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ABSTRACT

Treatment of biofilm infections is difficult, in part, due to the bacteria’s pathogenicity

and, in part, due to biofilm’s structural resilience. Not only does a drug have to traverse

the extracellular matrix, but it also has to cross membranes to be delivered to the bacterial

cell. Each pathway presents a unique set of challenges. In the extracellular matrix, drugs are

inhibited by networks of functional amyloid fibers, among other things. At the cellular level,

drug permeation has been linked to cell membrane vibrations, which inherently depend on

the composition of the membrane. Nanoparticles are a promising route for controlling biofilm

growth and preventing resistance because they offer a myriad of sizes, shapes, and functional

groups. In this thesis, I use molecular dynamics simulations and novel analysis methods to

computationally explore the nanoscale interactions of (1) proteins, (2) membranes, and (3)

nanoparticles. I characterize the structure of staphylococcal PSMα1 amyloid nanofibers,

identify membrane vibrations from both eukaryotic and prokaryotic organisms, and propose

interactions of chiral carbon nanoparticles with teicoplanin and phenol-soluble modulins

that could be responsible for their separation by high-performance liquid chromatography

and anti-biofilm capabilities, respectively. The efforts of this research have increased our

understanding of nanofibers through the development of in-silico models with atomistic

resolution and have helped us to screen for potential nanoparticulate candidates that could

serve as biofilm manipulators.

xvi



CHAPTER 1

Introduction

1.1 Motivation for this Research

For such small microorganisms, bacteria are causing big health problems. In 2014, 1

in 25 patients in United States hospitals contracted at least one bacterial infection1. Of

these hospital-acquired infections, approximately 60% were associated with biofilm forma-

tion, and another 60% of these were attributed to methicillin-resistant Staphylococcus aureus

(MRSA)2. MRSA kills more people in the U.S. each year than HIV/AIDS, emphysema,

Parkinson’s disease, and homicide, combined3. The implications of this work reach far be-

yond the clinical envelope. Biofilm flourishes in soil and leaches into the water supply. It is

everywhere. Consequently, understanding the mechanisms by which biofilms derive resilience

against treatment and their pathogenicity is essential to making progress in combating biofilm

infections.

1.2 What is Biofilm?

Biofilms are colonies of unicellular bacteria that congregate into a multicellular network

of bacteria. Bacteria in biofilm are enveloped in a highly impermeable extracellular ma-

trix (ECM) of proteins, polysaccharides, and extracellular DNA (eDNA)4. The ECM, and

nanostructures within the ECM, complicate anti-biofilm treatments and drug delivery. Like-
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wise, biofilm formation has contributed to nearly a 1,000-fold increase in drug tolerance

than the same bacterium would have unicellularly5, among other factors, like reduced cell

metabolism and small molecule degrading enzymes that reduce the efficacy of the drug.

Even if a drug is able to elude the ECM, it has to, then, permeate cellular membranes to be

delivered to the appropriate target inside the cell.

1.3 Combating Biofilm at the Extracellular Level

1.3.1 What are Phenol Soluble Modulins (PSMs)?

As it turns out, phenol soluble modulins (PSMs) are amphipathic proteins that signifi-

cantly contribute to both the resilience and pathogenicity of S. aureus , depending on their

state of aggregation4,6–11. There are seven PSMs, categorized by where they are encoded

in the S. aureus genome12. There are four α-PSMs (i.e., PSMα1-4), two β-PSMs (i.e.,

PSMβ1-2), and the δ-toxin13. S. aureus uses a specialized exportation system to export

PSMs from the cytoplasm because the monomeric peptides are toxic virulence factors that

not only attack host membranes, but also exhibit antimicrobial/anti-biofilm activity6–9,11.

It has been observed that small clusters of the peptides (oligomers) are even more toxic

than their monomeric counterparts14, which is a typical trend of bacterial toxins, like the S.

aureus α-toxin8,15.

1.3.2 What are Functional Amyloid Fibers?

While the toxicity of monomeric PSMs is indisputable, some PSMs (PSMα1 and PSMα4)

in the ECM have the tendency to adopt another configuration, with a corresponding func-

tion that is not unequivocally pathogenic: They aggregate into fibers, called functional

amyloids7,16–19. It should be noted that functional amyloid fibers are not unique to S. au-

reus biofilms and form from the aggregation of other proteinaceous subunits in many other

bacterial species; however, Figure 1.1 provides visualization for the hierarchical position of

2



Figure 1.1: PSM-Derived Functional Amyloid Demonstration in biofilm extracellular matrix.
Image created using BioRender.

PSM aggregates in biofilm. In in-vitro biofilm cultures, PSM aggregation is bolstered by

the presence of extracellular DNA (eDNA); however, in acellular aqueous solutions, they

self-assemble at high concentrations, without any external direction, promotion, or catalytic

induction4,9,11,20. The spontaneity with which the fibers form in water demonstrates that

their formation is thermodynamically favorable16,21.

From previous studies, we know with great certainty that the amyloid fibers formed from

PSMα1 and PSMα4 have a characteristic cross-β structure1,11,18,22. This cross-β structure

has parallel β-sheet strands that run perpendicular to the cross-section of the fiber axis, and

formation is driven by hydrogen bonding, hydrophobic interactions, and steric zippers18,23.

The β-sheet strands associate into protofilaments, which can associate laterally21,22. In

regard to biological function, it appears that PSM functional amyloids seem to resist antimi-

crobial drugs and promote biofilm stability by preventing ECM disassembly from enzymes

and mechanical stress11,18. Importantly, PSM amyloids are present in human S. aureus in-

fections24–27. They are, therefore, a critical target for anti-biofilm compounds and should be

studied further.
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1.3.3 What has this Thesis Uncovered and How?

My research has discovered that the chirality of fibers is a determinant of their lateral

aggregation and that model fibers adopt a helicity representative of experimental fibers that

form in solution28, evidence that molecular dynamics simulations are a useful tool in the

study of protein aggregation. This was accomplished through Molecular Dynamics (MD)

simulations, which provided a level of detail that is not available from experiments. For

example, an experimental study on the amyloids formed in Alzheimer’s disease used six

different techniques to acquire an atomistic resolution structure22. As has been success-

fully demonstrated by publications in this field29, publications characterizing other amyloid

fibers7,30, and the research results in this thesis, using computational simulations can signif-

icantly expedite the process of investigation and lead to interesting, informative results.

1.4 Combating Biofilm at the Cellular Level

1.4.1 What are Cell Membranes?

In biofilm, extracellular functional amyloid fibers are anchored to cell (or plasma) mem-

branes, which are lipid bilayers that envelop the cell’s cytoplasm. Cell membranes act as

barriers that separate the cytoplasm of the cell from its extracellular environment, and all

molecules imported or exported from the cell must traverse its lipid bilayer. To complicate

matters, Gram-negative bacterial cells have two cell membranes. Thus, cell membranes are

an important factor to consider in drug delivery because, ultimately, in order to deliver a

drug to its target inside a cell, the drug will have to permeate at least one membrane, of-

ten more. Furthermore, amyloid fibers and cell membranes vibrate, as do all animate and

inanimate things. In the case of cell membranes, there exists a link between membranes’

vibrations and the transport of small molecules across membranes31–34.
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1.4.2 Why are Membrane Vibrations Important?

The internal motions of biological membranes provide a connection between membrane

composition and many biological processes35, including membrane permeability. Not only

do membrane vibrations influence membrane permeability, but, because membranes have

different compositions, membrane vibrations are also unique, bacterium-specific tags. Cel-

lular membranes’ lipid composition, asymmetry, and membrane-adjacent structures (e.g.,

anchored functional amyloids) are all factors that contribute to the unique nature of cellular

membranes and subsequent colonies, which is why cellular membrane vibrations have long

been suggested as a means of distinguishing among microorganisms36. In fact, this approach

has been used in the identification of amyloid-induced diseases (e.g., Alzheimer’s37).

1.4.3 What has this Thesis Uncovered and How?

My research uses the Kolmogrov-Smirnov statistic to quantitatively distinguish among

unique low-THz vibrational spectra for mammalian and bacterial membranes, demonstrat-

ing that vibrational spectra could be used in the identification of different organisms38.

Our method can easily be extended to fingerprint other biological structures (e.g., amyloid

fibers, polysaccharides, and protein-ligand structures). This was accomplished using MD

simulations, advanced statistical analyses, and graph theory.

1.5 Combating Biofilm with Carbon Nanoparticles (CNPs)

1.5.1 What are Carbon Nanoparticles?

We have, now, reported the critical role that amyloid fibers play in the virulence of

biofilms, as well as the intricacies of membrane dynamics and permeation. To discover how

to disrupt or manipulate biofilm would be a major development in the quest to curb the

consequences of biofilm pathogenicity. Promisingly, nanoparticles (NPs) have been shown to

have antimicrobial properties, both at the extracellular level39–42 and the cellular level43–45.
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Of particular interest for their anti-biofilm properties are carbon nanoparticles (CNPs)

because they have demonstrated relatively higher biocompatibility, as compared to other

NPs41,46,47. There are many ways to design CNPs to have different charges, functional

groups, sizes, etc.. Investigating how these properties impact fiber formation would allow us

to tune these properties to achieve maximal dispersal of biofilms. Because of the diversity

of CNP compounds, studies have suggested that using CNPs in the rational design of new

treatments will withstand the threat of antibiotic resistance48, and offer a more tailored

approach to treating different diseases.

1.5.2 What about Chirality Makes it an Important Property in the Design of

Carbon Nanoparticles?

One property we can tune, in conjunction with the functional group of the CNP, is the

functional group’s chirality and, by extension, the chirality of the nanoparticle. Chiral antibi-

otics hold substantial promise when combating proteins and other macromolecules possessing

intrinsic chirality due to their targeted and selective interaction49,50. In the intricate land-

scape of biochemistry, the three-dimensional structure and handedness of macromolecules

play a pivotal role in their functions. Chirality in these biomolecules affects their specific in-

teractions and binding with other molecules, influencing their overall biological activity. For

example, there appears to be a generally hierarchical nature to the chirality of the building

blocks of macromolecules into higher order structures51.

Given this, chiral antibiotics, designed with a specific handedness, could potentially ex-

hibit selective interactions with these chiral macromolecules. By aligning with the comple-

mentary geometry and chirality of target biomolecules, chiral antibiotics could disrupt their

functions or pathways, potentially inhibiting or altering their activity.

In fact, chiral CNPs have demonstrated their potential in interfering with the self-

assembly process of biomolecules within the ECM52,53. These nanoparticles have been ob-

served to interact selectively with amyloid peptides54, potentially leading to the dispersal of
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biofilms. Moreover, their resistance to degradation and significant molecular weight coun-

teracts the limitations of current anti-biofilm platforms, making them a promising candidate

for combating bacterial biofilms39. The unique property of chirality in CNPs represents a

promising avenue in combating biofilms, especially in targeting the intricate structure of

ECM components and amyloid-rich peptides crucial in biofilm formation.

1.5.3 What has this Thesis Uncovered and How?

My research shows that the chirality of CNP functional groups plays an important role

in interactions with nanosystems, including PSMs, and can be enantiomerically separated

due to a difference in affinity of the teicoplanin stationary phase in an high performance

liquid chromatography (HPLC) column.55 This was accomplished using a combination of

well-tempered Metadynamics molecular dynamics simulations, unbiased MD simulations,

and data analysis with Python.
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CHAPTER 2

Methodology

2.1 Molecular Dynamics Simulations

2.1.1 Molecular Dynamics Simulations of PSMα1 Fibers

The initial structure was constructed from the PSMα1 IIKVIK segment crystal structure

reported in Salinas et al. (6FG4); IIKVIK segments were replaced with the complete PSMα1

sequence (5KHB). These structures have Class 1 steric zippers, as reported in Salinas et

al.. All simulations were performed with a combination of Nanoscale Molecular Dynamics

(NAMD)56,57 and PLUMED58,59 software, using explicit TIP3P water60 and the all-atom

force field CHARMM, version 3661. A time step of 1 fs or 2 fs was employed to integrate the

equations of motion and hydrogen atoms are kept rigid via the SHAKE algorithm. Non-

bonded short-range interactions smoothly approached 0 using an X-PLOR switching function

between 1 nm and 1.2 nm, in conjunction with the particle mesh Ewald algorithm, to evaluate

long-range Coulombic forces. A Langevin thermostat, with a time constant of 1 ps, was used

to keep the temperature constant at 310K. The systems were minimized for 1000 steps

before the equilibration runs and equilibrated using a PLUMED harmonic restraint between

peptides. Equilibration simulations were performed, first, in the canonical ensemble with

and without restraints, during which time the harmonic restraints between peptides were

gradually set to zero, followed by simulations in the anisotropic isothermal-isobaric (NPT)
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ensemble. Finally, unrestrained β-sheet nanofibers were run in the canonical ensemble until

the root mean squared deviation of the nanofibers plateaued for at least 40 ns, at least 5 ns

for α-helical sheet fibers, and 1 ns for fibers in vacuum (see Appendix A for a summary of

RMSDs for converged simulations, Figures A.8 through A.11). Although previous studies

have confirmed that PSMα1 nanofibers are composed of parallel β-sheets18,19 and our results

also confirm this (Figure 3.2h), we ran two antiparallel, 40-peptide-long, single protofilament

systems (one with Class 7 steric zipper and one antiparallel Class 1 steric zipper)62 for the

sake of thoroughness; however, the systems we tested show unstable structures, prone to

fragmentation. Visual Molecular Dynamics63 and the MDAnalysis64 Python library were

used for visualization and data analysis, respectively. For the in vacuo simulations, the

N- and C-termini and charged amino acid groups (i.e., lys and glu) were neutralized by

adding or removing proton atoms. Simulations of nanofibers with a chirality (Flipped and

Mirror) different from the one spontaneously assumed during simulation (Reference), were

prepared in two ways: (1) inverting the chirality of the nanofiber but leaving the chirality

of each peptide untouched (Flipped), and (2) taking the mirror image of the nanofiber, such

that the nanofiber chirality and the chirality of each peptide are inverted (Mirror). These

simulations were generated from the configuration equilibrated as described above; however,

after the chirality was changed, an additional NPT relaxation was performed by applying

harmonic constraints that restrained the alpha carbons and hydrogens that were gradually

tapered off over 15 ns.

2.1.2 Molecular Dynamics Simulations of Membranes in Vibrations Study

All the systems were prepared using the Membrane Builder in CHARMM GUI65 and,

then, post-processed when cropped systems were needed. Nanoscale Molecular Dynamics56

software was used to perform Molecular Dynamics simulations, and a time step of 2 fs was

employed to integrate the equations of motion, while hydrogen atoms were kept rigid via the

SHAKE algorithm. Membranes were fully solvated in a 0.15m NaCl solution using TIP3P
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for water60 and CHARMM, version 3661, to model atomic interactions. Non-bonded short-

range interactions smoothly approached 0 using an X-PLOR switching function between 1 nm

and 1.2 nm, in conjunction with the particle mesh Ewald algorithm, to evaluate long-range

Coulomb forces.

The systems were equilibrated using constrained canonical simulations, followed by iso-

thermal-isobaric ensemble simulations with vanishing restraint, as per CHARMM GUI pro-

tocol. This preliminary equilibration was followed by 100 ns simulation in an NPsT ensemble,

an isothermal-isobaric ensemble where changes in dimensions in the direction of the mem-

brane’s plane are coupled. Starting from the equilibrated systems, spectra were computed

from 50 ns microcanonical ensemble simulations, while Langmuir isotherms were computed

from canonical simulations 20 ns long. In all cases, the temperature was kept constant at

310K by using a Langevin thermostat with a period of 1 ps, and pressure was imposed

by using a Nosé-Hoover Langevin piston method, with a period of 200 fs and 50 fs decay.

Processing and preparation of trajectories and structures were performed with the help of

Visual Molecular Dynamics (VMD) software63, as well as the MDAnalysis and Scipy Python

libraries64,66,67.

2.1.3 Molecular Dynamics Simulations of Teicoplanin-CNP Interactions

Using the CHARMM force field, version 36, and explicit TIP3P water, biased all-atom

simulations were performed to compute the affinity of L- and D-CNPs with teicoplanin .60,61

The systems were first minimized and equilibrated in the isothermal-isobaric ensemble for

at least 150 ns, employing a Langevin piston Nose-Hoover method to maintain a pressure

of 100 kPa and a Langevin thermostat to keep the temperature constant. A time step of 2

fs was used to integrate the equations of motion, and non-bonded short-range interactions

were smoothly approached 0 using an X-PLOR switching function between 1 and 1.2 nm,

in conjunction with the particle mesh Ewald algorithm to evaluate long-range Coulombic

forces. The simulations were run using Nanoscale Molecular Dynamics (NAMD) software.56
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Free energy surfaces were reconstructed using well-tempered Metadynamics simulations

in the canonical ensemble over 630 ns or more, using Gaussian-shaped bias with a pace

of 0.4 ps and a bias factor of 10.68,69 The simulations were biased on the distance between

teicoplanin’s center of mass and the center of mass of each chiral CNP, and a harmonic wall

was placed at 5 nm. The free energy was calculated as the average probability difference

between the bound state (distance ≤ 2.5 nm) and the unbound state (distance ≥ 3 nm). The

simulations were performed using PLUMED 258,59, and data visualization was done using

Visual Molecular Dynamics (VMD)63, while data analysis and plotting were performed using

the MDAnalysis and Matplotlib Python libraries.64,67,70

2.1.4 Molecular Dynamics Simulations of PSM-CNP Interaction

All-atom forces were computed using CHARMM, version 3661, and TIP3P water60.

Nanoscale Molecular Dynamics software was used for running the simulations56. First, sys-

tems were minimized and then equilibrated in the isothermal-isobaric ensemble until the

root-mean-square deviation of the aggregate converged (between 60 and 200 ns). A global

system pressure of 100 kPa was maintained using a Langevin piston Nose-Hoover method

(with a period of 200 fs and 50 fs decay)71,72, and a Langevin thermostat73 (with a character-

istic time of 5 ps) was used to keep the system temperature at 300K. A time step of 2 fs was

employed to integrate the equations of motion, and all hydrogen bonds were kept rigid via

the SHAKE algorithm74. Non-bonded short-range interactions smoothly approached 0 using

an X-PLOR switching function75 between 1 nm and the cutoff ( 1.2 nm), while long-range

Coulombic forces were included using the particle mesh Ewald method76 (with a tolerance

of 1e− 5).

2.2 PSMα1 Fiber Simulation Post-Processing

The diameter was computed by (1) determining the nanofiber direction (i.e., nanofiber

main axis), (2) dividing the nanofiber with planes perpendicular to the nanofiber axis (i.e.,
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slices), (3) dividing each slice in an even number of equal sectors, and (4) using the distance

of the farthest atom from the nanofiber’s axis of opposite sectors to sample the diameter.

The nanofiber axis (step 1) was determined by linear regression of atomic spatial coordi-

nates. Then, the atoms were grouped in wedges (steps 2 and 3) by using slices that are

1-4 nm wide and 8-20 sectors (each sector wedge covers 18◦ to 45◦ on the plane), where the

selected parameters for each nanofiber (i.e., slice height and number of sectors) are different,

depending on which combination yielded the smallest standard deviation. Slice height and

number of sector parameters do not impact the final diameter distribution, as demonstrated

in Figure A.4. To minimize edge effects, we discarded any slice that did not have at least

one atom in each sector. The final diameter distribution is obtained by collecting the sum

of the distances of the atoms that were farthest from the nanofiber axis in opposite sectors.

The periodicity of the PSMα1 helical structure was determined from the average layer-to-

layer angle and average layer-to-layer distance projected along the nanofiber axis, determined

by linear regression of all atomic coordinates. For each layer (see Figure 3.1), first the center

of mass and the principal axes of inertia were computed, followed by the layer-to-layer

distance (i.e., distance between the center of mass of consecutive layers) and by the layer-

to-layer angle (dihedral angle from the largest principal axis of each layer and the center of

mass of two consecutive layers).

In Chapter 3, we report the results obtained for the longest simulated fiber in each class,

while data of shorter fibers were used to test the convergence of the results, as they generally

show a somewhat monotonic trend with aggregate length. This effect becomes small when

at least 20 layers are present, even for the quantities that have the strongest dependence

from the nanofiber length (see Figures A.5 and A.6).

2.3 TEM image processing

The nanofiber diameter distribution from TEM data was obtained with in-house code.

The images were processed using kernel filtering to determine the direction of the nanofiber
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in the frame of the image; we used 180 100×100 kernels for an angular resolution of 1◦ after

filtering the images to maximize the contrast between the edges and center of the nanofibers.

Then, we searched each filtered image in the direction perpendicular to the applied filter angle

and estimated the diameter from the distance between two consecutive high-contrast peaks.

2.4 AFM image processing

The nanofiber periodicity and diameter distribution from AFM data was obtained with

in-house code. The periodicity of the PSMα1 structure was determined from AFM images

by computing the distance between the highest-intensity nanofiber peaks. The AFM images

were initially split into multiple images, each containing a single nanofiber, to obtain rela-

tively consistent intensity ranges. The highest point in the nanofibers was, then, identified

using the Otsu threshold method, and the distance between the center of closest peaks was

collected. As the distance is dependent upon the Otsu threshold parameter, which in turn

depends on the intensity of the pixel, the threshold parameter for each image was determined

to be the value, between 1.1 and 3.1, that minimizes the standard deviation for the values

of the distances between the regions of highest intensity. Diameters were obtained by first

segmenting images in order to separate the fiber from the background. 3000 to 5000 points

in the fiber were then randomly chosen and, for each of them, the diameter was set equal to

the shortest distance to opposite edges, which was found by sampling all the directions with

a 1◦ resolution.

2.5 Vibration Spectra

Absorption cross-section αcs as a function of the frequency ω were calculated from tra-

jectories, using the relation:

αcs(ω) =
4π2

3ℏcϵn(ω)
ω(1− e−βℏω)Q(ω)Icl(ω) (2.1)
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Figure 2.1: Spectra Calculation and Signal Analysis. Infrared spectra are computed from
MD trajectories (blue panel) and, then, post-processed to find local maxima. Spectra are
computed from MD trajectories as Fourier transform of the membrane total dipole autocor-
relation; then, the spectra are normalized before peaks are identified using a distance and
prominence filter (Figures B.3 through B.6). For more details, see the Methodology Section.

where ℏ is the reduced Plank constant, c is the speed of light in vacuum, ϵ the vacuum

permittivity, n(ω) the refractive index of the solution, β(= 1/kBT ) is the inverse of the

Boltzmann constant times the temperature, Q(ω) is the harmonic quantum correction77,

Qharm(ω) =
βℏω

1− e−βℏω (2.2)

and Icl(ω) is the classical spectral density,

Icl(ω) =
1

2π

∞∫
−∞

dt e−iωt⟨M (0)M(t)⟩ (2.3)

where angular brackets indicate ensemble averaging and M is the membrane’s total dipole

moment. For practical reasons, we assumed n(ω) = 1 as, in this range, the correction is

almost linear78. Finally, numerical noise was reduced by using Blackman windowing when

computing the Fourier transform and by applying a Savitsky-Golay filter (polynomial order

of 6 over 21 windows, Figure B.1) on αcs(ω).
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Since different membranes are represented by periodic systems of different sizes, to com-

pare different spectra and obtain size-independent quantities, we divided each spectrum by

the average value of the signal in our interval

N =

∫
dω αcs(ω) (2.4)

and used α(ω) = αcs(ω)/N in all the comparisons.

2.6 Signal Analysis

Peaks were identified from the spectra by tuning the (1) prominence (vertical distance

between the peak and its lowest contour line) and the (2) minimum distance between peaks.

Prominence, alone, is not used as a peak-finding metric because doing so would only select

the highest-intensity peaks, which are located on the right side of the spectra in this case.

Instead, after setting the minimum peak-to-peak distance (125GHz for the rat liver cells, and

142GHz for bacterial membranes), we computed the prominence distribution for different

prominence thresholds. A demonstration of how prominence and distance between peaks are

tuned is available in the Appendix B (Figure B.3 through Figure B.6). We then identified

the range of values that were closer to the average number of peaks (computed over all

the prominence values) and selected the highest value. For each membrane, we compute

the average frequency and intensity of each peak using the peaks computed over replicas

(3 replicas for S476A51, S47633, B. Subtilis , and rat liver; 4 replicas for S476A33, see a more

detailed discussion in the Results section).

To quantify the similarity between two spectra, we used a two-sample Kolmogorov-

Smirnov (KS) test79. As replicas of the same membrane are (or should be, see the discussion

in the results) statistically equivalent, variation between replicas of the same system can be

assumed to originate from the computational method. As such, when comparing different

membranes, we used the mean KS (and the corresponding standard error) of the replicas of a
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membrane as a baseline for the comparison with other systems. Of note, all the comparisons

were performed by computing the KS value for all the possible pairs of replicas of one system

with another, and not by comparing the average spectra.

2.7 Root-Mean-Squared Fluctuations (RMSF)

RMSF, that is the mean deviation from the average position of an atom, was calculated

from the microcanonical simulations, using the Python MDAnalysis module64,67. Due to a

systematic numerical bias in the RMSF value for molecules that are close to the periodic

boundaries, all the contributions from these molecules were removed. To allow a meaningful

comparison with other membranes, we only computed the RMSF of the atoms that are not

part of sterol molecules.

2.8 Hydrogen Bond Lifetimes

Hydrogen bond lifetimes were calculated using MDAnalysis67, where (1) tau max (input

trajectory time over which to search for a hydrogen bond) was set to 5 ns, (2) intermittency

(max number of frames a hydrogen bond can be broken and still count as present if it is

still observed in the following frame) was set to 1, and the default values of 0.3 nm and 150

degrees were used for both the (3) d h cutoff (hydrogen bond distance) and (4) d h a cutoff

(hydrogen bond angle), respectively.
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CHAPTER 3

Combating Biofilm at the Extracellular Level

3.1 PSMα1 Fibers

3.1.1 Introduction

Bacterial biofilms are communities of single or multiple species of microorganisms, at-

tached to a surface and organized into a complex three-dimensional structure80. To form a

functional structure, biofilm cells produce polymers that constitute the extracellular matrix

(ECM), which facilitates binding between cells and to the surface. The most extensively

studied components of biofilm ECM are polysaccharides, nucleic acids, and proteins81,82,

but the relative amounts of these compounds vary depending on the species83,84. Some of

the protein components in the ECM are peptides that can self-aggregate to form nanoscale

amyloid fibrils.

Unlike in human diseases (e.g., Parkinson’s and Alzheimer’s), where amyloid forma-

tion represents damage or misfolding of peptides85, many of these bacterial amyloids are

The information in this chapter is available in the following cited publication. Paolo Elvati, Chloe
Luyet, YichunWang, Changjiang Liu, J Scott VanEpps, Nicholas A Kotov, and Angela Violi. Molecular
architecture and helicity of bacterial amyloid nanofibers: Implications for the design of nanoscale antibiotics.
ACS Applied Nano Materials, 6:6594–6604, 2023. Experimental methodologies performed by Yichun Wang
have been omitted; however, in-text references to experiments performed by Yichun Wang are denoted
appropriately.
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functional, in that they contribute to physiological activities: aggregation of toxic peptides

modulates their activity, or they can operate as a physical barrier in biofilms, increasing

resilience and resistance to antimicrobial drugs and immune mediators86–91. The presence

of these nanofibers is extremely common in bacterial biofilms. They have been identified

in Chloroflexi, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria 92. Within the

Firmicutes phylum, S. aureus is a well-known pathogenic, Gram-positive bacterium that

generates extensive biofilm structures. In the United States, infections associated with S.

aureus have an estimated mortality rate of 25% (higher in the case of drug-resistant strains),

causing a high number of hospitalizations and significant medical costs93. Mortality caused

by methicillin-resistant S. aureus (MRSA) remains the highest for any antibiotic-resistant

pathogen, reported by the CDC to be at ∼20,000 in 201894, exacerbated by the COVID-19

pandemic due to bacterial superinfections95.

Staphylococcal species possess a specific set of peptides known as phenol soluble modulins

(PSMs) that serve as key virulence factors, stimulate inflammatory responses, alter the host

cell cycle and lyse human cells. Remarkably, PSMs can also self-assemble into highly-ordered

amyloid structures, which may contribute to the establishment, integrity, and maturation

of the biofilm.17,96,97. PSMs, α-helical amphiphatic peptides, are classified depending on

their length. The smallest peptides (21 amino acids in length) are α-type, PSMα1-4 and

δ-toxin. The longer peptides, which are 44 amino acids in length, are PSMβ1 and PSMβ2.

Despite their sequence similarity, not all PSMs form ordered amyloid structures and not

all of them follow the same structural motifs. As such, PSMα3, the most toxic member,

forms cross-α nanofibrils20,98–100, while PSMα1 and PSMα4 form canonical cross-β amyloid

nanofibers. These functional amyloids are known for their stability, which is attributed to

their cross-β structure, β-sheet strands that run parallel to the nanofiber axis and peptide

pairs that aggregate perpendicular to the nanofiber axis18,19,82,86,90,101–103.

To date, open questions remain about the formation and characteristics of PSM-derived

amyloid nanofibers. Some studies have identified the crystal structures of functional amyloids
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reporting a consistent nanofiber diameter of approximately 10-12 nm1,11,21,104, but a specific

reason for the fibers’ lateral growth mechanism has not been deciphered. Similarly, the

chirality and helical structure of the nanofibers remains an open question18,19. From an ex-

perimental perspective, a critical issue is that large insoluble biological complexes, like PSM

nanofibers, reaching microns in length21,22, are difficult to crystallize23. Moreover, struc-

tures obtained from crystals are not necessarily accurate representations of the nanofibers

in dispersion, as the conditions that promote crystallization may differ substantially from

typical in vivo and in vitro experimental environments, and even in solution. The formation

of amyloid nanofibers is a relatively slow process that can take a few days in vitro 4,11 to a

week or more in solution1,19. Most aspects of this transition are still unclear and are further

complicated in vitro by the interactions with other bio-macromolecules present in the ECM,

like extracellular DNA4 and other peptides (e.g., the N -terminus of the quorum sensing

signal peptide AgrD)105,106. The slow and gradual transition from single peptide to amyloid

nanofibers suggests a process that involves configurational and conformational transforma-

tions with several relatively stable intermediates, which are unlikely to be captured by crys-

tallographic experiments7. Finally, the presence of randomly-coiled, amorphous-like regions

at the interface of nanofibers and water and between fibers further support the importance

of molecular simulations, as rigid crystal structures would fail to capture the entropic and

imperfect features of disordered regions of otherwise highly-ordered nanofibers107. After all,

amorphous aggregates are a ubiquitous facet in the formation of amyloid nanofibers, char-

acteristic of those in Alzheimer’s disease19,108,109, Parkinson’s disease, prion misfolding110,

and E. coli curli111–113, to name a few. Consequently, other amyloid nanofibers should be

subject to similar scrutiny by MD simulations of different types30,107,114.

There is, therefore, a clear need to gain additional insights on the structures of PSM

functional amyloid nanofibers. In the present study, we report on the molecular structure

of PSMα1 nanofibers and their characteristics, such as diameter, chirality and periodicity,

and advance hypotheses on the role of chirality on the mechanisms of nanofiber assembly.
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Leveraging a combination of fully-atomistic molecular dynamics (MD) simulations and ex-

perimental data obtained via mass spectroscopy and microscopy techniques, we probe the

characteristics of several in silico candidate structures for the amyloid nanofibers. We find

compelling evidence that a cross-β-sheet two-protofilament (2β) structure is the most plausi-

ble structural model for PSMα1 nanofibers in solution, that matches the experimental values

of chirality, diameter, and helical periodicity (pitch) of mature PSMα1 nanofibers in solution.

The 2β PSMα1 amyloid nanofiber model can be used to study nanofiber-antimicrobial in-

teractions to elucidate a mechanism for biofilm manipulation, using man-made anti-amyloid

biomimetic nanostructures39,46. In addition to machine learning techniques recently devel-

oped by our team115, this study provides a structural understanding of amyloid fibers that

can inform a set of MD-based design principles, and can usher in an era of tailor-made NPs

as nanobiotics and high-efficacy antibacterial agents.

3.1.2 Results and Discussion

3.1.2.1 Nanofiber Formation and Evolution

Confounding factors (e.g., extracellular DNA) complicate the analysis of PSMα1 ag-

gregates when formed in in vitro biofilm cultures. For this reason, we chose to study the

formation of amyloid nanofibers from PSMα1 aqueous solution in this work. Even without

any external direction, promotion, or catalytic induction, PSMα1 self-assembles into amyloid

nanofibers at high concentrations4,9,11,20. Similar to results reported in the literature4,11,18,39,

PSMα1 nanofibers are detected as early as day 4, via β-sheets signal in circular dichroism

(CD) spectroscopy, and visualized at day 9 via transmission electron microscopy (TEM).

Both CD spectra and TEM images are performed by experimental collaborator, Yichun

Wang, and results can be seen in the supplementary information of the cited paper28. The

formation of a consistent nanofiber took longer than previously reported, with changes in

both the CD spectra and TEM images. The CD spectra taken for samples older than 14

days are characterized by strong β-sheets and disordered structures signals, while diameters
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Figure 3.1: Computational Models’ Nomenclature for a 2β Nanofiber, with colors
and text illustrating the terminology and labels used in this work. (a) Individual PSMα1
peptides (black) form (b, right) long parallel β-strands that pair to form (b, left) protofila-
ments (blue). Protofilaments can, then, laterally aggregate to form (c) multi-protofilament
nanofibers. When computing properties, it is convenient to define a (d) layer (green), which
is composed of PSMα1 from different strands and different protofilaments, approximately
on a plane perpendicular to the nanofiber axis of elongation. The first character in each
nanofiber name (1, 2, 3) represents the number of protofilaments in the structure; the sec-
ond term (α or β) describes the main structural motif of each peptide molecule within the
nanofiber. For a demonstration of the α-helical sheet motif, see Fig. A.12.
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measured from TEM images show a significant decrease in the standard error of the mean

diameters (Fig. A.1 and Tab. A.1) for samples taken at day 21 and later.

The mature PSMα1 amyloid nanofibers are stable when subjected to thermal and me-

chanical (i.e., sonication) stress (see Methodology for details), with no discernible change in

TEM morphology following these treatments (see SI of cited paper28). This stability, how-

ever, is not the result of a polymerization mechanism, in which covalent bonds are formed

between peptides, since mass spectroscopy never detects the presence of anything but indi-

vidual PSMα1 peptides (see SI of cited paper28), and the nanofibers can be dissolved with

hexafluoroisopropanol (HFIP) and trifluoroacetic acid (TFA) (Fig. 3.2g).

Based on these data and the information available in existing literature, we selected six

classes of deformylated-PSMα1 aggregates as plausible candidates for the amyloid nanofibers

or their precursors (see Tab. 3.1). Namely, we simulated aggregates formed by one, two, or

three laterally-aggregated protofilaments of PSMα1 in either α-helical or parallel18,19 β-

sheet configuration (Fig. 3.1 for clarifications regarding terminology), and estimated their

characteristics by performing classical all-atom MD simulations. This approach is more

time-consuming than starting from an experimentally-estimated structure, which is what is

generally done for non-bacterial amyloids, but it avoids introducing any bias due to mea-

surement limitations (e.g., crystallization). The α-helical secondary structure was chosen

because single PSMα1 peptides in solution adopt this configuration, while β-sheet structure

is the one generally observed for PSMα1 amyloid nanofibers. Furthermore, other PSMs

have demonstrated motif polymorphism100, and motif influences the pathology of amyloid

diseases85. For each class, we considered different systems, varying the length of the fiber to

account for the size limitation of the simulations, under conditions close to the experiments

in solution (310K, NaCl 0.15m solution). A complete list of the simulated nanofibers can

be found in Fig. A.2.
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Figure 3.2: Comparison of (a-f) Computational and (g-h) Experimental
Nanofibers. Hydrogen bonds (black dotted lines) stabilize (a) β-sheet strands and (b)
α-helices. Hydrophobic regions in (c) β-sheet nanofibers occur inside each protofilament at
a 4-to-6-residue Class 1 steric zipper62, and in (d) α-helical sheet nanofibers between protofil-
aments; water atoms in the nanofiber’s proximity are red. Salt bridges between glu16 (pink
bubbles) and lys9, lys12, or lys21 (cyan bubbles) are found in (e) β and (f) α nanofibers.
(e) Salt bridges formed between glu16 and lys9, lys12, and lys21 are inter-peptide salt
bridges. (f) Salt bridges formed between glu16 and lys12, and lys21 are intra-peptide
salt bridges. (g) TEM images of PSMα1 nanofibers in solution (taken by Yichun Wang),
pre- and post-treatment with HFIP and TFA. (h) Fourier-transform infrared spectroscopy
of pre- and post-TFA and HFIP treatments (data by Yichun Wang). The pre-treated sec-
ondary structures of mature nanofibers are primarily β-sheets (1600 cm−1 to 1625 cm−1) and
β-turns (1700 cm−1); shaded regions are associated with β-sheet (gray), disordered/random-
coil (blue), α-helical (yellow), and β-turn (purple) secondary structures.
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3.1.2.2 Peptide interactions

Simulated nanofibers assembled with α- and β-motifs share only limited similarities.

Both types of aggregates are stabilized by a combination of hydrogen bonding, hydrophobic,

hydrophilic, and Coulombic interactions, but where these interactions occur differentiates

the two types of aggregates (Fig. 3.2). Within each protofilament, the PSMα1 peptides of

β-sheet nanofibers assemble into parallel β-sheet strands (Fig. 3.2a), with hydrogen bonds

primarily occurring between residues seven through thirteen. By contrast, the peptides in

the α-nanofibers do not form hydrogen bonds with other peptides, but rather within each

peptide (Fig. 3.2b). During the simulations, long α-helical aggregates break into smaller

clusters, indicating that α-helical peptides are unlikely to form stable assemblies in the

absence of external factors. This difference in stability is consistent with the characteristics

of the strand interactions. In the α-nanofibers, the peptides orient themselves to form a

hydrophobic core (Fig. 3.2d), while the β-strands within each protofilament are connected

through a hydrophobic zipper formed by 3-5 hydrophobic amino acids (isoleucine, valine

and sometimes glycine, e.g., Fig. 3.2c). The resulting hydrophobic core for each β-sheet

protofilament, an approximately 0.6 nm-radius cylindrical region, is smaller than the elliptical

region observed for α nanofibers (approximately 2.5 by 1.5 nm for 1α, 2.5 by 3.5 nm for 2α,

and 2.5 by 4.5 nm for 3α).

The structures of multi-protofilament nanofibers are also very different: α-protofilaments

aggregate in assemblies with a common hydrophobic core but different diameter, while β-

protofilaments stretch side-by-side, forming locally planar structures. This behavior can be

linked to the distribution of charged groups and salt bridges (a bond between the oxygen

atoms of an acidic residue and the nitrogen atoms of a basic residue). Salt bridges form

between residue 16 (glutamic acid) and one of three lysine residues (9, 12, or 21) in both α

and β aggregates, as shown in Fig. 3.2e & f, with differences, however, in both orientation

and most likely participating lysine. In the β-sheet nanofibers, the most common salt bridges

form with lys9 (and partially with lys12), which is located between the residues making up
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the steric zipper (ile8 and val10), easily accessible to glu16. By contrast, the salt bridges

in α-helical sheet nanofibers are predominantly formed with lys12 and lys21, as lys9 is

part of the α-helix backbone and, therefore, not as readily available.

Our experiments indicate that the simulated β-structures are in better agreement with

the characteristics of the β-nanofibers, as infrared spectroscopy shows a strong signal associ-

ated with β-sheets and β-turns (Fig. 3.2g & h). Additionally, treating the mature nanofiber

with HFIP, an aprotic surfactant, does not result in a complete nanofiber dissolution and

only a partial disappearance of the β-sheets signal, which is compatible with the observed

inter-peptide hydrogen bonds, protofilament hydrophobic interactions and location of β-

turns. Finally, sample treatment with TFA, which affects the hydrogen bonding, results in

nanofiber dissolution and loss of the β secondary structure, with the appearance of a weak

α-helix signal, a phenomenon observed also in the simulations for unstable β-nanofibers

(Fig. 3.5). These results speak to the fact that β-nanofibers are compatible with experi-

mental observations; however, additional analysis is required to determine the number of

protofilaments that compose the PSMα1 nanofiber.

3.1.2.3 Diameter of Nanofibers

The nanofiber’s diameter appears to be a consistent feature of both in vivo and in vitro

studies1,11,21,104 and, therefore, a structural benchmark for our simulated structures. The

experimental values for the diameter distribution of PSMα1 nanofibers in solution slightly

differs depending on the type of data used (Fig. 3.3a & b), showing a single broad peak and

an average value of 10 nm (TEM) and 12 nm (AFM). This discrepancy is likely due to the

difference in sample solvation during the two measures. In order to take into account the

experimental difference, we also simulated β-structures in vacuum. Of note, as mentioned

before, distribution from TEM images remains largely unchanged for the mature nanofiber,

with a marginal reduction of the average diameter occurring with the nanofiber aging.

By comparing corresponding experimental and simulated distributions (Fig. 3.3c), that
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Figure 3.3: Diameters of (a-c) Experimental and (c-d) Computational Nanofibers.
TEM images taken by Yichun Wang of (a) 21-day and (b) 60-day mature nanofibers. (c)
Diameters from simulations for α-helical sheet (dotted, unfilled curves) and β-sheet (solid,
filled curves) nanofibers. Distributions of PSMα1 in solution extracted from TEM (solid,
filled) and AFM (dotted, unfilled) images are shown at the bottom. (d) 2β nanofiber volume
in water (black) and in vacuum (red).
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is TEM with nanofiber in vacuum and AFM with solvated nanofiber, we can exclude the 1β

system, as it peaks at shorter distances and does not show any value of the diameter above

10 nm, which are present in all the experimental distributions as well as literature data.

When it comes to selecting between the 2-protofilament and 3-protofilament structures,

the comparison is not as discerning; while the 3β simulated structure tends to have more

frequent peaks at short range (thanks to the almost planar structure of the aggregate), the

difference with experimental data is not as marked. Moreover, there are several factors

that can introduce differences in the diameter distributions when obtained from experiments

and simulations. First, the simulation conditions (i.e., fully solvated or in vacuum) do

not necessarily match the conditions of the fiber in solution. Even though the shift towards

shorter diameters observed in increasing vacuum conditions (i.e., AFM vs TEM) is replicated

by the simulations (see Fig. 3.3c & d), the experimental conditions are more likely to be in

an intermediate state. Second, the results from the simulations are obtained by uniformly

sampling the fiber at every angle; meanwhile, this may not be possible in the experiment due

to substrate, preferential direction assumed by the fiber during solvent evaporation, shape

of the AFM probe, or other similar factors.

3.1.2.4 Helicity of Nanofibers

As both 2β and 3β are possible candidates for the nanofiber structures in dispersion, we

leveraged the differences in structure between these two classes of assembly, to determine

if any (or both) structures are likely present in solution. Despite starting from crystal-like

topology, which does not resemble the structure in solvent or in vacuo, all the simulated

β assemblies spontaneously evolve to adopt a helical configuration (Fig. 3.4a) over a short

period of time. Moreover, all the β-nanofibers display a left-handed chirality (Fig. 3.4b),

which matches the handedness obtained from the CD spectra of the PSMα1 nanofibers in

solution. The quantitative comparison for the half-periodicity length (peak-to-peak intensity

in the AFM image) shows that the 2-protofilament β-structure better matches the experi-
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Figure 3.4: Helical Structure of (a-b) Computational and (b-d) Experimental
Nanofibers. (a) Top view of 1β and 2β nanofiber. Residues at the edge of the nanofiber
were drawn with differently-sized spheres to visualize the depth effect. Some layers have been
omitted for clarity. (b) β-nanofiber half-periodicity: boxes represent quartiles and whiskers
delineate the 10th and 90th percentiles of the distribution. (c) AFM image of mature PSMα1
nanofibers in aqueous solution, taken by Yichun Wang. (d) 3D landscape corresponding to
panel (d). The vertical scale bar indicates height from 0 to 7.7 nm.

mental results. Using the interquartile range (IQR) as an estimate of the variability (similar

to the standard deviation), we found that the IQR of the AFM data (from 23 nm to 51 nm)

overlaps with the IQR of the 2β structure (from 37 nm to 68 nm), which also has a median

periodicity of 49 nm. Conversely, the overlap of the experimental observation with the data

for the 3β structure is minimal.

Interestingly, the 3β nanofibers tend to have a small layer-to-layer angle or an almost flat

conformation (hence the long period), and very short fibers (10 layers, ∼4 nm) prefer a right-
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Table 3.1: PSMα1 nanofiber simulations and their
stability (Ⓢ stable, ⊗ unstable). nproto is the number
of protofilaments; ρlin is the linear density along the
nanofiber axis in kDa nm−1.

Class nproto Type ρlin Ref.1Vac.2Flip.3Mirror.4

1β 1 β 9.55 ± 0.05 Ⓢ Ⓢ ⊗ Ⓢ
2β 2 β 19.48 ± 0.22 Ⓢ Ⓢ ⊗ ⊗
3β 3 β 29.15 ± 0.21 Ⓢ Ⓢ ⊗ ⊗
1α 1 α 4.88 ± 0.01 Ⓢ Ⓢ ⊗ ⊗
2α 2 α 6.83 ± 0.15 Ⓢ Ⓢ ⊗ ⊗
3α 3 α 9.88 ± 0.14 Ⓢ Ⓢ ⊗ ⊗

1 Reference systems in water; L-peptides. 2 Same as the
reference systems, but in vacuum. 3 Flipped configuration:
fiber chirality is inverted; L-peptides. 4 Mirror configura-
tion: fiber and peptide chirality are inverted (D-peptides).

handed chirality (Fig. A.5), an effect which disappears for longer strands. This behavior,

together with the low stability of the flat conformation, resulted in instability of certain

lengths of 3β nanofibers during the simulations. This observation is in contrast with the

other types of aggregates that rapidly assume their helical structure when starting from flat

conformation at any length.

These results suggest that the nanofiber can become locally unstable when more than

two protofilaments are associated, limiting the ability of the fiber to grow laterally, and

that one of the potential roles of the associated extracellular DNA observed in vitro 4 is

to provide additional stability by hindering lateral growth of the nanofiber. This local

instability would also explain the long time required for nanofibers in solution to reach a

stable conformation (∼ 14 days), compared to in vitro observations (in as few as 2 to 5

days), as lateral aggregation is still possible until most of the peptides are aggregated in a

more stable nanoscale assembly. Similar phenomena have been reported before; the lateral

growth of other amyloid nanofibers (Aβ of Alzheimer’s disease, lysozyme, HET-s prion,

and SAA1−12, among others) due to chiral-specificity has been previously observed116–118,
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Figure 3.5: Dissolution of a Flipped (R-enantiomer) 2β Nanofiber Model and its
secondary structure. Starting (a) from the flipped 2β configuration, (b) the restraints on the
R-enantiomer of the nanofiber are gradually removed and (c) the system is then simulated
without restraints. Error bars represent standard deviation.

with some studies proposing that amyloid nanofibers have exclusively left-handed chirality,

although this hypothesis has been, by now, disproved119.

The chirality reversal observed for the very short 3β strands during the simulations al-

lude to the possibility of other structures assuming a right-handed conformation. To this

end, as we did not observe their spontaneous formation, we directly tested the stability of

these structures by taking the stable conformation (left-handed nanofiber, L-peptides) and

either (1) inverting the chirality of the nanofiber (i.e., right-handed helix) leaving peptide

chirality unaltered (flipped nanofiber) or (2) inverting the chirality of both fiber and pep-

tides (mirrored nanofiber). The results, shown in Table 3.1, indicate that both flipped and

mirrored systems are unstable (with the notable exception of 1β formed by D-peptides).

The instability did not stem from a simple disaggregation of protofilament or strands, but

rather, as shown in Fig. 3.5, by a complete loss of the β-sheet structure of each peptide,
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starting at the hydrophilic, randomly-coiled regions of the fiber and propelling toward the

steric zippers at the center of the protofilaments.

3.1.3 Conclusions

PSM-derived functional amyloids are highly-ordered nanofibers that play a variety of

important roles in the ECM of S. aureus biofilms. We determined the molecular structure

of PSMα1-derived nanofibers and their characteristics, leveraging a combination of atom-

istic simulations and experiments, including mass spectroscopy, CD spectroscopy, TEM, and

AFM. PSMα1 peptides in solution assemble into cross-β-sheet structures that spontaneously

adopt a left-handed helical geometry, with an average diameter of about 12.5 nm and a peri-

odicity of ∼72 nm. According to CD spectra and TEM images, the aggregates continuously

evolve in the observed timeframe, although the majority of changes happen in the first two

weeks. These ”mature” nanofibers are stable to thermal and sonication stress, but can be

partially or fully dissolved by treating the solution with HFIP or TFA, respectively. The

characteristics of the nanofibers closely match a structure composed of two protofilaments,

where β-sheet peptides form strands via intermolecular hydrogen bonds and pairs of strands

form protofilaments largely by virtue of a hydrophobic steric zipper. The aggregation of

protofilaments is stabilized by Coulombic interactions in a disordered region, composed of

the random coils of the protofilament peptides.

In the absence of external factors, PSM-derived nanofibers show a longer time to stabilize

than previously reported; even though fibers are clearly formed after 4 to 9 days, they con-

tinue undergoing small, but detectable, changes for about 2 weeks. This time evolution might

be the consequence of the slow equilibration of the aggregates towards a two-protofilament

structure, a process that in in vitro and in vivo is probably aided by other constituents in

the ECM (e.g., extracellular DNA).

The number of protofilaments in the nanofibers affects the chirality and the stability

of the structures. Three-protofilament aggregates are the most striking example of this
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phenomenon: While longer fibers (20 layers) form left-handed helices, short ones (10 layers)

assume the opposite chirality. We speculate that, as short protofilaments are formed, the

addition of a third strand causes either strain or instability for the structure, resulting in

partial dissolution or fiber breakage. This process of destabilization might be responsible for

the extremely slow equilibration time observed in solution, and it may represent an additional

reason why extracellular DNA is associated with the PSMα1 nanofibers in biofilms. The

extracellular DNA, besides concentrating the peptides, can potentially guide the chirality of

the nanofiber, promoting the aggregation of two protofilaments, while hindering additional

lateral growth or speeding up the recovery when a partial disaggregation occurs. While

the two-protofilament fiber is the single best model among the ones we tested, it does not

fully match the experimental data by itself. This discrepancy can be explained by the

existence of polymorphs in solution, which is not only common for amyloids120, but is also

a consequence of the proposed growth mechanism. Not only short segments with three or

four protofilaments are expected, but small aggregates, which may also retain some α-helical

connotation, may briefly form as well.

The results of this work provide insights on the properties and characteristics of PSM-

derived amyloids and can aid in the design of anti-amyloids compounds with nanoscale

dimensions, exemplified by chiral nanoparticles39. MD simulations can be used as a tool

to assist in exploratory research aimed at unraveling the cross-binding of fibers, inhibiting

or reversing protein aggregation, and they may be an important tool when it comes to

optimizing prospective nanomedicine candidates in the future.
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CHAPTER 4

Combating Biofilm at the Cellular Level

4.1 Low-THz Vibrations of Biological Membranes

4.1.1 Introduction

The internal motions of biological membranes have increasingly been the focus of bio-

logical research, as they provide a connection between membrane composition and many

biological processes35. For example, membranes’ vibrations and density fluctuations have

been linked to the transport of small molecules across membranes31–34. These processes and

the membrane mechanical properties are influenced not only by the presence of transmem-

brane proteins and membrane composition121–125, but also emerging molecular structures

and their distributions play a critical role. For example, lipid asymmetry across bacterial

membranes has been linked to varying susceptibility to antibiotics126–128, and lipid rafts —

the non-homogeneous distribution of lipids into localized regions— play a role in several

biological processes35,122–124.

First proposed in 191136, the idea that mechanical vibrations are an identifying feature

of various compounds has been extensively studied in the past century129–135. Likewise,

The information in this chapter is available in the following cited publication. Chloe Luyet, Paolo Elvati,
Jordan Vinh, and Angela Violi. Low-thz vibrations of biological membranes. Membranes, 13(2):139, 2023.
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there exists a clear link between the mechanical properties of a membrane and its properties,

and in turn its functionality, which has motivated research investigating the relationship

between membrane vibration and cellular activity. Recently, this line of thinking has been

used to show that vibrations can be used as a means of distinguishing among microor-

ganisms136,137, and to study the interactions between membranes and anchored or adjacent

external structures, like in bacterial biofilms138,139. Moreover, an increasing number of stud-

ies have identified modes of membrane-adjacent structures. For example, functional amyloid

fibers, proteinaceous fibers that grow in biofilm and anchor to the bacterial membranes,

have been suggested to mechanically vibrate and deliver a damped vibrational signal to an

adjacent bacterial cell138–140. Electromagnetic signals on the order of kHz of bacterial DNA

that match DNA extracted from Alzheimer’s and other amyloid-induced diseased patients37

suggest that bacterial infections are present in such illnesses. THz vibrations have also been

observed in protein-ligand binding141 and other biological polymers142,143, suggesting that

protein-ligand interactions trigger unique changes in vibration that can be used in detection

and diagnoses.

Despite these promising results, work in this direction has been hindered by several

factors. Experimentally, membranes’ mechanical and structural characterization, as well

as cellular identification, have been expensive and time-consuming35,122–124,135–137. Indeed,

many of the early works that discussed the use of mechanical vibrations as an identification

tool speculated that computation would eventually dominate the field130,132,133. Nonethe-

less, while computationally probing the vibrational modes of biological structures, like mem-

branes, is simpler, it is computationally demanding, which has led to less accurate approaches

(e.g., coarse-graining, continuous models) and assumptions (e.g., membrane composition and

structure)144–151 of limited usefulness or reproducibility. Finally, even when data is available,

an unbiased method for the identification and comparison of the vibrational spectra has long

been a complex challenge132,134,152–155.

To fill this gap, we propose an approach that combines atomistic molecular dynamics sim-

34



ulations, to gather information about the low-THz vibration of disparate membranes, with

signal processing, to identify and compare their vibrational spectra. Using this approach, we

discuss the effect of membrane asymmetry and lipid composition (with and without sterols)

on the vibrations, as well as some hidden pitfalls that are potentially introduced by the use

of atomistic simulations. Moreover, by employing a nonparametric test, our comparisons

allow us to test the variability among samples obtained of the same system, and quantify

spectral uncertainty.

4.1.2 Systems

In this work, instead of taking the standard approach of exploring the effect of each

possible parameter (e.g., the concentration of each possible lipid), we focused on three com-

plex membranes using realistic compositions, as discussed in the following. We chose this

approach because looking into the effect of all the possible parameters of a membrane is a

generally daunting task, given the number of possible lipids and their concentrations (e.g.,

B. Subtilis has at least 127 different lipids), and their often nonlinear relations. The latter

is a critical consideration, as it can make the effort of decomposing the problem in simpler

tasks very challenging; the addition of a single type of lipid can markedly change certain

observed properties, like the spectra in the range of interest here. We show such an example

at the end of this manuscript, when discussing the effect of sterols and LPG.

With this in mind, instead of trying to create a general model, we aimed to (1) determine

if we could detect any difference between real compositions and (2) discuss the problems sim-

ulations would encounter in sampling more realistic and therefore complicated systems. We

studied the plasma membranes of three types of cells, two of bacterial (Staphylococcus aureus

and Bacillus subtilis) and one of mammalian (rat liver plasma156) origin. We chose S. au-

reus because of its high pathogenicity and prevalence in hospital-acquired infections93,94, B.

Subtilis thanks to its ubiquity and innocuousness in healthy individuals157, and rat liver cell

membrane as an example of mammalian plasma membranes. For S. aureus , we considered
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two asymmetric membranes with different composition (S476A33, S476
A
51), observed at two

different values of pH (i.e., 5.5 and 7.4), as well as a symmetric membrane (S47633) as close

as possible to S476A33, to study the effect of lipid distribution between leaflets126,144,158–163.

For B. Subtilis and rat liver cells, however, we could only find information about the total

composition of the plasma membranes and therefore, we simulated homogenous bilayers.

These five systems are illustrated in Figure 4.1a. Additionally, we simulated four mem-

branes, derived from S476A33 and S476A51 by adding to each one of them 1.3% molar164 of

either ergosterol (ERG) or cholesterol (CHL). For all the membranes, 3 to 9 independent

replicas were generated and simulated.

Except when noted otherwise, the S. aureus membranes consist of a periodic bilayer of

15 nm x 15 nm in size (approximately 700 lipids, exact number depends on composition),

the B. Subtilis membrane 16 nm x 16 nm in size (840 lipids), and the rat liver membrane,

12 nm x 12 nm in size (600 lipids). These sizes were chosen based on the estimated lowest

frequency mode (fmin) that could be observed,

fmin =
smembrane

Lmax

(4.1)

where smembrane is the speed of sound in the membrane and Lmax the longest distance between

two points on the x-y dimension (membrane plan) of the periodic box. Since smembrane is

hard to estimate accurately, we conservatively used the speed of sound of water (1550m s−1),

which is greater than alcohols and alkenes with long aliphatic chains (1150-1250m s−1), which

places an upper limit to fmin of approximately 0.1THz.

4.1.3 Results

Before analyzing the differences among replicas of different membranes, we tested the

force field and relaxation protocol. As atomistic molecular dynamics has been extensively

proven in the literature to be suitable to model bilayer dynamics, we performed a minimal
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Figure 4.1: Systems and Nomenclature Summary. Composition and distribution of
five types of plasma membranes modeled in this work: one for B. Subtilis , one for rat liver
cell, and three for S. aureus (S476) membranes. S. aureus membrane are labeled according
to symmetry (A for asymmetric) and percent concentration of LPG (33% or 51%). Only
composition fractions greater than 2% are labeled; PG, LPG, CL (cardiolipin), FA, DAG,
PE, PC, PI, PS, PSM, and CHL. Only non-sterol containing membranes are shown.
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validation by computing the Langmuir isotherms in the between −4.2MPa and 1.5MPa for

S476A33, S476
A
51, and S47633. The comparison with experimental data (Figure B.2) shows that

the difference of our estimates is well below the uncertainty (standard deviation).

As a second step, we tested the potential bias introduced by using periodic boundary con-

ditions (i.e., size effect). To this end, we compared the spectra of membranes with identical

composition (S476A33) but having four different periodic system sizes (15 nm x 15 nm, 4 nm x

15 nm, 3 nm x 15 nm, and 3 nm x 12 nm). The results show (Figure B.7) that peak location is

unaffected by the size of the bilayer patch, but the normalized intensity is marginally weaker

for the smallest membranes. In the following, however, we will only use square periodic

patches (15 nm x 15 nm for S. aureus systems, 16 nm x 16 nm for B. Subtilis , and 12 nm x

12 nm for rat liver, see Methods), to avoid introducing any anisotropy in the systems.

4.1.3.1 Membrane Asymmetry

The asymmetry in the membrane composition is suggested to play a key role in many

cellular processes. At the same time, accurate information about the distribution of species

between leaflets is generally scarce, due to the difficulty of experimental measurements, as

well as the dynamic nature of the cellular membrane make-up. As a larger number of average

compositions are available in the literature, we compared the differences in the vibrational

spectra between symmetric and asymmetric S. aureus systems (S476A33 and S47633). The

initial comparison (see Figure 4.2), while showing a statistical equivalence between the peaks

of the two systems, was surprisingly affected by large uncertainty, despite the number of

replicas used for each system (9 for S47633 and 6 for S476A33).

To investigate the rationale behind this observation, we looked into the similarity among

replicas of a given membrane. To make sense of all these comparisons, we built an undirected

weighted graph (Figure B.8a), where each node is a replica and the weight of each edge is

equal to 1 - KS (i.e., similar spectra are connected by an edge with higher value). Different

types of clustering analyses can be performed to obtain such a graph, but the consistent
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Figure 4.2: Effect of composition and distribution on S. aureus membrane’s spec-
tra. (A-C) S. aureus membrane average spectra (cyan), standard deviation of spectra (dark
blue), and peaks (black); error bars represent standard deviations. For S476A33 and S47633
the spectra are computed from the largest cluster of replicas (Figure B.8). (D) Kolmogorov-
Smirnov (KS) statistics; error bars represent the standard error of the mean. Self comparison
(e.g., S47633/ S47633) indicates the average difference between replicas of the same system.
KS statistic shows that this part of the absorption spectra for the three systems are not
distinct.

result is that the replicas are not separated, as expected, in two groups based on their leaflet

symmetry, but rather in three groups, where both types of systems are somewhat mixed.

Given the microcanonical nature of the simulations used to generate the spectra, the reason

for this clustering is a dependence on the initial conditions, likely resulting in some violation

of the ergodic hypothesis. To narrow down the source of this difference, we considered the

effects of the membrane thickness (Figure B.8a), periodic system size, and surface tension

(Figure B.8b) on the spectra, but we found no strong correlation in all cases. Thus, we

hypothesize that the differences are related to slightly different stability in the vibrational

modes that are sampled, due to slightly different initial velocity distribution. This hypothesis

is corroborated by the analysis of the peaks, which shows that, with the notable exception

of the lowest frequency (∼ 0.2THz), the peaks display variability in intensity and location

between groups (Figure B.8c).

This analysis leads to three main conclusions. First, it shows that the leaflet symmetry,

for equivalent total composition, does not have a statistically significant effect on the spectra,

whether we consider KS statistic of the average of all replicas or we restrict ourselves to one
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Figure 4.3: Plasma membranes absorption spectra of different species. (A-C) Av-
erage spectra are shown in cyan, standard deviation in spectra (dark blue), and peaks are
labeled by black points; error bars represent standard deviations in peak location and in-
tensity. The S. aureus membrane is the only one among the three that has a peak in the
(0.17-0.2THz) region. (D) Kolmogorov-Smirnov (KS) statistics; error bars represent the
standard error of the mean. Self comparisons (e.g., Rat / Rat) indicate the average differ-
ence between replicas of the same system. KS statistic shows that S. aureus spectra is very
distinct from the other two, even though B. Subtilis and Rat spectra are still statistically
discernible.

of the replica clusters, like in Figure 4.2. Of note, the membrane symmetry can still affect

other processes, as well as other mechanical properties. Second, despite the differences and

the complexity in comparing the spectra of each replica, the lowest frequency peak (between

0.17THz-0.21THz) is conserved in all S. aureus systems and replicas. Finally, the spectra

obtained from simulations should be carefully tested for internal consistently. Even though

we observed statistical variability only among replicas of two S. aureus systems in this work,

this issue should be tested to avoid adding systematic uncertainty to the results, especially

as we will show, below, for more rigid membranes.

4.1.3.2 Cell type

After establishing the effect of composition and lipid distribution for S. aureus membrane,

we compared the spectra of the plasma membrane of different cells, namely we compared S.

aureus with one other common bacterium as well as a mammalian cell.

The results (Figure 4.3) show that the S. aureus absorption spectra in the low-THz re-

gion is rather distinct from the other two, with a characteristic peak, just below 0.2THz.
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Of note, this distinction holds regardless of the S. aureus replicas or the symmetry chosen

(Figure B.9). B. Subtilis and rat liver cell are also statistically distinct, although notably

more similar than S. aureus , despite the remarkably different composition. Notably, these

differences are the results of the interplay between lipids and not a simple inertial behavior

due to the difference in the membranes’ density: the mass per unit area of S476A33 (approx-

imately 2.4 kDa nm−2) falls between the one for B. Subtilis (approximately 2.2 kDa nm−2)

and the mammalian cell (approximately 2.6 kDa nm−2).

4.1.3.3 Sterols

Finally, we looked in the effect of the presence of sterols on the S. aureus membrane.

Bacterial cells do not typically synthesize sterols, as the bacterial cell wall occupies the same

function fulfilled by sterol-containing plasma membranes in eukaryotic cells by maintaining

structural integrity and fluidity. However, cell-wall-deficient forms of S. aureus , called L-

forms, do exist165. As staphylococcal L-forms lack cell walls, sterols provide a means of

maintaining structural integrity and fluidity166. More importantly, the presence of sterols

has been linked to increased resistance to antimicrobial peptides167 and lipid raft formation,

demonstrating their importance in membrane function and biological processes. For this

reason, we analyzed the effect of sterols on the absorption spectra by comparing the spectra

of the asymmetric S. aureus membranes (without sterols), with identical membranes to

which we added either 1.3% cholesterol or ergosterol164.

The presence of sterols in the membranes (see Figure 4.4) had a greater effect on the

spectra of S476A33 than that of S476A51. This difference can be related to the different content

of LPG between the two membranes, as higher levels of LPG decrease the membrane fluid-

ity168–172, causing a slight change in the absorption spectra. These results agree with a study

in which mutant bacteria, producing less LPG, have membranes with a reduced rigidity173.

Indeed, the presence of high LPG concentration, much like low concentration of sterols, has

been shown to have a stabilizing effect on membrane fluidity169,170. While these effects do
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Figure 4.4: Difference in the spectra due to the presence of sterols in S. aureus
membranes. Plots show the results of two-sample Kolmogorov-Smirnov (KS) tests for the
average spectra of (A) S476A51 and (B) S476A33, without any additional sterol, and with 1.3%
cholesterol or ergosterol. Error bars represent the standard error of the mean. (C) Average
mobility measured as root-mean-squared fluctuations (RMSF) of the positions of non-sterol
atoms in S476A51 and S476A33 membranes, without sterols (baseline) and with cholesterol
(orange) or ergosterol (green).

not compound (S476A51), a membrane with a lower concentration of LPG (S476A33) would be

more susceptible to changes caused by sterols. It is interesting that sterols in the membrane

with more LPG cause an increase in mobility, as measured by the average atomic RMSF,

while sterols in the membrane with less LPG cause an increase in rigidity (Figure 4.4c). Fi-

nally, cholesterol typically affects the membrane mechanical properties more than ergosterol

(Figure 4.4b), which agrees with the experimental observation that ergosterol has a smaller

effect on membrane mobility than cholesterol167.

4.1.4 Discussion

The unique absorption spectra of biological membranes are a promising metric for species

differentiation and bio-process identification. In this work, we show how to estimate, analyze,

and compare the absorption spectra of bacterial and mammalian membranes, by combining

molecular dynamics simulations and signal processing techniques (i.e., peak detection and

KS statistics). The analysis of S. aureus , B. Subtilis , and rat liver cells, shows that distinct
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peaks can be identified for different species in the low-THz region and that certain peaks,

for S. aureus around 0.19THz, are present even for different compositions and symmetries,

making them good identifiers under a variety of conditions.

The ability to rigorously compare noisy and complex spectra, like the one studies here,

opens the door to finding unexpected correlations. For example, S. aureus membranes (at 7.4

pH) have a lower LPG content, which we found is associated with both increased variability

among replicas and higher susceptibility to changes in mobility in the presence of sterols.

This change could speak to higher rigidity in membranes with more LPG, as LPG tends to

maintain membrane fluidity168–172. While higher fluidity may have biological advantages, it

seems inversely correlated to antibiotic resistance as, generally, an increase in resistance of

membranes to antimicrobial peptides is associated with higher concentrations of LPG169,174

and sterols167.

The comparison of spectra of different samples of the same system also provides a way to

find similarities, even for complex signals like the one presented here. Different samples can

be clustered and analyzed by building fully connected graphs, where edges are weighted based

on the values of a two-sample KS test. This representation, allows visualizing and finding

similarities on high dimensional spaces, like the 105th-dimensional space of the comparisons

between 15 S. aureus samples in this work. While we found that the existence of clusters

among the samples affected only the most rigid membrane (see the previous discussion about

LPG content), it is nevertheless allowed extracting data from samples that would have been

otherwise affected by a high uncertainty.

Finally, while this work was designed around the low-THz absorption spectra of plasma

membranes, it can immediately generalize to other structures (e.g., fibers present in biofilm

matrix), other regions of the vibrational spectra, as well as to data obtained from experi-

mental techniques. Our work reinforces the idea that vibrations can be used to successfully

differentiate between different biological complexes and how they are affected by specific

changes, which, then, can potentially be related to biological functions. This link, if present,
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could inform a route by which these vibrations could be manipulated, for very targeted

effects37.
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CHAPTER 5

Combating Biofilm with Carbon Nanoparticles (CNPs)

5.1 Chiral Carbon Nanoparticles (CNPs)

5.1.1 Introduction

Biofilm formation is a defense mechanism employed by bacteria to withstand hostile en-

vironments, evade immune responses, and resist antibiotics175,176, as the embedded bacterial

cells within biofilms exhibit significantly higher antibiotic resistance compared to free-floating

cells177,178. Chiral CNPs have previously demonstrated antibacterial activity by generating

reactive oxygen species, disrupting cell membranes, and interacting with intracellular pro-

teins52,53. The stability, low toxicity179,180, and high molecular weight of chiral CNPs make

them promising candidates for anti-biofilm applications39.

The unique physicochemical properties of carbon nanoparticles (CNPs) have sparked sig-

nificant research interest. CNPs with an average diameter of less than 10 nm possess desir-

able optical and electronic properties, similar to semiconductor nanoparticles while avoiding

Some of the information in this chapter is available in the following cited publication and the rest is soon-
to-be-published material. Misché A. Hubbard, Chloe Luyet, Prashant Kumar, Paolo Elvati, J Scott VanEpps,
Angela Violi, and Nicholas A Kotov. Chiral chromatography and surface chirality of carbon nanoparticles.
Chirality, 34(12):1494–1502, 2022. Experimental methodologies performed by Misché Hubbard have been
omitted; however, in-text references to experiments performed by Misché Hubbard are denoted appropriately.
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issues such as heavy metal toxicity, harsh synthesis conditions, and expensive starting ma-

terials181–183. CNPs, along with other nanocarbons, are highly stable, chemically inert, and

biocompatible, making them useful for various applications such as light-emitting diodes184,

biosensors185, photocatalysts186, bioimaging180, and drug delivery49. Another advantage of

nanoparticles is their diverse sizes, shapes, and functional groups.

Mirror asymmetric CNPs, which exhibit multiple scales of chirality from molecular to

nanoscale, have the added advantage of chiral recognition for various applications involving

biomolecules with similar hierarchy of chirality. For example, L-CNP made from L-lysine

has been found to remodel the secondary structure of amyloid-β (aβ-42) peptides and inhibit

key factors of pathogenesis, while D-CNP made from D-lysine have little to no biological

activity against the same peptide54. Furthermore, experimental results reveal that both L-

and D-CNPs can disperse S. aureus biofilms, but D-CNPs exhibit enhanced anti-biofilm

activity. Importantly, chiral CNPs do not affect the growth of planktonic S. aureus cells,

indicating their specificity towards biofilm dispersal and highlighting the chiral recognition

capabilities of CNPs within the ECM. Chiral chromatography analysis confirms the stability

of CNPs in the biofilm supernatant. Likewise, it is worthwhile to investigate the potential

of chiral CNPs to interfere with the self-assembly process of amyloid-like proteins within the

ECM of biofilms, leading to their disruption.

If multiscale enantiomers of CNPs are expected to elicit distinct biological and phar-

macological responses, there is a pharmacological demand to separate the two enantiomers.

Moreover, to determine the chiral centers of CNPs and develop reproducible methods for

separating enantiomeric NPs, it is crucial to know whether the chiral centers are located

inside the particles or at their interfaces. Nonetheless, chiral separations of nanoparticle so-

lutions using high-performance liquid chromatography (HPLC) have not been achieved yet,

though using teicoplanin, a macrocyclic glycopeptide, as the column’s stationary phase has

shown promise in separating other chiral compounds187–189.

In this study, we achieve two things: (1) we investigate the potential of chiral carbon
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Figure 5.1: Example of initial configurations for (a) a group (15) of PSMs surrounding
1 CNP and (b) a single PSM interacting with 1 CNP. D-CNP is shown in red, L-CNP in
black, PSMα3 in blue and PSMα1 in yellow. Water and ions are hidden for clarity.

nanoparticles (CNPs), derived from L- and D-cysteine, to disrupt biofilms based on their

interactions with PSMs and (2) we demonstrate that a teicoplanin stationary phase has a

chiral-dependent affinity for CNPs, which explains how a simple water/acetonitrile mobile

phase was used to achieve chiral separation of cysteine-derived chiral CNPs.

5.1.2 Systems

We performed two sets of experiments (see Figure 5.1) to investigate CNP-PSM interac-

tions, one aimed at understanding the specific interactions between peptide and nanoparticle

(a single PSM + 1 CNP) and one to emulate a strong local concentration of PSMs (a group

(15) of PSMs + 1 CNP).

To create a reasonable initial configuration of a single PSM interacting with a CNP, we
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used HDOCK190, by taking the top 10 most likely binding configurations of each PSM with

each layer of each CNP. Of the resulting 120 configurations (2 PSMs x 2 CNPs x 3 molecules

in each CNP x 10 predictions), only about 14% (17 configurations) were not discarded due

to nonphysical atomic overlap. All these configurations were equilibrated using the protocol

described above, but systems that did not equilibrate with 200 ns, were discarded, leaving

only 11 systems (3 for PSMα1/D-CNP, PSMα3/D-CNP, and PSMα3/L-CNP, and 2 for

PSM/L-CNP). The systems with 15 PSMs were generated by randomly placing the peptides

around the CNP at an average COM-COM distance of 3- 4 nm. PLUMED59 was used to

place upper limits on the distance between the centers of mass of each PSM, with the CNP

at the center. The walls were weak enough that the peptides could drift from the CNP and

cluster among themselves.

To mimic the chromatographic conditions and investigate the chiral specificity of a te-

icoplanin stationary-phase column, two simplified models were created, one for teicoplanin

with each chiral NP made from two cysteine enantiomers.

5.1.3 Results and Discussion

5.1.3.1 PSM-CNP Interactions

PSMs bind to CNP with chiral specificity. In all the simulations, we observe that

the peptide will form long-lasting interactions with the CNPs. Specifically, we detect the

formation of long-lived hydrogen bonds between the PSMs and the nanoparticles, with an

average of about 8 peptides directly interacting with the CNP. While the interactions involve

a variety of residues, from N-terminus, to C-terminus, and other, more central residues,

lysine (lys) residues show significant specificity in their preference for L-CNP over D-CNP.

As shown in Figure 5.1, lys residues on both PSMs form longer-living hydrogen bonds with

L-CNP.

This chiral specificity is not limited to lys groups, but extends also to Asparagine (asn)

C-terminal residues, asn21 and asn22 (present only on PSMα3), which form bonds with
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Figure 5.2: Difference in Lysine Hydrogen Bond Lifetimes of PSMs to CNPs. Data
is collected from group simulations. Error bars are standard errors of the mean, taken at 5 ns
intervals of the trajectory. All hydrogen bond lifetimes are positive and have been normalized
by the 5 ns of total simulation time.

D-CNP with an average lifetime of 13.4± 4.3 ps and 3.7± 0.6 ps, respectively. These life-

times are remarkably longer than the ones observed for PSMα3/L-CNP (0.12± 0.01 ps and

0.09± 0.01 ps), suggesting that, for PSMα3, the short-lived interactions of the lys groups

are compensated with longer lived asn h-bonds. Both these types of residues play an im-

portant role in the structure and functionality of these peptides. PSMs’ lys residues have

been shown to be essential for protein stability and interactions with other molecules191.

Post-translational modification of lys residues significantly enhances protein aggregation,

including into amyloid fibers, through a mechanism that involves the PTM shielding the

positive charge of the lys residue, decreasing electrostatic repulsive forces, and promoting

aggregation192. Lysine residues are also responsible for the inter-protofilament salt-bridge

interactions of PSM amyloid fibers28. asn21 and asn22 have been shown to be important

in the recognition of PSMα3 during the FRP2-mediated proinflammatory response.
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CNPs seed PSM aggregation. We observe that not only do the PSMs aggregate on

the CNP, but this aggregation seeds further clustering of PSMs. We observe only up to 4

layers, with outer layers sometimes composed of a single peptide. Still, this process could be

even more prominent, as peptide deposition on layers and layer reorganization happens on a

longer timescale than the one simulated here. While the aggregation and seeding are observed

for all the systems (see Figure 5.3), the PSMα3/L-CNP aggregate is the only system that

forms two stable layers, while the other systems have four. This difference is more significant

when considering that more PSMα3 aggregates around L-CNP (all 15 peptides) compared

to the 9 that aggregate on D-CNP, suggesting that L-CNP could not only bind PSMα3

strongly, but thanks to the number of H-bonds distributed along the length of the peptide

(see previous paragraph), favor a better spatial organization that leads to a more efficient

clustering. This effect is not observed for the PSMα1/L-CNP aggregate, likely because

the long-lived H-bond is more localized towards the end of the peptide, allowing higher

configurational freedom that results in a more disorganized assembly as indirectly shown by

more spread distribution of peptides (see Figure 5.3d). A more quantitative description of the

differences between the orientations of the peptides cannot be surmised from the simulations

performed here. Nevertheless, it is worth noting that the aggregation is generally quite

disorganized, with peptides aggregating with respect to the CNP surface in a variety of

orientations, as shown in Figure C C.1.

CNPs affect PSMs’ secondary structure. The generally wider distribution of dis-

tances for PSMα1 is also due to the change in secondary structure caused by the interaction

with the CNP. While all PSMs show some loss of -helical secondary structure when inter-

acting with CNP (first layer), compared to when they are solvated in water, this change

is almost negligible for PSMα3. For both PSMs, we observe that the slight loss of -helix

corresponds to a roughly equal increase in random coil and β-sheet, independently of the

CNP chirality; however, we observe a much more relevant loss of the -helical secondary

structure with both CNPs for PSMα1. Moreover, for PSMα1, this change results primarily
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Figure 5.3: CNPs seed the formation of PSM aggregates. (a-b) PSMα1 (yellow
palette) aggregating around (a) L-CNP (red) and (b) D-CNP (black). (c-d) PSMα3 (blue
palette) aggregating around (c) L-CNP (red) and (d) D-CNP (black). The distributions are
collected during the group simulations, where the minimum distance is taken between each
amino acid on the PSM and non-hydrogen atoms on the surface of the CNP.
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Figure 5.4: Change in structure of PSMs due to interactions with CNP. Bars show
the difference in secondary structure compared to the solvated peptides as sampled in the
single PSM simulations. Error bars are standard errors of the mean. Negative values
indicate a reduction in the secondary structure interacting with CNPs.

in an increase of β-sheet and some random coil secondary structure. This difference between

the peptides is likely due to the higher stability of the PSMα1 β-aggregates28, and is likely

responsible for the observed differences in the structure of the additional peptide layers, as

discussed above.

5.1.3.2 Chiral Separation of CNPs

D-CNP eluted slower than L-CNP (Table 5.1.3.2) in the chiral column. The longer

retention time of D-CNP suggests that chiral ligands at the surface of the CNPs are the

primary mechanism for enantioselective separation through polar ionic interactions. Biased

molecular dynamics (MD) simulations were employed using unbound teicoplanin to study

its interaction with chiral CNPs (Figure 5.5a). Two simplified models were created to mimic

the chromatographic conditions, one for teicoplanin with chiral NPs made from two cysteine
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Table 5.1: Affinity of Chiral CNPs for Teicoplanin. Experimental retention times,
collected from experiments performed by Misché Hubbard, of CNPs in the column and
computational binding free energy from simulations are shown. A longer retention time
indicates higher affinity of the D-CNP for teicoplanin; a negative binding free energy also
points to D-CNP having a higher affinity for teicoplanin. Errors are standard deviations.

System Retention Time (min) ∆A (kcal/mol)

L-CNP 0.795± 0.046 0.35± 0.51
D-CNP 0.961± 0.022 −1.95± 0.64

enantiomers. Metadynamics simulations were performed to determine the binding free en-

ergy for teicoplanin with L- and D-CNP, which were found to be 0.35±0.51 and −1.95±0.64,

respectively (Table 5.1.3.2), where the error represents the standard deviation. The higher

binding energy for the teicoplanin/L-CNP system indicates a weaker or unfavorable interac-

tion. Interestingly, L-CNP was observed to become warped in close proximity to teicoplanin

(Figure 5.5c), and the center of mass distance between teicoplanin’s binding region and the

L-CNP was found to be larger than for the D-CNP when they interacted. This observation

provides a possible explanation for the difference in affinity (Table 5.1.3.2), as teicoplanin’s

binding region orients itself closer to the D-CNP (Figure 5.5b). Overall, the MD simulations

demonstrated a higher binding affinity between teicoplanin and D-CNP, consistent with the

elution order observed in experiments. This suggests that MD simulations can be powerful

tools for understanding the interactions of chiral NPs and chiral selectors, and can be used to

screen multiple parameters to identify suitable conditions for enhanced resolution between

enantiomers.

5.1.3.3 Conclusions

The interaction between PSMs and chiral, cysteine-based CNPs was elucidated, reveal-

ing significant implications for biomedical applications. In practical applications, these chiral

CNPs have been shown to selectively disassemble amyloid-rich S. aureus biofilms; L-CNPs, in

particular, exhibit lower anti-biofilm activity than D-CNPs, perhaps, due to their ability to
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Figure 5.5: Chiral Separation of Chiral CNPs by Teicoplanin. (a) Structure of the
L-CNP (left) and D-CNP (right) CNP in water. Electrostatic repulsion due to dissociated
carboxylic groups is mitigated (1) by Na+ ions (silver spheres) and (2-5) by intermolecular
hydrogen bonds. (b) dbinding, the distance between the COM of TEIC binding region and
COM of each CNP, distributions illustrate a higher probability that the binding region of
teicoplanin is closer to the D-CNP than to the L-CNP. (c) Chiral CNPs interacting with
teicoplanin. Teicoplanin (orange and blue), teicoplanin binding region (blue), D-CNP (red),
and L-CNP (black)
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selectively interact with lys residues. Also, D-CNP instigates a greater loss of the α-helical

secondary structure of PSMα1. The chiral CNPs were separated using high-performance

liquid chromatography (HPLC), which demonstrated the presence of chiral centers on their

surface, crucial for interactions with cellular membranes and biomacromolecules. Further-

more, the separation of L- and D-CNPs using teicoplanin stationary phase HPLC columns

indicates that not only are they chirally stable, but they are, also, resistant to reverting

to their cysteine precursors. Combined, these findings underscore the promise of CNPs as

an anti-biofilm platform, with the potential for tailored applications in combating bacterial

infections.

55



CHAPTER 6

Conclusions

My research has explored PSMα1 functional amyloid aggregation28, cellular membrane

vibrations38, and chiral CNPs as antimicrobial agents55.

6.1 Impact

Alone, the work presented in the PSMα1 functional amyloid publication28 and Chapter 3

is a groundbreaking computational study, where, for the first time, we demonstrate that

we can observe the preference of PSMα1 amyloid fibers for β-sheet, rather than α-helical,

aggregates computationally with molecular dynamics simulations. We, also, explain the

lateral aggregation mechanism of the fibers with chirality, and the exceptional agreement

to experimental results that we achieve in this study suggests that molecular dynamics

simulations are an invaluable tool in the characterization of proteinaceous and polymorphic

fibers. This has immediate implications in the study of biomolecular structures because, now

that we understand their aggregation mechanism and structure in superior detail, we can

learn how to prevent their formation, modify or manipulate them, and destroy them using

new materials (e.g., chiral carbon nanoparticles in Chapter 5). In the membrane vibrations

publication38 and Chapter 4, we demonstrate that we can detect differences in the mechanical

vibrations among membranes with various lipid compositions and in a high-dimensional

space with a combination of graph theory and the Kolmogorov-Smirnov Statistic. The
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procedure we present can be immediately applied to other structures (e.g., amyloid fibers),

as well as to data obtained experimentally; therefore, this work has vast implications in the

identification of compounds in a variety of contexts. Furthermore, our study briefly hints

at how comparisons could be used to discern correlations between membrane composition

and function, even in the face of noisy data. Finally, the work summarized in Chapter 5,

including published55 and unpublished results, can serve as a blueprint for the design of new

anti-biofilm compounds. Now that we are cognizant of the importance of chirality in the

aggregation of PSMα1 amyloid fibers, as well as the functionalization of carbon nanoparticles

and subsequent dissemination of biofilm, we can approach the study of other anti-biofilm

compounds with conviction. Using computational techniques, including molecular dynamics

simulations, to help explain experimentally observed phenomena in the realm of drug-target

interactions is a mutually beneficial partnership I do not see losing its merit anytime soon.

If anything, computational drug discovery will become increasingly conventional, but as I

will mention in the Future Work section, it can be improved.

Combined, the results of my research, and future work motivated by my research, will

make anti-biofilm treatment more affordable and readily available and curb the consequences

of bacterial resistance. Currently, there is little incentive for pharmaceutical companies to

invest in antibiotic research and development because it is time-consuming, expensive, and

rendered obsolete, as antibiotic discovery cannot compete with growing antibiotic resistance.

Computationally searching for answers will expedite the process, saving valuable time and

money. The implications of this work, however, reach far beyond the clinical envelope.

Biofilm flourishes in soil and leaches into the water supply. It is everywhere. Because biofilm

affects everyone, on a global scale, this work has the potential to improve the lives of billions

of people.
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6.2 Future Work

Future work will (1) further characterize the aggregation of amyloid fibers, and (2) explore

the development of targeted nanoparticulate compounds that specifically interact with PSM-

derived amyloids to disrupt biofilm stability. These future aims, taken together, explore

increasingly complex nanosystems relevant to addressing the issue of biofilm manipulation

and resilience by applying molecular dynamics simulations, novel computational analysis

techniques, and machine learning. In the following subsections, I explore the future of

research in both of these areas.

6.2.1 Amyloid Fiber Characterization

We can build upon the computational amyloid fiber characterization performed in this

thesis by investigating two aspects of fiber formation in more detail: the evolution of fiber

structure over time (which includes oligomers, eDNA, polymorphs, and α to β transition)

and the environment of the biofilm.

6.2.1.1 Evolution of Fiber Structure

The study of the aggregation of proteinaceous amyloid fiber subunits into larger and

larger oligomers before becoming fibers is essential, as oligomers of amyloid-forming pro-

teins, including PSM peptides, have been identified to possess enhanced toxicity compared

to their monomeric forms14. Computational research could focus on simulating the initial

stages of oligomer formation, employing molecular dynamics simulations to observe the con-

ditions under which oligomers form and identify the structural features that contribute to

their increased pathogenicity. This information could be used to design drugs or anti-biofilm

compounds that inhibit oligomerization, potentially mitigating the toxicity of bacterial in-

fections. Such observations could even have implications for amyloid-induced diseases, like

Alzheimer’s and Parkinson’s.

Since amyloid fibers undergo small, but detectable, changes for about 2 weeks, the slow
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evolution process of fibers formed in solution, as opposed to their relatively quick forma-

tion in vitro and in vivo, could be a consequence of other constituents in the ECM (e.g.,

eDNA)4. Since we know that amyloid fiber formation is bolstered by seeding and undergoes

a rate-limiting nucleation phase, eDNA might have a hand in initiating, the aggregation

process108. eDNA might, also, template the chirality of the fiber by hindering additional

lateral growth or expediting the recovery when any disaggregation occurs. eDNA plays a

critical role in the stabilization and maturation of biofilms, acting as a scaffold that sup-

ports the aggregation of PSM fibers. Thus, understanding the interaction between eDNA

and PSM peptides could reveal targets for disrupting biofilm integrity. Though developing

a coarse-grained approach is probably necessary as the system of eDNA and fiber becomes

increasingly convoluted, computational studies can model these interactions, exploring the

interactive forces and binding affinities between eDNA and PSMs. On a similar note, the

α-helical peptide to β-sheet secondary-structure transition is, also, a fundamental stage in

the formation of functional amyloids. This conformational change is associated with the

maturation of fibers and their functional properties, and could, also, be a bottleneck in fiber

maturation. Advanced computational techniques, such as enhanced sampling methods, can

be utilized to study the free energy barriers associated with this transition. By capturing

the detailed pathway of this conformational change, researchers can identify critical inter-

mediate states that may serve as potential targets for therapeutic intervention, aiming to

halt or reverse the amyloid formation process.

Last but not least on the subject of fiber evolution is the acknowledgement of poly-

morphs. Polymorphs represent the diverse structural variants that PSM fibers can adopt,

whether it be a local deviation in the secondary structure or the number of protofilaments,

and are an innate consequence of how the fibers form. Different polymorphic forms can have

distinct biological properties, influencing the pathogenicity and stability of biofilms108,120.

By understanding the polymorphic landscape, it becomes possible to predict and potentially

control the formation of less harmful or more easily disruptable biofilm structures. Compu-
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tational methods like free energy calculations can be applied to study the stability of various

polymorphs and their propensity to form under different environmental conditions.

6.2.1.2 Environment of the Biofilm

While most of our knowledge about microbial biofilms comes from those formed at liquid-

solid interfaces, it is crucial to understand biofilms at gas-solid interfaces, which have a pro-

found impact on human health193. Biofilms formed at gas-solid interfaces, like hospital sur-

faces and food contact surfaces, can cause material degradation, deterioration, and potential

health risks194,195. Studying these biofilms is challenging due to their unique characteristics,

including low resource availability, low biomass, and low growth; therefore, gaining insights

into the chemical, physical, and biological attributes of these environmental films and their

ecological succession over time and space is essential for material design, control features,

functionalized materials, and synthetic biology.

The identification and analysis of essential biological matrix components, such as pro-

teins, carbohydrates, eDNA, and phage, are crucial for understanding the formation and

maintenance of surface films. First, computational techniques, such as MD simulations, can

be employed to generate accurate nanoscale assemblies of ECM constituents and explore

their interactions with various bacterial structures. Then, coarse-grained (CG) models can

be developed based on the atomistic descriptions, allowing the representation of larger-scale

biomolecules and conformational changes. Extending the scale of molecular simulations

from atomistic to mesoscopic levels could provide a deeper understanding of the behavior

and properties of biofilm components. By combining MD simulations with machine learning

(ML) approaches196, the probability and location of nanoscale interactions can be estimated,

providing valuable insights into the formation and stability of biofilms in various environ-

ments.
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6.2.2 Disrupting Biofilms with Nanoparticles

The advent of machine-learning tools for predicting protein-nanoparticle interactions, like

NeCLAS developed by Saldinger et al., presents a promising frontier for the speedy predic-

tion and identification of innovative antibacterial therapies. Because there are many other

nanoparticles, besides carbon nanoparticles, that could be potential drug candidates (e.g.,

zinc oxide nanoparticles197,198 and gold nanoparticles199–201), machine learning can be used

to predict potential binding sites and interaction strengths between different nanoparticles

and their suggested targets. Knowing the drug target in a multi-, whole-cell biofilm or bac-

terial colony is challenging because of experimental microscopy limitations202. Regardless,

understanding the mechanism of action of the drug is critical not only to optimize the drug’s

efficacy and safety profile, but also to anticipate how resistance will, inevitably, develop,

which is crucial for the continued effectiveness of the drug. In the interest of mitigating bac-

terial resistance, it’s worth noting that multidrug-tolerant persister cells (or bacteria with a

low metabolic state) are often the culprits behind chronic and relapsing infections203–206, so

it would be shrewd to consider probing the effectiveness of drug candidates against persister

cells to avoid triggering the development of new antimicrobial resistance mechanisms, or at

least not as quickly.

Significant strides can be made in the development of targeted antibacterial therapies,

with careful application and a judicious combination of machine learning and molecular

dynamics simulations. Machine-learning predictions will streamline the setup of molecular

dynamics simulations, allowing us to focus on the most promising interaction regions and

apply a minimal bias to drive the system toward these sites. Then, unbiased molecular

dynamics simulations will confirm the stability of the nanoparticle-protein complexes and

allow for the quantification of any conformational and dynamic changes that result from

the interaction. Nonetheless, acknowledging there are pitfalls inherent to machine-learning

predictions (e.g., uncommon mechanisms of interaction may evade detection because they

lacked representation in the training set), more computationally demanding enhanced sam-
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pling techniques to ensure a comprehensive exploration of the phase space may be necessary.

This protocol can serve as a foundation for future medicinal chemistry efforts to refine the

search for antimicrobial candidates, carrying with that the potential to revolutionize the

treatment of bacterial infections by rapidly scanning a vast array of nanoparticulate drug

candidates and significantly accelerating the drug discovery process.
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APPENDIX A

PSMα1

Figure A.1: Evolution of the diameter of PSMα1 fibers computed from TEM images.
The distributions are generally multi-modal: the boxes represent first and third quartiles
of the dataset and the middle line represents the median; whiskers show the rest of the
distribution.
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Figure A.2: Stability of the PSMα1 aggregates in all the simulated systems. S for
stable, U for unstable.
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Figure A.3: Contribution to the diameter distribution computed fromMD simulations.
Diameters smaller than 5 nm appear at inter-protofilament regions, where there is a lower
atom density and smaller diameter. In this snapshot of the 2β20 fiber, diameters smaller
than 5 nm (colored) are detected in the middle slice. Coordinates of atoms (right panel) in
each slice are represented in angstrom.
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Figure A.4: Diameter Parameter Selection does not significantly influence the average,
nor the overall shape of the diameter distribution. Shown are diameter distributions for 1β40

with (a) slice height of 1.5 nm and 8 sectors, (b) slice height of 1.5 nm and 20 sectors, (c)
slice height of 2.5 nm and 8 sectors, and (d) slice height of 2.5 nm and 20 sectors; 2β20 with
(e) slice height of 1.5 nm and 8 sectors, (f) slice height of 1.5 nm and 16 sectors, (g) slice
height of 2.5 nm and 8 sectors, and (h) slice height of 2.5 nm and 16 sectors; and 3β20 with
(i) slice height of 1.5 nm and 8 sectors, (j) slice height of 1.5 nm and 20 sectors, (k) slice
height of 4.0 nm and 8 sectors, and (l) slice height of 4.0 nm and 20 sectors.
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Figure A.5: Angles of Rotation vs. Fiber Length boxplots The distributions are gen-
erally not multi-modal: the boxes represent first and third quartiles of the dataset and the
middle line represents the median; whiskers show the rest of the distribution. Averages are
unweighted.
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Figure A.6: Diameter vs. Fiber Length for 1-protofilament (left), 2-protofilament (mid-
dle), and 3-protofilament (right) MD fibers simulations. The distributions are generally
multi-modal: the boxes represent first and third quartiles of the dataset and the middle line
represents the median; whiskers show the rest of the distribution.
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Figure A.7: Inter-Layer Distance in nm for simulated nanofibers.
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Table A.1: Fiber Diameter Statistics (in nm) from TEM day-by-day images. Seven-figure
summary is reported as percentiles.

Day
Percentile

0th 10th 25th 50th 75th 90th 100th

9 3.550 6.100 6.850 8.700 11.60 17.50 25.75
12 1.650 5.375 7.000 10.35 14.48 17.70 23.40
21 4.150 7.600 8.300 9.550 11.60 14.10 23.85
24 1.500 5.650 6.650 8.450 12.10 15.55 24.90
60 1.650 5.900 6.850 7.950 9.700 12.55 26.20

Averages
Forming Fiber 1.650 5.950 6.850 9.000 12.50 17.60 25.75
Mature Fiber 1.500 6.450 7.600 8.900 11.00 13.90 26.20

Day Average Standard Error Samples

9 10.10 0.0014 3131
12 10.96 0.0053 852
21 10.28 0.0001 24324
24 9.690 0.0009 4500
60 8.830 0.0002 17035

Averages
Forming Fiber 10.28 0.0011 3983
Mature Fiber 9.690 0.0200 45859
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Table A.2: Fiber Diameter Statistics (in nm) for simulated PSMα1 fibers. The seven-
figure summary is reported as percentiles. (v) for vacuum simulations; unmarked simulations
are in 0.15m NaCl solution.

System
Percentile

Average
0th 10th 25th 50th 75th 90th 100th

1β40 3.632 5.204 5.715 6.258 6.792 7.242 9.155 6.250

1β
(v)
40 3.211 4.433 5.0635 5.534 5.862 6.402 7.847 5.480

2β30 2.813 4.802 6.220 9.696 11.442 12.096 13.965 9.03

2β
(v)
30 3.912 4.396 5.659 8.623 10.21 10.900 11.26 8.010

3β20 2.818 4.118 4.692 9.2915 13.511 16.604 18.986 9.460

3β
(v)
20 2.334 3.115 3.571 4.7245 8.943 13.342 16.315 6.51

1α10 1.845 2.899 3.231 3.661 4.072 4.511 5.763 3.68
2α10 3.220 4.265 4.565 5.019 5.497 5.841 7.029 5.04
3α10 2.350 3.871 4.440 5.523 6.349 7.107 9.116 5.46

AFM 1.230 8.607 9.697 11.74 14.23 18.36 29.99 12.52

Table A.3: Half Helical Periodicity Statistics (in nm) from simulations and AFM im-
ages. The seven-figure summary is reported as percentiles. All systems are in 0.15m NaCl
solution.

System
Percentile

0th 10th 25th 50th 75th 90th 100th

1β40 2.694 5.328 6.990 11.38 17.85 27.16 47.52
2β30 17.43 29.72 36.68 48.78 67.63 92.47 137.6
3β20 30.39 49.65 60.62 82.27 125.4 184.6 290.5
AFM 8.864 14.90 22.68 36.02 50.88 62.53 86.43
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Figure A.8: RMSDs for β-sheet fibers in water show converged and stable systems.
The faint gray line is unaltered RMSD, the black line is the moving average of RMSD. The
red region demonstrates from where production data was taken, where the upper line is the
maximum RMSD of that region, the lower line is the minimum, and the middle line is the
average.
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Figure A.9: RMSDs for β-sheet fibers in vacuum show converged and stable systems.
The faint gray line is unaltered RMSD, the black line is the moving average of RMSD. The
red region demonstrates from where production data was taken, where the upper line is the
maximum RMSD of that region, the lower line is the minimum, and the middle line is the
average.
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Figure A.10: RMSDs for α-helical sheet fibers in water and in vacuum ((v)) shows con-
verged and stable systems. The faint gray line is unaltered RMSD, the black line is a moving
average of RMSD. The red region demonstrates from where production data was taken, where
the upper line is the maximum RMSD of that region, the lower line is the minimum, and
the middle line is the average.

Figure A.11: RMSD for mirrored 1β10 fiber shows converged and stable system. The
faint gray line is unaltered RMSD, and the black line is the moving average of RMSD.
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Figure A.12: Initial (left of arrows) and final structures (right of arrows) of 1β40 (a),
and 1α10 (b) model nanofibers. Initial structures begin with crystal-like topology and evolve
to helical final structure. Axes colors in the bottom left of each snapshot can be identified
as blue for z-axis, green for y-axis, and red for x-axis.
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APPENDIX B

Membranes

Figure B.1: Savitsky-Golay Filter Selection. Savitsky-Golay Parameter Selection Demo
shows why we chose a ratio between window and polynomial order of 3.5 (solid, black line)
to filter our data. Data in this figure is not normalized.
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Figure B.2: Langmuir Isotherms. Langmuir Isotherms for S. aureus membranes studied
in this paper and in Rehal et al. Bars indicate standard error of the mean.
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Figure B.3: Prominence Filter Tuning. Demonstration of prominence filter tuning in
signal detection for 3 replicas of the S476A33 membrane. Each panel represents a different
replica. Final peaks are determined by taking the average and standard error of the mean
for each tuned peak across replicas. (left) Step function plots show the number of peaks as a
function of the prominence threshold, with the dashed line indicating the average number of
peaks; the black circle shows the final threshold value and number in parentheses demarcate
the percentile interval of thresholds that detect a number of peaks close to the average.
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Figure B.4: Distance Filter Selection for S476A
51. Horizontal, gray, dotted box highlights

the distance filter chosen for S476A51 membranes. Shaded blue (first peak), red (second peak),
gray (third peak), and yellow (fourth peak) demonstrate the region of convergence of spectra
peaks.
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Figure B.5: Distance Filter Selection for B. Subtilis Membrane. Horizontal, gray,
dotted box highlights the distance filter chosen for B. Subtilis membrane. Shaded blue (first
peak), red (second peak), gray (third peak), and yellow (fourth peak) demonstrate the region
of convergence of spectra peaks.
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Figure B.6: Distance Filter Selection for Rat Liver Plasma Membrane. Horizontal,
gray, dotted box highlights the distance filter chosen for rat liver plasma membrane. Shaded
blue (first peak), red (second peak), gray (third peak), yellow (fourth peak), and light gray
(fifth peak) demonstrate the region of convergence of spectra peaks.
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Figure B.7: Effect of S476A
33 Periodic Boundary Size on Spectra after normalization.

Normalization occurs after the filter is applied. Average spectra is in cyan, and standard
deviation among replicas for spectra is in dark blue. Bars indicate standard deviation for
peaks.
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Figure B.8: Clustering Analysis for KS Statistics of S47633 and S476A33 Replicas.
(A) Fully connected weighted graph created using (1 - KS-statistics) as the weight for each
edge. Nodes represent replicas of S476A33 and S47633; only edges with weight higher than
0.75 are shown. Colors indicate modularity clustering; S47633 spectra are grouped into 3
clusters (ggreen, gred, and gpurple,) and the S476A33 spectra into 2 groups (ggg and ggr). Groups
gred and ggr were chosen in the main text. Membrane thickness (dt) with its standard
deviation is reported for each group/membrane type. (B) Membrane dimension and surface
tension of the system are also not determinants of grouping. Errors are not shown, as
standard deviations are insignificant compared to marker size. (C) Both peak location and
peak intensity among replicas in different groups; peak locations are staggered upward on
the relative absorption scale for clarity. Error bars indicate standard deviation. (D) KS-
statistics comparison among S. aureus membranes as a result of averaging groups (ggreen,
gred, and gpurple to make S47633, and groups ggg and ggr to make S476A33) shows that the
spectra from symmetric and asymmetric membranes are still statistically indistinguishable.
Error bars represent the standard error of the mean.
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Figure B.9: KS Statistics for S47633 and S476A
33 Clusters. KS statistics for each S47633

(A) and S476A33 (B) cluster (see Fig. B.8A for definition), shows that independently of the
chosen group, the spectra of S. aureus , B. Subtilis and rat liver cell are distinguishable.
Error bars represent the standard error of the mean.
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Figure B.10: Area per Lipid Equilibration. Area per Lipid over Time from NPsT En-
semble shows converged and stable membrane systems. Faint lines are raw area per lipids
calculated over time, and solid lines are the moving averages of area per lipid for each mem-
brane.

Table B.1: Asymmetric S. aureus Membrane Compositions per Leaflet. Asymmet-
ric S. aureus Membrane Compositions for S476A51 and S476A33.The subscript represents the
total concentration of LPG in the membrane, as determined by Rehal et al.

Leaflet PG LPG CL

Upper 10% 95% 20%
Lower 90% 5% 80%
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Table B.2: Detailed Membrane Compositions by lipid type as percentages. In the
Leaflet column, U stands for ”Upper”, while L stands for ”Lower”. For S. aureus mem-
branes, PG fatty acid tail is POPG, LPG fatty acid tail is PLPG, and CL is TMCL1. For
rat liver plasma membranes, CL is PVCL2, PE is POPE, PC is POPC, PI is POPI, and PS
is POPS.

Type Leaflet PG LPG CL FA DAG PE PC PI PS PSM CHL

S476A51 U 48.5 4.3 1.2 - - - - - - - -
L 2.5 38.7 4.8 - - - - - - - -

S476A33 U 32.3 6.2 0.8 - - - - - - - -
L 1.7 55.8 3.2 - - - - - - - -

S47633 Both 62 34 4 - - - - - - - -
B. subtilis Both 9.5 - 2.9 1.9 30.2 55.5 - - - - -
Rat Liver Both - - 1 - - 15 25 5 6 11 37
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Table B.3: Complete KS Statistics. KS Statistics, where KS statistic is reported to
three significant figures. Errors are standard errors of the mean. ⊗ indicates that the
membrane does not contain sterols, CHL indicates the membrane contains cholesterol, and
ERG indicates the membrane contains ergosterol.

Type KS Statistic

S476A
51 (⊗) vs. S476A

51 (⊗) 0.12 ± 0.02
S476A

51 (⊗) vs. S476A
33 (⊗) 0.12 ± 0.02

S476A
51 (⊗) vs. S47633 (⊗) 0.08 ± 0.01

S476A
51 (⊗) vs. S476A

51 (CHL) 0.21 ± 0.05
S476A

51 (⊗) vs. S476A
51 (ERG) 0.12 ± 0.02

S476A
33 (⊗) vs. S476A

33 (⊗) 0.15 ± 0.02
S476A

33 (⊗) vs. S47633 (⊗) 0.11 ± 0.01
S476A

33 (⊗) vs. S476A
33 (CHL) 0.33 ± 0.04

S476A
33 (⊗) vs. S476A

33 (ERG) 0.23 ± 0.03
S476A

33 (⊗) vs. B. Subtilis 0.86 ± 0.01
S476A

33 (⊗) vs. Rat Liver 0.77 ± 0.01

S47633 (⊗) vs. S47633 (⊗) 0.09 ± 0.02

S476A
51 (CHL) vs. S476A

51 (CHL) 0.22 ± 0.05
S476A

51 (CHL) vs. S476A
51 (ERG) 0.17 ± 0.04

S476A
33 (CHL) vs. S476A

33 (CHL) 0.19 ± 0.04
S476A

33 (CHL) vs. S476A
33 (ERG) 0.45 ± 0.05

S476A
33 (ERG) vs. S476A

33 (ERG) 0.15 ± 0.03
S476A

33 (ERG) vs. S476A
33 (ERG) 0.25 ± 0.06

B. Subtilis vs. B. Subtilis 0.18 ± 0.03
B. Subtilis vs. Rat Liver 0.30 ± 0.04

Rat Liver vs. Rat Liver 0.11 ± 0.02
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// Dipole Calculation TCL Script

// Step 1 in Figure 2

#!/usr/bin/tclsh

set name1 "psf_file"

set name2 "pdb_file"

set selection "segid MEMB"

set ipsf ${name1}.psf
set idcd ${name2}.dcd

mol load psf $ipsf dcd $idcd

set sel [atomselect top ${selection}]

set totq [vecsum [join [${sel} get charge] { }]]

vmdcon -info "Selection net charge: $totq"

set of [open ${name2}.dipole.txt w]

puts $of [format "# D_tot Dx Dy Dz"]

set numframes [molinfo top get numframes]

for {set i 0} { $i < ${numframes} } {incr i} {

${sel} frame $i
set dipv [measure dipole $sel -masscenter]

set Dx [lindex ${dipv} 0]

set Dy [lindex ${dipv} 1]

set Dz [lindex ${dipv} 2]

set D [expr sqrt(${Dx}**2 + ${Dy}**2 + ${Dz}**2) ]

puts ${of} [format "%6g %6g %6g %6g" $D ${Dx} ${Dy} ${Dz}]
flush ${of}

}

close ${of}
exit

89



APPENDIX C

Nanoparticles

Figure C.1: Example of conformations assumed by PSMα3 peptides interacting
with L-CNP (first layer). The left panel shows the distribution of configuration as a
function of the minimum distance (between the CNP surface and all the PSMα3 atoms)
and PSMα3 center of mass distance. Isolines of the smoothed data (using a Gaussian kernel
function) are shown in gray. Projected distributions on single dimensions are shown on the
right and top. Blue lines indicate the approximate grouping of confirmation, as explained in
the right panel.
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McGreevy, Marcelo C.R. Melo, Brian K. Radak, Robert D. Skeel, Abhishek Singharoy,
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