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ABSTRACT

The locus of periodic cycles is of fundamental importance to any discrete time dynamical

system. We introduce a family Cycp(F) of marked cycle varieties that parameterize the

p-cycles of an algebraic family of dynamical systems. We describe a dynamically natural cell

structure for marked cycle curves over the moduli space Per1 of quadratic polynomials and

over the moduli space Per2 of quadratic rational maps with a 2-periodic critical point. We

then analyze the combinatorics of the resulting cell structures, obtaining formulas for the

number of cells of each dimension.
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CHAPTER 1

Introduction

Starting with Isaac Newton’s invention of his eponymous root-finding algorithm, the field

of complex dynamics has grown in an effort to understand the behavior of iterated complex

functions.

The iteration in question is a discrete process: unlike in the case of continuous-time dynam-

ical systems, systems arising in complex dynamics generally do not act on the underlying

space by homeomorphisms, instead posessing critical points near which the map is not invert-

ible. Furthermore, points may enter cycles under forward iteration, even if the initial point

did not belong to this cycle. Thus, a great deal can be learned about a complex dynamical

system by understanding its critical points and periodic cycles.

When generalizing from a single dynamical system to a family F of holomorphic maps, a

number of interesting questions arise.

• How do the periodic cycles change as we move around F?

• To what extent is it possible to produce a consistent labeling of these cycles?

• When do cycles collide with one another or degenerate?

• What can we learn about the structure of F from the answers to the above?

The present work is devoted to understanding such questions. In Chapter 2, we provide

a brief summary of some of the classical results in complex dynamics. In Chapter 3, we

introduce three classes of branched covers over an algebraic dynamical family F — the

dynatomic variety, the marked cycle variety, and the Misiurewicz variety, each of which

adjoins extra certain dynamical data to elements of F .

Chapters 4 and 5 are devoted to describing the structure of these dynamical varieties. In

Chapter 4, we derive Algorithm 4.6.1 to compute the cell structure of the marked cycle

varieties over the family Per1 of quadratic polynomials. This algorithm is then extended

1



in Chapter 5 to also describe the marked cycle varieties over the family Per2 of quadratic

rational maps with a critical 2-cycle.

In Chapter 7, we study the combinatorics of dynamical varieties over Per1 and Per2. In

Chapter 8, we conclude by suggesting some further directions of study, such as Misiurewicz

curves and marked cycle curves over other families.

Finally, two appendices are provided with further details on how to replicate the examples

produced here. Appendix A gives a more formal description of Algorithm 4.6.1 (a complete

implementation in Rust is also available at [Sto23b]). Appendix B shows some of the com-

putations used to explicitly parameterize some of the dynamical varieties shown graphically

throughout this work. The exact code used to produce these pictures (and many more) may

be found at [Sto23a].
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CHAPTER 2

Background

2.1 Dynamics

We are interested in studying the behavior of meromorphic functions, in particular rational

maps, under forward iteration.

We begin with an extremely general definition that applies to any discrete-time dynamical

system.

Definition 2.1.1. Let f be a self-map of a set X, and let x ∈ X. We say that x has

preperiod k and period p under f if

fk(x) = fk+p(x),

where k and p are minimal subject to the above.

Definition 2.1.2. A p-cycle of a self-map f of a set X is a set of distinct points x0, . . . , xp−1

such that f(xi) = xi+1, where addition is done mod p, unordered but for the circular order

induced by f .

We now restrict our attention to holomorphic self-maps f of a Riemann surface S.

Definition 2.1.3. The multiplier of a p-cycle of f is the derivative of the pth iterate of f at

any point in the cycle. Equivalently, the multiplier is given by the product

λ =

p−1∏
i=0

f ′(zi).

The multiplier is of great importance in understanding the dynamics of f near a p-cycle. We

have the following classification:
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Definition 2.1.4. A p-cycle of a holomorphic map f with multiplier λ is

• superattracting if λ = 0,

• attracting if 0 < |λ| < 1,

• indifferent if |λ| = 1, or

• repelling if |λ| > 1.

An indifferent cycle is parabolic if λ is a root of unity and no iterate of f is the identity.

Examples 2.1.5.

• Any polynomial of degree d ≥ 2 has a superattracting fixed point at ∞.

• The periodic points of f(z) = z2 are the superattracting fixed points 0 and∞, together

with all points of the form exp
(

m
2p−1

τi
)

(recall τ
def
= 2π) for p ∈ N∗, 0 ≤ m < 2p − 1,

which belong to repelling cycles of periods dividing p.

Definition 2.1.6. The basin A of a cycle ξ is the set of all z ∈ Ĉ whose forward iterates

under f converge toward ξ. A is an open subset of Ĉ, often having infinitely many connected

components. The immediate basin A0 of f is the union of the components of A that are not

disjoint from ξ.

The following classical result underscores the significance of the critical points of a map f

in understanding its dynamics.

Theorem 2.1.7 (Fatou, Julia). If f is a rational map of degree d ≥ 2, then the immediate

basin of every attracting and every parabolic cycle of f contains at least one critical point.

In particular, since the basins of distinct cycles are disjoint, the number of attracting or

parabolic cycles is bounded by the number of critical points. For instance, a rational map

of degree d has 2d− 2 critical points, so it has at most 2d− 2 attracting or parabolic cycles.

Definition 2.1.8. The Fatou set of a rational map f is the set of all z ∈ Ĉ such that for

some neighborhood U of z, the set {fn|U : n ∈ N} of forward iterates of f on U forms a

normal family.

The Fatou set contains the basins of all attracting and parabolic cycles of f . In certain cases,

the Fatou set may also contain rotation domains known as Siegel disks (resp. Herman rings),

in which f is conjugate to an irrational rotation on a disk (resp. annulus).

Definition 2.1.9. The Julia set J (f) of f is the complement of the Fatou set. Equivalently,

the Julia set is the closure of the set of repelling cycles of f .
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When f is a polynomial, we define the filled Julia set K(f) to be the set of all z ∈ C whose

forward orbit under f is bounded. For such maps, the Julia set coincides with the boundary

of the filled Julia set (c.f. [Mil06], Lemma 9.4).

Definition 2.1.10. A map f : S → S on a Riemann surface S is hyperbolic if the forward

orbit of every critical point of f converges towards an attracting or superattracting cycle.

Hyperbolic maps are of interest because attracting cycles are easy to understand. The

following classical theorems provide a complete description of the dynamics of holomorphic

maps near attracting and superattracting cycles, respectively.

Theorem 2.1.11 (Kœnigs, c.f. [Mil06] Theorem 8.2). Let f be a holomorphic self-map of

a Riemann surface S, and suppose that z0 is an attracting fixed point of f with multiplier

λ ∈ D∗. Then f is locally conjugate to multiplication by λ. Formally, there is a neighborhood

U of z0 and a conformal isomorphism ψ : U → D, unique up to a rotation, such that

ψ ◦ f ◦ ψ−1(z) = λz for all z ∈ U .

Theorem 2.1.12 (Böttcher, c.f. [Mil06] Theorem 9.1). Let f be a holomorphic self-map of a

Riemann surface S, and suppose that z0 is a superattracting fixed point of f with local degree

n ≥ 2. Then f is locally conjugate to the nth power map on the disk.

More strongly, there exists r ∈ (0, 1], a neighborhood U of z0, and a conformal isomorphism

ψ : U → Dr, such that ψ ◦ f ◦ ψ−1(z) = zn for all z ∈ U . If r = r∗ is chosen to be maximal,

then either r∗ = 1, or ∂U necessarily contains a critical point of f .

Corollary 2.1.13. The map ϕ defined above extends uniquely to a holomorphic map ϕ : Az0

Analogous results for cycles of higher period follow by applying the above results to iterates

of f .

Example 2.1.14. The polynomial fc(z) = z2 + c has a superattracting fixed point at ∞.

Thus, by Böttcher’s theorem, fc is conjugate in a neighborhood U of ∞ to the map z 7→ z2.

Choose the maximal radius r∗ = r∗(c). If r∗ < 1, the Böttcher map extends until its domain

touches the finite critical point of f . If, on the other hand, r∗ = 1, then the boundary of the

domain U coincides with the Julia set of f .

The map c 7→ − log r∗(c) turns out to be equivalent to the Green’s function on the comple-

ment of the Mandelbrot set.
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2.2 Dynamical Families and Moduli Spaces

We are often interested not only in a single dynamical system, but rather in how the dynamics

change as we modify the map.

Definition 2.2.1. A (complex) dynamical family on a complex manifold X is a complex

orbifold F consisting of self-maps of X, such that the evaluation map e(f, x) = f(x) is

holomorphic from F ×X to X. We refer to X as the mapping space of F .

If φ ∈ Aut(X) is a conformal automorphism of X, then the dynamics of Tφ(f) = φ ◦ f ◦ φ−1

are equivalent to the dynamics of f . Thus, two maps which at first appear distinct may

end up having identical dynamics. For instance, taking X = Ĉ, the maps g0(z) = z2 + λz,

g1(z) = z2 + (2− λ)z, and g2(z) = z2 + (λ(2− λ)) /4 are all conjugate to one another. It is

therefore useful to study dynamical families from a viewpoint that removes such redundant

copies.

Definition 2.2.2. The dynamical moduli space Mod(F) associated to a dynamical family

F on X is the collection of Aut(X)-conjugacy classes of elements of F .

The space Mod(F) is endowed with a natural orbifold structure, obtained by pulling back

the complex structure on F .

Remark 2.2.3. Studying dynamical moduli spaces, instead of arbitrary families of maps,

allows us to isolate properties of dynamical systems that are intrinsic to the dynamics them-

selves, rather than artifacts of the coordinate system being used. For instance, the filled

Julia set of a polynomial f is defined as the set of z with bounded forward orbit under f .

This definition suffices if we view f as a map on C, whose automorphism group is the set

of affine maps. However, if we are viewing f as a map on Ĉ, then this definition becomes

incompatible with the dynamical moduli space, since the property of boundedness is not

Möbius invariant.

Two properties are of fundamental importance to a dynamical system: the critical points

(and by extension the postcritical set), and the periodic cycles (together with their mul-

tipliers). The critical points, postcritical set, and periodic cycles are all covariant under

conjugation, while the multipliers of cycles are invariant.

Remark 2.2.4. Moduli spaces have a tendency to resemble the spaces they parameterize.

While this statement in general is too vague to be formalized, it might nevertheless be

thought of as the fundamental analogy of moduli spaces. As a first example, the moduli

space of triangles in the plane up to similarity is itself a filled triangle. A more fruitful
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Dynamical system Moduli space
Julia set bifurcation locus
Fatou component J-stable component
(pre)-attracting Fatou component hyperbolic component
repelling periodic point Misiurewicz point
attracting (pre)-periodic point component center
Böttcher map Douady-Hubbard map

Table 2.1: Correspondence between dynamical systems and their moduli spaces

example is projective space (and similarly the Grassmanian), which parameterizes lines in

an affine space, and which inherits many of the same geometric properties of affine space.

In complex dynamics, the most prominent instance of this analogy is given by the tendency

for the geometry of the Mandelbrot set near a point f to resemble that of the Julia set of f .

This was proven by Tan Lei in [Lei90] when f is a Misiurewicz point (i.e. when the critical

orbit of f is strictly preperiodic). Further instances of this analogy are given in Remark 2.2.4.

2.2.1 Examples of Dynamical Families

For the purpose of this thesis, we are interested in the case where S = Ĉ is the Riemann

sphere. In this case, the holomorphic self-maps of Ĉ are precisely the rational maps, and

Aut(S) is the family of Möbius transformations.

The space of all rational maps is not itself a dynamical family (being infinite dimensional),

but it can be expressed as a countable union of dynamical families. Formally, for n ∈ N,

we define Ratn to be the dynamical family consisting of all rational maps of degree n. We

denote the corresponding moduli space by Mn = Mod(Ratn).

• The case n = 0 is uninteresting, as Rat0
∼= Ĉ consists only of constant functions, and

M0 is just a point.

• Rat1
∼= PSL(2,C) consists of the Möbius transformations, whose dynamics are char-

acterized by the multipliers of their two fixed points. By conjugating by a Möbius

transformation to move place the fixed points at 0 and ∞, we may take f to have the

form fλ(z) = λz. By possibly conjugating by z 7→ 1
z
, we may take λ to belong to Dr0.

Thus, M1 is a punctured sphere, since the upper half of ∂D is identified with the lower

half via the conjugacy z 7→ 1
z
, which takes λ ∈ ∂D to 1

λ
= λ̄. In all cases, the dynamics

are uninteresting: if |λ| = 1, then J (fλ) is empty; otherwise, J (fλ) = {∞} consists
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only of the repelling fixed point.

• The case Rat2 is already highly nontrivial, and many questions remain open about its

structure. A wonderful analysis of the structure of M2 may be found in [Mil93]. For

our purposes, the relevant properties are summarized as follows:

– As an algebraic variety, M2 is canonically isomorphic to C2. Explicit coordinates

for a conjugacy class f ∈ M2 are given by evaluating the elementary symmetric

polynomials e1 and e2 on the multipliers of the three fixed points of f .

– The natural orbifold structure on M2 is distinct from that of C2. The singular

locus consists of all maps conjugate to a map of the form f(z) = k(z+1/z). Such

maps have an automorphism group of order 2, except for the case k = −1/2,

for which the automorphism group is of order 6. A common representative for

the k = −1/2 class is the map f(z) = 1/z2, which commutes with z 7→ 1/z and

z 7→ ωz, where ω is a cube root of unity.

• The cases Ratd, d ≥ 3, are even more complicated. An easy computation shows that

Ratd has complex dimension 2d+1. Since PSL(2,C) has complex dimension 3 and acts

freely by conjugation on a nonempty Zariski open subset of Ratd, the moduli space Md

has complex dimension 2d− 2, equal to the number of critical points.

Segal in [Seg79] analyzes the topology of Ratd, showing for instance that Ratd has

fundamental group Z/2dZ. Little is known about the structure of Md, or the dynamics

therein, which are more complicated than in Rat2. For example, there exist maps in

Ratd, d ≥ 3, with Fatou components that are topological annuli known as Herman

rings.

For n ∈ N∗, λ ∈ C, the Milnor curve Pern(λ) ⊂M2 is defined to be the set of all conjugacy

classes of maps f ∈ Rat2 with an n-cycle of multiplier λ. The degree of the curve Pern(λ) in

M2 is equal to the number Hyp1(n) of hyperbolic components of period n in the Mandelbrot

set.

Another natural subspace of Mn is the moduli space Pn of polynomials of degree n. The

simplest nontrivial case is again when n = 2, giving rise to the quadratic family, which will

be discussed in the following section. For n ≥ 3, many questions remain open due to the

presence of multiple free critical points. The family P3 of cubic polynomials shares many

similarities with M2; in particular, both families have complex dimension 2, with two free

critical points and three “free” fixed points multipliers (in both cases, the latter are subject

to a codimension 1 restriction given by the holomorphic index formula).

8



Many properties known or conjectured to be true in P2 are known not to hold in Pn for

n > 2. For instance, Lavaurs showed in [Lav89] that the bifurcation locus in P3 is locally

disconnected.

A more manageable subfamily of Pn is the unicritical family Un, consisting of all conjugacy

classes of polynomials with a single (finite) critical point. The simplest and most commonly

used coordinates for this family are the coordinates fc(z) = zn + c, but the relation fζc(z) =

ζfc(ζ
−1z), where ζ is a primitive (n− 1)nd root of unity, implies that for n ≥ 3, these

coordinates describe a branched cover of moduli space. A true parameterization of moduli

space is given by the coordinates fc(z) = c
(
1 + z

n

)n
, which have critical point −n and critical

value 0.

Unlike with the broader case of Pn, much that is known about P2 = U2 extends naturally to

Un. In particular, unless otherwise specified, every result in Section 2.3 has an analogue for

Un, often with a similar or identical proof.

2.2.2 Hyperbolic components and stability

Recall that a map f on a Riemann surface S is hyperbolic if all critical points of f converge

toward attracting or superattracting cycles. As hyperbolicity is an open condition, the set of

hyperbolic maps in a given dynamical family or moduli space is a disjoint union of connected

open sets, known as hyperbolic components.

Within a hyperbolic component, dynamics are “stable” in a number of ways.

Definition 2.2.5. A dynamical family F is structurally stable at f ∈ F if all maps in

neighborhood of f are topologically conjugate to f .

Definition 2.2.6. A dynamical family F is J-stable at f ∈ F if the Julia set of g changes

continuously (in the Hausdorff topology) for g in a neighborhood of f .

Since both structural stability and J-stability are well-defined up to conjugacy, they can

equivalently be applied to dynamical moduli spaces. Evidently, structural stability implies

J-stability, since J (φ ◦ f ◦ φ−1) = φ(J (f)). The following result is simple to show by

perturbing the multipliers of the attracting cycles:

Proposition 2.2.7. If f ∈ F is hyperbolic and does not have any superattracting cycles,

then F is structurally stable at f .

The following result is also classically known, see e.g. Theorem 3.4 of[McM95].

Proposition 2.2.8. J-stability holds for all hyperbolic maps f ∈ F .
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Figure 2.1: Moduli space P2 of quadratic polynomials. The black region accumulates on the
bifurcation locus B(P2), while the white regions are hyperbolic components. It is conjectured
that the latter regions are dense in C.

Both J-stability and structural stability are known to be generic in the families of rational

maps, polynomials, and unicritical polynomials.

Theorem 2.2.9 (Mañé, Sad, Sullivan [MSS83]). For n ≥ 2, J-stable maps are dense in Un,

in Pn, and in Mn.

Theorem 2.2.10 (Eremenko, Lyubich [EL92]). For n ≥ 2, structurally stable maps are

dense in Un, in Pn, and in Mn.

It is conjectured that hyperbolicity similarly generic in the families of rational maps and

unicritical polynomials. Indeed, all known J-stable maps in these families are hyperbolic.

However, this conjecture remains open even in the simplest nontrivial case P2 = U2 of

quadratic polynomials. It is widely considered to be one of the deepest open problems in

complex dynamics.

Conjecture 2.2.11 (Density of Hyperbolicity). For all n ≥ 2, hyperbolic maps are dense

in Un, in Pn, and in Mn.

The complement of the set of J-stable parameters in a dynamical family F is known as the

bifurcation locus B(F). The bifurcation locus may be thought of as the analogue of the Julia

set in parameter space.

2.3 Particulars of the Quadratic Family

Of basic interest is the dynamical moduli space P2 = U2 of quadratic polynomials. We

present in this section a brief overview of the classical results on this family, most of which

were proven by Adrien Douady, John H. Hubbard, and Tan Lei in [DH84]. A more modern
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treatment may be found in Chapter 10 of [Hub16].

As every quadratic polynomial is affine conjugate to a unique polynomial of the form fc(z) =

z2 + c, P2 is naturally identified with C, parameterized by the critical value c.

The Mandelbrot set M is defined to be the set of parameters c ∈ C for which the critical

orbit

{fnc (0) : n ∈ N}

is bounded. The boundary of M is the bifurcation locus B(P2), and all known components

of the interior of M are hyperbolic components.

2.3.1 External rays

The following proposition follows from Böttcher’s Theorem 2.1.12 by considering the super-

attracting fixed point at ∞:

Proposition 2.3.1. For c ∈ M, the filled Julia set K(fc) is connected. The complement

CrK(fc) is conformally isomorphic to Cr D via the map

φc(z) = lim
n→∞

fnc (c)2−n ,

where the 2n-th roots may be chosen in such a way that limz→∞
φc(z)
z

= 1. Furthermore, the

map (c, z) 7→ φc(z) is holomorphic on its domain.

The final claim follows from the fact that φc is defined as a limit of functions depending

uniformly on z and c, where the convergence is uniform on compacta.

By construction, φc conjugates fc to the squaring map. We denote by ψc : CrD −→ CrK(fc)

the inverse map.

Remark 2.3.2. The map φc clearly need not extend to the boundary J (fc), since the Julia

set of fc need not be a circle. More interestingly, the inverse map ψc also need not extend

continuously to the boundary ∂D of its domain. Indeed, Caratheodory’s theorem on con-

formal mappings implies that ψc extends continuously to ∂D if and only if J (fc) is simply

connected. This is not always the case; for instance, if c = λ(2− λ)/4, where λ = exp(τiθ)

and θ is a non-Brjuno number, then c ∈M and J (fc) is locally disconnected.

By Böttcher’s theorem, the map ψc = φ−1
c can still be defined for c /∈ M, but its domain

is now only C r Dr for some rc > 1, such that the critical point of f lies on the boundary

of the range ψc(C r Drc). However, we can still extend φc if we only remember its absolute
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value. To this end, we introduce the Green’s function

Gc(z) = lim
n→∞

1

2n
log |fnc (z)| .

By construction, Gc(z) = log |φc(z)| wherever φc(z) is defined.

Proposition 2.3.3. The Green’s function satisfies the functional equation

Gc(fc(z)) = 2Gc(z). (2.1)

Its gradient satisfies the functional equation

∇Gc(fc(z))z = ∇Gc(z), (2.2)

where z is regarded as a linear map on R2.

Proof. Equation (2.1) is immediate from the definition of Gc. Equation (2.2) then follows

by differentiating (2.1).

Proposition 2.3.4 (c.f. Proposition 8.1 and 8.2 of [DH84]). The Green’s function Gc is

harmonic on C r K(fc), and has critical points precisely at the iterated preimages of the

critical point of fc, including the critical point itself.

In particular, Gc(z) > 0 for all z ∈ CrK(fc). For c ∈ CrM, if Gc(z) > Gc(0), then φc(z)

is well-defined. Thus, since

GM(c)
def
= Gc(c) = Gc(fc(0)) = 2Gc(0) > Gc(0),

the value φc(c) is always well-defined for c ∈ CrM.

Theorem 2.3.5 (Douady, Hubbard, c.f. [DH84]). The map

φM(c) = φc(c) = lim
n→∞

fnc (c)2−n

is analytic, proper, and injective on C rM, and thus induces a conformal isomorphism

CrM→ Cr D. In particular, the Mandelbrot set is connected.

The following famous conjecture is important in part because it implies Conjecture 2.2.11

for quadratic polynomials.

Conjecture 2.3.6 (MLC). The Mandelbrot set is locally connected.
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Figure 2.2: Dynamical plane for fc(z) = z2 + 1
2
, shaded according to the value of Gc(z), with

brighter areas corresponding to larger values of Gc. The Julia set if the collection of black
points, where Gc(z) = 0. The blue curve is the critical equipotential {z : Gc(z) = Gc(0)}.
The domain of φc is the unbounded component outside the blue curve.

While the above has been proven for particular subsets ofM, the problem in general remains

open.

Definition 2.3.7. The parameter ray R(θ) to M at angle θ ∈ S1 is the curve

γ(t) = φ−1
M(exp(t+ θτi)),

defined for all t > 0, which satisfies GM(γ(t)) = t and limt→∞ arg γ(t) = θτ .

Definition 2.3.8. The dynamical ray Rc(θ) at angle θ ∈ S1 for fc is the unique solution to

the differential equation

γ′(t) =
(∇Gc)

T

‖∇Gc‖2 (γ(t)), (2.3)

defined on a maximal domain (t0,∞), such that

lim
t→∞

arg γ(t) = θτ,

and such that

Gc(γ(t)) = t

for some (and hence all) t > t0.

The following proposition is, for parameter rays, a consequence of φM being bijective, and for

dynamical rays, a consequence of existence and uniqueness for smooth initial value problems.

Proposition 2.3.9. For any c ∈ C rM, there exists a unique θ ∈ S1 such that c lies on

R(θ). For any c ∈ C and z ∈ C r K(fc), there exists a unique θ ∈ S1 such that z lies on
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Rc(θ).

This allows for another definition:

Definition 2.3.10. For c ∈ CrM, the external argument of c is argM(z) = arg(φM(c)) =

θτ , where θ ∈ S1 is the angle of the unique parameter ray through c.

For c ∈ C and z ∈ C r K(fc), if z lies on a dynamical ray Rc(θ), we say the dynamical

argument of z relative to fc is argc(z) = θτ .

The following proposition relates dynamical rays to the Böttcher map, justifying our defini-

tion for Rc(θ).

Proposition 2.3.11. For any c ∈ C, let U = C r Drc denote the domain of the inverse

Böttcher map ψc, and for θ ∈ S1, let R = exp (θτi)R>rc denote the straight ray at angle θ

in U . Then

ψc(R) = Rc(θ) ∩ ψc(U).

Proof. Let γ(t) = ψc(exp (t+ θτi)) for t > t0 = log rc. Since limz→∞ φc(z)/z = 1, we know

that limt→∞ arg(γ(t)) = θτ . Thus, by existence and uniqueness, it suffices to show that γ

satisfies (2.3). Indeed,

Gc(γ(t)) = log |exp (t+ θτi)| = t

for all t > t0. Differentiating the above then gives

∇Gc(γ(t))γ′(t) = 1,

which is precisely ∇Gc(γ(t)) multiplied by (2.3). Since φ−1
c is conformal and maps circles

centered at 0 to level curves of Gc, we also know that the component of γ′(t) orthogonal to

∇Gc(γ(t)) is zero. The result then follows.

Corollary 2.3.12. If c ∈ C rM has external argument θτ , then the dynamical ray Rc(θ)

passes through the critical value c of fc.

Proof. This is immediate from Proposition 2.3.11 together with the definition of φM.

Proposition 2.3.13. For any c ∈ C and θ ∈ S1, fc(Rc(θ)) = Rc(2θ).
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Proof. Let γ(t) parameterize the dynamical ray Rc(θ). By definition, we know that

lim
t→∞

arg(γ(t)) = θτ.

Since fc is monic of degree 2, and since γ(t) tends to infinity as t tends to infinity, it follows

that

lim
t→∞

arg(fc(γ(t))) = 2θτ.

Moreover, using equation (2.2), we have

d

dt
fc(γ(t)) = f ′c(γ(t))γ′(t)

= 2γ(t)
(∇Gc)

T

‖∇Gc‖2 (γ(t))

= 2γ(t)
(∇Gc(fc(γ(t)))γ(t))T

‖∇Gc(fc(γ(t)))γ(t)‖2

= 2
γ(t)γ(t)

|γ(t)|2
(∇Gc)

T

‖∇Gc‖2 (fc(γ(t)))

= 2
(∇Gc)

T

‖∇G‖2 (fc(γ(t))).

Thus, after the reparameterization t← t/2, we see that fc(R(θ)) satisfies (2.3) and hence is

equal to R(2θ).

When considering the backward limit of a parameter ray γ = R(θ), there are two possibilities:

(a) If limt↘0 γ(t) is a well-defined point z0 ∈ ∂K(fc) = J (fc), we say that R(θ) lands at

z0.

(b) If limt↘0 γ(t) does not exist, we say that R(θ) oscillates. By Caratheodory’s theorem

on conformal mappings, M is locally disconnected at every point in the ω-limit set of

γ.

Thus, Conjecture 2.3.6 implies that (a) is only case that actually occurs.

When considering the backward limit of a dynamical ray γ = Rc(θ), an additional possibility

arises:

(a) If limt↘0 γ(t) is a well-defined point z0 ∈ ∂K(fc) = J (fc), we say that Rc(θ) lands at

z0.

(b) If limt↘0 γ(t) does not exist, then Rc(θ) oscillates, and J (fc) is locally disconnected
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at every point in the ω-limit set of γ.

(c) If γ is only defined for t > t0 for some fixed t0 > 0, then limt↘t0 γ(t) is necessarily a

critical point of Gc in CrK(fc). In this case, we say that Rc(θ) bifurcates.

Proposition 2.3.14. If c ∈ C rM, then every dynamical ray Rc(θ) either bifurcates or

lands.

Proof. Let ε > 0 be given. For t > 0, let A(t) = {z : Gc(z) < t}. Since

K(fc) =
⋂
t>0

A(t)

is totally disconnected, there exists δ > 0 such that every component of A(δ) has diameter

less than ε.

Let γ parameterizeRc(θ) as in (2.3). Assume thatRc(θ) does not bifurcate, so γ(t) is defined

for all t > 0. Then for all 0 < t < δ, we have

Gc(γ(t)) = t < δ,

so that γ(t) ∈ A(δ). Thus, the set {γ(t) : 0 < t < δ} has diameter less than ε. It follows

that γ(t) is Cauchy as t↘ 0.

The following elementary fact is left as an exercise.

Exercise 2.3.15. An angle θ ∈ S1 has finite orbit under angle doubling if and only if θ is

rational. Moreover, θ is periodic if and only if its denominator is odd; otherwise, it is strictly

preperiodic.

Provided that θ is rational, the conclusion to Proposition 2.3.14 holds for all c ∈ C:

Theorem 2.3.16 (Douady, Hubbard, c.f. [DH84], Proposition 8.4). Let θ ∈ Q/Z be rational.

Then for any c ∈ C, the dynamical ray Rc(θ) either bifurcates or lands at some point

γc(θ) ∈ J (fc). Moreover, the landing point γc(θ) is periodic if and only if θ is periodic under

angle doubling; otherwise, it is strictly preperiodic.

Proposition 2.3.17. If c ∈ C rM has external argument θτ , θ ∈ S1, then the dynamical

ray of fc at angle θ′ ∈ S1 bifurcates if and only if 2kθ′ = θ for some k ∈ N∗. If this is the

case, then the point at which Rc(θ
′) bifurcates is an element of f−kc (c) = f 1−k(0).

Proof. Proposition 2.3.4 implies that the dynamical ray at angle θ′ bifurcates if and only if
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it passes through an iterated preimage of the critical point 0 of f . By Proposition 2.3.13,

this occurs if and only if Rc(2
kθ′) passes through the critical value c of fc for some k ∈ N∗.

By Corollary 2.3.12 (together with Proposition 2.3.9), Rc(2
kθ′) passes through c if and only

if 2kθ′ = argM(c) = θ.

Remark 2.3.18. In particular, this implies that the two rays at angles θ/2 and (θ+ 1)/2 land

together at the critical point 0. Since fc is even, J (fc) is symmetric about 0, so these two

rays partition the Julia set of f into two isometric components.

The following claim is another consequence of Proposition 2.3.13.

Proposition 2.3.19. Suppose that θ is p-periodic under angle doubling, and that the dy-

namical ray Rc(θ) lands at a point z ∈ J (fc). Then the period q of z under fc is a divisor

of p. The number of angles in the orbit of θ which land at z is equal to p
q
.

2.3.2 Laminations

Definition 2.3.20. A lamination is a closed equivalence relation L on S1. The quotient of

a lamination L is the usual topological quotient S1/L.

Definition 2.3.21. The filling of a lamination L is the closed equivalence relation ∼ on D
obtained by setting a ∼ b whenever there exists an ideal triangle T , whose vertices are all

equivalent with respect to L, such that a and b both belong to T .

The filled quotient of a lamination L is the quotient of D by the filling of L.

For a quadratic polynomial fc, we obtain a lamination L(fc) by identifying two angles α, β ∈
S1 if the dynamical rays Rc(α) and Rc(β) land at the same point. By Proposition 2.3.13,

the equivalence relation L(fc) is invariant under angle doubling.

Proposition 2.3.22. If J (fc) is locally connected, then the quotient of L(fc) is homeomor-

phic to J (fc), and the filled quotient of L(fc) is homeomorphic to K(fc).

Similarly, one may obtain a lamination for M by identifying two angles α, β ∈ S1 if the

parameter rays R(α) and R(β) land together. This is known as the quadratic minor lami-

nation QML. If Conjecture 2.3.6 holds, then the quotient of QML is homeomorphic to ∂M,

and the filled quotient of QML is homeomorphic to M.

A simpler equivalence relation QML0 can be obtained by including only the ray pairings

coming from angles that are periodic under doubling. The closure of QML0 is equal to

QML. The leaves of QML0 may be generated using Lavaurs’ algorithm [Lav89].
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(a) The parameter rays at angles θ0 = 9/56,
θ1 = 11/56, and θ2 = 15/56, which all have
preperiod 3 and period 3, land together on
∂M at a Misiurewicz point c. The critical
value of fc has preperiod 3 and period 1.

(b) For i = 0, 1, 2, the dynamical rays at an-
gles θi/2 and (θi + 1)/2 land together at the
critical point.

(c) Periodic arcs in QML up to period 10,
with the ideal triangle (θ0, θ1, θ2) highlighted.
Refer to Table C.1 for the color scheme.

(d) The dynamical lamination L(fc), with the
ideal triangle (θ0, θ1, θ2) highlighted.
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2.3.3 Matings

Consider two laminations, L0 and L1, that are invariant under the angle doubling map.

Denote by K0 and K1 the filled quotients of L0 and L1. One may then construct a topological

space

L0 q L1 = (K0 tK1)/ ∼,

where ∼ is the equivalence relation on the boundary S1 t S1 given by (z, 0) ∼ (1/z, 1) for

all z ∈ S1.

The space L0 q L1 is known as the mating of the laminations L0 and L1. If L0 = L(fc)

and L1 = L(fc′) are the laminations of two quadratic polynomials with locally connected

Julia sets, it follows from Proposition 2.3.13 that the disjoint union fc t fc′ projects to a

well-defined map fc q fc′ on L0 q L1, whose Julia set is the image of S1 in L0 q L1. This

map is known as the mating of fc with fc′ .

The following fundamental criterion was conjectured by Adrien Douady and proved by Tan

Lei, making use of Thurston’s characterization of rational maps.

Theorem 2.3.23 (c.f. [Lei92]). For two postcritically finite quadratic polynomials fc and

fc′, the mating L(fc)q L(fc′) is homeomorphic to Ĉ if and only if c and c′ do not belong to

conjugate limbs of the Mandelbrot set.

If this is the case, then the map fc q fc′ is topologically conjugate to a postcritically finite

quadratic rational map, which is unique up to Möbius conjugacy.

The mating construction can be generalized beyond the postcritically finite case. For in-

stance, if f and g are hyperbolic quadratic polynomials whose attracting cycles have multi-

pliers µf and µg, then there exist unique postcritically finite quadratic polynomials f0 and

g0 that are topologically conjugate to f and g respectively. The mating f0 q g0 is then

topologically conjugate to a unique quadratic rational map whose attracting cycles for the

images of the critical points of f and g have multipliers µf and µg respectively.

2.3.4 Hyperbolic components in M

Let U ⊂ M be a bounded component of the quadratic family P2 of some period p ∈ N∗.
There is a natural holomorphic map µ : U → D given by taking the multiplier of the

attracting p-cycle of fc for c ∈ U .

Proposition 2.3.24 (c.f. [DH84], Theorem 14.6 or [Mil00], Theorem 6.5). The multiplier

map µ is injective on U , and thus provides a holomorphic coordinate for points in U . The
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inverse map µ−1 : D→ U extends continuously to D.

Definition 2.3.25. The center of U is the point µ−1(0), whose associated map has a super-

attracting p-cycle. The root of U is the point µ−1(1) ∈ ∂U .

Definition 2.3.26. A Misiurewicz point in M is a parameter c for which the bounded

critical orbit is strictly preperiodic. If k and p are respectively the preperiod and period of

0 under fc, then we refer to c as a Misiurewicz point of preperiod k and period p.

Together, the centers of bounded hyperbolic components and the Misiurewicz points comprise

the postcritically finite (pcf) maps in P2, i.e. the maps for which all critical orbits are finite

sets.

The following important theorem of Douady and Hubbard provides an analogue of Theo-

rem 2.3.16 for parameter space.

Theorem 2.3.27 (Douady, Hubbard, c.f. [DH84], Theorem 13.1). Let θ ∈ Q/Z be rational.

Denote by k and n respectively the preperiod and period of θ under angle doubling.

• If k = 0 (equivalently, the denominator of θ is odd), then the parameter R(θ) lands at

the root of a hyperbolic component of period p.

• Otherwise, if k > 0, then R(θ) lands at a Misiurewicz point of preperiod k + 1 and

period dividing p.

Proposition 2.3.28 (c.f. [DH84], Proposition 14.5). If c is the root of a hyperbolic component

of period p > 1, then there are exactly two angles θ0, θ1 ∈ Q/Z such that the parameter ray

R(θi) lands at c. Both values of θi have exact period p under angle doubling. Furthermore,

the dynamical rays Rc(θi) land together at a point z0 on the boundary of the Fatou component

of K(fc) containing the critical value. The point z0 necessarily belongs to a parabolic cycle

of multiplier a pth root of unity, not necessarily primitive.

Definition 2.3.29. If two distinct parameter rays θ0 and θ1 land together at the root of

a hyperbolic component U , the wake W(U) = W(θ0, θ1) of U is the component of C r(
R(θ0) ∪R(θ1)

)
not containing the positive real axis.

Since R(0) is the only parameter ray that intersects the positive real axis, and R(0) does

not land together with any other rays, the above definition is justified.

Remark 2.3.30. There is a sense in which Proposition 2.3.28 also holds in period 1. If we

regard the angles θ0 = 0 and θ1 = 1 as distinct, then both parameter rays land at the root

c = 1/4 of the main cardioid. In this model, all of C r [1/4,∞) would belong to the wake
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W(θ0, θ1), which in light of Corollary 4.1.5 is consistent with the fact that one of the two

fixed points is never accessible by a period 1 ray.

Suppose c is the root of a hyperbolic component U of some period p. Let ξ : U → Cp/(Z/pZ)

parameterize the attracting p-cycle throughout U , extended continuously to the boundary

of U . Since ξ(c) has multiplier 1, the polynomial

fpc (z)− z

has a double root for any z belonging to ξ(c). There are thus two possibilities:

(a) There exists another p-cycle η : U → Cp/(Z/pZ) which collides with ξ at c, i.e.

η(c) = ξ(c). In this case, we say that the hyperbolic component U is primitive.

(b) The p-cycle ξ collides with itself at c, degenerating to a cycle of some period d properly

dividing p, whose multiplier is thus a (p/d)th root of unity. In this case, we say that

the hyperbolic component U is primitive.

Theorem 2.3.31 (c.f. [Mil00], lemmas 6.1 and 6.2). Let U be a hyperbolic component of

period p > 1, and let θ0 and θ1 be the angles of the two parameter rays landing at the root

of U . If θ0 and θ1 share a cycle under angle doubling, then U is satellite; otherwise, U is

primitive.

Finally, we state a result of Milnor and Thurston that has interesting implications regarding

the structure of marked cycle curves.

Proposition 2.3.32 (c.f. [MT88]). If θ0 is periodic of period p, let θ∗ be the unique (except

possibly up to negation) angle in the orbit of θ0 under doubling which is of minimal distance

from 1/2. Then the external ray R(θ) lands on a hyperbolic component on the real axis.

2.3.4.1 Veins

In general, path-connectedness for the Mandelbrot set has not been established; it would

follow from Conjecture 2.3.6. However, an important subset of M is known to be path-

connected.

Theorem 2.3.33 (Douady, Hubbard, c.f. [DH84] sections 20-22). There exists a unique

subset TM of M satisfying the following points:

1. TM contains the root and the center of every hyperbolic component in M,

2. TM contains every Misiurewicz point in M,
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3. TM is a topological tree; in particular, it is path-connected,

4. TM branches off only at the Misiurewicz points and the centers of hyperbolic compo-

nents, and

5. if U is a hyperbolic component with center c0, then every injective arc into TM ∩ (U r
{c0}) is a geodesic ray with respect to the multiplier map on U .

Definition 2.3.34. If c ∈ M is a Misiurewicz point or a root or center of a hyperbolic

component, the vein to c in M is the unique path in TM starting at 0 and ending at c.
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CHAPTER 3

Marked Cycles

3.1 Cycle monodromy

Of fundamental importance to any discrete-time dynamical system is the set of periodic

points. In light of this, we wish to study how cycles vary as we move around parameter

space. Monodromy provides a combinatorial model for this behavior.

Definition 3.1.1. For a topological space Y and a positive integer n ∈ N∗, recall that the

nth symmetric power of Y is the quotient

Symn(Y ) = Y n/Sn,

where the symmetric group Sn acts on Y n by permuting the coordinates.

Definition 3.1.2. For a topological space X, let ρ : X → Symn(Y ) be a continuous map,

let X0 denote the subset of X where ρ takes values with all distinct coordinates, and let

x0 ∈ X0 be a base point. The monodromy of ρ is the map

monρ : π1(X0, x0)→ Aut(ρ(x0)),

where Aut(η) denotes the set of all permutations of η.

Note that the codomain of monρ is isomorphic to the symmetric group Sn, but not canonically

so.

Example 3.1.3. If sqrt : C∗ → UConf2(C) denotes the map sending a point z to the two

solutions w to the equation w2 = z, then for γ ∈ π1(C∗, 1), the monodromy is given by

monsqrt(γ) = σk,

where σ is the permutation swapping the two elements of {−1, 1}, and where k is the winding
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number of γ around 0.

Definition 3.1.4. If g : Y → X is a degree d branched cover with ramification locus B ⊂ X,

then the map g−1 : X r B → UConfd(Y ) is well-defined and continuous. For a base point

x0 ∈ X, we say the preimage monodromy of g is the map

mong : π1(X rB, x0) −→ Aut(g−1(x0))

given by mong = mong−1 .

For a dynamical family F on a complex manifold X, we have three natural families of maps

from F to various symmetric powers:

• The dynatomic map

dynp : F −→ Symk(X)

associates a map f ∈ F to the set of p-periodic points of f , where k is the number of

p-periodic points for a generic f ∈ F .

• The marked cycle map

cycp : F −→ Symk(Symp(X))

takes a map f ∈ F to the set of p-cycles of f , where k is the number of p-cycles for a

generic f ∈ F .

• The Misiurewicz map

misk,p : F −→ Symk(X)

takes a map f ∈ F to the set of points x ∈ X of preperiod k and period p under f ,

where k is the number of such points for a generic f ∈ F .

The purpose of this thesis is to develop a theory describing the monodromy of these three

classes of dynamical data. We will associate to each such class a branched cover over F ,

which parameterizes maps in F together with the corresponding dynamical data.

Remark 3.1.5. In some cases, such as when F is a transcendental family, a generic f ∈ F has

infinitely many p-periodic points. While the definitions provided above generalize naturally

to infinite sets, this thesis is focused on algebraic families on Riemann surfaces, for which

the set of p-periodic points is always Zariski closed (and so, in nontrivial cases, finite).
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3.2 Dynamical Varieties

Definition 3.2.1. A dynamical family or moduli space F on a complex manifold X is

algebraic if both X and F are quasi-projective varieties, and if the evaluation map e :

F ×X → X is a morphism of algebraic varieties.

Example 3.2.2. The families Ratn, Mn, Perm, Pn, and Un defined in Section 2.2.1 are all

algebraic.

The exponential family E = {z 7→ λ exp(z) : λ ∈ C} is a dynamical family on C, and both

E and its mapping space C are algebraic varieties. However, the family E is not algebraic,

since the maps f ∈ E are not all algebraic endomorphisms of C.

Definition 3.2.3. For an algebraic dynamical family F on a Riemann surface S, the dy-

natomic variety Dynp(F) of period p is the Zariski closure of the quasi-projective variety

Vp(F) = {(f, z) : f ∈ F and z ∈ S has period p under f} .

If F consists only of polynomials, then Dynp is the vanishing locus of the dynatomic poly-

nomial

ϕp(f, z) =
∏
d|p

(fp(z)− z)µ(p/d) ,

where µ is the Möbius function.

Remark 3.2.4. The set Vp defined above is Zariski open in Dynp, but it is missing some

points. For instance, consider the map f(z) = z2 − 3
4

in the quadratic family P2. While f

has no 2-cycles, it has a degenerate 2-cycle at z = −1/2. If we perturb c away from −3/4,

then this degenerate 2-cycle will split into a true 2-cycle near −1/2 (together with a nearby

fixed point). Thus, (f,−1/2) belongs to Dyn2(P2), despite not belonging to V2(P2).

Theorem 3.2.5 (Bousch [Bou92], Schleicher [Sch94]). For any period p, taking F to be

the quadratic family P2, with fc = z2 + c, the dynatomic polynomial ϕp(fc, z) is irreducible.

Thus, the dynatomic curve Dynp(P2) is irreducible.

The curves Dynp admit a Z/pZ action sending (f, z) to (f, f(z)). This action is faithful

except on the exceptional locus ∆p. Taking the quotient by this action, we obtain a curve

parameterizing the period p cycles throughout F :

Definition 3.2.6. For an algebraic dynamical family F on a Riemann surface S, the marked
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cycle variety Cycp(F) of period p is the Zariski closure of the quasi-projective variety

Cp(F) = {(f, ζ) : f ∈ F and ζ ⊂ S is a p-cycle of f} .

In the case where F is a one-parameter family (i.e. an algebraic curve), we refer to Dynp(F)

and Cycp(F) as the dynatomic curve and marked cycle curve, respectively, of period p over

F .

Let α : Dynp(F) → Cycp(F) denote the quotient map under the Z/pZ action discussed

above. Let π : Cycp(F)→ F denote the natural projection to the Zariski closure of F , and

let µ : Cycp(F) → C denote the map that returns the multiplier of the marked cycle. In

summary, we have the following maps:

Dynp(F) Cycp(F) F

C

α

µ

π

The map α is a p-fold branched cover, ramified over the exceptional locus ∆p. The map π is

an np-fold branched cover, where np is the number of p-cycles for a generic map in F . This

map ramifies over the points in F where multiple p-cycles coincide.

Finally, the multiplier map µ is well-defined on Cycp(F) and, together with f ∈ F , may be

used as a coordinate for Cycp(F).

Remark 3.2.7. The marked cycle curve Cycp provides the most natural domain on which

the multiplier map is well-defined. The properties of the multiplier map for the quadratic

family have been studied by T. Firsova, A. Belova and I. Gorbovickis. For instance, the

image in P2 of the branch locus of µ is known as the set of critical points of the multiplier.

Some of these points belong to M◦, while others lie outside M. Belova and Gorbovickis

conjecture in [BG22] that the count measure on this set converges to a measure supported

on ∂M as p tends to ∞. Firsova and Gorbovickis show in [FG20] that the accumulation set

of the critical points contains the Mandelbrot set M along with a region outside M with

nonempty interior.
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Figure 3.1: Forward image of Cyc3(P2) in C under the multiplier map µ. The image is
centered at λ = −8, and the prominent magenta component on the left is the unit disk. The
multiplier map µ is a 3-fold branched cover, branched at two conjugate points (c+, ξ+) and
(c−, ξ−). The ramification points µ(ξ+) and µ(ξ−) are marked by red stars. The parameters
c+ and c− lie just outside M.

Figure 3.2: Contour plot of the multiplier map on Cyc3(P2).
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3.3 Examples of Dynamical Varieties

3.3.1 Quadratic polynomials

The most-studied family of dynamical systems on Ĉ is the family of quadratic polynomials

P2 = {fc(z) = z2 + c : c ∈ C}. We can explicitly compute the dynatomic and marked cycle

curves over P2 for small period.

In period 1, solving for z = fc(z), we obtain the relation z2 − z + c = 0. Thus, Cyc1(P2) =

Dyn1(P2) is a rational plane curve of degree 2. The branched cover Cyc1(P2) −→ Ĉ given

by projection to c is ramified at c =∞ and at c = 1
4
, where the two fixed points of fc collide.

Figure 3.3: Quadratic polynomials with a marked fixed point, colored by period and multi-
plier of critical orbit (see Table C.1 for further details).

In period 2, we have

ϕ2(c, z) =
f 2
c (z)− z
fc(z)− z

= z2 + c+ z + 1.

Thus, Dyn2(P2) is again a rational plane curve of degree 2. On the other hand, since a

quadratic polynomial (other than z2 − 3
4
) has a unique 2-cycle, the curve Cyc2(P2) is just

(the Zariski closure of) P2 itself.

Figure 3.4: Quadratic polynomials with a marked point of period 2.
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In period 3, things become more interesting. The dynatomic polynomial is now given by

ϕ3(c, z) = z6 + 3cz4 + z5 + 3c2z2 + 2cz3 + z4 + c3 + c2z

+ 3cz2 + z3 + 2c2 + 2cz + z2 + c+ z + 1.

It follows that Dyn3(P2) is a plane curve of degree 6. This curve turns out to still be rational,

with a singular point at c = ∞. The projection to c ramifies at the roots of the period 3

components of the Mandelbrot set.

Figure 3.5: Quadratic polynomials with a marked point of period 3.

To describe the marked cycle curve of period 3, we may take the resultant of ϕ3(c, z) with

h − t, where h(c, z) is any nonconstant polynomial that is invariant along 3-cycles. Using

h(c, z) = z + fc(z) + f 2
c (z), we obtain

Resz(ϕ3, h− t) =
(
t2 + c+ t+ 2

)3
, (3.1)

yielding a rational plane curve of degree 2. Unlike with Dyn3(P2), the projection π :

Cyc3(P2) → Q is ramified only at c = ∞ and c = −7/4, the latter of which is the root

of the “airplane” component, i.e. the unique primitive hyperbolic component of period 3 in

the Mandelbrot set.

Remark 3.3.1. The third power appearing on the right-hand side of Equation (3.1) is rather

spurious and is always equal to the period. Since computing resultants of high degree

polynomials is computationally expensive, it would be interesting to know of a way to obtain

a formula for Cycp(F) directly, instead of first passing through an nth power.

29



Figure 3.6: Quadratic polynomials with a marked 3-cycle.

In period 4, the dynatomic curve is no longer rational, having genus 2. The marked cycle

curve, however, is rational of degree 3.

(a) Cyc4(P2) (b) Contours of the multiplier map.

Figure 3.7: Quadratic polynomials with a marked 4-cycle.

Note the two escape regions in the image above. The unbounded escape region maps to the

complement of the Mandelbrot set with degree 2. The bounded escape region, however, only

maps with degree 1. As we shall see, this is due to the fact that among the three 4-cycles of

the angle doubling map on the circle, one of them is invariant under complex conjugation,

while the other two map to each other.

3.3.2 Quadratic Rational Maps

The quadratic family may be characterized as the subspace Per1(0) ⊂ M2 of quadratic

rational maps with a superattracting fixed point (in the usual coordinates, ∞). A natu-

ral next step, then, is to study the family Per2 ⊂ M2 of quadratic rational maps with a

superattracting 2-cycle. Recall that Per2(0) is defined by

Per2(0) =
{
f : Ĉ→ Ĉ rational of degree 2 with a critical 2-cycle

}
/ ∼,
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where f ∼ g if f ◦ϕ = ϕ ◦ g for some Möbius transformation ϕ. For brevity, we will refer to

Per2(0) simply as Per2.

A natural set of coordinates on Per2 is given by fa(z) = z2+a
1−z2 , with superattracting 2-cycle

∞ ↔ −1, free critical point 0, and free critical value a. The structure of Per2 will be

discussed in detail in Section 5.1; for now, we simply remark that Per2 has a puncture at

a = −1, where the family degenerates.

Figure 3.8: Parameter plane for Per2, colored by period and multiplier of the free critical
orbit. The red star denotes the puncture a = −1, where the associated map is degenerate.

The Milnor curve Per2 may be used as a base for additional dynamical curves. As in the

case of the quadratic family P2 = Per1, marking a fixed point produces a degree 2 branched

cover of Per2, ramified over the map f(z) = z2+5/27
1−z2 and over the puncture a = −1.

Figure 3.9: Quadratic rational maps in Per2 with a marked fixed point.

The dynatomic and marked cycle curves in period 2 are trivial, since the unique 2-cycle
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is the already-specified critical 2-cycle. In period 3, something interesting occurs. Setting

f 3
a (z) = z produces the relation

ψ3(a, z) = z6 − az3 + z4 + 3az2 − z3 + a2 + az − 2z2 − a+ z + 1

= (z3 + (ω − ω)z2 + ωa− z + ω)(z3 + (ω − ω)z2 + ωa− z + ω)

where ω is a primitive cube root of unity. Thus, the curve Dyn3(Per2) is not irreducible;

indeed, Dyn3(Per2) is the disjoint union of two 3-fold branched covers of Per2.

Figure 3.10: One of the two sheets of Dyn3(Per2). The other sheet is the complex conjugate
of this one.

The marked cycle curve, Cyc3(Per2), is also disconnected, having two irreducible components,

each isomorphic to Per2 itself. This has the surprising consequence that it is possible to

consistently label the two 3-cycles fa as fa moves throughout all of Per2.

As we shall see, the disconnectedness of Cyc3(Per2) (and hence Dyn3(Per2)) arises from the

fact that the unique ramification point of Cyc3(Per1), namely z 7→ z2−7/4, cannot be mated

with the basilica map f◦©◦(z) = z2 − 1.

Of course, we may continue to compute the dynatomic and marked cycle curves over Per2

for higher periods. In period 4, both Dyn4(Per2) and Cyc4(Per2) are rational, so we may

draw their parameter planes graphically.
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(a) Maps in Per2 with a marked point of period 4. (b) Maps in Per2 with a
marked 4-cycle.

In period 5, Dyn5(Per2) has genus 4 (and so cannot be easily parameterized), but Cyc5(Per2)

is rational.

(a) The moduli space Cyc5(Per2). In total, there are 6
period 1 components, corresponding to the 6 different 5-
cycles. There are also 6 branch points (appearing as pairs
of tangent yellow disks), corresponding to the 6 different
primitive hyperbolic components in the Mandelbrot set
outside the 1

2 -limb.

(b) Detail view of the region on
the right-hand side. Note the small
period 1 (blue) component on the
left, which is too small to see in the
zoomed-out image.

Figure 3.12: Maps in Per2 with a marked 5-cycle.
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CHAPTER 4

Marked Cycle Curves over Per1

In light of the above examples, one would hope for a general description of the structure of

Dynp(Perm) and Cycp(Perm). The general problem appears quite hard, partially due to the

existence of non-mating components in Per3 and higher. However, in the cases m = 1 and

m = 2, we can obtain a canonical cell structure for the marked cycle curves of any period

over Perm. In the present chapter, we present an algorithm describing this procedure for the

family Per1 = P2 of quadratic polynomials.

4.1 Additional properties of the quadratic family

We begin by extending the results of Section 2.3 by showing additional properties of the

family of quadratic polynomials that are of particular relevance to cycle monodromy. The

results presented in this section generally fall into the realm of “folklore”, in the sense that

largely equivalent statements may be found in the literature, but with different combinatorial

models. For instance, Eike Lau and Dierk Schleicher in [Sch94] develop a similar theory using

kneading sequences, while Milnor in [Mil00] develops a similar theory using orbit portraits.

In the present treatment, we use external arguments to derive the needed monodromy results.

Definition 4.1.1. A wake W =W(α, β) is active at θ ∈ Q/Z if the orbit of θ under angle

doubling contains either α or β.

For a rational angle θ, denote by Oθ the union of the closures of all external rays in the orbit

of θ under angle doubling. In other words,

Oθ
def
=
⋃
α∈(θ)

R(α).

For c ∈ C rOθ, it follows from Proposition 2.3.17 and Theorem 2.3.16 that Rc(θ) lands at

a point γc(θ) ∈ J (fc).
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Figure 4.1: The set Oθ for θ = 11/31.

Lemma 4.1.2. For θ ∈ Q/Z fixed, the map gθ(c) = γc(θ) is holomorphic on CrOθ.

Proof. Fix θ ∈ Q/Z, and let V = CrOθ. For c ∈ V , let γc(θ, t) parameterize the dynamical

ray Rc(θ) as in Definition 2.3.8. For ε > 0, define a map

gε : V −→ C

by

gε(c) = γc(θ, ε) ∈ CrK(fc).

Note that gε is continuous, since by Proposition 2.3.17, Rc(θ) does not bifurcate for c ∈ V .

We claim that gε is holomorphic. To see this, fix some c0 ∈ V , and choose a neighborhood

U of c whose closure U is compact and contained in V . Since the Green’s function GM is

bounded on the compact set U (where we put GM(c) = 0 for c ∈ M), we may find N ∈ N
sufficiently large such that

2Nε > GM(c)

for all c ∈ U . It follows that

Gc(f
N(gε(c))) = 2NGc(gε(c)) = 2Nε > GM(c) = Gc(c)

for all c ∈ U . Thus, φc is well-defined at fN(gε(c)). Also, since gε(c) is not an iterated

preimage of a critical point of fc (otherwise by Proposition 2.3.17, c would lie on the boundary

of an active wake), the inverse function theorem implies that the holomorphic function

F (z, c) = (fNc (z), c)
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has a holomorphic inverse F−1 defined on some neighborhood of F (gε(c0), c0). Since

F (gε(c), c) = φ−1
c (exp(τiθ + 2Nε))

depends holomorphically on c, we have that gε(c) also depends holomorphically on c in a

neighborhood of c0. This proves that gε is holomorphic on V .

Now note that gε(c) is nonzero on V . Since also gε(c)/c 6= 1 on V r {0}, Montel’s theorem

implies the maps {gε : ε > 0} form a normal family on Cr{0}. Thus, the limit gθ = limε→0 gε

exists and is holomorphic on V r{0}. Since gθ is holomorphic and bounded in a neighborhood

of 0, it follows from classification of singularities that g extends analytically through 0. Thus,

gθ is holomorphic on all of V . By construction, gθ(c) = γc(θ).

Lemma 4.1.3. Suppose θ ∈ Q/Z has period p under angle doubling, and let gθ be as above.

The period of gθ(c) under fc is locally constant on C r Oθ. Furthermore, for any periodic

angle θ′ ∈ Q/Z distinct from θ, the values of gθ and gθ′ are either everywhere equal or

nowhere equal on each component of Cr (Oθ ∪ Oθ′).

Proof. Denote by A(c) ⊂ K(fc) the set of points of period dividing p under fc. Thus, A(c) is

the set of roots of fpc (z)− z. Since fc changes continuously with p and has constant degree,

A(c) is continuous with respect to the Hausdorff topology. By Proposition 2.3.19, gθ(c) and

gθ′(c) belong to A(c) wherever they are defined.

Define a map

µθ(c)
def
=

dz

df c
(z)

∣∣∣∣
z=gθ(c)

, (4.1)

which is holomorphic since gθ is holomorphic. If gθ(c) has period d under fc, then µ(c) is

the (p/d)th power of the multiplier of gθ(c).

If |µθ(c)| > 1, then z = gθ(c) belongs to repelling cycle of period π(c). By Kœnigs lineariza-

tion theorem, there is a value ρ = ρ(c) > 0 such that f−pc is well-defined from Dρ(z) to itself

and locally conjugate to multiplication by 1/λ. In particular, f−pc has no fixed points other

than z = gθ(c). In other words,

A(c) ∩ Dρ(c) = {gθ(z)} .

It follows from the proof of Kœnigs’ theorem that the linearizing radius ρ(c) depends con-

tinuously on c so long as the multiplier remains bounded away from 1.

Thus, as long as |µθ(c)| > 1, no other points of period dividing p collide with gθ(c); hence,
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the period of gθ(c) is locally constant, and if g′θ(c) is defined, then gθ(c) is locally either

everywhere or nowhere equal to g′θ(c) (as their distance is either 0 or bounded below by

ρ(c)).

All that remains is to show that |µθ| > 1 on V = CrOθ. Since gθ(c) takes values in J (fc),

it can never belong to an attracting cycle. Thus, |µθ| ≥ 1 on V . It follows from the open

mapping theorem that in fact |µθ| > 1 on V , which completes the proof.

Corollary 4.1.4. Suppose θ ∈ Q/Z has period p under angle doubling, and let gθ be as in

Lemma 4.1.2. For c ∈ CrOθ, gθ(c) has period less than p under fc if and only if c belongs

to a satellite wake that is active at θ.

Proof. Suppose first that gθ(c) has period less than p under fc. Since gθ(0) = exp(θτi) has

exact period p, c cannot belong to the same component of CrOθ as the origin. Thus, there

must be some arc R(α) ∪R(β) separating c from 0, which presently defines a satellite wake.

Conversely, suppose that c belongs to a satellite wake W = W(α, β) which is active at θ,

so that both α and β share an orbit with θ. Let c0 be the root of W , which lies on the

boundary of a satellite hyperbolic component U . By Proposition 2.3.28, the dynamical rays

Rα and Rβ land together at a point z0 ∈ J(fc) belonging to a parabolic cycle ξ.

By definition of a satellite component, the period d of ξ properly divides p, and ξ arises from

the collision of a p-cycle with a d-cycle. If we perturb the parameter away from c0 towards

the center of U , then the p-cycle becomes attracting. Thus, since gα(c) and gβ(c) both have

periods dividing p and both belong to J (fc), they must land at points of ξ. By Lemma 4.1.3,

it follows that gα(c) and gβ(c) have period d < p for all c ∈ W .

Corollary 4.1.5. Suppose θ, θ′ ∈ Q/Z are distinct with period p under angle doubling,

and let gθ, g
′
θ be as above. Suppose further that θ and θ′ do not share an orbit. For any

c ∈ Cr (Oθ ∪Oθ′), we have that gθ(c) and gθ′(c) share an orbit if and only if c belongs to a

primitive wake that is active at θ and θ′.

Proof. Write V = Cr (Oθ ∪ Oθ′), and let Vc be the component of V containing c.

Suppose first that gθ(c) and gθ′(c) share an orbit; wlog say gθ(c) = gθ′(c). Since gθ(0) =

exp(θτi) is distinct from gθ′(0) = exp(θ′τi), c must be separated from the origin by an

arc A = R(α) ∪R(β), both of whose defining angles belong to (θ) ∪ (θ′). Without loss of

generality, assume that A is the innermost such arc, so that A ⊂ ∂Vc.
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If A is a primitive arc, then we have shown the forward implication. Otherwise, up to

relabeling θ and θ′, we may assume that neither α nor β belongs to the orbit of θ.

Then gθ extends analytically past A, so in particular, the pseudo-multiplier µθ defined in

eq. (4.1) satisfies |µθ(c0)| > 1, where c0 is the landing point of the rays in A. On the other

hand, we also know that |µθ′(c0)| = 1, since gθ′(c0) belongs to a parabolic cycle. Thus,

gθ 6= gθ′ in a neighborhood U of c0. Since A ∈ ∂Vc, we have that U intersects Vc nontrivially,

so by Lemma 4.1.3 in fact gθ 6= g′θ throughout all of Vc. This contradicts the assumption

that gθ(c) = gθ′(c), proving the forward implication.

Conversely, suppose that c belongs to a primitive wake W =W(α, β) which is active at θ, so

that exactly one of {α, β} shares an orbit with θ. Without loss of generality, assume θ ∈ (α).

Let c0 be the root of W , which lies on the boundary of a primitive hyperbolic component U .

By Proposition 2.3.28, the dynamical rays Rc0(α) and Rc0(β) land together at a parabolic

point z0 ∈ J (fc0). Since U is primitive, this point z0 has exact period p and bifurcates into

two distinct p-cycles, ξ and η, when the parameter varies away from c0. If we perturb the

parameter into U , one of these p-cycles, say ξ, becomes attracting.

Thus, since gα(c) and gβ(c) both belong to J(fc), we see that they both belong to the η

when c ∈ U . Since gα(c0) = gβ(c0), and since the elements of η are bounded away from

one another in a neighborhood N of c0, it follows that gα(c) = gβ(c) in U ∩ N . Hence, by

Lemma 4.1.3, in fact gα(c) = gβ(c) throughout all of W .

Corollaries 4.1.4 and 4.1.5 have the following direct consequence:

Corollary 4.1.6. For a p-periodic angle θ, if c does not belong to the closure of any wake

active at θ, then γc(θ) has exact period p, and θτ is its unique external argument.

Proposition 4.1.7 (c.f. [Mil93], Lemma 2.6 and Theorem 3.1). If W = W(α, β) is a p-

periodic wake, and if δk = distS1

(
2kα, 2kβ

)
, then δ0 < δk for all 1 ≤ k < p.

Corollary 4.1.8 (No nested active wakes). If W = W(α, β) is a p-periodic wake, and if

α < θ < β, then θ /∈ (α) ∪ (β).1

Proof. Let c be the root of W , and let k be arbitrary such that 1 ≤ k < p. By Propo-

sition 2.3.28, the dynamical rays Rc(α) and Rc(β) land together in J (fc). Thus, for any

k ∈ [p], the dynamical rays Rc(2
kα) and Rc(2

kβ) also land together. By Proposition 4.1.7

we know that

distS1(2kα, 2kβ) > distS1(α, β),

1Recall that (α) denotes the orbit of α under angle doubling.
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so it cannot be the case that 2kα and 2kβ both belong to the arc (α, β)2. Since dynamical

rays cannot cross, it follows that neither 2kα nor 2kβ belongs to (α, β). Since k was chosen

to be arbitrary, the result then follows.

Corollary 4.1.9. For any θ ∈ Q/Z, there is a unique hyperbolic component on the real axis

which is the landing point of an angle in the orbit of θ.

Proof. Existence is given by Proposition 2.3.32. Uniqueness follows from Corollary 4.1.8 and

the fact that any two real wakes are nested.

4.2 Cycle Monodromy for Quadratic Polynomials

Thanks to the theory developed above, the monodromy of cycles in the family Per1 = P2

of quadratic polynomials can be classified in terms of the roots of the primitive hyperbolic

components in M.

4.2.1 Primitive case

We begin with the following key lemma, which locally describes the monodromy for marked

cycle curves.

Lemma 4.2.1 (Compare [Sch94] Lemma 3.5, [BT11] Lemma 4.2). Suppose that U is a

primitive hyperbolic component of period p > 1, and let θ0, θ1 ∈ Q/Z be the two rational

angles whose parameter rays land at the root of U , with θ0 < θ1. Then for any c ∈ W(θ0, θ1),

the dynamical rays Rc(θ0) and Rc(θ1) land together at a point z1 ∈ J (fc) of period p.

Proof. With notation as in the previous section, let V0 = C r Oθ0 , and let V1 = C r Oθ1 .
Since θ0 and θ1 do not share an orbit, the arc R(θ0) ∪R(θ1) is not fully contained in either

Oθ0 or Oθ1 . Thus, by Corollary 4.1.8, c lies in the same component of V0 as the origin, and

likewise for V1. By Lemma 4.1.3, then, the points gθ0(c) and gθ1(c) both have period p.

Suppose for the sake of contradiction that gθ0(c) 6= gθ1(c). By Corollary 4.1.5, we know that

there exist α ∈ (θ0) and β ∈ (θ1) such that gα(c) = gθ1(c) and gβ(c) = gθ0(c).

2We note that β − α cannot exceed 1
3 ; for instance, it can be shown explicitly that an angle θ belongs

to (0, 13 ) (resp. ( 2
3 , 1)) if and only if RM(θ) lands at a point c in the upper (resp. lower) half plane with

Re(c) > −3/4.
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Figure 4.2: Schematic depicting the situation in the proof of Lemma 4.2.1.

Since dynamical rays cannot cross, the pairs {θ1, α} and {θ0, β} must be unlinked in S1.

Since θ0 and β land together, they must then be adjacent in S1, and likewise for θ1 and α.

Also, by Corollary 4.1.8, neither α nor β may belong to (θ0, θ1). Lastly, since the critical value

c ∈ W(θ0, θ1) is separated from 0 by Oθ0 ∪ Oθ1 , it cannot be the case that β < θ0 < θ1 < α.

Thus, the only possibilities are 0 < α < β < θ0 < θ1 < 1 and 0 < θ0 < θ1 < α < β < 1.

Without loss of generality, assume the former set of inequalities holds. Write z0 = gθ0(c) =

gβ(c) and z1 = gθ1(c) = gα(c). Since θ0 and α share an orbit, we have that α = 2kθ0 (mod 1)

for some k. It follows that also z1 = fkc (z0) (mod 1) and θ1 = 2kβ (mod 1).

Since the angle doubling map is orientation preserving and (0, β, θ0) are in positive circular

order, it follows that

(0, 2kβ, 2kθ0) = (0, θ1, α)

is also in positive circular order, contradicting that 0 < α < θ1 < 1.

The contradiction in the other case 0 < θ0 < θ1 < α < β < 1 may be derived equivalently.

Lemma 4.2.1 provides a description of the local monodromy of cycles in a neighborhood of

the root of a primitive hyperbolic component. Informally, it implies that if c is the root of

a primitive hyperbolic component with external arguments θ0 and θ1, and if c0 is a point

near c outside the wake W(θ0, θ1), then following a following small loop γ based at c0 with

winding number 1 around c has the effect of swapping a point in J (fc0) of external argument

2kθ0 with a point of external argument 2kθ1.

4.2.2 Satellite case

The monodromy around roots of satellite is slightly different. In fact, it follows from Corol-

lary 4.1.4 and Corollary 4.1.8 that there is no cycle monodromy about such points, because
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only a single cycle degenerates at the root of a satellite component. Thus, satellite roots

have no meaningful effect on the structure of marked cycle curves.

4.3 Abstract binary cycles

To encode the cell structure for Cycp(Per1), it is useful to have a combinatorial description for

any p-cycle ξ of a quadratic polynomial. Broadly speaking, this is done by representing the

dynamical arguments of the elements of ξ using the first p digits of their binary expansions.

Definition 4.3.1. Let Σp = {0, 1}p, and define the shift map σ : Σp → Σp by

σ(a0, . . . , ap−1) = (a1, . . . , ap−1, a0).

Two elements ξ, η ∈ Σp are said to be shift-equivalent if σk(ξ) = η for some k ∈ N.

Definition 4.3.2. An element ξ ∈ Σp is of exact period p if for all k not a multiple of p,

σk(ξ) 6= ξ.

Evidently, having exact period p is a shift-invariant property.

Definition 4.3.3. For p ∈ N∗, an abstract binary point (ABP) of period p is an element of

Σp of exact period p.

Definition 4.3.4. For p ∈ N∗, an abstract binary cycle (ABC) of period p is a shift equiva-

lence class of ABPs of period p. We will denote such equivalence classes using parentheses,

analogously to our notation for angle orbits. For instance, (011) = {011, 110, 101}.

Example 4.3.5. There are 9 abstract binary cycles of period 6:

(000001) , (000011) , (000101) ,

(000111) , (001011) , (001101) ,

(001111) , (010111) , (011111) .

Lemma 4.3.6. For any c ≥ 0 real, and p ≥ 2, the p-cycles of fc(z) = z2 + c are in natural

bijection with the ABCs of period p. Furthermore, two p-cycles are complex conjugates if

and only if the associated ABCs differ by a bit-flip.

Proof. Let c ≥ 0. Since c is real and positive, it does not belong to any p-periodic wake.

Thus, by Corollaries 4.1.4 and 4.1.5, every p-periodic point z of fc is the landing point of a

unique dynamical ray, whose angle θ(z) has period p. Taking the base 2 expansion of θ(z)
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produces a binary sequence of exact period p. By Proposition 2.3.13, θ(fc(z)) = σ(θ(z)).

Thus, the map sending the orbit (z) of z to the ABC (θ(z)) is well-defined.

Conversely, since every p-periodic angle θ lands at a p-periodic point by Corollary 4.1.4, the

map (z) 7→ (θ(z)) has an inverse, so it is a bijection.

Since (θ(z)) = (−θ(z)) = η((θ(z))), complex conjugation on p-cycles is equivalent to bit-flip

on ABCs.

The 2-symbol shift admits a unique nontrivial automorphism, namely the “bit-flip” involu-

tion η induced by exchanging 0s and 1s.

Definition 4.3.7. An abstract binary point class (ABP class) is an orbit of an ABP under

η. We will denote ABP classes using square brackets, e.g. [011] = {011, 100}.

Since η commutes with the shift, it descends to a well-defined map (η) on the set of ABCs

of period p. An abstract binary cycle class (ABC class) is an orbit of an ABC under η. We

will denote cycle classes using angle brackets, e.g. 〈011〉 = {(011) , (001)}.

While every ABP class contains exactly two ABPs (as η has no fixed points), an ABC class

may contain either one or two ABCs. We refer to an ABC class as reflexive if it contains

only one ABC.

Example 4.3.8. There are five ABC classes of period 6, namely 〈000001〉, 〈000011〉,
〈000101〉, 〈000111〉, and 〈001011〉. Among these, only 〈000111〉 is reflexive.

Remark 4.3.9. Abstract binary cycles have many other combinatorial interpretations. For

instance, ABCs of period p are in canonical bijection with irreducible polynomials of degree p

in F2[x]. As we shall see, ABC classes also count a number of interesting dynamical objects.

4.4 Itineraries

Suppose f is a self-map of some topological space X. Let U = (U0, . . . , Uk−1) be a collection

of disjoint open sets in X.

Definition 4.4.1. The itinerary IU(x) of a point x ∈ X relative to U is the unique sequence

(ε0, ε1, . . . ) ∈ ([k] ∪ {∗})N

such that

f i(x) ∈ Uεi ,
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whenever f i(x) belongs to
⋃
U , and such that εi = ∗ for all other i ∈ N.

Definition 4.4.2. The itinerary orbit IU(x) of a point x ∈ X relative to U is the orbit of

IU(x) under the left shift σ(ε0, ε1, . . . ) = (ε1, ε2, . . . ).

If x and x′ belong to the same p-cycle, then they have the same itinerary orbit. Thus, for a

p-cycle ξ of f , the itinerary orbit IU(ξ) is well-defined. The group Sk× (Z/pZ) acts naturally

on IU(ξ). For σ ∈ Sk, j ∈ Z/pZ, and (ε0, . . . , εp−1) ∈ IU(ξ), we set

(σ, j) · (ε0, . . . , εp−1) = (σ(εj), σ(εj+1) . . . , σ(εj−1)) ,

where addition in indices is done modulo p.

Proposition 4.4.3. The action defined above is transitive.

Proof. In the definition of labeled itinerary, only two choices were made: a choice of shift,

corresponding to an element of Z/pZ, and a choice of labeling on U , corresponding to an

element of Sk. Two labeled itineraries for the same cycle ξ can therefore differ only up to

these two actions.

Of particular importance in complex dynamics is the following type of partition and its

associated itineraries:

Definition 4.4.4. For θ ∈ S1 and p ∈ N∗, the canonical partition of degree p for θ is the

partition

P (n)(θ) =

{(
θ

n
,
θ + 1

n

)
,

(
θ + 1

n
,
θ + 2

n

)
, . . . ,

(
θ + n− 1

n
,
θ

n

)}
,

where intervals on S1 are understood to wrap around mod 1, so that, for instance,(
5

6
,
1

6

)
=

(
5

6
, 1

]
∪
[
0,

1

6

)
.

Definition 4.4.5. The canonical itinerary I(n)
θ (α) of degree n for α ∈ S1 relative to θ ∈ S1

is the itinerary of α relative to P (n)(θ).

Remark 4.4.6. For quadratic polynomials fc, c /∈M, the canonical itinerary of z relative to

argM(c) and the dynamical argument of z provide distinct ways to label points z ∈ J (fc).

These two sequences are equal when argM(c) = 0. In general, however, the relationship
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between the canonical itinerary and the dynamical argument (where the latter is uniquely

defined) is quite complicated.

In the present work, we use the dynamical argument to label periodic points in J (fc).

Giulio Tiozzo and Caroline Davis have independently developed in [Dav+23] an algorithm

similar to Algorithm 4.6.1 that uses kneading sequences and itineraries instead of external

and dynamical arguments.

4.5 A cell structure

In the following discussion, let p ∈ N∗ be fixed.

We begin with some observations about the structure of the map π : Cycp(Per1) → Ĉ. Let

B ⊂ Cycp(Per1) be the branch locus of π, and let P = π(B) ⊂ Ĉ be the ramification locus.

Let P0 = P ∩ C be the set of finite ramification points, and let B0 = π−1(P0) be the set of

finite branch points.

Lemma 4.5.1. P0 is precisely the set of roots of primitive hyperbolic components of period

p in the Mandelbrot set.

Proof. If π ramifies over fc, then fpc (z)− z has a zero z0 of multiplicity at least 2. Writing

fpc (z)− z = (z − z0)2 g(z),

where g is a polynomial, we find that the multiplier of fpc at z0 is

λc =
d

dz
fpc (z)

∣∣∣∣
z=z0

=
d

dz

(
(z − z0)2 g(z) + z

)∣∣∣∣
z=z0

= 1.

It follows that fc has a parabolic cycle of order dividing p. Since λc depends holomorphically

on c, the open mapping theorem implies that we can perturb c to make the cycle attracting,

implying that fc lies on the boundary of a hyperbolic component. Thus, since λc = 1, c is

the root of a hyperbolic component U .

Since π ramifies over c, two distinct p-cycles come together at c. Thus, by definition, the

component U is primitive.

44



We are now prepared to describe the cell structure for marked cycle curves over Per1. This

will consist of a labeling of the faces, edges, and vertices, together with an ordering on the

edges around each face.

Definition 4.5.2. Let M0 denote the path-connected component of M containing 0.

By Theorem 2.3.33, M0 contains the root of every hyperbolic component, so in particular,

P0 ⊂M0. Also, since M0 is path-connected and full, it is nullhomotopic.

Definition 4.5.3. The cells in Cycp(Per1) are defined as follows:

• A vertex is a connected component of π−1(M0) rB containing a lift of f0.

• An edge is a finite branch point of π.

• A face is a lift of Ĉ rM0.

One may obtain a homotopically equivalent cell structure by contracting each vertex down

to a lift of f0, stretching out the edges to include lifts of principal veins, and expanding the

faces into the Mandelbrot set to meet the edges.

Lemma 4.5.4. Vertices in Cycp(Per1) are in natural bijection with abstract binary cycles of

period p.

Proof. By definition of Cycp, lifts of the polynomial f0(z) = z2 are in bijective correspondence

with cycles of period p under f0. The result then follows from Lemma 4.3.6.

We thus label vertices according to abstract binary cycles.

In light of Lemma 4.5.1, edges map under π to roots of primitive hyperbolic components

of period p. We may thus label an edge α by the pair (θ0, θ1) of external angles whose

parameter rays land at π(α).

Finally, to label the faces, we use the following result.

Lemma 4.5.5. Faces in Cycp(Per1) are in natural bijection with abstract binary cycle classes

of period p. Moreover, letting FC denote the face corresponding to an ABC class C, we have

the following dichotomy:

• If C is reflexive, then the restriction π : FC → Ĉ rM0 is a homeomorphism.

• Otherwise, if C is not reflexive, then the restriction π : FC → Ĉ rM0 is a degree 2

branched cover, ramified at ∞.
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Figure 4.3: Cell structure for Cyc4(Per1), with vertices, edges, and faces labeled by ABCs,
primitive wakes, and ABC classes, respectively. Note that the outer face maps to Ĉ rM
with degree 2, while the inner face maps with degree 1.
The active external rays are also shown for reference, since their angles provide the labels
for the edges. The active satellite rays, which do not affect the marked cycles, are shown in
gray, while the primitive rays are colored according to the corresponding edge. Within the
active primitive wakes, the points of the marked cycle have two distinct external arguments.
Within the active satellite wakes, the marked cycle has no external argument. Everywhere
else, the points of the marked cycle have unique external arguments. These external rays
are not part of the cell structure, forming instead a doubled version of the dual graph.
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To prove Lemma 4.5.5, we will make use of the following lemma, which describes the mon-

odromy around ∞.

Lemma 4.5.6 (Compare [BDK91], theorem 1.3). Let c > 1/4 be real, and let α : S1 →
CrM be a loop with winding number 1 around 0. Then the monodromy under γ interchanges

the point in J(fc) with external argument θτ with the point of external argument −θτ .

Proof. Since c does not belong to any wake, the landing map γ : Q/Z → J(fc) is injective.

It follows that γ is injective on all of S1, so the language of Lemma 4.5.6 is well-defined.

Up to a homotopy, we may assume that α(t) has external argument tτ for all t ∈ S1. Let

z0 ∈ J (fc) have external argument θτ , and let zt ∈ J (fα(t)) be continuous on [0, 1], starting

at the base point z0. We wish to show that z1 has external argument −θτ .

By Remark 2.3.18, the dynamical rays R0(t) = Rγ(t)(t/2) and R1(t) = Rγ(t)((1 + t)/2) land

together at the critical point of fγ(t), cutting the Julia set J (fγ(t)) in half. Since the Julia

set never intersects R0 or R1, the itinerary of zt relative to (R0, R1) is invariant.

When γ(t) makes a full turn around M, R0 and R1 make only a half turn, trading places

with each other. Thus, the itinerary of z1 relative to the initial partition (R0(0), R1(0)) =

(R1(1), R0(1)) is the exact opposite of the itinerary of z0 relative to this same partition.

We know another point whose canonical itinerary is the opposite of that of z0, namely its

complex conjugate, z0.

Note that the itinerary of an angle relative to the partition (0, 1/2) is precisely its binary

expansion. Thus, the dynamical arguments of z1 and z0 have the same binary expansions,

so they are equal. The result then follows.

Proof of Lemma 4.5.5. Fix any parameter c0 > 1/4. By Lemma 4.3.6, the p-cycles of fc0 are

in canonical bijection with ABCs of period p. Two lifts (c0, ξ) and (c0, ξ
′) of c0 belong to

the same face F if and only if they can be connected by a path in F , i.e. if and only if there

is some loop in C rM based at c0 whose monodromy takes ξ to ξ′. By Lemma 4.5.6, this

occurs if and only if ξ′ ∈
{
ξ, ξ
}

.

We thus have two possibilities:

• If ξ = ξ, then the face F containing (c0, ξ) contains only one lift of c0. Thus, the

branched cover π|F has degree 1, so it is a homeomorphism.

• Otherwise, if ξ 6= ξ, then the face F containing (c0, ξ) also contains (c0, ξ), but it

contains no other lifts of c0. Thus, the branched cover π|F has degree 2, ramifying at
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∞.

By Lemma 4.3.6, ξ = ξ if and only if the ABC associated to ξ is reflexive. The result then

follows.

4.6 Computing the cell structure

We give the following algorithm to compute the cell structure for Cycp(Per1) described above:

Algorithm 4.6.1.

1. Enumerate all pairs (θ0, θ1) of period p parameter rays in Ĉ rM such that θ0 and θ1

land together on ∂M. This can be done using Lavaurs’ algorithm [Lav89]. Denote by

A the ordered set of arcs of period p.

2. Denote by P the set of abstract binary cycles of period p. For each endpoint θ of an

arc in A, compute a canonical representative (θ) for the associated ABC. One way to

do this is to take the minimum over the orbit of θ under angle doubling.

3. Let A′ = {(θ0, θ1) ∈ A : (θ0) 6= (θ1)} be the set of primitive arcs in A.

4. For each p-periodic ABC class 〈α〉, we traverse the face 〈α〉 as follows:

4.1 Initialize k = 0 and x0 = α. The angle xk represents the external angle of the

parameter c at the kth vertex. We are beginning our journey on the positive real

axis, where we are guaranteed to be outside any p-periodic wake.

4.2 Locate the first arc (θ0, θ1) ∈ A′ strictly after xk in counterclockwise circular order

such that either θ0 or θ1 belongs to (xk).

• If in the process of finding the next arc, we wrap around the end of A′, then

we check if xk = α. If so, we terminate the traversal of 〈α〉 and return the

ordered sequence of vertices.

4.3 If θ0 ∈ (xk), then set xk+1 = θ1; otherwise, if θ1 ∈ (xk), then set xk+1 = θ0.

4.4 Update k ← k + 1 and continue from step 4.2.

5. Glue together all pairs of matching edges in the faces obtained in step 4.

Example 4.6.2 (Cyc5(Per1)). As an example, consider the family of quadratic polynomials

fc(z) = z2 + c with a marked cycle of period 5. We begin by enumerating the period 5 arcs

in QML, together with the ABC associated to the orbit of each angle under doubling.
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ID θ0 θ1 (θ0) (θ1) Knead. Seq. Primitive?

A0 1/31 2/31 (1) = (00001) (1) = (00001) 0000∗ No

A1 3/31 4/31 (3) = (00011) (1) = (00001) 0001∗ Yes

A2 5/31 6/31 (5) = (00101) (3) = (00011) 0010∗ Yes

A3 7/31 8/31 (7) = (00111) (1) = (00001) 0011∗ Yes

A4 9/31 10/31 (5) = (00101) (5) = (00101) 0000∗ No

A5 11/31 12/31 (11) = (01011) (3) = (00011) 0101∗ Yes

A6 13/31 18/31 (11) = (01011) (5) = (00101) 0100∗ Yes

A7 14/31 17/31 (7) = (00111) (3) = (00011) 0110∗ Yes

A8 15/31 16/31 (15) = (01111) (1) = (00001) 0111∗ Yes

A9 19/31 20/31 (7) = (00111) (5) = (00101) 0101∗ Yes

A10 21/31 22/31 (11) = (01011) (11) = (01011) 0000∗ No

A11 23/31 24/31 (15) = (01111) (3) = (00011) 0011∗ Yes

A12 25/31 26/31 (7) = (00111) (11) = (01011) 0010∗ Yes

A13 27/31 28/31 (15) = (01111) (7) = (00111) 0001∗ Yes

A14 29/31 30/31 (15) = (01111) (15) = (01111) 0000∗ No

Table 4.1: Period 5 arcs in QML, together with their associated abstract binary cycles.
The ABCs are represented using their minimal element under the dictionary ordering. For
reference, we also include the kneading sequences, though these are not necessary for the
algorithm.

We now proceed to the face traversal stage. For brevity, we will only show the process for

the face 〈00011〉 = 〈3〉.

• We begin at some ABC representative for 〈3〉; say, (3). This shall be the “first” vertex

v0 in our face. Since we are starting from the top of the list of edges, we can optionally

add an indicator to remember that there is a lift of the positive real axis connecting

the center of F to v0.

• We look for the first primitive arc in our list that is active at (i.e. one of whose angles

shares a cycle with) v0, i.e. one of whose ABCs is (3). This is the second arc on our

list, A1, which connects (3) and (1). We thus set our next vertex to v1 = (1).

• The next primitive arc after A1 that is active at v1 = (1) is A3, which connects (7) and

(1). We thus set our next vertex to v2 = (7).

• The next primitive arc after A2 that is active at v2 = (7) is A7, which connects (7) and

(3). We thus set our next vertex to v3 = v0 = (3). Since A7 crosses the negative real
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axis, we can optionally mark the edge connecting v2 to v3 as crossing a lift of R−.

• The next primitive arc after A7 that is active at v3 = (3) is A11, which connects (15)

and (3). We thus set our next vertex to v4 = (15).

• The next primitive arc after A7 that is active at v4 is A13, which connects (15) and (7).

We thus set our next vertex to v5 = v2 = (7).

• There are no primitive arcs after A13 active at v5. So, we return to the top of the

list. Since v5 is the marked cycle as we cross the real axis, we can mark a lift of R+

through v5. Note that consistently with Lemma 4.5.6, v5 = (7) and the other positive

real vertex v0 = (3) belong to the same ABC class 〈00011〉.

• Continuing from the top of the list, A3 connects v5 to v6 = v1 = (1), A8 connects v6 to

v7 = v4 = (15) through R−, and A13 connects v7 to v8 = v0 = (7).

• No more arcs after A13 are active at v8. Since we already crossed the real axis with v8

active, we close up the face, identifying v8 with v0.

The other two faces 〈00001〉 and 〈00101〉 may be computed similarly. In this case, all three

faces map to Ĉ rM with degree 2, since no odd period ABC can be reflexive (as the

discrepancy between the number of 0s and 1s is always odd).

We can then draw the resulting cell structure:

〈1〉

(1)

(3)

(5)

(11)

(7)

(15)

〈3〉

(3) (1)

(7)

(3)

(15)(7)

〈5〉

(5) (3)

(7)(11)

(3)

(7)

Figure 4.4: Cell structure for the marked cycle curve Cyc5(Per1), which has genus g = 2.
The vertex label (α) denotes the orbit of α/31 under angle doubling, and the face label
〈α〉 denotes the orbit of α/31 under angle doubling together with angle negation (so, for
instance, 〈5〉 = (5) ∪ (11)). Double edges indicate ray pairings that cross the negative real
axis. Dashed lines indicate lifts of the positive real axis, and dotted lines indicate lifts of the
negative real axis.

Example 4.6.3 (Cyc6(Per1)). We can use the same procedure to produce the cell structure
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for the family of quadratic polynomials with a marked 6-cycle:

〈1〉

(1)

(3)(5)

(13)

(11)

(23) (15)

(31)

〈3〉

(3)

(1) (7)

(13)

(5)

(23)

(11)

(7)(31)

(15)

〈5〉

(5) (3)

(15)(23)

(3)

(15)

〈7〉(7)

(1)

(31)

〈11〉

(11)
(3)

(15)
(13)

(7)

Figure 4.5: Cell structure for the marked cycle curve Cyc6(Per1), which has genus g = 4.

Note that in this case, the faces 〈7〉 and 〈11〉 both have an odd number of edges. The face

〈7〉 is reflexive, while the face 〈11〉 is not.

Lemma 4.6.4 (Edges are realized). Every primitive arc in QML appears as an edge on

some face produced by Algorithm 4.6.1.

Proof. Let A = (θ0, θ1) be a primitive arc in QML. Starting at v = (θ0) and at position A in

the list of arcs, we follow the procedure of step 4 in the reverse order. We must eventually

reach the top of the list of arcs (i.e. the positive real axis) with some ABC (θ) active. By

performing step 4 in the forward direction starting at θ, we find that (θ0, θ1) is an edge of

the face 〈θ〉.

Corollary 4.6.5 (Edges are doubly realized). Every primitive arc A ∈ QML appears either

once on two distinct faces, or twice on a single face.

Proof. Perform the same procedure as in the proof of Lemma 4.6.4, only starting at θ1

instead of θ0. Since the procedure is reversible, when we reach the positive real axis, the

active ABC is some value (θ′) necessarily distinct from (θ). If these two ABCs are bit-flips

of each other, then A appears twice on 〈θ〉; otherwise, A appears once on 〈θ〉 and once on

〈θ′〉.

Proposition 4.6.6 (No isolated vertices). If p 6= 2, then every vertex produced by Algo-

rithm 4.6.1 is connected to some other vertex.
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Theorem 4.6.7. For p > 2, Algorithm 4.6.1 gives rise to a cell structure homeomorphic to

Cycp(Per1).

Proof. Let X be the space described by the output of Algorithm 4.6.1. It suffices to show

that X is homeomorphic to the cell structure Y described in Definition 4.5.3. As in Defini-

tion 4.5.3, let M0 be the path-connected component of M containing 0, and let B be the

branch locus of the projection map π : Cycp(Per1)→ Per1.

Consider a point c ∈ C, together with a p-cycle ξ of fc. We will show how to produce a

corresponding point h(c, ξ) ∈ X.

Suppose first that (c, ξ) belongs to a “vertex” U of Y , i.e. path-connected component of

M0 r B containing 0. Fix some metric on Cycp(Per1) that respects its topology. Let b0

be the nearest element of B to c, and let b1 be the second-nearest. Let δ0 and δ1 be the

corresponding distances (if no such point bi exists, we set δi = 0). Denote by δ be the

distance between (c, ξ) and (0, ξ).

Let α be the ABC associated to (c, ξ) according to Lemma 4.5.4. It follows from Corol-

lary 4.1.6 that dynamical rays at angles represented by α land at elements of the marked

cycle ξ′ for every (c′, ξ′) ∈ U .

Let A be the primitive arc landing at b0. Since b0 is a branch point of π, we know that the

p-cycle described by α collides at b0 with some other p-cycle, described by β, say. It follows

from Corollary 4.1.5 and Lemma 4.2.1 that π(b0) is the landing point of the angles in A. By

Lemma 4.6.4, there is an edge represented by A, which evidently connects to both α and β.

Let γ(t) parameterize this edge by arc length (where all edges are defined to have length 1),

with γ(0) = α and γ(1) = β. We then set

h(c, ξ) = γ

(
δ (δ1 − δ0)

2δδ1 + δ0

)
.

Note that this has value γ(0) = α, which lies on all edges out of α, whenever there is a tie

between the nearest branch points b0 and b1. Since no two of {δ, δ0, δ1} can simultaneously

vanish (0 is certainly not the root of a primitive hyperbolic component!), it is easily checked

that h is continuous on U and satisfies

lim
(c,ξ)→b0

h(c, ξ) = γ(1/2) (4.2)

from within U .
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b0

b1

(0, ξ)(c, ξ)

δ0

δ1

δ

Figure 4.6: The function h(c, ξ) compares the distances δ0 and δ1 of (c, ξ) to the nearest two
branch points, scaled by the distance δ to (0, ξ) and designed to equal 0 when δ0 = δ1.

If (c, ξ) is an “edge” of Y , i.e. a branch point of π, then by the same reasoning as above,

we find that c is the landing point of the rays in an arc A ∈ QML active at ξ. We then set

h(c, ξ) to be the midpoint of the edge in X represented by A. It follows from eq. (4.2) that

this assignment does not introduce any discontinuities.

We have thus defined a map h from the 1-skeleton of Y to the 1-skeleton of X. This map

has an inverse up to homotopy, where we send the midpoint mA of each edge A in X to the

branch point (cA, α) in Y where A lands and is active, and we send points on each half-edge

connecting mA to α in X continuously to points on the vein in Y connecting bA to (0, α).

Thus, the 1-skeletons of X and Y are homotopy equivalent.

It remains to show that the gluing maps for the 2-cells have the same vertex orderings.

Consider a loop σ : [0, 1]→ Cycp(Per1)rπ−1(M) around a face in Y , based at a point (c0, ξ0)

on a lift of the positive real axis, chosen up to homotopy so that the external argument of

ct is monotone increasing with respect to circular order. Put (ct, ξt) = σ(t).

Since c0 ∈ R+ does not lie within any p-periodic wake, we know by Corollary 4.1.6 that

elements of ξ0 have unique external arguments, which by Proposition 2.3.13 belong to a

common orbit (θ0). Following any path in C from c0 to 0 that avoids the ray orbit Oθ0 , by

Lemma 4.1.2 we obtain a point v0 = (c̃0, ξ̃0) belonging to the Y -vertex labeled by (θ0).

Proceeding forward along the loop, we know by Lemma 4.1.2 that the dynamical rays

Rct(2
kθ0) continue to land on ξt until ct crosses a ray R(α) with α ∈ (θ0). When this

occurs, there are two possibilities:
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(1) If α belongs to a satellite arc (α, β), with β ∈ (α) = (θ0), then by Section 4.2.2,

passing through the wake W(α, β) merely cycles the elements of ξt, without changing

the external arguments. Thus, the landing vertex vt ∈ Y remains invariant.

(2) If α belongs to a primitive arc A = {α, β}, with β /∈ (α) = (θ0), then by Lemma 4.2.1,

when ct lies within the associated wake W(A), all dynamical rays Rct(θ) with θ ∈
(α) ∪ (β) land on the same cycle ξα,β,t.

If α > β, then when ct enters W(A), the dynamical ray Rct(α) does not bifurcate. It

follows that ξα,β,t = ξt. When ct exits the wake W(A), the dynamical ray Rct(β) does

not bifurcate, so rays in the orbit of β continue to land on ξt. Thus, the next associated

vertex vt ∈ Y is (β).

If α < β, then when ct enters W(A), the dynamical ray Rct(β), which previously did

not land on ξt does not bifurcate. It follows that ξα,β,t 6= ξt. Thus, when ct exits the

wake W(A), the dynamical ray Rct(α) does not bifurcate, so rays in the orbit of α

continue not to land on ξt. But we know by Corollary 4.1.6 that some ray lands on ξt,

and the only available angles belong to (β). Thus, the next associated vertex vt ∈ Y
is again (β).

In all cases, the update is consistent with the update rule in Algorithm 4.6.1. It follows that

the resulting cell structures are homeomorphic.
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CHAPTER 5

Marked Cycle Curves over Per2

As discussed in Section 3.3.2, the dynamical moduli space Per2 of quadratic rational maps

with a superattracting 2-cycle is a natural successor to Per1, and has been studied extensively.

In this chapter, we will show that a small modification to Algorithm 4.6.1 allows us to describe

the marked cycle curves over Per2.

5.1 Structure of Per2

We first recall some of the basic properties of Per2.

Proposition 5.1.1 (compare [Mil93]). Per2 is conformally isomorphic to a one-sided cone

with cone angle τ/3. The cone point is the map [f©] = [z 7→ z−2], which has automorphism

group S3, generated in these coordinates by z 7→ 1/z and z 7→ ωz, where ω is a primitive

cube root of unity. All other elements of Per2 have trivial automorphism group.

Following [Ree90] and [Mil93], subfamilies of M2 admit four classes of hyperbolic components:

B. bitransitive components, in which the critical points are in different components of the

immediate basin of the same attracting cycle,

C. capture components, in which both critical points are in the basin of the same attracting

cycle, but only one is in its immediate basin,

D. disjoint type components, in which the critical points belong to basins of disjoint cycles,

and

E. escape regions, in which both critical points are in the immediate basin of the same

attracting fixed point.

Douady and Hubbard’s Theorem 2.3.5 states that CrM is the only escape region in Per1,

and that all other hyperbolic components are of disjoint type. By contrast, Per2 has one
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bitransitive component, no escape regions, and infinitely many components of types C and

D.

Definition 5.1.2. The filled bifurcation locus M2 is the complement of the union of all

bitransitive and capture components in Per2. In other words,M2 is the set of all [f ] ∈ Per2

such that the orbit of the free critical point of f is not attracted to the marked superattracting

2-cycle. It is the analogue of the Mandelbrot set in Per2, and its boundary is the bifurcation

locus B(Per2).

5.1.1 Coordinates

There are a number of different sets of coordinates commonly used for Per2. For our purposes,

we will use the following two parameterizations:

Proposition 5.1.3.

• The dynamical family

G =
{
gb(z) = b+ 1/

(
z2 − b2

)
: b ∈ C

}
is a 3-fold branched cover of Per2, branched over the map g0(z) = z−2. The moduli

space Per2 is the quotient of G by the Z/3Z action generated by b 7→ ωb.

• The dynamical family

H =

{
ha(z) =

z2 + a

1− z2
: a ∈ Cr {−1}

}
is isomorphic to Per2 r {[z 7→ z−2]} and provides a dynamically meaningful coordinate

for Per2 away from the orbifold point [z 7→ z−2]. The map ha has critical 2-cycle

∞↔ −1, free critical point 0, and free critical value a.

• For b ∈ C∗, gb is conformally conjugate to h1−b−3 via the affine conjugacy

−1

b
gb(z) = h1−b−3

(
−1

b
z

)
.

• The central map h0 ∈ H is conjugate to the basilica polynomial f◦©◦(z) = z2 − 1 via

the Möbius conjugacy h0(1/z) = 1/f◦©◦(z). This represents the unique element of

Per1 ∩Per2.

• The family H has a puncture at a = −1, where ha degenerates to a constant function.
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(a)M2 in the 1/b plane, with parameterization
gb(z) = b + 1/

(
z2 − b2

)
. The central point is

the puncture b =∞.

(b) M2 in the a plane, with parameterization
ha(z) = (z2+a)/(1−z2). The puncture a = −1
is marked by a red star.

Figure 5.1: Per2 in the coordinate systems G and H. The colored regions are disjoint type
components, the bounded white regions are capture components, and the unbounded white
region is the unique bitransitive component.

Remark 5.1.4. For p 6= 2, the p-cycles of g0(z) = z−2 all have multiplier (−2)p. In particular,

g0 has no indifferent cycles, so there is no cycle monodromy in G in a neighborhood of g0.

Among other things, this implies that the number of p-cycles for a generic element of G (and

hence H) is equal to the number of p-cycles of g0.

We will generally treat the orbifold point as a puncture, identifying Per2 with H. It should

be noted, however, that Per2 technically contains an additional map [z 7→ z−2].

5.1.2 Wittner’s conjecture

Ben Wittner conjectured in [Wit88] that the connectedness locus in Per2 is a topological

mating of the Mandelbrot set minus the 1/2 limb with the Julia set of the “basilica” map

f◦©◦(z) = z2 − 1 minus its 1/2 limb. This was eventually proven by Dzmitry Dudko in

[Dud11], building on an extensive theory developed in [Lei92], [Luo95], [AY08], [Tim08], to

name a few. We give here a brief summary of the relevant parts of this result.

Let

C̃ = Ĉ rW
(

1

3
,
2

3

)
/ ∼

denote the Riemann sphere minus the (1/3, 2/3)-wake of the Mandelbrot set, modulo the

equivalence relation

γ1/3(t) ∼ γ2/3(t),
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where γθ parameterizes the parameter ray RM(θ) according to the parameterization given

in Definition 2.3.7. The topological space C̃ is a complex orbifold. Let M̃ be the image of

M in C̃.

Similarly, let

B̃ = Ĉ rW◦©◦
(

1

3
,
2

3

)
/ ∼

denote the Riemann sphere minus the dynamical (1/3, 2/3)-wake of f◦©◦(z) = z2−1, modulo

the equivalence relation

γ1/3,◦©◦(t) ∼ γ2/3,◦©◦(t),

where γθ parameterizes the dynamical ray Rf◦©◦(θ) according to the parameterization given

in Definition 2.3.8. Let K©◦ denote the image of K(f◦©◦) in B̃.

Denote by P̃er2 the one-point compactification of Per2, i.e. the teardrop orbifold obtained

by filling in the puncture.

We informally define the topological mating ofM with K◦©◦ as the mating of the lamination

Q̃ML with L©◦, where Q̃ML (resp. L©◦) is the subset of QML (resp. L(f◦©◦)) whose arcs do

not belong to [1/3, 2/3], modulo the interval [1/3, 2/3].1

Theorem 5.1.5 (Dudko, c.f. [Dud11]). The topological mating of M̃ with K©◦ is canonically

homeomorphic to P̃er2. The bifurcation locus in Per2 is the image of ∂M under this mating.

M2 is the image of M under this mating.

In particular, by the mating construction, for any rational angle θ outside [1/3, 2/3], the

image in Per2 of the landing point of RM(θ) coincides with that of the landing point of

Rf◦©◦(1− θ).

While Dudko’s structure theorem is deep, it alone does not provide a full analogue of the

results in Sections 2.3 and 4.1. However, the remaining theory we require was developed

prior to Dudko’s result, in the work of Aspenberg-Yampolsky [AY08] and Timorin [Tim08].

The remainder of this section is devoted to describing their results.

By the mating criterion Theorem 2.3.23, every pcf hyperbolic polynomial

f ∈MrW(1/3, 2/3)

admits a rational mating with f◦©◦. Since f◦©◦ has a 2-periodic critical point, f q f◦©◦ must

1In Dudko’s construction, care must be taken when handling irrational angles, since M is not known to
be locally connected. Since we only require the mating construction to hold for rational angles, we will avoid
going into detail regarding this.
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then belong to Per2. The converse is also true:

Proposition 5.1.6 (Tan Lei, c.f. [Lei92]). Every postcritically finite map in Per2 which

does not belong to a capture component is the mating of a pcf quadratic polynomial f ∈
MrW(1/3, 2/3) with the basilica polynomial f◦©◦.

Corollary 5.1.7. Hyperbolic components inM2 are in bijection with hyperbolic components

in MrW(1/3, 2/3).

5.1.3 Internal geodesics

Let f be a postcritically finite quadratic2 polynomial, and let F0 ⊂ K(f)◦ denote the Fatou

component containing the critical point z0. Let φ : F0 → D be the Böttcher map of F0,

defined everywhere since F0 contains no other critical points. Since every Fatou component

F ⊂ K(f)◦ is an iterated preimage of F0, we may extend φ to all of K(f)◦ by pulling it back

under iterates of f .

Definition 5.1.8. Let f be a postcritically finite quadratic polynomial, and let φ be as

above. Let γ : [0, 1] → K(f) be a path in the filled Julia set of f . We say that γ is an

internal geodesic in K(f) if it satisfies the following properties:

1. γ is injective into K(f).

2. For every Fatou component F of f , there are at most two values t for which γ(t) ∈ ∂F .

3. For any t such that z = γ(t) is an interior point of K(f), either φ(z) = 0 (i.e. z is an

iterated preimage of the critical point z0), or γ′(t) is a nonzero real multiple of φ′(z).

Equivalently, γ is orthogonal to the level curves of log |φ| wherever the latter is defined.

Proposition 5.1.9. For any two distinct points a, b ∈ K(f), there exists an internal geodesic

γ starting at a and ending at b. The choice of γ is unique up to reparameterization by a

monotone map on the unit interval.

Proof. Since K(f) is simply connected, there is a unique, nonempty homotopy class (rel.

endpoints) C0 of paths connecting a to b. Let C1 ⊂ C0 be the subset consisting of all paths

γ for which γ−1(F ) is connected for every Fatou component F . Since any element of C0 can

be reparameterized to an element of C1, C1 is nonempty. Let C2 be the subset of elements

of C1 that are injective; by the same reasoning, C2 remains nonempty.

2The requirement that f be quadratic is unnecessary, but it makes the definition simpler. We will only
require this construction for the basilica map f◦©◦(z) = z2 − 1.
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Up to a monotone reparameterization, any two elements of C2 are equal outside Fatou

components. Thus, it suffices to prove existence and uniqueness when a and b belong to the

closure of a single Fatou component F .

Since K(f) is simply connected, the restriction of φ to F extends continuously to an injective

map φF defined on F (this may be discontinuous relative the value of φ on other Fatou

components, but this is irrelevant to us). There are two possibilities:

• If φ(a) and φ(b) lie on a single closed ray R from the origin in D (in particular, if either

φ(a) or φ(b) is zero), then the only injective radial (i.e. orthogonal to circles about 0)

path from φ(a) to φ(b) is the segment γ̃ of R between φ(a) and φ(b). The pullback

φ−1 ◦ γ̃ is then the unique path γ connecting a to b.

• Otherwise, if arg (φ(a)) 6= arg (φ(b)), then the only radial paths in Dr {0} connecting

φ(a) to φ(b) involve exiting D to traverse the boundary circle, which would violate

condition 2. Thus, the only possibility is that φ(γ(t)) = 0 for some t ∈ (0, 1). Existence

and uniqueness then follows by applying the previous case twice.

Definition 5.1.10. For an internal geodesic γ passing through the center of a Fatou com-

ponent F at time t0, the characteristic angle of γ at F is the value

χ
F

(θ) =
1

τ
arg φ(t0 + ε)

which is independent of ε for all sufficiently small ε > 0.

Remark 5.1.11. It is important to distinguish internal angles in K(f◦©◦) from external angles

to K(f◦©◦). Whereas the latter are doubled under the f◦©◦ itself, the former are doubled

under the square of f◦©◦.
3 To preserve this distinction, we notate internal basilica angles

with an underline.

5.2 Bubble rays

There are natural analogues for parameter rays as well as dynamical rays for Per2. These

are known as bubble rays. To define these, we must first define internal rays for the basilica

polynomial f◦©◦(z) = z2 − 1.

3Naively, it may seem contradictory that these two notions of angle can expand at different rates under
the same map. As we shall see in Section 5.3.2, this distinction forms a counterpoint that is central to
understanding how maps degenerate at the puncture in Per2.
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Since f◦©◦ is hyperbolic of disjoint type, its Julia set is locally connected. Thus, for any

θ ∈ S1, the dynamical ray at angle θ lands at some point λ◦©◦(θ) ∈ J (f◦©◦).

Definition 5.2.1. The internal basilica ray
◦
R◦©◦(θ) at angle θ ∈ S1 is the internal geodesic

γ from 0 to λ◦©◦(θ).

The basilica polynomial has the important property that any two points its Fatou set are

connected by a path that visits J (f◦©◦) in finitely many points. Thus, for any θ ∈ S1,

sequence of Fatou components visited by the internal ray
◦
R◦©◦(θ) is either finite or has order

type ω.

Definition 5.2.2. For θ ∈ S1, let F0, F1, . . . be the (finite or infinite) sequence of Fatou

components visited by the internal basilica ray γ =
◦
R◦©◦(θ). The basilica address of θ is the

finite or infinite sequence of characteristic angles along γ:

Γ(θ) = χF0
(γ), χF1

(γ), . . ..

Definition 5.2.3. If h ∈ Per2 is a mating of a quadratic polynomial fc ∈ M̃ with f◦©◦, then

the dynamical bubble ray
◦
Rh(θ) at angle θ ∈ S1 is the pushforward of the internal basilica

ray
◦
R◦©◦(−θ) under the mating of K(fc) with K◦©◦.

Definition 5.2.4. The parameter bubble ray
◦
R(θ) at angle θ ∈ S1 r (1/3, 2/3) is the push-

forward of the internal basilica ray
◦
R◦©◦(−θ) under the Wittner mating of M̃ with K©◦.

Aspenberg and Yampolsky show that bubble rays inherit most of the properties of external

rays in Per1.

Proposition 5.2.5 (c.f. [AY08], Proposition 6.10). For α, β ∈ S1r [1/3, 2/3], the parameter

bubble rays
◦
RM2(α) and

◦
RM2(β) land together at the root of a hyperbolic component V if and

only if the corresponding parameter rays in Per1 land at the root of a hyperbolic component

U . If this is the case, then U and V have the same period p, and mating with f◦©◦ induces

a conformal isomorphism between U and V .

Definition 5.2.6. If α and β land together at a component U , then the component of

Per2 r
(
◦
RM2(α) ∪

◦
RM2(β)

)
containing U is known as the bubble wake

◦
W(α, β). The closed

bubble wake is the defined to be the set

◦
W(α, β) =

◦
W(α, β) ∪

◦
RM2(α) ∪

◦
RM2(β).
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(a) The parameter rays RM(1
5) and RM( 4

15)
land together at a period 4 component ofM.
Call the center of this component fK .

(b) Internal basilica rays at angles −1/5 and
−4/15. The basilica addresses are 1

3 and
1
4 , 0,

1
4 , 0, . . . respectively (where the critical

internal ray segment at angle 0 points to the
left, towards the α fixed point). The corre-
sponding external dynamical rays, shown in
lighter colors, are pinched to a common point
in the Wittner mating with M̃.

(c) The parameter bubble rays
◦
RM2(1

5) and
◦
RM2( 4

15) land together at a period 4 com-
ponent UK of M2. The center of UK is the
mating fK q f◦©◦.

(d) The dynamical bubble rays at angles 1/5
and 4/15 land together on the Julia set of fKq
f◦©◦. The critical value is shown in green.

Figure 5.2: Correspondence between rays in Per1 and bubble rays in Per2.
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Remark 5.2.7. Unlike in Per1, bubble rays may overlap. If α, β ∈ S1 are distinct, then
◦
Rha(α)∩

◦
Rha(β) (not including the landing points) has a single connected component whose

closure contains the 2-periodic critical point, but no element of the Julia set. The analogous

statement for parameter bubble rays also holds.

This has the interesting implication that bubble wakes may be bounded. Thus, a closed

bubble wake is not simply the closure of the corresponding open bubble wake: the latter

may be a proper subset of the former.

5.2.1 Outside M2

We wish now to extend our definition of dynamical bubble rays to maps outside M2.

If h ∈ H does not belong to M2, then by definition, h is hyperbolic of either capture type

or bitransitive type. Thus, every Fatou component maps after finitely many iterations to

the Fatou component F∞ containing the marked 2-periodic critical point ∞. Let φh be the

Böttcher map, defined on a neighborhood of ∞, and let Gh be the Green’s function, defined

on all of F0. By taking iterated pullbacks, we may extend the domain of φh to an open set

containing every iterated preimage of ∞, and we may extend Gh to the entire Fatou set of

h.

In fact, the above definitions work for h ∈ M2 as well, with the caveat that the domain

of Gh only includes the Fatou components that are iterated preimages of the component

containing ∞.

We may then define bubble ray segments just as we defined dynamical rays in Section 2.3.

Definition 5.2.8. Let h ∈ H, with the Böttcher map φh and Green’s function Gh defined

as above. Let z0 ∈ CrJ (h) be an iterated preimage of the marked 2-periodic critical point

∞, and let θ ∈ S1. The dynamical bubble ray segment

◦
R

(z0)

h (θ)

at angle θ based at z0 is the unique solution γ to the differential equation

γ′(t) =
(∇Gh)

T

‖∇Gh‖2 (γ(t)) , (5.1)

defined on a maximal domain (t0,∞), such that arg φh(γ(t)) = θτ for some (and hence all)

sufficiently large θ, parameterized such that Gh(γ(t)) = t for some (and hence all) t > t0.
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Since φ(h2(z)) = φ(z)2, we find that h2 acts on bubble ray segments at∞ by angle doubling.

We say a dynamical ray segment
◦
R

(z0)

h (θ), parameterized by γ(t), bifurcates if γ(t) is not

defined for all t > 0, and we say it lands if limt→0 γ(t) exists.

Proposition 5.2.9 (c.f. [TY96]). Every hyperbolic rational map has locally connected Julia

set.

Corollary 5.2.10. If h ∈ HrMw, then every dynamical bubble ray segment either bifurcates

or lands.

Proposition 5.2.11. The critical points of Gh are precisely the precritical points of h.

Proof. This follows by taking the gradient of the functional equation Gh(h
2(z)) = 2Gh(z).

Proposition 5.2.12. For a ∈ C r (−∞,−1], the dynamical bubble ray segment
◦
R

(∞)

ha (0)

lands at a fixed point of ha.

Definition 5.2.13. For a as above, we refer to the landing point of
◦
R

(∞)

ha (0) as the α-fixed

point αa.

The α-fixed point lies on the boundary of two canonical Fatou components F∞ and F−1,

containing respectively the 2-periodic critical point ∞ and its associated critical value −1.

We can now define the dynamical bubble ray using the internal basilica address.

Definition 5.2.14. Let h ∈ H be arbitrary, and let θ ∈ S1. Let Γ(θ) = χ0, χ1, . . . be the

basilica address of −θ. The dynamical bubble ray

◦
Rh(θ)

is constructed as follows:

1. Let z0 =∞ be the preperiodic critical point, and let

γ+
0 =

◦
R

(z0)

h (χ
0
).

If γ+
0 runs into a critical point of Gh (i.e. an iterated preimage of the free critical

point), we halt the process and say that
◦
Rh(θ) bifurcates. Otherwise, let z+

0 be the

landing point of γ+
0 . If χ0 is the last entry in the basilica address of θ, then terminate

the process and say that
◦
Rh(θ) lands at z+

0 . Otherwise, since the internal basilica ray
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at angle θ passes through the boundaries of exactly two Fatou components, it follows

from the capture construction in [Wit88] that z+
0 belongs to the boundary of exactly

one other Fatou component F1.

2. Let U be a neighborhood of z0, and let V = U ∩ F1. Consider the family of solutions

to (5.1) passing through z, where z varies through V . If this family is normal for suffi-

ciently small V , then we let γ−1 be the limit of this family as z tends to z0. Otherwise,

we say that
◦
Rh(θ) bifurcates in F1.

Running γ−1 for decreasing t, normality implies that γ−1 cannot run into a saddle point

of Gh. Thus, γ−1 must terminate at an iterated preimage of z∞. We call this point z1.

3. We now repeat this procedure, using α1 to seed the next bubble ray segment at angle

χ
1

from z1, and continuing the process forever or until we halt.

◦
Rh(θ) is then defined to be the concatenation

γ+
0 · γ̂−1 · γ+

1 · γ̂−2 · . . . ,

stopping early as described above if the process terminates. In the above, γ̂ denotes the

time-reversal of γ.

Proposition 5.2.15. When h = fc q f◦©◦ is a mating, Definitions 5.2.3 and 5.2.14 are

equivalent up to a re-parameterization.

Proof. Since the dynamics of h in the image of K(f◦©◦)
◦ are conformally conjugate to those

of f◦©◦, the interior Green’s functions on corresponding Fatou components are equivalent.

The result then follows by existence and uniqueness.

Dynamical and parameter bubble rays satisfy almost all the same properties as their Per1

analogues. In lieu of repeating much of Section 2.3.1, we state the following fundamental

property and refer the reader to [AY08] and [Tim08] for a thorough investigation of the

properties of bubble rays.

Proposition 5.2.16 (c.f. [AY08]). For h ∈ H and θ ∈ S1, if the dynamical bubble ray
◦
Rh(θ)

lands at some z ∈ J (h), then
◦
Rh(2θ) lands at h(z).

We remark that Lemma 4.1.2 holds for dynamical bubble rays as well, with essentially the

exact same proof (modulo passing to another limit). The analogues of the other results in

Sections 4.1 and 4.2 then follow by similar arguments. In other words, the local monodromy

of maps in Per2 is exactly analogous to that of maps in Per1.
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5.3 Monodromy

If two p-periodic points degenerate into each other in a neighborhood of some h ∈ Per2, then

those periodic points must have multiplier pth root of unity at h. It follows that h must be

a root of a hyperbolic component of period p, and hence the monodromy is described by

Lemma 4.2.1 as discussed above.

A crucial difference between Per1 and Per2 comes from the fact that Per2 has an orbifold

point and a puncture. To obtain a complete description of cycle monodromy in Per2, it is

therefore necessary to understand the monodromy about these two exceptional points.

5.3.1 The orbifold point

We first study the monodromy of cycles around the orbifold point [f©], where f©(z) = z−2.

Using the 3-fold branched cover G, with gb(z) = b+ 1/(z2 − b2), observe that

gωb(z) = ωb+
1

z2 − ωb2

= ωb+
ω

ωz2 − ωb2

= ω

(
b+

1

(ωz)2 − ωb2

)
= ωgb(ωz),

where ω is a primitive cube root of unity. Thus, gωb(ωz) = ωgb(z). In particular, z is

p-periodic under gb if and only if ωz is p-periodic under gωb.

Proposition 5.3.1. For b in a neighborhood U of 0, the Julia set J (gb) is a quasicircle,

and there is a quasisymmetric homeomorphism ψb : S1 → J (gb) conjugating the angle anti-

doubling map θ 7→ −2θ to gb. The map (b, θ) 7→ ψb(θ) is continuous on U × S1.

Proof. Note that g2
0(z) = z4. Since gb varies continuously in (L∞(Ĉ)) with b, it follows that

g2
b is polynomial-like of degree 4 for b in a neighborhood of 0. Let U be a neighborhood of 0

such that for b ∈ U , g2
b has three critical points in D counted with multiplicity, all of which

converge under forward iteration toward the same attracting fixed point. Evidently, this is

an open condition which is satisfied for g0.

By Douady and Hubbard’s straightening theorem [DH85], for b ∈ U , g2
b is hybrid equivalent

to a degree 4 polynomial with three critical points in the immediate basin of an attracting

fixed point. It follows that J (g2
b ) = J (gb) is a quasicircle, and the landing of dynamical
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rays induces a quasisymmetric homeomorphism ψb : J (gb)→ S1, conjugating g2
b to z 7→ z−4.

Since the landing points of external rays change continuously as we move within a hyperbolic

component, we know that ψb is continuous.

In the case b = 0, ψ0(θ) = exp(θτi) plainly conjugates the angle anti-doubling map to

g0(z) = z−2. Thus, the map ϑ = ψ−1
b ◦ gb ◦ ψb is quasisymmetric with winding number

-2, and satisfies ϑ2(θ) = 4θ. Since the unique quasisymmetric square root of θ 7→ 4θ with

winding number −2 is the angle anti-doubling map, the result follows.

Theorem 5.3.2. Fix any p ∈ N∗ r {2}. Let γ be a loop in Per2 r {f©} with winding

number 1 about f©. If γ is chosen to be sufficiently small, then all orbits of p-periodic points

of f = γ(0) under the monodromy action monp(γ) induced by γ have exact cardinality 3.

Proof. Note that all p-periodic points of g0(z) = z−2 lie on the unit circle, and hence are

repelling with multiplier (−2)p. Furthermore, g0 has no indifferent periodic points.

It follows that the p-periodic points of gb move continuously and remain bounded away from

one another for b in some neighborhood of 0. Thus, the 3-fold cover G exhibits no monodromy

around [f©], implying that all orbits of monp(γ) have cardinality dividing 3. It remains to

show that no point is fixed under monp(γ).

Let A denote the (finite) set of p-periodic points of f©, and let δ > 0 be sufficiently small

such that:

(1) the distance between any two elements of A is at least 3δ, and

(2) for all z ∈ A, dist(z, ωz) > 5δ.

Property (2) holds for sufficiently small δ since 0 /∈ A, as 0 has period 2 under g0 = f©. Let

V be the neighborhood of radius δ around A, so by (1) no two elements of A are connected

by a path in V . We may then choose ε > 0 sufficiently small such that all p-periodic points

of gb belong to V for all b ∈ Dε(0).

Now let γ̃(t) = ε
2

exp (3tτ i) for t ∈ [0, 1], so that γ̃(0) = ε/2 and γ̃(1) = ωε/2. Suppose z

is a p-periodic point of gγ(0). Let w be the image of z under the monodromy induced by

γ. Since z and w are connected by a path, we know that both z and w belong to the same

component V0 of V .

Also, if z0 ∈ J (f©) is the image of z under the monodromy induced by the radial path

ρ(t) = ε
2
(1− t), then the same reasoning implies z0 ∈ V0.
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Since V0 = Bδ(z0) has diameter δ, we see that dist(z0, z) < 2δ and dist(z0, w) < 2δ). The

triangle inequality then gives

dist(ωz, w) ≥ dist(z0, ωz0)− dist(ωz, ωz0)− dist(z0, w)

= dist(z0, ωz0)− dist(z, z0)− dist(z0, w)

> 5δ − 2δ − 2δ = δ.

Thus, it cannot be the case that ωz = w. Now gγ(0) is uniquely conjugate to gγ(1) via

gω(1)(ωz) = ωgω(0)(z),

with uniqueness holding since gω(0) 6= f© (as ε > 0), where f© is the unique element of M2

commuting with an order 3 Möbius transformation [Mil00]. It follows that z and w represent

distinct periodic points of the conjugacy class
[
fγ(0)

]
, proving that the monodromy action

on z has exact order 3.

Corollary 5.3.3. If γ is a small counterclockwise loop around [f©], based at some b ∈ Per2,

then under the coordinates ψb of Proposition 5.3.1, the monodromy under γ maps ψb(θ) to

ψb(θ + ω).

5.3.2 The puncture

We now study the monodromy of cycles around the puncture in Per2. Throughout, we will

use the coordinates ha(z) = (z2 + a)/(1− z2), for which the puncture is located at a = −1.

Proposition 5.3.4. For z ∈ Ĉ, the map h2
a converges pointwise on Ĉ as a→ −1 to the map

ĥ(z) = −1
2

(z2 + 1), which is in turn conjugate to the “cauliflower” map f
W
(z) = z2 + 1

4
.

Proof. Computing, for a 6= −1 and z2 6= 1 we have

h2
a(z) =

(
z2+a
1−z2

)2

+ a

1−
(
z2+a
1−z2

)2

=
(z2 + a)

2
+ a(1− z2)

2

(1− z2)2 − (z2 + a)2

=
(a+ 1)(z4 + a)

(a+ 1)(1− a− 2z2)

=
z4 + a

1− a− 2z2
. (∗)
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Plugging in a = −1, the above expression becomes

(z2 + 1)(z2 − 1)

−2(z2 − 1)

The final expression is well-defined and equal to ĥ(z) = −1
2
(z2 + 1) when z 6= ±1.

It remains to check the case z = ±1. For a 6= −1, note that h2
a(±1) = ha(∞) = −1

(independent of a), while also ĥ(−1) = −1. The claim then follows.

The conjugacy to f
W

is given by

ĥ(−2z) = −2f
W
(z).

Remark 5.3.5. For a 6= −1, the formula (∗) for h2
a(z) holds for all z ∈ Ĉ, including ±1.

Indeed, plugging z = ±1 into (∗) yields the expression

(±1)4 + a

1− a− 2 (±1)2 =
1 + a

−1− a
= −1,

consistent with the value of h2
a(±1) as established above.

Proposition 5.3.6. Fix any p ≥ 3. Let γ be a loop in Per2 with winding number 1 about

the puncture. If γ is chosen to be sufficiently small, then the p-periodic points of f exhibit

no monodromy under γ.

Proof. The angles 1/3 and 2/3 both have period 2 under angle doubling. Thus, if p ≥ 3,

then the (finite) set of p-periodic angles in S1 r (1/3, 2/3) is bounded away from {1/3, 2/3}.
It follows that the union of all p-periodic parameter bubble rays is bounded away from the

puncture a = −1. Thus, if γ is chosen to be sufficiently small, then γ does not cross any

p-periodic parameter bubble ray. It then follows from the Per2 analogue of Lemma 4.1.2

that for ant p-periodic angle θ, the landing point of

◦
Rγ(t)(θ)

moves continuously with t.

It remains only to show that every p-periodic point is the landing point of a p-periodic

dynamical bubble ray. Since γ does not cross any parameter bubble rays and passes inside

the period 1 component of M2, we see that no point on γ lies inside a p-periodic bubble

wake. Thus, each p-periodic dynamical bubble ray lands at a unique point of period p. Since

69



there are the same number of p-periodic angles as p-periodic points (p ≥ 3), the result then

follows.

5.4 A cell structure

We may now define a cell structure for Cycp(Per2) just as we did for Per1 in Section 4.5. To

this end, we let p 6= 2 be fixed.

As with Per1, we begin by understanding the branch locus of the map π : Cycp(Per2)→ Per2.

Let B ⊂ Cycp(Per2) be the branch locus of π, and let P = π(B) ⊂ Ĉ be the ramification

locus. Let P0 = Pr{[z 7→ z2]} be the set of “finite” ramification points, and let B0 = π−1(P0)

be the set of “finite” branch points.

Definition 5.4.1. Let M0 denote the path-connected component ofM containing 0, and let

A be the smallest path-connected subset of M0 containing 0 and the roots of all p-periodic

hyperbolic components. Denote by A2 the image of A under the Wittner mating.

Proposition 5.4.2. A2 is simply connected.

Proof. Since A is simply connected, it suffices to show that for every α, β ∈ S1 r [1/3, 2/3]

whose dynamical rays land together on J (f◦©◦), the parameter rays RM(α) and RM(β) do

not land on A.

Assume that the dynamical raysRf◦©◦(α) andRf◦©◦(β) land together. It follows that for some

k ∈ N, 2kα = 1/3 and 2kβ = 2/3. Since α and β do not belong to {1/3, 2/3} ⊂ [1/3, 2/3],

we conclude that α and β are strictly preperiodic with period 2. Thus, the parameter rays

in Per1 at angles α and β land at Misiurewicz points of period 2.

Suppose for the sake of contradiction that RM(α) lands at some Misiurewicz point c ∈ A.

It follows that c is not a tip, since otherwise A r {c} would be a smaller path-connected

set, containing all the same hyperbolic component roots as A. Thus, there is different angle

α′ such that RM(α′) also lands at c. Theorem 3.1 of [Mil93] then implies that c belongs

to a 2-periodic wake, a contradiction since the only 2-periodic wake is W(1/3, 2/3). The

reasoning for β is identical.

By Theorem 2.3.33 and the fact that all disjoint type hyperbolic components in Per2 arise

from matings [Lei92], M
(2)
0 contains the root of every hyperbolic component in Per2, so in

particular, P0 ⊂M
(2)
0 , except in the case p = 1, where the puncture also belongs to P0.
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Definition 5.4.3. The cells in Cycp(Per2) are defined as follows:

• A vertex is a lift of A2.

• An edge is a branch point of π, excluding the orbifold point [f©].

• A face is a lift of Ĉ r A2.

As in the case of Per1, a homotopically equivalent, and more geometrically clear, cell structure

may be obtained by contracting each vertex down to a lift of [f◦©◦], stretching out the edges

to include lifts of veins in Per2, and expanding the faces into A2 to meet the edges.

Lemma 5.4.4. Vertices in Cycp(Per1) are in natural bijection with p-cycles of f◦©◦. If p ≥ 3,

then vertices are in natural bijection with p-cycles of angles under doubling.

Proof. By definition of Cycp, lifts of h0 ∼ f◦©◦ are in bijective correspondence with cycles of

period p under h0. If p ≥ 3, then no pairs of p-periodic dynamical rays of f◦©◦ land together,

so p-cycles of f◦©◦ are in natural bijection with p-cycles of angles under doubling.

We thus label vertices according to p-cycles of angles under doubling, treating p = 1 as a

special case.

As discussed in Section 5.3, the ramification points of πp are the roots of disjoint type

hyperbolic components in Per2 (or equivalently M rW(1/3, 2/3)), the puncture if p = 1,

and [f©]. We may thus label an edge α by the pair (θ0, θ1) of angles in S1 r [1/3, 2/3] whose

parameter rays land at π(α).

Finally, to label the faces, we use the following result.

Lemma 5.4.5. Faces in Cycp(Per2) are in natural bijection with orbits of p-periodic angles

under the operations θ 7→ −2θ and θ 7→ θ + 1/3. Moreover, letting FC denote the face

corresponding to an orbit C, we have the following dichotomy:

• If C contains only a single p-cycle under anti-doubling (we say C is reflexive), then

the restriction π : FC → Ĉ r A2 is a homeomorphism.

• Otherwise, if C is not reflexive, then the restriction π : FC → Ĉ r A2 is a degree 3

branched cover, ramified at [f©].

Proof. Fix a sufficiently large real parameter a0 (any value greater than 2 will suffice) such

that the Julia set of ha0 is a quasicircle. By Proposition 5.3.1, labeling a p-cycle of ha0 is

equivalent under the coordinate ψa0 to labeling a p-cycle of angles under the anti-doubling
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map θ 7→ −2θ. By Corollary 5.3.3, a large counterclockwise loop around M2 (which is a

clockwise loop around [f©]) will induce a monodromy action that adds −1/3 to every angle.

The p-cycles of ha0 are in canonical bijection with ABCs of period p. Two lifts (a0, ξ) and

(a0, ξ
′) of c0 belong to the same face F if and only if they can be connected by a path in F ,

i.e. if and only if there is some loop in Per2 rA2 based at a0 whose monodromy takes ξ to ξ′.

Let O = (θ0, . . . , θp−1) be the p-cycle of angles under anti-doubling associated to ξ under the

coordinate ψa0 . There are two possibilities:

• If θk = θ0 − 1/3 for some k, then θ2k (mod p) = θ0 + 1/3 (and θ3k (mod p) = θ0, so that p

is a multiple of 3), so the face F containing (a0, ξ) contains only one lift of a0. Thus,

the branched cover π|F has degree 1, so it is a homeomorphism.

• Otherwise, if θ0 − 1/3 does not belong to O, then neither does θ0 + 1/3. In this case,

the face F containing (a0, ξ) also contains (a0, ξ+ 1/3) and (a0, ξ−1/3) (where adding

arithmetic is done on the ψa0 coordinate), but F contains no other lifts of a0. Thus,

the branched cover π|F has degree 3, ramifying at [f©].

5.5 Computing the cell structure

The algorithm to describe the cell structure for Cycp(Per2) is nearly identical to Algo-

rithm 4.6.1, with the only real difference being that we remove the 1
3

limb.

Instead of using our knowledge of the monodromy about infinity to predict which faces will

ramify, it suffices to keep track of which angles have been active when crossing the positive

real axis. This allows us to use the external arguments of f◦©◦, which are covariant under

angle doubling, instead of the “argument at infinity” ψ, which is covariant under angle anti-

doubling. This is useful because the Per2 analogue of Lemma 4.2.1 describes monodromy to

dynamical arguments of f◦©◦ (i.e. arguments of bubble rays), not in terms of ψ.

Algorithm 5.5.1.

1. Enumerate all pairs (θ0, θ1) of period p parameter rays in Ĉ rM such that θ0 and θ1

land together on ∂M, and such that θ0 and θ1 do not belong to [1/3, 2/3]. This can be

done using Lavaurs’ algorithm [Lav89]. Denote by A the ordered set of arcs of period

p.

2. Denote by P the set of p-cycles of angles under doubling. For each endpoint θ of an
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arc in A, compute a canonical representative (θ) for the associated ABC. One way to

do this is to take the minimum over the orbit of θ under angle doubling.

3. Let A′ = {(θ0, θ1) ∈ A : (θ0) 6= (θ1)} be the set of primitive arcs in A.

4. For each p-periodic ABC 〈α〉 which is not marked as visited, we traverse the face 〈α〉
as follows:

4.1 Initialize k = 0 and x0 = α. The angle xk represents the bubble ray argument of

the parameter a at the kth vertex. We are beginning our journey on the positive

real axis, where we are guaranteed to be outside any p-periodic wake.

4.2 Locate the first arc (θ0, θ1) ∈ A′ strictly after xk in counterclockwise circular order

such that either θ0 or θ1 belongs to (xk).

• If in the process of finding the next arc, we wrap around the end of A′, then

we mark xk as visited and check if xk = α. If so, we terminate the traversal

of 〈α〉 and return the ordered sequence of vertices.

4.3 If θ0 ∈ (xk), then set xk+1 = θ1; otherwise, if θ1 ∈ (xk), then set xk+1 = θ0.

4.4 Update k ← k + 1 and continue from step 4.2.

5. Glue together all pairs of matching edges in the faces obtained in step 4.

Example 5.5.2 (Cyc5(Per2)). As an example, consider the family of maps in Per2 with a

marked cycle of period 5. We begin by enumerating the period 5 arcs in Q̃ML, together with

the ABC associated to the orbit of each angle under doubling.
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ID θ0 θ1 (θ0) (θ1) Knead. Seq. Primitive?

A0 1/31 2/31 (1) = (00001) (1) = (00001) 0000∗ No

A1 3/31 4/31 (3) = (00011) (1) = (00001) 0001∗ Yes

A2 5/31 6/31 (5) = (00101) (3) = (00011) 0010∗ Yes

A3 7/31 8/31 (7) = (00111) (1) = (00001) 0011∗ Yes

A4 9/31 10/31 (5) = (00101) (5) = (00101) 0000∗ No

A5 21/31 22/31 (11) = (01011) (11) = (01011) 0000∗ No

A6 23/31 24/31 (15) = (01111) (3) = (00011) 0011∗ Yes

A7 25/31 26/31 (7) = (00111) (11) = (01011) 0010∗ Yes

A8 27/31 28/31 (15) = (01111) (7) = (00111) 0001∗ Yes

A9 29/31 30/31 (15) = (01111) (15) = (01111) 0000∗ No

Table 5.1: Period 5 arcs in Q̃ML, together with their associated abstract binary cycles.
The ABCs are represented using their minimal element under the dictionary ordering. For
reference, we also include the kneading sequences, though these are not necessary for the
algorithm.

We now proceed to the face traversal stage. For brevity, we will only show the process for

the face 〈00001〉 = 〈1〉.

• We begin at (1), according to the label of our face. This shall be the “first” vertex v0

in our face. Since we are starting from the top of the list of edges, we can optionally

add an indicator to remember that there is a lift of the positive real axis connecting

the center of F to v0.

• We look for the first primitive arc in our list that is active at v0, i.e. one of whose ABCs

is (1). This is the second arc on our list, A1, which connects (3) and (1). We thus set

our next vertex to v1 = (3).

• The next primitive arc after A1 that is active at v1 = (3) is A2, which connects (5) and

(3). We thus set our next vertex to v2 = (5).

• There are no primitive arcs after A5 active at v2. So, we return to the top of the list.

Since we passed 1/2 and returned to the top of the list, v2 was the marked cycle as we

crossed both the negative and positive the real axis. Thus, we can mark a lift of R−
through v2 followed by a lift of R+ through v2. We also mark v2 = (5) as visited.

• Continuing from the top of the list, A2 (again) connects v2 to v3 = v1 = (3).

• The next primitive arc after A2 that is active at v3 = (3) is A11, which is after the
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negative real axis. So, we can mark a lift of R− at v3. Since A11 connects (15) to (3),

we set v4 = (15).

• A13 connects v4 to v5 = (7).

• After passing through R+ and marking v5 = (7) as visited, A3 connects v5 to v6 = v0 =

(1).

• No more arcs after A3 are active at v6 = (1). Since we return to the real axis with the

initial vertex (1) active, we close up the face, identifying v6 with v0.

The other face 〈3〉 turns out to be equivalent to 〈1〉 under bit flip. Thus, we obtain the

following structure:
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〈3〉 〈1〉

(1)

(7)(11)

(15)

(3)(5)

(a) Cell structure for the marked cycle curve Cyc5(Per2), which has genus g = 0.
Angle brackets denote face centers, and parentheses denote vertices. Solid,
colored lines are edges. Dashed lines indicate lifts of the positive real axis, and
dotted lines indicate lifts of the negative real axis.

(b) Embedding of cells in Cyc5(Per2).

Figure 5.3: Comparison of combinatorial structure of Cyc5(Per2) to geometric structure.
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CHAPTER 6

Dynatomic Curves

The cell structures for marked cycle curves can be extended to describe dynatomic curves

defined in Chapter 3 as well.

6.1 Cell Structure

Definition 6.1.1. The cells in Dynp(Perm) are defined as follows for m = 1, 2:

• A vertex is an angle in Q/Z that is p-periodic under doubling.

• An edge is a (bubble) wake W in Perm, together with a choice of shift ` ∈ Z/pZ. If θ0

and θ1 are the angles defining W , then the edge connects the vertices 2`θ0 and 2`θ1.

• A primitive face is a sequence of vertices as constructed as in Algorithm 6.1.2.

• For each satellite (bubble) wake W = W(θ, 2`θ) in Perm, and each j ∈ [gcd(p, `)],1

there is a satellite face whose vertices are given by the sequence

F sat(θ, j) =

(
2j+k`θ : k ∈

[
p

gcd(p, `)

])
. (6.1)

As in the case of Per1, a homotopically equivalent, and more geometrically clear, cell structure

may be obtained by contracting each vertex down to a lift of [f◦©◦], stretching out the edges

to include lifts of veins in Per2, and expanding the faces into A2 to meet the edges.

Algorithm 6.1.2. For simplicity, we only describe the case of dynatomic curves over Per1.

As in Algorithm 5.5.1, we can obtain the corresponding algorithm for Per2 by removing all

subarcs of [1/3, 2/3] from the Mandelbrot lamination QML.

1Recall that [k]
def
= {0, 1, . . . , k − 1}.
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1. Enumerate all pairs (θ0, θ1) of period p arcs in QML. This can be done using Lavaurs’

algorithm [Lav89]. Denote by A the ordered set of arcs of period p.

2. For each p-periodic angle α which is not marked as visited, we traverse the face [α] as

follows:

2.1 Initialize k = 0 and x0 = α. The angle xk represents the external argument of

the parameter a at the kth vertex. We are beginning our journey on the positive

real axis, where we are guaranteed to be outside any p-periodic wake.

2.2 Locate the first arc (θ0, θ1) ∈ A strictly after xk in counterclockwise circular order

such that either θ0 or θ1 belongs to (xk).

• If in the process of finding the next arc, we wrap around the end of A, then

we mark xk as visited and check if xk = α. If so, we terminate the traversal

of 〈α〉 and return the ordered sequence of vertices.

2.3 If θ0 ∈ (xk); say, xk = 2rθ0, then set xk+1 = 2rθ1.

Otherwise, if θ0 /∈ (xk) but θ1 ∈ (xk); say, xk = 2rθ1 then set xk+1 = 2rθ0.

2.4 Update k ← k + 1 and continue from step 2.2.

3. Construct all satellite faces as in (6.1).

4. Glue together all pairs of matching edges in the primitive and satellite faces.

Example 6.1.3 (Dyn4(Per1)). As an example, consider the family of quadratic polynomials

with a marked point of period 4. We begin by enumerating the period 4 arcs in QML,

together with the ABP associated to the orbit of each angle under doubling.

ID θ0 θ1 ABP (θ0) ABP (θ1) Knead. Seq. Type

A0 1/15 2/15 0001 0010 000∗ Satellite

A1 3/15 4/15 0011 0100 001∗ Primitive

A2 2/5 3/5 0110 1001 010∗ Satellite

A3 7/15 8/15 0111 1000 011∗ Primitive

A4 11/15 12/15 1011 1100 001∗ Primitive

A5 13/15 14/15 1101 1110 000∗ Satellite

Table 6.1: Period 4 arcs in QML, together with their associated abstract binary points
(ABPs). The ABPs are represented using their minimal element under the dictionary order-
ing.

78



We now proceed to the face traversal stage. For brevity, we will only show the process for

the primitive face [0100].

• We begin at [0100], according to the label of our face. This will be the “first” vertex v0

in our face F . Since we are starting from the top of the list of edges, we can optionally

add an indicator to remember that there is a lift of the positive real axis connecting

the center of F to v0.

• We look for the first arc in our list that is active at v0, i.e. one of whose ABPs shares a

cycle with 0100. This is the very first on our list, A0. Since A0 is a satellite arc, both

defining angles θ0, θ1 are in the orbit of v0. Since θ1 differs from θ0 by a left shift, we

obtain v1 from v0 by applying a left shift, yielding v1 = 1000.

• The next arc in our list that is active at v1 is A1, which connects 0011 and 0100. This

arc is primitive, and v1 differs from the active angle 0100 by a left shift. We thus obtain

v2 by applying a left shift to the other angle 0011, so that v2 = 0110.

• The next arc after A2 active at v2 = 0110 is A2, which is a satellite arc with a relative

shift of 2. We thus obtain our next vertex by applying two left (or right) shifts to v2,

yielding v3 = 1001. Since A2 crosses over 1/2, we can mark the edge (v2, v3) as crossing

the negative real axis.

• The next arc after A2 that is active at v3 = 1001 is the primitive arc A4. The ABP of

A4 that is active at v3 is 1100, from which v3 differs by a left shift. So, the next vertex

is obtained by applying a left shift to the other angle 1011 of A4, yielding v4 = 0111.

• The next arc after A4 active at v4 = 0111 is the satellite arc A5. This arc is character-

ized by a right shift, so we obtain v4 = 1011 by applying a right shift to v3.

• There are no primitive arcs after A5 active at v3. So, we return to the top of the list,

and we can mark a lift of the positive real axis at v4. Note that v4 = 1011 differs from

v0 = 0100 by a bit-flip, consistent with Lemma 4.5.6.

• Continuing from the top of the list, the next arc active at v4 is the primitive arc A3,

which connects θ0 = 0111 to θ1 = 1000. Since v4 differs from θ0 by a right shift, v5 is

obtained by applying a right shift to θ1, so that v5 = v0 = 0100.

• No more arcs after A3 are active at v5. Since we return to the real axis with the initial

vertex 0100 active, we close up the face, identifying v5 with v0.

We may similarly fill in the other satellite faces. The resulting cell structure has genus 2, so

it cannot be drawn in the plane without duplicating some vertices.
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Over Per2, on the other hand, the dynatomic curve of period 4 is rational, and its cell

structure can be drawn on the plane:
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[0001] [0010][1000]0110 1100 1001 0011

0001 0010

01001000

11101101

1011 0111

(a) Cell structure for the dynatomic curve Dyn4(Per2), which has genus g = 0. Square brackets
denote face centers (ABP classes), while bare sequences denote vertices (ABPs). The face [0100] is
centered at infinity. Red lines are primitive edges, and green lines are satellite edges. Dashed lines
indicate lifts of the positive real axis, and dotted lines indicate lifts of the negative real axis.

(b) Embedding of cells in Dyn4(Per2), with satellite faces partially collapsed. Vertices aare shown
in white, primitive edges are shown in red, and satellite edges are shown in green.

Figure 6.1: Comparison of combinatorial structure of Dyn4(Per2) to geometric structure.
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CHAPTER 7

Combinatorics

7.1 Dirichlet convolutions

The present chapter makes repeated use of Dirichlet convolutions, introducing some new

notation that may collide with notation from previous sections.

Throughout this chapter, µ will denote the Möbius function

µ(n) =

(−1)k if n is the product of k distinct primes;

0 otherwise.

Definition 7.1.1. If f and g are two functions from N∗ to some field F , then the Dirichlet

convolution of f and g is the function (f ∗ g) : N∗ → F defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

It is readily checked that the operation of Dirichlet convolution is commutative, associative,

and bilinear with respect to its input functions.

Definition 7.1.2. If f is a function from N∗ to some field, then the Möbius transform of f

is the Dirichlet convolution of f with µ:

(f ∗ µ)(n) =
∑
d|n

f(d)µ(n/d).

The Möbius transform is linear with respect to f and satisfies the well-known Möbius inver-

sion formula:

(f ∗ µ) ∗ 1 = (f ∗ 1) ∗ µ = f,
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where 1 is the constant function 1(n) = 1.

The Möbius transform of an arithmetic function f should not be confused with the notion

of a Möbius transformation on Ĉ.

7.2 Cell counts for Marked Cycle Curves

In this section, we will derive formulas for the number of cells in our decompositions of

Cycp(Perm) for m = 1, 2. We begin by studying the dynamics of two maps:

• h1(z) = z2, which is the map at the origin in Per1(0), and

• h2(z) = z−2, which is conjugate in the limit to the map at infinity in Per2(0), as

discussed in Section 5.1.1.

Lemma 7.2.1. The number of points on S1 of period dividing p under h1(z) = z2 is

ṽ1(p) = 2p − 1

The number of points on S1 of period dividing p under h2(z) = z−2 is

ṽ2(p) = 2p − (−1)p.

Proof. A point z = exp(τiθ) is periodic of period dividing p under h1 if and only if 2pθ = θ

(mod 1), i.e. θ is of the form j
2p−1

.

Similarly, a point z = exp(τiθ) is periodic of period dividing p under h2 if and only if

(−2)pθ = θ (mod 1), i.e. θ is of the form

j

(−2)p − 1
=

(−1)p j

2p − (−1)p
.

Applying the Möbius inversion formula, we obtain the following:

Corollary 7.2.2. For m = 1, 2, the number of points on S1 of period p under hm(z) is

vm(p) = (µ ∗ ṽm)(p) =
∑
d|p

µ
(p
d

)
ṽm(d),

where µ is the Möbius function and ∗ denotes Dirichlet convolution.
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Corollary 7.2.3. The number of p-cycles under hm(z) = z±2 is

cm(p) =
1

p
vm(p) =

1

p

∑
d|p

µ
(p
d

)
ṽm(d),

Remark 7.2.4. The values c1(p) and c2(p) are equal for p ≥ 3. This is most easily seen

since the Möbius transform is additive, and the Möbius transform of σ(p) = ṽ2(p)− ṽ1(p) =

1− (−1)p is

(µ ∗ σ) (p) =


2 p = 1

−2 p = 2

0 p ≥ 3.

Dynamically, the fact that these sequences are eventually equal should come as no surprise.

Indeed, for any degree d branched self-cover f of the sphere, there are only finitely many p

for which f has a critical p-cycle. For all other p, the Lefschetz fixed point theorem implies

that the number of p-cycles depends only on d.

These cycle counts are closely related to the number of hyperbolic components in the corre-

sponding parameter spaces. Indeed, we have the following:

Lemma 7.2.5. The number of hyperbolic components of period p in the Mandelbrot set is

Hyp1(p) =
1

2
v1(p).

The number of hyperbolic components of period p outside the 1
2
-limb is

Hyp2(p) =
1

3
v2(p).

Proof. By Theorem 2.3.27, every period p ≥ 2 hyperbolic component in the Mandelbrot set

is the landing point of two parameter rays of period p under f1, and conversely every period

p parameter ray lands at a period p hyperbolic component ofM. It follows that the number

of hyperbolic components of period dividing p is

H̃yp1(p) =
1

2
(2p − 1) =

1

2
ṽ1(p).

To count the number of hyperbolic components outside the 1
2
-limb, we must determine the

number N of points of period dividing p under f1 (i.e., multiples of 1
2p−1

) which lie outside
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(
1
3
, 2

3

)
. We thus have

N =

2
3

(2p + 1) p odd

2
3

(2p − 1) p even

=
2

3
ṽ2(p).

It follows that the number of hyperbolic components of period dividing p outside the 1
2
-limb

is

H̃yp2(p) =
N

2
=

1

3
ṽ2(p).

Applying the Möbius inversion formula, the result follows.

Corollary 7.2.6. The number of primitive hyperbolic components of period p in the Man-

delbrot set (for m = 2, outside the 1
2
-limb) is

Primm(p) = (2 Hypm−ϕ ∗ Hypm)(p),

where ϕ denotes Euler’s totient function.

Proof. We first count the number of satellite components. Since a hyperbolic component of

period d has ϕ(p/d) tunings of period p, the number of satellite hyperbolic components of

period p is

Sat1(p) =
∑

d|p,d 6=p

ϕ
(p
d

)
Hyp1(d) = ϕ ∗ Hypm(p)− p,

and the number outside the 1
2
-limb is

Sat2(p) =
∑

d|p,d 6=p

ϕ
(p
d

)
Hyp2(d) = ϕ ∗ Hypm(p)− p.

Subtracting these from the total count yields the result.

Lemma 7.2.7. If a p-cycle z0 → z1 → · · · → zp = z0 under a map h is invariant under

another map σ, where σ commutes with h and satisfies σd = id, then either σ acts trivially

on the cycle, or gcd(d, p) > 1.

Proof. Since our cycle is invariant under σ, we have σ(z0) = zk for some k ∈ {0, 1, . . . , p− 1}.
Thus, f(zi) = zi+k for all i, where addition is mod p. Since σd(z0) = z0, it follows that kd ≡ 0
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mod p. If we assume d is coprime to p, then necessarily k ≡ 0 mod p. Since k < p, we have

k = 0, so that σ fixes all points in the cycle.

Lemma 7.2.8. The number of 2k-cycles of h1(z) = z2 invariant under z 7→ z−1 is

Q1(2k) =
1

2k

∑
d|k, 2- k

d

µ

(
k

d

)
2d.

The number of 3k-cycles of h2(z) = z−2 invariant under z 7→ ωz, where ω is a primitive

cube root of unity, is

Q2(3k) =
2

3k

∑
d|k, 3- k

d

µ

(
k

d

)
ṽ2(d).

Remark 7.2.9. The cases of periods 1 and 2 warrant special consideration.

Note that σ1(z) = z−1 has two fixed points, namely ±1. Among these, 1 is fixed by h1(z) =

z2, and −1 is not periodic. In light of Lemma 7.2.7, all cycles of period p > 1 invariant under

σ1 are of even order. The fixed point 1 is thus the only σ1-invariant cycle of h1.

In spite of this, the face of Cyc1(Per1) corresponding to this fixed point still maps to Per1

with local degree 2. This is because the two fixed points of h1 have the same kneading

sequence, so even though they are each invariant under σ1, they ultimately lie in the same

cycle class.

From another perspective, this exception arises because for all other cycles, there is a canon-

ical path in z 7→ z2 + c parameter space from h1(z) = z2 at c = 0 to the puncture at c =∞
(where the face ramifies) by following the positive real axis. However, when following this

path for period 1, the fixed points collide at c = 1
4

and our argument breaks down.

For this reason, we make an exception to the definition of Q1 by setting

Q1(1) = 0.

In the case of Per2, h2 has three fixed points, namely 1, ω and ω, none of which are invariant

under η2(z) = ωz. In the coordinates z 7→ z2+a
1−z2 , two of these fixed points collide at the

puncture a = −1, which, like in Per1, lies on the canonical path from the basilica “vertex

center” a = 0 to the cone point a =∞, where the face ramifies. Unlike in the case of Per1,

though, our analysis is unaffected, since the model map h2(z) = z−2 describes f near the
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ramification point c =∞, not near the face center a = 0.

Also in Per2, the critical 2-cycle 0↔∞ of h2(z) = z−2 is invariant under η2(z) = ωz. As 0

and ∞ are the only fixed points of η2, Lemma 7.2.7 implies that this 2-cycle is the unique

η2-invariant cycle of period not divisible by 3.

A philosophical discussion may be had as to the “correct” definition for the curve Cyc2(Per2).

On the one hand, maps in Per2 already have a marked 2-cycle, so one approach would be to

identify Cyc2(Per2) trivially with itself. On the other hand, the critical 2-cycle does not vary

as we move around Per2, and defining Cyc2(Per2) as such would be inconsistent with our

definition of Cyc1(Per1), in which we disregarded the fixed point at ∞. Thus, an alternate

definition of Cyc2(Per2) is as the empty set. When such definitional ambiguities arise in

pathological cases, it is the author’s belief that one should always choose the definition

“suggested by the mathematics”, i.e. the one whose implications are consistent with simpler

and more general formulae. Since the latter definition is more consistent with every result

in this thesis, we elect to define Cyc2(Per2)
def
= ∅.

For the above reasons, we leave Q2(1) = 0 and set Q2(2) = 0, consistent with the pattern

that Q2(p) = 0 when p is not a multiple of 3.

The following technical lemma will also be useful in proving Lemma 7.2.8:

Lemma 7.2.10. Let ` be prime, let g̃ be an arbitrary function from N∗ → C, and suppose

that q̃ is a function on N∗ satisfying the recurrence

q̃(p) =

q̃(k) + g̃(k) if p = `k is divisible by `,

0 otherwise.

Then the Möbius transform of q̃ is given by

q(p) =


∑

d|k, `-d µ
(
k
d

)
g̃(d) if p = `k is divisible by `,

0 otherwise.

Proof. For brevity, let us write

χ(p) =

0 if p ≡ 0 mod `,

1 otherwise.
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Note that since ` is prime, µ(`d) = −χ(d)µ(d) for all d ∈ Z. Define also

α(k) =
∑
d|k

χ (d)µ (d) g̃(k/d)

=
∑
d|k, `- k

d

µ

(
k

d

)
g̃(d),

and let

g(k) =
∑
d|k

µ(d)g̃(k/d)

be the Möbius transform of g̃.

By linearity of the Möbius transform, q(`k) = q(k) + g(k) for all k, and q(p) = 0 for p

coprime to `.

We will argue by induction on r = ord`(k) that q(`k) = α(k) for all k. In the base case

r = 0, for k 6≡ 0 (mod `), we have

q(`k) = q(k) +
∑
d|k

µ

(
k

d

)
g̃(d)

= 0 +
∑
d|k

χ

(
k

d

)
µ

(
k

d

)
g̃(d)

= α(k),

where the second equality follows since all divisors of k are coprime to `.

Suppose now that for some r ≥ 0, α(`r+1p) = q(`rp) for all p coprime to `. For p 6≡ 0

(mod `), putting k = `rp, we then have

α(`k)− α(k) =
∑
d|`k

χ(d)µ(d)g̃(`k/d)−
∑
d|k

χ(d)µ(d)g̃(k/d)

=
∑
d|`k

χ(d)µ(d)g̃(`k/d) +
∑
d|k

µ(`d)g̃(`k/`d)

=
∑
d|`k

µ(d)g̃(`k/d)

= g(`k).
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Thus,

α(`k) = α(k) + g(`k) = q(`k) + g(`k) = q(`2k),

so by induction on r, q(`k) = α(k) for all k.

Proof of Lemma 7.2.8, Per1 case. A point z0 is periodic under h1(z) = z2 of period dividing

p = 2k if and only if z0 = exp
(
τim

M

)
, where M := 22k − 1 and m ∈ Z/MZ. The cycle is

invariant under η1(z) = z−1 if and only if either

(a) fk(z0) = z−1
0 , or

(b) fk(z0) = z0 and the k-cycle z0 → · · · → zk = z0 is invariant under η1.

Condition (a) is equivalent to

(2k + 1)m ≡ 0 mod M.

Since 2k + 1 divides M = (2k − 1)(2k + 1), the above has exactly 2k + 1 solutions in Z/MZ.

One of these solutions, however, is the fixed point 0 (corresponding to 1 ∈ C), which we

discount as per Remark 7.2.9. Thus, the number of relevant solutions to (a) is 2k.

Adding in the solutions for (b), we find that the number q̃1(p) of points of period dividing p

whose cycle is invariant under η1 is given by the recurrence

q̃1(p) =

q̃1(k) + 2k if p = 2k is even,

0 if p is odd.

The number q1(p) of such points whose period is exactly p is then given by the Möbius

transform of q̃1. By Lemma 7.2.10, this is given by

q1(p) =


∑

d|k, 2-d µ
(
k
d

)
2d if p = 2k is even,

0 if p is odd.

The number Q1(p) of invariant cycles is then obtained by dividing the number q1(p) of

p-periodic points by the period p, yielding the desired result.

Proof of Lemma 7.2.8, Per2 case. A point z0 ∈ S1 is periodic under h2(z) = z−2 of period

dividing p = 3k if and only if z0 = exp
(
τim

M

)
, where M := 23k − (−1)k and m ∈ Z/MZ.

The cycle is invariant under η2(z) = ωz if and only if one of the following holds:
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(a) fk(z0) = ωz0,

(b) fk(z0) = ωz0, or

(c) fk(z0) = z0 and the k-cycle z0 → · · · → zk = z0 is invariant under η2.

Condition (a) is equivalent to(
(−2)k − 1

)
m ≡ M

3
mod M, (7.1)

or equivalently (
2k − (−1)k

)
m ≡ (−1)k

M

3
mod M. (7.2)

Note that p̃2(k) = 2k − (−1)k divides

M

3
=

22k + (−2)k + 1

3

(
2k − (−1)k

)
,

where the first factor above is an integer as seen by reducing the numerator mod 3. It follows

that equation (7.2) has exactly ṽ2(k) = 2k − (−1)k solutions in Z/MZ.

Analogously, condition (b) produces another ṽ2(k) solutions.

Adding in the solutions for (c), we find that the number q̃2(p) of points on S1 of period

dividing p whose cycle is invariant under η2 is given by the recurrence

q̃2(p) =

q̃2(k) + 2ṽ2(k) if p = 3k is divisible by 3,

0 otherwise.

The number q2(p) of such points whose period is exactly p is then given by the Möbius

transform of q̃2. By Lemma 7.2.10, this is given by

q2(p) =

2
∑

d|k, 2-d µ
(
k
d

)
ṽ2(d) if p = 3k is divisible by 3,

0 otherwise.

The number Q2(p) of invariant cycles is then obtained by dividing the number q2(p) of

p-periodic points by the period p, yielding the desired result.

Theorem 7.2.11. The combinatorics of the marked cycle curve of period p over Perm are

as follows for m = 1, 2:
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• The number of vertices is cm(p).

• The number of edges is Primm(p), except in the case m = 2, p = 1, where an extra

edge exists due to monodromy around the puncture.

• The number of faces is 1
m+1

(cm(p) +mQm(p)).

Thus, the genus is given by

g1(p) = 1 +
1

4
(2 Prim1−3 c1−Q1) (p)

g2(p) = 1 +
1

6
(3 Prim2−4 c2−2Q2) (p).

Proof. The edge and vertex counts follow directly from the algorithm.

To count the faces, recall that faces of Cycp(Perm) are in natural bijection with orbits τ ∗ (ζ)

under τm+1 of p-cycles ζ of fm, where τm+1 is element-wise incrementation mod m+ 1.

A given cycle ζ has an orbit of size m + 1 if it is not fixed by τm+1, and 1 otherwise. It

follows that the total number of faces in Cycp(Perm) is

1

m+ 1
(cm(p)−Qm(p)) +Q(p) =

1

m+ 1
(cm(p) +mQm(p))

as desired.

Corollary 7.2.12. In particular, if p is an odd prime, then the genus of Cycp(Perm) for

m = 1, 2 is given by

g1(p) =
1

2p

(
2p−1(p− 3)− p2 + 2p+ 3

)
,

g2(p) =
1

6p

(
2p(p− 4)− 3p2 + 7p+ 8

)
.

The face count for marked cycle curves over Per1 has a number of different dynamical inter-

pretations. We summarize them in the following statement,

Proposition 7.2.13 (Compare [Buf+23]). The following values are equal:

(1) the number of ABC classes of period p,

(2) the number of faces in Cycp(Per1),

(3) 1
2

(c1(p) +Q1(p)) ,
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(4) the number of hyperbolic components of period p on the real axis, and

(5) the number of factors of the Gleason polynomial

Gp(c) =
∏
d|p

(
fdc (0)

)µ(p/d)

when factored over F2.

Proof. Lemma 4.5.5 shows that (1) and (2) are equal. Theorem 7.2.11 shows that (2) and

(3) are equal. Corollary 4.1.9 shows that (1) and (4) are equal. Finally, it is a theorem of

Xavier Buff, William Floyd, Sarah Koch, and Walter Parry [Buf+23] that (4) and (5) are

equal.

While there are no real hyperbolic components in Per2, the above statement suggests there

may be a relationship between the number of faces in Cycp(Per2) and the number of factors

of the “Per2 Gleason polynomial”

G(2)
p (a) =

∏
d|p

(
ν
(
hda(0)

))µ(p/d)
(where ν denotes the numerator in reduced form)

when factored over F2. Numerical experiments up through period 18 suggest that such a

relationship indeed holds.

Conjecture 7.2.14. For all p ≥ 2, the number N2(p) of factors of G
(2)
p (a) over F2 is related

to the number F2(p) = 1
3
(c2 + 2Q2)(p) of faces of Cycp(Per2) by the following formula:

N2(p) =


1
2
F2(p) if p is odd,

F2(p) if p ≡ 0 (mod 4),

F2(p)−Q1(p) if p ≡ 2 (mod 4).
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The following tables summarize the counts derived above:

Table 7.1: Cell counts for marked cycle curves over Per1.

period vertices (c1) edges (Prim1) refl. faces (Q1) faces ( c1+Q1

2
) genus (g1)

1 2 1 0 1 0

2 1 0 1 1 0

3 2 1 0 1 0

4 3 3 1 2 0

5 6 11 0 3 2

6 9 20 1 5 4

7 18 57 0 9 16

8 30 108 2 16 32

9 56 240 0 28 79

10 99 472 3 51 162

11 186 1013 0 93 368

12 335 1959 5 170 728

13 630 4083 0 315 1570

14 1161 8052 9 585 3154

15 2182 16315 0 1091 6522

Table 7.2: Cell counts for marked cycle curves over Per2. An extra edge has been added in
period 1 due to the puncture monodromy.

period vertices (c2) edges (Prim2) refl. faces (Q2) faces ( c2+2Q2

3
) genus (g2)

1 3 1 + 1 = 2 0 1 0

2 0 0 0 0 0

3 2 0 2 2 -1

4 3 2 0 1 0

5 6 6 0 2 0

6 9 14 0 3 2

7 18 36 0 6 7

8 30 72 0 10 17

9 56 158 2 20 42

10 99 316 0 33 93

11 186 672 0 62 213

12 335 1306 2 113 430

13 630 2718 0 210 940

14 1161 5370 0 387 1912

15 2182 10874 4 730 3982
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7.3 Cell counts for Dynatomic Curves

Theorem 7.3.1. The combinatorics of the dynatomic curve of period p ≥ 2 over Perm are

as follows for m = 1, 2:

• The number of vertices is vm(p).

• The number of edges is pHypm(p).

• The number of primitive faces is 1
m+1

vm(p).

• The number of satellite faces is

S(p) =
∑
d|p

dHypm(d)ϕ
(p
d

)
− pHypm(p).

Thus, the genus is given by

Gm(p) = 1 +
1

2

(
pHypm(p)− m+ 2

m+ 1
vm(p)− S(p)

)

= 1 + pHypm(p)− 1

2

m+ 2

m+ 1
vm(p)−

∑
d|p

dHypm(d)ϕ
(p
d

)
Proof. The edge and vertex counts follow directly from the algorithm.

To count the primitive faces, recall that over Per1, monodromy about infinity acts on the set

of p-periodic angles by bit-flip. Since the bit-flip map η1 : Σp → Σp is an involution without

fixed points, it follows that the number of η1-orbits is half the number v1(p) of p-periodic

angles.

Similarly, over Per2, monodromy about infinity acts on the set of p-periodic angles by η2(θ) =

θ + 1
3
, which has order 3 with no fixed points. Thus, the number of η2-orbits is one third of

the number v2(p) of p-periodic angles.

To count the satellite faces, we note that the number of faces arising from a given satellite

hyperbolic component U is equal to the period of the component on which U is tuned. Thus,

the satellite face count is derived just as in Corollary 7.2.6, except with an additional factor

of d to account for the tuning period.

Corollary 7.3.2. In particular, if p is an odd prime, then the genus of Dynp(Perm) for

94



m = 1, 2 is given by

G1(p) = (2p−2 − 1)(p− 3),

G2(p) =
1

6
(2p(p− 4)− 5p+ 17) .

Of interest also is the distribution of face sizes, i.e. the number of edges buonding each

face, counted with multiplicity. The following conjectures descring the maximal face size of

Cycp(Perm) (m = 1, 2) have been verified for p ≤ 26.1

Conjecture 7.3.3. For p ≥ 5, the largest face of Cycp(Per1) has Φ(p) + 2 edges, where

Φ(p) =
∑

0≤k<p

ϕ(k),

and where ϕ denotes Euler’s totient function. This face is unique unless p = 7.

Conjecture 7.3.4. For p ≥ 9 odd (and for p = 5), the largest face of Cycp(Per2) has edge

count Φ(p). For p ≥ 6 even, the largest face of Cycp(Per2) has edge count

Φ(p) + 1− 1

2
ϕ
(p

2

)
.

In all cases except for p = 8 and p = 10, there is a unique largest face of Cycp(Per2) up to

complex conjugation.

Heuristically, since irreflexive (i.e., not reflexive) faces of Cycp(Perm) map to Perm with

degree m+ 1 (m = 1, 2), we expect a generic reflexive face of Cycp(Perm) to be smaller than

a generic irreflexive face by a factor of 1/(m+1). Thus, when considering the smallest face in

Cycp(Perm), it makes sense to exclude the reflexive faces, which only exist when (m+ 1) | p.

Experimentally, the size of the smallest irreflexive face of Cycp(Perm) appears to grow asymp-

totically linearly with p, with the same growth rate for m = 1, 2. However, the growth is not

monotone, and the data currently available is too small to conjecture a linear asymptotic

growth rate with any degree of confidence. We propose instead the following:

Conjecture 7.3.5. For m = 1, 2, the size κm(p) of the smallest face in Cycp(Perm) tends to

infinity as p → ∞. Moreover, if κ+
m(p) ≥ κm(p) denotes the size of the smallest irreflexive

1Since Algorithm 4.6.1 uses O(2p) space, it quickly becomes infeasible as a means to determine the
distribution of face sizes for larger values of p.
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face, then the limit

lim
p→∞

κ+
1 (p)

κ+
2 (p)

exists and is equal to 1.

Smallest Face in Marked Cycle Curve
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Figure 7.1: Number κm(p) of (not necesssarily distinct) edges bounding the smallest face in
Cycp(Perm), m = 1, 2.
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Smallest Irreflexive Face in Marked Cycle Curve
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Figure 7.2: Number κ+
m(p) of (not necesssarily distinct) edges bounding the smallest irreflex-

ive face in Cycp(Perm), m = 1, 2.
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CHAPTER 8

Further Dynamical Varieties

8.1 Marked cycle curves over Per3

The family Per3 of quadratic rational maps with a superattracting 3-cycle has been studied

extensively, but many fundamental questions remain open. Unlike in the case of Per2, every

element of whom is a mating of a quadratic polynomial with fB(z) = z2 − 1, the situation

in Per3 is much more complicated.

Up to affine conjugacy, there are three quadratic polynomials with a superattracting 3-cycle:

• The rabbit polynomial, fR(z) = z2 +cR, where cR is the root of the Gleason polynomial

G3(c) = 1
c
f 3
c (0) = c3 + 2c2 + c+ 1 near c = −0.12256 + 0.74486i,

• the corabbit polynomial, fR̄(z) = z2 + c̄R, and

• the airplane polynomial, fA(z) = z2 + cA, where cA ≈ −1.75488 is the unique real root

of G3.

One might therefore hope to partition of Per3 into a disjoint union of three components, cor-

responding to the subsets of Per3 that arise from matings of arbitrary admissible quadratic

polynomials with the maps fR, fR̄, and fA respectively. Unfortunately, two major compli-

cating factors render this task impossible:

1. There exist shared matings in Per3, i.e. maps which can be decomposed as matings

of quadratic polynomials in two or more distinct ways. For instance, the mating

fAtfK of the airplane with the kokopelli polynomial (the unique quadratic polynomial

fK(z) = z2 + cK at the center of a primitive 4-periodic hyperbolic component in the

upper half plane).

It is conjectured that there are always only finitely many ways to decompose a quadratic

rational map g as a mating of polynomials. While this is trivial in the case that g is
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hyperbolic, it is not known for general g (even if we restrict to the case of Misiurewicz

maps).

2. Some hyperbolic maps in Per3 do not arise as matings. For instance, using the coordi-

nates

fc(z) =
z2 + c3 − c− 1

z2 − c2
,

which has critical 3-cycle ∞ 7→ 1 7→ −c and free critical point 0, there are 13 values of

c for which 0 is periodic of period 4, corresponding to the roots of

ν(f 4
c (0))/ν(f 2

c (0)),

where ν denotes the numerator of a rational expression. The map fc corresponding to

the unique real solution c∗ ≈ 0.623061 corresponds to a map fc which is not a mating

of quadratic polynomials.

(a) The moduli space Per3 of quadratic ra-
tional maps with a superattracting 3-cycle.

(b) Detail of Hubbard’s “zone of ignorance”,
in which not all postcritically finite maps
arise from matings. The map fc∗ described
above appears at the center of the orange hy-
perbolic component on the left.
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Figure 8.2: Julia set for the non-mating fc∗ . Both critical orbits lie on the real axis, with
itineraries 110∗ and 10∗ with respect to the imaginary axis. The white Fatou components
converge toward the superattracting 3-cycle, while the orange Fatou components converge
toward the superattracting 4-cycle.

Much is not known about non-matings and the structure of parameter space around them.

Marked cycle curves over Per3 may therefore provide a lens through which study the structure

and distribution of non-mating components. Unfortunately, since the algorithms developed

in this thesis rely on the assumption that all postcritically finite maps come from matings,

they are inapplicable to Per3. The marked cycle curves do still exist, though, and they may

be computed.

The moduli space Cyc4(Per3) is the simplest dynamical variety that ramifies over a non-

mating component in Per3. It is a genus 1 curve with 5 punctures, coming from the lifts of

the two punctures c = ±1 in Per3. The branched cover

π : Cyc4(Per3) −→ Per3

has 6 branch points: five coming from the five primitive period 4 components in Per3 (in-

cluding the non-mating component), and one coinciding with one of the lifts of the puncture

c = 1.

The ramification over this puncture is a phenomenon new to Per3: by Proposition 5.3.6

Cycp(Per2) does not ramify over the puncture in Per2 for any p > 1.

Question 8.1.1. Does Cycp(Per3) ramify over a puncture for all p other than 2 and 3?

Question 8.1.2. Can we develop an algorithm for the cell structure, or just a formula for the

genus, of Cycp(Per3)? Can this then be used to understand the distribution of non-mating

components?
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Figure 8.3: Universal cover of Cyc4(Per3). The green rhombus denotes a fundamental domain
(it is almost a square — the j-invariant is 215/19 ≈ 1724.6, as shown in Appendix B.2. The
red stars denote the lifts of the two punctures in Per3. Circled in orange are the five branch
points coming from the four period 4 primitive mating components, together with the one
non-mating component. The rightmost puncture is also a branch point, for a total of 6
branch points.
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8.2 Misiurewicz curves

As discussed in Chapter 3, a third type of dynamical variety may be obtained by marking a

preperiodic point instead of a periodic point or cycle.

Definition 8.2.1. For an algebraic dynamical family F on a Riemann surface S, the Mi-

siurewicz variety Misk,p(F) of preperiod k and period p is the Zariski closure of the quasi-

projective variety

Vk,p(F) = {(f, z) : f ∈ F and z ∈ S has exact preperiod k and period p under f} .

If F consists of rational maps on Ĉ, then Misp(F) is the vanishing locus in F of the pre-

dynatomic polynomial1, defined recursively by ϕ−1,p(f, z) = 1, and by

ϕk,p(f, z) =
1

ϕk−1,p(f, z)

∏
d|p

[
ν
(
fd+k(z)− fk(z)

)]µ(d/p)

for k ∈ N, where µ is the Möbius function and where ν denotes the numerator of a rational

expression in reduced form.

Gao Yan in [Gao16] shows that Misiurewicz curves over the quadratic family P2 are smooth

and irreducible and provides a formula for their genus.

Question 8.2.2. Can we describe a cell structure for Misiurewicz curves over Per1 and Per2

similar to the cell structures for marked cycle curves and dynatomic curves?

8.3 Dynamical covers over other base curves

The definitions of Cycp,Dynp, and Misp are extremely general and can be applied to any

discrete-time dynamical system. This suggests a research program toward investigating the

structure of these dynamical varieties over various bases.

We show here a collection of figures of dynamical varieties over various bases. It would

be interesting to know of a dynamical cell structure for such varieties analogous to those

developed in Chapters 4 to 6.

1The term Misiurewicz polynomial is already in use and refers to a slightly different object, namely a
“one-variable” regular function Gk,p,F : F → C that vanishes at all parameters where F has a critical point
of exact preperiod k and period p. The vanishing locus of Gk,p,F is a subset of the ramification locus of
Misp(F); the latter also branches over certain parabolic parameters and, in particular cases depending on
p and F , certain critically periodic parameters. A detailed analysis of this phenomenon may be found in
section 5 of [Gao16].
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Figure 8.4: Mis2,1(Per1): Quadratic polynomials with a marked point of preperiod 2 and
period 1. The branch point at infinity is “spurious”, ramifying over the pcf hyperbolic map
f0(z) = z2.

Figure 8.5: Mis2,2(Per1): Quadratic polynomials with a marked point of preperiod 2 and
period 2.
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Figure 8.6: Mis2,1(Per2): Quadratic rational maps with a 2-periodic critical point and a
marked point of preperiod 2 and period 1.

Figure 8.7: Mis2,2(Per2): Quadratic rational maps with a 2-periodic critical point and a
marked point of preperiod 2 and period 2.
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8.3.1 Per4

The natural next step after studying Cycp(Per3) woudl be to try to understand Cycp(Perm)

for all n. Unfortunately, the case p = 3, m = 4 is the only other nontrivial case for which

the resulting curve has genus ≤ 1.

Figure 8.8: The dynamical family Per4 of quadratic rational maps with a critical point of
period 4.
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Figure 8.9: Cyc3(Per4): Quadratic rational maps with a critical point of period 4 with a
marked 3-cycle. A fundamental domain is shown in green. All branch points lie on the
boundary of this fundamental domain.

8.3.2 PrePer2,1

The Milnor curves Pern can be generalized by instead applying pre-periodic critical orbit

relations. The simplest nontrivial case is the family PrePer2,1 of quadratic rational maps

with a critical point of preperiod 2, period 1.
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Figure 8.10: The dynamical moduli space PrePer2,1.
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Figure 8.11: Cyc4(PrePer2,1): Maps in PrePer2,1 with a marked 4-cycle. A fundamental
domain is shown in green. The j-invariant is j = 213/11.

8.3.3 Cubic polynomials

The dynamical moduli space P3 of cubic polynomials has complex dimension 2, and thus

is difficult to visualize. However, we can draw dynamical varieties over various dynamically

meaningful sllices of P3.

8.3.3.1 Unicritical Cubics

The family U3 of cubic polynomials with a unique (finite) critical point is the clearest gen-

eralization of the quadratic family to a one-parameter family of cubics.
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Figure 8.12: The family U3 of unicritical cubic polynomials.

Figure 8.13: Cyc3(U3): Unicritical cubic polynomials with a marked 3-cycle. The relevant
external rays are shown in green. Two escape regions have local degree 3, while the other
two have local degree 1.

8.3.3.2 Cubic Per1

The family Per1(P3) of cubic polynomials with a critical fixed point provides another dy-

namically natural base curve.2

2The parameterization of Per1(P3) used here is actually a 2-fold branched cover of moduli space. In the
coordinates fc(z) = z2(z + c) used here, the maps fc and f−c are affine conjugate via z 7→ −z.
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Figure 8.14: The family Per1(P3) of cubic polynomials with a fixed critical point.

(a) Cyc1(Per1(P3)): Maps in Per1(P3) with a marked (non-
critical) fixed point.

(b) Cyc2(Per1(P3)): Maps in
Per1(P3) with a marked 2-cycle.

8.3.3.3 Cubic Per1(1)

A related family is the locus Per1(P3, 1) of cubic polynomials with a fixed point of multiplier

1. As above, we work in a 2-fold branched cover of moduli space, with coordinates

fc(z) = z(z2 + cz + 1).
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Figure 8.16: The family Per1(P3, 1) of cubic polynomials with a fixed point of multiplier 1.
To better distinguish components, points outside the excaping locus are colored according to
the internal potential of the critical point (the Kœnigs coordinate for hyperbolic components,
and the Leau-Fatou coordinate for parabolic components).

Figure 8.17: Cyc2(Per1(P3, 1)): Maps in Per1(P3, 1) with a marked 2-cycle.

111



Figure 8.18: Dyn2(Per1(P3, 1)): Maps in Per1(P3, 1) with a marked point of period 2.

Figure 8.19: Mis1,1(Per1(P3, 1)): Maps in Per1(P3, 1) with a marked point of preperiod 1
and period 1.

8.3.3.4 Cubic Per2

We can similarly compute dynamical varieties over the family Per2(P3) of cubic polynomials

with a superattracting 2-cycle.
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Figure 8.20: The family Per2(P3) of cubic polynomials with a critical point of period 2.

Figure 8.21: Cyc1(Per2(P3)): Maps in Per2(P3) with a marked fixed point. A fundamental
domain is shown in green. The j-invariant is 32

5
· 1728.
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Figure 8.22: Cyc2(Per2(P3)): Maps in Per2(P3) with a marked (non-critical) 2-cycle.

8.3.3.5 Odd Cubics

A third interesting one parameter subspace of the cubic family P3 is the moduli space Odd3

of cubic polynomials that commute with an order 2 affine symmetry.

Figure 8.23: The family Odd3 of odd cubic polynomials.
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Figure 8.24: Cyc1(Odd3): Odd cubic polynomials with a marked fixed point.

Figure 8.25: Cyc2(Odd3): Odd cubic polynomials with a marked 2-cycle.

Figure 8.26: Dyn2(Odd3): Odd cubic polynomials with a marked point of period 2.
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Figure 8.27: Mis1,1(Odd3): Odd cubic polynomials with a marked point of preperiod 1 and
period 1.

Figure 8.28: Mis1,2(Odd3): Odd cubic polynomials with a marked point of preperiod 1 and
period 2. A fundamental domain is drawn in green. The j-invariant is 1728.
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APPENDIX A

Algorithm Implementations

In this appendix, we provide an implementation for Algorithm 4.6.1 to compute a cell struc-

ture for the marked cycle curve over Per1 or Per2.

A.1 Marked Cycle Cell Structure

We begin with the face traversal step, which is the key component of Algorithm 4.6.1. This

implementation can be made more efficient by using an adjacency map instead of looping

through every arc, but we provide the latter implementation here for clarity. A thorough,

optimized implementation in Rust is available at [Sto23b].
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Face Computation for Marked Cycle Curve

1: function ComputeFaces(V , E) . We input the sets of vertices and edges. For marked

cycle curves, edges are just primitive lamination arcs in counterclockwise order.

2: visited vertices← ∅
3: F ← empty array

4: for each v0 in V do

5: if v0 ∈ visited vertices then continue . Avoid traversing the same face multiple

times

6: else

7: Add v0 to visited vertices

8: v ← v0

9: Initialize an array vs← [v0] . Circularly ordered list of vertices on the boundary

of the face

10: degree← 1 . Local degree of the map π : F → Perm

11: loop

12: for each (θ0, θ1) in A do . Traverse through wakes in counterclockwise order,

starting from the positive real axis

13: if v = θ0 then

14: v ← θ1

15: vs.push(v)

16: else if node = θ1 then

17: v ← θ0

18: Push v onto vs

19: if v = v0 then

20: if length(vs) > 1 then pop vs . Remove the extra copy of the starting

vertex

21: Push Face(〈v0〉 , vs, face degree) to F . 〈v0〉 denotes the cycle class of v0,

which is our label for F

22: break 11

23: else

24: Add v to visited vertices . We are crossing the positive real axis, so the

current vertex is also a representative for the same face.

25: degree← degree+ 1
return F

We may now put the face traversal step in context by constructing the entire cell structure
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for Cycp(Perm), m = 1, 2.

Cell Structure for Marked Cycle Curves

1: function ComputeCycles(p)

2: N ← 2p − 1 . Denominator of angles in Mandelbrot lamination

3: C ← array of null of size N

4: for k = 1 through N − 1 such that C[k] is null do

5: O ← Orbit(k/N) . Orbit of θ = k/N under angle doubling

6: if |O| = p then . Exclude cycles of lower period

7: θ0 ← min(O) . Choose a representative for the cycle

8: for each α ∈ O do

9: C[Nα]← θ0

10: return C
11: procedure MarkedCycleCellStructure(p, is per2)

12: C ← ComputeCycles(p) . Array mapping angles to cycle representatives

13: V ← values of C, sorted and deduplicated . Each vertex corresponds to a lift of f0,

and may be labeled by a p-cycle of f0

14: A ← Lavaurs(p, is per2) . Period p arcs in the Mandelbrot lamination, excluding

arcs in [1/3, 2/3] if the base curve is Per2 (as the corresponding basilica matings are

obstructed)

15: E ← {(θ0, θ1) ∈ A : C[θ0] 6= C[θ1]} . Non-satellite ray pairings, which land at roots of

primitive hyperbolic components

16: F ← ComputeFaces(V,A)

17: return V,E, F

A.2 Dynatomic Cell Structure

The cell structure for dynatomic curves over Per1 and Per2 is computed using a similar

algorithm, with a few modifications. Instead of using ABCs to encode vertices, we now use

ABPs.

To avoid having to separately consider satellite edges and primitive edges, we no longer

identify edges with wakes, and instead simply identify them with pairs of vertices. This

means that when computing edges from wakes, we must account for all of the ABP pairs

represented by that wake:
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Dynatomic Edges

1: function ComputeEdges(A) . Input the set of arcs in the lamination of M or M̃
2: E ← empty array

3: for each (θ0, θ1) ∈ A do

4: O0 ← Orbit(θ0) . Orbit under angle doubling

5: O1 ← Orbit(θ1)

6: for each (α, β) ∈ O0 ×O1 do . Create an edge for each shift of the arc.

7: push (α, β) to E . Note that crucially, edges are ordered not according to their

own endpoints, but according to the wakes in A from which they originate.

8: return E

Finally, faces now fall into two categories: primitive faces, which are analogous to the faces in

marked cycle curves, and satellite faces, which describe lifts of the roots of satellite hyperbolic

components. Primitive faces are computed as in Appendix A.1. Satellite faces are computed

by connecting shifts:

Dynatomic Satellite Faces

1: function SatelliteFaces(p, Asat, S) . p is the period, Asat is the set of satellite arcs

in the lamination of M or M̃, and S is an array encoding the shift of each ABP θ

relative to the minimum of the ABC (θ).

2: Fsat ← empty array

3: for each (α, β) ∈ Asat do

4: σ ← S[β]− S[α] . Rotation number of the satellite component

5: Nα ← gcd(σ, p) . Number of faces represented by the current satellite component

6: for i from 0 to Nα do

7: F ← (2i+jσα | 0 ≤ j < Nα) . Note that the relative shift between adjacent ver-

tices is σ

8: push F to Fsat

9: return Fsat
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We may now put everything together to obtain a cell structure for Dynp(Perm), m = 1, 2.

Cell Structure for Dynatomic Curves

1: function ComputeCyclesAndShifts(p)

2: N ← 2p − 1 . Denominator of angles in Mandelbrot lamination

3: C ← array of null of size N

4: S ← array of null of size N

5: for k = 1 through N − 1 such that C[k] is null do

6: O ← Orbit(k/N) . Orbit of θ = k/N under angle doubling

7: if |O| = p then . Exclude cycles of lower period

8: for each θi ∈ O do . Enumerate elements of O, starting from θ0 = k/N

9: C[Nθi]← θ0 . θ0 is the minimum of the cycle, serving as a representative

10: S[Nθi]← i . Shift of θi relative to θ0

11: return C
12: procedure DynatomicCellStructure(p, is per2)

13: C,S ← ComputeCyclesAndShifts(p) . Arrays mapping angles to cycle represen-

tatives and shifts relative to the latter

14: V ← keys of C whose values are not null . Each vertex corresponds to a lift of f0,

and thus may be labeled by a p-periodic angle

15: A ← Lavaurs(p, is per2)

16: E ← ComputeEdges(A)

17: Fprim ← PrimitiveFaces(V,E) . Same as ComputeFaces in Appendix A.1

18: Fsat ← SatelliteFaces(V,E)

19: return V,E, Fprim ∪ Fsat

A.3 Lavaurs’ Algorithm for Laminations

The above implementations make use of Lavaurs’ algorithm [Lav89] to compute ray pairings

in the Mandelbrot set. For completeness, we include an implementation of this algorithm as

well.
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Obtaining a Lamination for M
1: procedure Lavaurs(max period, is per2)

2: L ← (∅, {(0, 1)}) . Arcs arranged by period

3: E ← ((0, 1), (1, 0)) . Sorted array of all arc endpoints, together with their companion

angles

4: for n from 1 through max period do . Iteratively compute arcs of each period

5: N ← 2n − 1

6: S ← empty stack . We employ a stack to track connectivity of regions

7: E ′ ← empty array . New arc endpoints, which will later be added to E

8: (α, β)← E[0] . Earliest unvisited pre-existing arc endpoint

9: j ← 1 . Iterator for pre-existing arc endpoints

10: for k from 1 to N do

11: θ ← k
N

. New angle under consideration

12: while α ≤ θ do

13: (α, β)← E[j]

14: if α < β then

15: push 0 onto S . We mark pre-existing arcs with 0

16: else

17: pop S

18: j ← j + 1

19: if α = θ then

20: continue from line 10 . We ignore arcs of lower period

21: θ′ ← 1
N
·PeekTop(S) . Default to 0 if S is empty

22: if θ′ 6= 0 then . We’ve found a new arc (θ′, θ) of period n

23: push (θ′, θ) to E ′

24: push (θ, θ′) to E ′

25: pop S

26: else

27: push k onto S

28: Sort E ′ by first coordinate

29: Merge E ′ into E . E must be sorted at each step of loop 10 to ensure correctness

30: An ←
(

(θ0, θ1) ∈ E ′ : θ0 < θ1

)
. Newly found arcs, which have period n, filtered

to only include the positively oriented copies

31: push An to L
output L
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Remark A.3.1. The above implementation of Lavaurs’ algorithm requires exponential space

to store all the arcs, and is infeasible on current hardware beyond periods 25-30. The author

is not aware of any way around this, since the non-crossing criterion for new arcs requires

that older arcs be kept in memory. It would be very interesting to learn of a way to iterate

through arcs of a given period without this exponential space requirement.

123



APPENDIX B

Parameterizations for Specific Curves

B.1 Parameterizing Cubic Per(2, λ)

We are interested in the curve Per(2, λ) consisting of all cubic polynomials whose unique

2-cycle has multiplier λ.

We consider a general monic cubic f(z) = z3 + az2 + bz + c and restrict the coefficients so

that f(c) = 0 and so that bf ′(c) = λ, thus guaranteeing that (0, c) is a 2-cycle of multiplier

λ.

The former restriction is equivalent to

ac+ c2 + b+ 1 = 0. (B.1)

Indeed, f(c) = (ac + c2 + b + 1)c, where the solution c = 0 may be ignored since 0 is fixed

in that case.

The latter restriction is equivalent to

(2ac+ 3c2 + b)b− λ = 0. (B.2)

Solving for b in (B.1) gives b = −ac−c2−1. Plugging this into (B.2), we obtain the equation

−a2c2 − 3ac3 − 2c4 − c2 − λ+ 1 = 0. The corresponding (negated) homogenized polynomial

is

F (a, c, h) = a2c2 + 3ac3 + 2c4 + c2h2 + (λ− 1)h4.

For λ outside {0, 1}, this defines a singular plane curve Cλ of arithmetic genus 3 and geometric

genus 1. We wish to parameterize this curve.

Using a, c, h as homogeneous coordinates, Cλ always contains the points p1 = [1 : 0 : 0],
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p2 = [1 : −1 : 0] and p3 = [2 : −1 : 0]. While p1 is a doubly singular point, p2 and p3 are

regular.

We wish to find a regular function f with a pole of order 2 at, say, p2, and with no other poles.

Letting D = 2[p3], by Riemann-Roch we have that l(D) ≥ deg(D)− g + 1 = 2− 3 + 1 = 0,

so we expect to find a solution.

The regular function

P2(a, c, h) =
c (a+ 2c)

h2

has a pole of order 2 at p2 and no other poles.

P3(a, c, h) =
2c2 − (1− λ)h2 + ac

h(a+ c)

Thus, P2 and P3 generate the function field O(Cλ) of our curve. A computation shows that

P2 and P3 satisfy the relation

−P 3
2 − (λ− 1)P2 + P 2

2 + P 2
3 + λ− 1 = 0

in O(Cλ). Thus, setting x = P2 + 1
3

and y = P3

2
, we obtain the elliptic curve

y2 = 4x3 − 4

3
(4− 3λ)x− 64− 72λ

27
.

The j-invariant is
64(3λ− 4)3

λ2(λ− 1)
,

which has poles where Per(2, λ) degenerates to a rational curve.

A few other notes:

• Each affine conjugacy class in Per(2, λ) contains two points on Cλ, corresponding to

which point in the 2-cycle we mark.

• C0 is the union of two plane quadrics defined by ac + c2 + h2 and ac + 2c2 − h2,

which intersect at [− 3√
2

:
√

2 : ±1] and are tangent at the singular point at infinity

[1 : 0 : 0]. The two finite intersection points correspond to the two (affine conjugate)

cubic polynomials for which the critical points swap places.

• C1 is the union of a plane quadric defined by a2 + 3ac + 2c2 + h2 with the double

line defined by c2. The quadric describes the honest Milnor curve Per(2, 0), while the
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double line is actually the curve Per(1,−1), in which 0 is fixed with multiplier −1.

• For λ 6= 1, there are no finite points on Cλ with c = 0. Since (0, c) is the 2-cycle, Cλ

contains no degenerate polynomials in which the 2-cycle is actually a fixed point with

multiplier ±
√
λ.

B.2 Parameterizing Cyc4(Per3)

To parameterize maps in Per3 with a marked 4-cycle, we begin with the coordinates

fc(z) =
z2 + c3 − c− 1

z2 − c2
.

The map fc has a critical 3-cycle ∞ 7→ 1 7→ −c and free critical point 0. Since the only

Möbius transformation fixing three points in Ĉ is the identity map, it follows that fc is

conjugate to fc′ if and only if c = c′.

The dynatomic curve Dyn4(Per3) may be described as the vanishing locus of the polynomial

ϕ4,Per3(c, z) =
ν(f 4

c (z)− z)

ν(f 2
c (z)− z)

,

where ν denotes the numerator of a rational expression. This degree 13 polynomial defines

a singular algebraic curve of geometric genus 12.

We may obtain an expression for the marked cycle curve by taking the resultant in z of ϕ =

ϕ4,Per3(c, z) with ν(h(c, z) − t), where h(c, z) is a nonconstant rational expression invariant

within 4-cycles of fc, but which takes different values at different 4-cycles for generic c.

Taking1

h(c, z) =
∑

0≤k<4

fkc (z),

we obtain

Resz(ϕ, ν(h− t)) = (c4 + 2c3t+ c2t2 − ct3 − 4c3 + 2c2t+ t3 + 14c2 − 6ct− t2 + 12c− 6t+ 9)
4

(c+ 1)127 (c− 1)51 .

The spurious solutions c = ±1 correspond to punctures in Per3, wherein fc(z) ≡ 1 is not a

quadratic rational map (and certainly does not have a 4-cycle). The remaining irreducible

1The dynamically more natural choice would be the multiplier of the 4-cycle, since it is Möbius invariant.
However, the resultant computation is quite expensive, so it is practical to choose a polynomial h of minimal
degree.
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factor

E0(c, t) = c4 + 2c3t+ c2t2 − ct3 − 4c3 + 2c2t+ t3 + 14c2 − 6ct− t2 + 12c− 6t+ 9

defines an algebraic curve of geometric genus 1 birationally equivalent to the marked cycle

curve Cyc4(Per3).

To parameterize E0 by points on the plane, we must first convert it to Weierstrass form. We

can do this by a sequence of birational changes of variables. The substitution

t = x0c+
√

13(x0 − 1)− 4x0 − 1,

c = y0(x0 + 1) +
√

13 + 4

converts E0 to the form

E1 (x0, y0) = x2
0y

2
0(x− 1) + 3

(√
13 + 1

)
x2

0y0 − 2x0y
2
0 −

(
2
√

13 + 14
)
x0y0

− y2
0 +

(
6
√

13 + 26
)
x0 −

(
2
√

13 + 10
)
y0 − 14

√
13− 50.

The blowup

x0 =
x

y
, y0 =

y

z

then converts E1 to a homogeneous polynomial E2 of degree 3:

E2 (x, y) = x3 + 3
(√

13 + 1
)
x2y +

(
6
√

13 + 26
)
xy2 − x2z −

(
2
√

13 + 14
)
xyz

−
(

14
√

13 + 50
)
y2z − 2xz2 −

(
2
√

13 + 10
)
yz2 − z3

The projective plane curve C2 defined by E2 contains the base point

P0 =
[√

13 + 1 : −1 : 2
]
.

The tangent line L0 to C2 at P0 has defining equation 2y + z = 0. This line also intersects

C2 at the point

P1 =
[√

13 + 3 : −1 : 2
]
,

where the tangent line L1 is defined by x+ (
√

13 + 3)y = 0. Finally, we may choose a toward

line L2 through P0; for instance, 2x− (
√

13 + 1)z = 0 suffices.
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We then perform the change of variables

X = x+
(√

13 + 3
)
y,

Y = 2x−
(√

13 + 1
)
z,

Z = 2y + z,

so that L0 = V (Z), L1 = V (X), and L2 = V (Y ). The inverse change of variables is given by

x =

(√
13 + 3

)
Y − 2

(√
13 + 1

)
X

4
+
(√

13 + 4
)
Z,

y =
2X − Y −

(√
13 + 1

)
Z

4
,

z =
Y +

(√
13 + 3

)
Z

2
−X.

In the affine patch Z = 1, this gives rise to the equation

E3 (X, Y ) = XY 2 − 4X2 +
(

2
√

13 + 2
)
XY +

(
2
√

13 + 10
)
X − 2Y −

(
2
√

13 + 6
)
.

The substitution

y =
ŷ + 1

x
−
√

13− 1, x = x̂− 1

3

then converts our curve to Weierstrass form:

E4 (u, v) = ŷ2 −
(
4x̂3 − g2x̂+ g3

)
,

where g2 = −8/3 and g3 = 1/27. Putting u = ℘g2,g3(s) and v = ℘′g2,g3(s) gives an explicit

formula for the universal covering map C → V (E4), and following the changes of variables,

we obtain a parameterization for Cyc4(Per3).

The elliptic curve E4 has a j-invariant of 215

19
and a conductor of 19. The author is unaware of

a relationship between the reduction of genus 1 dynamical moduli spaces and the underlying

dynamics.
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APPENDIX C

Remarks on Computer Graphics

All images appearing in this thesis were generated using the author’s software project Dy-

namo. The source code for this program is freely available under the GNU General Public

License and may be found at [Sto23a]. Interested readers are encouraged to experiment with

and modify the software to their needs.

In all images with colored hyperbolic or Fatou components, points within these components

are colored with brightness given by the absolute value of the multiplier of the attracting

cycle, and with hue depending on the period, according to the following table:

Table C.1: Colors used to represent periodic components

Period mod 7 Component Color

0 Cyan

1 Blue

2 Purple

3 Magenta

4 Orange

5 Yellow

6 Green
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