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ABSTRACT

The burgeoning intersection of machine learning (ML) with physics has catalyzed a trans-

formative approach to physical modeling marked by an enhanced capacity for innovation and

discovery. Traditional applications of ML in physics often grapple with a critical challenge:

predictions frequently lack transparency and interpretability, ultimately compromising gen-

eralizability and hindering the diagnosis of limitations. This opacity reduces the ability to

develop generalized physical models and extract deeper insights into the underlying physical

processes. This work aims to harness the capabilities of ML to learn from data while en-

hancing the interpretability of its models by creating physics-aware models. In doing so, it

seeks to facilitate deeper analyses and enable more profound insights into physical phenom-

ena, developing models which improve accuracy and generalizability over baseline methods.

Through a series of studies, this work delves into the development and application of physi-

cally interpretable models in the realm of physics-aware machine learning. Each of the works,

while distinct in their focus and application, collectively contributes to the advancement of

interpretable physics-informed modeling with machine learning, addressing both theoretical

and practical aspects.

The first research application harnesses Variational Autoencoders (VAEs), a generative

modeling technique, for non-linear dimensionality reduction in computational physics. This

approach applies VAEs to compress complex, high-dimensional data sets into more inter-

pretable low-dimensional latent variables which are correlated with physically-relevant quan-

tities governing the generation of data itself. The primary objective is to isolate independent

physical parameters that govern the generation of these data sets in an unsupervised manner.

Achieving a balance between high reconstruction accuracy and meaningful disentangled and

physically-correlated representations, the study demonstrates the efficacy of using hierarchi-

cal priors in enhancing the interpretability of learned representations within physics-based

contexts. This work exemplifies the merging of deep learning techniques with the princi-

ples of physical interpretability, effectively extracting physically-relevant parameters from

data without any knowledge of the physics. However, it is observed that incorporating prior

knowledge of the physical system into the learning process significantly enhances the ro-

bustness of learning such representations. This insight has guided the design of models in
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subsequent studies within this work, where a foundational understanding of the physical

system is integrated from the outset to improve model performance and interpretability.

The second study expands the horizon of ML applications in physics by introducing a

host of data-driven methods aimed at enhancing the modeling of physical systems, specif-

ically focusing on the process of cathodic electrophoretic deposition, or e-coat. Here, the

method systematically identifies and addresses limitations inherent in traditional physical

models through a combination of variational inference techniques and ML enhancements.

The underlying physical phenomena responsible for the onset of film deposition are not well

understood, and this study aims to augment the currently modeled mechanisms with addi-

tional behavior observed in experimental data. The incorporation of neural networks trained

as Neural Ordinary Differential Equations (Neural ODEs) into the modeling process is per-

formed by augmenting a baseline model with flexible yet physically interpretable forms based

on physical insight. This integrated approach demonstrates how ML-augmented models can

more accurately capture observed behaviors in physical systems, thus enhancing both their

predictive power and generalizability while maintaining interpretability. The study show-

cases how careful integration of ML with physics can lead to advancements in the accuracy

and generalizability of physical models, particularly when the underlying mechanisms are

not well understood.

In a further extension of this interdisciplinary approach, the third study focuses on the

development of reduced order models for non equilibrium gas dynamics. Challenging existing

methods of cluster assignment in reduced order models (ROMs) for maximum entropy-based

coarse-graining approaches, the method introduces a novel ML framework to learn cluster

assignments where the optimization is informed by rate-distortion theory to improve robust-

ness. The methodology transforms the discrete optimization problem of cluster assignments

into a probabilistic and continuous form, leading to the development of a fully differen-

tiable, adjoint-driven dynamics solver to facilitate the use of gradient-based optimization

techniques. The end-to-end differentiability of this framework allows efficient backward pass

gradient computation, enhancing the training of a classifier to predict cluster assignments

based on information pertinent to each of the internal states. This training is then performed

using a loss function informed by rate-distortion theory to aid in finding the global mini-

mum solution. The application of this method to the evolution of particle quantum states

under non-equilibrium conditions highlights the framework’s effectiveness in managing high-

dimensional equations and improving the coarse-graining process. This study exemplifies

how machine learning can be leveraged to optimize and refine traditional modeling processes

in physics, contributing to a more nuanced and accurate understanding of physical systems.

The final study of this dissertation is the application of generative artificial intelligence

xvii



in physical problem domains, specifically focusing on the enforcement of physical laws in

the form of partial differential equations (PDEs) with diffusion and score-based generative

models. The study introduces a novel approach to promote consistency of generated samples

with underlying PDEs in various applications of forward and inverse problems. Score-based

generative models, rooted in stochastic differential equations (SDEs), are illustrated to be a

flexible and robust method for several scientific machine learning tasks, ranging from surro-

gate modeling to probabilistic field reconstruction and inversion from sparse measurements.

The ability of these models to generate high-fidelity samples that align closely with ground

truth data distributions underscores their potential in advancing physics-based problem-

solving. This research not only demonstrates the practical applicability of generative models

in physics but also highlights the versatility and adaptability of these models in addressing

a range of physical modeling needs.

Together, these studies develop a narrative that underscores the importance of inter-

pretability in machine learning for enhancing the generalizability of models. Additionally,

it focuses on the development of physics-aware machine learning models to achieve this ob-

jective. Each piece of research, distinct in its application, contributes to a unified theme of

enhancing the interpretability, generalizability, and practical utility of machine learning in

the realm of physics. This body of work advances our understanding of how machine learning

can be effectively applied to physics problems and offers new perspectives and methodologies

that can aid in many aspects of scientific exploration and discovery.
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CHAPTER 1

Introduction

The field of computational science has undergone a significant transformation with the con-

vergence of machine learning (ML) and physical modeling [2]. This union heralds a new

era of progress, marked by enhanced computational and data-driven modeling techniques,

specifically tailored for applications deeply rooted in physics. This synthesis is particularly

transformative in many physics and engineering applications, where computational modeling

and simulation offer unique advantages over real-world experimentation. These advantages

include the ability to simulate scenarios that are impractical, expensive, dangerous, or impos-

sible to create in physical experiments, such as extreme conditions. Computational models

also allow for the exploration of vast parameter spaces at a lower cost and higher speed than

traditional experimental methods. In particular, the development of computational models

has significantly benefited areas such as designing and analyzing combustion systems [3],

optimizing aircraft profiles [4], and predicting aerodynamic properties of airfoils [5], offering

a more efficient and feasible alternative to relying solely on real-world experimentation.

Machine learning, renowned for its powerful flexibility to learn from data, can significantly

enhance the efficiency and precision of computational processes. Data-driven discovery is

often regarded as the fourth paradigm [6] of scientific innovation, and it complements the

existing domains of theoretical, experimental, and numerical advancements. The application

of ML techniques has been pivotal in harnessing this fourth paradigm, propelling substan-

tial progress in scientific discovery and advancement. For instance, this approach enables

the detailed analysis and optimization of aircraft designs and flight conditions [7, 8] which

would be impractically time-consuming and expensive to test physically. Turbulent flow

simulations [9], detection of cyber attacks on power grid controllers [10], and prediction of

flight departure delays [11] have all recently benefited from the predictive power provided by

ML techniques. The synergy of ML and physics thus paves the way for more sophisticated,

efficient, and accurate models, potentially capable of addressing some of the most intricate

and longstanding challenges in the field.
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(a) (b)

Figure 1.1: (a) Data-driven approaches can provide models with improved computational
efficiency at the cost of requiring data (b) Purely data-driven models often lack generalizabil-
ity and interpretability in their predictions. Physics-aware ML models aim to provide the
best of both worlds - improved computational efficiency while maintaining generalizability
and interpretability.

The introduction of data-driven machine learning marks a significant shift from tradi-

tional standalone physics models. This thesis explores how combining data-driven machine

learning with physics has unlocked new potential in well-established areas such as reduced

order modeling and surrogate modeling. These methodologies, integral to computational

physics and aerospace engineering, have been enhanced by machine learning to improve

their efficiency and expand their capabilities, addressing more complex and computationally

demanding problems.

A focal point here is the concept of physics-aware machine learning. This approach aims

at integrating physical laws and principles into ML models, ensuring that the predictions and

insights gleaned are not only data-driven but also grounded in the empirical, theory-guided

realm of physics [12]. This is particularly crucial in aerospace applications where accurate

and interpretable models are necessary for safe and efficient system operation [2]. Figure 1.1

illustrates the trade offs that exist when modeling physical systems with purely physical

insight, purely data-driven approaches, and physics-aware ML. Data-driven approaches can

provide more computationally efficient simulations, but purely data-driven approaches often

lack generalizability and interpretability, as further discussed and defined in Section 1.7.

This work attempts to provide a comprehensive examination of the intersection between

machine learning and physical modeling, showcasing diverse areas of application. It be-
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gins by establishing the background material necessary for understanding the benefits that

physics-aware ML provides before detailing the unique contributions of this research through

four separate studies, highlighting its significance within the broader landscape of physical

modeling and machine learning.

1.1 Overview and Objectives

While ML offers powerful tools for data analysis and pattern recognition such as neural

networks, its applications in physics are often hindered by a critical gap: the lack of trans-

parency and interpretability in ML models. This gap presents a substantial problem, as

the ability to understand and interpret the outcomes of these models is crucial in physics,

a field fundamentally grounded in empirical evidence and theoretical consistency. While

machine learning models have enormous capacity to learn from data, they are generally not

constrained by the same set of laws which govern the true generation of data.

Physics-based applications of ML typically involve complex datasets where the underlying

physical processes are deeply intertwined with data patterns themselves. Traditional ML

approaches, while adept at discerning correlations through vast datasets to make accurate

predictions, frequently fall short in providing insights into the ‘why’ behind such predictions.

The models tend to operate as ‘black boxes’ offering little insight into the physical processes

they model or the nature of their predictions. Although ML-based models greatly improve

efficiency and sometimes accuracy over traditional physical models by learning from data,

their opacity limits their utility in physics, where understanding the causal relationships

and underlying principles is often as important as the predictive accuracy. In aerospace, for

instance, when analyzing aerodynamic performance, it may not be sufficient for an ML model

to predict airflow patterns; engineers need to understand the physical principles driving these

patterns to safely understand improvements in aircraft design and comprehensively validate

predictions. Additionally, when a model fails in some scenarios, a lack of interpretability

hinders insights into potential solutions.

Another significant challenge is integrating the established laws, principles, and ideas of

physics into ML models. Traditional ML models, primarily purely data-driven, often overlook

the necessity to adhere to physical laws, leading to results that, while statistically sound,

may be physically implausible and difficult to generalize. Such machine learning models can

therefore suffer from observational bias. This bias arises due to limitations in data collection,

leading to skewed, unrepresentative, or limited scope in observed data. As a result, the

model’s accuracy and generalizability are hampered. Observational bias can lead to models

that do not truly reflect the underlying physical phenomena they are intended to represent,
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thus reducing the reliability of their predictions or analyses in real-world applications. This

is particularly relevant in aerospace engineering, a field where adherence to fundamental

principles is paramount for safety and functionality. In the realms of fluid dynamics and

material science, for instance, overlooking key principles can have serious implications. In

fluid dynamics, disregarding or failure to enforce the known principles governing airflow can

lead to incorrect predictions about lift and drag forces on an aircraft, which are crucial for

its stable and efficient flight. Similarly, in material science, failure to properly account for

physical properties such as stress and fatigue of materials can result in structural designs

that are prone to failure under the extreme conditions experienced during flight. Such

inaccuracies and oversights, stemming from a lack of physical grounding in machine learning

models, can compromise the integrity and safety of aerospace engineering solutions, leading

to potentially unsafe conclusions which could have real-world ramifications.

These ideas combined are frequently referred to interpretability in this work - the ability of

a model to provide insights into its decision-making process in a way that is understandable

to humans, specifically by aligning its operations and outputs with known physical laws and

principles. This concept goes beyond mere prediction accuracy, aiming to make the internal

workings of the model transparent, so that its predictions can be directly related to physical

phenomena and understood in terms of physical concepts. Thus the overarching problem

this thesis addresses is twofold:

• Firstly, it aims to illustrate methods for enhancing the interpretability of ML models in

physics applications, facilitating the observance of meaningful insights into the physical

phenomena being modeled.

• Second, it aims to develop and implement physics-aware ML models that respect

and incorporate fundamental physical principles but also advance the accuracy and/or

efficiency of state of the art models.

These two ideas are often coupled together and are demonstrated in tandem through much

of the work presented.

In the context of aerospace engineering, adopting an approach that enhances the inter-

pretability and physical consistency of machine learning models could lead to significant

advancements in various critical areas. For instance, in the design of flight control systems,

this approach could enable the development of more sophisticated algorithms that not only

respond effectively to real-time flight data but also provide insights into the underlying aero-

dynamic principles affecting flight dynamics. This could result in control systems that are

not only more reliable and responsive but also easier to diagnose and maintain, ultimately
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improving flight safety and performance. Furthermore, in the realm of fuel efficiency opti-

mization, such machine learning models could offer a more nuanced understanding of the

complex interplay between aircraft design, operational parameters, and environmental con-

ditions. By accurately modeling these factors and understanding their physical basis, it’s

possible to identify optimal flight paths, speeds, and configurations that minimize fuel con-

sumption without compromising safety or performance. This could lead to more fuel-efficient

flight operations, significantly reducing operational costs and environmental impact.

This work is thus aimed towards devising and elucidating methodologies that bridge the

gap between the inherently empirical, theory-informed domain of physics and the rapidly

evolving field of purely data-driven machine learning. By strategically incorporating ML

into physical models and harnessing the power of data, we aim to significantly advance the

predictive accuracy and efficiency of physics-based research and applications. Addressing

these pivotal challenges is essential not only for advancing the fields of physics and machine

learning, but also for ensuring that advancements in ML are optimally utilized to enhance

the outcomes in applications of physical modeling. Central to this goal is the enhancement

of interpretability and physical consistency within ML models, which is critical for estab-

lishing a framework for more effective, dependable, and scientifically robust applications of

machine learning within physical modeling. This approach not only fortifies the theoretical

foundations of physics-aware machine learning but also may inspire future innovations across

a spectrum of physics-driven applications, thereby advancing the goals of achieving superior

predictive accuracy and operational efficiency through the integration of ML into physical

modeling.

1.2 Forward and Inverse Problems

The concepts of forward and inverse problems form a cornerstone of understanding, analyz-

ing, and modeling complex systems in physics and engineering. Many practical problems

can be framed in the context of either a forward or an inverse problem. These problems,

inherently different in their scope, approach, and objectives, are fundamental to a range of

applied engineering solutions.

Forward problems in physics involve predicting the outcomes or effects of a given set of

causes or conditions. Essentially, they start with a known set of parameters and governing

equations of a system and seek to compute the consequent state or behavior. These problems

are direct in nature; given the initial conditions, boundary conditions, and the governing laws

(such as in the form of differential equations), the goal is to determine the future state of

the system. Forward problems are prevalent in scenarios such as predicting the trajectory
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of a celestial body, simulating climate patterns, or modeling the behavior of materials under

stress.

We consider a general function f which models and encapsulates physical laws or dynamics

of a system of interest. Forward problems defined in this context are constructed to predict

y = f(x;η) , (1.1)

where x ∈ Rn represents the known inputs or conditions of the system, η ∈ Rp denotes

known parameters governing the system, and y ∈ Rm is the output or state to be predicted.

Conversely, inverse problems address deducing the unknown causes, conditions, or param-

eters from observed outcomes. They are often inherently more complex and sometimes even

ill-posed, as they involve working backward from the effects to infer the underlying causes.

Inverse problems are fundamental in situations where direct measurement of a system’s pa-

rameters is impossible or impractical. Examples include reconstructing the internal structure

of the Earth from seismic data, determining the properties of a star from its emitted light,

or medical imaging techniques like MRI and CT scans, where the internal structure of the

body is inferred from external observations.

In this case, the parameters η are unknown, and the goal is to invert the model to find

the parameters of a system given observed inputs x and outputs y in the form of data.

While forward problems allow us to predict and prepare for future scenarios based on our

current understanding, inverse problems enable us to uncover hidden information and deepen

that understanding. However, inverse problems are often more challenging due to issues such

as non-uniqueness and being ill-posed. Successfully addressing these challenges not only

enhances our predictive capabilities but also enriches our comprehension of the underlying

principles governing various physical phenomena. In the following sections, methodologies

and tools used to tackle these problems are explored, in particular with an emphasis on

machine learning methods. These discussions set the stage for understanding the pitfalls

of machine learning techniques used for solving forward and inverse problems in physics,

allowing insights into avoiding such pitfalls.

1.3 Surrogate Modeling

Another primary concept in the domain of computational physics and engineering is that of

surrogate modeling. Surrogate models are approximate models used to emulate the behavior

of more complex, computationally expensive simulations or unknown real-world processes.

In essence, surrogate modeling serves as a bridge between high-fidelity models, which are
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accurate but computationally intensive, and the need for quicker, more efficient compu-

tational methods. This is particularly useful in scenarios where repeated simulations are

required. For instance, many inverse problems such as optimization, parameter estimation,

and uncertainty quantification can require numerous forward evaluations - which may not be

feasible to perform without an efficient surrogate model. By creating such an approximating

surrogate, computational burdens can be significantly reduced, enabling faster predictions

and unlocking additional applications for analysis. For instance, surrogate models have been

employed in the development of digital twins due to the natural abundance of data available

for developing such frameworks [13]. Even in cases where experimental data may be avail-

able without rigorous theoretic understanding of the particular physical processes at hand,

surrogate models may be created to model the process itself.

Surrogate models are typically constructed by employing various machine learning and/or

probabilistic techniques to learn the underlying relationship between inputs and outputs of

the actual model or process, where learning such relationships requires information about

the system in the form of data. Techniques ranging from polynomial chaos expansion [14]

to more complex machine learning algorithms, including Gaussian processes [15, 16] and

neural networks [17, 18], are often utilized to build these models. However, this work focuses

primarily on the use of neural networks due to the flexible, expressive, and scalable nature

of their forms.

Surrogate modeling aims to construct an approximate model, f̂(x;η), that emulates the

behavior of a more complex, computationally more expensive, or unmodeled process f(x;η).

Let x ∈ Rn represent the input parameters of the model, η ∈ Rp parameters governing the

system, and y ∈ Rm the outputs. The process f : Rn → Rm thus maps the inputs to the

outputs, i.e., y = f(x;η). The surrogate model f̂ : Rn × Rp → Rm is then constructed

such that it approximates f as closely as possible, i.e. f̂(x;η) ≈ f(x;η). The approximation

quality of f̂ for a given input is often measured in terms of some error metric d : Rm×Rm → R
which quantifies the difference between the outputs of the surrogate model and the original

model.

The construction of f̂ often involves selecting a parametric functional form f̂ϕ for the

surrogate with parameters ϕ to approximate the true process. This parametric form can

be selected as a complex neural network-based architectures with potentially millions of

parameters, for example. These parameters are then determined through training via op-

timization algorithms such as stochastic gradient descent (SGD). The process employs a

dataset D = {(x(i),η(i),y(i))}Ni=1 to learn the parameters of the surrogate, where N is the

number of data points, and each y(i) is obtained by sampling from the original model either

through real-world processes or computing the true process y(i) = f(x(i);η(i)). The goal is
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to find the parameters θ which minimize average error metric d over the dataset D.

Creating a surrogate model can benefit in both forward and inverse applications. In the

former, the surrogate approximates the forward process as f̂ϕ(x;η) ≈ f(x;η). An example

use case for surrogate modeling in forward applications is to model system dynamics using a

lightweight, computationally efficient model. This may be useful in real time prediction and

control applications in which the forward model is too expensive to evaluate in real time.

Suppose a physical system is modeled by some partial differential equation (PDE) describing

the dynamics of the system in time

∂u

∂t
= F(u(t), t;η) , (1.2)

where u ∈ Rn is the physical state and F is an operator typically involving gradients of

the physical state variable. Supposing that operator F is computationally demanding to

evaluate, a surrogate model may aim to approximate it with a computationally efficient

parametric function f̂ϕ(u(t), t;η) ≈ F(u(t), t;η) to approximate the dynamics as

∂u

∂t
= f̂ϕ(u(t), t; η) . (1.3)

A particular method of training this type of surrogate model is discussed in Section 2.4.

Inverse problems can also benefit greatly from surrogate models. In this case, such a sur-

rogate may approximate a forward model as f̂ϕ(x,η) ≈ f(x,η) to more efficiently determine

system parameters. For example, consider the case in which a system is modeled by some

forward process y = f(x;η), and noisy real world data is obtained in the form of a set of

input-output pairs Dr = {(x
(i)
r ,y

(i)
r )}Nri=1. It is assumed that the real world process adheres to

the model with constant but unknown model parameters ηr. Inferring the model parameters

from data may require a large number of forward model evaluations (Section 1.5.2). If the

forward model f(x;η) is computational expensive, a surrogate model can be employed to po-

tentially improve the efficiency of the parameter inference process. Suppose that a dataset is

created by computing the forward model at a variety of input conditions to create a dataset

Ds = {(x
(i)
s ,η

(i)
s ,y

(i)
s )}Nsi=1. This dataset can then be leveraged to create a surrogate model

of the expensive forward process. An example of how to train such a surrogate model’s

parameters is to solve the optimization problem

min
ϕ

1

Ns

Ns∑
i=1

∥∥∥y(i)
s − f̂ϕ

(
x(i)
s ;η(i)

s

)∥∥∥2
2
. (1.4)

After successfully training the surrogate model, it can be used to infer the parameters of
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the model from the real-world dataset Dr. However, constructing such surrogates may often

require more time than the savings they provide. For instance, if more function evaluations

are required to create the dataset Ds than to simply infer the model parameters Dr from

the forward model, creating the surrogate will provide no cost-saving benefits. Additionally,

selecting an appropriate parametric surrogate form is critical to the success of the surrogate.

Machine learning-based surrogate models have enormous expressive power and flexibil-

ity, but generalizability is often poor outside the range of training data due to observational

biases. An effective surrogate model may only require accurate predictions on available train-

ing data. However, it is often more desirable to accurately predict the system’s behavior

in untested conditions not included in the data which it has learned from. This is referred

to as generalizability, and without special care towards incorporating information on the

known physical principles underpinning a particular process, generalizability often suffers.

Additionally, general modeling based on ML techniques often provides little, if any, physical

interpretability into the surrogate. Consideration for physical principles should therefore be

incorporated into the design of surrogate models to facilitate interpretability and generaliz-

ability of the model. Without such consideration, it is often not possible to explain the inner

workings of the model, preventing insights into potential solutions when issues inevitably

arise during the modeling process.

1.4 Dimensionality Reduction and Reduced Order

Modeling

1.4.1 Dimensionality Reduction

Dimensionality reduction is a critical process in data analysis and machine learning, partic-

ularly useful for simplifying high-dimensional datasets. By reducing the number of variables

under consideration, it becomes easier to visualize, process, and interpret data.

Linear dimensionality reduction techniques are grounded in the assumption that the data

lies approximately on a linear manifold within the higher-dimensional space. Proper Or-

thogonal Decomposition (POD) is a quintessential example, where the data is projected

onto a lower-dimensional linear space which minimizes the projection error in a Frobenius

norm sense. Mathematically, a matrix Y ∈ Rm×N is constructed such that each of the N

columns represents a data sample with m elements, and POD seeks to find a transformation

Ψ ∈ Rm×c of rank c ≤ N by solving optimization problem

min
Ψ∈Rm×c

∥Y −ΨΨTY∥F , subject to ΨTΨ = Ic×c . (1.5)
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According to the Schmidt-Mirsky-Eckart-Young theorem [19], the solution is given by the

first c left singular vectors of the data matrix Y, where the singular vectors L are computed

by singular value decomposition (SVD) such that Y = LΣRT .

Data samples can then be projected onto the basis to compute a lower dimensional rep-

resentation of the data sample. Assuming that c < m (to achieve dimensionality reduction),

then the solution â ∈ Rc to the optimization problem

min
a

∥y −Ψa∥ (1.6)

gives the compressed representation of a data sample y. This solution is found by leveraging

the left inverse of the basis: â = (ΨTΨ)−1ΨTy .

However, noting that ΨTΨ = Ic×c, the basis coefficient vector (compressed representa-

tion) is given by

â = ΨTy .

Nonlinear dimensionality reduction techniques, on the other hand, can be used when the

data resides on a highly nonlinear yet still lower-dimensional manifold. Techniques such

as t-Distributed Stochastic Neighbor Embedding (t-SNE) [20] and autoencoders [21] are

popular in such scenarios. The t-SNE method, for instance, converts similarities between

data points to joint probabilities and tries to minimize the Kullback–Leibler divergence

between the joint probabilities of the low-dimensional embedding and the high-dimensional

data. Autoencoders utilize a pair of functions, typically implemented as neural networks,

for encoding and decoding data. The encoder function E : Rm → Rn compresses data

samples into a lower-dimensional space, while the decoder function D : Rn → Rm aims to

reconstruct the data back to its original space from the lower dimensional representation.

As the encoding and decoding functions can have general form, this is a flexible nonlinear

approach to dimensionality reduction. The neural networks are trained to reconstruct the

data samples by minimizing an error metric d(x,D(E(x))) during training. A compressed

representation z ∈ Rn of the data can then be computed after appropriate encoding and

decoding functions are found by z = E(x).

1.4.2 Reduced Order Modeling

In the context of physics-based problems, reduced order modeling (ROM) techniques are

often employed to reduce the computational complexity of numerical simulations by mod-

eling the system in a lower dimensional space. These models operate on the assumption

that the dynamics of high-dimensional systems are often constrained to a lower-dimensional
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manifold. This reduction in complexity is particularly beneficial when solving the full high

dimensional form of a physical model is computationally expensive, such as in large scale

computational fluid dynamic (CFD) simulations. ROM techniques typically leverage the

previously mentioned methods of dimensionality reduction, requiring data to compute and

perform compression operations, and solve a system of equations in the lower dimensional

space rather than in the high dimensional space of the data. While surrogate modeling

focuses on approximating the full order system with a more efficient form, reduced order

modeling addresses a slightly different, yet related challenge. Surrogate modeling and re-

duced order modeling each exhibit a similar goal in common: the reduction of computational

complexity. While the former primarily deals with creating an external model that predicts a

full system’s outputs, however, reduced order modeling aims towards simplifying the system

itself. This distinction is important as it implies a different yet related approach to handling

the trade-off between model accuracy and computational efficiency.

We consider the case of simulating dynamical systems of the form

du(t)

dt
= F(u(t);η); u(0) = u0 , (1.7)

where u ∈ Rm is the solution, η ∈ Rp are parameters defining the dynamical system, u0 is

the initial condition, and F defines the right hand side operator of the dynamical system.

The aim in reduced order modeling is to develop an approximation to the full order model

of Eq. 1.7 with a system of lower dimension

dur(t)

dt
= fr(ur(t);η); ur(0) = ur0 , (1.8)

where ur ∈ Rc. To develop data-driven ROMs, we define the dataset by a matrix U =

[u(t0),u(t1), . . . ,u(tN)], where u(ti) is the full order solution at discrete time index i and

defines a column of the overall data matrix, and there are d discrete time steps in the data.

1.4.2.1 Linear Projection-Based Approaches

Projection-based ROMs develop the reduced order model by a projection of the full order

solution to a lower dimensional linear subspace. It is assumed in such methods that the

projection ũ = Vur is a good approximation of the full order u, and that the dynamics

of the model are approximately constrained to a lower dimensional linear manifold. The

orthonormal matrix V ∈ Rm×c is known in this setting as the trial basis. It is therefore
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assumed that the following equation holds (although this is not a strictly true statement):

dVur(t)

dt
= F(Vur(t);η); Vur(0) = u0 . (1.9)

Next, an orthonormal test-basis W ∈ Rc×m is defined, and left multiplied with Eq. 1.9.

The resulting ROM equations are then given by

ur(t)

dt
= [WTV]−1WTF(Vur(t);η); ur(0) = [WTV]−1WTu0 . (1.10)

In the special case of an equivalent test and trial basis W = V, known as Galerkin projec-

tion [22], the ROM equations become

ur(t)

dt
= VTF(Vur(t);η); ur(0) = VTu0 . (1.11)

The basis V is often taken as the POD-obtained basis (defined in Sec. 1.4.1) of the data

matrix U. Although this effectively reduces the dimensionality of the model, it is noted that

evaluating the full order operator is still required. In the particular case of the Galerkin

ROM, fr(ur(t);η) = VTF(Vur(t);η), requiring the evaluation of the full operator F . One

method of reducing this computational complexity is to evaluate the full order operator at

only specified locations given by a measurement matrix P ∈ Rs×m, and reconstruct the

entire full order function. If data is obtained by computing the full order operator F to form

a matrix F = [F(u(t0);η),F(u(t1);η), . . . ,F(u(td);η)], the data can be used to computed

a POD basis Ψ ∈ Rm×s such that samples are represented via basis coefficients a ∈ Rs

as F = Ψa. Taking specific measurements defined by the measurement matrix results in

PF = PΨa, giving approximate basis coefficients of â = [PΨ]†fs where fs is the full order

operator evaluated only at the locations specified by P. The full order operator can thus be

approximately reconstructed by f̂ = Ψ[PΨ]†fs. Finally, this leads to a reduced order model

(in the general case) in which evaluating the full order operator is restricted to evaluation

at only s < m locations by

dur(t)

dt
= [WTV]−1WTΨ[PΨ]†fs(t) (1.12)

An advantage of these methods is that they are not only data-driven, but also take

into account some knowledge of the full-order equations, potentially providing additional

information which could aid in prediction and maintaining some degree of interpretability.

However, as the methods are data driven, prediction performance is heavily dependent on

the available data, limiting generalizability to outside of the training regime - one of the
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primary difficulties to overcome in data-driven methods. An additional shortcoming of linear

projection-based ROMs is just that - they are linear. Projecting the data in such a manner

will therefore inevitably lead to large truncation errors in nonlinear systems where reduced

order predictions are compared to simulating the full order system. Adaptive ROMs in

which the basis is updated in time can partially alleviate these shortcomings at the cost of

increased computational complexity [23], but are outside the scope of this work.

1.4.2.2 Autoencoder-Based Reduced Order Models

Reduced order models that utilize autoencoders [24] and machine learning represent a no-

table departure from traditional projection-based ROMs. As outlined in Section Sec. 1.4.1,

autoencoders employ an encoder-decoder architecture to learn a nonlinear manifold, known

as the latent space, where data is compactly represented. Typically, these functions are built

using neural networks and are trained using established machine learning techniques. Of

primary interest in autoencoder-based ROMs is the trajectory that the full order dynam-

ical system traces within this latent space, which is essentially what is being modeled in

a ROM. The non-linearity of autoencoders combined with the flexibility which neural net-

works and deep learning can provide facilitates the capturing of more complex patters and

relationships compared to linear projection methods. However, with the general nonlinear

nature of the encoding and decoding functions, integrating specific insights from the origi-

nal, high-dimensional form of the full order model into the latent space representation can

be challenging. As a result, such models often rely primarily on data-driven approaches to

capture the dynamics within the latent space, leading to the loss of physical interpretability.

Assuming that the encoding and decoding functions have already been trained, data

samples u can be encoded to a latent vector ur (reduced order representation) by leveraging

the encoder using the relationship z ≡ ur = E(u). Assuming that the data U used to

train the encoder and decoder is encoded to the latent space, a matrix Z = [z0, z1, . . . , zN ]

corresponding to the latent representations is constructed where zi = E(u(ti)).

After obtaining the reduced order description of all data samples, the goal is to create an

approximation to the true latent dynamics model

dz

dt
= g(z(t)) (1.13)

by learning an approximate parametric functional form gϕ(z(t)) ≈ g(z(t)) or otherwise

modeling the dynamics in discrete time with a parametric functional form by [25]

zi+1 = ĝϕ(zi, zi−1, . . . , z0) . (1.14)
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The modeling of such functions is often performed through the use of neural networks [25,

1] to create parametric model forms in which parameters ϕ are learned using data Z. Learning

an approximation to the continuous right hand side of Eq. 1.13 can be achieved with the use of

Neural Ordinary Differential Equations (NeuralODE) [26]. The discrete time approximation

given in Eq. 1.14 can be trained through simpler means of minimizing some error measure

such as the square of the L2-norm between data and prediction by

min
ϕ

N−1∑
i=1

∥zi+1 − ĝϕ(zi, zi−1, . . . , z0)∥22 . (1.15)

These methods, due to their ability to incorporate flexible nonlinear forms in both the

encoding-decoding functions and the dynamics approximation functions, can be more ex-

pressive and yield more accurate ROMs compared to linear projection-based approaches. By

embracing this flexibility, they are adept at capturing complex patterns and relationships

within the data. However, a significant limitation of such purely data-driven approaches is

their often limited generalizability and interpretability, particularly during prediction phases.

Models frequently struggle to make accurate predictions outside the range of the training

data. Additionally, the absence of physical interpretability in these models hampers efforts

to gain deeper insights into the underlying reasons behind inaccurate predictions.

Reduced order modeling and surrogate modeling offer a lens through which we can appre-

ciate the intricacies and nuances of capturing physical phenomena. However, to fully grasp

the capabilities and limitations of machine learning in this context, it’s crucial to delve into

the underlying principles that these algorithms leverage. Central to many machine learning

algorithms are the concepts and methodologies derived from probability theory, information

theory, and various inference techniques. These concepts not only provide some of the the-

oretical backbone for machine learning methods but also illuminate the pathways through

which these algorithms process and learn from data. Thus, before exploring the core mech-

anisms of machine learning algorithms, we will comprehensively examine these probabilistic

frameworks.
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1.5 Uncertainty Quantification, Inference, and Proba-

bilistic Modeling

1.5.1 Uncertainty Quantification and Inference

Uncertainty Quantification (UQ) is an essential aspect of physics modeling, particularly for

managing and understanding the inherent uncertainties present in physical systems and mea-

surement processes. Until now in this work, modeling in physics has been approached from

a deterministic standpoint, where systems are presumed to behave in predictable ways un-

der given conditions. However, real-world systems are often subject to various uncertainties

that can significantly affect predictions. Recognizing and quantifying these uncertainties can

become critical, especially in scenarios requiring substantial decision-making.

In contexts where decisions have considerable safety implications or involve substantial

financial or time investments, accurately assessing the uncertainty in model predictions is

vital. This assessment is especially crucial in the operation of autonomous systems, where

decisions must be made dynamically and with a high degree of reliability. The uncertainties

in model predictions typically fall into two broad categories: aleatoric and epistemic.

1. Aleatoric uncertainty: This type of uncertainty arises from the inherent randomness

or variability in the system. It is an intrinsic part of the system and remains even

with complete knowledge of the system. For instance, the unpredictability in quantum

mechanical systems, the variability in material properties under different environmental

conditions, and other types of noise in observed measurements are all examples of

aleatoric uncertainty.

2. Epistemic uncertainty: Epistemic uncertainty stems from incomplete knowledge or

information about the system. This could be due to limitations in our understanding

of the system, errors in data measurement, or inadequacies in the model itself. Unlike

aleatoric uncertainty, epistemic uncertainty can be reduced as we gain more informa-

tion or develop more sophisticated models. An example would be the uncertainty in

predicting climate change due to limitations in our current climate models. Epistemic

uncertainty includes both model form uncertainty and parameter uncertainty.

Understanding these types of uncertainties allows for more informed and cautious decision-

making, particularly in high-stakes scenarios. It enables us to evaluate the reliability of the

predictions made by models and to consider the potential risks associated with decisions

based on these predictions. Techniques include probabilistic modeling, sensitivity analy-
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sis, and error propagation, which help in quantifying the impact of uncertainties on model

outputs.

Even within probabilistic modeling, there are two primary perspectives, and each differs

philosophically in their respective approach:

1. Frequentist perspective

• Treats probability as a long-run frequency of events, focusing on the relative

frequency of events in repeated trials

• Considers parameters as fixed but unknown quantities

• Typically involves hypothesis testing and confidence intervals based on sample

data without incorporating prior knowledge

2. Bayesian perspective

• Views probability as a measure of belief or certainty in an event, incorporating

prior knowledge and evidence

• Treats parameters as random variables with probability distributions, reflecting

uncertainty or prior beliefs about these parameters

• Uses prior information to represent beliefs and update these beliefs in light of new

information

This thesis predominantly adopts a Bayesian perspective in presenting probabilistic mod-

eling and inference, despite some commonalities with the frequentist viewpoint. Central to

this approach is the utilization of variational inference techniques, which are deeply rooted

in Bayesian principles. These techniques stand out for their ability to systematically incor-

porate prior knowledge, thereby enriching the model-building and analysis process.

However, it is important to note that while UQ and inference are valuable for enhanc-

ing the robustness and reliability of predictions, this thesis primarily focuses on leveraging

physics-aware machine learning to achieve these objectives. This approach is particularly

chosen for its effectiveness in integrating physical laws and principles, which inherently im-

prove the robustness and interpretability of predictive models while being computationally

more efficient than Bayesian methods. Nevertheless, probabilistic concepts and Bayesian in-

ference techniques are still pivotal to some of the work presented here. These aspects are not

only integrated into the framework of physics-aware machine learning but are also elaborated

in detail, highlighting their significance in enhancing model accuracy and reliability.
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1.5.1.1 Bayesian Inference

Bayesian inference provides a framework for updating the probability distribution of a ran-

dom variable based on observed data, encapsulating uncertainties in a probabilistic manner

and facilitating rational decision making. For example, in the context of a physical model,

suppose that Eq. 1.2 is assumed as model M describing the dynamics of a physical system.

Data D obtained through observing the real world system can be used to infer a conditional

distribution on the model parameters η as

p(η|D,M) =
p(D|η,M)p(η|M)

p(D|M)
, (1.16)

known as Bayes’ theorem [27, 28, 29, 30]. Bayes’ theorem contains four important distribu-

tions:

• Likelihood p(D|η,M) - represents the probability of observing the data given the

assumed model M and parameters η

• Prior p(η|M) - encapsulates the initial beliefs about the parameters before considering

the current data

• Evidence p(D|M) =
∫
p(D|η,M)p(η|M)dη - the probability of the observed data

under all possible model parameters. The evidence can be considered a regularization

constant.

• Posterior p(η|D,M) - the updated belief about the parameters after taking into

account both the prior and the likelihood of the observed data

The likelihood model is typically formed based on theoretical knowledge or assumptions

about the underlying data-generating process. It involves specifying a probability distribu-

tion that models how the observed data is generated given a model and its parameters. The

choice of distribution and its parameters depend on the nature of the data (e.g., continuous,

discrete, binary) and the specific context of the application. Selecting the likelihood model

is discussed in more detail in Section 1.5.2

The prior model in the Bayesian framework is typically formed based on subjective expert

experience, empirical insights from data, selected as non-informative or weak, or selected as

a matter of computational convenience. Substantial expertise from past experience may

provide prior information alone or in combination with empirical information based on data.

Non-informative or weak priors may be selected when little to no prior knowledge is avail-

able to prevent bias. Additionally, it is often computationally convenient to select prior
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forms which may have easily computable or standard forms such as the Gaussian family of

distributions.

The evidence serves as a normalization constant in Bayes’ theorem, and computing it di-

rectly (marginalization) can be challenging, particularly in high dimensional problems. Many

Bayesian methods therefore avoid computing or approximating the evidence altogether. For

example, Markov chain Monte Carlo (MCMC) [27] methods aim to sample from the posterior

distribution without ever computing the evidence. Additionally, variational inference tech-

niques avoid computing the evidence by approximating the posterior with a parameterized

form for which normalization is guaranteed.

While a variety of algorithms are available for conducting Bayesian inference, variational

inference stands out for its particular relevance in the field of machine learning. This method

is notable for its efficiency in approximating complex probability distributions, making it

highly suitable for large-scale and computationally intensive machine learning applications.

1.5.2 Probabilistic Modeling

Probabilistic modeling defines the use of mathematical tools for representing uncertain state-

ments and making predictions based on these uncertainties. It is grounded in the principles

of probability theory and is instrumental in a wide range of fields, from machine learning and

statistics to finance and engineering. The core idea of probabilistic modeling is to describe

the uncertainty inherent in complex systems and observations through probability distri-

butions. This approach contrasts with deterministic models, which assume exact outcomes

given specific inputs.

The utility of probabilistic modeling lies in its ability to capture the randomness and

variability inherent in real-world phenomena. By accounting for uncertainty, these models

can provide more robust and realistic representations of complex systems with the down-

side of higher computational costs. They enable the estimation of not just the most likely

outcomes, but also the variability and risk associated with different scenarios. This aspect

is particularly crucial in fields where decision-making under uncertainty is common, such as

finance [31], weather and climate modeling [31, 32], and energy production [33].

In the context of Bayesian inference, probabilistic modeling plays a pivotal role in the

selection of the likelihood model. The likelihood model, a fundamental component of

Bayesian analysis, represents the probability of the observed data given certain model pa-

rameters. Developing and selecting an appropriate likelihood model is critical as it directly

influences the inference process. The chosen model should be reflective of the underly-

ing data generation process and capture the essential features of the data. For instance,
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a normal distribution might be used to model continuous data with a symmetric distri-

bution around the mean. Assuming a deterministic physical model u(t) = f(t,u(0),η)

may correspond to a data measurement model with additive Gaussian noise given by

u(t) = f(t,u(0),η)+ξ ξ ∼ N (0,σ2), where the variance σ2 is estimated from data. Assum-

ing an i.i.d dataset D = {t(i),u(i)(0),u(i)(t(i))}Ni=1, the likelihood assuming this measurement

model is computed by

p(D|η) =
N∏
i=1

N (u(i)(t(i)); f(t(i),u(i)(0),η),σ2) . (1.17)

The process of selecting a likelihood model in a Bayesian framework also involves balancing

simplicity with accuracy. A model that is too simple might not capture the nuances of the

data, while an overly complex model can lead to overfitting and computational challenges.

For instance, the likelihood model in Eq. 1.17 may be too simple in some applications.

However, a more general measurement model which is a nonlinear function of noise, given by

u(t) = f(t,u(0),η, ξ) ξ ∼ N (0, I), may result in a far more complex and computationally

expensive likelihood model. Therefore, probabilistic modeling in Bayesian inference is as

much an art as it is a science, requiring careful consideration of both the data and the

underlying physical or theoretical principles governing the system being modeled.

Probabilistic modeling is a powerful tool for understanding and predicting behavior in

complex systems where uncertainty is a key factor. Embracing the inherent uncertainty in

data and systems, it offers a nuanced and realistic lens for understanding complex phenom-

ena. However, importantly traditional probabilistic modeling methods can be computation-

ally intensive, particularly when dealing with large datasets. The integration of probabilistic

modeling with machine learning techniques becomes invaluable in such cases, as it can sig-

nificantly reduce computational costs.

For instance, consider the computational demands of calculating the likelihood in Eq. 1.17,

which might involve numerous evaluations of a complex forward model. If this model is

computationally intensive, the development of a surrogate model could substantially decrease

the resources needed to evaluate the likelihood. This approach not only streamlines the

process but also retains the model’s effectiveness.

Moreover, the principles of probability theory and probabilistic modeling are founda-

tional in many machine learning algorithms. Understanding the role of these probabilistic

techniques is crucial, especially in the context of machine learning. By comprehending key

concepts in machine learning, we can better identify and leverage the opportunities for

integrating probabilistic approaches. This integration does more than just enhance com-

putational efficiency - it also enriches machine learning models with the ability to handle

19



uncertainty and variability inherent in real-world data and models.

1.6 Data Driven Machine Learning

Advances in data-driven machine learning have represented a paradigm shift in computa-

tional modeling and analysis. At their core, such approaches leverage large datasets to train

algorithms to make predictions or decisions without being explicitly programmed for spe-

cific tasks [34]. This methodology contrasts sharply with traditional physics model-driven

approaches, where rules and relationships are predefined based on theoretic understanding

of the processes under investigation. Data-driven ML has proved immensely useful in var-

ious domains, from image and speech recognition to complex decision-making processes in

autonomous systems [35]. Its ability to extract patterns and insights from vast and com-

plex datasets has surpassed traditional methods in terms of efficiency, scalability, and often,

accuracy.

One of the most significant advancements brought about by data-driven ML is in the

realm of predictive analytics. For instance, in healthcare, ML models can predict patient

outcomes based on historical data, a task that was previously reliant on less precise statis-

tical methods [36]. In finance, ML algorithms have transformed risk assessment and fraud

detection processes [37]. Countless other examples exists in the literature, demonstrating the

enormously diverse areas of application for such algorithms when datasets are available. In

this thesis, a variety of ML techniques are demonstrated in each of the works presented. Al-

though numerous areas of machine learning exist, this work focuses mainly on the application

of the following topics:

1. Supervised Learning: This involves training ML models on labeled data, where

the desired input and output of the model are known on some dataset. The model

learns a function mapping inputs to desired outputs, which is crucial for tasks such as

classification and regression [38], both of which are prevalent in this work.

2. Unsupervised Learning: In scenarios where the input-output relationships within

data are unlabeled, unsupervised learning aims to descern inherent structures or pat-

terns present in the data. This form of learning is useful for identifying underlying

features or structures of the data, lending it useful for tasks such as representation

learning, transfer learning, and clustering [39], all of which are discussed here.

3. Neural Networks and Deep Learning: Neural networks, a fundamental concept

in machine learning, are computational models designed to mimic the human brain’s
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interconnected neuron structure. They process input data through multiple layers

of nodes, each layer transforming the input in a way that helps the network learn

complex patterns and relationships. This design enables neural networks to perform

a wide range of tasks, from recognizing images and speech to making predictions and

decisions, by adjusting internal parameters based on data [24].

Despite its advancements, data-driven ML is not without challenges. The quality and

quantity of data significantly influences the performance of ML models. Training ML models,

particularly without the introduction of inductive biases, often requires enormous amounts

of data to be effective. Issues such as data bias can additionally lead to skewed or unfair

outcomes [40]. Furthermore, the black box nature of many ML models, particularly deep

learning, poses challenges in interpretability and trustworthiness [41]. While this work in-

cludes smaller explorations into the former issue, its primary focus is on addressing the latter,

particularly the challenge of enhancing the interpretability and reliability of ML models.

At the heart of machine learning lies the process of creating and solving optimization

problems. This core principle is integral to the development and functionality of various

machine learning models. Essentially, a machine learning algorithm involves constructing

an optimization problem where the objective is to find the best possible model parameters

that minimize a loss or cost function. This function quantitatively measures how far off

a model’s predictions are from the data according to some objective. The optimization

problem, therefore, revolves around adjusting the model parameters in a way that the loss

is minimized, indicating that the model’s predictions are as close as possible to achieving

the particular object enforced by the selected loss function. Assuming a dataset D, a loss

function L, and a prediction model fϕ parameterized by parameters ϕ, most machine learning

algorithms can be framed as solving the optimization problem

min
ϕ

L(D, fϕ(D)) . (1.18)

In supervised learning, for instance, this might involve adjusting weights in a neural network

or coefficients in a regression model to best fit the observed data. Similarly, in a classification

task, the loss may quantify some comparison between predicted class probability distributions

and the true class. Loss functions may also be augmented with information from physical

principles to softly guide model performance with learning biases towards consistency with

such principles. The optimization techniques employed in minimizing loss functions can range

from simple gradient descent in linear models to more complex algorithms in deep learning,

although this thesis will primarily rely on stochastic gradient descent (SGD) techniques

common in many machine learning packages. The efficacy of a machine learning model is
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largely determined by how well the optimization problem is formulated and solved, balancing

the trade-offs between accuracy, computational efficiency, and the ability to generalize from

the training data to unseen data.

Along with selecting an appropriate loss function, model performance is also greatly

dependent on the particular parametric form fϕ of the model. This work will often leverage

neural networks in constructing the parameterized model, but often in combination with

inductive biases, changing the model form to improve adherence to physical principles which

the standard form does not take into account.

1.6.1 Neural Networks

Figure 1.2: Neural networks employ a composition of simple functions to transform an input
x0 to a prediction y.

Neural networks (NNs) are a cornerstone of modern machine learning, inspired by the

structure and function of the human brain. They originally consisted of layers of intercon-

nected nodes or ‘neurons’, known as a dense layer or fully connected layer, each performing

simple computations. The output of these computations is passed through the network to

achieve complex tasks such as regression and classification. At its core, an NN transforms an

input by passing it through multiple layers of non-linear functions. This process is illustrated

in Fig. 1.2. Mathematically, consider an input vector x0 and an NN consisting of L layers. If

each layer l is defined by a parametric function f lϕ with output xl, the output of the network

y is given by the composition of functions

y = fLϕ (fL−1
ϕ (. . . f 1

ϕ(f 0
ϕ(x0)))) . (1.19)

The parameterization of each f lϕ can take on many forms, and the particular forms chosen

are usually application dependent. The parametric form of each f lϕ along with the number of

functions defines the network’s architecture. In more advanced architectures, even the form of

Eq. 1.19 can be significantly altered to include alternate functional compositions. However,

for the purposes of the discussion presented here, we will adhere to this structure. There are
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various types of layers which can define the functions f lϕ which are heavily prevalent in this

work, the first of which has already been mentioned as the fully connected layer. Two of the

simplest but primary layer types prevalent in NNs will be briefly discussed, but many other

functions exist in the literature.

(a) Dense layers (fully connected layers) (b) Convolutional layers

Figure 1.3: Two neural network layer functions f common in deep learning.

Fully connected layers These layers, also known as dense layers, are one of the simplest

types of layer used in the creation of NNs. Each value in the input x ∈ Rn is connected to

each value in the output y ∈ Rm through a matrix of trainable weights W ∈ Rm×n with the

addition of a trainable bias term b ∈ Rm. The mathematical form of this function is given

by the linear function

fdense(x) = Wx + b , (1.20)

and is exemplified in Figure 1.3a. Such layers are often used in processing single dimensional

vector inputs and contain trainable parameters ϕ = {W,b}. However, they can become

computationally intensive in much higher dimensions, particularly in data such as images

which can contain 2 or 3 spatial dimensions with many degrees of freedom each.

Convolutional Layers Convolutional layers are more conducive to learning and process-

ing local spatial relationships, particularly in image-like inputs. These layers apply a convolu-

tion operation to the input x ∈ Rn×d, using a set of learnable filters. Each filter W ∈ Rk1×k2

is convolved across the width and height of the input volume, computing the dot product

between the entries of the filter and the input, producing a two-dimensional activation map

for each filter. As a result, the network learns filters that activate when they see specific

types of features at given spatial positions in the input. An example of the convolutional

operation with a single filter is illustrated in Figure 1.3b. Convolutional layers can also be
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extended to a third dimension by considering additional channels, such as in natural image

data with red, green, and blue channels.

Activation Functions Activation functions are central to the performance of NNs. The

nonlinear composition which facilitates NNs to be flexible approximators is provided primar-

ily through the use of such functions. An activation function is a nonlinear function which

usually operates element-wise on an input. The simplest of these functions is the Rectified

Linear Unit (ReLU) which transforms any negative values to 0. However, many common

nonlinear activation functions are used in NN architectures, and a review of most common

ones is presented in recent work by Szandala et al [42].

Activation functions are typically applied at the output of a layer in the NN. For exam-

ple, for a nonlinear element-wise activation function σ, the overall output of an NN layer

leveraging the fully connected layer may be

xl+1 = σ(f lphi(xl)) . (1.21)

The commonly used NN layers and activation functions which are prevalent in ML no

doubt produce powerful and flexible models with advanced capabilities. However, they do

not inherently take any aspect of modeling physics into account in the standard purely data-

driven formulation. This can lead to inaccurate, non-generalizable, or non-interpretable

predictions from the model. Purely data driven approaches certainly have seen success in

certain application, but a more robust approach is to combine NNs and ML principles with

that of physical modeling.

1.7 Modeling Physics with Machine Learning

Modeling physical phenomena has traditionally been anchored in empirical and theoretical

foundations, but the emergence of machine learning has heralded a paradigm shift, reshaping

physical modeling with data-driven insights. This section explores two distinct data-driven

methodologies, purely ML-driven modeling and physics-aware ML, emphasizing their appli-

cations, challenges, and advancements. In aerospace engineering, as highlighted by Brunton

et al. [2], the role of data is pivotal. The industry, rich in data due to its complex systems

and rigorous testing regimes, faces the challenge of leveraging this wealth of information

effectively. However, the availability and quality of data, often constrained by practical and

safety considerations, play a crucial role in the applicability and success of ML models. This

data-centric approach, while offering transformative potential in optimization and predictive
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modeling, also necessitates models that are interpretable, generalizable, and certifiable, es-

pecially in safety-critical applications [2]. Two of the primary benefits which physics-aware

ML provides over purely data-driven approaches are:

• Improved model interpretability: Interpretability refers to the ability to under-

stand and articulate the mechanism by which a model arrives at its predictions, in

terms that align with physical laws and principles. Improving interpretability renders

the model’s decision-making process more transparent, allowing researchers to grasp

how and why specific predictions are made, and ensuring that these explanations are

grounded in established physical theories.

• Improved model generalizability: Generalizability is the capacity of a model to

perform accurately across a wide range of conditions and datasets, beyond the specific

scenarios on which it was trained. In physics-based machine learning, a model with a

high degree of generalizability implies that the model can apply its learned principles

to solve problems or make predictions in new physical contexts, demonstrating the

model’s robustness and its ability to capture and apply physical laws.

Machine learning can significantly enhance the modeling of physical systems, offering a

versatile toolkit that differs from traditional methods. In this work, the focus is on em-

ploying these tools to model dynamical systems driven by PDEs as well as steady-state

conditions. The utility of machine learning spans a broad spectrum, capable of applications

such as predicting stochastic events, refining control systems, simulating quantum phenom-

ena, and elucidating the intricacies of complex networks. While the applications are varied,

they converge on a common objective: to utilize machine learning for accurate predictions,

pattern discovery, and efficient resolution of complex problems in physics. Notably, model-

ing the complete dynamics of a system, rather than directly forecasting specific quantities

or outcomes, provides a comprehensive approach. This robust methodology allows for the

computation of various quantities of interest and offers a deeper analysis by understanding

the full state of the system.

In the proceeding discussions, the focus of machine learning in physics will be narrowed

to dynamical systems and PDEs. Such systems are governed by a system of equations

∂u

∂t
= F(u(t), t;η) , (1.22)

where F is a nonlinear differential operator defining the dynamics of the system, u ∈ Rn

is the physical state of interest, t indicates time, and η ∈ Rp are parameters which govern

the system. The aim of modeling physics with machine learning presented here is often
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to approximate the operator F through the use of surrogate modeling or reduced-order

modeling to solve a variety of problems.

The solution to Eq. 1.22 can also be expressed as

u(t) = u(0) +

∫ t

0

F(u(τ), τ ;η)dτ . (1.23)

Therefore, sometimes rather than modeling the right hand side of Eq. 1.22 directly, a model

may be sought to approximate the right hand side of Eq. 1.23. For example, given the initial

condition, system parameters, and time, a model may be sought to compute an output

u(t) = f(t,u(0),η), where the function f attempts to approximate the right hand side of

Eq. 1.23.

1.7.1 Purely ML-Driven Modeling

Purely ML-Driven Modeling in physics embodies an approach where data is the primary

driver for machine learning models, without direct integration of physical laws. These mod-

els have shown remarkable success in discerning complex patterns and offering predictions,

especially in scenarios where there is an abundance of data. However, the reliance on data

brings forth certain limitations, particularly observational biases that stem from the nature

and scope of the collected data. This issue becomes increasingly significant when distinguish-

ing between experimental datasets, which are often limited in size but rich in real-world

applicability, and simulated datasets, which are larger and more controlled but may lack

certain real-world complexities.

Purely data-driven machine learning approaches strive to model the operator F by relying

solely on data. Although this strategy has achieved notable success in certain fields, its

effectiveness can be quite restricted in other areas due to limited applicability and narrow

scope. This section will discuss some prevalent methods of purely data-driven modeling in

the context of physical sciences, highlighting their strengths and limitations.

1.7.1.1 Deep Operator Networks

The development of Deep Operator Networks (DeepONets) by Lu et al. illustrates the effi-

cacy of ML in approximating complex operators [43]. Utilizing the universal approximation

theorem, DeepONets have showcased their proficiency in addressing a diverse spectrum of

problems, encompassing areas from fluid dynamics to material sciences. A more detailed

description of the DeepONet framework is provided in Section 2.5. However, their standard

formulation does not inherently integrate physical principles, leading to potential challenges
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in ensuring the physical plausibility of their predictions. They are employed to provide ac-

curate and efficient approximations of operators; however, these are only approximations

with no enforcement of prediction consistency with the operator itself. As discussed by

Lu et al. [43], even with well-trained DeepONets, prediction for some inputs can ‘explode’,

resulting in physically implausible results.

1.7.1.2 General Probablistic Modeling Framework

The work of Yang and Perdikaris [44] represents a significant stride in employing data-

driven approaches for handling high-dimensional and stochastic systems using a formulation

combining variational inference and discriminator training, a bit like combining VAEs and

GANs. Their aim is to model probabilistic relationships p(y|x) in which a measurement

model is assumed to contain general non-additive noise y = f(x, z), where x are model

inputs, y are model outputs, and z are latent variables. This model suggests that any output

is a function of the input as well as a randomly distributed latent vector. Their approach is to

create a parametric model fθ(x, z) which is trained by leveraging a variational approximation

qϕ(z|x,y) to approximate the latent posterior p(z|x,y). Essentially, the variational posterior

along with the parametric forward model create a generative model which can be trained such

that fθ(x, z), z ∼ p(z) generates samples from p(y|z) with no variational approximations.

In other words, the model is capable of predicting general probabilistic relationships with

non-parametric density estimation. The models are trained by minimizing the reverse KL

between the generative distribution pθ(x,y) and the observed data distribution q(x,y) with

entropy and prediction accuracy regularization. The loss function that is used to train the

variational latent posterior and the prediction model is given by Eq. 1.24.

L = Eq(x,y)p(z)[DKL(pθ(x,y)∥q(x,y)) + (1 − λ) log qϕ(z|x,y) + β∥fθ(x, z) − y∥2] (1.24)

Additionally, the KL term is approximated by leveraging a discriminative classification model

Tψ(x,y) trained alongside the prediction model to predict whether input-output pairs cor-

respond to the data distribution or from the prediction model. This discriminative model

is what allows for no variational approximation in the measurement model and allows for

an unconstrained nonlinear prediction model fθ. Typically the prediction model is param-

eterized by a variational approximation to allow a closed form solution to computing the

KL divergence term. The second term on the right hand side of Eq. 1.24 is an entropy

regularization term with parameter λ controlling how much the variational latent posterior

is encouraged to spread out. The final term on the right hand side encourages the prediction

model to minimize the L2 norm between noisy predictions and the data.
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1.7.1.3 Autoencoder-based ROMs

Although such models illustrate success in modeling complex dynamical systems with ac-

curate uncertainty quantification, the prediction model fθ is purely data driven. That is,

no inductive or learning biases are incorporated into the creation of such models, indicating

that model predictions (along with uncertainties) may ultimately prove non physical, unin-

terpretable, and not generalizable. However, such models may benefit from augmentation

with physics-aware methods such as PINNs or the introduction of inductive biases to improve

physical consistency.

Significant improvements in computational efficiency for dynamics modeling are brought

about by leveraging ROMs. Xu and Duraisamy [1] leverage ML techniques to develop a

nonlinear encoding-decoding system and learn reduced-order dynamics in the resulting latent

space, employing autoencoders and temporal convolutional architectures to efficiently process

and predict dynamics.

Figure 1.4: Schematic of data-driven reduced order modeling for new parameter prediction.
Figure adapted from [1] with permission.

Data in the form of state observations is obtained from a dynamical sys-

tem with parameters η (Eq. 1.22) at discrete times to form a dataset U(η) =

{u(t1;η),u(t2;η), . . . ,u(tnt ;η)} = {u1,u2, . . . ,unt}. The snapshots in this dataset are used

to train a convolutional autoencoder (CVAE), reducing the dimensionality of the data by

encoding it through the learned encoding function Φs : Rn → Rns to compute the lower

dimensional representations as uis = Φs(ui). The learned decoder Ψs : Rns → Rn is used to

reconstruct the original data snapshots as ũi = Ψs(uis). The work addresses two related yet

28



distinct tasks by leveraging the encoded representations us: the first is to predict system dy-

namics on unseen system parameters η, and the second is to perform future state prediction

in time for a single system.

In the first case, a temporal convolutional autoencoder (TCAE) is used to further com-

press many snapshots of the lower dimensional representation in the temporal dimension.

The encoding function Φt : Rns×nt → Rnl encodes the entire sequence in time to a single

vector as ul = Φt(u1
s,u

2
s, . . . ,u

nt
s ). This single latent code can then be decoded by the

temporal decoder Ψt : Rnl → Rns×nt to obtain a reconstruction of the entire time series

of compressed representations by ũ1
s, ũ

2
s, . . . , ũ

nt
s = Ψt(ul). The vector ul thus represents a

compressed description of the dynamical system corresponding to a particular value of η.

Finally, a relationship between the compressed representation and the system parameters is

learned by a neural network as ul = f(η). After the spatial and temporal autoencoders are

learned along with the function f , system dynamics can be predicted for new values of η.

This process is depicted in Figure 1.4, where the figure is adapted with permission from Xu

et al [1].

Figure 1.5: Schematic of data-driven reduced order modeling for future state prediction.
Figure adapted from [1] with permission.

In the second case, future state prediction leverages a sequence of nτ snapshots of the

spatially compressed representations to predict the next state in the sequence. A temporal

convolutional network (TCN) maps a sequence of states [ui−nτ+1
s . . .uis] to the next state

in the sequence ui+1
s . These predicted states are then decoded using the spatial decoder
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Ψs to obtain reconstructions of the predicted dynamics. The entire process is illustrated in

Figure 1.5.

This methodology demonstrates impressive capabilities for purely ML-driven modeling

and is a significant contribution to the field; however, from a physics-aware ML perspective,

the approach has limitations. While efficient in data-driven contexts, it lacks an explicit

incorporation of underlying physical laws and information, which can be crucial for ensuring

physical plausibility, interpretability of the predictions, and generalizability. In particular,

the spatial decoder may predict non physical reconstructions which do not obey the physical

principles being modeled. This omission might limit the model’s applicability in scenarios

where adherence to physical principles is paramount.

1.7.1.4 Other Limitations

The reliance on large datasets in purely ML-driven models also brings to the foreground the

challenge of data quality and representativeness. In many real-world physics applications,

acquiring sufficiently large and diverse datasets that accurately capture the underlying phe-

nomena can be difficult. This limitation often leads to models that are highly specialized to

the datasets they are trained on, lacking generalizability to new or slightly different condi-

tions. The divide between experimental and simulated data further complicates this issue.

Experimental data, while highly realistic, is often limited in scope and may contain noise

and measurement errors. Simulated data, although more abundant and controllable, might

not fully capture the intricacies of real-world conditions, leading to a gap between model

predictions and actual phenomena.

Moreover, the ‘black box’ nature of many purely ML-driven models poses significant chal-

lenges in interpretability. In physics-based applications, and particularly aerospace engineer-

ing, where understanding causal relationships, underlying principles, and model predictions

is crucial, the inability of these models to provide insight into the ‘why’ behind their pre-

dictions limits their applicability in certain contexts. This lack of interpretability can be

particularly problematic in areas requiring rigorous validation and explanation, such as in

safety-critical applications [2].

While purely ML-driven models have opened new avenues in physics modeling, their

application requires careful consideration of their limitations, particularly in terms of data

dependency, lack of physical law integration, and interpretability. Future advancements in

this field may focus on developing techniques to mitigate these challenges through approaches

which combine data-driven methodologies with physics-informed principles, as many works

have aimed towards already.
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1.7.2 Physics-Aware Machine Learning

Physics-aware machine learning is a transformative approach in computational physics that

bridges the gap between traditional data-driven models and the foundational principles of

physics. This integration is realized through two complementary methodologies which we

call physics-informed machine learning and physics-augmented machine learning. Physics-

informed ML primarily focuses on incorporating physical laws into the learning process,

ensuring that models not only learn from data but also conform to established physical

principles. Physics-augmented ML, on the other hand, extends this paradigm by enhancing

the generative properties of the models, incorporating components of traditional physical

modeling into the modeling process thus, particularly via inductive biases, allowing them to

predict and simulate physical phenomena more accurately.

The significance of physics-aware ML lies in its ability to tackle complex problems that

traditional ML struggles with. This approach is crucial in scenarios where data is scarce,

noisy, or expensive to obtain. Additionally, traditional methods often lack inductive biases

to incorporate knowledge on known physical principles, which limits their generalizability

and applicability. Physics-aware ML models can generate reliable and robust predictions by

adhering to physical laws, offering insights into areas where empirical data alone may lead

to incomplete or erroneous conclusions. The work of Karniadakis et al. [12] is a testament to

this, highlighting the potential of physics-aware ML in harmonizing the empirical richness

of machine learning with the theoretical rigor of physics. Furthermore, Sinz et al. [45] argue

the importance of inductive biases in enhancing the generalization and reliability of these

models, pointing out that these biases can lead to more plausible model forms that better

mimic the adaptability and robustness seen in natural systems.

1.7.2.1 Learning Biases

In the realm of physics-aware ML, two types of biases are particularly prevalent: learning

and inductive biases. Learning biases involve softly constraining models through penalizing

loss functions to align predictions with physical principles. Physics-Informed Neural Net-

works (PINNs) [46] are a prime example of this approach. PINNs leverage prior physical

information in the form of PDEs to approximate solutions to the PDE using data along with

a set of collocation points at which to evaluate the PDE on.

Considering the dynamical system defined in Eq. 1.22, PINNs aim to model the solution

u(t) at some time t. It is also assumed that u(t) is a function of spatial coordinates as

u(x, t). Modeling this solution is accomplished by leveraging a dataset consisting of the set

{x(i)
u , t

(i)
u ,u(i)}Nui=1 along with a set of collocation points {x(i)

F , t
(i)
F }NF

i=1 at which to compute to

31



operator F . The PINN is constructed as a parameterized model uϕ(x, t) which is trained by

minimizing the loss given in Eq. 1.25.

L =
1

Nu

Nu∑
i=1

|uϕ(x(i)
u , t

(i)
u ) − u(i)|2 +

1

NF

NF∑
i=1

∣∣∣∣∂uϕ(x, t)

∂t
−F(uϕ(x

(i)
F , t

(i)
F ), t

(i)
F ;η)

∣∣∣∣2 (1.25)

The first term on the right hand side encourages the PINN to match the dataset. However,

training a model with only this loss will limit the applicability and generalizability of the

model, particularly with limited data samples. The second term on the right hand side

defines the introduction of a learning bias into the model. It encourages the model to adhere

to the dynamical system at spatial and temporal locations outside of the training data,

leading to improved generalization of the model predictions. It is noted that this particular

formulation assumes constant dynamical system parameters η, but the idea can easily be

extended to include such parameters in model predictions.

By embedding physical equations directly into the learning process, PINNs offer a pow-

erful tool for solving complex forward and inverse problems in physics. This approach is

particularly effective in environments with limited or noisy data, as it leverages the under-

lying physical laws to guide the learning process and ensure the reliability of predictions.

However, PINNs typically predict the solution only at a single spatial and temporal location

per function evaluation. Many other types of models often predict entire spatio-temporal

fields with a single forward pass, rending them far cheaper than PINNs during online predic-

tion. Additionally, PINNs require many evaluations of the potentially expensive full order

operator F during training, albeit at a subset of collocation points. This renders the training

often significantly slower than approaches leveraging data alone. Although the offline and

online modeling costs are greater than purely data-driven modeling approaches, generaliza-

tion and accuracy with respect to the physical equations are greatly improved. An extension

of this idea to generative models is also leveraged to encourage generated samples from VAEs

to adhere to the underlying PDE [47].

1.7.2.2 Inductive Biases

Rather than softly constraining models representing physical systems with learning biases,

inductive biases are introduced directly into the architecture of the machine learning models.

Specially designing the model forms allows them to naturally adhere to physical laws, or a

portion therein, by construction. Such biases introduce hard constrains which guarantee the

model will adhere to some physical principle. This is exemplified well in the development

of port-metriplectic neural networks [48], which incorporate thermodynamic principles into

32



the learning of complex physical systems by ensuring compliance with the first and second

laws of thermodynamics through network architectural design.

Figure 1.6: Physical domain of 2D heat sink model. The temperature is specified on the
boundaries while the interior temperature is modeled by Eq. 1.26.

A simpler yet illustrative example of incorporating inductive bias for boundary conditions

is evident in the context of modeling the solution of the diffusion equation (Eq. 1.26). A

thermal model for a conductive heat sink is shown in Fig. 1.6 in which temperature on the

physical domain X = [−1, 1]2 satisfies Eq. 1.26, and a Dirichlet boundary of g(x, y, t) sets the

temperature on the boundaries ∂X as a function of time. Additionally, a function f(x, y, t)

models a heat source in the computational domain as a function of time.

∂u(x, y, t)

∂t
= η∇2u(x, y, t) + f(x, y, t) , u(t = 0) = u0 (1.26)

When designing a model uϕ(u0, t, x, y, η, f(x, y, t)) to predict temperatures u(x, y, t) from the

initial condition u0, time t, spatial coordinates x and y, conductivity η, and source function

f(x, y, t), enforcing boundary conditions can be seamlessly integrated into the model’s archi-

tecture, even while employing neural networks as flexible parametric models. This approach

guarantees that the model adheres to at least some of the physical constraints intrinsic to sys-

tem. By structurally embedding these boundary conditions, the model can more accurately

and reliably predict the behavior of the system under various scenarios.

By carefully selecting the form of the model uϕ(u0, t, x, y, η, f(x, t)), the boundary condi-

33



tions can be satisfied for any input conditions, regardless of the output of the neural network.

A particular choice of model may therefore be given by

uϕ(u0, t, x, y, η, f(x, t)) = (1 − y2)(1 − x2)vϕ(u0, t, x, t, η, f(x, t)) + g(x, y, t) , (1.27)

where vϕ(u0, t, x, t, η, h(x, t)) is a flexible parametric model such as a neural network. In this

case the specified boundary conditions are always satisfied since uϕ(x = ±1) = g(x = ±1, y, t)

and uϕ(y = ±1) = g(x, y = ±1, t). This simple example is intended to clearly illustrate the

incorporation of inductive biases into models while retaining the flexibility that machine

learning provides. However, it is noted that this simple example of an inductive bias will

ensure that the boundary conditions are satisfied, but it will not ensure that predictions

adhere to Eq. 1.26.

More complex methods of enforcing physical constraints are present in the literature,

although usually they require customization to a particular application. For exaple, con-

strained sparse Galerkin regression (CSGR) by Loiseau and Brunton [49] presents a method

which introduces inductive biases by combining sparse identification techniques with hard

physical constraints such as conservation laws. This methodology exemplifies the potential of

embedding physical laws directly into machine learning models, leading to more robust and

physically consistent predictions. However, designing the constraints is an arduous process

which must be performed for each application.

Srivastava and Duraisamy’s LIFE framework [50] takes a slightly different approach, em-

phasizing the design of physics-informed feature spaces and constructing robust maps for

feature augmentation in aerodynamic modeling. However, the method still necessitates de-

signing augmentation functions which are application-specific. This framework showcases

the importance of carefully selected features that are informed by the underlying physics

in combination with a carefully designed method to maintain generalizability. Such careful

consideration enhances the model’s predictive capability and generalizability through the use

of inductive biases.

As we delve deeper into the realm of physics-aware ML, it becomes apparent that these

approaches are often highly application-specific. The choice between employing inductive or

learning biases—or a blend of both—hinges on the problem at hand, the availability of data,

and the specific physical equations involved. For example, in fluid dynamics, as discussed in

the review by Duraisamy et al. [51], the complexity and computational demands of modeling

turbulence necessitate a tailored approach that integrates machine learning with foundational

physical knowledge.

In summary, physics-aware machine learning represents a significant advancement in com-
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putational physics. By leveraging inductive and learning biases, these models transcend the

limitations of traditional data-driven approaches, offering enhanced predictive capabilities

and a deeper understanding of complex physical phenomena. This integration of machine

learning with physical principles is not just an academic exercise; it is a crucial step towards

developing innovative solutions across various domains of physics, where the empirical power

of machine learning is seamlessly combined with the foundational rigor of physical laws.

1.8 Contributions

In this thesis, we explore physics-aware machine learning for improving the efficiency and

accuracy of physical models, showcasing how specific applications can influence method

development while also providing generalizable frameworks. The initial studies focus on

tailored applications while the final work introduces a more general framework which is

broadly applicable for solving a range of forward and inverse problems with physically-

consistent machine learning. The primary contributions and insights from the four studies

presented are summarized as follows:

• Variational Autoencoders in Computational Physics: VAEs are used to extract

disentangled representations correlating with physically-relevant parameters from com-

plex data. The significant insight from this study is that incorporating even minimal

prior physical knowledge greatly enhances the learning process’s robustness and accu-

racy, advocating for the integration of physical principles in machine learning models

for improved physics modeling and generalization.

• Modeling Dynamical Systems through Machine Learning: Focusing on ca-

thodic electrophoretic deposition, this contribution utilizes variational inference to ad-

dress and refine the limitations of a baseline physical model, integrating ML augmenta-

tions to preserve physical interpretability while boosting predictive accuracy and model

generalizability. This showcases the potential of combining machine learning with tra-

ditional physics models to deepen our understanding and manipulation of complex

systems. Additionally, this results in a model which may advance the state of the art

in e-coat modeling by providing insights into physical principles missing from current

models.

• Machine Learning Framework for Reduced Order Modeling of Non-

Equilibrium Gas Dynamics: Employing a novel machine learning framework in-

formed by rate-distortion theory, this study further develops a well known reduced-

order model which upholds physical constraints such as mass and energy conservation,
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focusing on an innovative clustering strategy for pseudo-states. This approach signifi-

cantly improves ROM accuracy over the baseline methods presented. It also illustrates

the inherent trade off between interpretability and accuracy in physical modeling. This

improved accuracy ROM learned in zero spatial dimensions can be implemented in

more complex hypersonic simulations in higher spatial dimensions to render such sim-

ulations computationally feasible with state of the art accuracy relative to other ROM

strategies.

• Physical Consistency in Score-Based Generative Models: The final study of

this work introduces a framework for ensuring physical consistency in score-based gen-

erative models, combining advanced generative modeling with physical laws to address

both forward and inverse problems efficiently. This method reduces computational

demands while maintaining prediction accuracy and consistency with PDEs describing

the system, embodying the ideal of physics-aware machine learning in which models

are constrained to physical principles. Although this study leverages basic sampling

strategies, the computational cost of solving forward and inverse problems is similar to

a second order finite difference solver in generating solutions to the Darcy flow equa-

tions. With the adoption of more efficient sampling methods and fine tuning model

architectures, it is likely that samples can be generated orders of magnitude faster than

state of the art methods for solving PDEs numerically.

The research presented in this thesis represents a step towards the integration of machine

learning with physical sciences, demonstrating nuanced and deeply synergistic approaches

to tackling both theoretical and practical problems in physics. Each study, while distinct

in its application and methodology, collectively contributes to a cohesive vision of physics-

aware machine learning and improving the efficiency and accuracy of physical models over

traditional methods. Each also emphasizes the critical importance of incorporating physical

principles into machine learning models to enhance their interpretability, reliability, and

generalizability.

A central theme that emerges across these studies is the transformative potential of

embedding physical knowledge into machine learning frameworks. From the disentangled

representations in computational physics to the refinement of physical models in cathodic

electrophoretic deposition and the development of reduced-order models for non-equilibrium

gas dynamics, each contribution underscores the value of a physics-informed perspective.

This approach also highlights machine learning’s role as a complementary tool rather than

a replacement for traditional physics-based methods. The incorporation of machine learning

into physical models is additionally shown to improve efficiency and accuracy over state of
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the art methods in reduced order modeling for non equilibrium gas dynamics and solving for-

ward and inverse problems using score-based generative models. This emphasizes that ML in

physical modeling can provide benefits over traditional physical modeling when implemented

correctly to ensure physical principles are still upheld.

Furthermore, the progression from specific applications to the development of a gener-

alizable framework illustrates the scalability of such methods. The initial focus on tailored

applications provides a solid foundation, demonstrating some of the practical benefits and

feasibility of incorporating machine learning into physics. The subsequent transition to a

more general framework showcases the potential adaptability of these principles across dif-

ferent domains, suggesting a broad potential impact on various fields within physical sciences

and beyond.

The integration of differential equations in score-based generative models represents a pin-

nacle of this thesis, bridging advanced computational techniques with fundamental physics

laws. This approach not only ensures physical consistency but also opens new avenues

for solving forward and inverse problems with greater flexibility, efficiency, and potentially

accuracy. By reducing the computational burden traditionally associated with computing

solutions to PDEs, this method exemplifies the practical benefits of physics-aware machine

learning, offering a scalable solution that can be adapted to diverse applications. The frame-

work has the potential to greatly improve accuracy, efficiency, and flexibility in solving a

variety of physical modeling challenges.

The works presented here illustrate that the fusion of machine learning with physics is

not merely a matter of applying new tools to old problems but involves a fundamental re-

thinking of how we model and understand physical systems. The shared principles across

the studies—such as the importance of physical knowledge integration, the pursuit of inter-

pretability and generalizability, the development of scalable, efficient frameworks, and the

improvement in both accuracy and efficiency over traditional modeling techniques—form a

solid foundation for future research in this interdisciplinary field. Continuing to explore the

frontiers of physics-aware machine learning, the insights and methodologies developed in this

work will hopefully serve as guideposts, driving towards more robust, accurate, and versatile

modeling capabilities that harness the best of both worlds.
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CHAPTER 2

Probability and Machine Learning

Background

This chapter presents essential background material in probability and machine learning

methodologies useful for understanding some of the methods presented and developed in the

later chapters. It aims to provide a concise yet comprehensive overview of the theoretical

foundations necessary for understanding the advanced computational techniques employed

in subsequent chapters. By introducing essential principles from these domains, this chapter

sets the stage for the exploration of sophisticated models and algorithms which define the

approaches that follow.

2.1 Information Theory

Information theory, pioneered by Claude Shannon [52], is a branch of applied mathematics

and engineering involving the quantification, storage, and communication of information. It

provides a quantifiable measure of information in the form of entropy, mutual information,

and other quantities, and has wide applications in telecommunications, cryptography, and,

more recently, machine learning.

In information theory, understanding the distinction between discrete and continuous

settings is essential. Discrete settings deal with variables that have a specific and countable

set of outcomes, typical in digital communication. In contrast, continuous settings involve

variables with a continuous range of values, common in analog systems. The fundamental

concepts of information theory are defined differently in these two settings.

Entropy, denoted by H(X) for a discrete random variable X with probability mass func-

tion (PMF) P (x), measures the uncertainty or unpredictability of a variable’s state. It is

defined as

H(X) = −
∑
x∈X

P (x) logP (x) , (2.1)
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and provides a clear interpretation as the average number of bits required to represent the

state of the random variable X (a non-negative quantity). In continuous settings, differential

entropy h(X) is used, defined for a continuous random variable X with probability density

function (PDF) p(x) as

h(X) = −
∫ ∞

−∞
p(x) log p(x) dx . (2.2)

While differential entropy shares similarities with discrete entropy, it has different properties

and interpretations. Differential entropy can be negative, unlike its discrete counterpart,

rendering its interpretation more difficult to define. However, it can still be considered a

measure of the uncertainty associated with a continuous random variable.

Conditional entropy measures the average uncertainty in a variable X given that another

variable Y is known. For discrete variables,

H(X|Y ) = −
∑
y∈Y

P (y)
∑
x∈X

P (x|y) logP (x|y) . (2.3)

Conditional entropy is always less than or equal to entropy: H(X|Y ) ≤ H(X). This is

because additional information in the form of conditioning Y cannot increase uncertainty.

Extra knowledge will typically reduce the uncertainty about a variable. However, in the

limiting case of Y providing no additional information about X, the conditional entropy is

equal to the entropy: H(X|Y ) = H(X).

For continuous variables, conditional differential entropy is defined as

h(X|Y ) = −
∫ ∞

−∞
p(y)

(∫ ∞

−∞
p(x|y) log p(x|y) dx

)
dy , (2.4)

and has a similar interpretation as discrete conditional entropy.

Another critical concept is the Kullback-Leibler Divergence (KL Divergence) [53], a mea-

sure of how one PMF P (x) differs from a second PMF Q(x) on the same random variable.

For discrete variables, it is expressed as

DKL(P (x)||Q(x)) =
∑
x∈X

P (x) log
P (x)

Q(x)
. (2.5)

For a continuous variable given two PDFs p(x) and q(x), KL divergence is given by

DKL(p(x)||q(x)) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx . (2.6)

It is particularly useful in quantifying the difference between two probabilistic models or
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distributions. This divergence is a fundamental tool in identifying the “distance” between

distributions, a concept widely used in machine learning for tasks such as model compar-

ison and anomaly detection. Notably, it is always non-negative in both the discrete and

continuous cases.

Mutual Information is a measure of the amount of information that one random variable

contains about another. It is defined for discrete variables as

I(X;Y ) =
∑

x∈X,y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
, (2.7)

and in continuous settings by

I(X;Y ) =

∫ ∞

−∞

∫ ∞

−∞
p(x, y) log

p(x, y)

p(x)p(y)
dy dx . (2.8)

Mutual information can be interpreted as the reduction in uncertainty of one variable given

that the other is observed, and it is symmetric: I(X;Y ) = H(X) − H(X|Y ) = H(Y ) −
H(Y |X). For instance, if the observation of Y entirely determines the value of X, the

mutual information I(X;Y ) is equal to the entropy of X as the conditional entropy is zero

(H(X|Y ) = 0) since there is no uncertainty. Mutual information can also be expressed as the

KL divergence between the joint distribution and the product of the marginal distributions:

I(X;Y ) = DKL(P (x, y)||P (x)P (y)), again providing an interpretation as a quantification

of the correlation between two random variables. These definitions are equivalent in the

continuous case, and mutual information is non-negative in both cases.

An important and fundamental concept in information theory is the data processing in-

equality (DPI). It states that processing data cannot increase the information it contains [54].

Formally, for a Markov chain of random variables X − Y − Z where Y is a function of X

and Z is a function of Y , the DPI asserts that I(X;Y ) ≥ I(X;Z). This indicates that

the mutual information between X and Z is less than or equal to the mutual information

between X and Y , meaning that it is impossible for Z to contain more information about X

than Y contains about X. In any data processing chain, information can only be preserved

or lost, but never gained.

Information theory is profoundly relevant in machine learning. Entropy and differential

entropy can be utilized to understand the uncertainty and information content in datasets

and model predictions. Conditional entropy is crucial in feature selection and understand-

ing dependencies in datasets. KL Divergence is extensively used in model comparison and

anomaly detection. Mutual information is a powerful tool for feature selection and under-

standing complex dependencies in data.
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In physics-informed machine learning, these concepts help in integrating physical laws

with data-driven models. For instance, mutual information can quantify the alignment

between a model’s predictions and physical laws. KL Divergence is critical in analyzing how

well one distribution aligns with another. The DPI can be leveraged to create more robust

optimization methods in developing ROMs, as illustrated in Chapter 5.

In this work, information theory serves as a cornerstone, offering mathematically rigorous

methodologies for both the development and analysis of various models and techniques. Its

principles, ranging from entropy to mutual information, provide a framework for quantifying

and understanding the informational dynamics within many models. This theoretical back-

bone not only enhances the robustness of our methodological approaches but also ensures a

deeper and more nuanced understanding of the underlying processes. In essence, the appli-

cation of information theory aids in ensuring that methods and models are grounded in a

solid mathematical foundation, which is critical for advancing the field of machine learning,

particularly for applications in which interpretability and robustness are paramount.

2.1.1 Rate Distortion Theory

Rate distortion theory [54, 55, 56, 57, 58] serves as a valuable tool for analyzing encoding-

decoding systems and establishing the theoretically optimal performance of such systems. It

serves to analyze the reconstruction performance of encoding-decoding systems or algorithms,

and comparing their relative performance. Consider a random variable Y distributed accord-

ing to a source distribution p(y). In transmitting samples y ∈ Rn of this random variable

from the source to a destination or receiver, reducing the amount of information required

to represent the sample improves the efficiency of transmission. Therefore, an encoder is

sought such that samples from the source are compressed to a random variable X which can

be stored and transmitted with fewer bits. This encoder is defined as a function f : Rn → Rm

such that the source and encoded representation are related by X = f(Y ).

Figure 2.1: Encoding-decoding system with noisy channel transmission.

After samples of the source have been encoded, they can be transmitted to the destination
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at a reduced storage cost over transmitting them directly, and such transmission is modeled

by a channel. In the context of information theory, a channel refers to the medium through

which information is transmitted from a source to a destination. It is characterized by the

properties that define how information is conveyed and the potential distortions or noise that

may affect the transmission. Mathematically, a channel can be described by a conditional

probability distribution p(c|x) that relates the input signal X to the output signal C, taking

into account the channel’s capacity to faithfully transmit information as well as any errors

or noise introduced during the process. If there exists a nonzero probability of transmission

error in the channel, the channel is said to be noisy. In other words, a noisy channel is one

in which p(c = x|x) < 1.

After the transmission arrives at the destination, it is decoded by a function g : Rm → Rn

to a form a reconstruction Ỹ of the original source Y . This entire process of encoding,

transmission, and decoding defines an encoding-decoding system, illustrated in Figure 2.1.

Rate distortion theory defines a framework for analyzing such systems by defining the trade-

off between the average number of bits of the compressed representation, known as the rate,

and the average error of the reconstruction compared to the original source, known as the

distortion. For a given source encoded at rate R, rate distortion theory defines the minimum

achievable distortion D across all possible encoding-decoding systems.

The primary objective in RD is to reconstruct the source accurately by closely approx-

imating it with the reconstructed output. However, the specific definition of accuracy can

vary depending on the problem at hand. In other words, the criteria for evaluating the

fidelity of reconstruction may vary based on the specific context and requirements of the

system being analyzed. The distortion function is used to determine the fidelity of the

reconstruction when compared to the source and is given by a function

d : Y × Ỹ → R+ .

For example, the well known L2-norm d(y, ỹ) = ∥y − ỹ∥2 is a common distortion function,

but many others exist. The distortion for an encoding-decoding system is then defined as

D = EY,Ỹ∼p(y)p(ỹ|y)[d(Y, Ỹ )] ,

which is the expected value of the distortion function over the source and reconstruction.

First, a noiseless channel in which p(c = x|x) = 1 is considered prior to the discussion

of RD with noisy channels. RD seeks to determine the extent of compression that can

be achieved given a specified acceptable level of distortion. Conversely but equivalently, it

investigates the minimum achievable distortion for a given amount of compression.
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We refer the reader to Ref. [54] for a more in-depth discussion and understanding of

rate distortion theory. However, some of the primary results useful for understanding our

methods are presented here. The central concept in RD is the rate distortion function

R(D), which quantifies the minimum amount of data compression needed R for a given

source while keeping the distortion (or loss of information) below a specified level D. It

provides a theoretical limit for how much a signal can be compressed without exceeding a

certain level of information loss. The rate distortion function is defined in Theorem 1, and

readers are referred to Ref. [54] for a mathematical proof.

Theorem 1. The rate distortion function for an i.i.d. source Y with distribution p(y)

and bounded distortion function d(y, ỹ) is given by the minimization of mutual information

between source and reconstruction with respect to all possible encoding and decoding functions

subject to a bounded distortion. Thus,

R(D) = min
p(ỹ|y):EY,Ỹ∼p(y)p(ỹ|y)[d(Y,Ỹ )]≤D

I(Y ; Ỹ )

is the minimum achievable rate for distortion D.

(a) A noiseless channel does not limit the
achievable rate with infinite channel capacity,
allowing a lower distortion.

(b) A noisy channel with limited channel ca-
pacity further limits minimum achievable dis-
tortion.

Figure 2.2: Illustration of the rate distortion plane showing the region of achievability. An
R(D) curve exists for each source distribution, and each encoding-decoding system can be
plotted as a point in the achievable RD plane.

Theorem 1 says the minimum achievable rate (maximum achievable compression) is given

by the minimum mutual information between the source and reconstruction subject to a
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bounded distortion. This indicates that an encoding-decoding system exists which can com-

press the source to rate R(D) while maintaining distortion D, but it does not provide a

method for finding such functions. However, it importantly provides us with the concept of

the RD plane. Notably, the rate distortion function is a monotonically decreasing function of

the distortion [54], indicating that R(D1) ≥ R(D2) if D1 < D2, as illustrated in Figure 2.2.

Theoretically, the rate distortion function can be computed for any source at a given

distortion value. For instance, in the case of ROMs, a particular ROM contains some rate

of compression often related to the size of the compressed representation. Additionally, the

average distortion in the reconstructed ROM predictions and the full order predictions can

be compared to compute the distortion. The ROM can therefore be plotted as a point in

the RD plane, providing a framework for directly comparing ROMs of different types.

Although comparing encoding-decoding systems in the RD plane provides a relative mea-

sure of performance, the optimal performance in terms of computing the RD curve itself is

often prohibitively unstable or impractical to accurately compute. Additionally, Theorem 1

assumes a noiseless channel, but in some applications, limitations of a noisy channel can

make it infeasible to achieve a particular distortion level due to limits on the capacity of the

channel to transmit information. This issue can be formalized by leveraging another concept

from information theory known as channel coding.

Suppose samples from some distribution X ∼ p(x) are transmitted through a noisy chan-

nel denoted by p(c|x). The channel capacity in information theory is defined as

CI = max
p(x)

I(X;C) ,

where CI signifies the maximum rate at which information can be transmitted through the

channel with an arbitrarily low probability of error.

Consider the encoding-decoding system defined in Figure 2.1 in which the source is en-

coded through a deterministic function, transmitted through a noisy channel, and decoded

by a deterministic function. This is equivalent to having a probabilistic encoder p(c|y) rather

than separating it into an encoding function f(y) and noisy channel p(c|x). In Chapter 5,

this interpretation is employed; however, leaving the encoder and channel separate aids in

illustrating a useful result.

The source-channel separation theorem with distortion [54] tells us that distortion D is

achievable if and only if CI > R(D). The channel capacity must be greater than the rate

distortion function of the source to have any hope of achieving distortion D. This is an

important concept which is critical to the presented method of encouraging a more robust

optimization process informed by rate distortion theory (Chapter 5).
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In this work, RD is used as a tool of analysis and development of encoding-decoding

systems; however, computing the true RD curve is not addressed. Some recent works in

the literature [59, 60, 61] have addressed the difficulties in computing the RD function, but

RD in this work is leveraged as a tool to develop and compare the relative performance of

compression algorithms primarily through the idea of the RD plane.

2.2 Variational Inference

Variational inference (VI) methods [62, 63, 64, 65] represent a powerful and versatile ap-

proach in probabilistic and Bayesian modeling, particularly notable for its efficiency in

handling high-dimensional problems. In contrast to Markov Chain Monte Carlo (MCMC)

methods [66, 67, 68], variational inference formulates posterior inference as an optimization

problem. This approach involves approximating the Bayesian posterior with a parametric

distribution, focusing on learning the parameters of this distribution rather than the typi-

cally intractable Bayesian posterior itself. The optimization objective in VI is to minimize

the KL divergence between the variational approximation and the true posterior.

This optimization-based framework of VI offers several advantages over MCMC and other

methods. Firstly, VI tends to be faster and more scalable, especially for large datasets,

making it more practical in various applications. However, it may sometimes provide less

accurate estimations of the posterior, particularly in terms of underestimating variance [69].

On the other hand, while MCMC methods often yield more accurate and consistent esti-

mations of the posterior distribution and are more flexible with distribution types, they are

computationally intensive and slower, particularly for large datasets.

The optimization nature of VI aligns well with the principles underlying many machine

learning techniques, facilitating its integration into ML frameworks. This natural coupling

allows for more scalable models, especially in the development of models that are both robust

and computationally efficient. Another consideration is the adaptability of VI in the context

of different model complexities and data structures, making it a flexible choice in a variety

of scenarios.

Despite these advantages, it’s important to recognize the limitations of VI. The approxi-

mation nature of VI can lead to inaccuracies, particularly in cases where the true posterior

is complex or multi-modal [69]. This is a key area where MCMC methods, despite their

computational intensity, may offer more reliable results. Furthermore, the choice of the vari-

ational family can significantly impact the performance of VI, requiring careful consideration

and expertise.

The alignment of Variational Inference (VI) with machine learning frameworks, primarily

45



Figure 2.3: Variational inference minimizes KL divergence between a parametric variational
approximation and a target distribution. The variational approximation is initialized (0),
and the optimization proceeds until the KL divergence is minimized (3).

due to its optimization-based approach, enhances its scalability and efficiency, making it a

particularly attractive option in modern probabilistic modeling. These characteristics of VI,

especially its computational efficiency and ability to handle large datasets effectively, are

crucial in the context of physics-informed machine learning. In this work, VI techniques

are predominantly employed, as they seamlessly integrate with machine learning method-

ologies, which are foundational to the presented approaches. The decision to use VI over

other methods like MCMC is driven by the specific demands of physics-informed problems

where computational efficiency and the ability to handle complex, high-dimensional data are

paramount. This choice ensures that our models are not only robust and precise but also

practically feasible for large-scale applications in physics.

Variational inference assumes a parametric distribution qϕ(θ|D) which is used to approxi-

mate the true posterior distribution p(θ|D). The goal of variational inference is to minimize

the discrepancy between the true and approximate distributions by optimizing the distri-

bution parameters. To achieve this, a measure of discrepancy or distance between two

distributions, called the Kullback-Leibler divergence (KL divergence), is minimized between

46



the two distributions. The KL divergence is given by

KL [qϕ(θ|D)∥p(θ|D)] = Eθ∼qϕ(θ|D)

[
log

(
qϕ(θ|D)

p(θ|D)

)]
. (2.9)

Variational inference seeks to minimize this by solving the optimization problem

ϕ∗ = arg min
ϕ

KL [qϕ(θ|D)∥p(θ|D)] . (2.10)

Using Bayes’ rule and defining the evidence lower bound (ELBO) L(θ, ϕ) as

L(θ, ϕ) = Eq
[
log

(
p(θ,D)

qϕ(θ|D)

)]
= Eq [log p(θ,D)] − Eq [log qϕ(θ|D)] , (2.11)

the KL divergence can be written as a function of the ELBO by

KL [qϕ(θ|D)∥p(θ|D)] = −L(θ, ϕ) + log (p(D)) . (2.12)

As the evidence p(D) depends only on the distribution of the data and is constant with

changes in the parametric distribution qϕ(θ|D), the optimization problem of Eq. 2.10 is

equivalent to minimizing the negative ELBO as

ϕ∗ = arg min
ϕ

−L(θ, ϕ) .

An example of solving this optimization problem to approximate a multimodal target

distribution p(θ) with a Gaussian distribution q(θ) is visualized in Fig. 2.3. The variational

approximation does not perfectly represent the target distribution, but it approximates it

as closely as possible given the distribution class. Using a Gaussian approximation as the

variational density is a common and inexpensive choice.

2.2.1 Gaussian variational inference

Fixed-form variational inference uses simple parametric distributions as the variational pos-

terior. An independent Gaussian distribution can be chosen such that the variational pos-

terior does not depend on the data by qϕ(θ|D) = N (µϕ,Σϕ). The parameters which define

the distribution ϕ = [µϕ,Σϕ] to be optimized consist of the mean µϕ ∈ Rm and covariance

Σϕ ∈ Rm×m matrix. Note that the assumption of independence limits the covariance matrix

to m trainable parameters and 2m total trainable parameters.

However, the distribution can also be constructed to depend on individual data samples
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to model a conditional distribution by parameterizing the mean and covariance as functions

of y. This parameterized form is given by qϕ(θ|y) = N (µϕ(y),Σϕ(y)) where µϕ(y) : Rn → Rm

and Σϕ(y) : Rn → Rm×m are parametric functions defining the mean and covariance matrices

as a function of a single input y.

Gradient-free optimization methods like the Nelder-Mead algorithm [70] tend to be less

efficient and scale poorly with high-dimensional problems compared to gradient-based al-

gorithms. Consequently, the effectiveness of these techniques is significantly enhanced by

utilizing gradients. Therefore, designing parametric forms that are differentiable is advanta-

geous to leverage the full potential of gradient-based optimization.

2.2.2 Variational Inference with Normalizing Flows

Adopting a Gaussian posterior in variational inference, as discussed in Sec. 2.2.1, is a com-

mon practice but may not always be ideal. This is particularly problematic when dealing

with multimodal posterior distributions, where minimizing the KL divergence can lead to

a variational posterior that fails to accurately capture any of the modes. This situation

necessitates a more expressive and adaptable distribution model. Normalizing flows [62],

which consist of a series of invertible transformations applied to samples from a simple

probability distribution (like the standard normal distribution), offer a solution by enabling

the creation of complex distributions. These distributions can be efficiently sampled, and

their probability density function can be calculated, provided that the transformations are

invertible [62]. This approach integrates well with variational inference, offering enhanced

flexibility in modeling complex posteriors.

Figure 2.4: Normalizing flow consisting of L invertible transformations to map samples from
p(θ0) to samples from p(θL) (2D example).

Considering smooth, invertible mappings f : Rd → Rd and random variable θ0 with PDF
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p(θ0), the PDF of the transformed random variable θ1 = f1(θ0) is given by

p(θ1) = p(θ0)

∣∣∣∣det
∂f1
∂θ0

∣∣∣∣−1

.

An arbitrarily long sequence of flow functions of length L can be composed such that

θL = fL ◦ · · · ◦ f2 ◦ f1(θ0)

and

log p(θL) = log p(θ0) −
L∑
i=1

log

∣∣∣∣det
∂fi
∂θi−1

∣∣∣∣ (2.13)

Many choices of flow function f exist in the literature [71]. One simple and regularly

employed flow function is that of planar flow [62], which will be used as a demonstrative

example in this discussion. The planar flow function is given by

fϕ(θ) = θ + uσ(wT θ + b)

where ϕ = {u ∈ Rd, w ∈ Rd, and b ∈ R} are the learnable flow parameters and σ is a

smooth element-wise non linear function.

Normalizing flows assume the fixed-form on the variational posterior as qϕ(θL) where

θL = fL ◦ · · · ◦ f2 ◦ f1(θ0) and solve the minimization problem

q∗ϕ(θL) = min
ϕ
DKL[qϕ(θL)||p(θ|D)], (2.14)

as in standard variational inference. The only difference is the choice of parameterization

of the variational posterior. Figure 2.4 illustrates the transformation of samples through

invertible functions to form an expressive and parametric distribution. The particular choice

of flow function along with the quantity of transformation chosen significantly influences

the expressiveness of such a distribution. However, employing normalizing flows can result

in variational posterior distributions which are multimodal with complex shapes which are

not possible with simple parametric distributions [? ][This citation will be filled in during

revisions. Citation not yet available].

2.3 Generative Modeling

The overarching goal of generative modeling is to sample from an unknown data distribution

given only samples in the form of data from such a distribution. Unconditional generative
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modeling aims to sample from p(y) given N independent identically distributed (i.i.d.) sam-

ples {y(i)}Ni=1 from the distribution.

Generative modeling techniques can be largely classified into three primary categories:

likelihood-based models, implicit generative models, and the more recent diffusion and score-

based generative models. A large array of likelihood-based techniques exist in the literature

such as variational autoencoders (VAEs) [72, 73, 74], autoregressive models [75, 76, 77],

energy-based models (EBMs) [78, 79], and normalizing flow models [62, 80, 81]. Likelihood-

based approaches have been shown to be useful, yet impose restrictions on the model or distri-

bution form to ensure a regularized distribution and facilitate likelihood computation during

training. Implicit generative models such as generative adversarial networks (GANs) [82]

are challenging to train due to the adversarial nature of training. Score-based approaches,

on the other hand, model the score function (gradient of the log density) directly, bypassing

restrictions on model or distribution form to represent a valid probability density [83].

In this work, our attention will be primarily centered on two distinct classes of generative

models: variational autoencoders (VAEs) and score-based generative models. While each of

these models possesses unique characteristics and are applied to different specific applications

in the examples presented, they are intrinsically connected by a shared overarching objec-

tive of generative modeling. Variational autoencoders leverage the principles of variational

inference to generate new data points that are statistically similar to the input data. On

the other hand, score-based generative models, a relatively newer class of generative mod-

els, excel in generating high-quality samples by iteratively refining them following a score

function derived from the data distribution. Despite their differing mechanisms and appli-

cation contexts, both VAEs and score-based models play a pivotal role in our explorations

of generative modeling. They exemplify the innovative ways in which machine learning can

be harnessed to create data-driven, physics-aware models that not only generate new data

samples but also may offer deeper insights into the underlying physical processes.

2.3.1 Variational Autoencoders

Variational autoencoders (VAEs) [72] and their variants [84, 85, 86, 87] aim to approximate

an underlying distribution p(y) of high-dimensional data through a two-step process. Com-

pressed representations z are sampled from a low-dimensional - yet unknown - distribution

p(z). An encoding distribution p(z|y) and a decoding distribution are learned simultane-

ously by maximizing a bound on the likelihood of the data (i.e. the evidence lower bound

(ELBO) [72]). Thus, a mapping from the high-dimensional space to a low-dimensional space

and the corresponding inverse mapping is learned simultaneously, as shown in Figure 2.5,
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allowing approximations of both p(y) and p(z). Learning the lower-dimensional represen-

tation, or latent space, can facilitate computationally-efficient data generation and extract

only the information necessary to reconstruct the data [88]. VAEs have been successfully

implemented in many physics-based applications including inverse problems [89], extracting

physical parameters from spatio-temporal data [90], and constructing probabilistic reduced

order models [91, 92], among others.

Figure 2.5: VAEs encode data samples to a distribution in the latent space with the aim of
reconstructing the original input.

The VAE framework infers a latent-variable model by replacing the posterior p(z|y) with

a parameterized approximating posterior qϕ(z|y) [72], known as the encoding distribution. A

parameterized decoding distribution pψ(y|z) is also constructed to predict data samples given

samples from the latent space. Only the encoding distribution and the decoding distribution

are learned in the VAE framework, but the aggregated posterior qϕ(z) (to the best of our

knowledge, first referred to in this way by [93]), is of particular importance (discussed further

in Chapter 3). It is defined as the marginal latent distribution induced by the encoder

qϕ(z) ≜
∫
Y
p(y)qϕ(z|y)dy , (2.15)

where the true data distribution is denoted p(y). The induced data distribution is the

marginal output distribution induced by the decoder

pψ(y) ≜
∫
Rn
p(z)pψ(y|z)dz . (2.16)

It is noted that the true data distribution is typically unknown; only samples of data {y(i)}Ni=1
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are available. The empirical data distribution is thus denoted p̂(y), and any expectation with

respect to the empirical distribution is simply computed as an empirical average Ep̂(y)[f(y)] ≜
1
N

∑N
i=1 f(y(i)).

Learning the latent model is accomplished by simultaneously learning the encoding and

decoding distributions through maximizing the evidence lower bound (ELBO), which is a

lower bound on the log-likelihood [94]. To derive the ELBO loss, we begin by expanding the

relative entropy between the data distribution and the induced data distribution

DKL[p(y)||pψ(y)] = EY∼p(y)[log p(y)] − EY∼p(y)[log pψ(y)]

where the first term on the right hand side is the negative differential entropy −H(Y ).

Noting that relative entropy DKL is always greater than or equal to zero and introducing

Bayes’ rule, we arrive at the following inequality

H(Y )+EY∼p(y)[DKL[qϕ(z|y)||p(z|y)]] ≤ Ep(y)[Eqϕ(z|y)[log pψ(y|z)]] − Ep(y)[DKL[qϕ(z|y)||p(z)]] .

Thus,

Ep(y)[log(p(y))] ≥Ep(y)[Eqϕ(z|y)[log pψ(y|z)]] − Ep(y)[DKL[qϕ(z|y)||p(z)], (2.17)

where p(z) is a prior distribution. The prior is specified by the user in the classic VAE

framework. The right-hand side in Eq. (2.17) is the well-known ELBO. Maximizing this

lower bound on the log-likelihood of the data is done by minimizing the negative ELBO.

The optimization is performed by learning the encoder and decoder parameterized as neural

networks. The negative ELBO is defined as

−ELBO = Ep(y)[DKL[qϕ(z|y)||p(z)]] + Ep(y)[Eqϕ(z|y)[− log pψ(y|z)]], (2.18)

and we assume LV AE ≈ −ELBO, where the difference results in the expectation being

evaluated over the empirical data distribution in LV AE. The VAE loss function is defined as

LV AE = Ep̂(y)[DKL[qϕ(z|y)||p(z)] + Ep̂(y)[Eqϕ(z|y)[− log pψ(y|z)]], (2.19)

where the first term on the right-hand side is the regularization loss LREG and drives the

encoding distribution closer (in the sense of minimizing KL divergence) to the prior dis-

tribution. The second term on the right-hand side is the reconstruction error LREC and

encourages accurate reconstruction of the data.

Selecting the prior distribution as well as the parametric form of the encoding and decod-
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ing distribution can allow closed form solutions to compute LV AE. The prior distribution

is often conveniently chosen as a standard normal distribution p(z) = N (z; 0, In×n). The

encoding and decoding distributions are also often chosen as factorized normal distributions

qϕ(z|y) = N (z;µϕ(y), diag(σϕ(y))) and pψ(y|z) = N (y;µψ(z), diag(σψ(y))), where the mean

and log-variance of each distribution are functions parameterized by neural networks. Select-

ing the parameterized form of these distributions facilitates the reparameterization trick [72],

allowing backpropagation through sampling operations during training. This selection of the

prior, encoding, and decoding distributions allows a closed form solution to compute LV AE.

2.3.1.1 β-VAE

The β-VAE objective gives greater weighting to the regularization loss,

Lβ−V AE =βEp̂(y)[DKL[qϕ(z|y)||p(z)] + Ep̂(y)[Eqϕ(z|y)[− log pψ(y|z)]] .

This encourages greater regularization, often leading to improved disentanglement over the

standard VAE loss [84]. It is worth noting that when β = 1, with a perfect encoder and

decoder, the VAE loss reduces to the Bayes rule [95, 96]. More details on the β-VAE are

provided in Section 2.3.1.2.

2.3.1.2 Connections to RD

Rate distortion theory (Section 2.1.1) aids in a deeper understanding in the trade off and

balance between the regularization and reconstruction losses of VAEs. Minimizing the β-VAE

loss is closely tied to a solving a rate-distortion problem. Rearranging the VAE regularization

loss (LREG) results in

LREG = Ep̂(y)[DKL[qϕ(z|y)||p(z)] = Iϕ(Y ;Z) ,

which is equal to the mutual information between Y and Z according to the data and

encoding distributions. Minimizing the β-VAE loss gives the optimization problem

min
ϕ,ψ

Lβ−V AE = min
ϕ,ψ

Iϕ(Y ;Z) + βEp̂(y)pψ(z|y)[− log pϕ(y|z)] .

This optimization problem is similar to minimizing the rate-distortion Lagrangian (Eq. 2.20)

with d(y, ỹ) = − log pϕ(y|z) and the mutual information Iϕ(Y ;Z) just an approximation to
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the true mutual information I(Y ;Z).

minJ (β) = min
p(z|y)

I(Y ;Z) + β(EY,Z [d(y, ỹ(z)] −D). (2.20)

Depending on β, solutions can be found at any location along the RD curve with each

containing differing properties. RD curve for VAEs is simply an analogy: LREG is considered

the rate R and LREC is considered the distortion D.

With increased β, the β-VAE minimizes the mutual information between the data and

the latent parameters, limiting reconstruction accuracy. In Ref. [97], disentanglement is

illustrated to be caused inadvertently through the assumed factored form of the encoding

distribution even though rotations of the latent space have no effect on the ELBO. However,

their proof relies on training in the ‘polarized’ regime characterized by loss of information

or ‘posterior collapse’ [98]. Training in this regime often requires increasing the weight of

the regularization loss, necessarily decreasing reconstruction performance in the process. In

our work, we illustrate disentanglement through training VAEs with the ELBO loss (β = 1),

keeping reconstruction accuracy high. Ref. [97] additionally provides many useful insights

into disentanglement for curious readers.

2.3.2 Score-based Generative Models

The pioneering work of Song et al. [99] ties the earliest diffusion models together under

a common framework of score-based modeling, a framework which some of the work in

Chapter 6 is based on. Some of the earliest score-based generative models include de-noising

diffusion probabilistic models (DDPM) [100] and de-noising score matching with Langevin

dynamics (SMLD) [101]. These early models initially showed great potential in advancing the

state of the art in generative modeling. However, more recent approaches such as score-based

generative modeling with SDEs [99], Poisson flow generative models (PFGM) [102, 103], and

consistency trajectory models (CTM) [104] suggest that score-based generative models may

be a superior choice among generative modeling techniques.

Diffusion models and score-based generative models have demonstrated state-of-the-art

results in a variety of fields including natural language processing [105, 106, 107, 108], com-

puter vision [109, 110, 111, 112], multi-model learning [113, 114, 115, 116, 117], drug de-

sign [118, 119], and medical imaging [120, 121], also opening new avenues of exploration in

their respective domains. Models based on diffusion and score-based generation overwhelm-

ingly dominate the current state-of-the-art [104] in generative tasks such as the Frechet

inception distance (FID) score on the popular CIFAR-10 dataset [122]. We therefore do not

address comparisons to other classes of generative models in this work, but rather focus on
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a new breadth of areas to advance and apply these models to. A comprehensive study of the

available methods and applications of diffusion models and score-based generative models is

included in Ref. [123].

Score-based generative models are a class of generative modeling technique in which data

is used to learn the Stein score function [83] (gradient of the log-density ∇y log p(y)). Once

the score function is approximated, sampling from the distribution p(y) can be performed

using an iterative process known as Langevin dynamics [124, 125]. However, in practice it is

difficult to accurately estimate the score function in all regions of the data space due to data

sparsity. Recent works [101, 100] have thus suggested a key process of iteratively adding

varying levels of noise to data samples and estimating the score function at each noise level.

Adding noise effectively changes the underlying distribution, reducing sparsity in the data

space and allowing for accurate score estimation in broader regions of the data space when

compared to the original data distribution. Noise is sequentially added until the data is

approximately distributed according to a prior distribution which is easy to sample from.

Sample generation is then performed as the reverse of this process: sampling from the prior

distribution and iteratively removing the noise until the data sample approximately belongs

to the original data distribution. We refer readers to [126] for an intuitive and thorough

explanation of score-based generative models.

This iterative process of sequentially adding noise to data can be viewed in a continuous

sense as the solution to a stochastic differential equation (SDE) [99]. We consider a data

distribution at t = 0 given by p(y(t = 0)) where t does not represent physical time, but is

rather a modeling quantity used to simulate the SDE. This is the distribution from which

data samples {y(i)}Ni=1 are drawn, where y(i) ∼ p(y(t = 0)) and y ∈ X (the data space). A

stochastic differential equation (SDE) of the form

dy = f(y, t)dt+ g(t)dw (2.21)

describes the ‘dynamics’ of adding noise to data samples, where f : Rn×R → Rn is a function

known as the drift coefficient, g : R → R is a function known as the diffusion coefficient, and

w denotes standard Brownian motion. The system ‘dynamics’ are constructed such that

the distribution p(y(t = T )) at final time T approximately follows a prior distribution π(y)

which is easy to sample from, such as the standard normal distribution. The particular form

of f(y, t) and g(t) are chosen such that p(y(t = T )) ≈ π(y), or vice-versa. The SDE describes

dynamics of adding random noise to samples from p(y(t = 0)) until π(y) is achieved. Suppose

a sample y(t = 0) is drawn from p(y(t = 0)), and the dynamics of the SDE are simulated.

Viewing y(t) at any intermediate time step t ∈ (0, T ] is essentially a noisy version of the
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initial sample. In this work, we assume a final time T = 1 in all experiments, though this is

simply a convention.

In this continuous setting, the noising process can be reversed by using a well-known

result [127] to solve the reverse SDE backward in time. This reverse SDE is given by

dy = [f(y, t) − g2(t)∇y log p(y(t))]dt+ g(t)dw , (2.22)

where the distribution at any time p(y(t)) is identical when solving the forward or reverse

SDE. As f and g are chosen particularly such that p(y(t = T )) ≈ π(y), a sample y(t = T ) ∼
π(y) is drawn and the reverse SDE (Eq. 2.22) is simulated backward in time to obtain a

sample y(t = 0) which is approximately drawn from p(y(t = 0)).

To solve the reverse SDE, the score function ∇y log p(y(t)) must be known for all times

t ∈ [0, T ]. Therefore, score-based generative modeling aims to model the score function using

a parameterized model such as CNN-based or transformer-based machine learning models.

This model sϕ(y(t), t) should approximate the score function for all times t ∈ [0, T ] such

that sϕ(y(t), t) ≈ ∇y log p(y(t)) and the dynamics of Eq. 2.22 are approximated by

dy = [f(y, t) − g2(t)sϕ(y(t), t)]dt+ g(t)dw . (2.23)

The functions f and g are often selected such that they induce a Gaussian transition

kernel

p(y(t)|y(0)) = N (y(t);µ(y(0), t),σ2(y(0), t)I) , (2.24)

where y(0) denotes a sample y(t = 0) from the data distribution. This means that the score

of the transition kernel can be computed for any time t without solving the forward SDE as

∇y log p(y(t)|y(0)) = (µ(y(0), t) − y(t))(µ(y(0), t) − y(t))T/σ2(y(0), t).

The model sϕ(y(t), t) is trained using a score-matching objective [99]. In our work, we

use denoising score-matching (DSM) [128, 99] in which the loss function is given by

min
ϕ

Et∼U [0,T ]

[
λ(t)Ep(y(0))p(y(t)|y(0))[||sϕ(y(t), t) −∇y(t) log p(y(t)|y(0))||22]

]
(2.25)

where λ(t) : [0, 1] → R>0 is a positive weighting function and p(t) ∼ U [0, T ]. A closed form

solution for the quantity ∇y(t) log p(y(t)|y(0)) can be easily obtained from the transition ker-

nel in Eq. 2.24. We note that when λ(t) = 1/2, the optimal solution to Eq. 2.25 corresponds

to sϕ(y(t), t) = ∇y log p(y(t)) almost surely [128], which is sufficient to solve the reverse

SDE in Eq. 2.22.

The probability flow ordinary differential equation (PF ODE) is similar to the reverse
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SDE in that it can be solved in reverse time to approximately sample from p(y(t = 0)) given

the distribution at p(y(t = T )). Although this equation is an ODE rather than an SDE, the

marginals at each intermediate time t of the reverse SDE and PF ODE are identical [99].

The PF ODE is reversible in time and given by

dy =

[
f(y, t) − 1

2
g2(t)∇x log p(y(t))

]
dt . (2.26)

The use and benefits of sampling from both the reverse SDE and PF ODE backwards in

time are thoroughly discussed in Chapter 6.

2.4 Neural Ordinary Differential Equations

Neural Ordinary Differential Equations (Neural ODEs) represent a novel intersection of

machine learning and differential equations, offering a unique framework for modeling

continuous-time dynamics. Introduced by Chen et al. [26], Neural ODEs are a type of

deep learning model which transforms traditional neural network architectures by treating

the depth (or layers) of the network as a continuous dimension. This is achieved by framing

the network’s evolution as the solution to an ODE problem, where the derivative of the

hidden state with respect to depth (or time) is parameterized using a neural network.

The NeuralODE framework is informed by the observation that models such as residual

networks often compose a sequence of transformation layers of the form

ut+1 = ut + fϕ(ut), (2.27)

where fϕ(xt) is a parameterized neural network. This structure closely resembles the forward

Euler finite discretization of a dynamical system given by

∂u

∂t
= fϕ(u), (2.28)

which is the NeuralODE formulation. Predictions are created by solving the dynamical

system in Eq. 2.28 with initial condition u(t = 0) = u0 using any black box ODE solver.

This formulation can be far more efficient in terms of number of parameters required than the

traditional additive residual approach of Eq. 2.27. However, they can also be computationally

more expensive to train and predict with due to the need for solving the ODE. Training is

performed by computing gradients via the adjoint method [26, 129] and leverage automatic

differentiation where possible.
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The modeling and prediction of dynamical systems is a natural application for NeuralODE

in which the r.h.s. of a dynamical system is approximated directly with a neural network

fϕ(u). Trained models for a variety of dynamical systems have have seen accurate general-

ization outside of training times and for prediction of dynamical systems trained with noisy

data. Additionally, inductive biases can be easily incorporated into NeuralODE models [130].

An extension of NeuralODE to include the modeling of event functions which can in-

stantaneously change the state of a system allows for even more flexibility [131]. This is

particularly beneficial in scenarios where abrupt changes occur that are not accounted for

in the model’s dynamics. For example, it applies to a ball that suddenly changes direction

upon bouncing on the ground, or the sudden and immediate activation of a heat source in

thermal modeling. These instances require the ability to swiftly adapt to sudden shifts in

conditions. We demonstrate an extension to these ideas in Chapter 4 in which gradients are

passed through an instantaneous change in model form.

Although the NeuralODE framework provides very flexible and powerful models for a

variety of applications, one of the primary drawbacks in its modeling of dynamical systems

is the decrease in efficiency over additive residual or other standard approaches. In contrast,

other advanced methods such as operator learning techniques can improve the efficiency of

dynamical system modeling at the cost of increased difficulty in the integration of inductive

biases.

2.5 Operator Learning

Operator learning, an area of ML recently receiving much attention, focuses on learning

mappings between infinite-dimensional spaces, such as functions, operators, or differential

equations, which is a significant departure from standard ML’s focus on finite-dimensional

vector spaces. Unlike traditional ML models that predict scalar or vector quantities, opera-

tor learning aims to predict entire functions or operators, offering powerful frameworks for

tackling complex problems in physics, engineering, and beyond.

While standard ML techniques typically aim to predict specific outputs from given in-

puts, often treating the data as isolated points without considering the underlying physics,

operator learning methods seek to learn the mapping between function spaces that describe

the physical laws governing the system. This allows operator learning models to generalize

across different scenarios and initial conditions, offering a principled way to incorporate phys-

ical knowledge directly into the model. Consequently, operator learning can provide more

accurate and physically consistent predictions, especially for complex systems described by

differential equations, at the cost of potentially higher computational complexity and the
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need for careful design with specialized knowledge to construct and train these models ef-

fectively. Notable works in the field include the development of Deep Operator Networks

(DeepONets) by Lu et al. [43] which learn operators mapping between function spaces,

Fourier neural operators [132], and the aforementioned PINNs [46]. These pioneering stud-

ies highlight operator learning’s potential to improve approaches to dynamical system and

PDE modeling by learning operators which can greatly improve model generalization. Al-

though operator learning methods are not directly utilized directly in this work, they are

relevant to physical modeling with machine learning and may aid in understanding some of

the results presented.

2.5.1 Deep Operator Netorks

The introduction of Deep Operator Networks (DeepONets) by Lu et. al [43] develops a

deep learning framework designed to learn continuous nonlinear operators from data. Deep-

ONets extend the universal approximation theorem to deep neural networks for operator

approximation. It comprises two sub-networks: the branch network, which encodes input

functions, and the trunk network, which encodes the domain of the output functions. This

architecture allows DeepONet to efficiently learn mappings from input functions to output

functions, applicable to both explicit operators (e.g., integrals, fractional Laplacians) and

implicit operators (e.g., solutions to differential equations).

DeepONets aim to approximate an operator G which takes a function s as input. The

output G(s)(y) is then predicted at locations y using a deep learning-based approximation

leveraging p branch nets bk(s(x1), s(x2), . . . , s(xm)) and trunk nets tk(y), where x1, . . . ,xm

are a set of m collocation points in the input space of function s(x), and y is the desired

output prediction locations. The branch and trunk nets are both constructed as deep neu-

ral networks with parameters trained by minimizing the difference between approximate

operator predictions and data. The operator is approximated by

G(s)(y) ≈
p∑

k=1

bk(s(x1), s(x2), . . . , s(xm))tk(y) (2.29)

such that predictions require two inputs: a set of function values u(x) evaluated at various

input locations and the output location y. This particular form for the approximation of

operator G is informed by the universal approximation theorem for operators [43].

For example, given the dynamical system

∂u(x)

∂t
= F (u(x), s(x),x, t), (2.30)
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the operator G maps the input function s(x) to the solution of the dynamical system u(x, t).

A particular example [43] is given by learning the implicit operator which maps a source

term s(x) to the solution to a nonlinear diffusion-reaction PDE given by

∂u(x)

∂t
= D

∂2u(x)

∂x2
+ ku(x)2 + s(x). (2.31)

Key advantages of DeepONet include its ability to generalize well from limited data and its

flexibility to handle various types of operators, including those representing complex physical

systems. Compared to traditional methods, DeepONet offers efficient real-time predictions

and can be trained with scattered data without requiring explicit forms of the operators.

The effectiveness of DeepONets hinge on accurately representing the input functions and

judiciously selecting the network’s structure, which may necessitate balancing complexity

against the ability to generalize. It also requires extensive datasets, comprised of numerous

system solutions under a wide range of input functions s(x). Furthermore, incorporating

inductive biases—prior knowledge to guide learning—presents challenges due to the distinct

roles of the branch and trunk networks in generating predictions, complicating the inte-

gration of domain-specific insights into the model’s architecture. This difficulty results in

models which may not be physically interpretable and may not adhere to the defined physical

principles in a particular application.

2.5.2 Fourier Neural Operators

The Fourier Neural Operator (FNO) for solving parametric partial differential equations

(PDEs), introduced by Li et al. [132], offers a novel approach to learning mappings between

infinite-dimensional function spaces. Unlike traditional neural networks which learn specific

discretizations, FNO learns an operator mapping any functional parametric dependence to its

solution, making it discretization-invariant and efficient. It leverages the Fourier transform

for parameterizing the integral kernel in Fourier space, enabling significant computational

speed-ups and accuracy improvements over existing methods.

One of the primary motivations for FNO is that it can be trained on data from one

mesh, but predict on any other mesh. This is done by leveraging convolutions in the Fourier

domain rather than the spatial domain, resulting in global convolutions rather than local

ones. Li et al. introduce the Fourier layer, which consists of transforming an input to the

Fourier domain, removing the high frequency modes, applying a linear transform on the low

frequency modes, and finally performing the inverse Fourier transform. A bias term and a

nonlinear activation function are then applied in the spatial domain. This Fourier layer is
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specified mathematically by

vt+1 = σ
(
F−1(Rϕ · (Fvt)) + Wvt

)
, (2.32)

where vt is the input to the later, F specifies the Fourier transform, Rϕ is a learnable linear

transformation in Fourier space representing the Fourier transform of a continuous periodic

function, W is a learnable bias term, σ is an element-wise nonlinear activation function, and

vt+1 is the layer output.

The method’s efficacy is demonstrated in the original work through numerical experiments

on Burgers’ equation, Darcy Flow, and Navier-Stokes equations, highlighting its ability for

zero-shot super-resolution and its application in solving Bayesian inverse problems. FNO

provides impressive computational efficiency and accuracy for modeling complex PDEs. Its

resolution-invariance means it can adapt to different discretizations without retraining. How-

ever, the method’s reliance on extensive training data across varied parametric conditions

can be a significant limitation, requiring considerable computational resources for data gen-

eration and training. Moreover, incorporating domain-specific knowledge or inductive biases

into the FNO framework is challenging due to the transformation to Fourier space, poten-

tially limiting its applicability in scenarios where such knowledge is critical for accurate

modeling, particularly in true prediction past the training time in dynamical systems or

where physical interpretability is paramount.
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CHAPTER 3

Extracting Physical Parameters from Data

with Variational Autoencoders

In computational physics and engineering, the advent of machine learning technologies has

introduced transformative approaches to understanding complex systems. Among these, the

application of VAEs stands out by offering the capability to distill meaningful insights from

vast datasets, particularly when the underlying physical principles are not fully understood.

This chapter explores the application and analysis of VAEs in extracting physical insights

from datasets, especially emphasizing their utility for scenarios in which limited information

on physical properties of the dataset is known.

The exploration of physical systems through computational models has traditionally

hinged on the accuracy and comprehensiveness of the underlying physical laws. However,

a number of limitations often render complete descriptions of the physical laws governing

datasets elusive, necessitating the development of approaches capable of extracting mean-

ingful physical insights from such datasets. VAEs, through their unsupervised learning

paradigm, offer a promising avenue by learning to represent complex data distributions in

lower-dimensional latent spaces, thereby uncovering hidden patterns and relationships that

might not be immediately apparent.

The significance of extracting physical insights from datasets lies in the learned repre-

sentation itself. If a learned representation is directly correlated to the underlying physical

parameters governing the generation of samples in the dataset, then the learned represen-

tation can aid in uncovering physically-relevant structures in the data, leading to a better

understanding of the governing physics. A better understanding of the governing physics

can in turn aid in developing more accurate and robust models. In fields ranging from

fluid dynamics to quantum mechanics, the ability to glean physical insights from data there-

fore represents an important step towards the development of more accurate and predictive

models.

This work on unsupervised representation learning is motivated from a computational-
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physics perspective. It is focused on the application of VAEs for use with data generated

by partial differential equations (PDEs). The central questions it aims to answer are: a)

can we reliably learn a physically-relevant representation from data obtained from PDEs

governing physical problems using VAEs, and b) what are the characteristics of such repre-

sentations? Successfully learning physically-relevant representations can ultimately lead to

additional utility in many capacities: developing probabilistic reduced order models, design

optimization, parameter extraction, and data interpolation, among others.

Through a study on the modeling of Darcy Flow, we illustrate the practical implemen-

tation of representation learning techniques with VAEs and their impact on enhancing our

understanding of physical phenomena. The discussion extends to the challenges inherent

in training VAEs on physical data, the solutions devised to address these issues, and the

concept of incorporating physical learning biases to improve parameter discovery through

semi-supervision.

By integrating VAEs into the analysis of physical systems, we leverage the power of unsu-

pervised (and semi-supervised) learning to aid in analyzing data. This chapter underscores

the objective of integrating machine learning with physical sciences, aiming to unlock use

cases for the former in the pursuit of the latter. The following discussions draw material

directly from Ref. [74].

3.1 Application to Physical Systems

Representation learning, especially within the framework of VAEs, is an important tool in

computational physics and engineering. Its primary utility lies in its ability to automati-

cally learn features and patterns directly from data, bypassing the need for manual feature

extraction. Representation learning on its own is useful itself in a few ways:

• Automatic feature extraction: It simplifies the analysis process by automatically

identifying significant features in large datasets, which might be non-obvious or difficult

to extract manually.

• Dimensionality reduction: Representation learning condenses information into a

more manageable form, facilitating easier manipulation and analysis while retaining

the essence of the original data.

• Transfer learning: The representations learned from one task can often be reused

for other tasks, especially if the tasks are related. This transfer learning capability is

particularly valuable in scenarios where labeled data is scarce for the new task, as it
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allows the use of pre-trained models that have learned useful representations from a

different, data-rich task.

Unsupervised representation learning is also a popular area of research because of the

need for low-dimensional representations in unlabeled data. Low-dimensional latent repre-

sentations of high-dimensional data have many applications ranging from facial image gen-

eration [133] and music generation [134] to autonomous controls [135] among many others.

Generative adversarial networks (GANs) [136], VAEs [72] and their variants [84, 85, 86, 87],

among other methods such as diffusion models [100] and score-based generative models [99]

(Chapter 6), aim to approximate an underlying distribution p(y) of high-dimensional data

by leveraging only samples from that distribution. In the case of VAEs, compressed rep-

resentations z are sampled from a low-dimensional - yet unknown - distribution p(z). A

mapping from the high-dimensional space to a low-dimensional space and the correspond-

ing inverse mapping are learned simultaneously, allowing approximations of both p(y) and

p(z). The learned lower dimensional representation or latent representation corresponds to

the primary goal of representation learning. However, this work focuses on exactly how the

latent representation represents the data.

In particular, if learned representations are correlated to physically relevant parameters

governing data generation, a host of new use cases are unlocked. The utility of successfully

extracting these representations lies primarily in their potential to unveil the hidden physical

parameters that govern the generation of data. Especially in cases where the physical laws

governing data are not entirely well understood or defined, learning a data representation

which is correlated to physically relevant parameters may be useful for:

• Interpretability: Successfully mapping data to physically-relevant generative pa-

rameters enhances the interpretability of the dataset. It enables understanding of the

impact of varying specific parameters on the system’s behavior, providing deep insights

into the dynamics and mechanics of complex systems.

• Efficient Experimentation: Having a model that encodes data to its true generative

parameters allows for the systematic alteration of these parameters to observe their

effects. This capacity can guide experimental designs, enabling a more focused explo-

ration of physical phenomena and the optimization of conditions for desired outcomes.

• Data Labelling: Data samples can be effectively labeled with the latent representa-

tion. If the representation corresponds to physically-relevant generative parameters,

each data sample is labeled and can then be used for other tasks.
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• Synthetic Data Generation: The manipulation of identified physically-relevant pa-

rameters facilitates the generation of new, synthetic data samples with labels included.

This ability is crucial for augmenting datasets, especially in situations where collect-

ing real-world data is challenging or expensive, thereby enhancing the robustness of

machine learning models.

As an illustrative example in the context of climate science, representation learning can

be leveraged to analyze vast datasets of atmospheric conditions. For instance, a VAE might

learn representations correlating with key climatic factors like temperature, humidity, or CO2

levels, even if these relationships are not explicitly labeled in the data. This capability is

invaluable for identifying patterns and predicting climate trends, aiding in the development

of more accurate and comprehensive climate models. By learning these representations,

researchers can gain insights into the complex dynamics of climate systems, facilitating a

deeper understanding of weather patterns, seasonal variations, and long-term climate change

effects. Without such a physically-relevant representation, the underlying causes of changes

in climate are difficult to interpret and therefore difficult to diagnose.

The utility of representation learning in physics extends far beyond climate modeling. It

encompasses a broad range of applications from understanding the fundamental properties

of materials at the atomic level to understanding dark matter structures in the universe. In

this work, the example employed for an in-depth investigation of physically-relevant repre-

sentation learning is that of Darcy flow, primarily describing the flow of a fluid through a

porous medium.

3.2 Darcy Flow

The Darcy flow equations are fundamental in fluid mechanics, describing the flow of fluids

through porous media [137]. They are vital in various fields, particularly in groundwater hy-

drology and petroleum engineering, but the equations defining Darcy flow are also relevant in

modeling the electric potential of conductive materials according to Ohm’s law [138]. These

equations enable the calculation of fluid flow based on the properties of the fluid and the

medium, helping to predict how water or oil moves through subsurface environments. This

understanding is crucial for water resource management, environmental engineering, and the

extraction of oil and natural gas. The impact of the Darcy flow equations is significant, as

they inform critical decisions in environmental protection [139], agricultural planning, and

energy production [140] worldwide.

Darcy flow is used as an illustrative example in this chapter as well as Chapter 6, modeled

by the Darcy flow equations or Darcy’s law. A permeability field K(x) defined on a physical
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domain X describes the degree to which a fluid can pass through the media at each location

x in the domain while a source function fs(x) models a source or sink of fluid entering or

exiting the system at spatial locations. The pressure p(x) and velocity fields u(x) of the

fluid then satisfy the following equations according to Darcy’s law:

u(x) = −K(x)∇p(x), x ∈ X

∇ · u(x) = fs(x), x ∈ X (3.1)

u(x) · n̂(x) = 0, x ∈ ∂X∫
X
p(x)dx = 0.

Data samples of Darcy flow fields are generated by setting a constant source function given

by Eq. 3.2 and sampling a random permeability field K(x). The source function models an

injection well and extraction well in opposite corners of the domain, while the permeability

field is generated randomly according to a specified distribution.

fs(x) =


r, |xi − 1

2
w| ≤ 1

2
w, i = 1, 2

−r, |xi − 1 + 1
2
w| ≤ 1

2
w, i = 1, 2

0, otherwise

, (3.2)

We sample K(x) by modeling the log-permeability field as a Gaussian random field with

covariance function k

K(x) = exp(G(x)), G(·) ∼ N (µ̄, k(·, ·)) . (3.3)

The covariance function is defined as the exponential kernel by

k(x,x′) = exp(−||x− x′||2/l) (3.4)

in our experiments, as in Ref. [141].

For dimensionality reduction and to create a parametric representation of the data, the in-

trinsic dimensionality s of the data is specified by leveraging the Karhunen-Loeve Expansion

(KLE), retaining only the first s terms in

G(x) = µ̄+
s∑
i=1

√
λiθiϕi(x) , (3.5)

where λi and ϕi(x) are eigenvalues and eigenfunctions of the covariance function (Eq. 3.4)
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sorted by decreasing λi, and each θi are sampled according to some distribution p(θ), denoted

the generative parameter distribution. These generative parameters θ entirely determine the

solution to the governing equations. In other words, the solution is a deterministic function

of the generative parameters, and so p(θ) entirely determines the dataset distribution.

3.2.1 Discretized Finite Difference Solution

After sampling the permeability field, Eq 3.1 is solved for the pressure fields. Note that

once the pressure field is obtained, the velocity fields can be easily approximated using finite

difference approximations using the relationship u(x) = −K(x)∇p(x). We discretize the

spatial domain X = [0, 1]2 on an n × n grid to form a computational grid of n2 nodes.

This leads to discrete steps of ∆x1 = ∆x2 = 1/(n − 1) in the spatial coordinate system.

Each node in the computational domain is labeled with two indices i, j corresponding to the

spatial location of the node such that xi,j = [(i − 1)/(n − 1), (j − 1)/(n − 1)]T . A linear

system Ap = f is then formed and solved for pressure on the computational domain. To

create this linear system, we define the solution pi,j at each point in the discretized spatial

domain. The Darcy flow equations for pressure only are given by

−∇ · [K(x)∇p(x)] = fs(x) (3.6)

∇p(x) · n̂(x) = 0 (3.7)∫
X
p(x)dx = 0 . (3.8)

Equation 3.6 can be expanded using chain rule to be

−K(x)
∂2p(x)

∂x21
− ∂K(x)

∂x1

∂p(x)

∂x1
−K(x)

∂2p(x)

∂x22
− ∂K(x)

∂x2

∂p(x)

∂x2
= fs(x) (3.9)

On the discretized domain, second order central finite differences are utilized on interior

points to compute first and second order partial derivatives. For example,

∂p(x)

∂x1

∣∣∣∣
xi,j

≈ pi+1,j − pi−1,j

2∆x1
and

∂2p(x)

∂x21

∣∣∣∣
xi,j

≈ pi−1,j − 2pi,j + pi+1,j

∆x21
.

The pressure gradient across the boundaries is zero according to Eq. 3.7. Thus on the left

(x1 = 0) boundary for example,

∂p(x)

∂x1

∣∣∣∣
xi,j

≈ pi+1,j − pi−1,j

2∆x1
= 0 ,
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and thus pi+1,j = pi−1,j. The second order partial derivative on the left (i = 1) boundary is

therefore given by
∂2p(x)

∂x21

∣∣∣∣
x1,j

≈ 2p2,j − 2p1,j
∆x21

.

Additionally, the integral constraint in Eq. 3.8 can be enforced by adding another row to

the matrix A, creating an over-determined system of equations. We thus solve the system

Ap = f where A ∈ R(n2+1)×n2
, p ∈ Rn2

, and f ∈ Rn2+1. The vectors p and f are given by

Eq. 3.10.

p =



p(x1,1)

p(x2,1)
...

p(xn,1)

p(x1,2)
...

p(xn,n)


, fs =



fs(x1,1)

fs(x2,1)
...

fs(xn,1)

fs(x1,2)
...

fs(xn,n)

0


. (3.10)

The matrix A is constructed using the finite difference formulas previously described. The

exact form and a description of the discretized equations which the linear system solves are

included in Appendix A.1. The velocity components u(x) are computed using second order

finite difference approximations on p to compute u(x) = −K(x)∇p(x).

3.2.2 Datasets

Each dataset is characterized by an intrinsic dimensionality s, and is labeled accordingly.

Example samples from datasets of various intrinsic dimension are illustrated in Fig. 3.1.

Variations on the s = 2 dataset are employed for the explorations present in the work of

this Chapter for ease of visualization in the generative parameter space, but datasets with

greater intrinsic dimensionality are employed in Chapter 6. The concepts in this Chapter are

primarily explored by varying the generative parameter distribution p(θ) in each dataset.

Each snapshot existing in a dataset contains the generative parameters θ along with the

permeability field K(x), the pressure p(x) field, and the velocity fields u(x) at each node

in the computational domain. The pressure and velocity fields are concatenated into a 3-

channel input to the VAE; the permeability field and generative parameters are saved, but not

used in unsupervised training. The generative parameters and employed in semi-supervised

training, while the permeability fields are used for evaluation purposes only.
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Figure 3.1: Samples from datasets (top left) s = 2 (top right) s = 10 (bottom left) s = 100
(bottom right) s = 1000.

3.3 Disentanglement and Hierarchical Priors

Predicting the encoding distribution qϕ(z|y) results in a lower dimensional latent distribution

given data sample y, with y being a function of generative parameters θ. Investigating the

exact relationship between z, y, and θ is of primary importance in this work. Central

to understanding these relationships are the concepts of disentanglement and hierarchical

priors.

3.3.1 Disentanglement

Disentanglement, in the context of this work, is realized when variations in a single latent

dimension zi are directly correlated to variations in a single generative parameter θj. In other

words, the relationship θj = αzi for some constant α is satisfied for each of the generative

parameters. Throughout this chapter, this is frequently referred to as ‘disentanglement’
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or ‘disentangling the generative factors’. It allows the latent space to be interpretable by

the user and improves transferability of representations between tasks. Additionally, in

Section 3.6, an even more powerful relationship is learning such that the latent mean is shown

to be nearly equivalent to the generative parameters, i.e. θj = zi, with the enforcement of a

few true labels. With just a few labeled samples, the rest of the dataset can effectively be

labeled by the trained VAE.

Disentanglement may not be required for some tasks which may not require knowledge on

each parameter individually or perhaps only a subset of the generative parameters. Never-

theless, a disentangled representation can be leveraged across many tasks. Bengio et al. [88]

note that a disentangled representation captures each of the relevant features of the data, but

downstream applications may only require a subset of these factors. We therefore hypoth-

esize that disentangled representations lead to a more comprehensive range of downstream

applications over non disentangled representations.

Enforcing disentanglement using VAEs was first addressed in the literature [84, 86] by

modifying the strength of regularization in the ELBO loss, with the penalty of sub-optimal

compression and reconstruction. FactorVAEs [84] encourage a factorized representation,

which can be useful for disentanglement in the case of independent generative parameters,

but undesirable when parameters are correlated. Rolinek et al [97] suggest that the ability of

the VAE to learn disentangled representations is not inherent to the framework itself, but an

“accidental” byproduct of the typically assumed factorized form of the encoder. The prior

distribution is of particular importance as the standard normal prior often assumed allows for

rotation of the latent space with no effect on the ELBO loss. Disentangled representations are

still often learned due to a factorized form of the encoding distribution with sufficiently large

weight on regularization. Additional interpretations and insight into the disentanglement

ability of VAEs are found in Ref. [142].

To illustrate the idea of disentanglement and its implications, consider a dataset con-

sisting of images of teapots [143]. Each image is generated from 3 parameters indicating

the color of the teapot (RGB) and 2 parameters corresponding to the angle the teapot is

viewed from. Thus, even though the RGB image may be very high dimensional, the intrinsic

dimensionality is just 5. Representation learning can be used to extract a low-dimensional

latent model containing useful and meaningful representations of the high-dimensional im-

ages. Learned latent representations need not be disentangled to be useful in some sense, but

disentanglement enhances interpretability of the representation. Disentanglement references

a structure of the latent distribution in which changes in each parameter in the learned rep-

resentation are correlated directly to changes in a single yet different generative parameter.

Humans tend to naturally and easily identify independent factors of variation, and thus a
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disentangled representation often corresponds to one which would be naturally identified by

a human. A representation which is more naturally explained by a human observer is there-

fore one characterized by greater interpretability. In an unsupervised setting, however, our

work indicates that one cannot guarantee that a disentangled representation will be learned.

On the other hand, introducing a small amount of physically-relevant inductive bias in the

form of data labels for just a few samples can greatly improve the robustness of learning

such representations.

The requirement for disentanglement depends on the task at hand, but a disentangled

representation may be used in many tasks containing different objectives. Indeed, Bengio

et. al [88] state that ‘the most robust approach to feature learning is to disentangle as

many factors as possible, discarding as little information about the data as is practical’.

In the teapot example, changes in one of the learned latent dimensions may correspond to

changes in the color red and one of the viewing angles, which would indicate an entangled

representation. Another example, more relevant to this work, is that of fluid flow over

an airfoil. Learning a disentangled representation of the flow conditions along with the

shape parameters using VAEs can allow rapid prediction of the flow field with enhanced

interpretability of the latent representation, facilitating efficient computation of the task at

hand. The disentangled representation can be transferred to a variety of tasks easily such

as design optimization, developing reduced order models in the latent space or parameter

inference from flow fields. It is the ability of disentangled representations which are correlated

to physically relevant factors to transfer across tasks with ease and interpretability which

makes them so useful. In many practical physics problems, full knowledge regarding the

underlying generative parameters of high-dimensional data may not exist, thus making it

challenging to ascertain the quality of the representation learned.

Many metrics of disentanglement exist in the literature [144], few of which take into

account the generative parameter data. Often knowledge on the generative parameters is

lacking, and these metrics can be used to evaluate disentanglement in that case (although

there seems to be no consensus on which metric is appropriate). In controlled experiments,

however, knowledge on generative parameters is available, and correlation between the latent

space and the physically-relevant generative parameter space can be directly determined. To

evaluate disentanglement in a computationally efficient manner, we propose a disentangle-

ment score given by

SD =
1

n

∑
i

maxj |cov(zi, θj)|∑
j |cov(zi, θj)|

, (3.11)

where zi indicates the ith component of the latent vector ∀i ∈ {1, . . . , n} and θj indicates
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the jth component of the generative parameter vector ∀j ∈ {1, . . . , s}. Noting that

maxj |cov(zi, θj)|∑
j |cov(zi, θj)|

∈ [1/s, 1] ,

it is clear that SD ∈ [1/s, 1]. It is noted that this score is not used during the training

process. This score is created from the intuition that each latent parameter should be

correlated to only a single generative parameter. Although this score is computationally

efficient to compute and works well in our experiments, issues with the score exist in certain

scenarios. For instance, if multiple latent dimensions are correlated to the same generative

parameter dimension, the score will be inaccurate. Similarly, if the latent dimension is

greater than the generative parameter dimension, some latent dimensions may contain no

information about the data and be uncorrelated to all dimensions, inaccurately reducing

the score. For the cases presented here (we will use the score only when n = s), Eq. 3.11

suffices as a reasonable measure of disentanglement. This score is used as an efficient means

of scoring disentanglement when efficiency is important, but we propose another score based

on comparisons between disentangled and entangled representations.

We observe empirically that disentanglement is highly correlated to a match in ‘shape’

between the generative parameter distribution p(θ) and the aggregated posterior qϕ(z) (Sec-

tion 3.5). A match in the scaled-and-translated shapes results in good disentanglement but

an aggregated posterior which does not match the shape of the generative parameter dis-

tribution or contains incorrect correlations (‘rotated’) relative to the generative parameter

distribution does not. Using this knowledge, another disentanglement metric is postulated

to compare these shapes by leveraging the KL Divergence (Eq. (3.12)) where ◦ denotes the

Hadamard product. The disentanglement score is given by

SKL = min
a,b

DKL[p(θ)||qϕ(a ◦ (z− b))] . (3.12)

This metric compares the shapes of the two distributions by finding the minimum KL diver-

gence between the generative parameter distribution and a scaled and translated version of

the aggregated posterior. When qϕ(a ◦ (z − b)) is close to p(θ) for some vectors a, b ∈ Rn,

disentanglement is observed.

It is noted by Rolinek et. al [97] that rotation of the latent space relative to the gen-

erative parameter distribution has a significant negative effect on disentanglement, which

is precisely what is observed in this work. Additionally, the ELBO loss is unaffected by

rotations of the latent space when using rotationally-invariant priors such as the standard

normal (Appendix A.2).
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3.3.2 Hierarchical Priors

Often the prior (in the case of classic VAEs, specified by the user) and generative parameter

distributions (data dependent) may not be correlated. Hierarchical priors [85] (HP) can

be implemented within the VAE network such that the prior is learned as a function of

additional random variables, potentially leading to more expressive priors and aggregated

posteriors. Hierarchical random variables ξi are introduced such that ‘sub-priors’ can be

assumed on each ξi (typically standard normal). In the case of a single hierarchical random

variable

p(z) =

∫
Ξ

p(z|ξ)p(ξ)dξ =

∫
Ξ

p(ξ|z)

p(ξ|z)
p(z|ξ)p(ξ)dξ = EΞ∼p(ξ|z)

[
p(z|ξ)p(ξ)

p(ξ|z)

]
.

The conditional distributions p(ξ|z) and p(z|ξ) are the prior encoder and prior decoder,

respectively. These distributions can be approximated by parameterizing them with neural

networks. The parameterized distributions are noted as qγ(ξ|z) and pπ(z|ξ) where γ are the

trainable parameters of the approximating prior encoder and π are the trainable parameters

of the prior decoder. Thus, the VAE prior can be approximated through the prior encoding

and decoding distributions

p(z) ≈ EΞ∼qγ(ξ|z)

[
pπ(z|ξ)p(ξ)

qγ(ξ|z)

]
. (3.13)

Rearranging the VAE regularization loss

LREG =

∫
Y,Z

p̂(y)qϕ(z|y) log
qϕ(z|y)

p(z)
dydz

=EY,Z∼p̂(y)qϕ(z|y)[log qϕ(z|y)] −
∫
Y,Z

p̂(y)qϕ(z|y) log p(z)dydz , (3.14)

and substituting the approximating hierarchical prior Eq. (3.13) into Eq. (3.14), the final

term on the right-hand side becomes

−
∫
Y,Z

p̂(y)qϕ(z|y) log p(z)dydz = −
∫
Y,Z

p̂(y) qϕ(z|y) log

[
EΞ∼qγ(ξ|z)

[
pπ(z|ξ)p(ξ)

qγ(ξ|z)

]]
dydz .

The logarithm function is strictly concave; therefore, by Jensen’s inequality the right-hand
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side is upper bounded by

−
∫
Y,Z

p̂(y)qϕ(z|y) log

[
EΞ∼qγ(ξ|z)

[
pπ(z|ξ)p(ξ)

qγ(ξ|z)

]]
dydz ≤

−
∫
Y,Z

p̂(y)qϕ(z|y)EΞ∼qγ(ξ|z)

[
log

pπ(z|ξ)p(ξ)

qγ(ξ|z)

]
dydz .

This bound is rearranged to the form

EY,Z∼p̂(y)qϕ(z|y)[DKL[qγ(ξ|z)||p(ξ)] − EY,Z∼p̂(y)qϕ(z|y)[Eqγ(ξ|z)[log pπ(z|ξ)]] . (3.15)

Equation 3.15 takes the same form as the overall VAE loss, but applied to the prior network

itself. Thus, the hierarchical prior can be thought of as a system of sub-VAEs within the

main VAE. In summary, the VAE loss is upper bounded by

LV AE ≤EY,Z∼p̂(y)qϕ(z|y)[log qϕ(z|y)] + EY,Z∼p̂(y)qϕ(z|y)[DKL[qγ(ξ|z)||p(ξ)]] (3.16)

− EY,Z∼p̂(y)qϕ(z|y)[Eqγ(ξ|z)[log pπ(z|ξ)]] (3.17)

− EY,Z∼p̂(y)qϕ(z|y)[log pψ(y|z)]] . (3.18)

Implementing hierarchical priors can aid in learning non-rotationally-invariant priors,

frequently inducing a learned disentangled representation.

3.4 Training Challenges and Solutions

The process of training a VAE involves a number of challenges. For example, convergence

of the optimizer to local minima can greatly hinder reconstruction accuracy and failure

to converge altogether remains a possibility. A recurrent issue with VAE training in our

experiments is that of over-regularization. Over-regularized solutions are characterized by

disproportionately small regularization loss (LREG ≈ 0). More information on this issue is

detailed in Sec. 3.4.2.

To mitigate some of the issues inherent to training VAEs, we employ a training method

tailored towards avoiding over-regularization. All experiments are performed using the Adam

optimizer in Pytorch using Lβ−V AE to train the models. The loss function β value is varied

accross the training epochs, but at the end of training the model is converged with β = 1.

The model is trained initially with β0 ≪ 1, typically around β0 = 10−7, for some number of

epochs r0 (depending on learning rates) until reconstruction accuracy is well below that of

an over-regularized solution (Section 3.3 illustrates this necessity). When β0 is too small, the
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regularization loss can become too large, preventing convergence altogether. Training is con-

tinued by implementing a β scheduler [85] to slowly increase the weight of the regularization

loss. The learning rate is then decreased to lr1 = c(lr0) after some number of epochs r1 to

enhance reconstruction accuracy. This training method—in particular the heavily weighted

reconstruction phase and the β scheduler—result in much more stable training which avoids

the local minima characterized by over-regularization and improves convergence consistency.

Similar methods have been employed to avoid this issue. In particular, [145] refers to this

issue as “KL vanishing” and uses a cyclical β schedule to avoid the issue. However, this can

take far more training epochs and cycle iterations to converge than the method introduced

in this work.

3.4.1 Architecture

The primary architecture for the VAE is adapted from Ref. [141] and a more detailed de-

scription including architecture optimization is given in Appendix A.3. This architecture

consists of a series of encoding blocks to form the encoder, and a series of decoding blocks to

form the decoder. Each encoding / decoding block consists of a dense block followed by and

encoding / decoding layer. Contrary to the name, dense blocks do not contain any dense lay-

ers, but rather a series of skip connections and convolutional layers. Encoding and decoding

layers consist of convolutions. The architecture is called DenseVAE and is used for all VAEs

trained in this work. The latent and output distributions are assumed to be Gaussian. We

use the dense block based architecture to parameterize the encoder mean and log-variance

separately, as well as the decoder mean. The decoding distribution log-variance is learned

but constant as introducing a learned output log-variance does not aid in reconstruction or

improving disentanglement properties in our experiments but increases training time.

3.4.2 Over-Regularization

Over-regularization has been identified as a challenge in the training of VAEs [145]. This

phenomenon is characterized by the latent space containing no information about the data;

i.e. the regularization loss becomes zero or nearly zero. The output of the decoder becomes

identical accross all inputs. Thus, the output of the decoder is a constant distribution

which does not depend on the latent representation. The constant distribution it learns

becomes a normal distribution with mean and variance of the data. With zero regularization

loss, the learned decoding distribution becomes pψ(y|z) = N (y; µ̂y, diag(σ̂2
y)) ∀ z where

µ̂y = 1
N

∑N
i=1 y

(i) and σ̂2
y = 1

N

∑N
i=1(y

(i)− µ̂y)2. This is proven to minimize LV AE in Theorem

1. The solution is not shown to be unique, but our experiments indicate that this is the over-
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regularized solution found during training. As Theorem 1 illustrates validity for any encoder

q(z|y), this is the most robust solution for the VAE to converge to when over-regularization

occurs. The decoder learns to predict as accurately as possible given nearly zero mutual

information between the latent and data random variables. As the encoder and decoder are

trained simultaneously, predicting a constant output regardless of z prevents the necessity

of the decoder to adjust as the encoder changes. An empirical comparison between good

reconstruction and over-regularization is shown in Figure 3.2.

Theorem 1 requires that the output variance is constant. Parameterizing the output

variance with an additional network may aid in avoiding over-regularization.

Theorem 1: Given data {y(i)}Ni=1 and the VAE framework defined in Section 2.3.1, and

assuming a decoding distribution of the form p(y|z) = N (y;µ(z), diag(σ2)), if LREG = 0,

then argminµ(z),σ2 LV AE = {µ̂y, σ̂2
y} , where µ̂y = 1

N

∑N
i=1 y

(i) and σ̂2
y = 1

N

∑N
i=1(y

(i) − µ̂y)
2.

Proof: For any q(z|y) s.t. LREG = 0:

LV AE = LREC = Ep̂(y)q(z|y)[− log(p(y|z))]

= Eq(z|y)

[
1

N

N∑
i=1

m∑
j=1

1

2
log(2π) + log(σj) +

1

2σ2
j

(y
(i)
j − µj(z))2

]
.

To minimizeLV AE, take derivatives ∂LV AE
∂µj(z)

and ∂LV AE
∂σj

(assuming derivative and expecta-

tion can be interchanged), where j ∈ {1, . . . ,m}:

∂LV AE
∂µj(z)

= Eq(z|y)

[
− 1

N

N∑
i=1

1

σ2
j

(y
(i)
j − µj(z))

]
= 0.

Thus, Eq(z|y)
[∑N

i=1 y
(i)
j − µj(z)

]
= 0 and

Eq(z|y)[µj(z)] =
1

N

N∑
i=1

y
(i)
j . (3.19)

Eq. (3.19) holds ∀z, j if

µj(z) = µ̂j =
1

N

N∑
i=1

y
(i)
j . (3.20)

Taking the derivative w.r.t. variance, we have ∂LV AE
∂σj

=
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Eq(z|y)
[

1
N

∑N
i=1

1
σj

− 1
σ3
j
(y(i) − µj(z))2

]
= 0, and rearranging, we have

σ2
j =

1

N

N∑
i=1

(y
(i)
j − µj(z))2 ∀ z, j. (3.21)

Substituting Eq. (3.19) into Eq. (3.21) results in:

σ̂2
j =

1

N

N∑
i=1

(y
(i)
j − µ̂j)

2 ∀ z, j. (3.22)

With Eqs. (3.19) and (3.22) valid for all z and j, we can combine them into vector form and

note that Eq. (3.23) minimizes LV AE as required.

µ̂y =


µ̂1

...

µ̂m

 , σ̂2
y =


σ̂2
1
...

σ̂2
m

 . (3.23)

Figure 3.2: (upper) Good reconstruction. (lower) Over-regularization.

There exists a region in the trainable parameter loss landscape characterized by over-

regularized local minimum solutions which partially surrounds the ‘desirable’ solutions char-

acterized by better reconstruction accuracy and latent properties. This local minima region

is often avoided by employing the training method discussed previously, but random initial-

ization of network parameters and changes in hyperparameters between training can render
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it difficult to avoid convergence to this region.

We illustrate the problem of over-regularization by training VAEs using the architecture

described in Section 3.4.1 on the s = 2 Darcy flow dataset with p(θ) being standard normal.

A VAE is trained with 512 training samples (each sample is 65×65×3), converging to a

desirable solution with low reconstruction error and nearly perfect disentanglement. The

parameters of this trained network are denoted PT . After the VAE is trained and a ‘desirable’

solution obtained, 10 additional VAEs with identical setup to the desirable solution are

initialized randomly using the Xavier uniform weight initialization on all layers. Each of

the 10 initializations contain parameters Pi. A line in the parameter space is constructed

between the converged ’desirable’ solution and the initialized solutions as a function of α:

P (α) = (1 − α)Pi + αPT . (3.24)

Figure 3.3: (left) Loss along interpolated lines between 10 random weight initializations and
a desirable converged solution. (right) Loss along 100 (of 1,000) random lines emanating from
a desirable solution of the DenseVAE architecture. The parameter α indicates the distance
along each random direction in parameter space and does not necessarily correspond to the
same parameter α in the left figure. Note that the loss is limited to 1,000 for illustration
purposes.

Losses are recorded along each of the 10 interpolated lines and plotted in Figure 3.3.

Between the random initializations and ‘desirable’ converged solutions there exists a region

of local minima in the loss landscape, and these local minima are characterized by over-

regularization. Losses illustrated are computed as an expectation over all training data and

a Monte Carlo estimate of the reconstruction loss with 10 latent samples to limit errors due

to randomness. We include an illustration of the avoidance of these over-regularized local

minima using the described training method in Appendix A.4.
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Of particular interest is that this over-regularized local minima region does not fully

surround the ‘desirable’ region. Instead of interpolating in parameter space between random

initializations and a converged solution, lines emanating away from the converged solution

along 1,000 random directions in parameter space are created and the loss plotted along

each. Figure 3.3 illustrates that indeed no local minima are found around the converged

solution. We note that there are around 800,000 training parameters in this case, so 1,000

random directions may not completely encapsulate the loss landscape around this solution.

The Xavier uniform weight initialization scheme, and most other initialization schemes,

limit the norm of the parameters in parameter space to near the origin. The local minima

region seems to exist only between the converged solution region and points in parameter

space near the origin. In this case, there may be alternative initialization schemes which can

greatly aid in the convergence of VAEs. Similar behavior has been observed in other applica-

tions, for example in Ref. [146] where the initialization scheme proposed greatly accelerates

the speed of convergence and accuracy of reconstruction in prediction tasks.

Over-regularized local minima follow a similar path during training as desirable solutions.

A region of attraction exists in the loss landscape, and falling too close to this region will

result in an over-regularized solution, illustrated in Figure 3.4. One VAE which obtains a

desirable solution shares a similar initial path with an over-regularized solution. Plotted are

the VAE losses computed during training. The over-regularized solution breaks from the

desired path too early, indicating a necessity for a longer reconstruction-heavy phase during

training.

Training many VAEs with various β values facilitates a visualization of over-regularization

in the RD plane. Each point in Figure 3.4 shows the loss values of converged VAEs trained

with different values of β. The over-regularized region of attraction prevents convergence to

desirable solutions for many values of β. Interpolating in parameter space between each of

these points (corresponding to a VAE with its own converged parameters) using the base

VAE loss (β = 1), no other points on the RD curve are local minima of the VAE loss. In

Figure 3.4, we observe that during training, the desirable solution reaches the RD curve but

continues toward the final solution.

3.4.3 Properties of Desirable Solutions

Avoiding over-regularization aids in convergence to solutions characterized by low reconstruc-

tion error and higher mutual information between data and latent representation. Among

solutions with similar final loss values, inconsistencies remain in latent properties. Two iden-

tical VAEs initialized separately often converge to similar loss values, but one may exhibit
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Figure 3.4: RD plane illustrating training convergence of both desirable and over-regularized
solutions to the RD curve (β = 1). (right) Scale adjusted. (lower) RD plane with points
corresponding (from left to right) to β = [100, 10, 5, 2, 1, 0.1, 0.01, 0.001]. Many values of
β between 5 and 100 fall into the over-regularized solution.

disentanglement while the other does not. This phenomenon is also explored in Ref. [144]

and Ref. [97]. Two VAEs are trained with identical architectures, hyperparameters, and

training method; they differ only in the random initialization of network parameters P .

We denote the optimal network parameters found after training from one initialization as

P1 and optimal network parameters found from a separate initialization P2. The losses for

each converged solution are quite similar (LV AE1 ≈ −9.50, LV AE2 ≈ −9.42); however, dis-

entanglement properties of each are dramatically different. We interpolate between these

two solutions in parameter space (Eq. (3.24)) and record losses and disentanglement scores

along the line (Figure 3.5). The first network contains a nearly perfectly disentangled latent

representation while the second network does not produce a disentangled representation. It

is evident that multiple local minima exist in parameter space which converge to similar
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values in the loss landscape, but contain very different latent correlations. Local minima

exist throughout the loss landscape, and with each initialization, a different local minimum

may be found. Many such differing solutions are found throughout our experiments. This

phenomenon is partially due to invariance of the ELBO to rotations of the latent space when

using rotationally invariant priors. Disentanglement is heavily dependent on a factorized

representation of the latent representation. With rotations not affecting the training loss,

learning a disentangled representation seems to be somewhat random in this case.

Figure 3.5: (left) Loss variation along a line in parameter space between two converged
solutions containing identical hyperparameters and training method but different network
parameter initializations. (right) Disentanglement score along the same line.

This phenomenon exhibits the difficulties in learning a disentangled latent representation

correlated to the generative parameters in an unsupervised manner; without prior knowledge

of the factors of variation, conclusions cannot be drawn regarding disentanglement by ob-

serving loss values alone. In controlled experiments, knowledge of the underlying physically-

relevant factors of variation is available, but when only data is available, full knowledge

of such factors is often not. It is encouraging that the VAE does have the power to learn

physically-relevant latent representations in an unsupervised setting, but the nature of dis-

entanglement must first be understood better to create identifying criterion. It is ultimately

realized that without some amount of inductive bias on the applicable physics, the VAE

framework cannot consistently learn physically-relevant latent representations.

3.5 Unsupervised Disentanglement of Darcy Flow

In this section, we explore the relationship between learning disentangled representations,

the aggregated posterior (qϕ(z)), and the generative parameter distribution (p(θ)) by incre-
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mentally increasing the complexity of p(θ). Disentanglement is illustrated to be achievable

but difficult using the classic VAE assumptions and loss due to a lack of enforcement of

the rotation of the latent space caused by rotationally-invariant priors. Hierarchical priors

are shown to aid greatly in more robustly disentangling the latent space by learning non-

rotationally-invariant priors which enforce a particular rotation of the latent space through

the regularization loss.

3.5.1 Standard Normal Generative Distributions

The intrinsic dimensionality of the data is set to s = 2 with a generative parameter distribu-

tion p(θ) = N (θ; 0, I2×2), the standard normal distribution. Limiting the dimensionality of

the generative parameters to two aids greatly in the visualization of the latent space and un-

derstanding of the ideas investigated. The standard latent prior is identical to the generative

parameter in this case, creating a relatively simple problem for the VAE.

Using the architecture described in Section 3.4.1, the dependence of the regularization

loss, reconstruction loss, and disentanglement on the number of training samples is illus-

trated in Appendix A.5. A similar study is performed in Ref. [144] with a greater sample

size. Reconstruction losses continue to fall with the number of training data, indicating

improved reconstruction of the data with increased number of samples; however, the regu-

larization loss increases slightly with the number of training data. With too few samples,

reconstruction performance is very poor and over-regularization (near zero regularization

loss) seems unavoidable. Clear and consistent correlations exist among the loss values and

number of training data, but disentanglement properties vary greatly among converged VAEs

(Section 3.4.3). The compressed representations range from nearly perfect disentanglement

to almost no correlation with the generative parameters.

Although disentanglement properties are inconsistent between experiments, desirable la-

tent representations are often observed. Training is performed using the maximum amount of

available data (512 snapshots), and analysis included for 512 testing samples on the dataset

(regardless of p(θ)). A comparison between a test data sample and the reconstructed mean

using the trained VAE is depicted in Figure 3.6, showing little error between the mean µψ(z)

of the decoding distribution and the input data sample. Figure 3.6 also illustrates the ag-

gregated posterior matching the prior distribution in shape. This is unsurprising with a

generative parameter and prior distribution match and an expressive network architecture.

Finally, Figure 3.7 shows the correlation between the generative parameters of the training

and testing data against the latent distribution as a qualitative measure of disentanglement.

Each latent dimension is tightly correlated to a single but different generative parameter.
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Figure 3.6: (left) Data sample from unseen testing dataset. (center) Reconstructed data
sample from trained VAE. (right) Error in the reconstruction mean. (lower) Comparison of
aggregated posterior (pϕ(z)) and prior (p(z)) distributions.

Figure 3.7 also illustrates the uncertainty in the latent parameters, effectively qϕ(z|θ). The

latent representation is fully disentangled; each latent parameter contains only information

about a single generative factor. However, in this case the prior distribution is set to the same

as the true generative parameter distribution, providing a relatively easy case to ‘discover’

the generative parameters.

3.5.2 Non Standard Gaussian Generative Distributions

The generative parameter distribution and the prior are identical (independent standard

normal) in the previous example. Most often, however, knowledge of the generative param-

eters is not possessed. The specified prior in this case is unlikely to match the generative
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Figure 3.7: (upper) Correlations between dimensions of generative parameters and mean of
latent parameters. Also shown are the empirical marginal distributions of each parameter.
(lower) Correlations between generative parameters and latent parameters with uncertainty
for test data only.

parameter distribution. The next example illustrates the application of a VAE in which

the generative parameter distribution and prior do not match. A additional dataset with

s = 2 is generated by sampling the generative parameters from a non standard Gaussian

distribution. The generative parameter distribution is Gaussian, but scaled and translated

relative to the previous example p(θ) = N (θ; [1; 1], [0.5, 0; 0, 0.5]).
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Figure 3.8: (top) Reconstruction accuracy of a test sample on trained VAE without hierar-
chical network, (bottom) with hierarchical network.

Training a standard VAE on this dataset results in high reconstruction accuracy, but

undesirable disentanglement after many trials. With the use of an additional hierarchical

prior network, latent representations which correlated better to the generative parameters

can be achieved even with a mismatch in the prior and generative parameter distributions.

The sub-prior (Section 3.3.2) is the standard normal distribution, but the hierarchical net-

work learns a non-standard normal prior. Still, the learned prior and generative parameter

distributions do not match. Figures 3.8 and 3.9 illustrate comparisons in results obtain

from the VAE with and without the hierarchical prior network. When using hierarchical

priors, the learned prior and aggregated posterior match reasonably well but do not match

the generative parameter distribution. However, this does not matter as long as the latent

representation is not rotated relative to the generative parameter distribution, as illustrated

in the next example. Low reconstruction error and disentanglement are observed using hier-

archical priors, but disentanglement was never observed using the standard VAE after many

experiments. This may be because β is not large enough to enforce a regularization loss

large enough to produced an aggregated posterior aligned with the axes of the generative

parameter distribution. Therefore, the rotation of the learned latent representation will be

random and disentanglement is unlikely to be observed, even in just two dimensions. The

hierarchical network consistently enforces a factorized aggregated posterior, which is essen-

tial for disentanglement when generative parameters are independent. One potential cause
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Figure 3.9: (upper left) Aggregated poster, prior, and generative parameter distribution
comparison on VAE without hierarchical network, (upper right) with hierarchical network.
(lower left) Qualitative disentanglement in VAE trained without hierarchical network, (lower
right) with hierarchical network.

of this is the learning of non-rotationally-invariant priors, such as a factorized Gaussian with

independent scaling in each dimension. The ELBO loss in this case is affected by rotations of

the latent space, aligning the latent representations to the axes of the generative parameters.

A latent rotation can be introduced such that the reconstruction loss is unaffected,

but regularization loss changes with rotation. Introducing a rotation matrix A with an-
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gle of rotation ω to rotate the latent distribution, the encoding distribution becomes

qϕ(z|y) = N (z;Aµϕ(y),Adiag(σϕ(y))AT ). Reversing this rotation when computing the

decoding distribution (i.e. pψ(y|z) = N (y;µϕ(ATz), diag(σψ(ATz)))) preserves the recon-

struction loss. However, the regularization loss can be plotted as a function of the rotation

angle (Appendix A.7). When a rotationally-invariant prior is used to train the VAE, regu-

larization loss is unaffected by latent rotation. However, when the prior is non-rotationally-

invariant, the regularization loss is affected by latent rotation. Thus, rotation of the latent

space is enforced by the prior during training, and without prior knowledge on the physically-

relevant generative parameters, it is difficult to robustly enforce the correct rotation.

Although the hierarchical prior adds some trainable parameters to the overall architecture

to slightly increase expressiveness, the increase is only 0.048%. This is negligible, and it is

assumed that this is not the root cause of improved disentanglement. Rather, it is the

ability of the additional hierarchical network to consistently express a factorized aggregated

posterior and learn non-rotationally-invariant priors which improves disentanglement. More

insights on this behavior are discussed in the next example and Section 3.7.

3.5.3 Multimodal Generative Distributions

Figure 3.10: (top) Reconstruction accuracy of a test sample using VAE trained on multimodal
generative parameter distribution without hierarchical network, (bottom) with hierarchical
network.

In this setup, disentanglement not only depends on a factorized qϕ(z), but the corre-

lations in p(θ) must be preserved as well, i.e. rotation of the aggregated posterior with
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respect to the generative parameter distribution matters. The previous example illustrates

a case in which the standard VAE fails in disentanglement but succeeds with the addition of

hierarchical priors due to improved enforcement of a factorized qϕ(z) through learning non-

rotationally-invariant priors. The generative parameter distribution is radially symmetric,

thus visualization of rotations in qϕ(z) relative to p(θ) is difficult. To illustrate the benefits

of using hierarchical priors for disentanglement, the final example uses data generated from

a more complex generative parameter distribution with four lines of symmetry for better

visualization. The generative parameter distribution is multimodal (a Gaussian mixture)

and is more difficult to capture than a unimodal Gaussian distribution, but allows for better

rotational visualization:

p(θ) =
1

4
N (θ; [−1;−1], [0.25, 0; 0, 0.25]) +

1

4
N (θ; [1; 1], [0.25, 0; 0, 0.25])

+
1

4
N (θ; [−1; 1], [0.25, 0; 0, 0.25]) +

1

4
N (θ; [1;−1], [0.25, 0; 0, 0.25]) .

Training VAEs without hierarchical priors results in over-regularization more often than

with the implementation of HP. Out of 50 trials, 10% trained without HP were unable to

avoid over-regularization while all trials with HP successfully avoided over-regularization.

More epochs are required in the reconstruction-heavy phase (both with and without HP) to

avoid over-regularization than in previous examples. Disentanglement was never observed

without the use of hierarchical priors. This again is likely due to rotation of the latent

space relative to the generative parameter distribution as a result of employing rotationally

invariant priors. To illustrate this concept, Figure 3.11 illustrates the effects of rotation of

the latent space on disentanglement. Clearly, rotation dramatically impacts disentanglement,

and the standard normal prior does not enforce any particular rotation of the latent space.

Implementing hierarchical priors, consistent observation of not only better reconstruction

(avoiding over-regularization) but also reasonable disentanglement of the latent space in

roughly half of all trained VAEs (out of 50) exemplifies the improved ability of hierarchical

priors to produce a disentangled latent representation. Reconstruction of test samples is more

accurate when implementing the hierarchical prior network, as illustrated in Figure 3.10. It is

hypothesized that disentanglement is observed in roughly half of our experiments due to local

minima in the regularization loss corresponding to 45 degree rotations of the latent space,

illustrated in Appendix A.6. The learned priors using HP are often non-rotationally-invariant

and aligned with the axes. However, the posterior is often rotated 45-degrees relative to this

distribution, creating a non-factorized and therefore non-disentangled representation. Thus,

it may not be possible to consistently and robustly learn a latent representation which is

correctly rotated with respect to the generative parameters without some prior knowledge
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Figure 3.11: (top) aggregated posterior comparison showing rotation of the latent space,
(bottom) worse disentanglement when latent space is slightly rotated.

of the parameters themselves.

Comparing p(θ), p(z), and qϕ(z) with and without HP (Figure 3.12), stark differences

are noticeable. Without the HP network, the aggregated posterior often captures the mul-

timodality of the generative parameter distribution, but it is rotated randomly relative to

p(θ), creating a non-factorized qϕ(z). Training the VAE with hierarchical priors, the learned

prior becomes non-rotationally invariant. The rotation of the aggregated posterior is there-
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fore controlled by the orientation of the prior through the regularization loss, but mimics the

shape of the generative parameter distribution. It is clear that the prior plays a significant

role in terms of disentanglement: it controls the rotational orientation of the aggregated

posterior.

A qualitative measure of disentanglement is compared in Figure 3.12. Without HP, the

latent parameters are entangled; they are each weakly correlated to both of the generative

parameters. Adding HP to the VAE results in disentanglement in nearly half of our trials.

When disentanglement does occur, each latent factor contains information on mostly a sin-

gle but different generative factor. Through the course of our experiments, a relationship

between disentanglement and the degree to which the aggregated posterior matches the gen-

erative parameter distribution is recognized. When disentanglement does not occur with the

use of HP, the aggregated posterior is rotated relative to p(θ), or non-factorized (it has al-

ways been observed at around a 45-degree rotation). Only when qϕ(z) can be translated and

scaled to better match p(θ), maintaining the correlations, does disentanglement occur. Thus,

a quantitative measure of disentanglement (Eq 3.12) is created from this idea. The KL diver-

gence is estimated through sampling using the k-nearest neighbors (k-NN) approach (version

ϵ1) found in Ref. [147]. The optimization is performed using the gradient-free Nelder-Mead

optimization algorithm [70].

In low-dimensional problems, humans are adept at determining disentanglement from

qualitative measurements of disentanglement such as Figure 3.12. It is, however, more

difficult to obtain quantitative measurements of these properties. Figure 3.13 shows the

relationship between Eq. 3.12 and a qualitative measurement of disentanglement. Lower

values of SKL indicate better disentanglement. However, it is primarily concluded that

without prior knowledge of the generative parameters, it may be impossible to reliably learn

a representation corresponding to such parameters. In this following section, it is shown that

labeling a few samples with their true generative parameters proves enough of an inductive

bias to accurately label the remaining data samples with their correct generative parameters.

3.6 Physical Learning Bias with Weak Supervision

Difficulties with consistently disentangling generative parameters have been illustrated up

to this point with an unsupervised VAE framework. In some cases, however, generative

parameters may be known for some number of samples, suggesting the possibility of a semi-

supervised approach. These labeled samples can be leveraged to further improve the consis-

tency of learning a disentangled representation by enforcing their known values in the latent

space. Consider data consisting of two partitions: labeled data {y(i),θ(i)}li=1 and unlabeled
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Figure 3.12: (upper left) Aggregated posterior, prior, and generative parameter distribution
comparison using VAE trained on multimodal generative parameter distribution without
hierarchical network, (upper right) with hierarchical network. (lower left) Qualitative dis-
entanglement using VAE trained on multimodal generative parameter distribution without
hierarchical network, (lower right) with hierarchical network.

data {y(i)}u+li=l+1. A one-to-one mapping between the generative parameters θ and the learned

latent representation z is sought when disentanglement is desired. Thus, enforcing the la-

tent representation to match the generative parameters for labeled data in a semi-supervised
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Figure 3.13: A quantitative measure of disentanglement compared to a qualitative measure.
As SKL increases, the latent space becomes more entangled.

approach should aid in achieving our desired objective more consistently.

We begin the intuition behind a semi-supervised loss function by illustrating its connection

to the standard ELBO VAE loss. One method of deriving the ELBO loss is to first expand

the relative entropy between the data distribution and the induced data distribution to

obtain

DKL[p(y)||pψ(y)] = −H(Y ) + Ep(y)[DKL[qϕ(z|y)||p(z)]]

− Ep(y)[DKL[qϕ(z|y)||p(z|y)]]

− Ep(y)qϕ(z|y)[log pψ(y|z)]

where −H(Y ) is constant and the ‘true’ encoder p(z|y) is unknown. Therefore, the term

Ep(y)[DKL[qϕ(z|y)||p(z|y)]]

is usually ignored and we arrive at the ELBO, which upper bounds the left hand side.

However, a relationship between z and y is known for labeled samples. This relationship

can be used to assign p(z(i)|y(i)) on the labeled partition. For unlabeled data, the standard
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ELBO loss is still used for training and the semi-supervised loss to be minimized becomes

LV AE−SS(ϕ, ψ) =Ep(y)[DKL[qϕ(z|y)||p(z)]]

−Epl(y)[DKL[qϕ(z|y)||p(z|y)]]

−Ep(y)qϕ(z|y)[log pψ(y|z)] (3.25)

where pl(y) is the distribution of inputs with corresponding labels, p(y) is the distribution

of all inputs (labeled and unlabeled), and Epl(y)[DKL[qϕ(z|y)||p(z|y)]] is denoted LSS.

Empirically it is found that this loss is very sensitive to changes in network parameters

and unreasonably small learning rates are required for stability. Additionally, there is no

obvious way to determine the variance of p(z(i)|y(i)) for each sample, only the mean is easily

identifiable. We therefore propose to train with LSS = Epl(y)[− log qϕ(z|y)] instead such that

the loss function becomes

LV AE−SS(ϕ, ψ) =Ep(y)[DKL[qϕ(z|y)||p(z)]] − Epl(y)[log qϕ(z|y)] − Ep(y)qϕ(z|y)[log pψ(y|z)] .

(3.26)

Training with this loss achieves the desired outcome of consistently learning disentangled

representations while being simple and efficient to implement.

Figure 3.14: (left) Disentanglement score mean increases with ratio of labeled to unlabeled
samples when training with a semi-supervised loss. Disentanglement also becomes more con-
sistently observed. (right) Training losses are unaffected by the number of labeled samples.

Incorporating a small amount of labeled samples into training the VAE, a latent represen-

tation corresponding closely to the generative parameters can be consistently learned, even

for the unlabeled samples. Figure 3.14 illustrates the relationship between increasing the
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number of labeled samples and the disentanglement score of the learned latent representa-

tion. As the disentanglement score increases, the latent representation more closely matches

the true generative parameter representation. In each case, there are 512 unlabeled sam-

ples during training. Each trial varies in the number of labeled samples, and VAEs trained

with the same number of labeled samples are trained with a different set of labeled samples.

Ten VAEs are trained at each point, and the range illustrated represents the maximum and

minimum disentanglement score across the 10 trials.

The training losses do not seem to be effected by the number of labeled samples, only the

disentanglement score is effected. With a low number of labeled samples, the semi-supervised

VAE trains very similarly to the unsupervised VAE. That is, disentanglement is observed

rather randomly, and the learned latent representation varies dramatically between trials.

Labeling around 1% of the samples begins to result in consistently good disentanglement.

Labeling between 3% and 8% results in learning disentangled latent representations which are

nearly identical between trials. It follows from these results that disentangled representations

can be consistently learned when training with Eq. 3.26 when using a sufficient number of

labeled samples (assuming a sufficiently expressive architecture).

Figure 3.15: (left) Aggregated posterior matches the generative parameter distribution with
semi-supervised training. (right) Multi-modality is well preserved.

Using a semi-supervised method also improves the ability of the VAE to predict data in

regions of lower density. In Figure 3.15, it is observed that the aggregated posterior matches

the generative parameter distribution much better than the unsupervised case with just over
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1% of the samples labeled. Additionally, regions of low density in the generative parameter

distribution are better represented in the semi-supervised case over the unsupervised case;

in other words, multimodality is better preserved (compare to Figure 3.12). These results

demonstrate that introducing a small amount of bias in the form of known physics consis-

tently improves the representation of the data learned, enforcing it to be physically-relevant.

It allows for the remaining samples to be labeled with their true generative parameters,

leading to a labeled dataset which can be leveraged for a variety of downstream tasks.

3.7 Summary

In this chapter, investigate the use of VAEs as an ML technique to automatically extract

physical principles in an unsupervised way. The insights gleaned from these explorations

underscore the impact that VAEs can have in the realm of computational physics, particu-

larly in terms of enhancing data interpretability and facilitating the discovery of underlying

physical principles through data.

The application of VAEs within a physics-aware framework has demonstrated the ability

to distill complex physical datasets into more interpretable, low-dimensional representations.

This process not only aids in uncovering the latent structures within the data but also in

aligning these structures closely with physically relevant parameters, thereby offering a more

nuanced understanding of the physics through the lens of machine learning.

A critical takeaway from this chapter is the realization that, without physically-relevant

biases—the information that guides the learning process towards more physically-plausible

representations—VAEs, and likely other ML models, struggle to provide robust physical in-

sights on their own. The introduction of even a minimal amount of physics information into

these models can dramatically enhance their ability to learn and generalize physics concepts,

underscoring the indispensable role of physics-aware ML. This insight is particularly relevant

in the context of VAEs, where the integration of hierarchical priors and loss-weighting sched-

ules has proven useful in optimizing the training process and overcoming challenges such as

over-regularization, limited mutual information, and limited disentanglement capabilities.

However, even with these advancements, the representations learned are not consistently

correlated to the physically-relevant parameters desired.

These explorations further lead us to infer that while purely ML-driven models exhibit

remarkable capabilities in pattern recognition and prediction, their applicability remains

constrained by their lack of physical grounding. This limitation highlights the necessity for

an approach that incorporates physics directly into the model, as exemplified by physics-

informed and physics-augmented machine learning techniques. Such methods not only bol-
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ster the interpretability and generalizability of the models but also ensure that predictions

remain physically plausible, thereby mitigating the risk of generating non-physical or unin-

terpretable outcomes.

Looking ahead, the insights and conclusions developed herein serve as a solid foundation

for the subsequent chapters, where we will continue to explore the potential and application

of physics-aware machine learning in greater depth through a variety of case studies. This

chapter provides evidence that including inductive biases in ML models can greatly enhance

their robustness in modeling the physical world, and this is further demonstrated in the

following works.
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CHAPTER 4

Enhancing Dynamics Modeling with

Data-driven Inference and Interpretable

Machine-learning Augmentations

Cathodic electrophoretic deposition (EPD), more commonly known as e-coating, represents

a cornerstone technique within industries such as automotive and manufacturing, serving

to apply protective coatings to various surfaces. This process is important in preventing

corrosion and ensuring the durability of components, marking its significance in achieving

both aesthetic and functional quality standards. However, the quest for optimal coating

properties and process efficiency necessitates a deep dive into the accurate modeling of EPD

dynamics, a challenge compounded by the intricate electrochemical interactions at play.

The journey to refine EPD models faces significant hurdles, primarily due to the un-

certainties surrounding the physical properties of the coating film during deposition and a

limited grasp of the underlying physics governing the process. Traditional approaches to

modeling e-coating have ventured to overcome these obstacles, yet they often fall short, re-

quiring empirical calibration to account for film initiation and growth, or failing to fully

capture experimental behaviors [148, 149, 150, 151, 152]. Moreover, the intricacies of model-

ing the deposition onset of the coating film, characterized by threshold parameters, introduce

discontinuities in model outputs, further complicating the parameter inference process. This

gap in modeling accuracy and predictability underscores the need for innovative approaches

that differ from conventional methodologies. An extensive study on the modeling of the

e-coat process and chemistry involved for constant current and constant voltage boundary

conditions can be found in Refs. [148, 153].

In response to these challenges, this work aims to refine a baseline EPD model, aiming

to bridge the gap between theoretical predictions and experimental realities. At the heart

of this endeavor lies the differentiation between two major types of uncertainties: paramet-

ric uncertainties, which stem from imprecise knowledge about parameter values within the
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model, and model form uncertainties, which arise from the inherent assumptions and simplifi-

cations embedded in the computational model itself. Addressing these uncertainties requires

a nuanced approach, blending experimental data with advanced computational techniques

to achieve a more faithful representation of the e-coating process.

The adoption of variational inference methods to estimate model parameters is employed

in tackling parametric uncertainties, albeit challenged by the model’s inherent unidentifia-

bility issues. To circumvent these barriers, modifications to the baseline model are proposed,

enhancing parameter identifiability and fostering a more generalizable framework across ex-

perimental conditions. Yet, the pursuit of an accurate and interpretable model does not

end here. The residual gap between the model’s predictions and observed experimental data

beckons the integration of machine learning tools, particularly Neural Ordinary Differential

Equations (NeuralODE) [26], to introduce learnable, physically relevant modifications.

By leveraging NeuralODE, this work demonstrates the incorporation of machine learning

augmentations into the e-coat modeling process, aiming to refine the model’s performance in

alignment with experimentally obtained data. This approach not only enhances the model’s

fidelity to real-world behaviors but also upholds the principle of physical interpretability

and therefore generalizability, a cornerstone in the overarching themes of physics-aware ma-

chine learning and this dissertation. As such, this chapter introduces ideas which combine

traditional physical modeling with the capabilities of machine learning, illustrating a com-

prehensive exploration of this synergy within the context of e-coating.

4.1 Background

4.1.1 Cathodic Electrophoretic Deposition

In the automotive industry, e-coating typically involves using a version of Sand’s equa-

tion [154] to compute the induction time under constant current conditions. However, the

application of a linearly increasing voltage over time is also a common practice in automotive

e-coating to ensure good throw-power and prevent defects associated with high voltage coat-

ing [155]. Effective models are crucial for predicting the quality of the coating, optimizing

the process for energy efficiency, and reducing material waste. In industries where durability

and coating quality are paramount, such as in automotive manufacturing, the role of precise

EPD modeling is critical. It ensures that the coatings applied are uniform, adhere well, and

provide long-lasting protection against environmental factors. Moreover, in sectors focusing

on high-precision manufacturing, such as aerospace and electronics, the accurate modeling of

EPD processes is essential for meeting stringent quality and performance standards. Over-
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all, the development of more robust and accurate models for EPD is not just a theoretical

pursuit but a practical consideration. It supports the optimization of industrial processes,

enhances product quality, and contributes to sustainable manufacturing practices.

Although many models exist to model e-coat dynamics [148, 149, 150, 151, 152], this work

employs a baseline model which is leveraged as a starting point to improve e-coat modeling

using data while maintaining physical interpretability.

4.1.1.1 Baseline Model

The baseline model is one-dimensional in space, consisting of a cathode and anode placed

length L apart and filled with a solution of suspended colloidal particles in between (see

Fig. 4.1). After a voltage is applied and prior to film deposition, an electrochemical reaction

takes place at the cathode with 2H+ + 2e− −→ H2 or 2H2O + 2e− −→ 2OH− + H2 [152]. As

the reaction proceeds, the bath solution basicity increases until a critical pH value is reached

and film deposition starts. Film deposition is defined by suspended colloidal particles being

deposited on the anode, increasing the circuit resistance.

ca
th
o
d
e

an
o
d
e

x = 0 x = L

film

Figure 4.1: Initial setup for the 1D case.

The film deposition process is separated into three components. First, the electric field

within the bath is computed using the conservation of current density given by

∇ · j = 0 (4.1)

j = −σbath∇ϕ (4.2)

ϕ|Γ = Rfilm jn at the interface film-bath, (4.3)

where j is the current density, σbath is the bath conductivity, jn = j · n is the normal

component of the current density, ϕ is the electrical potential, Rfilm is the film resistance

and Γ represents the interface between the film and the bath. Second, once film deposition

begins, deposition rate is defined as

dh

dt
= Cvjn, (4.4)
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where h is the film thickness and Cv is the Coulombic efficiency. Third and finally, the film

thickness and film resistance are related through

dRfilm

dt
= ρ(jn)

dh

dt
, (4.5)

where ρ(j) is the film resistivity. In particular, ρ(j) is a decreasing function of the current

density, and we adopt an empirical estimate from [156] of

ρ = max(8 × 105 exp(−0.1j), 2 × 106). (4.6)

Before deposition begins, the right hand side of Eqs. 4.5 and 4.4 are both equal to 0. The

model defines the deposition onset event according to two criteria: the minimum current

density and minimum charge conditions. The onset criteria are critical for accurately pre-

dicting the film thickness growth in time. If both of the conditions are met, film deposition

begins in the baseline model.

The first condition which determines deposition onset is a minimum current density con-

dition. Once the current density at the cathode reaches a threshold value jmin, the film

thickness begins to increase if the other condition is met. The onset condition parameter

jmin is unknown and estimated or inferred from experimental data. The second onset con-

dition is a minimum charge condition. The minimum charge criterion assumes that the

deposition does not start until the accumulated charge on the cathode reaches a threshold

value Qmin, with the electric charge Q defined by

Q(t) =

∫
t

jndt. (4.7)

The deposition onset threshold Qmin is also unknown and estimated or inferred from experi-

mental data. Once both the minimum charge and minimum current conditions are met, film

thickness increases as

dh

dt
= Cv jn for Q > Qmin and j > jmin. (4.8)

Additional model parameters have been estimated from experimental data. These pa-

rameters are therefore fixed to the values presented in Table 4.1.

4.1.1.2 Computational Formulation

Two main types of experiments are considered in the computational setup: voltage ramp

(VR) and constant current (CC). In VR, the voltage is increased linearly with time at a
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Table 4.1: Summary of baseline model parameters.

Name Symbol Value Unit
Bath conductivity σbath 0.14 S/m
Initial resistance at cathode R0 0.5 Ω ·m2

rate of VR such that ϕ(t, x = L) = V (t, x = L) = VRt. Electric potential is denoted ϕ or

V interchangeably in this work. In CC, the current density at the anode is held constant.

Experimentally, the current can only be held constant until some maximum voltage Vmax

determined by the available equipment. Numerically, once the maximum voltage is reached

in CC, Vmax is enforced instead of constant current.

Eqs. 4.1 through 4.3 are the Poisson equation with Robin boundary condition on the film

/ bath interface. This model is imposed for both experiments, but the boundary condition

at the anode is different for each. Both experiment types are modeled by

σbath
∂2ϕ

∂x2
= 0 in the bath (4.9)

ϕ−Rfilmσbath
∂ϕ

∂x
= 0 at the interface film-bath, (4.10)

additionally with VR having an anode boundary condition

ϕanode(t) = ϕt=0 + ϕramp(t), (4.11)

and CC having an anode boundary condition

σbath
∂ϕ

∂x
= j0. (4.12)

These equations offer an analytic relationship between film resistance and current in 1D for

VR:

j(t) =
σV (t, x = L)

σRfilm(t) + L
. (4.13)

As V (t, x = L) is set as the boundary condition, we can solve only the resistance dynamics in

Eq. 4.5 and compute j(t) from V and Rfilm. For CC, the current is set by the experimental

conditions as j0, and the voltage at the anode can be computed by

∂V

∂t
=
∂Rfilm

∂t
j0 for V < Vmax, (4.14)

where Vmax is the maximum experimental voltage. If V ≥ Vmax in CC, the relationship
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between voltage, current, and resistance is given by Eq. 4.13.

To simulate the baseline dynamics, any black box ODE solver can be implemented to

solve Eq. 4.5 forward in time, computing the time evolution of film resistance. Current,

voltage, and charge are given as boundary conditions, computed analytically from Eq. 4.13,

or solved along with resistance dynamics using Eq. 4.14.

4.1.1.3 Experimental Setup and Data

Experimental data is acquired from a laboratory setup that approximates the computational

setting. In the experiment, a 16.0 cm2 square anode and cathode are placed at the ends of a

long e-coat bath and connected to a power source. A voltage is applied across the anode and

the cathode according to either the VR or CC setup. During the course of each experiment,

the voltage, current, and film resistance are all measured at a frequency of 10 Hz. For some

experiments, thickness measurements are obtained by setting the voltage to zero at some

time and measuring the thickness of the film at that time. Note that measuring the thickness

terminates the experiment. A depiction of the experimental setup is given in Fig. 4.2

Figure 4.2: Experimental setup

Experiments are performed for both VR and CC at different experimental conditions, for

a total of six configurations (see Table 4.2 for an overview). Multiple trials are repeated for

each configuration, where each trial is performed to a different final time in obtaining its

thickness measurement. The experimental data is collected in D = {{j}i, {R}i}6i=1 where

{j}i, {R}i respectively represent the sets of current and resistance measurements for each of

the six configurations. We do not use voltage data as they can be computed analytically

from resistance and current. The data used during inference and learning is truncated for

each experiment type i to time ti such that data has been gathered for at least 3 trials at

all times t ≤ ti. This is done to provide more accurate estimates of the variance during

likelihood computation. An example of current measurements {j}1 from the 13 trials under

configuration VR, VR = 1V is shown in Fig 4.3.
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i Experiment ni (# trials) ti (s) Total Data Points (j, R, V )

1 VR, VR = 1.0 V/s 13 239 31,870

2 VR, VR = 0.5 V/s 13 477 63,620

3 VR, VR = 0.125 V/s 12 639 85,178

4 CC, j0 = 10.0 mA 10 80 10,420

5 CC, j0 = 7.5 mA 10 160 20,820

6 CC, j0 = 5.0 mA 10 240 31,216

Table 4.2: Descriptions of the experimental data for each of the six configurations.

4.2 Parameter Inference With Experimental Data

In the baseline e-coat model, the unknown parameters of interest are θ = {jmin, Cv, Qmin}.

The initial goal is to infer (Section 1.5.1.1) these parameters given the experimental data

described in Sec. 4.1.1.3 and the baseline model as the dynamics. The data random variable

Y consists of both current j and film resistance Rfilm. We assume a measurement model of

y(θ, t; η) = G(θ, t; η) + ϵ(t, η) (4.15)

where G(θ, t; η) = {Rfilm(θ, t, η), j(θ, t, η)}, computed by simulating the baseline model, and

is a deterministic function of θ, t, and the experimental configuration parameters η. The

measurement noise ϵ(t, η) ∼ N (0,Σ(t, η)) is a function of time and experimental configura-

tion parameters, and the covariance matrix Σ(t, η) is estimated from experimental data.

Considering the experimental data as D and baseline model as M, the posterior we seek

to approximate is given by Bayes’ rule as

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
. (4.16)

The integration involved in directly computing p(D|M) =
∫
θ
p(D, θ|M)dθ (the “brute force”

approach) is expensive to evaluate, particularly with the large amount of data in our dataset.

Therefore, variational inference methods have are used in this work to approximate the

posterior. Additionally, computing the posterior directly does not on its own necessarily

allow samples to be easily drawn from the posterior. The brute force method of directly

computing the posterior is referred to as the gridding approach hereafter due to computing

the posterior on a discretized grid in the parameter space. Other methods investigated

are all forms of variational inference in which the inference problem is transformed to an

optimization problem [96, 157, 64, 62]. Truncated normal distributions are used for the prior

103



Figure 4.3: Visualization of the {j}1 experimental data (all 13
trials) for configuration VR = 1.0. Each trial ends at a different
time, and data is sampled at a rate of 10 Hz.

to ensure positive support while still enabling the specification of the mean and standard

deviation of the prior for each parameter.

4.2.1 Likelihood

Any inference methods discussed in this work require the computation of the (log) like-

lihood. Given the assumed measurement model in Eq. 4.15, the likelihood p(D|θ,M) is a

Gaussian distribution with mean G(θ, t; η) (the output of the baseline model) and covariance

matrix Σ(t, η). We assume that all experiments, trials, and samples within each trial are

independent. While the later assumption may not be strictly true, it significantly decreases

the computational cost of computing the log likelihood due to a diagonal covariance matrix.

The log-likelihood is therefore given by

log p(D|θ,M) = −1

2

6∑
i=1

ni∑
l=1

10tl,i∑
r=1

(G(θ, 0.1r; ηi)−Di,l,r)
TΣ(0.1r, ηi)(G(θ, 0.1r; ηi)−Di,l,r)+Z ,

(4.17)

where the time is given by 0.1r due to the constant sampling rate of 10Hz, and Di,l,r denotes

the 2D vector [{j}(l)i (0.1r), {R}(l)i (0.1r)]T , the resistance and current for experiment i in

trial l at time 0.1r. Additionally, the matrix Σ(0.1r, ηi) is diagonal and is computed for
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experiment i at time 0.1r by computing the variance of current and resistance data over

all trials which contain data at time 0.1r. The time tl,i denotes the final experiment time

for trial l of experimental configuration i. Finally, Z is the negative log of the likelihood

normalization constant which does not depend on θ.

4.2.2 Gridding approach

Computing the Bayesian posterior is typically prohibitively expensive in practice. For our

application, simulating the baseline model is the dominant bottleneck in terms of time com-

plexity. Evaluating the forward model as little as possible will provide the greatest benefit for

the efficiency of the inference process. More efficient methods of approximating the posterior

are thus investigated to perform parameter inference. Each of these results is compared to

the Bayesian posterior using a gridding approach, which is considered the ‘true’ posterior.

We employ a simple gridding approach to compute the Bayesian posterior in which the

parameter space is discretized into a d-dimensional grid of uniform spacing. This grid is then

sequentially refined with higher resolution near the maximum a posteriori (MAP) and any

modes of the Bayesian posterior.

It is often computationally more stable to compute the log-distributions first, rather than

the distribution directly. Considering a single grid point θi, we first compute the quantity

log p(θi|y) + log p(y) = log p(θi) + log p(y|θi) (4.18)

at all grid points in the parameter space. Note that we ignore the evidence term p(y) in

the gridding approach until Eq. 4.18 is computed at each point. It is assumed that the grid

bounds in parameter space are sufficiently large to capture the most significant aspects of

the distribution.

The final distribution is computed at each point in the grid by normalizing the quantity

computed in Eq. 4.18 using

p(θi|y) = exp(log p(θi) + log p(y|θi))/Z ,

where the normalization constant is given by Z =
∫
Θ

exp(log p(θ) + log p(y|θ))dθ and ap-

proximated using some numerical integration scheme based on the selected grid.

We note that the gridding approach can provide a reasonable approximation to the pos-

terior, but it does not provide a straightforward method of sampling from this posterior.
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4.2.3 Gradients Through ODE Solve

Our subsequent analysis will employ inference and ML methods that require gradient in-

formation. Therefore, ensuring that the ODE solve is differentiable and having an efficient

method of computing gradients is critical. To obtain gradients of the baseline model ODE

forward solve with respect to model parameters, we employ an adjoint-based method known

as NeuralODE [26] which can compute gradients using any black-box ODE solver. This

method computes gradients through the ODE forward solve very efficiently relative to au-

tomatic differentiation methods when solving ODEs. It is also available as part of existing

ML libraries such as Pytorch [158], which facilitates its easy integration with other ML tools

and frameworks.

Propagating gradients through the deposition onset criteria requires extra care. Before

film deposition begins, the resistance and film thickness do not increase. Therefore, the

following dynamical system is solved:

dh

dt
= 0,

dRfilm

dt
= 0, (4.19)

with V , j, and Q computed analytically according to the experiment type. When both

j > jmin and Q > Qmin, deposition begins and the model dynamics instantaneously switch

to
dh

dt
= Cvj,

dRfilm

dt
= ρ(j)

dh

dt
. (4.20)

As predicting the time of deposition onset is critical for predicting film growth, gradients of

the output with respect to the onset condition parameters jmin and Qmin must be computed.

However, the instantaneous change in model constitutes an in-place operation [158] and must

be treated separately. We use ideas from an extension to NeuralODE which adds the ability

the compute gradients through instantaneous event handling [131]. Adding an additional

switch state ξ to our model, we computationally solve the following equations instead of

Eqs. 4.19 and 4.20:
dh

dt
= ξCvj,

dRfilm

dt
= ξρ(j)

dh

dt
. (4.21)

The initial switch state ξ(t = 0) = 0 is switched to ξ(t = te) = 1 at the event time, defined

as the time te such that both of the deposition onset criteria are met. This implementation

detail allows computing the gradient of the forward solve with respect to the event time, and

in turn with respect to the onset criteria parameters jmin and Qmin, using the framework

from Ref. [131].
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4.2.4 Parameter identifiability of baseline model

The process of parameter inference on the baseline model provides some insight into the

shortcomings of the model, and results in proposed updates to the baseline model to address

some of these shortcomings.

One of such shortcomings is parameter unidentifiability of the deposition onset criteria

parameters, Qmin and jmin. The nature of this double criteria for the onset of deposition

creates situations in which one parameter or the other may not be identifiable. In this case,

the definition of identifiability is that of structural identifiability [159]. A model parameter

is structurally identifiable from data if, for any distinct parameter values, the model output

is different for the same input. Mathematically, given two parameter values θ1 and θ2 where

θ1 ̸= θ2, then f(x, θ1) ̸= f(x, θ2) for a model with output f and input x.

Two of the baseline model parameters are unidentifiable from data, but with a complex

dependency on the specific experiment from which the data was gathered. For example,

consider the case in which the time tj at which j > jmin is smaller than the time tQ at

which Q > Qmin, such that tj < tQ. Changing jmin over some range will thus not have any

effect on the baseline model output because both conditions j > jmin and Q > Qmin must be

satisfied for deposition to begin. In this case, only Qmin controls the deposition onset time

and data may be uninformative about jmin. However, the opposite can occur and there also

exist cases in which data may be uninformative about Qmin.

(a) − logCv (b) Qmin (c) jmin

Figure 4.4: Negative log-likelihoods computed from simulated data on a voltage ramp ex-
periment using the baseline model with experimental conditions VR = 0.125, σ = 0.14,
− logCv = 8.5, Qmin = 100.0, and jmin = 1.5.

To illustrate this identifiability issue more clearly, we generate artificial data from the

baseline forward model by taking the ‘true’ parameters to be [− logCv, Qmin, jmin] =

[7.0, 150.0, 1.0]. Other experimental parameters are given in Table 4.1. A total of 10 samples

are obtained by simulating a voltage ramp (VR) experiment with a small amount of noise
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added. Figure 4.4 illustrates the negative log-likelihood of this data for each parameter to

be inferred assuming that the other two parameters are fixed to their ‘true’ values. For the

first two parameters, a minimum exists at the ‘true’ values, indicating that these parameters

can be accurately inferred from the simulated data. However, the negative log-likelihood of

the minimum current threshold parameter jmin is flat over some region, indicating that the

model is not effected by changes in jmin over this region. If the ‘true’ parameter value lies

anywhere in the region in which the derivative of the log-likelihood is zero, that parameter is

unidentifiable on that region. This indicates that the model output is identical for all values

of jmin on this region, rendering the parameter unidentifiable.

For voltage ramp experiments, there exists a set of boundaries in parameter space for

which either jmin or Qmin will be unidentifiable, or both will be identifiable in the baseline

model. These boundaries change with the conditions of the voltage ramp experiment; gath-

ering data from additional experiments could provide information on a parameter that is not

informed by data from a different experiment.

Consider a case in which data exists such that tQ < tj. This means that tj will control

the deposition onset time. As j(t) > 0 ∀ t > 0, then Q(t > tj) > Q(tj) > Qmin. Thus

changing Qmin on a range 0 ≤ Qmin < Q(tj) will have no effect on the output of the baseline

model and the data will be uninformative about Qmin on this range. Next consider a case in

which data exists such that tj < tQ. Now tQ will control the deposition onset time. However,

j(t > tQ) > j(tQ) is not guaranteed, which can be easily seen by taking the time derivative

of Eq. 4.13. If the voltage ramp VR < ρ(j)Cvj, then dj/dt < 0 and it is not guaranteed

that j(t > tQ) > j(tQ). If j(t > tQ) < j(tQ), then it is possible for j(t > tQ) < jmin and

deposition stops, followed by an increase in current, restarting deposition, and the cycle

repeats. Ultimately this indicates that the parameter jmin will have an influence on the

baseline model output, and data will be informative about jmin. Thus, if tj < tQ, data

may or may not be informative about the parameter jmin, depending on the experimental

conditions.

Two identifiability regions corresponding to different experiments are computed empir-

ically and illustrated in Figure 4.5. This regions are computed by simulating the baseline

model according to the experimental conditions for a set of discretized points in the jmin, Qmin

space. For each simulation, identifiability is checked by checking tQ and tj. Purple regions

indicate that data from the experiment is not informative about jmin if the true value of

jmin and Qmin lie in the region. In other words, ∂L/∂jmin = 0 on the purple region. Cyan

regions indicate that data from the experiment is not informative about Qmin if the true

values of jmin and Qmin lie in the region, or ∂L/∂Qmin = 0. Yellow regions indicate that

the experiment can inform both jmin and Qmin. The boundary of the cyan region can be
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computed analytically, but the other is nontrivial and computed empirically. The times at

which the deposition onset criteria are met in the voltage ramp experiment for the baseline

model are given by

tj =
2Qmin

σVR
(σR0 + L), tQ =

[
2jmin
σVR

(σR0 + L)

]1/2
. (4.22)

Setting Eqs. 4.22 equal, we obtain a closed form solution to the Qmin identifiability boundary

as

jmin =

[
2QminσVR
σR0 + L

]1/2
, (4.23)

which has been validated against the empirically computed boundaries shown in Fig. 4.5.

We note that the log-likelihoods in Fig. 4.4b and 4.4c correspond to the identifiability plane

in Fig 4.5a. The log-likelihoods of Qmin and jmin have first derivative zero over some region

as predicted by the identifiability boundaries. The true values of jmin and Qmin are such

that jmin is not informed by the simulated experimental data.

(a) VR experiment, VR = 0.125, σ = 0.14,
− logCv = 8.5

(b) VR experiment, VR = 0.5, σ = 0.14,
− logCv = 7.5

Figure 4.5: Identifiability regions of the baseline model for two different experimental condi-
tions. The log-likelihood on the simulated experimental data will be constant in the purple
and cyan regions, indicating that little information is gained about jmin if the true value lies
in the purple region or Qmin if the true value lies in the cyan region. Note: the ‘stepping’
behavior observed in the identifiability boundaries here are a product of discretizing the jmin
and Qmin domains, but the boundaries are in fact smooth.

If the experimental data does not inform one of the parameters, then that parameter does

not influence the output of our baseline model, and it cannot be accurately inferred. However,

as shown by Fig. 4.5, the identifiability boundaries change with the type of experiment. This
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behaviour could cause very poor prediction results. Suppose none of the experimental data

is informative about jmin, and inference is performed on the model parameters. Using the

model in prediction could result in poor performance especially if predictions are made for

an experimental condition in which jmin does influence the output of the model.

It is also necessary to infer robust posteriors in this case. Suppose Gaussian variational

inference is selected as the inference method. A Gaussian variational posterior will be com-

puted for each of the parameters to be inferred, providing a unimodal distribution for each.

This can be misleading about the Bayesian posterior distribution of the parameter and result

in poor uncertainty quantification during prediction.

We explore two approaches towards the aim of improving model predictions by improving

the form of the baseline model. First, we update the model based on insight from the

shortcomings observed during inference, described in Sec. 4.3.1. We then pursue a different

approach in which model augmentations are learning using machine learning tools to augment

the baseline model with previously unmodeled dynamics, discussed in Sec. 4.3.2.

4.2.5 Inference on baseline model

In this section, we demonstrate inference results using Gaussian variational inference on the

baseline model. The purpose of this experiment is to illustrate the shortcomings of the model

form itself and the exact reason why the identifiability issues described in Section 4.2.4 are

problematic. Inference is performed using simulated data from the baseline model, and we

demonstrate that the posterior predictive results in good prediction performance for some

experimental conditions, but poor performance on others.

Data is generated by simulating the baseline model 10 times up to a final time T = 250s

for a voltage ramp experiment with VR = 1.0, logCv = −8, jmin = 1.5, σ = 0.14, and

Qmin = 100, and add Gaussian random noise ϵ ∼ N (0, η2), where η = 0.01, at each time

step to simulate measurement noise. Only data from current measurements is considered in

the inference process. We then perform Gaussian VI for parameters logCv, jmin, and Qmin

on the baseline model.

After learning the variational posterior qϕ, samples are drawn and used to simulate the

baseline model to obtain samples from the posterior predictive. Ten of these samples along

with the mean are shown in Fig. 4.6a. For the experimental configuration on which the

data is generated, accurate and low variance prediction is observed. However, we then use

the variational posterior distribution to predict on a voltage ramp experiment in which all

parameters are the same except the voltage ramp VR = 0.125. Fig. 4.6b shows that prediction

performance is very poor for this experiment.
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(a) Voltage ramp experiment data, VR = 1.0,
σ = 0.14, − logCv = 8, jmin = 1.5, Qmin = 100

(b) VR experiment prediction, VR = 0.125, σ =
0.14, − logCv = 8, jmin = 1.5, Qmin = 100

Figure 4.6: Posterior predictive results after performing Gaussian VI on data from a simu-
lated voltage ramp experiment. The posterior predictive results in accurate simulations on
the data (a), but poor predictions for other experiments (b). This is caused by unidentifiable
jmin in the data.

The reason for this stems from the identifiability issues previously discussed in Sec 4.2.4.

In our experiment, we assume that the ‘true’ value of jmin is 1.5. However, in the experiment

which we gather data from, jmin is unidentifiable in the baseline model. Thus the inference

results in a variational posterior distribution for jmin of q(jmin|D) = N (2.66, 0.01), which is

a low variance but poor estimate of the true parameter value. This posterior distribution is

then used for prediction in an experiment in which jmin does have an effect on model output,

and because the posterior is not accurate, prediction is also inaccurate.

On top of identifiability issues potentially resulting in poor prediction performance, the

parameter Qmin is inconsistent accross different experiment types. To illustrate this issue,

Gaussian VI is performed on the parameters Cv, jmin, and Qmin twice - first using real

experimental data from only the voltage ramp experiments and again using only data from

the constant current experiments. The maximum a posteriori (MAP) of the variational

posterior for each distribution are very different - in particular for Qmin. Using only voltage

ramp experimental data, the MAP of the variational posterior is Qmin ≈ 261; however,

using only constant current experimental data, the MAP is located at Qmin ≈ 101. This

is indicative of Qmin being problematic in allowing the baseline model to accurately predict

experimental data with different boundary conditions. Our natural conclusion is that the

model is incorrect, and a root cause may lie in a constant Qmin. Rather, Qmin may be a

function of the type of experiment being performed rather than a constant to be inferred. In

Sec 4.3.1, physically intuitive model updates are introduced with the aim of alleviating the

identifiability concerns of the baseline model and improving the modeling of the minimum
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charge criterion.

4.3 Model updates

The baseline model was shown to exhibit identifiability as well as generalization deficiencies

in Sec. 4.2. In this section, we aim to improve the prediction accuracy and generalizability

of the baseline model. First, modifications are made based on the inference results of the

baseline model to aid in improving parameter identifiability and minimum charge criterion

modeling.

An alternative approach to improving the baseline model is also investigated in which

machine-learning augmentations are introduced to model system dynamics which are ab-

sent from the baseline model. These augmentations are introduced with an emphasis on

interpretability of the augmented model while allowing for greater flexibility in model ex-

pressiveness.

4.3.1 Inference-informed modifications

Based on the inference experiments of Sec. 4.2, model updates are proposed to alleviate the

observed inadequacies during prediction. The issue of identifiability arises in the baseline

model due to the double conditional statement that film deposition begins only if j > jmin

and Q > Qmin. This conditional statement, in particular j > jmin, creates non-physical,

discontinuous behavior of the model. The film growth rate given by Eq. 4.19 is exactly zero

until the conditional statement is true. Assuming that jmin > 0, the film growth rate will

instantaneously increase, and a sharp discontinuity in the film thickness growth occurs. The

model also does not accurately model the cases in which both onset criteria are met, but

the minimum current condition is no longer met at a later time. This behavior is one of the

reasons that prediction is observed to be inaccurate in Fig. 4.6b. We therefore propose a

model update to create a model in which the dynamics are continuous which also allows for

film dissolution by replacing the film thickness dynamics in Eq. 4.20 with

dh

dt
= Cv(jn − jmin) for Q > Qmin, s.t. h ⩾ 0 . (4.24)

This also gives the benefit of jmin being identifiable for all experimental configurations.

With jmin now identifiable, the expressiveness of the parameter is investigated to improve

generalizability. Assuming that the minimum charge criterion is related to the concentration

of OH− present in the bath, B.3 illustrates that Qmin is not constant accross experiment

types, but depends on a different constant K. It is shown in B.3 that Qmin is a function
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of this constant, and the function differs between the voltage ramp and constant current

experiments. For VR (Eq. 4.25) and CC (Eq. 4.26) experiments, this function is given by

Qmin =

(
81

128β

)1/3

K4/3 (4.25) Qmin =
K2

j0
, (4.26)

where β = σVR/(σR0 + L)

The updated film thickness dynamics of Eq. 4.24 along with introducing the parameter

K used to compute the minimum charge criterion constitute an updated model which we

dub the ‘inference-informed’ model.

Performing the same exercise to visualize the negative log-likelihood as in Fig. 4.4, we

visualize the negative log-likelihood of the inference-informed model on artificial data to

illustrate that all parameters are now identifiable. In this case, we simulate the data from

the same experimental configuration as Fig. 4.4, which is a VR experiment with VR = 0.125,

σ = 0.14, − logCv = 8.5, Qmin = 100.0, and jmin = 1.0. However, the parameter K is used

instead of Qmin; thus the value of K is found using the relationship in Eq. 4.25, obtaining

K = 23.2. The negative log-likelihoods of − logCv, K, and jmin are illustrated in Fig. 4.7,

and all parameters exhibit a global minimum at the true parameter values, indicating that

all are now identifiable.

(a) − logCv (b) Qmin (c) jmin

Figure 4.7: Negative log-likelihoods computed from simulated data on a voltage ramp experi-
ment using the inference-informed model with experimental conditions VR = 0.125, σ = 0.14,
− logCv = 8.5, Qmin = 100.0 (K = 23.2), and jmin = 1.5.

4.3.1.1 Model Comparisons

The baseline model and the inference-informed model are directly compared by performing

Bayesian inference using the gridding approach discussed in Sec. 4.2.2. We then predict for

each model based on the maximum a posteriori and compute the negative log-likelihood of
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the data. Lower values of the negative log-likelihood at the MAP correspond to a model

which better fits the experimental data.

The MAP of the approximated posterior using the gridding approach assuming the base-

line model is located at θMAP = [− logCv, Qmin, jmin] = [7.58, 173.5, 0.0] with a negative

log-likelihood at the MAP of 3.35 × 107. Assuming the updated model, the MAP is lo-

cated at θMAP = [− logCv, K, jmin] = [7.32, 44.2, 0.63] while the negative log-likelihood is

2.65×107. This suggests that the inference-informed model performs better than the baseline

model by having the potential to represent the experimental data more accurately.

(a) Voltage ramp experiment predic-
tion, VR = 1.0V/s

(b) Constant current experiment pre-
diction, j0 = 7.5mA

Figure 4.8: Comparisons between current prediction on the baseline model and inference-
informed model at the MAP for each on (a) voltage ramp experiment with VR = 1.0V/s and
(b) constant current experiment with j0 = 7.5mA.

Each model prediction at the map is compared to the experimental data in Fig 4.8.

The current predictions are shown for 2 experiments: VR with VR = 1.0V/s and CC with

j0 = 7.5mA. Predictions for all experiments on current, resistance, and thickness data are

included in B.4. Prediction of the inference-informed model for constant current experiments

exhibits significant improvement over the baseline model, likely due to the improved param-

eterization of the minimum charge criterion Qmin. However, there is clearly some physical

behavior which exists in the voltage ramp experiments which is not present in our model. For

instance, there are two current ‘peaks’ in experimental data for voltage ramp experiments,

but only one is possible in model predictions. Additionally, although the thickness prediction

of the inference-informed model is closer to the experimental data than the baseline model,

Fig. 4.9 illustrates that neither are particularly accurate. Ultimately, thickness prediction is

the most important quantity of interest. We thus turn towards improving the model through

augmenting the model forming, and learning the augmentations via a machine-learning based

framework.
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(a) Voltage ramp experiment predic-
tion, VR = 1.0 (film thickness)

(b) Constant current experiment pre-
diction, j0 = 7.5mA (film thickness)

Figure 4.9: Comparisons between film thickness prediction on the baseline model and
inference-informed model at the MAP for each.

4.3.2 Machine-learning augmentations

Modifying the model using insights from the inference process aid in understanding some

shortcomings due to model form, but results in limited improvement to predictive perfor-

mance. Additional physical behavior is missing from the model itself, which results in poor

performance even when the optimal model parameters are identified. There are two main

features absent from the baseline model: the presence of two peaks in the current dynamics

for the voltage ramp experiments, and smooth behavior of those peaks. Unstable behavior

in data for constant current experiments observed just before the drop in current is due to

the current controller in the experiments, which we do not account for in our model.

To incorporate the two missing physical features in our model, we turn towards the power

of machine learning with an emphasis on maintaining interpretability, designing ML augmen-

tations from the perspective of potential root causes which may not be well understood or

difficult to model. In particular, we augment the right hand side of the dynamics model

with parameterized neural networks and train the augmentations using NeuralODE [26].

This can be used effectively to utilize adjoint-based gradient computation alongside stan-

dard machine learning pipelines to learn flexible augmentations in the right hand side of a

dynamical system.

We first attempt to characterize the underlying physics of each of the two peaks present in

the experimental current data for voltage ramp experiments. The second peak corresponds to

the onset of deposition, which is previously modeled in the baseline and inference-informed

models. As film deposition begins, resistance increases and current decreases. However,

the baseline model assumes an instantaneous onset of film deposition which results in a
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discontinuous and physically impossible film growth rate. Experimental data illustrates

smooth transitions to film growth in current data, further supporting the need for additional

modeling. This smooth transition is likely the result of portions of the surface being coated

in a non-uniform manner, resulting in only a fraction of the material surface being coated for

a small time. We propose an augmentation to the baseline model which has the additional

benefit of modeling the deposition onset time without the need of threshold parameters. We

propose multiplying the right hand side of Eq. 4.20 by a learnable term gϕ(V,Q) which varies

smoothly between zero and one. This term is dubbed the ‘coverage fraction model’, and it

is a function of voltage and charge only, representing the coverage fraction of the film on the

material. It is found empirically that using both voltage and charge as inputs to the model

results in the best predictive performance. It is a function of charge due to the dependence

of the deposition onset time of the baseline model on charge, and it is a function of voltage

due to a change in the time derivative of voltage across experiment types.

The first peak present in the current data for voltage ramp experiments is caused by a

phenomenon ignored by the baseline model altogether. This peak may be caused by an

oxygen-reduction reaction [160] which occurs at the anode as the voltage increases. The

relationship between electric potential and current in redox reactions is described by the

Butler-Volmer equation [161] of the form

j = j0 [exp (aV ) − exp(bV )] , (4.27)

where the parameters a and b depend on many physically relevant parameters. However, the

particular form is not relevant to the discussion here as we aim to learn this component of the

model while keeping the general form to ensure that the model is physically-interpretable.

We assume that the combined effect of this redox reaction results in a resistance ‘source’

such that j = c1 exp(c2V ), based on the form of Eq. 4.27.

After some critical point is reached (which we do not explicitly model, but likely corre-

sponds to some minimum charge criterion), we assume that the OH− starts being diffused

at some rate [160] which decreases the OH− concentration. As the redox reaction continues,

we assume that the combined effect of these two reactions results in a different exponent

such that j = c3 exp(c4V ), where c4 < 0.

To augment the voltage ramp experiment model with this behavior of switching between

two different exponents resulting from a combination of reactions, we use an exponential func-

tion in which the argument includes a hyperbolic tangent function which can vary smoothly

116



between two different values. We thus assume an augmented model of the form

j =
σV

σRfilm + L
+ c1 exp(c2V fθ(V,Q)), fθ(V,Q) = tanh(−f̂θ(V,Q)) , (4.28)

and f̂θ is a parameterized function such as a feed-forward neural network (FNN). The first

term in Eq. 4.28 corresponds to the baseline model current in Eq. 4.11, but the second term

is informed by the aforementioned physical processes while allowing flexibility in learning

the particular dynamics. Using the tanh function allows a smooth transition between two

different exponents, effectively switching between the two dominant reactions at the begin-

ning of voltage ramp experiments. We have added additional parameters to the model to

allow for more flexibility. This model augmentation is then added to the current in voltage

ramp experiments to capture the behavior of the first peak.

The augmented model is finally expressed by

fθ(V,Q) = tanh (−f̂θ(V,Q)), gϕ(V,Q) =
1

1 + c3 exp (−c4ĝϕ(V,Q))
(4.29)

dRfilm

dt
= gϕ(V )ρ(j)jCv, j = c1(exp(c2V fθ(V ))) +

σV

σRfilm + L
, (4.30)

for VR experiments and

gϕ(V,Q) =
1

1 + c3 exp (−c4ĝϕ(V,Q))
,

dRfilm

dt
= gϕ(V )ρ(j)jCv, (4.31)

for CC experiments. Note that the relationship between voltage, current, and resistance are

unchanged from the baseline model in the CC experiments even with the machine learning

augmentations introduced to the model. The model augmentation functions ĝϕ and f̂θ are

parameterized by FNN’s with 4 layers, 8 nodes per layer, and ReLU activation functions.

These are learned along with the constants c1, c2, c3, and c4 using the NeuralODE framework

using only current data from the 3 VR experiments. Thus, applying the model on the

CC experiments is purely prediction as none of the data is seen during training. We learn

the parameters θ, ϕ, Cv, σ, c1, c2, c3, and c4 in our experiments and show prediction results.

Figure 4.10 illustrates the results of the final trained model, better capturing the ‘double-

peaked’ nature of the current in experimental data for voltage ramp experiments. Here we

show current prediction for only two experimental configurations, but current and resistance

predictions for all other experimental configurations are provided in B.5.

Further, thickness predictions for all experimental configurations are illustrated in

Fig. 4.11 along with predictions from the baseline and inference-informed models for compar-
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ison. Film thickness predictions show an improvement over the baseline model in all cases

except for a single experimental configuration: voltage ramp experiments with VR = 0.125.

We expect that this is due to some unmodeled behavior in the low voltage regime which

is difficult to capture. However, in constant current experiments and larger voltage values

in voltage ramp experiments, our augmentations provide significant improvement to model

predictions.

(a) Voltage ramp experiment prediction,
VR = 1.0V/s

(b) Constant current experiment predic-
tion, j0 = 7.5mA

Figure 4.10: Current prediction on the machine-learning augmented model trained with the
first peak model.

Learning the first peak model function fθ in the NeuralODE framework is significantly

more expensive computationally than training only the coverage fraction model gϕ due to

the large gradient change requiring a finely-discretized time step to adequately resolve. Ad-

ditionally, the first peak model performs notably poorly for the voltage ramp experiment in

the low voltage ramp regime. We thus remove the ‘first peak’ model and retrain only the

augmentation function gϕ(V,Q) by masking out the experimental data corresponding to the

first peak in current for voltage ramp experiments. This results in more efficient training and

thickness prediction while providing quite similar predictions when the first peak model is

included. These results show that modeling the dynamics of the first peak may unnecessarily

decrease computational efficiency while still providing more accurate thickness prediction,

which is ultimately the goal. Current predictions for two experiments (only voltage ramp

and one constant current) are shown in Fig. 4.12, and thickness predictions are shown and

compared to all other models presented in Fig. 4.13. These results again illustrate a signifi-

cant improvement in thickness prediction without the need for including the more expensive

first peak model, indicating that modeling such behavior may be largely unnecessary for
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(a) Voltage ramp experiment
prediction, VR = 1.0 (film
thickness)

(b) Voltage ramp experiment
prediction, VR = 0.5V/s (film
thickness)

(c) Voltage ramp experiment
prediction, VR = 0.125V/s (film
thickness)

(d) Constant resistance experi-
ment prediction, j0 = 10.0mA
(film thickness)

(e) Constant current experi-
ment prediction, j0 = 7.5mA
(film thickness)

(f) Constant current experi-
ment prediction, j0 = 5.0mA
(film thickness)

Figure 4.11: Comparisons between film thickness prediction on the baseline model, inference-
informed model, and ML-augmented model with first peak.

predicting thickness. However, prediction in the low voltage ramp regime is actually worse

than with the first peak model included, further supporting our hypothesis that there exist

additional unmodeled dynamics in such cases. Again, all other predictions for current and

resistance using our model augmentations without the first peak model included are provided

in Appendix B.6.

4.4 Summary

Throughout this chapter on enhancing dynamical system modeling through interpretable

machine learning augmentations, we have presented an application which underscores the

integration of adaptable yet interpretable machine learning-based model refinements. This

process commences with the objective of parameter inference, which reveals significant lim-

itations within the existing baseline model. These insights lead to the necessity for diverse

119



(a) Voltage ramp experiment prediction,
VR = 1.0V/s

(b) Constant current experiment predic-
tion, j0 = 7.5mA

Figure 4.12: Current prediction on the machine-learning augmented model trained without
the first peak model, shown for (a) voltage ramp experiment with VR = 1.0V/s and (b)
constant current experiment with j0 = 7.5mA.

model refinements aimed at rectifying these deficiencies and better aligning the model with

experimental observations, such as addressing the elusive physical behaviors not fully repli-

cated by the models, including the emergence of two peaks in current data during voltage

ramp experiments.

Through the development and introduction of physically meaningful augmentations and

the harnessing of a NeuralODE framework for implementing learnability, we have addressed

the challenges of maintaining interpretability while exploiting the expressive power of neural

networks for enhanced adaptability and generalizability. This duality of goals reflects the

overarching aims of the thesis: to merge the empirical richness of machine learning with the

foundational rigor of physics. The integration of these augmentations has yielded models

with improved predictive accuracy and generalizability, except in the low voltage regime

which may require additional modeling.

Although the ML-based augmentations introduced improve prediction accuracy, an inte-

gral part of the methodology presented is the diagnostic analysis performed prior to aug-

mentation, which provides crucial insights into the model’s limitations. This understanding

is important and informs the design of augmentations that retain physical interpretability

and removes the necessity for manual crafting, a practice of immense significance for both

machine learning-driven dynamical system understanding and broader physics-based appli-

cations. It demonstrates a path towards future explorations into model improvements that

remain physically-consistent, emphasizing the need for physical understanding and careful

combination with ML-based ideas.
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(a) Voltage ramp experiment
prediction, VR = 1.0 (film
thickness)

(b) Voltage ramp experiment
prediction, VR = 0.5V/s (film
thickness)

(c) Voltage ramp experiment
prediction, VR = 0.125V/s (film
thickness)

(d) Constant resistance experi-
ment prediction, j0 = 10.0mA
(film thickness)

(e) Constant current experi-
ment prediction, j0 = 7.5mA
(film thickness)

(f) Constant current experi-
ment prediction, j0 = 5.0mA
(film thickness)

Figure 4.13: Comparisons between film thickness prediction on the baseline model, inference-
informed model, and ML-augmented model without first peak.

The systematic process outlined in this work is performed on a low dimensional dynamical

system for which the computational model is efficient to simulate. However, in more complex

cases which necessitate the need for reduced order modeling techniques, ML and data-driven

techniques can be leveraged in other ways to achieve improved accuracy.
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CHAPTER 5

Rate Distortion Informed Clustering of

Non-equilibrium Gas Dynamics

This chapter furthers exploration into the union of ML and physical modeling, building upon

the insights from the preceding chapters. Chapter 3 presented a compelling case for the

inherent limitations of purely data-driven approaches in capturing the nuances of physical

phenomena. It highlighted how the infusion of physical information, through inductive

biases, significantly enhances the robustness and fidelity of ML models in modeling physical

systems. Following this thread, Chapter 4 illustrated the process of refining a baseline model

with incompletely understood physics. By integrating inductive biases, we constructed model

augmentations that not only preserved a degree of interpretability but also embraced the

adaptability and precision offered by neural networks.

In this chapter, the focus is pivoted to the realm of reduced order models (ROMs) for

non-equilibrium gas dynamics, illustrating a study that underscores the capabilities of ML

to elevate ROM accuracy. This ultimately demonstrates an inherent balance between en-

hancing model accuracy and maintaining interpretability. While the resultant reduced order

model retains a fundamental level of physical interpretability—thanks to the methodical con-

struction of the ROM framework—the incorporation of ML techniques introduces a nuanced

compromise on interpretability. Despite this, the compelling benefits of ML integration,

particularly in significantly boosting ROM accuracy, are unequivocally demonstrated. This

chapter continues the discourse on the integration of ML into physics-based models but also

demonstrates and discusses the trade-offs involved, providing a deeper understanding of how

ML can be harnessed to advance applications in reduced order modeling. The following

discussions draw material directly from Ref. [162].
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5.1 Introduction

Non-equilibrium fluid flows, characterized by complex thermochemical processes and highly

non-linear dynamics of a high number of internal energy degrees of freedom present in molec-

ular systems, play a pivotal role in a wide range of scientific and engineering applications.

Understanding and modeling these phenomena are essential for advancing fields such as hy-

personic fluid flows [163, 164], plasma physics [165], and materials science [166]. The most

accurate approach to model non-equilibrium flows involves the direct solution of the master

equation, which relies on quantum state-to-state (STS) chemistry models. While these mod-

els provide exceptional accuracy, they become impractical in large-scale multi-dimensional

simulations due to the exponential increase in the number of degrees of freedom (molecule

and atom energy levels). Thus reducing the number of degrees of freedom can render the

simulations feasible but must be performed carefully to ensure as much accuracy as possible

is retained. This work focuses primarily on improving the accuracy of reduced order model-

ing approaches for STS modeling on a path toward improving the efficiency and accuracy of

multidimensional hypersonic simulations.

Reduced order models [167, 168, 23] seek to capture the essential features of the system

dynamics while significantly reducing the computational cost compared to the full order

model. In the case the STS model, commonly employed coarse-graining [169, 170, 171, 172]

methods aggregate the individual internal energy states into clusters based on (typically)

physics-driven criteria. The solution of the coarse-grained dynamics with the partial equi-

libration of the underlying microscopic structure provides enough information to approxi-

mately describe the thermochemical state of the gas undergoing non-equilibrium phenomena

while mass / energy conservation and detailed balance are satisfied by construction.

The coarse-graining approach based on the maximum entropy principle [169, 170] has

shown promise in reducing the dimensionality of non-equilibrium systems [173, 174, 175].

By (i) selecting a suitable number of clusters, (ii) defining a specific cluster-wise distribution

function, and (iii) assigning internal energy levels to these clusters, the system’s dynamics

can be approximated by evolving cluster-related macroscopic quantities, i.e., moments of the

state-specific distribution function computed within each cluster. The challenge of this ap-

proach lies in finding the optimal cluster assignments that best capture the system behavior.

Previous works have focused on simple physically interpretable assignments [170, 174] or used

graph clustering methods such as a modified version of the island algorithm [176, 177, 173]

and spectral clustering [178, 173]. The former exhibits enhanced accuracy compared to

energy-based clustering but falls short in accuracy when compared to the latter. However,

each of these graph-clustering methods can be unstable to compute and rely only on inelastic
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energy transition probabilities as the informative quantity for graph partitioning.

Other reduced order modeling techniques such as parametric variational inference [179,

180] have seen great success when applied to dynamical systems and stochastic reaction

networks; however, this work differs in two primary aspects. First, this work deals with a

deterministic dynamics model, negating the need for modeling moments or distributions of

the dynamics, and we avoid a probabilistic reduced order prediction. Although we perform

a probabilistic relaxation of the coarse-graining process to facilitate gradient-based opti-

mization techniques, the final optimal result is deterministic as specified by rate distortion

theory. Second, the reduced order model which we develop is not parametric in form, but

rather based on the maximum entropy principle, maintaining a level of interpretability of

the reduced order system regardless of method of cluster assignment.

In this work, we propose a framework to learn the optimal cluster assignments through an

ML-based framework. Previous approaches have seen success using heuristic or algorithm-

based assignment [170, 173]. These works focus on interpretability first with the aim of

improving coarse-grained or reduced order model (ROM) accuracy as a result. Conversely,

we focus on optimal ROM accuracy as the primary object. Although this renders the cluster

assignment process itself less interpretable, the reduced order model based on maximum en-

tropy principle coarse-graining maintains interpretability by construction. A trade off always

exists when incorporating ML into physics - a trade off characterized by an improvement in

accuracy corresponding to a reduction in interpretability.

The approach taken in this work takes inspiration from lossy compression techniques [56]

and leverages ideas from rate-distortion theory [54, 55] to guide the learning process, resulting

in a more robust optimization procedure. Although the optimization procedure is guided

by constraints derived from rate distortion theory, the aim is not to determine the optimal

encoding decoding system as in Ref. [59]. In contrast, the aim is to determine the optimal

encoding system given the physics-constrained maximum entropy-based reduced order model

as the decoder. By formulating the cluster assignment problem as an encoding-decoding

system and constructing an optimization task, we seek to minimize the distortion between

the ROM and STS models subject to some rate of compression (number of clusters).

To achieve this, the system dynamics are transformed into a probabilistic description, en-

abling the application of probabilistic learning techniques and allowing continuous gradient-

based optimization techniques. We develop a fully differentiable solver for the probabilistic

coarse-graining approach using an adjoint solver to efficiently backpropagate gradients. As a

consequence of the feedback from the predictions to the cluster assignments, this technique

is model-consistent [181, 50]. The adjoint computation is implemented with the help of Neu-

ralODE [26] to preserve native automatic differentiation (AD) of the computational graph
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in Pytorch [158], facilitating end-to-end training of the cluster assignments. Several other

important implementation details and modifications have been made to ensure the accuracy

and feasibility of the otherwise intractable training process which are further discussed in

Sec. 5.4.2.1.

Our framework offers a significant improvement in ROM accuracy over existing methods

by learning the optimal cluster assignments in a data-driven manner, rather than relying on

hand-designed or heuristic approaches. The effectiveness and efficiency of this approach is

demonstrated to be state of the art through numerical experiments on non-equilibrium flows

for a high-temperature reacting N2 + N system, showcasing improved accuracy compared to

traditional coarse-graining methods. Adopting the maximum entropy principles [169, 170]

ensures that the data-driven ROM inherently satisfies conservation and detailed balance. Ad-

ditionally, this formulation ensures the positive production of entropy in the system. Each

of these is not guaranteed in fully data-driven ROMs unless imposed as a hard constraint.

However, we note that learning the cluster assignments does not guarantee that the assign-

ments will be interpretable. Our method aims to maximize accuracy as the primary object

while inherently satisfying physical constraints at the cost of reduced interpretability of the

learned clustering. The primary novel contributions of this work are summarized as follows:

• Transforming the maximum entropy-based and coarse-grained master equations to a

probabilistic description

• Creating a fully-differentiable coarse-grained dynamics solver based on the probabilistic

coarse-graining description

• Developing a machine learning framework using NeuralODE, automatic differentia-

tion, and many implementation optimizations to leverage gradient-based optimization

methods for learning optimal cluster assignments

• Viewing the coarse-graining process through the lens of information theory to develop

a loss function which encourages rate distortion-optimal learning and a more robust

optimization process

• Tractability and stability improvements such as equation transformations, careful scal-

ing, and data limiting to make the computationally demanding optimization feasible.

• Demonstration of the framework on a high-dimensional (nearly 10,000 states) problem

with state of the art accuracy compared to other methods.
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By combining the power of reduced order modeling, coarse-graining techniques, and ma-

chine learning, this framework offers a promising avenue for improving the efficiency and

accuracy of simulations in non-equilibrium flows.

5.2 Non-Equilibrium Gas Dynamics

We examine the behavior of an N2 + N system in an ideal isothermal-isochoric chemical

reactor with both species considered in their electronic ground state. The STS model consists

of evolving the dynamics of individual pseudo-species, or a particular species’ internal degrees

of freedom treated as state variables. For the system studied in this work, the rovibrational

energy levels of N2 are considered in its electronic ground state and N also in its electronic

ground state. A system of master equations describes the evolution of the dynamical system

by modeling elementary interactions between each of the pseudo-species in the system. An

in-depth discussion of macrostates and microstates and how they relate to this problem is

provided in Appendix C.1 and may serve as a useful introduction to the topic.

5.2.1 Master Equations

Non-equilibrium flows are widely observed in applications such as combustion [182], hyper-

sonics [183, 184, 185, 186], and material processing [187]. These flows are characterized by a

deviation of the microstates (given by N i
S) from its Maxwell-Boltzmann distribution. Mod-

eling such non-equilibrium flows requires solving the master equations which describe the

dynamics of the microstates undergoing collisional and ionization processes.

For each particular species S, particles exist in one of the allowable energy states corre-

sponding to that species. Each of the allowable internal states is specified with a particular

internal energy and degeneracy. For internal state i, the degeneracy giS defines the number

of possible molecular internal combinations corresponding to internal energy εiS.

Consider a pair of atoms or molecules A and B. Each can undergo excitation, de-

excitation, ionization, dissociation, and recombination during a mutual collision. Internal

excitation and de-excitation processes begin with molecule A in one of its internal states i

interacting with another molecule B in one of its internal states j such that one or both

undergo internal excitation or de-excitation. This process is given by

Ai + Bj ⇌ Ak + Bl . (5.1)

We also consider that A can undergo ionization, dissociation, and recombination. This

126



process can be expressed as

Ai + Bj ⇌ Cp + Dq + Bl . (5.2)

From detailed balance, the microscopic state transition equations, or the master equations

for general transition for a species (say A) is given as

dniA
dt

≜
∑
j

∑
k

∑
l

(−κij,klniAn
j
B + κkl,ijn

k
An

l
B)

+
∑
j

∑
l

∑
p

∑
q

(−κij,lpqniAn
j
B + κlpq,ijn

l
Bn

p
Cn

q
D),

(5.3)

where niS denotes the number density of state i of species S and κηξ,γσ is the Maxwellian-

distribution-based state-to-state rate coefficient for transition from an internal configuration

pair (η, ξ) to (γ, σ). This essentially represents the frequency or probability with which the

transition from (η, ξ) to (γ, σ) will occur during a collision.

In the special case where the internal configuration of the collision partner B does not

change, and the products C and D are equal to B (which is considered in this work), the

general transition in (Eq. 5.1) and (Eq. 5.2) can be reduced as

Ai + B ⇌ Ak + B (5.4)

Ai + B ⇌ B + B + B . (5.5)

This transforms Eq. 5.3 to

dniA
dt

≜
∑
k

(−κi,kniAnB + κk,in
k
AnB) + (−κdiniAnB + κrin

3
B) . (5.6)

where κi,k / κk,i represent the excitation and de-excitation rate coefficients describing the

transition probability of jumping from state k to state i and vice-versa, and κdi / κri describe

the ionization/dissociation and recombination rate coefficients, respectively. We note that

the dynamics to model species B are much simpler in this case, and only require a single

equation for nB:
dnB
dt

=
∑
i

κdin
i
AnB − κrin

3
B (5.7)

Consider the simplified state-to-state transition equation given in (Eq. 5.6) such that total

number density nA and energy density eA dynamics for species A are given by
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dnA
dt

≜
∑
i

dniA
dt

=
∑
i

∑
k

(−κi,kniAnB + κk,in
k
AnB) + (−κdiniAnB + κrin

3
B), (5.8)

deA
dt

≜
∑
i

εiA
dniA
dt

=
∑
i

∑
k

(
−κi,kniAεiAnB + κk,in

k
Aε

i
AnB

)
(5.9)

+
∑
i

(
−κdiniAεiAnB + κri ε

i
An

3
B

)
.

Typically, even for a relatively simple system such as N2 + N, solving such STS equations

for density and energy is computationally demanding and impractical for multidimensional

large scale simulations.

5.2.2 Coarse-grained equations

Solving the master equations is computationally expensive and impractical. Indeed, in com-

mon CFD solvers, the master equations must be solved for the chosen gas mixture in each

single cell of the discretized domain, which is prohibitively expensive. For example, a system

consisting of only N2 and N results in a system of almost 10,000 coupled equations for the

zero-dimensional dynamical system, and adding spatial degrees of freedom greatly increases

the dimensionality of the problem. As a result, there have been significant efforts to develop

reduce order models that can predict the time evolution of niS with high confidence. In this

section, we discuss coarse-graining [170] along with some additional insights.

The coarse-grained equations are constructed by first distributing ℓ internal states among

m clusters, where m ≪ ℓ. That is, each state is assigned to a single cluster. A cluster-wise

distribution function is then assumed to represent the internal state population within each

cluster. In this case, we employ the maximum entropy (log-polynomial) function [169, 170].

Moments of the master equations are then taken using the assumed cluster-wise distribution

functions, yielding the governing equations describing the evolution of cluster properties.

This method of coarse-graining, or reduced order modeling, preserves the form of the master

equations in the coarse-grained equations. It is also guaranteed to satisfy basic conservation

and detailed balance as opposed to fully data-driven ROMs in which it is not guaranteed.

Piecewise representation of microscopic quantities The internal energy states can

be grouped, binned, or clustered together to reduce the dimensionality of solving the state-

to-state system of equations in Eqs. 5.8 and 5.9. The reduced system of equations can then

be solved for the cluster density njS and energy εjS, where j is the bin or cluster index. There

exists a set of state indices Bj = {i | i ∈ group j} for each group consisting of all state
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indices assigned to group j.

The full internal state distribution is approximated (reconstructed) from the coarse-

grained solution by assuming a cluster-wise distribution function. As the energy of each

internal state is constant, [170] assumes that the number density of each state niS can be

represented as a linear combination of monomials in terms of εiS

niS = αS + βSε
i
S + γS(εiS)2 + . . . , (5.10)

where the coefficients αS, βS, etc. are the unknown coefficients to be computed. These

coefficients are used to reconstruct, or approximate, the full order solution. For all states in

a single cluster i ∈ Bj, the reconstructed number density for a single internal state n̂iS in the

clsuter is given by

n̂iS = αjS + βjSε
i
S + γjS(εiS)2 + . . . ; i ∈ Bj, (5.11)

such that the basis coefficients are unknown for each group rather than for each energy state

individually. Based on the maximum entropy argument [169] (discussed in Appendix C.2),

the relationship is more appropriately chosen as

log

(
giS
n̂iS

)
= αjS + βjSε

i
S + γjS(εiS)2 + . . . ; i ∈ Bj, (5.12)

such that

n̂iS = giSe
−αjS−β

j
Sε
i
S−γ

j
S(ε

i
S)

2+...; i ∈ Bj, (5.13)

subject to the macroscopic physical constraints

ñjS =
∑
i∈Bj

n̂iS; ẽjS =
∑
i∈Bj

n̂iSε
i
S; f̃ jS =

∑
i∈Bj

n̂iS(εiS)2 . . . . (5.14)

where the ñjS and ẽjS indicate the number density and energy density of cluster j, respectively.

The maximum entropy formulation in Eq. 5.12 is an accurate representation of the internal

states at thermal equilibrium as it reproduces the Boltzmann distribution exactly using one

group truncated to a linear model, keeping only αjS and βjS as the basis coefficients. We thus

assume a bin-wise reconstruction function of

log

(
n̂iS
giS

)
= −αjS − βjSε

i
S ; ∀i ∈ Bj, (5.15)

in this work.
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5.2.2.1 Bin-averaged reaction rate coefficients

The coarse-grained system of equations corresponding to the simplified state-to-state Eq. 5.6

and the corresponding energy evolution equation are very similar and given by

dñjA
dt

≜
m∑
w=1

(−0Kj,wñ
j
AnB + 0Kw,jñ

w
AnB) + (−0Kd

j ñ
j
AnB + 0Kr

jn
3
B), (5.16)

dẽjA
dt

≜
m∑
w=1

(−1Kj,wẽ
j
AnB + 1Kw,j ẽ

r
AnB) + (−1Kd

j ẽ
j
AnB + 1Kr

jn
3
B) , (5.17)

where the coarse-grained rate coefficients are given by [170]

uKj,w ≜
1

uQj
A

∑
i∈Bj

∑
k∈Bw

κi,k(ε
i
A)ugiA exp (−βjAε

i
A), (5.18)

uKd
j ≜

1
uQj

A

∑
i∈Bj

κdi (ε
i
A)ugiA exp (−βjAε

i
A), (5.19)

uKr
j ≜

∑
i∈Bj

κri (ε
i
B)u, (5.20)

and uQj
A are moments of the state-specific partition function

uQj
A =

∑
i∈Bj

giA(εiA)u exp (−βjAε
i
A). (5.21)

5.2.2.2 Bin-averaged initial condition

After the set of cluster assignments Bj are determined, an initial condition must be defined to

solve Eqs. 5.16 and 5.17. The initial condition is specified as number densities of each species

and an initial internal temperature such as nA(0), nB(0), and Tint(0). We are interested in

computing the initial condition on the internal state distribution of species A only as we

assume species B to be single state in this work. To compute the initial condition niA for

each internal state individually is relatively straightforward. We assume that the entire

system is initially in equilibrium and therefore follows the Maxwell-Boltzmann distribution,

requiring only computing αA and βA. Each internal density niA can thus be computed and

ñjA, ẽjA for each cluster computed by

ñjA =
∑
i∈Bj

niA, and ẽjA =
∑
i∈Bj

niAε
i
A.
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5.2.2.3 Reconstruction function

After computing the solution to the coarse-grained equations, we reconstruct the internal

state distribution at some time t using Eq. 5.15. The bin-wise coefficients αjS and βjS are

functions of time and computed by

βjS =
1

kT jS
, αjS = log

(
0Qj

S

ñjA

)
, (5.22)

where T jS is an internal ‘temperature’ which is a modeled quantity computed during non-

equilibrium. We refer the reader to [170] for more details on the derivation of these quantities.

5.2.3 Existing clustering methods

5.2.3.1 Internal energy-based clustering

The range of the internal energy space is equally divided into m bins, and all internal

states are assigned to the corresponding bins. This method is the original clustering method

developed for use with maximum-entropy-based coarse graining [170].

For a given species A, the bounds of the internal energy space are found such that all

internal states lie on the range R = [a, b], where a = mini ε
i
A and b = maxi ε

i
A. This range is

divided into sub-ranges Rj = [a + (j − 1)(b− a)/m, a + j(b− a)/m] ∀j ∈ {1, . . . ,m}. The

sets of states Sj = {i|εiA ∈ Rj} ∀j ∈ {1, . . . ,m} are formed by associating all states with

internal energy in range Rj with cluster j.

This method of clustering is physically interpretable by design, but results in relatively

poor accuracy as illustrated in Sec. 5.5.

5.2.3.2 Spectral clustering

Spectral clustering is a well established idea for partitioning connected graphs [178]. This

idea was extended in [173] to improve coarse-grained ROM accuracy over clustering based on

internal energy. The idea is to compute a degree of connectedness Sik between two internal

states i, k based on their proximity in internal energy space |εi − εk| and the magnitude of

the internal state transition coefficient κi,k. These are them manipulated to form the weights

on edges in a connected graph of all the states. Spectral clustering is then used to partition

the graph into a discrete number of bins.

One drawback of this method is that it does not consider all internal energy states.

Although more accurate than energy-based clustering, it does not take into account any
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quasi-bound states [173]. Neglecting the quasi-bound states results in reverting to energy-

based clustering for such states. Additionally, this approach relies only on inelastic energy

transition probabilities as the informative quantity for graph partitioning.

5.2.3.3 Centrifugal barrier clustering

This method is a physics-driven clustering approach that groups internal states based on

their distance from the molecule’s centrifugal barrier, a distinct property of the diatomic po-

tential [174]. This strategy exhibits significantly improved accuracy compared to vibrational-

specific clustering [188], as it effectively captures the dissociation dynamics inherent in the

STS model. However, it should be noted that this clustering strategy exclusively addresses

dissociation processes, in contrast to spectral clustering, which considers excitation processes

only. This requires the STS model to be computed for the excitation and de-excitation pro-

cess, and we thus omit this strategy from the comparative analysis with our approach.

5.3 Mathematical Framework

The primary goal of this work is to find optimal cluster assignments for the reduced order

models described in the previous section. We aim at solving the optimization problem

c∗ = arg min
c

D(nA, n̂A(c)) , (5.23)

where the discrete cluster assignment vector c ∈ {1, . . . ,m}ℓ is used to compute the

coarse-grained rate coefficients by Eqs. 5.18, 5.19, and 5.20. The coarse-grained sys-

tem is then simulated to steady state and reconstructed at each time t as n̂ =

[n̂A(c, 0), n̂A(c, 1), . . . , n̂A(c, t), . . . , n̂A(c, T )]. This is then compared to the solution from

the full state-to-state equations (Eq. 5.6) by some distortion (loss) D : Rℓ×nt × Rℓ×nt → R.

Solving this optimization problem directly is prohibitively expensive. It is a discrete

optimization problem, which requires expensive combinatorial type optimization procedures.

With a dimension of 10,000, directly optimizing the vector c is infeasible. We therefore

transform the problem to a probabilistic description to facilitate the use of gradient-based

optimization methods.

To solve the optimization problem, we turn towards rate-distortion theory to encourage

learning optimal assignments. From this, a loss function is derived which guides the learning

process toward the RD-optimal solution.
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5.3.1 Probabilistic description of coarse graining

Transforming the system to a probabilistic description allows for a continuous representation

and thus continuous optimization methods can be applied. Instead of directly optimizing the

cluster assignment vector, we optimize the elements of a probability matrix which defines a

distribution on the cluster assignment vector. We assume that all cluster assignments are

independent such that the matrix P ∈ [0, 1]ℓ×m defines the entire probability space. Each

element Pij represents the probability that state i belongs to group j.

Using a probabilistic description is the basis of transforming the optimization problem

to a continuous setting, but there exist many other factors accompanying this change which

must be addressed. Firstly, an adjustment of Eq. 5.23 must be introduced to compute the

distortion. With the cluster assignment vector now a random variable, the expectation is

computed as Ec∼P[D(nA, n̂A)], as is the case in rate-distortion theory. The transformed

optimization problem is thus as follows:

P∗ = arg min
P

Ec∼P[D(nA, n̂A(c))]. (5.24)

To use gradient-based optimization methods, we must also compute gradients through

the solution of the ODE (Eqs. 5.16 and 5.17) and the coarse-grained reaction rate coef-

ficient equations (Eqs. 5.18- 5.20). Computing these gradients along with the remaining

challenges in solving Eq. 5.24 are discussed in Sec. 5.4. First we will discuss two methods of

approximating the expectation Ec∼P[D(nA, n̂A)].

5.3.1.1 Expectation computation

The expectation Ec∼P[D] is nonlinear and thus must be approximated to avoid prohibitively

high computational costs. We propose two methods for efficiently approximating this expec-

tation for use in an optimization framework. Throughout this section, we explicitly indicate

dependencies on the cluster assignment vector c and time t for clarity. Further, we replace

the distortion D(nA, n̂A(c)) by D(lognA, log n̂A(c)).

Expectation approximation The first method we use to approximate the expected dis-

tortion is to approximate all nonlinear expectations. The distortion we use is the common

mean-squared distortion, which is convex. We make the approximation

Ec∼P[D(lognA, log n̂A(c)] ≈ D(lognA,Ec∼P[log n̂A(c)]), (5.25)
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where for every time step t, each state i is reconstructed by

log n̂iA(c, t) = −αjA(c, t) − βjAε
i
A ; ∀i ∈ Bj.

Note that we drop the time index t for notational simplicity, but the following discussion

is for a particular time t and must be repeated at each time which is used to compute the

distortion.

As mentioned in the previous section, temperature is assumed constant in the optimization

framework. Therefore βjA = 1/kBT , where kB is the Boltzmann constant and T is the

translational temperature of the 0D reactor. The expectation is therefore

Ec∼P[log n̂iA(c, t)] = −Ec∼P[αjA(c, t)] − βjAε
j
A ; ∀i ∈ Bj. (5.26)

Using Eq. 5.22), we make the approximation

Ec∼P[αjA(c, t)] = Ec∼P[log 0Qj
A(c)]−Ec∼P[log ñjA(c, t)] ≈ logEc∼P[0Qj

A(c)]−logEc∼P[ñjA(c, t)].

(5.27)

The first term of the approximation has a closed form solution

Ec∼P[0Qj
A(c)] =

ℓ∑
i=1

Pijg
i
A exp(−βjAε

i
A), (5.28)

which also avoids the non-differentiable summation condition from Eq. 5.21.

The second term in the approximation of Eq. 5.27 requires more simplification. Recall

ñjA(c, t) is the solution to the coarse-grained system of equations in Eq. 5.16 for cluster

j at time t. This solution is a function of the coarse-grained reaction rate coefficients,

which are a function of the cluster assignment vector . We make a further approximation

that Ec∼P[ñjA(c, t)] is the solution to Eq. 5.16 computed using the expected reaction-rate

coefficients

Ec∼P[0Kj,w(c)] , ∀j, w ∈ {1, . . . ,m},

Ec∼P[0Kd
j (c)] , ∀j ∈ {1, . . . ,m},

Ec∼P[0Kr
j (c)] , ∀j ∈ {1, . . . ,m}.

Finally, we make the approximations

Ec∼P[0Kj,w(c)] ≈ Ec∼P[0Qj
A(c)0Kj,w(c)]

Ec∼P[0Qj
A(c)]

,
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and

Ec∼P[0Kd
j (c)] ≈

Ec∼P[0Qj
A(c)0Kd

j (c)]

Ec∼P[0Qj
A(c)]

.

The closed form equations we use to compute these expectations are thus

Ec∼P[0Kj,w(c)] ≈
∑ℓ

i=1

∑ℓ
k=1 PijPkwκi,kg

i
A exp(−βjAεiA)

Ec∼P[0Qj
A(c)]

, ∀j, w ∈ {1, . . . ,m}, (5.29)

Ec∼P[0Kd
j (c)] ≈

∑ℓ
i=1 Pijκ

d
i g
i
A exp(−βjAεiA)

Ec∼P[0Qj
A(c)]

, ∀j ∈ {1, . . . ,m}, (5.30)

Ec∼P[0Kr
j (c)] =

ℓ∑
i=1

Pijκ
r
i , ∀j ∈ {1, . . . ,m}. (5.31)

Finally, we approximate the expected distortion using Eqs. 5.25, 5.26, 5.27, and 5.28, with

the coarse-grained solution computed at the expected coarse-grained reaction rate coeffi-

cients using Eqs. 5.29, 5.30, and 5.31. This also removes the non-differentiable summation

conditions to create a differentiable function.

Sampled approximation An additional method we propose to approximate the expected

distortion is through Monte Carlo (MC) sampling. Similar to variational autoencoder train-

ing (VAE) [189], approximating the expectation with a single sample works well in practice

due to the stochastic nature of the optimization itself. The sampling operation is made dif-

ferentiable through the parameterization trick [189]. That is, a sample is drawn from some

easily sampled distribution and transformed through some parameterization to sample from

the desired distribution. Differentiable sampling of discrete one-hot vectors requires a more

advanced approach than sampling from a Gaussian distribution. The recent work in [190]

introduces the Gumbel-Softmax reparameterization trick. This parameterization allows sam-

pling from a discrete categorical distribution such that the sample is ‘one-hot’ - only one

element of the resulting vector is equal to 1, and all other elements are equal to 0. Taking

the statistical mean with respect to infinitely many samples using the Gumbel-Softmax trick

will approach the defined discrete distribution.

Using the Gumbel-softmax trick, we can approximate the expectation using a single sam-

ple from the cluster assignment vector c. To avoid the non-differentiable summation condi-

tions, we instead sample a matrix C ∈ Rℓ×m, where each element is equal toCij = 1 ; ci = j

Cij = 0 ; ci ̸= j .
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Each row of the C matrix should be one-hot, indicating that the state is assigned to a single

cluster. To achieve this, we use the Gumbel-softmax trick to sample from each row of P and

assign it to the corresponding row in C.

The expected distortion is then computed using the single sample C by solving Eq. 5.16

using the coarse-grained rate coefficients defined by

0Kj,w(c) = 0Kj,w(C) =
1

0Qj
A(C)

ℓ∑
i=1

ℓ∑
k=1

CijCkwκi,kg
i
A exp(−βjAε

i
A) , ∀j, w ∈ {1, . . . ,m},

(5.32)

0Kd
j (c) = 0Kd

j (C) =
1

0Qj
A(C)

ℓ∑
i=1

Cijκ
d
i g
i
A exp(−βjAε

i
A) , ∀j ∈ {1, . . . ,m}, (5.33)

0Kr
j (c) = 0Kr

j (C) =
ℓ∑
i=1

Cijκ
r
i , ∀j ∈ {1, . . . ,m}, (5.34)

and

0Qj
A(c) = 0Qj

A(C) =
ℓ∑
i=1

Cijg
i
A exp(−βjAε

i
A). (5.35)

Note that these equations are equivalent to Eqs. 5.18, 5.19, and 5.20. This avoids the non-

differentiable summation conditions, and allows a fully differentiable approximation of the

distortion with MC-based sampling. The forward pass is exact in this case, and the approx-

imation comes only from finite number of samples. However, we found in practice that this

approximation is far less stable during training than the previously presented approximation

method. We have empirically found that approximating expectations yields better results

in practice, as it requires significantly fewer optimization iterations compared to the Monte

Carlo (MC) sampling-based approximation to achieve similar outcomes. However, since there

has been no formal analysis or guarantees regarding the quality of these approximations, it

is possible that the MC approximation may be more versatile and generally applicable in a

wider range of scenarios.

5.3.2 Rate Distortion Clustering

Information theory is a natural tool for analyzing clustering algorithms. Much of its theorems

are extensively studied in the context of discrete problems. Clustering is discrete by nature;

a collection of items are grouped into a discrete number of bins. Each element in the

collection may be continuous or discrete in nature, but the clustering itself is discrete. Thus,

we can apply discrete concepts from information theory which facilitate a detailed analysis
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of clustering algorithms. In particular, RD provides a theoretic limit in performance which

is achievable through clustering. We can also leverage conditions of optimality in an attempt

to learn what the optimal clustering is, rather than relying on ad hoc clustering algorithms.

5.3.2.1 Optimality of Deterministic Encoding-Decoding Systems

In this section, we draw comparisons between using deterministic encoding functions and

probabilistic encoders.

Consider the case illustrated in Fig. 2.1 where we have the Markov chain Y −X−C− Ỹ .

The question we seek to answer is: what is the minimum achievable distortion using a finite

number m of outputs? We seek to learn the channel distribution p(c|x) and decoding function

g(c) such that D is minimized for a given m.

First, we derive the channel capacity as

CI = max
p(x)

I(X;C),

= max
p(x)

H(C) −H(C|X), (a)

= max
p(x)

H(C), (b)

= log2m, (5.36)

where (a) is the definition of mutual information with H(C), H(C|X) defining Shannon

entropy, (b) follows from the fact that H(C|X) ≥ 0, and the final equality is due to c ∈
{1, . . . ,m} and p(c) = Ep(x)[p(x)p(c|x)].

We now have the chain of inequalities

I(Y ; Ỹ ) ≤(a) I(Y ;C) ≤(b) I(X;C) ≤(c) CI (5.37)

where

• (a) follows from the data processing inequality with equality if and only if I(Y ;C|Ỹ ) =

0,

• (b) follows from the data processing inequality with equality if and only if I(X;C|Y ) =

0,

• (c) follows from the definition of channel capacity with equality if and only if H(C|X) =

0 and p(c = i) = 1/m, ∀ i ∈ {1, . . . ,m}.
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From the source-channel separation theorem with distortion, some distortion D is achiev-

able if and only if R(D) ≤ CI , and from the definition of the rate distortion function,

R(D) ≤ I(Y ; Ỹ ) . (5.38)

We also know that the rate-distortion function is monotonic in D; thus, the minimum dis-

tortion D∗ is obtained at R(D∗) = CI . To achieve D∗, all inequalities in Eq. 5.37 must be

equality.

For D∗ to be achievable, we require R(D∗) = CI and thus the following must hold:

1. H(C|X) = 0,

2. I(X;C|Y ) = 0,

3. I(Y ;C|Ỹ ) = 0,

4. p(c = i) =
∫
X p(x)p(c = i|x)dx = 1/m, ∀i ∈ {1, . . . ,m}.

The above 4 conditions can be enforced by ensuring

1. C = h(X), where h : X → {1, . . . ,m} is surjective.

2. f is invertible

3. g is invertible

4. H(C) = log2m⇐⇒ Ep(y)[1{i=h(f(y))}] = 1
m
, ∀i ∈ {1, . . . ,m}

Thus, if we define an overall encoding function fh = h ◦ f the minimum distortion D∗ is

a function of m and is achieved by:

D∗(m) = min
fh,g

EY∼p(y)[D(Y, g(fh(Y )))]. (5.39)

subject to fh surjective

g invertible

Ep(y)[1{i=fh(y)}] =
1

m
, ∀i ∈ {1, . . . ,m}

To solve Eq. 5.39 and enforce the constraints, we must carefully design the optimization

framework.
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Note that the optimization problem given by

D∗(m) = min
fh,g

EY∼p(y)[D(Y, g(fh(Y ))], (5.40)

has the same solution as Eq. 5.39, but the added conditions constrain the high dimensional

optimization to ensure that the minimum achievable distortion remains realizable. Simply

minimizing the average distortion often leads to local minimum solutions in our experiments

and is not as robust without the constraints provided by 5.39. Enforcing the optimization

constraints of Eq. 5.39 is a question of implementation details. We discuss here one way of

enforcing these conditions.

Consider a case in which we have R bits to represent a sample from the source y ∼ p(y).

This means that there are m = 2R elements in a codebook B = {1, . . . ,m} with which we can

use to represent samples of the source distribution. We use this codebook as an example for

simplicity, but the codebook can contain any m unique elements. A deterministic encoding

function fh : Y → B is desirable, but designing general and flexible functions fh which

are guaranteed to only predict elements of the codebook (a discrete space) is non-trivial.

Instead, we replace this with a function fϕ : Y → [0, 1]m such that a conditional distribution

is predicted over the codebook for some input by

p(c|y) = fϕ(y) ,

where c ∈ Rm is a vector corresponding to each of the elements in the codebook. The function

fϕ can be easily constructed as a neural network or any other parameterized function with

a softmax output layer. This will ensure that a probability distribution on the codebook is

predicted for each input sample. However from Sec. 5.3.2.1, it is clear that to obtain minimum

distortion the encoding function must be deterministic. In other words, H(C|Y ) = 0, and

this can be easily encouraged in the optimization objective as

H(C|Y ) = −EY

[
m∑
j=1

fϕ,j(y) log fϕ,j(y)

]
,

is inexpensive to compute.

We can also parameterize the decoding function gψ : B → R as a neural network or

some other flexible function. As we will only input codebook values, the decoding (or

reconstruction) function will predict at most m reconstruction points.

Finally, we arrive at the optimization objective which we use to perform rate-distortion
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informed clustering

D̂∗(m) = min
ϕ,ψ

EY,C∼p(y)fϕ(y)[D(Y, gψ(C))] + αH(C|Y ) + β
m∑
i=1

(
EY,C∼p(y)fϕ(y)[1{i=C}] −

1

m

)2

,

(5.41)

where the argument gives the trainable loss function.

5.4 Computational framework

With a probabilistic description of the system defined (Sec. 5.3.1) and a loss function to

optimize (Eq. 5.41), we connect our problem to the RD-based loss function and discuss

implementation details. An overview of our framework is illustrated in Fig. 5.1

5.4.1 RD-Based Clustering of Internal States

The goal of our clustering problem is to assign each internal state niA of species A to a cluster

j. To this end, we introduce a classification model which predicts the cluster probabilities

p(ci|si) = fϕ(si) from the state information si such as rotational / vibrational quantum

numbers and internal energy. The classification model predicts the cluster assignments for

each state individually, and the entire probability matrix is assembled by

P = p(c|y) =


p(c1|s1)

...

p(cℓ|sℓ)

 ∈ Rℓ×m .

We use the optimization objective in Eq. 5.41 to train the classifier. The ‘decoder’ in this

case does not need to be constructed. It is already prescribed and consists of computing

the coarse-grained (reduced-order) solution to Eqs. 5.16, or more accurately using one of the

methods in Sec. 5.3.1.1 to approximate the expectation of the solution with respect to P.

The distortion we assume during training is the L2 norm between the log of number density:

D(nA, n̂A(cϕ)) = ∥lognA − log n̂A(cϕ)∥22 .

Note that the cluster assignments cϕ are a function of the classifier parameters. Our final

140



loss function with which we train the classifier parameters ϕ is

L(ϕ) = Ecϕ [∥lognA−log n̂A(cϕ)∥22]−α
ℓ∑
i=1

m∑
j=1

fϕ,j(si) log fϕ,j(si)+β
m∑
j=1

[(
ℓ∑
i=1

fϕ,j(si)

)
− 1

m

]2
,

(5.42)

where the first term on the right hand side is the expected distortion, the second is the

conditional entropy H(C|Y ), and the final term corresponds to the final term in Eq. 5.41.

This final term encourages equal number of states to be assigned to each cluster while the

conditional entropy term encourages deterministic bin assignments.

5.4.2 Optimization framework

Computing the expectation in the loss function in Eq. 5.42 was addressed in Sec. 5.3.1.1,

but computing the trainable parameter gradients via backpropagation through an ODE

solve can be quite expensive if performed naively. Therefore we employ NeuralODE [26]

to efficiently compute the gradients required. Any black-box solver can be used to solve

the ODE using NeuralODE, and the gradients are automatically computed. Our entire

computational framework is built in Pytorch [158], which allows us to combine the adjoint-

based gradient computation of NeuralODE with the automatic differentiation (AD) tools

present in Pytorch. Additionally, using AD models allows any modules containing trainable

parameters to be introduced at any location in the framework and gradients will be computed

with respect to those parameters automatically. In the end, this allows for relatively simple

and efficient implementation of complex and large scale gradient computations and allows

for flexible and efficient framework adjustments.

Having an efficient method of computing gradients using AD is just one piece towards

optimizing our classification model. However, this comes with another task: ensuring that

the computational graph is not severed. For example, the summation conditions of the

coarse-grained equations are non-differentiable due to the existence of the cluster assignments

in the summation index. This issue is avoided by transforming the equations to a probabilistic

description.

We initially leveraged the Gumbel-Softmax trick [190] to approximate the expectation

in Eq. 5.42 in a differentiable manner. This was replaced in favor of the empirically more

robust way of approximating the expectation with the method presented in Sec. 5.3.1.1
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Figure 5.1: Machine learning framework. We train a classifier with a rate-distortion
informed loss function to predict internal state cluster assignments. After predicting classes,
we use the probabilistic description of coarse grained dynamics to approximate the state-to-
state solution. Clear connections to Fig. 2.1 are illustrated.

5.4.2.1 Tractability improvements

Even with an efficient method of computing gradients, the memory requirements can be

too large to fit in modern hardware. To partially alleviate this, we make many tractability

improvements to make the optimization process feasible.

In general, reaction rate coefficients vary with temperature. The full state-to-state rates

are often modeled with an Arrhenius fit; however, the coarse-grained reaction rate coefficients

are bi-variate functions of Tint and T , as can be seen from Eqs. 5.18- 5.20, and can not be fit

with uni-variate functions such as the Arrhenius law. A common approach for this issue is to

compute the coarse-grained coefficients on a grid of NTint×NT points, and interpolate on this

grid during the forward solve. This greatly reduces the cost of computing the coarse-grained

reaction rate coefficients by avoiding computing them at each temperature in the forward

solve.

If we consider all outputs of the coarse-graining process (coarse-grained reaction rate

coefficients) as K, there are (M2 + 2M)NTintNT values to compute. At each point in the

temperature grid, there are M2 excitation / de-excitation rates, M recombination rates, and

M dissociation rates. Computing the gradients of K with respect to the cluster assignments

c results in a matrix ∂K/∂c ∈ Rℓ×(M2+2M)NTintNT

Conservative values for NTint and NT are 10. With this temperature grid and 16 bins for

the N2 + N system, the gradient ∂K/∂c will contain more than 2.7 × 108 values. Using 64

bit precision is required here to accurately compute state-specific partition functions. This

results in well over 2GB of data that must be computed and stored at each optimization
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iteration just for the forward pass.

Computing the expected distortion E[D] and gradients of the ODE solve can also be-

come quite expensive for a large number of time steps. The system is usually solved using

adaptive time stepping methods which can result in nt > 103 time steps until equilibrium

is reached. The output of the ODE solve will therefore contain N(M2 + 2M)NTNTintNt

values, which can be over 25GB using 64bit precision. The backward pass often requires

far more memory, especially when considering that the adjoint system is considerably more

stiff and requires many times more integration steps to evaluate accurately. This results

in memory requirements per optimization iteration of nearly a terabyte. With potentially

thousands of optimization iterations required, it is prohibitively expensive and infeasible on

typical hardware.

Following the previous works on coarse-graining [169, 170, 173, 174], we can assume

isothermal heat bath and constant internal temperature during the optimization process,

specifically Tint = T = T0 with NTint = NT = 1, which greatly reduces the compute and

storage costs of the framework. Additionally, only a subset of locations in time are used to

compute the distortion. These simplifications combined greatly reduce the cost of computing

and storing gradients by an estimated 3-6 orders of magnitude.

5.4.3 Stability Improvements

We transform the original system of equations for more stability during the ODE solve. These

transformations are purely for computational convenience and do not alter the mathematical

formulation of the dynamical systems. Both the number density and energy density equations

are transformed for a more stable method of computing the solution. First, we solve for mass

densities instead of number densities in Eq. 5.16. It is easy to convert between mass density

and number density using the relationship nA = ρA/mA, where mA is the mass of a particle of

species A. A substitution njA = ρjA/mB and nB = ρB/mB is made; for simplicity, we always

use the single particle mass to make the transformation. The resulting equation which we

solve is instead

dρ̃jA
dt

=
m∑
w=1

(−0K̂j,wρ̃
j
AnB + 0K̂w,j ρ̃

w
AnB) + (−0K̂d

j ρ̃
j
AnB + 0K̂r

j ρ
3
B) , (5.43)

where the rate coefficient matrices are simply scaled versions of the originals:

0K̂j,w =
0Kj,w

m
, 0K̂d

j =
0Kd

j

m
, 0K̂r

j =
0Kr

j

m2
.
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This simple substitution greatly aids in computational stability and accuracy. Without

it, scale differences in the rate coefficient matrices and number densities can be as high

as 60 orders of magnitude. Solving the equations with such a large range of scales can

cause memory issues and finite precision errors. With the transformation, the density and

transformed rate coefficient matrices are closer to the same scale, alleviating some of such

computational barriers.

Instead of solving the internal energy density dynamics (Eq. 5.6) and converting to tem-

perature, we solve for internal temperature directly. Starting with the chain rule, we rewrite

the time derivative of the energy density as

de

dt
=

de

dTint

dTint
dt

= cv
dTint
dt

,

where de/dTint = cv is the constant volume specific heat. Simply taking the derivative of

Eq. 5.17 with respect to Tint, and using the relationship β = 1/(kBTint), the constant volume

specific heat for cluster j of species A is

cjv,A =
2Qj

A
0Qj

A − (1Qj
A)2

(0Qj
A)2kT 2

int

, (5.44)

where mQj
A is defined by Eq. 5.21. Finally, we solve for the temperature of each cluster

directly by simulating
dT̃ jint,A
dt

=
1

cjv,A

dẽjA
dt

, (5.45)

where T̃ jint,A is the internal energy of cluster j of species A. We present here only the

deterministic formulation of these transformations, but the approximated expectation using

a probabilistic description is straightforward and follows the discussion of Sec. 5.3.1.1. Note

that we do not solve Eq. 5.45 during training, but we do solve it when performing the final

prediction with the optimized cluster assignments.

5.5 Numerical Results

The presented RD-informed loss function is demonstrated by training a classifier on two

separate problems. The first is a simple 1D Gaussian source quantization problem for which

the analytic RD curve is known. Training with our loss function can thus be demonstrated

in a more controlled and efficient environment. The entire framework is then illustrated by

clustering 9390 internal states of N2 in a 0D reacting system of N2 + N. All of the source
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code for the following experiments is publicly available at https://www.github.com/christian-

jacobsen/RDClustering

5.5.1 RD clustering analytic example

The quantization of a one-dimensional Gaussian source is a well studied problem [54], and

one of the very few problems for which the analytic form of the rate-distortion curve exists.

Consider samples y from a 1D standard normal distribution such that y ∼ N (0, 1), and a

squared-error distortion

D = (Y − Ỹ )2.

We would like to quantize this source using some fixed number of bits R = log2m. This

means that there are 2R elements in a codebook with which we can use to represent samples

from the source. Alternatively, there are m clusters which we can use in the quantization.

Here we will consider a codebook B = {1, . . . ,m} for simplicity, although any codebook with

m unique values can be used. Each sample from the source is assigned a particular cluster,

and this cluster assignment is transmitted through a noisy channel. At the output of the

channel, a decoder attempts to reconstruct the original sample from the received cluster

assignment. There are two questions to answer:

1. On average, how well can the original signal be reconstructed?

2. How can the optimal encoding-decoding system be found?

We have already illustrated how rate-distortion theory provides an answer to the first ques-

tion, and in this an analytic solution is known. The second question is one of optimization,

and we can inform the optimization process through information theory, and in particular

the conditions for optimality in Sec. 5.3.2.1.

The rate-distortion function for memoryless transmission of the Gaussian source is given

by [54]

R(D) =

−1
2

log2(D) if 0 ≤ D ≤ 1

0 if D > 1
. (5.46)

Conversely, the distortion-rate function

D(R) = 2−2R (5.47)

is related to the number of clusters used in compression. We will approximately solve Eq. 5.39

using machine learning based methods to approximate functions fh and g which minimize
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distortion for some number of bins m. We will then compare the final trained models to the

RD curve for this problem.

Figure 5.2: Learning an encoding-decoding system to quantize a 1D Gaussian source. Train-
ing with our RD-informed loss (Eq. 5.41) results in lower distortion over training with dis-
tortion only. The optimal point on the RD curve is highlighted in red.

We first parameterize a probabilistic encoding function fϕ : R → [0, 1]m using a simple

fully connected feed-forward neural network which acts as the encoder, and transmission

through a noisy channel. The network consists of 5 layers with 10 nodes per layer and a

softmax layer at the end. The conditional distribution on the cluster assignment is given by

p(c|y) = fϕ(y)

where c ∈ Rm.

A deterministic decoding function hψ : B → R is also parameterized by a simple FNN with

5 hidden layers and 10 nodes per layer. There is no final activation function in the decoder

to allow any continuous value to be reconstructed. However, note that there exist only up to

m reconstruction points. Although the decoding function is continuous, only the m values in

the codebook B are ever reconstructed. Thus, we will have at most m reconstruction points.

The problem of quantization essentially consists of learning:

1. The assignment regions

2. The reconstruction points
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We show that simply minimizing distortion (also called reconstruction loss) does not

robustly and consistently find optimal encoding-decoding systems, but our formulation brings

the learned encoding-decoding system significantly closer to the optimal system in the RD

plane. Figure 5.2 shows the results of learning the encoding and decoding functions by

minimizing both the distortion only and our loss formulation separately in Eq. 5.41. All

model and training parameters are identical for each model trained, the differences are in

the random initialization of the model parameters and the loss function trained with. The

model has been trained 5 times for each loss function, and the rate and distortion computed

using the final trained model with respect to the Gaussian source. The average distortion for

models trained by minimizing distortion only is 0.1403 while the average distortion for models

trained by minimizing Eq. 5.41 is 0.0412. The optimal distortion for an encoding-decoding

system used to quantize a Gaussian source is 0.0156. This simply example illustrates that

training using the RD-informed loss function can consistently achieve lower distortion than

training with distortion only.

5.5.2 Optimal Clustering of N2 + N System

We implement the rate distortion based clustering optimization framework described in

Sec. 5.4 to cluster ℓ states into m bins. The coarse-graining process detailed in Sec. 5.2.2 is

then used to form a reduced order system of equations based on the binning assignments.

The optimization is performed using a single solution of the STS master equations for a

0D N2 − N system reacting at 10,000K and 1,000Pa. The system is initially considered in

equilibrium at 1,000K, and the temperature is instantaneously raised to 10,000K to begin

the simulation. We set the initial molar fraction of N to 0.05. There are 9391 total de-

grees of freedom - 9390 rovibrational states of N2 and the molar concentration of N. Full

STS rate coefficients are obtained through rovibrational quasi-classical trajectory (QCT)

calculations [191, 192], and the Plato library [175, 193, 194] is used to simulate the master

equations. This is our only data sample, a single solution to the STS master equations.

A classification model is initialized as a simple fully-connected neural network with 4

layers, 10 nodes per layer, ReLU activation functions, and a softmax output layer. Three

features for each internal state are input to the network: internal energy level εi, rotational

quantum number Ji, and rotational quantum number νi. An m-dimensional probability

vector is output indicating the probability of an internal state of N2 belonging to each of the

clusters. The optimization objective in Eq. 5.42 is used to train the classifier. The distortion

we assume here is the MSE between the N molar fraction of the STS solution and the coarse-

grained solution based on the cluster assignments from the classifier prediction. We limit the
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amount of STS data used in time to train the model. Only the first tf = 2× 10−6 seconds of

the STS solution is considered during training. This distortion corresponds to an L2 norm

between the black and blue curves to the left of the vertical gray dashed lines in Fig. 5.4

5.5.2.1 Optimization procedure

The optimization of such a high dimensional system contains many local minima. Here we

have empirically found that two primary types of local minima exist in the loss landscape.

The first type is characterized by a lack of using all clusters available to the classifier. For

instance, p(cj|si) ≈ 0 ,∀i for some cluster j. This violates condition (4) in Sec. 5.3.2.1,

thus it is clear that this type of local minima is sub-optimal. One can ‘escape’ this type

of local minimum by scheduling an increase in β throughout training. A larger value of β

corresponds to encouraging an increase in conditional entropy H(C|S), distributing states

more evenly among the available clusters.

The second type of local minimum is characterized by low values of entropy H(C|Si) for

some states. This indicates that the state i has a relatively high probability of belonging

to more than one cluster. This violates condition (2) in Sec. 5.3.2.1, and again this type of

local minimum is sub-optimal. ‘Escaping’ this type of local minimum can be accomplished

by introducing a scheduler for the α hyperparameter in our training loss.

Our α and β schedules follow typical β-type schedulers used in training variational au-

toencoders (VAEs) to prevent mode collapse [195, 74]. We linearly increase α from 0 to 10−3

over the course of 5,000 optimization iterations, followed by a repeat of this for another 5,000

optimization iterations then α = 10−3 until convergence. We follow a similar procedure for β,

varying from 0 to 5× 10−4 over 7,500 iterations and hold at 5× 10−4 until convergence. The

implemented α and β schedules aid in avoiding the aforementioned local minimum solutions,

but the model may still be stuck in a local minimum after the hyperparameter scheduling

procedure. This may often be the case, but it can easily be alleviated with some additional

manual scheduling of the hyperparamters α and β. If any clusters are unused, β should be

increased temporarily to encourage all clusters to be used. If many cluster assignments re-

main highly uncertain, α should be increased to reduce the uncertainty in cluster assignment

predictions. Doing so will allow the optimization procedure to ‘escape’ local minima and

continue with the optimization process.

Setting α, β = 0 corresponds to minimizing distortion only without any enforcement

of the conditions obtained from RD. In this setting, none of our experiments were able

to improve upon the existing spectral clustering algorithm. However, when applying the

aforementioned schedulers for α and β during optimization, effectively leveraging the RD-

informed loss function, cluster assignments which result in greatly reduced ROM error are
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learned.

5.5.2.2 Constant internal temperature optimization results

The optimization is performed assuming a constant internal temperature in the reduced-order

system, set to the translational temperature of the system T = 10, 000K. The optimization

is far less memory-intensive than using variable temperature in the reduced-order system,

as described in Sec. 5.4.2.1. However, the final learned cluster assignments are still valid

when solving for the internal temperature. We perform experiments for varying number of

clusters. In particular, we use m = 8, 16, 32.

(a) m = 8 clusters (b) m = 16 clusters (c) m = 32 clusters

Figure 5.3: Final trained classifier predictions. (upper) Maximum probability cluster assign-
ments for all states. (lower) Entropy of cluster assignment predictions for all states. White
indicates that the cluster assignment is nearly deterministic.

Figure 5.3 shows the final trained classifier predictions for each value of m. We plot

the vibrational (rotational) quantum number of each state on the x (y) axis with colors

corresponding to the maximum probability cluster that the state belongs to, predicted by the

trained classifier. We also show the entropy of p(ci|si) for each state, which is an illustration

of the degree to which the classifier deterministically predicts cluster assignments. Darker

colors indicate a higher entropy (or uncertainty) in the cluster assignment predictions. There

is clearly some structure in the cluster assignment predictions, and the uncertainty is larger
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on the boundaries of ‘decision regions’ where cluster assignments change. However, for the

overwhelming majority of states, the entropy H(C|Si) is nearly zero.

(a) m = 8 clusters (b) m = 16 clusters (c) m = 32 clusters

Figure 5.4: (upper) Dynamics of molar fraction evolution for N2. Note the training time line
near the y-axis. (lower) In log scaled time.

Figure 5.5: RD plane comparison of clustering strategies (lower is better).

We also illustrate in Fig. 5.4 how the final predictions compare to other clustering strate-
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gies described in Section 5.2.3. Qualitatively, the results obtained from our method are closer

to the STS solution than other previous methods. Quantitatively, we plot energy-based clus-

tering, spectral clustering, and our RD-informed clustering on the rate-distortion (RD) plane

in Figure 5.5. The number of bins are plotted on the x-axis, and the distortion is plotted on

the y-axis. Lower distortion is desirable, thus our method clearly outperforms the other two

methods shown. Additionally, the distortion also decreases at a faster rate with increased

number of clusters using the RD-informed method compared to energy-based clustering and

spectral clustering.

Figure 5.6: Prediction error as a function of time for m = 32 clusters (lower is better).

Finally, we show the error with respect to the STS model as a function of time for

prediction on the m = 32 cluster system in Figure 5.6. The RD-informed clustering shows

improved performance compared to the other methods on nearly the entire prediction time,

with the exception of a small window of time at the onset of prediction.

5.6 Summary

In this chapter, a framework is presented to integrate ML techniques with the principles of

RD theory to enhance reduced-order modeling of non-equilibrium gas dynamics. This ap-

proach leverages the maximum entropy principle and RD theory to navigate the complexities

of optimizing cluster assignments, thereby capturing the dynamics of systems with greater ac-

curacy. By implementing a fully-differentiable dynamics solver, which includes Neural ODEs

and adjoint methods, this framework facilitates the efficient learning of cluster assignments
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through gradient-based optimization. Additionally, the implementation details discussed and

modifications incorporated into the optimization process are critical to rendering the opti-

mization feasible. The final cluster assignments learned by the classifier demonstrate state

of the art performance in terms of accuracy in the reduced order modeling of the master

equations describing state-to-state dynamics.

The presented results demonstrate that training the classifier assuming constant internal

temperature results in improved ROM performance; however, optimizing the classifier with

the internal energy density equations included may lead to a further increase in performance

while additionally improving performance across a range of initial conditions. Doing so

poses some additional challenges partially discussed in Section 5.4.2.1. One such hurdle is to

massive leap in memory requirements due to computing a grid of coarse-grained rate coeffi-

cients in internal temperature space. This requires 2-3 orders of magnitude more memory to

compute just in the forward pass, and even more in the gradient computation. Performing

such an optimization is a significant challenge which requires many more implementation

optimizations and perhaps some new techniques.

A goal of future works is to develop a surrogate capable of dynamically adjusting both

cluster assignments and the number of clusters required to represent the true dynamics in

real time. However, we note that the work presented in this chapter is a first step towards

that goal. Generalizing the classifier to a wider range of initial conditions is of primary

importance to improve accuracy broadly across a range of pressure and temperature values.

It may be possible to generalize the classifier to other species, provided enough data is

available.

The incorporation of ML techniques, while beneficial for the accuracy of the ROMs, also

introduces a trade-off in terms of interpretability. Specifically, the complexity of the learned

cluster assignments, despite their improved accuracy, challenges their straightforward inter-

pretability, highlighting a common theme in the intersection of ML and physics: the balance

between enhancing model performance and maintaining clarity in the model’s physical under-

pinnings. However, the reduced order model itself is interpretable and physically consistent

by construction, and so it is deemed acceptable in this work to sacrifice a small portion of

interpretability in the model for great increases in accuracy.

This exploration contributes to the thesis’s broader objective of demonstrating the po-

tential and limitations of applying ML to physical modeling. Our findings emphasize the

promise of ML in advancing the capabilities of physical models, albeit with considerations

regarding the interpretability of such models. As we advance beyond application-specific

works towards a more general framework for solving forward and inverse problems, this

chapter marks a step towards the integration of ML in physics, demonstrating a nuanced
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approach where ML complements and enriches physical modeling practices.

153



CHAPTER 6

Physically Consistent Diffusion Model

Sampling for Solving Forward and Inverse

Problems

This chapter marks a slight transition, venturing from specific case studies of physics-aware

ML towards a more generalized framework designed to tackle the nuanced challenges of

solving forward and inverse problems using physics-aware ML. The focus of this chapter

is twofold. Firstly, it underscores the unique position of score-based generative models as

a powerful tool for solving forward and inverse problems, especially those embedded with

probabilistic uncertainties. These models, renowned for their success in fields such as image

generation and discussed in Section 2.3.2, encounter a distinct set of challenges when applied

to physical problem-solving. The crux of these challenges lies in the necessity for generated

samples to not only be quantitatively rigorous but also to strictly adhere to the physical

laws governing the system of interest. Our aim is towards developing a methodology that

ensures every sample generated by these models remains faithful to the specified governing

physical equations, thereby mitigating the risk of predicting non-physical behaviors.

Despite the promising initial applications of these models in fluid dynamics and other

areas governed by partial differential equations (PDEs), there exists a notable gap in en-

suring their adherence to physical laws. Yang et al. develop a surrogate model named

FluidDiff [196] based on diffusion models to predict flows governed by the 2D incompressible

Navier-Stokes equations given a source function. The model is shown to achieve greater

accuracy in prediction over other methods such as conditional GANs [82], U-Nets [197], and

even physics-informed neural networks [46] (PINNs) in some cases. The primary metric

of comparison is the root mean-squared error (RMSE) without emphasis on the adherence

of predictions to the physical equations. Ultimately, without enforcement of the physical

equations, the model may inevitably predict non-physical behavior. Another work by Shu et

al. [198] develops an iterative method for performing field reconstruction from sparse mea-
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surements on 2D flows governed by the Kolmogorov flow equations. The model is based on

conditional DDPMs in which the conditioning information is a low resolution guess of the

full field along with gradients of the physical residual. Accurate high-fidelity reconstructions

are observed along with reasonably good adherence to the physical equations of interest;

however, there is no enforcement of physical behavior. Residual gradients are included as

conditioning information, but there is no enforcement towards minimizing the residual during

sampling. This in turn also allows for the model to potentially predict non-physical behavior.

These observations underline the essence of our work: to establish a robust framework that

not only enhances the accuracy and applicability of score-based generative models but also

guarantees their compliance with physical laws.

Figure 6.1: We propose a method of injecting the governing equations into the sampling pro-
cess of score-based generative models to enforce consistency of samples with the underlying
PDE.

Furthermore, we delve into the intricacies of our proposed framework (Figure 6.1), em-

phasizing its novelty in enforcing physical consistency during the sample generation phase.

This approach is distinguished from prior methods, and in particular PINNs, in many ways.

Three primary differences are: i) The goal is to not solve a PDE, but rather to generate

samples constrained by them; ii) Rather than using the PDE residual during the training

stage, the residual is utilized during the sample generation stage; iii) Rather than relying on

the continuous form of the residual, a discrete form is utilized based on the defined data.

We further remark that the work by Chung et al. [121] is most closely related to some as-

pects of the work presented here, although applied to image reconstruction. Corrector steps

are applied during sampling from the score-based model to encourage sample consistency

with a linear system modeling the data. Our work similarly contains correction steps; how-

ever, the nature of the correction steps is quite different and achieved in a different manner.

The ‘correction steps’ in our work constitute minimizing the residual from general nonlinear

physical PDEs rather than a linear system to perform image reconstruction.
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As we navigate through the example application of this framework (2D predictions gov-

erned by Darcy’s law), we illustrate the framework’s effectiveness in predicting fluid flows

and reconstructing field data. These examples not only showcase the framework’s capacity to

ensure physical consistency but also highlights its utility in both forward and inverse tasks.

A flexible form of model architecture is additionally demonstrated such that architectural

augmentations can be rapidly trained for particular forward or inverse problems based on a

baseline pretrained model.

Score based generative models can effectively solve forward and inverse problems, and

with improvements to the generative sampling process, they may be able to solve such

problems with state of the art efficiency. They are also well suited for solving very high

dimensional inverse problems (which are notoriously expensive to solve) with expressive and

unconstrained distributions. New works such as consistency trajectory models [104] and

higher order solvers [199] have demonstrated remarkably faster sampling strategies which

are not included in this work - strategies which could provide orders of magnitude speedup

in sampling time, resulting in state of the art flexibility and efficiency in solving forward and

inverse problems with score-based generative models.

In conclusion, Chapter 6 not only encapsulates the synthesis of machine learning and

physical sciences explored throughout this thesis but also sets the foundation for future

research at their intersection. By demonstrating the effectiveness and flexibility of score-

based models in solving forward and inverse problems while adhering to physical laws, this

chapter paves the way for a broader application of these models, ensuring that the future

of computational physics is one where accuracy does not come at the expense of physical

integrity.

6.1 Enforcing Physical Consistency and Conditioning

This chapter considers solving forward and inverse problems governed by general steady-state

partial differential equations (PDEs) of the form

F (x,y,η) = 0 , (6.1)

where x ∈ R2 (2D) are the spatial coordinates, y ∈ X are the physical variables of interest,

and η ∈ Rp are parameters describing the physical system. In our examples, solutions y

are computed on a discretized spatial domain such that a single solution – or data sample

– is given on a 2D physical domain X = Rn×n. We remark that constraining samples to

follow the governing PDE is done only at inference/sample time, and does not have
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any effect on the training procedure. This allows for much greater flexibility without

the need for re-training the model. We first discuss training a score-based generative model

before describing our approach to enforcing physical consistency in generated samples.

6.1.1 Unconditional Model Training

Figure 6.2: ControlNet-type architecture based on a UNet-type unconditional model ar-
chitecture. The conditional model contains a fixed pretrained unconditional model with
parameters ϕ and a conditional model augmentation with trainable parameters ψ.

We train a convolution-based UNet-type [197] architecture to approximate the score func-

tion in time with the weighting function set to a constant λ(t) = 1 (see Section 2.3.2 for

details). The overall architecture for both our unconditional and conditional generative mod-

els is illustrated in Fig. 6.2. Our choice of f(y, t) and g(t) in the SDE form correspond to

the variance-preserving (VP) SDE [99] in which

f(y, t) = −1

2
β(t)y, and (6.2)

g(t) =
√
β(t) , (6.3)
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giving a final forward SDE form of

dy = −1

2
β(t)ydt+

√
β(t)dw . (6.4)

Further, we define β(t) as a linear function with two hyperparameters:

β(t) = βmin + (βmax − βmin)t , (6.5)

where βmin, βmax > 0 and βmax > βmin. This SDE form induces a transition kernel of

p(y(t)|y(0)) = N (µ(y, t),Σ(t)) , (6.6)

where

µ(y, t) = y(0) exp

[
−1

4
t2(βmax − βmin) − 1

2
tβmin

]
(6.7)

Σ(t) = I

(
1 − exp

[
−1

2
t2(βmax − βmin) − tβmin

])
(6.8)

With a Gaussian transition kernel, the score function can be computed analytically such

that we train with the following loss function:

min
θ

Et∼U [0,T ]

[
Ep(y(0))p(y(t)|y(0))[||sϕ(y(t), t) + zΣ1/2(t)||22]

]
, (6.9)

where z ∼ N (0, I) and z ∈ X . During training, we set βmin = 1 × 10−4, βmax = 10, and

T = 1 for all of our experiments.

The optimal values for hyperparameters βmin and βmax may be application dependent.

The value βmin is related to the minimum noise level of the data during training. It should

be set to a small value (βmin << 1) to allow the model to learn what the data distribution

looks like without noise added. The value of βmax is thus related to the maximum noise level

of the data during training. If it is too small, generated samples will likely show a lack of

diversity and may be constrained to a single mode. If it is too large, the model will struggle

to fully denoise samples such that the generated samples are very noisy. Beginning with the

hyperparameter values discussed in this work, is suggested that the values of βmin and βmax

are tuned for each application and model.

158



6.1.2 Learning Conditional Score Functions

Unconditional generators have diverse applications, such as sampling from p(y) for data

augmentation, distribution learning, and anomaly detection. Moreover, they can serve as

a robust foundation for constructing conditional generative models. Such models aim to

sample from p(y|θ), where θ ∈ Rs represents conditioning information, guiding the sam-

pling process. Integrating conditioning into existing unconditional score-based generative

models extends their utility, particularly in generating physical fields based on various input

conditions like generative parameters, boundary conditions, partial field measurements, or

macroscopic quantities. A conditional score-based generative model has the potential to

undertake tasks like field reconstruction, field inversion, and effective probabilistic surrogate

modeling. In some instances, an approximate conditional sampling can be achieved from a

pre-trained unconditional model without additional training or conditional modeling. How-

ever, in most cases, generating samples from the desired conditional distribution requires

extra data, modeling, and/or training efforts.

In scenarios where an analytical approximation to the conditional score function is un-

available, we resort to training a conditional model to approximate the conditional score

function. Developing a conditional score-based generative model requires not only data

samples y but also corresponding conditional information θ for each sample, forming pairs

{y(i),θ(i)}Ni=1 in the dataset. The conditioning information could be a macroscopic quantity

derived from the physical field, the generative parameters defining the physical field, or par-

tial field measurements, among other possibilities. With these data samples, a conditional

generative model aims to sample from the true conditional distribution p(y|θ).

Since the forward Stochastic Differential Equation (SDE) noising process defined by

Eq. 6.4 is Markovian, it remains independent of conditioning, even when conditioning in-

formation is available. The forward process stays the same: p(y(t)|y(0),θ) = p(y(t)|y(0)).

However, the score approximation model sϕ(y(t), t,θ) is designed to accept conditioning in-

formation as an additional input. In the general conditional case, the score approximation

model is trained by

min
ϕ

Et
[
λ(t)Ep(y(0),θ)p(y(t)|y(0))[||sϕ(y(t), t,θ) −∇y(t) log p(y(t)|y(0),θ)||22]

]
, (6.10)

effectively embedding conditioning information into the score approximation to learn

∇y log p(y(t)|θ).

Training a full-scale generative model is often quite expensive and can be difficult to prop-

erly tune with optimal hyperparameters, architectures, and training schedules. However, in

some scenarios in which multiple downstream objectives are of interest from the same appli-
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cation, we aim to train a single unconditional model and augment the unconditional model

with smaller conditional models which can be easily connected and disconnected to facilitate

generation using multiple different types of conditioning. To achieve this, we turn towards

recent advancements in conditional score-based generative modeling and adapt them for

our applications. In particular, we leverage ControlNet [117], a form of model architecture

specifically designed to augment pretrained unconditional models with conditional genera-

tive capabilities. The idea of ControlNet is to freeze the pretrained unconditional model

and connect it to a smaller trainable model which will incorporate the conditional infor-

mation. The overall model architecture including the unconditional model and conditional

augmentation which we employ is shown in Fig. 6.2. The conditional portion of the model

to be trained is initialized with special zero-convolution [117] layers such that the model will

produce unhindered unconditional samples at the onset of training. Thus, if a pretrained

unconditional model is validated to generate physical fields which are consistent with the

underlying physical PDE, the conditional model is already guaranteed to produce physically

accurate solutions at the onset of training.

During training, the unconditional model parameters are frozen. The conditional aug-

mentation is trained using a very similar objective function to Eq. 6.10 with the main excep-

tion that the conditional score function approximation sϕ,ψ(y(t), t,θ) contains non-trainable

parameters ϕ and trainable parameters ψ. The training objective we train conditional aug-

mentations with therefore becomes

min
ψ

Et
[
λ(t)Ep(y(0),θ)p(y(t)|y(0))[||sϕ,ψ(y(t), t,θ) −∇y(t) log p(y(t)|y(0),θ)||22]

]
. (6.11)

6.1.3 Sampling

Sampling from the trained score-based generative model is achieved by solving the reverse

SDE or PF ODE backward in time. In our work, the particular form of reverse SDE solved

during sampling is given by

dy =

[
−1

2
β(t)y − β(t)sϕ(y(t), t)

]
dt+

√
β(t)dw , (6.12)

and the PF ODE by

dy =

[
−1

2
β(t)y − 1

2
β(t)sϕ(y(t), t)

]
dt . (6.13)

These equations can be easily constructed from Eqs. 2.22, 2.26, 6.4, and 6.5. We note that

the unconditional score function approximation sϕ(y(t), t) is replaced with the conditional

approximation sϕ,ψ(y(t), t,θ) in Eqs. 6.12 and 6.13 to achieve conditional sampling.
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We assume a prior distribution of π(y) = N (0, I). The transition kernel in Eq. 2.24

approaches this prior at t → ∞, but with large enough difference in βmax − βmin, the

transition kernel at t = T = 1 will be close to the selected prior. After sampling from the

prior, this becomes the initial condition of the reverse SDE or reverse PF ODE. Solving

either of Eqs. 6.12 or 6.13 from t = 1 to t = 0 will result in a sample drawn from the original

data distribution p(y(0)), as long as the score function approximation is accurate. These

equations can be solved using any discretized SDE or ODE solver of choice. For simplicity,

we opt to solve the reverse SDE in Eq. 6.12 using the first-order accurate Euler-Maruyama

(EM) [200] method, and the PF ODE in Eq. 6.13 with the first-order accurate forward Euler

(FE) scheme. Defining τ as the number of discrete time steps, this corresponds to a timestep

of ∆t = T/τ .

To enforce physical consistency, we turn towards modifying the sampling process after

training by reducing the physical residual r at each point in the computational domain,

where

r = F (x,y,η) . (6.14)

The residual constitutes computing the PDE operator on a discretized approximate solution

to the PDE. In practice, this residual will be nonzero, indicating that the discretized physical

field y does not perfectly satisfy the physical equations. Our goal is to generate samples

from a score-based generative model which minimizes this residual. Generated samples

should contain residuals which are similar to the residual obtained by solving the PDE using

traditional means. To reduce the residual at the final time of the sampling process, we aim

to minimize the following expression at each point in the computational domain:

min
y(t=0)

∥r∥22 .

To this end, we propose appending a residual minimization step to the SDE or ODE

solver for the last N of τ time steps, aiming to minimize ∥r∥22 by appending a small step

in the negative gradient direction ∇y∥r∥22 = 2r∇yr. This requires evaluating the full order

operator of the PDE and gradient of the residual by updating the sample according to

yi−1 = Solver(yi, ti) − 2ϵr∇yr , (6.15)

where ϵ is the residual step size hyperparameter and Solver(yi, ti) indicates a step using the

particular solver (EM for reverse SDE or FE for PF ODE). The residual is computed at

each point in the computational domain, and each value is updated via physical consistency

steps. After the reverse SDE process is solved to t = 0, we propose performing an additional
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M physical consistency steps by iteratively updating the final sample according to

yi−1 = yi − 2ϵr∇yr .

The sampling process is flexible, with tunable hyperparameters ϵ, τ , N , and M , which

can balance the need for efficiency over the degree to which samples follow the governing

equations. An in-depth investigation into the effects of these hyperparameters is performed

in Sec. 6.2.2. In our experiments, we find empirically that setting ϵ too large or too small

results in unimproved sampling. We use ϵ = 2 × 10−4/max∇yr during sampling in all of

our experiments, though we suspect that this form may not be optimal for all PDEs and

datasets.

However, the residual minimization step appended to the solver can be implemented for

any governing PDE. As the training process is not altered, a trained generative model is

expected to produce samples which are relatively close to satisfying the equations. Thus,

with an accurately trained generative model, relatively few physical consistency steps will

be required to greatly reduce residuals and bring the generated samples closer to adhering

to the physics. We illustrate this process on an example from fluid dynamics involving flow

through porous media.

6.2 Unconditional Generation of Darcy Flow Fields

Before addressing forward and inverse problems, we first demonstrate the capabilities of

physical consistency sampling by training an unconditional model. Samples from the un-

conditional model are distributed approximately as the true data distribution. However, we

find empirically that such samples will generally not satisfy the PDE. It is possible that

developing more advanced architectures and finely tuning the training procedure may result

in consistently small physical residuals, but we illustrate that the use of physical consistency

sampling negates this need altogether. Our primary demonstrative example is that of Darcy

flow (see Section 3.2).

We employ two training and test datasets throughout the work. The first training dataset

contains 10,000 samples generated by solving the Darcy flow equations with an intrinsic

dimensionality of s = 16 on a discretized grid of n = 64. The generative parameters corre-

sponding to each sample are randomly generated according to p(θ) = N (0, I) and saved to

be used in conditional experiments. An additional 1,000 samples are generated and withheld

from training as a test set used only in conditional experiments. The second training and test

sets are generated with an intrinsic dimensionality of s = 256, keeping all other parameters
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identical to the s = 16 dataset.

6.2.1 Residual Computation

Implementing the score-based generative model requires a method of evaluating the degree

to which generated samples satisfy the Darcy flow equations. One way of doing this is to

evaluate the PDE residual (Eq. 6.16) on generated samples. Note that the integral condition

of Eq. 3.8 can be easily satisfied for any generated sample by regularizing the intermediate

output p̃ according to

p = p̃−
∫
X
p̃dx .

We thus ignore this as part of the residual computation and satisfy the integral condition by

construction. The residual is therefore considered only to be

r = K(x)
∂2p(x)

∂x21
+
∂K(x)

∂x1

∂p(x)

∂x1
+K(x)

∂2p(x)

∂x22
+
∂K(x)

∂x2

∂p(x)

∂x2
+ f(x) , (6.16)

following Eq. 3.6. This residual is a function of the spatial coordinate x and can be approx-

imated at each point in the computational domain given K(x) and p(x). However, when

applying physical consistency steps according to Eq. 6.15, we apply the residual gradient

only to pressure fields, avoiding direct updates of the permeability field.

When solving the Darcy flow equations as outlined above, the gradients ∂p/∂x1 = 0 and

∂p/∂x2 = 0 are approximately satisfied on the domain boundaries by construction of the

linear system. However, in computing the residual, we must compute gradients on these

boundaries. We therefore use second order forward and backward difference approximations

to the first and second order derivatives on the boundaries to compute the residual. This

facilitates approximating the residual on both data generated by solving the linear system

Ap = f and samples obtained from the generative model by solving the reverse SDE.

6.2.2 Physically-Consistent Unconditional Generative Model

Constraining generated samples to follow physical equations as described in Sec. 6.1 is quite

flexible and inherently contains hyperparameters which can be set and altered after training.

In particular, the number of discrete time steps τ used in the solver, the number of residual

minimization steps N prior to T = 0, and the number of residual minimization steps M

after solving the reverse SDE or reverse PF ODE all play an important role in enforcing the

physical laws which samples are to follow. We demonstrate our method of enforcing physical

consistency by training an unconditional generative model on the Darcy flow training dataset
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with dimensionality s = 16.

6.2.2.1 Training

Our unconditional model architecture is illustrated as the left side of Fig 6.2. Each of

the components labeled with parameters ϕ constitute the unconditional generative model.

Additional architectural, training, and hyperparameter details are provided in Appendix D.1.

6.2.2.2 Physically-Consistent Sampling

After training, the sampling process is quite flexible as discussed in 6.1.3. Sampling amounts

to solving Eq. 2.23 or 2.26 backwards in time augmented with physical consistency steps, but

the particular method of solving has a large impact on the quality of the final samples at t = 0.

We investigate the effect that each equation and various combinations of hyperparameters

have on the average physical residual for generated samples.

Higher-order solvers can also be used to provide gains in sampling efficiency [199], but

is outside the scope of this work. Instead, we aim to minimize sample residuals without

an initial emphasis on sampling efficiency. The use of physical consistency steps defined in

Sec. 6.1.3 along with the number of time steps used to solve either the reverse SDE or PF

ODE constitute our investigation into reducing the physical residual of generated samples.

When implementing physical consistency steps to reduce the PDE operator residual, we

exclusively apply the steps to the pressure component of the samples. This deliberate choice

ensures that no adjustments are made to the permeability field. Since the pressure field

is a deterministic function of the permeability field, we refrain from directly modifying the

permeability field generated by the model. Instead, we allow the model to fully generate the

permeability field without interference.

Sampling is performed by varying τ , N , and M and solving either the PF ODE or the

reverse SDE to generate a synthetic dataset of 1,000 samples. For each dataset, the average

physical residual is computed as outlined in Sec. 6.2.1. The primary results of this experiment

are illustrated in Fig. 6.3, where pD denotes the training data distribution and pS denotes

the distribution of 1,000 samples generated according to the indicated method.

Initially, we observe that the choice of the number of discrete timesteps τ is crucial

when employing the Euler-Maruyama method for solving the reverse SDE or the forward

Euler method for solving the PF ODE. Insufficiently small values of τ result in high errors in

approximating the dynamics described by Eqs. 6.12 and 6.13, leading to suboptimal sampling

quality and increased physical residuals. In both scenarios, solving either the reverse SDE

or PF ODE with a value of τ which is too small renders physical consistency enforcement
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Figure 6.3: Darcy flow equations are enforced through physical consistency sampling. Hy-
perparameters τ , N , and M as well as the sampling equation have a large impact on physical
residuals.

incapable of reducing residuals in generated samples to match the quality of the training

dataset.

However, with a sufficiently large value of τ , physical consistency can effectively reduce

residuals on the generated datasets to be equal to or even lower than those in the training

dataset. In the context of solving the reverse SDE, the stochastic nature of the process neces-

sitates large numbers of physical consistency steps to reduce residuals towards the training

dataset levels. However, when solving the PF ODE, relatively fewer physical consistency

steps are required. The PF ODE generally yields significantly smaller residuals on generated

samples compared to the reverse SDE, regardless of the presence of physical consistency

steps. The additional noise provided by solving the reverse SDE may be beneficial in some

cases in which the importance of diversity may outweigh that of fidelity. However, in many

physical problems where fidelity is paramount, the PF ODE emerges as the superior choice.

The minimum number of PDE operator evaluations needed to achieve a generated dataset

residual less than or equal to that of the training set was attained by solving the PF ODE

with τ = 2000, M = 1, and N = 3, resulting in a total of 4 evaluations.

We observe that the number of physical consistency steps, denoted as N , preceding the

time t = 0 serves a dual purpose beyond reducing the physical residual. As mentioned, we
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(a) N = 0 (b) N = 50

Figure 6.4: Physical consistency steps applied only to pressure fields provide a denoising
effect on permeability fields while reducing the physical residual. Samples are obtained by
solving the reverse SDE using EM solver with τ = 2000 time steps and M = 0 additional
physical consistency steps.

exclusively apply physical consistency steps to pressure fields. Given that the score func-

tion approximation jointly predicts the score functions for both pressure and permeability

fields, a correlation emerges in the denoising process for each field. Consequently, directly

modifying the pressure field during the reverse process indirectly influences the permeability

field through the score function prediction. This, in turn, produces a denoising effect on the

permeability fields while concurrently reducing the physical residual. Figure 6.4 illustrates

the denoising effect that physical consistency steps have on pressure and permeability fields.

Applying physical consistency steps provides two main benefits: encouraging generated sam-

ples to follow the physical equations of interest as well providing a denoising effect during

sampling. Such benefits are not exclusive to unconditional models and can also be applied

to conditional sample generation for forward and inverse problems.
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6.3 Conditional Generation

Conditional generative models hold immense potential in physics-based applications, offering

versatile utility in various tasks such as field prediction, uncertainty quantification, and field

reconstruction. Their broad range of applications makes it advantageous to train a single

unconditional generative model that can be leveraged by numerous conditional models.

For instance, in the context of field prediction, conditional generative models can be

trained to generate specific fields based on various input conditions such as generative pa-

rameters, boundary conditions, partial field measurements, or other relevant factors, effec-

tively solving a forward prediction problem. This allows for the flexible generation of fields

tailored to specific scenarios. Field reconstruction involves the task of reconstructing a com-

plete field based on partial or incomplete information, and constitutes a reverse problem.

Conditional generative models can be trained to reconstruct fields by leveraging available

data and conditioning information, offering a powerful tool in scenarios where complete field

data may be limited or noisy. In both cases of solving a forward or inverse problem, physi-

cal consistency sampling ensures that all predictions will adhere to the underlying physical

behavior governed by the PDE.

The advantage of training a single unconditional generative model lies in its ability to

capture the underlying distribution of the data. This model can then be flexibly adapted for

various conditional tasks, eliminating the need to train separate models for each specific con-

dition. This approach not only streamlines the training process but also facilitates efficient

model reuse across a diverse set of applications.

We train two separate conditional augmentations on the Darcy flow dataset with s = 16,

each of which are connected to the unconditional model architecture as illustrated in Fig. 6.2.

The conditional portion of the model (blue) can be removed from the overall architecture

to leave behind an unconditional model. This renders it easy to add or remove different

conditional augmentations to the same pretrained unconditional model. We copy the same

unconditional model trained in Sec. 6.2, and train two separate augmentations as described in

Sec. 6.1.2: one for pressure and permeability field prediction from the underlying generative

parameters of the permeability field and one for pressure / permeability field reconstruction

from partial pressure measurements.

6.3.1 Conditional Field Generation from Generative Parameters

We illustrate the first application for conditional generative models as that of surrogate

modeling, a forward problem. A conditional augmentation is trained with a baseline un-

conditional model on the Darcy flow dataset with an underlying dimensionality of s = 256.
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Figure 6.5: Samples from a conditional model trained on Darcy flow data (s = 256) where
the conditional augmentation takes permeability field generative parameters as input.

The conditioning input θ ∈ Rs are the parameters θ determining the permeability field

in Eq. 3.5. The conditional generative model will output samples from p(y|θ), given the

particular parameterization. As data samples x are determined by an injective mapping
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G(θ) : Rs → Rn2
, the true conditional p.d.f. is zero everywhere except y = G(θ).

The training procedure is outlined in Sec. 6.1.2, and additional details are included in

Appendix D.2. In this case, the three control encoding blocks in Fig 6.2 are identical in

structure to the encoding blocks of the unconditional U-Net [197] with the exception of a

zero-convolution at the output of each block. The input to the first control encoding block

must therefore be the same shape as the noisy inputs y(t). To achieve this, the condition

encoder consists of linear layers which encode the conditioning from Rs to Rn2
and reshape

it to be directly summed with y(t).

After training, sampling is performed using conditions θ from a separate test set which

were not present in the training data. We sampling with physical consistency enforcement

by solving the PF ODE with τ = 2000, N = 50, and M = 10. Both qualitative and

quantitative reconstructions are provided in Fig 6.5, illustrating accurate predictions for both

pressure and permeability fields from the underlying parameterization of the permeability

field. Predictions on the test set result in an average L2-norm of 7.0 × 10−4 on pressure

field predictions and 6 × 10−4 on permeability field predictions. We note that prediction is

performed by drawing a single sample from p(y|θ) for each value of θ in the test set.

6.3.1.1 Conditional Field Inversion and Reconstruction with Sparse Measure-

ments

In addition to solving forward problems, we also illustrate the application of score-based

generative models to solve inverse problems. We train a conditional augmentation to per-

form probabilistic field inversion and reconstruction from sparse measurements. The goal

is to perform field inversion to obtain permeability field approximations and reconstruction

to obtain pressure field approximations from only measurements of the pressure field. Dur-

ing training, we select a random number m of pressure sensors, place them randomly in

the physical domain, and assume accurate pressure measurements at each location. These

pressure measurements are taken as the conditioning variables θ such that we sample from

p(y|θ) given the measurements. Further training details are provided in Appendix D.2.

Figure 6.6 illustrates a single sample drawn from p(y|θ) along with the conditioning

information (pressure measurements with m = 250 sensors) and ground truth. However,

as the generative model provides the ability to sample from the conditional distribution,

uncertainty quantification is possible when predicting the pressure and permeability fields.

This is illustrated in Fig. 6.7, showing the mean and standard deviation of p(y|θ) compared

to the true data sample. In reality, the conditional distribution is likely not a Gaussian

distribution, but is very flexible due to the use of score-based generative models. We visualize

only the mean and standard deviation in Fig. 6.7 for simplicity. In contrast to the surrogate
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Figure 6.6: Sampling from p(y|θ) where θ are m = 250 partial measurements of the pressure
field. Samples are always consistent with the underlying PDE, even if prediction accuracy
is low.

modeling example in Sec. 6.3.1, it is difficult to guarantee that y is a deterministic function

of θ. For example, consider a case in which a single pressure measurement is given. There

exists no unique solution to the entire pressure and permeability fields which will exhibit the

correct pressure at the single sensor location. Therefore, uncertainty quantification may be

very useful in a real-world situation to determine the reliability or capacity of the current

measurements to fully determine the physical fields. Further, as sampling is always performed

with physical consistency enforcement (PF ODE, τ = 2000, N = 50, M = 10), all samples

will approximately adhere to the governing PDE.

In an effort to quantify the average field reconstruction error for the case illustrated in

Fig. 6.6, we apply the same m = 250 pressure measurements to each of the 1,000 cases in the

test set, predict the pressure and permeability fields, and measure the error. The pressure

reconstruction error is computed as Ep(y|θ)[∥P − P̂∥22], and the permeability reconstruction

error is computed as Ep(y|θ)[∥K−K̂∥22]. The pressure field approximation P̂ and permeability

field approximation K̂ are compared to the true pressure P and permeability K fields.

This expectation is approximated by sampling only a single time from p(x|θ), essentially
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Figure 6.7: Many samples can be drawn from p(y|θ), facilitating uncertainty quantification.
The data sample (left) is compared to the expectation Ep(y|θ)[y] (center) and standard devi-
ation (right) for both pressure (top) and permeability (bottom) fields.

Figure 6.8: Generating conditional samples with physical consistency enforcement for field
inversion and reconstruction with sparse measurements (m = 250) has minimal impact on
reconstruction / inversion errors while improving sample consistency with the physical PDE.

sampling from the model a single time for each data sample. Although Fig. 6.7 illustrates

that uncertainty may be high in p(y|θ), we use this as an illustrative example which does

not require a thorough estimation of the expectation.

Our first objective is to illustrate the effect that physical consistency sampling has on the
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reconstructive performance of the model. Figure 6.8 shows that as the number of physical

consistency steps N is increased, there is nearly zero effect on the reconstructive performance

until a large number of steps are used. Even then, in the worst case investigated, only a

2% increase in pressure reconstruction error is observed while permeability reconstruction

remains constant. However, notably the physical residual decreases consistently with increas-

ing number of physical consistency steps. This shows that physics can be enforced without

negatively impacting the reconstructive performance on the model, even though physics are

not enforced during training. One possible explanation for this is that the measurements

themselves are included as conditioning. Although PDE information is not included at train-

ing time, the measurement information is. As the sampling process is performed, iteratively

passing the sample through the score estimation model, physical consistency steps will ulti-

mately result in small changes to the sample before the sampling process is complete. The

samples including these small changes are then input into the score estimation function

along with the measurement information as conditioning, allowing the model to adapt itself

to the small changes caused by physical consistency sampling. In effect, this facilitates the

reduction of residuals while maintaining constant reconstruction error.

(a) Reconstruction errors. (b) Physical residuals.

Figure 6.9: Our method greatly outperforms a POD-based method on field inversion and
reconstruction from sparse measurements in terms of reconstruction error and physical resid-
ual. Sampling for our method is performed with physical consistency by solving the PF ODE
with τ = 2000, N = 50 and M = 10.

Solving the inverse problem using score-based generative models is further investigated by

comparing it to a more established method of reconstructing data from measurements using

a basis Ψ obtained by performing proper orthogonal decomposition (POD) on the training

dataset. Given a measurement matrix P and partial field measurements q, the full field is
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reconstructed by approximating the reconstruction in terms of the basis Ψ. This approxi-

mate reconstruction is computed as ŷ = Ψ[PΨ]†q [201, 202]. The aim of comparison is to

illustrate the effect that physical consistency sampling has on predictions when compared to

another method. Here, we investigate the reconstructive performance of each method as a

function of the number of pressure measurements taken, but also illustrate the average phys-

ical residual of reconstructions as a function of the number of measurements. Figure 6.9a

shows that for more sparsely sampled measurements, the score-based generative model is

able to more accurately reconstruct both pressure and permeability fields. As there are no

permeability measurements taken, the POD-based method cannot accurately reconstruct

the permeability field, even in the limit of measuring the entire pressure field. However,

this method does approach perfect reconstruction of the pressure field as the entire field is

measured, while the score-based model does not. Regardless of the number of measurements

taken, Fig. 6.9b clearly shows that the score-based model with physical consistency sampling

reliably produces samples which adhere to the physical PDE while the POD-based method

produces predictions with orders of magnitude higher residuals.

This particular example is intended to illustrate the potential for score-based genera-

tive models with physical consistency sampling in solving inverse problems, not to compare

against advanced solutions. Whether the conditional distribution p(y|θ) has little uncer-

tainty as in the forward problem demonstrated in Sec. 6.3.1 or is quite uncertain as in the

case of few measurements here, generated samples will adhere to the underlying PDE.

6.3.2 Comparisons with Traditional Solvers

It is not straightforward to directly compare the computational complexity of solving the

Darcy flow equations with state of the art methods such as multigrid [203]. However, there

are some comparisons which can inform the selection of one method or the other in a par-

ticular application.

In the case of generating solutions to the Darcy flow equations, the key advantage of direct

solving with multigrid is that once set up, the solver solves the Darcy flow equations in a

computationally efficient manner, with complexity close to O(N), where N is the number of

unknowns. This method is deterministic and provides high accuracy and reliability for any

given problem setup.

However, after the initial expensive training phase, generating new solutions can be rela-

tively fast, especially if generating multiple solutions from a single trained model or leverag-

ing it for solving forward and inverse problems. However, the quality and accuracy of these

solutions depend on the training data, the capacity of the model, and how well the training
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process has converged.

If the goal is to solve the Darcy flow equations for a few instances, directly solving with

a multigrid solver is likely the more efficient approach. If one needs to generate a large

number of solutions quickly after an initial setup, and especially if these solutions cover a

range of conditions similar to the training set, a score-based generative model could offer

advantages in speed and flexibility at the inference phase. Additionally, if the goal is to

solve forward and/or inverse problems with the generative model, or especially adapt the

model for solving a range of forward and inverse problems, the generative model may be

much more efficient than setting up solvers for each application individually. Additionally,

particularly for inverse problems, traditional techniques may require many evaluations of

the forward model (multigrid solver), whereas the score-based generative model can more

efficiently sample from the distribution describing the solution to the inverse problem.

The primary online cost associated with generating samples from score-based generative

models is solving the reverse SDE or probability flow ODE. The cost of evaluating the right

hand side is very dependent on the cost of a forward evaluation of the neural network archi-

tecture used to approximate the time dependent score function ∇y log p(y(t)). If a simple

architecture can be leveraged to accurately model the score function, sampling efficiency can

be improved over the use of complex network architectures.

Additionally, this work employs simple first order SDE / ODE solvers for solving the

reverse SDE and probability flow ODE solvers. However, recent works such as Consistency

Trajectory Models [104] have demonstrated far more efficient methods of sampling from

score based generative models. Thus, the sampling efficiency has the potential to be greatly

improved.

Generally, the characteristics of the particular application should be greatly considered

when determining which methods to employ. State of the art solvers may be the superior

choice in some applications, while the flexibility provided by score-based generative models

may offer greater benefits in others.

6.4 Summary

In this chapter, we explore the implementation of score-based generative models to tackle

both forward and inverse problems, establishing a framework that seamlessly incorporates

physical laws into the generative model sampling process. This chapter outlines an ML

methodology that is not only compliant with the physical equations governing the systems

under study but also exhibits a broad range of applicability within the physics sector. Cen-

tral to our strategy is the idea of physical consistency sampling, which proves instrumental
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in producing consistently minimal residuals across various implementations. This approach

suggests a reduced necessity for the extensive fine-tuning of models and hyperparameters,

traditionally required for customized problem-solving, thus facilitating the creation of sam-

ples that inherently respect the physics of the system.

Our investigation highlights the effectiveness of solving the probability flow ordinary dif-

ferential equation backwards in time over the reverse stochastic differential equation, partic-

ularly for its capability to minimize physical residuals. Furthermore, the deliberate modifica-

tion of the number of physical consistency steps, N , emerges as a key element in minimizing

residuals and improving noise reduction, thereby reinforcing the model’s stability. This em-

phasizes the importance of careful hyperparameter adjustments, especially for parameters

such as τ , to achieve optimal physical consistency without compromising the potential to

reach minimal physical residuals.

The framework’s design emphasizes versatility and the ability to accurately solve both

forward and inverse problems while maintaining physical authenticity in the outputs. This

methodological choice does not detract from predictive accuracy; on the contrary, it is demon-

strated through a consistent decrease in physical residuals, highlighting its advantage over

traditional sampling approaches. The example involving Darcy flow illustrates this point

effectively, showing how adjustments in the pressure field can influence the permeability

field through score function estimation, enhancing the quality of the permeability fields and

reducing physical residuals simultaneously.

Reflecting on the entirety of this dissertation, Chapter 6 not only aids in achieving its

set objectives but also establishes a benchmark for employing score-based generative models

in physics-oriented machine learning applications. By presenting a foundational framework,

it encourages further investigation and development within this area. The adaptability,

effectiveness, and potential of our approach highlight its capacity to innovate the integration

of physical consistency into generative modeling, fostering novel solutions to applications

with the intersection of physics and machine learning.
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CHAPTER 7

Concluding Remarks and Future Directions

This work presents a view into the evolving field of physics-aware ML, illustrating how

leveraging data with ML techniques can be used to improve the efficiency and accuracy of

predictive physical models. By incorporating physical laws into machine learning algorithms,

we have shown improvements in model interpretability, reliability, accuracy, efficiency, and

applicability in various physical modeling scenarios. This interdisciplinary strategy not only

enhances our theoretical comprehension but also opens up new possibilities for practical ap-

plications, ranging from system optimizations to the resolution of intricate inverse problems.

The journey from specific cases to a broad framework reveals the adaptability of physics-

aware machine learning. Although each study contains unique applications and goals, a

common thread is the synergy between physical understanding and computational advance-

ments, providing a foundation for future research in the area.

7.1 Main Contributions and Conclusions

7.1.1 Extracting Physical Parameters from Data with Variational

Autoencoders

The initial contribution presented is in demonstrating use of VAEs in computational physics

to transform complex physical data into low-dimensional, interpretable formats that closely

reflect the underlying physically significant generative parameters. This approach enhances

the interpretability of data analysis for physical systems by converting complex datasets into

simpler, more meaningful forms, facilitating a deeper understanding of the phenomena under

investigation.

The strategic use of VAEs, highlighted by innovative techniques aimed at refining the

training process, stands out in our methodology. Notably, the introduction of a loss-weighting

schedule effectively counters the issue of over-regularization and the resulting zero mutual
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information, a frequent challenge in VAE training. This strategy helps the training process

avoid local minima that could impede the acquisition of significant representations.

Furthermore, the implementation of hierarchical priors within VAEs represents a method-

ological enhancement, enabling the capture of complex prior distributions and thus boosting

the effectiveness and robustness of unsupervised learning in pinpointing physically correlated

representations. This advancement is crucial for improving the model’s ability to learn with

limited supervision.

An essential insight from our work is the notable improvement in the robustness, generaliz-

ability, and accuracy of the learning process when even minimal prior physical information is

included. Introducing labels for a select set of samples demonstrates that integrating physical

knowledge into machine learning algorithms significantly bolsters their ability to recognize

and model complex physical systems. This highlights the value of melding domain-specific

insights with machine learning model design and application, bridging the divide between

data-driven methods and classical physical science approaches.

However, the use of VAEs in computational physics is not without its challenges. The

complexity of physical systems, alongside the difficulty of accurately capturing their dynam-

ics with low-dimensional representations, necessitates ongoing refinement of both models

and methodologies. Moreover, even minimal reliance on labeled data emphasizes the need

for thoughtful integration of physical knowledge into the modeling process, which can be

challenging when such information is scarce or difficult to precisely define.

7.1.2 Enhancing Dynamics Modeling with Data-driven Inference

and Interpretable Machine-learning Augmentations

In the second contribution, we focus on modeling cathodic electrophoretic deposition through

the use of variational inference, applying it to refine a baseline model with the help of ex-

tensive experimental data. This approach helps identify the baseline model’s shortcomings,

such as issues with parameter identifiability and its inability to adapt to different experi-

mental conditions. These findings prompt a reevaluation of the deposition onset time model

towards a more generalized approach that could handle diverse experimental settings. While

these improvements enhanced the model’s versatility, they did not fully capture all critical

behaviors of the deposition process.

Addressing the accurate modeling of electrophoretic deposition, especially the initiation

phase, posed a significant challenge. We responded by incorporating interpretable machine

learning augmentations to boost the model’s predictive accuracy and maintain its generaliz-

ability. These augmentations, rooted in physical principles, were designed to keep the model’s
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interpretability intact while adding the necessary flexibility. Nevertheless, the model’s perfor-

mance in predicting film deposition under low voltage conditions revealed a notable shortfall,

highlighting its limitations in fully accounting for the governing physical principles in such

scenarios.

This situation illustrates a fundamental limitation inherent in even the most adaptable

machine learning models: the difficulty of capturing complex physical phenomena with-

out a solid foundational understanding of the underlying mechanisms. The versatility and

capability of machine learning are fully realized when they are integrated with a deep under-

standing of physical theory. This relationship underscores the importance of foundational

modeling in physics and the role of ML as a supplementary, not substitute, tool that should

be thoughtfully combined with traditional scientific methods.

Looking ahead, this work outlines several avenues for further exploration. Although the

work demonstrates insights towards improving current electrophoretic deposition models,

improving the model’s performance in low voltage conditions and other challenging scenar-

ios will likely involve a closer fusion of physical insight with machine learning innovation.

This could mean developing more advanced machine learning methods that better incor-

porate physical laws or adopting new data collection strategies to enhance model training.

Expanding the model to cover a wider range of electrophoretic deposition phenomena could

also yield a more thorough understanding of these complex processes. The confluence of

machine learning and physical modeling offers a promising area for future innovation, with

the potential to deepen our comprehension and control of electrophoretic deposition and

similar complex physical systems.

7.1.3 Rate Distortion Informed Clustering of Non-equilibrium

Gas Dynamics

In the third contribution, we explore non-equilibrium gas dynamics using a machine learning

framework that applies rate-distortion theory to identify state clusters for a reduced-order

model, ensuring adherence to essential physical constraints such as mass and energy conser-

vation. This method, grounded in the well-known maximum entropy principle, effectively

simplifies the dynamics into manageable clusters within the high-dimensional energy state

space, thus significantly lowering the computational demands of prediction tasks. Although

the reduced order model is developed in zero spatial dimensions, it has been shown by Za-

nardi et al. [204] that the learned cluster assignments work well in simulations in higher

spatial dimensions. Thus, achieving state of the art accuracy in the 0D reduced order model

presented in this work is likely to result in state of the art performance in complex hypersonic
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simulations in higher dimensions. Such simulations are computationally infeasible without

the adoption of reduced order models for the state-to-state master equations.

The primary challenge with this approach is the detailed process of assigning states to

clusters, which has traditionally been addressed through ad-hoc methods and iteratively re-

fined. Our research enhances this process by implementing a systematic strategy to identify

the specific characteristics that guide state-to-cluster assignments, employing a probabilistic

framework that supports the use of gradient-based optimization techniques for more accurate

and efficient model training. This innovation includes the creation of two effective approx-

imations for estimating the expected value of reduced-order predictions related to cluster

assignments.

A key aspect of our methodology is the application of a rate-distortion (RD) informed

loss function, greatly improving the model’s robustness and the accuracy of the encoding-

decoding system designed to minimize reconstruction errors. The strategic adjustment of loss

weighting constants during training is vital for avoiding local minima, leading to a learning

outcome that is both more precise and broadly applicable. This careful tuning process draws

parallels with strategies used in variational autoencoders, emphasizing the need for balanced

training to attain high predictive performance.

However, our study does face limitations, notably in the generalizability of learned cluster

assignments under different ambient conditions, primarily because the model was trained

with constant temperature settings. This highlights an area for potential enhancement in

the model’s versatility by training under a wider array of conditions, though such efforts are

currently limited by computational resources.

This research highlights the ability of machine learning to increase the accuracy of phys-

ical models while maintaining a significant degree of their interpretability. Nevertheless,

it also points to a crucial trade-off: improvements in model accuracy may sometimes ob-

scure interpretability. The gains in prediction accuracy through learned cluster assignments

illustrate the advantages of merging machine learning with physical modeling. However, in-

terpreting these assignments within a physical context remains a complex task, emphasizing

the delicate balance needed when integrating machine learning with the physical sciences.

Looking ahead, this study also highlights opportunities for further investigation, espe-

cially in terms of expanding the model’s training to include variable temperature conditions

and employing more sophisticated optimization techniques to navigate computational con-

straints. Continuing to refine these machine learning methods will improve our modeling

of complex physical phenomena, potentially leading to significant breakthroughs in under-

standing and applying non-equilibrium gas dynamics and similar areas. The ongoing effort

to balance accuracy and interpretability in models is crucial, promising valuable insights as
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machine learning and traditional physical modeling methods become increasingly integrated.

7.1.4 Physically Consistent Diffusion Model Sampling for Solving

Forward and Inverse Problems

In the final part of this work, we introduce a framework aimed at ensuring physical con-

sistency within score-based generative models. This development transforms these models

into dynamic tools capable of tackling both forward and inverse problems in the context of

physics-aware ML. By incorporating physical laws directly into the sampling process, this

methodology circumvents the high computational demands usually associated with calcu-

lating physical residuals during training such as in PINNs, thereby reducing the need for

extensive tuning and hyperparameter adjustments typically required in physics-based ma-

chine learning projects.

A key feature of the approach is the concept of physical consistency sampling, which is

shown to yield consistently minimal residuals in a variety of applications, highlighting its

capacity to standardize the production of physically plausible samples. Notably, the use of

the probability flow ordinary differential equation stands out for its efficiency compared to

traditional reverse stochastic differential equation solvers, mainly because of its ability to

reduce physical residuals. Furthermore, the careful calibration of physical consistency steps,

particularly through the adjustment of the hyperparameter defining the number of sampling

steps, plays a vital role in diminishing residuals and bolstering the model’s resilience.

Examining this framework’s application to both forward and inverse problems reveals its

broad utility and flexibility. For instance, the Darcy flow scenario effectively demonstrates

how altering the pressure field impacts the permeability field via score function estimation,

illustrating the twofold advantage of refining the permeability fields while simultaneously

reducing the physical residual. Additionally, first order SDE and ODE solvers result in gen-

erating samples with similar efficiency to solving the Darcy flow equations with a second

order finite difference solver. Recent works have illustrated 3-4 orders of magnitude im-

provement to sampling efficiency in score-based generative models. The implementation of

such sampling strategies along with the tuning of model architectures is likely to advance

the efficiency of solving forward and inverse problems with score-based generative model well

past that of even the most advanced traditional solvers.

Moreover, we present an architecture specifically designed for swift and efficient adapta-

tion to new applications, leveraging a pre-existing pretrained model. The pretrained model

has the potential to serve as a foundational tool, capable of generating approximate so-

lutions for a wide array of PDE operators. Through employing conditional networks, the
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model could be adeptly guided to address specific forward or inverse problems across diverse

applications.

Given the rapid progress in generative modeling, such techniques are poised to become

increasingly influential in physics-based applications and computational science. The future

holds numerous opportunities for extending these concepts, including the use of more efficient

sampling techniques, the development of models that can address time-evolving dynamics,

the creation of general foundation models for solving and generating solutions to various

PDEs under different conditions, integrating boundary conditions into the model guidance

process, and producing mesh-free solutions. This exploration into the use of generative

AI within physics applications is set to potentially transform how scientific inquiries and

problems are approached and resolved.

7.1.5 Final Remarks

Together, these studies present a unified perspective on physics-aware machine learning,

underscoring the essential role of integrating physical principles into machine learning models

to improve their interpretability, reliability, and general applicability while improving the

predictive efficiency and accuracy of such physical models. A recurring theme throughout

this work is the significant impact that embedding physical insights into machine learning

frameworks can have, ranging from achieving disentangled representations in computational

physics to enhancing physical models. This contribution enriches the dialogue between

machine learning and physics and lays the groundwork for future research that connects

these fields.

However, it is important to acknowledge that the problems addressed in this thesis, while

significant, represent a simplified subset of the complex challenges faced by industry ap-

plications. Extending these ideas to meet industry needs would likely necessitate tackling

problems of greater scale and complexity, often under constraints of time sensitivity and

computational efficiency. This extension would require not only advanced algorithms and

robust theoretical frameworks but also a comprehensive approach including large-scale data

handling, the use of sophisticated computational libraries, and the development of scalable

machine learning models.

Recognizing the limitations of our current models such as data scarcity, scalability issues,

and the balance between model complexity and computational feasibility, underscore the

hurdles that must be overcome. Addressing these challenges is critical for advancing the

practicality of physics-aware machine learning in real-world applications. It calls for inno-

vative solutions that leverage cutting-edge algorithms, theory, and data management tech-
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niques, alongside the deployment of computational libraries designed for high-performance

computing environments.

Looking forward, the path is ripe with opportunities for exploration and growth. The de-

velopment of more complex models capable of handling the intricacies of industrial problems,

the application of these methodologies in new physical domains, and a deeper integration

of theoretical physics with cutting-edge machine learning strategies all represent promising

avenues for research. The potential for making a meaningful impact is immense, suggest-

ing that we can make significant strides in our understanding and manipulation of complex

systems.

As we look to the future, the opportunities for further inquiry are plentiful, whether it

involves developing more intricate models, applying these ideas across new physical arenas,

or a deeper integration of theoretical physics with cutting-edge machine learning strategies.

The prospects for meaningful impact in both arenas are substantial, forecasting significant

progress in our ability to understand and influence complex systems. The capacity of physics-

aware machine learning to transform our approach to scientific challenges is profound, and

this work is merely a step in the continuous journey of discovery and innovation.
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APPENDIX A

Extracting Physical Parameters from Data

with Variational Autoencoders

A.1 Solving Darcy Flow with a Linear System

Section 3.2.1 describes the construction of the linear system Ap = f to solve the Darcy

flow equations for pressure using finite differences on a discretized computational domain.

The matrix A is formed by constructing n2 + 1 equations for pressure values at n2 spatial

locations in the computational domain. The equations are broken down into 4 categories:

corner nodes, edge nodes, interior nodes, and integral enforcement.

There are four corner equations corresponding to nodes (1, 1), (n, 1), (1, n), and (n, n).

These equations are given by

corner node 1, 1 : − K(x1,1)

∆x2
[2p(x2,1) − 4p(x1,1) + 2p(x1,2)] = fs(x1,1)

corner node n, 1 : − K(xn,1)

∆x2
[2p(xn−1,1) − 4p(xn,1) + 2p(xn,2)] = fs(xn,1)

corner node 1, n : − K(x1,n)

∆x2
[2p(x2,n) − 4p(x1,n) + 2p(x1,n−1)] = fs(x1,n)

corner node n, n : − K(xn,n)

∆x2
[2p(xn−1,n) − 4p(xn,n) + 2p(xn,n−1)] = fs(xn,n)

There are an additional 4(n− 2) equations corresponding to nodes along edges which are

not also corner nodes. The equations for each of these edges are given by

edge i = 1 : −K(x1,j)

∆x2
[p(x1,j−1) − 4p(x1,j) + p(x1,j+1) + 2p(x2,j)]

− 1

2∆x
[K(x1,j+1) −K(x1,j−1)][p(x1,j+1) − p(x1,j−1)] = fs(x1,j)
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edge i = n : −K(xn,j)

∆x2
[p(xn,j−1) − 4p(xn,j) + p(xn,j+1) + 2p(xn−1,j)]

− 1

2∆x
[K(xn,j+1) −K(xn,j−1)][p(xn,j+1) − p(xn,j−1)] = fs(xn,j)

edge j = 1 : −K(xi,1)

∆x2
[p(xi−1,1) − 4p(xi,1) + p(xi+1,1) + 2p(xi,2)]

− 1

2∆x
[K(xi+1,1) −K(xi−1,1)][p(xi+1,1) − p(xi−1,1)] = fs(xi,1)

edge j = n : −K(xi,n)

∆x2
[p(xi−1,n) − 4p(xi,n) + p(xi+1,n) + 2p(xi,n−1)]

− 1

2∆x
[K(xi+1,n) −K(xi−1,n)][p(xi+1,n) − p(xi−1,n)] = fs(xi,n)

A remaining (n − 2)2 equations correspond to interior nodes (not on corners or edges) and

are given by

interior node i, j : −K(xi,j)

∆x2
[p(xi,j−1 + p(xi−1,j) − 4p(xi,j) + p(xi+1,j) + p(xi,j+1)]

− 1

2∆x
[K(xi+1,j) −K(xi−1,j)][p(xi+1,j) − p(xi−1,j)]

− 1

2∆x
[K(xi,j+1) −K(xi,j−1)][p(xi,j+1) − p(xi,j−1)] = fs(xi,j)

The final equation is formed by approximating the integral condition given in Eq. 3.1

using 2-dimensional trapezoidal rule. This equation is given by

∆x2

4

[
p(x1,1) + p(xn,1) + p(x1,n) + p(xn,n) + 2

n−1∑
i=2

p(xi,1) + 2
n−1∑
i=2

p(xi,n)

+2
n−1∑
j=2

p(x1,j) + 2
n−1∑
j=2

p(xn,j) + 4
n−1∑
i=2

n−1∑
j=2

p(xi,j)

]
= 0

The explicit form of the matrix A is not provided due to the large form of the matrix,

but it can be easily constructed from the provided equations. The overdetermined system is

solved through least squares minimization where the solution is given by p = (ATA)−1AT f .

A.2 Rotationally-Invariant Distributions

A matrix R ∈ Rn×n is a rotation matrix if for all z ∈ Rn, ∥Rz∥2 = ∥z∥2.
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A probability distribution p(z) is said to be rotationally-invariant if p(z) = p(Rz) for all

z ∈ Rn and for all rotation matrices R ∈ Rn×n.

The ELBO loss is unaffected by rotations of the latent space when training with a

rotationally-invariant prior. This is shown in detail in [97].

A.3 Architecture Description and Optimization

A convolutional layer is first applied to the input. A series of dense blocks and encoding

blocks followed by a flatten and fully connected layers then encode the input to the parame-

terized latent distribution. A series of decoding blocks and dense blocks then decode samples

from the latent space to the output. Figure A.1 illustrates the general architecture we have

selected for the latent mean and log-variance along with the output mean (with the output

log-variance being constant but trainable).

A convolutional architecture was initially implemented without the use of dense blocks,

but reconstruction of data is not very accurate with this architecture, even with some amount

of hyperparameter tuning. Ref. [141] illustrated that the architecture implemented there can

accurately predict the data of our problem. The architecture contains many hyperparam-

eters such as number of dense blocks, number of layers in each dense block, dense block

growth rate, stride of convolutions, fully connected layer width, and others. There were

three main goals for us in tuning the hyperparameters: accurate reconstruction, ability to

produce disentangled representations, and high computational efficiency. As an example of

hyperparameter tuning, we consider changes in the dense block growth rate keeping all other

hyperparameters constant. Ten VAEs were trained with the ELBO loss for each growth rate

value on the KLE2 dataset with p(θ) being standard normal. Figure A.2 illustrates some

statistics on this study. The overall ELBO loss, and in particular the reconstruction loss

continues to decrease with and increase in growth rate, which is desirable. Good conclusions

cannot be easily drawn from the disentanglement statistics, although at each growth rate a

disentangled representation was observed. However, as the growth rate increases, the prob-

ability of convergence decreases. This may be improved by introducing lower learning rates,

but in our case increase training time was highly undesirable. Thus, a growth rate of 4 was

selected.

A.4 Over-Regularization

To illustrate the avoidance of over-regularized local minima using our training method, Figure

A.3 shows the training losses and β as a function of epoch. The VAE loss reaches a local
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Figure A.1: Dense VAE architecture.

Figure A.2: Hyperparameter selection example.
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minimum but continues to increase as the true training loss decreases. With a small initial

β (10−7), great emphasis is placed on the reconstruction loss. When β begins to increase,

the VAE is ’past’ the over-regularized region and the training loss rapidly converges to the

VAE loss, obtaining a desirable solution.

Figure A.3: Training with initial increased weight on reconstruction loss helps to avoid over-
regularized local minima.

A.5 Loss Analysis with Increasing Number of Training

Samples

This study shows the relationship of the loss function and disentanglement with respect to

the number of data samples used to train the VAE (Figure A.4). All results are obtained

with β = 1 during training and a latent dimension n = 2. For every number of training data

([32, 64, 128, 256, 512]), 10 VAEs are trained.

A.6 Local Minima in Regularization Loss From Rota-

tion of Latent Space

We hypothesize that local minima exist in the regularization loss with respect to rotations

in the latent space for the multimodal generative parameter distribution case. This results

in the aggregated posterior being rotated 45 degrees relative to the generative parameter

distribution (Figure A.5).

187



Figure A.4: Solid lines indicate averages over training data for 10 VAEs trained at each
point. Dashed lines represent averages over testing data. Ranges indicate minimum and
maximum values. left Converged VAE losses for various numbers of training samples. right
Converged VAE disentanglement score as a function of number of training samples.

Figure A.5: A 45 degree rotation of the latent space may be the result of local minima in
the regularization loss during training.

A.7 Regularization Loss as a Function of Rotation of

Latent Angle

Using rotationally-invariant priors does not enforce any particular rotation of the learned

aggregated posterior distribution. In contrast, a non-rotationally-invariant prior can be used

to enforce a particular rotation of the latent space (Figure A.6).
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Figure A.6: (left) Regularization loss unaffected by latent rotation when training with
rotationally-invariant priors, (right) regularization loss is affected by latent rotation when
training with non-rotationally-invariant priors.

A.8 Disentanglement of Correlated Generative Param-

eters

Disentanglement has not been observed using our architecture when generative parameter

distributions exhibit correlations between dimensions. Figure A.7 shows that the aggregated

posteriors are rotated relative to the generative parameter distributions, which does not

facilitate learning a disentangled latent representation.
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Figure A.7: (top) aggregated posterior comparison correlations / rotations relative to the
generative parameter distribution, (bottom) worse disentanglement when correlations not
expressed in latent space.
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APPENDIX B

Enhancing Dynamics Modeling with

Data-driven Inference and Interpretable

Machine-learning Augmentations

B.1 Voltage ramp

For the electric field, we solve a Poisson equation with Robin boundary condition on the

interface bath/film and Dirichlet condition at the anode.

σbath
∂2ϕ

∂x2
= 0 in the bath (B.1)

ϕ−Rfilmσbath
∂ϕ

∂x
= 0 at the interface film-bath (B.2)

ϕanode(t) = ϕt=0 + ϕramp(t) at the anode (B.3)

where σbath is the bath conductivity, j is the normal component of the current density, ϕ is

the electrical potential, Rfilm is the film resistance and h is the film thickness.

B.2 Constant current

For the electric field, we solve a Poisson equation with Robin boundary condition on the

interface bath/film and Neumann condition at the anode.
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σbath
∂2ϕ

∂x2
= 0 in the bath (B.4)

ϕ−Rfilmσbath
∂ϕ

∂x
= 0 at the interface film-bath (B.5)

σbath
∂ϕ

∂x
= j0 at the anode (B.6)

B.3 Evolution of hydroxide concentration

B.3.1 Solution of the diffusion equation

We consider the diffusion equation in the domain [0;L]

∂u

∂t
= D

∂2u

∂x
(B.7)

with the following boundary conditions:

∂u

∂x

∣∣∣∣
x=0

= −j(t)
DF

= g(t) and u(x = L, t) = h(t) (B.8)

where u is the OH− concentration, F is the Faraday constant, D is the diffusion coefficient,

h and g are time-dependent functions. The initial condition is defined by u(x, 0) = u0, u0

being the initial concentration.

Applying the Laplace transform

L
{
∂u

∂t
−D

∂2u

∂x

}
= L

{
∂u

∂t

}
−D

{
∂2u

∂x

}
=sū− u0 −Dūxx = 0 (B.9)

The solution of the homogeneous equation sū−Dūxx = 0 is given by

ūh(x, s) = C1 exp(r1x) + C2 exp(r2x) (B.10)

where r1 =
√
s/D and r2 = −

√
s/D

The specific solution, assuming a constant ūsp. = A is given by ūsp. = u0/s. Therefore,

the solution has the following form

ū(x, s) = C1 exp(r1x) + C2 exp(r2x) +
u0
s

(B.11)
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where C1 and C2 are functions derived using the boundary and initial conditions.

Using the Neumann boundary condition at x=0 and the definition L{g(t)} = G(s), then

ūx(x = 0, s) = G(s) = C1r1 + C2r2. (B.12)

Therefore C1 =
G(s) − C2r2

r1
=
G(s)

r1
+ C2.

Hence

ū(x, s) =

(
G(s)

r1
+ C2

)
exp(r1x) + C2 exp(r2x) +

u0
s

(B.13)

Using the Dirichlet boundary condition at x=L:

ū(x = L, s) = H(s) =

(
G(s)

r1
+ C2

)
exp(r1L) + C2 exp(r2L) +

u0
s
, (B.14)

the solution is given by

ū(x, s) =

G(s)

r1
+
H(s) − u0

s
− G(s)

r1
exp(r1L)

exp(r1L) + exp(r2L)

 exp(r1x)

+

H(s) − u0
s

− G(s)

r1
exp(r1L)

exp(r1L) + exp(r2L)

 exp(r2x) +
u0
s

(B.15)

If L→ ∞ and h(t) = u0 (i.e. H(s) = u0/s), the solution simplifies to

ū(x, s) =

[
G(s)

r1
− G(s)

r1

]
exp(r1x) +

[
−G(s)

r1

]
exp(r2x) +

u0
s

(B.16)

= − G(s)

r1
exp(r2x) +

u0
s

(B.17)

Using the inverse Laplace transform yields

L−1 {ū(x, s)} =L−1

{
−G(s)

√
D

s
exp

(
−
√

s

D
x

)
+
u0
s

}
(B.18)

= −
√
DL−1

{
G(s)

1√
s

exp

(
− x√

D

√
s

)}
+ u0. (B.19)
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Knowing that

L−1

{
1√
s

exp

(
− x√

D

√
s

)}
=

1√
πt

exp

(
− x2

4Dt

)
(B.20)

and

L−1 {G(s)K(s)} =

∫ t

0

g(τ)k(t− τ)dτ, (B.21)

the concentration as a function of space and time is given by

u(x, t) = u0 +
1

F
√
πD

∫ t

0

j(τ)
1√
t− τ

exp

(
− x2

4D(t− τ)

)
dτ. (B.22)

The concentration at the cathode (x=0) is given by

u(0, t) = u0 +
1

F
√
πD

∫ t

0

j(τ)
1√
t− τ

dτ. (B.23)

Let umin be the minimum concentration required to start deposition and ξ be the time

when the minimum concentration is reached. Therefore

umin = u0 +
1

F
√
πD

∫ ξ

0

j(τ)
1√
ξ − τ

dτ. (B.24)

Let K = 1
2

(umin − u0)F
√
πD be a constant characterizing the deposition onset.

B.3.1.1 Constant current density

For a constant current density j, the concentration is defined as

u(0, t) = u0 +
2j0

F
√
πD

√
t (B.25)

and the electric charge is defined as

Q(t) =

∫ t

0

jdt = j0t. (B.26)

At the deposition onset, this yields the well-known Sand’s equation [154]:

1

2
(umin − u0)F

√
πD = j0

√
ξ. (B.27)

194



The minimum charge can be derived accordingly:

Qmin = j0ξ =
K2

j0
(B.28)

B.3.1.2 Linear voltage ramp

If the voltage ramp is a linear function of time. Before the deposition, due to the Ohm’s law,

the current density is a linear function of time j = βt+ j0 and the concentration is expressed

as

u(0, t) =u0 +
1

F
√
πD

∫ t

0

j(τ)
1√
t− τ

dτ (B.29)

=u0 +
1

F
√
πD

[
2j0

√
t+ 2

∫ t

0

∂j

∂τ

√
t− τdτ

]
(B.30)

=u0 +
1

F
√
πD

[
2j0

√
t+

4

3
βt3/2

]
. (B.31)

At the deposition onset, the induction time is the solution of the following equation

βξ3/2 +
3

2
j0ξ

1/2 =
3

2
K. (B.32)

Assuming that the voltage at the anode is initially 0, we can derive the following expression

for the induction time

ξ = β−2/3

[
3

2
K

]2/3
(B.33)

Finally, the minimum electric charge for the linear voltage ramp is

Qmin =

(
81

128β

)1/3

K4/3. (B.34)

B.4 Baseline / Inference-informed model comparisons

We include here in Figs B.1- B.2 all comparisons between the baseline and inference-informed

models. This includes current and resistance comparisons for all 6 experiments. The

inference-informed model performs better than the baseline model in all experiments, but

the notably greater improvement on predictions for CC experiments. However, thickness

prediction is still inaccurate in many cases.
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(a) Voltage ramp experiment
prediction, VR = 1.0V/s (cur-
rent)

(b) Voltage ramp experiment
prediction, VR = 0.5V/s (cur-
rent)

(c) Voltage ramp experiment
prediction, VR = 0.125V/s
(current)

(d) Constant current experi-
ment prediction, j0 = 10.0mA
(current)

(e) Constant current experi-
ment prediction, j0 = 7.5mA
(current)

(f) Constant current experi-
ment prediction, j0 = 5.0mA
(current)

Figure B.1: Comparisons between current prediction on the baseline model and inference-
informed model at the MAP for each.

B.5 ML-augmented model with first-peak

We present all prediction results on the ML-augmented model with first peak. Noteably,

predictions are poor for VR experiments in the low VR regime, but accurate for all other

experimental configurations. In particular, thickness prediction is much more accurate com-

pared to the baseline and inference-informed models. Predictions for current and resistance

are included in Figs. B.3- B.4, but the ML model is trained with current data for the 3

voltage ramp experiments only.

B.6 ML-augmented model without first-peak

We present all prediction results on the ML-augmented model without the first peak model

included. Removing the first peak model greatly improves model efficiency during prediction

time (and training time). Predictions are still poor for VR experiments in the low VR regime,
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(a) Voltage ramp experiment
prediction, VR = 1.0 (resis-
tance)

(b) Voltage ramp experiment
prediction, VR = 0.5V/s (resis-
tance)

(c) Voltage ramp experiment
prediction, VR = 0.125V/s (re-
sistance)

(d) Constant resistance experi-
ment prediction, j0 = 10.0mA
(resistance)

(e) Constant current experi-
ment prediction, j0 = 7.5mA
(resistance)

(f) Constant current experi-
ment prediction, j0 = 5.0mA
(resistance)

Figure B.2: Comparisons between resistance prediction on the baseline model and inference-
informed model at the MAP for each.

but improved over the baseline and inference-informed models. Again, thickness predictions

are more accurate compared to previous models. Predictions for current, resistance, and

thickness are included for all six experimental configurations in Figs. B.3- B.6, but the ML

model is trained with current data for the 3 voltage ramp experiments only.
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(a) Voltage ramp experiment
prediction, VR = 1.0V/s (cur-
rent)

(b) Voltage ramp experiment
prediction, VR = 0.5V/s (cur-
rent)

(c) Voltage ramp experiment
prediction, VR = 0.125V/s
(current)

(d) Constant current experi-
ment prediction, j0 = 10.0mA
(current)

(e) Constant current experi-
ment prediction, j0 = 7.5mA
(current)

(f) Constant current experi-
ment prediction, j0 = 5.0mA
(current)

Figure B.3: ML-augmented model with first peak current predictions compared to experi-
mental data.
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(a) Voltage ramp experiment
prediction, VR = 1.0 (resis-
tance)

(b) Voltage ramp experiment
prediction, VR = 0.5V/s (resis-
tance)

(c) Voltage ramp experiment
prediction, VR = 0.125V/s (re-
sistance)

(d) Constant resistance experi-
ment prediction, j0 = 10.0mA
(resistance)

(e) Constant current experi-
ment prediction, j0 = 7.5mA
(resistance)

(f) Constant current experi-
ment prediction, j0 = 5.0mA
(resistance)

Figure B.4: ML-augmented model with first peak resistance predictions compared to exper-
imental data.
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(a) Voltage ramp experiment
prediction, VR = 1.0V/s (cur-
rent)

(b) Voltage ramp experiment
prediction, VR = 0.5V/s (cur-
rent)

(c) Voltage ramp experiment
prediction, VR = 0.125V/s
(current)

(d) Constant current experi-
ment prediction, j0 = 10.0mA
(current)

(e) Constant current experi-
ment prediction, j0 = 7.5mA
(current)

(f) Constant current experi-
ment prediction, j0 = 5.0mA
(current)

Figure B.5: ML-augmented model without first peak current predictions compared to ex-
perimental data.
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(a) Voltage ramp experiment
prediction, VR = 1.0 (resis-
tance)

(b) Voltage ramp experiment
prediction, VR = 0.5V/s (resis-
tance)

(c) Voltage ramp experiment
prediction, VR = 0.125V/s (re-
sistance)

(d) Constant resistance experi-
ment prediction, j0 = 10.0mA
(resistance)

(e) Constant current experi-
ment prediction, j0 = 7.5mA
(resistance)

(f) Constant current experi-
ment prediction, j0 = 5.0mA
(resistance)

Figure B.6: ML-augmented model without first peak resistance predictions compared to
experimental data.
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APPENDIX C

Rate Distortion Informed Clustering of

Non-equilibrium Gas Dynamics

C.1 Microstates and Macrostates

Consider a system of NS molecules or atoms of the chemical species S with a total internal

energy of the species US. Given that the system has ℓ quantized energy states, then at any

instance, a molecule in this system can exist in only one of these finite energy states. The

energy state in which a molecule will be present is a direct consequence of the distribution

of energy among its different energy modes such as translation, vibrational, rotation, or

electronic. If the molecule does not interact with its surroundings, such that there is no re-

distribution of energy, then its internal configuration and thereby energy state will remain

unchanged. As an analogy, consider ℓ boxes that are labeled according to the energy state

εiS for i ∈ {1, . . . , ℓ}. At any given time, the NS number of molecules can be distributed in

different ways among ℓ boxes corresponding to the microstate of the system. The microstate

of the system can be thought of as the time snapshot of the configuration of each molecule of

the system. The microstate information of each molecule is often excessive, and of interest,

is the number of particles that are placed in the ith box N i
S. The number N i

S along with εiS
specify the macrostate of the system. Each macrostate, specified by N i

S, can be realized by a

number wk of microstates, also known as the thermodynamic probability of the kth macrostate.

This means that molecules can be distributed among the boxes differently, however, while

still preserving N i
S. Now consider the energy state i with N i

S molecules. Even within the

energy state εiS there are giS different molecular internal configurations that will result in the

same energy state. Such configurations result in the degeneracy of the energy state i, such

that for a fixed N i
S there are giS internal configurations that will lead to the energy state εiS.

Think of the degenerate states for an energy state as finite compartments within the box i.

For a volume, V isolated system with NS particles and specified total internal energy US the
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conservation laws are given as

NS ≜
ℓ∑
i

N i
S, US ≜

ℓ∑
i

N i
Sε

i
S or nS =

ℓ∑
i

niS, eS =
ℓ∑
i

niSε
i
S (C.1)

where nS is the number density and eS is the total internal energy per unit volume for species

S.

Remark 1. When considering a system of dissimilar species it is often the case that not all of

the quantized energy states can be realized. Since the energy state observed is a consequence of

the internal configuration (or distribution of energy over modes) of the molecule, it is possible

that certain combinations of energy modes will not result in a particular energy state.

Fig. C.1 illustrates the macrostates and microstates for a system with NS = 4. Config-

uration 1 and 2 illustrate the same macrostate with microstate configuration N3
S = 1 and

N4
S = 3. ε3S has a degeneracy g3S = 5 and similarly ε4S has a degeneracy g4S = 7. In other

words, for ε3S all 5 quantized states will result in the same energy state. Similarly, for ε4S, all

7 quantized states will result in the same energy state.

Figure C.1: Illustration of microstates and macrostates using NS = 4. Molecule colors are
changed for illustration purposes only.

C.2 Connections of maximum entropy principle with

the Boltzmann distribution

In statistical thermodynamics the Boltzmann distribution is a probability distribution over

the realization of the energy states εi. Consider a system of volume V with N particles and

a total energy E. We are interested in the number of ways in which N particles can be

distributed among ℓ internal energy levels such that there are N i particles in the ith energy
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level. This is given by the multiplicity function as

Q(N1, N2, . . . , N ℓ) = Q ≜
N !∏ℓ
i N

i!
, (C.2)

where N i is the number of particles in energy state i. Since for each energy level there exists

a degeneracy gi such that N i particles can be further arranged in (gi)(N
i) ways. Thus, the

total multiplicity function is given as

Q =
N !∏ℓ
i=1N

i!

ℓ∏
i=1

(gi)(N
i), (C.3)

lnQ = lnN ! +
ℓ∑
i=1

N i ln gi −
ℓ∑
i=1

lnN i!. (C.4)

Applying Stirling’s approximation (ln x! ≈ x lnx− x for large x),

lnQ = N lnN −N +
ℓ∑
i=1

N i ln gi −
ℓ∑
i=1

N i lnN i +
ℓ∑
i=1

N i. (C.5)

Maximizing (C.5) with respect to N i under the constraints (C.1) means that the entropy of

the system is being maximized. Consider the Lagrangian

∂ lnQ

∂N j
+ α

∂ϕ

∂N j︸︷︷︸
≜0

−β ∂ψ

∂N j︸︷︷︸
≜0

= 0, (C.6)

where ϕ = N and ψ = U are constants by conservation principles. Substituting (C.6) into

(C.5) gives

∂

∂N j

(
N lnN −N +

ℓ∑
i=1

N i ln gi −
ℓ∑
i=1

N i lnN i +
ℓ∑
i=1

N i
)

+α
∂

∂N j

( ℓ∑
i=1

N i
)
− β

∂

∂N j

( ℓ∑
i=1

N iεi
)

= 0,

(C.7)

ln gj −
(

1 · lnN j +N j · 1

N j

)
+ 1 + α− βεj = 0, (C.8a)

ln gj − lnN j + α− βεj = 0. (C.8b)
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Rearranging (C.8b) gives

N j

gj
= eα−βε

j

. (C.9)

Using the constraint (C.1)

N =
ℓ∑

j=1

N j = eα
ℓ∑

j=1

gje−βε
j

. (C.10)

Therefore

α = ln
N∑ℓ

j=1 g
je−βεj

, (C.11)

which gives

N j

N
= gj

e−βε
j∑ℓ

j=1 g
je−βεj

, (C.12)

nj

n
= gj

e−βε
j∑ℓ

j=1 g
je−βεj

. (C.13)

The value of β = 1/kNT comes from energy conservation.
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APPENDIX D

Physically Consistent Diffusion Model

Sampling for Solving Forward and Inverse

Problems

D.1 Unconditional Model and Training Details

Unconditional models for both the Darcy flow s = 16 and s = 256 datasets are identical in

architecture and identical in training, containing 17.7M trainable parameters. We use a U-

Net-type architecture consisting of convolution-based encoding and decoding layers described

in the main text as the unconditional score-approximation model. This model is trained for

5000 epochs with a learning rate of 10−4 and batch size of 128. The SDE process which

we employ is the variance-preserving SDE [99] with a linear β(t) function corresponding

to βmin = 10−4, βmax = 10, and T = 1. The optimization took 24.5 hours to complete

200,000 optimization iterations on 4 NVIDIA A6000 GPUs, which is sufficient to achieve

convergence. This time includes sampling a batch of 8 fields every 1,000 optimization steps

with each batch of samples taking an average of 31 seconds to obtain.

D.2 Conditional Model and Training Details

The conditional model architectures are exemplified by the ControlNet-based architecture

in the main text. Each conditional augmentation has a slightly different architecture due to

the need for the condition encoder to accept various forms in input. However, training is

performed in an identical way to the unconditional training in D.1.

In the case of surrogate modeling, we use a condition encoder consisting of 3 linear

layers followed by a reshaping operator and convolutional layers. The entire conditional

augmentation in this case consists of 5.8M trainable parameters, with the 17.7M parameters

in the unconditional model frozen during training. This results in a total of 23.5M parameters
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in the model. The optimization took 11.6 hours to achieve convergence for a total of 100,000

optimization iterations, less than half as long as training the unconditional model.

The ControlNet architecture for performing field reconstruction and inversion is identical

to that of the surrogate model ControlNet with the exception of the condition encoder. Here,

the condition encoder consists of 3 convolutional layers only as the conditioning data is of

the same shape as the input data. This results in a conditional augmentation with 5.7M

trainable parameters, bringing the total parameters in the model to 23.4M including the

frozen unconditional model. The optimization took 18.1 hours to achieve convergence for a

total of 160,000 optimization iterations, a significant speedup over the unconditional model

training.

D.3 Analysis of Conditional Score-based Generative

Modeling

This section provides a rigorous analysis of conditional score-based generative models in rep-

resenting a conditional distribution when the true conditional is known. It further demon-

strates the limitations of learning the true time dependent score function brought on by data

requirements.

D.3.1 Dataset description

The conditional relationship which the score-based generative model (SGBM) is trained to

learn in this examples is given by p(y|θ), where samples satisfy the relationship

y =

[
θx1

x2/θ − θ2(x21 + 1)

]
, (D.1)

and p(x) = N (0, I)).

The distribution p(θ) is set to be a uniform distribution U [θmin, θmax] = U [0.2, 1.0], and

the training dataset is generated by sampling N times from the joint distribution p(y, θ).

However, the unconditional model SBGM is first trained on only the marginal distribution

p(y) before incorporating conditioning information.

The marginal distribution p(y) is illustrated approximately in Figure D.2, while the true

conditional PDF p(y|θ) is illustrated in Figure D.1 for a range of conditioning values θ.
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Figure D.1: Probability density functions of the conditional relationship p(y|θ) (left) p(y|θ =
0.2) center p(y|θ = 0.5) (right) p(y|θ = 1.0)

Figure D.2: (left) Empirical distribution of dataset sampled with N = 10, 000 from p(y).
(right) Empirical distribution of dataset sampled 10, 000 times from a trained unconditional
SBGM p̂(y).

D.3.2 Unconditional SBGM Training

We train an unconditional SBGM on the data distribution p(y) to approximate it by p̂(y).

We use the same VP SDE form discussed in Chapter 6, along with identical hyperparameters.

However, the model architecture is a much simpler fully-connected architecture with 4 layers

and 128 nodes per layer. The input to the network is the concatenation of a sinusoidal

embedding of the input data and a sinusoidal embedding of the SDE time.

The unconditional SBGM is trained multiple times, each time with a different number of

training samples. We train the model with N = 1,000, 5,000, 10,000, and 100,000 training

samples. Figure D.2 illustrates the empirical distribution (approximated through kernel

density estimation (KLE)) of the N = 10, 000 dataset sampled from p(y) along with that

generated by 10, 000 samples from the trained unconditional SBGM p̂(y). Qualitatively, the
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distributions appear to be very similar and match well. Quantitatively, the KL divergence

is approximated between the KLE approximations to be DKL[p̂(y)||p(y)] = 0.0146.

D.3.3 Conditional SBGM Training

We next train a conditional augmentation to learn a conditional SBGM which approxi-

mately samples from p(y|θ). Note that the training dataset is generated by sampling from

the joint distribution p(y, θ). Although the unconditional SBGM is trained only on data

from marginal p(y), the dataset has the corresponding values θ recorded. We thus train a

conditional augmentation to sample from p(y|θ) using the same training dataset, but with

the conditioning information included. We train the conditional augmentations on the four

different training datasets corresponding to N = 1,000, 5,000, 10,000, and 100,000 samples.

Figure D.3: Comparison of conditional probability density functions for models trained with
N = 10, 000 samples. (upper) Analytic relationship p(y|θ) (lower) Approximate distribution
of trained conditional SBGM p̂(y|θ) by generating 10,000 samples with (left) θ = 0.2 (center)
θ (right) θ

After model training, we sample from the SBGM for various values of θ. For each value,

a dataset of 10,000 samples is generated, and KDE is used to estimate the distribution.

Figure D.4 illustrates the KL divergence between the true conditional distribution (com-

puted analytically) and the approximated distribution of the generated data for different

values of θ. This experiment is repeated by training the unconditional model from scratch
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Figure D.4: KL divergence between analytic conditional distribution p(y|θ) and approximate
distribution from sampling 10,000 times from conditional SBGM p̂(y|θ) as a function of
conditioning parameter θ. Results shown for models trained by various training dataset
sizes N .

with N samples, and training the conditional augmentation afterwards (repeated for N =

1,000, 5,000, 10,000, and 100,000) samples. We find that the KL divergence increases as θ

approaches the bounds of the training data (p(θ) = U [0.2, 1.0]), likely due to the well known

extrapolative difficulty which most ML models demonstrate. Additionally, without sufficient

data during training, the SBGM fails to accurately model the time dependent score function,

reducing the accuracy in sampling from the true data distribution. However, once a sufficient

number of samples are used in training, there appears to be diminishing returns to the ac-

curacy in representing the conditional distributions. The remaining inaccuracy in modeling

the true distribution is likely due to the expressiveness (more accurately, inexpressiveness)

of the model architecture and the discretization of the reverse SDE.

Further, qualitative comparisons between the generated distributions and the true condi-

tional PDFs are shown in Figure D.3, demonstrating a good approximation to the conditional

distribution on the range of training data for N = 10, 000 samples.

D.3.4 Discussion on Physical Consistency Steps

In the experiments presented in Chapter 6, we apply physical consistency steps, which may

lead to one hypothesizing that this will alter the dynamics of the reverse SDE, and potentially

alter the distribution of samples generated by the SBGM. However, this is not the case.
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Consider an example in which the data is generated through the relationship

y =

[
y1

y2

]
=

[
x

x2

]
, (D.2)

where x ∼ p(x). In this case, y2 is a function of y1. Thus, accurately modeling p(y1) = p(x)

removes the necessity for modeling the uncertainty in y2, as long as the relationship between

the two (y2 = y21) is accurately modeled. Therefore, if a SBGM generates both y1 and y2,

as long as the distribution p(y1) and the relationship y2 = f(y1) are accurately modeled, the

SBGM will accurately generate samples from p(y1, y2) = p(y). We assume that the SBGM

will accurately sample from p(y1), but applying ‘physical consistency steps’ to enforce the

relationship y2 = f(y1) will only improve the modeling of p(y).

This argument can be easily extended to the applications of SBGM’s to Darcy flow in

Chapter 6. Given a permeability field K(x), the pressure field p(x) is a deterministic function

of the permeability related through some function p(x) = f(K(x)). Therefore, if the SBGM

accurately approximates the distribution on permeability fields p(K(x)) and the relationship

p(x) = f(K(x)), then the distribution p(K(x), p(x)) will be accurately modeled. We rely on

the SBGM to model p(K(x)), but we aid it in representing the relationship p(x) = f(K(x))

through physical consistency sampling, enforcing this relationship through the minimization

of the PDE residual on the pressure fields only.

D.4 Analytic Approximation to Conditional Sampling

- Field Reconstruction and Inversion

There exist a few special cases of conditional sampling in which it is possible to approximate

conditional sampling after training only an unconditional generative model. Data imputation

is one of such cases and attempts to predict or reconstruct unknown dimensions of data given

some particular measured values of known dimensions. This is a conditional problem in

which the aim is to sample from a conditional distribution in which conditioning information

is the particular measured values ω of some known dimensions Ω(y(0)). The particular

distribution to sample from is defined as p(z|Ω(x(0)) = ω), where Ω̄(y(0)) = z corresponds

to the unknown dimensions. Given a trained unconditional score-based generative model, an

approximation to this conditional sampling can be performed without any need for further

training [99]. In our experiments, we measure only Darcy flow pressure fields at various

spatial locations. From these measurements, the entire pressure field is reconstructed and

an inverse problem is effectively solved to also approximate the permeability field. The
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examples in this work are intended to illustrate a framework which can be applied to any

number of physical systems, effectively using measurements to predict physical fields which

are consistent with governing equations. Although we perform this procedure with a closed

form approximation based on a pretrained unconditional model, the technique can also be

performed by training a conditional model as described in Sec. 6.1.2 of the main text.

We perform data imputation by following the ideas from [99] in which Ω(y) denotes

the known (measured) dimensions of y and Ω̄(y) denotes the unknown dimensions of y.

Further, fΩ̄(·, t) and gΩ̄(t) define a restriction of the operators f(·, t) and g(t) in the SDE to

the unknown dimensions only.

As some portion of y is known, a new diffusion process is defined such that z(t) = Ω̄(y(t))

and

dz = fΩ̄(z, t)dt+ gΩ̄(t)dw .

However, we do not desire to simply sample from p(z(t = 0)), but rather p(z(t = 0)|Ω(y(t =

0)) = ŷ), where ŷ are the measured values. The reverse process is therefore defined as

dz = [fΩ̄(z, t) − gΩ̄(z, t)2∇z log pt(z|Ω(y(0)) = ŷ)]dt+ gΩ̄(t)dw

It is shown in [99] that ∇z log pt(z|Ω(y(0)) = ŷ) can be approximated by ∇z log pt(u(t))

where u(t) = [z(t); Ω̂(y(t))] is a vector such that Ω(u(t)) = Ω̂(y(t)) and Ω̄(u(t)) = z(t).

The quantity Ω̂(y(t)) denotes a random sample from pt(Ω(y(t))|Ω(y(0)) = ŷ), which can

typically be obtained by sampling the corresponding known dimensions from the forward

SDE process as the dimensions of y are uncorrelated in the forward process (Eq. 5.42 of

the main text). The vector u(t) contains all known and unknown components of y and

therefore sθ(y(t), t) ≈ ∇z log pt(u(t)) ≈ ∇z log pt(z|Ω(y(0)) = ŷ). Thus, an approximation

to ∇z log pt(z|Ω(y(0)) = ŷ) can be computed by leveraging the score function approximation

sθ(y(t), t) without any additional special training by sampling the known dimensions of

y(t) at each time step according to the forward process. Further, sampling with physical

consistency steps (Sec. 6.1 of the main text) can still be performed in the same manner,

leading to samples which are consistent with the governing PDE.

It is worth mentioning that performing data imputation in this special case can be orders

of magnitude more expensive when solving the PF ODE reverse process rather than the

reverse SDE process. It is illustrated in Sec. 6.1 of the main text that solving the PF

ODE reverse process results in improved physical residual minimization with smaller PDE

operator evaluations when compared to the reverse SDE. However, the outlined method of

data imputation requires sampling from the forward process to obtain Ω̂(y(t)). Sampling

in time via the forward PF ODE process involves solving the PF ODE forward in time. In
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Table D.1: Field reconstruction and inversion (no RePaint) with various number of pressure
measurements (Darcy Flow, s = 16). Analytic approximation to data imputation used in
sampling.

Equation m EpS(y)[||r||22] EpS(y)[||r||22]−
EpD(y)[||r||22]

EpD(y)[||P − P̂ ||22] EpD(y)[||K − K̂||22]

SDE 0 3.6 -0.9 1.02 × 10−1 8.8 × 10−3

SDE 10 224.1 219.6 1.04 × 10−1 9.5 × 10−3

SDE 50 1463.5 1459.0 8.73 × 10−2 9.1 × 10−3

SDE 100 3986.1 3981.6 5.92 × 10−2 8.5 × 10−3

SDE 250 4142.1 4137.6 3.25 × 10−2 7.8 × 10−3

SDE 500 1970.2 1965.7 9.1 × 10−3 6.4 × 10−3

SDE 1000 183.8 179.3 5.0 × 10−4 4.3 × 10−3

SDE 2000 7.5 3.0 3.6 × 10−6 2.8 × 10−3

SDE 4000 7.6 3.1 2.4 × 10−7 2.0 × 10−3

contrast, the forward SDE has a closed form solution to obtain samples at any future time

(Eq. 2.24 in the main text), rendering data imputation (field reconstruction and inversion)

far more feasible and inexpensive.

Table D.2: Field reconstruction and inversion with RePaint performance with the number
of repainting steps r (Darcy Flow, s = 16, m = 500).

Equation r EpS(y)[||r||22] EpS(y)[||r||22]−
EpD(y)[||r||22]

EpD(y)[||P − P̂ ||22] EpD(y)[||K − K̂||22]

SDE 1 750.7 746.2 4.9 × 10−3 4.3 × 10−3

SDE 2 26.2 21.7 3.0 × 10−4 2.9 × 10−3

SDE 3 8.7 4.2 3.1 × 10−5 3.8 × 10−3

SDE 5 10.6 6.1 1.9 × 10−5 2.9 × 10−3

SDE 10 9.6 5.1 1.7 × 10−5 4.8 × 10−3

We use the same score-based generative model defined in the experiments of Sec. 6.1 in

the main text in our experiments. However, only the reverse SDE is solved and not the

PF ODE due to aforementioned inefficiencies. We perform the baseline data imputation

approximation for various number of measured dimensions. The number of measurements

is defined as m. To perform data imputation, we randomly select m spatial locations to

measure only pressure in the physical domain, similar to Sec. 6.3.1.1 in the main text. The

random seed is kept constant such that for two cases in which m2 > m1, the spatial locations

of case 1 are a subset of the spatial locations of case 2.

For each experiment, we vary only the number of pressure measurements used to re-

construct the pressure field and invert the permeability field. The reverse process uses an

213



(a) r = 0 (b) r = 5

Figure D.5: Field reconstruction and inversion (a) without and (b) with RePaint. RePaint
incorporates more information about the known dimensions into the unknown dimensions.
Figure is high quality, zoom in for more clarity.

Euler-Maruyama time integration method to solve the reverse SDE with τ = 2, 000 time

steps. We also use N = 50 physical consistency steps and M = 10 additional physical con-

sistency steps. For these experiments, we illustrate results on the Darcy flow s = 16 dataset

only.

Pressure data is denoted P with reconstructions denoted P̂ . Similarly, permeability data

and reconstructions are denoted K and K̂ respectively. Table D.1 gives quantitative recon-

struction results, and Fig. D.5a illustrates qualitative reconstruction on the test set. Al-

though the reconstruction for both pressure and permeability fields improves with increasing

number of samples, the physical residual is very high, particularly for smaller number of mea-

surements, even with physical consistency enforcement. This is likely due to the incoherence

between the known (measured) and unknown regions of the data samples. It is evident in
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Fig. D.5 that the measured points do not match well with the reconstructed points.

To reduce this discrepancy, we turn towards a recent work addressing this issue called Re-

Paint [110]. This effectively alters between reverse and forward steps to reduce the boundary

discrepancy between measured and unmeasured regions of the data samples. At each discrete

time step i of the reverse SDE solver, an additional r resampling steps are performed. A

resampling step consists of solving the forward SDE for a single time step, followed by solv-

ing the reverse SDE for the same time step, effectively alternating r times between stepping

forward and stepping backward in time according to the SDE. This allows better mixing of

the measured and unmeasured dimensions of the data, adding artificial noise before denois-

ing, effectively incorporating more information about the known dimensions to the unknown

dimensions at each resampling step. However, this comes at a significant cost: the number

of score function evaluations scales linearly with r. This can be partially alleviated by per-

forming r resampling steps only at some discrete pre-selected number of time steps instead

of at each time step. However, this presents additional difficulties such as determining the

optimal time steps to perform resampling at. In our experiments, we perform resampling r

times at each time step.

We investigate the power of RePainting by setting a constant number of pressure mea-

surements (m = 500), and solving the reverse SDE with various numbers of resampling steps.

Table D.2 illustrates the results of this experiment, showing that the resampling procedure

greatly improves reconstruction performance and drastically reduces physical residuals over

the standard method of sampling without RePaint (r = 0). Additionally, reconstructions

rapidly improve with increasing number of resampling steps. Sampling with RePaint and

r = 3 reduces the average physical residual from 1970.2 to 8.7 over sampling without Re-

Paint. The average reconstruction error is also reduced from 9.1 × 10−3 to 3.1 × 10−5 and

the field inversion error is reduced from 6.4 × 10−3 to 3.8 × 10−3. Figure D.5b qualitatively

shows the effect that RePaint has on sample quality. When compared to sampling without

RePainting (Fig. D.5a), reconstructions are far more accurate and predictions less noisy,

especially permeability fields. This is a direct result of reducing the boundary discrepancy

using the RePainting algorithm, leading to de-noised samples.

Performing field reconstruction and inversion as described in this section outperforms

the method of conditional generation using ControlNet detailed in the main text in terms

of reconstruction performance. However, using the repainting algorithm linearly increases

the cost of sampling as a function or r. Thus, the best results here require around 5x

more compute time to obtain over those obtained using ControlNet-based augmentations for

conditional generation.
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