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Abstract 

Observations represent the largest cost driver in the environmental prediction enterprise. 

This dissertation aims to enhance the return on investment for satellite observatories by 

maximizing both the quantity and quality of data collected. Taking NASA’s Cyclone Global 

Navigation Satellite System (CYGNSS) as a case study, this work proposes several novel 

contributions to extract the most value in observation data.  

CYGNSS uses a technique known as Global Navigation Satellite System – Reflectometry 

(GNSS-R), which is an opportunistic bistatic radar measurement of the Earth’s surface using 

GNSS as a signal-of-opportunity. This technique enables several surface sensing products for 

both land and ocean parameters. This dissertation primarily focuses on CYGNSS’s ocean surface 

windspeed measurement, which drove the design of the mission architecture and performance 

objectives.  

This thesis is structured into four distinct, but related lines of effort. The first is an 

evaluation of the CYGNSS onboard calibration system that substantially increased the amount of 

usable science data. Prelaunch design decisions and conservative estimates of the thermal 

loading led to a suboptimal calibration sequence that significantly impacted science duty cycle. 

This work proposed a longer calibration cadence with minimal data quality degradation, 

increasing the science duty cycle from 90% to 98%. 

The second line of effort produces a mechanism to price the cost of representativity error 

in satellite observations that are not exactly simultaneous and collocated. If two measurements 



 

 xv 

are nearby in space and time, but not exactly simultaneous or collocated, it begs the question 

whether the two measurements are representative of the same target. Applying a technique from 

optimal interpolation, this work produces a simple metric that can be employed by satellite 

observation planners for future missions, which may feature proliferated constellations of 

disaggregated sensors. 

The third line of effort builds and validates a physical model of correlated error structure 

in GNSS-R. In addition to building up a “bottom-up” error inventory for GNSS-R, this 

construction is also generalizable to other observation types. This is especially useful for 

numerical weather prediction, as data assimilation schemes frequently discard large amounts of 

observations because the correlated error structure is not well-defined. This is particularly 

problematic for GNSS-R due to its unique sampling characteristics.  

The fourth and final line of effort builds upon the instrument correlated error model and 

evaluates the CYGNSS windspeed observation error covariance in observation space. This 

analysis also produced a method to partition certain sources of representation-retrieval error and 

suggests new corrections to the CYGNSS windspeed product that improves retrieval RMSE by 

11%.  

This work focuses on not just enhancements to CYGNSS, but also analysis to explore the 

structure of certain sources of error or impairment. Taken together, this dissertation both 

increases the quantity of useful CYGNSS data and makes CYGNSS data more useful.  
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Chapter 1 Introduction 

This chapter consolidates and harmonizes introductions from (Powell, Ruf, and Russel 2022; 

Powell, Ruf, Gleason, et al. 2024; Powell, Ruf, McKague, et al. 2024) to unify notation and 

reduce repetition in subsequent chapters.  

1.1 Motivations 

Building Earth observation satellites is an expensive endeavor. The United States 

National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space 

Administration (NASA) each spend billions of dollars every year to develop, assemble, and 

launch environmental observation satellites (Lipiec 2023; Morgan 2024). These assets can range 

from the size of shoeboxes to school buses, and when combined with the terrestrial infrastructure 

for command and control, data processing, and product distribution, represents a capitalized 

infrastructure worth tens of billions of dollars.  

The value of the data is harder to price. Space-based environmental observation 

infrastructure is critical to predicting the weather, monitoring a changing climate, and delivering 

warnings that save lives and protect property. Weather and climate data underpin entire sectors 

of the economy, such as agriculture, transportation, and hospitality (World Meteorological 

Organization 2015). Some valuations place the impact of weather variability on U.S. gross 

domestic product as high as 3.4% (Lazo et al. 2011).  

The central premise of this dissertation is to improve both sides of this cost-benefit 

analysis. Given the intrinsic value of weather and climate information to society, and further the 
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extensive costs associated with designing, deploying, and operating environmental observation 

infrastructure, it is wise to extract the most value from the data. 

Increasing return on investment for environmental satellites can take many forms. One 

way is to increase the amount of usable data. Another is to increase the overall utility of the data. 

This thesis performs both tasks. Taking NASA’s Cyclone Global Navigation Satellite System 

(CYGNSS) as its primary case study, this work demonstrates four separate investigations that 

increases both the quantity and utility of satellite observations. 

1.2 The CYGNSS Observatory 

The CYGNSS mission was selected in 2012 as the first NASA Earth Ventures flight 

project (Harrington 2012). Comprised of eight small satellites in equatorial Low Earth Orbit 

(LEO), each approximately 29 kg in mass and the size of a microwave oven, CYGNSS was 

designed and optimized to measure surface windspeeds in tropical oceans (Ruf et al. 2016). As 

NASA’s first small Earth science satellite mission, CYGNSS represented a new class of Earth 

observation capabilities: a low-cost constellation of smaller satellites enabled by a miniaturized 

sensing payload that takes advantage of existing signals of opportunity using a technique known 

as Global Navigation Satellite System – Reflectometry (GNSS-R) (Zavorotny et al. 2014). 

GNSS-R exploits the presence of known and well-characterized transmitters such as the Global 

Position System (GPS) to enable bistatic radar measurements of reflected surface quantities. 

CYGNSS measures GPS L1 signals in the L-band at 1575 MHz, which is especially useful for 

tropical cyclone observations, as thick cloud decks and precipitation are largely transparent in the 

L-band.   

CYGNSS has been collecting GNSS-R observations since shortly after its launch in 

2016, supporting a variety of land and sea applications, including ocean surface winds (Clarizia 



 

 3 

and Ruf 2016b; Mayers and Ruf 2019), ocean surface microplastic detection (Evans and Ruf 

2022), ocean altimetry (Carreno-Luengo et al. 2017;  Li et al. 2020), soil moisture (C. C. Chew 

and Small 2018), inland flood inundation (Chew, Reager, and Small 2018), methane emissions 

(Gerlein‐Safdi et al. 2021), and freeze-thaw state (Carreno-Luengo and Ruf 2022). 

1.2.1 Sampling Characteristics and Constellation Architecture 

CYGNSS’s sampling is qualitatively distinct from most other observations. As an 

opportunistic measurement, the CYGNSS instrument has no control over the sample location and 

does not “image” in the traditional sense. The georegistration of the observation is instead a 

function of geometry and time: as GPS in medium-Earth orbit (MEO) and CYGNSS in LEO 

propagate in their respective orbits and the Earth rotates underneath, CYGNSS collects the GPS 

specular reflections from Earth’s surface. This results in streaks or “tracks” of observations as a 

series of samples that share a GPS transmitter and CYGNSS receiver in short succession. Each 

of the 8 CYGNSS satellites captures four specular points at any given time, so the constellation 

is collecting 32 simultaneous tracks of observations across the Earth surface. Because CYGNSS 

and GPS are not synchronized in orbit, the sampling characteristics is best described by a 

probability distribution.  

At +/- 35 degrees inclination, the CYGNSS constellation was designed to enable fast 

revisit windspeed observations of developing tropical cyclones for initialization in weather 

forecasts. Since CYGNSS satellites are all in the same orbital plane, tracks of data will “train” 

and follow in quick succession. This result is a median 2.8 h, mean 7.2 h revisit for a given 

sample (Ruf et al. 2022). Images are constructed from overlaying observations from multiple 

satellites within some predefined neighborhood in space and time.  Figure 1.1 illustrates this 

effect with the global observations over 90 minutes (a), 24 hours (b), and the probability 
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distribution of revisit time (c). These sampling characteristics are fundamental to the challenges 

of making CYGNSS observations useful for weather models, described in depth in Chapters 2 

and 3.  

The satellites have no onboard propulsion, and are controlled via differential-drag 

techniques (Bussy-Virat et al. 2019). This maneuver was performed upon deployment to phase 

the CYGNSS satellites such that they roughly follow each other by 15 minutes in the 95 minute 

orbit. This has enabled certain experiments and calibration activities that depend on orbit phase, 

such as those described in Chapter 4.  
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Figure 1.1. The sampling characteristics of CYGNSS from Ruf et al. (2022). (a) 90 min sampling widow for eight 
CYGNSS satellites. (b) 24 hours of CYGNSS observations. (c) the probability density (blue) and cumulative density 
(orange) of revisit time for a given observation.  

 

1.2.2 The Delay-Doppler Map 

CYGNSS’s primary payload is the Delay-Doppler Mapping Instrument (DDMI). The 

DDMI collects and processes the science data for the mission by using both the direct and 

reflected GPS signal. The direct signal enables correlation with the specific GPS pseudorandom 

number (PRN), which enables the DDMI to process the constellation almanac to identify GPS 

ephemerides. From there, the DDMI can calculate the anticipated delay and Doppler shift for a 
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specular-reflected signal “search” for reflection in delay-Doppler space. A diagram of this 

observing geometry is shown in Figure 1.2. The isodelay lines represent lines of constant delay, 

which is measured in the time domain to account for the extra path length of the reflection. The 

iso-Doppler lines represent lines of constant Doppler shift, accounting for the differences in 

relative velocities of the transmitter, receiver, and reflection surface.  

As suggested by the name, the native coordinate system for the DDMI is delay-Doppler 

space, producing what’s known as Delay-Doppler Maps (DDMs). DDMs map non-uniquely to 

physical space, as shown in Figure 1.3. A line of non-ambiguity exists along the axis of the 

specular point in the Doppler domain. The DDMI performs most of the calculation of the 

reflection geometry and specular point search on-orbit, and only the resolved specular point data 

is downlinked for ground processing at a resolution of 17 delay bins x 11 Doppler bins. Each 

delay bin is approximately ¼ chip of the L1 code, and each Doppler bin is approximately 500 Hz 

(Ruf et al. 2022).  The physical area represented in the DDM is approximately 10,000 km2 (Ruf 

et al. 2022), but varies depending on the geometry of the observation, including incidence angle 

and altitude (Clarizia and Ruf 2016a).  In practice, most CYGNSS derived products only use the 

information contained in the bins representing the specular point.  
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Figure 1.2 – A diagram representing the geometry of the CYGNSS GNSS-R observation. A GPS satellite travelling 
at velocity 𝑣! emits a signal that is received both directly and via specular reflection by a CYGNSS receiver 
travelling at velocity 𝑣". The CYGNSS receiver also receives a direct signal from the GPS transmitter to enable 
geolocation and DDM processing. The specular point is mapped by isodelays (purple) and iso-Dopplers (blue). 
Different points P and Q are mapped to the same delay and Doppler bin. Figure from Ulaby and Long (2014). 
 

 

Figure 1.3 – A diagram illustrating the mapping between physical space and delay-Doppler space. The left panel 
shows a physical measurement space with isodelays (green) and a Doppler hyperbola. The right panel illustrates the 
mapping to delay and Doppler. Points A, B, C, D map to bins A’, B’, C’, and D’, respectively. Figure from 
Zavorotny et al. (2014). 
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1.2.3 The CYGNSS Observatory 

The exterior of each CYGNSS satellite has two nadir science antennas, which measure the 

reflected GPS signal, and one zenith antenna which measures the direct signal. Each satellite 

deploys two solar panels after separation from the launch vehicle, which are used for both power 

and the differential drag maneuvers. There are also communication antennas and various launch 

vehicle interfaces on the satellite exterior. The receiver and DDMI electronics are packed in the 

interior volume of the satellite. There is a high degree of thermal isolation between the exterior 

of the satellite and the interior volume. The edges of the solar panels can experience thermal 

variations upwards of 100 deg C within an orbit, while the interior volume may only vary by 10 

deg C. Chapter 2 explores the thermal behavior of CYGNSS in depth as it relates to observation 

quality and quantity. Figure 1.4 displays the component locations and physical construction of 

CYGNSS.  

 

 

 

Figure 1.4 - Exploded view (left) and underside view (right) of CYGNSS. Courtesy Keith Smith, SouthWest 
Research Institute, from Ruf et al. (2022). 
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1.3 GNSS-Reflectometry for Ocean Wind Sensing  

The bulk of this work focuses on the CYGNSS ocean surface wind product. The GNSS-R 

technique uses the reflected power from bistatic surface forward scattering as a proxy for mean 

ocean surface roughness, which is related to local windspeeds. Mean ocean surface roughness is 

estimated from the main instrument observable, the normalized bistatic radar cross section 

(NBRCS). The NBRCS is determined from the scattered power received at the CYGNSS 

satellite by the radar-range equation (Gleason et al. 2016): 

𝜎! =
𝑃"(4𝜋)#𝐿$%&𝐼
𝑃'𝐺'𝜆(𝐺)𝐿)𝐴	

(1.1) 

where 𝜎! is NBRCS in normalized units [m2/m2], 𝑃" is the received power; 𝐿$%& is the 

atmospheric attenuation along the propagation path from the GPS satellite to the specular point 

and to CYGNSS; 𝐼 is a term to account for instrument losses, 𝐿) is the range loss of the reflected 

transmission via the Earth specular point; 𝑃' is the transmit power of the GPS satellite; 𝐺' is the 

antenna gain of the GPS satellite in the direction of the specular point; 𝜆 is the wavelength of the 

GPS L1 signal; 𝐺) is the gain of the CYGNSS nadir receive antenna in the direction of the 

specular point; and 𝐴 is the effective scattering area. Note that Pg and A vary as functions of the 

time delay and Doppler shift of the received signal. As a result, NBRCS also depends on delay 

and Doppler. 𝜎! is calculated from the average of 𝜎 over a 3-by-5 bin window centered at the 

specular point and is divided by the effective area 𝐴 corresponding to the surface area bounded 

by the 3-by-5 window.  

 After the launch of the CYGNSS mission, it became clear that uncertainty in the GPS 

effective isotropic radiated power (EIRP) would significantly impact calibration quality, 

(Gleason et al. 2019; Wang, Ruf, McKague, et al. 2021; Wang et al. 2020). The EIRP is simply 
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the product 𝑃'𝐺' from Equation (1.1). Errors are present in both terms: not only is there general 

uncertainty in the actual (versus published) transmit power of GPS satellites, but newer 

generations of the constellation operate with a flexible power mode and dynamically change 

transmit power levels across their respective orbits (Steigenberger, Thölert, and Montenbruck 

2019). Further, only a subset of the GPS antenna patterns was published (Marquis and Reigh 

2015), and they were not sufficiently detailed to constrain the error in EIRP for CYGNSS 

calibration.  

To remedy this, Wang et al. developed a novel calibration technique that uses the 

onboard zenith CYGNSS antenna and empirically derived relationships from measured GPS 

antenna patterns to estimate GPS EIRP in the direction of the Earth’s specular point at the time 

of observation (Wang, Ruf, Gleason, et al. 2021). This new technique has been adopted in the 

CYGNSS Level 1 calibration algorithm since version 3.0 and modifies the radar equation to 

become the following (Gleason 2020): 

𝜎! =
𝑃"4𝜋𝐿$%&𝐿*𝐺*

𝑃*𝜁+𝐺)𝐿)𝐴̅
	 (1.2)	  

where all the terms are the same as in Equation (1.1), with the additions of 𝐿*, the zenith 

transmission range loss from the GPS source to the CYGNSS zenith antenna (written as a loss in 

the numerator to distinguish from the 𝐿) range losses); the CYGNSS zenith antenna gain 𝐺* in 

the direction of the GPS satellite; the power received from the CYGNSS zenith receiver 𝑃*; and 

the specular–zenith ratio 𝜁+ for the GPS EIRP as described in (Wang, Ruf, Gleason, et al. 2021).  

NBRCS is directly related to the mean square slope (MSS) of ocean wave spectra via ( 

Ruf et al. 2016; Clarizia and Ruf 2016b): 

𝜎!(𝜃) =
|ℜ(𝜃)|(

𝑀𝑆𝑆
(1.3) 
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where 𝜃 is the angle of incidence of the scattering geometry and ℜ(𝜃) is the Fresnel reflection 

coefficient for the ocean surface at the specular point. CYGNSS retrieves wind speed from 𝜎! 

via an empirical Geophysical Model Function (GMF) (Clarizia and Ruf 2016b; Ruf and 

Balasubramaniam 2019) that is processed operationally via a stored look-up table (LUT). 

Stronger received signals 𝑃" indicate smoother, more specular scattering of the ocean 

surface; weaker signals indicate rougher ocean surfaces associated with higher windspeed. 

CYGNSS’s electronics measures received power in raw digital counts, and calibrated received 

signal power 𝑃" in units of Watts is calculated by: 

𝑃" =
𝐶 − 𝐶,
𝐺 	 (1.4) 

where G is receiver gain in Watts/count, C is the raw counts measured at delay-Doppler bins 

where a scattered signal is present, and 𝐶, is the mean raw counts for background noise without 

any scattered signal present. In practice, 𝐶, is an average over many delay-Doppler bins at delay 

coordinates shorter than that of the specular point. Shorter delays correspond to radar reflections 

from the atmosphere above the ocean surface, for which there is no appreciable scattering at L-

Band. 

 

1.4 Data Assimilation Basics  

Weather models are fundamentally initial value problems. The mechanics of the atmosphere are 

generally well-known. A host of observations from terrestrial-, sea-, air-, and space-based 

platforms are combined to create an initial condition of model atmosphere, known as the 

analysis. The model then “plays the tape forward” and propagates the virtual atmosphere of the 

analysis into forecast increments with known behavior about the dynamics of atmospheric 
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phenomena. Data assimilation (DA) is the step of a numerical weather prediction (NWP) system 

that combines the observations into the forecast models. A common DA technique poses the 

problem as a variational equation that minimizes a cost function (Lorenc et al. 2000): 

argmin
𝐱
𝐉(𝐱) = (𝐱 − 𝐱𝐛)'𝐁/0(𝐱 − 𝐱𝐛) + (𝐲 − 𝐻[𝐱])'𝐑/0(𝐲 − 𝐻[𝐱]) (1.5) 

where 𝐉(𝐱) represents the cost function, 𝐱 is the variational argument, 𝐱𝐛 is the background 

model state of dimension n, 𝐁 is the n-by-n background error covariance matrix, 𝐲 is the 

observation vector of dimension p, 𝐻 is the forward model operator for transforming from model 

space to observation space, and 𝐑 is the p-by-p observation error covariance matrix. In practice, 

a great deal of focus has been placed on estimating B in the weather community (Bannister 

2008a; 2008b) because an incorrectly specified B can have significant impacts on the 

performance of the model. Famously, introducing perfect observations to a perfect model can 

still lead to forecast degradations if B is poorly constructed (Morss and Emanuel 2002). Chapters 

4 and 5 of this thesis focus on R, which has historically received less extensive focus in the DA 

community. 

1.4.1 What Happens When R is Poorly Specified 

DA schemes often assume that each observation error is completely uncorrelated 

(Stewart, Dance, and Nichols 2013; Fowler, Dance, and Waller 2018; Liu and Rabier 2002) and, 

as such, treat 𝐑 operationally as a diagonal matrix. This is performed for three main reasons: to 

simplify the assumptions needed for minimizing the cost function in Equation (1.5) and reduce 

the computational resources required to solve the forecast problem; to reduce the data handling 

and storage requirements for observation data at low latencies; and because frequently the 

information required to specify correlated observation errors was unavailable or difficult to 

ascertain. To achieve this, satellite observations are frequently thinned or ‘super-obbed’ to ensure 
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that samples are independent and thereby contain uncorrelated error (Bauer et al. 2011; Gao et al. 

2019; Hoffman 2018). 

Regardless of the rationale, the under-specification of correlated observation error in 𝐑 

leads to the suboptimal use of the information content in observations (Rainwater, Bishop, and 

Campbell 2015). This is especially true for CYGNSS because, given the unique sampling 

characteristics of the mission, it negates some of the observatory’s unique value proposition of 

high time and spatial resolution of tropical cyclone cores. While thinned and super-obbed 

CYGNSS measurements have been shown to improve tropical cyclone forecast skill (Zhang et 

al. 2017), this practice still reduces the overall value the observatory can provide to the 

forecasting community.  

For observation errors to be represented as independent and uncorrelated, 𝐑 would only 

have nonzero elements along the main diagonal. In contrast, physically representative 𝐑 matrices 

would specify nonzero off-diagonal elements. This work suggests a mechanism to estimate these 

off-diagonal elements as a function of space and time for GNSS-R.  

Investigations of correlated observation error have been explored for a number of 

different observatories including interchannel correlations in infrared (Stewart et al. 2014; 

Bormann et al. 2016) and microwave sounders (Bormann and Bauer 2010; Campbell et al. 

2017). In other studies, spatial error correlations have been explored for Doppler radars (Waller 

et al. 2016a), geostationary imagers (Waller et al. 2016b), and atmospheric motion vectors 

(Cordoba et al. 2017). There are several ways to estimate the observation error correlation 

statistics. One of the most common techniques is by estimating R is from observation-minus-

background and observation-minus-analysis residuals from assimilated forecasts (Desroziers et 

al. 2005), which is relatively simple to compute for data that is routinely assimilated into 
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forecasts. Other techniques include applying a “three-cornered hat” (Sjoberg, Anthes, and Rieckh 

2021; Semane et al. 2022), which requires collocation of three independent datasets, but this 

technique generally assumes the three datasets have uncorrelated errors. Recently, “bottom-up” 

approaches of constructing error inventories have been introduced to provide estimates of 

correlated error structure from first principles (Smith et al. 2021; Yang et al. 2023).  

 

1.5 Chapter Summary 

Chapter 2 explores how a single assumption in the CYGNSS mission development led to 

suboptimal observation duty cycles. This chapter improves the science duty cycle by analyzing 

observation quality degradation associated with imperfect knowledge of thermally-dependent 

gain variations, and as a result, suggests specifying a more appropriate blackbody calibration 

cadence. The content of this chapter is largely drawn from (Powell, Ruf, and Russel 2022).  

Chapter 3 explores the nature of representativity error and suggests a mechanism for pricing the 

amount of error incurred by imperfect matchups in space and time.  The content of this chapter is 

largely drawn from (Powell, Ruf, Gleason, et al. 2024).  

Chapter 4 derives an instrument observation error covariance model from first principles for 

CYGNSS and validates the model with a unique orbital condition in which two CYGNSS assets 

were in a near-overlap observation geometry.  The content of this chapter is largely drawn from 

(Powell, Ruf, McKague, et al. 2024).  

Chapter 5 propagates the instrument error covariance modelled in Chapter 4 into observation 

space and suggests a method for partitioning CYGNSS representation-retrieval error into 

geophysical components. This chapter also identifies new opportunities to correct the CYGNSS 

windspeed retrieval with ancillary datasets. The content of this chapter is largely drawn from 
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(Powell and Ruf 2024). 

Chapter 6 summarizes this work and suggests future avenues of investigation. This chapter 

presents analysis suggesting that CYGNSS had been initially too conservative in its calibration 

strategy, sampling its onboard blackbody once per minute, and recommends decreasing the 

calibration frequency to once every ten minutes to improve the science data duty cycle. This 

chapter is substantially derived from a work published in IEEE Transactions on Geoscience and 

Remote Sensing under the title “An Improved Blackbody Calibration Sequence for CYGNSS” 

(Powell, Ruf, and Russel 2022). The research is presented as published, with deletions of 

introductory material and theory (covered in Chapter 1), updates to formatting, and minor 

notation changes. 

1.6 Abstract 

An improved blackbody calibration procedure is developed, implemented, and tested for 

the Cyclone Global Navigation Satellite System (CYGNSS). Previously, CYGNSS calibrated its 

receivers once every minute to account for temperature-induced gain fluctuations. The time spent 

making calibration measurements limited the duty cycle of windspeed measurements to 

approximately 90%. Analysis presented here shows that the one-minute cadence was overly 

conservative and can be increased to once every 10 minutes with minimal impact to data quality, 

thereby improving the windspeed duty cycle to 98%. A permanent change to the blackbody 

cadence was made for the complete 8 satellite constellation during July 27, 2021 – August 3, 

2021, and subsequent analysis verifies that the new cadence improves duty cycle without 

impacting science data quality, as expected.
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Chapter 2 Improving CYGNSS Duty Cycle 

This chapter presents analysis suggesting that CYGNSS had been initially too conservative in its 

calibration strategy, sampling its onboard blackbody once per minute, and recommends 

decreasing the calibration frequency to once every ten minutes to improve the science data duty 

cycle. This chapter is substantially derived from a work published in IEEE Transactions on 

Geoscience and Remote Sensing under the title “An Improved Blackbody Calibration Sequence 

for CYGNSS” (Powell, Ruf, and Russel 2022). The research is presented as published, with 

deletions of introductory material and theory (covered in Chapter 1), updates to formatting, and 

minor notation changes. 

2.1 Introduction (Abridged) 

CYGNSS’s utility is impaired by a suboptimal sampling cadence related to the satellite’s 

onboard calibration system. The sequencing rate for sampling the onboard blackbody calibration 

target had been once every minute since launch, and each time this event occurred, the 

calibration would last approximately four seconds, inclusive of the time required to switch loads 

from the antenna source to the onboard blackbody target. As a result, CYGNSS occasionally 

missed sampling certain high-value targets.  

Based on the analysis presented below, the flight software was updated in 2021 to modify 

the sampling cadence to once every 10 minutes, with a slightly increased dwell time of 

approximately six seconds. This improves the windspeed retrieval duty cycle from 90% to 98% 

and shows no detectable deterioration in performance.  
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2.2  Theory (Abridged) 

CYGNSS satellites are in an equatorial low-Earth orbit with a period of approximately 95 

minutes, and experience significant variations in their thermal loads associated with their orbit. 

As each satellite crosses the terminator into sunlight, the body heats unevenly, causing thermal 

gradients across the structure. As the spacecraft enters the nightside, it cools suddenly and 

unevenly.  

As the body of the structure changes temperature, so does the thermal environment of the 

CYGNSS receiver electronics. These dynamics induce variations in the gain of CYGNSS’s 

receiver. Because the quality of windspeed retrieval depends on the consistency of receiver 

power, each satellite’s nadir instruments have built-in onboard calibration equipment to account 

for thermal gain variations in the receiver amplifiers.   

CYGNSS has two nadir science antennas, facing the satellite’s port and starboard directions, 

respectively. The receiver connected to each nadir science antenna has its own blackbody 

calibration target. A thermistor adjacent to the target monitors its temperature in real time to 

determine the power in the blackbody thermal emission. During a blackbody calibration 

sequence, the input to the receiver is redirected from the science antenna to the blackbody load 

and the power emitted by the blackbody is recorded in raw counts for later processing. This 

sequence takes approximately four seconds because the calibration clock and the science data 

clock are not synchronized, and the switching of loads is not perfectly instantaneous. To ensure 

that a full reading of the blackbody is measured without contamination from the load switching 

process, samples immediately preceding and succeeding calibration are flagged out.  

During data processing, the nearest calibration samples before and after a science sample are 

linearly interpolated to the time of the science sample to estimate gain variations between 
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calibration looks. At launch, this sequence was scheduled to occur once every minute, such that 

every science sample was within approximately 30 seconds of a receiver calibration event. This 

calibration sequence sets receiver gain for calculating received power as given by 

 

𝐺 =
𝐶1

𝑃1 + 𝑃2
	 (2.1) 

 

where 𝐶1 is the counts measured while looking at the blackbody load, 𝑃1 is the power from the 

blackbody as estimated from the thermocouple on the low noise amplifier, and 𝑃2 is the receiver 

noise estimated from a temperature-dependent noise floor parameterization determined pre-

launch. All three values vary as the spacecraft temperature fluctuates. The one-minute cadence 

was estimated to bound the 1-sigma calibration error for the received power to 0.13 dB (Gleason 

et al. 2019).  

Fig. 2.1 shows how the spacecraft gain varies with temperature. The blue trace is the calibrated 

receiver gain in dB, the red trace is variation in low-noise amplifier temperature in degrees 

Celsius. The gain varies approximately 0.4-0.6 dB peak-to-peak, whereas the absolute 

temperature of the low-noise amplifier varies approximately 8 degrees Celsius peak-to-peak.  
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Figure 2.1 – Example of temperature influence on receiver gain. Above, FM4’s port receiver gain is plotted (blue) 
with the temperature at a nearby probe (red) for a full day starting at 0Z 12 APR 2019. Note that gain is inversely 
related to local temperature, and that these swings are periodic, consistent with CYGNSS’s 95-minute orbital period.   
 

CYGNSS’s thermal environment also varies due to the orientation of its orbit plane 

relative to the sun. The relative time spent in sunlight or shade varies throughout the year as the 

orbital plane precesses about the Earth. This precession is conveniently characterized by the time 

dependent nature of the angle between the orbit plane and a line from the Earth to the sun, 

referred to as the orbit beta angle (see Fig. 2.2). In general, CYGNSS is exposed to the greatest 

temperature variations during low magnitudes of orbit beta angle, which implies that the 

spacecraft will spend the maximum amount of time in shade (Grey et al. 2020). Additionally, 

during periods at the highest beta angles, at approximately 50 degrees in magnitude and greater, 

the spacecraft are commanded into a roll configuration to maintain adequate solar radiance on 

the solar array panels. 
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Figure 2.2 – Orbit beta angle calculated for FM04 for 2019. The black, magenta, and orange vertical lines denote the 
low, medium, and high beta angle days respectively. 
 

2.3 Methods 

Decreasing the calibration frequency risks increasing error caused by inaccurate 

compensation for time-varying receiver gain. Science data taken between blackbody calibration 

measurements are calibrated using linearly interpolated values of the nearest calibration data 

before and after the science measurement. If the temperature of the spacecraft receiver 

electronics changes in a non-linear way between calibrations, it can result in significant errors 

due to improper corrections for gain variation. An on-orbit experiment was performed to explore 

how two fundamental CYGNSS data products, NBRCS and retrieved windspeed, degrade due to 

an increase in the time between blackbody samples.  

Three days of data from one satellite (FM4) were used, with days selected representing 

different characteristic beta angles to explore how different thermal cycling may impact the 

calibration sequence, as shown in Table 2-1.  
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2.4 Estimated Beta Angle and Thermal Variation for Selected Days 

Table 2-1. Exemplar temperature variability for different orbit beta angles. 

 

 

For all three days, science samples were collected and processed with normal one-minute 

blackbody sampling. This generated baseline measurements: the fully-developed sea (FDS) 

windspeed retrieval product 𝑢3450, the young-seas limited-fetch (YSLF) windspeed retrieval 

product 𝑢65730, and the NBRCS 𝜎0! (CYGNSS 2020b). CYGNSS uses two separate geophysical 

model functions for windspeed retrieval. Both retrievals are empirical fittings, but the YSLF 

differs from the FDS in its sensitivity to longwave swell, which tends to be under-developed in 

high-wind, dynamic weather where wind direction is frequently changing, such as during tropical 

cyclones (C. S. Ruf and Balasubramaniam 2019; C. S. Ruf, Gleason, and McKague 2019). The 

YSLF product is tuned to respond to higher wind speed conditions where measurement 

sensitivity is diminished, and so will be more sensitive to possible degradation in calibration 

quality that results from the change in blackbody cadence.  

These data were then reprocessed using every nth blackbody sample, where n is an 

integer that ranged from 2 through 45, representing sampling the blackbody once every n 

minutes. The maximum value considered corresponds to performing a blackbody calibration 

approximately once every half orbit. Between the blackbody samples used, the raw counts 

recorded by the blackbody were linearly interpolated. An additional case was considered in 

Date Orbit Beta Angle Peak-to-peak Temperature Swing
12 APR 2019 -3 deg ("Low") 9.8 deg C
1 MAY 2019 46 deg ("Med') 6.6 deg C
15 JUN 2019 56 deg ("High") 5.6 deg C
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which the daily mean value of all blackbody samples was used to calibrate the entire day of 

science data. This case represents calibration without regard for short term gain variations. 

Degradation in calibration accuracy is assessed by examining the difference between 

science samples calibrated using every nth blackbody sample vs. using blackbody samples every 

minute. These differences are given by  

Δ𝑢8 = 𝑢8 − 𝑢0	 (2.2) 

where 𝑢8 is the windspeed produced at a calibration period of n minutes, 𝑢0 is the windspeed 

produced at the original calibration sequence, and Δ𝑢8 is the difference in windspeed due to 

increased calibration period of n minutes. If 𝑢0	is assumed to be accurately calibrated, Δ𝑢 

represents the error that results from less-frequent blackbody calibration. Similar values can be 

produced for NBRCS and gain: 

	

Δ𝜎8! = 𝜎8! − 𝜎0!	 (2.3) 

Δ𝐺8 = 𝐺8 − 𝐺0 (2.4) 

 

where 𝜎8! is the NBRCS at n-minute calibrations, 𝜎0! is the NBRCS produced during one-minute 

calibrations, and Δ𝜎8! is the NBRCS error induced by sampling at longer periods; and 𝐺8 is the 

receiver gain at n-minute calibrations, 𝐺0 is the original gain at one minute sampling, and Δ𝐺8 is 

the error due to a longer calibration sequence at period n.  

If the use of a particular (longer) sampling rate produces a measurable change in the 

derived CYGNSS data products relative to the 1-minute baseline measurements, that is an 

indication of a degradation in calibration accuracy.  
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To explore a “worst case” scenario, an additional comparison is made assuming the 

satellite only calibrates the blackbody once per day using the daily average value. This provides 

a sense for how NBRCS and windspeed would degrade if the calibration was performed at 

timescales much slower than the orbit-induced changes in the thermal loading of the spacecraft.  

 

2.4.1 Characterizing the Impact of Change in Cadence 

Changing the period of calibration impacts the quality of the gain estimate in (4). If the 

non-linear component of the thermal environment changes at timescales faster than the 

calibration period, the gain estimated by the calibration process will no longer be representative 

of the true gain.  

Fig. 2.3 depicts histograms of normalized gain changes due to increased blackbody 

sampling cadences. For every sample, both the original gain and the relative fraction of its 

change is calculated. At blackbody sampling rates close to one minute, there is very little 

difference from the original gain, and distribution of samples approach a delta function. At 

longer  
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sampling intervals, this distribution widens, illustrating how gain estimates degrade as the 

sampling cadence increases. At approximately two samples per orbit, or n = 45, the gain 

variations can be up to +/- 5% of the baseline. 

The results in Fig. 2.3 are shown for the impact on gain, but this behavior is observed 

across all derived products. To estimate the growth in error as a function of sampling cadence, 

the standard deviation is calculated for each distribution. Fig. 2.4 shows how the standard 

deviation grows as the sampling period increases.  

Figure 2.3 – Histograms of gain error at n = {5, 15, 25, 35, 45} minutes. The blue and red distributions represent data 
from the port and starboard antennas, respectively. At low n, the gain error approaches a delta function. As sampling 
cadence time increases, the distribution widens, illustrating the degradation from the original one-minute sampling 
cadence. 
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Figure 2.4 – Standard deviations of growth in error as a function of sampling cadence for NBRCS (top), FDS 
windspeed (middle), and YSLF windspeed (bottom) at low beta angle. Red traces indicate values for the starboard 
antenna, and blue traces for the port side. 

 

  

 

  

Figure 2.5 – PCT1 of error as a function of sampling cadence period for NBRCS (top), FDS windspeed (middle), and 
YSLF windspeed (bottom) at low beta angle. Red traces indicate values for the starboard antenna, and blue traces for 
the port side. 
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Sampling every 2 minutes, the NBRCS error standard deviation is approximately 0.25 

m2/m2. This grows to an error of just over 1 m2/m2 at 45 min cadence. The error characteristics 

for sampling once per day resembles the 45-minute scenario, as the sampling at every half-orbit 

maximizes error due to unrepresentative temperature-dependent gain corrections. The standard 

deviation of windspeed error is approximately three times larger for the YSLF retrieval than the 

FDS retrieval. At the worst possible case, sampling once every day, the standard deviation of 

error on the windspeed product approaches 0.6 m/s. For context, the requirement for CYGNSS 

retrieval accuracy is a root-mean-square (RMS) error of less than 2 m/s at windspeeds lower than 

20 m/s, and RMS error of less than 10% at winds greater than 20 m/s (Clarizia and Ruf 2016b). 

The error inventory for the mission suggests that the total L1 error will be 0.82 dB at low wind 

speeds and 0.70 dB at high winds (Gleason et al. 2016). Assuming a low wind NBRCS of 100 

and a high wind NBRCS of 16, the once-daily sampling degrades the measurement by 0.04 dB 

and 0.28 dB respectively. Therefore, even at this cadence, the magnitude of the standard 

deviation of error is still small enough to meet system requirements.  

The standard deviation can, however, be a misleading metric, as it describes the behavior 

of the total distribution, as opposed to errors in high-value samples. Changes in NBRCS are 

much more significant at low values, because NBRCS is inversely related to windspeed. In 

addition, large errors in windspeed retrievals in high-wind areas such as hurricanes can be 

averaged out by the much more frequent and smaller errors over calm seas.  

For this reason, a new metric is developed to appropriately capture how modifications in 

calibration cadence can impact the CYGNSS science products. This metric is named PCT1, 

which stands for the percent of samples with error magnitudes that are 1% or greater than its 
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value when using the original one-minute calibration cadence. The PCT1 metric ranges from 0 to 

1, with 0 indicating that no samples have errors greater than 1%, and 1 indicating that every 

sample has an error which is at least 1%. The PCT1 for the 3 data products is shown in Fig. 2.5. 

As the cadence period increases, the PCT1 rises, with an inflection point between 10 and 15 

minutes. At that point, the increase in blackbody cadence significantly impacts the overall 

population of data. As expected, the YSLF windspeed retrieval is the most sensitive product to 

changes in the blackbody sampling rate.  

To see how this relationship varies across different orbit beta angles and resulting thermal 

conditions, the PCT1 for NBRCS is plotted across different orbit beta angles in Figure 2.6. At 

Figure 2.6 – PCT1 of NBRCS error as a function of sampling cadence period at various beta angles. At lower 
beta, the performance degradation is more pronounced. 
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lower beta angles, the errors are more pronounced, as the spacecraft spends more time in the 

shaded portion of the orbit, resulting in greater temperature variability.  

2.4.2 Optimal Blackbody Sampling Cadence 

Determining an optimal sampling cadence requires exploring the tradeoff between the 

potential benefit of increased science duty cycle over the cost of potentially poorer instrument 

performance.  

For this analysis, the worst possible conditions are employed to provide an upper bound 

on potential impacts to downstream products. Because the low beta angle orbit has greatest 

temperature variability, it leads to increased performance degradation, and because the YSLF 

windspeed product is more sensitive to calibration errors than its FDS counterpart, the choice of 

blackbody sampling rate should be driven by the low beta YSLF error growth.  

We chose an arbitrary YSLF PCT1 value of 0.05 as the optimal cutoff threshold, which 

means that the number of samples with greater than 1% error due to increased sampling period 

could be no more than 5% of the total population. The largest sampling rate below the PCT1 cut-

off for the YSLF data product is once every 10 minutes as shown in Fig. 2.5. At 11 minutes, the 

PCT1 values exceed 0.05 during the low beta angle day.  
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Figure 2.7 – Standard deviation of YSLF windspeed error as a function of sampling cadence period at various orbit 
sectors. The errors due to increased blackbody sampling rates are greatest immediately after crossing the terminator. 
This effect is largest at longer sampling periods. 

2.5 Performance by Orbit Sector 

The temperature gradients on CYGNSS are the largest as the spacecraft crosses the 

terminator. This implies that the performance degradation due to increased sampling period 

should be greatest as the spacecraft crosses the terminator. To validate this theory, we calculate 

the standard deviation of the windspeed anomaly as a function of sampling cadence as before, 

and further segregate results by orbital phase.  

The terminator crossing is approximated by utilizing the temperature traces of the low-

noise amplifiers. The spacecraft is assumed to cross the terminator five minutes prior to each 

peak and valley of the temperature trace. After the terminator crossings are established, the time 

since crossing the terminator is segregated into five 10-minute bins.  
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Fig. 2.7 shows the standard deviation of the YSLF windspeed anomaly for the low beta 

case, separated by time since terminator crossing. The performance impact of increasing the 

sampling cadence is clearly dependent on orbital location, with the worst performance 

immediately following the terminator crossing, and moderate impacts as the spacecraft enters a 

steady-state thermal environment.  

2.6  Discussion 

As a result of this analysis, the CYGNSS operations team elected to transition science 

operations to the 10-minute blackbody sampling cadence in August 2021.  

 

2.6.1 Characterizing the Impact to Duty Cycle 

To evaluate the utility of a refined sampling cadence, the preferred figure of merit is the 

duty cycle of high-quality ocean observations in which windspeed retrievals are possible, as 

given by 

𝐷9!& =
𝑁"!!:

𝑁"!!: + 𝑁11
(2.5) 

 

where 𝑁"!!: is the number of good-quality ocean observations capable of otherwise retrieving a 

windspeed retrieval, and 𝑁11 is the number of samples impacted by the blackbody calibration 

sequence.  

The original 1-minute blackbody cadence took on average four seconds, inclusive of the 

time it took for the spacecraft to switch loads (1 s), sample the blackbody target (2 s), and switch 

back to the science antenna (1 s). This would suggest a nominal duty cycle of approximately 

56/60 = 93.33% as computed in (8) without considering other factors.  
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For the 10-minute sequence, the length of time observing the blackbody target was 

increased to four seconds to reduce variability due to sudden receiver excursions. When 

considering the two seconds required for changing the antenna load to the target, an average 

blackbody measurement takes approximately six seconds. Theoretically, the duty cycle should 

improve to 594/600 = 99%.  

CYGNSS L1 data files have several quality flags associated with each sample, and 𝑁"!!: 

is determined by an “overall quality” indicator, which is the sum of several other flags with 

logical OR operations as described in the product data dictionary (CYGNSS 2020a). In practice, 

only about 60% of samples collected over the ocean are useful due to other quality control flags 

independent of the blackbody calibration. Therefore, any improvement in the raw duty cycle 

with a new blackbody sequence will have outsized impact in 𝐷9!&. When accounting for this 

difference, the expected 𝐷9!& in the naïve 1-minute cadence where 6.67% data are lost is no 

longer 93%, but approximately 89% as 6.67% / 0.6 = 11%. Similarly, the expected 𝐷9!& for the 

improved blackbody sequence is 98%. 

𝑁11 is composed of logical ORs of flags associated with the blackbody sample itself plus flags 

that indicate the instrument is reconfiguring in preparation for or immediately after a blackbody 

sample, adjusted for samples that occur only over the ocean. By implementing this modification, 

the 𝐷9!& increases from approximately 90% to 98%.  

2.6.2 Characterizing the Impact to the Level 1A Error Budget 

CYGNSS’s Level 1 error budget described in the Algorithm Theoretical Basis Document 

is composed of the root sum of squares of individual error terms in the Level 1A equation 

(Gleason 2014). Combining (1.4) and (2.1) shows the full Level 1A equation with each source 

term 
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𝑃" =
(𝐶 − 𝐶,)(𝑃2 + 𝑃1)

𝐶1
(2.6) 

The individual error terms can be approximated by taking the partial derivative with respect to 

each individual term 

𝐸(𝑞;) = s
𝜕𝑃"
𝜕𝑞;

s Δ𝑞; 	 (2.7) 

where 𝑞; represents an individual input parameter. The total error from the root sum of squares 

of individual error terms can be expressed as  

𝐸70< = vw[𝐸(𝑞;)](
;

		x

0
(

(2.8) 

 

In this experiment, we modified the input parameter 𝐶1 and held all other inputs constant. 

Therefore, we can calculate the specific contribution of error due to the blackbody sequence by 

plugging (2.7) into (2.6) and setting 𝑞; = 𝐶1: 

 

𝐸(𝐶1) =
(𝐶 − 𝐶,)(𝑃2 + 𝑃1)

𝐶1(
Δ𝐶1 	 (2.9) 

 

The latest Level 1A error budget estimates that the 1-sigma 𝐸(𝐶1) is 0.05 dB (Gleason et al. 

2019). With the change in blackbody cadence from 1 minute to 10 minutes, the one-sigma 

uncertainty becomes approximately 0.07 dB. The total error now follows by computing the root 

sum of squares in (2.8) with the other values specified in Gleason et. al (2019) (Gleason et al. 

2019). Prior to the blackbody calibration, the rolled-up Level 1A error budget was 0.225 dB, and 

after the change, it has increased to 0.232 dB. 
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2.6.3 Comparing Expected Results to Empirical Data 

To demonstrate that windspeed performance has not significantly deteriorated, a 

statistical comparison is performed with reanalysis data using the CYGNSS Climate Data Record 

Version 1.1. This product matches up MERRA-2 windspeed reanalysis with CYGNSS 

observations, and generates an expected “modeled” NBRCS for a given ocean condition with the 

appropriate spectral corrections for CYGNSS. The performance of the CYGNSS retrieval is 

compared as the difference in measured NBRCS versus modeled NBRCS for each sample before 

and after the calibration sequence: 

 

(Δ𝜎!)0	&;8 = (𝜎!>?! − 𝜎&!:! )0	&;8	 (2.10𝑎)	

	(Δ𝜎!)0@	&;8 = (𝜎!>?! − 𝜎&!:! )0@	&;8	 (2.10𝑏) 

 

To account for variability in global windspeed distributions, 24 prior samples at the 1-minute 

cadence were selected in 2020 to account for any seasonal or sub seasonal variability in 

CYGNSS performance. Because year-round data is not available for the new sampling cadence, 

a week of data was collected to represent current behavior.  

With this data, Student’s T-test was performed with both the standard deviation and mean 

of Δ𝜎! to evaluate if there were any statistically significant changes in the performance of 

CYGNSS. Each day of the 1-minute data serves as a realization of the prior distribution, and the 

week of 10-minute data is a realization used in the significance test, where the parameters are 

shown in (2.11a-d). To minimize the sensitivity to outliers, only values between the 5th and 95th 

percentiles of each dataset were utilized.  
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𝜇0 = 𝑚𝑒𝑎𝑛(Δ𝜎!)0	&;8	; 	𝜇( = 𝑚𝑒𝑎𝑛(Δ𝜎!)0@	&;8	 (2.11𝑎)	

𝑠0 = 𝑠𝑡𝑑(Δ𝜎!)0	&;8	; 	𝑠( = 𝑠𝑡𝑑(Δ𝜎!)0@	&;8 (2.11𝑏) 

𝐻@:	𝜇0 = 𝜇(, 𝐻0:	𝜇0 ≠ 𝜇(	 (2.11𝑐)	

𝐻@:	𝑠0 = 𝑠(, 𝐻0:	𝑠0 ≠ 𝑠(; (2.11𝑑) 

2.7 Summary of CYGNSS Performance Before and After Blackbody Sequence 

Modification 

Table 2-2. Performance of CYGNSS before and after blackbody cadence update. 

 

 

As shown in Table 2-2, there are no statistically significant differences in the overall 

performance of CYGNSS, both in terms of the average absolute performance of the difference 

between observations and expected NBRCS values, as well as any appreciable increase in 

variability. The errors inherent in windspeed model performance are several orders of magnitude 

greater than any expected deterioration that could be attributed to elongated blackbody sequence. 

2.8 Summary and Conclusions 

This work explores an optimal blackbody sampling cadence for the CYGNSS 

constellation. Fundamentally, the calculus to modify sampling cadence weighs the potential 

deterioration of data quality as a result of less precise thermal gain variation knowledge against 

the potential utility of increased science collection coverage.  

Parameter
Confidence interval of 
1-minute cadence

Value at 10-minute 
cadence

Significance 
(p-value)

mean(Δ!o) 11.91 - 51.92 14.77 0.3866
std(Δ!o) 53.56 - 61.59 54.87 0.1755
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With this analysis, we show that the original design generally overestimated the effects of 

thermal gain variations on the end derived products and the calibration sequencing oversampled 

at the expense of science operations.  

The most dynamic thermal environment for CYGNSS spacecraft occurs as they cross the 

terminator, and the most significant variations occur when the orbit is at its lowest beta angle, 

when the spacecraft has the longest opportunity to cool in Earth’s shadow. Under those 

conditions, any changes to the blackbody cadence will have the most significant impact on the 

derived products. However, even considering CYGNSS’s most sensitive product, the YSLF 

windspeed, the blackbody sampling rate can be increased 10-fold to once every 10 minutes 

without degrading more than 5% of the data population by more than 1%.  

With this modification, CYGNSS is able to improve its retrieval duty cycle from 90% to 

98%, significantly improving the availability of data previously lost to excessive blackbody 

calibration.
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Chapter 3 Exploring Representation Error 

This chapter presents analysis exploring the nature of representativity error for situations in 

which two samples are nearby but not exactly collocated or simultaneous. This chapter is 

substantially derived from a work published in Bulletin of the American Meteorological Society 

under the title “Sampled Together: Assessing the Value of Simultaneous Collocated 

Measurements for Optimal Satellite Configurations” (Powell, Ruf, Gleason, et al. 2024). The 

research is presented as published, with minor updates to formatting.  

© American Meteorological Society. Used with permission.  

3.1 Abstract 

This work applies a quantitative metric in order to capture the relative representativeness 

of non-simultaneous or non-co-located observations and quantify how these observations 

decorrelate in both space and time. This methodology allows for the effective determination of 

thresholding decisions for representative matchup conditions, and is especially useful for 

informing future network designs and architectures. 

Future weather and climate satellite missions must consider a range of architectural trades 

to meet observing requirements. Frequently, fundamental decisions such as the number of 

observatories, the instruments manifested, and orbit parameters are determined based upon 

assumptions about the characteristic temporal and spatial scales of variability of the target 

observation. With the introduced methodology, representativity errors due to separations in space 
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and time can be quantified without prior knowledge of instrument performance, and errors driven 

by constellation design can be estimated without model ingest or analysis.  

 

3.2 Introduction  

It is often desirable to measure the Earth system from two or more different instruments 

at the same place and time. Simultaneous co-located measurements, otherwise known as 

matchups, frequently form the basis for calibration activities, science investigations, and 

operational retrievals. Satellite platforms offer a unique opportunity to capture co-located and 

simultaneous observations for extended periods of time. Many operational missions manifest 

multiple sensors onto the same satellite platform. Operational sea surface altimetry missions 

generally employ a radar altimeter as the primary mechanism to determine sea surface height, 

but due to uncertainties due to tropospheric delay, the radar is supplemented by a microwave 

radiometer to measure integrated atmospheric refractivity due to water vapor in the observing 

column to meet accuracy requirements (Donlon et al. 2021). Weather satellites utilize similar 

techniques to meet requirements. The NOAA-NASA Joint Polar Satellite System employs co-

aligned microwave and infrared sounders to retrieve atmospheric profiles. To ensure operational 

consistency, the scanning mechanisms between the infrared and microwave instruments are 

synchronized such that they share the same field of regard across the scan (Kim et al. 2014).  

The same logic also extends to formation flying, where instruments are not manifested on 

the same platform, but rather on multiple platforms in nearby, coordinated orbits. In the early 

2000s, NASA populated its A-Train constellation satellites, named for its compact assemblage of 

several Earth science missions in the afternoon sun-synchronous polar orbit. When CloudSat and 

CALIPSO joined the A-Train in 2006, five separate satellites would fly in formation over the 
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same ground track within roughly a 15 minute window (Stephens et al. 2002; Schoeberl 2002). 

The quick succession of satellites and near-simultaneous observations were critical to several 

science goals of the constellation. 

The decision to co-manifest instruments on a single satellite platform usually involves 

various trade studies to evaluate the relative costs, risks, and performance benefits of the design. 

While sharing two or more instruments on the same satellite platform is often the most intuitive 

way to achieve simultaneity and co-location, it can increase the system complexity, as well as the 

volume, mass, and power budgets of the spacecraft. These budgets are known to drive overall 

mission cost and execution risk. At the other end of the spectrum, recent advances in 

miniaturized sensors, small satellite platforms, and low-cost launch services have enabled 

constellations of proliferated sensors. These new capabilities enable constellation designs 

previously considered untenable or uneconomical. There are inherent challenges and risks with 

proliferated constellations, including cross calibration, formation maneuvers, and operating 

complexity.  

The transformations in the space industry, including the development of new business models for 

collecting observations from space, combined with growing demand for enhanced weather and 

climate services, are fostering new conditions for government agencies to consider as they 

embark on the next generation of Earth observing architectures. NOAA is currently formulating 

a new architecture for low Earth orbit, the Near Earth Orbit Network (NEON), and is considering 

constellations that look very different from its legacy missions (Werner 2023). NEON Series 

One satellites will contain microwave and infrared sounders, while the manifest for Series Two 

is still undefined, and may contain instruments such as visible imagers or ozone profiles. The 

orbital planes and constellation size for NEON is still undetermined, but it is expected that the 
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disaggregation of instruments will enable more observations at similar or reduced costs. This 

program marks a shift from the current-generation of polar-orbiting weather satellites, the Joint 

Polar Satellite System, which hosts five instruments on a single truck-sized platform.  NASA 

recently commissioned a study from the National Academies of Science, Engineering, and 

Medicine to assess the utility of hosting a number of Earth science payloads on a single large 

commercial platform (National Academies of Sciences, Engineering, and Medicine 2023). 

One of the advantages of using multiple smaller satellite platforms for Earth observations is that 

on-orbit resources are limited, and often the constellation risk posture can be improved by 

disaggregating and distributing sensors across multiple platforms. This advantage can be traded 

off against the detrimental effects of representativity error.  

A number of tools have been developed to facilitate constellation design, usually with 

defined objective functions, such as minimizing revisit time, maximizing coverage, or balancing 

cost and utility (Marcuccio et al. 2019; Williams, Crossley, and Lang 2001; St. Germain, 

Gallagher, and Maier 2018; Nag et al. 2015). These considerations feature prominently in the 

development of Earth observing missions and frequently trade off with one another. However, 

often the most important questions for selecting an optimal architecture – the definition of 

threshold and objective revisit requirements for a given observation – are decided somewhat 

arbitrarily. 

One of the primary metrics used to measure the utility of future observing systems, 

particularly for weather satellites, is a technique known as Observing System Simulation 

Experiments (OSSEs) (Arnold and Dey 1986). OSSEs essentially use a high-resolution model of 

the atmosphere and Earth system as ground truth, which are then “measured” by realistic 

simulated observations that are assimilated into a known forecasting model (Hoffman and Atlas 
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2016). These experiments can provide significant insight into the forecast impact of certain types 

of future observations but can be labor intensive and computationally expensive to run (to 

illustrate, cf. Li et al. 2019; 2018; Christophersen et al. 2021). Some newer techniques, such as 

employing non-cycling data assimilation for OSSEs, can minimize the computational burden 

(Privé et al. 2023). Other approaches which are less resource intensive, such as ensemble data 

assimilation (EDA) studies, measure a simulated observing system’s impact on forecasts by 

characterizing the spread between ensemble members (Tan et al. 2007).  Nevertheless, these 

studies are frequently individually tuned to the observing system being developed, and the utility 

is restricted to estimating improvements for forecasting users. Because of the number of 

variables inherent in these models, and the lack of standardization between techniques, it is 

difficult to make precise decisions about what utility is gained by changing the temporal or 

spatial coverage of future observation architectures. Further, these computational frameworks are 

not entirely applicable to non-forecasting applications of satellite observations, where a simple 

objective metric could guide requirements flow-down for observation representativity.  

This work examines precisely how much representativity error is incurred when 

observations are separated in space and time, without a priori knowledge about the observing 

system or model at hand. As a result, it is a tool to empower observation planners with objective 

functions to make architecture trades. Further, when coupled with OSSEs, EDA studies, and 

other forecast skill metrics, it provides a more comprehensive assessment of a specific 

architecture selection. 
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3.3 Methodology 

3.3.1 Formulation 

The challenge of assimilating many different observations, which are often irregularly 

sampled in space and time, has been well documented since the advent of numerical weather 

prediction over a century ago (Richardson 1922). Gandin introduced a number of innovations in 

objective analysis and optimum interpolation of fields, which moved away from purely 

mathematical polynomial fittings and incorporated statistical arguments for how parameters of 

interest might decorrelate in space and time (Gandin 1965). These optimal interpolations 

methods were further generalized for data assimilation purposes by Rutherford (Rutherford 

1972) who incorporated short-term forecast error information to produce a blend of observations 

and model rather than the forecast alone as a first guess. Implicit in this work is the need to 

inform the process with autocorrelation functions that represent how observations at a particular 

place and time relate to model-predicted values on a numerical grid. Bretherton et. al. (1976) 

extended the rapidly-advancing optimal interpolation assimilation methods used for initializing 

weather models to guide the development of an oceanographic field experiment. It is this context 

in which we adopt the general approach of Bretherton et al, not for an oceanographic experiment, 

but for satellite-based observations.  

The basic premise is that given simple assumptions about the statistical behavior of any 

observable parameter, such as wind speed or sea surface temperature, one can measure the rate 

that this parameter decorrelates over space and time. The error from interpolation is then simply: 

𝜖A�𝜏%,?� = 𝜎A�1 − 𝑅A�𝜏%,?�	 (3.1) 
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where representativity error for parameter x is 𝜖A and is a function of either time lag 𝜏% or spatial 

lag 𝜏?, 𝜎A is the standard deviation of samples of x, and 𝑅A is the autocorrelation of parameter x 

at lag 𝜏%,?, where the subscript t represents the time lag, and the subscript s represents the spatial 

lag. This formulation makes general assumptions about the stationarity and isotropy of variance 

for the parameter of interest which are not necessarily true for the Earth system. There are many 

cases in which the statistical distribution and rate of decorrelation of weather and climate 

parameters are non-stationary, such as from seasonality or phase of teleconnections. Generally, 

the error in (3.1) can be calculated in any case where a representative decorrelation roll-off can 

be estimated. The correlation scale sizes and decorrelation behavior of various Earth parameters 

is extensively studied and readily accessible for many parameters. As a partial sampling, confer 

(Colosi and Barnett 1990) [identifying characteristic spatial and temporal scales in surface 

pressure, sea surface temperature, and air temperature over the Southern Hemisphere via drifting 

buoys]; (White 1995) [measuring decorrelation scales of temperature at various depths in global 

oceans to design an in-situ network to measure gyre-scale seasonal-to-interannual variability]; 

(Gille and Kelly 1996), [decorrelation scales of sea surface height of the Southern Ocean as 

measured from satellite altimeters]; (Kuragano and Kamachi 2000) [spatial and temporal scales 

of global ocean surface variability from the TOPEX/POSEIDON mission]; (Chu, Guihua, and 

Chen 2002) [decorrelation scales of temperature and salinity in the Japan Sea from in-situ ocean 

profiles]; (Delcroix et al. 2005) [temporal and spatial decorrelation in sea surface salinity in 

tropics]; (Romanou, Rossow, and Chou 2006) [decorrelation scales of latent and sensible heat 

fluxes in global oceans]; (Eden 2007) [eddy length scales of the North Atlantic derived from 

satellite altimetry]; (McLean 2010) [correlation scales of global oceans derived from Argo 

floats].  
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This analysis treats temporal and spatial decorrelation separately, even though they are 

coupled in the Earth system. The rationale is twofold. First, this maintains the simplicity and 

generality of the representativity errors. Second, this assumption makes this metric much more 

useful for the task of designing satellite architectures. Architecture trades frequently feature orbit 

and constellation decisions that optimize various sampling characteristics in both space and time, 

which are also coupled by orbital dynamics. Instead of trying to determine the dynamics of 

multiple coupled systems, this relaxation allows planners to set simple threshold and objective 

requirements in space and time for their trade studies.  

3.3.2 Choice of Data and Study Selection. 

The goal of this exercise is to demonstrate how we apply a known benchmark to 

determine satellite constellation architectures. In practice, care should be taken to ensure that the 

chosen benchmarks are, in fact, representative of the target phenomenology. In essence, (3.1) 

simply measures the error induced by the separation between samples in space and time in which 

natural variability may cause a different measurement to be obtained. The statistical meaning of 

(3.1) also suggests that any input data need to adequately resolve the target parameter both in 

scale and variability. The temporal and spatial resolutions should be considered as well as any 

processing performed that would otherwise impact the variability. There is no policy constraint 

on the source of data, provided that it is sufficiently representative of the dynamics at the 

appropriate scale and variability of a given phenomenon.  

In certain cases, raw observation data may be advantageous over model or reanalysis 

data; in others, the reverse may be true. This claim warrants some explanation. We generally 

have a strong preference for using observation data when available and practical. But there are 

certain use cases in which model or reanalysis data may be more representative, easier to 
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manipulate, or simply readily available where observations are not. For instance, remote sensing 

data is commonly resampled from the native instrument resolution to a standard grid in both 

space and time, which can have a significant impact on the representativity of the data 

(Schutgens et al. 2016; Schutgens et al. 2017). Further, the statistical behavior of raw observation 

data may be sensitive to quality control parameters, which may not be intuitive to unfamiliar 

users. Some phenomena, such as global sub-mesoscale precipitation, is not well-captured by any 

global observing system, and a high-resolution model may be more appropriate than any blended 

observation dataset. Finally, in certain cases, the convenience of a gridded reanalysis may prove 

decisive if it can be shown to adequately capture the variability and scales of the target 

phenomena. 

For this exercise, we assume that we are designing an ocean observing system, with 

particular interest in surface parameters such as winds, sea surface temperature, air temperature, 

and surface air pressure. Our selection of data is purely illustrative for the demonstration of this 

technique, and we assert representativity in both scale and variability. For observation planners, 

care should be taken to ensure that the source of “ground-truth” for target observables provide 

representative sampling at timescales and spatial resolution appropriate for the phenomena of 

interest and are otherwise well calibrated to ensure representative variability and dynamic range. 

3.3.3 Temporal Decorrelation 

For temporal decorrelation analyses, we chose a moored marine buoy from NOAA’s National 

Data Buoy Center (National Data Buoy Center 1971) due to its high temporal resolution, the 

quality and calibration of the sensors, and the continuity of observations from a single platform. 

For our analysis, we examined one year of observations from Station 51004, located at 17°32'17" 

N 152°13'48" W (approximately 205 nm southeast of Hilo, HI), which is a 3-meter foam buoy 
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with an updated SCOOP payload that reports meteorological parameters at 10-minute intervals 

(Kohler, LeBlanc, and Elliott 2015).  

As discussed above, the choice of environmental parameter and source data may have a 

significant impact on the representativeness of decorrelation scales. For instance, parameters 

such as precipitation are likely to have much shorter characteristic decorrelation scale sizes than 

sea surface temperature. It is assumed that the temporal decorrelation scales from Station 51004 

data are sufficiently representative to use as a benchmark for determining satellite constellation 

objectives in this hypothetical. We opted to use buoy data instead of reanalysis or other model 

outputs because model timesteps tend to be too coarse to capture the decorrelation behavior of 

our target parameters. Station 51004 was chosen due to its long duration of continuous data 

collection without equipment changes as well as its near-equatorial location which highlights 

highly variable surface weather patterns. We acknowledge that the temporal decorrelation of 

these parameters may vary by location, but assert that the hypothetical satellite architecture is 

driven by requirements for tropical latitudes. For observation planners, we suggest identifying 

‘worst-case’ decorrelation behavior to drive requirements (i.e., stations that capture phenomena 

that have large variability and decorrelate quickly), which will vary depending on the target of 

interest. 

The autocorrelation for observations was calculated assuming wide-sense stationarity for 

lags of 10 minutes. The decorrelation behavior and the resulting representativity error is shown 

in Fig. 3.1. 
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Figure 3.1 – (a) The temporal decorrelation behavior for a year of observations is demonstrated for various 
meteorological parameters from NDBC buoy station 51004. (b) The representativity error as calculated from (1) is 
shown. Note that the magnitude is dependent on the unit of measure. 
 

Figure 3.1 is illustrative of several factors that observation planners should consider. The 

left panel shows the decorrelation behavior of several observed parameters as well as one derived 

parameter, the air-sea temperature difference, which is obtained by simple arithmetic subtraction 

of the near surface air temperature from the sea surface temperature observations. Some 

environmental parameters, such as sea surface temperature, are slowly varying on the timescale 

of hours to days. Other parameters, such as surface air pressure, exhibit strong diurnal behavior. 

The air-sea temperature difference decorrelates at a much faster rate than either air temperature 

or sea surface temperature alone, suggesting that these parameters are decoupled on timescales of 

less than a day. Figure 1b shows how these decorrelation behaviors factor into absolute 
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representativity error. For example, the representativity error of air temperature and of the air-sea 

temperature difference are nearly equivalent, despite the fact that the decorrelation behavior is 

vastly different. This is because the air-sea temperature difference has a much smaller dynamic 

range than the surface air temperature. At time lags of 5 hours, both exhibit approximately 0.4o C 

of representativity error, but that value is much more significant for the air-sea temperature 

difference, which has a mean of -0.76o C and a standard deviation of 0.5o C. 

It is important to emphasize that this formulation addresses only the component of 

matchup error due to representativity. The overall matchup error between two parameters should 

also include measurement and retrieval errors associated with the individual parameters. The 

representativity error can therefore be considered the floor for matchup accuracy of a given 

observing system.  

3.3.4 Spatial Decorrelation 

 A similar analysis can be applied in spatial dimensions. For a spatial dataset, we selected 

NASA’s Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-

2) hourly, non-averaged reanalysis (M2I1NXASM) (Gelaro et al. 2017; Global Modeling And 

Assimilation Office 2015). As before, we assume for this exercise that reanalysis data is 

sufficient to capture the spatial variability of our target parameters based on analysis from (Gille 

2005), which suggest that at tropical latitudes, the variability of ocean surface wind stress from 

reanalysis is consistent with observations from scatterometers. Ocean surface windspeed has the 

fastest decorrelation roll-off in our hypothetical study, but as before, this assumption should be 

reconsidered for other phenomena that vary at scale sizes smaller than the resolvability of the 

model.  
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Spatial decorrelation of ocean surface observations is known to be anisotropic and 

location dependent. This study adopts a simple solution frequently employed by oceanographers, 

which is to individually evaluate the meridional and zonal components of the spatial 

decorrelation scales of an ocean observation (White 1995; Reynolds and Smith 1994). For 

consistency, we center the meridional and zonal transects at the location of Station 51004 as 

illustrated in Fig. 3.2. While these statistics are not stationary across the ocean, we assume for 

the purposes of this hypothetical that the statistics from Station 51004 are representative. 

 

 
Figure 3.2 – The zonal and meridional transects for the Pacific basin centered at Station 51004 are highlighted. The 
zonal transect consists of 210 grid cells at 0.625 deg spacing. The meridional transect consists of 254 grid cells at 
0.5 deg spacing. The background field is of an initialization of MERRA-2’s global windspeed output to emphasize 
that the spatial patterns of these parameters are quite different meridionally than they are zonally. 

 

Figure 3.2 identifies which model grid cells are used to compute the zonal and meridional 

autocorrelation statistics. Because there are only 210 data points in the zonal transect and 254 

data points in the meridional transect, the autocorrelation behavior derived from a single model 

run is somewhat noisy. To create a more representative decorrelation behavior, the 

autocorrelation is averaged across multiple model realizations over three months of data (at each 

hourly output for 92 days, or for 2,208 realizations).  
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Compared to the NDBC buoy data, the MERRA-2 hourly reanalysis produces slightly 

different observation parameters. For instance, the air temperature is the 10 meter temperature, 

whereas the buoy data is observed at 3 meters. Additionally we use the MERRA-2 skin 

temperature, which over most of the oceans is very similar to the sea surface temperature.  

The average decorrelation behavior for the meridional and zonal transects centered at 

Station 51004, as well as the implied representativity error are shown in Fig. 3.3. 

 
Figure 3.3 – The spatial decorrelation behavior and error statistics are partitioned into meridional and zonal 
components. (a) The meridional decorrelation behavior is shown for the specified environmental parameters.  (b) 
The meridional representativity error is shown, note that the y-axis units are parameter-dependent. (c) The zonal 
decorrelation behavior is shown for the specified environmental parameters. (d) The zonal representativity error is 
shown, note that the y-axis units are parameter-dependent. 
 

 Figure 3.3 reveals much about the spatial decorrelation behavior of the selected 

parameters. First, the behavior is substantially different between zonal and meridional transects, 
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reflecting the spatial anisotropy in the decorrelation behavior in these parameters. Second, for the 

selected parameters, the spatial decorrelation rates suggest characteristic spatial scale sizes in the 

hundreds or even thousands of kilometers. Third, even when the decorrelation is comparable in 

zonal and meridional directions (i.e., the normalized autocorrelation is roughly equivalent for a 

given distance), the variability of the parameter may have significantly different magnitudes, 

changing the corresponding representativity error. For satellite missions, designers would want 

to base requirements decisions on the ‘worst-case’ scenario, which may include regimes, 

conditions, and locations where the spatial representativity error grows the fastest. In the case of 

our hypothetical, that suggests that the meridional error statistics would generally drive 

architecture decisions.  

3.4  Discussion 

This technique enables observation planners to quickly estimate the representativity error 

caused by separations in observation space and time, which has widespread utility in planning 

future satellite constellations. Given appropriate and statistically representative datasets of 

planned observation targets, planners can set quantitative observation objectives for optimizing 

satellite constellations. 

3.4.1 Shortcomings 

It is worth repeating that the representativity error indicated in this analysis is not 

inclusive of the dominant error sources of most observing systems, such as ambiguity in the 

retrieval or noise from the sensor. In cases where the additional representativity error incurred by 

having non-simultaneous and non- co-located measurements is small relative to the dominant 

error sources, it becomes reasonable to consider more flexible architectural approaches.  
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Further, there is danger in applying this technique with inappropriate input data that is not 

representative of the statistical behavior of the target parameter. Gridding observations can 

sometimes substantially impact the represented behavior. It can impose unwanted spectral 

filtering, changing the variability of the data, and can decrease the dynamic range of the data by 

smearing and averaging samples within gridded cells. Model and reanalysis data can be similarly 

non-representative of the target phenomena, with a whole host of other computational and 

mechanical artifacts that can change the variability and scaling of model parameters.  

As a statistical approach, this metric necessarily averages between ‘calm’ low variability 

periods and infrequent but high-variability events, which may be insufficient to capture the 

variability of dynamic and consequential phenomena, e.g. tropical cyclones. One could, 

however, restrict the distribution of input data to use only ‘worst-case’ situations such as tropical 

cyclones as a design basis in order to estimate what spatial and temporal separation thresholds 

are needed to meet baseline representativity error requirements. 

This technique also treats spatial and temporal dimensions separately, even though they 

are, in fact, coupled in the Earth system. This simplification is likely to impact conclusions 

drawn by a satellite observation planner in a conservative way. Decoupling spatial and temporal 

decorrelations will generally result in an overestimation of the error associated with spatial and 

temporal separations between samples. The decoupled results hence serve as a conservative 

upper bound on the error, and there may be opportunities to buy back more affordable satellite 

constellations with a coupled error estimate. 

3.4.2 Utility and Future Work 

 We believe this metric should be considered by observation planners when considering 

architectural trade studies for new satellite constellations, and early in the mission lifecycle when 
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requirements are set. This simple metric can price when temporal resolution is too sparse for the 

assumption of simultaneity or when spatial coverage is too coarse for the assumption of 

collocation.  

From our example, consider the design of a constellation to observe ocean surface 

windspeed from two separate observatories with the same orbit ground track. Given a 

requirement of representativity error no greater than 0.5 m/s, the above results from Figure 1 

indicate that the satellites be staggered no more than 25 minutes apart in the orbit plane. Note 

that this corresponds to an average representativity error under typical conditions. However, if 

the target observable is ocean winds for tropical cyclone monitoring, during which surface 

windspeed exhibits a much larger dynamic range and steeper decorrelation roll-off, a 25 minute 

separation would likely be too large. In this case, observation planners can quickly estimate that 

more satellites would be needed, and estimate cost of meeting this requirement. From another 

angle, planners with fixed budgets could mitigate this by placing the two satellites closer 

together within the same plane, reducing the revisit time between the two, but at the expense of 

daily coverage. 

This problem can be extended to thresholds established for matching up observations for 

opportunistic or vicarious calibrations. Techniques such as simultaneous nadir overpasses 

(SNOs) (Zou et al. 2006) often establish thresholds in space and time that approximate 

simultaneity. This technique can establish objective representativity guidelines which can 

optimize the quantity of matchup data, or enable constellations that feature frequent SNOs for 

operational calibration.  
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3.5 Data Availability Statement. 

Data analyzed in this study were derived from existing public, openly available datasets cited 

in the reference section. See (National Data Buoy Center 1971; Global Modeling And 

Assimilation Office 2015). 
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Chapter 4 An Instrument Error Correlation Model for GNSS-R 

This chapter presents a novel first-principles model for instrument error correlation for GNSS-R. 

This chapter is substantially derived from a work published in Remote Sensing under the title 

“An Instrument Error Correlation Model for Global Navigation Satellite System Reflectometry” 

(Powell, Ruf, McKague, et al. 2024). The research is presented as published, with deletions of 

introductory material and theory (covered in Chapter 1), integration of the published appendices 

into the main body, and minor updates to formatting and notation for consistency. 

4.1 Abstract 

All sensing systems have some inherent error. Often, these errors are systematic, and 

observations taken within a similar region of space and time can have correlated error structure. 

However, the data from these systems are frequently assumed to have completely independent 

and uncorrelated error. This work introduces a correlated error model for GNSS reflectometry 

(GNSS-R) using observations from NASA’s Cyclone Global Navigation Satellite System 

(CYGNSS). We validate our model against near-simultaneous observations between two 

CYGNSS satellites and double-difference our results with modeled observables to extract the 

correlated error structure due to the observing system itself. Our results are useful to catalog for 

future GNSS-R missions and can be applied to construct an error covariance matrix for weather 

data assimilation.  
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4.2 Introduction (Abridged) 

The assumption that observation errors are independent and uncorrelated is not valid for 

any observatory. In practice, observation error correlations are minimized by thinning the dataset 

or ‘super-obbed’ samples, which improves overall model skill by mitigating the effects of 

correlated error, which may be interpreted by the model as a real signal (Bauer et al. 2011; Gao 

et al. 2019; Hoffman 2018). 

The premise of not fully exploiting observation data is unappealing, considering that the 

process of acquiring these data usually requires the considerable capital expense of building and 

flying remote sensing satellites. The highest utility of dense observations in space and time 

occurs when the application (i.e., the model) resolution matches the observation resolution. For 

many imagers and sounders, there may be a reasonable case that thinning is an appropriate way 

to scale dense observation data to match model gridding.  

For CYGNSS, however, thinning the data is an especially unpalatable solution, as the 

peak utility of CYGNSS data is during the relatively uncommon occurrence that a specular point 

passes through the eyewall of a tropical cyclone. Thinning may miss this observation or 

misrepresent the structure of the storm in the model. By a similar token, ‘super-obbing’ is not a 

practicable remedy because tracks are one dimensional and collocated observations are 

potentially hours apart. Blending data from a wide temporal window risks misrepresenting the 

dynamics of the tropical cyclone and negates the fast-revisit utility of the observatory.  

Estimating the correlated error structure for observations can improve model skills in NWP 

(Stewart, Dance, and Nichols 2013; Rainwater, Bishop, and Campbell 2015; Stewart, Dance, and 

Nichols 2008; Simonin et al. 2019; Daley 1992). A number of methods have been demonstrated 
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to estimate the observation error correlation matrix (Waller, Dance, and Nichols 2016; Dee and 

Da Silva 1999), most notably Desroziers’ diagnostic (Desroziers et al. 2005).  

Our work does not estimate the full observation error correlation matrix that is typical of 

these prior works. Instead, we provide a first-principle, bottom-up, tunable engineering model for 

how the CYGNSS instrumentation itself can cause observations to contain correlated errors. This 

correlation model is validated and tuned against empirical observation data during a period when 

two CYGNSS assets were in a specific orbital geometry where observations nearly coincided in 

space and time. We further discuss the challenges and opportunities that result from this 

correlated error model, as well as highlight the potential for applicability to future assimilation 

investigations.  

4.3 Materials and Methods (Abridged) 

Each of the terms in Equation (1.2) can potentially be a source of correlated error, but for 

practical reasons, this study only evaluates those sources with the largest error magnitude and, 

therefore, the largest potential utility for future data assimilation users. We omitted consideration 

of the smallest error sources that, when combined as a root sum of squares, contribute to less 

than 1% of the total error magnitude. The five largest sources of error are explored, as shown in 

Table 4.1, representing a 1-sigma error magnitude for a reference wind speed of 10 m/s. The 

following sections evaluate each of these terms in depth. 
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Table 4-1. The magnitudes of 1-sigma errors for each term in Equation (1.2). The shaded rows indicate that the 
absolute magnitudes of these terms are negligible compared to the dominant error terms and are neglected in the 
construction of the error model in this work. 

Error Term Error Magnitude [dB] 
𝐸(𝐺#) 0.43 (Ruf et al. 2022) 
𝐸(𝑃$) 0.23 (Powell, Ruf, and Russel 2022) 
𝐸(𝐺%) 0.20 (Wang, Ruf, Gleason, et al. 2021) 
𝐸(𝑃%) 0.18 (Wang, Ruf, Gleason, et al. 2021) 
𝐸(𝜁& 	) 0.15 (Wang, Ruf, Gleason, et al. 2021) 
𝐸(𝐴̅) 0.05 (Gleason 2020) 
𝐸(𝐿'!() 0.04 (Gleason 2020) 
𝐸(𝑅!)!) <0.01 (Gleason 2020) 
𝐸(𝐿%) <0.01 (assumed~𝐸(𝑅!)!)) 

4.3.1 The Bottom-up Correlated Error Model 

The CYGNSS Level 1 correlated error model is constructed to represent the major error 

sources based on the physical and operational characteristics of the CYGNSS observatories. 

These errors are correlated over both space and time, and depend on several variables relating to 

the operation of the CYGNSS constellation.  

The construction of the error model is intended to be realistic enough to represent 

measurable and plausible correlated errors, yet flexible enough to allow for tuning and 

parameterization. The general modeled structure of correlated error takes the form: 

𝑅&!:(𝑖, 𝑗) =
1
𝒩
w𝐾8(𝑖, 𝑗)
8

(4.1) 

where 𝑅&!:(𝑖, 𝑗) is the normalized correlated error between any two samples 𝑖 and 𝑗 with a 

domain −1 ≤ 𝑅&!: ≤ 1. There are 𝑛 component terms that are added together, and each of the 

𝑛th term corresponds to a unique source of error. 𝐾8(𝑖, 𝑗) represents the error covariance 

between any two samples 𝑖 and 𝑗 for a specific component 𝑛. 𝒩 is a normalization constant to 

ensure that the diagonal terms of the 𝑅&!: matrix is 1. 
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Each of the 𝐾8 terms can be further generalized as follows: 

𝐾8(𝑖, 𝑗) = �𝐸(𝑛)�
(
⋅ 𝐸𝑐𝑜𝑟𝑟8(𝑖, 𝑗)	 (4.2) 

where 𝐸(𝑛) represents the magnitude of each error component 𝑛 as calculated in (Gleason 2018; 

2020; Wang, Ruf, Gleason, et al. 2021) and can be thought of as the variance of the error, and 

𝐸𝑐𝑜𝑟𝑟8(𝑖, 𝑗) is a derived function with a domain −1 ≤ 𝐸𝑐𝑜𝑟𝑟 ≤ 1 that represents the correlation 

in error between samples 𝑖 and 𝑗 for each component 𝑛.  

Each 𝐸𝑐𝑜𝑟𝑟 function depends on different arguments depending on the nature of the error 

source. The individual errors are explored in depth in the following sections. Further, several 

tuning parameters have been added to assist with validation. The initial values of the tuning 

parameters are 1 and essentially leave the model output unmodified. However, this process 

assumes that the relative magnitude of the error components could be incorrectly specified, and 

by varying the tuning parameters, the model can be shaped to match a validation dataset. 

4.3.2 Model Assumptions 

Several assumptions are made regarding the overall model and each individual 𝐸𝑐𝑜𝑟𝑟 

term. The first is that the decorrelation scales of interest are on the order of seconds to minutes. 

This restricts the problem to errors that decorrelate on timescales that would be of relevance to 

numerical weather prediction users. CYGNSS observations may have a correlated error structure 

that evolves during longer timescales, say, daily or seasonally. However, this structure would 

probably be better resolved using other calibration and processing techniques and would not add 

significant value to a correlated error matrix. As a result, all errors between CYGNSS samples 𝑖 

and 𝑗 are assumed to be 100% uncorrelated if there is more than 10 min of separation in 

observation time. This corresponds to roughly 4500 km of distance, where observations could 

reasonably be treated as wholly uncorrelated.  
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Further, all error terms 𝐸𝑐𝑜𝑟𝑟8 are assumed to be uncorrelated with each other. This 

assumption simplifies the implementation and calculation of the model but is less supported 

theoretically. There are a number of plausible rationales for why many of these error sources are 

correlated. However, this model hopes to correct for these empirically with the implementation 

of tuning parameters. 

Finally, there is a general assumption that all the error sources in the model exhibit wide-

sense stationarity during the timescales of interest. Therefore, the error magnitude values 𝐸(𝑛) 

are treated as constants. In practice, the magnitude of errors and their correlation time and space 

scale sizes may well vary (e.g., due to seasonal dependence). A fully operational implementation 

of the methodology developed here would take these dependencies into account, e.g., by an 

appropriate parameterization of the properties of the errors. Here, we only consider stationary 

error properties in order to illustrate how they are determined and how they would be combined 

to be used by a DA scheme. 

4.4 Covariance Matrix Construction 

The construction of 𝑅&!: makes a few important assumptions that are worth examining 

in depth. First, we will describe the general mathematical framework. In general, if 𝑋 and 𝑌 are 

random vectors of length 𝑁, then the covariance matrices of 𝑋 and 𝑌 are constructed: 

𝐾CC = 〈𝑋 − 〈𝑋〉〉〈𝑋 − 〈𝑋〉〉' (4.3𝑎) 

𝐾66 = 〈𝑌 − 〈𝑌〉〉〈𝑌 − 〈𝑌〉〉' (4.3𝑏) 

where 𝐾CC and 𝐾66 are the 𝑁-by-𝑁 covariance matrices of 𝑋 and 𝑌, respectively, the bracket 

operator denotes the expectation operation, and the superscript 𝑇 denotes the transpose vector. 

Notably, the covariance matrix is symmetric and positive semi-definite. The covariance matrices 

can also be constructed in the following manner: 
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𝐾CC = 𝑆C𝑅CC𝑆C (4.4) 

where 𝑆C is a diagonal 𝑁-by-𝑁 matrix with the standard deviations of 𝑋;: 

𝑆C = v
𝜎C0 0 0
0 ⋱ 0
0 0 𝜎C,

x (4.5) 

and 𝑅CC is the correlation matrix with correlation coefficients 𝜌;,D: 

𝑅CC =

⎣
⎢
⎢
⎡

1 𝜌C0,C( ⋯ 𝜌C0,C,
𝜌C(,C0 1
⋮ ⋱

𝜌C,,C0 1 ⎦
⎥
⎥
⎤

(4.6) 

As standard, −1 ≤ 𝜌;,D ≤ 1, and the diagonals all must equal 1. The cross-covariance matrices 

can also be defined in a similar fashion: 

𝐾C6 =	 〈𝑋 − 〈𝑋〉〉〈𝑌 − 〈𝑌〉〉' (4.7𝑎) 

𝐾6C =	 〈𝑌 − 〈𝑌〉〉〈𝑋 − 〈𝑋〉〉' (4.7𝑏) 

where 𝐾C6 and 𝐾6C are the cross-covariance matrices and are not generally identical. The error 

magnitudes in Table 4-1 are calculated using a standard error propagation technique as 

highlighted in Gleason et al. (2019):  

𝐸8 = �
𝜕𝐹
𝜕𝑛
� Δ𝑛 (4.8) 

𝐸8 is the error magnitude of term 𝑛, Δ𝑛 is the estimated 1-sigma dynamic range of 𝑛 and 𝐹 is an 

arbitrary function. We can propagate these errors as the sums of covariance matrices with the 

derivation below, inspired by Chapter 9 in Taylor (Taylor 1997). 

For an arbitrary function 𝐹 with random vector arguments X and Y, 𝐹(𝑋, 𝑌), where 𝑋 =

(𝑋0, 𝑋(, … , 𝑋,) and Y= (𝑌0, 𝑌(, … , 𝑌,), we can approximate F by its first order Taylor Series 

expansion about the mean value, assuming that the errors are generally small compared to the 

arguments: 
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𝐹; = 𝐹(𝑋; , 𝑌;)	 (4.9) 

𝐹; ≈ 𝐹(〈𝑋〉, 〈𝑌〉) +
𝜕𝐹
𝜕𝑋

(𝑋; − 〈𝑋〉) +
𝜕𝐹
𝜕𝑌

(𝑌; − 〈𝑌〉)	 (4.10) 

Noting that 〈𝐹〉 = 𝐹(〈𝑋〉, 〈𝑌〉), and using 𝐹 ≈ 𝐹(〈𝑋〉, 〈𝑌〉) + E3
EC
(𝑋 − 〈𝑋〉) + E3

E6
(𝑌 − 〈𝑌〉), then,  

𝐾33 = 〈𝐹 − 〈𝐹〉〉〈𝐹 − 〈𝐹〉〉' 	 (4.11) 

and expanding using Equations (4.7), (4.9), and (4.10),  

𝐾33 = 〈
𝜕𝐹
𝜕𝑋

(𝑋 − 〈𝑋〉) +
𝜕𝐹
𝜕𝑌

(𝑌 − 〈𝑌〉)	〉 〈
𝜕𝐹
𝜕𝑋

(𝑋 − 〈𝑋〉) +
𝜕𝐹
𝜕𝑌

(𝑌 − 〈𝑌〉)	〉' 

= �〈
𝜕𝐹
𝜕𝑋

(𝑋 − 〈𝑋〉)〉 + 〈
𝜕𝐹
𝜕𝑌

(𝑌 − 〈𝑌〉)〉� �〈
𝜕𝐹
𝜕𝑋

(𝑋 − 〈𝑋〉)〉 + 〈
𝜕𝐹
𝜕𝑌

(𝑌 − 〈𝑌〉)〉�
'

 

= �〈
𝜕𝐹
𝜕𝑋

(𝑋 − 〈𝑋〉)〉� �〈
𝜕𝐹
𝜕𝑋

(𝑋 − 〈𝑋〉)〉�
'

+ �〈
𝜕𝐹
𝜕𝑌

(𝑌 − 〈𝑌〉)〉� �〈
𝜕𝐹
𝜕𝑌

(𝑌 − 〈𝑌〉)〉�
'

			 

																																	+ �〈
𝜕𝐹
𝜕𝑋

(𝑋 − 〈𝑋〉)〉�	�〈
𝜕𝐹
𝜕𝑌

(𝑌 − 〈𝑌〉)〉�
'

+ �〈
𝜕𝐹
𝜕𝑌

(𝑌 − 〈𝑌〉)〉� �〈
𝜕𝐹
𝜕𝑋

(𝑋 − 〈𝑋〉)〉�
'

 

 

= �
𝜕𝐹
𝜕𝑋�

(

𝐾CC + �
𝜕𝐹
𝜕𝑌�

(

𝐾66 + �
𝜕𝐹
𝜕𝑋� �

𝜕𝐹
𝜕𝑌�

𝐾C6 + �
𝜕𝐹
𝜕𝑋� �

𝜕𝐹
𝜕𝑌�

𝐾6C	 (4.12) 

Substituting 𝐸8( = �E3
E8
 
(
σF(  from Equation (4.8), and noting the decomposition in Equation (4.4), 

𝐾33 = 𝐸A(𝑅CC + 𝐸G(𝑅66 + 𝐸A𝐸G𝑅C6 + 𝐸A𝐸G𝑅6C	 (4.13) 

The construction of 𝑅&!: ignores the cross-correlation between component terms, i.e., we assert 

𝑅C6 = 𝑅6C = 0. This is for two main reasons: 

1. The terms 𝐾8, as described in the following sections, are not constructed from 

random variables but rather through analytic specification to emulate the expected 

correlated behavior. We generally have insufficient knowledge to measure or estimate 

the cross-correlation between error components. Instead, this model simply estimates 
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the cross-correlation of error within individual components, which are then added 

independently. 

2. Any residual cross-correlation between error components can be tuned per our tuning 

parameters.  

This formulation assumes that each component term of the error 𝐸8 comes from a wide-

sense stationary distribution where the error magnitudes are treated as constants. This means that 

for each component of 𝐾33, and noting Equation (4.4), 

�
𝜕𝐹
𝜕𝑋�

(

𝐾CC = �
𝜕𝐹
𝜕𝑋�

(

𝑆C𝑅CC𝑆C = �
𝜕𝐹
𝜕𝑋�

(

σH(𝑅CC = 𝐸A(𝑅CC	 (4.14) 

For our error correlation model 𝑅&!:, we simply construct 𝑅CC analytically for each 

term, for which we adopt the nomenclature Ecorr to emphasize that it is an error correlation 

function. Therefore, from Equation (4.1), 

𝐾8(𝑖, 𝑗) = 𝐸8( ⋅ 𝐸𝑐𝑜𝑟𝑟8(𝑖, 𝑗)	 (4.15) 

For this model, F is drawn from Equation (1.2) (reproduced here): 

𝜎! =
𝑃"4𝜋𝐿$%&𝐿*𝐺*

𝑃*𝜁+𝐺)𝐿)𝐴̅
 

where we use the parameters with the largest error magnitude, 𝜎! = 𝐹(𝑃", 𝑃* , 𝐺* , 𝐺) , ζI). The 

relevant partial derivatives E3
E,

 from Equation (4.12) become the following: 

�
𝜕𝐹
𝜕𝑃"

� =
4𝜋𝐿$%&𝐿*𝐺*

𝑃*𝜁+𝐺)𝐿)𝐴̅
	 (4.16𝑎) 

�
𝜕𝐹
𝜕𝑃J

� =
𝑃"4𝜋𝐿$%&𝐿*𝐺*

(𝑃*)(𝜁+𝐺)𝐿)𝐴̅
	 (4.16𝑏) 

�
𝜕𝐹
𝜕𝐺J

� =
𝑃"4𝜋𝐿$%&𝐿*

𝑃*𝜁+𝐺)𝐿)𝐴̅
(4.16𝑐) 
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�
𝜕𝐹
𝜕𝐺)

� =
𝑃"4𝜋𝐿$%&𝐿*𝐺*

𝑃*𝜁+(𝐺))(𝐿)𝐴̅
	 (4.16𝑑) 

�
𝜕𝐹
𝜕𝜁+

� =
𝑃"4𝜋𝐿$%&𝐿*𝐺*

𝑃*(𝜁+)(𝐺)𝐿)𝐴̅
(4.16𝑒) 

To estimate 𝐸8, as shown in Table 4-1, these partial derivatives are evaluated at the 1-

sigma value for a reference 10 m/s wind speed using Equation (4.8). The total error model 

becomes the following: 

𝑅&!:(𝑖, 𝑗) =
1
𝒩
£𝐾K*(𝑖, 𝑗) + 𝐾LJ(𝑖, 𝑗) + 𝐾M+(𝑖, 𝑗) + 𝐾M,(𝑖, 𝑗) + 𝐾N-(𝑖, 𝑗)¤	 (4.17) 

 

where 𝐾K* is the correlated error component from the calibrated nadir receiver power and is 

discussed described in Section 4.4.1, 𝐾LJ is is the correlated error component from the zenith 

receiver and is described in Section 4.4.2, 𝐾M+ and 𝐾M, are the correlated error components from 

the nadir and zenith CYGNSS antenna patterns, respectively, and are discussed in Section 4.4.3, 

and 𝐾N- is the correlated error component due to the zenith–specular ratio used for dynamic 

EIRP estimation and is discussed in Section 4.4.4. 𝒩 is a normalization constant that forces 

𝑅&!: to behave like a correlation such that −1 ≤ 𝑅&!: ≤ 1 and can be thought of as an estimate 

for the rolled-up variance. Because this model has tunable parameters, it is not necessarily 

representative of the true variance of 𝜎! but rather of the modeled variance from our bottom-up 

model construction. 

4.4.1 Calibrated Nadir Power 𝑷𝒈 Error Model 

The term 𝑃" represents calibrated received power from GPS signals reflected from the 

Earth’s surface. 𝑃" is calibrated both from pre-launch characterizations as well as on an on-orbit 

blackbody at a known temperature, which, as of 2022, takes a reading every 10 min to re-
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compute gain that may have changed due to the dynamic thermal environment in orbit (Powell, 

Ruf, and Russel 2022).  

For CYGNSS, 𝑃" is computed by the Level 1A algorithm in Equation (1.4), and instrument gain 

is measured in orbit by performing readings from an onboard blackbody at a known temperature 

and calibrated via Equation (2.1).  Equations (1.4) and (2.1) can be combined: 

𝑃" =
(𝐶 − 𝐶,)

𝐶1
(𝑃1 + 𝑃2)	 (4.18) 

The magnitude of the errors for the components calculating 𝑃" is displayed in Table 4-2 and has 

a similar calculation as before. 

Table 4-2. The magnitudes of 1-sigma errors for each term in Equation B3. The shaded rows indicate that the 
absolute magnitude is negligible compared to the dominant error terms and is neglected in the construction of the 
error model in this work. 

 

𝐶1, 𝑃1, and 𝑃2 all vary with temperature, and the instrument gain 𝐺 will fluctuate as the 

satellite enters different thermal conditions in orbit. The most significant errors will occur just as 

the satellite crosses the terminator. At that point, CYGNSS will go from a nearly steady-state 

thermal environment, such as approximately half an orbit of illumination or eclipse, and then 

quickly enter the opposite state. The fraction of orbit spent illuminated is determined by the orbit 

beta angle, which varies on scales of weeks to months.  

The dominant error term in the Level 1A algorithm is 𝐶,, which also varies with 

temperature. The calibration sequence is designed to correct for this, and we assume that the 

errors vary slowly with the timescale of interest, which is defined to be on orders of seconds to 

Error Term Error Magnitude [dB] 
𝐸(𝐶,) 0.14 (Gleason 2018) 
𝐸(𝑃2) 0.14 (Gleason 2018) 
𝐸(𝐶) 0.10 (Gleason 2018) 
𝐸(𝐶1) 0.07 (Powell, Ruf, and Russel 2022) 
𝐸(𝑃1) ~0.04 (Gleason 2018) 
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minutes. Therefore, all errors from 𝐶, are assumed to be 100% correlated in time within a given 

track of CYGNSS observations, i.e., when a series of samples adjacent in space and time share a 

GPS transmitter and a CYGNSS receiver. 𝐶, is also very sensitive to radio-frequency 

interference (RFI), which will present as non-physical signals above the specular point in a 

delay–Doppler map. We do not aim to model the complex phenomenologies of RFI in this work 

and assume there are no correlated error structures from RFI. 

Errors in 𝑃2 occur because of a variety of reasons. The low noise amplifiers were all 

characterized on the ground prior to launch to establish the relationship of the noise figure with 

respect to temperature. The values of this relationship were stored in a look-up table (LUT) for 

processing science data. However, as the amplifiers age, the noise floor characteristics may have 

evolved, producing errors in this mapping. Further, the thermal environment of the thermocouple 

may not be exactly the same as experienced by the amplifier itself. For the purposes of this 

model, we assume all errors due to incomplete or erroneous knowledge of the true receiver noise 

power are 100% correlated with each other for a given track, as we assume that the errors evolve 

slowly compared to the timescales of interest. 

Therefore, the error correlation terms for 𝐶, and 𝑃2 for any arbitrary CYGNSS samples 𝑥; and 𝑥D 

are the following: 

𝐸𝑐𝑜𝑟𝑟P.�𝑥; , 𝑥D� = 𝐸𝑐𝑜𝑟𝑟L2�𝑥; , 𝑥D� = ¥1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠	𝑚𝑒𝑡0, 	𝑒𝑙𝑠𝑒 	 (4.19) 

The conditions that must be met are the following: 𝑥; and 𝑥D must share a CYGNSS receiver and 

a GPS transmitter and be observed within 10 min of each other.  

𝐶 is the measured parameter, the raw counts of power from a science observation near the 

region of the specular point. The analog-to-digital processing chain is the primary source of 

errors, such as quantization errors and non-common-mode interference. We assume that these 
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error terms are 100% uncorrelated with each other; that is, for every sample, it can be treated as 

white noise. The error correlation term for 𝐶 is then the following: 

𝐸𝑐𝑜𝑟𝑟P�𝑥; , 𝑥D� = ¥
1, 𝑥; = 𝑥D
0, 𝑥; ≠ 𝑥D

	 (4.20) 

The error term for counts measured during a blackbody sample 𝐶1 is a source of 

analytically defined correlated error. Every 10 min (earlier in the mission, every 1 min), the 

receiver is switched from the nadir science antenna to look at the onboard blackbody source for a 

period of 4–6 s. Science observation processing linearly interpolates the counts between the 

nearest blackbody looks. When errors are made in estimating 𝐶1, those errors are correlated 

linearly with all adjacent samples due to this interpolation. Correlation due to linear interpolation 

has an analytical form. Assuming a blackbody look happens at timesteps 0 and 𝑛, then, the 

correlation between any two samples 𝑥; and 𝑥D at arbitrary timesteps 𝑖 and 𝑗 where 0 ≤ 𝑖 < 𝑗 ≤

𝑛 is the following:  

𝐸𝑐𝑜𝑟𝑟P/�𝑥; , 𝑥D� =
1
𝜎;𝜎D

¨
(𝑛 − 𝑖)(𝑛 − 𝑗)

𝑛(
+
𝑖𝑗
𝑛(
©	 (4.21) 

where 𝜎; =	�
(8/;)0S;0

80
 and 𝜎D =	�

(8/D)0SD0

80
. The actual values of the sampled blackbodies do 

not matter, as the correlated error is simply a function of how far the samples are from the 

blackbody looks in time.  

Errors in 𝑃1 are due to misestimations of the blackbody’s true noise power, which may be 

because the thermocouple is measuring incorrectly. We assume that the errors of this nature not 

only are slowly varying compared to the timescales of interest but, because of the marginal 

absolute magnitude, factor a negligible and unmeasurable amount in the overall correlated error 

structure. As such, the model ignores this term. 



 

 67 

The rolled-up correlated error model from the sources in 𝑃" between any arbitrary 

samples 𝑖 and 𝑗 can be expressed as follows: 

𝐾L*(𝑖, 𝑗) =

⎣
⎢
⎢
⎢
⎡

	

	
𝛼	 ⋅ 𝐸(𝐶)( ⋅ 𝐸𝑐𝑜𝑟𝑟P(𝑖, 𝑗) +
𝛽 ⋅ 𝐸(𝐶,)( ⋅ 𝐸𝑐𝑜𝑟𝑟P.(𝑖, 𝑗) +	
𝛽 ⋅ 𝐸(𝑃2)( ⋅ 𝐸𝑐𝑜𝑟𝑟L1(𝑖, 𝑗) +
𝐸(𝐶1)( ⋅ 𝐸𝑐𝑜𝑟𝑟P/(𝑖, 𝑗) ⎦

⎥
⎥
⎥
⎤

	 (4.22) 

Because this model estimates the correlated error in each term that calculates 𝑃", this 

contribution to the overall correlated error is not multiplied by the rolled-up error magnitude 

𝐸(𝑃"). As such, we do not normalize this construction, as it will be normalized when combined 

with the other constituent terms in 𝑅&!:. 𝑅L* contains two tuning parameters: 𝛼 is used to size 

uncorrelated white-noise error, and 𝛽 is used to size the magnitude of totally correlated errors. 

4.4.2 Zenith Power 𝑷𝒁 Error Model 

The zenith receiver on CYGNSS works much the same way as the nadir science receiver. 

However, the zenith receiver does not have an onboard calibration system, and data are 

processed from the pre-flight characterizations of the electronics. The counts of the receiver are 

converted to watts via a quadratic regression. Because the satellite is subject to the same thermal 

dynamics as the nadir receiver, one can expect that the zenith power estimate contains errors due 

to thermally driven gain variations. We model the 𝐸𝑐𝑜𝑟𝑟L+ similarly to the nadir receiver but 

with some important distinctions. Because the zenith receiver operates without an onboard 

blackbody to calibrate against, a number of simplifying assumptions are made. Errors are broken 

up into just two components: correlated 𝐸𝑐𝑜𝑟𝑟L2+ and uncorrelated 𝐸𝑐𝑜𝑟𝑟L0+. We further assume 

that correlated error due to the absence of an onboard blackbody are outside the timescale of 
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interest. The correlated error term 𝐸𝑐𝑜𝑟𝑟L2+ is assumed to be totally correlated, provided that the 

matching conditions are met: 

𝐸𝑐𝑜𝑟𝑟L2+�𝑥; , 𝑥D� = ¥1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠	𝑚𝑒𝑡
0, 																						𝑒𝑙𝑠𝑒 	 (4.23) 

 The conditions for 𝐸𝑐𝑜𝑟𝑟L2+ are that samples 𝑥; and 𝑥D are made with the same CYGNSS 

observatory and within 10 min of each other. In addition, an uncorrelated component is allowed: 

𝐸𝑐𝑜𝑟𝑟L0+�𝑥; , 𝑥D� = ¥
1, 𝑥; = 𝑥D
0, 𝑥; ≠ 𝑥D

	 (4.24) 

The rolled-up correlated error model from the sources in 𝑃* between any arbitrary samples 𝑖 and 

𝑗 can be expressed as follows: 

																			𝐾L+(𝑖, 𝑗) = 	
	

¬𝛽 ⋅ 𝐸(𝑃0*)( ⋅ 𝐸𝑐𝑜𝑟𝑟L2+(𝑖, 𝑗)­ +
	

¬𝛼 ⋅ 𝐸(𝑃(*)( ⋅ 𝐸𝑐𝑜𝑟𝑟L0+(𝑖, 𝑗)­	 (4.25) 

with the same tuning parameters 𝛼 and 𝛽, as in Appendix A. Note that we assume 𝐸(𝑃0*) = 0.18 

dB, as suggested in (Wang, Ruf, Gleason, et al. 2021). 𝐸(𝑃(*) is estimated directly from a 24 h of 

CYGNSS data as approximately 1% of the magnitude of the signal 𝑃*; therefore, this model 

assumes 𝐸(𝑃(*) = 0.04 dB.  

4.4.3 Error Model for Antenna Gain Patterns 𝑮𝑹 and 𝑮𝒁 

The CYGNSS observatory has three antennas: one zenith antenna that is used for direct 

GPS-to-CYGNSS signal tracking, as well as two nadir science antennas that are used to capture 

the scattered signal from Earth’s surface. Each of the eight spacecraft had all three antennas 

characterized pre-launch, and values were stored in a look-up table for science processing. 

Errors in the antenna gain pattern can arise for a variety of reasons. First, the measurement 

equipment on the ground is essentially a receiver but in controlled conditions. This means that 

while systematic and correlated errors are likely well-constrained, uncorrelated speckle-type 
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error can still occur. To produce realistic antenna gain patterns, the results of the ground 

characterization were smoothed with various filters and techniques.  

Another source of error is the fact that CYGNSS antennas were not characterized while 

integrated with the spacecraft. This was a cost-saving measure decided by the mission 

management team. However, the electromagnetic properties of the antenna couple in some 

fashion with the spacecraft bus, and that will inevitably change the gain patterns.  

Initial analysis of CYGNSS data shortly after launch showed significant retrieval 

performance dependence on the observation azimuthal angle with respect to the CYGNSS body 

frame, which was later hypothesized to originate in errors in the CYGNSS antenna patterns. To 

compensate for this deviation from measured patterns, the CYGNSS antenna patterns have been 

updated at several instances over the mission life via empirical calibration. The nadir antenna 

patterns are updated by comparing a climatology of CYGNSS measurements of 𝜎! (> 2 years) 

with model-generate 𝜎&!:!  and plotting a scaling factor in the antenna reference coordinate 

system. 𝜎&!:!  is generated by using modeled reanalysis winds to generate mean-squared slope 

with the L-band spectrum extension model, as described in (Wang et al. 2019). However, during 

the generation of these updated patterns, a number of smoothing filters are applied. 

This prompts a discussion of a conjecture used extensively for this section: 

Conjecture 4.1. Uncorrelated errors can become correlated by post-processing with averaging 

and filters. 

This insight drives much of this section’s analysis. Smoothing and filtering will 

necessarily impose a correlation in error between previously uncorrelated errors. For white noise, 

that implies that the choice of filter will add color and structure to the noise.  
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In particular, a handy lemma allows us to demonstrate that for white noise, the 

information required to capture correlated error structure is the filtering kernel itself. We will 

explore this behavior for a one-dimensional case, but it is generalizable to higher dimensions in 

our application, as the two-dimensional filters used for antenna smoothing are separable by 

construction. 

Lemma 4.2. For a filtered signal 𝐹(𝑡) = 𝐾(𝑡) ∗ 𝐷(𝑡), where 𝐾(𝑡) is a filtering kernel and 𝐷(𝑡) 

is an arbitrary data signal, the autocorrelation 𝐹 ⋆ 𝐹 is the convolution of the autocorrelated 

kernel 𝐾 ⋆ 𝐾 and the autocorrelated signal 𝐷 ⋆ 𝐷. 

Proof of Lemma 4.2. Assume convolution and cross-correlation have the standard definitions 

for two real-valued timeseries 𝐾(𝑡) and 𝐷(𝑡), that is, 

𝐾(𝑡) ∗ 𝐷(𝑡)[𝑛] = w 𝐾(𝑡)𝐷(𝑛 − 𝑡)
V

%W/V

= w 𝐾(𝑛 − 𝑡)𝐷(𝑡)
V

%W/V

	 (4.26) 

and 

𝐾(𝑡) ⋆ 𝐷(𝑡)[𝑛] = w 𝐾(𝑡)𝐷(𝑛 + 𝑡)
V

%W/V

= w 𝐾(𝑡 − 𝑛)𝐷(𝑡)
V

%W/V

	 (4.27) 

where ∗ is the convolution operator, ⋆ is the cross-correlation operator, and 𝑛 is the lag 

argument. Observe that convolution operations are commutative and, further, that the cross-

correlation can be written as a convolution by exploiting its symmetry: 

𝐾(𝑡) ⋆ 𝐷(𝑡)[𝑛] = 	𝐾(−𝑡) ∗ 𝐷(𝑡)[𝑛]	 (4.28) 

Therefore, to evaluate the correlated error imposed by kernel 𝐾(𝑡), 

𝐹(𝑡) ⋆ 𝐹(𝑡) = {𝐾(𝑡) ∗ 𝐷(𝑡)} ⋆ {𝐾(𝑡) ∗ 𝐷(𝑡)}	

= 𝐾(−𝑡) ∗ 𝐷(−𝑡) ∗ 𝐾(𝑡) ∗ 𝐷(𝑡)	

= {𝐾(−𝑡) ∗ 𝐾(𝑡)} ∗ {𝐷(−𝑡) ∗ 𝐷(𝑡)}	
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= {𝐾(𝑡) ⋆ 𝐾(𝑡)} ∗ {𝐷(𝑡) ⋆ 𝐷(𝑡)}	

If the arbitrary signal 𝐷(𝑡) happens to be white noise, it is completely uncorrelated, and its 

autocorrelation collapses to a Dirac delta function centered at 𝑡 = 0. Therefore, the entire 

structure of the correlated error is from the filter itself: 

𝐹(𝑡) ⋆ 𝐹(𝑡) = 𝐾(𝑡) ⋆ 𝐾(𝑡)	 (4.29)  

□ 

For the purposes of this work’s error model, we have no knowledge of the potential 

correlated structure in the actual errors in the gain pattern. The nadir antenna patterns are updated 

after applying a 6-degree boxcar averaging filter in both the azimuthal and elevation in the 

spacecraft coordinate frame and then an additional 10-degree two-dimensional smoothing 

window. We assume that zenith antenna patterns use a similar post-processing technique during 

their generation. 

These filtering kernels act like low-pass filters. All correlated structure on scales ~5 

degrees and smaller and uncorrelated error will be strongly influenced by the filtering process, 

and the correlated structure can be estimated from the Filter Lemma. This model assumes that 

there is no residual larger-scale structure in correlated error in the antenna gain patterns.  

The generated filter kernel, which applies to both the nadir and zenith antenna patterns, can be 

shown in Figure 4.1. The correlated error is a function of how close any two observations are 

with respect to the relevant antenna gain pattern coordinates.  
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Figure 4.1 - The filtering kernel used to smooth nadir and zenith antenna gain patterns. This kernel imposes 
correlated error structure onto the antenna gain patterns. The coordinate system should be read as distance in the 
relevant antenna reference frame. Therefore, if two observations are nearby in the antenna pattern, they will have 
strongly correlated errors. However, if two observations are far apart in the pattern, the correlated structure decays. 

For any arbitrary samples 𝑖 and 𝑗, we compute the gain pattern coordinates (𝜃; , 𝜙;) and 

�𝜃D , 𝜙D� in the relevant antenna reference frame. To retrieve how correlated the error is, we 

compute the distance between the two observations in the reference frame:  

Δ𝜃 = 𝜃; − 𝜃D 	

Δ𝜙 = 𝜙; − 𝜙D 

The error correlation function is computed via a LUT of the filter kernel K:  

𝐸𝑐𝑜𝑟𝑟M3 = 𝐾(Δ𝜃* , Δ𝜙*)	 (4.30𝑎) 

𝐸𝑐𝑜𝑟𝑟M, = 𝐾(Δ𝜃) , Δ𝜙)) (4.30𝑏) 
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This error correlation holds if the samples 𝑖 and 𝑗 share the same antenna and are on the 

same spacecraft. If they are on separate antennas or spacecrafts, the correlated error is zero. The 

rolled-up correlated errors for the gain patterns can be expressed as follows: 

𝐾M+(𝑖, 𝑗) = 𝛾 ⋅ 𝐸(𝐺*)( ⋅
𝐸𝑐𝑜𝑟𝑟M+(𝑖, 𝑗)

𝛿 ⋅ (1 + Δ𝜙( + Δ𝜃()
	 (4.31𝑎) 

𝐾M,(𝑖, 𝑗) = 𝛾 ⋅ 𝐸(𝐺))( ⋅
𝐸𝑐𝑜𝑟𝑟M,(𝑖, 𝑗)

𝛿 ⋅ (1 + Δ𝜙( + Δ𝜃()
(4.31𝑏) 

where two new tuning parameters have been introduced. 𝛾 is used to the tune the overall 

magnitude of the correlated error from these components, and 𝛿 is used to scale the decorrelation 

roll-off rate as the samples spread in antenna coordinates.  

4.4.4 Zenith-Specular Ratio 𝜻 Error Model 

Errors in the zenith–specular ratio 𝜁 are defined as a function of specular incidence angle 

𝜃;8X, which is a function of the geometry of a given GPS transmitter, a CYGNSS receiver at any 

given sample time.  

𝜁 is used to estimate GPS EIRP and is derived via the following, as described in (Wang, 

Ruf, Gleason, et al. 2021b):  

𝜁 ≡
𝐸𝐼𝑅𝑃J
𝐸𝐼𝑅𝑃5

=
𝐸𝐼𝑅𝑃(𝑡, 𝜃J , 𝜙J)
𝐸𝐼𝑅𝑃(𝑡, 𝜃5, 𝜙5)

=
𝑃'(𝑡)𝐺'(𝜃J , 𝜙J)
𝑃'(𝑡)𝐺'(𝜃5, 𝜙5)

=
𝐺'(𝜃J , 𝜙J)
𝐺'(𝜃5, 𝜙5)

(4.32) 

where the angles are defined in the GPS reference frame. For specular geometries, the azimuthal 

angles in the zenith direction are nearly identical to the specular direction, so 𝜙J = 𝜙5 = 𝜙. In 

addition, the elevation angles in the GPS antenna reference frame 𝜃J and 𝜃5 can be estimated 

from the angle of incidence of specular reflection from Earth 𝜃;8X: 

𝜃J ≅ 𝜃J(𝜃;8X)	 (4.33𝑎) 

𝜃5 ≅ 𝜃5(𝜃;8X)	 (4.33𝑏) 



 

 74 

 

 

As a result, 𝜁 can be expressed as a function of the specular incidence angle and 

azimuthal angle in the GPS antenna reference frame. While GPS antenna patterns are known to 

exhibit azimuthal dependence, this variation is less significant than the elevation angle, and 

CYGNSS uses the azimuthal average for its EIRP estimate: 

𝜁(𝜃;8X) ≡
1
2𝜋

·
𝐺'(𝜃J(𝜃;8X), 𝜙)
𝐺'(𝜃5(𝜃;8X), 𝜙)

(Y

@
𝑑𝜙	 (4.34) 

The estimated correlated error in 𝜁, however, comes with two steps of this processing. First is the 

mapping of Earth scattering incidence angle 𝜃;8X to GPS antenna elevation angles 𝜃J and 𝜃5 in 

Equations (4.33a) and (4.33b). This particular mapping is coarse, as even the high-fidelity-

derived GPS antenna maps are plotted to 0.5-degree increments. Because the dynamic range of 

𝜃J only extends to about 15 degrees, that only leaves ~30 data points to map the full dynamic 

range of scattering incidence angles.  

The second aspect has to do with the way in which 𝜁 is processed and generated and 

invokes the same logic as in the Filter Lemma. For every GPS satellite, a 𝜁 LUT is generated as a 

function of observation incidence angle 𝜃;8X. To minimize discontinuities, a fourth-order power 

series is fit. We argue that this smoothing is the predominant source of correlated error structure. 

An example of this is demonstrated in Figure 4.2.  
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Figure 4.2 – This figure illustrates a calculated zenith–specular ratio 𝜁 as a function of observation incidence angle 
𝜃456 at a fixed GPS antenna azimuth for GPS PRN 2. The blue trace is interpolated from raw observations over a 
two-year period at each of the elevation gridpoints in the GPS antenna pattern for a single azimuthal cut of PRN 2. 
The red trace is a generated smoothed zenith–specular ratio 𝜁 that would be similar to the ones used in the 
operational LUTs using a 4th-order power series fit. Note that at large incidence angles, i.e., grazing observations, 
there is a great deal of uncertainty in 𝜁 because there are few valid observations in those regions. In practice, only 
data at incidence angles < 60 degrees constrain error in 𝜁.   

While linear interpolation itself imparts some degree of error structure, we believe it is 

the most representative way to express ‘raw’ data in a continuous series for the purposes of 

exploring correlated error due to the power series smoothing. For each GPS PRN, we calculate 

the difference between these estimates: 

Δ𝜁Z(𝜃;8X) = ¨
𝐺'(𝜃J(𝜃;8X), 𝜙)
𝐺'(𝜃5(𝜃;8X), 𝜙)

©
;8%[2K

− ¨
𝐺'(𝜃J(𝜃;8X), 𝜙)
𝐺'(𝜃5(𝜃;8X), 𝜙)

©
?&!!%\

 

Then, the error correlation is simply the following: 

𝐸𝑐𝑜𝑟𝑟N�𝜃; , 𝜃D� = 𝑐𝑜𝑟𝑟 �Δ𝜁Z(𝜃;), Δ𝜁Z�𝜃D�  (4.35) 
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where 𝜃; is the incidence angle of the observation at sample 𝑖, and 𝜃D is the incidence angle of 

the observation at sample 𝑗. In practice, the correlation is computed by using each azimuthal cut 

as an instance and building a LUT of correlation as a function of incidence angles for samples 𝑖 

and 𝑗. An example of this LUT for GPS PRN 2 is shown in Figure 4.3. The rolled-up correlated 

error for 𝜁 can then be expressed as follows: 

𝑅N(𝑖, 𝑗) = �𝛽 ⋅ 𝐸(𝜁)( ⋅ 𝐸𝑐𝑜𝑟𝑟N(𝑖, 𝑗) 
0
( 	 (4.36) 

with the same tuning parameter 𝛽 as introduced in Section 4.4.1. 

 

Figure 4.3 – This figure depicts an error correlation matrix derived from Equation (E4) for GPS PRN 2, which is 
used to produce 𝐸𝑐𝑜𝑟𝑟7. The matrix is a function of the observation incidence angle for sample points i and j. Note 
that the mapping from coordinates in GPS elevation angle 𝜃8 and 𝜃9 to Earth scattering incidence angle 𝜃456 is 
coarse and produces the checkerboard-like pattern near the diagonal. A single error in the measurement of 𝐺: in the 
GPS antenna pattern is will highly correlate within a range of incidence angles in 𝜃456,	as mapped. At high incidence 
angles, errors are strongly correlated as the power series fit is likely to be wrong in the same direction. 
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4.5 Verification Techniques 

One of the primary challenges in constructing the CYGNSS Level 1 correlated error 

model 𝑅&!: is identifying a plausible validation scenario. In practice, it can be difficult to 

disentangle the various sources of correlated observation error structure, e.g., those caused by the 

inherent behavior and calibration of the instrument, by the geophysical retrieval and inversion 

process, and by the representativity errors imposed when observations are gridded and ingested 

into models. Further, the choice of ground truth may impose an additional source of correlated 

error, such as when using reanalysis data or another observation source.  

In an effort to disentangle these correlated errors and isolate only those due to 

instrumental sources, this work validates the correlated error structure 𝑅&!: by matching up 

near-simultaneous collocated observations made by two different observatories at nearly 

identical geometries, generating modeled NBRCS 𝜎&!:!  from reanalysis data, and single- and 

double-differencing the results. 

4.5.1 Curating Matchup Observations 

As a constellation of eight small satellites in the same orbital plane, CYGNSS is 

generally unable to collect collocated, near-simultaneous observations from different satellites. If 

the CYGNSS observatories were equally distributed across the orbital plane, each asset would 

follow the next at approximately a 10 min lag. However, in that time, both of the uniquely 

defining features of the CYGNSS observation changes: (1) the surface of the Earth rotates 

underneath the observatories, changing the ground track, and (2) the GPS satellites that serve as 

the source of radar signal advance in their orbit. Therefore, in 10 min, it can be quite challenging 

to develop one-to-one matchup conditions suitable for investigating the correlated error structure 

at timescales of seconds to minutes.  
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CYGNSS has no onboard thrusters, and orbit phasing is controlled solely through 

differential drag. At several junctures during the CYGNSS mission, one of the observatories 

advanced within the plane to be nearly overlapping with another yet at a slightly different 

altitude. Generally, the greater the altitude difference between the observatories, the faster the 

relative precession within the orbit plane.  

An exhaustive review of each observatory’s ephemerides for the life of the mission 

identified a few matchup opportunities. Matchups near the beginning of the mission were 

preferred, as the orbit planes of the satellites tend to drift apart over the lifetime of the mission. 

After further filtering by the operational status of each observatory to ensure that they were in 

similar attitude configurations and operating in similar science modes, a 24 h period starting 0Z 

on 11 SEP 2019 was chosen, where FM1 and FM5 were in a nearly identical orbital phase for a 

sustained period. A representation of the ground sampling during this period is shown in Figure 

4.4. 

 

Figure 4.4 – Comparison of FM1 and FM5 observations for 11 SEP 2019. (a) Rendering of the ground samples 
captured during the 24 h period in the near-overlap condition; (b) A single track of samples for both FM1 and FM5 
that has been matched sample-for-sample to facilitate one-to-one comparisons of the observations. The samples 
from each observatory are no more than 0.5 deg apart in distance and were acquired approximately 3 s apart in time. 
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Each ‘track’ of observations (when a series of observations are made in close succession 

sharing a CYGNSS receiver and GPS transmitter) was matched sample-for-sample between FM1 

and FM5 by first minimizing the distance between observations and then quality controlling for 

several factors: 

• Matched tracks must both contain more than 300 samples; 

• Individual sample matchups are valid if samples are within 0.5 degrees (great circle 

distance); 

• Individual samples are screened to ensure no quality control flags apply; and 

• The matched track is only valid if 60% of the data remains after all other matchup criteria 

apply. 

The resulting matchup conditions produced 103 matched tracks within the 24 h period of near-

simultaneous observations.  

4.5.2 Generating Model NBRCS 

A forward model for the CYGNSS observatory (generating σ]^_^  from wind data) can be 

challenging. Operationally, CYGNSS uses a GMF LUT that maps between the two quantities. 

However, for the purposes of this analysis, we prefer to use a physically representative forward 

operator that represents the physical dynamics of the roughening of the ocean surface due to 

locally driven winds.  

For each sample matched up, σ]^_^  is generated by computing a spectrally corrected 

ocean surface MSS from an ERA5-forced (Hersbach et al. 2020) WaveWatch III wave model as 

described in (Wang et al. 2019). Because the resolution of ERA5 is much coarser than CYGNSS 

Level 1 observations in both space and time, the σ]^_^  is matched up with σ^  via a tri-linear 

interpolation across three dimensions (latitude, longitude, and time). 
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Therefore, for every track of data, there are observations from two different CYGNSS 

observatories and two modeled NBRCS from reanalysis data. 

4.5.3 Estimating Total Correlated Error 

Single- and double-differencing are common techniques to calibrate remote sensing 

instruments, especially radiometers (Berg et al. 2021; Kroodsma, McKague, and Ruf 2012) and 

radars (Zec et al. 2017). Both are useful for quantifying the correlated error structures in 

CYGNSS observations.  

For each track of data, there are two single-differenced datasets,  

𝑆𝐷!>? = 𝜎0! − 𝜎`!	 (4.37𝑎) 

𝑆𝐷&!: = 𝜎&!:,0! − 𝜎&!:,`! 	 (4.37𝑏) 

where 𝑆𝐷!>? is the single-differenced data from the two matched-up observations from FM1 and 

FM5, and 𝑆𝐷&!: is the single-differenced data of the model-generated NBRCS for the specific 

coordinates of FM1 and FM5. The double-difference is computed by differencing these two 

quantities: 

𝐷𝐷 = 𝑆𝐷!>? − 𝑆𝐷&!: 	 (4.38) 

Both the SDs and DD are useful for our analysis. The 𝑆𝐷!>? term represents the 

difference in 𝜎!	measured by two different CYGNSS satellites. Despite the strict matchup 

conditions, these assets are still measuring different fields of view at different times. These 

differences may result in some residual correlated structure. In addition, any correlated structure 

in 𝑆𝐷!>? may not reveal structure imposed from fundamental properties of the earth system. 

Therefore, 𝑆𝐷&!: allows us to identify the correlated structure of any systematic differences in 

observation target. An example of the utility of these differencing techniques is shown in Figure 

4.5. 
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Figure 4.5 – A display of model (blue) and observed (green) single-differenced matchup data for a single CYGNSS 
track, with the double-differenced data (red) overlaid. Note that both the model and observed single differences are 
similarly high early in the track, suggesting that the differences in the observations may be because the samples are 
observing fundamentally different targets, captured in 𝑆𝐷();. The double-difference accounts for these types of 
errors, and for the entire track, the double-difference is quite stable. The sparsity of data is caused by quality control 
parameters, such as when the CYGNSS observatory is performing its onboard calibration procedure, which occurs 
once every minute. Because the two matched observatories do not have synchronized calibration clocks, the 
matched dataset typically flags out two of these cadences for every minute of sampling. 

Since we are primarily interested in correlated error, and not absolute error, our primary 

investigative tool is the autocorrelation function. The correlated error for each track can be 

computed by autocorrelating the DD using the standard formulation: 

𝜌(𝜏) =
1

(𝑁 − 𝜏)
1
𝜎A;

1
𝜎A;Sa

w(𝑋; − 𝑋̧)(𝑋;Sa − 𝑋̧)
,/a

;W0

	 (4.39) 

where 𝜏 is the lag, 𝑁 is the total number of lags observed, 𝑋; is the value of timeseries 𝑋 at time 

𝑖, 𝑋̧ is the mean of timeseries 𝑋, and the standard deviation is formulated as normal, 𝜎; =

�∑ (C</Cc)0.=>
<?2

,/a
. 
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Because the error correlation behavior can vary from track-to-track, we also construct a 

bulk autocorrelation which approximates the autocorrelation behavior for all tracks sampled. For 

this we consolidate 𝑀 tracks, the bulk autocorrelation is: 

ℛ(𝜏) =
1

𝑀(𝑁 − 𝜏)
1
𝜎G;

1
𝜎G;Sa

w(𝑌; − 𝑌̧)(𝑌;Sa − 𝑌̧)
,/a

;W0

	 (4.40) 

where 𝑌; = ∑ 𝑋;,Dd
DW0 , 𝑗 is the index for track number, and the standard deviation and mean are 

calculated as before, but with the consolidated track series 𝑌.  

4.5.4 Model Tuning 

The constructed correlated error model 𝑅&!:(𝑖, 𝑗) is designed to estimate the correlated 

error between arbitrary samples 𝑖 and 𝑗. Validating the correlated error with empirical matches is 

challenging since the empirical error correlation can only be estimated in a broader, statistical 

sense. To create an appropriate comparison, we introduce the modeled error autocorrelation 

𝜌º&!:, which is a function of lag 𝜏: 

𝜌º&!:(𝜏) =
1

𝑁 − 𝜏
w𝑅&!:(𝑖, 𝑖 + 𝜏)
,/a

;W0

	 (4.41) 

where 𝑅&!: is calculated using Equation (4.17), 𝜏 is the lag, and 𝑁 is the total number of lags 

observed. The quantity 𝜌º&!: is reasonably comparable to the autocorrelation 𝜌(𝜏) of observed 

error for a single track of samples. A similar analog can be made for the bulk modeled error 

autocorrelation ℛ»&!:(𝜏), which estimates the autocorrelation behavior of the error model across 

M tracks: 

ℛ»&!:(𝜏) =
1
𝑀w𝜌º&!:,D 	(𝜏)	

d

DW0

(4.42)	

where 𝜌º&!:,D 	(𝜏) is the modeled autocorrelation for track 𝑗 at lag 𝜏.  
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A parametrized version of 𝑅&!: is constructed using the following form: 

𝑅&!:(𝛼, 𝛽, 𝛾, 𝛿)|;,D =
1
𝒩
£𝑅L*(𝛼, 𝛽) + 𝑅L+(𝛼, 𝛽) + 𝑅M,(𝛾, 𝛿) + 𝑅M+(𝛾, 𝛿) + 𝑅N(𝛽)	¤	 (4.43) 

Where the following is true: 

• 𝛼 represents the relative magnitude of the white noise component of the error, which 

decorrelates at 𝜏 = 1;  

• 𝛽 represents the relative magnitude long-decay pedestal or any residual correlated errors 

at the edge of our timescales of interest;  

• 𝛾 represents the relative magnitude of the correlated error caused by the terms 𝑅M, and 

𝑅M+, which exhibit smooth decay as samples spread apart when projected through the 

nadir and zenith antenna coordinates, respectively [see Appendix D for an in-depth 

discussion]; and 

• 𝛿 represents the relative decorrelation roll-off in terms 𝑅M, and 𝑅M+. 

With an appropriate benchmark, the tuning parameters 𝛼, 𝛽, 𝛾, and 𝛿 are iterated such that 

ℛ»&!: matches a target signal. The tuning parameters are applied such that they can be modified 

to change specific characteristics of the modeled behavior. The target for matching the modeled 

autocorrelation ℛ»&!: is the bulk autocorrelation of the double-differenced data DD:  

ℛ[𝐷𝐷](𝜏) ≅ ℛ»&!:(𝜏)	 (4.44) 

Because this is an under-determined system, there is no unique solution to optimizing the 

tuning parameters. Further, these parameters all relate to one another, and changing one will 

impact the others. Instead, 𝑅&!: is tuned heuristically such that the modeled behavior matches 

the empirical data at key points: to match the white noise component at lag 𝜏 = 1; to match the 

rolloff at lags 𝜏 = 5 and 𝜏 = 30; and to match the endpoint behavior at lag 𝜏 = 100. 
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4.6 Results 

4.6.1 Bulk Behavior 

The constructed model 𝑅&!: is first tuned to match the overall behavior of ℛ[𝐷𝐷](𝜏), as 

described in Section 4.5.4. With the appropriate tuning parameters, the bulk-modeled 

autocorrelation ℛ»&!: closely resembles ℛ[𝐷𝐷](𝜏) in most important aspects, including the 

relative magnitude of the white noise component, the relative rate of decorrelation roll-off, and 

endpoint behavior at large lags. The final tuned ℛ»&!: is shown in Figure 4.6 with ℛ[𝑆𝐷!>?], 

ℛ[𝑆𝐷&!:], and ℛ[𝐷𝐷]. 

The behavior in Figure 4.6 is worth discussing in detail. The single-differenced model 

generated 𝜎&!:!  decays at a much slower rate than the single-differenced observations, and 

double-differenced data suggests that the errors of slight mismatch in observation location and 

time are generating errors on a fundamentally different scale than the instrument errors. Further, 

the fact that the double-differenced decorrelation is almost identical to the observation single-

differencing suggests that single-differencing near-simultaneous observations are a reasonable 

approximation for bulk error correlation.  
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Figure 4.6 – Comparison of the bulk error autocorrelation behavior for all matched tracks. The single difference of 
modeled 𝜎();)  (blue), the single difference of observed 𝜎) (green), the double-difference DD (purple), the untuned 
bulk model error correlation ℛ5(); (dotted red), and the final tuned bulk model error correlation ℛ5(); (orange) are 
shown. The shading indicates the estimated 1-sigma standard deviation of the population decorrelation behavior for 
each individual trace. The lags are computed in seconds, which correspond to single samples at 1 Hz sampling for 
the CYGNSS observatory. Note that DD generally follows the 𝑆𝐷)@9 trace, suggesting that single-differencing for 
this particular use case may be a reasonable representation of bulk error correlation behavior. 

 

Evaluating the double-difference trace in Figure 4.6 also reveals important qualities of 

the CYGNSS error correlation structure. First, the uncorrelated error component accounts for 

roughly 5% of the total system error. Therefore, assumptions that samples may be treated as 

independent with uncorrelated error are empirically refuted. Further, the error decorrelation roll-

off is swift: about 50% of the error decorrelates within 7 s of observation. Using a flat-plane 

approximation of Earth, this corresponds to a distance of approximately 50 km, which is 

generally the scale of the gridding of modern global weather models but much coarser than the 
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resolution of state-of-the-art regional models. Finally, the endpoint behavior at large lag times 

suggests a small, positive correlated error (~2%) at larger timescales. The statistical properties of 

the lag correlation become less stable at larger lags, but the existence of a long-timescale 

correlation is not surprising, considering all observations from a single receiver share a common 

electronics and processing chain.  

The fact that our tuned model 𝑅&!: can approximate the bulk error correlation structure 

ℛ»&!: with similar features as ℛ[𝐷𝐷] validates the assumption that the overall instrument-

correlated error can be modeled from the fundamental components of the instrument observable: 

in our case, the radar-range equation (Equation (1.1)). Further, that 𝑅&!: can be generated 

between arbitrary samples suggests that an observation error correlation matrix R can be 

generated dynamically from first principles given appropriate knowledge about the instrument 

and retrieval.  

The value of the chosen tuning parameters is also worth investigating. The untuned model is 

defined by having the parameters 𝛼 = 𝛽 = 𝛾 = 𝛿 = 1. Figure 4.6 demonstrates that the 

modification of tuning parameters can change the overall model behavior significantly to match 

observed behavior. Figure 4.6 further suggests that the untuned 𝑅&!: generally overestimates 

both the relative magnitudes of uncorrelated error (i.e., white noise, tuned by 𝛼) and totally 

correlated error (i.e., endpoint correlation, tuned by 𝛽). The chosen parameters for tuning are 

shown in Table 4-3.  
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Table 4-3 –The chosen magnitudes of model tuning parameters for 𝑅();. 

Tuning Parameter Magnitude Function 
𝛼 0.005 Relative magnitude of uncorrelated error 
𝛽 0.01 Relative magnitude of endpoint correlated error 
𝛾 1 Relative magnitude of nearby roll-off 
𝛿 1 Steepness of roll-off component 

 

The tuning parameter 𝛾 is used to vary the relative magnitude of the near-sample 

correlated error roll-off. In our tuned model, this parameter remains at 1. The tuning parameter 𝛿 

is used to enhance or reduce the steepness of the roll-off in correlation caused by two 

observations moving farther apart in the nadir and zenith coordinate systems. If 𝛿 > 1, it 

enhances the steepness of decay. The fact that our optimized tuning maintains 𝛿 = 1 suggests 

that the filtering theory discussed in Lemma 4.2 is a reasonable model of decay. 

4.6.2 Single-Track Comparisons 

The tuned model can be compared to single-track autocorrelations 𝜌(𝜏) of matched-sample 

double-differences using the modeled error autocorrelation 𝜌º&!: as described in Equation (4.41). 

We compare three exemplar tracks in Figure 4.7. 
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Figure 4.7 – Comparison of the single-track error autocorrelation behavior for three selected tracks. The 
autocorrelation of the NBRCS double-difference (solid lines), untuned modeled error correlation 𝜌7();, and tuned 
modeled error autocorrelation 𝜌7(); (dashed lines) for each of the three tracks are shown. Each track is painted a 
different color. This figure demonstrates the wide variability of single-track autocorrelations of double-differences, 
arising from the variability of the observable, the limited amount of data in a single track, and the challenges in 
quality controlling sufficient observation data. It is possible that the correlated error does vary this much from track 
to track. In contrast, both the tuned and untuned modeled error autocorrelation 𝜌7(); are much more stable from 
track to track. 

The single-track autocorrelation behavior shown in Figure 4.7 is also revealing of the 

limitations of this work. The single-track error autocorrelation for double-differenced data is 

highly variable. This may be due to both artifacts in the data (processing, quality control, 

insufficient data), as well as the real behavior of the observation. It is worth articulating that the 

autocorrelation of data is generally less stable with smaller datasets and at longer lags. With our 

quality control parameters, we flag out significant quantities of data, which decreases the 

stability of autocorrelations from track to track. We further note the difficulty in exploring the 

dynamics of this behavior in a statistical sense: our aperture of observation where two CYGNSS 

assets are in a near-overlap condition is quite rare, and as the mission progresses, the orbit planes 

of the satellites have drifted, making further matchup scenarios less representative. These 
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behaviors may evolve differently day-to-day or as a function of observed wind speed, but the 

paucity of data in this configuration makes it challenging to establish sufficient baselines to test 

for significance.  

4.6.3 Dynamic Correlated Error Estimation and Impact of Tuning 

The model 𝑅&!: can produce plausible dynamics, suggesting the broader importance of a 

realistic dynamic correlated error model. Figure 4.8 plots two nearby tracks captured nearly 

simultaneously by the same receiver (but different GPS transmitters). 

 

Figure 4.8 – Generated untuned and tuned 𝑅(); for two nearby tracks captured by the same CYGNSS receiver, each 
with three different representations. (a) Untuned 𝑅(); as represented by sample index. The two tracks are 
concatenated in a vector, and the modeled error correlation is calculated for each combination of indices. The green 
vertical line represents an exemplar index (i = 129) along the track, where the correlated error is estimated for every 
other observation in the neighborhood. (b) Untuned 𝑅(); for the same exemplar index as represented by the 
physical location of sample acquisition. (c) Untuned 𝑅(); for the same exemplar index represented by time of 
acquisition. The traces for the two different tracks are plotted in different colors. The error correlation along the 
same track is in blue, while the error correlation for the adjacent track is in red. (d) Tuned 𝑅(); as represented by 
sample index for the same two tracks as in (a). (e) Tuned 𝑅(); for the same tracks represented in the physical 
location. (f) Tuned 𝑅(); for the same exemplar index represented by the time of acquisition. Note that for both the 
untuned and tuned cases, the correlated error for the adjacent track is non-zero but generally very small compared to 
the error correlation along the track. 
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Because the correlated error 𝑅&!: can be generated for any arbitrary observation using 

the bottom-up model, the dynamics of how instrument errors decorrelate can be explored. To 

illustrate, we choose an arbitrary exemplar index (i = 129) to demonstrate that this calculation 

can be performed for any sample within a track. If the observations were treated as completely 

independent without any correlated error, the matrix in Figure 5a would contain non-zero 

elements exclusively along the main diagonal. However, we observe several structural elements. 

The ‘pixelation’ pattern is largely a result of the 𝑅N  term and originates from the coarse mapping 

of the estimated GPS antenna gain pattern as a function of scattering incidence 𝜃;8X. This 

phenomenon is explored in depth in Section 4.4.3. The smooth decorrelation roll-off is from the 

𝑅M, and 𝑅M+ components of the model and represent the direct and reflected signals moving 

about the nadir and zenith antenna patterns in CYGNSS receivers as the observation is collected 

along the track. We note that the model allows for cross-track correlation where the two different 

tracks share a CYGNSS receiver but have a different GPS transmitter. In both the untuned and 

tuned cases, these tracks appear to have uncorrelated cross-track error. There are residual 

correlations between the tracks when the scattering geometry is such that the two tracks share 

similar incidence angles or are near similar antenna coordinates, in addition to the shared 

receiver noise at lag 𝜏 = 0. 

We can also determine 𝑅&!: for our matchup tracks where CYGNSS observes similar 

track geometries with the same GPS transmitter but with two different receivers. The correlated 

structure for one of the tracks in the previous example (but matched by different receivers) is 

shown in Figure 4.9. 
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Figure 4.9 – Generated untuned and tuned 𝑅(); for two nearby tracks captured by two different CYGNSS receivers 
during the overlap period, each with three different representations. (a) Untuned 𝑅(); as represented by sample 
index. The two tracks are concatenated in a vector, and the modeled error correlation is calculated for each 
combination of indices. The green vertical line represents an exemplar index (i = 129) along the track where the 
correlated error is estimated for every other observation in the neighborhood. The correlated error model allows for 
correlated errors across receivers. (b) Untuned 𝑅(); for the same exemplar index as represented by the physical 
location of sample acquisition. (c) Untuned 𝑅(); for the same exemplar index represented by the time of 
acquisition. The traces for the two different tracks are plotted in different colors. The error correlation along the 
same track is in blue, while the error correlation for the adjacent track is in red. (d) Tuned 𝑅(); as represented by 
the sample index for the same two tracks as in (a). (e) Tuned 𝑅(); for the same tracks represented by the physical 
location. (f) Tuned 𝑅(); for the same exemplar index represented by the time of acquisition. Note that the tuning 
has virtually eliminated cross-track error correlation. 

The model 𝑅&!: allows for correlated error between two different receivers that share a 

GPS transmitter. We note that observations sharing the same GPS transmitter may contain 

correlated error due to the correlated misestimation of GPS transmit power. This may be an 

incomplete articulation of the full cross-receiver error correlation. For example, CYGNSS assets 

in similar orbital regimes may experience similar thermal and environmental conditions that 

cause correlated errors during our timescales of interest. We assume that correlated error due to 

misestimation of GPS transmit power is nearly constant for the timescales of interest.  

As demonstrated in Figure 4.9, the cross-track correlation virtually disappears after 

tuning the model 𝑅&!:. Taken with the data presented in Figure 4.8, there appears to be 
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negligible cross-track error correlation, either when two tracks share a CYGNSS receiver or 

when two tracks share a GPS transmitter. This is a novel result but challenging to validate in 

practice, as the double-differencing may eliminate any shared error correlation between two 

tracks. 

4.7 Discussion 

𝑅&!: was designed to maintain several key features. First, 𝑅&!: can be generated for arbitrary 

samples in any dataset given the appropriate inputs. Second, 𝑅&!: is designed to maintain 

traceability from component error sources with reasonable physical assumptions. Third, 𝑅&!: is 

designed to be tuned to allow for calibration and validation as more data becomes available. 

Finally, 𝑅&!: is intended to be implementable in a dynamic error model without significant 

computational expense.  

4.7.1 Limitations 

The correlated error model 𝑅&!: exhibits complex dynamics that are generally plausible 

but difficult to validate outside of the large-scale statistical estimation discussed in Section 4.61. 

The fact that the bulk statistical behavior between the estimated autocorrelation model averaged 

over all tracks is consistent with the observed double-difference autocorrelation (cf. Figure 4.6) 

is reassuring, but the disparity between the individual track model estimated autocorrelations and 

the single-track double-difference estimations (c.f. Figure 4.7) suggests that either the model is 

insufficient at capturing the dynamics track-to-track or that the correlated error may not be as 

stationary as assumed.  

With only about a day of data during the overlap period, there remains the possibility that 

the validation dataset is unrepresentative of the overall statistical behavior of the observation. 



 

 93 

𝑅&!: is designed only to account for errors at short spatial and temporal scales relevant for data 

assimilation purposes; therefore, this model may not necessarily account for changes of the 

underlying statistical distributions at larger scales due to seasonality or orbital precession.  

The error model assumes that errors are generally isotropic and that 𝑅&!:(𝑖, 𝑗) =

𝑅&!:(𝑗, 𝑖). This assumption has important practical utility for simplifying the implementation of 

𝑅&!: and the conditioning of the required matrix inversion. Anisotropies may exist in any of the 

components of the error model but are assumed to be small compared to the modeled behavior. 

Further, this model generally assumes no spatial dependence. Spatial dependence of the 

correlated error is primarily driven by the errors in the retrieval and not the instrumentation, 

which orbits Earth every 95 min. The ‘spatial’ dependence of error from CYGNSS transiting its 

orbit has largely to do with the dynamics of the thermal loading of the receiver as lighting 

conditions evolve in orbit. This is accounted for in the assumptions of the component models 

𝑅L* and 𝑅L+ as discussed in Sections 4.4.2 and 4.4.3, respectively. The correlated error resulting 

from the evolution of the observing geometries as both GPS and CYGNSS propagate in their 

orbits is captured in the correlated structure of the antenna gain maps and the zenith–specular 

ratio explored in Sections 4.4.4 and 4.4.5.  

4.7.2 Impact of Tuning Parameters 

The application of tuning parameters is a design decision to capture the fact that initial 

estimates of the bottom-up error magnitudes may be incomplete and to facilitate rapid 

adjustments as new calibration and validation information becomes available. The tuning 

parameters attempt to weigh the value of individual component errors in comparison to each 

other based on aggregate data from one day of observations during the overlap period.  
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The specific values of the tuning parameters recovered suggest that the correlated error 

model 𝑅&!: overestimates both the uncorrelated and highly correlated components of instrument 

error. This is useful information for future studies because, as an opportunistic measurement, 

GNSS-R has limited insight into the error structures in the source signals from GPS.  

For observations within a single track, these parameters provide evidence that nearby 

samples in space and time can add significant new information to a forecast. The tuning 

parameter 𝛼 = 0.005 indicates that the uncorrelated component of the error is significantly 

overestimated, suggesting that the constituent error magnitudes in (Gleason 2018) may be 

overestimated. Further, the fact that the tuning parameters 𝛾 and 𝛿 = 1 suggest that the overall 

structure of the error correlation decay is consistent with the theory posited in Appendix D (that 

the primary source of error correlation is from the application of smoothing filters in the 

production of antenna gain patterns) and that the application of the Filtering Lemma (Lemma 

D2) is reasonable. 

For observations between tracks, the tuned error model 𝑅&!: indicates that errors are 

nearly uncorrelated between tracks (cf. Figures 4.8 and 4.9). This is driven primarily by the 

tuning of the parameter 𝛽 = 0.01. This has significant practical utility to future assimilation 

strategies for CYGNSS, suggesting that two nearby tracks are essentially independent 

measurements with independent instrument error (correlated error may still result from 

correlated errors in the retrieval or representation).  

Finally, it should be noted that the overall effect of the tuning somewhat obviates the 

need for a dynamic correlated error model, as the overall behavior of the tuned model is quite 

stable from track to track (cf. Figure 4.7). This suggests a simplified instrument-correlated error 
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model could be derived from the bulk behavior of 𝜌º&!:, reducing many of the required input 

data. 

4.8 Conclusions 

This work produces a first-principles estimate of correlated instrument error with results 

that approximate observed statistical behavior. We believe that this model presents a significant 

advancement in the estimation of the spatial and temporal correlation structure of instrument 

error for remote sensing systems and, in particular, for the unique considerations of GNSS-R 

measurements by CYGNSS.  

In essence, this work answers a theoretical exercise for enumerating the plausible 

engineering reasons why two data points from the same observing constellation can share 

correlated sources of error. We evaluate the correlated error structure for CYGNSS by examining 

the potential plausible sources of correlated structure from individual components of the 

instrumentation, combining these sources from first principles as a tuned engineering model, and 

evaluating the efficacy of the model via a robust validation during a period when two satellites 

with nearly identical observing geometry captured near-simultaneous and near-collocated 

samples. 

The instrument-originating sources of correlated error is likely to be a small component 

of the overall correlated structures of observation error. For instance, a likely significant source 

of correlated error structure is the Geophysical Model Function retrieval that converts observed 

NBRCS to surface wind speed. These errors can be multifaceted, both encompassing 

representation error, as the ground truth for training this retrieval is reanalysis data, which may 

not capture the spatial or temporal dynamics of wind speed (Ruf and Balasubramaniam 2019). A 
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companion work will explore how the retrieval that maps from NBRCS to wind speed produces 

correlated error structures in space and time. 

Further, the fact that the single-differenced observations generally drive the double-

differenced autocorrelation behavior suggests that Powell et al.’s metric of simultaneity and 

collocation (Powell, Ruf, Gleason, et al. 2024) generally applies for CYGNSS when satellites are 

in a near overlap condition. This interesting result suggests that double-differencing may not be 

required for statistical estimations of GNSS-R errors given a sufficiently large dataset of 

observations that nearly overlap. This implication may relax further validation requirements of 

𝑅&!: and may enable near-real-time calibration strategies when samples are sufficiently close 

without the need to generate reanalysis-driven forward model NBRCS, which introduces 

significant latencies. 

Finally, while the correlated error model 𝑅&!: was designed to compute the estimated 

correlated error from arbitrary CYGNSS samples, this may be unnecessary in practice as the 

tuning makes the model quite stable between samples and tracks. Further, given sufficient 

assumptions about the stationarity of the instrument-correlated error and the overall magnitude of 

the instrument-originating sources of correlated error, this information could be conveyed as a 

static look-up table.  

 

Data Availability Statement: Publicly available datasets were analyzed in this study. CYGNSS 

Level 1 data can be found at NASA’s Physical Oceanography Distributed Active Archive Center 

(PO.DAAC) (CYGNSS 2021, 1). ERA5 reanalysis can be found at (Hersbach et al. 2023).
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Chapter 5 Error Covariance in Observation Space and Geophysical Partitions 

This chapter propagates the error covariance modeled in Chapter 4 into observation space and 

suggests a method for partitioning CYGNSS representation-retrieval error into geophysical 

components. This chapter is substantially derived from a manuscript submitted to AMS’s 

Journal of Atmospheric and Oceanic Technology under the title “A Method for Estimating and 

Partitioning the Covariance of Windspeed Observation Error from GNSS Reflectometry” 

(Powell and Ruf 2024). The introductory material is discussed in Chapter 1. Copyright in this 

work may be transferred without notice. 

5.1 Abstract 

This work introduces a mechanism for identifying and partitioning the sources of 

correlated error in windspeed observations made by spaceborne GNSS-reflectometry (GNSS-R). 

Observations by the CYGNSS constellation of GNSS-R satellites are matched with reanalysis 

windspeeds to determine the retrieval error. A correction for some of the error is constructed 

using ancillary environmental parameters. As a result of the corrections, the windspeed retrieval 

is improved by 11%.  Further, we examine the correlated structure of both the windspeed error 

and the correction to provide physically plausible explanations for the correlated errors that are 

present in GNSS-R observations.   
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5.2 Introduction (abridged) 

This work expands upon the (Powell, Ruf, McKague, et al. 2024) instrument correlation 

model (discussed in Chapter 4) to include the correlated error in CYGNSS windspeed retrieval, 

and applies a “top-down” estimation to assist in partitioning sources of correlated error between 

the instrument and the combined retrieval and representation errors.   

5.3 Error Model Construction (abridged) 

5.3.1 Definitions  

In this section, we introduce a simple model for how observation errors occur. We derive 

our language from Janjić (Janjić et al. 2018), but apply slightly modified definitions for both 

brevity and clarity. We assert that observation error is simply the difference between an 

observed and true state for a state vector y: 

𝒆𝒐𝒃𝒔 = 𝒚𝒐𝒃𝒔 − 𝒚𝒕𝒓𝒖𝒆 (5.1) 

where 𝒆𝒐𝒃𝒔 is the observation error in state space, 𝒚𝒐𝒃𝒔 is the observation vector in state space, 

and 𝒚𝒕𝒓𝒖𝒆 is the true value of the state space parameter.  With this formulation, an R matrix can 

be constructed for samples i and j by taking the covariance of 𝒆𝒐𝒃𝒔: 

𝑅(𝑖, 𝑗) = 𝑐𝑜𝑣�𝒆𝒐𝒃𝒔(𝑖), 𝒆𝒐𝒃𝒔(𝑗)� (5.2) 

We further assert that the sources of observation error consist of instrument error, 

retrieval error, and representation error, which are assumed to be independent and can be 

summed to produce the total error: 

𝒆𝒐𝒃𝒔 = 𝒆𝒊𝒏𝒔𝒕 + 𝒆𝒓𝒆𝒕 + 𝒆𝒓𝒆𝒑 (5.3) 

Instrument and retrieval errors concern deviations from truth due to the design and operation of 

the observing system. Instrument errors are inherent in all physical systems because the 
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measurement is never perfectly accurate. This occurs from imperfections in manufacturing, 

limited knowledge of the operating environment, and deviations from operational assumptions.  

Observatories rarely measure the target parameter directly, often these systems take a 

series of measurements in measurement space, which represents the physical quantity an 

instrument measures. These physical quantities – power received, time of flight, or Doppler shift 

– are representative of the target parameter, but require a transformation to observation space to 

be understood in terms of geophysical parameters such as temperature, pressure, and windspeed. 

Retrieval errors occur in any situation during which a measurement proxy is used for a target 

observation and when the mapping between measurement space and observation space is not 

one-to-one or unique.  

Representation error occurs when the instrument and its reference measurement do nor 

corresponding to identical versions of the geophysical parameter. For example, they may 

represent different spatial or temporal averages of the parameter as discussed in Janjić, or they 

may be made at different times or locations as explored in (Powell, Ruf, Gleason, et al. 2024). 

Representation error can vary depending on the choice of “ground truth” reference.  

We can define these error types with some mathematical formalism to illustrate the 

relationships between them. Instrument error occurs because the observing system is not 

measuring the true observation space parameter: 

𝒆𝒊𝒏𝒔𝒕 = 𝐻(𝒙𝒐𝒃𝒔) − 𝐻(𝒙𝒕𝒓𝒖𝒆) (5.4) 

where 𝒙𝒐𝒃𝒔 is the observation vector in measurement space, 𝒙𝒕𝒓𝒖𝒆 is the true observable in 

measurement space, and 𝐻 is the observation operator that transforms observations from 

measurement space to geophysical parameter space. Using a similar logic, we define retrieval 

error as: 
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𝒆𝒓𝒆𝒕 = 𝐻(𝒙𝒕𝒓𝒖𝒆) − 𝐻K[29(𝒙𝒕𝒓𝒖𝒆) ≅ 𝐻(𝒙𝒐𝒃𝒔) − 𝐻K[29(𝒙𝒐𝒃𝒔) (5.5) 

where 𝐻K[29 is a perfect observation operator, or in other words, will perfectly map the true 

observable 𝒙𝒕𝒓𝒖𝒆 to geophysical parameter space 𝒚𝒕𝒓𝒖𝒆 with zero ambiguity or imposed error. 

For simplicity, we assume that the retrieval error for observed measurements is equivalent to the 

retrieval error for true measurement space observations. This formulation necessarily suggests 

that the mapping of 𝐻 is imperfect. Additionally, the construction of (5.5) implicitly suggests 

that instrument and retrieval errors are independent. In practice, this assumption may not always 

hold, and imposes conditions on the sensitivity of the retrieval to instrumentation error. For our 

illustrative exercise, we consider these errors as independent and partitionable.  

Because representation error is fundamentally comparative, it is challenging to 

generalize. For instance, a satellite observation compared against a buoy will have different 

representation errors than when compared to another type of satellite observation or a model 

output. Further, in our case, representation errors and retrieval errors may be explicitly related, as 

the training data for the empirical CYGNSS retrieval are ERA5 reanalysis matchups (C. S. Ruf 

and Balasubramaniam 2019). Because of this, we will treat the retrieval and representation error 

as a combined entity,	𝒆𝒓𝒓	: 

𝒆𝒓𝒓 = 𝒆𝒓𝒆𝒕 + 𝒆𝒓𝒆𝒑	 (5.6) 

Observation error now becomes: 

𝒆𝒐𝒃𝒔 = 𝒆𝒊𝒏𝒔𝒕 + 𝒆𝒓𝒓	 (5.7)	

In this construction, we assert that 𝒆𝒊𝒏𝒔𝒕 and 𝒆𝒓𝒓 are separable and independent components of 

observation error.  
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5.3.2 Observation Error Covariance Model 

This work considers how the observation error varies in space and time – in particular 

how its correlation varies with separation. We make two general assumptions: first, that the 

representation-retrieval error 𝒆𝒓𝒓 is isotropic in space and can be parameterized by spatial 

distance between two samples i and j; and second, that the instrument error 𝒆𝒊𝒏𝒔𝒕 is isotropic in 

time and can be parameterized by temporal distance between two samples i and j.  

These assumptions warrant discussion. The retrieval component of 𝒆𝒓𝒓 signifies all of the 

reasons CYGNSS may be sensitive to variations in NBRCS other than locally-driven winds. For 

instance, the CYGNSS windspeed retrieval may be incorrect when the satellite samples areas of 

ocean surfaces covered by oil slicks, biomass, or some other contaminant; or when a significant 

long-wave swell modulates the overall roughness condition; or any host of other possible reasons 

why the mapping between surface roughness and windspeed is not as expected. The 

representation component of 𝒆𝒓𝒓 signifies when CYGNSS captures true windspeed dynamics and 

variability that is not properly resolved by ERA5. In each of these cases, anisotropies may apply 

locally for various reasons. However, we posit that with a sufficiently large sample size, each 

constituent source of the combined representation-retrieval error has a characteristic length scale 

that does not vary significantly in the aggregate. We further assert that correlated errors from 𝒆𝒓𝒓 

occur at timescales longer than are relevant for operational data assimilation systems (i.e., 

seconds to minutes), and can be corrected via other means such as diurnal or seasonal trends.  

The instrument error  𝒆𝒊𝒏𝒔𝒕 was modeled by Powell et al. (Powell, Ruf, McKague, et al. 

2024) and is primarily a function of time, as the errors relate due to variability in the 

environment of the CYGNSS receiver, the evolution of the observation geometry, and the 

condition of the GPS transmitter. CYGNSS collects streaks of observations known as “tracks”, 
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which occur when adjacent samples in time share a common CYGNSS receiver and a GPS 

transmitter; said tracks tend to exhibit related error characteristics. Because of the nature of how 

CYGNSS and GPS orbits evolve, the specular points along each track of CYGNSS observations 

can vary in spacing. At a 1 Hz sampling rate (for observations 2019 and prior), samples are 

between 2 km and 7 km apart. However, the distance between samples is nearly constant within 

a track. Therefore, a trackwise mapping between time and space can be calculated: 

τ(𝑖, 𝑗) = 𝑡0 − 𝑡( → Δ(𝑖, 𝑗) = 𝑐%2$Xo ⋅ 𝜏 (5.8)	

where τ is the distance in time between samples i and j at observation times 𝑡0 and 𝑡(, 

respectively; Δ is the distance in space on a great circle projection; and 𝑐%2$Xo is the nearly 

constant observation velocity for a given track in km/s. With this mapping, 𝒆𝒊𝒏𝒔𝒕 and 𝒆𝒓𝒓 can 

share a common spatial separation index, and the covarying errors can be expressed as a function 

of distance between samples.  

The combined error covariance takes the form derived in Appendix A of Powell et al. 

2024 (Powell, Ruf, McKague, et al. 2024): 

𝑅&!:(𝑖, 𝑗) = 𝑅;8?%(𝑖, 𝑗) + 𝑅22(𝑖, 𝑗) (5.9) 

where 𝑅&!: is the modeled observation error covariance between samples i and j, 𝑅;8?% is the 

calculated instrument error covariance between samples i and j,	𝑅22 is the calculated 

representation-retrieval error covariance between samples i and j. Further,  

𝑅;8?%(𝑖, 𝑗) = 𝐸;8?%( 𝐾;8?%(𝑖, 𝑗) (5.10a)	

𝑅22(𝑖, 𝑗) = 𝐸22( 𝐾22(𝑖, 𝑗) (5.10b)	

where 𝐸;8?% is the error magnitude of the instrumentation error in state space, 𝐾;8?% is the 

instrument error correlation between samples i and j, 𝐸22 is the error magnitude of the combined 

representation-retrieval error, and 𝐾22 is the representation-retrieval error correlation between 
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samples i and j. The correlation functions 𝐾8 have the range of [-1,1], and 𝐾8 = 1 if i = j. This 

construction necessarily implies that the error magnitudes 𝐸;8?% and 𝐸22 are stationary with 

respect to location and that the instrument and representation-retrieval errors are independent. 

5.3.3 Correlated Instrument Errors in Observation Space 

 Powell et al. 2024 provides a model for correlated instrument error, but the errors are 

calculated in measurement space (i.e., in units of NBRCS). To propagate these errors to 

observation space (units of m/s), the instrument error covariance is run through the GMF. The 

instrument error correlation function 𝐾;8?% is the tuned ℛ»&!: from Powell et al. 2024, which is 

nearly stationary across tracks and observing conditions. The instrument error magnitude takes 

the form:  

𝐸;8?%(𝑖) = Â	s
𝜕(𝐺𝑀𝐹/0)

𝜕𝜎!
s 𝑠𝑡𝑑(𝜎!)Ã

pA(;)
(5.11) 

where GMF-1 represents the inverse of GMF, i.e. the mapping from windspeed to NBRCS. The 

error magnitude is therefore sensitive to windspeed, as the GMF inversion is strongly sensitive to 

windspeed. This behavior is illustrated for the fully developed seas (FDS) GMF in Figure 5.1.   
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Figure 5.1 – The inverse GMF (red) and its partial derivative with respect to NBRCS (blue) for a fixed incidence 
angle 𝜃 = 30	deg. Note that as NBRCS approaches 0, the retrieved windspeed increases substantially, as does its 
sensitivity to errors in NBRCS. At higher NBRCS, the sensitivity to errors approaches 0. The FDS GMF is valid for 
windspeeds < 25 m/s. 

The instrument error model 𝑅;8?%(𝑖, 𝑗) can be calculated as a function of windspeed and 

incidence angle, as shown in Figure 5.2. The error covariance is computed in terms of temporal 

distance 𝜏 between two observations i and j within the same track, and then mapped to great 

circle distance Δ using (5.8), such that 𝑅;8?% takes the form 𝑅;8?%(𝑖, Δ), where the magnitude of 

the error depends on the windspeed and incidence angle at sample i, and the decorrelation rolloff 

is mapped to great circle distance Δ. 
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Figure 5.2 – Contribution to error covariance by propagating instrument error sources into observation space using 
the GMF. The colors correspond to different windspeeds: 5 m/s (red), 7 m/s (blue), and 15 m/s (green). The line 
styles correspond to observation incidence angle: 10 degrees (solid), 30 degrees (dashed), 45 degrees (dotted).  

 

5.3.4 Evaluation of Representation-Retrieval Errors 

Direct evaluation of 𝑅22(𝑖, 𝑗) is challenging, as both the magnitude and decorrelation 

rolloff of the representation-retrieval error is not well known. However, we can estimate 𝑅22(𝑖, 𝑗) 

by direct calculation of  𝑅(𝑖, 𝑗) as in (5.2) according to 

𝑅22(𝑖, 𝑗) = 𝑅(𝑖, 𝑗) − 𝑅;8?%(𝑖, 𝑗) (5.12) 

where 𝑅22 is the representation-retrieval covariance,  For calculation of 𝒆𝒐𝒃𝒔, 𝒚𝒐𝒃𝒔 is the 

CYGNSS retrieved fully-developed seas windspeed observation at a given point in time and 

space, and 𝒚𝒕𝒓𝒖𝒆 is the ERA5 reanalysis 10 m neutral winds matched up via a nearest-neighbor 
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algorithm in space and time. It is well-documented that using reanalysis winds as ground truth is 

suboptimal, as the reanalysis tends to underestimate high wind speeds and smear out natural 

variability (Wu et al. 2024), but since the CYGNSS GMF is trained on ERA5, it is a priori 

defined as truth. 

 𝑅(𝑖, 𝑗) is calculated by taking the autocorrelation along individual tracks such that 

𝑅(𝑖, 𝑗) = 𝑅(Δ) = 𝜎q,!>?( ⋅ 𝜌q,!>?(Δ)	 (5.13) 

where 𝜌q,!>?(Δ) is the single-track observation error autocorrelation at spatial lag Δ and 𝜎q,!>? is 

the standard deviation of the observation error. This construction necessarily assumes that the 

error is stationary and isotropic. Because we assume stationarity, we incorporate a large number 

of tracks and calculate a bulk observation correlation for M tracks:  

ℛ!>?(Δ) =
1

𝑀(𝑁 − 𝜏)
1

𝜎J;𝜎J;Sr
w(𝑍; − 𝑍̅)(𝑍;Sr − 𝑍̅)
,/a

;W0

(5.14)	 

where 𝑍; = ∑ 𝑒!>?;,o
d
oW0 , 𝜎J; is the standard deviation for at an index i, and k is the index for 

track number. By substituting ℛ(Δ) for 𝜌(Δ), 𝑅22 can be estimated as: 

𝑅22(Δ) ≅ 𝜎q,!>?( ⋅ ℛ!>?(Δ) − 𝑅;8?%(Δ) (5.15) 

where all values are a function of spatial great circle distance and are isotropic in space.  

5.3.5 Data Selection 

 A month of CYGNSS data was collected (1-31 JAN 2019) using version 3.1 of the Level 

2 science data product (CYGNSS 2021). These observations were filtered to only include tracks 

with sufficiently long track lengths (N > 250 samples) to enable investigation of the spatial and 

temporal observation error relationships using trackwise autocorrelation. Additionally, CYGNSS 

observations were filtered to include only windspeeds between 5 and 25 m/s, which is the 

domain where the CYGNSS fully-developed seas retrieval is most representative. These data 
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were matched with ERA5 hourly reanalysis winds and wave model outputs using a nearest-

neighbor algorithm (Hersbach et al. 2020). The ERA5 atmospheric product has grid spacing of 

31 km, while the wave model parameters operate on a 0.36 deg grid. Both the atmospheric and 

wave parameters were pre-processed and interpolated for regular latitude-longitude gridding by 

the Copernicus Climate Data Store upon data access. With the filters applied, a total of 62497 

valid tracks were matched, with global observations +/- 40 deg latitude, across all 8 CYGNSS 

satellites.  

5.4 Partition of Representation-Retrieval Error 

In this section, we introduce a methodology for partitioning the representation-retrieval error in a 

manner that suggests a plausible physical explanation. The processing consists of four main 

steps: 

i. Identify model variables that correlate with windspeeds and windspeed errors; 

ii. Parameterize windspeed error as a function of a selected model variable;  

iii. Correct the retrieved windspeed with the parameterized functions; and 

iv. Repeat this process using corrected windspeed. 

 

By applying successive corrections using this strategy, we can approximate individual 

components of error. To mitigate the influence of cross-correlation between model variables, we 

use the corrected windspeed as the starting point for the successive correction. The explainable 

error covariance is then: 

𝑅[AKs$;8[:,o(Δ) ≅ 𝑅[𝝐o](Δ) (5.16) 

where 𝑅[AKs$;8[:,o is the explainable error covariance for a given correction k as a function of 

spatial lag Δ, 𝝐o is the vector of windspeed correction in observation space for a given correction 
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cycle k, and each 𝑅[𝒙] = 𝜎A(ℛA, where 𝜎A( is the variance of term x and ℛA is the bulk 

autocorrelation of x as in (5.14).  

5.4.1 Selection of Correctable Variables 

Because ERA5 contains a fully-coupled wind-wave model, there are a number of model 

variables that may modulate MSS, local windspeed output, or some combination of the two. In 

general, it is counterproductive to correct with variables that are closely related to the target 

observation, which in this case is local windspeed. This is because we end up “correcting” with 

another representation of the ground truth, which can decrease the independence of the observed 

windspeed. We have compiled a list of variables and correlated the matchups with CYGNSS 

FDS observed windspeed, ERA5 reanalysis windspeed, and the windspeed error 𝒆𝒐𝒃𝒔. Table 5-1 

displays an abbreviated list of 10 ERA5 model variables sorted by the absolute value of 

windspeed error correlation. This list was curated from an initial analysis of 20 variables to 

illustrate the considerations for selecting variables for this process. 	
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Table 5-1 – Abbreviated list of ERA5 model variables matched up with the CYGNSS windspeed observations. 
These variables are sorted by the absolute magnitude of correlation with windspeed error 𝒆𝒐𝒃𝒔. Also displayed is the 
correlation of the model matchup with CYGNSS observations and ERA5 model windspeed. Variables in italics 
were passed over in analysis because they are too strongly correlated with ERA5 windspeed. Variables in bold are 
used in this analysis because they are strongly correlated with windspeed error but are sufficiently decorrelated from 
ERA5 windspeed. 

Model Variable (ERA5 
variable Parameter ID) 

Correlation with 
Windspeed 
Error 𝒆𝒐𝒃𝒔 
 

Correlation with 
CYGNSS 
Windspeed 

Correlation 
with  
ERA5 
Windspeed 

Coefficient of Drag w/ Waves  
(140233) 

-0.5310 0.5725 0.9331 

Mean Wave Period (140232) 0.4609 0.1841 -0.1942 
Charnock (148) -0.4463 0.3324 0.6498 
Wave Spectral Skewness 
(140207) 

-0.3033 0.3897 0.5896 

Sig. Wave Height (140229) 0.1583 0.7767 0.5782 
Wave Spectral Peakedness 
(140254) 

0.1521 0.1569 0.0228 

Air Seat Temp Diff [(167) – 
(34)] 

-0.1115 -0.2295 -0.1198 

2m Temp (167) -0.1020 -0.3768 -0.2602 
Sea Surface Temp (34) -0.0707 -0.3359 -0.2478 
Surface Pressure (134) 0.0364 -0.1478 -0.1619 

 

 

The variables listed in Table 5-1 are illustrative of a primary heuristic for determining optimal 

model variables using this methodology: we are looking primarily for variables that correlate 

strongly with windspeed error 𝒆𝒐𝒃𝒔, but not strongly with ERA5 windspeed output.  For the 

purposes of this analysis, we pass over any variable that has absolute value correlation 

coefficient with ERA5 windspeed greater than 0.6. This threshold is primarily designed to avoid 

using model variables that have nearly one-to-one mappings with CYGNSS ground truth. This 

would have the effect of correcting errors with ground truth and provide limited insight to the 

plausible physical basis of error sources. However, this method considers variables with a low 
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level of  partial correlation with ground truth, provided it is sufficiently decorrelated that there 

may exist a plausible physical rationale for the error. 

The first variable in Table 5-1, Coefficient of Drag with Wind Waves, is nearly 

completely correlated with ERA5 windspeed. Upon inspection, the ERA5 wave model calculates 

this value as a linear function of the neutral windspeed over the ocean, so this high correlation is 

to be expected. The third item, Charnock Parameter, accounts for the aerodynamic roughness of 

the ocean surface, and depends directly on the sea state via wind-induced stress. Because these 

variables are primarily proxies for ground truth, we do not consider them in our analysis. 

The top two remaining variables that correlate most strongly with windspeed error are the 

Mean Wave Period (MWP) and Wave Spectral Skewness (WSS). Both describe general 

statistical properties of the ocean surface and are calculated from the 2-dimensional wave 

spectrum produced by the wave model. Note that another parameter is Significant Wave Height 

(SWH), which is a known error source in the CYGNSS retrieval (Pascual, Clarizia, and Ruf 

2021). The version of the CYGNSS windspeed product used for this analysis includes a 

correction for SWH, but there remains some residual correlation with windspeed error. 

5.4.2 Generating Windspeed Correction 

We will start with MWP, which is the average time between two wave crests, inclusive of both 

wind waves and swell. This variable is strongly correlated with windspeed error but only 

moderately correlated with ERA5 windspeed. However, because there is some residual 

dependence on ERA5 windspeed, we develop a correction using a two-step process: 

1. Correct for windspeed dependence to generate model variable windspeed anomalies; and  

2. Parameterize windspeed errors for variable windspeed anomalies with respect to the 

model. 
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Both steps can be visualized by depicting the two variables in a two-dimensional histogram, as 

shown in Figure 5.3. Because the MWP appears to be roughly linearly dependent on ERA5 

windspeed, a linear regression is computed through the region of highest density (N > 1e4 

counts) to minimize the impact of outliers, as shown in Fig. 5.3(a). This regression provides an 

expected MWP as a function of windspeed l[AK(𝒚). The MWP anomaly is now: 

𝜆$8!&(𝒚) = 𝜆[AK(𝒚) − 𝜆!>?	 (5.17) 

where 𝜆$8!& is the MWP anomaly, 𝜆[AK is the parameterized expected MWP from the empirical 

linear regression, and 𝜆!>? is the observed MWP for the matchup data. The MWP anomaly is 

then matched with the observation error 𝒆𝒐𝒃𝒔 as shown in Fig. 5.3(b). A similar regression 

analysis can be performed to create an estimator for windspeed error as a function of MWP 

anomaly 𝒆𝒐𝒃𝒔,𝝀(𝜆$8!&), which is shown in red.  

 

Figure 5.3 – (a) A 2-dimensional histogram of MWP versus ERA5 windspeed. The color shading of the bins 
represent the frequency of occurrence to illustrate the shape of the overall distribution of windspeed dependence on 
MWP. A linear regression is computed (magenta) through the region of highest count density (N>1e4) to minimize 
the effects of outliers. This regression represents the windspeed dependence of MWP. The MWP anomaly is 
calculated as distance from the regression for a given windspeed.  (b) A 2-dimensional histogram with windspeed 
error versus MWP anomaly (note the change in axes). A linear regression is computed (red) to estimate the impact 
of MWP anomaly on WS error. 
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The MWP-corrected windspeed can be now calculated as: 

𝒚u = 𝒚 − 𝒆u�𝜆$8!&(𝒚)� (5.18)	

where 𝒚u is the MWP-corrected windspeed, 𝒚 is a windspeed vector, and 𝒆u(𝜆$8!&(𝒚)) is the 

MWP windspeed error, which is a function of MWP anomaly, which itself is a function of 

windspeed. This corrected windspeed is now used as the new basis for subsequent corrections.  

The values in Table 5-1 can be updated to illustrate how the MWP correction impacts the 

correlations of other parameters. These new values are shown in Table 5-2.  

 

Table 5-2 – List of ERA5 model variables matched up with the MWP-corrected windspeed. These variables are 
sorted by the absolute magnitude of correlation with MWP-corrected windspeed error  𝒆𝒐𝒃𝒔,𝝀. Also displayed is the 
correlation of the model matchup with MWP-corrected CYGNSS windspeed and MWP-corrected ERA5 windspeed. 
Variables in italics were passed over in analysis in the first step for being too strongly correlated with uncorrected 
ERA5 windspeed. Variables in bold are used in this analysis. Note that the MWP correction increases the WSS 
correlation with ERA5 windspeed, because MWP and WSS are related and the correction itself introduces additional 
windspeed dependence. For the purposes of this analysis, we assert that this does not violate the original rationale 
for excluding other parameters, because we know that WSS is not a robust proxy for ERA5 winds.  

Model Variable (ERA5 
variable name) 

Correlation with 
MWP Corrected 
Windspeed Error 

Correlation with 
MWP Corrected  
CYGNSS 
Windspeed 

Correlation with 
MWP Corrected 
ERA5 
Windspeed 

Coefficient of Drag w/ Waves  
(140233) -0.5943 0.6322 0.9173 

Charnock (148) -0.4877 0.3793 0.6449 
Wave Spectral Skewness 
(140207) -0.2433 0.5134 0.6527 

Mean Wave Period (140232) 0.2091 -0.0592 -0.3886 
Air Sea Temp Diff [(167) – 
(34)] -0.1015 -0.2332 -0.112 

Surface Pressure (134) 0.0605 -0.1463 -0.1499 
Sig Wave Hght (140229) -0.0583 0.656 0.4314 
Wave Spectral Peakedness 
(140254) 0.0556 0.0748 -0.049 

2m Temp (167) -0.0315 -0.3453 -0.2134 
Sea Surface Temp (34) 0.0058 -0.2985 -0.1977 
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 A similar process occurs for the successive correction for WSS. WSS is a statistical 

property of the ocean surface and is a measure of deviation from Gaussianity. Operationally, this 

variable is used to forecast “freak” waves, and is calculated from third-order cumulants of the sea 

surface elevation in the wave model (ECMWF 2018). While one can expect WSS to have some 

physical coupling with surface windspeed, it can also be driven by other wave model parameters 

that impact the ocean surface elevation statistics. We calculate the WSS correction from the 

MSS-corrected ERA5 windspeed matchup as illustrated in Figure 5.4. The only differences from 

the prior iteration are that we started with the MWP-corrected windspeed and applied a quadratic 

fit (as opposed to linear) for the WSS anomaly error function based on the shape of the density 

plot. The parameters of both corrections are displayed in Table 5.3. 

 

Figure 5.4 – (a) A 2-dimensional histogram with WSS versus MWP-corrected ERA5 windspeed. The color shading 
of the bins represents the frequency of occurrence to illustrate the shape of the overall distribution of (MWP-
corrected) windspeed dependence on WSS. A linear regression is computed (magenta) through the region of highest 
count density (N>2e4) to minimize the effects of outliers. This regression represents the windspeed dependence of 
WSS. The WSS anomaly is calculated as distance from the regression for a given windspeed.  (b) A 2-dimensional 
histogram with MWP-corrected windspeed error versus WSS anomaly (note the change in axes). A quadratic 
regression is computed (red) to estimate the impact of WSS anomaly on windspeed error.  
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The WSS-corrected windspeed can be calculated in a similar fashion as (5.18): 

𝒚u,v = 𝒚u − 𝒆v�𝑤$8!&(𝒚)� (5.19)	

where 𝒚u,v is the MWP- and WSS-corrected windspeed,  𝒚u is the MWP-corrected windspeed, 𝒚 

is a windspeed vector, and 𝒆v(𝑤$8!&(𝒚)) is the WSS windspeed error, which is a function of 

WSS anomaly, which itself is a function of windspeed.  

 

Table 5-3 – List of regression parameters for the corrections applied in this section. Note that the regression 
coefficients 𝑐4 are listed in descending order, where 𝑐4 take the form 𝑐5𝑥5 + 𝑐5GH𝑥5GH +⋯. 

Abscissa Ordinate Type of 
Regression Regression Coefficients 

ERA5 
Windspeed [m/s] MWP [s] Linear [-0.2175,10.7503] 

MWP Anomaly 
[s] 

Windspeed Error 
[m/s] Linear [0.2957,-0.1286] 

MWP-Corrected 
ERA5 

Windspeed [m/s] 
WSS [unitless] Linear [6.7731e-4, 0.0075] 

WSS Anomaly 
[unitless] 

Windspeed Error 
[m/s] Quadratic [-1.7584e3, 19.0555,0 .2402] 

 

5.5 Results and Discussion 

If the parametrized models for windspeed error as functions of MWP and WSS are 

applied as corrections to improve the windspeed retrieval (for the quality-controlled tracks at 5-

25 m/s), the root-mean-square error decreases from 1.75 m/s with no corrections to 1.58 m/s with 

the MWP correction and further to 1.54 m/s with both the MWP and WSS corrections. This 

represents an overall improvement of 11% in the windspeed retrieval.  
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In addition, we can estimate the covariance structure for each error component 

individually and compare with the overall observation error covariance. The individual 

components of error covariance can be calculated via (17) and (19): 

𝑅u(Δ) = 𝜎qI
( ⋅ ℛ[𝝐u](Δ) (5.20a)	

𝑅v(Δ) = 𝜎qJ
( ⋅ ℛ[𝝐v](Δ) (5.20b) 

where 𝑅u is the explainable error covariance due to MWP, 𝑅v is the explainable error covariance 

due to WSS, 𝜎qI is the standard deviation of the MWP correction in observation space, 𝜎qJ is the 

standard deviation of the WSS correction in observation space, ℛ[𝝐u] is the bulk autocorrelation 

of the MWP correction in observation space as a function of spatial lag Δ, and ℛ[𝝐v] is the bulk 

autocorrelation of the WSS correction in observation space as a function of spatial lag Δ.  

 The overall observation error covariance is calculated as suggested in (5.2) and (5.16): 

𝑅!(Δ) = 𝑅[𝒚𝒐 − 𝒚+)<](Δ) (5.21a)	

𝑅X!22(Δ) = 𝑅£𝒚𝝀,𝒘 − 𝒚+)<¤(Δ) (5.21b) 

where 𝑅! is the initial observation error covariance as a function of spatial lag Δ, 𝑅X!22 is the 

observation error covariance after the MWP and WSS corrections as a function of spatial lag Δ, 

𝒚𝒐 is the uncorrected CYGNSS observed windspeed, 𝒚𝝀,𝒘 is the MWP and WSS corrected 

CYGNSS observed windspeed, and 𝒚+)< is the ERA5 matched windspeed.  

Figure 5.5 depicts the spatial error covariance for instrument error covariance 𝑅;8?% as 

defined in (5.10a) for an exemplar track at the global average windspeed of 7 m/s and at 30 deg 

incidence, partitioned error covariances 𝑅u and 𝑅v, and the overall observation error covariances 

𝑅! and 𝑅X!22.  

Several key features can be identified from Fig. 5.5. First, the instrument-derived error 

covariance is generally a small component of the observation error covariance and decays with a 
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spatial scale size on the order of ~100 km. Second, the error covariance from MWP decays more 

slowly, while the WSS partition of observation error covariance is minimal at spatial lags greater 

than 500 km. These differences in characteristic scale sizes and rolloffs provide useful insights 

for future investigations of ocean surface roughness. Third, both the corrected and uncorrected 

topline windspeed error covariance decay to zero at ~1000 km.  

 

 
Figure 5.5 – A stacked area chart illustrating the error covariance partitions from this work. The blue region 
represents the observation error covariance from 𝑅459! for a reference track at global average windspeed. The orange 
region represents the observation error covariance due to MWP. The yellow region represents the observation error 
covariance due to WSS. The three colored regions are defined in the model as independent and are plotted by 
stacking the contributions upon one another. The grey region is defined as undiagnosed representation-retrieval error 
in this model, and is constructed as the difference between 𝑅) and the sum of the three defined error covariance 
contributions. 𝑅) is traced in black and the corrected error covariance 𝑅6)"" is dotted in red, demonstrating the 
across-the-board improvement in observation error covariance due to the corrections. 
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A key test of validation is determining whether the corresponding improvement in the 

corrected observation error covariance is due to the specific partitions identified. To calculate the 

impact of the corrections on overall error covariance structure, the cross correlation between 𝑅! 

and 𝑅X!22 needs to be accounted for. We asserted earlier that the error partitions are independent, 

but 𝑅! and 𝑅X!22 are expected to be highly correlated. The difference in error covariances 

becomes: 

															𝑅!/X!22(Δ) = 𝑅£(𝒚𝒐 − 𝒚+)<) − �𝒚𝝀,𝒘 − 𝒚+)<�¤(Δ) (5.22a)	

= 𝑅£𝒚𝒐 − 𝒚𝝀,𝒘¤(Δ) (5.22b)	

																			= 𝜎GA/GI,J
( ⋅ ℛ£𝒚𝒐 − 𝒚𝝀,𝒘¤(Δ) (5.22c)	

																	= 	𝜎GA/GI,J
( ⋅ ℛ[𝝐u + 𝝐𝒘](Δ) (5.22𝑑) 

where 𝑅!/X!22 is the difference in covariance between the initial and corrected windspeed errors, 

and the variance of the difference in windspeeds 𝜎GA/GI,J
( is computed by  

𝜎GA/GI,J
( = 𝜎GA

( + 𝜎GI,J
( − 2𝜌!/X�𝜎GA𝜎GI,J� (5.23) 

In (5.23), 𝜎GA is the standard deviation of uncorrected windspeed, 𝜎GI,J is the standard deviation 

of the corrected windspeed, and 𝜌!/X is the correlation coefficient between the uncorrected and 

corrected windspeeds. The error covariance difference 𝑅!/X!22(Δ) is plotted together with 𝑅u 

and 𝑅v in Figure 5.6.  

 Figure 5.6 suggests that the improvement in windspeed error due to the corrections, and 

the resulting impacts to the shape of the observation error covariance, nearly perfectly 

corresponds with the sum of the individual error covariance partitions. Further, this plot also 

suggests that the process of successive corrections mitigates enough residual correlation between 

error terms that the correction terms can be considered independent between one another.  
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Figure 5.6 – A stacked area chart illustrating the validation test for the error partitions. The orange region represents 
the observation error covariance due to MWP. The yellow region represents the observation error covariance due to 
WSS. The error covariance due to the correction 𝑅)G6)"" is plotted in purple. The overall shape and magnitude 
between the combined MWP and WSS error covariance and the calculated 𝑅)G6)""	are reasonably consistent, which 
suggests that the retrieval improvement is the result of the correction of these specific error sources. 

 

5.5.2 Limitations 

As seen in Figure 5.5, a significant amount of representation-retrieval error remains 

undiagnosed. While this work can begin to partition certain components of 𝒆𝒓𝒓, it is unlikely that 

this method will be able to completely partition observation error until the reference ground truth 

is matched to the observation appropriately in scale and representation. Matching disparate 

datasets for commensurate representation is a much larger topic that is outside the scope of this 
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work, but this limitation suggests an opportunity to begin quantifying the error structures of 

representation error.  

This analysis also makes several assumptions about the isotropy and distribution of 

observation error. These assumptions are enabled by sufficiently large datasets to characterize 

broad statistical behavior of observation errors, but these relationships may change based on 

location, season, or another confounding variables.   

 

Data Availability Statement. 

All data used in this work are publicly available. The CYGNSS v3.1 science data record is 

available from the NASA Physical Oceanography Distributed Active Archive Center 

(PO.DAAC) (CYGNSS 2021). ERA5 Reanalysis is publicly available through the Copernicus 

Climate Data Store (Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 2023) 
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Chapter 6 Conclusions 

6.1 Contributions 

The overall objective of this dissertation is to improve the return on investment of space-

based Earth remote sensing systems, with particular focus on applications to GNSS-R 

technology. GNSS-R itself represents a groundbreaking new method to exploit signals-of-

opportunity to extract information about the Earth system. As an opportunistic measurement, 

GNSS-R enables global measurements of various Earth surface parameters – windspeed, soil 

moisture, inundation, and others – in a form factor and price point unachievable with other 

measurements. But as a relatively newer technique with unique sampling characteristics, there 

are structural barriers to fully realizing the value GNSS-R offers to many observation and 

prediction applications.  

 There are four primary contributions in this dissertation, each with the aim of enhancing 

CYGNSS’s value, and in many cases, the enhancements are generalizable to all current and 

future observing systems.  

Chapter 2 presents an analysis of CYGNSS’s thermally-dependent gain calibration errors 

stemming from a suboptimal pre-launch calibration sequencing estimate. This work improves the 

science operations duty cycle from 90% to 98%, vastly increasing the amount of science-quality 

data collected over the life of the mission. If the value of the data is equivalent to CYGNSS’s 

approximately $150M lifecycle cost, simply recovering this data produced ~$12M in value 

return.  
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 Chapter 3 presents a technique for calculating the representativity error for when 

observations are not exactly collocated or simultaneous. This will become more important as 

new satellite architectures come online and observations are disaggregated from single platforms. 

For many phenomena, matchup conditions of space and time were determined arbitrarily, or by 

simply the limitation of the available data on-hand. However, with new miniaturized sensors and 

proliferated constellations, space system architects can design use the technique presented in this 

chapter to design constellations to meet specific representation requirements.   

 Chapter 4 develops and validates a novel first-principle based instrument error correlation 

model for CYGNSS. This model has four main innovations: (1) it provides physically 

explainable reasons why observation error is correlated in space in time, which enables optimal 

weighting and assimilation in numerical weather prediction; (2) the model construction is 

generalizable, enabling the calculation of dynamic “bottom-up” instrument error covariance for 

other observing systems and techniques; (3) the validation suggests that errors between tracks of 

observations are reasonably independent; and (4) the development of a the “Filter Lemma” 

provides a theoretical basis for how previously uncorrelated errors can become correlated.  

 Finally, Chapter 5 propagates the instrument error model into observation space for the 

CYGNSS windspeed product, and develops a method for partitioning retrieval-representation 

error covariance for GNSS-R. This work has three immediate applications: (1) improvement of 

the CYGNSS FDS windspeed product with the inclusion of two ancillary wave parameters 

(wave spectral skewness and mean wave period), which reduced RMSE by 11% against ERA5 

ground truth; (2) exploration of confounding geophysical causes and modulators of sea surface 

roughness, enabling future physical oceanography investigations; and (3) construction of 
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observation error covariance matrices for optimal data assimilation in numerical weather 

prediction.  

6.2 Future Work 

This dissertation also suggests a large body of natural follow-on investigations in three 

major thrusts: 

1. Data assimilation: evaluating how weather model skill enhances when observation 

error covariance is specified. 

2. Physical and biogeochemical oceanography: exploring the physical behavior of how 

ocean surface roughness is modulated by sources other than locally driven winds, 

such as surface contaminants, long-range swell, and stability condition.  

3. Representation Error Theory: development of mathematical methods for 

characterizing, untangling, and reducing representation error.  

 

Each of these activities adds value to both CYGNSS but also a host of other current and 

future observing systems. Data assimilation is a ripe target for future investigations, as small 

investments in extracting more value from observations can significantly improve the utility and 

usability of the data collected. Since collecting observations is almost always the most significant 

cost driver in the value chain, enhancements in data usability and utility represent some of the 

cheapest opportunities to improve model skill. 

  At the same time, a robust method to measure the correlated error structure in GNSS-R 

allows for deeper investigations of error terms or nuisance parameters in the retrieval, which may 

recover novel science findings in oceanography. For instance, the fundamental scales and 
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structures of surface biomass such as algae and sargassum may be an error term in the ocean 

windspeed product.  

 Finally, observation error covariance was examined closely for instrumentation error and 

likely sources of retrieval error, but there remains a significant opportunity to enhance the body 

of work regarding representation error covariance. Chapter 2 provides a first step in pricing the 

representativity error in terms of isotropic statistical estimates from high-quality estimates of 

variability of geophysical parameters, but the larger representation problem remains an 

opportunity for significant future theoretical development.  

6.3 Lessons learned for future GNSS-R missions 

This dissertation provides a few opportunities for lessons learned for future GNSS-R 

investigations, and some generalizable to other observing systems. The premise of Chapter 2 

originates from a prelaunch oversight – the clock that governs the receiver load switching 

between the onboard blackbody calibration target and the science antenna were not 

synchronized, leading to a much-degraded science collection duty cycle. However, the analysis 

also presents another lesson learned for future missions, which is that inexpensive temperature 

sensors located at various places externally and internally can be extremely useful for 

characterizing how the temperature cycling impacts science measurements.  

In fact, several other innovations by colleagues at the University of Michigan have been 

in response to invalid pre-launch assumptions. Through no fault of the CYGNSS team, there was 

a design assumption that GPS transmitters are relatively stable in time and across block types. 

Unfortunately, the recent GPS generations feature a new dynamic signal power that changes the 

effective isotropic radiated power throughout its orbit. The “flex power” events are not pre-



 

 124 

announced and required the development of a real-time dynamic power measurement technique 

to account for these fluctuations (Wang, Ruf, Gleason, et al. 2021b). 

Additionally, CYGNSS was architected to capture measurements of local windspeeds 

near tropical cyclones to enhance cyclone initialization and forecasting in weather models. 

However, because the GNSS-R technique has less signal-to-noise at higher windspeeds, the 

retrieval degrades in tropical cyclone conditions. Simple enhancements in nadir gain can 

significantly improve the SNR and also the retrieval (Balasubramaniam and Ruf 2023). 

 Finally, the work presented in Chapter 4 suggests that careful documentation of 

prelaunch and operational processing can be useful guides for identifying sources of correlated 

error. In particular, the smoothing of CYGNSS’s measured antenna gain patterns are a likely 

source of correlated error structure, and the specific details of these types of science data 

processing usually resides in unpublished technical memos and science team notes. There is 

residual value for all current and future missions to pay particular attention to operations that 

may correlate errors, such as smoothing or filtering, and documenting these operations in a 

systematic and accessible fashion.  
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