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ABSTRACT

The increasingly widespread use of Electronic Health Records (EHRs) offers significant op-

portunities to improve patient care insights and inspire extensive healthcare research. The

International Classification of Diseases (ICD) codes, a crucial component of EHR data, have

attracted significant research interest due to their potential to improve clinical decision-

making. This dissertation focuses on developing novel statistical models for ICD code em-

bedding and exploring their applications.

Most existing healthcare research works borrow word embedding techniques from natural

language processing (NLP) and apply them to ICD codes. However, significant differences

in the structure, meaning, and usage exist between ICD codes and natural language words,

making word embedding methods not entirely suitable for modeling ICD codes. The first

part of this dissertation proposes a new latent space zero-inflated Poisson model to character-

ize the co-occurrence of ICD codes. This model associates each ICD code with a latent vector

and assumes the co-occurrence of two ICD codes depends on the relative positions of the

corresponding latent vectors. By utilizing a zero-inflated Poisson distribution, the proposed

model effectively addresses the abundant zeros commonly observed in practice. Theoreti-

cally, we establish error bounds for the estimation of the latent vectors. Furthermore, we

demonstrate the effectiveness of our model using the MIMIC-III EHR dataset, showing that

the learned latent vectors are useful predictors for downstream tasks. This indicates that

our model has the potential to improve patient outcome predictions and advance EHR-based

research.

Designed in the 1970s, the Ninth Revision of ICD (ICD-9) no longer meets the medi-

cal needs of healthcare providers and patients. In October 2015, hospitals in the United
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States transitioned from ICD-9 to ICD-10 codes. Consequently, the healthcare domain faces

challenges in transferring and merging historical data and applications to this new system.

Addressing this, the second part of the dissertation proposes a joint latent space zero-inflated

Poisson model that learns embeddings for both versions of ICD codes simultaneously, as well

as a transformation that maps ICD-9 codes to the newer system. To demonstrate the prac-

tical value of the model, we design an ICD code translation task using the Nationwide

Readmissions Database (NRD) and show that our proposed model outperforms all existing

approaches in this task.

Although the latent space zero-inflated Poisson model has proven effective in modeling

ICD codes, focusing solely on pairwise co-occurrences may overlook higher-order information

among ICD codes. In the third project, we treat ICD codes in EHR as a hypergraph, where

the set of ICD codes in a medical record forms a hyperedge. Specifically, we consider a latent

space model based on the determinantal point process for hypergraphs. Direct estimation

of parameters using the likelihood function is however numerically unstable. To overcome

this, we develop an algorithm based on a mixture of the ordinary likelihood and the pseudo-

likelihood. This proposed algorithm is shown to be more stable compared to using the

ordinary likelihood alone, particularly when the number of hyperedges is not large. We

apply this approach to a readmission prediction task on the MIMIC-III EHR dataset and

demonstrate its practical value. We also establish theoretical guarantees for the consistency

of the mixed likelihood estimation.

viii



CHAPTER 1

Introduction

Over the past two decades, there has been an exponential increase in the volume of electronic

information stored in electronic health records (EHRs) (Shickel et al., 2017). Originally de-

signed for collecting and storing healthcare information, EHRs have attracted considerable

research interest. Their applications include but are not limited to: EHR information extrac-

tion (Wu et al., 2015; Fries, 2016), representation learning (Tran et al., 2015; Lv et al., 2016;

Choi et al., 2017b), and outcome prediction (Miotto et al., 2016; Choi et al., 2016). Among

the various types of data included in EHRs, the International Statistical Classification of

Diseases and Related Health Problems (ICD) is a crucial component.

The International Classification of Diseases (ICD) is a medical classification system con-

taining codes for diseases and medical conditions. There are over 13,000 different codes in

the Ninth Revision of the ICD (ICD-9). Each ICD code represents a specific disease or med-

ical condition (e.g., the ICD-9 code 250.00 represents “Diabetes mellitus without mention

of complication, type II or unspecified type, not stated as uncontrolled”). While primarily

designed for recording and billing purposes, the structured and standardized format of ICD

codes and their low missing rate make ICD codes very helpful for analyzing EHR data. How-

ever, the large number of different ICD codes makes it challenging to utilize ICD codes in

statistical models directly. A common approach to deal with this issue is to map ICD codes

into a low-dimensional space, and most existing works borrow word embedding models from

natural language processing (Shi et al., 2021; Choi et al., 2017b; Cai et al., 2018). However,
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there exist significant differences in the structure, meaning, and usage of ICD codes and

natural language words. For instance, words in context have order, but ICD codes in a

medical record are usually treated as a set. In addition, while natural language words can

be ambiguous, ICD codes are designed to be precise and specific. Because of these differ-

ences, word embedding models can not be applied to ICD codes directly and are arbitrarily

modified to fit ICD codes. Consequently, word embedding models designed for the unique

properties of natural language words may not be entirely suitable for modeling ICD codes.

As a result, ICD code embedding models that are designed for ICD codes specifically are

needed.

In 2015, hospitals in the United States changed from the Ninth Revision of the ICD

(ICD-9) to the Tenth Revision of the ICD (ICD-10), resulting in significant gaps in electronic

health record (EHR) data. There are many articles discussing the challenges and problems

associated with this transition (Topaz et al., 2013; Khera et al., 2018; Hamedani et al.,

2021). A primary challenge for researchers and healthcare providers is mapping between

the two versions of ICD codes. The General Equivalence Mappings (GEM) (Butler, 2007)

provides a mapping between the two versions of ICD codes. However, only a part of the

codes have a one-to-one conversion from ICD-9 to ICD-10, some other ICD-9 codes are

mapped to multiple ICD-10 codes. In addition, multiple different ICD-9 codes could be

mapped to a single ICD-10 code (Hamedani et al., 2021). This leads to difficulties in merging

EHRs with ICD-9 codes to the new system. Additionally, the transition has affected the

usage of ICD codes. For instance, research finds the monthly prevalence of the ICD code

for subarachnoid hemorrhage was stable before the transition, and became increased after

the transition. However, the actual disease prevalence remained stable (Hamedani et al.,

2021). Furthermore, the prevalence of 6 out of 16 neurologic diagnoses (37.5%) experienced

significant changes after the transition. Clearly, the transition affects the usage of ICD

codes and could cause the wrong estimation of disease prevalence. This situation has led to

recommendations for studies to limit themselves to a single ICD coding system, potentially
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resulting in the loss of many samples. Thus, the development of an effective ICD code

mapping model becomes necessary.

This dissertation addresses the above problems and challenges respectively. In Chapter

2, we consider the ICD code embedding problem. Based on the network latent space models

(Hoff et al., 2002; Hoff, 2003; Ma et al., 2020), we propose a latent space zero-inflated Poisson

model that associates ICD codes with latent positions. The proposed model assumes the

co-occurrence time of two ICD codes follows a zero-inflated Poisson distribution (Lambert,

1992). Parameters of the zero-inflated Poisson distribution are determined by the relative

positions of the corresponding latent vectors. Compared with a simple Poisson distribution,

the zero-inflated Poisson distribution handles the abundant zeros in the co-occurrence matrix

better (Loeys et al., 2012). However, the introduction of the zero-inflated Poisson distribution

also leads to difficulty in providing theoretical guarantees for the latent space zero-inflated

Poisson model. Existing works on similar models rely on the great property of the exponential

family (Ma et al., 2020; Zhang et al., 2022). The zero-inflated Poisson distribution does not

belong to the exponential family, and the existing approaches cannot be applied to the

proposed model. To overcome the difficulties, we developed error bounds of estimation

for the proposed model by using the Peano reminder of the Taylor Theorem. To show

the effectiveness of the proposed model in real-world applications, we design a readmission

prediction task using the MIMIC-III EHR dataset (Johnson et al., 2016) and apply the

proposed model to it. The result demonstrates that the latent positions learned by the

proposed model are informative and can serve as effective predictors. We compare the

proposed model with the popular word embedding models, such as Skip-gram (Mikolov

et al., 2013) and GloVe (Pennington et al., 2014), and the proposed latent space zero-inflated

Poisson model outperforms all other models.

In Chapter 3, we address the problem of lacking an ICD code mapping model. We

propose a joint latent space zero-inflated Poisson model. The model consists of two latent

space zero-inflated Poisson models and a linear transformation. The two latent space zero-

3



inflated Poisson models learn embeddings for ICD-9 and ICD-10 codes respectively. The

linear transformation is learned to align the embeddings of the two types of codes using a

high-quality code dictionary. The code dictionary contains a small amount of high-quality

matched code pairs. Each pair of matched codes has one ICD-9 code and one ICD-10 code

with an identical medical meaning. The dictionary is generated using the ICD General

Equivalence Mappings (GEM) (Butler, 2007). While the two latent space models update

the ICD code embedding, the transformation aligns the embeddings of each pair of matched

ICD codes. Considering that the relationships between diseases are independent of the ICD

coding system, the relative positional relationships of the medical code embeddings should

similarly remain unchanged. Therefore, aligning the embeddings of matched ICD codes in

the dictionary also leads to the alignment of other ICD codes with similar medical meanings.

The model makes it possible to integrate data and applications using ICD-9 codes with the

newer ICD-10 system. We designed an ICD code translation task with the Nationwide

Readmissions Database (NRD), which has both medical records with ICD-9 codes and those

with ICD-10 codes. Our proposed model has the best performance among all approaches,

demonstrating its practical value.

Although the latent space zero-inflated Poisson model has demonstrated its effectiveness

in the ICD code embedding problem, it was developed solely from pairwise co-occurrences of

ICD codes. Popular word embedding methods, such as GloVe (Pennington et al., 2014) and

Skip-gram (Mikolov et al., 2013), are also trained using pairwise information. Focusing solely

on pairwise information can result in the loss of higher-order information on the relationships

and interactions among groups of more than two diseases and medical conditions. In Chapter

4, we treat ICD codes as a hypergraph, where the set of ICD codes in the same record forms

a hyperedge. Specifically, we consider a latent space model based on the determinantal point

process (Kulesza et al., 2012) for hypergraphs. Direct estimation of parameters using the

likelihood function as proposed in Yu and Zhu (2023) is however numerically unstable. To

overcome this, we introduce the mixed likelihood, which is a combination of the ordinary

4



likelihood and the pseudo-likelihood. We design an algorithm based on the mixed likelihood.

The proposed algorithm is shown to be more stable and accurate compared to using the

ordinary likelihood alone, particularly when the number of hyperedges is not large. Theo-

retically, we show that the pseudo-likelihood is actually the ordinary likelihood function of

a sub-graph, which ensures the consistency of the mixed likelihood estimation. We apply

the proposed approach to the same predictive task as in Chapter 2, and it shows enhanced

performance compared to the estimation with ordinary likelihood.
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CHAPTER 2

A Latent Space Zero-Inflated Poisson Model

for ICD Code Embedding

2.1 Introduction

The exponential growth of electronic health records (EHR) inspired significant research in-

terest in recent years. Statistical models have proven to be highly effective in analyzing EHR

data and predicting patient outcomes, such as readmission rates and death risk, which have

the potential to improve patient care. EHR data contains a diverse range of healthcare-

related variables, including patient demographics, lab results, medications, and diagnoses.

Among these variables, International Classification of Diseases (ICD) codes play a critical

role in EHR records. Each medical record is assigned a set of ICD codes that provide essen-

tial clinic information, such as diagnoses and procedure details. Due to their well-structured

format and low incidence of missing data, ICD codes serve as highly reliable variables in

healthcare research.

Utilizing ICD codes directly in statistical models is challenging due to the large amount

of different ICD codes. This issue is not unique to healthcare and is a problem that natural

language processing researchers face as well. To address this issue, word embedding models

have been proposed to map each word to a vector in a lower-dimensional space, making it

easier to use various language models. Many existing works in healthcare research borrow

word embedding techniques to model ICD codes, including Shi et al. (2021); Nguyen et al.
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(2018); Choi et al. (2017b); Feng et al. (2017); Choi et al. (2017a); Cai et al. (2018). However,

ICD codes and words have distinct characteristics. For example, words are ordered within a

sentence, while ICD codes are typically considered unordered. Furthermore, natural language

words can be ambiguous, while ICD codes are designed to be precise and specific. These

significant differences make directly applying word embedding models to ICD codes not

entirely suitable. Therefore, a more appropriate model specifically designed for ICD codes

is necessary.

In this Chapter, we propose a latent space zero-inflated Poisson model, to model the

co-occurrence patterns of ICD codes. Specifically, the co-occurrence time of two ICD codes

is the number of times they appear in the same health record. To connect the ICD code

embedding problem with network modeling, we can view each ICD code as a node and the

co-occurrence time of two ICD codes as the weight of the edge connecting them. This way,

the co-occurrence structure of ICD codes can be seen as a network with count-weighted edges.

One of the most popular network models is the latent space model proposed in Hoff et al.

(2002). This model assumes that a lower-dimensional vector in a latent space can represent

each node in the network, and the latent vectors can reveal the behaviors of the nodes.

For example, nodes with close latent vectors are more likely to be connected or interact

with each other. The latent space model has been proven to be powerful for modeling real-

world networks in various fields, including social networks, citation networks, and biological

networks (Ward and Hoff, 2007; Ward et al., 2007; Friel et al., 2016). Our proposed model

extends the latent space model by utilizing the zero-inflated Poisson distribution.

Like the latent space model and word embedding models, the proposed latent space zero-

inflated Poisson model associates each ICD code to a vector in a lower dimension space and

assumes the co-occurrence time follows a zero-inflated Poisson distribution. The parameters

of the zero-inflated Poisson distribution are connected to the latent positions by an inner-

product model. The latent positions learned by the proposed model can be then used as

features in downstream tasks. Our case studies show that the learned vector representations
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of ICD codes are clinically meaningful, as the vector representations of ICD codes for similar

or associated diseases are closer in the latent space. These findings demonstrate the po-

tential of our models to effectively capture the medical meaning of ICD codes and improve

performance in downstream tasks in the healthcare field.

In real-world EHR datasets, we observed that certain ICD codes have never appeared

together, resulting in abundant zeros in the co-occurrence matrix. The zero-inflated Poisson

distribution in the proposed model can deal with this issue. Specifically, a zero-inflated

Poisson distribution is a mixture of a Bernoulli distribution and a Poisson distribution. In

the latent space zero-inflated Poisson model, the Bernoulli distribution determines if two

ICD codes could appear in the same records, while the Poisson distribution determines the

number of co-occurrence times (Mullahy, 1986; Cameron and Trivedi, 2013). Most works

utilizing the zero-inflated Poisson distribution are done under regression settings (Rose et al.,

2006; Lichman and Smyth, 2018), where well-designed covariates are needed. As far as we

know, this is the first work that extends the latent space model to the zero-inflated Poisson

distribution.

We also present a latent space Poisson model in this Chapter, which can be seen as a

simpler version of the proposed model. Similar to the proposed model, the latent space

Poisson model associates ICD codes with latent positions. However, it assumes the co-

occurrence time follows a simple Poisson distribution. The main contributions of this paper

are the following.

• We introduce a novel approach, the latent space zero-inflated Poisson model, to em-

bed ICD codes into latent spaces. The proposed model focuses on modeling the co-

occurrence matrix of the ICD codes. The model adopts a zero-inflated Poisson distri-

bution to characterize the co-occurrence time. The zero-inflated Poisson distribution

can model both the existence and the number of co-occurrences. The key idea of our

models is to connect ICD codes with latent vectors that represent various characteris-

tics of the codes. As a result, the latent vectors could serve as features for downstream
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tasks. Additionally, we also present a simpler version of the model, the latent space

Poisson model.

• We provide error bounds for estimates of the zero-inflated Poisson model. The mixture

distribution in the model makes it challenging to derive theoretical results. We utilize

the Peano remainder of the Taylor Theorem, instead of the commonly used Lagrange

remainder (Ma et al., 2020; Zhang et al., 2022), to deal with the complicated likelihood

function of the model. This allows us to obtain reliable and tight error bounds for our

proposed model.

• Our proposed model learns latent vectors that capture valuable features and can be

used in downstream tasks. To demonstrate the utility of these embeddings, we design

a readmission prediction task using the MIMIC-III dataset (Johnson et al., 2019) and

apply our proposed model to it. The results suggest that the learned embeddings

improve the prediction performance compared to existing models.

The rest of the chapter is organized as follows. Section 2.2 presents the proposed models,

the latent space Poisson model, and the latent space zero-inflated Poisson model, along with

the fitting methods. In Section 2.3, we derive theoretical results for the estimation errors.

In Section 2.4, we conduct simulation studies to investigate the effects of the number of

nodes and the latent space dimension and compare the proposed method to related models.

We apply the proposed method to a real-world dataset, MIMIC-III, and demonstrate its

practical value in Section 2.5. Finally, Section 2.6 concludes the chapter with a discussion.

For simplicity, we omit “latent space” and use just the “Poisson model” and “zero-inflated

Poisson model” to refer to the proposed models when there is no ambiguity throughout the

rest of the chapter.
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2.2 Model

In this section, we begin by defining the notation used throughout the chapter. Then, we

present the Poisson model and the proposed zero-inflated Poisson model, along with the

identifiability conditions for each. Finally, we introduce two algorithms that are used to fit

these models.

2.2.1 Notation

Assume that we have the co-occurrence structure of n ICD codes denoted by a symmetric

co-occurrence matrix X ∈ Nn×n, where Xij = Xji is the number of co-occurrences of the

ith code and the jth code. We assume Xij to be random variables taking values in the

natural numbers N = {0, 1, 2, ...}. We use ◦ to denote the Hadamard product (also known

as the element-wise product), that is, for any two matrices A,B ∈ Rd1×d2 of the same size,

A ◦B ∈ Rd1×d2 and (A ◦B)ij = AijBij. For any matrix A ∈ Rd1×d2 , let IA=0 be the indicator

matrix, such that, (IA=0)ij = 1 if Aij = 0, and (IA=0)ij = 0 otherwise. Similarly, let IA>0 be

that, (IA>0)ij = 1 if Aij > 0, and (IA>0)ij = 0 if Aij ≤ 0. We use ∥X∥F , ∥X∥op, ∥X∥∗, and

∥X∥∞ to denote the Frobenius norm, the operator norm, the nuclear norm, and the max

norm of matrix X respectively.

2.2.2 The Latent Space Poisson Model

To model the co-occurrence matrix, the latent space Poisson model assumes the co-occurrence

time follows a Poisson distribution whose parameter is connected to the latent positions of

the codes by the inner-product model. Specifically, each code i is represented by a latent

vector wi ∈ Rq in a low-dimensional latent space and a degree heterogeneity parameter

βi ∈ R. Let W = [w1, w2, ..., wn]T ∈ Rn×q. We consider the following inner-product latent
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space model (Hoff, 2003; Ma et al., 2020), i.e., for any i < j,

Xij = Xji ∼ Poisson(λij), (2.1)

where

log(λij) = wT
i wj + βi + βj = Φij. (2.2)

Note that the probability mass function of the Poisson distribution with parameter λ is

P (X = k) =
λke−λ

k!
for k = 0, 1, 2, ....

We rewrite the formula (2.2) in matrix form:

log(Λ) = WW T + β1T
n + 1T

nβ = Φ, (2.3)

where β = (β1, β2, ..., βn)T , and Λ = (λij)n×n.

2.2.3 The Latent Space Zero-inflated Poisson Model

We will first introduce the model structure of the latent space zero-inflated Poisson model

before we talk about the models and parameters in more detail.

To account for the abundant zeros in a co-occurrence matrix, we propose the latent

space zero-inflated Poisson model by combining the zero-inflated Poisson model developed

by Lambert (1992) with the latent space model. Unlike the previous model, each node i

is now represented by two latent vectors vi ∈ Rq1 and wi ∈ Rq2 in low-dimensional latent

spaces. Let V = [v1, v2, ..., vn]T ∈ Rn×q1 and W = [w1, w2, ..., wn]T ∈ Rn×q2 . We consider the
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following inner-product latent space model (Hoff, 2003; Ma et al., 2020), i.e., for any i < j,

Xij = Xji ∼

 0 with probability 1 − πij,

Poisson(λij) with probability πij,
(2.4)

where,

logit(πij) = vTi vj + αi + αj = Θij, (2.5)

log(λij) = wT
i wj + βi + βj = Φij. (2.6)

The parameters αi’s and βi’s are used to model node degree heterogeneity. Specifically, a

larger αi indicates the i-th code is more likely to co-occur with other codes, while a larger

βi suggests that the co-occurrence times of the i-th code with other codes are more likely to

be larger.

We rewrite the formula (2.5) and (2.6) in matrix form:

logit(Π) = V V T + α1T
n + 1T

nα = Θ, (2.7)

log(Λ) = WW T + β1T
n + 1T

nβ = Φ, (2.8)

where α = (α1, α2, ..., αn)T , β = (β1, β2, ..., βn)T , Π = (πij)n×n, and Λ = (λij)n×n.

The parameters (V, α) in (2.7) model the existence of co-occurred ICD code pairs, while

the parameters (W,β) in (2.8) model the co-occurrence times. By including the co-occurrence

times, these models are able to capture more information than models that consider only the

binary co-occurrence matrix (or binary network), thereby providing a deeper understanding

of the underlying relationships between the ICD codes and diseases.

The latent positions V and W can be considered as the vector representations of the

ICD codes. In Section 2.5, we demonstrate that these vector representations can be used as

features in downstream tasks, showing the practical value of our proposed model. One of
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the advantages of our model is the flexibility to use different dimensions for V and W , which

allows for more fine-grained control over the representation of the ICD codes.

Identifiability. To ensure the identifiability of the parameters, we make the same as-

sumptions as in Ma et al. (2020). Specifically, we assume the latent vectors are centered,

i.e., JnV = V and JnW = W , where Jn = In − 1
n
1n1T

n . This assumption ensures that

the parameters are identifiable up to orthogonal transformations. Furthermore, under this

assumption, V V T and WW T are directly identifiable.

Relationship to related models. The parameters α’s and β’s are crucial components

of the latent space zero-inflated Poisson model and connect it with other related models.

For example, when α’s are large, the corresponding π’s increase, and the latent space zero-

inflated Poisson model becomes similar to the latent space Poisson model. On the other

hand, larger values of β’s would make the model similar to the latent space Bernoulli model

presented in Ma et al. (2020). As such, the latent space Poisson model and the model in Ma

et al. (2020) are both special cases of the latent space zero-inflated Poisson model, which

shows the flexibility of our proposed model. We will provide further details and comparisons

between these models in our simulation studies and real-world examples.

2.2.4 Model Fitting

In this section, we introduce two methods for fitting the proposed models: the projected gra-

dient descent algorithm and the EM algorithm. The projected gradient descent algorithm

can be used to fit both the latent space Poisson model and the latent space zero-inflated

Poisson model. On the other hand, the EM algorithm is adapted to fit the latent space

zero-inflated Poisson model to handle the mixture distribution. Both approaches minimize

the negative log-likelihood function. The projected gradient descent algorithm minimizes

the objective function directly under the model restriction, while the EM algorithm itera-
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tively infers which part of the model generates the zeros and updates the model parameters

accordingly.

In the following section, we will take the latent space zero-inflated Poisson model as an

example to present the fitting algorithms. The latent space Poisson model can be fit by the

projected gradient descent algorithm similarly.

2.2.4.1 The Projected Gradient Descent Algorithm

We consider the negative log-likelihood function of the latent space zero-inflated Poisson

model as the objective function:

l(α, V, β,W ) = −
n∑

i<j=1

logP (Xij|α, V, β,W )

= −
n∑

i<j=1

(1Xij=0log(1 + eΘij−exp(Φij)) + 1Xij>0(Θij + XijΦij − eΦij) − log(1 + eΘij))

where 1Xij=0 is an indicator, its value is 1 if and only if Xij = 0. We define 1Xij>0 similarly.

We use the following optimization to estimate the parameters:

(α̂, V̂ , β̂, Ŵ ) = arg min
α,β∈Rn,V ∈Rn×q1 ,W∈Rn×q2

l(α, V, β,W ),

where V V T + α1T
n + 1T

nα = Θ and WW T + β1T
n + 1T

nβ = Φ.

We adapt the projected gradient descent algorithm in Ma et al. (2020) to solve the

optimization. In each iteration, we update the parameters along the direction that decreases

the loss function. The parameters are centered after each iteration to ensure identifiability.

A detailed summary of the estimation method is shown in Algorithm 1.
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Algorithm 1: The projected gradient descent algorithm for estimation

Input: a count-weighted network Xn×n, step length (ηV , ηW , ηα, ηβ), initialization

(V0,W0, α0, β0),number of iterations T ;

Output: (V̂ , Ŵ , α̂, β̂);

for t = 0, 1, ..., T − 1 do

Ṽt+1 = Vt − ηV∇V l(α, V, β,W );

W̃t+1 = Wt − ηW∇W l(α, V, β,W );

αt+1 = αt − ηα∇αl(α, V, β,W );

βt+1 = βt − ηβ∇βl(α, V, β,W );

Vt+1 = JnṼt+1 Wt+1 = JnW̃t+1

end

V̂ , Ŵ , α̂, β̂ = VT ,WT , αT , βT ;

We adapt the choices of step size proposed in Ma et al. (2020):

ηV = η/∥V0∥2F , ηα = η/(2n),

ηW = η/∥W0∥2F , ηβ = η/(2n).

2.2.4.2 The EM Algorithm

Alternatively, the EM algorithm can also be used to fit the model, which is a commonly

used approach in zero-inflated Poisson regression literature (Lambert, 1992; Min and Agresti,

2005; Wang et al., 2014). In our case, we adapted the EM algorithm to the latent space

zero-inflated Poisson model to handle the mixture distribution better.

The mixture of Φ and Θ complicates the optimization of l(α, V, β,W ). To address this

issue, we need to account for the uncertainty of whether an element Xij = 0 comes from

the Poisson distribution or the zero-inflation part. To tackle this, we introduce a binary

variable Zij that takes the value 1 if Xij = 0 and it comes from the Poisson distribution or

Xij > 0. Otherwise, Zij takes the value 0. This way, we can reformulate Xij as the product
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of two independent random variables Zij ∼ Bernoulli(πij) and X̃ij ∼ Poisson(λij). This

reformulation enables us to apply the EM algorithm to estimate the model parameters.

The distribution of the unobserved latent variable Zij with respect to the observed data

Xij and the current estimates of the parameters (V (t),W (t), α(t), β(t)) is:

P(Zij = 1|Xij, V
(t),W (t), α(t), β(t)) =


1 if Xij > 0,

π
(t)
ij exp(−λ

(t)
ij )

1−π
(t)
ij +π

(t)
ij exp(−λ

(t)
ij )

if Xij = 0,

(2.9)

where

logit(π
(t)
ij ) = v

(t)′

i v
(t)
j + α

(t)
i + α

(t)
j = Θ

(t)
ij ,

log(λ
(t)
ij ) = w

(t)′

i w
(t)
j + β

(t)
i + β

(t)
j = Φ

(t)
ij .

To simplify the notation, we use Ψ = (V,W, α, β) to represent all parameters in the rest of

this section.

E Step. When Xij > 0, Zij must be equal to 1, so the expected value of the log-likelihood

function of the ijth element is

Qij(Ψ|Ψ(t)) = EZij |Xij ,Ψ(t) [lij(Ψ)] = log(πij

exp(−λij)λ
Xij

ij

Xij!
),

and when Xij = 0, its expected value is

Qij(Ψ|Ψ(t)) =EZij |Xij ,Ψ(t) [lij(Ψ)]

=P(Zij = 0|Xij,Ψ
(t))log(1 − πij) + P(Zij = 1|Xij,Ψ

(t))log(πijexp(−λij)),

where P(Zij = 0|Xij,Ψ
(t)) and P(Zij = 1|Xij,Ψ

(t)) are given in equation (2.9). Therefore,
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the total expected log-likelihood function is:

Qij(Ψ|Ψ(t)) =EZij |Xij ,Ψ(t) [lij(Ψ)]

=1Xij=0 ·P(Zij = 0|Xij,Ψ
(t))log(1 − πij)

+1Xij=0 ·P(Zij = 1|Xij,Ψ
(t))log(πijexp(−λij))

+1Xij>0 · log(πij

exp(−λij)λ
Xij

ij

Xij!
).

M Step. We update the parameters by maximizing the expected log-likelihood obtained

in the E Step by using the same projected gradient descent algorithm as shown in Section

2.2.4.1:

Ψ(t+1) = (V (t+1),W (t+1), α(t+1), β(t+1)) = arg max
α,β∈Rn,V ∈Rn×q1 ,W∈Rn×q2

Q(Ψ|Ψ(t))

We apply both estimation methods to the simulation study and real-world data analysis.

The two methods have comparable performances in both simulation and real-world data

experiments. Compared with the EM algorithm, the projected gradient descent algorithm

is easier to tune.

2.3 Theoretical Results

In this section, we present some theoretical results on the estimation of the parameters.

Existing work (Ma et al., 2020) has established error bounds for the Bernoulli model, but

those techniques highly rely on the excellent properties of the exponential family. While the

same techniques work well with the Poisson model and we show error bounds for the Poisson

model in Section 2.3.1, the zero-inflated Poisson model does not belong to the exponential

family, and the existing approaches do not work. Additionally, the mixture of Φ and Θ in

the negative log-likelihood of the zero-inflated Poisson model leads to further difficulties in
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developing theoretical results.

To overcome the difficulties, we developed error bounds for the latent space zero-inflated

Poisson model by using the Peano remainder of the Taylor Theorem instead of the commonly

used Lagrange remainder as in Ma et al. (2020) and Zhang et al. (2022). We present the

result for the latent space zero-inflated Poisson model in Section 2.3.2.

2.3.1 Result for the Poisson Model

We consider the feasible parameter space of the latent space Poisson model:

F(n, q,M) = {Φ|Φ = WW T + β1T
n + 1nβ

T , |Φij| < M, JnW = W},

where Φ ∈ Rn×n,W ∈ Rn×q, β ∈ Rn, and Jn = In − 1
n
1n1T

n .

Let Φ∗ be the true parameters of the model that were used in the data generation, and

Φ̂ be the estimated parameters obtained by minimizing the loss function:

(β̂, Ŵ ) = arg min
(W,β)∈F(n,q,M)

l(β,W )

= arg min
(W,β)∈F(n,q,M)

−logP (X|β,W ).

In this section, we constrain the true parameters and the estimated parameters in the

feasible parameter space F(n, q,M) for the purpose of deriving theoretical results. We do

not put these constraints in simulation studies or real data examples. We apply similar

constraints in Section 2.3.2 as well.

The following theorem provides a bound on the estimation error of Φ̂.

Theorem 2.3.1 When Φ∗ and Φ̂ belong to the feasible parameter space F(n, q,M), there

exists constant C, such that,

E∥Φ̂ − Φ∗∥F ≤ C
√
nq (2.10)
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where the constant C does not depend on n, and q.

2.3.2 Results for the Zero-inflated Poisson Model

We consider the following feasible parameter space:

F(n, q1, q2,MΘ,MΦ) = {Θ,Φ|Θ = V V T + α1T
n + 1T

nα,Φ = WW T + β1T
n + 1nβ

T ,

|Θij| < MΘ, |Φij| < MΦ, JnV = V, JnW = W},

where Θ,Φ ∈ Rn×n, V ∈ Rn×q1 ,W ∈ Rn×q2 , α, β ∈ Rn, and Jn = In − 1
n
1n1T

n .

We define a C-neighbourhood of a pair of parameters (Θ∗,Φ∗) as

FC(Θ∗,Φ∗) = {Θ,Φ|(Θ,Φ) ∈ F such that |Θij − Θ∗
ij| < C and |Φij − Φ∗

ij| < C}.

Assume we generate a network X with true parameters (Θ∗,Φ∗) ∈ F , and (Θ̂, Φ̂) be the

estimated parameters obtained by minimizing the loss function:

(α̂, V̂ , β̂, Ŵ ) = arg min
(α,V,β,W )

l(α, V, β,W ),

subject to Θ̂ = V̂ V̂ T + α̂1T
n + 1T

n α̂, Φ̂ = ŴŴ T + β̂1T
n + 1nβ̂

T and (Θ̂, Φ̂) ∈ FC(Θ∗,Φ∗) for a

pre-specified constant C. The following theorem provides bounds on the estimation error of

Θ̂ and Φ̂.

Theorem 2.3.2 When true parameters (Θ∗,Φ∗) ∈ F and (Θ̂, Φ̂) are estimated by the above

procedure, there exists constant C such that

E∥Θ̂ − Θ∗∥F ,E∥Φ̂ − Φ∗∥F ≤ C
√
nmax {q1, q2} (2.11)

where the constant C does not depend on n, q1, and q2.
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Remark 1. The error bound derived in Section 2.3 aligns with the simulation studies

in Section 2.4, where the estimation error ∥Φ̂ − Φ∗∥F and ∥Θ̂ − Θ∗∥F were found to be of

order O(
√
nq) (q = q1 = q2 in the simulation). This is consistent with existing works in Ma

et al. (2020) as well.

The proof is given in the Appendix A.

2.4 Simulation Studies

In this section, we present the results of our simulation study and investigate how the

estimation of the latent space zero-inflated Poisson model is affected by the number of nodes

and the dimensions of the latent spaces. To specify the model parameters, we follow these

steps:

• Generate the node degree heterogeneity parameters: αi = −α̃i/
∑n

j=1 α̃j, where α̃i
i.i.d.∼

U [1, 3]. Generate βi with the same procedure.

• Generate the latent positions: vi = µv + N(0, Ik), where µv
i.i.d.∼ U [−1, 1]. Generate wi

with the same procedure.

• Generate the observed co-occurrence matrix: generate Xij with the parameters and

model (2.4) - (2.6).

To simplify the experimental setup, we let vi and wi have the same dimension, denoted by

q = q1 = q2. For each pair of values (n, q) ∈ {250, 500, 750, 1000} × {2, 4, 6, 8}, we generate

20 independent copies of the co-occurrence matrix according to the above procedure.

2.4.1 Effect of the Model Configuration

In this section, we show the effect of model configurations on the performance. Specifically,

we vary the number of codes and the latent space dimensions and show their effect on the
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Figure 2.1: Boxplot for relative errors with varying numbers of codes (fix q = 4). Left: the
relative of Φ; Right: the relative of Θ.

performance.

Effect of the Number of Codes. Figure 2.1 shows the estimation error for varying

numbers of codes when we fix q = 4, where “Relative Error - Phi” is defined as ∥Φ̂ −

Φ∗∥2F/∥Φ∗∥2F and “Relative Error - Theta” is defined as ∥Θ̂ − Θ∗∥2F/∥Θ∗∥2F . The relative

estimation errors of both Φ and Θ scale at the order of 1/n, which agrees well with the

theoretical results in Section 2.3. As the number of nodes increases, the relative error becomes

smaller. We observe similar results for q ∈ {2, 6, 8}.

Effect of the Latent Space Dimension. Figure 2.2 shows the estimation error for

varying latent space dimensions when we fix n = 500. The relative estimation errors of both

Φ and Θ scale at the order of q, which also agree with the theoretical results. Similar results

are observed for n ∈ {250, 750, 1000}.

2.4.2 Comparison with Related Models.

Then, we compare our proposed models (the Poisson model and the zero-inflated Poisson

model) with the model (Bernoulli) in Ma et al. (2020) by some simulations.
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Figure 2.2: Boxplot for relative errors with varying latent space dimensions (fix n = 500).
Left: the relative of Φ; Right: the relative of Θ.

2.4.2.1 Zero-Inflated Poisson Model vs. Bernoulli Model

We use the same settings as the previous simulations, but we generate βi by βi ∼ U(β0 −

0.5, β0 + 0.5)}. When β0 increases, the probability of Xij = 0 will become closer to 1 − πij,

which is essentially a Bernoulli distribution. Therefore, the zero-inflated Poisson model will

become closer to the Bernoulli model in Ma et al. (2020).

We vary β0 in {−2,−1.5, ..., 1.5} and generate matrix X with the zero-inflated Poisson

model. Then, we fit the zero-inflated Poisson model and the Bernoulli model on the generated

matrix and compare their abilities to detect positive-weighted edges. Let pij be the true

probability of Xij > 0, and p̂ij be the probability estimated by the models. We compare our

proposed zero-inflated Poisson model and the Bernoulli model by comparing the following

two measures:

• Rank Correlation: the rank correlation between the true probabilities {pij} and the

estimated probabilities {p̂ij};

• Relative Error: the relative error of the estimated probabilities

Relative Error = mean({(p̂ij − pij)
2/(pij(1 − pij))}).
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Figure 2.3: The performance of the two models with varying β0. Left: the rank correlation
between true probabilities and the estimated probabilities; Right: the relative error of the
estimated probabilities. We show the performances of three methods: the latent space zero-
inflated model fitted with projected gradient descent (labeled as “ZIP”), the latent space
zero-inflated model fitted with EM algorithm (labeled as “ZIP EM”), and the Bernoulli
model.

Figure 2.3 shows the performance of the zero-inflated Poisson model (labeled as “ZIP”

and “ZIP EM”) and the Bernoulli model. We can see the zero-inflated Poisson model always

outperforms the Bernoulli model within the range of β0. The difference in performance

becomes smaller when β0 increases, and the difference becomes negligible when the true

model is almost the same as the Bernoulli model (β0 = 1.5).

2.4.2.2 Zero-Inflated Poisson Model vs. Poisson Model

Similarly, we can compare the zero-inflated Poisson model with the ordinary Poisson model

by changing α’s. We generate αi by αi ∼ U(α0 − 0.5, α0 + 0.5)}. When α0 increases, πij will

also increase, which means the corresponding zero-inflated Poisson model will become closer

to the ordinary Poisson model.

We vary α0 in {−2,−1.5, ..., 2} and generate matrix X with the zero-inflated Poisson

model. Then, we fit the zero-inflated Poisson model and the Poisson model on the generated

matrix and compare their abilities to predict the weights (Xij). Let Xij be the co-occurrence

time of the i-th code and the j-th code, and X̂ij be the weight estimated by the models.

The following two measures are used to compare our proposed zero-inflated Poisson model

and the Poisson model:
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Figure 2.4: The performance of the two models with varying α0. Left: the rank correlation
between true weights and the estimated weights; Right: the relative error of the estimated
weights. The labels of methods are the same as in Figure 2.4.

• Rank Correlation: the rank correlation between the true weights {Xij} and the esti-

mated weights {X̂ij};

• Relative Error: the relative error of the estimated weights

Relative Error = mean({((ÊX ij − EXij)/ÊX ij)
2}).

Figure 2.4 shows the performance of the Poisson model and the zero-inflated Poisson

model(labeled as “ZIP” and “ZIP EM”). We can see the zero-inflated Poisson model always

outperforms the Poisson model. The difference in performance becomes smaller when α0

increases, i.e., when the zero-inflated Poisson model becomes closer to the ordinary Poisson

model.

The result in Section 2.4.2 indicates that both the Bernoulli model and the Poisson

model are special cases of our proposed zero-inflated Poisson model, which demonstrates the

flexibility of our proposed model.

2.5 Real-world Data Examples

In this section, we evaluate the effectiveness of our proposed methods in modeling and

analyzing real-world electronic health record (EHR) data by applying them to the MIMIC-
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III database (Johnson et al., 2019).

2.5.1 The MIMIC-III Database

The MIMIC-III database collects health-related data of over 40,000 patients who had been

admitted to intensive care units (ICU) of the Beth Isreal Deaconess Medical Center between

2001 and 2012 (Johnson et al., 2016, 2019; Goldberger et al., 2000). It includes a broad

range of information, such as laboratory test results, medical orders, billing information,

demographics, as well as medical notes and reports for 53,423 hospital admissions. The

database is publicly available and has been commonly used in healthcare research (Che

et al., 2018; Shickel et al., 2017; Suresh et al., 2017).

In the database, each admission is annotated with a set of International Classification

of Disease version 9 (ICD-9) codes. We define the co-occurrence times of a pair of ICD-9

codes as the number of times that they appear in the same record. We construct a co-

occurrence matrix of pairwise co-occurrences for all ICD-9 codes. We apply our proposed

models to this co-occurrence matrix to learn vector representations of each code. The learned

representations are then used to predict whether a patient will be readmitted to an ICU

within 30 days.

2.5.2 Data Preprocessing

Because of the substantial differences between adult and pediatric physiology, we only use

the admission records of patients aged 18 years or older. For each admission, we collect

the corresponding ICD-9 codes and a set of nine variables related to the patients (e.g., age,

gender, ethnicity, number of ICU stays).

We define a binary outcome variable to indicate whether a patient is readmitted to an

ICU within 30 days of their current discharge. The 30-day readmission rate for adult patients

in the MIMIC-III database is 5.32%.

We divide the dataset into a training set, a validation set, and a testing set. The training
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set contains about 80% of the admissions, while the rest two sets each contain about 10%

of the admissions. For an ICD-9 code that rarely occurred, we put at least one admission

record that contains it into the training set.

2.5.3 Experiment Design

We use our proposed models to learn vector representations for each ICD-9 code by applying

them to the co-occurrence matrix of ICD-9 codes. We then aggregate the vector represen-

tations by averaging them across all corresponding ICD-9 codes in each admission. These

vector representations, along with other variables such as age, gender, ethnicity, and number

of ICU stays, are used as predictors for predicting the outcome. We use Random Forest as

the prediction model due to its superior performance in our experiments compared to other

commonly used models such as Logistic Regression and XGBoost.

In literature, a popular way to generate vector representations of ICD-9 codes is using

word embedding models in natural language processing (NLP). For instance, several studies

such as Shi et al. (2021); Nguyen et al. (2018); Choi et al. (2017b), and Feng et al. (2017) used

the Skip-gram model, Choi et al. (2017a) applied the GloVe model, and Cai et al. (2018)

utilized the CBOW model. Thus, to evaluate the performance of our proposed methods,

we compare them with the above-mentioned models. Additionally, we compare our method

with a prediction model that does not use any ICD code information (labeled as “None”) to

highlight the benefits of using ICD code representations.

The optimal latent space dimensions for all models are selected from {10, 25, 50, 100} by

cross-validation (Browne, 2000).

2.5.4 Results

We show the average AUC score and standard error of each prediction model in Table

2.1. We can see that both our proposed latent space zero-inflated Poisson model (labeled

as “ZIP”) and the latent space Poisson model (labeled as “Poisson”) outperform all other

26



Figure 2.5: The change of learned α and β with the characteristics of the ICD codes. Left:
the degree of codes vs. the rank of estimated α; Right: the average weight vs. the rank of
estimated β. only codes with positive estimated β are shown.

methods. Also, using ICD code representations in the prediction could significantly improve

the prediction performance (compared with “None”).

Embedding Method None GloVe CBOW Skip-Gram Poisson ZIP
Test AUC

(standard error)
0.651

(0.004)
0.712

(0.003)
0.713

(0.003)
0.720

(0.004)
0.723

(0.003)
0.726

(0.004)

Table 2.1: The test AUC scores and corresponding standard error of different methods. ZIP:
the proposed latent space zero-inflated Poisson model; Poisson: the latent space Poisson
model; None: does not use any ICD code information.

Figure 2.5 shows how the learned α and β in the zero-inflate Poisson model are changing

with the characteristics of the ICD codes. In the left figure, each point represents an ICD

code. The vertical axis shows the degree of the code, which represents the number of other

ICD codes that have co-occurred with it. The horizontal axis shows the rank of its learned

parameter α, ordered in descending order.

In the right figure, the vertical axis represents the average co-occurrence number of the

code, which is the average number of positive co-occurrences with other ICD codes. The

horizontal axis shows the rank of its learned parameter β, ordered in descending order. Only

ICD codes with positive parameter β are displayed in the figure.

The decreasing pattern observed in both figures indicates a strong correlation between

the learned α and β parameters and the characteristics of ICD codes. Specifically, ICD
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codes that co-occur with more other codes have a larger α, while ICD codes that co-occur

more frequently with other codes have a larger β. This finding is consistent with the model

definition of α and β.

2.5.5 Case Study

In this section, we provide examples to demonstrate that the ICD code representations we

learned accurately capture the clinical meanings of the codes. We present the top five most

frequent ICD-9 codes in the MIMIC-III database in Table 2.2.

ICD-9 code Count Code Description
401.9 226,978 Unspecified essential hypertension
428.0 183,892 Congestive heart failure unspecified
427.31 171,022 Atrial fibrillation
414.01 141,513 Coronary atherosclerosis of native coronary artery
584.9 136,181 Acute kidney failure, unspecified

Table 2.2: The top five frequent ICD-9 codes in MIMIC-III

To further illustrate our point, we found the ICD-9 codes whose embeddings are closest to

the top two most frequent ICD-9 codes (401.9 and 428.0). The zero-inflated Poisson model

with latent space dimensions 25 is used to learn ICD code embedding.

The two ICD-9 codes that are closest to 401.9 (Unspecified essential hypertension) are

272.0 (Pure hypercholesterolemia) and 250.00 (Diabetes mellitus without mention of com-

plication, type ii or unspecified type, not stated as uncontrolled) in our learned space. The

three diseases, hypertension, hypercholesterolemia, and diabetes, are common concurrent

diseases (Song et al., 2016).

Similarly, the ICD-9 code 428.0 (Congestive heart failure unspecified) is closest to 410.71

(Subendocardial infarction, initial episode of care) and 425.4 (Dilated cardiomyopathy),

which are also related to heart diseases.

As cancer is a leading cause of death, we also looked at an example of a cancer-related

code. The ICD-9 code 198.3 (Secondary malignant neoplasm of the brain and spinal cord)
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frequently occurs in the MIMIC-III database. In our learned space, the three ICD-9 codes

closest to it are 197.0 (Secondary malignant neoplasm of the lung), 198.5 (Secondary ma-

lignant neoplasm of bone and bone marrow), and 198.4 (Secondary malignant neoplasm of

other parts of the nervous system). These codes are all related to secondary malignant

neoplasms.

It is worth noting that none of the closest code pairs in the above examples co-occur

the most frequently. This indicates that our model captures more complex and detailed

relationships between the codes beyond just their co-occurrence information.

2.6 Discussion

In this chapter, we propose a novel approach for ICD code embedding - the latent space

zero-inflated Poisson model. Unlike traditional latent space models for binary networks, our

proposed models not only model the existence of co-occurrence but also the number of co-

occurrence times. Both simulation studies and real-world data examples demonstrate that

our proposed method can achieve better performance by also modeling the co-occurrence

times.

The zero-inflated Poisson distribution in the proposed model plays an important role in

handling abundant zeros in the co-occurrence matrix. The Poisson part of the zero-inflated

Poisson distribution characterizes the positive co-occurrence times. On the other hand, we

would not lose the information contained in the inflated zeros, as the Bernoulli part of the

distribution captures it.

As discussed in Section 2.4, both the Bernoulli model (Ma et al., 2020) and the latent

space Poisson model are special cases of our proposed latent space zero-inflated Poisson

model. This shows the high flexibility of our proposed model and its ability to fit different

data.

Our proposed method automatically learns the vector representations, which can serve as
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features in downstream tasks. The usefulness of these vector representations is demonstrated

in Section 2.5. Because there are a large amount of ICD codes (over 13,000 different ICD-9

codes and more than 68,000 ICD-10 codes) and the sample size of healthcare-related research

is usually relatively small, it is infeasible to use ICD codes directly in many statistical

models. The vector representations provided by our model can substantially reduce the data

dimension and make it possible to utilize modern statistical models.
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CHAPTER 3

Joint Latent Space Zero-Inflated Poisson

Model for ICD Code Translation

3.1 Introduction

The amount of Electronic Health Record (EHR) data has rapidly increased across health-

care systems, offering invaluable insights into patient care and healthcare research. A typical

EHR dataset includes various variables such as patient demographics, lab results, diagnoses,

medications, orders, and notes. For each health record, a group of International Classifica-

tion of Diseases (ICD) codes are assigned by doctors to provide important clinic information.

These codes serve as precise descriptors of patients’ medical conditions, procedures received,

and other clinical details. The ICD codes in EHRs are well-structured with almost no miss-

ing data points and are utilized worldwide, making them perfect candidates for healthcare

research.

Much work has been undertaken to apply ICD codes in clinical applications. Due to the

large number of distinct ICD codes, researchers have to apply embedding methods to map

ICD codes into lower-dimensional vectors. There is a group of well-studied word embedding

models in the field of natural language processing (NLP) that can be used to map ICD codes,

such as Skip-gram (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). Therefore,

researchers typically borrow word embedding methods to model ICD codes, such as the

work in Shi et al. (2021); Nguyen et al. (2018); Choi et al. (2017b); Feng et al. (2017);

31



Choi et al. (2017a); Cai et al. (2018). However, as mentioned in Chapter 2, ICD codes and

natural language words have significantly different characteristics. Instead of utilizing word

embedding methods, Chapter 2 proposed a latent space zero-inflated Poisson model for ICD

codes specifically. The above works on ICD codes all show the value of ICD codes in clinical

research.

The Ninth revision of the International Classification of Diseases (ICD-9), designed in

the late 1970s, was used in the United States for several decades until 2015. In October

2015, hospitals in the United States transitioned from ICD-9 to ICD-10 codes because the

former no longer met the medical needs of healthcare providers and patients. This transition

resulted in many debates and discussions (Wollman, 2011; Topaz et al., 2013; Khera et al.,

2018; Hamedani et al., 2021; Kusnoor et al., 2020). The transition introduced challenges

in converting and merging EHR data and applications to the newer system. The General

Equivalence Mappings (GEM) (Butler, 2007) are mappings between ICD-9 codes and ICD-

10 codes created by medical experts. However, the relationship among ICD codes is too

complicated to be captured in just a simple mapping. The subtle differences between similar

ICD codes and the fundamental differences in the ICD-9 and ICD-10 structures lead to

difficulties in finding a precise mapping between the two versions of ICD codes. As a result,

within the GEM, only some of the codes have a one-to-one mapping to the other code system.

Many codes are mapped to multiple codes in the GEM. For instance, 255 ICD-9 codes are

mapped to more than 50 ICD-10 codes, and more than 7,200 ICD-10 codes are mapped to

multiple ICD-9 codes (Wollman, 2011). Research also showed that the transition has affected

the usage of ICD codes. For example, Hamedani et al. (2021) shows that the monthly

prevalence of the ICD code for subarachnoid hemorrhage was stable before the transition.

However, it increased after the transition, even though the actual disease prevalence remained

stable. Consequently, there were recommendations for studies to limit themselves to just one

ICD system, potentially resulting in the loss of a large number of samples. Therefore, the

ability to map historical data with ICD-9 codes to the newer system is crucial, especially
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given that sample sizes are often relatively small in clinical studies. Being able to map ICD-9

codes and ICD-10 codes is also important for personalized medicine because a patient could

have medical records with both ICD code versions.

To address the above challenge, we introduce a joint latent space zero-inflated Poisson

model that learns embeddings for both ICD-9 and ICD-10 codes simultaneously, as well as

a transformation connecting the two ICD code versions. Specifically, Our proposed model

employs two latent space zero-inflated Poisson models, as described in Chapter 2, one for

ICD-9 codes and one for ICD-10 codes. A linear transformation T is learned to align the

latent spaces of the two latent space zero-inflated Poisson models with the help of a high-

quality code dictionary containing a small amount of matched code pairs. Each code pair

has an ICD-9 code and an ICD-10 code with identical medical meaning. The code dictionary

is obtained from the ICD General Equivalence Mappings (GEM) (Butler, 2007). While the

latent space zero-inflated Poisson models optimize the vector representations for both ICD

code systems, the transformation T tends to align the vector representations of matched

code pairs.

The efficacy of our model for ICD code mapping relies on the consistency of the diseases’

internal relationships and interactions, which would not be influenced by the ICD code

system. For instance, hypertension and hypotension should never co-occur on the same

medical record. Based on the latent space zero-inflated Poisson model, the latent vectors

v for hypertension and hypotension should be approximately in opposite directions to each

other in both ICD systems. Therefore, a transformation trained by aligning latent vectors

for hypertension will also align the latent vectors for hypotension. This internal structure of

disease makes the transformation learned from the dictionary provide a generalized mapping

that can be extrapolated to map other ICD codes. The main contributions of this chapter

are the following.

• We introduce a novel approach, the joint latent space zero-inflated Poisson model,

which learns embeddings for ICD-9 and ICD-10 codes simultaneously, as well as a
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transformation that maps the ICD codes to the other system. The mapping can be

used in aggregating EHR datasets and healthcare applications with ICD-9 codes with

the newer ICD-10 system, which addresses one of the main challenges raised by the

ICD code system transition.

• We provided error bounds for the estimation of vector representation. The joint la-

tent space zero-inflated Poisson model maintains the same error bounds as the model

proposed in Chapter 2.

• In a real data experiment, we processed the Nationwide Readmissions Database (NRD)

to generate a dataset with both ICD-9 and ICD-10 codes. We designed an ICD code

translation task with that dataset and compared our proposed method with existing

approaches. Our proposed model outperforms all existing approaches. The good trans-

lation performance shows the practical value of our proposed model.

The rest of the chapter is organized as follows. In Section 3.2, we first review the latent

space zero-inflated Poisson model, and then propose the joint latent space zero-inflated

Poisson model and introduce the fitting method. In Section 3.3, we provide error bounds

for the estimation errors. In Section 3.4, using synthetic data, we show the efficacy of our

model. We then investigate the effects of model configurations and the number of matched

code pairs on the model performance. We deploy the proposed method on real-world datasets

and demonstrate its practical applications in Section 3.5. In Section 3.6, we conclude this

chapter and provide some discussions.

3.2 Model

In this section, we first introduce necessary notations and review the latent space zero-

inflated Poisson model proposed in Chapter 2, which is a crucial component of the proposed
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framework. Then we present the joint latent space zero-inflated Poisson model and its

identifiability conditions. Additionally, we introduce the fitting algorithm.

3.2.1 Notation

Assume there are n ICD-9 codes and m ICD-10 codes, and we observed the co-occurrence

matrices X(9) ∈ Nn×n and X(10) ∈ Nm×m of the two versions of ICD codes respectively, where

X
(9)
ij = X

(9)
ji ∈ N is the number of co-occurrence times of the i-th ICD-9 code and the j-th

ICD-9 code. Similarly, X
(10)
ij = X

(10)
ji ∈ N is the number of co-occurrence times of the i-th

ICD-10 code and the j-th ICD-10 code. Let {c1, c2, ..., cn} be the set of all ICD-9 codes and

{d1, d2, ..., dm} be the set of all ICD-10 codes.

Assume we have access to a mapping or a dictionary of L pairs of codes. Without loss of

generality, let the L pairs of codes be (c1, d1), (c2, d2), ..., (cL, dL). The ICD-9 code and the

ICD-10 code in each pair have the same medical meaning.

3.2.2 The Latent Space Zero-Inflated Poisson Model

In this section, we review the latent space zero-inflated Poisson model proposed in Chapter 2,

which is a key component of our model. The latent space zero-inflated Poisson model learns

latent positions of a single version of ICD codes (e.g., the ICD-9 codes) based on the co-

occurrence matrix. The model assumes the co-occurrence time of a pair of ICD codes follows

a zero-inflated Poisson distribution whose parameters are connected to the latent positions of

the corresponding codes by the inner-product model. Specifically, code i is represented by two

latent vectors vi, wi ∈ Rq in a low-dimension latent space of q degree and two heterogeneity

parameters αi and βi. Let V = [v1, v2, ..., vn]T ∈ Rn×q and W = [w1, w2, ..., wn]T ∈ Rn×q be

the matrices consisting of the latent positions of all codes, where n is the total number of

codes.

The latent space zero-inflated Poisson model considers the following inner-product latent

space model (Hoff, 2003; Ma et al., 2020), for any i < j,
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Xij = Xji ∼


0 with probability 1 − πij,

Poisson(λij) with probability πij,

(3.1)

where,

logit(πij) = vi · vj + αi + αj = Θij, (3.2)

log(λij) = wi · wj + βi + βj = Φij. (3.3)

The parameters αi’s and βi’s are node degree heterogeneity parameters. The parameters

(V, α) in (3.2) model the existence of Poisson-distributed co-occurrence time, while the pa-

rameters (W,β) in (3.3) model the number of co-occurrences. The latent positions V and

W can be considered vector representations of the nodes.

3.2.3 The Joint Latent Space Zero-Inflated Poisson Model

To overcome the problem of lacking an ICD code mapping model, we propose a novel ap-

proach: the joint latent space zero-inflated Poisson model. The proposed model consists

of two latent space zero-inflated Poisson models and a linear transformation T . The two

latent space zero-inflated Poisson models, as proposed in Chapter 2, are used to learn vector

representations of the two versions of ICD codes respectively, while the transformation T is

a linear transformation learned based on a high-quality dictionary with L matched pairs of

ICD codes {(c1, d1), (c2, d2), ..., (cL, dL)}. The two codes (one ICD-9 code and one ICD-10

code) in a matched pair (ci, di) have the identical medical meaning. The transformation T

is trained to align the vector representations of each pair of the matched codes. By aligning

the matched codes, the transformation gains the ability to also align other ICD codes with

identical or similar medical meanings.

Specifically, ICD-9 code ci is represented by two latent vectors v
(9)
i , w

(9)
i ∈ Rq9 in a low-

dimension latent space of q9 degree and two heterogeneity parameters α
(9)
i and β

(9)
i , while
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ICD-10 code di is associated with v
(10)
i , w

(10)
i ∈ Rq10 in a latent space of q10 degree and two

heterogeneity parameters α
(10)
i and β

(10)
i . Our model assumes the co-occurrence matrices X(9)

and X(10) follow the zero-inflated Poisson distribution determined by the above parameters:

X
(9)
ij = X

(9)
ji ∼


0 with probability 1 − π

(9)
ij ,

Poisson(λ
(9)
ij ) with probability π

(9)
ij ,

(3.4)

X
(10)
ij = X

(10)
ji ∼


0 with probability 1 − π

(10)
ij ,

Poisson(λ
(10)
ij ) with probability π

(10)
ij ,

(3.5)

where,

logit(π
(9)
ij ) = v

(9)
i · v(9)j + α

(9)
i + α

(9)
j = Θ

(9)
ij , (3.6)

log(λ
(9)
ij ) = w

(9)
i · w(9)

j + β
(9)
i + β

(9)
j = Φ

(9)
ij , (3.7)

logit(π
(10)
ij ) = v

(10)
i · v(10)j + α

(10)
i + α

(10)
j = Θ

(10)
ij , (3.8)

log(λ
(10)
ij ) = w

(10)
i · w(10)

j + β
(10)
i + β

(10)
j = Φ

(10)
ij . (3.9)

The transformation T consists of two linear transformations, each transformation maps

a vector of q10 degrees to a vector of q9 degrees. We use T = (TV , TW ) to represent it, where

TV , TW ∈ Rq9×q10 are the matrix forms of the transformation. The transformation maps

vector representations of an ICD-10 code into latent spaces of ICD-9 codes. Assume we have

a high-quality dictionary with L matched pair of ICD codes {(c1, d1), (c2, d2), ..., (cL, dL)}.

Let the latent vectors of ci be (v
(9)
i , w

(9)
i ) and the latent vectors of di be (v

(10)
i , w

(10)
i ). The

transformation T = (TV , TW ) maps (v
(10)
i , w

(10)
i ) to (v′i, w

′
i) ≜ (TV (v

(10)
i ), TW (w

(10)
i )). Because

the medical meanings of ci and di are identical, ideally, we want v′i being close to v
(9)
i and w′

i

being close to w
(9)
i . To achieve that, the transformation T is learned to minimize the distance

between (v′i, w
′
i), and (v

(9)
i , w

(9)
i ). We will discuss more about this in the fitting method part.

The latent position (V (9),W (9)) and (V (10),W (10)) are considered the vector representa-
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tion of the ICD codes. It can be used to explain the relationships and interactions between

different diseases and used in downstream tasks. Also, by using the transformation, we can

map the latent positions of different versions of ICD codes into the same space, which has

various potential uses. For example, it can help us translate between different versions of

ICD codes. Also, in real-world medical applications, it could help us aggregate datasets with

different versions of ICD codes.

Identifiability To ensure the identifiability of the parameters, we apply the same as-

sumptions as in Ma et al. (2020). We assume the latent vectors are centered, i.e., JnV
(9) =

V (9), JnW
(9) = W (9), JmV

(10) = V (10), JmW
(10) = W (10), where Jn = In − 1

n
1n1T

n and

Jm = Im− 1
m

1m1T
m. This identifiability assumption makes sure that the parameters are iden-

tifiable up to orthogonal transformations. Also, V V T and WW T are directly identifiable

under this assumption (V ∈ {V (9), V (10)} and W ∈ {W (9),W (10)}).

3.2.4 Fitting Method

To fit the model, we apply the Adam optimizer (Kingma and Ba, 2014) to minimize the loss

function (i.e., the negative log-likelihood function).

The loss function of the joint model consists of three parts: the loss functions for the

two latent space zero-inflated Poisson models (l(9) and l(10)), and a loss function lt for the

transformation (defined in (3.11)). We have the total loss function l be

l = l(9) + γ · lt + l(10), (3.10)

where γ is an adjustable weight for the transformation part of loss.

The loss functions for the two latent space zero-inflated Poisson models are the negative
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log-likelihood as defined in Chapter 2:

l(k)(α(k), V (k), β(k),W (k)) = −
n∑

i<j=1

logP (X
(k)
ij |α(k), V (k), β(k),W (k))

= −
n∑

i<j=1

(1
X

(k)
ij =0

log(1 + eΘ
(k)
ij −exp(Φ

(k)
ij ))

+ 1
X

(k)
ij >0

(Θ
(k)
ij + X

(k)
ij Φ

(k)
ij − eΦ

(k)
ij ) − log(1 + eΘ

(k)
ij ))

where k = 9, 10 is the ICD code version number.

We use the mean square distance between the vector representations of the matched

codes as the loss function for the transformation:

lt =
1

L

L∑
i=1

(
MSE(v

(9)
i , TV (v

(10)
i )) + MSE(w

(9)
i , TW (w

(10)
i )

)
. (3.11)

By minimizing the loss function lt, the transformation T gains the ability to align the vector

representations of the matched codes in {(c1, d1), (c2, d2), ..., (cL, dL)}

Then, all parameters P = {α(k), V (k), β(k),W (k), Tv, Tw|k = 9, 10} are fitted using the

Adam optimizer by minimizing the loss function (3.10).

3.3 Theoretical Results

In this section, we show some theoretical results on the model estimation. Existing work Ma

et al. (2020) presented estimation error bounds for the latent space Bernoulli model. The

work in Chapter 2 provided similar theoretical guarantees for the latent space Poisson model

and the latent space zero-inflated Poisson model.

We extend the result in Chapter 2 to the joint latent space zero-inflated Poisson Model.

We show theoretical guarantees for the estimation of parameters.
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3.3.1 Result for the Parameters Estimation

Let the feasible parameter space of the joint latent space zero-inflated Poisson model be

F(nk, qk,MΘ,MΦ, k ∈ {9, 10}, TV , TW ) =

{Θ(k),Φ(k), k ∈ {9, 10}|Θ(k) = V (k)V (k)T + α(k)1T
nk

+ 1nk
α(k)T ,

Φ(k) = W (k)W (k)T + β(k)1T
nk

+ 1nk
β(k)T ,

Jnk
V (k) = V (k), Jnk

W (k) = W (k),

|Θ(k)
ij | < MΘ, |Φ(k)

ij | < MΦ, k ∈ {9, 10},

TV , TW ∈ Rq9×q10},

where Θ(k),Φ(k) ∈ Rnk×nk , V (k) ∈ Rnk×qk ,W (k) ∈ Rnk×qk , α(k), β(k) ∈ Rnk , and Jnk
= Ink

−
1
nk

1nk
1T
nk

. MΘ and MΦ are pre-defined upper bounds.

We define a C-neighbourhood of a pair of parameters (Θ∗,Φ∗) as

FC(Θ∗,Φ∗) = {Θ,Φ|(Θ,Φ) ∈ F such that |Θij − Θ∗
ij| < C and |Φij − Φ∗

ij| < C}.

Assume we generate a network (X(9), X(10)) with true parameters (Θ(k)∗ ,Φ(k)∗) ∈ F , and

the latent positions of the first L pairs of codes are matched by a pair of transformation

T = (TV , TW ). Specifically, v
(9)
i = TV (v

(10)
i ) and w

(9)
i = TW (w

(10)
i ) for any i ∈ {1, 2, ..., L}.

Let (Θ̂(k), Φ̂(k)) be the estimated parameters obtained by minimizing the loss function l using

the method presented in Section 3.2, subject to Θ̂(k) = V̂ (k)V̂ (k)T + α̂(k)1T
n + 1nα̂

(k)T , Φ̂(k) =

Ŵ (k)Ŵ (k)T + β̂(k)1T
n + 1nβ̂

(k)T and (Θ̂(k), Φ̂(k)) ∈ FC(Θ(k)∗ ,Φ(k)∗) for a pre-specified constant

C.

The following theorem provides bounds on the estimation error of Θ̂(k) and Φ̂(k).

Theorem 3.3.1 Let (Θ(k),Φ(k)) be the true parameters and (Θ̂(k), Φ̂(k)) are estimated by the
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proposed procedure, there exists constant C1 such that

E∥Θ̂(k) − Θ(k)∥F ,E∥Φ̂(k) − Φ(k)∥F ≤ C1

√
max {n9q9, n10q10} (3.12)

where k ∈ {9, 10} and the constant C1 does not depend on n9, n10, q9, and q10.

We can see that the joint latent space zero-inflated Poisson model maintains the same error

bound as the latent space zero-inflated Poisson model, even though it has a much more

complicated structure. The proof is given in the Appendix B.

3.4 Simulation Studies

In this section, we present the simulation results and investigate how the number of model

dimensions and the amount of paired codes would influence the model performance. The

model parameters are generated following these steps:

• Generate 2,000 source codes and 2,000 target codes, each code has latent space positions

in one of the corresponding latent space zero-inflated Poisson models. Specifically, there

are two latent space zero-inflated Poisson models, one for the source codes, and one

for the target codes. Let the latent positions for source codes be v
(s)
i and w

(s)
i , while

the latent positions target codes be v
(t)
i and w

(t)
i .

• Without loss of generality, let the first L source codes and first L target codes be the

L pairs of matched codes (i.e., v
(t)
i = Tv(v

(s)
i ) and w

(t)
i = Tw(w

(s)
i ) for any 1 ≤ i ≤ L).

We very L from 50 to 300. The L pairs of matched codes are used for learning the

transformation.

• To test the model, the latent positions of the last 1,000 target codes and source codes

are also matched with the same transformation (i.e., v
(t)
i = Tv(v

(s)
i ) and w

(t)
i = Tw(w

(s)
i )

for any 1001 ≤ i ≤ 2000). These 1,000 pairs of codes are used as left-out samples to

test the model.
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• The latent parameters of source codes are generated following the same steps as in

Chapter 2. We summarize the steps here:

– Generate the node degree heterogeneity parameters: α
(t)
i = −α̃i/

∑n
j=1 α̃j, where

α̃i
i.i.d.∼ U [1, 3]. Generate β

(t)
i with the same procedure.

– Generate the latent positions: v
(s)
i = µv + N(0, Ik), where µv

i.i.d.∼ U [−1, 1]. Gen-

erate w
(s)
i with the same procedure.

– Generate the observed network: generate X
(s)
ij with the parameters using the

latent space zero-inflated Poisson model.

• The latent parameters v
(t)
i and w

(t)
i of the first L and last 1,000 target codes are set

to be the transformation of the latent parameters of the corresponding source codes.

The latent parameters v
(t)
i and w

(t)
i of other target codes and other undecided param-

eters (e.g., α
(t)
i and β

(t)
i ) of the target codes are generated using the same generation

procedure described above.

To simplify the setting, we let all latent positions have the same dimension q = q9 = q10 = 10.

For each experiment setting, we generate 20 independent copies of the network and then fit

and evaluate the model on them.

Evaluation. The main goal of this joint latent space zero-inflated Poisson model is to

align the latent positions of the source codes and the target codes, or in other words, to find

a translation between them. Therefore, we use the precision@k measurement on the left-out

samples to evaluate the models. The precision@k is the proportion of pairs for which the

corresponding target code is in the k-th nearest neighbors of the source code. We vary k

form {1, 3, 5, 10}.

General Performance. We evaluated the performance of our joint latent space zero-

inflated Poisson model for a specific configuration of parameters: L = 200, q = 10, and
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γ = 0.1. The true dimension q was used for the model. This configuration was chosen to

show the general performance of our proposed model.

Under this setting, our model exhibited promising results in terms of the precision@k

score, which measures how accurately the model can align the source codes and the target

codes. The Table 3.1 shows the detailed results:

k Precision@k Standard Error
1 0.8857 0.0474
3 0.9218 0.0325
5 0.9326 0.0282
10 0.9499 0.0212

Table 3.1: Precision@k scores and standard errors

The results demonstrate the efficacy of our model in mapping the source codes and target

codes. With a high precision of 0.9499 for k = 10 and consistently low standard errors, we are

confident in the model’s potential for real-world applications, such as ICD code translation.

The model can also be useful in combining medical records and data with different versions

of ICD codes.

Having established the baseline performance of our joint latent space zero-inflated Poisson

model under a specific configuration, it’s important to understand how the choice of model

dimensions and the weight parameter γ can affect its efficacy. A suitable choice is necessary

to ensure the model’s precision, and robustness. In the subsequent sections, we investigate

these parameters’ impact on the model’s performance and offer insights that can guide

optimal parameter selection for real-world applications.

3.4.1 Effect of the Model Configuration

In this section, we show the effect of model configurations on the performance. Specifically,

we vary the latent space dimensions and the weight parameter γ and show their effect on

the performance.
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Effect of the Latent Space Dimensions. While the true dimension is 10, in real-world

applications, the actual latent space dimension is unknown. As such, we explore the model’s

performance under various dimension settings to simulate realistic scenarios and ensure the

robustness of our model. We use the same procedure as in the previous section to generate

model parameters. We show the results of the precision@k score on the left-out testing set

for various dimension settings in Table 3.2 (the numbers in the brackets are corresponding

standard errors).

Dimension
p@1

(standard error)

p@3

(standard error)

p@5

(standard error)

p@10

(standard error)

6 0.4927 0.6783 0.7459 0.8229

(0.0527) (0.0523) (0.0476) (0.0404)

8 0.8039 0.923 0.9498 0.973

(0.0220) (0.0129) (0.0093) (0.0057)

10 0.8857 0.9218 0.9326 0.9499

(0.0474) (0.0325) (0.0282) (0.0212)

12 0.9995 1 1 1

(3.07e-4) (0) (0) (0)

14 0.9985 0.9999 0.9999 1

(4.77e-4) (1e-4) (1e-4) (0)

Table 3.2: Precision@k and standard error for different latent space dimensions

The results show the relationship between the number of dimensions and the model’s

precision. For dimensions below the true value (e.g., 6), the model appears to have insufficient

capacity to capture all relationships, leading to worse performance. As we approach the true

dimension (10), the precision improves significantly, indicating that the model is sufficient

to represent and align the codes. This shows the necessity to have a relatively large number

of dimensions so that the model could capture the complexity of the data.
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Interestingly, increasing the dimension beyond the true value (12 and 14) leads to near-

perfect precision scores. A larger latent space provided the model with additional capacity

to represent the relationships and patterns between the source codes and the target codes.

Moreover, a higher-dimensional latent space might be seen as a form of redundancy, which

could potentially make our model more robust to variances and noise in the data. However,

higher dimensions require more computational resources and could lead to overfitting issues.

In summary, choosing the right number of dimensions for the model is crucial. Based on

the result, we would recommend selecting a relatively large dimension for better performance.

However, the computational cost and overfitting issues also need to be taken into account.

Effect of the Weight γ. The weight γ also plays a crucial role in the joint latent space

zero-inflated Poisson model, particularly in balancing the individual code characteristics and

the relationship between the two versions of codes.

To study the impact of γ, we kept the number of matched codes L constant at 200 and

used the true number of dimensions (10) for the latent spaces. We perform experiments

with different values of γ, ranging from 0.001 to 10,000. Table 3.3 shows the performance

(as measured by precision@k and the numbers in the brackets are corresponding standard

errors) of the models with different values of γ.

45



γ
p@1

(standard error)

p@3

(standard error)

p@5

(standard error)

p@10

(standard error)

0.001 0.6972 0.7734 0.802 0.8383

(0.0619) (0.0501) (0.0456) (0.0388)

0.01 0.8713 0.9043 0.9168 0.934

(0.0682) (0.0521) (0.0464) (0.0382)

0.1 0.8857 0.9218 0.9326 0.9499

(0.0474) (0.0325) (0.0282) (0.0212)

10 0.8251 0.8509 0.8616 0.8756

(0.0887) (0.0846) (0.0832) (0.0811)

100 0.6977 0.7588 0.7798 0.8112

(0.0901) (0.0854) (0.0835) (0.0815)

1000 0.4838 0.6282 0.6837 0.7668

(0.1119) (0.1045) (0.0929) (0.0702)

10000 0 0 0 0

(0) (0) (0) (0)

Table 3.3: Precision@k and standard error for different weights (γ)

The result shows a non-monotonic relationship between the performance and γ. While

moderate values of γ yield high precision, low or high values lead to worse performance. In

essence, γ allows the model to be more or less sensitive to the differences between the source

and target codes, influencing the model’s ability to align the two spaces. Careful adjustment

of γ is needed to achieve optimal performance.

3.4.2 Effect of the Number of Matched Code Pairs L

The match code pairs are an important part of our model, as they provide valuable in-

formation on the relationship between source codes and target codes. It is necessary to
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figure out how the number of matched code pairs would influence the model performance

because high-quality matched pairs can be difficult and expensive to obtain in practice. In

this section, we study the effect of the number of matched code pairs, L, on the model per-

formance. We fix the true dimension and the model dimension at 10. Based on the result

in the previous section, we fix γ at 0.1. We vary the number of matched code pairs L in

{10, 50, 100, 150, 200, 250, 300}. Table 3.4 shows the results of the precision@k scores (the

number in the brackets are corresponding standard errors) for different numbers of L.

L
p@1

(standard error)

p@3

(standard error)

p@5

(standard error)

p@10

(standard error)

10 0.2037 0.2793 0.3174 0.3698

(0.0371) (0.0438) (0.0451) (0.0476)

50 0.9026 0.9314 0.9451 0.9596

(0.0504) (0.0355) (0.0283) (0.0208)

100 0.8741 0.9108 0.9226 0.9394

(0.0514) (0.0367) (0.0318) (0.0249)

150 0.9013 0.9291 0.9388 0.9491

(0.0502) (0.0364) (0.0314) (0.0261)

200 0.8857 0.9218 0.9326 0.9499

(0.0474) (0.0325) (0.0282) (0.0212)

250 0.8667 0.9061 0.9201 0.9391

(0.0601) (0.0445) (0.0385) (0.0304)

300 0.8884 0.9202 0.9326 0.9455

(0.0456) (0.0328) (0.0277) (0.0225)

Table 3.4: Precision@k for different numbers of matched code pairs (L)

When L is small, at 10, the model performs badly because of the sparse data. This

indicates the model’s need for a more comprehensive set of matched code pairs to learn
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alignment representations robustly. However, as L increases to the range of 50 to 200,

the model exhibits peak performance. Interestingly, as we go beyond an L of 200, the

performance remains satisfactory but doesn’t show significant improvement. This result

shows the value of the right dataset size for efficient code alignment. After the model has

enough data, increasing the sample size does not provide better performance. Therefore, it

is more important to obtain a high-quality group of matched pairs instead of having a large

number of matched pairs, which further guides our usage of data in the real data experiment.

3.5 Real Data Examples

In this section, we demonstrate the proposed method’s ability to model and translate different

versions of ICD codes using a real-world dataset, the Nationwide Readmissions Database

(NRD). For each year, the dataset collects information for patients discharged from a hospital

or died in a hospital. A part of the patients may have repeat visits in that year. The dataset

addresses the lack of information on hospital readmission. We use the NRD dataset of the

year 2015 (NRD 2015) because the hospitals in the US transited from ICD-9 to ICD-10 on

October 1, 2015. We select patients who have visits both before and after the transition

to ICD-10 and use the ICD codes in their medical records to fit the models. In total, we

get 947,053 matched patients with 24,065 distinct ICD-10 codes and 10,137 ICD-9 codes.

By matching the patients and constricting the data to the year 2015, we can minimize the

bias and variation in patient population, disease prevalence, and ICD code usage. The NRD

dataset is publicly available and has been used in various healthcare research (Kolte et al.,

2017; Jacobs et al., 2018; Agrawal et al., 2018).

3.5.1 The General Equivalence Mappings

The General Equivalence Mappings (GEM) (Butler, 2007) provide a practical mapping be-

tween ICD-9 and ICD-10. The GEM was created by the National Center for Health Statistics
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(NCHS), the Centers for Medicare and Medicaid Services (CMS), American Health Infor-

mation Management Association (AHIMA), the American Hospital Association, and 3M

Health Information Systems. Each ICD-9 code is provided with a translation in ICD-10 in

the GEM, and vice versa. However, the map is not one-to-one. Only a part of the codes

have a one-to-one mapping. Many codes are mapped to multiple codes in the GEM. For

example, 255 ICD-9 codes are mapped to more than 50 ICD-10 codes, while there are more

than 7,200 ICD-10 codes mapped to multiple ICD-9 codes (Wollman, 2011). Furthermore,

most of the translations are marked as approximate, which means the translations are not

exact. Only 3,533 translations are exact in the GEM version we currently use. As shown

in the simulation, a small amount of high-quality translation is enough for a satisfactory

performance. We expect the 3,533 exact matches would be enough for the proposed model

to provide a good translation between ICD-9 and ICD-10 codes. We use the 3,533 exact

matches for both the supervision and evaluation. More specifically, we put 70% of the exact

matches in the supervision set, and the rest 30% are used for evaluation.

3.5.2 Data Preprocessing

In the database, each visit is notated by a set of ICD codes. The ICD-9 codes were used for

visits before the transition on October 1, 2015, and the ICD-10 codes were used for visits

after the transition. We define the co-occurrence times of a pair of ICD codes as the number

of times that they appear in the same visit in the NRD 2015. We construct two co-occurrence

matrices by counting the pairwise co-occurrence times of all ICD codes, one for the ICD-9

and one for the ICD-10.

3.5.3 Experiment Design

We apply our proposed model to the co-occurrence matrices of the two versions of ICD codes.

70% of the exact matches in GEM are used for supervision. The 30% left out matches are

used for evaluation, and we report the precision@10 measurement.
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Hyper-parameters Values
Dimension d 10, 16, 24, 32, 64, 128

Weight γ 0.001, 0.01, ..., 1000

Table 3.5: The selection of hyper-parameters d and γ

A popular way to generate numerical representations of ICD codes in literature is by

borrowing word embedding models from natural language processing (NLP). For instance,

the work in Choi et al. (2017a) utilized the GloVe (Pennington et al., 2014) model, while

Nguyen et al. (2018); Choi et al. (2017b), and Feng et al. (2017) applied the Skip-gram

(Mikolov et al., 2013) model. Therefore, we also apply the GloVe model and the Skip-gram

model for this task and compare our proposed model with them. A similar transformation

matrix is learned for the word embedding models.

A special case of our proposed method is also compared. We replaced the latent space

zero-inflated Poisson model in our model with the ordinary latent space Poisson model. This

special version is simpler and trains faster.

Table 3.5 shows the selection of hyper-parameters for the models. The best combination

of hyper-parameters is determined by cross-validation.

3.5.4 Results

We show the precision@10 score, selected hyper-parameters, and the training time until

convergence for each model in Table 3.6.
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Model p@10 Dim Weight γ
Training Time

(until convergence)

Skip-Gram 0.446 16 10.0 382 mins

Glove 0.458 16 100.0 411 mins

Joint Poisson 0.490 32 10.0 31 mins

Joint zero-inflated Poisson 0.518 24 100.0 44 mins

Table 3.6: The Model Performance (evaluated by precision@10), training time, and hyper-
parameters selected by cross-validation for each model.

We can see that our proposed model (labeled as “Joint zero-inflated Poisson”) has the

highest precision@10 score and a short training time. The simplified version, the joint Poisson

model, outperforms the word embedding models as well.

3.5.5 Summary

By outperforming existing models, our approach successfully demonstrates its proficiency in

learning vector representations of both ICD-9 and ICD-10 and mapping ICD code to the

other code system.

Firstly, the successful translation between ICD-9 and ICD-10 codes, achieved by our

model, addresses a critical need in the healthcare community. Because of the transition in

ICD code systems, institutions, and professionals are often faced with the task of mapping

historical data and applications (coded in ICD-9) to newer systems (coded in ICD-10) (Topaz

et al., 2013; Khera et al., 2018; Wollman, 2011). Our model can be easily applied to this

process, reducing the effort and potential inaccuracies associated with manual or rule-based

translations.

Besides a typical one-to-one translation, our proposed model has its unique ability to

represent ICD codes in the latent spaces of the other ICD code version. This is particularly

important given that exact translations between ICD-9 and ICD-10 don’t always exist due to
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the differences and updates in the ICD code systems. Instead of direct translations, which

can lead to potential ambiguities or inaccuracies, our approach provides a more flexible

representation. By mapping the codes into latent spaces, we allow for a deeper understanding

and comparison of the codes.

In practice, the mapped latent vectors can be used in downstream tasks directly without

being restricted to finding a one-to-one transition. the vector representations learned by our

model can serve multiple secondary purposes. Potentially applications include clustering,

anomaly detection, and predictive modeling where ICD codes serve as inputs. Our proposed

model is helpful in these applications by providing high-quality, consistent, and interpretable

input data.

3.6 Discussion

In this chapter, we propose a joint latent space zero-inflated Poisson approach. The model

is built on the latent space zero-inflated Poisson model and addresses the lack of a method

that can map different versions of ICD codes to each other.

The proposed model consists of two latent space zero-inflated Poisson models and a linear

transformation. It learns embeddings for both ICD-9 codes and ICD-10 codes simultaneously.

The transformation is trained to map ICD codes into the latent space of the other ICD

system. Guided by a high-quality dictionary of ICD code pairs, the transformation has the

ability to map ICD codes with similar medical meanings to close latent positions.

The vector representations and transformations learned by our model are useful in many

healthcare applications. For instance, the vector representations can be used as features in

downstream tasks, such as risk prediction, just like the examples in Chapter 2 and existing

works (Shi et al., 2021; Nguyen et al., 2018; Choi et al., 2017b). Furthermore, the learned

transformation is useful for ICD code translation and understanding the relationship and

interactions among diseases. The ability to map ICD-9 codes to the ICD-10 system could
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help healthcare researchers merge historical medical data with ICD-9 codes to align with the

up-to-date data with ICD-10 codes. This helps with overcoming the common challenge of the

lack of enough samples in healthcare research. Also, clinical practices and applications built

with ICD-9 codes can be transferred to the newer system easily with our transformation.
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CHAPTER 4

A Novel Estimation Method for the Latent

Space DiPH Model Using Mixed Likelihood

4.1 Introduction

Although the latent space zero-inflated Poisson model achieves good performance in modeling

ICD codes and demonstrated its application value in predictive tasks and the ICD code

mapping task, it focuses solely on pairwise co-occurrences of ICD codes. Similarly, the

global vectors for word representation (GloVe) (Pennington et al., 2014), a popular word

embedding model that has been applied to ICD codes in literature, is also trained on the co-

occurrence matrix. Using a co-occurrence matrix simplifies network datasets and provides

satisfactory results. However, it also loses an essential kind of information, the higher-

order relationship among multiple ICD codes. Literates demonstrate that the higher-order

relationship plays a crucial role in network analysis (Greening Jr et al., 2015; Karwa and

Petrović, 2016; Chodrow, 2020). In addition, patients with the same disease might present

different risks of developing secondary diseases based on other medical conditions (Sánchez-

Valle et al. (2020)). The work in Goh et al. (2007) shows more than five different diseases

can be associated with the same gene, indicating the existence of higher-order associations.

Therefore, an approach that takes the high-order interactions into account is needed.

Hypergraph (Berge, 1970), an extension of the dyadic network allowing edges to connect

more than two nodes, has attracted lots of research interest. Like a dyadic network, a
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hypergraph also consists of a node set V and a set of edges E , where each edge in E is a

hyperedge. Each hyperedge contains a set of nodes in V . The hyperedges in a hypergraph

can have any number of nodes. Many models have been developed to learn hypergraph

embedding (Zhou et al., 2006; Tu et al., 2018; Zhen and Wang, 2023; Yu and Zhu, 2023). This

chapter focuses on one of these models, the Diversity and Popularity Hypergraph (DiPH)

proposed in Yu and Zhu (2023), and proposes a new fitting algorithm for it.

The DiPH model is a latent space model based on the determinantal point processes

(Kulesza et al., 2012), which is designed to capture the diversity among nodes in hyperedges

and the node’s individual popularity simultaneously. In fact, it is common to observe a

high degree of diversity in many real-world networks. For example, individuals from diverse

backgrounds collaborate on tasks that require a broad skill set; stores offer a variety of goods

to meet the varied needs of diverse customer groups. Therefore, in contrast to many other

models that are driven by similarity, the DiPH model considers diversity within hyperedges.

The paper Yu and Zhu (2023) estimates the DiPH model by maximum likelihood estima-

tion (MLE). We observe that MLE is numerically unstable for the DiPH model. Specifically,

the estimation obtained through MLE exhibits high variance, particularly when the number

of hyperedges is relatively small. In addition, the estimation error increases significantly

as the number of hyperedges decreases. To address this, we introduce the mixed likelihood

function, the combination of the ordinary likelihood function and pseudo-likelihood function.

We define the pseudo-likelihood function based on conditional probabilities. Specifically, it

is defined by the probability of observing a particular hyperedge given the presence of a cer-

tain subset of nodes within that hyperedge. Essentially, each term in the pseudo-likelihood

function considers a sub-graph of the hypergraph. This approach is shown to be more stable

and provides more accurate estimations. The main contributions of this chapter are the

following.

• We propose a new fitting algorithm using the mixed likelihood for the Diversity and

Popularity Hypergraph (DiPH) model. The mixed likelihood combines the ordinary
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log-likelihood with pseudo-log-likelihood. This approach provides more stable and

accurate estimations compared to using the ordinary likelihood alone.

• We establish the theoretical guarantees for the consistency of the mixed likelihood

estimation, indicating that the introduction of pseudo-likelihood would not affect the

consistency of the model.

• In simulation studies, compared with the original estimation method using MLE, the

proposed approach achieves smaller estimation error and stabler performance, espe-

cially in high-dimensional and sparse data scenarios.

• Utilizing the MIMIC-III database, we conduct a real-world data experiment that ap-

plies the DiPH model to a hypergraph of ICD codes constructed from EHR data. The

learned latent positions are used as predictors in a predictive task. The proposed

method achieves the best prediction performance compared with MLE estimation and

other embedding methods, demonstrating its practical value.

• To the best of our knowledge, this is the first approach to fit a model with the com-

bination of ordinary likelihood and pseudo-likelihood. Because of its high degree of

adaptability, it has potential application to a variety of models beyond the DiPH

model.

The rest of the chapter is organized as follows. In Section 4.2, we review the DiPH model

and then propose the mixed likelihood function, and introduce the fitting method. In Section

4.3, we provide a theoretical guarantee for the consistency of the estimation. In Section 4.4,

we conduct a series of simulation studies that validate the effectiveness of the mixed likelihood

method, examining its performance under various data conditions and model configurations

and demonstrating its improvement over the original estimation method. Section 4.5 applies

the proposed method to the MIMIC-III dataset and shows its practical utility. The chapter

concludes with Section 4.6, where we summarize our findings and suggest directions for

future research.
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4.2 Model

In this section, we first introduce necessary notations and review the Diversity and Popular-

ity Hypergraph (DiPH) model (Yu and Zhu, 2023). Then we propose the mixed likelihood

function for the DiPH model. The mixed likelihood function consists of the ordinary likeli-

hood function and the pseudo-likelihood function. A weight parameter w is introduced to

balance the two likelihood functions. We then present the conditions for identifiability and

the fitting method.

4.2.1 Notation

We use [n] to denote the set {1, 2, ..., n} for any positive integer n. For a hypergraph with

nv nodes, we index the nodes using positive integers and let V = [nv] be the set of nodes.

Let E = {e1, e2, ..., ene} be the set of observed hyperedges, where ne is the total number of

hyperedges and el ⊂ V for any l ∈ [ne].

4.2.2 The Diversity and Popularity Hypergraph (DiPH) Model

In this section, we review the Diversity and Popularity Hypergraph (DiPH) model proposed

in Yu and Zhu (2023), which is driven by the diversity within hyperedges and heterogeneous

popularity among individual nodes.

The DiPH model associates each node i (i ∈ V = [nv]) with a latent position vi ∈ Rd

(0 < d < nv) and a popularity parameter αi > 0. The model assumes each hyperedge of a

hypergraph independently follows a distribution P over all subsets of the set of nodes [nv].

Specifically, let {e1, e2, ..., ene} be the set of hyperedges of a hypergraph with nv nodes, the

DiPH model assumes

ek
i.i.d.∼ P for k = 1, 2, ..., ne. (4.1)

The distribution P is generated by the parameters {vi, αi|i ∈ V} with a determinantal point
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(a) (b)

Figure 4.1: (a) The parallelotope formed with ṽi, ṽj, and ṽk. (b) The parallelotope formed
with ṽi

′, ṽj, and ṽk. Note ṽi and ṽi
′ have the same length, but the volume of the parallelotope

in (a) is larger than (b). Therefore, the volume of the parallelotope is determined by both
the length and spread of the vectors.

process (DPP) (Kulesza et al., 2012) as follows. Let wi be the i−th standard basis vector

of Rnv , and define ṽi = (vi,
√
αiwi) ∈ Rd+nv . We can see the structure of ṽi’s better in the

matrix form:



ṽ1

ṽ2

...

˜vnv


=



v1
√
α1 0 0 ... 0

v2 0
√
α2 0 ... 0

...

vnv 0 0 0 ...
√
αnv


. (4.2)

For any hyperedge e ⊂ [nv], the probability of observing it is related to the parallelotope

formed with vectors {ṽi|i ∈ e} (see Figure 4.1 for more detail). Specifically, the distribution

P is given by

P (E = e) ∝ vol2({ṽi|i ∈ e}), (4.3)

where vol({ṽi|i ∈ e}) is the volume of the parallelotope. In order to compute the volume
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more easily, define

Lnv×nv = (ṽi
T ṽj)

nv
i,j=1. (4.4)

Then the right hand side of (4.3) is given by

vol2({ṽi|i ∈ e}) = det(Le),

where Le is the submatrix of L with rows and columns with indexes in e and det(·) is the

determinant of a matrix (Anderson, 1958). Using mathematical induction, we can show

∑
e⊂[nv ]

det(Le) = det(L + I).

Therefore, we have

P (E = e) =
det(Le)

det(L + I)
, (4.5)

for any hyperedge e ⊂ [nv]. The DiPH model is defined by (4.1), (4.2), (4.4), and (4.5). The

model is written as H(v1, v2, ..., vnv , α), or H(L).

In order to ensure identifiability, the DiPH model requires that all vi’s share the same

(unknown) norm, i.e.

∥vi∥2 = ∥vi′∥2 > 0 for any i, i′ ∈ [nv].

For a given hypergraph with an observed set of hyperedges E = {e1, e2, ..., ene}, the
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log-likelihood function of the DiPH model is

ℓ =
1

ne

ne∑
k=1

log(P (E = ek))

=
1

ne

ne∑
k=1

log

(
det(Lek)

det(L + I)

)
=

1

ne

ne∑
k=1

logdet(Lek) − logdet(L + I). (4.6)

Therefore, one can apply maximum likelihood estimation (MLE) to estimate the parameters

by solving

arg max
vi∈Rd,αi>0,

∥vi∥2 is a constant over i

1

ne

ne∑
k=1

logdet(Lek) − logdet(L + I). (4.7)

The optimization problem (4.7) can be solved by the projected gradient descent algorithm

(Lange and Lange, 2013). We refer readers to Yu and Zhu (2023) for more details on the

identifiability, estimation, and other properties of the DiPH model.

4.2.3 The Mixed Likelihood

In this section, we define the pseudo-log-likelihood for the DiPH model and the mixed like-

lihood, which combines the ordinary log-likelihood and the pseudo-log-likelihood.

To define the pseudo-log-likelihood, we first present the conditional probability for the

DiPH model. For any hyperedges e1 ⊂ e2 ⊂ [nv] and a random hyperedge E that follows

the distribution P as defined in (4.3), we have

P (E = e2|e1 ⊂ E) =
det(Le2)

det(L + I − Ie1)
,

where Ie1 is an nv-by-nv diagonal matrix whose diagonal elements are either one or zero.

The i-th diagonal element of Ie1 is one if and only if i ∈ e1.

60



We define the pseudo-log-likelihood as

ℓp =
1

ne

ne∑
k=1

∑
e⊂ek

log(P (E = ek|e ⊂ E))

=
1

ne

ne∑
k=1

∑
e⊂ek

(logdet(Lek) − logdet(L + I − Ie)) . (4.8)

For an observed hyperedge ek, the inner summation is taken over all subset e ⊂ ek. It

considers all possible subsets of a hyperedge, capturing the diverse relationships among

the nodes in the hyperedge. The pseudo-log-likelihood function measures the likelihood of

observing a hyperedge given partial information about the hyperedge (i.e., a part of nodes

in the hyperedge). It is important to note that conditioning on e1 ⊂ E, the distribution

of other nodes in the hyperedge (E
⋂
ec1) also follows a DiPH model on the node set ec1,

the complement set of e1 in V . Essentially, each term in the pseudo-log-likelihood function

measures a sub-graph of the original hypergraph, capturing information from a different

perspective.

Recall the ordinary log-likelihood is

ℓ =
1

ne

ne∑
k=1

logdet(Lek) − logdet(L + I).

We define the mixed likelihood as

ℓmixed = w × ℓ + ℓp, (4.9)

where w > 0 is a weight parameter. The parameter w balances the weight of the ordinary

log-likelihood and the pseudo-log-likelihood and introduces flexibility to our approach. By

introducing the pseudo-log-likelihood and combining it with the ordinary log-likelihood, the

mixed likelihood captures a more comprehensive and detailed understanding of hypergraphs.
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4.2.4 Estimation Method

In this section, we propose a new estimation method for the DiPH model using the mixed

likelihood ℓmixed defined in (4.9). We employ the maximum likelihood estimation (MLE) to

the mixed likelihood, analogous to the estimation method in the original DiPH paper (Yu

and Zhu, 2023). We reparameterize vi’s using V ∈ Rnv×d and β by

Vi. :=
vi

∥vi∥2
, and β := ∥vi∥22.

Recall that

L = (ṽi
T ṽj)

nv
i,j=1 = (vTi vj)

nv
i,j=1 + diag(α) = βV V T + diag(α).

Then the mixed likelihood becomes

ℓmixed =
w

ne

(
ne∑
k=1

logdet(Lek) − logdet(L + I)

)

+
1

ne

ne∑
k=1

∑
e⊂ek

(logdet(Lek) − logdet(L + I − Ie))

=
w

ne

(
ne∑
k=1

logdet((βV V T )ek + diag(α)ek) − logdet(βV V T + diag(α) + I)

)

+
1

ne

ne∑
k=1

∑
e⊂ek

(
logdet((βV V T )ek + diag(α)ek) − logdet(βV V T + diag(α) + I − Ie)

)
.

We estimate the parameters by solving the optimization problem

arg max
V ∈Rnv×d,∥Vi.∥2=1,

αi>0,β>0

ℓmixed (4.10)

using the projected gradient descent algorithm (Lange and Lange, 2013). In each iteration,

the algorithm first performs a gradient update for the estimation of the parameters and then

projects the parameters into constraint sets to satisfy the model constraints. Specifically, the

algorithm projects Vi. into the unit sphere and projects αi into R+. To make the estimation
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stabler and converge faster, we recommend fixing β and tuning it as a hyperparameter.

4.3 Theoretical Results

In this section, we present the consistency for the mixed likelihood estimation of the DiPH

model.

Consider a DiPH model H(v∗1, v
∗
2, ..., v

∗
nv
, α∗) with v∗i ∈ Rd, αi > 0, and a set of hy-

peredges E = {e1, e2, ..., ene} generated from the DiPH model. Let v̂1, v̂2, ..., v̂nv , α̂ be the

parameters estimated by the optimization problem (4.10). Moreover, let L̂ be the MLE for

L∗ = (v∗Ti v∗j )nv
i,j=1 + diag(α∗) defined as

L̂ := arg max
L∈L

ℓmixed, (4.11)

where L is the feasible space of L:

L = {L = (vTi vj)
nv
i,j=1 + diag(α)|v∗i ∈ Rd, αi > 0, and ∥vi∥2 > 0 is constant}.

4.3.1 Consistency

We use the same metrics as in Yu and Zhu (2023) to measure the error of estimation. Because

the latent positions vi’s are identifiable up to an orthogonal transformation and individual

sign flips, we use minO∈Od,si=±1

∑nv

i=1 ∥v̂i − siOv∗i ∥2 to measure the error of v̂i’s, where Od

is the set of d-dimension orthogonal matrices. Similarly, because L is identifiable up to row

and column sign flips, we use minS∈Dnv
∥L̂− SL∗S∥F to measure the error of L̂, where Dnv

is the set of nv-dimension matrices with all diagonal entries being 1 or −1. Theorem 4.3.1

gives the consistency of the proposed estimation method using the mixed likelihood.

Theorem 4.3.1 Consider a DiPH model H(v∗1, v
∗
2, ..., v

∗
nv
, α∗), with the set of hyperedges

E = {e1, e2, ..., ene} independently generated from the DiPH model. Let v̂1, v̂2, ..., v̂nv , α̂, L̂ be
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the estimated parameter using the optimization problem (4.10) and (4.11). When nv > 2d

and {v∗1, v∗2, ..., v∗nv
} span Rd, we have

min
O∈Od,si=±1

nv∑
i=1

∥v̂i − siOv∗i ∥2
p→ 0,

∥α̂− α∗∥2
p→ 0,

min
S∈Dnv

∥L̂− SL∗S∥F
p→ 0,

as ne → ∞.

Despite introducing the pseudo-log-likelihood, our proposed estimation method with

mixed likelihood keeps the same consistency property as the original DiPH estimation

method. As mentioned in section 4.2.3, each term in the pseudo-log-likelihood is actu-

ally a term in the log-likelihood function of a sub-graph. Therefore, it is expected that the

new fitting algorithm using the combination of ordinary likelihood and pseudo-log-likelihood

would maintain the consistency that the original fitting algorithm holds. In addition, the

following Theorem 4.3.2 provides the same consistency guarantee for estimation generated

by solely maximizing the pseudo-log-likelihood ℓp.

Theorem 4.3.2 Consider a DiPH model H(v∗1, v
∗
2, ..., v

∗
nv
, α∗), with the set of hyperedges

E = {e1, e2, ..., ene} independently generated from the DiPH model. Let v̂′1, v̂
′
2, ..., v̂

′
nv
, α̂′, L̂′

be the estimated parameters by maximizing the pseudo-log-likelihood ℓp. Under the same

assumption as in Theorem 4.3.1, we have

min
O∈Od,si=±1

nv∑
i=1

∥v̂′i − siOv∗i ∥2
p→ 0,

∥α̂′ − α∗∥2
p→ 0,

min
S∈Dnv

∥L̂′ − SL∗S∥F
p→ 0,

as ne → ∞.
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Theorem 4.3.1 and Theorem 4.3.2 provide confidence in the estimation yielded by the

proposed method. The proof of Theorem 4.3.1 and Theorem 4.3.2 is established utilizing

the result in Van der Vaart (2000) and is given in the Appendix.

4.4 Simulation Studies

In this section, we present some simulation studies and evaluate the performance of the

estimation method using the mixed likelihood function. The simulation studies are designed

to compare the proposed method against the original estimation method proposed in the

DiPH paper (Yu and Zhu, 2023). We summarize our simulation settings as follows:

• Nodes and hyperedges: We set the number of nodes (nv) to 100 and vary the

number of hyperedges (ne) from 100 to 3,000.

• Latent space dimensions: The dimension of the latent space (d) is varied among

{2, 3, 4, 6, 8}.

• Parameter generation: latent positions v∗1, ..., v
∗
nv

are uniformly and independently

selected from the unit sphere. The popularity parameter α∗
i ’s are generated by

√
α∗
i =

0.15γi + 0.05, where γi’s independently follow the Beta(1, 4) distribution. The density

function of α is given in Figure 4.2. Most nodes will have a relatively small popularity

parameter, while a few nodes will have a large popularity parameter.

• Hypergraph generation: we independently generate ne hyperedges E = {e1, e2, ..., ene}

from the model H(v∗1, v
∗
2, ..., v

∗
nv
, α∗).

• Number of simulations: For each different setting, we generated 10 independent

hypergraphs to ensure the robustness of our results.

• Subset selection in pseudo-log-likelihood: due to the high computational com-

plexity involved in traversing all subsets within a hyperedge (totaling 2t different sub-

sets, where t is the number of nodes in a hyperedge), we introduce a sampling approach
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Figure 4.2: The density function of α

to address the problem. Instead of considering all subsets, we randomly sample a part

of them for the calculation. We vary the number of subsets sampled from {t, 2t, 4t,

8t}. This method significantly reduced the computational load while maintaining the

integrity of the estimation process.

We then estimate the parameters v∗i ’s and α∗
i ’s using both the proposed estimation

method and the original estimation method for the DiPH model. In simulation studies,

we assume the length of latent vectors (β = 1) is known and use the true value of β in both

approaches. To compare the performance of the two approaches, we use the relative errors

of vi’s and αi’s. The relative error of αi’s is defined as

l(α̂, α) = meani(|
α̂i − αi

αi

|).

And the relative error of vi’s is

l(V̂ , V ) =
minO∈Od,S∈Dnv

∥V̂ − SV O∥F
∥V ∥F

,

where O is a d-by-d orthogonal matrix and S is an nv-by-nv diagonal matrix with diagonal
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entries in {−1, 1}.

4.4.1 Performance in the estimation of V

Figure 4.3 shows the relative error of V across different dimensions (3,4, and 6) and numbers

of hyperedges m for the DiPH model using both our proposed estimation method and the

original approach (labeled as DiPH). For our proposed method, we vary the subset sampling

sizes from {t, 2t, 4t, 8t}. The results are labeled as DiPH mix x, where x is the sample size.

In all dimensions, the proposed estimation method with mixed likelihood consistently

outperforms the original approach. The mixed likelihood estimation method also shows less

variability, suggesting it is more consistent and stable.

For both approaches, increasing the number of hyperedges m tends to decrease the relative

error. Therefore, having more hyperedges benefits both methods. Notably, the mixed likeli-

hood is more stable across different numbers of hyperedges, indicating the mixed likelihood

method can already achieve good performance even with a small number of hyperedges.

Also, as the dimension becomes larger, where the complexity of the model increases, the

mixed likelihood method shows increasing advantages over the original method.

These findings indicate that the mixed likelihood method is more reliable in conditions

of limited information (e.g., a small number of hyperedges or a complex model with a high

dimension). The improved performance in these challenging scenarios demonstrates the

practical applicability of the mixed likelihood method, making it a valuable tool for analyzing

hypergraphs in real-world situations where data might be complex or sparse.

When the subset sampling size increases from t to 8t, there is no significant change in

the estimation performance, indicating the proposed method is not sensitive to the sampling

size.

67



Figure 4.3: Relative error of V . Left (Row 1): the relative error of V for model dimension
d = 3; Right (Row 1): the relative error of V for model dimension d = 4; Middle (Row 2):
the relative error of V for model dimension d = 6.
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Figure 4.4: Relative error of αi’s. Left (Row 1): the relative error of αi’s for model dimension
d = 3; Right (Row 1): the relative error of αi’s for model dimension d = 4; Middle (Row 2):
the relative error of αi’s for model dimension d = 6.
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4.4.2 Performance in the estimation of α’s

Figure 4.4 shows the estimation error of α’s. As the number of hyperedges m increases,

the relative error for both methods decreases, which indicates that more data provides a

more accurate estimation of the popularity parameter and matches the observation of the

estimation of V .

In the case of smaller numbers of hyperedges (m), there is a significant advantage of the

mixed likelihood estimation over the original estimation method, especially in higher dimen-

sions. This aligns with the idea that the mixed likelihood approach is particularly beneficial

in scenarios where the available information is limited.

In conclusion, the mixed likelihood estimation method, with the subset sampling strategy, is

a robust and efficient alternative to the original DiPH model estimation. It offers improved

accuracy and consistency, particularly in data-sparse and high-dimensional scenarios. It is

expected the mixed likelihood estimation method has the potential for widespread applica-

tion in complex hypergraph modeling.

4.5 Real Data Examples

In this section, we illustrate the practical utility of the mixed likelihood estimation method by

applying it to a real-world electronic health record (EHR) dataset, the MIMIC-III database

(Johnson et al., 2019).

4.5.1 The MIMIC-III database

The MIMIC-III database is a comprehensive collection of EHR data from over 50 thousand

ICU admissions at the Beth Isreal Deaconess Medical Center between 2001 and 2012 (John-

son et al., 2016, 2019; Goldberger et al., 2000). It provides detailed information about the

admissions, such as demographics, laboratory test results, and detailed treatment records.
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Each admission is annotated with a group of ICD-9 (International Classification of Diseases,

the 9th revision) codes. These codes capture important information about patient diagnoses

and treatments, making them invaluable for healthcare data analysis.

When using the ICD codes in healthcare research, the conventional approach is to borrow

word embedding techniques from natural language processing (Shi et al., 2021; Nguyen et al.,

2018; Choi et al., 2017b; Feng et al., 2017; Choi et al., 2017a; Cai et al., 2018). Some of

those models rely on pairwise co-occurrences of ICD codes. However, these methods have

significant drawbacks.

Word embedding models from natural language processing are primarily designed for the

human language, which differs substantially from ICD codes. For example, words in a human

language sentence have order, while ICD codes are typically treated as a set. Moreover, the

meaning of a word can be ambiguous, but ICD codes are designed to be precise and specific.

Also, ICD codes have a well-structured tree hierarchy, which words do not have. Therefore,

those word embedding models may not be the most suitable model to capture the full clinical

context and the complicated relationships that exist between different diagnoses.

On the other hand, focusing solely on pairwise co-occurrences of ICD codes results in the

loss of substantial information. Frequently, more than two medical conditions interact with

each other. Considering just pairwise information is not enough to capture these higher-

order interactions. In contrast, the DiPH model treats ICD codes in the EHR database as a

hypergraph. The ability to learn higher-order information makes it possible for us to develop

more accurate predictive models and tools that reflect the complexity of real-world clinical

scenarios.

In the following real data example, we apply the DiPH model to a similar predictive task

as the one in Chapter 2. We demonstrate the practical value of the proposed estimation

method by comparing it with other approaches in the predictive task.
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4.5.2 Data Processing

We follow the way in Chapter 2 to process the MIMIC-III dataset. Specifically, the group of

diagnosis ICD codes and nine variables related to the patients (e.g., age, gender, ethnicity,

number of ICU stays) are collected and used as predictors. We remove admissions of patients

aged less than 18 years to maintain consistency in physiological profiles.

We define the 30-day readmission rate and use it as the outcome of the prediction task.

The readmission rate in the MIMIC-III database is 5.32% among adults. We split the dataset

into a training set (80% of samples), a validation set (10% of samples), and a testing set

(10% of samples). To ensure an unbiased assessment, we use the validation set to tune model

parameters and the testing set to evaluate the final model performance.

We create a hypergraph of ICD codes using the MIMIC-III database. For each admission,

the associated group of diagnosis ICD codes form a hyperedge of the hypergraph. As the

DiPH model encourages diversity (Yu and Zhu, 2023) and it is common that there are similar

ICD codes in one admission, we trim all ICD codes into their category level (i.e., we treat

250.00 and 250.01 as the same code 250). Duplicate codes in a hyperedge are removed. ICD

codes with less than 5 appearances are also removed.

After the processing, there are 823 ICD codes (nodes) and 36,656 admissions (hyperedges)

in the hypergraph.

4.5.3 Experiment Design

We then fit the DiPH model on the hypergraph using both the mixed likelihood and the

ordinary log-likelihood. The learned latent positions of the ICD codes, derived from the

fitting process, serve as features in the downstream predictive task.

Specifically, for each admission, we aggregate the latent positions of the associated ICD

codes. The aggregated vectors, along with other variables, are then used as predictors for

Random Forest. In this real data example, we aggregate the latent positions simply by

taking the average over all codes.
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Hyper-parameters Values
Dimension d 5, 12, 20, 32, 48

Learning Rate 0.01, 0.001, ..., 10−6

Weight w
(Mixed likelihood only)

1, 10, 25, 50, 100

Table 4.1: The selection of hyper-parameters

Table 4.1 shows the selection of hyper-parameters of the estimation methods of DiPH.

The best combination of hyper-parameters is selected by cross-validation for both methods.

We present the average performance on the test set in the next section. We also show

the average performance of the latent space zero-inflated Poisson model (labeled “ZIP”) in

Chapter 2 for comparison. The experiment setting for the latent space zero-inflated Poisson

model is the same as in Section 2.5.

4.5.4 Results

Table 4.2 shows the average test AUC and standard error of each method. Without any

embedding method, the Random Forest achieves an AUC score of 0.651, which serves as

a baseline for evaluating the amount of information learned from ICD codes by different

methods. The standard errors associated with these AUC scores are relatively small for all

approaches, suggesting a high level of precision in the AUC estimates and model robustness.

Employing the latent space zero-inflated Poisson model for embedding leads to a higher

AUC score of 0.713, indicating that the additional information provided by latent positions

learned by the model benefits the prediction model. The ordinary DiPH model also improves

upon the baseline with an AUC score of 0.708, though it falls slightly short of the performance

achieved by the latent space zero-inflated Poisson model.

Notably, the DiPH model estimated by the mixed likelihood achieves an AUC score of

0.719, surpassing all other methods. This improvement suggests that the mixed likelihood

estimation method, which combines both ordinary log-likelihood and pseudo-log-likelihood,

is particularly effective in capturing useful information from the ICD codes. The results
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demonstrated again the ability of the mixed likelihood estimation method to improve the

performance of the DiPH model.

Embedding Method None ZIP DiPH
DiPH

(Mixed likelihood)
Test AUC

(standard error)
0.651

(0.004)
0.713

(5.33e-3)
0.708

(4.91e-3)
0.719

(4.97e-3)

Table 4.2: The test AUC scores and standard error of each model

4.6 Discussion and Future Work

In this chapter, we introduced the mixed likelihood function for the DiPH model and pro-

posed a new estimation method using it.

The consistency theorem provided for the mixed likelihood estimation confirms that the

method maintains the great theoretical properties of the DiPH model. It is guaranteed

that as the amount of hyperedges increases, the estimations converge to the true underlying

parameters, providing a solid theoretical foundation for the application of this method.

In the simulation studies, the proposed approach demonstrated a significant advantage

over the original approach, especially when dealing with high-dimensional and sparse hyper-

graphs. The ability to produce reliable, robust, and accurate estimations even with limited

information is especially valuable in fields like healthcare research, where the databases are

often relatively small.

In conclusion, the mixed likelihood function presents a better estimation performance for

the DiPH model. Its advantages are demonstrated in both simulation studies and real data

examples.

As far as we know, this is the first work to estimate a model with the combination

of ordinary likelihood and pseudo-likelihood. By introducing pseudo-log-likelihood, which

essentially considers sub-models, the method provides a panoramic view of the data from

different perspectives. This approach significantly enhances our ability to capture and inter-
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pret complex patterns and relationships that can hardly captured by traditional methods,

thereby improving the accuracy and robustness of our model performance.

Given the observed success of the mixed likelihood methodology with the DiPH model,

it’s plausible to conjecture that this approach could be beneficially applied to a range of

other models, particularly those involving multi-way interactions. Therefore, one potential

extension of the study is to consider a more general framework for an estimation method

using mixed likelihood.

In this chapter, we demonstrate that our proposed approach is more stable and achieves

better performance. We also establish consistency for the proposed model. However, it is

still unclear how the mixed likelihood helps with the estimation. Therefore, another direction

of future work is developing a deeper understanding of the mechanism through which the

mixed likelihood function enhances the estimation process.
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APPENDIX A

Appendix For Chapter 2

A.1 Proofs of main theorems

A.1.1 Proof of Theorem 2.3.2

By the definition of (Θ∗,Φ∗) and (Θ̂, Φ̂), we have

l(Θ∗,Φ∗) − l(Θ̂, Φ̂) ≥ 0 (A.1)

where,

l(Θ,Φ) =l(α, V, β,W ),

Θ =V V T + α1T
n + 1T

nα,

Φ =WW T + β1T
n + 1T

nβ.
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Let f(Θ) = log(1 + exp(θ)), g(Φ) = exp(Φ), and h(Θ,Φ) = log(1 + eΘ−eΦ) then

LHS of (A.1) =
∑
Xij=0

[
log(1 + eΘ̂ij−eΦ̂ij

) − log(1 + eΘ
∗
ij−e

Φ∗
ij

)

]
+
∑
Xij>0

[
(Θ̂ij − Θ∗

ij) + Xij(Φ̂ij − Φ∗
ij) − (exp(Φ̂ij) − exp(Φ∗

ij))
]

−
n∑

i,j=1

[
log(1 + exp(θ̂ij)) − log(1 + exp(θ∗ij))

]
=
∑
Xij=0

[
h(Θ̂ij, Φ̂ij) − h(Θ∗

ij,Φ
∗
ij)
]

+
∑
Xij>0

[
(Θ̂ij − Θ∗

ij) + Xij(Φ̂ij − Φ∗
ij) − (g(Φ̂ij) − g(Φ∗

ij))
]

−
n∑

i,j=1

[
f(Θ̂ij) − f(Θ∗

ij)
]

≥0

To use the Taylor Theorem, we rewrite the above formula as:

0 ≤
∑
Xij=0

[
h(Θ̂ij, Φ̂ij) − h(Θ∗

ij,Φ
∗
ij) − hΘ(Θ∗

ij,Φ
∗
ij)(Θ̂ij − Θ∗

ij) − hΦ(Θ∗
ij,Φ

∗
ij)(Φ̂ij − Φ∗

ij)
]

−
n∑

i,j=1

[
f(Θ̂ij) − f(Θ∗

ij) − f ′(Θ∗
ij)(Θ̂ij − Θ∗

ij)
]

−
∑
Xij>0

[
g(Φ̂ij) − g(Φ∗

ij) − g′(Φ∗
ij)(Φ̂ij − Φ∗

ij)
]

+

∑
Xij>0

1 +
∑
Xij=0

hΘ(Θ∗
ij,Φ

∗
ij) −

n∑
i,j=1

f ′(Θ∗
ij)

 (Θ̂ij − Θ∗
ij)

+

∑
Xij>0

(Xij − g′(Φ∗
ij)) +

∑
Xij=0

hΦ(Θ∗
ij,Φ

∗
ij)

 (Φ̂ij − Φ∗
ij)
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To simplify the formula, let

∆(1) =
∑
Xij>0

1 +
∑
Xij=0

hΘ(Θ∗
ij,Φ

∗
ij) −

n∑
i,j=1

f ′(Θ∗
ij),

and

∆(2) =
∑
Xij>0

(Xij − g′(Φ∗
ij)) +

∑
Xij=0

hΦ(Θ∗
ij,Φ

∗
ij).

By using the Taylor Theorem with Peano remainder, we have:

0 ≤ 1

2

∑
Xij=0

[hΘΘ(Θ∗
ij,Φ

∗
ij)(Θ̂ij − Θ∗

ij)
2 + hΘΦ(Θ∗

ij,Φ
∗
ij)(Θ̂ij − Θ∗

ij)(Φ̂ij − Φ∗
ij)+

hΦΦ(Θ∗
ij,Φ

∗
ij)(Φ̂ij − Φ∗

ij)
2 + 2

∑
|α|=2

Rh
α(Θ̂ij, Φ̂ij)(Θ̂ij − Θ∗

ij, Φ̂ij − Φ∗
ij)

α]

−1

2

n∑
i,j=1

[f ′′(Θ∗
ij)(Θ̂ij − Θ∗

ij)
2 + 2Rf (Θ̂ij)(Θ̂ij − Θ∗

ij)
2] (A.2)

−1

2

∑
Xij>0

[g′′(Φ∗
ij)(Φ̂ij − Φ∗

ij)
2 + 2Rg(Φ̂ij)(Φ̂ij − Φ∗

ij)
2]

+
〈

∆(1), Θ̂ − Θ∗
〉

+
〈

∆(2), Φ̂ − Φ∗
〉
,

where Rh
α, R

f , Rg are Peano remainders s.t.

lim
Θ̂ij→Θ∗

ij

Rf (Θ̂ij) → 0, lim
Φ̂ij→Φ∗

ij

Rg(Φ̂ij) → 0, and lim
(Θ̂ij ,Φ̂ij)→(Θ∗

ij ,Φ
∗
ij)
Rh

α(Θ̂ij, Φ̂ij) → 0, (A.3)

for any multi-index notation |α| = 2.

We present some lemmas first before we proceed to the proof of the main theorem.

Lemma A.1.1 For any 1 ≤ i, j ≤ n, E∆
(1)
i,j = 0, and there exists constant c1 such that

E∥∆(1)∥op ≤ c1
√
n.

Lemma A.1.2 Similar to Lemma A.1.1, we have for any 1 ≤ i, j ≤ n, E∆
(2)
i,j = 0, and

there exists constant c2 such that E∥∆(2)∥op ≤ c2
√
n.
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Lemma A.1.3 (Theorem 2 in Lata la (2005)). For any finite matrix Z = {Zij} ∈ Rn×m

of independent mean zero random variables, there exists a universal constant κ0, which does

not depend on n and m, such that

E∥Z∥op ≤ κ0

max
i

(∑
j

E(Z2
ij)

)1/2

+

(
max

j

∑
i

E(Z2
ij)

)1/2

+

(∑
ij

E(Z2
ij)

)1/4
 .

Lemma A.1.4 There exist constants CΘ, CΦ > 0, such that,

E(
n∑

i,j=1

f ′′(Θ∗
ij)(Θij − Θ∗

ij)
2 +

∑
Xij>0

g′′(Φ∗
ij)(Φij − Φ∗

ij)
2

−
∑
Xij=0

[hΘΘ(Θ∗
ij,Φ

∗
ij)(Θij − Θ∗

ij)
2 + hΘΦ(Θ∗

ij,Φ
∗
ij)(Θij − Θ∗

ij)(Φij − Φ∗
ij) + hΦΦ(Θ∗

ij,Φ
∗
ij)(Φij − Φ∗

ij)
2])

≥CΘ

n∑
i,j=1

(Θij − Θ∗
ij)

2 + CΦ

n∑
i,j=1

(Φij − Φ∗
ij)

2.

Lemma A.1.5 There exists constant C, such that, for any |Θij−Θ∗
ij| < C and |Φij−Φ∗

ij| <

C, we have Rf (Θij) < CΘ

8
, Rg(Φij) < CΦ

8
, Rh

ΘΘ(Θij,Φij) < CΘ

8
, Rh

ΦΦ(Θij,Φij) < CΦ

8
, and

Rh
ΘΦ(Θij,Φij) <

min (CΦ,CΘ)
8

.

Combining Lemma A.1.4, Lemma A.1.5, and (A.2), we have,
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1

8
CΘE∥Θ̂ − Θ∗∥2F +

1

8
CΦE∥Φ̂ − Φ∗∥2F

≤1

2
E

n∑
i,j=1

[f ′′(Θ∗
ij)(Θ̂ij − Θ∗

ij)
2 + 2Rf (Θ̂ij)(Θ̂ij − Θ∗

ij)
2]

+
1

2
E
∑
Xij>0

[g′′(Φ∗
ij)(Φ̂ij − Φ∗

ij)
2 + 2Rg(Φ̂ij)(Φ̂ij − Φ∗

ij)
2]

− 1

2
E
∑
Xij=0

[hΘΘ(Θ∗
ij,Φ

∗
ij)(Θ̂ij − Θ∗

ij)
2 + hΘΦ(Θ∗

ij,Φ
∗
ij)(Θ̂ij − Θ∗

ij)(Φ̂ij − Φ∗
ij)

+ hΦΦ(Θ∗
ij,Φ

∗
ij)(Φ̂ij − Φ∗

ij)
2 + 2

∑
|α|=2

Rh
α(Θ̂ij, Φ̂ij)(Θ̂ij − Θ∗

ij, Φ̂ij − Φ∗
ij)

α]

≤E
〈

∆(1), Θ̂ − Θ∗
〉

+ E
〈

∆(2), Φ̂ − Φ∗
〉

≤E(∥∆(1)∥op
√

rank(Θ̂ − Θ∗)∥Θ̂ − Θ∗∥F ) + E(∥∆(2)∥op
√

rank(Φ̂ − Φ∗)∥Φ̂ − Φ∗∥F )

By Lemma A.1.1, and Lemma A.1.2, we have,

1

8
CΘE∥Θ̂ − Θ∗∥2F +

1

8
CΦE∥Φ̂ − Φ∗∥2F ≤ c1

√
nq1E∥Θ̂ − Θ∗∥F + c2

√
nq2E∥Φ̂ − Φ∗∥F .

Therefore,

max {E∥Θ̂ − Θ∗∥2F ,E∥Φ̂ − Φ∗∥2F}

≤
8 max {c1

√
nq1, c2

√
nq2}

min {CΘ, CΦ}
(E∥Θ̂ − Θ∗∥F + E∥Θ̂ − Θ∗∥F )

≤
16 max {c1

√
nq1, c2

√
nq2}

min {CΘ, CΦ}
max {E∥Θ̂ − Θ∗∥F ,E∥Φ̂ − Φ∗∥F}.

So, we have,

E∥Θ̂ − Θ∗∥F ≤
16 max {c1

√
nq1, c2

√
nq2}

min {CΘ, CΦ}
,

and

E∥Φ̂ − Φ∗∥F ≤
16 max {c1

√
nq1, c2

√
nq2}

min {CΘ, CΦ}
,
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which concludes our proof.

A.1.1.1 Proof of Lemma A.1.1

To simplify the proof, we omit all the star marks in Φ∗, Φ∗
ij, Θ∗, and Θij∗ in this proof.

Because

∆(1) =
∑
Xij>0

1 +
∑
Xij=0

hΘ(Θij,Φij) −
n∑

i,j=1

f ′(Θij),

we have,

E∆
(1)
i,j = P(Xij > 0) + P(Xij = 0) × hΘ(Θij,Φij) − f ′(Θij)

= (1 −P(Xij = 0)) + P(Xij = 0) × eΘij−exp(Φij)

1 + eΘij−exp(Φij)
− eΘij

1 + eΘij
. (A.4)

Plug

P(Xij = 0) =
1

1 + eΘij
+

eΘij

1 + eΘij
· e−exp(Φij)

=
1 + eΘij−exp(Φij)

1 + eΘij

in (A.4), we have

E∆
(1)
i,j =

eΘij − eΘij−exp(Φij)

1 + eΘij
+

1 + eΘij−exp(Φij)

1 + eΘij
× eΘij−exp(Φij)

1 + eΘij−exp(Φij)
− eΘij

1 + eΘij
.

= 0

Because Θij and Φij are bounded, and

∆
(1)
i,j = 1Xij>0 + 1Xij=0 ×

eΘij−exp(Φij)

1 + eΘij−exp(Φij)
− eΘij

1 + eΘij
,

one can show that E((∆
(1)
i,j )2) is also bounded. Therefore, by Lemma A.1.3, we can prove

the second part of Leamm A.1.1, i.e., there exists constant c1 such that E∥∆(1)∥op ≤ c1
√
n.
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This concludes our proof of Lemma A.1.1.

A.1.1.2 Proof of Lemma A.1.2

To simplify the proof, we also omit all the star marks in Φ∗, Φ∗
ij, Θ∗, and Θij∗ in this proof.

Because

∆(2) =
∑
Xij>0

(Xij − g′(Φij)) +
∑
Xij=0

hΦ(Θij,Φij)

we have

E∆
(2)
ij = E(1Xij>0 ·Xij) − E(1Xij>0 · g′(Φij)) + E(1Xij=0 · hΦ(Θij,Φij))

= E(Xij) −P(Xij > 0)g′(Φij) + P(Xij = 0)hΦ(Θij,Φij))

=
eΘij

1 + eΘij
· eΦij − eΘij − eΘij−exp(Φij)

1 + eΘij
· eΦij +

1 + eΘij−exp(Φij)

1 + eΘij
· −eΘij−exp(Φij)+Φij

1 + eΘij−exp(Φij)

= 0

Because Θij and Φij are bounded, one can show that E((∆
(2)
i,j )2) is also bounded. There-

fore, by Lemma A.1.3, we can prove the second part of Leamm A.1.2, i.e., there exists

constant c2 such that E∥∆(2)∥op ≤ c2
√
n. This concludes our proof of Lemma A.1.2.
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A.1.1.3 Proof of Lemma A.1.4

We first provide the formulas for all the derivatives in the Lemma:

f ′′(Θ∗
ij) =

eΘ
∗
ij

(1 + eΘ
∗
ij)2

g′′(Φ∗
ij) = exp(Φ∗

ij)

hΘΘ(Θ∗
ij,Φ

∗
ij) =

eΘ
∗
ij−exp(Φ∗

ij)

(1 + eΘ
∗
ij−exp(Φ∗

ij))2

hΦΦ(Θ∗
ij,Φ

∗
ij) =

eexp(Φ
∗
ij)+Θ∗

ij+2Φ∗
ij − eexp(Φ

∗
ij)+Θ∗

ij+Φ∗
ij − e2Θ

∗
ij+Φ∗

ij

(eexp(Φ
∗
ij) + eΘ

∗
ij)2

hΘΦ(Θ∗
ij,Φ

∗
ij) = − e−exp(Φ∗

ij)+Θ∗
ij+Φ∗

ij

(1 + eΘ
∗
ij−exp(Φ∗

ij))2
.

We have

E(
n∑

i,j=1

f ′′(Θ∗
ij) −

∑
Xij=0

hΘΘ(Θ∗
ij,Φ

∗
ij))ij

=
eΘ

∗
ij

(1 + eΘ
∗
ij)2

− 1 + eΘ
∗
ij−exp(Φ∗

ij)

1 + eΘ
∗
ij

· eΘ
∗
ij−exp(Φ∗

ij)

(1 + eΘ
∗
ij−exp(Φ∗

ij))2

=
eΘ

∗
ij − eΘ

∗
ij−exp(Φ∗

ij)

(1 + eΘ
∗
ij)2(1 + eΘ

∗
ij−exp(Φ∗

ij))
. (A.5)

Let

A =
eΘ

∗
ij − eΘ

∗
ij−exp(Φ∗

ij)

(1 + eΘ
∗
ij)2(1 + eΘ

∗
ij−exp(Φ∗

ij))
. (A.6)
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Similarly, we have

E(
∑
Xij>0

g′′(Φ∗
ij) −

∑
Xij=0

hΦΦ(Θ∗
ij,Φ

∗
ij))

=
eΘ

∗
ij − eΘ

∗
ij−exp(Φ∗

ij)

1 + eΘ
∗
ij

· exp(Φ∗
ij)

− 1 + eΘ
∗
ij−exp(Φ∗

ij)

1 + eΘ
∗
ij

· e
exp(Φ∗

ij)+Θ∗
ij+2Φ∗

ij − eexp(Φ
∗
ij)+Θ∗

ij+Φ∗
ij − e2Θ

∗
ij+Φ∗

ij

(eexp(Φ
∗
ij) + eΘ

∗
ij)2

=
eΘ

∗
ij+Φ∗

ij + e2Θ
∗
ij+Φ∗

ij−exp(Φ∗
ij) − eΘ

∗
ij+2Φ∗

ij−exp(Φ∗
ij)

(1 + eΘ
∗
ij)(1 + eΘ

∗
ij−exp(Φ∗

ij))
. (A.7)

Let

B =
eΘ

∗
ij+Φ∗

ij + e2Θ
∗
ij+Φ∗

ij−exp(Φ∗
ij) − eΘ

∗
ij+2Φ∗

ij−exp(Φ∗
ij)

(1 + eΘ
∗
ij)(1 + eΘ

∗
ij−exp(Φ∗

ij))
. (A.8)

Also, let

C = − E
∑
Xij=0

hΘΦ(Θ∗
ij,Φ

∗
ij)

=
e−exp(Φ∗

ij)+Θ∗
ij+Φ∗

ij

(1 + eΘ
∗
ij)(1 + eΘ

∗
ij−exp(Φ∗

ij))
. (A.9)

Having (A.5)-(A.9), we only need to prove that there exist constants CΘ, CΦ > 0, such that,

A(Θij − Θ∗
ij)

2 + B(Φij − Φ∗
ij)

2 + C(Θij − Θ∗
ij)(Φij − Φ∗

ij)

≥ CΘ(Θij − Θ∗
ij)

2 + CΦ(Φij − Φ∗
ij)

2 (A.10)

We claim that A > 1
2

C

1+e
Θ∗
ij

and B > 1
2
(1 + eΘ

∗
ij)C. Note that

|C(Θij − Θ∗
ij)(Φij − Φ∗

ij)| ≤
1

2

C

1 + eΘ
∗
ij

(Θij − Θ∗
ij)

2 +
1

2
(1 + eΘ

∗
ij)C(Φij − Φ∗

ij)
2.
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The left-hand-side of (A.10)

LHS ≥A(Θij − Θ∗
ij)

2 + B(Φij − Φ∗
ij)

2 − 1

2

C

1 + eΘ
∗
ij

(Θij − Θ∗
ij)

2 − 1

2
(1 + eΘ

∗
ij)C(Φij − Φ∗

ij)
2

≥min
i,j

(A− 1

2

C

1 + eΘ
∗
ij

)(Θij − Θ∗
ij)

2 + min
i,j

(B − 1

2
(1 + eΘ

∗
ij)C)(Φij − Φ∗

ij)
2 (A.11)

Let CΘ = infi,j,Θ∗,Φ∗(A − 1
2

C

1+e
Θ∗
ij

) and CΦ = infi,j,Θ∗,Φ∗(B − 1
2
(1 + eΘ

∗
ij)C), we have (A.10)

holds. Therefore, to prove the Lemma, we only need to show that A > 1
2

C

1+e
Θ∗
ij

, B >

1
2
(1 + eΘ

∗
ij)C and CΘ, CΦ > 0.

We first show that A > 1
2

C

1+e
Θ∗
ij

and CΘ > 0. Note

A >
1

2

C

1 + eΘ
∗
ij

⇐⇒ eΘ
∗
ij − eΘ

∗
ij−exp(Φ∗

ij) − 1

2
e−exp(Φ∗

ij)+Θ∗
ij+Φ∗

ij > 0

⇐⇒ 1 > e−exp(Φ∗
ij) +

1

2
e−exp(Φ∗

ij)+Φ∗
ij . (A.12)

Let x = eΦ
∗
ij > 0, then the right-hand-side of (A.12) becomes y(x) = e−x + 1

2
xe−x. Note that

y′(x) = −e−x +
1

2
e−x − 1

2
xe−x

= −1

2
e−x − 1

2
xe−x

< 0,

so the right-hand-side of (A.12) is smaller than y(0) = 1. Therefore, A > 1
2

C

1+e
Θ∗
ij

. Also,

because Θ∗
ij is bounded, x cannot approach zero infinitely and A− 1

2
C

1+e
Θ∗
ij

cannot approach

zero infinitely. As a result CΘ = infi,j,Θ∗,Φ∗(A− 1
2

C

1+e
Θ∗
ij

) > 0.
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We then show B > 1
2
(1 + eΘ

∗
ij)C and CΦ > 0. Note

B >
1

2
(1 + eΘ

∗
ij)C

⇐⇒ eΘ
∗
ij+Φ∗

ij + e2Θ
∗
ij+Φ∗

ij−exp(Φ∗
ij) − eΘ

∗
ij+2Φ∗

ij−exp(Φ∗
ij) >

1

2
(1 + eΘ

∗
ij)(e−exp(Φ∗

ij)+Θ∗
ij+Φ∗

ij)

⇐⇒ eΘ
∗
ij+Φ∗

ij + e2Θ
∗
ij+Φ∗

ij−exp(Φ∗
ij) − eΘ

∗
ij+2Φ∗

ij−exp(Φ∗
ij) >

1

2
e−exp(Φ∗

ij)+Θ∗
ij+Φ∗

ij +
1

2
e−exp(Φ∗

ij)+2Θ∗
ij+Φ∗

ij

⇐= eΘ
∗
ij+Φ∗

ij − eΘ
∗
ij+2Φ∗

ij−exp(Φ∗
ij) >

1

2
e−exp(Φ∗

ij)+Θ∗
ij+Φ∗

ij

⇐⇒ 1 − eΦ
∗
ij−exp(Φ∗

ij) >
1

2
e−exp(Φ∗

ij) (A.13)

Let x = eΦ
∗
ij > 0 and y(x) = xe−x + 1

2
e−x, then

y′(x) = e−x − xe−x − 1

2
e−x

=
1

2
e−x − xe−x.

Note that y′(x) ≥ 0 when x ≤ 1
2

and y′(x) ≤ 0 when x ≥ 1
2
, so y(x) ≤ y(1

2
) = e−

1
2 < 1.

Therefore, the last inequation of (A.13) holds. As a result B > 1
2
(1 + eΘ

∗
ij)C, and CΦ =

infi,j,Θ∗,Φ∗(B − 1
2
(1 + eΘ

∗
ij)C) > 0. We have proved Lemma A.1.4.

A.1.1.4 Proof of Lemma A.1.5

Because CΘ, CΦ > 0 and

lim
Θ̂ij→Θ∗

ij

Rf (Θ̂ij) → 0, lim
Φ̂ij→Φ∗

ij

Rg(Φ̂ij) → 0, and lim
(Θ̂ij ,Φ̂ij)→(Θ∗

ij ,Φ
∗
ij)
Rh

α(Θ̂ij, Φ̂ij) → 0,

for any multi-index notation |α| = 2, we can find such C > 0 satisfying Rf (Θij) < CΘ

8
,

Rg(Φij) < CΦ

8
, Rh

ΘΘ(Θij,Φij) < CΘ

8
, Rh

ΦΦ(Θij,Φij) < CΦ

8
, and Rh

ΘΦ(Θij,Φij) < min (CΦ,CΘ)
8

for

any |Θij − Θ∗
ij| < C and |Φij − Φ∗

ij| < C.
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A.1.2 Proof of Theorem 2.3.1

The exact same strategy can be used to prove Theorem 2.3.2. And it is easier to prove

Theorem 2.3.1 than Theorem 2.3.2, so we omit the proof of Theorem 2.3.1 here.
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APPENDIX B

Appendix For Chapter 3

B.1 Proof of main theorems

By the definition of (Θ(k)∗ ,Φ(k)∗ , T ∗
V , T

∗
W ) and (Θ̂(k), Φ̂(k), T̂V , T̂W ), we have

l(Θ(9)∗ ,Φ(9)∗ ,Θ(10)∗ ,Φ(10)∗ , T ∗
V , T

∗
W ) − l(Θ̂(9), Φ̂(9), Θ̂(10), Φ̂(10), T̂V , T̂W ) ≥ 0.

Note that

l = l(9) + γ · lt + l(10),

and

lt(T
∗
V , T

∗
W ) = 0,

we have

l(9)(Θ(9)∗ ,Φ(9)∗) + l(10)(Θ(10)∗ ,Φ(10)∗)

− l(9)(Θ̂(9), Φ̂(9)) − γ · lt(Θ̂(9), Φ̂(9), Θ̂(10), Φ̂(10), T̂V , T̂W ) − l(10)(Θ̂(10), Φ̂(10)) ≥ 0. (B.1)
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Follow the proof of Theorem 2.3.2 in Appendix A, we have

l(k)(Θ(k)∗ ,Φ(k)∗) − l(k)(Θ̂(k), Φ̂(k)) ≤

c1
√
nkqkE∥Θ̂(k) − Θ(k)∗∥F + c2

√
nkqkE∥Φ̂(k) − Φ(k)∗∥F

− 1

8
CΘE∥Θ̂(k) − Θ(k)∗∥2F − 1

8
CΦE∥Φ̂(k) − Φ(k)∗∥2F , (B.2)

for k ∈ {9, 10}. Plug (B.2) in (B.1), we have

c1
√
n9q9E∥Θ̂(9) − Θ(9)∗∥F + c2

√
n9q9E∥Φ̂(9) − Φ(9)∗∥F

− 1

8
CΘE∥Θ̂(9) − Θ(9)∗∥2F − 1

8
CΦE∥Φ̂(9) − Φ(9)∗∥2F

+ c1
√
n10q10E∥Θ̂(10) − Θ(10)∗∥F + c2

√
n10q10E∥Φ̂(10) − Φ(10)∗∥F

− 1

8
CΘE∥Θ̂(10) − Θ(10)∗∥2F − 1

8
CΦE∥Φ̂(10) − Φ(10)∗∥2F

− γ · lt(Θ̂(9), Φ̂(9), Θ̂(10), Φ̂(10), T̂V , T̂W )

≥l(9)(Θ(9)∗ ,Φ(9)∗) + l(10)(Θ(10)∗ ,Φ(10)∗)

− l(9)(Θ̂(9), Φ̂(9)) − γ · lt(Θ̂(9), Φ̂(9), Θ̂(10), Φ̂(10), T̂V , T̂W ) − l(10)(Θ̂(10), Φ̂(10))

≥0 (B.3)

Therefore,

c1
√
n9q9E∥Θ̂(9) − Θ(9)∗∥F + c2

√
n9q9E∥Φ̂(9) − Φ(9)∗∥F

+ c1
√
n10q10E∥Θ̂(10) − Θ(10)∗∥F + c2

√
n10q10E∥Φ̂(10) − Φ(10)∗∥F

≥1

8
CΘE∥Θ̂(9) − Θ(9)∗∥2F +

1

8
CΦE∥Φ̂(9) − Φ(9)∗∥2F

1

8
CΘE∥Θ̂(10) − Θ(10)∗∥2F +

1

8
CΦE∥Φ̂(10) − Φ(10)∗∥2F

+ γ · lt(Θ̂(9), Φ̂(9), Θ̂(10), Φ̂(10), T̂V , T̂W ) (B.4)
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Note that

lt(Θ̂
(9), Φ̂(9), Θ̂(10), Φ̂(10), T̂V , T̂W ) ≥ 0,

we have

c1
√
n9q9E∥Θ̂(9) − Θ(9)∗∥F + c2

√
n9q9E∥Φ̂(9) − Φ(9)∗∥F

+ c1
√
n10q10E∥Θ̂(10) − Θ(10)∗∥F + c2

√
n10q10E∥Φ̂(10) − Φ(10)∗∥F

≥1

8
CΘE∥Θ̂(9) − Θ(9)∗∥2F +

1

8
CΦE∥Φ̂(9) − Φ(9)∗∥2F

1

8
CΘE∥Θ̂(10) − Θ(10)∗∥2F +

1

8
CΦE∥Φ̂(10) − Φ(10)∗∥2F (B.5)

Therefore,

max{E∥Θ̂(9) − Θ(9)∗∥2F ,E∥Φ̂(9) − Φ(9)∗∥2F ,E∥Θ̂(10) − Θ(10)∗∥2F ,E∥Φ̂(10) − Φ(10)∗∥2F}

≤
8max{c1

√
n9q9, c2

√
n9q9, c1

√
n10q10, c2

√
n10q10}

min{CΘ, CΦ}

×(E∥Θ̂(9) − Θ(9)∗∥F + E∥Φ̂(9) − Φ(9)∗∥F + E∥Θ̂(10) − Θ(10)∗∥F + E∥Φ̂(10) − Φ(10)∗∥F )

≤
32max{c1

√
n9q9, c2

√
n9q9, c1

√
n10q10, c2

√
n10q10}

min{CΘ, CΦ}

×(E∥Θ̂(9) − Θ(9)∗∥F ,E∥Φ̂(9) − Φ(9)∗∥F ,E∥Θ̂(10) − Θ(10)∗∥F ,E∥Φ̂(10) − Φ(10)∗∥F )

Because there exists constant C1, such that

32max{c1
√
n9q9, c2

√
n9q9, c1

√
n10q10, c2

√
n10q10}

min{CΘ, CΦ}
≤ C1

√
max({n9q9, n10q10}),

we have

E∥Θ̂(9) − Θ(9)∗∥F ≤ C1

√
max({n9q9, n10q10}),

E∥Φ̂(9) − Φ(9)∗∥F ≤ C1

√
max({n9q9, n10q10}),

E∥Θ̂(10) − Θ(10)∗∥F ≤ C1

√
max({n9q9, n10q10}),
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E∥Φ̂(10) − Φ(10)∗∥F ≤ C1

√
max({n9q9, n10q10}),

which concludes our proof.
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APPENDIX C

Appendix For Chapter 4

C.1 Proofs of main theorems

C.1.1 Proof of Theorem 4.3.1

Before we prove the Theorem 4.3.1, we first introduce Lemma C.1.1. Let Φ be the expected

mixed likelihood function, i.e., Φ = E(ℓmixed).

Lemma C.1.1 It is true that

arg max
L∈S+nv

Φ(L) = {SL∗S|S ∈ D},

and

arg max
V ∈Rnv×d,∥Vi.∥2=1,

αi≥0,β≥0

Φ(V, α, β) = {(SV ∗O, β∗, α∗)|S ∈ D and O ∈ Od}.

Essentially, Lemma C.1.1 shows that the true parameters (up to an orthogonal rotation

and sign flips) maximize the mixed likelihood function.

Proof of Lemma C.1.1. Let S+
nv

be the set of nv-by-nv symmetric matrices with only
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positive elements. For any L ∈ S+
nv

, we have

Φ(L) =
∑
e⊂[nv ]

PL∗(e)

(
w × (logdet(Lek) − logdet(L + I)) +

∑
e′⊂e

(logPL(E = e|e′ ⊂ E))

)

=
∑
e⊂[nv ]

PL∗(e) × w × (logdet(Lek) − logdet(L + I)) +
∑
e⊂[nv ]

PL∗(e)
∑
e′⊂e

(logPL(E = e|e′ ⊂ E)).

Let

Φ1(L) =
∑
e⊂[nv ]

PL∗(e) × w × (logdet(Lek) − logdet(L + I)),

and

Φ2(L) =
∑
e⊂[nv ]

PL∗(e)
∑
e′⊂e

(logPL(E = e|e′ ⊂ E)).

We divide Φ(L) into Φ(L) = Φ1(L) + Φ2(L). We have

Φ2(L) =
∑
e⊂[nv ]

PL∗(e)
∑
e′⊂e

(logPL(E = e|e′ ⊂ E))

=
∑

e′⊂[nv ]

∑
e′⊂e⊂[nv ]

PL∗(e)logPL(E = e|e′ ⊂ E)

=
∑

e′⊂[nv ]

∑
e′⊂e⊂[nv ]

PL∗(e′ ⊂ E)
PL∗(e)

PL∗(e′ ⊂ E)
logPL(E = e|e′ ⊂ E)

=
∑

e′⊂[nv ]

∑
e′⊂e⊂[nv ]

PL∗(e′ ⊂ E)PL∗(E = e|e′ ⊂ E)logPL(E = e|e′ ⊂ E)

=
∑

e′⊂[nv ]

PL∗(e′ ⊂ E)
∑

e′⊂e⊂[nv ]

PL∗(E = e|e′ ⊂ E)logPL(E = e|e′ ⊂ E). (C.1)

Note that PL∗(E = e|e′ ⊂ E) gives a DiPH model on the complement set V − e′ with

parameter matrix L∗, PL(E = e|e′ ⊂ E) also gives a DiPH model on the node set with

parameter L. Let DiPHe′(L
∗) be the sub-DiPH model on the set V − e′. Replace the L with

L∗ in (C.1), we have

Φ2(L
∗) =

∑
e′⊂[nv ]

PL∗(e′ ⊂ E)
∑

e′⊂e⊂[nv ]

PL∗(E = e|e′ ⊂ E)logPL∗(E = e|e′ ⊂ E).
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Note that for any fixed L∗, PL∗(e′ ⊂ E) is a constant. We know that

Φ2(L
∗) − Φ2(L) =

∑
e′⊂[nv ]

PL∗(e′ ⊂ E)
∑

e′⊂e⊂[nv ]

(PL∗(E = e|e′ ⊂ E)logPL∗(E = e|e′ ⊂ E)

−PL∗(E = e|e′ ⊂ E)logPL(E = e|e′ ⊂ E))

=
∑

e′⊂[nv ]

PL∗(e′ ⊂ E) × KL(DiPHe′(L
∗),DiPHe′(L)),

(C.2)

where KL stands for the Kullback-Leibler divergence between two probability distributions.

Also, note that

Φ1(L
∗) − Φ1(L) = w

∑
e⊂[nv ]

(PL∗(e)log(PL∗(e)) − PL∗(e)log(PL(e)))

= w × KL(DiPH(L∗),DiPH(L)). (C.3)

Therefore, combining (C.2) and (C.3), we have that

Φ(L∗) − Φ(L) =
∑

e′⊂[nv ]

PL∗(e′ ⊂ E) × KL(DiPHe′(L
∗),DiPHe′(L)) + w × KL(DiPH(L∗),DiPH(L))

is a linear combination of multiple KL divergences. By the property of KL divergence, we

know that

Φ(L∗) ≥ Φ(L),

and

Φ(L∗) = Φ(L)

⇐⇒ KL(DiPHe′(L
∗),DiPHe′(L)) = 0 for all e′ ⊂ V , and KL(DiPH(L∗),DiPH(L)) = 0

⇐⇒ DiPHe′(L
∗) = DiPHe′(L), and DiPH(L∗) = DiPH(L)
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Therefore, we have

arg max
L∈S+nv

Φ(L) = {SL∗S|S ∈ D},

and

arg max
V ∈Rnv×d,∥Vi.∥2=1,

αi≥0,β≥0

Φ(V, α, β) = {(SV ∗O, β∗, α∗)|S ∈ D and O ∈ Od},

which concludes our proof for Lemma C.1.1.

Having Lemma C.1.1, we can prove Theorem 4.3.1 in a similar way as Theorem 2 in Yu

and Zhu (2023).

Let L̄ be the enlarged feasible space of L:

L̄ = {L = (vTi vj)
nv
i,j=1 + diag(α)|v∗i ∈ Rd, αi ≥ 0, and ∥vi∥2 > 0 is constant}.

We first present the following Theorem C.1.2:

Theorem C.1.2 Consider a DiPH model H(v∗1, v
∗
2, ..., v

∗
nv
, β∗, α∗), with the set nodes V =

[nv] and the set of hyperedges E = {e1, e2, ..., ene} independently generated with the param-

eters from the DiPH model. Let v̂1, v̂2, ..., v̂nv , α̂, β̂, L̂ be the estimated parameter using the

optimization problem

arg max
V ∈Rnv×d,∥Vi.∥2=1,

αi≥0,β≥0

ℓmixed (C.4)

and

L̂ := arg max
L∈L̄

ℓmixed. (C.5)
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When nv > 2d and {v∗1, v∗2, ..., v∗nv
} span Rd, we have

min
O∈Od,si=±1

nv∑
i=1

∥v̂i − siOv∗i ∥2
p→ 0,

∥α̂− α∗∥2
p→ 0,

|β̂ − β∗| p→ 0,

min
S∈Dnv

∥L̂− SL∗S∥F
p→ 0,

as ne → ∞.

Note that the only difference between Theorem C.1.2 and Theorem 4.3.1 is the feasible space.

Because the feasible space in Theorem 4.3.1 is a subset of the one in Theorem C.1.2, one can

easily show Theorem 4.3.1 is a direct corollary of Theorem C.1.2. Therefore we only need to

prove Theorem C.1.2, which is actually Theorem 4 in Yu and Zhu (2023). We refer readers

to Yu and Zhu (2023) for the proof of Theorem C.1.2 and conclude our proof.

C.1.2 Proof of Theorem 4.3.2

The same idea of the proof of Theorem 4.3.1 can be used for proving Theorem 4.3.2. Let

Φp be the expected pseudo-log-likelihood, i.e., Φp = E(ℓp). We provide the following Lemma

C.1.3

Lemma C.1.3 It is true that

arg max
L∈S+nv

Φp(L) = {SL∗S|S ∈ D},

and

arg max
V ∈Rnv×d,∥Vi.∥2=1,

αi≥0,β≥0

Φp(V, α, β) = {(SV ∗O, β∗, α∗)|S ∈ D and O ∈ Od}.

Proof of Lemma C.1.3. Note that Φp is the same as Φ2 in the proof of Lemma C.1.1. By

the proof of Lemma C.1.1, we know that
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Φp(L
∗) − Φp(L) =

∑
e′⊂[nv ]

PL∗(e′ ⊂ E) × KL(DiPHe′(L
∗),DiPHe′(L)),

which is a linear combination of multiple KL divergences. Therefore,

Φp(L
∗) ≥ Φp(L),

and

Φp(L
∗) = Φp(L)

⇐⇒ KL(DiPHe′(L
∗),DiPHe′(L)) = 0 for all e′ ⊂ V

⇐⇒ DiPHe′(L
∗) = DiPHe′(L).

As a result, we have

arg max
L∈S+nv

Φp(L) = {SL∗S|S ∈ D},

and

arg max
V ∈Rnv×d,∥Vi.∥2=1,

αi≥0,β≥0

Φp(V, α, β) = {(SV ∗O, β∗, α∗)|S ∈ D and O ∈ Od},

which concludes our proof for Lemma C.1.3. Having Lemma C.1.3, the proof of Theorem

4.3.2 is the same as Theorem 4.3.1. So we omit the proof here.
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