a series of binary AUCs where at-risk individuals were 

evaluated on their risk of progression to a higher AKI stage. For example, patients without any 

AKI to date were evaluated on their risk of developing any AKI (that is, stage 1 or greater), 

patients with no AKI or AKI stage 1 were evaluated on their risk of developing AKI stage 2 or 

greater, and so on. 

3.2.5.7 Explore the Association between Urine Output and Other Predictors 

To investigate the potential relationship between urine output and other predictors used in the 

AKI model, we applied the same modeling strategy described above in Model Training. 

However, in this instance, we substituted the outcome variable with UO predictors, namely the 

count of UO measurements within the 6-hour/48-hour interval and the cumulative volume of UO 

documented during the same period, respectively, to build two separate regression tree models. 

Deviance was selected as the stopping metric because of the continuous nature of the outcome 

variable.  

3.2.6 Software 

All data processing and analyses were performed using R 4.1.261. Dbplyr 2.1.1 was used to pull 

clinical data from UM EHR database. Transformation of time-series data was performed using 

the Grammar of Prediction (gpmodels) R package62. H2O version 3.36.0.3 was used to fit the 

GBDT model79.  

3.3 Results 

3.3.1 Description of Urine Output Documentation in EHR 

In our 5-year analysis cohort, 96.7% (159,823/165,359) of encounters had at least one urine 

output or urine occurrence documented within 7 days following admission. This includes 90.3% 
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(149,339/165,359) encounters with at least one recorded urine output volume, and 76.0% 

(125,640/165,359) with documented urine occurrence. As depicted in Supplemental Table 3.1, 

on average, the average frequency of urine output documentation (with or without volume) 

during a hospital stay was 6.3 ± 3.6 times per day, with a predominant focus on capturing the 

volume of urine output (5.3 ± 3.8 times per day). The mean duration between two urine output 

measurements (with or without volume) was 3.2 ± 3.7 hours, while the interval between two 

documented urine output volumes averaged 3.4 ± 4.7 hours (Supplemental Table 3.2). Figure 

3.1 illustrates the distribution of time intervals between two consecutive records for different 

types of urine output measurements, emphasizing the close monitoring of urine output volume 

during the perioperative period. When patients were not undergoing surgery, urine output was 

observed less frequently, with peaks in documentation of volume happening every hour, and 

peaks in documentation of occurrence every two hours.  
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Figure 3.1 Distribution of time (hours) between two urine output measurements, by measurement type.  

Violin plot demonstrating distribution of time interval between two documented urine output measurements. Types of urine 
output measurement include urine output (with volume), urine output – nursing (with volume), urine output – periop (without 
volume), urine occurrence (without volume), urine output/occurrence (with or without volume).  

 

3.3.2 Phenotypes of Urine Output Documentation and Associated Patient Characteristics in 

non-ICU patients 

Supplemental Figure 3.2 provides a graphical representation of selected hospital stays, 

depicting the diverse patterns of urine output documentation observed during these periods 

While most encounters included at least one documented urine output measurement, the 

consistency and type of measurement greatly varied from stay to stay. Consistent with our 

previous results, the urine output volume was checked more frequently in perioperative patients. 
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During stays in the ICU, the consistency of urine output volume documentation, while mostly 

frequent, was not uniformly guaranteed. Furthermore, when patients were in general wards, the 

documentation pattern of urine output experienced significant variations. This ranged from 

systematic documentation of urine output volume, a blend of urine output volume and 

occurrence recordings, to sparse narrations of urine occurrence only.  

While previous studies predominantly focused on predicting AKI in ICU patients, we conducted 

clustering analysis for patients who never stayed in ICU to facilitate better understanding 

phenotypes of UO documentation in general wards. Figure 3.2 visually illustrates representative 

UO documentation for non-ICU patients across the three clusters identified by our analysis, with 

30 patients depicted for each cluster. The three clusters we identified were ordered based on 

membership size from largest to smallest. Patients in the second cluster, who underwent the most 

frequent UO monitoring, exhibited a higher incidence of AKI events. In contrast, patients in the 

first cluster received less frequent but still notable documentation of UO, while patients in the 

third cluster had minimal documentation. Upon comparing characteristics of patients in the first 

two clusters (Table 3.1), we observed that those receiving the most frequent urine output 

monitoring were more likely to be older (61.5 years vs. 57.5 years), males (65.1% vs. 50.0%), 

and had poorer baseline kidney function (baseline eGFR < 60 mL/min/1.73 m2, 28.6% vs. 

19.3%). Additionally, this group had a higher prevalence of baseline congestive heart failure 

(42.2% vs. 26.1%), received surgical service (35.2% vs. 16.9%) and experienced prolonged 

hospital stays (13.9 days vs. 5.9 days). The occurrence rate of AKI was highest in the second 

cluster, reaching 35.5%. The third cluster, albeit smaller in size (N = 44), contained a higher 

proportion of African American patients (18.2% vs. 11.2%), a greater prevalence of baseline 
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diabetes (38.6% vs. 29.7%), more baseline liver disease (29.5% vs. 20.1%), longer hospital stays 

(10.8 days compared to 5.9 days in the first cluster), and the lowest AKI rate at 9.1%.  
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Figure 3.2 Representative visual representation of urine output documentation for three clusters of non-ICU patients.  
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Table 3.1 Characteristics of non-ICU patients by different clusters.  

Characteristic Overall 
(N = 138,812) 

Cluster 1 
(N = 115,224) 

Cluster 2 
(N = 1,231) 

Cluster 3 
(N = 44) 

Age (years), mean (SD) 56.6 (18.5) 57.5 (18.1) 61.5 (14.7) 54.0 (18.2) 

Female 71,039 (51.2%) 57,582 (50.0%) 430 (34.9%) 25 (56.8%) 

Race, N (%) 
    

African American 15,714 (11.3%) 12,883 (11.2%) 130 (10.6%) 8 (18.2%) 

Caucasian 114,770 (82.7%) 95,608 (83.0%) 1,049 (85.2%) 33 (75.0%) 

Other 6,985 (5.0%) 5,612 (4.9%) 37 (3.0%) 3 (6.8%) 

Unknown 1,343 (1.0%) 1,121 (1.0%) 15 (1.2%) 0 (0.0%) 

Baseline BMI, mean (SD) 28.8 (6.8) 29.0 (6.8) 29.2 (6.8) 26.9 (6.3) 

Unknown 7,628 (5.5%) 6,251 (5.4%) 62 (5.0%) 4 (9.1%) 

Baseline serum creatinine (mg/dL), mean (SD) 1.0 (0.4) 1.0 (0.4) 1.1 (0.5) 1.0 (0.3) 

Baseline eGFR (mL/min/1.73 m2), N (%) 
    

>= 60 113,376 (81.7%) 93,002 (80.7%) 879 (71.4%) 33 (75.0%) 

45-59 13,562 (9.8%) 11,770 (10.2%) 150 (12.2%) 8 (18.2%) 

30-44 8,151 (5.9%) 7,153 (6.2%) 134 (10.9%) 2 (4.5%) 

15-29 3,581 (2.6%) 3,178 (2.8%) 65 (5.3%) 1 (2.3%) 

< 15 142 (0.1%) 121 (0.1%) 3 (0.2%) 0 (0.0%) 

Baseline diabetes, N (%) 40,484 (29.2%) 34,273 (29.7%) 437 (35.5%) 17 (38.6%) 

Baseline congestive heart failure, N (%) 34,157 (24.6%) 30,062 (26.1%) 520 (42.2%) 6 (13.6%) 

Baseline liver disease, N (%) 27,819 (20.0%) 23,155 (20.1%) 222 (18.0%) 13 (29.5%) 

Surgical service, N (%) 20,318 (14.6%) 19,477 (16.9%) 433 (35.2%) 0 (0.0%) 

Length of stay (days), mean (SD) 5.8 (6.9) 5.9 (7.0) 13.9 (9.7) 10.8 (9.8) 

Number of 6-hour windows, mean (SD) 17.5 (8.5) 17.8 (8.3) 29.0 (0.2) 25.9 (3.4) 

AKI rate, N (%) 21,021 (15.1%) 18,820 (16.3%) 437 (35.5%) 4 (9.1%) 

Note: Patients who did not have at least two urine output measurements or were identified as outliers by the DBSCAN algorithm are not included in the 
three clusters.  

 

3.3.3 Role of Urine Output in AKI prediction 

In our cohort, 82.8% encounters had at least one episode where the time between two 

consecutive urine measurements (urine output or urine occurrence) was greater than 6 hours. 

That being said, at least 82.8% of encounters would have been categorized as having AKI 1+ if 

UO is used in the AKI outcome definition.  

To assess the role of UO as predictors in AKI model, we initially explored the feasibility of a 

simplified version of a previously reported AKI model. The original model utilized rolling 

predictors, employing multiple smaller windowed periods within a 48-hour lookback period, 

resulting in a total of 1,393 predictors and achieving an AUC of 0.86 for predicting any AKI 
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(AKI 1+). In our simplified versions of the AKI models, either utilizing rolling predictors 

without breaking the lookback period into smaller windows or directly using growing predictors, 

we significantly reduced the number of predictors to 273. Despite the reduction in complexity, 

the AUCs remained consistent at 0.86, and the model performance exhibited a similar level as 

the original model did for both moderate and severe AKI stages (Table 3.2). 

Given the comparable performance to the previously reported AKI model, we further 

investigated the impact of adding UO predictors to the simplified AKI models. Table 3.2 

illustrates that the inclusion of UO predictors led to marginal increase in AUC for all staged AKI 

outcomes.  

Notably, when using UO predictors exclusively, the model demonstrated good performance in 

predicting severe AKI (0.75 for AKI 3+ and 0.84 for AKI 3D), as detailed in Table 3.2. This 

suggests that UO predictors alone contribute valuable information for predicting severe AKI 

outcomes. However, the predictive value of UO predictors alone did not surpass the performance 

achieved by the baseline predictors. 

 

Table 3.2 Model performance (AUC) of AKI models with different combination of predictors.  

Predictors 

Baseline + Rolling (48h lookback, 

6h window) 

Baseline + Rolling (48h lookback, 

48h window) 
Baseline + Growing 

Baseline 

only 

UO (rolling) 

only 

 

Extended VA 

model 

UM trained 

model 

Without UO 

predictors 

With UO 

predictors 

Without UO 

predictors 

With UO 

predictors 

No. of 

predictors 1467 1393 273 297 273 297 120 24 

AKI 1+ 

0.8523 (0.8508, 

0.8538) 

0.8626 (0.8611, 

0.8641) 

0.8620 (0.8605, 

0.8634) 

0.8634 (0.8619, 

0.8649) 

0.8593 (0.8578, 

0.8608) 

0.8622 (0.8608, 

0.8637) 

0.7077 

(0.7056, 

0.7097) 

0.6267 

(0.6246, 

0.6288) 

AKI 2+ 

0.8181 (0.8138, 

0.8224) 

0.8944 (0.8916, 

0.8972) 

0.8935 (0.8906, 

0.8963) 

0.8953 (0.8926, 

0.8981) 

0.8907 (0.8880, 

0.8935) 

0.8950 (0.8923, 

0.8977) 

0.6905 

(0.6863, 

0.6948) 

0.7052 

(0.7010, 

0.7094) 
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AKI 3+ 

0.8722 (0.8666, 

0.8778) 

0.9412 (0.9382, 

0.9442) 

0.9393 (0.9363, 

0.9424) 

0.9419 (0.9390, 

0.9449) 

0.9382 (0.9352, 

0.9412) 

0.9411 (0.9382, 

0.9439) 

0.7744 

(0.7688, 

0.7801) 

0.7504 

(0.7445, 

0.7563) 

AKI 3D 

0.9346 (0.9258, 

0.9433) 

0.9628 (0.9588, 

0.9668) 

0.9538 (0.9487, 

0.9590) 

0.9606 (0.9560, 

0.9652) 

0.9613 (0.9563, 

0.9664) 

0.9698 (0.9666, 

0.9729) 

0.8742 

(0.8651, 

0.8834) 

0.8382 

(0.8262, 

0.8503) 

 

To explore potential factors contributing to the limited additive value of urine output in 

predicting AKI, we identified top features associated with prediction of AKI, number of urine 

output measurements and the total volume of urine output in the last 6 hours, respectively 

(Supplemental Table 3.3). While most of the top features predicting AKI are sCr-related, a 

noteworthy feature with significance in both the prediction of AKI prediction and urine output is 

the use of diuretics. Diuretics, a class of drugs facilitating salt and water excretion through urine, 

exhibit a close relationship with patients' urine output and contribute significantly to the 

predictive value in the AKI model. This association may potentially overshadow the unique 

contribution of urine output in predicting AKI. Additionally, a set of features that emerged as top 

predictors for urine output includes the frequency of vital sign measurements (e.g., temperature, 

pulse, respiratory rate). These observations may indicate close patient monitoring. Patients under 

intensive monitoring are likely at a higher risk of certain conditions, potentially contributing to 

an increased risk of AKI. Consequently, the marginal benefit derived from monitoring urine 

output in such cases may explain the limited additional value observed. 

 

3.4 Discussion 

In this study, we provide a quantitative description of UO documentation for all hospitalized 

patients within a large academic hospital. We found that UO is documented frequently in the 
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EHR, but there is evident room to improve the consistency and completeness of UO 

documentation. Additionally, we identified three clusters in non-ICU patients. The cluster 

characterized by the most frequent UO documentation exhibited the highest occurrence of AKI. 

Finally, we assessed the value of utilizing UO in AKI risk prediction models. It was discerned 

that UO, while a valuable parameter, demonstrates limited additive value when integrated into a 

well-established and effective AKI prediction model.  

While previous research showed that UO is an important predictor to include for AKI 

prediction75–77,80, our study suggests that while it may be useful in predicting AKI in the absence 

of other information, addition of UO information to other predictors yields only marginal 

predictive value. This may be attributed to variations in AKI outcomes used and the patient 

population studied. Unlike previous works that predominantly focused on ICU patients to predict 

AKI 2+, our study encompassed all hospitalized patients, predicting any AKI (AKI 1+). A recent 

study found that hourly UO was not significantly associated with the outcome AKI 1+ within 

ICU patients32. Our study echoed that the predictive performance of UO predictors alone for AKI 

1+ was notably poor, demonstrated by an AUC of 0.63. Fluctuations in UO can be confounded 

by factors unrelated to AKI. The absence of UO documentation for 6 hours, as frequently 

observed in our study (82.8% of encounters), may not necessarily indicate kidney injury. It could 

be attributed to normal physiological responses81, transient fluid balance disturbances, or gaps in 

checking and/or documentation.  

Our study did reveal a more promising performance of UO predictors in predicting AKI 2+ and 

demonstrated good discriminatory power for AKI stage 3+. However, when evaluated against 

baseline predictors and other established predictors, considering the marginal gain in model 

performance, the value of incorporating UO as AKI predictors was limited. 
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Based on the prevailing UO documentation practices in EHR, our study suggests caution in 

utilizing UO to define AKI and questions the imperative of including it as a predictor for AKI 

prediction. Difficulties in measuring, monitoring, and accurately recording UO lead to a lack of a 

standardized approach to assessing changes in UO. A recent study showed that intensive 

monitoring of UO is associated with improved patient outcomes82. Further investigations into 

optimizing UO documentation practices and refining AKI prediction strategies in diverse clinical 

contexts are warranted. 

While our study provides valuable insights into UO documentation in the EHR and its value in 

AKI prediction, several limitations should be considered. The use of data from a single large 

academic hospital may limit generalizability. Variations in practices, patient populations, and 

documentation procedures across different hospitals could impact the external validity of our 

results. Our study was done retrospectively using data collected from the EHR, which may be 

subject to inaccuracies or missing information. The retrospective nature also limits our ability to 

establish causation and may introduce selection bias. Furthermore, while we explored the limited 

additive value of UO in AKI prediction models, the design and architecture of the AKI model 

used could impact the generalizability of this finding. It is possible a choice of different models 

may yield varying results.  

Despite these limitations, our findings underscore the need for ongoing efforts to enhance the 

consistency and completeness of UO documentation in EHR. The exploration of UO's role in 

predictive models highlights the complexities involved and suggests that there remains ample 

room to optimize AKI prediction strategies in clinical practice. 
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3.5 Supplemental Materials 

3.5.1 Supplemental Tables 

Supplemental Table 3.1 Summary of number of urine output measurements per day.  

 
Encounters with at least 1 measurement Number of measurements per day 

 
N % min mean median max std 

Urine output 149,339 90.3 0.1 5.3 4.7 51.1 3.8 

nursing 149,066 90.1 0.1 5 4.4 51.1 3.6 

perioperative 44,637 27 0.1 1.1 0.8 29.6 1 

Urine occurrence 125,640 76 0.1 1.7 1.3 22.9 1.5 

Urine output/urine occurrence 159,823 96.7 0.1 6.3 5.7 51.1 3.6 
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Supplemental Table 3.2 Summary of time (in hours) between urine output measurements. 

 Encounters with at least 2 measurements Time between measurements (hours) 

 N % min mean median max std 

Urine output 143,196 86.6 0 3.4 2 162.4 4.7 

nursing 142,714 86.3 0 3.6 2.1 162.4 4.8 

perioperative 34,102 20.6 0 1.5 0.6 162.7 7.3 

Urine occurrence 104,721 63.3 0.01 8.1 4 166.5 12.3 

Urine output/urine occurrence 157,784 95.4 0 3.2 2 153.3 3.7 
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Supplemental Table 3.3 Top 20 features for models predicting AKI, number of urine output measurements, and total volume of 
urine output.  

 Rolling (48h lookback, 48h window) Growing 

Outcome AKI 
No. or urine output 

measurements 
Total volume of 

urine output AKI 
No. or urine output 

measurements 
Total volume of urine 

output 

Feature Importance Rank 

1 
Current AKI stage 
(67.1%) 

Number of 
temperature 
measurements in the 
past 48 hours (26.8%) 

Number of 
temperature 
measurements in 
the past 48 hours 
(29.1%) Current AKI stage (65.6%) 

Number of adrenergics 
administered in the past 48 
hours (16.7%) 

Number of diuretics 
administered (9.6%) 

2 
sCr difference from 
baseline (10.6%) 

Number of partial 
pressure of oxygen in 
the past 48 hours 
(11.0%) 

Number of 
diuretics 
administered in the 
last 48 hours 
(8.7%) 

sCr difference from 
baseline (11.4%) 

Hours from admission (in 
6h block) (7.5%) 

Number of pulse 
measurements (7.5%) 

3 
sCr ratio to 
baseline (2.7%) 

Number of diuretics 
administered in the 
last 4 hours (5.6%) 

Hours from 
admission (in 6h 
block) (8.2%) sCr ratio to baseline (2.8%) 

Number of diuretics 
administered (5.3%) 

Hours from admission (in 
6h block) (5.9%) 

4 
Last sCr in the past 
48 hours (1.6%) 

Number of pulse 
measurements in the 
past 48 hours (5.1%) Age (3.9%) Last sCr (1.9%) 

First temperature result 
(3.2%) Age (4.1%) 

5 

Hours from 
admission (in 6h 
block) (1.0%) 

Number of respiratory 
rate measurements in 
the past 48 hours 
(5.1%) Height (2.2%) 

Comorbidity – chronic 
kidney disease (1.0%) 

Number of pulse 
measurements (2.7%) 

Number of temperature 
measurements (4.0%) 

6 

Comorbidity – 
chronic kidney 
disease (0.9%) 

Number of phosphate 
results in the past 48 
hours (4.4%) 

Number of pulse 
measurements in 
the past 48 hours 
(2.0%) 

Number of diuretics 
administered (0.8%) Minimum diastolic (2.3%) 

Number of inpatient 
weight measurements 
(2.1%) 

7 

Number of 
diuretics 
administered in the 
last 48 hours 
(0.8%) 

Hours from admission 
(in 6h block) (4.2%) Weight (1.6%) Baseline sCr (0.7%) 

Number of inpatient weight 
measurements (2.0%) Height (2.1%) 

8 
Baseline sCr 
(0.7%) 

Number of 
adrenergics 
administered in the 
past 48 hours (3.2%) 

Number of carbon 
results in the past 
48 hours (1.3%) Maximum sCr (0.5%) 

Maximum inpatient weight 
(1.8%) 

Number of adrenergics 
administered in the past 
48 hours (1.8%) 

9 

Minimum sCr in 
the past 48 hours 
(0.4%) 

Number of diastolic 
pressure 
measurements in the 
past 48 hours (2.0%) 

Number of 
potassium results 
in the past 48 
hours (1.2%) 

Comorbidity – congenital 
heart failure (0.3%) 

Number of temperature 
measurements (1.7%) First temperature (1.8%) 

10 

Maximum sCr in 
the past 48 hours 
(0.4%) Height (0.9%) BMI (1.1%) 

Number of urine output 
measurements in the last 6 
hours (0.3%) Last respiratory rate (1.6%) 

Maximum inpatient 
weight (1.6%) 

 

3.5.2 Supplemental Figures 
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Supplemental Figure 3.1 Visual representation of three modeling strategies.  

Visual representation of three different ways employed in the study to prepare features for modeling. a) Time-varying variables, 
including urine output/occurrence are prepared on a rolling basis, with 48-hour lookback period and windowed into 6-hour 
intervals. b) Time-varying variables, including urine output/occurrence are prepared on a rolling basis, with 48-hour lookback 
period and not windowed into smaller intervals. c) Time-varying variables (not including urine output/occurrence) are prepared 
in a growing manner. Urine output/occurrence are prepared on a rolling basis, with 48-hour lookback period and windowed into 
6-hour intervals.  
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Supplemental Figure 3.2 Visual representation of urine output documentation pattern for selected hospital stays. 
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A visual representation of urine output documentation for selected 100 hospital stays, including the ICU status and AKI 
outcomes. Types of urine output measurements are differentiated by color (blue dot: nursing urine output, red dot: perioperative 
urine output, green triangle: nursing urine output). The intensity of the dots corresponds to the volume of the documented urine 
output. Patterns are presented from admission to discharge or up to 7 days following admission. ICU stays are highlighted by 
shaded grey areas. AKI outcome is determined based on KDIGO criteria, but only serum creatinine is used in the definition.  
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Chapter 4 Participation in Multicenter Prediction Modeling to Improve Generalizability 

Across a National Research Network 

4.1 Introduction 

A key requirement for the responsible use of artificial intelligence (AI) is to ensure that such 

models generalize to the clinical settings in which they are intended to be used65–67. Failure of 

models to generalize may present to varying degrees due to a lack of sufficient sample size or 

diversity,34,86 or due to differences in underlying patient populations, health behaviors, or 

technology between settings where models were trained versus deployed87,88. Building models 

with data from multiple centers is an effective way to increase the sample size and potentially the 

sample diversity, which may enable generalizability to a broader range of centers exhibiting 

similar diversity. Multicenter modeling is typically accomplished by pooling data across multiple 

centers, often through a data coordinating center. However, training and validating models on 

pooled data is problematic for two reasons. First, a single model trained on pooled data may not 

effectively capture risk when there is substantial heterogeneity across centers, leading to varying 

model performance and the potential for decreased generalizability. Second, even if pooling data 

is expected to produce better models, it may not always be possible due to ethical or legal 

concerns related to patient privacy and data security89,90. Training multicenter models without 

pooling data is possible due to recent advances in federated learning, where models share 

parameters across multiple centers without directly sharing patient data91. Federated learning is 

becoming more common in clinical research in the prediction of intensive care unit (ICU) 



 83 

outcomes,92,93 COVID-19 diagnosis and outcomes,94–96 breast density classification,97 and rare 

cancer boundary detection98. However, its adoption in clinical settings has been limited.  

Despite recognizing the importance of generalizable models, large health systems may not see a 

clear reason to participate in multicenter modeling efforts, either through pooling data or 

federated learning, because they often have a sufficiently large and representative dataset to train 

models that are robust in their local setting85,99. In contrast, smaller centers lack the ability to 

develop single-center prediction models due to an insufficient sample size and lack of 

methodological expertise. Multicenter research networks may help smaller centers overcome 

these limitations by bringing the benefits of large and diverse datasets to all participating centers. 

However, the degree to which multicenter research networks improve generalizability across 

individual centers is not known. Network participation may disproportionately benefit smaller 

centers through their gaining access to larger datasets.  

In this study, we used data from a national perioperative network comprising 31 academic and 

community hospitals across a wide range of sizes to investigate three important generalizability 

issues related to participation in multicenter AI modeling efforts. We sought to: 1) compare 

clinical prediction model performance of single-center approaches with pooled-data and 

federated-learning approaches; 2) quantify differences in performance for models trained using 

federated learning versus those trained using pooled data; and 3) characterize how the optimal 

strategy may change based on the size of a hospital network. We answered these questions 

through a representative clinical scenario: predicting cardiac surgery-associated acute kidney 

injury (AKI).  

4.2 Methods 

4.2.1 Study Design 
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We conducted a retrospective study using data from 31 hospitals within the Multicenter 

Perioperative Outcomes Group (MPOG) network, a national perioperative research and quality 

improvement network100, to examine the optimal modeling strategy for hospitals in the 

prediction of AKI. We compared a single-center predictive modeling strategy against two 

strategies that require participation in a research network – pooling data and federated learning. 

We followed the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD) guidelines for conducting and reporting the findings from this 

study101. Institutional review board approval (HUM00209313) was obtained for this 

observational study and patient consent was waived. An a priori study protocol for inclusion 

criteria, data collection and handling, and statistical methods was approved and registered by the 

MPOG network’s Perioperative Clinical Research Committee. 

4.2.2 Study Population 

MPOG collects perioperative data from academic and community hospitals across 23 states in 

the United States. Methods for extraction of local electronic health record (EHR) data, 

validation, mapping to semantically interoperable concepts, and secure transfer to the MPOG 

data coordinating center have been previously described and used in multiple published 

studies100,102–104.  

Open cardiac surgical procedures using cardiopulmonary bypass performed on adult patients at 

US institutions from January 1, 2014 to February 1, 2022 were eligible for this study. Cases 

without preoperative (within 180 days) or postoperative (within 7 days) creatinine laboratory 

values, not meeting minimum data quality standards (Supplemental Methods), or from 

institutions contributing less than 20 cases annually meeting eligibility criteria, were also 

excluded. Finally, patients with pre-existing severe chronic kidney disease were excluded (Stage 
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4 or 5 based on an estimated glomerular filtration rate [eGFR] 15-29 or <15 mL/min/1.73m2 

respectively); eGFR was computed using the baseline creatinine applied to the 2021 updated 

creatinine-based race-neutral equation105. For patients undergoing repeated cardiac surgical 

procedures meeting the above inclusion criteria, only the index case was used.  

The cardiac case volume for each center was calculated as the number of cardiac surgery cases 

contributed by the center to the Multicenter Perioperative Outcomes Group (MPOG) Network. 

Because not all cases may have been captured in the MPOG database, our calculated value may 

underestimate the true case volume. 

4.2.3 Predictor Variables 

We collected preoperative patient and surgical characteristics and time-varying intraoperative 

and immediate postoperative measures for each case. Patient characteristics included 

demographics, anthropometrics, comorbidities, preoperative laboratory values and vital signs, 

home medications, American Society of Anesthesiologists Physical Status classification, the 

baseline kidney function including eGFR and presence of preoperative AKI (as defined in the 

Supplemental Methods), and the first postoperative serum creatinine33 (within 24 hours). 

Surgical characteristics included emergent versus non-emergent, surgical procedure type (non-

mutually exclusive), anesthesiology staffing model (presence of resident, nurse anesthetist, both, 

or neither with solely anesthesiology attending), weekday versus weekend start time, and 

academic versus community hospital.  

Intraoperative time-varying variables consisted of arterial blood gas values, physiologic monitors 

(systolic/mean/diastolic arterial blood pressure, central venous pressure, oxygen saturation, and 

heart rate), and intravenous cardiovascular medications administered intraoperatively 

(Supplemental Table 4.1). Given the dynamic nature of patient physiology surrounding 
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initiation and separation from cardiopulmonary bypass (CPB), summary statistics for 

intraoperative variables were separately calculated as candidate predictors within models from 

each of three distinct phases: pre-CPB, intra-CPB, and post-CBP. More details can be found in 

Supplemental Table 4.1. 

4.2.4 Outcome: Cardiac Surgery Associated AKI 

AKI was defined based upon the maximum sCr level recorded between 2 and 7 days after the 

procedure. AKI was then defined and staged for severity according to the KDIGO international 

guidelines: no AKI, AKI stage 1, AKI stage 2, and AKI stage 316. While our models were trained 

using this multinomial outcome, results reported by AKI stages were grouped into binary 

outcomes according to the level of severity. For example, AKI stage 1+ refers to any AKI stage, 

and AKI stage 2+ refers to AKI stage 2 and stage 3. 

4.2.5 Development and Validation of Single-Center, Pooled, and Federated Models 

After setting aside four centers for external validation (two randomly selected academic hospitals 

and two randomly selected community hospitals), we divided the remaining 27 institutions into a 

training set (January 1, 2014 to February 29, 2020) and a temporal validation set (March 1, 2020 

to February 1, 2022) based on the timing of elective case scheduling changes induced by the 

COVID-19 pandemic106. Because not all hospitals had eligible cases during the entire time 

period, some hospitals selected for temporal validation were only included in the training set or 

in the temporal validation set. A visual representation of the data split is shown in Figure 4.1. 
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Figure 4.1 Visual representation of study data split.  

Among all 31 centers participated in the study, four centers were set aside for external validation. The remaining 27 centers were 
split into a training set and a temporal validation set based on the timing of elective case scheduling changes induced by the 
COVID-19 pandemic. Single-center (base) models and multicenter models (pooled and federated) were trained using the training 
set. Base models were only tested on temporal validation set, while pooled and federated models were tested on both temporal 
validation and external validation sets.  

 

4.2.5.1 Single-center (Base) Models 

While single-center (or base) models may not generalize from one hospital to another, the use of 

models both trained and deployed at the same institution are growing and may offer predictive 

advantages regarding capture of center-specific characteristics when the goal of the model is 

limited to use at that specific site. As electronic health record (EHR) vendors tailor models to 

individual institutions107, larger health systems may opt out of multicenter AI modeling efforts in 

favor of individually tailored models.  

To evaluate this approach, gradient-boosted decision tree (GBDT) models were separately 

trained and evaluated for each of the hospitals present in both the training and temporal 
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validation sets. We opted for GBDT models because of their high empirical performance in prior 

applications to AKI prediction31,86. Details for the training and early stopping are presented in the 

Supplemental Methods. Centers in the external validation set were excluded from this 

evaluation. 

4.2.5.2 Pooled Model 

To assess the value of pooling data across multiple centers, we trained a pooled GBDT model in 

the training set and evaluated its performance in both the temporal and external validation 

cohorts. In contrast to the single-center models, the pooled model was evaluated in centers either 

absent from the training set entirely or with too few patients in the training set for a model to be 

adequately trained using data from that center only (n < 20 total cases, or no cases meeting an 

outcome definition). 

4.2.5.3 Federated Model 

We assessed the value of a federated learning approach by implementing a novel federated 

stacked learning (FSL) framework, which uses a two-stage training process based upon work 

developed for model stacking108,109. In the first stage, base models are trained at each center and 

placed on a central server to be shared with all centers. In the second stage, predictions from all 

base models are used to train the final meta-model. A visual representation of the FSL algorithm 

is shown in Figure 4.2a. Each center first partitions its data randomly into training, weighting, 

and testing (if model evaluation is desired) sets. In the first (base model building) stage, the 

following actions are taken: a) each site uses its own training set to train a base model; b) each 

site sends its base model to the central server; and c) once the central server has all base models, 

it sends the collection of base models to all sites. Upon receiving all base models, the second 

(meta-model building) stage starts and follows these steps: a) each site applies all base models to 
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its own weighting set to generate its weighting predictions; b) each site sends its weighting 

predictions (one number per patient) to the central server; c) the central server learns a meta 

model using the weighting predictions, and d) once the meta model is learned, the central server 

sends the meta model back to all sites. The meta-model is used to weight the predictions 

generated by different base models. To facilitate understanding of how data structure changes in 

FSL algorithms, Figure 4.2b highlights which data are used in each training stage. In contrast to 

existing federated learning approaches, FSL requires fewer rounds of model sharing across 

centers and is thus simpler to implement as centers are added or removed from the network. 

Our FSL algorithm also allows center-level metadata to be added when training the meta-model. 

The value remains the same for cases from the same site. When each site generates its weighting 

predictions, a column indicating whether the center is an academic hospital and three additional 

columns showing their rate of different AKI outcomes (AKI stage 1 rate, AKI stage 2 rate, and 

AKI stage 3 rate) calculated from the weighting data are added to the weighting prediction 

dataset and used to train the meta-model.  

In our study, we used GBDT to train both the base models and the meta-model. We trained and 

compared two federated models: one using patient data only and one additionally incorporating 

center-level metadata. The FSL model with center-level metadata was trained using both 

university affiliation of the sites and site-level AKI rates. However, when it was evaluated on the 

external validation set, only university affiliation was available and the AKI rates of the four 

held-out hospitals were set to missing. 
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Figure 4.2 Visual representation of the FSL algorithm.  
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(a) Data exchanges between centers associated with each stage of FSL algorithm. (b) Changes of data structure used in 
each stage of FSL algorithm.  

 

4.2.6 Model Evaluation 

Model discrimination was assessed using the area under the receiver operating characteristic 

curve (AUC). A separate AUC was reported for individuals at-risk for each AKI stage. For 

example, patients without any AKI prior to surgery were evaluated on their risk of developing 

any AKI (i.e., stage 1 or greater), and patients with no AKI or AKI stage 1 were evaluated on 

their risk of developing AKI stage 2 or greater, and so on. The 95% confidence intervals were 

generated using DeLong’s method58. Model calibration was evaluated by comparing deciles of 

predicted probabilities with observed risks for temporal and external validation sets, for all AKI 

outcome severities. 

Models were evaluated in aggregate (across all centers in both validation sets) and then 

individually for each hospital. For each hospital, we determined the optimal modeling strategy 

by comparing the performance of single-center (base) models against pooled and federated 

models. The individual hospital analysis was performed using the temporal validation set only 

because there were no base models available for use in the external validation sets. 

4.2.7 Studying the Role of Network Size in Resulting Model Performance 

Building AI models as part of a research network may involve more investment as the network 

expands, but larger networks may produce more stable and generalizable models due to greater 

sample size and diversity. To examine the role of network size on model performance, we 

performed a learning curve analysis in which we compared the performance of pooled and 

federated models predicting AKI 1+ by varying the size of the network from 1 hospital (no 
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network) up to 23 hospitals. For each network size, hospitals were randomly selected without 

replacement, and this process was repeated 100 times. 

4.2.8 Feature Importance 

To develop an understanding of which variables most strongly contributed to the predictive 

performance of models developed, evaluated the feature importance. Feature importance of 

variables within the pooled model were assessed using each feature’s squared influence within 

the GBDT algorithm aggregated over the tree ensemble. Feature importance for the pooled 

model is provided in Supplemental Figure 4.1. 

4.2.9 Software 

All data processing and analyses were performed using R 4.2.161. Transformation of time-series 

data and calculation of summary statistics were performed using the Grammar of Prediction 

(gpmodels) R package62. H2o version 3.38.0.1 was used to fit all GBDT models, including the 

pooled model, base models and the meta model of the FSL model. Figure 4.5 with axis breaks 

was prepared using the ggbreak R package110,111. 

4.3 Results 

4.3.1 Cohort Characteristics 

We identified a total of 66,166 cardiac surgery cases across 31 US academic and community 

hospitals meeting inclusion criteria (Figure 4.3). After applying inclusion criteria, 43,926 cases 

across 23 hospitals (n = 43,926) were included in the training set, 18,132 across 25 hospitals in 

the temporal validation set, and 4,108 cases across 4 hospitals in the external validation set (see 

Supplemental Table 4.2 for details). Our overall cohort had a mean age of 62.0±13.5 years old 
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and consisted of more males (68.4%) and non-Hispanic whites (79.6%) (Table 4.1). Surgical 

cases had a mean duration of 6.98±2.22 hours in the operating room and 2.33±1.47 hours of 

CPB. The temporal validation set had similar baseline characteristics as the training set, except 

for more non-smokers (29.1% vs 18.6%) and a higher burden of comorbidities (Supplemental 

Table 4.3). As compared to the training set, the external validation cases were older (mean age 

64.4±12.3 vs 61.9±13.6), were less diverse in regard to sex, race, and ethnicity (males 72.4% vs 

68.0%, non-Hispanic whites 84.9% vs 79.3%), had fewer comorbidities, and had shorter 

operating room duration (6.19±2.02 hours vs 6.95±2.22 hours). 

Among all cases in the overall cohort, 25.5% developed any AKI: 24.8% in the training set, 

28.8% in temporal validation, and 18.6% in external validation. The median institution-level 

AKI was 29.7%, with an interquartile range of 23.6 to 34.0%. Prior to surgery, 5.0% of included 

cases had preoperative AKI, which was similar across the cohorts.  
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Figure 4.3 Study flow diagram.  

The flow diagram shows the case inclusion and exclusion criteria for the analysis of the study. Number of remaining cases after 
each step are shown. Numbers of cases included in each data split for subsequent training and evaluation are also shown.  

 

Table 4.1 Patient and surgical characteristics. 

Characteristic 

Overall  

(N = 66,166) 

Training 

 (N = 43,926) 

Temporal Validation 

 (N = 18,132) 

External Validation  

(N = 4,108) 

Preoperative Patient Characteristics 

Age (years) 62.0 (13.5) 61.9 (13.6) 61.7 (13.3) 64.4 (12.3) 

Sex     

Female 20,921 (31.6%) 14,062 (32.0%) 5,726 (31.6%) 1,133 (27.6%) 

Male 45,245 (68.4%) 29,864 (68.0%) 12,406 (68.4%) 2,975 (72.4%) 

Race / Ethnicity     

White not of hispanic origin 52,643 (79.6%) 34,822 (79.3%) 14,335 (79.1%) 3,486 (84.9%) 
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Black not of hispanic origin 4,304 (6.5%) 2,720 (6.2%) 1,494 (8.2%) 90 (2.2%) 

Asian or Pacific Islander 2,068 (3.1%) 1,215 (2.8%) 624 (3.4%) 229 (5.6%) 

Bi or Multi Racial 569 (0.9%) 413 (0.9%) 156 (0.9%) 0 (0.0%) 

American Indian or Alaska Native 180 (0.3%) 102 (0.2%) 66 (0.4%) 12 (0.3%) 

Hispanic white 514 (0.8%) 267 (0.6%) 206 (1.1%) 41 (1.0%) 

Hispanic black 38 (0.1%) 18 (0.0%) 19 (0.1%) 1 (0.0%) 

Middle Eastern 38 (0.1%) 38 (0.1%) 0 (0.0%) 0 (0.0%) 

Missing 5,812 (8.8%) 4,331 (9.9%) 1,232 (6.8%) 249 (6.1%) 

Height (cm) 171.9 (14.1) 172.5 (10.9) 170.2 (19.9) 172.4 (10.4) 

Weight (kg) 87.0 (20.8) 86.7 (20.7) 87.7 (21.2) 87.2 (21.0) 

Body Mass Index (kg/m^2) 29.1 (6.2) 29.0 (6.2) 29.2 (6.3) 29.3 (6.3) 

ASA Physical Status Classification     

ASA Class 1 59 (0.1%) 54 (0.1%) 3 (0.0%) 2 (0.0%) 

ASA Class 2 397 (0.6%) 267 (0.6%) 72 (0.4%) 58 (1.4%) 

ASA Class 3 13,838 (20.9%) 8,806 (20.0%) 3,130 (17.3%) 1,902 (46.3%) 

ASA Class 4 50,982 (77.1%) 34,286 (78.1%) 14,614 (80.6%) 2,082 (50.7%) 

ASA Class 5 890 (1.3%) 513 (1.2%) 313 (1.7%) 64 (1.6%) 

Preoperative Laboratory Values     

White Blood Cell Count (per mL) 7.6 (3.1) 7.5 (3.1) 7.7 (3.1) 7.9 (3.4) 

Platelet Count, (K/mL) 218.6 (72.2) 216.9 (70.2) 221.9 (77.2) 223.0 (70.4) 

Hemoglobin (g/dL) 13.3 (2.0) 13.3 (2.0) 13.2 (2.1) 13.3 (1.9) 

Sodium (mEq/L) 138.8 (3.2) 139.1 (3.2) 138.3 (3.1) 138.5 (3.1) 

Potassium (mEq/L) 4.2 (0.4) 4.2 (0.4) 4.2 (0.4) 4.1 (0.4) 

Bicarbonate (mmol/L) 25.6 (3.1) 25.8 (3.1) 25.3 (3.3) 24.8 (2.8) 

Glucose (g/dL) 115.8 (39.3) 115.1 (39.6) 116.5 (38.7) 119.0 (38.0) 

Creatinine-Related Variables     

Preoperative Baseline Serum Creatinine, 

g/dL 

1.0 (0.3) 1.0 (0.3) 0.9 (0.3) 0.9 (0.3) 

Preoperative Most Recent Serum 

Creatinine, g/dL 

1.0 (0.5) 1.0 (0.6) 1.0 (0.3) 1.0 (0.3) 
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Preoperative Serum Creatinine Ratio 

(Most Recent/Baseline) 

1.1 (0.5) 1.1 (0.6) 1.1 (0.2) 1.1 (0.2) 

Preoperative Serum Creatinine 

Difference (Most Recent - Baseline) 

0.1 (0.5) 0.1 (0.5) 0.1 (0.1) 0.1 (0.1) 

First Post-operative Serum Creatinine 

Within 24h 

1.0 (0.3) 1.0 (0.3) 1.0 (0.3) 0.9 (0.3) 

Preoperative AKI     

No Preoperative AKI 62,831 (95.0%) 41,831 (95.2%) 17,081 (94.2%) 3,919 (95.4%) 

Preoperative AKI-1 3,066 (4.6%) 1,934 (4.4%) 967 (5.3%) 165 (4.0%) 

Preoperative AKI-2 218 (0.3%) 136 (0.3%) 66 (0.4%) 16 (0.4%) 

Preoperative AKI-3 51 (0.1%) 25 (0.1%) 18 (0.1%) 8 (0.2%) 

Summary Patient Comorbidities (Elixhauser) 

Cardiac Arrhythmia 42,934 (64.9%) 27,245 (62.0%) 12,912 (71.2%) 2,777 (67.6%) 

Chronic Pulmonary Disease 15,116 (22.8%) 10,143 (23.1%) 4,008 (22.1%) 965 (23.5%) 

Coagulopathy 25,473 (38.5%) 15,989 (36.4%) 8,898 (49.1%) 586 (14.3%) 

Congestive Heart Failure 31,495 (47.6%) 19,952 (45.4%) 9,910 (54.7%) 1,633 (39.8%) 

Diabetes 18,570 (28.1%) 11,661 (26.5%) 5,321 (29.3%) 1,588 (38.7%) 

Fluid and Electrolyte Disorders 39,655 (59.9%) 25,740 (58.6%) 12,602 (69.5%) 1,313 (32.0%) 

Hypertension 24,791 (37.5%) 14,337 (32.6%) 8,981 (49.5%) 1,473 (35.9%) 

Liver Disease 4,758 (7.2%) 2,850 (6.5%) 1,609 (8.9%) 299 (7.3%) 

Peripheral Vascular Disorders 24,588 (37.2%) 15,781 (35.9%) 7,557 (41.7%) 1,250 (30.4%) 

Pulmonary Circulation Disorders 12,034 (18.2%) 7,682 (17.5%) 3,632 (20.0%) 720 (17.5%) 

Valvular Disease 46,092 (69.7%) 31,145 (70.9%) 12,513 (69.0%) 2,434 (59.3%) 

Surgical Characteristics - Procedure Type 

Valve Only 21,670 (32.8%) 15,371 (35.0%) 5,232 (28.9%) 1,067 (26.0%) 

Coronary Artery Bypass Only 18,573 (28.1%) 11,350 (25.8%) 5,356 (29.5%) 1,867 (45.4%) 

Aortic 9,316 (14.1%) 6,114 (13.9%) 2,852 (15.7%) 350 (8.5%) 

Valve + Coronary Artery Bypass Only 6,455 (9.8%) 4,433 (10.1%) 1,492 (8.2%) 530 (12.9%) 

Myectomy 2,156 (3.3%) 1,588 (3.6%) 541 (3.0%) 27 (0.7%) 

Ventricular Assist Device 1,680 (2.5%) 1,161 (2.6%) 463 (2.6%) 56 (1.4%) 

Heart Transplant 1,669 (2.5%) 953 (2.2%) 664 (3.7%) 52 (1.3%) 
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Pulmonary Thromboendarterectomy 385 (0.6%) 242 (0.6%) 143 (0.8%) 0 (0.0%) 

Other 4,264 (6.4%) 2,716 (6.2%) 1,389 (7.7%) 159 (3.9%) 

Additional Surgical Characteristics     

Anesthesia Duration (min) 419 (133) 417 (133) 434 (134) 371 (121) 

Cardiopulmonary Bypass Duration (min) 140 (88) 133 (85) 157 (99) 137 (65) 

Emergent 4,059 (6.1%) 2,613 (5.9%) 1,165 (6.4%) 281 (6.8%) 

Institutional Characteristics     

Academic Hospital 64,920 (98.1%) 43,198 (98.3%) 18,111 (99.9%) 3,611 (87.9%) 

     

Outcome Characteristics     

CSA-AKI Stage     

No CSA-AKI 49,264 (74.5%) 33,019 (75.2%) 12,901 (71.2%) 3,344 (81.4%) 

CSA-AKI-1 11,759 (17.8%) 7,771 (17.7%) 3,449 (19.0%) 539 (13.1%) 

CSA-AKI-2 3,457 (5.2%) 2,161 (4.9%) 1,142 (6.3%) 154 (3.7%) 

CSA-AKI-3 1,686 (2.5%) 975 (2.2%) 640 (3.5%) 71 (1.7%) 

* Non-mutually exclusive     

Statistics presented as mean (SD) for numeric variables; N(%) for categorical variables. AIDS/HIV = acquired immunodeficiency syndrome / human 

immunodeficiency virus; AKI = acute kidney injury; ASA = American Society of Anesthesiologists; CPB = cardiopulmonary bypass; CSA-AKI = cardiac surgery-

associated acute kidney injury; ETT = endotracheal tube; LMA = laryngeal mask airway 

 

4.3.2 Aggregate Model Performance 

In the temporal validation set, the pooled models demonstrated the highest AUCs for all AKI 

severity levels (AKI 1+: 0.856; AKI 2+: 0.890; AKI 3+: 0.911), while single-center base models 

had a lowest AUCs (AKI 1+: 0.770; AKI 2+: 0.796; AKI 3+: 0.821) (full results in Table 4.2). 

Federated model AUCs were approximately 0.03 lower than the pooled models (AKI 1+: 0.826; 

AKI 2+: 0.861; AKI 3+: 0.887), although the differences were attenuated by the inclusion of 

center-level metadata. 
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In the external validation set, single-center model performance was not calculated because the 

external validation centers were excluded from the training set. The pooled models once again 

demonstrated the highest AUCs (AKI 1+: 0.882; AKI 2+: 0.925; AKI 3+: 0.950). The federated 

model AUCs were approximately 0.02 lower (AKI 1+: 0.865; AKI 2+: 0.906; AKI 3+: 0.933), 

and the inclusion of metadata did not substantially change the results. 

The FSL models, with and without metadata, and the pooled model were generally well-

calibrated in both temporal and external validation for all AKI severities (Figure 4.4). The first 

postoperative serum creatinine was the most important variable (Supplemental Figure 4.1). 

 

Table 4.2 Temporal and external validation AUCs. 

 Temporal Validation 

 Base Model* FSL Model FSL with Metadata** Model Pooled Model 

AKI-1+ 0.7703 (0.7609, 0.7796) 0.8261 (0.8190, 0.8332) 0.8317 (0.8248, 0.8386) 0.8557 (0.8493, 0.8621) 

AKI-2+ 0.7960 (0.7824, 0.8096) 0.8610 (0.8521, 0.8698) 0.8651 (0.8566, 0.8736) 0.8899 (0.8823, 0.8974) 

AKI-3+ 0.8214 (0.8016, 0.8411) 0.8873 (0.8744, 0.9001) 0.8938 (0.8819, 0.9057) 0.9108 (0.9004, 0.9211) 

Note: 

* Centers where a Base Model could not be trained are excluded from this temporal validation set. 

** Metadata used: university affiliation, AKI stage 1 rate, AKI stage 2 rate and AKI stage 3 rate at each site. 

     

 External Validation 

 Base Model FSL Model FSL with Metadata*** Model Pooled Model 

AKI-1+ NA 0.8647 (0.8496, 0.8798) 0.8623 (0.8472, 0.8774) 0.8824 (0.8685, 0.8964) 

AKI-2+ NA 0.9063 (0.8887, 0.924) 0.9012 (0.8829, 0.9196) 0.9249 (0.9087, 0.9412) 

AKI-3+ NA 0.9333 (0.904, 0.9626) 0.9312 (0.8994, 0.9631) 0.9496 (0.9287, 0.9705) 

Note: 

*** Metadata used: university affiliation 
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Figure 4.4 Calibration plot of the multicenter models.  

The calibration of the multicenter models in temporal validation and external validation, for all AKI severities. The predicted 
probabilities (deciles) are plotted against the observed probabilities with 95% confidence intervals. The diagonal line 
demonstrates the ideal calibration. The model calibration is examined for pooled model (red), FSL model without center-level 
metadata (green), and FSL model incorporating center-level metadata (blue).  
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4.3.3 Model Performance at Individual Centers 

While we found that the pooled model performs better in aggregate in both validation sets, not 

all centers may benefit equally from participating in a network, either through pooling or 

federating. To examine the potential benefits to individual centers in building AI models as part 

of a network, we evaluated each hospital’s optimal modeling strategy using the temporal 

validation set for each center (Supplemental Table 4.4 and Supplemental Figure 4.2). 

Among the 23 centers in the validation set, using a single-center model was the optimal strategy 

(based on the AUC point estimate) for none of the hospitals in predicting either AKI 1+, 2+, or 

3+. Even if pooling data were not an option due to data sharing restrictions, single-center base 

models outperformed a simple FSL approach (without metadata) for only 1 hospital for AKI 1+, 

5 hospitals for AKI 2+, and 4 hospitals for AKI 3+ (Figure 4.5). The single-center approach 

generally only performed better in the largest hospitals, and the magnitude of difference was 

small. 

Five out of these 23 centers did not have a sufficient number of cases in the training set to even 

train a base model for AKI 1+ using the number of predictors in our model. Despite this 

limitation, 4 of these 5 centers achieved an AUC > 0.80 for AKI 1+ when pooling data, and 3 

achieved an AUC > 0.80 when applying a federated learning approach. 
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Figure 4.5 AUC difference between FSL and base models. 

Difference in AUC between FSL (without metadata) and base models at each center in temporal validation, for all AKI severities. 
Better performing model is indicated by color (red: single-center base model, green: FSL model).  

 

4.3.4 Network Size and Model Performance 

While our results derive from a large national network of 31 hospitals, the value derived from 

building multicenter AI models may vary based on a network size. We found that the lowest 

AUC in both the temporal validation and external validation cohorts was for a network size of 1 

(no network) and the highest AUC was for a network size of 23 (the full network available for 

study, Figure 4.6 and Supplemental Table 4.5). The AUC increased the most with the addition 

of the first few hospitals, and the magnitude became smaller as the final few hospitals were 
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added to the network. About half of the increase in AUC from a single-center to the full 23-

hospital models was observed with the models learning from only 4 hospitals. 

 

 

Figure 4.6 Learning curve of multicenter model performance in predicting AKI 1+ as network expands.  

Changes in model performance (AUC) in predicting AKI 1+ as the network size increases from none (no network) to 23 
hospitals. Results from both temporal validation and external validation are shown. Different multicenter modeling approaches 
are compared (red: FSL, green: pooled). For each network size, hospitals were randomly selected without replacement, and this 
process was repeated 100 times. The center dot and error bar at each network size represents the mean AUC and standard 
deviation, respectively, across 100 experiments.  

 

4.4 Discussion 

In this retrospective study conducted using a national perioperative research network, we found 

that participating in a research network produced a better model (substantially higher AUC) in 

aggregate for both the temporal and external validation sets as compared to single-center models. 

When examining the model performance at each individual center, a multicenter model had 
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higher performance for all individual centers and all AKI outcomes versus a single-center 

approach. This finding is particularly salient given the alternative conventional assumption that a 

single center’s predictors might be expected to perform better temporally on its own population 

without potential contamination by center-specific effects from other centers. We found that this 

conventional wisdom does not hold. 

Even if data sharing were not an option, a federated model without hospital metadata 

outperformed a single-center modeling approach at the vast majority of hospitals for all 

outcomes, and the benefits of federating were the largest for hospitals with fewer cases. The 

benefits of building multicenter AI models were greatest for smaller networks, with diminishing 

returns observed with each additional hospital being added to the network. 

Our study suggests that contrary to a recent decision to build separate sepsis models for each 

hospital by an EHR vendor107, sharing data or model parameters across centers generally 

produces superior models than an approach relying on a bespoke model for each center. Even 

hospitals with high case volumes in our study obtained a higher performing model from either 

pooling or federating, although this difference was marginal for the largest hospitals. On the 

other hand, the hospitals with the fewest training set cases either were unable to produce models 

or produced poorly performing models. Despite not contributing many cases to training, these 

hospitals generally saw high performance from pooled or federated models. Viewed through an 

equity lens, the centers with the largest case volume reap the smallest benefit from participating 

in an AI modeling research network, but their contribution of either data or base models to the 

research network greatly benefits the hospitals with smaller case volumes. 

We also introduce an efficient two-stage federated learning approach inspired by model stacking. 

Our federated stacked learning approach achieved similar performance to the pooled models, 
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with an AUC lower than a pooled approach by approximately 0.03 in temporal validation and 

0.02 in external validation across all outcomes. One of the challenges with implementing 

federated learning models in clinical practice is that the federation procedure generally becomes 

more complex as the network size grows. Along with a lack of federation infrastructure in the 

EHR, this may explain why federated learning models are rarely deployed in the EHR despite 

robust evaluations in the literature. It is thus important to emphasize that the complexity of the 

FSL approach used in this study does not change as additional centers are added. For example, 

adding a center requires the new center to train a base model, for the base model’s predictions to 

be disseminated to a central server, after which the meta-model is retrained with the addition of 

the new predictions. Centers already in the federated network do not have to do any additional 

work or retraining. We hope that simplifying the federated learning approach will make it more 

tractable to implement within research networks. 

Our study has limitations. We only examined one clinical scenario (AKI), although we examined 

different severities of AKI with varying incidence and found largely concordant results 

regardless of the chosen severity of AKI outcome. While we did have a relatively large sample 

size, cardiac surgery occurs less commonly than conditions like sepsis or acute kidney injury 

among general inpatients. Thus, while our findings are robust to a relatively large sample size, 

our findings may not generalize to situations where individual centers can accumulate a much 

larger sample size than what we studied. Lastly, while we looked at calibration in the aggregate 

validation cohorts, we did not evaluate hospital-specific calibration. This will be important to 

consider in future work because multicenter AI models may need to be recalibrated for specific 

hospitals to ensure generalizability74,112.  



 105 

Despite these limitations, our study has important implications for health systems considering 

whether the investment in research or quality networks focused on building multicenter AI 

models is sufficient to justify their participation. While prior evaluations of federated learning or 

pooling of data or coefficients have largely focused on aggregate performance from these 

approaches, we additionally show that the benefit to individual centers varies based on their 

sample size. The benefits are largest for centers with the smallest sample size and made possible 

by the participation of the larger centers. Thus, while the largest health systems may not see 

substantial benefits from pooling or federating with other systems, their participation in such 

efforts should be encouraged and incentivized as it leads to direct benefits to smaller health 

systems.  

4.5 Data Sharing 

The datasets involved in this study are defined as limited datasets per United States Federal 

Regulations and require execution of a data use agreement for transfer or use of the data. They 

are derived from data shared within the Multicenter Perioperative Outcomes Group (MPOG). 

The investigative team is able to share data securely and transparently conditional on: (i) receipt 

of a detailed written request identifying the requestor, purpose and proposed use of the shared 

data, (ii) use of a secure enclave for the sharing of personally identifiable information and (iii) 

the request is permissible within the confines of existing data use agreements executed between 

MPOG members.  

4.6 Supplemental Materials 

4.6.1 Supplemental Methods 

Minimum Data Quality Standards 
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To ensure high data quality, each included case required a minimum data quality standard for 

inclusion in the dataset, defined as the presence of date of surgery, comorbidities, preoperative 

laboratory values, intraoperative arterial blood gas values and physiologic monitoring data, 

baseline kidney function, and postoperative creatinine values (to derive CSA-AKI outcomes). 

Values of intraoperative time-varying variables were restricted to physiologically plausible valid 

ranges. 

Preoperative AKI 

Preoperative AKI was calculated by comparing the lowest baseline sCr value in the 60 days prior 

to surgery to the most recent serum creatinine value closest to surgery, staged for severity 

according to the Kidney Disease: Improving Global Outcomes (KDIGO) international 

guidelines: Stage 1 AKI was defined as a sCr level increase ≥ 0.3 mg/dL or ≥1.5 times 

baseline. Stage 2 AKI was defined as an increase of ≥2 times the baseline, and Stage 3 AKI ≥3 

times baseline or an increase to ≥4.0 mg/dL16. 

Gradient-Boosted Decision Tree Training and Early Stopping 

Gradient-boosted decision tree models (GBDT) were trained on a random 80% split of the 

training set to predict the outcome AKI stage as a multinomial outcome (i.e. “No AKI”, “AKI 

stage 1”, “AKI stage 2”, “AKI stage 3”, “AKI stage 3D”) for each case using 426 predictors with 

a maximum of 1000 trees and a maximum depth of 5. The remaining 20% of the training set was 

used to determine the need for early stopping based on an improvement in log loss lower than 

0.0005 on 5 consecutive rounds based on a moving average calculated after every 10 trees. 

Categorical predictors were reordered by the mean response of each level for more efficient 

training. Internally, a separate one-versus-all tree was trained for each outcome class and 

averaged to produce probabilities for achieving each AKI stage postoperatively. 
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4.6.2 Supplemental Tables 

Supplemental Table 4.1 Description of variables and predictors in the study models 

Variable Description 
Variable 
Type Category 

Valid 
Range Phase 

Summary 
statistics 

Number of 
predictors 

age Age (years) Fixed 
Patient 
demographics  - - 1 

gender Sex Fixed 
Patient 
demographics  - - 1 

race Race Fixed 
Patient 
demographics  - - 1 

height Height (cm) Fixed 
Patient 
demographics  - - 1 

weight Weight (kg) Fixed 
Patient 
demographics  - - 1 

bmi BMI (kg/m2) Fixed 
Patient 
demographics  - - 1 

smoking_classification Smoking Classification Fixed 
Patient 
demographics  - - 1 

asa_class ASA class Fixed 
Case 
characteristics  - - 1 

university_affiliated University affiliation Fixed 
Case 
characteristics  - - 1 

weekend Case performed on a weekend Fixed 
Case 
characteristics  - - 1 

holiday Case performend on a holiday Fixed 
Case 
characteristics  - - 1 

emergent Emergent case ((ASA “E” status) Fixed 
Case 
characteristics  - - 1 

resident_present Resident present Fixed 
Case 
characteristics  - - 1 

crna_present CRNA present Fixed 
Case 
characteristics  - - 1 

procedure_type_aortic 
Non-hypothermia circulatory 
arrest aortic Fixed 

Case 
characteristics  - - 1 

procedure_type_circ_arrest Circulatory arrest Fixed 
Case 
characteristics  - - 1 

procedure_type_heart_transplant Heart transplant Fixed 
Case 
characteristics  - - 1 

procedure_type_pte 
Pulmonary 
thromboendarterectomy Fixed 

Case 
characteristics  - - 1 

procedure_type_myectomy Myectomy Fixed 
Case 
characteristics  - - 1 

procedure_type_vad 
Ventricular assist device (VAD) 
pre-existing or implanted Fixed 

Case 
characteristics  - - 1 

procedure_type_iabp 
Intra-aortic balloon pumps (IABP) 
pre-existing or placed Fixed 

Case 
characteristics  - - 1 
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procedure_type_other_mech_support 
Other mechanical support device 
pre-existing or placed Fixed 

Case 
characteristics  - - 1 

procedure_type_cab_only 
Coronary artery bypass (CAB) 
only Fixed 

Case 
characteristics  - - 1 

procedure_type_valve_only Valve replacement only Fixed 
Case 
characteristics  - - 1 

procedure_type_valve_cab_only CAB and valve replacement Fixed 
Case 
characteristics  - - 1 

baseline_bp_map Baseline BP MAP Fixed 
Pre-operative 
lab/phys results  - - 1 

preop_platelets Pre-operative platelets Fixed 
Pre-operative 
lab/phys results  - - 1 

preop_wbc Pre-operative WBC Fixed 
Pre-operative 
lab/phys results  - - 1 

preop_sodium Pre-operative sodium Fixed 
Pre-operative 
lab/phys results 

[90, 
190] - - 1 

preop_potassium Pre-operative potassium Fixed 
Pre-operative 
lab/phys results [0, 50] - - 1 

preop_glucose Pre-operative glucose Fixed 
Pre-operative 
lab/phys results [0, 600] - - 1 

preop_hemoglobin_combined 
Pre-operative hemoglobin or 
hematocrit/3 Fixed 

Pre-operative 
lab/phys results [0, 30] - - 1 

preop_hco3_or_co2_serum 
Pre-operative bicarbonate or 
serum CO2 Fixed 

Pre-operative 
lab/phys results [0, 55] - - 1 

bl110_count Anticoagulants Fixed 
Pre-operative home 
medications - - 1 

bl117_count Platelet aggregation inhibitors Fixed 
Pre-operative home 
medications - - 1 

cv050_count Digitalis glycosides Fixed 
Pre-operative home 
medications - - 1 

cv100_count Beta blockers Fixed 
Pre-operative home 
medications - - 1 

cv150_count Alpha blockers Fixed 
Pre-operative home 
medications - - 1 

cv200_count Calcium channel blockers Fixed 
Pre-operative home 
medications - - 1 

cv250_count Anti-anginals Fixed 
Pre-operative home 
medications - - 1 

cv300_count Anti-arrhythmics Fixed 
Pre-operative home 
medications - - 1 

cv350_count Anti-lipemics Fixed 
Pre-operative home 
medications - - 1 

cv701_count Thiazide diuretics Fixed 
Pre-operative home 
medications - - 1 

cv702_count Loop diuretics Fixed 
Pre-operative home 
medications - - 1 

cv704_count Potassium sparing diuretics Fixed 
Pre-operative home 
medications - - 1 
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cv800_count 
Angiotensin-converting enzyme 
(ACE) inhibitors Fixed 

Pre-operative home 
medications - - 1 

cv805_count Angiotensin II (ATII) inhibitors Fixed 
Pre-operative home 
medications - - 1 

hs502_count Oral hypoglycemic agents Fixed 
Pre-operative home 
medications - - 1 

elixhauser_aids_hiv 
Elixhauser Comorbidity - 
AIDS/HIV Fixed Comorbidities  - - 1 

elixhauser_alcohol_abuse 
Elixhauser Comorbidity - Alcohol 
abuse Fixed Comorbidities  - - 1 

elixhauser_blood_loss_anemia 
Elixhauser Comorbidity - Blood 
loss anemia Fixed Comorbidities  - - 1 

elixhauser_cardiac_arrhythmia 
Elixhauser Comorbidity - Cardiac 
arrhythmia Fixed Comorbidities  - - 1 

elixhauser_chronic_pulmonary_disease 
Elixhauser Comorbidity - Chronic 
pulmonary disease Fixed Comorbidities  - - 1 

elixhauser_coagulopathy 
Elixhauser Comorbidity - 
Coagulopathy Fixed Comorbidities  - - 1 

elixhauser_congestive_heart_failure 
Elixhauser Comorbidity - 
Congestive heart failure Fixed Comorbidities  - - 1 

elixhauser_deficiency_anemia 
Elixhauser Comorbidity - 
Deficiency anemia Fixed Comorbidities  - - 1 

elixhauser_depression 
Elixhauser Comorbidity - 
Depression Fixed Comorbidities  - - 1 

elixhauser_diabetes_with_complications 
Elixhauser Comorbidity - 
Diabetes with complications Fixed Comorbidities  - - 1 

elixhauser_diabetes_without_complications 
Elixhauser Comorbidity - 
Diabetes without complications Fixed Comorbidities  - - 1 

elixhauser_drug_abuse 
Elixhauser Comorbidity - Drug 
abuse Fixed Comorbidities  - - 1 

elixhauser_fluid_and_electrolyte_disorders 
Elixhauser Comorbidity - Fluid 
and electrolyte disorders Fixed Comorbidities  - - 1 

elixhauser_hypertension_with_complications 
Elixhauser Comorbidity - 
Hypertension with complications Fixed Comorbidities  - - 1 

elixhauser_hypertension_without_complications 

Elixhauser Comorbidity - 
Hypertension without 
complications Fixed Comorbidities  - - 1 

elixhauser_hypothyroidism 
Elixhauser Comorbidity - 
Hypothyroidism Fixed Comorbidities  - - 1 

elixhauser_liver_disease 
Elixhauser Comorbidity - Liver 
disease Fixed Comorbidities  - - 1 

elixhauser_lymphoma 
Elixhuaser Comorbidity - 
Lymphoma Fixed Comorbidities  - - 1 

elixhauser_metastatic_cancer 
Elixhauser Comorbidity - 
Metastatic cancer Fixed Comorbidities  - - 1 

elixhauser_obesity Elixhauser Comorbidity - Obesity Fixed Comorbidities  - - 1 

elixhauser_other_neurological_disorders 
Elixhauser Comorbidity - Other 
neurological disorders Fixed Comorbidities  - - 1 
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elixhauser_paralysis 
Elixhauser Comorbidity - 
Paralysis Fixed Comorbidities  - - 1 

elixhauser_peptic_ulcer_disease_excluding_bleeding 
Elixhauser Comorbidity - Peptic 
ulcer disease excluding bleeding Fixed Comorbidities  - - 1 

elixhauser_peripheral_vascular_disorders 
Elixhauser Comorbidity - 
Peripheral vascular disorders Fixed Comorbidities  - - 1 

elixhauser_psychoses 
Elixhauser Comorbidity - 
Psychoses Fixed Comorbidities  - - 1 

elixhauser_pulmonary_circulation_disorders 
Elixhauser Comorbidity - 
Pulmonary circulation disorders Fixed Comorbidities  - - 1 

elixhauser_rheumatoid_arthritis_collagen 
Elixhauser Comorbidity - 
Rheumatoid arthritis collagen Fixed Comorbidities  - - 1 

elixhauser_solid_tumor_without_metastasis 
Elixhauser Comorbidity - Solid 
tumor without metastasis Fixed Comorbidities  - - 1 

elixhauser_valvular_disease 
Elixhauser Comorbidity - 
Valvular disease Fixed Comorbidities  - - 1 

elixhauser_weight_loss 
Elixhauser Comorbidity - Weight 
loss Fixed Comorbidities  - - 1 

preop_creatinine_baseline 
Pre-operative baseline sCr (lowest 
within 60 days prior to surgery) Fixed 

Baseline kidney 
function  - - 1 

preop_creatinine_most_recent 

Pre-operative most recent sCr 
(closest to surgery, within 60 days 
prior to surgery) Fixed 

Baseline kidney 
function  - - 1 

ratio_creatinine_most_recent_to_baseline 
Ratio of most recent sCr to 
baseline sCr Fixed 

Baseline kidney 
function  - - 1 

diff_creatinine_baseline_to_most_recent 
Increase from baseline sCr to 
most recent sCr Fixed 

Baseline kidney 
function  - - 1 

baseline_aki_stage 
Baseline AKI stage (no AKI, 
AKI-1, AKI-2, AKI-3) Fixed 

Baseline kidney 
function  - - 1 

first_postop_creatinine_within_24h 
First post-operative sCr within 
24h Fixed 

First post-
operative sCr  - - 1 

bp_sys Intra-operative systolic BP 
Time-
varying 

Intra-operative 
BP [0, 400] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

bp_sys Intra-operative systolic BP 
Time-
varying 

Intra-operative 
BP [0, 400] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

bp_sys Intra-operative systolic BP 
Time-
varying 

Intra-operative 
BP [0, 400] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

bp_dias Intra-operative diastolic BP 
Time-
varying 

Intra-operative 
BP [0, 300] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

bp_dias Intra-operative diastolic BP 
Time-
varying 

Intra-operative 
BP [0, 300] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

bp_dias Intra-operative diastolic BP 
Time-
varying 

Intra-operative 
BP [0, 300] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 
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bp_map Intra-operative MAP 
Time-
varying 

Intra-operative 
BP [0, 200] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

bp_map Intra-operative MAP 
Time-
varying 

Intra-operative 
BP [0, 200] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

bp_map Intra-operative MAP 
Time-
varying 

Intra-operative 
BP [0, 200] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

cvp Intra-operative CVP 
Time-
varying 

Intra-operative 
CVP 

[-10, 
40] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

cvp Intra-operative CVP 
Time-
varying 

Intra-operative 
CVP 

[-10, 
40] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

cvp Intra-operative CVP 
Time-
varying 

Intra-operative 
CVP 

[-10, 
40] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Bicarbonate Intra-operative bicarbonate 
Time-
varying 

Intra-operative 
lab [0, 55] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Bicarbonate Intra-operative bicarbonate 
Time-
varying 

Intra-operative 
lab [0, 55] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Bicarbonate Intra-operative bicarbonate 
Time-
varying 

Intra-operative 
lab [0, 55] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Glucose Intra-operative glucose 
Time-
varying 

Intra-operative 
lab [0, 600] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Glucose Intra-operative glucose 
Time-
varying 

Intra-operative 
lab [0, 600] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Glucose Intra-operative glucose 
Time-
varying 

Intra-operative 
lab [0, 600] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Hemoglobin Intra-operative hemoglobin 
Time-
varying 

Intra-operative 
lab [0, 30] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Hemoglobin Intra-operative hemoglobin 
Time-
varying 

Intra-operative 
lab [0, 30] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Hemoglobin Intra-operative hemoglobin 
Time-
varying 

Intra-operative 
lab [0, 30] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

pCO2 Intra-operative pCO2 
Time-
varying 

Intra-operative 
lab [0, 200] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

pCO2 Intra-operative pCO2 
Time-
varying 

Intra-operative 
lab [0, 200] 

intra-
CPB 

first, last, length, 
min, mean, 8 
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median, max, 
slope 

pCO2 Intra-operative pCO2 
Time-
varying 

Intra-operative 
lab [0, 200] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

pH Intra-operative pH 
Time-
varying 

Intra-operative 
lab [6.7, 8] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

pH Intra-operative pH 
Time-
varying 

Intra-operative 
lab [6.7, 8] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

pH Intra-operative pH 
Time-
varying 

Intra-operative 
lab [6.7, 8] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Potassium Intra-operative potassium 
Time-
varying 

Intra-operative 
lab [0, 50] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Potassium Intra-operative potassium 
Time-
varying 

Intra-operative 
lab [0, 50] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Potassium Intra-operative potassium 
Time-
varying 

Intra-operative 
lab [0, 50] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Sodium Intra-operative sodium 
Time-
varying 

Intra-operative 
lab 

[90, 
190] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Sodium Intra-operative sodium 
Time-
varying 

Intra-operative 
lab 

[90, 
190] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Sodium Intra-operative sodium 
Time-
varying 

Intra-operative 
lab 

[90, 
190] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Albuterol 
Intra-operative administration of 
albuterol 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Albuterol 
Intra-operative administration of 
albuterol 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Albuterol 
Intra-operative administration of 
albuterol 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Angiotension II 
Intra-operative administration of 
angiotension II 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Angiotension II 
Intra-operative administration of 
angiotension II 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Angiotension II 
Intra-operative administration of 
angiotension II 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Dobutamine 
Intra-operative administration of 
dobutamine 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Dobutamine 
Intra-operative administration of 
dobutamine 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Dobutamine 
Intra-operative administration of 
dobutamine 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Dopamine 
Intra-operative administration of 
dopamine 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 
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Dopamine 
Intra-operative administration of 
dopamine 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Dopamine 
Intra-operative administration of 
dopamine 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Ephedrine 
Intra-operative administration of 
ephedrine 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Ephedrine 
Intra-operative administration of 
ephedrine 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Ephedrine 
Intra-operative administration of 
ephedrine 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Epinephrine 
Intra-operative administration of 
epinephrine 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Epinephrine 
Intra-operative administration of 
epinephrine 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Epinephrine 
Intra-operative administration of 
epinephrine 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Milrinone 
Intra-operative administration of 
milrinone 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Milrinone 
Intra-operative administration of 
milrinone 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Milrinone 
Intra-operative administration of 
milrinone 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Norepinephrine 
Intra-operative administration of 
norepinephrine 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Norepinephrine 
Intra-operative administration of 
norepinephrine 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Norepinephrine 
Intra-operative administration of 
norepinephrine 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Phenylephrine 
Intra-operative administration of 
phenylephrine 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Phenylephrine 
Intra-operative administration of 
phenylephrine 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Phenylephrine 
Intra-operative administration of 
phenylephrine 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

Vasopressin 
Intra-operative administration of 
vasopressin 

Time-
varying 

Intra-operative 
medication  

pre-
CPB length 1 

Vasopressin 
Intra-operative administration of 
vasopressin 

Time-
varying 

Intra-operative 
medication  

intra-
CPB length 1 

Vasopressin 
Intra-operative administration of 
vasopressin 

Time-
varying 

Intra-operative 
medication  

post-
CPB length 1 

HR Intra-operative heart rate 
Time-
varying 

Intra-operative 
physiology 

[30, 
180] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

HR Intra-operative heart rate 
Time-
varying 

Intra-operative 
physiology 

[30, 
180] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

HR Intra-operative heart rate 
Time-
varying 

Intra-operative 
physiology 

[30, 
180] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

SpO2 Intra-operative SpO2 
Time-
varying 

Intra-operative 
physiology 

[60, 
100] 

pre-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 
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SpO2 Intra-operative SpO2 
Time-
varying 

Intra-operative 
physiology 

[60, 
100] 

intra-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

SpO2 Intra-operative SpO2 
Time-
varying 

Intra-operative 
physiology 

[60, 
100] 

post-
CPB 

first, last, length, 
min, mean, 
median, max, 
slope 8 

Total             426 
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Supplemental Table 4.2 Number of cases at each center by data partition 

Center Training Temporal Validation External Validation University-affiliated/Academic 

1 2,473 1,956 - Yes 

4 2,139 972 - Yes 

5 1,811 0 - Yes 

7 1,105 266 - Yes 

10 3,345 1,403 - Yes 

14 0 744 - Yes 

16 16,251 3,469 - Yes 

19 2,140 825 - Yes 

23 700 326 - Yes 

32 - - 238 No 

35 31 521 - Yes 

37 - - 989 Yes 

38 829 1 - Yes 

40 728 1 - No 

46 - - 259 No 

47 168 58 - Yes 

58 1,356 918 - Yes 

65 261 0 - Yes 

66 1,769 560 - Yes 

68 1,721 1,374 - Yes 

70 303 205 - Yes 

76 57 94 - Yes 

78 0 370 - Yes 

83 280 88 - Yes 

84 6,318 1,941 - Yes 

86 - - 2,622 Yes 

89 90 724 - Yes 

91 36 275 - Yes 

92 0 20 - No 

101 0 548 - Yes 

102 15 473 - Yes 

Total 43,926 18,132 4,108   
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Supplemental Table 4.3 Extended patient and surgical characteristics.  

Characteristic 

Overall 

(N = 66,166) 

Training 

(N = 43,926) 

Temporal Validation 

(N = 18,132) 

External Validation 

(N = 4,108) 

Preoperative Patient Characteristics 

Age (years) 62.0 (13.5) 61.9 (13.6) 61.7 (13.3) 64.4 (12.3) 

Sex         

Female 20,921 (31.6%) 14,062 (32.0%) 5,726 (31.6%) 1,133 (27.6%) 

Male 45,245 (68.4%) 29,864 (68.0%) 12,406 (68.4%) 2,975 (72.4%) 

Race / Ethnicity         

White not of hispanic origin 52,643 (79.6%) 34,822 (79.3%) 14,335 (79.1%) 3,486 (84.9%) 

Black not of hispanic origin 4,304 (6.5%) 2,720 (6.2%) 1,494 (8.2%) 90 (2.2%) 

Asian or Pacific Islander 2,068 (3.1%) 1,215 (2.8%) 624 (3.4%) 229 (5.6%) 

Bi or Multi Racial 569 (0.9%) 413 (0.9%) 156 (0.9%) 0 (0.0%) 

American Indian or Alaska Native 180 (0.3%) 102 (0.2%) 66 (0.4%) 12 (0.3%) 

Hispanic white 514 (0.8%) 267 (0.6%) 206 (1.1%) 41 (1.0%) 

Hispanic black 38 (0.1%) 18 (0.0%) 19 (0.1%) 1 (0.0%) 

Middle Eastern 38 (0.1%) 38 (0.1%) 0 (0.0%) 0 (0.0%) 

Missing 5,812 (8.8%) 4,331 (9.9%) 1,232 (6.8%) 249 (6.1%) 

Height (cm) 171.9 (14.1) 172.5 (10.9) 170.2 (19.9) 172.4 (10.4) 

Missing 3,424 (5.2%) 2,877 (6.5%) 524 (2.9%) 23 (0.6%) 

Weight (kg) 87.0 (20.8) 86.7 (20.7) 87.7 (21.2) 87.2 (21.0) 

Missing 1,795 (2.7%) 1,055 (2.4%) 734 (4.0%) 6 (0.1%) 

Body Mass Index (kg/m^2) 29.1 (6.2) 29.0 (6.2) 29.2 (6.3) 29.3 (6.3) 
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Missing 4,672 (7.1%) 3,071 (7.0%) 1,572 (8.7%) 29 (0.7%) 

Smoking Classification         

Non-Smoker 3,450 (21.3%) 2,074 (18.6%) 1,106 (29.1%) 270 (21.6%) 

Smoker 5,232 (32.3%) 3,705 (33.3%) 1,198 (31.5%) 329 (26.3%) 

Former Smoker 7,017 (43.3%) 5,074 (45.6%) 1,301 (34.2%) 642 (51.3%) 

Conflicting Documentation 489 (3.0%) 283 (2.5%) 196 (5.2%) 10 (0.8%) 

ASA Physical Status Classification         

ASA Class 1 59 (0.1%) 54 (0.1%) 3 (0.0%) 2 (0.0%) 

ASA Class 2 397 (0.6%) 267 (0.6%) 72 (0.4%) 58 (1.4%) 

ASA Class 3 13,838 (20.9%) 8,806 (20.0%) 3,130 (17.3%) 1,902 (46.3%) 

ASA Class 4 50,982 (77.1%) 34,286 (78.1%) 14,614 (80.6%) 2,082 (50.7%) 

ASA Class 5 890 (1.3%) 513 (1.2%) 313 (1.7%) 64 (1.6%) 

Preoperative Laboratory Values         

Platelet Count, (K/mL) 218.6 (72.2) 216.9 (70.2) 221.9 (77.2) 223.0 (70.4) 

Missing 1,122 (1.7%) 134 (0.3%) 984 (5.4%) 4 (0.1%) 

White Blood Cell Count (per mL) 7.6 (3.1) 7.5 (3.1) 7.7 (3.1) 7.9 (3.4) 

Missing 1,077 (1.6%) 1,058 (2.4%) 17 (0.1%) 2 (0.0%) 

Sodium (mEq/L) 138.8 (3.2) 139.1 (3.2) 138.3 (3.1) 138.5 (3.1) 

Potassium (mEq/L) 4.2 (0.4) 4.2 (0.4) 4.2 (0.4) 4.1 (0.4) 

Glucose (g/dL) 115.8 (39.3) 115.1 (39.6) 116.5 (38.7) 119.0 (38.0) 

Hemoglobin (g/dL) 13.3 (2.0) 13.3 (2.0) 13.2 (2.1) 13.3 (1.9) 

Bicarbonate (mmol/L) 25.6 (3.1) 25.8 (3.1) 25.3 (3.3) 24.8 (2.8) 

Creatinine-Related Variables         

Preoperative Baseline Serum Creatinine, g/dL 1.0 (0.3) 1.0 (0.3) 0.9 (0.3) 0.9 (0.3) 
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Preoperative Most Recent Serum Creatinine, g/dL 1.0 (0.5) 1.0 (0.6) 1.0 (0.3) 1.0 (0.3) 

Preoperative Serum Creatinine Ratio (Most Recent/Baseline) 1.1 (0.5) 1.1 (0.6) 1.1 (0.2) 1.1 (0.2) 

Preoperative Serum Creatinine Difference (Most Recent - Baseline) 0.1 (0.5) 0.1 (0.5) 0.1 (0.1) 0.1 (0.1) 

First Post-operative Serum Creatinine Within 24h 1.0 (0.3) 1.0 (0.3) 1.0 (0.3) 0.9 (0.3) 

Missing 286 (0.4%) 222 (0.5%) 60 (0.3%) 4 (0.1%) 

Preoperative AKI         

No Preoperative AKI 62,831 (95.0%) 41,831 (95.2%) 17,081 (94.2%) 3,919 (95.4%) 

Preoperative AKI-1 3,066 (4.6%) 1,934 (4.4%) 967 (5.3%) 165 (4.0%) 

Preoperative AKI-2 218 (0.3%) 136 (0.3%) 66 (0.4%) 16 (0.4%) 

Preoperative AKI-3 51 (0.1%) 25 (0.1%) 18 (0.1%) 8 (0.2%) 

Preoperative Patient Comorbidities (Elixhauser) 

AIDS/HIV 195 (0.3%) 110 (0.3%) 57 (0.3%) 28 (0.7%) 

Alcohol Abuse 619 (0.9%) 497 (1.1%) 94 (0.5%) 28 (0.7%) 

Blood Loss Anemia 1,532 (2.3%) 1,053 (2.4%) 398 (2.2%) 81 (2.0%) 

Cardiac Arrhythmia 42,934 (64.9%) 27,245 (62.0%) 12,912 (71.2%) 2,777 (67.6%) 

Chronic Pulmonary Disease 15,116 (22.8%) 10,143 (23.1%) 4,008 (22.1%) 965 (23.5%) 

Coagulopathy 25,473 (38.5%) 15,989 (36.4%) 8,898 (49.1%) 586 (14.3%) 

Congestive Heart Failure 31,495 (47.6%) 19,952 (45.4%) 9,910 (54.7%) 1,633 (39.8%) 

Deficiency Anemia 3,142 (4.7%) 1,925 (4.4%) 1,040 (5.7%) 177 (4.3%) 

Depression 9,898 (15.0%) 6,071 (13.8%) 3,160 (17.4%) 667 (16.2%) 

Diabetes with Complications 6,719 (10.2%) 4,158 (9.5%) 2,159 (11.9%) 402 (9.8%) 

Diabetes without Complications         

No 54,197 (81.9%) 36,329 (82.7%) 14,946 (82.4%) 2,922 (71.1%) 

Yes 11,851 (17.9%) 7,503 (17.1%) 3,162 (17.4%) 1,186 (28.9%) 

Missing 118 (0.2%) 94 (0.2%) 24 (0.1%) 0 (0.0%) 

Drug Abuse 2,672 (4.0%) 1,559 (3.5%) 888 (4.9%) 225 (5.5%) 
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Fluid and Electrolyte Disorders 39,655 (59.9%) 25,740 (58.6%) 12,602 (69.5%) 1,313 (32.0%) 

Hypertension 24,791 (37.5%) 14,337 (32.6%) 8,981 (49.5%) 1,473 (35.9%) 

Hypothyroidism 9,223 (13.9%) 6,235 (14.2%) 2,507 (13.8%) 481 (11.7%) 

Liver Disease 4,758 (7.2%) 2,850 (6.5%) 1,609 (8.9%) 299 (7.3%) 

Lymphoma 496 (0.7%) 335 (0.8%) 124 (0.7%) 37 (0.9%) 

Metastatic Cancer 346 (0.5%) 218 (0.5%) 105 (0.6%) 23 (0.6%) 

Obesity 16,562 (25.0%) 10,161 (23.1%) 5,387 (29.7%) 1,014 (24.7%) 

Other Neurological Disorders 5,337 (8.1%) 3,181 (7.2%) 1,790 (9.9%) 366 (8.9%) 

Paralysis 1,267 (1.9%) 788 (1.8%) 394 (2.2%) 85 (2.1%) 

Peptic Ulcer Disease excluding Bleeding 628 (0.9%) 413 (0.9%) 183 (1.0%) 32 (0.8%) 

Peripheral Vascular Disorders 24,588 (37.2%) 15,781 (35.9%) 7,557 (41.7%) 1,250 (30.4%) 

Psychoses 470 (0.7%) 303 (0.7%) 137 (0.8%) 30 (0.7%) 

Pulmonary Circulation Disorders 12,034 (18.2%) 7,682 (17.5%) 3,632 (20.0%) 720 (17.5%) 

Rheumatoid Arthritis / Collagen Vascular Disease         

No 63,888 (96.6%) 42,446 (96.6%) 17,463 (96.3%) 3,979 (96.9%) 

Yes 2,160 (3.3%) 1,386 (3.2%) 645 (3.6%) 129 (3.1%) 

Missing 118 (0.2%) 94 (0.2%) 24 (0.1%) 0 (0.0%) 

Solid Tumor without Metastatis         

No 64,437 (97.4%) 42,830 (97.5%) 17,616 (97.2%) 3,991 (97.2%) 

Yes 1,611 (2.4%) 1,002 (2.3%) 492 (2.7%) 117 (2.8%) 

Missing 118 (0.2%) 94 (0.2%) 24 (0.1%) 0 (0.0%) 

Valvular Disease         

Yes 46,092 (69.7%) 31,145 (70.9%) 12,513 (69.0%) 2,434 (59.3%) 

No 19,956 (30.2%) 12,687 (28.9%) 5,595 (30.9%) 1,674 (40.7%) 

Missing 118 (0.2%) 94 (0.2%) 24 (0.1%) 0 (0.0%) 

Weight Loss         
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No 60,259 (91.1%) 40,069 (91.2%) 16,286 (89.8%) 3,904 (95.0%) 

Yes 5,789 (8.7%) 3,763 (8.6%) 1,822 (10.0%) 204 (5.0%) 

Missing 118 (0.2%) 94 (0.2%) 24 (0.1%) 0 (0.0%) 

Surgical Characteristics - Procedure Type 

Valve Only 21,670 (32.8%) 15,371 (35.0%) 5,232 (28.9%) 1,067 (26.0%) 

Coronary Artery Bypass Only 18,573 (28.1%) 11,350 (25.8%) 5,356 (29.5%) 1,867 (45.4%) 

Aortic 9,316 (14.1%) 6,114 (13.9%) 2,852 (15.7%) 350 (8.5%) 

Valve + Coronary Artery Bypass Only 6,455 (9.8%) 4,433 (10.1%) 1,492 (8.2%) 530 (12.9%) 

Myectomy 2,156 (3.3%) 1,588 (3.6%) 541 (3.0%) 27 (0.7%) 

Ventricular Assist Device 1,680 (2.5%) 1,161 (2.6%) 463 (2.6%) 56 (1.4%) 

Heart Transplant 1,669 (2.5%) 953 (2.2%) 664 (3.7%) 52 (1.3%) 

Pulmonary Thromboendarterectomy 385 (0.6%) 242 (0.6%) 143 (0.8%) 0 (0.0%) 

Other 4,264 (6.4%) 2,716 (6.2%) 1,389 (7.7%) 159 (3.9%) 

Additional Surgical Characteristics         

Anesthesia Duration (min) 419 (133) 417 (133) 434 (134) 371 (121) 

Cardiopulmonary Bypass Duration (min) 140 (88) 133 (85) 157 (99) 137 (65) 

Circulatory Arrest Used 1,267 (1.9%) 790 (1.8%) 464 (2.6%) 13 (0.3%) 

Intra-Aortic Balloon Pump Used 843 (1.3%) 452 (1.0%) 367 (2.0%) 24 (0.6%) 

Other Mechanical Support Used following CPB 226 (0.3%) 106 (0.2%) 118 (0.7%) 2 (0.0%) 

Emergent         

No 61,605 (93.1%) 41,313 (94.1%) 16,465 (90.8%) 3,827 (93.2%) 

Yes 4,059 (6.1%) 2,613 (5.9%) 1,165 (6.4%) 281 (6.8%) 

 Missing 502 (0.8%) 0 (0.0%) 502 (2.8%) 0 (0.0%) 

Anesthesia Technique         

General  - ETT 65,097 (98.4%) 43,225 (98.4%) 17,771 (98.0%) 4,101 (99.8%) 

General - LMA followed by ETT 1,069 (1.6%) 701 (1.6%) 361 (2.0%) 7 (0.2%) 
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Case Scheduling / Staffing Characteristics         

Weekend         

Weekday 64,317 (97.2%) 42,829 (97.5%) 17,498 (96.5%) 3,990 (97.1%) 

Weekend 1,849 (2.8%) 1,097 (2.5%) 634 (3.5%) 118 (2.9%) 

Holiday 240 (0.4%) 144 (0.3%) 79 (0.4%) 17 (0.4%) 

Anesthesiology Resident Present * 44,045 (66.6%) 28,972 (66.0%) 11,801 (65.1%) 3,272 (79.6%) 

Nurse Anesthetist Present * 13,117 (19.8%) 9,668 (22.0%) 3,060 (16.9%) 389 (9.5%) 

Anesthesiology Attending Only 9,085 (13.7%) 5,320 (12.1%) 3,313 (18.3%) 452 (11.0%) 

Institutional Characteristics         

Academic Hospital 64,920 (98.1%) 43,198 (98.3%) 18,111 (99.9%) 3,611 (87.9%) 

Community Hospital 1,246 (1.9%) 728 (1.7%) 21 (0.1%) 497 (12.1%) 

          

Outcome Characteristics         

CSA-AKI Stage     

No CSA-AKI 49,264 (74.5%) 33,019 (75.2%) 12,901 (71.2%) 3,344 (81.4%) 

CSA-AKI-1 11,759 (17.8%) 7,771 (17.7%) 3,449 (19.0%) 539 (13.1%) 

CSA-AKI-2 3,457 (5.2%) 2,161 (4.9%) 1,142 (6.3%) 154 (3.7%) 

CSA-AKI-3 1,686 (2.5%) 975 (2.2%) 640 (3.5%) 71 (1.7%) 

* Non-mutually exclusive     

Statistics presented as mean (SD) for numeric variables; N(%) for categorical variables. AIDS/HIV = acquired immunodeficiency syndrome / human 

immunodeficiency virus; AKI = acute kidney injury; ASA = American Society of Anesthesiologists; CPB = cardiopulmonary bypass; CSA-AKI = cardiac surgery-

associated acute kidney injury; ETT = endotracheal tube; LMA = laryngeal mask airway 
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Supplemental Table 4.4 Temporal validation AUCs at individual centers.  
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Supplemental Table 4.5 Learning curve analysis results for predicting AKI 1+.  

No. of sites Temporal AUC External AUC 

  

FSL 

mean (SD) 

Pooled 

mean (SD) 

Mean Difference 

(Pooled - FSL) 

FSL 

mean (SD) 

Pooled 

mean (SD) 

Mean Difference 

(Pooled - FSL) 

1 0.6840 (0.0533) 0.7283 (0.0773) 0.0443 0.6928 (0.0690) 0.7419 (0.0930) 0.0491 

2 0.7196 (0.0500) 0.7800 (0.0476) 0.0604 0.7323 (0.0643) 0.7967 (0.0633) 0.0644 

3 0.7425 (0.0440) 0.8032 (0.0279) 0.0607 0.7615 (0.0557) 0.8247 (0.0391) 0.0632 

4 0.7627 (0.0348) 0.8153 (0.0194) 0.0526 0.7834 (0.0450) 0.8393 (0.0276) 0.0559 

5 0.7771 (0.0236) 0.8240 (0.0147) 0.0469 0.7999 (0.0325) 0.8487 (0.0218) 0.0488 

6 0.7849 (0.0193) 0.8286 (0.0128) 0.0437 0.8084 (0.0285) 0.8531 (0.0226) 0.0447 

7 0.7917 (0.0156) 0.8332 (0.0103) 0.0415 0.8161 (0.0230) 0.8592 (0.0186) 0.0431 

8 0.7974 (0.0127) 0.8361 (0.0091) 0.0387 0.8229 (0.0194) 0.8634 (0.0155) 0.0405 

9 0.8009 (0.0116) 0.8388 (0.0077) 0.0379 0.8282 (0.0175) 0.8653 (0.0123) 0.0371 

10 0.8048 (0.0102) 0.8409 (0.0073) 0.0361 0.8321 (0.0150) 0.8680 (0.0114) 0.0359 

11 0.8082 (0.0094) 0.8430 (0.0066) 0.0348 0.8365 (0.0138) 0.8699 (0.0095) 0.0334 

12 0.8099 (0.0088) 0.8445 (0.0058) 0.0346 0.8393 (0.0132) 0.8714 (0.0084) 0.0321 

13 0.8124 (0.0083) 0.8461 (0.0053) 0.0337 0.8426 (0.0112) 0.8729 (0.0086) 0.0303 

14 0.8139 (0.0086) 0.8473 (0.0050) 0.0334 0.8437 (0.0109) 0.8746 (0.0071) 0.0309 

15 0.8159 (0.0078) 0.8484 (0.0044) 0.0318 0.8462 (0.0108) 0.8756 (0.0072) 0.0294 

16 0.8178 (0.0074) 0.8496 (0.0041) 0.0318 0.8490 (0.0098) 0.8773 (0.0062) 0.0283 

17 0.8197 (0.0070) 0.8507 (0.0038) 0.031 0.8516 (0.0082) 0.8781 (0.0057) 0.0265 

18 0.8211 (0.0061) 0.8514 (0.0035) 0.0303 0.8536 (0.0084) 0.8789 (0.0049) 0.0253 

19 0.8222 (0.0052) 0.8521 (0.0030) 0.0299 0.8554 (0.0065) 0.8800 (0.0042) 0.0246 

20 0.8237 (0.0044) 0.8530 (0.0029) 0.0293 0.8576 (0.0049) 0.8805 (0.0035) 0.0229 

21 0.8246 (0.0032) 0.8539 (0.0022) 0.0293 0.8592 (0.0040) 0.8812 (0.0030) 0.022 

22 0.8259 (0.0017) 0.8553 (0.0012) 0.0294 0.8610 (0.0033) 0.8812 (0.0017) 0.0202 

23 0.8261 (0) 0.8557 (0) 0.0296 0.8647 (0) 0.8824 (0) 0.0177 

       

AUC = receiver operating characteristic area under curve; FSL = federated stacked learning  
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4.6.3 Supplemental Figures 

 

Supplemental Figure 4.1 Feature importance plot of the pooled model.  

Top 20 important features of the pooled model. Predictors are ranked by their relative importance and expressed as a percentage.  
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Supplemental Figure 4.2 Comparison of model performance (AUC) at each center among single-center model and multicenter 
models, for all AKI severities.  

The bar plot at the top panel demonstrates visual comparison of AUCs of four examined models (base, FSL, FSL with metadata, 
and pooled) when tested in temporal validation set at each individual centers for all AKI severities. The dashed lines (blue: 
pooled, red: FSL, green: FSL with metadata) indicate the model performance in aggregate. The numeric values of model 
performance are shown in the table at the bottom panel.   
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Chapter 5 Conclusion 

5.1 Summary 

The overarching goal of this dissertation was to develop and evaluate machine learning models 

for AKI. Unlike many model development researches that push the limits of model performance, 

my research takes barriers in clinical model implementation into consideration and strives to 

develop models that are transportable, clinically applicable and scalable, while maintaining 

optimal performance. 

In Chapter II, I evaluated the transportability of a reproduced version of a state-of-the-art AKI 

model across health systems. The AKI model originally developed by DeepMind for the VA 

health system showed high performance in predicting AKI within 48 hours. However, its 

generalizability faced challenges due to being trained in a predominantly male population. In this 

study, I approximated the DeepMind’s GBDT AKI model and assessed its performance in a 

more sex-balanced patient population at the UM. Identifying suboptimal discrimination and 

calibration in females, I updated the model through continued training at UM to address this sex-

related disparities. Furthermore, I investigated the potential reasons for this model discrepancy 

by sex and showed that it is complex and cannot be simply explained by a low sample size or 

difference in patient characteristics. This study contributes valuable evidence highlighting the 

existence of sex and gender inequalities in healthcare machine learning models and explores 

promising ways for mitigating such challenges through local fine-tuning of models. 
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In Chapter III, I investigated the pattern of urine output (UO) documentation in the UM EHR 

system and assessed the clinical applicability of UO as a predictor in an AKI risk prediction 

model. Utilizing a five-year inpatient cohort at the UM, I found UO documentation to be 

generally of high frequency and quality. I also identified three different phenotypes of UO 

documentation for non-ICU patients, revealing variations in UO monitoring and documentation 

across different hospital stays. Additionally, I evaluated the utility of incorporating UO in AKI 

risk prediction models, finding that while UO is valuable, its additive contribution is limited 

when integrated into an otherwise comprehensive AKI prediction model. This study underscores 

the challenges associated with UO documentation and emphasizes the need for ongoing efforts to 

enhance its consistency, providing valuable insights for refining AKI prediction strategies in 

diverse clinical contexts. 

In Chapter IV, I introduced a new federated learning framework, federated stacked learning 

(FSL), designed to enhance the scalability of AKI models for potential multicenter modeling 

purposes. Focusing on the prediction of cardiac surgery-associated AKI within a national 

perioperative research network of 31 academic and community hospitals, I compared the 

performance of single-center models with pooled-data and the newly proposed FSL approaches. 

Contrary to conventional assumptions, the findings reveal that single-center models do not 

surpass multicenter approaches, highlighting the substantial benefits of multi-center AI models 

for individual centers, particularly smaller ones. While pooled models demonstrated the highest 

overall performance, the FSL approach achieved comparable performance to pooled models, 

making it an ideal solution, especially when patient-level data sharing is challenging. The 

efficiency of FSL remains consistent even with additional centers, making it a practical choice 

for implementation within research networks and improving model scalability. This study 
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underscores the significance of collaborative research networks, emphasizing the varied impacts 

of different modeling strategies on hospitals of different sizes within the network and stressing 

the importance of participation in collaborative efforts for both large and small health systems. 

5.2 Future Directions 

In the rapidly growing field of machine learning for healthcare, this dissertation has investigated 

critical dimensions of applying machine learning models for AKI. While several important areas 

have been studied and discussed, there remain untapped avenues that warrant exploration in 

future work. 

One direction that future research should focus on is developing methods to enhance the 

interpretability and explainability of AKI machine learning models. While this dissertation 

presented GBDT models and provided features importance plots for model interpretability, a 

more in-depth exploration of interpretability and explainability is crucial. For instance, the novel 

Federated Stacked Learning (FSL) framework proposed in Chapter IV could benefit from 

detailed interpretation methods to explain how the algorithm leads to predictions based on the 

weights assigned to each center. Improving model transparency through interpretability and 

providing clinically meaningful explanations can foster trust among stakeholders. 

The dissertation demonstrated that the FSL framework is an efficient and effective approach for 

collaborative efforts in building multi-center AKI models. However, future work should involve 

benchmarking existing federated learning algorithms in the same clinical scenario and comparing 

their performance and communication efficiency with the FSL. This benchmarking and 

comparison will contribute to a better understanding of the practicality of the FSL algorithm and 

identify areas for potential improvement. 
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Ideally, the developed and validated AKI models should be implemented in real-world clinical 

care to improve patient health. Future prospective studies or clinical trials can be designed to 

investigate the actual treatment effect brought about by using the model. Collecting feedback 

from stakeholders (e.g. clinicians, patients, etc.), is crucial for understanding end-users' 

perspectives and making improvements in model implementation and acceptance in clinical 

practice. Exploring the integration of developed models into real-time clinical decision support 

systems is essential, and collaboration with healthcare providers can facilitate the 

implementation of models that offer timely alerts and suggestions for patient care based on AKI 

risk predictions. Continuous monitoring and governance of the model in use are imperative if the 

model is implemented for practical use. 

These future directions aim to advance the field by addressing aspects of interpretability, 

benchmarking, and real-world implementation, ensuring that machine learning models for AKI 

are transparent, practical, and widely applicable in diverse healthcare settings.  

5.3 Conclusion 

In conclusion, this dissertation represents a comprehensive exploration of critical dimensions in 

the application of AKI machine learning models. The identification and resolution of sex-related 

disparities in a leading AKI model underscore the significance of context-specific adjustments, 

enhancing the model's transportability. Uncovering both the pattern of UO data in the EHR and 

the challenges of integrating it into established AKI prediction models emphasize the ongoing 

need for refining UO documentation practices to augment its clinical applicability. The 

introduction of the novel FSL framework addresses the critical aspect of AKI model scalability. 

The superiority of multicenter AI models over single-center approaches, along with the 

practicality of FSL in collaborative research networks, further emphasizes the importance of 
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scalability in AKI modeling. Collectively, this dissertation work contributes not only valuable 

insights into specific areas of AKI prediction but also advocates for a pragmatic approach to 

model development that considers transportability, clinical utility, and scalability. The findings 

of this dissertation pave the way for future advancements in machine learning applications for 

AKI, promoting the development of models that are not only accurate but also accessible, 

generalizable, and adaptable across diverse healthcare settings. 

 



 131 

Bibliography 

1. Wang HE, Muntner P, Chertow GM, Warnock DG. Acute Kidney Injury and Mortality in 
Hospitalized Patients. Am J Nephrol. 2012;35(4):349-355. doi:10.1159/000337487 

2. Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA. Clinical Decision 
Support for In-Hospital AKI. J Am Soc Nephrol. 2018;29(2):654-660. 
doi:10.1681/ASN.2017070765 

3. Susantitaphong P, Cruz DN, Cerda J, et al. World Incidence of AKI: A Meta-Analysis. Clin J 
Am Soc Nephrol. 2013;8(9):1482-1493. doi:10.2215/CJN.00710113 

4. Nisula S, Kaukonen KM, Vaara ST, et al. Incidence, risk factors and 90-day mortality of 
patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. 
Intensive Care Med. 2013;39(3):420-428. doi:10.1007/s00134-012-2796-5 

5. Srisawat N, Sileanu FE, Murugan R, et al. Variation in Risk and Mortality of Acute Kidney 
Injury in Critically Ill Patients: A Multicenter Study. Am J Nephrol. 2015;41(1):81-89. 
doi:10.1159/000371748 

6. Hoste EAJ, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically 
ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411-1423. 
doi:10.1007/s00134-015-3934-7 

7. Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-
19. Kidney Int. 2020;98(1):209-218. doi:10.1016/j.kint.2020.05.006 

8. Chan L, Chaudhary K, Saha A, et al. AKI in Hospitalized Patients with COVID-19. J Am Soc 
Nephrol. 2021;32(1):151. doi:10.1681/ASN.2020050615 

9. Abebe A, Kumela K, Belay M, Kebede B, Wobie Y. Mortality and predictors of acute kidney 
injury in adults: a hospital-based prospective observational study. Sci Rep. 2021;11(1):15672. 
doi:10.1038/s41598-021-94946-3 

10. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a 
systematic review and meta-analysis. Kidney Int. 2012;81(5):442-448. 
doi:10.1038/ki.2011.379 

11. Odutayo A, Wong CX, Farkouh M, et al. AKI and Long-Term Risk for Cardiovascular 
Events and Mortality. J Am Soc Nephrol. 2017;28(1):377. doi:10.1681/ASN.2016010105 



 132 

12. Villeneuve PM, Clark EG, Sikora L, Sood MM, Bagshaw SM. Health-related quality-of-
life among survivors of acute kidney injury in the intensive care unit: a systematic review. 
Intensive Care Med. 2016;42(2):137-146. doi:10.1007/s00134-015-4151-0 

13. Silver SA, Long J, Zheng Y, Chertow GM. Cost of Acute Kidney Injury in Hospitalized 
Patients. J Hosp Med. 2017;12(2):70-76. doi:10.12788/jhm.2683 

14. MacLeod A. NCEPOD report on acute kidney injury—must do better. The Lancet. 
2009;374(9699):1405-1406. doi:10.1016/S0140-6736(09)61843-2 

15. Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI 
by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the 
PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551-1561. 
doi:10.1007/s00134-016-4670-3 

16. Khwaja A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin 
Pract. 2012;120(4):c179-c184. doi:10.1159/000339789 

17. Luo X, Jiang L, Du B, et al. A comparison of different diagnostic criteria of acute kidney 
injury in critically ill patients. Crit Care. 2014;18(4):R144. doi:10.1186/cc13977 

18. Kellum JA, Lameire N, for the KDIGO AKI Guideline Work Group. Diagnosis, 
evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 
2013;17(1):204. doi:10.1186/cc11454 

19. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, the ADQI workgroup. Acute 
renal failure – definition, outcome measures, animal models, fluid therapy and information 
technology needs: the Second International Consensus Conference of the Acute Dialysis 
Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204. doi:10.1186/cc2872 

20. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an 
initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31. 
doi:10.1186/cc5713 

21. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute Kidney Injury, 
Mortality, Length of Stay, and Costs in Hospitalized Patients. J Am Soc Nephrol. 
2005;16(11):3365-3370. doi:10.1681/ASN.2004090740 

22. Sutherland SM, Chawla LS, Kane-Gill SL, et al. Utilizing Electronic Health Records to 
Predict Acute Kidney Injury Risk and Outcomes: Workgroup Statements from the 15th ADQI 
Consensus Conference: Can J Kidney Health Dis. Published online February 26, 2016. 
doi:10.1186/s40697-016-0099-4 

23. Cronin RM, VanHouten JP, Siew ED, et al. National Veterans Health Administration 
inpatient risk stratification models for hospital-acquired acute kidney injury. J Am Med Inform 
Assoc. 2015;22(5):1054-1071. doi:10.1093/jamia/ocv051 



 133 

24. Koyner JL, Adhikari R, Edelson DP, Churpek MM. Development of a Multicenter Ward–
Based AKI Prediction Model. Clin J Am Soc Nephrol. 2016;11(11):1935-1943. 
doi:10.2215/CJN.00280116 

25. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression and 
machine learning models for acute kidney injury. J Am Med Inform Assoc. 2017;24(6):1052-
1061. doi:10.1093/jamia/ocx030 

26. Cheng P, Waitman LR, Hu Y, Liu M. Predicting Inpatient Acute Kidney Injury over 
Different Time Horizons: How Early and Accurate? AMIA Annu Symp Proc. 2018;2017:565-
574. 

27. Huang C, Murugiah K, Mahajan S, et al. Enhancing the prediction of acute kidney injury 
risk after percutaneous coronary intervention using machine learning techniques: A 
retrospective cohort study. PLoS Med. 2018;15(11):e1002703. 
doi:10.1371/journal.pmed.1002703 

28. Koyner JL, Carey KA, Edelson DP, Churpek MM. The Development of a Machine 
Learning Inpatient Acute Kidney Injury Prediction Model*. Crit Care Med. 2018;46(7):1070-
1077. doi:10.1097/CCM.0000000000003123 

29. Mohamadlou H, Lynn-Palevsky A, Barton C, et al. Prediction of Acute Kidney Injury 
With a Machine Learning Algorithm Using Electronic Health Record Data. Can J Kidney 
Health Dis. 2018;5:2054358118776326. doi:10.1177/2054358118776326 

30. He J, Hu Y, Zhang X, Wu L, Waitman LR, Liu M. Multi-perspective predictive modeling 
for acute kidney injury in general hospital populations using electronic medical records. 
JAMIA Open. 2019;2(1):115-122. doi:10.1093/jamiaopen/ooy043 

31. Tomašev N, Glorot X, Rae JW, et al. A clinically applicable approach to continuous 
prediction of future acute kidney injury. Nature. 2019;572(7767):116-119. 
doi:10.1038/s41586-019-1390-1 

32. Zimmerman LP, Reyfman PA, Smith ADR, et al. Early prediction of acute kidney injury 
following ICU admission using a multivariate panel of physiological measurements. BMC 
Med Inform Decis Mak. 2019;19(1):16. doi:10.1186/s12911-019-0733-z 

33. Demirjian S, Bashour CA, Shaw A, et al. Predictive Accuracy of a Perioperative 
Laboratory Test–Based Prediction Model for Moderate to Severe Acute Kidney Injury After 
Cardiac Surgery. JAMA. 2022;327(10):956-964. doi:10.1001/jama.2022.1751 

34. van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data 
hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol. 
2014;14(1):137. doi:10.1186/1471-2288-14-137 

35. Robbins R. AI systems are worse at diagnosing disease when training data is skewed by 
sex. STAT. Published May 25, 2020. Accessed September 23, 2023. 
https://www.statnews.com/2020/05/25/ai-systems-training-data-sex-bias/ 



 134 

36. Rank N, Pfahringer B, Kempfert J, et al. Deep-learning-based real-time prediction of 
acute kidney injury outperforms human predictive performance. Npj Digit Med. 2020;3(1):1-
12. doi:10.1038/s41746-020-00346-8 

37. Simonov M, Ugwuowo U, Moreira E, et al. A simple real-time model for predicting acute 
kidney injury in hospitalized patients in the US: A descriptive modeling study. PLoS Med. 
2019;16(7):e1002861. doi:10.1371/journal.pmed.1002861 

38. Hodgson LE, Sarnowski A, Roderick PJ, Dimitrov BD, Venn RM, Forni LG. Systematic 
review of prognostic prediction models for acute kidney injury (AKI) in general hospital 
populations. BMJ Open. 2017;7(9):e016591. doi:10.1136/bmjopen-2017-016591 

39. El Emam K. Methods for the de-identification of electronic health records for genomic 
research. Genome Med. 2011;3(4):25. doi:10.1186/gm239 

40. Platt J, Kardia S. Public Trust in Health Information Sharing: Implications for 
Biobanking and Electronic Health Record Systems. J Pers Med. 2015;5(1):3-21. 
doi:10.3390/jpm5010003 

41. Platt JE, Jacobson PD, Kardia SLR. Public Trust in Health Information Sharing: A 
Measure of System Trust. Health Serv Res. 2018;53(2):824-845. doi:10.1111/1475-
6773.12654 

42. Gulamali FF, Nadkarni GN. Federated Learning in Risk Prediction: A Primer and 
Application to COVID-19-Associated Acute Kidney Injury. Nephron. 2023;147(1):52-56. 
doi:10.1159/000525645 

43. Rajendran S, Xu Z, Pan W, Ghosh A, Wang F. Data heterogeneity in federated learning 
with Electronic Health Records: Case studies of risk prediction for acute kidney injury and 
sepsis diseases in critical care. PLOS Digit Health. 2023;2(3):e0000117. 
doi:10.1371/journal.pdig.0000117 

44. Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute 
kidney injury. Nat Rev Nephrol. 2018;14(10):607-625. doi:10.1038/s41581-018-0052-0 

45. Wilson FP, Shashaty M, Testani J, et al. Automated, electronic alerts for acute kidney 
injury: a single-blind, parallel-group, randomised controlled trial. The Lancet. 
2015;385(9981):1966-1974. doi:10.1016/S0140-6736(15)60266-5 

46. McCradden MD, Stephenson EA, Anderson JA. Clinical research underlies ethical 
integration of healthcare artificial intelligence. Nat Med. 2020;26(9):1325-1326. 
doi:10.1038/s41591-020-1035-9 

47. Tomašev N, Harris N, Baur S, et al. Use of deep learning to develop continuous-risk 
models for adverse event prediction from electronic health records. Nat Protoc. 
2021;16(6):2765-2787. doi:10.1038/s41596-021-00513-5 



 135 

48. Google. EHR modeling framework. Published online 2021. Accessed September 23, 
2023. https://github.com/google/ehr-predictions 

49. Haibe-Kains B, Adam GA, Hosny A, et al. Transparency and reproducibility in artificial 
intelligence. Nature. 2020;586(7829):E14-E16. doi:10.1038/s41586-020-2766-y 

50. McDermott MBA, Wang S, Marinsek N, Ranganath R, Foschini L, Ghassemi M. 
Reproducibility in machine learning for health research: Still a ways to go. Sci Transl Med. 
2021;13(586):eabb1655. doi:10.1126/scitranslmed.abb1655 

51. Stupple A, Singerman D, Celi LA. The reproducibility crisis in the age of digital 
medicine. Npj Digit Med. 2019;2(1):1-3. doi:10.1038/s41746-019-0079-z 

52. Carter RE, Attia ZI, Lopez-Jimenez F, Friedman PA. Pragmatic considerations for 
fostering reproducible research in artificial intelligence. Npj Digit Med. 2019;2(1):1-3. 
doi:10.1038/s41746-019-0120-2 

53. Singh K, Beam AL, Nallamothu BK. Machine Learning in Clinical Journals: Moving 
from Inscrutable to Informative. Circ Cardiovasc Qual Outcomes. 2020;13(10):e007491. 
doi:10.1161/CIRCOUTCOMES.120.007491 

54. Larrazabal AJ, Nieto N, Peterson V, Milone DH, Ferrante E. Gender imbalance in 
medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc Natl 
Acad Sci. 2020;117(23):12592-12594. doi:10.1073/pnas.1919012117 

55. Singh K. ML4LHS/va-aki-model: Initial release. Published online September 30, 2022. 
doi:10.5281/zenodo.7129945 

56. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10 
version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol. 
2004;57(12):1288-1294. doi:10.1016/j.jclinepi.2004.03.012 

57. Hand DJ, Till RJ. A Simple Generalisation of the Area Under the ROC Curve for 
Multiple Class Classification Problems. Mach Learn. 2001;45(2):171-186. 
doi:10.1023/A:1010920819831 

58. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the Areas under Two or More 
Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. 
Biometrics. 1988;44(3):837-845. doi:10.2307/2531595 

59. Morris N. tboot: Tilted bootstrap. Published online 2020. https://github.com/njm18/tboot 

60. Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat. 
2001;29(5):1189-1232. doi:10.1214/aos/1013203451 

61. R Core Team. R: A language and environment for statistical computing. Published online 
2022. https://www.R-project.org/ 



 136 

62. Singh K, Meyer SR. ML4LHS/gpmodels: Initial release. Published online October 7, 
2022. doi:10.5281/zenodo.7158501 

63. Fryda T, LeDell E, Gill N, et al. h2o: R Interface for the “H2O” Scalable Machine 
Learning Platform. Published online 2022. https://cran.r-
project.org/web/packages/h2o/index.html 

64. Pafka S. GBM Performance. Published online 2021. Accessed September 23, 2023. 
https://github.com/szilard/GBM-perf 

65. World Health Organization. International Classification of Diseases (ICD). Published 
2022. Accessed September 23, 2023. 
https://www.who.int/standards/classifications/classification-of-diseases 

66. Eknoyan G. Emergence of the Concept of Acute Renal Failure. Am J Nephrol. 
2002;22(2-3):225-230. doi:10.1159/000063766 

67. Macedo E, Malhotra R, Bouchard J, Wynn SK, Mehta RL. Oliguria is an early predictor 
of higher mortality in critically ill patients. Kidney Int. 2011;80(7):760-767. 
doi:10.1038/ki.2011.150 

68. Md Ralib A, Pickering JW, Shaw GM, Endre ZH. The urine output definition of acute 
kidney injury is too liberal. Crit Care. 2013;17(3):R112. doi:10.1186/cc12784 

69. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI 
by Urine Output versus Serum Creatinine Level. J Am Soc Nephrol. 2015;26(9):2231. 
doi:10.1681/ASN.2014070724 

70. Prowle JR. Measurement of AKI biomarkers in the ICU: still striving for appropriate 
clinical indications. Intensive Care Med. 2015;41(3):541-543. doi:10.1007/s00134-015-3662-
z 

71. Vaara ST, Parviainen I, Pettilä V, et al. Association of oliguria with the development of 
acute kidney injury in the critically ill. Kidney Int. 2016;89(1):200-208. 
doi:10.1038/ki.2015.269 

72. McIlroy DR, Argenziano M, Farkas D, Umann T, Sladen RN. Incorporating Oliguria Into 
the Diagnostic Criteria for Acute Kidney Injury After On-Pump Cardiac Surgery: Impact on 
Incidence and Outcomes. J Cardiothorac Vasc Anesth. 2013;27(6):1145-1152. 
doi:10.1053/j.jvca.2012.12.017 

73. Tarvasmäki T, Haapio M, Mebazaa A, et al. Acute kidney injury in cardiogenic shock: 
definitions, incidence, haemodynamic alterations, and mortality. Eur J Heart Fail. 
2018;20(3):572-581. doi:10.1002/ejhf.958 

74. Song X, Yu ASL, Kellum JA, et al. Cross-site transportability of an explainable artificial 
intelligence model for acute kidney injury prediction. Nat Commun. 2020;11(1):5668. 
doi:10.1038/s41467-020-19551-w 



 137 

75. Alfieri F, Ancona A, Tripepi G, et al. Continuous and early prediction of future moderate 
and severe Acute Kidney Injury in critically ill patients: Development and multi-centric, 
multi-national external validation of a machine-learning model. PLOS ONE. 
2023;18(7):e0287398. doi:10.1371/journal.pone.0287398 

76. Alfieri F, Ancona A, Tripepi G, et al. A deep-learning model to continuously predict 
severe acute kidney injury based on urine output changes in critically ill patients. J Nephrol. 
2021;34(6):1875-1886. doi:10.1007/s40620-021-01046-6 

77. Zhao BC, Lei SH, Yang X, et al. Assessment of prognostic value of intraoperative 
oliguria for postoperative acute kidney injury: a retrospective cohort study. Br J Anaesth. 
2021;126(4):799-807. doi:10.1016/j.bja.2020.11.018 

78. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters 
in large spatial databases with noise. In: Proceedings of the Second International Conference 
on Knowledge Discovery and Data Mining. KDD’96. AAAI Press; 1996:226-231. 

79. Fryda T, LeDell E, Gill N, et al. h2o: R Interface for the “H2O” Scalable Machine 
Learning Platform. Published online 2022. https://cran.r-
project.org/web/packages/h2o/index.html 

80. Vanmassenhove J, Steen J, Vansteelandt S, et al. The importance of the urinary output 
criterion for the detection and prognostic meaning of AKI. Sci Rep. 2021;11(1):11089. 
doi:10.1038/s41598-021-90646-0 

81. Solomon AW, Kirwan CJ, Alexander NDE, et al. Urine output on an intensive care unit: 
case-control study. BMJ. 2010;341:c6761. doi:10.1136/bmj.c6761 

82. Jin K, Murugan R, Sileanu FE, et al. Intensive Monitoring of Urine Output Is Associated 
With Increased Detection of Acute Kidney Injury and Improved Outcomes. CHEST. 
2017;152(5):972-979. doi:10.1016/j.chest.2017.05.011 

83. Coalition for Health AI. Blueprint for Trustworthy AI Implementation Guidance and 
Assurance for Healthcare. Accessed October 23, 2023. 
https://www.coalitionforhealthai.org/papers/Blueprint%20for%20Trustworthy%20AI.pdf 

84. Bedoya AD, Economou-Zavlanos NJ, Goldstein BA, et al. A framework for the oversight 
and local deployment of safe and high-quality prediction models. J Am Med Inform Assoc. 
2022;29(9):1631-1636. doi:10.1093/jamia/ocac078 

85. Van Calster B, Steyerberg EW, Wynants L, van Smeden M. There is no such thing as a 
validated prediction model. BMC Med. 2023;21(1):70. doi:10.1186/s12916-023-02779-w 

86. Cao J, Zhang X, Shahinian V, et al. Generalizability of an acute kidney injury prediction 
model across health systems | Nature Machine Intelligence. Nat Mach Intell. 2022;4(12):1121-
1129. 



 138 

87. Justice AC, Covinsky KE, Berlin JA. Assessing the Generalizability of Prognostic 
Information. Ann Intern Med. 1999;130(6):515-524. doi:10.7326/0003-4819-130-6-
199903160-00016 

88. Finlayson SG, Subbaswamy A, Singh K, et al. The Clinician and Dataset Shift in 
Artificial Intelligence. N Engl J Med. 2021;385(3):283-286. doi:10.1056/NEJMc2104626 

89. Corrales Compagnucci M, Wilson ML, Fenwick M, Forgó N, Bärnighausen T, eds. AI in 
eHealth: Human Autonomy, Data Governance and Privacy in Healthcare. 1st ed. Cambridge 
University Press; 2022. doi:10.1017/9781108921923 

90. Spector-Bagdady K, De Vries RG, Gornick MG, Shuman AG, Kardia S, Platt J. 
Encouraging Participation And Transparency In Biobank Research. Health Aff (Millwood). 
2018;37(8):1313-1320. doi:10.1377/hlthaff.2018.0159 

91. Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. Npj 
Digit Med. 2020;3(1):1-7. doi:10.1038/s41746-020-00323-1 

92. Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis ICh, Shi W. Federated learning of 
predictive models from federated Electronic Health Records. Int J Med Inf. 2018;112:59-67. 
doi:10.1016/j.ijmedinf.2018.01.007 

93. Huang L, Shea AL, Qian H, Masurkar A, Deng H, Liu D. Patient clustering improves 
efficiency of federated machine learning to predict mortality and hospital stay time using 
distributed electronic medical records. J Biomed Inform. 2019;99:103291. 
doi:10.1016/j.jbi.2019.103291 

94. Loftus TJ, Ruppert MM, Shickel B, et al. Federated learning for preserving data privacy 
in collaborative healthcare research. Digit Health. 2022;8:20552076221134455. 
doi:10.1177/20552076221134455 

95. Bai X, Wang H, Ma L, et al. Advancing COVID-19 diagnosis with privacy-preserving 
collaboration in artificial intelligence. Nat Mach Intell. 2021;3(12):1081-1089. 
doi:10.1038/s42256-021-00421-z 

96. Dayan I, Roth HR, Zhong A, et al. Federated learning for predicting clinical outcomes in 
patients with COVID-19. Nat Med. 2021;27(10):1735-1743. doi:10.1038/s41591-021-01506-3 

97. Roth HR, Chang K, Singh P, et al. Federated Learning for Breast Density Classification: 
A Real-World Implementation. In: Albarqouni S, Bakas S, Kamnitsas K, et al., eds. Domain 
Adaptation and Representation Transfer, and Distributed and Collaborative Learning. 
Lecture Notes in Computer Science. Springer International Publishing; 2020:181-191. 
doi:10.1007/978-3-030-60548-3_18 

98. Pati S, Baid U, Edwards B, et al. Federated learning enables big data for rare cancer 
boundary detection. Nat Commun. 2022;13(1):7346. doi:10.1038/s41467-022-33407-5 



 139 

99. Youssef A, Pencina M, Thakur A, Zhu T, Clifton D, Shah NH. External validation of AI 
models in health should be replaced with recurring local validation. Nat Med. Published 
online October 18, 2023:1-2. doi:10.1038/s41591-023-02540-z 

100. Colquhoun DA, Shanks AM, Kapeles SR, et al. Considerations for Integration of 
Perioperative Electronic Health Records Across Institutions for Research and Quality 
Improvement: The Approach Taken by the Multicenter Perioperative Outcomes Group. 
Anesth Analg. 2020;130(5):1133-1146. doi:10.1213/ANE.0000000000004489 

101. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a 
multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD 
Statement. BMC Med. 2015;13(1):1. doi:10.1186/s12916-014-0241-z 

102. Sun E, Mello MM, Rishel CA, et al. Association of Overlapping Surgery With 
Perioperative Outcomes. JAMA. 2019;321(8):762-772. doi:10.1001/jama.2019.0711 

103. Sun EC, Mello MM, Vaughn MT, et al. Assessment of Perioperative Outcomes Among 
Surgeons Who Operated the Night Before. JAMA Intern Med. 2022;182(7):720-728. 
doi:10.1001/jamainternmed.2022.1563 

104. Mathis MR, Naik BI, Freundlich RE, et al. Preoperative Risk and the Association 
between Hypotension and Postoperative Acute Kidney Injury. Anesthesiology. 
2020;132(3):461-475. doi:10.1097/ALN.0000000000003063 

105. Inker LA, Eneanya ND, Coresh J, et al. New Creatinine- and Cystatin C–Based 
Equations to Estimate GFR without Race. N Engl J Med. 2021;385(19):1737-1749. 
doi:10.1056/NEJMoa2102953 

106. Pirracchio R, Mavrothalassitis O, Mathis M, Kheterpal S, Legrand M. Response of US 
hospitals to elective surgical cases in the COVID-19 pandemic. Br J Anaesth. 
2021;126(1):e46-e48. doi:10.1016/j.bja.2020.10.013 

107. Ross C. Epic overhauls popular sepsis algorithm criticized for faulty alarms. STAT. 
Published October 3, 2022. Accessed November 1, 2023. 
https://www.statnews.com/2022/10/03/epic-sepsis-algorithm-revamp-training/ 

108. Laan MJ van der, Polley EC, Hubbard AE. Super Learner. Stat Appl Genet Mol Biol. 
2007;6(1). doi:10.2202/1544-6115.1309 

109. Breiman L. Stacked regressions. Mach Learn. 1996;24(1):49-64. 
doi:10.1007/BF00117832 

110. ggbreak: set axis breaks for ‘ggplot2.’ Published online October 4, 2023. Accessed 
November 1, 2023. https://github.com/YuLab-SMU/ggbreak 

111. Xu S, Chen M, Feng T, Zhan L, Zhou L, Yu G. Use ggbreak to Effectively Utilize 
Plotting Space to Deal With Large Datasets and Outliers. Front Genet. 2021;12. Accessed 
November 1, 2023. https://www.frontiersin.org/articles/10.3389/fgene.2021.774846 



 140 

112. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of 
predictive analytics. BMC Med. 2019;17(1):230. doi:10.1186/s12916-019-1466-7 

 


