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PREFACE

I have been studying Bioinformatics at the University of Michigan for the last six years

in pursuance of my doctorate, and in the midst of studying, met with some very personal

tragedies. In my second year, an unprecedented worldwide pandemic of Covid-19 shattered

standard norms for everyday life and hospitals became closed off to the world. It was in that

year, 2020, that my father discovered he had congestive heart failure and a life expectancy

of less than two years. After several days in the hospital where we were not allowed to visit,

he was sent home to live out the rest of his term. As he was unable to do much else, he sat

on the couch every day watching television and chatting with anyone who was nearby. As

my father’s daughter, it was very difficult for me to watch this man who I had always seen

as a strong and stubborn individual become so physically weak and given up to his destiny.

In early 2022, my father could no longer breathe comfortably and we started to worry if

the fate we were fearing was finally coming to pass. In the thick of this, my mother was told

that because of her own personal health issues, she too would die if she did not get a kidney

transplant in the coming months or undergo dialysis. Suddenly my two strong parents were

under the whims of the US healthcare system and ultimately at the hands of God.

Prior to these events, I had been academically very interested in clinical decision support

systems and multimodal/multidomain learning as a concept, but was relatively far removed

from the actual circumstances in which they would be applied. Now, in the last two weeks

of my father’s life, I was coming in to the hospital every day to find my dad’s room in the

fourth floor patient ward and sit with him as multiple sensors connected to his fingers and

his chest beeped and monitored.

Unfortunately, my father passed away before my mother’s transplant. I became her

supporter through it. We spent hours at the clinic, where my mother underwent scores of

tests to prove that she was worthy of a transplant. There were so many tests needed to

determine her qualification. I started to understand that clinicians had their own models in

their head to determine how long a patient has to live, whether or not they can go home,

or if they qualify for a transplant. I called these models in their heads “mental models.” I

started to understand that the mental models are intrinsically multimodal and multidomain

as well. Clinicians need to collect as much data as possible from patients through multiple

modalities and machines so they can understand a patient’s needs.
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After my mother’s transplant, I discovered a new sense of purpose. I understood the im-

portance of my work in a way that I hadn’t before. I saw the usefulness of clinical decision

support in a new light and how it had a potential to improve chaotic clinical settings, if done

right. The work of my thesis is an attempt to “do clinical decision support right.” It is an

attempt to construct proof-of-concept multimodal and multidomain models which can make

life easier for clinicians — allowing certain rare but high-quality data to assist a predictive

model built on routinely-collected variables, leverage multimodal MRI to automatically de-

tect differences between tumor growth and “fake tumor growth”, and to adapt eye models

for different populations with different needs.

At the end of my PhD, I look back at the years of incredibly painful events at home, and

I try to think what I have learned from it. These dark times gave me a new understanding

of the science that I was so passionate about before and it gave me a new reason to finish

the work that I started. Well, I am proud that I stayed here and that I finished this work.

I’m proud of the work that was done in this thesis. And I come out of the entire six years

with a new-found appreciation of life itself.

I hope the reader can also come to appreciate the motivation behind this dissertation and

the importance of overcoming these unique challenges in clinical settings. Thank you all for

reading.
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ABSTRACT

Clinical decision support systems are computer-based systems developed with the goal of

assisting health care providers in arduous clinical tasks or improving decision-making. In

routine clinical care, medical practices tend to be dynamic and must account for diversity of

data. In this thesis, we focus on developing innovative multimodal and multidomain AI mod-

els for clinical decision support, with a focus on applications with limited data availability.

We start with a survey chapter followed by three case studies of multimodal/multidomain

proof-of-concept Clinical Decision Support (CDS) models that accommodate limited data.

Our research seeks to address questions regarding constructing machine-learning-based mod-

els that mimic real-world mental models and bridge domain gaps in cases of limited data.

In the first chapter, we explore a survey of state-of-the-art methods in multimodal machine

learning applied to biomedicine, highlighting how these models address five challenges of

multimodal machine learning: representation, fusion, translation, alignment and co-learning.

Next, we tackle a case study where we develop a low-parameter model to discriminate pseu-

doprogression and true progression in glioblastoma using a small sample of MRI images.

Then, we develop a clinically-informed privileged learning model which leverages both rou-

tine clinical data and privileged information (CBCT and protein serum/saliva tests) to detect

Temporomandibular Joint Osteoarthritis (TMJ OA). Finally, we present a case of domain

generalization to allow a model trained on one Alcon SN60WF lens to predict post-operative

refraction in patients implanted with other lenses in cataract surgery, with an attempt to

adapt to other populations and “A-constants” as well. We present these three case studies

as examples of informed models that accommodate diverse data types, as real-world clinical

practice is intrinsically multimodal and multidomain. We hope these models provide inspi-

ration for additional models outside of the provided use cases and assert that methodologies

can be combined and adapted as needed.

xxiii



CHAPTER 1

Introduction

1.1 Clinical Decision Support Systems

Clinical decision support systems are computer-based systems developed with the goal of

assisting health care providers in arduous clinical tasks or improving decision-making. They

are also tools for implementing “precision medicine,” which aims to understand a patient’s

specific health profile in order to prescribe a unique treatment customized to patient needs.

CDS systems are on the rise, with financial support from the US Health and Medicare acts

to implement them with electronic health records [184]. Studies show that CDS provides

positive clinical benefit in prescribing treatments and facilitating preventive care services,

among other things [26]. Accordingly, CDS has received growing interest in both private

and public ventures.

In order to be useful, CDS systems must be developed to be adaptive and robust. This

is because in routine clinical care, medical practices tend to be dynamic and must account

for diversity of data. Healthcare providers depend on their own “mental models” shaped

by years of education and practice to reach clinical decisions such as diagnosis or prognosis

of a patient. These mental models typically involve interpreting a patient’s clinical chart,

discussing symptoms and medical history with the patient, and ordering tests or procedures

as needed such as medical imaging, blood, or urine tests. All of this information is gathered

because it is intrinsically understood that the inclusion of a wide variety of data is necessary

for a holistic understanding of a patient’s body and their physical health.

Moreover, health care provider mental models are also trained to be adaptive to changes

in data caused by use of different instruments, workflows, or changes to patient demographic.

For instance, patient demographic adjustments to mental models for diagnosing kidney fail-

ure may require recalibration when working in environments with more African Americans,

because estimated glomerular filtration rates, which measure kidney function, are so differ-

ent for African Americans that they are assessed with their own race-specific metric [44].
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Figure 1.1: In a dynamic clinical environment, health care providers build mental models
constructed of diverse data inputs to understand a patients physical health holistically.

Instrument and workflow adjustments for mental models may be required as hospitals and

healthcare centers continue to upgrade equipment and services. However, computer-based

CDS models tend to struggle in this department due to a lack of data variability. In model

training, this results in “batch effects”, whereby patterns emerge in a dataset that are at-

tributable to non-biological factors such as workflow or instrumentation rather than true

biological patterns. While including more data is desirable to mitigate bias due to batch ef-

fects, this is often not economically feasible to attain. However, the rise in publicly-available

datasets offer potential solutions to these challenges.

Despite the challenges, there is merit to building models that accommodate diverse data,

even if it is difficult to execute. Diverse data sources enrich clinical decision-making in

myriad ways. Multimodal data, which can involve an amalgamation of imaging, patient

history, and lab tests, among many other kinds of data, offer a more holistic scope of patient

health to drive decision making, while multidomain data enable versatility in models so that

decision-making can extend to data from which models weren’t explicitly trained, even if

data collection methods or distributions are not exactly the same.
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Artificial Intelligence (AI), powered by machine learning (ML) models, has been essential

to developing rapid and effective CDS solutions. These systems can leverage diverse types

of data to enrich decision-making, considering information captured from various modalities

such as medical imaging or lab tests. Artificial Intelligence (AI) and Machine Learning (ML)

development in the biomedical sector is due in large part to improvements in image processing

due to the rise of big data. A small summary of the history of image processing and the rise

of big data is given in Appendix A.

1.2 Workflow of ML-based CDS Models

While this work presents a diverse collection of ML-based CDS models, we begin by briefly

discussing general ML-based CDS workflows, as they can be summarized in four distinct

stages. Note that in many workflows there are minor strategies to mitigate bias due to lack

of data diversity. While there may be several additional details involved in each step, we

present the following general workflow anatomy:

1. Data acquisition

In machine learning/deep learning, data acquisition is one of the most critical steps.

The purpose of data acquisition is to find or create datasets that can be used to build

models. Data acquisition starts at the study design phase, relying on proper record-

keeping, unbiased reporting, and fairly complete records. Acquisition can also involve

data harmonization, which attempts to integrate different datasets into a single set.

The amount and quality of medical input data for artificial intelligence applications

are critical factors which influence a model’s performance, sometimes implicitly. Even

if a model performs well in metrics such as accuracy or Area Under the Receiver

Operating Characteristic Curve (AUROC) (sometimes abbreviated as Area Under the

Receiver Operating Curve (AUC)), the model may still perform poorly in real-life

clinical settings if the data the model was trained on was significantly biased or based

on poor study design.

If working with images, additional methods such as augmentation of images can be

implemented once the data are obtained. This is very useful in increasing the diver-

sity of data available for training models. Image data augmentation such as crop-

ping, padding, rotation, transformation, or horizontal flipping are commonly used to

artificially expand the size of a training dataset to build models. Data augmentation

methods also can be considered as a preprocessing method. However, any synthetically-

created perturbations should match the physics of the system at hand, as changing the
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brightness of a picture of a dog doesn’t make it not a dog but changing the intensity

on a Computed Tomography (CT) scan would change a structure from muscle to bone.

These adversarial perturbations can also be performed after training a model to assess

the robustness and quality of that model.

Finally, data acquisition involves ground truth labeling. In order to train supervised

models, a training set of labeled data must be provided to the machine. Therefore,

data must be labeled by an expert based on the desired outcome. For example, in

segmentation problems for tumor detection, a radiologist can be asked to designate

the location of a tumor in an image. In discrimination problems, a physician may be

asked to look at lab vitals, biomarker information, or images, and determine whether

or not a disease is present in a given patient. It is common practice to assign more than

one expert labeler to reduce potential bias in labeling. In order to provide the basis

for a good model, each data observation should contain an accurately-labeled ground

truth.

2. Preprocessing

Next, data need to be preprocessed before feeding them into the model. This is espe-

cially important for images, where specific image processing techniques exist to normal-

ize data and reduce artifacts in the images. The purpose of image preprocessing is an

improvement of the image data that suppresses unwanted distortions or enhances some

image features important for further processing. Several preprocessing algorithms have

been studied for accuracy, variability, and reproducibility [145]. Image preprocessing

typically consists of image scaling, intensity normalization, dimensionality reduction,

adding/reducing noise, etc. Image scaling refers to the resizing of a digital image,

resulting in a higher or lower number of pixels per image. This is useful because some

images that feed into an AI algorithm vary in size; therefore, a base size for all images

must be established before feeding them into the algorithm. In deep neural networks,

intensity rescaling is commonly employed to restrict the image to the range of 0 to

1 due to possible overflow, optimization, stability issues, and so on. Gray scaling is

another type of transformation which turns a color RGB image into an image with only

shades of gray representing colors. Gray scaling is commonly used in the preprocessing

step in machine learning, especially in radiomics [51]. Image normalization in deep

learning refers to intensity rescaling, gray scaling, centering, and standard deviation

normalization.

For non-imaging data, normalization depends on the data type. In genetics data,

where counts often differ dramatically, transformations via the use of log counts is a
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common strategy. In others, normalization via using z-scores or rescaling from 0 to

1 are common strategies. For other data such as 1-D Electrocardiogram (ECG) or

Photoplethysmogram (PPG) signals, low- or high-pass filters may be required to filter

out signals unrelated to the heart.

In AI classification problems, there are often too many correlated and/or redundant

features, which increase computational requirements but provide no new information.

They may also bias evaluation metrics, as they arbitrarily increase the dimensionality

of the prediction space and likely pull data points further from each other in space.

Therefore, conventional practice aims to reduce dimensionality through linear algebra

techniques such as projection or factorization, or via feature selection. Dimensionality

reduction is the process of reducing the number of random variables or features under

consideration by obtaining a set of principal variables or features.

The choice of whether or not to conduct the next step of data preparation, feature

extraction, is contingent upon whether or not the model will automatically extract

features from its input signal. In the case of many Convolutional Neural Network

(CNN)s, the feature extraction step is generally skipped, because the model itself

determines features of importance directly from the pixel intensities of the image.

In most other models, however, feature extraction must be implemented, whereby

quantitative features are pulled from an existing image as representative summaries

then fed into the model.

3. Model building and evaluation

Once the data are collected and preprocessed, the data need to be split into at least

two groups; a training set and a test set. The training data will be used to train a

model and the test data will be used to evaluate the trained model. In other cases,

another subset of the training set will be removed as a validation set. The validation

set is used to assess the performance of the model built in the training phase. In this

situation, k fold cross validation method is one of the most popular methods in machine

learning models to estimate how accurately a predictive model will perform. In k fold

cross validation, the data is divided into k subsets. Then, one of the k subsets is used

as the test dataset and the other k − 1 subsets are a training set to train a model.

This method will be repeated k times. Other common forms of validation include

LOOCV and bootstrapping. After validation, the test set will be used to evaluate the

performance of the trained model. This process is the final step, to be conducted after

validation is completed.

There are several metrics to evaluate model’s performance. The choice of evaluation
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metrics depends on a given machine learning task such as regression, classification, or

clustering. In general, the Root Mean Squared Error (RMSE) is commonly used in

regression problems and accuracy, precision, and recall are commonly used in classifica-

tion problems. Cross-validation techniques are also used to compare the performance

of different machine learning models on the same dataset.

4. Inference

While the terms “inference” and “prediction” are sometimes muddled in the machine

learning community, inference has traditionally referred to understanding the factors

that influence the distribution of the data [168]. Prediction on the other hand is

the forward-looking notion of taking the data inputs and using them to evaluate new

examples. Statistical inference techniques were developed on much smaller datasets

but provide some insight into the data generation process even in a big data world.

Typically, statistical models will provide their coefficients and use them to interpret

and understand how it came to predictions. Machine learning techniques tend to focus

on prediction and aren’t focused on creating a parsimonious and interpretable model of

the world. That said, research is being conducted into interpretability of deep learning

models, such as work in adversarial networks and network dissection [35, 18]. Both

predictive power and the inferences a model is making are important, but that can

vary depending on the application and its goals.

The workflow shown here describes a typical process for developing a CDS. Crucially,

data and their labels should be trustworthy and of high quality. In order to boost a model’s

robustness, various strategies like augmentation of data and preprocessing to reduce batch

effects are necessary. Lastly, good cross-validation, evaluation, and an ability to interpret

results is desired. Although CDS models are constructed to handle a bit of versatility in data

inputs, they are not usually conditioned to handle data from entirely different modalities

or domains based on different distributions of data or acquisition changes. Therefore, the

discussion continues about how to incorporate CDS systems for diverse data.

1.3 CDS Systems for Diverse Data

CDS systems that intake diverse types may consider leveraging information from multiple

modalities to enrich decision-making through a more holistic lens. A modality may describe

something observed in the natural world — something seen or heard, for example. These

things seen or heard are often measured via an instrument and subsequently captured in

digital form for computers to render or decipher patterns from. An example of this is a
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camera, which measures intensity of light bouncing off of objects and portrays this in a form

of pixel intensities in the red, blue and green spectrums. Another example of this is sound,

which can be captured through recording of wavelengths bouncing off of a vibrating sensor

in a microphone. In other aspects of medicine, X-rays can measure pixel intensities based

off the deflection of X-rays in tissue, and MRI can measure spatial distributions of hydrogen

nuclei in the body.

Implementing a multimodal learning approach in CDS systems comes with a set of unique

challenges. An in-depth discussion of these challenges in multimodal learning as well as a

survey of state-of-the-art methods of approaching each challenge is discussed in length in

Chapter 2. Briefly, challenges include how to represent multimodal data in ways that can

preserve relationships between modalities (representation), how to fuse multimodal data into

a single discriminatory model in a way that best leverages each modality (fusion), how to

map or translate one modality to another modality (translation), how to align modalities

together (alignment), or how to distill knowledge learned from one modality to a model for

another modality (co-learning).

Another kind of diverse data we focus on is data from different domains. It is important to

consider this kind of data because clinics are dynamic environments where data collections

and populations can change. Different institutions also collect the same data in different

ways such as with different devices, manufacturers, techniques and workflows. For example,

while MRI under different acquisition parameters may change pixel intensity values in an

image, humans are very good at finding salient patterns in images from all kinds of settings

and normally small changes in parameters may not affect the overall ability to detect the

patterns. Likewise, different staining protocols for histopathology tissue may change contrast

of tissue, but many human mental models can still distinguish patterns in tissue without

much difficulty.

By contrast, small changes in a computational model may be considered a “domain shift”,

whereby the model is no longer able to make an accurate prediction for the data. In the

case of lens implants in cataract surgery, for example, implantation of different lens models

from different manufacturers can cause a critical need for adjustment in prediction models

determining patients refraction after surgery. In such cases, simple models are domain-

adapted through the use of experimentally-derived variables called “A-constants,” which

can shift the model as needed [173]. In these cases, accounting for domain differences is

a critical part of CDS and can determine whether a patient requires a second corrective

surgery or not. Thus, building models that incorporate diversity of domains is imperative

to constructing informed, real-world CDS models.

Although it is understood that including diverse data such as multimodal and multido-
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main data is helpful for mimicking real-world clinical scenarios, many institutions and clinics

face practical limitations in executing such strategies. Although the recorded number of

health center sites has been increasing in the United States since 2010 [180], 83.6% of US

medical practices contain less than 100 physicians and 55.9% of institutions contain less than

10 physicians [179]. As a result, practices with fewer physicians likely can gather less patient

data, contain a lower probability of complete datasets for multimodal processing, and hold

less opportunities for collaboration with other physicians to increase dataset size and provide

data from different domains. Therefore, we recognize the importance of adapting innovative

multimodal and multidomain AI models to cases of limited data for inclusivity of both small

and large data sources. Such models for limited data can also be scaled up to larger datasets

should more data be obtained.

1.4 In This Work

This dissertation will focus on developing innovative multimodal and multidomain AI models

for clinical decision support, particularly in scenarios with limited data availability. Our

research seeks to address questions regarding constructing machine-learning-based models

that mimic real-world mental models and bridge domain gaps in cases of limited data.

We begin with a comprehensive survey of state-of-the-art multimodal learning methods,

including a discussion on domain adaptation and generalization. Although this disserta-

tion concentrates on implementation given limited data, it is imperative to begin with a

well-rounded understanding of the field and state-of-the-art methodologies. Then we can

understand that many of these approaches are based on deep learning strategies and are not

suitable for limited data cases.

This leads to our experimental work, where we collect three specific use cases demonstrat-

ing clinical challenges with limited sample sizes where a multimodal or multidomain approach

is leveraged despite size limitations. In our three exemplary case studies, we present three

specific use cases illustrating clinical challenges with limited sample sizes where multimodal

or multidomain approaches are leveraged. These include distinguishing pseudoprogression

and true progression in glioblastoma using multimodal MRI (first case), detecting tem-

poromandibular joint osteoarthritis with privileged information (second case), and achieving

domain generalization in predicting postoperative refraction in cataract surgery (third case).

In the first case, we attempt to leverage multimodality in a small sample of MRI images

to distinguish pseudoprogression and true progression in glioblastoma. While most modern

imaging techniques are based on leveraging deep neural network architectures, it may not

be possible to apply such methods when datasets are small and no appropriate pretrained
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Figure 1.2: During each phase of the machine learning workflow, model builders can ask
themselves the above questions to ensure that their model is being incorporated meaningfully:
designed robustly with minimized bias and attention to methodological detail.

models exist. In this chapter, we demonstrate a low-parameter approach designed to examine

unique properties in multimodal MRI even with small sample sizes.

In the second case, we consider the clinical paradigm where routinely-collected variables

in the clinic can provide low-signal information towards prediction of a disease, but where

non-routine imaging or lab tests can provide better information. We attempt to leverage

these additional modalities using a knowledge-distillation paradigm called “privileged infor-

mation” and introduce the application of our “Random Forest+” (RF+) model to detect

temporomandibular joint osteoarthritis with privileged information. While it is desirable to

have high-signal features available all the time, it is important to develop real-world applica-

tion models that do not require the high-signal data to function but can still leverage their

discriminatory abilities. The RF+ model attempts to build a discriminatory model that

leverages all information based on these realistic constraints.

The last case presented describes a specific multidomain scenario of applying machine

learning to postoperative refraction in cataract surgery. In this case, limited data prevented

training on multiple lens types. Therefore, the study targets domain generalization of a

machine learning model trained on patients implanted with one lens type, with the goal

of adapting the model to provide accurate predictions for other lens types. The study

demonstrates an approach of applying innovative feature engineering to reduce error in data

from different domains.
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1.5 Commitment to Meaningful AI-Based Models

The projects in this thesis present proof-of-concept models for CDS in specific diagnostic

scenarios. How does one move beyond creation of the model? Although many proof-of-

concept models exist, many ML methods used for clinical decision support face difficulties

which prevent real-world deployment. One reason for this is the FDA approval process,

as some clinical decision support systems are categorized as a “medical device” under the

Food and Drug Administration (FDA) and must therefore pass an approval process before

serving patients in the public domain [55]. According to Van Norman [197], the average time

for a medical device to make it to market (pass the FDA approval process and present a

finished product which is widely available) is on the range of 3 to 7 years. Another reason,

however, is often the lack of understanding between decision-support developers and the

target clinical environment, leading to impractical and often biased models. To this end,

we focus on this latter point, describing what we believe “meaningful” incorporation of AI

to entail. In Figure 1.2, we present our ML workflow along with possible critical questions

that model-builders can ask when assessing their own or others’ models in order to ensure

that the model is meaningfully executed with attention to the below considerations. This

section assumes that input data provided to model-builders have been provided which meet

the criteria for proper record-keeping, unbiased reporting, and fairly complete records and

speaks directly to the stages of preprocessing, model-building, and inference.

The wide-scale availability of software such as TensorFlow and Pytorch, as well as pack-

ages like scikit-learn have resulted in an eruption of candidate AI-based academic decision-

support systems. With the potential for so many choices of support systems in the future,

it will become important to standardize reporting and approaches to data acquisition, pre-

processing, and model building, so that models can be compared effectively. Standards such

as the Transparent reporting of a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) statement [127], which provides a checklist of information that should

be reported on a model, help to build trust in clinical models. On a similar note, it is also

critical to ensure that models are safe, effective, and are as minimally-biased against any

particular race, age, or social class as possible.

With the proliferation of AI systems, it is easy to miss the fundamental principles of

statistical evaluation. As models become more complex, overfitting on a training set becomes

easier and easier. Dividing a dataset into training, validation, and testing sets is a critical

part of evaluating the performance of any model. A training set is useful for training model

parameters which are learned, while a validation set, in concert with a training set, can be

used to view the model’s response to changes in hyperparameters like number of layers in a
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model. A testing dataset, sometimes denoted a holdout set, should be completely held aside

to provide an unbiased estimate of predictive power, and tested only after the final model is

conjured. Likewise, Russell and Norvig [166] assert that peeking at testing data is an easy

way to go wrong, particularly in repeating an experiment with the same testing dataset until

the results are better.

Beyond multiple testing, another source of overfitting is data leakage, wherein information

from the testing set influences the training data. Data leakage can occur in seemingly

innocuous ways, such as normalizing features or doing principal component analysis using

the entire dataset. Furthermore, it’s inappropriate to normalize the testing dataset based

on itself, rather the normalization from the training set, as the former would push the

feature distributions to be more similar than they are in reality. Proper technique would

require saving normalization or Principal Component Analysis (PCA) parameters from the

training set for use in normalization or PCA of the test set, respectively. Another pitfall is

splitting an individual subject across training/testing sets or cross-validation folds, so that

the model has already seen the individual its trying to predict. A simple way to correct this is

through subject-wise cross-validation, which simply places all records of a patient in the same

dataset. Additionally, the population from the original dataset may be unrepresentative of

the general population, or may be missing subtypes, which can’t be easily detected within a

single dataset. For these reasons, we suggest additional validation of a model’s performance

through conducting one or more external validation studies whenever possible.

Likewise, any AI system targeted at clinical practice should recognize that publishing a

good predictive result on a single dataset is only the start. Factors beyond a single standard

predictive power measurement are equal determinants of a model’s true performance clini-

cally. Oakden-Rayner and Palmer [134] provide a comprehensive summarization of both the

validation and study design process that should be undergone by groups who intend to im-

plement their decision-support systems clinically. They begin with the distinction between

safety and efficacy, stressing that model performance does not equate to patient safety, and

that efficacy, if based on a concept such as saving lives, needs to be quantified as such by

lives saved and then compared to some gold standard which has a firm scientific basis.

Further cautions should be heeded to ensure the best ground truth labeling, a critical issue

in the data acquisition phase. Supervised models (most discriminatory models) are measured

and trained based on the assumption that labels are correct. However, this assumption is

hardly met in the clinical realm because physicians are not often certain what condition a

patient has. In one case, mammography, radiologists agreed with their colleagues only 78%

of the time (inter-rater reliability), while they agreed with themselves only 84% of the time

[52]. This issue can be further exacerbated for early detection problems where physicians
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must determine when a patient begins exhibiting early signs of disease outcome. Cases such

as heart failure or arrhythmia may be easier for physicians to detect early as opposed to a

slow and ambiguous condition such as liver cancer or sepsis. In these cases, Oakden-Rayner

and Palmer suggest using as many physicians as possible for ground truth labeling, casting

doubt on the common practice of assigning only two to three physicians as potentially adding

“significant bias” to the overall model [134]. Adamson andWelch [5] state their concerns with

the inter-rater reliability problem and their possible solution from a pathologist’s standpoint.

In another approach to handling disagreement in labeling, Reamaroon et al attempt to factor

in physician confidence into SVM model labels, attributing higher weight to physician labels

which are presented with higher confidence of correct attribution [157]. However, Friedman

[56] shows that confident physicians do not always equate to the best physicians. This may

also be problematic, as the “overconfident but incorrect” physician may erroneously bias the

model away from correct discrimination. An additional method to address the issue of label

uncertainty may involve the use of fuzzy networks or Bayesian-based methods [86, 101].

Lastly, in the model building phase, one must be careful to choose the correct reporting

statistics. It is common practice to report AUC for machine learning models, but we further

suggest incorporating a “panel” of measures such as sensitivity and specificity or other task-

specific metrics, since each of these measures help reveal potential weaknesses in the model.

For example, if AUC and accuracy differ by a sufficient amount, one can ascertain that the

model itself is likely biased toward the outcome group with the most examples in the dataset.

Furthermore, although F1 score and AUC can often differ when sensitivity and specificity

are imbalanced, F1 score is thought to be more robust than AUC with highly imbalanced

datasets. Brier score and the no information error rate are also good score options for

imbalanced data. Another common practice is to include sensitivity and specificity of the

model in reporting. Oakden-Rayner and Palmer suggest instead to incorporate Positive

Predictive Value (PPV) and Negative Predictive Value (NPV) [134]. From an epidemiological

standpoint, this can be more representative of the effectiveness of the model in a population

where the condition of interest is rare, as is the case for many cancer subtypes. We end

our discussion with a caution towards the common theme of building models which only

optimize AUC by referring to Goodhart’s law: “When a measure becomes a target, it ceases

to be a good measure.”

Although our work only presents proof-of-concept models, we focus on several scientific

practices mentioned: good cross-validation, multiple evaluation measures, tests to assess

the validity of the model, and prevention of data leakage. Models were run multiple times

to achieve robust estimates of performance, univariate analyses were used to corroborate

feature importance, code was assessed multiple times, and work was documented carefully.
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This dissertation is based on the belief that good science comes from an attention to detail

so that these models can prove useful to readers and move beyond proof-of-concept in the

future.

Note that although the work presents three individual models which solve different chal-

lenges in incorporating multimodal or multidomain data, that the approaches can be applied

to other scenarios with other data and combined as needed.

1.6 Summary

In conclusion, we have shed light on the critical role of clinical decision support systems

(CDSS) in modern healthcare. With the increasing complexity and variability of patient

data, there is a pressing need for innovative AI-driven models that can effectively inte-

grate diverse data sources to enhance clinical decision-making. Multimodal and multido-

main approaches offer promising avenues for addressing these challenges, providing a more

comprehensive understanding of patient health and enabling more personalized and precise

interventions.

The subsequent chapters of this thesis will delve deeper into the methodologies and strate-

gies for developing advanced AI models for clinical decision support. We will explore the

intricacies of multimodal learning, discussing challenges such as representation, fusion, trans-

lation, alignment, and co-learning, and surveying state-of-the-art methods for addressing

these challenges. Additionally, we will investigate domain adaptation and generalization

techniques to bridge the gap between different data domains and ensure robust performance

across diverse clinical scenarios. Through specific case studies, we aim to demonstrate the fea-

sibility and efficacy of multimodal and multidomain AI models in improving clinical decision-

making processes. By the end of this thesis, we present paths to moving forward in the same

research directions with the hope of contributing valuable insights and advancements to the

field of meaningful and informed AI-driven clinical decision support.
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CHAPTER 2

Multimodal Machine Learning in

Image-Based and Clinical Biomedicine:

Survey and Prospects

2.1 Abstract

ML applications in medical AI systems have shifted from traditional and statistical meth-

ods to increasing application of deep learning models. This survey navigates the current

landscape of multimodal ML, focusing on its profound impact on medical image analysis

and clinical decision support systems. Emphasizing challenges and innovations in address-

ing multimodal representation, fusion, translation, alignment, and co-learning, the paper

explores the transformative potential of multimodal models for clinical predictions. It also

questions practical implementation of such models, bringing attention to the dynamics be-

tween decision support systems and healthcare providers. Despite advancements, challenges

such as data biases and the scarcity of “big data” in many biomedical domains persist. We

conclude with a discussion on effective innovation and collaborative efforts to further the

mission of seamless integration of multimodal ML models into biomedical practice.

2.2 Introduction

ML, the process of leveraging algorithms and optimization to infer strategies for solving

learning tasks, has enabled some of the greatest developments in AI in the last decade,

enabling the automated segmentation or class identification of images, the ability to answer

nearly any text-based question, and the ability to generate images never seen before. In

biomedical research, many of these ML models are quickly being applied to medical images

and decision support systems in conjunction with a significant shift from traditional and

statistical methods to increasing application of deep learning models. At the same time, the
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importance of both plentiful and well-curated data has become better understood, coinciding

as of the time of writing this article with the incredible premise of OpenAI’s ChatGPT and

GPT-4 engines as well as other generative AI models which are trained on a vast, well-

curated, and diverse array of content from across the internet [139].

As more data has become available, a wider selection of datasets containing more than

one modality has also enabled growth in the multimodal research sphere. Multimodal data is

intrinsic to biomedical research and clinical care. While data belonging to a single modality

can be conceptualized as a way in which something is perceived or captured in the world

into an abstract digitized representation such as a waveform or image, multimodal data

aggregates multiple modalities and thus consists of several intrinsically different represen-

tation spaces (and potentially even different data geometries). CT and Positron Emission

Tomography (PET) are specific examples of single imaging modalities, while MRI is an ex-

ample itself of multimodal data, as its component sequences T1-weighted, T2-weighted, and

Fluid-Attentuated Inversion Recovery (FLAIR) can each be considered their own unique

modalities, since each of the MR sequences measure some different biophysical or biological

property. Laboratory blood tests, patient demographics, ECG and genetic expression values

are also common modalities in clinical decision models. This work discusses unique ways

that differences between modalities have been addressed and mitigated to improve accuracy

of AI models in similar ways to which a human would naturally be able to re-calibrate to

these differences.

There is conceptual value to building multimodal models. Outside of the biomedical

sphere, many have already witnessed the sheer power of multimodal AI in text-to-image

generators such as DALL·E 2, DALL·E 3 or Midjourney [153, 21, 140], some of whose

artful creations have won competitions competing against humans [122]. In the biomedical

sphere, multimodal models provide potentially more robust and generalizable AI predictions

as well as a more holistic approach to diagnosis or prognosis of patients, akin to a more

human-like approach to medicine. While a plethora of biomedical AI publications based on

unimodal data exist, fewer multimodal models exist due to cost and availability constraints

of obtaining multimodal data. However, since patient imaging and lab measurements are

decreasing in cost and increasing in availability, the case for building multimodal biomedical

AI is becoming increasingly compelling.

With the emergence of readily-available multimodal data comes new challenges and re-

sponsibilities for those who use them. The survey and taxonomy from [15] presents an

organized description of these new challenges, which can be summarized in Figure 2.1: 1)

Representation, 2) Fusion, 3) Alignment, 4) Translation, 5) Co-learning. Representation

often condenses a single modality such as audio or an image to a machine-readable data
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Figure 2.1: Challenges in multimodal learning: 1) Representation, which concerns how mul-
tiple modalities will be geometrically represented and how to represent intrinsic relationships
between them; 2) Fusion, the challenge of combining multiple modalities into a predictive
model; 3) Translation, involving the mapping of one modality to another; 4) Alignment,
which attempts to align two separate modalities spatially or temporally; and 5) Co-learning,
which involves using one modality to assist the learning of another modality.

structure such as a vector, matrix, tensor object, or other geometric form, and is concerned

with ways to combine more than one modality into the same representation space. Good

multimodal representations are constructed in ways in which relationships and context can

be preserved between modalities. Multimodal fusion relates to the challenge of how to prop-

erly combine multimodal data into a predictive model. In multimodal alignment, models

attempt to automatically align one modality to another. In a simple case, models could be

constructed to align PPG signals taken at a 60Hz sampling frequency with a 240Hz ECG

signal. In a more challenging case, video of colonoscopy could be aligned to an image rep-

resenting the camera’s location in the colon. Multimodal translation consists of mapping

one modality to another. For example, several popular Natural Language Processing (NLP)

models attempt to map an image to a description of the image, switching from the imag-
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ing domain to a text domain. In translational medicine, image-to-image translation tends

to be the most common method, whereby one easily-obtained imaging domain such as CT

is converted to a harder-to-obtain domain such as T1-weighted MRI. Lastly, multimodal

co-learning involves the practice of transferring knowledge learned from one modality to a

model or data from a different modality.

In this paper, we use the taxonomical framework from [15] to survey current methods

which address each of the five challenges of multimodal learning with a novel focus on

addressing these challenges in medical image-based clinical decision support. The aim of

this work is to introduce both current and new approaches for addressing each multimodal

challenge. We conclude with a discussion on the future of AI in biomedicine and what steps

we anticipate could further progress in the field.

2.3 Multimodal Learning in Medical Applications

In the following section, we reintroduce the five common challenges in multimodal ML ad-

dressed in Section 1 and discuss modern approaches to each challenge as applied to image-

based biomedicine. The taxonomical subcategories of Representation and Fusion are summa-

rized in Figure 2.2, while those for Translation, Alignment and Co-learning are summarized

in Figure 2.3. A table of relevant works by the challenge addressed and data types used are

given in Table 2.1.

2.3.1 Representation

Representation in machine learning typically entails the challenge of transferring contextual

knowledge of a complex entity such as an image or sound to a mathematically-interpretable or

machine-readable format such as a vector or a matrix. Prior to the rise of deep learning, fea-

tures were engineered in images using techniques such as the aforementioned Shift-Invariant

Feature Transforms (SIFT) transforms or through methods such as edge detection. Features

in audio or other waveform signals such as ECG could be extracted utilizing wavelets or

Fourier transform to isolate latent properties of signals and then quantitative values could

be derived from morphological patterns in the extracted signal. Multimodal representa-

tion challenges venture a step further, consisting of the ability to translate similarities and

differences from one modality’s representation to another modality’s representation. For

example, when representing both medical text and CT images, if the vector representations

for “skull” and “brain” in medical text are closer than those for “skull” and “pancreas”,

then in a good CT representation, such relationships between vector representations of these
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Figure 2.2: A graphical representation of the taxonomical sublevels of multimodal repre-
sentation and fusion, and the focus of each challenge. Multimodal representation can be
categorized into whether the representations are joined into a single vector (joint) or sep-
arately constructed to be influenced by each other (coordinated). Multimodal fusion can
be distinguished by whether a model is uniquely constructed to fuse the modalities (model-
based), or whether fusion occurs before or after the model step (model-agnostic).
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structures in the image should remain preserved. The derivation of “good” representations

in multimodal settings have been outlined in Bengio et al [20] and extended by Srivastava

and Salakhutdinov [178].

It is crucial to acknowledge that representation becomes notably challenging when dealing

with more abstract concepts. In a unimodal context, consider the task of crafting represen-

tations from an image. Beyond pixel intensities, these representations must encapsulate

contextual and semantically-proximate information from the image. A simplistic model may

fail to encode context adequately, discerning insufficient distinctions between a foreground

and background to represent nuanced visual-semantic concepts. Achieving such subtleties

in representations, particularly in abstract contexts, poses increased challenges compared

to quantifying similarities and differences in less-nuanced data such as cell counts or gene

expression.

Prior to delving into multimodal representations, it is instructive to elucidate strate-

gies for crafting proficient unimodal representations, as multimodal approaches often involve

combining or adapting multiple unimodal methods. For images, pretrained networks are a

common approach for transforming images into good vector representations. Another ap-

proach is use of autoencoders, which condense image representations into lower-dimensional

context vectors that can be decoded to reconstruct the original image. Multimodal autoen-

coders have been applied to MRI modalities in [68] and in this example were also utilized to

impute representations for missing modalities.

Another approach for multimodal representation could be through the use of disentangle-

ment networks, which can separate latent properties of an image into separate vectors. In

such cases, an image is given as input and the autoencoder is often split in such a way that

two vectors are produced as intermediate pathways, where joining the intermediate vectors

should result in the original input. Each intermediate pathway is often constrained by a

separate loss function term to encourage separation of each pathway into the desired latent

characteristics. In this way, one input image can be represented by two separate vectors,

each representing a disjointed characteristic of the image. This disentanglement method has

been applied in [85] to separate context in CT and MRI from their style so that one modality

can be converted in to the other. It was also applied for a single modality in [25] to separate

“shape” and “appearance” representations of an input, which could potentially be applied

to different imaging modalities to extract only similar shapes from each.

When two or more vectorized modalities are combined into a model, they are typically

combined in one of two ways: 1) joint, or 2) coordinated representations. A joint represen-

tation is characterized by aggregation of the vectors at some point in the process, whereby

vector representations from two separate modalities are joined together into a single vector
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form through methods such as aggregation, concatenation or summation. Joint representa-

tion is both a common and effective strategy for representation; however, a joint strategy

such as concatenation is often constricted to serving in situations where both modalities are

available at train- and test-time (one exception using Boltzmann Machines can be found in

[178]). If a modality has the potential to be missing, a joint strategy such as aggregation via

weighted means could be a better option [108, 34, 233, 41]. Using mathematical notation

from [15], we can denote joint representations xm as the following:

xm = f(x1, ..., xn) (2.1)

This denotes that feature vectors xi, i = 1...n are combined in some way through a function

f to create a new representation space xm. By the contrary, coordinated representations

are represented as the following:

f(x1) ∼ g(x2), (2.2)

whereby a function designed to create representations for one modality may be constrained

(represented by ∼) by a similar function from another modality, with the assumption that

relationships between data points in the first modality should be relatively well-preserved in

the second modality.

Joint representations tend to be the most common approach to representing two or more

modalities together in a model because it is perhaps the most straightforward approach. For

example, joining vectorized multimodal data together through concatenation before entering

a model tends to be one of the most direct approaches to joint representation. In [199],

for example, chest x-rays are combined with text data from electronic health records in a

vectorized form using a pretrained model first. Then, the vectors from each modality are

sent individually through two attention-based blocks, then concatenated into a joint feature

space to predict a possible cardiovascular disease and generate a free-text “impression” of

the condition. Other joint representation models follow simpler methods, simply extracting

baseline features from a pretrained model and concatenating them [42, 220].

Although coordinated representations have traditionally tended to be more challenging

to implement, the convenience of neural network architectural and loss adjustments have

resulted in increased traction in publications embodying coordinated representations [216,

206, 31, 152, 231, 22]. One of the most notable of these in recent AI approaches is OpenAI’s

Constrastive Language-Image Pretraining (CLIP) model, which forms representations for

OpenAI’s DALL·E 2 [152, 153] and uses a contrastive-learning approach to shape both image

embeddings of entire images to match text embeddings of entire captions describing those
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images. The representations learned from CLIP were demonstrated to not only perform well

in zero-shot image-to-text or text-to-image models, but also to produce representations that

could outpace baseline supervised learning methods. In a biomedical context, similar models

abound, including ConVIRT, a predecessor and forerunner for CLIP [231], and related works

[22].

Coordinated approaches are especially useful in co-learning. In [31], which employs a

subset of co-learning called privileged information, the geometric forms of each modality are

not joined into a single vector representation. Instead, network weights are encouraged to

produce similar output vectors for each modality and ultimately the same classifications.

This constraint warps the space of chest x-ray representations closer to the space of text

representations, with the assumption that this coordinated strategy provides chest x-ray

representations more useful information because of the text modality. For more on privileged

information, see the Section 2.3.5.1 below.

In the biomedical sphere, where models are built to prioritize biologically- or clinically-

relevant outcomes, quality of representations may often be overlooked or overshadowed by

emphasis on optimization of prediction accuracy. However, there is conceptual value in

building good multimodal representations. If models are constructed to ensure that similar

concepts in different modalities also demonstrate cross-modal similarity, then there is greater

confidence that an accurate model is understanding cross-modal relationships. While build-

ing good cross-modal representations for indexing images on the Internet like in the CLIP

model is a digestible challenge, building similar cross-modal representations for medical data

presents a far more formidable challenge due to data paucity. OpenAI’s proprietary Web-

TextImage dataset, used for CLIP, contains 400 million examples, a sample size that is as

of yet unheard of for any kind of biomedical imaging data. Until such a dataset is released,

bioinformaticians must often rely on the ability to leverage pretrained models and transfer

learning strategies for optimal results amidst low resources to leverage big data for good

representations on smaller data.

2.3.2 Fusion

Next, we discuss challenges in multimodal fusion. This topic is a natural segue from the

discussion of representation because many multimodal representations are subsequently fed

into a discriminatory model. Multimodal fusion entails the utilization of methods to combine

representations from more than one modality into a classification, regression, or segmentation

model. According to [15], fusion models can be classified into two subcategories: model-

agnostic and model-based approaches. The term “model-agnostic” refers to methods for
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multimodal fusion occurring either before or after the model execution and typically does

not involve altering the prediction model itself. Model-agnostic approaches can further

be delineated by the stage at which the fusion of modalities occurs, either early in the

model (prior to output generation) or late in the model (such as ensemble models, where

outputs from multiple models are combined). Additionally, hybrid models, incorporating

a blend of both early and late fusion, have been proposed [29]. In contrast, a model-

based approach entails special adjustments to the predictive model to ensure it handles

each modality uniquely.

While model-agnostic methods remain pertinent as useful strategies for multimodal fu-

sion, the overwhelming popularity of neural networks has led to a predominant shift to-

wards model-based methods in recent years. These model-based methods involve innovative

loss functions and architectures designed to handle each modality differently. One common

model-based fusion strategy is multimodal multiple instance learning (MIL), where multiple

context vectors for each modality are generated and subsequently aggregated into a sin-

gle representation leading to the output classification. The method for aggregation varies

across studies, with attention-based approaches, emphasizing specific characteristics of each

modality, being a common choice [108, 34, 233, 41].

The construction of a good model architecture is crucial; however, challenges associated

with fusion are often highly contextual, and thus it is important to understand what kinds

of data are being utilized in recent models and what problems they try to solve. Most

multimodal models understandably incorporate MRI modalities, given that MR images are

a natural multimodal medium. Consequently, studies incorporating MRI such as [11], which

aims to classify Alzheimer’s Disease severity, and [232], predicting overall survival in brain

tumor patients, exemplify the type of research often prevalent in multimodal image-based

clinical application publications. Brain-based ML studies are also popular because of the

wide availability of brain images and a strong interest in applying ML models in clinical

neuroradiology. However, recent models encompass a myriad of other clinical scenarios

predicting lung cancer presence [42], segmenting soft tissue sarcomas [132], classifying breast

lesions [65], and predicting therapy response [220], among others, by amalgamating and

cross-referencing modalities such as CT images [42, 132], blood tests [220], electronic health

record (EHR) data [220, 199, 42], mammography images [65], and ultrasound [65].

Multimodal fusion models are emerging as the gold standard for clinical-assisted inter-

ventions due to the recognition that diagnosis and prognosis in real-world clinical settings

are often multimodal problems. However, these models are not without limitations. For one,

standardization across equipment manufacturers or measurement protocols can affect model

performance dramatically, and this issue becomes more pronounced as more modalities are
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incorporated into a model. Second, while fusion models attempt to mimic real-world clinical

practice, they face practical challenges that can limit their utility. For instance, physicians

may face various roadblocks to obtaining all model input variables due to a lack of permis-

sion from insurance companies to perform all needed tests or time constraints. These issues

underscore challenges associated with missing modalities, and several studies have attempted

to address this concern [29, 230, 41, 206, 112]. However, incorporating mechanisms to ac-

count for missing modalities in a model is not yet a common practice for most multimodal

biomedical models.

Lastly, many models are not configured to make predictions that adapt with additional

variables. Most models necessitate all variables to be present at the time of operation,

meaning that, even if all tests are conducted, the model can only make a decision once all

test results have been obtained. In conclusion, in the dynamic and fast-paced environment

of hospitals and other care centers, even accurate models may not be suitable for practical

use, unless also coupled with mechanisms to handle missing data.

2.3.3 Translation

In multimodal translation, a model is devised to operate as a mapping entity facilitating the

transformation from one modality to another. This involves the conversion of input contex-

tual data, such as CT scans, into an alternative contextual data format, such as MRI scans.

Before the rise of modern generative methods leveraging multimodal Generative Adversar-

ial Network (GAN)s or diffusion models to generate one modality from another, translation

via dictionary-based methods was common, which typically involved a bimodal dictionary

whereby a single entry would contain a key belonging to one modality and a correspond-

ing value belonging to the other modality. Dictionary-based translation was uncommon in

biomedical research but popular in NLP fields as a way to convert images into text and vice

versa [109, 159]. The current ascendancy of generative models and the availability of asso-

ciated coding packages have since catalyzed the growth of innovative translational studies

applying generative approaches.

Presently, generative models encompass a broad spectrum of potential applications both

within and beyond the biomedical domain. Outside the medical sphere, generative models

find utility in NLP settings, particularly in text-to-image models like DALL·E 2 and Mid-

journey [109, 153, 140]. Additionally, they are employed in style transfer and other aesthetic

computer vision techniques [79, 28, 234, 111, 142, 227]. Within the biomedical realm, gener-

ative models have proven efficacious in creating virtual stains for unstained histopathological

tissues which would typically undergo hemotoxylin/eosin staining [113]. Furthermore, these
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Figure 2.3: A graphical representation of the taxonomical sublevels of multimodal transla-
tion, alignment and co-learning, and the focus of each challenge. In translation, models are
distinguished based on whether they require use of a dictionary to save associations between
modalities (dictionary-based), or if the associations are learned in a multimodal network
(generative). In alignment, distinction is made depending on the purpose of the alignment,
whether as the goal (explicit) or as an intermediate step towards the goal output (implicit).
In co-learning, a distinction is made between the use of parallel (paired) multimodal data,
or non-parallel (unpaired) multimodal data. In co-learning models, one of the modalities is
only used in training but does not appear in testing.

24



models serve as prominent tools for sample generation [191, 148, 39], particularly in scenar-

ios with limited sample sizes [33]. Despite the potential diversity of multimodal translation

involving any two modalities, predominant translational efforts in the biomedical realm cur-

rently revolve around mapping one imaging modality to another, a paradigm recognized as

image-to-image translation.

In the contemporary landscape, the integration of simplistic generative models into a

clinical context are declining in visibility, while methods employing specialized architectures

tailored to the involved modalities are acknowledged for advancing the state-of-the-art in

translational work. Within this context, two notable generative translation paradigms for

biomedicine are explored: 1) medical image generation models, and 2) segmentation mask

models. In the former, many studies attempt to form models that are bidirectional, whereby

the intended output can be placed back as input and return an image similar to the original

input image. In [27], this is resolved by generating deformation fields that map changes in the

T1-weighted sequence modality of MRI to the T2-weighted sequence modality. In [78], sep-

arate forward and backward training processes are defined whereby an encoder representing

PET images is utilized to understand the underlying distribution of that modality, allowing

for more realistic synthetic generated images from MRI. In one unidirectional example, [174]

modifies a pix2pix conditional GAN network to allow Alzheimer’s disease classification to in-

fluence synthetic PET image generation. In another interesting example, [186] use functional

MRI (fMRI) scans and diffusion models to attempt to recreate images of what their subjects

had seen. Similarly, diffusion models and magnetoencephalography (MEG) are utilized by

Meta for real-time prediction from brain activity of what patients had seen visually [19].

In the second potential application, image segmentation models in multimodal image-to-

image translation must handle additional challenges, creating both a way to generate the

output modality as well as a way to segment it. In [85], a generative model converts CT to

MRI segmentation. In a reverse problem to image segmentation, [63] attempts to synthesize

multimodal MRI examples of lesions with only a binary lesion mask and a multimodal MRI

Atlas. In this study, six CNN-based discriminators are utilized to ensure the authentic

appearance of background, brain, and lesion, respectively, in synthesized images.

Multimodal translation still remains an exciting but formidable challenge. In NLP and

beyond, there have been remarkable successes observed in new image generation within text-

to-image models beyond the biomedical sphere. However, the adoption of translation models

in biomedical work is evolving at a more measured pace, with applications extending be-

yond demonstrative feasibility to practical utility remaining limited. Arguments in favor

of biomedical translation models are predominantly centered around sample generation for

datasets with limited sizes, as the generated medical images must adhere to stringent accu-
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racy requirements. Similar to other challenges in multimodal research, translation models

would greatly benefit from training on more expansive and diverse datasets. However, with

the increasing digitization of medical records and a refined understanding of de-identification

protocols and data sharing rights, the evolution of this field holds considerable promise.

2.3.4 Alignment

Multimodal alignment involves aligning two related modalities, often in either a spatial or

temporal way. Multimodal alignment can be conducted either explicitly as a direct end goal,

or implicitly, as a means to the end goal, which could be translation or classification of an

input. One example of explicit alignment in a biomedical context is image registration.

[102] highlights one approach to multimodal image registration, where histopathology slides

are aligned to their (x, y, z) coordinates in a three-dimensional CT volume. Another is in

[36], where surgical video was aligned to a text description of what is happening in the video.

On the other hand, an example of multimodal implicit alignment could be the temporal

alignment of multiple clinical tests to understand a patient’s progress over time. Such an

analysis was conducted in [220], where the authors built a customized multi-layer perceptron

(MLP) called SimTA to predict response to therapy intervention at a future time step based

on results from previous tests and interventions.

Literature surrounding alignment has increased since the rise of attention-based models in

2016. The concept of “attention,” which relates to aligning representations in a way that is

contextually relevant, is a unimodal alignment paradigm with origins in machine translation

and NLP [12]. An example use of attention in NLP could be models which try to learn,

based on order and word choice of an input sentence, where the subject of the sentence is so

that the response can address the input topic. In imaging, attention can be used to highlight

important parts of an image that are most likely to contribute to a class prediction. In 2017,

Vaswani et al [202], introduced a more sophisticated attention network, named transformers,

an encoder-decoder-style architecture based on repeated projection heads where attention

learning takes place. Transformers and attention were originally applied to natural language

[202, 12, 46] but have since been applied to images [144, 50], including histopathology slides

[114, 34] and protein prediction [192]. Multimodal transformers were introduced in 2019, also

developed for the natural language community [190]. While these multimodal transformers

do not contain the same encoder-decoder structure of a traditional transformer architec-

ture, they are hallmarked by crossmodal attention heads, where one modality’s sequences

intermingle with another modality’s sequences.

Although typical transformers themselves are not multimodal, they often constitute in
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multimodal models. The SimTA network mentioned above borrowed the positional encod-

ing property of transformers to align multimodal inputs in time to predict therapy response

[220]. Many models taking advantage of visual transformers (ViT) have also utilized pre-

trained transformers trained on images for multimodal fusion models. In both the Trans-

BTS [207] and mmFormer models [230], a transformer is utilized on a vector composed of

an amalgamation of information from multiple modalities of MRI, which may imply that

the transformer attention heads here are aligning information from multiple modalities rep-

resented via aggregate latent vectors. The ultimate function of transformers is a form of

implicit alignment, and it can be assumed here that this alignment is multimodal.

Transformer models have brought a new and largely successful approach to alignment,

sparking widespread interest in their applications in biomedical use. Transformers for NLP

have also engendered new interest in Large Language Models (LLMs), which are already

being applied to biomedical contexts [189] and probing new questions about its potential use

as a knowledge base for biomedical questions [183].

2.3.5 Co-learning

In this last section exploring recent research in multimodal machine learning, the area of

co-learning is examined, a field which has recently garnered a strong momentum in both

unimodal and multimodal domains. In multimodal co-learning, knowledge learned from one

modality is often used to assist learning of a second modality. This first modality which

transfers knowledge is often leveraged only at train-time but is not required at test-time.

Co-learning is classified in [15] as either parallel or non-parallel. In parallel co-learning,

paired samples of modalities which share the same instance are fed into a co-learning model.

By contrast, in non-parallel co-learning, both modalities are included in a model but are

not required to be paired.

While co-learning can embody a variety of topics such as conceptual grounding and zero-

shot learning, this work focuses on the use of transfer learning in biomedicine. In multimodal

transfer learning, a model trained on a higher quality or more plentiful modality is employed

to assist in the training of a model designed for a second modality which is often noisier or

smaller in sample size. Transfer learning can be conducted in both parallel and non-parallel

paradigms. This work focuses on one parallel form of transfer learning called privileged

learning, and one non-parallel form of transfer learning called domain adaptation. A visual

representation of these approaches be seen in Figure 2.4.
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2.3.5.1 Privileged Learning

Privileged learning originates from the mathematician Vladmir Vapnik and his ideas of

knowledge transfer with the support vector machine for privileged learning (SVM+) model

[200]. The concept of privileged learning introduces the idea that predictions for a low-

signal, low-cost modality can be assisted by incorporating a high-signal, high-cost modality

(privileged information) in training only, while at test-time only the low-cost modality is

needed. In [200], Vapnik illustrates this concept through the analogy of a teacher (privileged

information) distilling knowledge to a student (low-cost modality) before the student takes

a test. Although a useful concept, the field is relatively under-explored compared to other

areas of co-learning. One challenge to applying privileged learning models was that Vapnik’s

SVM+ model was one of few available before the widespread use of neural networks. Fur-

thermore, it demands that the modality deemed “privileged” must confer high accuracy on

its own in order to ensure that its contribution to the model is positive. Since then, neural

networks have encouraged newer renditions of privileged information models that allow more

flexibility of use [98, 172, 167].

Recently, privileged learning has emerged as a growing subset of biomedical literature,

and understandably so. Many multimodal models today require health care professionals to

gather a slew of patient information and are not trained to handle missing data. Therefore,

the ability to minimize the number of required input data while still utilizing the predictive

power of multiple modalities can be useful in real-world clinical settings. In [76] for example,

the authors attempt to train a segmentation network where at train-time the “teacher net-

work” contains four MR image modalities, but at test-time the “student network” contains

only T1-weighted images, the standard modality used in preoperative neurosurgery and ra-

diology. In [31], chest x-rays and written text from their respective radiology reports are

used to train a model where only chest x-rays are available at test-time.

In privileged models based on traditional approaches (before deep neural networks), priv-

ileged information can be embedded in the model either through an alteration of allowable

error (“slack variables” from SVM+) [200], or through decision trees constructed with non-

privileged features to mimic the discriminative ability of privileged features (Random For-

est+) [209, 128]. In a deep learning model, privileged learning is often achieved through the

use of additional loss functions which attempt to constrain latent and output vectors from

the non-privileged modality to mimic those from the combined privileged and non-privileged

models [76, 216]. For example, in [31], encoders for each modality are compared and cross en-

tropy loss is calculated for each modality separately. The sum of these allows the chest x-ray

network to freely train for only the chest x-ray modality while being constrained through the

overall loss function to borrow encoding methods from the text network, which also strives
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to build an accurate model.

While privileged learning models can be applied where data is missing, users should heed

caution when applying models in situations where there is systematic bias in reporting.

Those who train privileged models without considering subject matter may inadvertently be

choosing to include all their complete data in training and their incomplete data in testing.

However, in clinical scenarios, data are often incomplete because a patient either did not

qualify for a test (perhaps their condition was seen as not “dire enough” to warrant a test)

or their situation was too serious to require a test (for example, a patient in septic shock may

not pause to undergo a chest x-ray because they are in the middle of a medical emergency).

Therefore, while applying data to highly complex models is a common approach in computer

science, the context of the data and potential underlying biases need to be considered first

to ensure a practical and well-developed model.

2.3.5.2 Domain Adaptation

Domain adaptation has been shown to be useful in biomedical data science applications

where a provided dataset may be too small or costly to utilize for more advanced methods

such as deep learning, but where a somewhat similar (albeit larger) dataset can be trained by

such methods. The smaller dataset for which we want to train the model is called the “tar-

get” dataset and the larger dataset which will be used to assist the model with the learning

task and provide better contextualization is called the “source” dataset. Domain adaptation

strategies are often tailored to single modalities such as camera imaging or MRI, where mea-

surements of an observed variable differ based on an instrument’s post-processing techniques

or acquisition parameters [217, 201, 222]. However, the distinct characteristics arising from

disparate instruments or acquisition settings can lead to considerable shifts in data distribu-

tion and feature representations, mirroring the challenges faced in true multimodal contexts.

Therefore, the discussion of uni-modal domain adaptation is a relevant starting point for

multimodal domain adaptation, as it covers approaches to mitigate significant deviations

within data that may seem similar but are represented differently. Additionally, under-

standing how to mitigate the impact of such variations helps one to understand ways to

construct multimodal machine learning systems that confront similar challenges. We also

discuss relevant multimodal domain adaptation approaches in biomedicine, which have typ-

ically consisted of applying CT images as a source domain to train an MRI target model or

vice versa [38, 218, 146, 83, 48].

One way to train a model to adapt to different domains is through augmentation of the

input data, which “generalizes” the model to interpret outside of the domain of the original

data. In [217], a data augmentation framework for fundus images in diabetic retinopathy
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Figure 2.4: Two types of transfer learning described in this work are privileged learning (top)
and domain adaptation (bottom). In privileged learning, a plentiful set consisting of data
which is normally of low cost but also low signal-to-noise ratio is available in both training
and testing, while a limited gold-standard quality set is used for training only. In this
example, the plentiful set is used to train the target model, while the limited set constrains
the model parameters to increase the model’s ability to associate the low-cost modality with
the ground truth. In domain adaptation, there is a target dataset which consists of a few
samples and a source dataset consisting of plenty of samples. If the target data is too small
to build a reliable model in training, source data can be augmented to make the model more
robust. Else, the target model could be trained with few examples, while a second source
model is used to help make the target model more generalizable.

(DR) is proposed to offset the domain differences of utilizing different cameras. The authors

show that subtracting local average color, blurring, adaptive local contrast enhancement,

and a specialized PCA strategy can increase both R2 values for age prediction and Diabetic

Retinopathy (DR) classification AUROC or AUC on test sets where either some domain

information is known a priori and also where no information is known, respectively. In

another method which attempts to augment the source domain into more examples in the

target style, [38] split the source image into latent content and style vectors, using the content

vectors in a style-transfer model reminiscent of cycleGAN to feed as examples with the target

domain into a segmentation network [235]. In other applications, data augmentation for

domain generalization may be executed utilizing simpler affine transformations [201]. This
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demonstrates the utility of data augmentation strategies in more broadly defining decision

boundaries where target domains differ from the source.

A second strategy for domain adaptation involves constraining neural network functions

trained on a target domain by creating loss functions which require alignment with a source

domain model. In [201], a framework for adapting segmentation models at test-time is

proposed, whereby an adversarial loss trains a target-based U-Net to be as similar to a

source-based U-Net as possible. Then a paired-consistency loss with adversarial examples is

utilized to fine-tune the decision boundary to include morphologically similar data points.

In a specificially multimodal segmentation-based model, [218] attempts to create two side-

by-side networks, a segmenter and an edge generator, which both encourage the source and

target output to be as similar as possible to each other. In the final loss function, the

edge generator is used to constrain the segmenter in such a way as to promote better edge

consistency in the target domain. In yet another, simpler example, domain adaptation to a

target domain is performed in [77] by taking a network trained on the source domain and

simply adjusting the parameters of the batch normalization layer.

Domain adaptation in biomedicine can be a common problem where instrument models or

parameters change. Among multimodal co-learning methods, most networks are constructed

as segmentation networks for MRI and CT because they are similar imaging domains, al-

though measuring different things. While CT carries distinct meaning in its pixels (measured

in Hounsfield Units), MRI pixel intensities are not standardized and usually require normal-

ization, which could pose challenges to this multimodal problem. Additionally, MRI carries

much more detail than CT scans, which necessitates the model to understand contextual

boundaries of objects much more than a unimodal case with only CT or MRI.

2.4 Discussion

The rapidly evolving landscape of AI both within the biomedical field and beyond has posed

a substantial challenge in composing this survey. Our aim is to provide the reader with

a comprehensive overview of the challenges and contemporary approaches to multimodal

machine learning in image-based, clinically relevant biomedicine. However, it is essential to

acknowledge that our endeavor cannot be fully comprehensive due to the dynamic nature of

the field and the sheer volume of emerging literature within the biomedical domain and its

periphery. This robust growth has led to a race among industry and research institutions to

integrate the latest cutting-edge models into the healthcare sector, with a particular emphasis

on the introduction of “large language models” (LLMs). In recent years, there has been an

emergence of market-level insights into the future of healthcare and machine learning, as
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exemplified by the incorporation of machine learning models into wearable devices such as

the Apple Watch and Fitbit devices for the detection of atrial fibrillation [147, 115]. This

begs the question: where does this transformative journey lead us?

Healthcare professionals and physicians already embrace the concept of multimodal cogni-

tive models in their diagnostic and prognostic practices, signaling that such computer models

based on multimodal frameworks are likely to endure within the biomedical landscape. How-

ever, for these models to be effectively integrated into clinical settings, they must exhibit

flexibility that aligns with the clinical environment. If the ultimate goal is to seamlessly in-

corporate these AI advancements into clinical practice, a fundamental question arises: how

can these models be practically implemented on-site? Presently, most available software

tools for clinicians are intended as auxiliary aids, but healthcare professionals have voiced

concerns regarding the potential for increased computational workload, alert fatigue, and

the limitations imposed by Electronic Health Record (EHR) interfaces [43, 9]. Therefore, it

is paramount to ensure that any additional software introduced into clinical settings serves

as an asset rather than a hindrance.

Another pertinent issue emerging from these discussions pertains to the dynamics be-

tween clinical decision support CDS systems and healthcare providers. What occurs when a

computer-generated recommendation contradicts a physician’s judgment? This dilemma is

not new, as evidenced by a classic case recounted by [53], where physicians were granted the

choice to either follow or disregard a CDS system for antibiotic prescription. Intriguingly,

the group provided with the choice exhibited suboptimal performance compared to both

the physician-only and computer-only groups. Consequently, it is unsurprising that some

healthcare professionals maintain a cautious approach to computer decision support systems

[5, 175]. Questions arise regarding the accountability of physicians if they ignore a cor-

rect computer-generated decision and the responsibility of software developers if a physician

follows an erroneous computer-generated recommendation.

A pivotal ingredient notably under-represented in many CDS models, which could help

alleviate discrepancies between computer-generated and human decisions, is the incorpora-

tion of uncertainty quantification, grounded calibration, interpretability and explainability.

These factors have been discussed in previous literature, underscoring the critical role of

explainability in ensuring the long-term success of CDS-related endeavors [158, 91, 96, 3].

The domain of multimodal machine learning for medically oriented image-based clinical

support has garnered increasing attention in recent years. This interest has been stimulated

by advances in computer science architecture and computing hardware, the availability of

vast and publicly accessible data, innovative model architectures tailored for limited datasets,

and the growing demand for applications in clinical and biomedical contexts. Recent studies

32



have showcased the ability to generate synthetic images in one modality based on another

(as outlined in Section 2.3.3), align multiple modalities (Section 2.3.4), and transfer latent

features from one modality to train another (Section 2.3.5), among other advancements.

These developments offer a promising outlook for a field that is still relatively new. However,

it is also imperative to remain vigilant regarding the prevention of data biases and under-

representation in ML models to maximize the potential of these technologies.

Despite these promising developments, the field faces significant hurdles, notably the lack

of readily available “big data” in the medical domain. For instance, the routine digitization of

histopathology slides remains a challenging goal in many healthcare facilities. Data sharing

among medical institutions is fraught with challenges around appropriate procedures for the

responsible sharing of patient data under institutional, national and international patient

privacy regulations.

Advancing the field will likely entail overcoming these hurdles, ensuring more extensive

sharing of de-identified data from research publications and greater participation in establish-

ment of standardized public repositories for data. Dissemination of both code and pretrained

model weights would also enable greater knowledge-sharing and repeatability. Models that

incorporate uncertainty quantification, explainability, and strategies to account for missing

data are particularly advantageous. For more guidance on building appropriate multimodal

AI models in healthcare, one can refer to the World Health Organization’s new ethics and

governance guidelines for large multimodal models [214].

In conclusion, the field of multimodal machine learning in biomedicine has experienced

rapid growth in each of its challenge areas of representation, fusion, translation, alignment,

and co-learning. Given the recent advancements in deep learning models, escalating in-

terest in multimodality, and the necessity for multimodal applications in healthcare, it is

likely that the field will continue to mature and broaden its clinical applications. In this

ever-evolving intersection of AI and healthcare, the imperative for responsible innovation

resonates strongly. The future of multimodal machine learning in the biomedical sphere

presents immense potential but also mandates a dedication to ethical principles encompass-

ing data privacy, accountability, and transparent collaboration between human professionals

and AI systems. As we navigate this transformative journey, the collective effort, ethical

stewardship, and adherence to best practices will ensure the realization of the benefits of

AI and multimodal machine learning, making healthcare more efficient, accurate, and ac-

cessible, all while safeguarding the well-being of patients and upholding the procedural and

ethical standards of clinical practice.
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Table 2.1: Literature relating to the five challenges of multimodal machine learning by the
datatype analyzed.

Datatype

Challenge MRI CT PET EHR

Representation [68, 230] [42, 233] [42, 199, 228, 206]
Fusion [11, 132, 232, 207,

230, 164, 112, 228,
233]

[42, 132, 220,
22, 29]

[132] [42, 220, 199, 232,
204, 108, 22, 41, 91]

Translation [85, 78, 63, 174, 186] [85, 236] [78,
174]

Alignment [207, 230] [220, 102, 233,
105]

[220, 105]

Co-learning [201, 222, 78, 27, 77,
146, 83, 218, 48]

[218, 77, 146,
83, 48]

[216]

Datatype

Challenge Hist. Ultrasound Genomic X-Ray Fundus

Representation [199] [233]
Fusion [34, 108, 41] [65] [34, 41] [199, 65, 41, 29, 91] [233]
Translation
Alignment [102] [233]
Co-learning [217] [31]
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CHAPTER 3

Multimodal Fusion in MRI: Low-Parameter

Supervised Learning Models Can

Discriminate Pseudoprogression and True

Progression in Non-Perfusion-Based MRI

3.1 Abstract

Discrimination of Pseudoprogression (PsP) and True Progression (TP) is one challenge to the

treatment of malignant gliomas. Although some techniques such as circulating tumor DNA

(ctDNA) and Perfusion Weighted Imaging (PWI) demonstrate promise in distinguishing PsP

from TP, we investigate robust and replicable alternatives to distinguish the two entities

based on more widely-available media. In this study, we use low-parametric supervised

learning techniques based on Geographically-Weighted Regression (GWR) to investigate the

utility of both conventional MRI sequences as well as a diffusion-weighted sequence (apparent

diffusion coefficient or ADC) in the discrimination of PsP v TP. GWR applied to MRI

modality pairs is a unique approach for small sample sizes and is a novel approach in this

arena. From our analysis, all modality pairs involving Apparent Diffusion Coefficient (ADC)

maps, and those involving post-contrast T1-weighted (T1) regressed onto T2-weighted (T2)

showed the best potential promise of predictability with all AUCs > 0.60. This work on

ADC data adds to a growing body of research suggesting the predictive benefits of ADC,

and suggests further research on the relationships between post-contrast T1 and T2.

3.2 Introduction

Glioma is a life-threatening condition characterized by neoplastic tumor growth in the brain.

Malignant gliomas are primarily diagnosed based on the imaging features on conventional
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MRI sequences. The primary approach to treatment of malignant gliomas is surgical re-

section within the limits of patients’ safety, followed by radiation and temezolomide for six

weeks. This treatment cycle is then followed by adjuvant temozolomide therapy for six more

weeks. Because of the infiltrative nature of the tumors, surgical treatment is usually never

curative since the tumors can extend well beyond the margins demonstrated by MR imaging.

Therefore, follow-up imaging often shows tumor recurrence. True tumor recurrence needs to

be differentiated from the condition of pseudoprogression which is defined as the appearance

of a new lesion or increase in constrast-enhancing areas, but with changes that gradually fade

or stabilize while treatment stays the same [108]. Since PsP resembles TP, treatment needs

to be instituted at the earliest for the latter while waiting and watching is the approach to

the former. Additionally, because of the similarity of these two conditions, patients are at

risk of being started on alternative treatments prematurely or erroneously withdrawn from

treatment altogether [117, 95]. Thus, there is a need to distinguish PsP from TP.

Figure 3.1: An illustrated depiction of the methods used in this study. First, (1) pre-
processing on the MR images included registration and whitestripe normalization. Then,
(2) a single slice is extracted from the MRI volume, and (3) GWR is applied to the tumor
region of the extracted slice. Finally, (4) select characteristics of the residual density curve
output from GWR are entered into a logistic regression model.

Previous studies have investigated possible methods for distinguishing PsP from TP using

bloodstream biomarkers or medical imaging. In one method, evaluation of chromosomal

instability using ctDNA reported promising results in PsP v TP distinction in a small trial

group [62]. However, further analysis on larger cohorts is still needed, and ctDNA extraction
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may not be available to all clinicians. Another common marker is PWI, which is current

practice in some clinics [95]. However, this advanced imaging technique requires use of

advanced software that are not widely available for all radiologists.

In the absence of perfusion imaging, some attempts have been made to exploit classi-

cal sequences of MRI in PsP studies using visual characteristics of the images determined

by subject matter experts [225, 130], often finding these sequences to confer little help. A

supervised machine learning approach using CNNs applied to conventional MRI sequences

was able to exploit multimodal relationships between these MRI sequences for PsP dis-

tinction [100]. However, there are limitations to large multi-parametric models with small

sample sizes because they carry potential to overfit the training data. A lower-complexity

multimodal supervised model using geographically-weighted regression (GWR) for MRI by

Mohammed et al [123] identified IDH-mutant 1p19q non-codeleted patients who exhibited

a phenomenon called T2-FLAIR mismatch. This method leveraged relationships between

the T2 modality and the FLAIR modality of MRI to successfully distinguish patients with

T2-FLAIR mismatch vs those without.

In this study, we investigate the use of GWR to determine PsP presence in patients with

increased tumor size after adjuvant therapy. We leverage this lower-complexity statistical

approach followed by logistic regression and naive Bayes to explore multimodal relationships

between pairs of conventional MRI sequences as a potential tool to discriminate PsP from

TP. We also explore the potential role of an alternative advanced imaging technique to

PWI called Diffusion Weighted Imaging (DWI) as a possible discriminator of PsP, given

some preliminary interest in the modality [10, 71, 95]. Although conventional MRI is known

to be of little help in PsP diagnosis [225, 130], we hypothesize that some modality pairs

may show differential patterns which can discriminate PsP from TP better than random.

Our use of GWR attempts to identify whether class differences exist in the relationships

between multimodal pairs and additionally uses fewer features than is expected in deep

learning strategies. This methodology is novel in the context of PsP and TP discrimination

in treatment-related changes and provides an alternative image processing approach to deep

learning methods for small sample sizes.

3.3 Methods

3.3.1 Data Acquisition

Data were collected in accordance with relevant guidelines and regulations and approved by

the Institutional Review Board at the University of Michigan (IRBMED, HUM00145517).
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Data were analyzed retrospectively and retrieved from the Electronic Medical Record Search

Engine (EMERSE) and DataDirect databases [110]. In this study, five MRI sequences from

fifty patients with high grade (World Health Organization (WHO) grade III or IV) diffuse

infiltrating glioma (astrocytoma or oligodendroglioma) were recorded from 2009 to 2018. All

patients received an adjuvant therapy followed by two to three recorded follow-up visits. At

the last follow-up, histopathological analysis of the tumor site was conducted. MRI sequence

data included in this study come from the follow-up directly prior to histological analysis

of the tumor site. A label of “pseudoprogression” (PsP) or “true progression” (TP) was

determined based on the results of the histopathological analysis.

Characteristic PsP TP Total p-val
Total 13 29 42
Age (mean) 53.34 45.69 0.100
Sex 0.524
Male 9 17 26
Female 4 12 16
IDH status 0.627
wildtype 6 14 20
mutant 5 8 13
missing 2 7 9
1p19q status 0.217
wildtype 0 3 3
mutant 3 4 7
missing 10 22 32
EGFR status N/A
wildtype 0 0 0
mutant 4 5 9
missing 9 24 33
P53 status 0.590
wildtype 5 4 9
mutant 12 6 18
missing 12 3 15

Table 3.1: Patient demographic table

3.3.2 Dataset and Preprocessing

A summary of Preprocessing to Prediction can be seen in Figure 3.1. The dataset contained

50 patient MRI scans with masks (PsP=13, TP=37) for the pre-contrast T1 (T1pre), post-

contrast T1 (T1post), T2, and FLAIR modalities. However, after removing patients with

zero-signal modalities, 42 patients (PsP=13, TP=29) were remaining. Zero-signal modality
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primarily meant patients with zero FLAIR signal. An additional subtraction map modality

was created by subtracting T1pre from T1post (T1postpre). Lastly, a DWI modality called

apparent diffusion coefficient (ADC) was also utilized from each patient.

Patient MRI were registered and sized such that all modalities were the same size then

normalized via whitestripe. No skull extraction was necessary for this procedure because

only the area indicated by the tumor mask was analyzed.

In order to mitigate the dataset imbalance, PsP patients were oversampled. The most

ideal slice for all patients was first chosen based on the largest mask slice using Matlab

R2022b. Two additional slices above and below the largest mask slice were extracted from

PsP patients, if they existed. Model input values were selected from each modality by

overlaying the mask slice over the image and extracting values within the mask bounds.

After oversampling PsP patients, 63 samples were available for all modalities (PsP = 34, TP

= 29).

Figure 3.2: Residual density curves for individual patient MRI modalities of T2 regressed
onto FLAIR. Next to the de-identified patient number at the top is the classification of the
patient: 1 for pseudoprogression and 0 for true progression.

3.3.3 Model

We constructed a geographically-weighted regression (GWR) to analyze the relationship

between pairs of MRI modalities. Based on the modalities T1pre, T1post, T2, FLAIR,
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T1postpre and ADC, fifteen modality pairs were constructed. The predictor x of modality

X of each pair was regressed onto y pixels from modality Y using the GWModel package in

R(4.2.0) [59]. GWR is a form of linear regression that assumes regression weights will differ

depending on the spatial locations of x ∈ X and y ∈ Y . It therefore remains linear within

specific localities i for all pixel locations xi and yi in a single MRI slice, such that

yi = β0 +
∑
M

βmxmi + ϵi (3.1)

, where β0 represents the bias at location i, M represents number of features, xmi repre-

sents the mth feature at i, and βm represents the slope for feature m. In this study, the only

feature analyzed was the pixel intensity at location i, so M = 1.

After fitting a model, residuals were calculated by subtracting the true yi values from Y

with the predicted ŷi values from the model. Residuals were then flattened and densities

were calculated into a density vector of 1 × 1000. Density curves for all patients were

standardized to the same maximum and minimum bounds. Then, features from the curves

were extracted as input into a logistic regression model using python 3.8 with Anaconda.

In order to minimize the number of inputs into the regression model, we first shrunk the

density to 1× 500 by sampling every other value from the density curve.

There are two challenges with applying a residual density curve to logistic regression: 1)

high dimensionality in a logistic regression model will encourage overfitting and will inappro-

priately overparameterize a model built on a small sample size, and 2) input expectations for

logistic regression require independent and identically-distributed features. Features chosen

which are too close together will be too colinear, perhaps biasing the model. In order to mit-

igate these two challenges, we address the first by sorting the regression vector by standard

deviation and sorting in descending order, based on the assumption that areas of the curve

with more overall variation will confer more information than those which fluctuate slightly.

From these ordered areas of the curve, we select only the top k number of curve positions. In

order to mitigate collinearity, we set a distance requirement between positions of the curve to

discourage points from belonging to the same monotonic increase or decrease of a curve, and

enforced an L2 regularization. Patient-wise LOOCV was utilized in the implementation and

AUC was assessed for each test for each modality pair. Sensitivity and specificity metrics

were also extracted for each test.

Lastly, we conduct a post-hoc test to assess the predictive power of combining multiple

modalities, as [130] and [100] suggest that combining multiple predictive indicators may

produce better predictability. Using a naive Bayes algorithm, we combined models for all

predictive modality pairs (AUC> 0.5) in a late fusion model. Modality pairs were added
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into the model by their order of predictability in AUC from highest AUC to lowest. As in

the above test, patient-wise LOOCV was utilized due to small sample size.

Pair X Y AUC Sens Spec
1 T1postpre FLAIR 0.5968 0.6923 0.4483
2 T1postpre T2 0.6180 0.6923 0.4828
3 T1post FLAIR 0.5889 0.6410 0.4483
4 T1post T1postpre 0.5084 0.5641 0.4483
5 T1post T2 0.6145 0.6923 0.4828
6 T1pre FLAIR 0.5119 0.4615 0.6897
7 T1pre T1post 0.4907 0.4615 0.5862
8 T1pre T1postpre 0.4898 0.4615 0.5862
9 T1pre T2 0.4598 0.4103 0.5862
10 T2 FLAIR 0.3917 0.1282 0.5862
11 ADC FLAIR 0.6684 0.6154 0.6552
12 ADC T1post 0.6251 0.5385 0.5517
13 ADC T1postpre 0.6260 0.5385 0.6207
14 ADC T2 0.6525 0.6667 0.6207
15 ADC T1pre 0.6242 0.5385 0.5862

Table 3.2: AUC, Sensitivity and Specificity reported for detecting PsP from TP using Logistic
Regression Analysis. Highlighted rows are for modality pairs where AUC> 0.6

3.4 Results

Patient demographics can be viewed in Table 3.1. No significant differences in age, sex or

any other clinical indicators were found. P-values for EGFR could not be calculated because

no variation existed between PsP and TP sample populations.

Example images of residual density curves can be found in Figure 3.2. Density curves did

not appear outwardly different based on class.

Results for the logistic regression assessment can be viewed in Table 3.2. We tested k

values of 1,2,3,5,10, but found decreasing performance as the number of features increased

past k = 3, signifying overfitting. All pairs involving ADC (pairs 11-15) demonstrated AUC

values above 0.6 in our supervised model in the test set, with ADC regressed on FLAIR as

the highest performing pair. Interestingly, two conventional MRI pairs also performed above

0.6 AUC: T1postpre regressed on T2 and T1post regressed on T2. Pairs 7-10 in Table 3.2

demonstrated values below 0.50, indicating that the signal for these were too weak given the

sample size.

In order to understand why relationships between distributions resulted in relatively low
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Figure 3.3: Results from naive Bayes late fusion model combining multiple modality pairs
to distinguish PsP from TP. The best model performs at an AUC of 0.6737 and includes all
ADC modality pairs.
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AUCs, mean residual densities for the PsP and TP class for a single fail case modality pair

were assessed in Figure 3.4. Marks in red signify the features chosen among the curve. PsP

and TP residuals demonstrated significant overlap, suggesting that the X modality was well-

conditioned to predict the Y modality in both PsP and TP cases, an indication that there

is very little difference between the PsP and TP images in most fail cases.

Figure 3.4: An example representation of mean densities for each class for T1 regressed onto
T1postpre. The three red stars for each curve represent the locations of the top 3 PDF
locations of the curve as features. This figure illustrates the difficulties of distinguishing PsP
from TP, by lending evidence that even computationally, the PsP and TP images are nearly
the same.

Results from the naive Bayes model are shown in Figure 3.3. In this analysis, the highest

performing model was the result of a combination of the top 5 modality pairs, which in-

cluded only those modality pairs with ADC as a predictor. Interestingly, after including the

contribution of the conventional MRI sequences, the model performance decreases. Models

including modality pairs beyond the 5 ADC modality pairs, T1post regressed on T2 and

T1postpre regressed on T2, performed substantially worse.

3.5 Discussion and Conclusion

Distinguishing pseudoprogression, a result of adjuvant therapy, from true progression, has

been a classically difficult challenge, particularly using conventional MRI sequences. How-
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ever, there are benefits of being able to use conventional MRI to distinguish PsP in High-

Grade Glioma (HGG) patients, because MRI is routinely used for analysis of glial tumors. In

this study, we attempted to assess the predictive power of both conventional MRI sequences

and one advanced imaging technique (DWI) at distinguishing PsP v TP using low-complexity

models for smaller sample sizes and pathologist-confirmed data regarding PsP diagnosis. A

set of 15 modality-pairs were investigated using GWR followed by logistic regression to an-

alyze if correlations between imaging modalities could reap discriminative patterns. Most

modality pairs did not reap AUCs above 0.6, indicating no unique patterns of pixel in-

tensities in the images which could be discriminatory. This is corroborated by Figure 3.4,

where distributions show an almost complete analysis. However, in the analysis, all modality

pairs involving ADC demonstrated marked discriminative ability with AUCs above 0.6, and

T1postpre regressed on T2 as well as T1post regressed on T2 also showed some promise in

one analysis.

Our results on ADC’s discriminative ability contribute to a small body of growing research

which have also found a utility in diffusion weighted imaging. Two different groups found

differences in ADC maps between recurrent and non-recurrent gliomas after radiotherapy

using samples of 18 patients and 17 patients, respectively [10, 71, 95]. Thus, our study is

the largest to assess ADC as a tool for recurrence (TP) v non-recurrence (PsP) in HGG

patients to our knowledge. However, we acknowledge the limitations of our study due to

small sample size and believe further studies with larger samples are needed to fully confirm

the utility of ADC. Our study also stands as the first to find correlations involving T1post,

T1pre and T2 as potentially helpful in distinguishing PsP v TP.

This study carries two main novelties. Firstly, although discrimination of PsP v TP is

challenging with conventional MRI, our method found that relationships in some sequences,

specifically DWI modalities such as ADC and possibly T1-post or T1postpre regressed on

T2, carry some predictive power. Lastly, our method demonstrates the successful use of low-

complexity models on conventional MRI sequences as an alternative to deep learning tech-

niques in small sample sizes. The method leverages relationships between multiple modality

pairs and can be used for supervised image analysis when deep learning applications are

deemed inappropriate.
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CHAPTER 4

Predicting Osteoarthritis of the

Temporomandibular Joint using Random

Forest with Privileged Information

4.1 Abstract

TMJ OA is the most common disorder of the Temporomandibular Joint (TMJ). A CDS

system designed to detect TMJ OA could function as a useful screening tool as part of regular

check-ups to detect early onset. This study implements a CDS privileged learning concept

model based on Random Forest and dubbed RF+ to predict TMJ OA. Our RF+ model

was based on the hypothesis that a model which leverages high-resolution radiological and

biomarker data as privileged features in training but not testing can improve upon a baseline

model which only includes features from a questionnaire in training and testing. Under leave-

one-out cross validation, RF+ predicted TMJ OA with an AUC of 0.6798 compared to the

baseline model (AUC: 0.6518). Additionally, we introduce a novel method for post-hoc

feature analysis, finding several features of the lateral condyles and joint distance to be the

most important features from the privileged modalities for predicting TMJ OA.

4.2 Introduction

The TMJ plays an essential role in mouth movement and consists of a complex system of

bone, cartilage and muscle. Osteoarthritis of the TMJ (TMJ OA), a degenerative disease

which affects all structures therein, is the most common disorder of the TMJ [187]. Observa-

tions from radiological images show TMJ OA is associated with flattening or deformation of

the lateral condyles, reduction of joint space, and possible alterations to the articular fossa

region [171, 154]. Although prevalence of TMJ OA has been difficult to calculate, post-

mortem analysis of modern bone collections have found a 30.2% prevalence among modern
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Figure 4.1: Workflow for the reported study. In this study, we utilize LOOCV on a sample
of 97 patients. For each fold, a feature selection process consisting of Logistic Regression is
computed (A), and then a Random Forest+ model is constructed based on the selected fea-
tures (B). After all folds have been calculated, a post-hoc analysis is conducted to determine
the most important privileged and non-privileged features for tree-based transforms.

humans [154], with 40 to 75% of the population reporting at least one symptom of overall

disorders of the TMJ (TMD) [171]. TMJ OA falls under the umbrella of osteoarthritis, which

is the second most prevalent musculoskeletal disorder behind lower back pain, occurring with

a global incidence of nearly 15,000 per year[205].

Recently, CDS models have made waves in the medical community, assisting in diagnosis

of a wide range of conditions [193, 4, 155]. Although CDS models cannot replace the need

for experienced dental experts, a CDS system designed to detect TMJ OA could function as

a useful screening tool as part of regular check-ups, with the goal of detecting early TMJ OA

and thus permitting dental experts to initiate treatment and preventive behavioral strategies

to decelerate degradation of the TMJ at an early stage.

While clinical questionnaires designed to screen for TMD may help screen for TMJ OA,

we hypothesize that including radiological imaging information from the TMJ site as well as

protein biomarkers collected from serum/saliva could provide additional information which

may be useful for discriminating TMJ OA patients from healthy patients. Studies analyzing

protein biomarkers and radiological information in TMJ OA patients have already asserted

the predictive utility of these features [229, 23].

However, although radiological imaging and protein biomarkers could be useful additions

to a TMJ OA CDS model, it is not reasonable to expect that most clinics would be able to

provide such data, as high-resolution Cone-beam Computed Tomography (CBCT) scans of

the articular fossa and lateral condyle regions of the TMJ as well as protein microarrays of

human serum and saliva samples are more common in research rather than clinical practice.

Since typical predictive models require all modalities to be present with no missing data,

multimodal co-learning strategies must be explored.
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One such strategy incorporating privileged information was developed as a part of a

concept called “knowledge transfer.” [200]. In knowledge transfer models, a “privileged”

modality of data exists in the model solely as a “teacher,” providing information which assists

the “student” model solely during the training phase, while disappearing in the test phase.

With proper knowledge transfer, the final student model should perform more accurately

with the assistance of the privileged information during training than without. In this study,

we consider multimodal models which incorporate privileged information, where clinical

features will be considered non-privileged information available in training and testing and

radiological and biomarker features will be considered privileged information available in the

training set only. This will allow the latter, rarer modalities to still assist the model while

only requiring basic clinical questionnaire information at test-time, thus generalizing such a

decision support model to a larger audience.

The most common privileged learning frameworks are based on Artificial Neural Net-

work (ANN) or Support Vector Machine (SVM) frameworks [200, 32, 229, 78]. However,

these models work best under very specific conditions. ANNs are primarily useful with large

data samples and features, but considered largely inappropriate for smaller datasets due

to the scale of trained parameters required. The well-known Support Vector Machine for

Privileged Learning (SVM+) model, a framework of SVM designed specifically to incorpo-

rate privileged information, can be problematic because the privileged modality functions

as an error corrector in the model. This means that the privileged modality must provide

discriminatory capabilities equivalent to a gold standard, or risk introduction of erroneous

error corrections, thus reducing AUCs of the student model. Although some models such

as [167] have attempted modifications of the SVM+ algorithm to improve upon this short-

coming, such models are not widely available and come with large computational overhead.

In another model, [128] developed a Random Forest model which incorporates privileged in-

Table 4.1: Patient Clinical and Demographic Data.

Feature TMJ OA Control p-value
Total Sample (N=) 49 48 N/A
Gender 1.14 1.15 0.9672
Female (N=) 42 41 N/A
Male (N=) 7 7 N/A
Age 40.20 38.71 0.5730
Headaches [0,4] 1.59 0.60 0.0000
Muscle Soreness [0,4] 1.06 0.38 0.0004
Vertical Range Unassisted w/o Pain 36.08 44.94 0.0001
Restless Sleep [0,4] 1.29 0.58 0.0016
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Figure 4.2: Workflow of the RF+ framework using tree-based feature transforms. The top
bar of the figure indicates the feature space used (N or (N

⋃
P )).

formation through the construction of ”tree-based feature transforms.” The authors claimed

that their model can perform at least as well as a non-privileged model, even in the case of

substandard privileged information, because of the Random Forest’s unique ability to select

best features from a given feature bag.

This study implements a CDS concept model based on the framework from [128] for

predicting TMJ OA vs healthy controls, with the hypothesis that a model which leverages our

available high-resolution radiological and biomarker data in training can improve predictions

compared with a baseline model which requires only clinical features in testing. We further

expand the work of [128] by introducing a novel method for post-hoc feature analysis, tracing

back the most important features for prediction among both privileged and non-privileged

feature sets.

4.3 Methods

4.3.1 Data Acquisition and Preparation

Our dataset consisted of 51 early-stage TMJ OA patients and 50 healthy controls recruited

at the University of Michigan. All the diagnoses were confirmed by a Temporomandibular

Disorders (TMD) and orofacial pain specialist following the Diagnostic Criteria for Tem-

poromandibular Disorders (DC/TMD) [170]. The clinical, biological and radiographic data

described below were collected from TMJ OA and control subjects with informed consent

and following the guidelines of the Institutional Review Board HUM00113199.

Details on the dataset can be found in [23]. Briefly, the clinical dataset was collected

following DC/TMD criteria. The biological data comprised of proteins that were previ-

ously correlated with arthritis initiation, progression and bone morphological alterations

[30]. Using customized protein microarrays (RayBiotech, Inc. Norcross, GA), the expression

level of 13 proteins was measured in the participants’ saliva and serum samples, respectively.
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The radiological data was collected from CBCT scans taken using 3D Accuitomo machine (J.

Morita MFG. CORP Tokyo, Japan). It consisted of 3D superior condylar-to-fossa joint space

measurements and radiomic features. Using BoneTexture module from 3D-Slicer software

(www.3Dslicer.org), 43 radiomic features were attained following a standardized protocol

reported by Bianchi et al [24].

Of the 101 patients obtained, four were removed due to missing data, resulting in a

final sample size of 97 patients. Features were split into “privileged” and “non-privileged”

information based on their probable availability in a real-world clinical setting. Due to the

greater difficulty of obtaining high-resolution CBCT scans and microarray biological samples

in a clinical setting, we classified these modalities as privileged information while the clinical

data were marked as non-privileged features. In total, 68 privileged features and six non-

privileged features were included in the dataset.

4.3.2 Model Construction

The primary model utilized in this study, which here is dubbed “RF+”, is based on the

tree-based feature transforms framework from [128] and illustrated in Figure Fig 4.2. In our

RF+ model, a Random Forest model called the “support forest” consisting of K decision

trees is first constructed based on both privileged features ({P}) and non-privileged features

({N}) in the training set only (Fig 4.2D). After the support forest is constructed, a simple

algorithm searches through all nodes of each tree tk, k = 1 . . . K to identify nodes of interest

called “link nodes” (Fig 4.2E). In order to qualify as a link node, any node nk
i from tree k

must satisfy at one of the following criteria:

1. Node nk
i is a root node

2. Node nk
i has a parent nk

i−1 with a node feature fk
i−1 ∈ N and nk

i has a node feature

fk
i ∈ P

3. Node nk
i has a parent nk

i−1 with a node feature fk
i−1 ∈ P and nk

i has a node feature

fk
i ∈ N .

For each link node, the observations at the left and right children of the node are annotated

as “0” and “1”, respectively. Then, these labels are utilized to train a “scandent tree” for

each link node, which attempts to replicate the discriminative power of the link node utilizing

only non-privileged features (Fig 4.2F).

After all scandent trees are formulated, “tree-based feature transforms” are constructed

for each data observation based on the label assigned by each scandent tree. Therefore, if
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z link nodes are discovered, then z scandent trees are formulated, resulting in z number of

binary-labeled tree-based feature transforms (Fig 4.2J). Then, a final model is formulated

based on the non-privileged features and tree-based features only. Since the scandent trees

are also based only on non-privileged features, no privileged features are required in testing.

4.3.3 Cross Validation and Evaluation

Two types of cross validation were utilized in this study. The first was LOOCV, due to its

ability to demonstrate fullest use of the training data in a single run. In order to provide a

more robust study, we also incorporated a second validation method consisting of 400 times

random bootstrapping of 15% of the dataset. Because this method is essentially Out-of-

Bag (OOB) sampling for Random Forest models, we denote this validation method with the

acronym OOB from here onward.

For comparative analysis, four additional models were constructed: 1) one consisting of

only privileged features, 2) one consisting of both non-privileged and privileged features, 3)

one with only tree-based features, 4) the Baseline model, consisting of only non-privileged

features. All models were evaluated for AUC for both LOOCV and OOB validation methods,

and standard error was calculated. For OOB, mean AUC and mean standard error were

calculated, respectively.

4.3.4 Post-Hoc Feature Analysis

Finally, after all models were run, a post-hoc feature analysis was performed on the tree-

based feature transforms (example shown in Fig 4.6. For each tree-based feature transform,

we traced back the link node from which it was based and analyzed the node feature at that

link node. We then totaled up the the frequency with which each feature appeared as a node

feature for a link node. Based on the definition of a link node, we decided to distinguish a

feature at a link node as a “Root” feature if the node feature appeared at a link node defined

by criteria 1 for identifying link nodes (See Section 4.3.2). This is because criteria 2 and 3 for

defining link nodes are based on node features of a node given the node feature of a parent

node. Thus, although our feature analysis identifies a specific feature at a link node, for

non-“Root” features, the scandent tree formed for the link node listed will try to replicate

the discriminatory ability of the node feature at the link node given settings of previous

node features. Scandent trees from “Root” features, by contrast, will try to replicate the

discriminatory ability of the node feature only.
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4.3.5 Implementation

Due to the large number of privileged features, some of which may not be important, a

univariate logistic regression to predict TMJ OA was run on the training set for each fold

before initiating the RF+ model workflow. Namely, only privileged features were analyzed

by logistic regression, and privileged features with an AUC > 0.55 were included in the RF+

model. Because there were only six variables included in the non-privileged feature set, all

non-privileged variables were included for all folds.

The model implementation from [128] was preserved in our work. Namely, a feature bag-

ging size of sqrt(num of features) was implemented, and the entire training set was utilized

in the construction of the scandent trees. In order to reduce the number of unimportant

tree-based features, we implemented a feature importance calculation on the training set im-

mediately after construction of the features and features with an importance score of 0 were

eliminated. Due to the large imbalance of non-privileged and tree-based feature transforms,

we force equal sampling of each feature set to construct each tree in the final forest. We set

max depth equal to 7 and number of trees equal to 100.

Figure 4.3: (left) ROC curves for RF+ and comparative models using Leave-One-Out Cross
Validation; (right) Violin plots illustrating the distribution of AUCs for Out-of-Bag valida-
tion tests
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4.4 Results and Discussion

4.4.1 Dataset Analysis

A patient demographic data table with sample sizes and summaries of the baseline data can

be shown in Table 4.1. As expected, clinical questions for TMD demonstrated discriminative

ability to discern TMJ OA from healthy control patients. Averages for privileged information

were omitted to save space.

Feature correlations are viewed in 4.5. It appears that clinical markers, lateral condyle

imaging markers, lateral (articular) fossa imaging markers, and serum and saliva biomarkers

tend to correlate more with themselves than with other groups of markers. However, articular

fossa and lateral condyle demonstrate some overlapping correlations with each other.

4.4.2 Feature Selection Analysis

Results from the feature selection using univariate Logistic Regression are shown in Table

4.3 ranked by the percent of folds in which the features were included as well as the average

AUC across all 97 folds. Included in the table was also the performance of non-privileged

variables.

Table 4.2: Model Comparison Results

Model LOO AUC LOO stderr OOB AUC OOB stderr
Privileged Only 0.6390 0.0252 0.6163 0.0513

Baseline+Privileged 0.7198 0.0267 0.7184 0.0530
RF+ 0.6798 0.0306 0.6974 0.0602

Tree-Based Only 0.6692 0.0477 0.6535 0.0939
Baseline 0.6518 0.0309 0.6940 0.0590

4.4.3 Model Results

AUCs and their respective standard errors for each tested model are shown in Table 4.2 and

Fig 4.3. The top box (top two models) consists of models in which privileged features are

included in the test set, while the bottom box (bottom three models) consists of models in

which only non-privileged features are included in the test set. The proposed RF+ model

outperformed both the Baseline model as well as the model based on tree-based feature

transforms alone. Interestingly, while the Baseline+Privileged model (which incorporates

privileged features during testing) outperforms all other models as expected, the Privileged
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Only model performs lower than expected, even when a Logistic Regression is used for

feature selection. This may indicate that although radiomic images are useful for detecting

TMJ OA, the extracted features themselves may not be a better screen of TMJ OA compared

to a simple clinical questionnaire, but when combined with the clinical questions, can provide

some supplementary information.

The improved performance of the Tree-Based Only model over the Baseline model demon-

strates the potential for tree-based feature transforms to mimic the predictive power of

privileged features with only non-privileged features, and suggests that with only six non-

privileged features, this model can still coax out interesting non-linear relationships between

existing features that were not easily ascertained otherwise.

Lastly, the performance of the RF+ model is interesting in that it can improve the base-

line model, even where privileged features are not a ”gold standard” source of information,

confirming the advantages of this model stated in [128]. In privileged learning models where

privileged information is utilized as an ”error corrector” [200], privileged features must be

close to gold standard quality in order to prevent introduction of erroneous error corrections

to a non-privileged model. However, with tree-based transforms, when privileged informa-

tion is poor, a decision tree can choose tree-based transforms which originate from a non-

privileged root node if it outperforms those originating from privileged root nodes. Thus, the

RF+ can leverage the discriminative capabilities of privileged features, while downplaying

weaknesses of the features.

4.4.4 Feature Importance Based on Tree-Based Feature Trans-

forms

Feature importance for the top 20 features is shown in Fig 4.4. Frequencies were rescaled

into a score in range [0, 1] by dividing all feature frequencies by the total number of feature

appearances. The top features were Vertical Range Unassisted w/o Pain, which is a clinical

feature whereby a patient is asked to open their mouth to the fullest range before pain is

felt. The most important privileged features were shortRunHighGreyLevelEmphasis of the

lateral condyle and 3D JS SI (joint distances). Of the top 10 unique privileged features

which ranked highest using this method, eight also appeared in the top 10 most predictive

privileged features from the Logistic Regression rankings in Table 4.3.
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Figure 4.4: Top 20 features derived from tree-based feature transforms and their respective
importance scores.

4.5 Conclusion

In this study we implemented an RF+ CDS concept model based on tree-based feature

transforms to detect TMJ OA in 97 patients. We incorporate two modalities of privileged

information, namely radiological imaging features and biomarker protein data, and one set

of non-privileged information consisting of clinical questionnaire data. We demonstrated

that our proposed RF+ model outperforms the baseline model, even though both models

use only non-privileged information at test time. Furthermore, we expand upon the RF+

model framework to incorporate our own feature importance scores based on appearance of

link node features among the most popular tree-based features in the RF+ framework. We

show that tree-based feature transforms identify some of the most discriminative features

of the dataset and sufficiently replicate their discriminatory capabilities with non-privileged

clinical features alone. This work demonstrates both the usefulness of RF+ in predicting

TMJ OA and elucidates benefits of incorporating research-obtained information that is not

normally obtained clinically as a means to improve upon CDS models.
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Table 4.3: Top Features Selected Using Logistic Regression

Rank Priv/Non-Priv Feature % Folds Avg AUC
1 P 3D JS SI 37.11 0.6148
2 P LC correlation 32.99 0.6000
3 P LC entropy 30.93 0.5833
4 P LC shortRunHighGreyLevelEmphasis 30.93 0.6242
5 P LC longRunEmphasis 29.90 0.5285
6 P LC highGreyLevelRunEmphasis 29.90 0.5906
7 P LC clusterProminence 28.87 0.6378
8 P LC runLengthNonuniformity 28.87 0.5485
9 P LF correlation 22.68 0.4643
10 P LC BSBV 21.65 0.5132
1 N Vertical Range Unassisted w/o Pain 100* 0.6867
2 N Headaches 100* 0.6709
3 N Restless Sleep 100* 0.5331
4 N Muscle Soreness 100* 0.5136
5 N Age 100* 0.3665
6 N Gender 100* 0.000
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4.6 Supplementary Material

Figure 4.5: Correlation of Non-Privileged (Clinical Markers) and Privileged (all else) Features

57



Figure 4.6: Example of following a link node back to the support tree to identify the feature
at the link node. In this example, scandent tree features were built from a link node from
the 28th tree of the 2nd support forest at the 11th node in the tree. The node feature at the
node was the 10th index of the feature bag list for that tree, which was LC Entropy, which
is entropy of the lateral condyles in the CBCT image.
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CHAPTER 5

IOL Prediction Models, Part I: Comparison

of Cataract Surgery Patients in South Indian

and Midwestern United States Populations

5.1 Abstract

Cataracts cause visual impairment or blindness in over 94 million people worldwide and are

the most common cause of blindness in the world. In this study, we compared preoperative

clinical and biometric measurements of patients undergoing cataract surgery across two pop-

ulations and evaluate differences in refraction prediction accuracy in these populations. We

obtained perioperative cataract surgery data from both Aravind Eye Hospital in Chennai,

Tamil Nadu (Aravind) and the University of Michigan in Ann Arbor, Michigan (UMich).

The study comprised 2729 eyes from Aravind (mean age at surgery 60.2 years ± 9.5 [SD])

and 1003 eyes from UMich (mean age at surgery 70.7 years ± 9.5 [SD]). The Aravind group

demonstrated significantly lower ages at surgery, Axial Length (AL), Lens Thickness (LT),

and Central Corneal Thickness (CCT), while the UMich group demonstrated lower K mea-

surements, IOL power, and post-operative refraction compared to the Aravind group. In

IOL formula assessment of the SN60WF Aravind group, Haigis, Hoffer Q, and Barrett had

the worst performance in terms of error within 0.25D (46.90%, 47.79% and 51.33%, respec-

tively), while the Nallasamy formula, SRK/T and Holladay1 performed the best (61.50%,

56.19%, 54.52%, respectively). This study illustrates significant differences in cataract pa-

tients from South Indian and Midwestern US populations. Differences also emerge in the

distribution of errors in IOL formula predictions. Understanding population-level differences

and designing better methods for integration of these factors into IOL formulas may help

improve refractive surgery outcomes.
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5.2 Introduction

Cataracts cause visual impairment or blindness in over 94 million people worldwide and are

the most common cause of blindness in the world [97]. It is characterized by a gradual loss

of transparency in the crystalline lens of the eye which results in loss of visual acuity.

Treatment of cataract is typically conducted through surgical replacement of the intraoc-

ular lens. This replacement requires implantation of a synthetic lens, usually constructed of

collamer, acrylic, silicone, or polymethyl-methacrylate (PMMA)[195]. In order to determine

the appropriate power of the lens, IOL diopter is calculated through a formula which takes

into account various measures of a patient’s eye, such as axial length (AL), anterior chamber

depth (ACD) and keratometry (K). Since no model of the eye confers perfect diopter pre-

dictions, multiple IOL power calculation formulas exist, among them Barrett Universal II,

SRK/T, HofferQ, Haigis and Halloday 1 being some of the most well-known [17, 161, 74, 67].

The overwhelming majority of both cataract and synthetic intraocular lens research is

conducted on populations in the United States, Europe and Australia, where the majority

of patients consume western diets and cultural influences. However, differences in diet, sun

exposure (specifically UVB exposure), disease prevalence and socioeconomic status have

been indicated as possible determinants of cataract onset and differs by population and

regional demographic [188, 143, 84]. Some of these differences may be evident in the standard

eye measurements obtained preoperatively in intraocular lens surgery, meaning that these

cultural and genetic factors could alter the physiological characteristics of the eye. These

differing measurements can further lead to inaccuracies in IOL formulas. For example, in

one study of a Japanese population, it was discovered that ALs and AL/Corneal Radius

(CR) ratios were longer in Japan than other countries compared. It was simultaneously

discovered that longer ALs and AL/CR ratios resulted in higher error rates using Holladay

1 and Hoffer Q formulas compared with average measures [138]. Understanding if there

are differences in measurements between different regional population demographics would

be useful in assessing and customizing the need for public health preventive measures in

different international demographics. With respect to IOL power calculations, many of

whose constants were based on datasets from western populations, it may help elucidate if

the model parameters for different IOL formulas hold true across populations.

In this study, we explore two obtained datasets from different regional populations, one

from the Midwestern United States, and another from South India, representing differences

in race, diet, sun exposure, and quality of life, among others, analyzing both the distributions

of eye measurements as well as IOL predictions from a variety of formulas.
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Aravind Dataset UMich Dataset
Female Male Total p Female Male Total p

Count (N) 1427 1360 2787 N/A 570 433 1003 N/A
Laterality (R) 775 742 1517 0.895 283 229 512 0.310
Age at Surgery 59.15 61.30 60.20 < 0.001 70.92 70.48 70.73 0.467

AL (mm) 22.82 23.33 23.07 < 0.001 23.93 24.44 24.15 < 0.001
CCT (µm) 520.38 525.86 523.05 < 0.001 550.17 555.74 552.58 0.015
ACD (mm) 3.23 3.34 3.29 < 0.001 3.19 3.32 3.25 < 0.001
AD (mm) 2.71 2.82 2.76 < 0.001 2.64 2.77 2.69 < 0.001
LT (mm) 4.20 4.23 4.22 0.090 4.52 4.53 4.53 0.947
K1 (D) 44.60 43.98 44.30 < 0.001 43.74 43.06 43.45 < 0.001
K2 (D) 45.32 44.69 45.01 < 0.001 44.59 43.97 44.33 < 0.001
Km (D) 44.96 44.34 44.66 < 0.001 44.16 43.51 43.88 < 0.001

Astigmatism 0.72 0.71 0.71 0.745 0.85 0.91 0.88 0.259
WTW (mm) 11.65 11.85 11.75 < 0.001 12.01 12.20 12.09 < 0.001
IOL power (D) 21.31 20.47 20.90 < 0.001 20.27 19.37 19.89 < 0.001
refraction (D) -0.05 0.04 -0.01 < 0.001 -0.64 -0.51 -0.594 0.021

Table 5.1: Demographic Table

5.3 Methods

5.3.1 Data Collection

The study was approved by the Indian Health Service Institutional Review Board

(RET202100362) and the by the Institutional Review Board at the University of Michi-

gan (HUM00160950). Due to the retrospective and de-identified nature of the data utilized,

it was determined by the institutional review boards that informed consent was not required.

All research was carried out in accordance with the Declaration of Helsinki.

Data from the South Indian population (“Aravind”) were collected from patients undergo-

ing cataract surgery at Aravind Eye Hospital in Chennai, Tamil Nadu, India. Preoperative

biometry was obtained using IOLMaster 700 optical biometers (Zeiss, Oberkochen, BW,

Germany). Demographics (patient age, gender and ethnicity), cataract surgery data, and

postoperative refractions were obtained from the Aravind Eye Hospital electronic medical

record. Patients included received one of the following lens models: Acrysof SN60WF lens

(Alcon, Fort Worth, TX, USA), Auroflex FH5600AS (Aurolab, Madurai, TN, India), Au-

rovue HP760APY or HP760AP (Aurolab), or Toric FH560T* (Aurolab).

Data from the Michigan population (named “UMich”) were obtained from patients un-

dergoing cataract surgery at University of Michigan’s Kellogg Eye Center and described
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previously [106]. Preoperative biometry was obtained using Lenstar LS 900 optical biome-

ters (Haag-Streit USA, EyeSuite software V.i9.1.0.0). Demographics (patient age, gender

and ethnicity), cataract surgery data, and postoperative refractions were obtained via the

Sight Outcomes Research Collaborative (SOURCE) Ophthalmology Data Repository.

Manifest refractions at both institutions were performed at the end of the first postoper-

ative month by trained technicians. The inclusion criteria for the cases at both institutions

were as follows: (1) Cataract surgery was performed; (2) No refractive surgery was performed

before the cataract surgery; (3) No additional surgery was performed at the time of cataract

surgery; (4) Visual acuity was 20/40 or better and (5) Data were complete and was not out

of bounds for any of the formulas with which performance was compared.

Methods for collection of this data were conducted within regulations for patient privacy

and can be viewed in [106]. The data collected consisted of primarily pre-surgical informa-

tion such as axial distance, K1 and K2 keratometry measurements, age at surgery, anterior

chamber depth, axial length, lens thickness, white-to-white distance, and central corneal

thickness. Surgical information included the model and power of the implanted IOL.

5.3.2 IOL Power Prediction

IOL power prediction was performed using a collection of geometrical optics-based,

regression-based, and machine learning-based formulas. These formulas included Barrett

Universal II, Haigis, Holladay 1, HofferQ, Nallasamy, PearlDGS, and SRK/T. For regional

comparisons of IOL formula performance, we selected both the Acrysof SN60WF lens which

was implanted at both Aravind and University of Michigan. The Nallasamy formula was

developed using perioperative cataract surgery data from the University of Michigan and

has been described previously [106]. In order to ensure no information leakage, no patients

included in the model development process for the Nallasamy formula were included in the

UMich dataset considered here. Tables and figures of results from the UMich analysis are

also provided in the previous work.

5.3.3 A-Constant Optimization

Lens constants optimization for all IOL formulas in this work are based on the optimized

constants from 4390 patients implanted with the SN60WF lens in our previous work [106].

The The formulas for Haigis, Hoffer Q, Holladay 1, and SRK/T were implemented in Python

based on their published equations and updates . The calculations confirmed with those

obtained from Haag-Streit USA EyeSuite software V.i9.1.0.0. Prediction results for Barrett

Universal II and PearlDGS were obtained through their online calculators. Briefly, the
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optimal lens constant for each formula was determined through an empirical optimization

process to zero out the mean prediction error. The optimized lens constants were: Barrett:

1.94, PearlDGS: 119.1, Haigis: -0.739, HofferQ: 5.727, Holladay: 1.860, SRK/T: 119.082.

FH5600AS SA60AT SN60WF TORIC UMich (SN60WF)
Count 1130 672 985 136 1103

Age at Surgery 60.37 59.46 60.52 64.90 70.73
Laterality (R, %) 0.53 0.54 0.56 0.58 0.51

AL (mm) 22.99 23.03 23.19 23.01 24.15
CCT (µm) 522.07 520.21 526.13 517.88 552.58
ACD (mm) 3.30 3.28 3.28 3.25 3.25
AD (mm) 2.77 2.76 2.76 2.74 2.69
LT (mm) 4.19 4.23 4.24 4.30 4.53
K1 (D) 44.35 44.36 44.20 43.93 43.44
K2 (D) 45.14 45.03 44.86 45.77 44.32
Km (D) 44.74 44.69 44.53 44.85 43.88

Astigmatism 0.79 0.66 0.66 1.84 0.88
WTW (mm) 11.77 11.49 11.89 11.71 12.09

IOL Power (D) 20.51 21.37 21.02 21.52 19.89
Refraction (postop) -0.15 0.10 0.010 0.12 -0.59

Table 5.2: Means by Lens Type

5.3.4 Statistical Analysis

Statistical tests and figures were conducted in Python 3.12 using scipy and matplotlib,

respectively. Demographics for the Aravind and UMICH datasets were measured in pandas

and assessed for p-value using the scipy stats package. All lens types were analyzed via their

distributions and ANOVA with Tukeys analysis with Bonferroni correction and an alpha p-

value of 0.01. For the predictive models, MAE and ME were compared across IOL formulas

and assessed for statistical significance with the Friedman and Wilcoxon signed-rank tests

with Bonferroni correction. Errors for each formula were also assessed based on different axial

lengths. Because the Toric lens represents a group of patients not well-represented in the

UMich dataset, Toric lens patients data was omitted in the Aravind-to-UMich comparisons

but preserved in by-lens type comparisons.
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Figure 5.1: Distribution of Patient Measurements and Demographics. The Toric lens was
removed so that both populations did not contain patients with astigmatism.
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Figure 5.2: Distribution of Patient Measurements and Demographics by Lens Type
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Figure 5.3: Boxplots of Patient Measurements and Demographics. The Toric lens was re-
moved so that both populations did not contain paitents with astigmatism.
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Figure 5.4: Boxplots of Patient Measurements and Demographics by Lens Type
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5.4 Results

The Aravind dataset included 2929 patients who were administered either the Acrysof

SN60WF lens (Alcon, M=568, F=417), or an Aurolab lens: Auroflex FH5600AS (M=646,

F=484), Aurovue HP760APY or HP760AP (M=364, F=308), or Toric FH560T* (M=73,

F=69) lens (Aurolab, Tamil Nadu, India). The UMich dataset included 1003 eyes of 1003

patients (M=433, F=570) who received the Alcon SN60WF (Acrysof IQ, Alcon, Fort Worth,

TX) lens.

The dataset characteristics and biometry measures are summarized for all Aravind and

UMich patients in Table 5.1. Data distributions across populations are depicted in Figure

5.1 and by lens type in Figure 5.2. Boxplots by population are depicted in Figure 5.3 and

by lens type in Figure 5.4, with asterisks to represent Bonferroni corrected p-values < 0.01.

Means by lens type are presented in Figure Table 5.2. The UMich population demonstrated

significantly lower average IOL power (19.89 D , p < 0.01), post-operative refraction (-0.59,

p < 0.01), and K1 (43.44 D, p < 0.01) and K2 (44.32 D, p < 0.01) measurements compared

to the same measures in the Aravind population group, which were 20.90 D, -0.005, 44.30 D,

and 45.01 D, respectively. The Aravind population demonstrated significantly lower mean

age at surgery (60.20 y), lens thickness (4.22 mm), axial length (23.07 mm) and central

corneal thickness (523.05 um) compared to the UMich group, whose measures were 70.73 y,

4.53 mm, 24.15 mm and 552.58 µm, respectively.

Distribution curves from the Aravind population showed lower variation standard devia-

tions in IOL power (2.30), refraction (0.39) and axial lengths (0.91) compared to the UMich

population, whose ranges standard deviations for IOL power, refraction and AL were 3.78,

0.93, and 1.35, respectively. When separated by lens type, it is notable that the Auro-

lab Toric lens appears to demonstrate significantly later age at surgery (64.9 y, p < 0.01)

compared to the rest of their South Indian cohort (SN60WF: 60.52 y, HP760AP*: 59.46 y,

FH5600AS: 60.37 y), although still earlier than the age at surgery of the UMich cohort (70.73

y). Aravind patients who were administered the Toric lens also demonstrated significantly

higher measures (p<0.01) for astigmatism than any other group (1.84 D compared with 0.79

D for FH5600AS, 0.66 D for HP760AP* and SN60WF Aravind, and 0.88 D for SN60WF

UMich).

The results from IOL power prediction can be seen in Tables 5.3 and by axial lengths for

short and medium lengths in 5.4. Prediction error of each IOL formula by Axial Length can

be viewed in a chart in Figure 5.6, while a breakdown of performance based on diopter of

error is available in Figure 5.5. HofferQ and Holladay 1 tests appear to overestimate IOL

power after 24 mm, while Barrett Universal II tends to underestimate IOL power with Axial
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Figure 5.5: IOL formula performance on Aravind SN60WF and UMich SN60WF data

lengths < 25 mm and > 26.5 mm. PearlDGS appears to demonstrate the best performance

at 24 mm and tends to increasingly underestimate at ALs > 26 mm. The Nallasamy formula

appears to demonstrate the consistent performance with short and medium axial lengths,

similar to PearlDGS, but appears to be less accurate with axial lengths > 26 mm compared

to its performance on other axial lengths. However, it demonstrates the lowest MAE, lowest

Median Absolute Error (MedAE), and the highest percentage of patients within 0.5 D of

prediction for both the Aravind and UMich populations. Conversely, Haigis and Hoffer Q

appear to demonstrate the highest percentage of errors over 0.25 D.

All formulas demonstrated better accuracy in the Aravind sample compared with the

UMich sample. Among these, the Nallasamy formula appears to be the best-adapted, with

a marked improvement in errors within 0-0.25 D of 6.4% compared to the UMich population

and a 2.56% improvement in errors within 0.25-0.5 D. The Holladay 1 formula demonstrates

the second best improvement, with a 7.08% improvement in 0-0.25 D errors and 2.50% im-

provement in 0.25-0.5D errors. Haigis and HofferQ formulas reflect the smallest improvement,

with only 0.38% gains and 2.64% gains in the 0-0.25 D range of error, respectively.
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Figure 5.6: IOL formula performance on Aravind SN60WF data by Axial Length

5.5 Discussion

In this study, eye measurements from two populations undergoing cataract surgery were

compared: 1) A Midwest population in the United States (“UMich”), and 2) A South

Indian population (“Aravind”). This study has refrained from classifying populations as

“Caucasian/American” and “Indian” because it cannot be ruled out that other factors or

differences may be at play that do not generalize across ethnicity or national identity. In

fact, sun exposure and clinical practice may explain a large proportion of differences in these

populations.

Method MAE ME SD MedAE m AE< 0.5 FPI p-value
Barrett 0.2798 0.1195 0.3309 0.2400 -0.3675 0.8528 0.1846 <0.01
Haigis 0.3296 0.1526 0.3815 0.2849 0.0062 0.7756 0.4957 <0.01
HofferQ 0.3583 0.1936 0.4018 0.3128 -0.8098 0.7340 0.0983 <0.01
Holladay1 0.2961 0.1331 0.3459 0.2478 -0.6638 0.8305 0.1185 <0.01
PearlDGS 0.2516 0.0375 0.3194 0.2110 -0.2411 0.8832 0.2455 <0.01
SRK/T 0.2963 0.1392 0.3434 0.2537 -0.7629 0.8223 0.1059 <0.01
Nallasamy 0.2497 0.0057 0.3202 0.2057 -0.0610 0.8904 0.4427 /

Table 5.3: Performance table of various formulas on SN60WF at Aravind dataset
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The UMich dataset demonstrated a wider range of postoperative refraction, but also lower

lens diopters of implanted lenses, implying that operations included patients who asked for

reading vision instead of emmetropia. The lower range of implanted diopters and an average

refraction around 0 for Aravind patients is likely a reflection of Aravind Eye Center practice,

which is to correct all patients to emmetropia. One reason for this could be the need for

speedy and consistent surgeries due to the high patient volume seen at the eye center. By

contrast, University of Michigan practice is to ask patients whether they prefer to optimize

long-distance vision or reading vision.

When broken down by lens type, Aravind patients who were administered the Toric

lens also had significantly higher levels of astigmatism, marked by lower K1 and significantly

higher K2 values compared to patients with other Aurolab lenses. This matches expectations

that patients diagnosed with astigmatism are also prescribed the Toric lens as treatment.

Interestingly, UMich patients overall demonstrated significantly lower K1 and K2 values than

any other group. Since spherical error has been shown to link to lower Keratometry values

[7], we hypothesize that preoperative refractive errors in the UMich patient group were higher

and more frequent than the Aravind group. Although this could not be confirmed with the

measurements available in our dataset, the prevalence of 55-60 year olds in a comparable

Midwest state demonstrated a 50.1% prevalence of myopia [185] and the same age group at

Aravind Eye Center in Madurai, India showed a 43-44% prevalence of myopia [90], supporting

our hypothesis.

Interestingly, all South Indian patients recorded, regardless of the lens, demonstrated

consistently lower axial lengths compared to the Michigan cohort. This may be explained in

part by higher levels of ultraviolet (UV) exposure, which has been shown to be negatively

correlated with Axial Lengths [156]. As South India is close to the equator, the yearly

level of UV exposure for local residents is shown to be higher than for local residents in

the midwestern United States, where winters are often overcast and sunlight hours shorter

[194, 1]. The seriousness of this issue is also reflected in lower levels of vitamin D in the

Michigan population [73]. Conversely, for South Indians, higher UV sun exposure could also

explain earlier onset of cataracts and thus a younger patient age at time of surgery. This

would be important to know for public health efforts targeting eye health.

Interestingly, central corneal thickness and lens thickness were also significantly lower in

the South Indian population compared to their Michigan cohort. These cannot be attributed

to UV exposure, as [141] suggests UV exposure should actually increase CCT. One study of

a Chinese cohort found an association with age and lens thickness [120]. Since the UMich

cohort also presented older ages at surgery, this could be a possible explanatory factor. In

another study, [6] found ethnic differences between Caucasian and Japanese populations
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Short (n=78) Medium (n=895)
Formula MAE MedAE ME STD MAE MedAE ME STD
Barrett 0.33 0.30 0.17 0.38 0.28 0.24 0.12 0.33
PearlDGS 0.29 0.23 0.08 0.35 0.25 0.21 0.03 0.32
Haigis 0.34 0.30 0.09 0.40 0.33 0.29 0.16 0.38
Holladay1 0.37 0.34 0.26 0.36 0.29 0.24 0.13 0.34
HofferQ 0.49 0.45 0.44 0.38 0.35 0.30 0.18 0.39
Nallasamy 0.27 0.24 -0.01 0.33 0.25 0.20 0.01 0.32
SRK/T 0.39 0.34 0.33 0.35 0.29 0.25 0.13 0.34

Table 5.4: Performance of IOL formulas on SN60WF Aravind population

based on CCT. The South Indian cohort in this study demonstrated even lower CCTs than

the Japanese group, and measurements of the Michigan group and the South Indian group in

our study are consistent with findings in other studies [203]. Therefore, besides age, another

explanation for these measurement differences could be ethnic differences.

In the IOL formula assessment, all formulas performed better with the South Indian

Aravind population compared with the midwestern US UMich population. The wider range

of post-operative refractions in the UMich dataset combined with longer axial lengths is

a likely cause for the poorer accuracies in the UMich dataset compared with the Aravind

dataset, which exhibited low ranges and refraction centered at 0, and lower non-skewed axial

lengths.

In [106], IOL formulas were assessed on our mostly Caucasian UMich dataset, and Barrett

was shown to outperform Haigis, Hoffer Q, Holladay 1 and SRK/T, both within 0.25 D and

0.5 D. However, Barrett’s performance gains with the related Aravind data were considerably

lower compared with SRK/T and Holladay1 showing markedly better performance with the

Aravind dataset. As Barrett performs better than every other IOL formula listed except

for Our Method (Nallasamy formula) in both samples, it is possible that the results are a

reflection of Barrett’s steady performance across a wide range of axial lengths, evidenced in

Figure 5.6. This would corroborate claims in [138], which stated that Barrett performs more

stable than Holladay 1 and Hoffer Q formulas when given longer ALs.

One limitation of our work with IOL formulas was a lack of large representation from

longer axial lengths. Larger sample sizes of long axial lengths could affect the overall predic-

tion error of the IOL formulas due to lower variation. Due to the link between sun exposure

and axial lengths [156], it is reasonable to assume that longer axial lengths are rarer in

South India. However, in the future this may change. Prior studies have found that younger

college-educated South Indians had a nearly twofold increased odds of myopia compared to

no education [90], while another asserted the association between near-work/outdoor time
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ratios and myopia [61]. Indoor time spent on near-work such as homework or screen time

may lead to future generations of Indian students with longer ALs than our sample group.

Due to this, future studies may want to analyze relationships between AL and myopia in

cohorts with Indian students, as well as how this may affect cataract populations in the

future.

The benefits of understanding populations and trends in eye health are clear. For example,

in the United States, younger generations experience lower exposure to UV in the US now

compared to years prior because of public health efforts to prevent cataract. The South

Indian population provides a unique patient pool whose needs must be accounted for carefully

based on their own environmental factors. However, many studies relating to cataract surgery

tend to focus on western populations. In this study, we have shown a comparative analysis of

a South Indian group compared with a Midwestern United States group to demonstrate how

location can affect the distribution of patient populations and thus why it is important to

research a variety of different patient populations in cataract research. Additionally, we have

shown that accuracy and precision of some IOL formulas may also differ across populations.

5.6 Publication and Acknowledgements

This chapter is a submitted work: Elisa Warner, Miles Greenwald, Tingyang Li, Prashanth

Gupta, Jyothi Vempati, Karthik Srinivasan, Haripriya Aravind, Nambi Nallasamy. Com-

parison of Cataract Surgery Patients in South Indian and Midwestern United States Popu-

lations.

73



CHAPTER 6

IOL Prediction Models, Part II: Prediction of

Postoperative Intraocular Lens Position in

Cataract Surgery using Domain

Generalization

6.1 Abstract

Cataract is a serious condition characterized by a protein buildup in the intraocular lens

(IOL) leading to opacity and eventually loss of vision. Surgical replacement of the IOL

necessitates precise prediction via IOL formulas that understand relationships between IOL

power, patient biometry, and post-operative refractions. The Nallasamy Formula is an ML-

based IOL formula previously introduced to predict post-operative refraction for patients

implanted with Alcon SN60WF lens. This chapter presents the development of a domain-

generalized approach to expand the Nallasamy Formula’s prediction of post-operative refrac-

tion to additional lenses with different user populations. Since limited data was available to

train our generalized model (which we dub “Nallasamy-G”) on a multitude of various lenses,

a domain-generalization approach via understanding of lens properties was designed to assist

the model in the case of unreliable A-constants based on the supposition that target users

may not have access to optimized A-constants. Using this approach, we leveraged patient

biometric measurements such as axial length, keratometry, and central corneal thickness

across four different datasets to demonstrate promising results in post-operative refraction

prediction compared to classical IOL formulas such as SRK/T, Holladay 1, Hoffer Q, and

Haigis. Our Nallasamy-G model provides a framework for understanding why the Nallasamy

Formula is limited to the SN60WF lens and how to approach domain-generalization of the

model to other lenses for future studies that intend to extend the model to generalized IOL

power prediction of multiple lens models.
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6.2 Introduction

Cataracts are a serious condition characterized by a protein buildup in the IOL leading to

opacity and eventually loss of vision. It is the leading cause of blindness in older adults

and requires surgical replacement of the IOL to restore vision. Surgical replacements require

the use of IOL formulas, which understand the relationship between eye measurements, IOL

power and post-operative refraction to predict the right power of lens for a given desired

refraction. Failure to implant the correct lens can lead to patient dissatisfaction, the use of

corrective lenses post-surgery, or an additional surgery to correct errors [129].

IOL replacements vary widely based on the manufacturer of the lens and the needs of the

patient. Common IOL replacements are constructed from copolymers such as Polymethyl

methacrylate (PMMA) and each material can hold unique refractive indices. Other proper-

ties can include haptics and convexity of the lens at different diopters. For example, most

replacement IOLs tend to be biconvex, but some may tend to allow more curvature on the

anterior or posterior sides of the lens as the diopter increases, whereas equiconvex lenses

would require equal levels of curvature on each side as the diopter increases [3].

IOL prediction formulas based on models of the eye and empirical data attempt to assess

the best fit diopter of lens for each patient based on a handful of critical measurements

such as axial length (AL), the curvature of the cornea (keratometry, K), and central corneal

thickness (CCT). However, most formulas depend strongly on a user-defined input that is

known as the “A-constant,” a catch-all for various unaccounted determinants of IOL diopter,

including manufacturing differences and population-based differences. This somewhat sim-

plistic error correction is a critical part of every IOL formula and each formula has a unique

constant that must be tailored to their specific formula. The dependency on such constants

harbors a liability of oversimplifying a complex system within the eye and this oversimpli-

fication becomes more evident as the patient’s axial length diverges from the norm. This

was demonstrated in a previous paper [106], which found HofferQ and Holladay 1 to be

Sym Code Lens Mfr Location City Size
A FH5600AS FH5600AS Aurolab Aravind Eye Hospital Chennai 1130
B HP760AP∗ HP760AP/

HP760APY
Aurolab Aravind Eye Hospital Chennai 673

C SN60WF SN60WF Alcon Aravind Eye Hospital Chennai 985
D UMich SN60WF Alcon Kellogg Eye Center Ann Arbor 5016

Table 6.1: Description of all datasets with the code used in the paper. Our generalized model
(Nallasamy-G) was trained on the UMich dataset and evaluated on the UMich, SN60WF,
FH5600AS and HP760AP* datasets. Note that
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Input Mean Median Min Max STD

IOL power 19.79 20.5 6 30 3.71
Sex 0.43 0 0 1 0.49

Age at Surgery 71.01 71.58 12 89.45 9.4
AL 24.16 23.98 20.44 31.57 1.34
CCT 551.41 551 418 702 35.73
AD 2.7 2.71 1.52 4.21 0.41
ACD 3.25 3.26 2.03 4.79 0.41
LT 4.53 4.52 2.66 6.08 0.44
K1 43.43 43.41 37.41 50.01 1.54
K2 44.33 44.27 38.69 52.94 1.63
AST 0.9 0.73 0 12.85 0.72
WTW 12.13 12.14 7.07 14.68 0.52

Laterality 0.51 1 0 1 0.5
Rrefraction (postop) -0.55 -0.41 -6.16 1.84 0.86

Table 6.2: Demographic Table of the UMich dataset (Patients implanted with the SN60WF
lens at University of Michigan)

some of the worst offenders of this. This is also visible in formula adjustments. In SRK

II and SRK/T formulas, for example, corrective constants have to be added to the formula

as Axial Lengths deviate from the norm, because the original SRK model is too simplistic

to extrapolate far beyond average measurements. Other pitfalls of using A-constants as a

catch-all is the assumption that the A-constant can represent both configuration of the lens

as well as differences in patient populations, and that this relationship would somehow be

linear.

Our previously published AI-based Nallasamy formula [106] was demonstrated to be a

competitive alternative to other formulas such as Barrett Universal II, SRK/T, Holladay 1,

Hoffer Q and Haigis formulas for the Alcon SN60WF lens. Because the model was designed

specifically for this one lens, no A-constants were needed for the formula and the model

weights were trained specifically for SN60WF. However, model weights and trained param-

eters may differ between lens model domains, meaning the Nallasamy formula trained for

SN60WF may not extrapolate well to different lens types. Although training on data from

a multitude of different manufacturer lenses is desirable, not enough data from additional

lens types was available to train the model on diverse inputs. Therefore, in this study we

sought to increase the generalizability of the Nallasamy formula trained on patient data from

a single lens implant so that it can produce accurate predictions of other lens domains.

Domain generalization has been conducted in other studies with regards to the eye, typ-

ically in fundus imaging. In [217], mentioned in Chapter 2 augmentation of fundus images
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was used to generalize the model’s representation space to allow a greater classification net

that encompassed input images from different cameras. In another study [57], domain gen-

eralization was conducted through specialized visual transformers that randomly add more

variation and also classify using “soft” predictions. Lastly, [116] uses a deep-learning model

for automated augmentations, where the model learns augmentation strategies that lead to

different domains. The construction of a “domain decoder” in the model finally disentan-

gles domain from segmentation of the fundus image. These approaches, however, are only

applied to fundus images and cannot extrapolate to our IOL formula prediction problem.

Additionally, complex deep-learning based methodologies are inappropriate here, where our

sample sizes are relatively small for deep learning.

In this chapter, we attempt to robustify the Nallasamy formula through informed model

architectures and feature engineering. We begin with an assessment of the Nallasamy formula

performance. Then, we attempt a robustification of the Nallasamy formula’s features with

a focus on keeping predictions the same or better than the original model. This is done

through training the model on patients implanted with the SN60WF lens only. Second, we

evaluate our generalized model (which we dub ”Nallasamy-G”) using data from the Aravind

Eye Hospital in India where patients were implanted with one of three lens models.

6.3 Materials and Methods

6.3.1 Data Collection

All data in the study were obtained in accordance with the statutes of the Declaration

of Helsinki. The University of Michigan (“UMich”) data were collected from Kellogg Eye

Center in a retrospective cohort study approved by the Institutional Review Board of the

the University of Michigan (HUM00160950). Data collected from 6138 patients (9452 eyes)

who were implanted with the Alcon SN60WF (Acysoft IQ, Alcon, Fort Worth, Texas) lens

were obtained from the SOURCE database in accordance with the methods described in

[106]. After calculating valid IOL formula predictions for each patient, a full dataset of 6031

patients (9244 eyes) was collected.

A full view of patient inclusion, exclusion, and partitioning into training and testing

during the model-building phase can be viewed in Figure 6.1. Patients with prior RK or

refractive surgery were removed, as well as those exhibiting invalid measurement values.

Patients exhibiting missing data or vision worse than 20/40 were also excluded from the

study.

Testing on third-party data was performed using data obtained from the Aravind Eye
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Figure 6.1: (left) A diagram describing inclusion/exclusion from the training set and dataset
allocation into train and test for our generalized model (Nallasamy-G). (right) Model con-
struction of Nallasamy-G. The model, based on the Nallasamy Formula model, consists of
a 2-level ensemble network structure with multiple models in the level 1 ensemble which
provide outputs to a level 2 Linear Regression Stack Regressor model. In our Nall-G model,
we add a generalizing module in level 1 (mg). The output of the level 2 model is the single
post-operative refraction prediction used for analysis.

Hospital in Tamil Nadu, India. Data were collected in accordance with Indian Heath Service

Institutional Review Board criteria (RET202100362). The data consisted of patients who

were administered either the FH5600AS lens, HP760AP/HP760APY (dubbed “HP760AP*”)

lens, and SN60WF lens (Aurolab, Tamil Nadu, India). The data collected for both groups

consisted of primarily pre-surgical information such as axial distance (AD), K1 and K2 ker-

atometry measurements, age at surgery, anterior chamber depth (ACD), axial length (AL),

lens thickness (LT), white-to-white distance (WTW), and central corneal thickness (CCT).

Surgical information included the IOL power of the implanted lens and the postoperative

refraction of each patient. Patients with BCVA worse than 6/12 (or 20/40 vision) were ex-

cluded from the study. Patients with prior refractive surgery were also excluded and missing

data removed.

6.3.2 Evaluation of the Nallasamy Formula

The Nallasamy Formula metrics are included in this paper. Since the Nallasamy Formula

is constructed with features that depend on A-constants, these features were generated for

each dataset based on an A-constant set which matched the lens of the dataset. Since the

78



Nallasamy Formula is based on an ensemble framework [105] (illustrated in Figure 6.1, a

feature importance analysis was conducted on two of the level 1 models.

6.3.3 Obtaining A-Constants

This study assumes that an IOL formula user would not have access to their own empirically-

optimized A-constants. Therefore, two primary scenarios were considered: 1) The presence

of no A-constants except the manufacturer A-constant. The manufacturer A-constants were

obtained from manufacturer websites and product guides (Aurolab, Alcon). Because multiple

A-constants are needed for our model, an A-constant conversion was performed using the

ULIB A-constant converter [2]. 2) The presence of empirical A-constants given by another

party. In this paradigm, we assume the user has access to only publicly-available studies

where third party datasets were tested for optimal A-constants. In this case, A-constants

for each of the lenses in FH5600AS, SN60WF were extracted from the ULIB optimized A-

constants table [2]. Note that the Alcon SN60WF lens contains multiple entries, including

a general set of A-constants, one from Japan, and one from India. Because the Aravind

data comes from India, we believed the A-constants listed for SN60WF (India) were a better

representation of a use case of our data. For the UMich dataset, we utilized the general

SN60WF A-constants, which were not labeled with any country. A-constants were obtained

in this study for SRK/T, Haigis, Holladay and Hoffer Q IOL formulas.

For a final comparison, optimized A-constants were also obtained in a post-hoc analysis.

These A-constants are obtained via a grid search optimization whereby the selected constant

minimizes the absolute mean error (ME) of the test dataset. Note that this last paradigm

was conducted as a post-hoc test, meaning that all IOL formula results shown for SRK/T,

Haigis, Holladay1 and HofferQ, are at their best predictive values fit to the test datasets

after all other analyses were finished.

6.3.4 Data Interpolation

To improve model performance, data was interpolated at each fold to increase training set size

by 10000 samples. Each interpolated data point was created by averaging the measurements

and refraction for four randomly chosen patients. Interpolated data were then concatenated

with the fold’s training set before model training.

79



Type Dataset Haigis HofferQ Holladay1 SRK/T

ULIB
FH5600AS 0.68 4.92 1.120 117.8
SN60WF 1.35 5.53 1.76 118.9
UMich -0.769 5.64 1.84 119.9

Manufacturer

FH5600AS 1.52 4.85 1.11 117.8
HP760AP* 1.714 5.37 1.62 118.7
SN60WF 1.904 5.56 1.80 119.02
UMich 1.904 5.56 1.80 119.02

Table 6.3: A-constants used for this analysis. ULIB did not contain A-constants for
HP760AP*. Haigis a1 and a2 constants were assigned as the default (a1=0.4,a2=0.1) for
every dataset except for the SN60WF University of Michigan (UMich) dataset, which was
assigned as a1=0.234, a2=0.217 according to the ULIB A-constant table. It was assigned
with the default constants, however, in the Manufacturer set, as assigned by the A-constant
converter.

Figure 6.2: The count of available eyes by Axial Length for each dataset.

6.3.5 Model Development

Due to our limited dataset size and number of observable features, we selected a classical

machine learning approach similar to the Nallasamy Formula [106]. Since a single model

is prone to heavier bias, we selected a late ensemble approach. The model consists of two
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levels of computation : 1) an initial predictor level consisting of individual predictions from

multiple ML models (Level 1), and 2) a Stacking Regressor (Level 2), designed to take as

input the output of each of the level 1 models and compute a final prediction.

Because many of the initial inputs are measurements that can benefit from additional

mathematical operations that connect and represent interactions between values, we believed

ANNs to carry some of the best potential for accurate prediction. Therefore, we added a

“generalizing model” ANN consisting of 3 hidden layers of 700 nodes each. Models were

optimized via a grid search approach in the training set.

6.3.6 Feature Engineering

As the feature analysis of the previous Nallasamy Formula indicated the Nallasamy Formula

model to be highly dependent on the correct choice of A-constants, a focus of our new

generalized model was for less reliance on A-constants and as a result focus on various

eye calculations that do not include A-constants. Consequently, 33 features were added to

the model and 9 features were removed which were believed to not contribute additional

information towards the predicted output.

New features include the following A-constant based measurements:

1. A1A2 : a1× ACD + a2× AL (as calculated by Haigis)

2. SRKII : SRK II predicted IOL power given a refraction,

New features also include the following non-A-constant based features:

1. defaultBarrettModIOL - the predicted IOL by our modified Barrett for 0 refraction

(see 6.3.6.1)

2. barrettModRefraction - the predicted refraction by Barrett Mod for given IOL (see

6.3.6.1)

3. defaultBarrettOrigIOL - Original IOL predicted by Barrett for 0 refraction [16]

4. ThinLens : Thin Lens predicted IOL power given a refraction,

and the following non A-constant-based theoretical eye equations:

5. defaultThickness - lens thickness calculated by Barrett [17]

6. Preop RCP - preoperative peripheral radius of the cornea calculated by Barrett [17]

7. Preop RG - preoperative radius of posterior segment of globe calculated by Barrett [17]
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Figure 6.3: (left) Diagram of the eye model we propose for calculating the pred RCP feature,
which estimates the radius of the peripheral cornea. Our diagram is similar to that shown
in [17], but is a simplification which estimates the RCP as slightly longer to make the length
calculable. (right) Diagram of the universal eye model proposed in [16], used as the basis
for our Modified Barrett I formula. The pre-surgical lens thickness was estimated as a proxy
for the lens capsule size and used to make estimates for v, which measures the distance to
the posterior focal point of the eye. Note that e1 and e2 represent first and second principal
planes of the lens, respectively. Rs represents a corrected post-operative refraction. Variables
n1 and n2 are described in Appendix D

8. Preop RC - preoperative central anterior radius calculated by Barrett [17]

9. Preop P - Preoperative Q factor (called P factor in Barrett’s paper), as calculated by

Barrett [17]

10. Orig Curv : predicted curvature of lens by original Barrett formula [16]

11. Orig CornealPower : predicted corneal power by original Barrett formula [16]

12. F2 Orig : predicted power of posterior surface of implant by original Barrett formula

[16]

13. F1 Orig : predicted power of anterior surface of implant by original Barrett formula

[16]

14. E2 Orig : projected distance from posterior side of lens to second principal plane by

original Barrett formula [16]
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15. E1 Orig : projected distance from anterior side of lens to first principal plane by

original Barrett formula [16]

16. U Orig : image distance by original Barrett formula [16]

17. V Orig : object distance by original Barrett formula [16]

18. defaultSRK : SRK assessment of IOL given refraction of 0 [161]

19. SRKRefraction : SRK assessment of refraction given IOL [161]

20. HofferACD: Hoffer’s relationship between postoperative ACD and AL

21. BinkhorstACD : Binkhorst’s modified ACD

22. OlsenpACD : Olsen’s postoperative ACD

23. NaeserpLoc : Naeser’s posterior lens capsule location

24. SRK C2 : corneal width as calculated by SRKT [161]

25. SRK H : Corneal height as calculated by SRKT [161]

26. SRK LCOR: Corrected axial length as calculated by SRKT [161]

27. SRK pACD: post-operative ACD as predicted by SRKT [161]

28. Preop Foc : AL− ACD − LT

29. Haigis ACD : anterior chamber depth as calculated by Haigis

30. pred RCP : A guess at Barrett’s predicted radius of corneal power based on his 2nd

paper

31. Barrett pACD : A guess at Barrett’s predicted postop ACD based on his 2nd paper

In particular, the barrettModRefraction and its inverse defaultBarrettModIOL, along with

pred RCP, were novel constructs developed for this formula. Selected equations for features

1-31 can be viewed in Appendix D. The predicted radius of peripheral cornea or pred RCP

algorithm pseudocode can be viewed in Appendix E, and our modified Barrett algorithm

can be viewed in Appendix G. The original Barrett from which our modified Barrett was

based can be found in Appendix F.

As stated above, nine features from the Nallasamy Formula were omitted from this study.

Among those were removed in our model were features that demonstrated no variation within

training data or were deemed poor predictors of the outcome.
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NAME MAE ME MedAE 0.5D%

STACKING 0.3098 0.0331 0.2424 0.8016
Generalized Module 0.3142 0.0487 0.2438 0.8016

Holladay1 0.3706 0.0207 0.2980 0.7398
SRK/T 0.3760 0.0144 0.2999 0.7318
HofferQ 0.4038 0.0091 0.3311 0.7029
Haigis 0.3632 0.0237 0.2894 0.7468
Barrett 0.3280 0.0376 0.2564 0.7827
Kane 0.3148 -0.0196 0.2436 0.7986

Table 6.4: Nallasamy-G’s performance on the test set (UMich) by ensemble model. Compar-
isons with optimized constants for Holladay1, SRK/T, HofferQ, Haigis, Barrett and Kane
are given at the bottom

6.3.6.1 Our Modified Barrett I

One new non-A-constant-based feature we included in the model to boost generalizability was

a modified formulation of Barrett’s first IOL prediction formula [16]. In this first rendition,

Barrett makes several assumptions, including a fixed lens thickness of 1 mm and a posterior

radius of curvature of the implanted lens of 25 mm. In our modified version, we made three

express changes:

1. IOL thickness: IOL thickness was calculated within the formula using the following

equation, based on Barrett’s introduction to his Universal II formula [17]

T = (RA−
√

RA2 − ((OD/2)2)) + (RP −
√
RP 2 − ((OD/2)2)) (6.1)

, where RA is anterior radius of curvature and RP is posterior radius of curvature.

In the original formula, the posterior radius is given a fixed constant of 25 mm. Instead

of this, we consider the lens convexity in our calculation. Based on optics of biconvex

lenses, we know that

OD = P1 + P2 (6.2)

, where OD is the overall power of the biconvex lens in diopters, P1 is the power of

the anterior lens and P2 is the power of the posterior lens. Lens power is related to

curvature with the following equation:

P = (N2 −N1) ∗ 1000/R (6.3)
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, where R is radius of curvature of the lens and P is the power in diopters. N2 and

N1 are equivalent to the refraction index of the lens material and the aqueous humor,

respectively.

In our modified formula, anterior and posterior curvature is based on a lens power

which is dependent on the manufacturer build of the model, allowing currently either

equiconvex or anterior asymmetric designs. In the equiconvex design, the assumption

of the relationship between P1 and P2 is such that

P1 = P2 (6.4)

. However, in anterior asymmetric designs where we assume greater curvature is as-

signed to the anterior lens side, the assumption is a relationship where a greater fraction

of the overall OD of the IOL is placed on the anterior surface:

P1 = 2P2 (6.5)

Note that this change expressly affects IOL thickness and that this thickness differs

based on the curvature of each lens, even if the total IOL power remains the same.

This can be viewed in Figure 6.11, where an fixed IOL power of 21.0 D demonstrates

a quadratic relationship with the anterior lens power, reaching it’s lowest point when

the lens is equiconvex (anterior power equals posterior power).

2. Placement of principal planes: Because biconvex lenses with stronger anterior

power would contain a thinner posterior lens than an equiconvex lens, the placement

of posterior principal plane (see measurement e2 in Fig 6.1) is assumed to be positioned

more anterior than its location in a biconvex lens. This adjustment is small.

3. Change to Olsen’s number: The refractive index for the aqueous humor of the eye

was updated from Binkhorst’s number of 1.336 to Olsen’s number of 1.3315 [173].

4. Improved Axial Length assumptions: Experimentally-derived axial lengths for all

patients were increased by 0.13 for the formula as an estimation of the distance between

the back of the retina and the fovea in accordance with Barrett’s modifications in the

Universal II formula [17].
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Figure 6.4: Predictive Error of the UMich dataset (Patients implanted with the Alcon
SN60WF lens at the University of Michigan Kellogg Eye Center) broken down by diopter
range of error.

6.3.7 Postoperative ACD and Radius of Corneal Power

Anterior Chamber Depth (ACD) is a measure from the anterior surface of the cornea to the

iris (see Figure 6.1). While preoperative ACD measurements can be obtained, placement

of the IOL during cataract surgery is known to change this number. While the calculation

of postoperative ACD is widely disputed [173, 74, 136], this study follows the equations of

Barrett in [17]:

pACD = AL− 0.593 + 0.13−RG−
√

RG2 −RCP 2 + (RCP − ACD)2 (6.6)

, where AL is Axial Length, RG is radius of curvature of the globe’s posterior segment,

and RCP is peripheral radius of the cornea. While Barrett’s process for pACD calculation

appears to be iterative, we instead use preoperative ACD (ACD) on the right side of the

equation with the assumption that preoperative ACD is a predictor of postoperative ACD.

Radius of curvature (RG) is assessed with the following formula:

RG = 0.35066× AL− 0.06607×K + 5.70871 (6.7)

,where K represents the mean of preoperative keratometry measurements for both eyes.

RCP is given in [3] as the following formula:

RCP = (
√

RC2 + (1− PZ)× 52)3/RC2 (6.8)

, where PZ is the “p-factor” of the cornea, a measurement of asphericity. (P-factor is now
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Figure 6.5: Prediction Error performance of HP760AP* models with Manufacturer A-
constants. Our model demonstrated the highest percentages of errors below 0.25D, 0.75D
and 1D compared to all other models presented. Given that the HP760AP* has no ULIB
record for empirically derived constants, this dataset presents a perfect use case of generalized
model and demonstrates that the model remains robust under Manufacturer A-constants.

called Q-value and has been shown in other studies to influence post-operative refraction

outcomes [169]). RC represents the central radius of the cornea and is based on solving for

RC in the following formula which defines the relationship between radii of the cornea and

the power of the cornea, from [17]

KC = (376/RC)− (40/RCC) + (0.00052/1.376)× (376/RC)× (40/RCC) (6.9)

. KC is the power of the cornea and was set to K, the mean of preoperative keratometry

measurements for both eyes. RCC is the central posterior radius of the cornea and can

be easily calculated as RC × 0.883 based on empirically-observed similarities between the

central radius (RC) and central posterior radius (RCP ) (see Figure 6.1).

Note that while RC can be calculated with our empirically-obtained measurements, PZ

cannot. Therefore, we conduct an iterative process for PZ which includes the SRK/T A-

constant and white-to-white distance as a way to estimate best fit for predicted RCP .

In order to test whether or not the Q-value PZ is appropriate, a predicted RCP is

calculated for some assigned PZ value based on the equation above. If the predicted RCP
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with this assigned PZ is higher than RG, a new PZ is assigned and RCP is recalculated.

Conversely, if the RCP is greater than RG, we next try to predict ciliary distance using RCP.

Note that RCP and RG are both radii and thus form two intersecting circles (Figure 6.1).

The distance between the two radii can be estimated to be roughly equivalent to RG−LF ,

where LF is the lens factor. The lens factor is defined as the distance between the ciliary

plane or iris and the second principal plane. We strove to calculate a rough estimate of

corneal distance to estimate the appropriateness of the predicted RCP .

Corneal distance (CD) is estimated to be equivalent to the length of the chord of the

intersecting circles. Once CD is calculated based on the predicted RCP and RG, it is

assessed for feasibility. CD must be greater than 0. Additionally, we use white-to-white

(WTW), a measurable variable, to assess good fit. If the calculated CD from the predicted

RCP is within a tolerable distance from the WTW calculation, the iterative process is

stopped and both the predicted RCP and the resulting postoperative ACD are obtained

from this fit. If not, the model iterates to a new assigned PZ until an appropriate fit is found.

Note that some patients do not have a WTW measurement. If WTW is not available, an

estimate of 12 mm is imputed here, as most human corneal diameters range from 11-13 mm

[17].

6.3.8 Model improvement evaluation and validation

A five-fold cross validation was utilized for training and validation across the level-1 models.

A stacking model consisting of the results of all level 1 models and based on linear regression

was utilized in the training set on all five folds, then applied to the test set. All models

were trained with the “UMich” Alcon SN60WF model but tested on all other models and

populations.

Models were evaluated using refraction MAE, ME, MedAE, and Formula Performance

Index (FPI). We define mean absolute error as the following:

refraction MAE =

∑n
i=1 |yi − ŷi|

n
(6.10)

Mean error is defined simply as

ME =
1

n

n∑
i=1

|yi − ŷi| (6.11)

. Lastly, we define FPI as the following, first defined by Hoffer et al [75]:
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FPI =
1

SD +MedAE + 10 ∗ abs(m) + 10× (n10)−1
(6.12)

, where m is defined as the slope coefficient of an ordinary least squares estimator where

prediction error is regressed onto axial length, SD is sample standard deviation, and n

represents the proportion of the dataset with an absolute predictive error < 0.5.

6.3.9 Statistical analysis

All analyses were performed using Python 3.8 with the scipy package.

To analyze the importance of each feature, we conducted multiple feature analyses of

Dataset Formula MAE ME MedAE STD AE< 0.5 m FPI

A

Nall-G 0.2936 0.1378 0.2339 0.4194 0.8434 0.0866 0.3697
Nall. 0.6471 0.6291 0.6071 0.435 0.3584 -0.1531 0.1864
Haigis 1.2309 1.2239 1.215 0.5283 0.0575 -0.5198 0.0411
HofferQ 0.3322 -0.1065 0.2611 0.4641 0.7947 -0.2135 0.2428
Holl. 0.2848 0.0054 0.2041 0.4395 0.8522 -0.0483 0.4348

SRK/T 0.297 -0.055 0.233 0.4378 0.8575 -0.0634 0.4048

B

Nall-G 0.2891 -0.1088 0.2469 0.3541 0.8158 0.2041 0.2586
Nall. 0.3626 0.2817 0.3144 0.3439 0.74 -0.0851 0.3496
Haigis 0.6121 0.5839 0.566 0.4135 0.4264 -0.4568 0.1267
HofferQ 0.3882 -0.2902 0.3291 0.3873 0.6805 -0.1953 0.2416
Holl. 0.3204 -0.1922 0.2527 0.364 0.7771 -0.0049 0.5123

SRK/T 0.322 -0.1814 0.2532 0.3751 0.7831 -0.1152 0.3271

C

Nall-G 0.2525 0.0473 0.2126 0.3154 0.8883 -0.1339 0.3341
Nall. 0.547 0.5251 0.5417 0.3311 0.4447 -0.4941 0.124
Haigis 0.8298 0.8104 0.8155 0.4406 0.2122 -0.8537 0.0689
HofferQ 0.3051 -0.0337 0.2494 0.387 0.8234 -0.694 0.1138
Holl. 0.2729 0.052 0.224 0.3426 0.8538 -0.5947 0.1301

SRK/T 0.2782 0.0868 0.2342 0.3423 0.8416 -0.7156 0.1121

D

Nall-G 0.3316 0.1355 0.2612 0.4155 0.7757 -0.2433 0.2273
Nall. 0.5155 0.4411 0.4702 0.4301 0.5394 -0.6601 0.1069
Haigis 0.582 0.4608 0.5332 0.5424 0.4706 -1.2086 0.0654
HofferQ 0.4233 -0.2212 0.3468 0.4984 0.664 -0.7949 0.0971
Holl. 0.3744 -0.0963 0.2904 0.4826 0.7348 -0.6978 0.1097

SRK/T 0.3775 -0.0633 0.3112 0.4843 0.7268 -0.4304 0.1544

Table 6.5: Performance comparison of our model against five formulas (the Nallasamy
formula, Haigis, HofferQ, Holladay1, and SRK/T formula) for the following datasets: A)
FH5600AS, B) HP760AP*, C) SN60WF (at Aravind), D) UMich (patients implanted with
SN60WF). All models were constructed with Manufacturer A-Constants.

89



Figure 6.6: Prediction Error for Aurolab FH5600AS lens (Aravind). Bar labels show the
percentage of patients within each error category. No labels are shown for percentages less
than 5%. Errors less than 0.5 D are considered fair.

both the model and its performance under variations in each dataset’s features. As tree-

based models have an intrinsic ability to denote feature importance, two tree-based models

inside of our ensemble model were analyzed on feature importance using scikit-learn and also

compared to our predecessor, the Nallasamy formula. In addition, partial dependence plots

were constructed for the Stacking Regressor to analyze the impact of incremental changes to

specific features on the output error. ICE plots were also constructed to analyze the impact

of IOL formulas as features in our model. Lastly, a univariate analysis consisting of each of

the new features’ abilities to predict post-operative refraction were deployed using statsmod-

els.api in Python. Correlation coefficients of variables versus post-operative refraction were

calculated with the pearsonr() function in scipy.stats.

6.4 Results

6.4.1 Data characteristics

Count of Eyes by Axial Length can be seen in Fig 6.2. Among the datasets collected at

Aravind (FH5600AS, HP760AP*, SN60WF), the most common ALs were between 21-23

mm, with a slight left skew to higher ALs. The Aravind datasets for the SN60WF and

FH5600AS lenses contain higher proportions of short ALs (< 22.0 mm) compared ot the

UMich dataset. The UMich dataset, however, contained a comparatively larger proportion

of long ALs (< 26.0 mm). However, note that even for the UMich dataset, there is still only
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a small proportion of long ALs available (N=9).

Demographic information for the UMich dataset, which made up training and testing,

can be found in Table 6.2. Demographic information broken up by sex for the HP760AP*,

FH5600AS, SN60WF and UMich datasets can be found in Chapter 5 table 5.2. The mean

IOL power contained in the dataset was 19.79 D with a standard deviation 3.71 D. As sex

was labeled “1” for a male and “0” for a female, the mean of 0.43 signifies a slightly larger

proportion of female patients in the dataset. Both mean (-0.55 D) and median (-0.41 D)

refraction for the UMich dataset was negative.

6.4.2 Model performance improvement

Performance breakdown of the Nallasamy-G generalized model on the UMich test set are

given in Table 6.4. The level-2 Stacking Model performed with an MAE of 0.3098 and a

ME of 0.0331. It managed to predict postoperative refraction with 0.5 D for 80.16% of

the dataset. Although not all single models in the level-1 ensemble performed better than

the best comparable IOL formula, Kane (MAE: 0.3148), the level-2 Stacking model (our

final generalized model), performed better in MAE, MedAE (0.2424 vs Kane 0.2436) and

percentage of errors within 0.5 D (0.8016 v Kane 0.7986).

The breakdown of feature importance for the two level 1 models can be viewed in figure 6.9.

The breakdown of feature importance in the same models for the Nallasamy formula can be

viewed in figure 6.12. In the first model, the most important features are the two A-constant

based features and the modified Barrett predictions. For the second model, two A-constant

based features and the modified Barrett are also the top three features. In the original

Nallasamy formula, all top features were A-constant based. Note that our modified Barrett

is among the top features in the Nallasamy-G model and does not require an A-constant.

Also note that the importance of anatomy-based features are higher in Nallasamy-G than in

the Nallasamy formula, where feature importance for anatomy-based features appears close

to zero.

Partial Dependence plots demonstrating the effects of the input variables on refraction

prediction error for FH5600AS are given in figure 6.13, for HP760AP* are given in figure

6.14, for SN60WF (Aravind) are given in figure 6.15, and for UMich are given in figure 6.16.

Partial Dependence plots show how the average MAE is influenced by incremental changes

in a single feature. The graphs for all datasets demonstrate a similar pattern among the

input variables. CCT and age at surgery appear to have some of the largest impacts on

change in refraction error.

Partial Dependendence graphs demonstrating the effect of predicted RCP, our modi-
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Figure 6.7: Patient predictive error for Alcon SN60WF at Aravind. Labels on the bars
represent percentages of patients within the error range.

fied Barrett formula, and the ThinLens formula on refraction prediction error are given for

FH5600AS in figure 6.17, for HP760AP* in figure 6.18, for SN60WF in figure 6.19 and for

UMich in figure 6.20. For all datasets, the Barrett Modified refraction formula demonstrates

the highest slope, or the strongest influence on refraction prediction error of the three fea-

tures listed. This signifies that predictions made by the Barrett Modified formula feature

are among the most powerful in swaying the prediction.

Finally, ICE graphs demonstrating the A-constant-based features from the Nallasamy

Formula compared with ThinLens and Barrett Modified formula features are given for

FH5600AS in figure 6.21, for HP760AP* in figure 6.22, for SN60WF in figure 6.8, and

for UMich in figure 6.23. ICE graphs show partial dependence like a Partial Dependence

plot, but also indicate how a single instance’s MAE changes when the feature changes. For

all datasets, the Barrett Modified formula demonstrates one of the highest slopes of the six

IOL formula features, indicating that changes in this feature have among the highest influ-

ences towards refraction prediction and subsequently refraction prediction error. Note that

in the UMich dataset, two of the original Nallasamy Formula A-constant based features also

appear to have steeper slopes, but this effect is less apparent in the Aravind datasets, pos-

sibly signifying our modified Barrett as the primary determinant of postoperative refraction

when A-constants are less reliable.

92



Figure 6.8: Partial dependence plots for IOL formula-based input features of the SN60WF
(Aravind) lens dataset. Empirical constants are being used to demonstrate the model’s
performance in the first use case.
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Figure 6.9: Feature Importance of Our Generalized Method (Nallasamy-G). The feature
importances were extracted from two tree-based level 1 models. Asterisks denote features
belonging to the original Nallasamy formula and the color of Asterisk indicates the category
of each feature (Box 1 A-constant based, Box 2 Non A-constant anatomic, Box 3 constant)
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6.4.3 Model generalization performance

Performance of Nallasamy-G on the UMich test set under different A-constants can be seen in

Figure 6.4. Under the experimentally-derived A-constants from ULIB, our method slightly

underperforms at 50.15% predictions within 0.25 D and 79.96% predictions within 0.5 D

compared to the Nallasamy Formula which performs at 50.45% of predictions within 0.25 D

and 80.96% predictions within 0.5 D, but our model remains among the top IOL formulas

compared Haigis (44.07% at < 0.25 D and 75.48% at < 0.5 D), HofferQ (38.48% at < 0.25 D

and 69.09% at < 0.5 D), Holladay 1(43.17% at < 0.25 D and 73.78% at < 0.5 D), and SRK/T

formulas (40.68% at < 0.25 D and 72.38% at < 0.5 D). When comparing formulas under the

Manufacturer A-constant, our generalized Nallasamy-G formula demonstrates not only the

highest percentages of errors below 0.25 D (47.96%) and 0.5 D (77.57%), but also significant

improvement over the Nallasamy Formula, which exhibits only 23.63% of predictions with

errors within 0.25 D and 53.94% of predictions with errors within 0.5 D. The Haigis formula

is also notably low, with only 24.63% of errors within 0.25 D and 47.06% of errors within

0.5 D.

Performance of our domain-generalized Nallasamy-G method on all datasets with Man-

ufacturer A-constants compared with the Nallasamy formula, Haigis, HofferQ, Holladay 1,

and SRK/T are given in Table 6.5, as measured by MAE, ME, MedAE, Standard Devia-

tion (STD), Absolute Error (AE)< 0.5 and FPI. For all datasets, our Nallasamy-G model

significantly outperforms the Nallasamy Formula under manufacturer A-constants, demon-

strated lower MAE, ME and MedAE, with higher percentages of absolute error below 0.5 D.

FPI is also higher with Nallasamy-G than for the Nallasamy Formula. When compared to

other IOL formulas to which a manufacturer A-constant could be converted, our Nallasamy-

G demonstrates competitive performance across all datasets. MAEs for UMich, SN60WF

(Aravind) and HP760AP are the lowest with the Nallasamy-G model compared to all other

formulas. For the equiconvex FH5600AS dataset, our model is only beat by Holladay 1 in

MAE. We also note that MedAE remains the lowest among all other competing formulas

for the UMich, SN60WF (Aravind), and HP760AP* datasets, but in the FH5600AS lens our

Nallasamy-G generalized model produces the third lowest MedAE.

One critical observation from this chart is that Haigis is the worst performer of all formulas

under manufacturer A-constants. Note that the a1 and a2 constants provided by the ULIB A-

constant converter for manufacturer A-constants were Haigis’ default values of a1 = 0.4, a2 =

0.1. This differs from the a1 and a2 constants trained in the model, which were specifically

tailored for the SN60WF.

Performance of our method with ULIB A-constants are given in Table 6.9. Note that

HP760AP does not have ULIB A-constants and therefore does not appear in the table. Under
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these empirical constants, note that our model makes improvements upon the Nallasamy

Formula as measured by MAE and FPI. Although ME is slightly worse with the UMich

dataset, it is dramatically improved for the SN60WF at Aravind dataset and FH5600AS.

Additionally, although MedAE reamins the same for the UMich dataset compared with

the Nallasamy Formula, there is some improvement with the SN60WF at Aravind dataset

and dramatic improvement with the FH5600AS dataset. When compared to the other IOL

formulas, our Nallasamy-G model remains competitive. Across both SN60WF datasets, at

Aravind and UMich, we see the best MAE, STD and FPI. With our equiconvex FH5600AS

lens dataset at Aravind, we note MAE and MedAE of Nallasamy-G was second-best to the

Holladay 1 Formula. Critically, we note for all lenses that the absolute ME of Nallasamy-G is

less than 0.1, which signifies a relatively “well-centered” model under empirical A-constants,

even for the FH5600AS lens dataset.

A stacked bar chart visualization of performance break down by absolute error can be

seen in Figure 6.6 for FH5600AS lens dataset. Note that for the FH5600AS dataset, Haigis

performs particularly poorly for under the manufacturer A-constant, with less than 5% of

errors below 0.25 D and 0.5 D, respectively. Accordingly, the Nallasamy Formula appears

to also produce very low predictions, with only 11.86% predictions below 0.25 D. This is

in stark contrast to its performance with ULIB empirical A-constants, where 31.95% of

predictions are below 0.25 D. Contrastly, Nallasamy-G remains robust across empirical and

manufacturer A-constants, demonstrating 54.78% of errors below 0.25 D with ULIB empirical

A-constants and 53.19% of errors below 0.25 D with the manufacturer A-constant. Our

model’s performance is similar to SRK/T.

Stacked bar charts for the SN60WF at Aravind dataset are given in Figure 6.7. Recall

that this lens is the same as the training set, but population demographics differ. Note that

once again, the Nallasamy Formula follows a similar pattern with Haigis, where performance

dramatically drops in the presence of the manufacturer A-constant (Haigis: 9.44% errors

within 0.25 D and Nallasamy 18.38% errors below 0.25 D). Nallasamy-G demonstrates the

highest absolute error percentages below 0.25 D (56.68% under ULIB A-constants and 56.88%

under manufacturer A-constant) and below 0.5 D (88.53% under ULIB A-constant and

88.63% under manufacturer A-constant) compared to all other formulas, including the next

most competitive formula, Holladay 1 (55.23% and 54.42% under 0.25 D error and 85.99%

and 86.38% under 0.5 D error under ULIB and manufacturer A-constants, respectively).

Since HP760AP* was not listed in the ULIB A-constant list, a performance analysis

under manufacturer A-constants only is give in figure 6.5. Our model outperforms all other

models in under 0.25 D error (50.67% compared with 39.08% Nallasamy, 49.33% Haigis,

49.63% Hoffer Q, 19.61% Holaday1, 39.52% SRK/T) and 0.5 D (81.51% compared to 74.0%
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Nallasamy, 78.0% Haigis, 77.71% Hoffer Q, 42.64% Holladay1, 68.05% SRK/T).

All model performances using optimized A-constants is given and described in Appendix

H.

6.4.4 Retraining performance

A line graph comparison of performance of retraining the level 2 Stacking Model can be seen

in figure 6.10. Both the FH5600AS and HP760AP* lenses appear to consistently perform

better than the pre-trained model after about 75 samples. For the SN60WF lens implanted

at Aravind, the model improves over the pre-trained model after approximately 250 samples.

6.4.5 IOL Formula Correlations and Univariate Analysis

Correlations of all IOL formula post-operative refraction predictions against ground truth

are given in Table 6.8. Both ML-based methods, including our generalized Nallasamy-G and

the Nallasamy Formula, outperformed the other comparative methods.

Univariate Analysis results sorted by correlation metric ρ can be seen in Table 6.7. Our

modified Barrett, SRKII and SRK refraction predictions appear to be among the top predic-

tors of post-operative refraction with ρ correlation coefficients of 0.8435, 0.7566, and 0.6759,

respectively. As individual predictors of post-operative refraction, they explain 71.15%,

57.24% and 45.68% of the variability observed in post-operative refraction, respectively. Our

modified Barrett formula remains among the fourth best correlates overall when including

the Nallasamy Formula features, explaining its presence among the top predictive features

from the tree-based feature analyses.

6.5 Discussion

It is important for cataract surgeons to have a proper understanding of the relationship be-

tween an implanted lens and the post-operative refractions of patients after cataract surgery.

Wrongful predictions can result in the need for corrective lenses or a second surgery to correct

for errors. The previously published AI-based Nallasamy formula [106] was demonstrated

to predict post-operative refraction outcomes with high accuracy, serving as a competitive

alternative to other formulas such as Barrett Universal II, PearlDGS, SRK/T, Holladay 1,

Hoffer Q and Haigis formulas for the Alcon SN60WF lens. However, the Nallasamy formula

was never constructed for lens models other than the Alcon SN60WF and was shown here

to generalize poorly to even populations with the same lens implant if A-constants no longer

match the trained A-constant set. This is because model weights and trained parameters
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differ between lens model domains, meaning the Nallasamy formula trained for SN60WF

does not extrapolate to different lens types. Therefore, in this study we sought to increase

the generalizability of the Nallasamy formula to other lens domains and lower the model’s

overall dependence on A-constants so as to robustify it.

In our revised version of the Nallasamy formula, we assessed generalization using one test-

ing dataset from the University of Michigan in Ann Arbor and three datasets obtained Ar-

avind Eye Hospital in Tamil Nadu. In the Aravind datasets, one dataset tested Nallasamy-G

on the same lens implant in a different population, while the other two tested its performance

on two different lens types. Given the difficult nature of obtaining optimized A-constants,

we obtained two separate A-constant sets for our datasets under the assumption that a user

would not have enough data from which to optimize an A-constant and therefore leverage

an online public library (ULIB) for A-constants or would prefer to use the manufacturer’s

A-constant.

The testing set performance of the generalized Nallasamy-G demonstrated some small

difference with the Nallasamy Formula under ULIB constants but a dramatic improvement

over the Nallasamy Formula with only the manufacturer A-constant available. When com-

pared to the Aravind datasets, Nallasamy-G was shown to demonstrate consistently low

MAEs with high percentages of per-lens diopter error less than 0.25 D and 0.5 D in post-

operative refraction prediction assessments across all three datasets under both A-constant

scenarios, ranking either first or competitively among four non-proprietary IOL formulas

Figure 6.10: Retrain Performance of Different Lenses. For each of the lenses implanted at
Aravind, a number of training samples were presented as retraining material for the pre-
trained level 1 Stack Regressor. The x-axis illustrates the number of data points given to
the level 1 Stack Regressor as training data and the y-axis gives the MAE of the model
after retraining. The dashed lines indicate baseline comparators: in red, the pre-trained
generalized Nallasamy-G model’s performance without retraining, and in green, the SRK/T
value. Note that the A-constants used for this analysis are optimized A-constants.
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where A-constants could be obtained. Critically, Nallasamy-G showed in some cases dra-

matic improvement over the Nallasamy Formula for A-constant sets drastically different

from the SN60WF (Manufacturer sets), or lenses different from the SN60WF. For the latter,

this is most notable for the equiconvex FH5600AS dataset, because the lens thickness of an

equiconvex lens is different from anterior- or posterior-dominant lenses, affecting the position

of the lens planes.

The generalized Nallasamy-G model is the product of an expanded ensemble consisting of

more opportunities for mathematical interactions between features to be found as well as the

inclusion of an expanded set of features that do not require an A-constant. Notably, we have

shown part of the model’s strength to be related to the inclusion of our own modified Barrett

formula, which we demonstrated through partial dependence plots and feature importance

graphs to be a strong influence on the model and one of the model’s most important features

for two tree-based models in the ensemble. Independently, we verified that the Modified

Barrett was shown to be the third most correlated feature with post-operative refraction

prediction in a post-hoc univariate analysis.

We also found our algorithm for predicted radius of peripheral cornea (RCP) value to

appear in the top 12 most important features in both level 1 models from our feature impor-

tance analysis. In partial dependence analyses, the predicted RCP variable demonstrated

influence on Nallasamy-G that was similar to the performance of the ThinLens formula. The

predicted RCP feature made use of white-to-white measurements and the SRK/T A-constant

to predict a corneal radius measurement of the eye.

The use case of our model is specifically designed for scenarios where optimized A-

constants cannot be derived due to a lack of data. In these cases, our method demonstrates

promise as a robust method for lower mean absolute error compared to our more accurate and

robust postoperative refraction predictions compared to our previous model, the Nallasamy

formula, and is competitive with other models shown here. We also tested a paradigm where

enough data was available to retrain the Stacking layer of Nallasamy-G and attempted to

determine the amount of samples needed to improve the model under optimized constants.

While each lens retrain resulted in a different number of training samples to improve the

MAE of Nallasamy-G, we found that all tests demonstrated improvement at or before 250

samples.

However, this study still has many limitations that may require more work to ameliorate

before the model is ready for real-world clinical use. This study was designed to improve

upon the well-predictive Nallasamy Formula so that it could generalize to other lens types,

with the significant constraint being that the training data comes from only a single lens

model (SN60WF) in a single population (University of Michigan). This study finds that
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generalization of the model to the lenses provided is possible under certain conditions such

as understanding some information about the target lens geometry. However, more data

from other lenses is recommended to understand the limitations of the generalized formula

beyond the lenses provided. However, if enough data can be provided, it may be more ideal

to simply train individual ML models for similar lens geometries for the most accurate results

instead of using a generalized model.

Another limitations is that the generalized model is not as easy to use as the Nallasamy

Formula. Firstly, the model must know some lens gemoetry to generalize well and this is

not always easy to find, as some manufacturers may consider it proprietary. Second, since

the model is built from the framework of the original Nallasamy Formula, the strongest

features necessary for our generalized model required multiple A-constants. While we tried

to ameliorate this inconvenience by demonstrating the model’s efficacy with A-constants

produced via a conversion of the manufacturer A-constant to the A-constants needed, this

is far from ideal and could possibly lead to issues when tested on other lens geometries.

In conclusion, our generalized Nallasamy-G model provides a proof-of-concept alterna-

tive for the Nallasamy Formula to pursue generalization to additional lens constants under

different A-constant scenarios. Not only did Nallasamy-G demonstrate robustness when as-

sessed on a different patient population, but also generalized adequately to two additional

lens models, even if only the manufacturer A-constant was known. The performance of our

model was comparable to the performance of other known IOL formulas with experimental

ULIB A-constants available. While we believe the model may need further testing on ex-

panded, we have shown the informed construct of including features with lower dependence

on A-constants does open the model to better post-operative refraction predictions for lens

models not included in training.
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6.7 Supplementary Materials

6.7.1 Supplementary figures

Figure 6.11: A view of how total IOL thickness depends on the thickness of each lens. In
this figure, we show lens thickness for a total IOL power of 21.0 D. On the x-axis is anterior
lens power and on the y-axis is total IOL thickness. Note that the total thickness of the lens
is the least when both anterior and posterior powers are equal.
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Figure 6.12: Feature Importance of the Nallasamy formula. The feature importances were
extracted from two level 1 regressors. Features have been categorized into three groups: Box
1) A-constant based features, which were among the best-performing features, Box 2) Non
A-constant-based predictions of anatomic measurements, Box 3) constants or near-constant
values, which overall showed little relative importance in model predictions compared to the
other feature categories.
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Figure 6.13: Partial dependence plots for patient biometric input features of the FH5600AS
lens dataset. Empirical constants are being used to demonstrate the model’s performance in
the first use case.
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Figure 6.14: Partial dependence plots for patient biometric input features of the HP760AP*
lens dataset. Empirical constants are being used to demonstrate the model’s performance in
the first use case.
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Figure 6.15: Partial dependence plots for patient biometric input features of the SN60WF
(Aravind) lens dataset. Empirical constants are being used to demonstrate the model’s
performance in the first use case.
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Figure 6.16: Partial dependence plots for patient biometric input features of the SN60WF
(University of Michigan) lens dataset. Empirical constants are being used to demonstrate
the model’s performance in the first use case.
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Figure 6.17: Partial dependence plots for patient biometric input features of the FH5600AS
lens dataset. Empirical constants are being used to demonstrate the model’s performance in
the first use case.
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Figure 6.18: Partial dependence plots for three new input features in Nallasamy-G tested on
the HP760AP* lens dataset. Empirical constants are being used to demonstrate the model’s
performance in the first use case.

Figure 6.19: Partial dependence for three new input features in Nallasamy-G tested on the
SN60WF (Aravind) lens dataset. Empirical constants are being used to demonstrate the
model’s performance in the first use case.
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Figure 6.20: Partial dependence plots for three new input features in our generalized
Nallasamy-G model tested on the SN60WF (University of Michigan) lens dataset. Em-
pirical constants are being used to demonstrate the model’s performance in the first use
case.
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Figure 6.21: Partial dependence and ICE plots for IOL-formula based input features of the
FH5600AS lens dataset. Empirical constants are being used here.
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Figure 6.22: Partial dependence and ICE plots for IOL-formula based input features of the
HP760AP* lens dataset. Empirical constants are being used here.
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Figure 6.23: Partial dependence and ICE plots for IOL-formula based input features of the
UMich (SN60WF at University of Michigan) lens dataset. Empirical constants are being
used here.
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Figure 6.24: Partial dependence plots for interactions between ACD and CCT in each
dataset. Empirical constants are being used here.

Figure 6.25: Partial dependence plots for interactions between LT and WTW in each dataset.
Empirical constants are being used here.
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6.7.2 Supplementary tables

Model Equiconvex RI MAE ME
Nallasamy-G True 1.46 0.2901 0.064
Nallasamy-G True 1.55 0.3023 0.1349
Nallasamy-G False 1.46 0.3774 0.3002
Nallasamy-G False 1.55 0.4143 0.3559
Nallasamy N/A N/A 0.3748 0.2873

Table 6.6: Performance of our method on the FH5600AS lens with different input parameters
for Equiconvex lens and Refractive Index. Note that the bolded row is the true input for
the lens, since FH5600AS is an equiconvex lens with a refractive index of 1.46. Note also
the improvement that our generalized model makes in equiconvex lenses compared with the
Nallasamy formula.
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Feature Name β p-value R2 ρ
barrettModRefraction 0.727 * 0.7115 0.8435

SRKII 0.6741 * 0.5724 0.7566
SRKRefraction 0.9351 * 0.4568 0.6759

ThinLens 0.296 * 0.3221 0.5676
defaultBarrettOrigIOL 0.0656 * 0.0696 0.2638

defaultSRK 0.0729 * 0.0609 0.2467
A1A2 0.7259 * 0.0425 0.2061

Preop RCP 0.2174 * 0.0395 0.1988
Orig CornealPower 0.1552 * 0.0192 0.1386

NaeserpLoc -0.5923 0.0057 0.0076 -0.0872
Orig Curv -0.1377 * 0.0191 -0.1383
OlsenpACD -0.8704 * 0.032 -0.1788
Preop RG -0.3248 * 0.0324 -0.1801
SRK LCOR -0.1822 * 0.0365 -0.191
Preop P -1.3181 * 0.0379 -0.1948

Haigis ACD -0.5311 * 0.0385 -0.1961
Barrett pACD -0.4599 * 0.0429 -0.2071
HofferACD -0.4965 * 0.0437 -0.2091

BinkhorstACD -1.0145 * 0.0446 -0.2112
SRK C2 -0.3894 * 0.049 -0.2213

SRK pACD -0.4379 * 0.0508 -0.2255
SRK H -0.4379 * 0.0508 -0.2255

Preop Foc -0.1697 * 0.0546 -0.2337

Table 6.7: Univariate linear regression analyses of each novel feature in our Nallasamy-G
generalized formula as a predictor of post-operative refraction. The beta values refer to the
slope of the predictor. Pearson correlation coefficients were also calculated and displayed
as ρ. Values marked with * were less than 0.0001. Only features with a significant p-value
were included in this table. Note that features not included in the table are not necessarily
unimportant features, but rather do not demonstrate linear correlations with post-operative
refraction.
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A-Constant Dataset Nall-G Nall. Haigis Hoff. Holl. SRK/T

Manufacturer

FH5600AS 0.2649 0.258 0.189 0.1865 0.1807 0.1564
HP760AP 0.2765 0.331 0.2293 0.183 0.171 0.0837
SN60WF 0.355 0.3459 0.1388 0.1657 0.2057 0.1788
UMich 0.8959 0.8882 0.8377 0.8522 0.8582 0.8556

ULIB
FH5600AS 0.2607 0.2695 0.2153 0.1841 0.1807 0.1564
SN60WF 0.3573 0.3759 0.1859 0.1689 0.2114 0.1849
UMich 0.8967 0.8933 0.8703 0.8475 0.8568 0.8556

Table 6.8: Correlations of IOL formula predictions to ground truth post-operative refractions
under different A-constants and different datasets. The column ”A-C” refers to the A-
constant used in the analysis: A) Manufacturer, B) ULIB. Note that in all scenarios, both
our formula and the Nallasamy formula demonstrate the strongest correlations with post-
operative refrection. However, as shown in Table UUU, our Formula also demonstrates
lower MAEs and absolute MEs when only a manufacturer A-constant or ULIB constants are
known.
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Dataset Formula MAE ME MedAE STD AE< 0.5 m FPI

A

Nall-G 0.2891 0.0617 0.2255 0.4308 0.8522 0.1333 0.3162
Nall. 0.4319 0.3735 0.3722 0.436 0.6593 0.1051 0.2962
Haigis 0.3427 0.0803 0.2655 0.49 0.7841 -0.0835 0.349
HofferQ 0.3157 -0.0097 0.2355 0.4669 0.8186 -0.2601 0.221
Holl. 0.284 0.0191 0.2037 0.4396 0.8513 -0.0562 0.4203

SRK/T 0.297 -0.055 0.233 0.4378 0.8575 -0.0634 0.4048

C

Nall-G 0.249 -0.0115 0.21 0.3177 0.8853 -0.0873 0.3952
Nall. 0.2933 0.1773 0.2521 0.3177 0.8416 -0.1687 0.2903
Haigis 0.3133 0.0557 0.265 0.3946 0.7898 -0.4983 0.1447
HofferQ 0.3069 -0.0748 0.2518 0.3846 0.8193 -0.67 0.1169
Holl. 0.2655 -0.0022 0.2225 0.3406 0.8599 -0.5461 0.1391

SRK/T 0.2637 -0.0148 0.2058 0.3407 0.8569 -0.62 0.1264

D

Nall-G 0.3122 -0.0558 0.247 0.4135 0.7996 -0.0115 0.4935
Nall. 0.316 -0.0477 0.247 0.4199 0.8096 0.0666 0.3893
Haigis 0.3637 -0.0624 0.2927 0.4673 0.7547 -0.179 0.2581
HofferQ 0.4045 -0.1193 0.3357 0.507 0.6909 -0.875 0.0906
Holl. 0.3706 -0.0459 0.2974 0.485 0.7378 -0.7487 0.1039

SRK/T 0.3788 -0.0791 0.3078 0.4842 0.7238 -0.4123 0.1588

Table 6.9: Performance of IOL formulas under ULIB Constants for the following datasets: A)
FH5600AS, C) SN60WF (at Aravind), D) UMich. The ”DS” column refers to the dataset an-
alyzed: A) FH5600AS, B) SN60WF (SN60WF at Aravind Eye Hospital), C) UMich (patients
implanted with SN60WF). Note that no ULIB constants were present for the HP760AP*
lens.
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CHAPTER 7

Conclusion

7.1 Summary of Findings

Real-world clinical practice is intrinsically multimodal and multidomain. In this disserta-

tion, we have explored multimodal and multidomain machine learning solutions for clinical

decision support in the context of limited data, providing three case study examples. In this

final chapter, we synthesize the key findings and contributions of this thesis, providing a

comprehensive overview of the research journey undertaken. We reflect on the main objec-

tives set forth at the outset and examine how they have been addressed through the course

of this study.

In our first dive, we tackled the puzzle of differentiating between pseudoprogression and

true progression in glioblastoma, leveraging a multimodal imaging approach with MRI.

Uniquely, our study was challenged with the limitations of small sample size (less than

50 patients), resulting in our choice of a low-parameter statistical approach that looked for

differences in residual densities based on one modality’s prediction of another. The approach

highlighted a strategy for multimodal image analysis in the case of limited sample size when

no pretrained deep learning models are available for use. The study, although confirming

that classical MRI sequences are generally not very helpful in distinguishing psuedoprogres-

sion and true progression, found potential discriminatory ability using the ADC modality

and leveraging relationships between T1-post and T2.

Moving on to our second case, we explored how routine clinical data can gain a boost

in disease prediction capabilities through the inclusion of less common tests from other

modalities that can hold the key to better insights. Critically, our clinically-informed model

accounted for limited availability of these less common tests in routine practice by opting to

leverage them in the training stage only and not require them in testing. By embracing this

concept, dubbed “privileged information,” through our use of the Random Forest (RF)+

model, we built a model designed to detect temporomandibular joint osteoarthritis using a
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routine questionnaire but leveraging CBCT scans and protein serum and saliva tests collected

in research. In addition, the model was able to provide some clinical clarity as to what

features were most important in determining TMJ OA. The RF+ model was our attempt at

crafting a flexible framework that makes the most out of whatever information is available.

Finally, we tackled the challenge of predicting postoperative refraction after cataract

surgery, despite the scarcity of data spanning different lens types. Due to a lack of diverse

training data, we were constrained to an approach where our training set consisted of pa-

tients from one institution implanted with one lens model. Thus, we attempted an informed

domain generalization approach that could leverage aspects of eye measurements and known

information about lens build to overcome differences caused by different lens manufactur-

ers. We started with a model trained on patients with one type of lens (the Nallasamy

Formula) and fine-tuned it to work across various lens types. The overarching objective was

to adapt this model to furnish precise and robust prognostications across various lens types.

Innovative feature engineering techniques were introduced as a pivotal strategy aimed at

mitigating error propagation across divergent domains. As a result of our changes, we were

able to show consistently lower and more robust MAEs across different populations and lens

types from different manufacturers under different A-constant scenarios through our model,

and were able to attribute this to specific engineered features in the model. As a result, we

concluded that adding information about lens geometry was a critical piece to overcoming

the limitations of a non-diverse dataset when improving the Nallasamy Formula.

Thus, our work provides three examples of informed ML models built for proof-of-concept

CDS which overcome the challenges of limited data. We believe approaches such as these are

crucial to inclusivity among practices of all sizes, as these models are designed for limited

data but can be scaled upwards to larger datasets.

The methods demonstrated in this work are assigned to three different biomedical prob-

lems, which provides a well-rounded scope of the work. Our work demonstrates approaches

for imaging data as well as tabular data, situations where diverse data is available in train-

ing (privileged learning), or situations where diverse data is not available in training at all,

leading to other approaches that need to be considered (domain generalization). We hope

this strength of the work allows a reader to consider how any of these methods could be

applied or adapted for new CDS applications.
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7.2 Future Directions

7.2.1 Multimodal Fusion MRI for psuedoprogression detection

Our strategy for developing a multimodal low-parameter framework for image processing

with small sample sizes uncovered further evidence that the ADC modality carries pre-

dictive value in discriminating true progression from pseudoprogression. However, it also

un–discovered the classical MRI sequences are not good discriminators of these conditions,

which has also been supported by the literature [225, 130]. Based on our results, there is

a potential for the relationship between T1 post-contrast and T2 imaging to contain some

discriminatory ability which is weaker than the ability of ADC but notable.

When applying a GWR-based framework to distinguish cases of 1p/19q co-deletion, [123]

leverage unique and visibly-distinct visual patterns in MRI known as T2-FLAIR mismatch,

where a hyperintense ring appears in the FLAIR modality. A limitation of the GWR-

approach is that there must be some manifestation of unique pixel intensity patterns that

are visible in one class but not another. Therefore, a realistic future approach using GWR

should focus on automating arduous tasks for radiologists that are obvious but monotonous.

This could, for example, be applied in class distinction scenarios beyond the MRI modalities,

using histopathological tissue instead. One example would be an in-house discriminator of

oligodendrogliomas vs astrocytomas in histopathological tissue. Since oligodendrogliomas

contain a “fried-egg” appearance in tissue samples, when converted to grayscale, they should

contain a higher proportion of white pixels compared to astrocytoma images [196]. However,

preservation methods should be consistent and care should be given in images to prevent

excessive tears in the tissue, which could confuse the model.

In the case of discrimination of pseudoprogression and true progression, our study demon-

strated the largest study to assess the discriminative ability of ADC, but further interpretive

work should be done to elucidate what aspects of the tumor image results in ADC demon-

strating decent predictive ability. Understanding this may allow others in future work to

add constrast-enhancements or other imaging procedures which enable these patterns to

emerge more salient for machine learning models and thus improve the discriminative ability

of ADC.

7.2.2 Privileged Learning for Temporomandibular Joint Os-

teoarthritis Prediction

TMJ OA appears to be best diagnosed by analyzing loss of bone density in the joint area

and a shrinkage of joint distance in CBCT scans, but most patients suspected of having
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TMJ OA will not undergo such scans. Additionally, protein serum and saliva tests may also

be of potential help for diagnosis, but this is also not commonly conducted in the clinic.

Therefore, our study attempted to leverage this information as ”privileged” information in

a model based primarily on clinical questionnaires asked of patients suspected of having

TMJ OA. Our model demonstrated marginal gains over a baseline model containing only

questionnaire items.

We suggest three future directions for this work. Firstly, we note that a limitation of this

study was that the clinical questionnaire was relatively short, resulting in a small number

of non-privileged features. However, other routinely-collected variables not included in the

questionnaire could also be useful for the model. For example, patients exhibiting TMJ OA

may also demonstrate other routinely-collected clinical indicators such as a family history

of osteoarthritis or current comorbidities that would land them more adept at exhibiting

TMJ OA. Additionally, information about number of teeth cleanings per year or oral exam

results may give an overall indication of the health of gums and the underlying bone, pro-

viding potentially useful information towards onset of TMJ OA. Therefore, we suggest an

inclusion of additional baseline features from data routinely collected which extend beyond

the clinical questionnaire.

Second, we suggest experiments to better understand the limitations of the RF+ model.

We hypothesize that when baseline features are relatively stronger than privileged features,

privileged features will have little to no effect. Therefore, an understanding of how strong

privileged information must be in relation to baseline non-privileged features to contribute

to the model will be useful.

Another hypothesis is that frameworks where the non-privileged features and privileged

features have stronger similarities, the privileged model can provide greater gains. In [128],

the authors developed a model based on lower-quality CT as non-privileged features and

higher-quality MRI as privileged features. In this framework, CT and MRI have strong

structural similarities but differing levels of detail. Because of the strong similarities between

modalities, CT can better build scandent trees that mimic splits at link nodes made with

privileged features. Therefore, TMJ OA assessment could also focus on routinely-collected

X-rays of the teeth or other similar imagery as input features, with the assumption that

connections between bone density in the mandible may demonstrate similar patterns to that

of CBCT scans in the jaw, enabling better learning of privileged features.
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7.2.3 Post-operative Refraction Prediction

Our generalized model for post-operative refraction prediction demonstrated significant im-

provement over the Nallasamy formula to generalize to other population datasets under

different A-constant sets for different lenses. This is in thanks to an expanded set of fea-

tures that allow the model to learn factors affecting refraction prediction that extend beyond

A-constant-based features.

In [107], Li et al propose two metrics called Mean Absolute Error in Prediction of In-

traocular Lens (MAEPI) and Correct IOL Rate (CIR) to assess the ability of a model which

predicts IOL power. While the Nallasamy formula is optimized to predict post-operative

refraction, it is used in practice as a predictor of IOL power. However, we demonstrate in

an analysis in Appendix I that our generalized formula, although an excellent predictor of

post-operative refraction, is not well-fit for the reverse problem of predicting IOL power. In

essence, it is likely the very presence of the features which allow generalizability of the model

also cause the model to function poorly as a reverse predictor. From the analysis, it appears

that the model cannot make proper assumptions about predicting data where post-operative

refractions are greater than 0, likely because of a relative lack of data in the training set

for low IOL powers, which are more likely to correspond to positive refractions. While the

inclusion of data containing low IOL powers may seem of lower importance considering their

rarity, the significance of the results in I may point more to a necessity for understanding

relationships between refraction and lower IOL powers to build a truly robust model.

Since there is clinical value to developing a model which predicts IOL power, there are

a few suggestions about how to proceed to build a model which better predicts IOL power

which may still retain generalizability. Since we hypothesize that the number of features are

causing the model to better understand the distribution of the University of Michigan data,

we suggest the following adaptations.

The first suggestion is to add more data for less common cases, such as longer axial

lengths and lower IOL powers. As alluded to in the analysis in Appendix I, the greatest

contributor to a large MAEPI is errors in due to a poor understanding of relationships

between refraction and lower IOL powers. This resulted in associations between lower IOL

powers and more positive refractions that were not well-defined enough to produce a good

reverse model. Providing more example of lower IOL powers and higher refractions will help

the model better distinguish these. The addition of more axial length data will also provide

a better understanding of how the model can adjust to especially long or short eyes, which

was demonstrated in Figure 5.6 to increase prediction error for all IOL formulas.

Another suggestion is to retrain the model to weigh predictions for lower IOL powers

higher. Predictions including lower IOL power inputs appear to be the most adversely
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affected by the model. Alternatively, where post-operative refraction predictions are greater

than zero, loss function weights can be higher, to encourage greater distinction between IOL

power and refraction there.

Thirdly, we suggest reducing the number of features. Since both our generalized model

and the Nallasamy formula consist of some level-1 tree-based models, the node features were

able to better separate the impact of high refractions and lower IOL powers to minimize the

effect of refraction predictions for lower IOLs and better focus on refraction prediction for

higher IOLs. The additional variables allowed the tree-based methods to separate the values

better in our generalized model than in the Nallasamy formula. Therefore, we hypothesize

that reducing the number of variables can ameliorate this problem partially. However, a

reduction of variables may also result in a loss of generalizability of the model. Therefore,

future work must determine how to preserve as much generalizability as possible while also

providing few enough features to prevent this form of learning to lower importance of lower

IOL powers.

Lastly, we suggest training a model specifically optimized to IOL power prediction. If the

target clinical goal is IOL power prediction, this is an important step to ensure that IOL

power prediction is optimized over anything else. It cannot be guaranteed that a model ac-

curately mapping X −→ Y will also accurately map Y ←− X. Therefore, if bi-directionality

of the model is the goal, or if predicting IOL power from target refraction is the goal, then

the model should include provisions for optimizing IOL power.

Moving beyond our generalized model, the future of refraction prediction may also involve

probabilistic modeling. This may result in an output of a distribution of possible refractions

for a given patient, together with a probability for each refraction. Probabilistic approaches

may be especially useful for surgeons juggling multiple procedures in the eye at once which

may increase variability beyond standard single-procedure cases.

7.3 Conclusion

This dissertation focuses on developing proof-of-concept machine learning-based clinical de-

cision support models tailored to the complexities of multimodal and multidomain clinical

scenarios, driven by the recognition that real-world clinical work is diverse in nature. While

these three works demonstrated application to specific medical case studies, these meth-

ods exhibit versatility and can be applied to various scenarios requiring privileged learning,

multimodal image fusion, or domain adaptation. A key focus of this dissertation has been

to address multimodal and multidomain challenges in cases of limited data, but we stress

that the methods presented here can also be scaled up to any number of samples. This
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wide-range of scalability for clinical decision models is crucial, mirroring real-world clinical

and research data scenarios where massive datasets are often unattainable or require years

to build up. Consequently, this work underscores the potential of machine learning-based

clinical decision support models, showcasing their adaptability and laying the groundwork

for future advancements in the field.
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APPENDIX A

Brief History of Key Developments in AI Due

to Image Processing

A.1 Background

Multimodal machine learning for medical applications has evolved primarily from two phe-

nomena that occurred around the same time: 1) the growing presence of high-quality,

digitally-available patient health data, and 2) rapid developments in machine learning and

associated software. Prior to these events, multimodal models in healthcare were possible but

uncommon, due to challenges in obtaining large amounts of patient data from local sources

and finding models to process them. To address the fusion challenge, for example, data

from multiple modalities were often converted to vector form via feature engineering and

then simply concatenated into a single traditional ML model [226, 72, 219]. Other strategies

could include usage of SVM kernels [213, 226, 49], or ensemble models [133, 135]. Other

multimodal challenges such as co-learning were not often easy to address, although Vapnik

et al’s SVM+ method of information transfer via privileged information is a notable strategy

[200]. Thus, an explosion of publicly-available multimodal datasets and the development of

advanced ML models, particularly neural network-based, have rapidly developed the field.

Here we discuss the history of big data and the modern architectures enabled by the former.

Four models discussed in this section are illustrated in Figure A.1.

A.1.1 Growing Presence of Big Data

In 2011, the National Cancer Institute (NCI) paired with Washington University to initi-

ate the The Cancer Imaging Archive (TCIA), collecting imaging and patient health data

(PHI) related to cancer diagnosis from 31 separate collection sites [40]. The data was to be

made publicly available for the purposes of cancer research. TCIA and its sister database

The Cancer Genome Atlas (TCGA) are some of the most commonly used databases for
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medical imaging and Patient Health Information (PHI) today, exemplifying the impact of

such repositories for biomedical and translational research. Today, these large annotated

databases, which include newer arrivals such as Stanford’s CHeXpert [81], University of

Pennsylvania’s BraTs [121, 13, 14], and PhysioNet’s MIMIC-III [87, 88], among others, can

provide thousands of data samples of varying modalities for multimodal data models. Such

repositories of medical information have also likely benefited from government interventions

such as the Health Information Technology for Economic and Clinical Health Act (HITECH)

act, designed to encourage clinics to move health records to a digital medium [69].

A.1.2 Significance of ImageNet

Rapid developments in machine learning and computer vision also occurred at this time.

While the early-2000s saw a practical rise in applications of what we call here “traditional

machine learning methods” such as SVM and RF, the advent of the ImageNet challenge

and subsequent win of AlexNet in 2012 [94] spurred a new interest in neural networks, which

gradually overtook the computer vision community. Prior to AlexNet, the state-of-the-art for

image recognition consisted of extraction of specific engineered features, typically through

some method such as SIFT or Bag-of-Words (BoW)s, which resulted in feature vectors,

followed by processing through a traditional ML algorithm. By surprising contrast, AlexNet

completely bypassed the feature extraction step, utilizing a simple 5-layer CNN to automate

cross-correlation filters for feature extraction. Although a relatively simple architecture by

today’s standards, AlexNet was a revolutionary step for the time. The winning ImageNet

model’s top 5 error rate dropped from approximately 26% with feature engineering in 2011

to a little over 15% with CNNs in 2012 [165]. All following winning models in the ImageNet

challenge were based on convolutional neural nets [165].

The ImageNet challenge and the successful implementation of CNNs spurred additional

advances in computer vision in the next few years. VGG16 and VGG19, some of the first very

deep (> 10 layers) CNN-based architectures proposed from Simonyan and Zisserman [176],

won top prizes in the 2014 ImageNet challenge and revolutionized CNN applications to data

by presenting a form of standardized architecture that was organized in block-like structure

of two to three convolutional layers followed by a max pooling layer. The ability to organize

and justify the block-like structure of the network helped make CNNs more accessible to a

broader audience, who were largely freed from the arduous task of layer construction and

hyperparameter tuning for every kernel and channel size of each layer.

As the overall architectures for VGG16 and VGG19 became more widespread, this also

enabled a broad new application of transfer learning using the ImageNet networks ap-
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Figure A.1: Common deep learning models used for medical imaging and clinical decision
support.

plied to in-house data [198]. Transfer learning allowed third parties to borrow a pre-trained

VGG16/19 model with frozen weights in the convolutional layers, then retrain only the final

layers of the network for their own classification tasks. Not only did transfer learning reduce

compute time, but it also made deep learning accessible to third parties with only a limited

number of data samples. Prior to this, deep learning, often containing thousands (and now

millions) of trainable parameters, were only useful on large datasets such as ImageNet, which

contained millions of images. Application of neural networks on most in-house datasets with

less than a few thousand samples, such as those coming from a single hospital site, did not

often confer better results than traditional ML methods and could be subject to extreme

overfitting. Therefore, deep learning was at the time still constricted to use by computer

scientists who specialized in architecture rather than the broader data science field and bioin-

formatics. However, transfer learning opened doors to these latter groups, allowing parties

with comparatively smaller datasets to access deep learning and produce high-accuracy mod-

els. Conceptually, transfer learning worked well with ImageNet models because ImageNet

contained 1000 categories of images [45], broad enough in theory for trained cross-correlation

filters to selectively seek out generic visual characteristics from images, much like the human

eye is believed to function. Such generic characteristics are theorized to be adaptable to any

kind of image, where the model is trained to associate certain groups of these characteristics

with new classes of objects. This conceptualization has resulted in years of successful medical

models [181, 198, 177, 182, 58, 80, 37, 92], but has recently been challenged by proponents

of self-supervised learning [221, 119, 8].

The ImageNet challenge engendered another radical shift in computer vision which is

adopted in today’s medical imaging models. At the time of introduction, the 16- and 19-

layer VGG16/19 models were some of the deepest networks available. Deeper networks

with more parameters imply more degrees of freedom and thus more complex models, which

benefits modalities from medical images to natural language processing datasets. However,
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networks deeper than the VGG architectures proved hard to conceive because training error

begins to increase with more layers [70]. In 2015, Microsoft’s 154-layer ResNet [70] model

won first prize in the ImageNet competition, introducing residual networks. Residual net-

works, which consist of a simple architectural change whereby networks are organized into

residual “blocks”, were revolutionary in their own right because they reduced the computa-

tional burden required to process deep networks by allowing networks to easily learn identity

parameters. What was previously mistaken as a “vanishing gradient problem” turned out

to be easily-solved convergence issues. The authors even claimed to have built a 2000-layer

network, the likes of which were previously unfathomable.

A.1.3 U-Nets and GANs

The ImageNet models had their limitations with medical imaging, however. While Ima-

geNet models were specifically designed to solve classification problems, many classic clinical

imaging challenges involved segmentation of specific organs or tumor tissue. For example,

decision support models to detect tuberculosis or other lung-based conditions would require

first a segmentation of the lung on a chest x-ray before extraction of features. Likewise, over-

all survival prediction of glioma patients using MRI would first require a segmentation of

the tumor area before model development. Traditionally, computer vision algorithms would

address such segmentation problems via arduously tailored trial-and-error computer vision

toolbox methods such as identifying edges and convex hulls, opening and closing spaces, and

applying active contours and fills. The introduction of new data, even of the same image

type, may have meant additional tweaks to minimize obvious errors. While effective, the

process was by no means automated, requiring time-intensive labor to customize to the avail-

able data. Therefore, the innovation of the CNN-based U-Net [163], specifically designed for

medical imaging data, was a revolutionary advancement in image segmentation.

One of the critical advantages of the U-Net to this day is that the overall structure of the

network is generally effective. The U-Net consists of a series of downsampled layers followed

by a series of upsampled layers with concatenated skip connections, or copies of outputs

from previous layers in the downsampled series. The authors of the U-Net argued that this

structure is effective for image segmentation because it captures both pixel-level features and

group-level context [163]. As of the date of publication, improvements have been suggested to

improve U-Net architecture, but the overall downsampling, upsampling, and skip connection

concepts which characterize U-Net remain state-of-the-art in image segmentation.

Interestingly, while the U-Net was originally intended for image segmentation, it turned

out to also be useful for image generation. In 2014, Goodfellow et al [60] proposed another
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major advancement critical to today’s multimodal ML work called GANs. GANs function

utilizing two networks that train against each other, each trying to outperform the other. One

of these networks, called the generator, often consists of a general U-Net-style architecture,

typically taking as input some kind of random noise or an image and outputting a fake

generated image. The generator is challenged by the second module, called the discriminator,

which is typically a CNN that takes as input the generated image and outputs a single binary

classification that describes whether the generated image is real or fake. The discriminator

is trained with real images as ground truth “real” images and previously generated output

as ground truth “fake” images. The goal of the GAN is for the generator to understand the

underlying distribution of the “real” images, and construct new “fake” images which appear

to be real.

Modifications such as CycleGAN [234] and conditional GANs [82] have enabled improve-

ments to computer vision tasks such as style transfer [103, 89] and super-resolution images

[99, 64, 89]. Due to this, GANs have become essential to the growth of work on multimodal

translation in recent years in fields as diverse as natural language processing [66, 109, 149],

anomaly detection [104, 47] and biomedical applications [118, 191, 113, 151, 162, 54]. In the

latter category, image-to-image translation, whereby both input and output are images from

different medical imaging domains (e.g. input CT, output MRI), has been the most popular

application of GANs, and the trend continues today.

A.1.4 On the Rise: Graph Convolutional Network (GCN)s

In 2016, Kipf and Welling [93] introduced the concept of GCNs. A simple graph structure

requires a node and an edge, which indicates which nodes are connected with each other.

Edges are often given weights to represent the strength of node connections, and nodes

(edges) can also contain additional information as well, called node (edge) features. GCNs

provide the opportunity to classify either nodes or entire networks as well as to predict edge

weights, and have been utilized in fields such as social networks and recommendation systems

[215, 126, 150, 224] as well as image captioning [223]. They are of particular interest in

multimodal ML because multiple networks representing separate modalities can be combined

together, as demonstrated in Zitnik et al’s [237] work on polypharmacy side effects. Graph

convolutional networks have recently been applied to other areas of multimodal biomedical

research such as for survival outcome prediction in glioma [34] and modeling interactions for

drug repurposing [208].
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A.1.5 Summary

conclusion, the evolution of multimodal machine learning in medical applications has been

significantly propelled by two key factors: the emergence of extensive, digitally-accessible pa-

tient health data and rapid advancements in machine learning techniques. Previously, chal-

lenges in acquiring and processing diverse data modalities hindered the widespread adoption

of multimodal models in healthcare. However, the landscape changed with the availability

of large, publicly-accessible datasets like TCIA, TCGA, and others, facilitated by initiatives

like the HITECH act. Simultaneously, breakthroughs in machine learning, notably with the

advent of deep neural networks spurred by the ImageNet challenge, revolutionized computer

vision and paved the way for applications in medical imaging. Architectures like VGG16/19

and ResNet, along with innovations like U-Nets and GANs, introduced efficient methods for

tasks like segmentation and image generation, fundamentally altering the approach to med-

ical image analysis. Moreover, the introduction of GCNs extended the applicability of mul-

timodal approaches by enabling effective fusion of data from disparate sources, showcasing

their potential in diverse biomedical domains. Together, these advancements have propelled

multimodal machine learning to the forefront of medical research, promising groundbreaking

insights and transformative applications in healthcare.
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APPENDIX B

Density-Based Classification in Diabetic

Retinopathy through Thickness of Retinal

Layers from Optical Coherence Tomography

B.1 Summary

Diabetic retinopathy (DR) is a severe retinal disorder that can lead to vision loss, however, its

underlying mechanism has not been fully understood. Previous studies have taken advantage

of Optical Coherence Tomography (OCT) and shown that the thickness of individual retinal

layers are affected in patients with DR. However, most studies analyzed the thickness by

calculating summary statistics from retinal thickness maps of the macula region. This study

aims to apply a density function-based statistical framework to the thickness data obtained

through OCT, and to compare the predictive power of various retinal layers to assess the

severity of DR. We used a prototype data set of 107 subjects which are comprised of 38 non-

proliferative DR (NPDR), 28 without DR (NoDR), and 41 controls. Based on the thickness

profiles, we constructed novel features which capture the variation in the distribution of the

pixel-wise retinal layer thicknesses from OCT. We quantified the predictive power of each

of the retinal layers to distinguish between all three pairwise comparisons of the severity

in DR (NoDR vs NPDR, controls vs NPDR, and controls vs NoDR). When applied to this

preliminary DR data set, our density-based method demonstrated better predictive results

compared with simple summary statistics. Furthermore, our results indicate considerable

differences in retinal layer structuring based on the severity of DR. We found that: (a)

the outer plexiform layer is the most discriminative layer for classifying NoDR vs NPDR;

(b) the outer plexiform, inner nuclear and ganglion cell layers are the strongest biomarkers

for discriminating controls from NPDR; and (c) the inner nuclear layer distinguishes best

between controls and NoDR.

Although this case is not a multimodal or multidomain problem, we include this work in
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the thesis as a reference to a unimodal/unidomain strategy for creating a clinical decision

support concept model with limited data. The sample size of 107 subjects was too small to

perform deep-learning methods, so a density-based strategy, similar to that demonstrated in

Chapter 02 and Appendix B was applied.

B.2 Publication and Acknowledgment

This appendix is a published work [125]: S. Mohammed, T. Li, X. D. Chen, E. Warner, A.

Shankar, M. F. Abalem, T. Jayasundera, T. W. Gardner, and A. Rao, “Density-based clas-

sification in diabetic retinopathy through thickness of retinal layers from optical coherence

tomography.,” Scientific reports, vol. 10, no. 1, p. 15937, 2020
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APPENDIX C

Quantifying T2-FLAIR Mismatch Using

Geographically Weighted Regression and

Predicting Molecular Status in Lower-Grade

Gliomas

C.1 Summary

The T2-FLAIR mismatch sign is a validated imaging sign of isocitrate dehydrogenase-mutant

1p/19q noncodeleted gliomas. It is identified by radiologists through visual inspection of pre-

operative MR imaging scans and has been shown to identify isocitrate dehydrogenase-mutant

1p/19q noncodeleted gliomas with a high positive predictive value. We have developed an

approach to quantify the T2-FLAIR mismatch signature and use it to predict the molecular

status of lower-grade gliomas. We used multiparametric MR imaging scans and segmenta-

tion labels of 108 preoperative lower-grade glioma tumors from The Cancer Imaging Archive.

Clinical information and T2-FLAIR mismatch sign labels were obtained from supplementary

material of relevant publications. We adopted an objective analytic approach to estimate this

sign through a geographically weighted regression and used the residuals for each case to con-

struct a probability density function (serving as a residual signature). These functions were

then analyzed using an appropriate statistical framework. We observed statistically signifi-

cant (P value = .05) differences between the averages of residual signatures for an isocitrate

dehydrogenase-mutant 1p/19q noncodeleted class of tumors versus other categories. Our

classifier predicts these cases with area under the curve of 0.98 and high specificity and sen-

sitivity. It also predicts the T2-FLAIR mismatch sign within these cases with an under the

curve of 0.93. On the basis of this retrospective study, we show that geographically weighted

regression-based residual signatures are highly informative of the T2-FLAIR mismatch sign

and can identify isocitrate dehydrogenase-mutation and 1p/19q codeletion status with high
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predictive power. The utility of the proposed quantification of the T2-FLAIR mismatch sign

can be potentially validated through a prospective multi-institutional study.

This work is the predecessor the Chapter 02 and lays the groundwork the interest in

geographically-weighted regression. However,the application of this work involves assessment

of images where a clear visual anomaly (a hyperspectral ring around the effective tumor area)

occured in the FLAIR modality. This anomaly was apparent to the naked eye, and therefore

the purpose of the study application was to save physicians time in identifying the T2-FLAIR

anomaly. In the case of pseudoprogression, differences between pseudoprogression and true

progression were not outwardly apparent to the naked eye and thus there was widespread

interest in applying machine learning techniques to observe latent patterns in the images.

Therefore, our work in Chapter 4 demonstrates an interesting and novel application of this

method to discrimination of conditions in MRI that are not outwardly apparent to the naked

eye.

C.2 Publication and Acknowledgment

This appendix is a published work [124]. S. Mohammed, V. Ravikumar, E. Warner, S. Patel,

S. Bakas, A. Rao, and R. Jain, “Quantifying t2-flair mismatch using geographically weighted

regression and predicting molecular status in lower-grade gliomas,” American Journal of

Neuroradiology, vol. 43, no. 1, pp. 33–39, 2022.
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APPENDIX D

Feature Equations in Nallasamy Formula

The following section describes selected equations included in the Nallasamy formula. For

information on the equations, refer to the reference given for each equation.

Abbreviations:

1. OD : predicted lens Dioptre (D)

2. n1 : refractive index of acqueous

3. n2 : refractive index of IOL

4. DLd : a predicted lens Dioptre (D) in a single iteration

5. FL1 : power of anterior surface lens implant (D)

6. FL2 : power of posterior surface lens impalnt (D)

7. t : represents a thickness of both the lens and the capsular bag as a unit, usually

represented as the lens thickness.

8. RA : anterior radius of IOL

9. RP : posterior radius of IOL

10. RG : posterior segment of the globe

11. RCP : peripheral radius of cornea

12. RC : central radius of cornea

13. RCC : central posterior radius of cornea

14. PZ : P-factor of cornea
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15. Ac : SRK/T A-constant

16. pACD : posteroperative ACD

17. ELP : effective lens position

The features used in the generalized Nallasamy formula (Nallasamy II) are as follows:

1. Km : average keratometry

Km = (K1 +K2)/2

2. AD : axial diameter

(ACD − CCT )/1000

3. AST : measure of astigmatism

abs(K1 −K2)

4. defaultBarrettOrigIOL was derived from the following equation at a target refraction

of 0 [16]:

OD =
n1 × 1000

AL− d− t+ n1

n2
× DLd−FL2

(1−fractn2×FL2)
× t

DLd
− n1×1000

n1
Km

−d−n1
n2

× FL2
DLd

×t

5. defaultThickness : a measurement of the assumed thickness of the lens based on the

following equation from [17]:

T = (RA−
√

RA2 − (OD/2)2 + (RP −
√
RP 2 − (OD/2)2

6. Preop RCP : prediction of preoperative radius of peripheral cornea based on equation

from [17]:

ACD = AL− 0.5930.13−RG−
√
RG2 −RCP 2 + (RCP − ACD)2)

7. calcRG : calculation of radius of globe from Barrett Universal II eye model [17]:

RG = 0.35066× AL− 0.06607×K − 5.70871

8. RCC: calculation of central posterior radius of cornea according to [17]:

RCC = RC × 0.883
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9. calcRC: calculation of central radius of cornea from [17] is based on a derivative of the

following equation:

Km− (376/RC)− (40/RC) + (0.00052/1.376)× (376/RC)× (40/RCC)

10. Preop P: Preoperative “P-value” as described in [17] was assessed based on a derivative

of the following equation:

RCP = (RC2 + (1− P )× 52)3/2/(RC2)

11. defaultSRK and reverseSRK are based on derivatives of the following SRK formula

[160]:

OD = Ac− 2.5× AL− 0.9×Km − (R/(1/0.0875× Ac− 8.55))

12. HofferACD: Hoffer’s postoperative ACD prediction [74]

pACD = 0.292× AL− 2.93

13. BinkhorstACD: Binkhorst’s prediction for postoperative ACD [17]

pACD = 0.17× AL+ 0.017

14. OlsenpACD: Olsen’s prediction for postoperative ACD [137]

pACD = 1.14× 0.22× ACD + 0.10× AL

15. NaeserpLoc: predicted position of posterior lens capsule [131]:

2.40 + 0.011× age+ 0.171× ACD + 0.051× AL

16. a1a2: Developed from a derivative of the ELP equation from Haigis [173]:

ELP = a0 + a1 × ACD + a2 × AL
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APPENDIX E

RCP Algorithm

Algorithm 1: Calculate Radius of Peripheral Cornea and post-operative ACD

Input: A,WTW ,AL,K1,K2
Output: RCP , pACD
RG←calcRG(AL,K1,K2);
RC ←calcRC(K1,K2);
LF ← A ∗ 0.5825− 67.6627;
α← RG− LF ;
for PZ ∈ [−2, 2] do

pred RCP = (RC2 + (1− PZ) ∗ 25)3/2/RC2;
if pred RCP <= RG then

x = (pred RCP 2 −RG2 + α2)/2α;
if pred RCP 2 − x2 < 0 then

continue;
else

h =
√

pred RCP 2 − x2;
pred CD = 2h;
if abs(WTW − pred CD) < 1e−2 then

break
end

end

end

end
RCP = pred RCP ;

pACD = AL− 0.593 + 0.13−RG−
√

RG2 −RCP 2 + (RCP − ACD)2;
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APPENDIX F

Barrett Model

Original Barrett I algorithm in pseudocode [16].

Algorithm 2: Barrett

Input: K1, K2, S, AL,ACD = 4.8, N2 = 1.435, R = 25, T = 1, N1 = 1.336
Output: P2
C ← (K1 +K2)/2 + s/(1− 0.012 ∗ S);
F2← 1000 ∗ ((N2−N1)/R);
P1← 21.5;
for x ∈ [1, 10] do

F1 = (P1− F2)/(1− (T/(N2 ∗ 1000)) ∗ F2);
E2 = (N1/N2) ∗ (F1/P1) ∗ T ;
E1 = (N1/N2) ∗ (F2/P1) ∗ T ;
L = (N1/C) ∗ 1000;
U = L− ACD − E1;
V = AL− ACD − T + E2;
P2 = (N1/V ) ∗ 1000− (N1/U) ∗ 1000;
P1 = P2;

end
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APPENDIX G

Modified Barrett Formula

Algorithm for Modified Barrett Formula. Input takes in K1, K2, AL, ACD, LT , IOL and

outputs post-operative refraction.
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Algorithm 3: Modified Barrett

Input: IOL,ACD,AL,K1, K2, N2, T, eqc
Output: R
N1← 1.3315;
OD ← 6;
K ← (K1 +K2)/2;

RA = ((N2−N1) ∗ 1000)(IOL/(1.5 + (0.5 ∗ int(eqc)));
PA = ((N2−N1) ∗ 1000)/RA;

/* power of posterior surface */

R = ((N2−N1) ∗ 1000)/(IOL− PA);
F2 = (1000 ∗ ((N2−N1)/R));

/* projected thickness of IOL */

if RA ∗ ∗2− (OD/2) ∗ ∗2 < 0orR ∗ ∗2− (OD/2) ∗ ∗2 < 0 then
IOL T = T ;

else
IOL T = (RA− sqrt(RA ∗∗2− (OD/2) ∗∗2))+ (R− sqrt(R ∗∗2− (OD/2) ∗∗2));

/* Corrected power of anterior surface w/ thickness */

F1 = (IOL− F2)/(1− (IOL T/(N2 ∗ 1000)) ∗ F2);

/* Distance to Principal Planes */

E2 = (N1/N2) ∗ (F1/IOL) ∗ IOLT ;
E2 adj = (T/2)− (IOL T/(2 + int(eqc)));
E2 = E2 + E2 adj;
E1 = (N1/N2) ∗ (F2/IOL) ∗ T ;

V = AL− ACD − T + E2;
a = (N1/V ) ∗ 1000;
b = ACD + E1− (N1/(IOL− a) ∗ 1000);
c = (N1/b) ∗ 1000;
d = c−K;
R = d/(1 + 0.012 ∗ d);
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APPENDIX H

Comparisons of Our Method Using Optimal

A-Constants

Analyses conducted in chapter 4 were done using manufacturer A-constants or

experimentally-derived A-constants posted online at the User Group for Laser Intereference

Biometry [2]. This appendix provides the same assessments conducted with optimized A-

constants for each dataset. A-constants were selected by obtaining post-operative refraction

predictions from Haigis, Hoffer Q, Holladay 1 and SRK/T models at different A-constants,

and selecting the respective A-constants which produce the closest absolute mean error to

zero. These can be shown in Table H.1.

Results for optimized performance of Nallasamy-G compared with Nallasamy, Haigis, Hof-

ferQ¡ Holladay1, and SRK/T under the optimzed constants from Table H.1 are given in Table

H.2. In the FH5600AS at Aravind dataset, Nall-G provided an MAE of 0.2901, outperfor-

maning Nallasamy (0.374), Haigis (0.3376) and HofferQ (0.3155) formulas, but was outper-

formed by Holladay1 (0.2841) and SRK/T (0.2837). For the HP760AP* dataset, Nallasamy-

G outperformed Nallasamy in MAE (0.288 v 0.2982), as well as Haigis (0.3182) and HofferQ

(0.312). It was outperformed by Holladay1 (0.285) and SRK/T (0.2873). In the SN60WF at

Aravind and UMich datasets, the lens which Nallasamy-G was trainined on, it outperforms all

other models in MAE, performing at 0.2495 in the SN60WF (at Aravind) dataset compared

with Nallasamy (0.2842), Haigis (0.3049), HofferQ (0.3052), Holladay1 (0.265) and SRK/T

(0.2636). In the UMich dataset, Nallasamy-G provides an MAE of 0.3096, outcompeting Nal-

lasamy (0.3125), Haigis (0.3632), HofferQ (0.4038), Holladay1 (0.3706) and SRK/T (0.376).

Although ME for the generalized formula on non-SN60WF lenses is higher (FH5600AS: 0.064,

HP760AP: -0.0935)) than for the centered formulas Haigis (FH5600AS: 0.0091, HP760AP*:

-0.0023), HofferQ (FH5600AS: 0.0179, HP760AP*: 0.0025), Holladay1 (FH5600AS: 0.0163,

HP760AP*: 0.003) and SRK/T (FH5600AS: 0.0161, HP760AP*: -0.0071), this is an unfair

comparison, as the latter formulas were optimized but the Nallasamy-G was not optimized

via retraining. It is notable that the Nallasamy-G demonstrates much better ME and MAEs
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compared to the original Nallasamy Formula, its closest comparable model. Furthermore,

all results are comparable with the other models and never underperform all models listed.

Note that Nallasamy-G also outperforms Nallasamy formula in MedAE, with a Median

Absolute Error of 0.2271 with the FH5600AS dataset compared with Nallasamy MedAE of

0.3082. With the HP760AP* dataset, Nallasamy-G performs a MedAE of 0.2449 compared

with 0.2495 with Nallasamy. With the SN60WF (at Aravind Dataset), Nallasamy-G per-

forms with a MedAE of 0.2093, while Nallasamy is 0.2402. Finally, on the UMich dataset,

which both models were trained on, Nallasamy-G performs with a MedAE of 0.2403 and

Nallasamy 0.2423. Nallasamy-G also provides a higher proportion of Absolute Errors <

0.5 D, with the following percentages (FH5600AS: 0.8513, HP760AP*: 0.8158, SN60WF:

0.8843, UMich: 0.8016). This contrasts with the lower or equivalent results from Nallasamy

(FH5600AS: 0.7504, HP760AP*: 0.8217, SN60WF: 0.8487, UMich: 0.8016). Therefore, even

with mean errors (ME) further off from zero than the Nallasamy Formula, Nallasamy-G still

confers lower error as demonstrated by MAE, MedAE, and AE < 0.5.

Correlation performance of optimized IOL formulas are given in Table H.1. Although cor-

relations were shown previously in Chapter 6, the results with optimized values demonstrate

that correlations for Nallasamy-G and Nallasamy remain the highest among compared IOL

formulas. Correlations are illustrated in Figure H.2. A graph of MAE to A-constant for each

dataset to demonstrate the optimization results is given in Figure H.3.

Performance with optimized A-constants on Nallasamy-G (Our Method), Nallasamy,

Haigis, HofferQ, Holladay1, and SRK/T are given in Figures H.4, H.5, H.6, and H.7.

Results from this appendix demonstrate the effective use of Nallasamy-G even under

optimized constants, demonstrating competitive and robust results compared to the models

shown. Notably, Nallasamy-G outperforms or matches the Nallasamy Formula in MAE,

MedAE and AE< 0.5 even when optimized constants are given.
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Dataset IOL Formula best A-constant best ME best MAE

FH5600AS

Holladay 1.118 0.0006 0.2491
SRKT 117.883 -0.0001 0.2438
HofferQ 4.94 -0.0002 0.2783
Haigis 0.629 -0.0002 0.3024

HP760AP

Holladay 1.76 -0.0003 0.2519
SRKT 118.9 -0.0003 0.2542
HofferQ 5.578 -0.0005 0.2798
Haigis 1.296 0.0006 0.2872

SN60WF

Holladay 1.752 0.0001 0.2364
SRKT 118.903 -0.0003 0.2325
HofferQ 5.572 0.0005 0.2756
Haigis 1.303 0.0001 0.2756

UMich*

Holladay 1.863 0.0004 0.3256
SRKT 119.092 0.0003 0.3295
HofferQ 5.725 0.0005 0.3605
Haigis -0.727 -0.0003 0.324

Table H.1: Post-hoc optimized A-constants for each tested dataset. The UMich dataset is
marked with * because the optimized values used in the rest of the analyses in this section
are based on the optimized constants from [106] which contained a larger set of UMich
patients than this test set. However, the constants for the test set are similar, reflecting a
good fit. Constants a1 and a2 for Haigis were given in accordance with those suggested in
ULIB; that is, default constants for FH5600AS and SN60WF (India), a1=0.4,a2=0.1. We
assigned HP760AP default constants as well. The UMich SN60WF constants were assigned
as a1=0.234 and a2=0.217 as suggested by ULIB.
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DS Formula MAE ME MedAE STD AE< 0.5 m FPI

A

Nall-G 0.2901 0.064 0.2271 0.4312 0.8513 0.1326 0.3166
Nall. 0.374 0.2873 0.3082 0.4373 0.7504 0.101 0.3238
Haigis 0.3376 0.0091 0.2633 0.489 0.792 -0.0508 0.3963
HofferQ 0.3155 0.0179 0.2368 0.4677 0.8159 -0.2731 0.2146
Holl. 0.2841 0.0163 0.2023 0.4396 0.8522 -0.0546 0.4235

SRK/T 0.2837 0.0161 0.2108 0.4371 0.8513 -0.1043 0.3489

B

Nall-G 0.288 -0.0935 0.2449 0.3549 0.8158 0.1793 0.2764
Nall. 0.2982 0.1382 0.2495 0.3457 0.8217 0.1238 0.3278
Haigis 0.3182 -0.0023 0.2748 0.3956 0.8024 -0.1828 0.267
HofferQ 0.312 0.0025 0.2679 0.3959 0.7964 -0.3462 0.1858
Holl. 0.285 0.003 0.2331 0.3651 0.8276 -0.1308 0.3211

SRK/T 0.2873 -0.0071 0.2241 0.3734 0.8053 -0.2215 0.2467

C

Nall-G 0.2495 -0.0149 0.2093 0.3182 0.8843 -0.0856 0.3977
Nall. 0.2842 0.1536 0.2402 0.3189 0.8487 -0.1179 0.3429
Haigis 0.3049 -0.0095 0.2498 0.3917 0.8071 -0.4557 0.1553
HofferQ 0.3052 -0.0173 0.2541 0.388 0.8234 -0.7033 0.1125
Holl. 0.265 -0.0131 0.22 0.3402 0.865 -0.5362 0.1413

SRK/T 0.2636 -0.0123 0.2078 0.3408 0.8569 -0.6225 0.1259

D

Nall-G 0.3096 -0.0293 0.2403 0.4135 0.8016 -0.049 0.4181
Nall. 0.3125 -0.0152 0.2423 0.4179 0.8016 0.0331 0.4467
Haigis 0.3632 -0.0237 0.2894 0.4685 0.7468 -0.226 0.2295
HofferQ 0.4038 -0.0091 0.3311 0.5174 0.7029 -0.9513 0.0849
Holl. 0.3706 -0.0207 0.298 0.4864 0.7398 -0.7733 0.1013

SRK/T 0.376 -0.0144 0.2999 0.4846 0.7318 -0.4858 0.1427

Table H.2: Optimized results of our generalized formula vs other well-known IOL formulas
for the following Datasets (DS): A) FH5600AS, B) HP760AP*, C) SN60WF, D) UMich.

A-Constant Dataset Ours Nall. Haigis Hoff. Holl. SRK/T

Optimized
FH5600AS 0.2607 0.2682 0.2161 0.1834 0.1807 0.158
HP760AP 0.2856 0.3336 0.2387 0.18 0.175 0.0946
SN60WF 0.3572 0.3742 0.19 0.1644 0.2125 0.1848
UMich 0.8966 0.8943 0.8696 0.8419 0.856 0.8553

Table H.3: Correlations of IOL formula predictions to ground truth post-operative refractions
under different A-constants and different datasets. The column ”A-Constant” refers to the
A-constant used in the analysis: Optimized. Note that both our formula and the Nallasamy
formula demonstrate the strongest correlations with post-operative refrection.
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Figure H.1: Correlations of IOL prediction formulas against the true post-operative refrac-
tions for the FH5600AS and HP760AP* datasets. These predictions are constructed with
optimized A-constants.
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Figure H.2: Correlations of IOL prediction formulas against the true post-operative refrac-
tions for the SN60WF and UMich datasets. These predictions are constructed with optimized
A-constants.
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Figure H.3: Optimized constants for each dataset
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Figure H.4: FH5600AS prediction error breakdown by dioptre (D).

Figure H.5: HP760AP prediction error breakdown by dioptre (D).
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Figure H.6: SN60WF (Aravind) prediction error breakdown by dioptre (D).

Figure H.7: UMich (SN60WF at University of Michigan) prediction error breakdown by
dioptre (D).
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APPENDIX I

Analysis of Our Generalized Model as a

Predictor of IOL Power

I.1 Introduction

Many IOL formulas are are used to predict the power of an IOL given a target post-operative

refraction. In [107], two new metrics called MAEPI and CIR were constructed for evaluating

the accuracy of a IOL power prediction model. In this analysis, we reverse our generalized

model and assess its ability to predict the power of the implanted intraocular lens given the

known post-operative refraction of each patient. To assess the model’s IOL power prediction

capabilities, we calculate MAEPI and CIR(0), CIR(0.5), and CIR(1).

I.2 Methods

I.2.1 Preprocessing

In order to reverse the model, patients are assessed sequentially in an iterative framework.

In each iteration, one patient’s AL, ACD, CCT, White-to-white (WTW), LT, Keratometry

of the Left Eye (K1), Keratometry of the Right Eye (K2), age at surgery and patient sex are

extracted as input to the predictive model. Eighty-one potential IOL powers are generated

for a single patient and entered into the model with the patient’s data for a total of 81 entries

into the model. After receiving the model’s output predicted post-operative refraction, and

IOL power is chosen based on which power returned the post-operative refraction closest to

the patient’s true refraction.

IOL power prediction for our generalized model (here referred to as ”Nallasamy-II”)

is compared with the original Nallasamy formula (here referred to as ”Nallasamy-I”) and

PearlDGS, a state-of-the-art machine learning-based IOL power prediction tool which has a

model specifically constructed for the SN60WF lens. Our assessment includes prediction both
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with the dataset of SN60WF lens implants obtained from University of Michigan Kellogg

Eye Center (called ”Umich”) in Ann Arbor, USA, and the dataset of SN60WF lens implants

obtained the Aravind Eye Center in Chennai, Tamil Nadu.

I.2.2 Statistical Assessment

In this investigative study, MAEPI and CIR are evaluated based on the IOL power predicted.

MAEPI is calculated with the following equation:

MAEPI =

∑n
i=1 |pi − p̂i|

n

CIR is calculated as the proportion of predicted IOL powers which fall within 0D, 0.5D or

1.0D from the true implanted IOL. The CIR equations are calculated with the following

equations for an error of d dioptres:

CIR(d) =

∑n
i=1 I(|pi − p̂i| = d)

n
× 100

, where the function I(·) represents an indicator function for whether or not the predicted

lens power p̂i falls within d dioptres of the true IOL power.

It is important to note that the MAEPI ranges from [0, 13.719) based on assessments

with random values in [107]. The best MAEPI value would be 0 and better predictors of

IOL power have lower MAEPI values. By constrast, CIR will range from [0, 100] and a larger

value means a better IOL power predictor. A perfect predictor will have a value of 100 for

any CIR(d) for all dioptre errors d.

Figures assessing predictions and predicted error are constructed with matplotlib in

Python 3.8.

I.3 Results

A table of results for MAEPI, CIR(0), CIR(0.5) and CIR(1) are contained in I.1. The

The results indicate that PearlDGS is the best predictor of IOL power with an MAEPI of

(0.4412) in the UMich dataset and 0.3452 in the SN60WF (Aravind) dataset, followed by the

Nallasamy Formula (Nall-I) with an MAEPI of 0.4521 in the UMich dataset and 0.3574 in the

SN60WF (Aravind) dataset and our generalized model (Nall-G), with an MAEPI of 0.5578

in the UMich dataset and 0.6071 in the SN60WF (Aravind) dataset. While the Nallasamy

Formula and PearlDGS show a reduction of error in IOL power prediction with the SN60WF

(Aravind) dataset compared with the UMich dataset, our generalized model performs worse.
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CIR(0) results are given as 33.001 for the Nall-G (Umich), 29.9492 for the Nall-G (SN60WF

at Aravind), 35.3939 for the Nall-I (Umich), 41.7259 for the Nall-I (SN60WF at Aravind),

36.989 for PearlDGS (Umich) and 42.0305 for PearlDGS (SN60WF at Aravind). The low

values for the Nall-G indicate that our generalized model is the least likely of the three models

to correctly predict the IOL lens power, and CIR(1) demonstrates that less than 90% of Nall-

G predictions for IOL power are even within 1D, while Nall-G provides predictions within

1D of the correct lens power for 95.81% (UMich) and 98.58% (SN60WF at Aravind) of their

datasets, respectively. PearlDGS performs slightly better, with CIR(1) results of 95.5135

and 99.1878 for the UMich and SN60WF at Aravind datasets, respectively.

To better understand the poor comparative performance of our generalized Nall-G model

compared with the original Nall-I model, we plot IOL power prediction error of the Nall-G by

targeted refraction (the patient’s true post-operative refraction) in figure I.1, and compare

this with the same assessment for Nall-I (figure I.2). Most notable is that Nall-G contains

errors up to 4.5D and exhibits a pattern of exclusively high error when targeted refraction

is above 0D. This pattern is less obvious in the Nall-I model.

For further analysis, cases with high error were assessed individually. Graphs of IOL

power against predicted post-operative refraction of our generalized Nall-G were compared

with those for the Nall-I. Graphs for IOL power against predicted refraction were similar for

every patient in the dataset for both Nall-G and Nall-I models. We exhibit a result graph of

a patient with one of the largest fail cases for Nall-G in figure I.3 and this same patient for

Nall-I in figure I.4. For this patient, target refraction was 1.0886 and the predicted power of

the lens given by Nall-G was 12.5D. By contrast, Nall-I predicted a 15.0D lens. The true IOL

power implanted was 17.0D. In the graphs, the Nall-G demonstrates a signifantly small slope

for in the predicted refraction range greater than 0. while Nall-I demonstrates a near-linear

curve across all refractions and IOL powers.

Lastly, predicted refraction error (x-axis) against true refraction (y-axis) is given for Nall-

G in figure I.5 and Nall-I in figure I.6. Nall-G and Nall-I graphs look very similar when

assessing predicted refraction error given the true IOL lens power.

I.4 Conclusion

Because the paradigm of predicting IOL power given a target post-operative refraction can

be a useful tool for clinical use, this small study sought to assess the ability of our gen-

eralized formula to work in a reverse fashion where IOL power is predicted given a target

refraction. However, based on calculations of MAEPI and CIR, it has been determined that

our pretrained generalized formula (here shortened to Nall-G) functions poorly in a reverse
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framework where IOL power is predicted using a targeted refraction. With this information

and the low MAEs given in chapter 4, we can conclude that our Nall-G formula is exceptional

at predicting postoperative refraction but cannot map IOL power back to refraction. Among

the largest contributors to a high MAEPI is Nall-G’s comparative difficulty in predicting IOL

power for positive refractions. This is confirmed with the model’s MAEPI for SN60WF at

Aravind given in table I.1, which is higher than the performance of the UMich dataset. It

is also known from chapter 3 figure 3.1 that the SN60WF dataset contains more positive

predictions than the UMich dataset. The Aravind dataset contains more positive refractions

because every patient targeted emmetropia (0D), while many patients at the University of

Michigan targeted close-up reading ability, requiring a negative refraction. Therefore, the

UMIch dataset from fig 3.1 contains a significantly higher proportion of patients who have

negative post-operative refractions, leading to a lack of data on positive refractions in the

training set.

To understand why the Nall-G has difficulty in assessing positive refractions despite its

high MAE results and generalizability shown in chapter 4, curves of IOL power versus the

Nall-G’s refraction was given in figure I.3. In the figure, it becomes clear that Nall-G has

not developed a strong relationship between postoperative refraction and IOL power, likely

due to the lack of data. As a result, to reduce MAE, the Nall-G has zeroed out the slope

of low-power IOLs to some approximate averages in post-operative refraction. While this

approach has been learned to reduce MAE, it is not a good method for predicting the reverse

case of IOL power, because many powers can relate to a similar predicted refraction, thus

increasing the probability of error. Note that in figure I.4, the Nall-I does not demonstrate

the near-zero slopes for low IOL powers. This is likely due to a lack of features which results

in a relatively poorer fit to post-operative refraction (as reflected in MAE in chapter 4, but

a better fit for IOL power prediction.

Although it may be reasonably assumed that predictors which map a set of data X

to an outcome Y would also be capable of reverse mapping Y to X like a mathematical

equation, this bi-directional assumption does not often hold true in machine learning cases.

Bi-directionality is a feature of a trained mapping function that often has to be intentionally

integrated into the design of the model. This can be demonstrated by the Nall-G formula,

which from chapter 4 is shown to be an excellent generalizable model for post-operative

refraction prediction but functions as a poor IOL power predictor in the reverse. In fact, we

hypothesize that the very presence of additional features which makes the model generaliz-

able are also the cause of the overfitting to post-operative refraction that make the model

irreversible.
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Formula Dataset MAEPI CIR(0) CIR(0.5) CIR(1)

Nall-G
Umich 0.5578 33.001 75.0748 89.6311
SN60WF 0.6071 29.9492 70.2538 87.6142

Nall-I
Umich 0.4521 35.3939 80.3589 95.8126
SN60WF 0.3574 41.7259 88.4264 98.5787

PearlDGS
Umich 0.4412 36.989 81.3559 95.5135
SN60WF 0.3452 42.0305 90.1523 99.1878

Table I.1: MAEPI, CIR(0), CIR(0.5), and CIR(1) performance comparing our generalized
method (Nall-G) to the original Nallasamy Formula (Nall-I) and another machine learning-
based predictor of IOL power.

Figure I.1: Error in IOL power prediction by target refraction for our generalized model
(Nallasamy-II)
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Figure I.2: Error in IOL power prediction by target refraction for the Nallasamy Formula
(Nallasamy-I)
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Figure I.3: Input IOL power vs the predicted refraction output by our generalized model
(Nallasamy-II). This graph shows the output for a single patient (identified only as pa-
tient 996) who had an actual implant of 17.0D and a post-operative refraction 1.0886. The
Nallasamy-II predicts she needs a 12.5D lens for a total error or 4.5D.
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Figure I.4: Input IOL power vs the predicted refraction output by the Nallasamy For-
mula (Nallasamy-I). This graph shows the output for a single patient (identified only as
patient 996) who had an actual implant of 17.0D and a post-operative refraction 1.0886.
The Nallasamy-I predicts she needs a 15.0D lens for a total error or 2.0D.
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Figure I.5: A scatter plot of post-operative refraction prediction error by ground truth
postoperative refraction for our generalized formula (Nallasamy-II)
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Figure I.6: A scatter plot of post-operative refraction prediction error by ground truth
postoperative refraction for the Nallasamy Formula (Nallasamy-I)

160



BIBLIOGRAPHY

[1] Exposure to solar ultraviolet (uv) radiation data by country. https://apps.who.int/
gho/data/view.main.35300. Accessed: 2023-12-18.

[2] Ulib (user group for laser intereference biometry). http://ocusoft.de/ulib/c1.htm.
Accessed: 2024-03-01.

[3] Moloud Abdar, Maryam Samami, Sajjad Dehghani Mahmoodabad, Thang Doan, Bog-
dan Mazoure, Reza Hashemifesharaki, Li Liu, Abbas Khosravi, U. Rajendra Acharya,
Vladimir Makarenkov, and Saeid Nahavandi. Uncertainty quantification in skin can-
cer classification using three-way decision-based bayesian deep learning. Computers in
Biology and Medicine, 135:104418, August 2021.

[4] Khalia Ackermann, Jannah Baker, Malcolm Green, and et al. Computerized clinical
decision support systems for the early detection of sepsis among adult inpatients:
Scoping review. Journal of Medical Internet Research, 24(2):e31083, February 2022.

[5] Adewole S. Adamson and H. Gilbert Welch. Machine learning and the cancer-diagnosis
problem — no gold standard. New England Journal of Medicine, 381(24):2285–2287,
December 2019.

[6] Elsa Aghaian, Joyce E. Choe, Shan Lin, and Robert L. Stamper. Central corneal
thickness of caucasians, chinese, hispanics, filipinos, african americans, and japanese
in a glaucoma clinic. Ophthalmology, 111(12):2211–2219, December 2004.

[7] Tahra AlMahmoud, David Priest, Rejean Munger, and W. Bruce Jackson. Correlation
between refractive error, corneal power, and thickness in a large population with a
wide range of ametropia. Investigative Opthalmology & Visual Science, 52(3):1235,
March 2011.

[8] Deepak Anand, Darshan Tank, Harshvardhan Tibrewal, and Amit Sethi. Self-
supervision vs. transfer learning: Robust biomedical image analysis against adversarial
attacks. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI).
IEEE, April 2020.

[9] Jessica S. Ancker, Alison Edwards, Sarah Nosal, Diane Hauser, Elizabeth Mauer, and
Rainu Kaushal. Effects of workload, work complexity, and repeated alerts on alert
fatigue in a clinical decision support system. BMC Medical Informatics and Decision
Making, 17(1), April 2017.

161

https://apps.who.int/gho/data/view.main.35300
https://apps.who.int/gho/data/view.main.35300
http://ocusoft.de/ulib/c1.htm


[10] Chiaki Asao, Yukunori Korogi, Mika Kitajima, Toshinori Hirai, Yuji Baba, Keishi
Makino, Masato Kochi, Shoji Morishita, and Yasuyuki Yamashita. Diffusion-weighted
imaging in the follow-up of treated high-grade gliomas: Tumor recurrence versus radi-
ation injury. American Journal of Neuroradiology, 26(6):1455–1460, June 2005.

[11] Emanuel A. Azcona, Pierre Besson, Yunan Wu, Arjun Punjabi, Adam Martersteck,
Amil Dravid, Todd B. Parrish, S. Kathleen Bandt, and Aggelos K. Katsaggelos. Inter-
pretation of brain morphology in association to alzheimer’s disease dementia classifica-
tion using graph convolutional networks on triangulated meshes. In Shape in Medical
Imaging, pages 95–107. Springer International Publishing, New York, 2020.

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[13] Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki,
Justin S. Kirby, John B. Freymann, Keyvan Farahani, and Christos Davatzikos. Ad-
vancing the cancer genome atlas glioma MRI collections with expert segmentation
labels and radiomic features. Scientific Data, 4(1), September 2017.

[14] Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler,
Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Mar-
tin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin
Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt
Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus,
Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal
Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mah-
bubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel
Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt,
Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Sub-
hashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Bat-
tistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal,
Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano
Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Sil-
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Marie-José Tassignon, Jost Jonas, Chi P. Pang, and David F. Chang. Cataract. Nature
Reviews Disease Primers, 1(1), June 2015.

[98] John Lambert, Ozan Sener, and Silvio Savarese. Deep learning under privileged in-
formation using heteroscedastic dropout. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[99] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and
Wenzhe Shi. Photo-realistic single image super-resolution using a generative adversarial
network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 105–114, 2017.

[100] Joonsang Lee, Nicholas Wang, Sevcan Turk, Shariq Mohammed, Remy Lobo, John
Kim, Eric Liao, Sandra Camelo-Piragua, Michelle Kim, Larry Junck, Jayapalli Bapu-
raj, Ashok Srinivasan, and Arvind Rao. Discriminating pseudoprogression and true
progression in diffuse infiltrating glioma using multi-parametric MRI data through
deep learning. Scientific Reports, 10(1), November 2020.

[101] Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried
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