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Abstract 

Carbonate rock formations are common targets for sustainable subsurface energy 

development, but their chemical reactivity with injection fluid creates complex dissolution 

pathways that are difficult to predict. Improving predictions of the physical changes that occur in 

formations due to chemical dissolution is essential for assessing the long-term viability of such 

projects. X-ray computed tomography (XCT) imagery is commonly used to study rock core 

samples because it allows for nondestructive 3D visualization of the pore space. Pore network 

heterogeneities observed from XCT are expected to affect larger-scale reactive transport 

behavior, but most of the work in this space to date has been done through numerical 

simulations. Few studies have tested the impact of these heterogeneities in laboratory studies of 

natural rock samples. In this dissertation, quantitative metrics of heterogeneity were developed 

from XCT images of limestone samples and tested for their ability to predict various aspects of 

dissolution. A first step in analyzing XCT data is segmentation of the dataset into pore and 

mineral space. This step is prone to user subjectivity and has substantial impact on subsequent 

interpretations of the data. Various combinations of three image processing filters were tested on 

XCT datasets prior to segmentation, and the use of all three filters in sequence resulted in more 

consistent porosity estimates that were significantly closer to experimental values. Porosity is a 

primary characteristic used to predict downstream petrophysical parameters, including 

permeability, so accurate assessment of porosity is paramount. This filtering process was used in 

all subsequent studies. Next, a series of core flooding experiments were performed on three 
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limestones with different diagenetic properties. Cores were XCT scanned before and after 

dissolution by dilute acid in a high-pressure flowthrough apparatus. Persistent homology was 

applied to analyze the topology of the pore space in three limestones and observe changes in pore 

size, connectivity, and spatial distribution. It was observed that permeability increase was driven 

by the growth of large, connected pore bodies. In the core with the highest degree of along-core 

heterogeneity prior to reaction, pore sizes became more homogenous due to dissolution. Pore 

growth was particularly pronounced in pores that were locally large but not the largest in the 

core. Being able to predict regions with high or low pore size increase could help improve the 

efficiency of models of larger-scale behavior. Next, fractal dimension was used to investigate the 

pore space complexity of the limestone samples. Spectral analysis was used to study how the 

relevant spatial scales of heterogeneity evolved due to dissolution. Smaller heterogeneities 

lessened in importance, and larger heterogeneities contributed more to overall variance after 

reaction, suggesting that a larger scale of observation with lower resolution would be preferable 

after dissolution. The preferential flowpath that developed in each core was isolated; its fractal 

dimension showed good positive correlation with that of the initial pore space, suggesting that 

rocks with geometrically complex pore space are likely to experience more complex branching 

behavior. Optimizing spatial resolution and scale is essential for improving simulations that 

upscale the phenomena observed in the laboratory. This dissertation contributes to a growing 

body of work in characterizing carbonate core samples and using those characterizations to 

predict reactive transport behavior during dissolution. Improving predictions of dissolution 

behavior is essential for the implementation of sustainable subsurface energy technologies. 
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Chapter 1 Introduction 

1.1 Motivation 

 Widespread scientific evidence suggests that global climate change has been accelerated 

by post-industrial anthropogenic greenhouse gas (GHG) emissions, especially CO2. In the United 

States, the electric power sector remains a major source of GHG emissions, accounting for 25% 

of GHG emissions in 2021 (EPA, 2023). Mitigating the harm of global climate change requires a 

transition from traditional fossil fuel sources to carbon-neutral and carbon-negative energy 

technologies. Geologic carbon capture, sequestration, and utilization (CCUS) has great potential 

for reducing CO2 emissions in the energy sector (Celia, 2017). CO2 captured at point sources or 

through direct air capture can be injected into the subsurface for permanent geologic 

sequestration, creating a carbon sink to reduce atmospheric CO2 concentrations. Utilization of 

CO2 in the subsurface has shown promise as well. Subsurface reservoirs could be used for 

compressed gas energy storage, providing additional energy storage capacity to the grid to enable 

implementation of intermittent renewable energy sources like wind and solar. CO2 also has 

advantageous thermodynamic properties that would make it an effective working fluid in 

geothermal energy production systems (Adams et al., 2014; Randolph & Saar, 2011). For the 

success of all of these technologies, reliable prediction of fluid flow through the subsurface is 

essential. Precise characterization of target formations to predict their flow characteristics is 

challenging due to their setting in the deep subsurface. Rock core samples from target formations 

are collected and analyzed in a laboratory setting. In systems where percolation through porous 

media dominates transport, core sample pore characteristics are used to predict upscaled 
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reservoir parameters, including permeability and flow dynamics, and are a starting point for 

forecasting changes in formation behavior over time (Hommel et al., 2018; Ma, 2015; 

Mostaghimi et al., 2013). Improvement in core sample characterization methods therefore has 

great potential for impact in the transition to a lower-carbon energy mix.  

1.2 Subsurface reactive transport 

Carbonate formations (e.g., limestones, dolomites) are common targets for subsurface 

storage and energy production because they are porous (large storage capacity), permeable (easy 

to inject), and widely distributed. Carbonates readily dissolve when injected with acidic fluid and 

can create complex channels of dissolution that are difficult to predict. 

Numerous prior works have highlighted the importance of reactive transport regimes in 

the progression of porosity and permeability in dissolving carbonates. This regime is defined by 

dimensionless parameters: the advective and diffusive Damköhler numbers (DaI and DaII, 

respectively) and the Péclet number (Pe). The Damköhler number describes whether a system is 

controlled by the transport of reactants or by chemical kinetics. DaI is defined as the ratio of the 

characteristic time of advection to the characteristic time of reaction. A system with high DaI is, 

therefore, transport-limited: the reactant is consumed faster than the system can carry it to the 

reaction sites. Likewise, DaII is defined as the ratio of characteristic time of diffusion to 

characteristic time of reaction. The Péclet number describes the primary mode of transport within 

a system and is defined as the ratio of characteristic time of diffusion to characteristic time of 

advection. In a system with high Pe, advection is the primary mode of transport. Prior works 

have connected these parameters to the characteristics of the reaction front. In a study of 

porosity-permeability relationships in dissolving limestones, moderate positive values of DaI 

yielded the greatest permeability increase for a given porosity increase (Luquot & Gouze, 2009). 
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Low DaI and high Pe have been associated with uniform dissolution, moderate Da and high Pe 

with wormholing, and high Da with face dissolution (dissolution regimes described in more 

detail below) (Kang et al., 2003; Liu & Mostaghimi, 2017; Menke et al., 2015; Mostaghimi et 

al., 2016; Qi et al., 2018; Zhang et al., 2022). Dissolution is found to be particularly sensitive to 

pore space heterogeneity in systems with high Pe and Da (Zhang et al., 2022). 

The progression of the reaction front through the dissolving rock tends to follow one of 

four patterns: (1) uniform dissolution, (2) face dissolution, (3) wormholing, or (4) mixed 

dissolution. (1) Uniform dissolution tends to occur at very high injection rates with slow 

chemical kinetics because reactive fluid reaches all areas of the core before it is consumed. (2) 

Face dissolution tends to occur at very low injection rates so that the reactant is consumed near 

the injection point and flow through the remainder of the core is nonreactive. (3) Wormholing 

can occur at moderate injection rates, where advection has time to carry reactive fluid along the 

length of a main flow channel, but dispersion does not have time to spread the fluid throughout 

the full area of the core before reaction occurs. (4) Mixed dissolution describes dissolution that 

shares characteristics of multiple other types (Fredd & Fogler, 1999; Seigneur et al., 2019). 

Predicting which pattern a system is expected to follow is important, as different dissolution 

regimes influence different porosity-permeability relationships and thus different long-term 

formation behaviors. 

In engineered subsurface energy systems, site selection and characterization is 

paramount. Injection speed and chemistry can be controlled to target a specific reactive transport 

regime for the desired application. Uniform dissolution may be preferable for some applications 

to increase the volumetric capacity of the pore space within a smaller areal footprint. In others, 

creating channels of high permeability can be beneficial to carry reactive fluid to distal regions 
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of the formation. The ability to change these conditions to optimize system performance is 

dependent on the ability to effectively characterize the reservoir host rock. Core plug samples 

that are centimeters in length are collected from various areas and depths of a target formation to 

estimate the petrophysical characteristics of the rock. These are analyzed using a variety of 

experimental and imaging techniques, and those parameters are used to inform models of system 

performance. 

1.3 X-ray computed tomography 

X-ray computed tomography (XCT) is a nondestructive imaging technique that allows for 

3D visualization of rock material, making it a highly useful tool for analyzing pore structures in 

situ. The rise in the availability of bench-scale XCT instruments has led to great advances in 3D 

characterization of geomaterials (Wildenschild & Sheppard, 2013). Its applications are 

numerous: in addition to providing porosity information, XCT data have been used to 

characterize many other aspects of the pore space, including mineralogy (Carroll et al., 2013; 

Qin & Beckingham, 2019), reactive surface area (Lai et al., 2015), pore space fractal dimension 

(Alfonso et al., 2018; Wu et al., 2019; Xia et al., 2019), pore connectivity (Nakashima & 

Kamiya, 2007; Qajar & Arns, 2022; Ruspini et al., 2021), wettability and contact angle 

(Alhammadi et al., 2018; Guo et al., 2020), and saturation (Manoorkar et al., 2021; Sell et al., 

2016). Others have simulated transport through porous media using simulation on XCT images 

(Bijeljic, Mostaghimi, et al., 2013; Bijeljic, Raeini, et al., 2013; Menke et al., 2021; Mostaghimi 

et al., 2013). All these are possible without physical or chemical damage to the sample, leaving it 

intact for further analysis. 

In an XCT scanner, a cone of X-rays passes through the sample and is captured using a 

2D detector at the far end of the scanner. The sample is rotated by small increments, creating 
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thousands of projections taken at different angles that are then reconstructed into a 3D dataset. 

The sample material attenuates the X-ray beam, so that each resulting image consists of dark 

areas where the beam passed through void space and bright areas where the beam passed through 

dense material. The Lambert-Beer law states that the grayscale value produced by the attenuated 

X-ray beam is a function of the material thickness and its X-ray attenuation coefficient; however, 

this law only applies to monochromatic X-ray beams. Bench-scale XCT scanners produce 

polychromatic X-ray beams, for which the Lambert-Beer law does not apply, meaning that 

further interpretation is required to quantify the amount of rock material that the beam passes 

through prior to detection (Wildenschild & Sheppard, 2013).  

Great progress has been made in applying and utilizing XCT characterization, but the 

technology still has some limitations. Compared to other microscopy techniques, bench-scale 

XCT is a relatively low-resolution method. Bench-scale XCT scanners typically have a voxel 

resolution limit of around 1-10 µm. This resolution is limited by the diameter of the sample 

being imaged, as the sample must be far enough from the X-ray source to rotate a full 360° while 

keeping the full sample width perpendicular to the X-ray beam within the field of view (Cnudde 

& Boone, 2013). Resolution has been found to impact the accuracy of rock property estimates 

and the scale of the representative elementary volume (Bazaikin et al., 2017; Huang et al., 2021). 

Synchrotron scanners use a parallel X-ray beam that allows for geometric magnification and can, 

therefore, achieve higher (sub-micron) resolution, but they are prohibitively expensive and 

facilities are limited (Baruchel et al., 2006; Cnudde & Boone, 2013). It is, therefore, of great 

importance to improve the efficacy and analyze the predictive capacity of digitally derived rock 

characteristics that can be obtained using bench-scale XCT scanners.  



 6 

To be useful for any of the above applications, an XCT dataset must first be segmented 

into its constituent parts: mineral versus pore space. Because the features of interest in a rock 

sample are often at or below the scale of observation, this process is nontrivial. Most voxels will 

contain some fraction of mineral and pore space, and their grayscale values will fall somewhere 

between that of pure rock or pure void, demonstrating so-called “partial-volume effects” 

(Cnudde & Boone, 2013). Still, prior work has found that coarse imagery with a large amount of 

partial-volume effects can still contain valuable characteristic information (Louis et al., 2007).  

1.4 Research objectives 

Previous studies have illustrated the importance of physical heterogeneity within porous 

rock material in controlling reaction processes under a given reactive transport regime. Liu and 

Mostaghimi (2017) studied the influence of pore space heterogeneity on dissolution behavior 

using statistically generated flow fields with different correlation lengths. They found that larger 

correlation length (i.e., more heterogeneity) is associated with more uniform dissolution or 

wormholing regimes, and less face dissolution. Navarre-Sitchler and Jung (2017) generated 

reactive transport models to study the effect of initial permeability heterogeneity and anisotropy 

on geochemical reaction rates; they found that preferential flow paths were more likely to 

develop in the more heterogeneous system. These and other numerical studies use statistically 

generated flow fields that are informed by natural rock characteristics but do not directly 

represent real samples and therefore cannot be compared to experimental data. Al-Khulaifi et al., 

(2017) mimicked layered heterogeneity by stacking limestone and dolomite core samples and 

found that physical heterogeneity had a greater influence than intrinsic reaction rates on the 

effective reaction rates in dissolving core samples. Few studies have made quantitative 

assessments of heterogeneity from natural rock samples. 
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The purpose of this dissertation is to use XCT scans of natural rock samples to develop 

quantitative metrics of structural heterogeneity and assess their utility in predicting 

experimentally observed dissolution behavior. Use of these metrics can aid in improving 

predictions of reactive flow behavior in the subsurface, which is essential for the implementation 

of sustainable subsurface technologies. 

1.5 Chapter summaries 

Chapter 2 studies the influence of image processing methods on the interpretation of 

XCT data. The work in this chapter lays a foundation for the work in subsequent chapters by 

studying the optimal methods for processing XCT data that yield the most accurate and precise 

results. XCT scans of three limestone and sandstone core samples were subjected to various 

combinations of three possible image filters: noise reduction, contrast enhancement, and beam 

hardening correction. The core sample porosity and pore size distributions were compared to 

experimental values. A computational fluid dynamics (CFD) model was developed to model 

nonreactive flow through one core, and simulated permeability was compared to laboratory 

results. It was found that the combination of all three filters resulted in lower porosity variance 

and values closer to experimental values for both limestones when compared to the unfiltered 

dataset. The use of the three filters also yielded a closer permeability value to experimental 

results than the unfiltered dataset. Pore size distributions were studied, but the difference in size 

detection limits between experimental and digital methods restricted meaningful comparison. 

These results suggest that the use of image filters could significantly improve digitally derived 

estimates of physical rock properties. These filters were used for all digital rock analysis for both 

Chapters 3 and 4. The work in this chapter was published in the peer-reviewed journal article 

referenced below. Author contributions follow: Ellen P. Thompson performed conceptualization, 
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writing, and formal analysis. Kira Tomenchok contributed to conceptualization and 

methodology. Tyler Olson aided in the investigation. Brian R. Ellis supervised and oversaw 

review and editing.  

Thompson, E.P.; Tomenchok, K.; Olson, T.; Ellis, B.R. Reducing user bias in X-ray 
computed tomography-derived rock parameters through image filtering. Transport in 
Porous Media 2021, 140, 493-509. 
 
Chapter 3 studies the influence of pore space topology on pore size evolution in 

dissolving carbonates. Accurate prediction of pore size change in dissolving carbonates is 

important for a variety of subsurface applications, as regions of dramatic pore size increase 

influence system permeability and reactive transport behavior. In this study, three limestone 

cores were imaged using XCT before and after acid-promoted dissolution. Persistent homology 

was used to characterize the size, connectivity, and spatial distribution of the macropores within 

each core sample. All three rocks experienced the greatest size change in already large, 

connected pores. The sample with the greatest pore size heterogeneity prior to reaction 

experienced an increase in along-core pore size homogeneity after reaction. The samples with the 

greatest variance in persistence (a proxy for spatial clustering) experienced the greatest pore 

body size increase. These findings suggest that persistence heterogeneity analysis of core 

samples could be used to predict regions of greatest pore size evolution in a dissolving carbonate. 

This knowledge is beneficial for increasing confidence in the safety and sustainability of 

subsurface energy development projects. The work in this chapter was published in the peer-

reviewed journal article referenced below. In this study, Ellen P. Thompson contributed through 

conceptualization, formal analysis, investigation, and writing. Brian R. Ellis contributed through 

funding acquisition, supervision, and oversight of review and editing. 
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Thompson, E.P.; Ellis, B.R. Persistent homology as a heterogeneity metric for 
predicting pore size change in dissolving carbonates. Water Resources Research 2023, 
59. 
 
Chapter 4 studies the influence of initial pore space geometric complexity on the 

complexity of the pore space and preferential flowpaths that develop during dissolution. 

Complexity is quantified using fractal dimension along the length of the flowpath, calculated 

from XCT data of three limestone cores before and after core flooding experiments with dilute 

acid. The dominant scales of fractal dimension heterogeneity along the length of the core are 

studied using spectral analysis. Higher-frequency heterogeneities are found to contribute less to 

variance after reaction, suggesting that smaller-scale heterogeneities are washed out and larger-

scale heterogeneities become more important. This suggests that as dissolution progresses, a 

larger spatial scale is necessary to fully capture the variability in geometric complexity. The 

preferential flowpath that formed in each core was isolated and analyzed. Cores with greater pore 

space complexity were correlated more complex branching behavior of the preferential 

flowpaths. Optimizing the scales of observations and the expected shape of the preferential 

flowpaths is necessary to improve predictions of reservoir behavior in natural systems.  

Overall, this work improves the estimates of digitally derived rock parameters and studies 

novel quantitative metrics of pore space heterogeneity and their influence on dissolution 

behavior. These findings can be used to improve model predictions of subsurface development 

performance for a variety of applications (geothermal energy production, CCUS, and more) in 

which understanding the pathways of dissolution is essential.  
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Chapter 2 Reducing User Bias in X-Ray Computed Tomography-Derived Rock 

Parameters through Image Filtering 

*Reprinted from: Thompson, E. P., Tomenchok, K., Olson, T., & Ellis, B. R. (2021). Reducing 

User Bias in X-ray Computed Tomography-Derived Rock Parameters through Image Filtering. 

Transport in Porous Media, 140(2), 493–509. https://doi.org/10.1007/s11242-021-01690-3.  

2.1 Introduction 

Reliable prediction of fluid flow through the subsurface is essential for numerous 

applications including subsurface energy technologies such as geothermal energy production, 

enhanced oil recovery, and geologic carbon sequestration. In systems where percolation through 

porous media dominates transport, core sample porosity is a primary characteristic that is used to 

predict upscaled reservoir parameters including permeability and flow dynamics, and is a starting 

point for forecasting changes in formation behavior over time (Hommel et al., 2018; Ma, 2015; 

Mostaghimi et al., 2013). Consistent, accurate determination of core porosity is therefore an 

imperative first step in modeling fluid transport in these systems. 

X-ray computed tomography (XCT) allows nondestructive 3D imaging of rock material, 

making it an exceedingly useful tool for visualizing pore structures in situ. XCT imagery can 

provide geometric and topological information about the pore space that is crucial to predicting 

flow behavior in porous media, like pore throat size and pore connectivity (Bazaikin et al., 2017; 

Lindquist et al., 2000). The rise in availability of bench-scale XCT instruments has led to great 

advances in 3D characterization of geomaterials (Wildenschild & Sheppard, 2013). Yet, reliable 
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segmentation of XCT datasets into pore- and non-pore voxels, or individual mineral species, 

remains challenging. Traditional thresholding-based approaches to segmentation (e.g., global 

thresholding, watershed, hysteresis) are sensitive to user bias (Iassonov et al., 2009). Ample 

research into the efficacy of various segmentation methods suggests that the optimal 

segmentation technique would minimize user supervision to reduce the influence of user 

subjectivity (Deng et al., 2016; Iassonov et al., 2009; Leu et al., 2014; Pini & Madonna, 2016). 

Machine learning has therefore gained popularity as a method for XCT segmentation and 

analysis.  

Trainable Weka Segmentation (TWS) is an open-source machine learning tool developed 

for Fiji (Schindelin et al., 2012) that leverages multiple image parameters to segment a dataset 

based on user-defined training classes (Arganda-Carreras et al., 2017). Originally developed for 

biological sciences research, TWS is also very useful in geoscience applications because it can 

segment large 3D datasets efficiently and with reduced user oversight. It has been used, for 

example, for classification of wetting phases in XCT scans of saturated reservoir rock 

(Alhammadi et al., 2018), as well as for in situ contact angle and fluid-fluid interfacial angle 

measurements (Garfi et al., 2020). Others have used TWS to determine crystal size distribution 

from scanning electron microscope (SEM) images of volcanic rock (Lormand et al., 2018, p. 20).  

Machine learning reduces subjectivity but does not completely eliminate user bias from 

the segmentation process; a classified dataset is only as good as its training data. Segmentation of 

the same core with different input training data can result in variable overall porosity estimates. 

Prior work suggests that other downstream parameters, including permeability, are even more 

sensitive than porosity to differences in the initial binary segmentation (Leu et al., 2014). It is 
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therefore critical to improve the reproducibility of initial segmentation in order to make 

meaningful predictions of flow and transport through a rock system from XCT sample data.   

Image filtering of XCT datasets can reduce the impact of scan artifacts on the 

segmentation process. Binary classification of the XCT dataset into pore space and non-pore 

space is complicated by the presence of sub-voxel sized features. This results in partial volume 

effects: middling grayscale values in voxels that contain both pore and rock material (e.g., at 

pore boundaries), and interpretation of these poorly defined edges can be highly subjective. 

Noise from a number of sources (the X-ray source, the detector, the sample holder, etc.) is 

inherent to XCT image collection (Leu et al., 2014). High noise levels can cause 

misclassification, particularly if global thresholding is used for segmentation and image contrast 

is low. Filters attempt to correct for these factors in order to improve image quality and simplify 

the segmentation process. 

Prior works have analyzed the impact of image enhancement protocols on digital rock 

properties. Müter et al. (2012) found that segmentation using Otsu thresholding was improved by 

the application of edge-enhancing and noise-reducing filters, especially at high levels of 

Gaussian blurring. Sell et al. (2016) tested numerous noise reduction and edge detection filters 

and found that gas hydrate saturation levels calculated from CT imagery were significantly 

impacted by the image enhancement protocols prior to segmentation by combined watershed and 

region growing techniques. Shulakova et al. (2013) compared signal-to-noise ratios after 

application of various noise suppression filters and found than an edge-preserving filter 

optimized noise reduction while maintaining important feature boundaries.  

In this study a dual filter approach was employed to address these CT imaging artifacts, 

coupling contrast enhancement and noise reduction filters. Prior work suggests that dual filtering 
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can improve segmentation results in rocks with complex pore networks and feature sizes near 

voxel resolution, and that applying a noise reduction filter without first applying a contrast 

enhancement filter leads to erasure of small features (Müter et al., 2012). Here, an unsharp mask 

was used to enhance contrast at pore-rock boundaries, followed by an edge-preserving bilateral 

filter to reduce blur and noise (Ushizima et al., 2011). Anisotropic diffusion and median filtering 

were also considered as noise reduction filter options, but both can suffer instability and 

inefficiency because they solve partial differential equations iteratively. Bilateral filtering uses 

range and domain filtering and is therefore a preferred method for large datasets (Tomasi & 

Manduchi, 1998). In a comparative study using images with a resolution of less than 5 μm, a 

bilateral filter outperformed a median filter (med3) when Gaussian noise had low variance (σ < 

75), and at three times the speed (Ushizima et al., 2011). Because of the low Gaussian noise 

variance and large size of the XCT dataset used in this study, a bilateral filter was selected. 

Beam hardening is another inherent artifact of bench-scale XCT imaging. Bench-scale 

XCT instruments use a polychromatic beam of X-rays, and the beam’s lower frequencies are 

preferentially attenuated as it passes through the sample material. The result is a relatively high-

frequency, high-energy (hardened) beam. A beam passing through the center of a sample (i.e., a 

greater amount of material in a cylindrical sample) has hardened by the time it passes through the 

bulk of the material, reducing the effective attenuation coefficient of the center material 

compared to that of the edges. Upon reconstruction, this manifests as brightening near the edges 

of the sample. The segmented dataset then shows artificial radial variation in local porosity. 

Reconstruction XCT software can reduce beam hardening, but programs often over- or under-

correct. Synchrotron XCT instruments, which use a monochromatic beam, do not produce this 

artifact (Wildenschild & Sheppard, 2013). But because synchrotron facilities are not widely 
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available, beam hardening correction is important for most XCT users. Khan et al. (2015) 

developed an algorithm specifically for cylindrical rock cores that fits a 2D quadratic polynomial 

for removal of beam hardening artifacts in classically filtered back-production reconstructed 

slices. Their code was adapted for the scans used in this study.  

The purpose of this study is to introduce and assess a pre-segmentation image filtering 

workflow to improve the reproducibility of the TWS output and therefore the confidence in rock 

behavior predictions based on XCT data. To evaluate the effectiveness of the proposed 

workflow, XCT scans of three rock core samples were examined. Porosities were computed from 

the dataset after various filter combinations were applied, and those values were compared to 

experimental measurements. Further investigation into additional rock parameters -- pore size 

distribution and permeability -- was performed in a case study of one rock core scan. From the 

segmented dataset, a computational mesh of the pore space was generated, and flow was 

simulated using OpenFOAM to estimate permeability (“OpenFOAM,” 2019).  Digitally derived 

values were validated using an experimental flow-through permeability test. The results of this 

study support the hypothesis that the application of these three filters prior to the definition of 

training sets for TWS results in improved output consistency.  

2.2 Methods 

2.2.1 Laboratory Methods 

This study analyzed three core samples of 5.1 cm length x 2.5 cm diameter, all purchased from 

Kocurek Industries. The cores included: Indiana Limestone, a carbonate from the Mississippian 

period; Edwards Limestone, a more heterogeneous carbonate from the Lower Cretaceous; and 

Upper Devonian Berea Sandstone. Kocurek provided expected mineral characteristics for the 

samples based on analysis of other cores in their inventory (Table 2.1). 



 19 

 

Table 2.1: Expected rock properties provided by sample supplier. 

Sample 
Expected 

porosity (%) 

Expected 

permeability (mD) 
Mineral content 

Indiana Limestone 14-18 16-20 
97 % Calcite, 3% 

Montmorillonite 

Edwards Limestone 33-35 65-85 100% Calcite 

Berea Sandstone 20-22 370-400 91% Quartz, 9% Kaolinite 

 

An XCT scan of each core was taken in the Computed Tomography in Earth and 

Environmental Sciences (CTEES) facility at the University of Michigan, using a Nikon XT H 

225 ST industrial CT scanner. The voxel resolution of each scan was 28 μm; additional scan 

parameters are included in Appendix Table A.1. The XCT dataset was reconstructed using Nikon 

CT Pro 3D software, and the built-in beam hardening correction was applied. 

Mercury intrusion porosimetry (MIP) was used to determine porosity and pore size 

distribution experimentally. MIP was performed on material of the same type and from the same 

supplier using a Micromeritics AutoPore V in the Biointerfaces Institute at the University of 

Michigan. Two to three intact cubes of rock material, each roughly 1 cm3, were inserted into the 

penetrometer bulb. The total sample mass was 3.102 g, 3.2441 g, and 1.8954 g for Indiana 

Limestone, Edwards Limestone, and Berea Sandstone, respectively. The porosimeter took 

measurements at 50 different target pressures ranging from 3400 Pa to 4.2x108 Pa. Volume 

distribution results were compared to digital results.  
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Core permeability for the Indiana Limestone sample was determined experimentally using a 

high-pressure flow-through apparatus. Water maintained a confining pressure of 13.8 MPa 

around the core at ambient temperature. Deionized water flowed through the core at a constant 

flow rate of 1 mL/min. Upstream and downstream pressure transducers continuously monitored 

fluid pressure upstream and downstream of the core. Permeability was calculated based on this 

pressure differential using Darcy’s Law. 

2.2.2 Image Preparation, Filtering, and Segmentation 

Each CT dataset was first prepared for filtering. All steps of initial image preparation 

were performed using Fiji, an install of ImageJ bundled with many image processing plugins 

(Schindelin et al., 2012). The incomplete image slices at the very ends of the cores were cropped 

out of the dataset, resulting in a 1050-slice TIFF stack with 1000x1000 pixels per slice. The 

Analyze Particles function generated a silhouette mask of the core for each image slice. When 

this mask was multiplied by the original dataset and the threshold was adjusted, the background 

voxels all assumed a grayscale value of 0. This allowed analysis of the core in isolation from 

background interference.  

Following initial image preparation, eight different combinations of filters were applied 

to the dataset prior to training class definition in order to assess their influence on the variability 

of segmentation results. The combinations tested are listed in Table 2.2 and are described in 

more detail below. For each filter combination, eight repetitions of training set definition and 

TWS classification were performed. 
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Table 2.2: Image filter combinations applied prior to TWS 

Task Unsharp mask filter 

(Un) 

Bilateral filter 

(Bil) 

Beam hardening correction 

(BH) 

Trainable Weka 

segmentation 

1    X 

2 X   X 

3 X X  X 

4 X X X X 

5   X X 

6  X  X 

7  X X X 

8 X  X X 

 

Unsharp mask filter: An unsharp mask with a Gaussian blur radius (σ) of 5 pixels and a 

mask weight of 0.4 was subtracted from the original image in order to enhance feature edges. 

These values were selected based on the conclusions of Müter et al., (2012), who found that 

segmentation results were optimal at σ values between 3 and 5, and that the results were not very 

sensitive to changes in either input parameter. 

Bilateral filter: The algorithm described by Ushizima et al. (2011) was used for 

parameterization of the bilateral filter. This method turns patches of regions of interest (ROI) 

into parameters for the bilateral filter. Ten to fifteen ROIs of known material were defined, and 

Fiji was used to calculate the mean and standard deviation of XCT values within each ROI. 
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These were input into the MATLAB script FindSigmaR (see Appendix A), which outputted a σr 

value for the bilateral filter. Here σr represents the range of voxel intensities, which is assumed to 

be equal to the largest intensity variation within any ROI. The bilateral filter spatial domain 

parameter, σd, was assigned a value of 3 (Ushizima et al., 2011)  

Beam hardening correction: A built-in beam hardening correction was applied during 

reconstruction using Nikon CT Pro 3D, but the output datasets showed beam hardening 

overcorrection. A MATLAB script (see Appendix A) adapted from Khan et al. (2015) was 

applied to fit a polynomial function to the XCT dataset and remove beam hardening artifacts. 

Figure 2.1 demonstrates the improvement: it shows the average XCT value at varying radial 

distances from the center of the core in one image, before (red triangles) and after (blue circles) 

this script was applied. Before the script was applied, the image had radially decreasing XCT 

values: the edge was darker than the center of the core. After the script was applied, the values 

were more uniform. Linear regressions were fit to the datasets of each to illustrate the differences 

in slope.  
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Figure 2.1: Average intensity by radial distance of one XCT image slice, with beam hardening correction done by 
XCT software (red triangles) and correction done by Khan et al. (2015). MATLAB code (blue circles). Linear 
regressions and their 95% confidence intervals are shown for each dataset. 

A filtering workflow diagram for the fully filtered (Un+Bil+BH) case, and an image 

showing the effects of these filters, is shown in Figure 2.2. After the beam hardening correction, 

training sets were defined. Using the freehand selection tool in TWS, a user selected three 

regions in each of pore and rock space and added them to the training classes. The user did not 

select the same pixels each time; rather, they identified features (i.e., a single pore, or a single 

mineral grain) from the dataset on a case-by-case basis in order to allow for user bias in feature 

selection. The resulting training classes were approximately 100-200 pixels each. An example 

demonstrating the type of training data selected and associated segmentation results is shown in 

Figure 2.3 (note that this example is for illustrative purposes only; training data used for the 

study were selected from different spatial regions across the dataset). These training data were 

used to classify the full image using TWS.  
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Figure 2.2: Top: Image filtering and segmentation workflow. Completed with manual Fiji functions, Fiji filters, and 
MATLAB scripts (see Appendix A for code). Bottom: A series of images showing the effects of each filter on a 
small section of the CT dataset. 

 

Figure 2.3: An example illustrating different segmentation results ((d) and (e)) based on different sample training 
sets ((a) and (b)). The red and green regions are regions that the user defined as pore and mineral, respectively. (c) 
shows the differences at the pore level in pore size and connectivity, and (f) shows the difference in pore pixel 
assignment of the full image 
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2.2.3 Indiana Limestone Pore size distribution 

Pore volume distributions computed from the segmented Indiana Limestone datasets 

were compared to experimental results. To digitally quantify the pore volume distribution, the 

methods described in Münch et al. (2006) were used. The Disconnect Particles plugin was used 

to disconnect pores at their bottlenecks, with a k value of 0.7. This value, k, is a nondimensional 

parameter between 0 and 1 that defines the allowable degree of constriction above which pores 

are defined as distinct. It is a function of the relative radii of the pores and their constriction 

points, and the value was selected based on visual inspection. To measure the volume and radius 

of each pore in 3D (assuming spherical pores), the Particle Size Distribution plugin was used 

(Müter et al., 2012).  A substack of the first 200 image slices was used for each iteration to 

decrease processing time. 

2.2.4 Indiana Limestone Permeability simulation 

From a subsection of the segmented Indiana Limestone dataset, the BoneJ plugin for Fiji 

generated a surface file for the solid (Doube et al., 2010). The boxMesh utility for OpenFOAM 

was used to create a uniform cubic grid cell structure enclosing the surface file domain. The 

snappyHexMesh mesh generator identified and extracted surface features from the surface file, 

refined the mesh near those features, and then “snapped” the mesh to the surface file, thus 

creating a computational mesh of the negative (pore) space for flow simulation. The substack 

started at the same slice for each iteration, but the length of the substack varied from 50 to 500 

slices (1.4 to 14 mm) in order to achieve snappyHexMesh breakthrough at a constant box mesh 

resolution of one grid cell per voxel. This mesh resolution was limited by computational 

processing ability. Steady-state, nonreactive flow through the mesh was simulated using 

simpleFoam (“OpenFOAM,” 2019). Boundary conditions were defined to mimic the laboratory 
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experimental permeability conditions described in Section 2.1. No-slip conditions were applied 

to the four side walls and to the grain-fluid interface. Pressure at the outlet was held constant at 

atmospheric pressure, and pressure at the inlet was calculated during flow. Water was flooded 

through the domain at a rate of 1 mL/min. Steady state inlet pressure was observed, and 

permeability was determined using Darcy’s Law. Figure 2.4 illustrates the model setup. 

 

 

Figure 2.4: OpenFOAM permeability simulation setup. (a) Subsection was taken from binarized segmented dataset. 
(b) Surface file of rock material was generated. (c) Mesh was generated in OpenFOAM using blockMesh and 
snappyHexMesh. (d) simpleFoam was run and pressure difference was used to infer permeability. 

2.3 Results & Discussion 

2.3.1 Overall porosity 

Figure 2.5 shows overall porosity results for the segmented datasets, grouped by filter 

combination. Box plots of the Indiana Limestone, Edwards Limestone, and Berea Sandstone core 

data are shown in purple, yellow, and dark blue, respectively. The median value is illustrated 

with a red line, the boxes represent the 25th-75th percentiles, and whiskers show the most extreme 

values that are not outliers. Outliers are defined here as points that fall more than 1.5 interquartile 

ranges (IQR) outside the box. Additional data from a higher-resolution scan of Berea Sandstone 

material (described in more detail below) are shown in light blue. Experimental porosity values 

from MIP are shown with dashed lines 
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Figure 2.5: Box-and-whisker plots showing porosity values from segmented datasets processed using various filter 
combinations. The red line shows the median, the boxes contain the 25th-75th percentiles, and outliers fall more than 
1.5 IQR outside the boxes. The dashed lines show experimental porosity determined by MIP. Un = unsharp mask, 
Bil = bilateral filter, and BH = beam hardening correction. n=8 for each filter combination 

A few patterns arise that are consistent between the two limestone samples (Indiana 

Limestone in purple and Edwards Limestone in yellow): the fully filtered (Un + Bil + BH) 

datasets show higher average porosity and reduced variance compared to the unfiltered (None) 

case. The cases closest to experimental values are the (Un + BH) and (Un + Bil + BH) cases. The 

similarity between the (Un + BH) and (Un + Bil + BH) cases, along with the fact that the 

bilateral filter alone shows little change from the unfiltered dataset data, suggests that the 

bilateral filter is relatively unimportant for these datasets. The bilateral filter is applied to reduce 

noise; this suggests that noise in these datasets contributes less to segmentation output variability 

than poor edge definition and beam hardening artifacts do. These data also suggest that the 

unsharp mask is particularly important for narrowing the range of values obtained through 
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segmentation. All values, regardless of filter method, are lower than the experimental value 

found using MIP. This is most likely due to the presence of sub-voxel porosity in the relatively 

low-resolution datasets. The digital method is unable to resolve pores smaller than 1 pixel (28 

μm, in this study) in radius. If a particular voxel contains, for example, 40% pore space and 60% 

mineral, it will be classified as mineral. The presence of small pores is therefore consistent with 

an underestimation of bulk porosity. 

Initial analysis of the Berea Sandstone (dark blue) core scan shows quite different results. 

Variance is not reduced through the use of the three filters. The (Un + BH) and (Un + Bil + BH) 

cases again give the highest porosity values, but in this case, they are overestimates compared to 

the experimental data. It is suspected that these inconsistent results are due, at least in part, to the 

small grain and pore size of this rock material. All three core scans used the same voxel 

resolution, which was sufficient to identify distinct pore and mineral regions in the limestone 

samples. The grain size of the sandstone was close to the voxel resolution of the scan, making it 

more vulnerable to partial volume effects and therefore more challenging to identify training 

regions that were wholly made up of pore or mineral.  

A small (~1 cm3) rough block of Berea Sandstone material was scanned at higher 

resolution (8 μm per voxel), and the study was repeated on this scan. The results are shown in 

light blue and referred to as “high-res scan.” This case shows more similar results to the 

limestone example. The (Un + BH) and (Un + Bil + BH) cases show the closest values to the 

MIP porosity (shown with a dark blue dashed line), with the (Un + BH) case providing a slightly 

closer value to the measured porosity. Variance is lower in the (Un + Bil + BH) case than the 

(None) case. As described above, the beam hardening correction used in this study was 

specifically written for cylindrical core samples, so it was not being used as designed when 
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applied to a non-cylindrical sample. It appeared to have similar effect on this rough chunk of 

material as was seen in the cylindrical limestone samples.  

The study of the Berea Sandstone highlights the importance of selecting high enough 

scan resolution to allow for precise and reliable segmentation of an XCT dataset. The tradeoff 

between sample size and scan resolution is a physical limitation of the benchtop XCT scanner. 

The voxel resolution of the core samples analyzed in this study was the highest-possible 

resolution that allowed for capture of the entire core height. These data may recommend a 

secondary, higher-resolution scan, as well as experimental methods, to validate segmentation 

results of a low-resolution scan. 

Only three regions in each of pore space and mineral space (six total regions) were used 

to define the training classes for TWS input, because increased amounts of training data 

corresponded to prohibitively high processing times. A prior work compared TWS outputs using 

varying numbers of training regions and found that 10 regions was preferable to 3 for their 

segmentation of SEM data for crystal size distribution analysis(Lormand et al., 2018). In order to 

ensure that the limited training dataset size used here did not falsely skew the porosity results, an 

additional analysis was performed to test varying numbers of training regions. A single filtered 

dataset of the Indiana Limestone scan (Un + Bil + BH) was used and segmentation was 

performed using 6, 20, 30, and 40 training regions (divided evenly between pore and mineral 

regions). This process was repeated three times for each number of regions. Results are shown in 

Appendix Figure A.1. A pairwise t-test was performed at the α=0.05 level to compare the 6-ROI 

mean porosity to the 20-, 30-, and 40-ROI mean porosities, respectively. Likewise, a pairwise f-

test was performed at the α=0.05 level to compare variances. No significant differences in mean 
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or variance were found at this confidence level. These results suggest that the porosity results 

obtained in this study would not have differed significantly had more training regions been used. 

A sensitivity analysis was performed for the Indiana Limestone (Un + Bil + BH) case on 

the three filter parameters that had been selected based on prior works. This included the bilateral 

filter spatial radius (BS), the unsharp mask Gaussian blur radius (UR), and the unsharp mask 

weight (UW). In order to reduce processing time, the analysis was performed on a 100-slice 

substack from the center of the dataset. This substack length was deemed to be statistically 

representative of the full dataset: for n=10 100-slice stacks, the coefficient of variation (i.e., the 

standard deviation normalized by the mean) was less than 10%(Zhang et al., 2000). The base 

case (BS = 3, UR = 5, UW = 0.4) was compared to test cases with one changed parameter, with 

eight repetitions each. Results are shown in Figure 2.6.  

Pairwise t- and f-tests at the α=0.05 were used to compare mean and variances of the base 

case against each test case. The bilateral filter spatial radius (red) had no significant difference in 

mean or variance at this confidence level for any of the tested values. As discussed above, the 

bilateral filter had little effect on the results from the full core analyses, and this sensitivity 

analysis suggests that this finding would hold true even after changing the bilateral filter 

parameters. The unsharp blur radius (blue) had significantly different mean values for the UR = 2 

and UR = 3 cases, but at UR ≥ 4 no significant difference from the base case was observed. The 

variance was lower in the UR = 3 case, higher in the UR = 8 case (due to one far outlier), and 

otherwise not significantly different from the base case. These results suggest that using a blur 

radius above a minimum value is important, but above that point the value does not make a 

difference. The largest difference was observed in the unsharp mask weight (green) test cases. 

Each case had a different mean value from the base case, increasing from the lowest value for the 
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lowest mask weight to the highest value for the highest mask weight. Variance was consistent 

across all cases. These data suggest that a mask weight of 0.5 would have been better suited for 

this particular rock core, as the mean of the UW = 0.5 test case was closest to the experimental 

porosity of 0.10. This highlights the value of a pre-analysis testing different filter parameters on 

a representative sub-volume in order to optimize filtering on a case-by-case basis.   

 

Figure 2.6: Box and whisker plot results of filter parameter sensitivity analysis. A base case (yellow) was compared 
to cases in which one parameter value was changed: bilateral filter spatial radius (red), unsharp mask blur radius 
(blue), or unsharp mask weight (green). Red lines show medians, boxes show 25th-75th percentiles, and whiskers 
show most extreme values that are not outliers. Outliers (red plus signs) are points that fall further than 1.5 IQR 
outside of the box.  

2.3.2 Indiana Limestone Pore Size Distribution 

As a case study on the Indiana Limestone core scan, pore volume distributions were 

generated based on the digitally derived data and experimental MIP data (Figure 2.7). Digital 

data were binned based on the size thresholds of the porosimeter in order to compare volume 
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fractions. The distributions calculated from the XCT data show little variance compared to the 

experimental data. Pores with radii around 50 to 500 μm (roughly 2 to 18 voxels) dominate the 

pore volume fraction. The full MIP dataset (black dotted line) shows a much wider distribution 

of sizes, with approximately 23% of the pore volume fraction made up of sub-micron pores. This 

figure highlights that, as expected, comparison between digital and experimental data is 

hampered by difference in resolution(Nimmo, 2004). Digital analysis is unable to resolve pores 

smaller than 1 XCT voxel, whereas MIP can detect pores down to 10s of nm. We see very little 

difference between the XCT datasets with different filter combinations. Image filtering cannot 

overcome the loss of resolution from bench-scale XCT imaging. Even when MIP data are 

truncated to only include those pores that the XCT data could possibly resolve (radius greater 

than 1 XCT voxel), they still have greater variance because of that difference in resolution. 

 

Figure 2.7: Pore volume distribution as a function of pore radius. Digitally derived distributions for each filtered 
combination are shown in solid lines. Experimental MIP data are shown including all pores (black dotted line) and 
only pores bigger than the voxel size of the XCT data (black dashed line) 
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A single-case sensitivity analysis was performed on the impact of the Disconnect 

Particles parameter, k. The (Un + Bil + BH) datasets were aggregated and analyzed with k values 

ranging from 0.0 to 1.0 (Figure 2.8). More detailed data from this analysis are provided in 

Appendix Table A.2. 

 

Figure 2.8: Sensitivity case study on Disconnect Particles parameter, k, ranging from k=0.0 in dark red (no 
disconnection of adjacent pores) to k=1.0 in violet (high disconnection.  

The resulting data show that pore size distributions begin to converge at k values above ~0.5. 

Low k values (i.e., low disconnection) correspond with a poorer approximation of the most 

abundant pore radii found using MIP but a better representation of the largest pores (>500 μm 

radius), except for the k=0.0 case (dark red), which severely overestimates the abundance of 

pores > 1 mm in diameter. These data suggest that k value selection is a trade-off between nearer 

estimation of the peak values in the experimental pore size distribution curve and improved 

representation of the distribution of macropores. Either option could be preferable depending on 
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the use case. The selection of k=0.7 in this study prioritized representation of smaller pores in an 

effort to represent the pore sizes that dominate the pore volume fraction. No alternative k value 

selection offers a substantial improvement towards this goal, as this parameter cannot correct for 

the difference in resolution between experimental data and XCT-derived data. 

2.3.3 Indiana Limestone Simulated Permeability 

A case study of permeability simulations was performed on the Indiana Limestone core. 

In order to explore the reproducibility of simulated permeability values from these segmented 

datasets, the segmented datasets associated with the maximum, median, and minimum porosity 

were used to generate computational meshes with which to simulate permeability using 

OpenFOAM. The range of these values is shown in Figure 2.9.  

 

Figure 2.9: Simulated permeability ranges from segmented datasets processed using various filter combinations. The 
markers indicate permeabilities simulated from the maximum, median, and minimum porosity datasets from each 
filter combination. The asterisk on the Un+BH range shows an outlier value. The dashed purple line shows 
experimental permeability. Un = unsharp mask, Bil = bilateral filter, and BH = beam hardening correction.  
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The dataset with all three filters applied shows the smallest range of simulated 

permeability values. This is likely due to the small range of porosity values derived from this 

dataset and illustrates that variation in the initial segmentation process can amplify the 

differences in simulated downstream processes. Porosity variances were also very small for the 

Un, BH, and Un + Bil datasets, yet these do not show much reduction in simulated permeability 

range. This discrepancy may be related to differences in pore connectivity rather than porosity 

itself, which is a topic for further exploration.  

These data suggest that the application of the three filters did improve reproducibility of 

permeability simulations but did not improve estimation of the permeability value itself. The 

overestimation of permeability compared to experimental data could be partially attributed to the 

difference in pore size distribution. The higher fraction of larger pore radii seen in the digital 

pore size distribution is consistent with an overestimation of permeability. This is further 

evidence that rock parameter predictions derived from bench-scale CT data are affected by low 

voxel resolution. We would still expect to see improved reproducibility with a higher resolution 

scan and may also see an improved permeability value estimate. The overestimation of 

permeability could also be an illustration of limitations of the OpenFOAM simulation. This 

method seeks to predict permeability, an upscaled parameter, from a subsection of an already 

small-scale sample. Heterogeneity within the core (which would be likely in a carbonate due to 

the presence of fossil fragments) could introduce error to the simulated estimates because a 

substack was used instead of the whole core length. The mesh resolution and subsection length 

used here were at the upper limits of the computing capability currently in place. Future work 

will implement high performance computing resources in order to explore whether increased 
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subsection size and mesh resolution promote agreement between simulated and experimental 

results. 

2.4 Conclusions 

The results of this study support a recommendation to use image filtering prior to the 

definition of training classes for XCT segmentation by machine learning algorithm. Here, a 

three-stage workflow was considered for binary segmentation of three core samples: an unsharp 

mask for contrast enhancement, an edge-preserving bilateral filter for noise reduction, and a 

beam hardening correction.  

In the two limestone samples, the datasets that had all three filters applied had reduced 

variability in overall porosity and a closer porosity value to the experimental MIP value 

compared to the unfiltered cases. The XCT data from the sandstone core showed inconclusive 

results, but segmentation was made difficult due to the scan resolution being close to pore and 

grain size. A higher-resolution scan of a small sample of the Berea Sandstone showed the same 

variance reduction and prediction improvement seen in the limestone samples.  

Simulated permeability on the Indiana Limestone core also showed an improvement in 

reproducibility after the application of these three filters. Pore size distribution was studied for 

the Indiana Limestone core, but the ability to compare these data to experimental results was 

hampered by differences in resolution between the XCT and MIP analyses. Access to higher-

resolution synchrotron XCT instruments is limited for most researchers, and thus there is value 

in improving the results that can be obtained using the widely available bench-scale XCT. 

Improving the reproducibility of XCT segmentation results is essential for many 

subsurface applications, as this step is critical for the prediction of subsurface fluid behavior. 

Here, identification of the pore network and its applications for fluid flow were studied in 
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mineralogically simple rock samples. These methods may also assist in the segmentation of 

different mineral species, which could identify mineral species accessible to fluid-rock 

interactions. For any application, increasing XCT segmentation consistency and limiting user 

bias would improve the confidence in any downstream predictions made using those data, as 

modeling flow through porous media at the reservoir scale depends strongly on information 

gathered from rock core samples. 
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Chapter 3 Persistent Homology as a Heterogeneity Metric for Predicting Pore Size Change 

in Dissolving Carbonates  

*Reprinted from: Thompson, E. P., & Ellis, B. R. (2023). Persistent Homology as a 

Heterogeneity Metric for Predicting Pore Size Change in Dissolving Carbonates. Water 

Resources Research, 59(9), e2023WR034559. https://doi.org/10.1029/2023WR034559 

3.1 Introduction 

Predicting changes in reservoir flow properties due to precipitation and dissolution is 

essential for numerous subsurface energy technologies, including the safe and reliable 

implementation of subsurface carbon capture, utilization, and storage (CCUS). Permeability 

evolution in porous media through mineral dissolution and precipitation has been described using 

various forms of the Kozeny-Carman relation since its original development in the early 20th 

century(Carman, 1937; Hommel et al., 2018; Kozeny, 1927). These relationships predict 

permeability change as a function of porosity change. But relationships determined strictly from 

porosity can overestimate permeability because they cannot account for tortuosity and pore 

connectivity(Mostaghimi et al., 2013). Geoscientists have recently looked to topology – a branch 

of mathematics that studies the spatial relationships and connectedness of geometric features – to 

address this(Suzuki et al., 2021). 

Persistent homology is a tool borrowed from algebraic topology which describes the 

topological features of a space as a function of spatial resolution. It has recently been applied as a 

heterogeneity metric in the characterization of geomaterials. The key output of a persistent 
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homology analysis is a persistence diagram (PD). In classical topology, features in a space are 

described as simplicial complexes. The features are grown or shrunk incrementally, and the 

distances at which simplicial complexes of different dimensions appear (birth) and disappear 

(death) are recorded. These are visualized in a Cartesian coordinate system with birth distance on 

the x-axis and death distance on the y-axis. The distance from the x=y diagonal represents a 

feature’s persistence: the distance between birth and death.  

The same principle can be applied to digital imagery; in this case, the filtration process 

applies to structures of pixels or voxels instead of simplicial complexes. Existing void features 

are grown or shrunk by incremental numbers of voxels and their birth-death intervals are plotted 

(Figure 3.1). These void features are referred to as “holes” and identified by their topological 

dimension. A 0- dimensional hole is a pore body, a 1-dimensional hole is a loop, and a 2-

dimensional hole is a grain. The number of features of the nth dimension is called the Betti 

number bn. Each dimension is plotted on a separate PDn. Because the connectivity of each type 

of pore feature is isolated, it is possible to track changes in the quantity and size of each 

independently.  

Topological analysis has proven a useful tool for describing the heterogeneity of a pore 

space and using it to predict flow behavior. Jiang et al., (2018) described the heterogeneity of 

rock pore space using PD heterogeneity analysis on a sphere cloud extracted from XCT data 

using Dong & Blunt’s maximal ball method(Dong & Blunt, 2009). They found that PD 

heterogeneity analysis was consistent with pore velocity distribution analysis. Others have used 

topological characteristics to predict permeability during single-phase, non-reactive flow. Moon 

et al., (2019) developed a computationally efficient method for determining statistical 

representative elementary volume (REV) based on the persistence diagram, and a statistical  
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Figure 3.1: Demonstration of the process of converting XCT data into PDs. A XCT dataset is segmented into pore 
and mineral voxels (here shown in blue and brown, respectively). The diamorse algorithm incrementally shrinks 
(negative direction) and grows (positive direction) the pore space by one voxel per step and records the distance at 
which each pore feature closes off (birth) and merges with other pores (death). These points are plotted on a 
Cartesian plane.  
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model to predict permeability and tortuosity based on their topological summaries. Suzuki et al., 

(2021) estimated the number of flow paths and fracture aperture using persistent homology and 

found excellent agreement between permeability estimated from persistent homology and 

calculated using direct numerical simulation on artificial fracture networks. Robins et al., (2016) 

used birth-death diagrams to analyze percolation radii in grain material and found good 

correlation between critical percolation lengthscales and persistent homology in grain packs and 

well-sorted sandstones. PD analysis of wetting and nonwetting fluids in a two-phase system has 

shown good correlation with trapping efficiency in a variety of sandstone systems (Herring et al., 

2019). 

A few more recent studies have begun to explore the relationship between pore space 

topology and reactive transport behavior. Lisitsa et al., (2020) introduced persistence analysis as 

a tool to classify reactive transport behavior in a numerically simulated dissolving carbonate 

system under different reactive transport scenarios. By using a bottleneck algorithm to cluster 

simulation scenarios, they successfully separated cases that resulted in homogenous dissolution, 

wormhole formation, and dissolution front formation. Following on this work, Prokhorov et al. 

(2022) expanded to 3D numerical simulations using an immersed boundary level set approach 

for reactive transport modeling. They tested the influence of input parameters (pressure drop, 

molecular diffusion coefficient, and inlet pH) on changes in pore space topology and studied the 

influence of topological changes on system permeability and tortuosity, and again found that 

persistent homology could be used to identify matrix dissolution scenarios.  

To date, little work has been done to experimentally benchmark the topological changes 

predicted in numerical studies. Accurate prediction of pore topology changes under the influence 



 44 

of chemical change would be extremely useful for predicting the evolution of upscaled reservoir 

system properties like permeability.  

In this study, persistent homology was used to analyze the topological features of three 

carbonate rocks from XCT scans. We observed the changes in pore network topology that 

occurred during dissolution, and these topological changes allowed us to infer the driving 

mechanisms of permeability increase in three limestone carbonates. In all three, permeability 

increase was primarily due to expansion of already connected, large pores. In the two more 

homogenous samples, the increase in connected pore size steadily decreased from inlet to outlet, 

suggesting the growth of connected pores and the emergence of preferential flow paths as the 

reaction front progresses through the core. In the more heterogeneous sample, the degree of size 

change was correlated to the initial size of the largest outlier pores. The initial size of the locally 

large pores showed strong negative correlation with their size change, indicating that the largest 

pores remain relatively unchanged over the course of dissolution and the core had a net increase 

in pore size homogeneity. The standard deviation of persistence was found to have a positive 

correlation with the size change of connected pore bodies when the samples were considered in 

aggregate, suggesting that increased pore spatial heterogeneity corresponds to a greater degree of 

channeling. Topological analysis offers a novel metric by which we can measure pore structure 

heterogeneity and determine its utility for predicting pore space evolution under reactive flow 

conditions. 

3.2 Materials and Methods 

This study was performed on three types of limestone with various levels of initial pore 

network heterogeneity (Indiana Limestone, Edwards Limestone, Lueders Limestone), supplied 
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by Kocurek Industries. Persistence analysis was performed on XCT scans of sample material 

after multiple stages of dissolution.  

Indiana Limestone is an oolitic limestone from the Mississippian Period, now found in 

southern Indiana, USA. It has a relatively homogenous composition made up of shells and shell 

fragments (especially echinoderms and bryozoans) with trace amounts of clays in some areas. 

Like other Paleozoic tropical limestones, it contained few aragonite sources during initial 

deposition. Low aragonite content resulted in poor initial cementation, which made it susceptible 

to mechanical and chemical compaction upon burial, resulting in smaller pore spaces between 

grains (Dodd & Nelson, 1998).  

Edwards Limestone is a porous, permeable limestone from the early Cretaceous, located 

in south-central Texas, USA. Its beds consist of calcarenites and calcilutites primarily made up 

of miliolid-fossil biomicrite and oyster-rudist biolithite. Some beds have undergone extensive 

dolomitization and chertification, though Fourier Transform InfraRed (FTIR) minerology data 

from Kocurek Industries indicates that the core plug used in this study comes from a section of 

100% calcite. Exposure to meteoric water shortly following deposition caused enlargement of 

some pore spaces, increasing pore size heterogeneity (Abbott, 1975).  

The Lueders formation is a member of the Wichita Group in northern Texas, USA. It is a 

mid-Permian formation consisting of intercalated fluvial and shallow marine material. The 

limestone beds are dominated by sand-sized fossil fragments and algal pellets (Buczynski & 

Chafetz, 1987; Varnes et al., 1958). Much of the pore space is moldic, having formed through 

the preferential dissolution of fossil pieces. This contributes to the overall complexity of the pore 

network (Morrow & Buckley, 2006).  
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Pre-reaction pore size distributions were determined experimentally by mercury intrusion 

porosimetry (MIP) using a Micromeritics AutoPore V in the BioInterfaces Institute at the 

University of Michigan. Because this analysis technique is destructive, the measurement was 

performed on small pieces of sample material that were cut from the core plugs prior to imaging 

and experimentation. Though the portion of the core used for MIP analysis was not included in 

the topological analysis, it was assumed to be sufficiently representative of the pore size 

distribution. Two to three roughly cube shaped pieces of intact rock material were inserted into 

each penetrometer bulb. The total sample masses of each were: 3.6685 g for Indiana Limestone, 

2.9820 g for Edwards Limestone, and 4.1258 g for Lueders Limestone. Figure 3.2 shows 

cumulative pore volume data for these samples. This figure also indicates the XCT resolution 

used for imaging in the study. The gap in the Lueders data resulted from instrument malfunction 

that caused it to skip recording those data points. These data indicate that only a small fraction of 

the total pore volume (approximately 16%, 10%, and 6% for Indiana, Edwards, and Limestone, 

respectively) consisted of pores with diameters greater than the XCT resolution. Sub-micron 

resolution would be necessary to fully resolve even 10% of the Lueders pore volume, and a 

voxel resolution on the order of 100s of nm would be necessary to fully resolve a majority of the 

pore volume for this sample. Sub-resolution porosity registers as variations in XCT grayscale 

values depending on the X-ray attenuation of void and mineral space. A binary segmentation 

algorithm binarizes each voxel into pore versus mineral based on its grayscale value, creating an 

estimate of true sample porosity. This highlights an inherent limitation of using XCT data to 

characterize the pore networks of carbonates. Still, XCT scans at 15 µm or coarser resolution 

have been effective for observing and predicting pore network properties in carbonates in many 

prior studies (e.g., S. Liu & Huang, 2021; Siddiqui et al., 2006; Sukop et al., 2013; Yoo et al., 
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2021). With this known limitation in mind, this study focuses primarily on the largest pores in 

these samples, which could be characterized with the greatest confidence. In addition, prior 

works imaged at resolutions below 5µm have highlighted the importance of pores > 60 µm as 

critical pathways for permeability increase in dissolving carbonates (Qajar & Arns, 2022). While 

15 µm resolution cannot possibly resolve all pores within a carbonate, this resolution was 

selected as a means of observing those macropores important to dissolution while also allowing 

along-core visualization of flow pathway development.  

 

Figure 3.2: Cumulative pore volume fraction data by MIP, with Indiana Limestone shown in orange, Edwards 
Limestone in purple, and Lueders Limestone in green. A dashed blue line indicates the voxel resolution of the XCT 
scans used in this study. The gap in Lueders data is due to instrument malfunction. 

XCT images were taken in the Computed Tomography in Earth and Environmental 

Sciences (CTEES) facility at the University of Michigan, using a Nikon XT H 225 ST industrial 

CT scanner. A full list of scan parameters is included in Appendix Table B.1. The XCT datasets 
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were reconstructed using Nikon CT Pro 3D software. XCT scans were taken at 15 µm resolution 

to allow for precise visualization of pores and pore throats. Voxel resolution selection is 

necessarily a tradeoff between accurate representation of small features and REV size (Peng et 

al., 2012). Prior work has found that standard topological metrics – Betti numbers and Euler 

characteristic – can be consistently estimated when sample size is larger than about 15 

correlation lengths (Bazaikin et al., 2017). Analysis of the rock cores that were used for this 

study showed correlation lengths around 50 µm, with correlation length here defined as the 

distance at which the autocorrelation length of longitudinally averaged porosity falls below a 

value of 1/e (Elson et al., 1983). A 2.5 cm-diameter sample scanned at 15 µm voxel resolution 

can therefore be assumed to be sufficiently representative of the sample’s pore topology.  

Initial and final porosity and permeability values for each sample are shown in Table 3.1. 

Porosity was determined by the saturation method before and after reaction. Porosity by mercury 

intrusion porosimetry (MIP) is also provided for a small portion of each sample that was 

removed prior to reaction and shows reasonable agreement with the saturation method results. 

Slight variation could be due to slight differences in porosity between the small piece of material 

used for MIP and the full core plug, or due to differences in precision between MIP and the 

saturation method. Pre-reaction porosity determined by image analysis is also included, and 

shows considerable underestimation of the porosity, particularly for the Lueders sample 

(indicated with a *). As discussed above, this is to be expected for an XCT scan of a low 

porosity, low permeability rock sample due to the large proportion of sub-resolution porosity. 

Permeability was determined using Darcy’s Law by flowing deionized water through pre-

saturated cores at five different flow rates and measuring upstream-downstream pressure 

differential.  
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Table 3.1: Porosity and permeability values for each rock core. 

Core Sample Indiana Limestone Edwards Limestone Lueders Limestone 

Pre-Reaction Porosity 

(MIP) 

0.15 0.24 0.14 

Pre-Reaction Porosity 

(Image Analysis)  

0.10 0.21 0.01* 

Pre-Reaction Porosity 

(Saturation Method) 

0.17 0.25 0.11 

Post-Reaction 

Porosity (Saturation 

Method) 

0.18 0.27 0.13 

Pre-Reaction 

Permeability (mD) 

32 9.8 0.12 

Post-Reaction 

Permeability (mD) 

240 170 54 

 

Core samples were reacted with pH 3 HCl to induce calcite dissolution in a high-pressure 

flowthrough apparatus. Core samples were held by viton sleeves and confining pressure was 

applied using water to maintain a pressure differential between confining and internal flow 

pressure of at least 3.4 MPa (500 psi). Upstream and downstream flow was controlled using 

floating distribution plugs. The inlet plug maintained a constant volumetric flowrate, and the 

outlet plug was held at atmospheric pressure. Permeability was estimated during reaction by 

monitoring upstream and downstream pressure using pressure transducers. A transport-limited 

reactive flow regime was maintained, and advective transport dominated over diffusive transport. 
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A more detailed description of reactive transport is included in the Results and Discussion 

section. 

Scans were taken prior to reaction and at two time points after reaction. Scans were 

processed using the filtering process described in Thompson et al. (2021), which in their study 

yielded more accurate and more consistent porosity values than segmentation of raw image 

stacks. This filtering process includes an unsharp mask filter for contrast enhancement, a 

bilateral filter for noise reduction, and a beam hardening correction. Processed scans were 

segmented using Trainable Weka Segmentation, a machine learning segmentation tool for 

ImageJ (Arganda-Carreras et al., 2017). Figure 3.3 shows sample image data from the original 

tomograms, post-processing, and after binary segmentation. Core samples were 2.5 cm in 

diameter and 4 cm in length. Scans at 15 µm voxel resolution resulted in scan volumes of 

approximately 2000x2000x2600 voxels. These volumes were cropped to 2000 slices to generate 

volumes of consistent size that cropped out scanning artifacts near the ends of the cores. Scans 

were divided into eight 250-slice (3.75 mm) subsections to observe along-core variation.  

Persistence analysis was performed on the segmented 3D subsections using the diamorse 

package developed by Vanessa Robins and Olaf Delgado-Friedrichs (Delgado-Friedrichs et al., 

2015; V Robins et al., 2011). This Python package first computes the signed Euclidean distance 

transform from a binary segmented image dataset to identify the Euclidean distance from each 

voxel to the nearest pore-grain boundary. It then determines persistence birth-death values for 

each pore based on the distance transform.  
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Figure 3.3: Sample XCT data showing the original tomograms (left), filtered images post-processing (center), and 
after binary segmentation (right). 

3.3 Data  

Persistence diagram interpretation follows as described in Herring et al., (2019). In a 3D 

binarized XCT scan in which mineral space is represented by 1s and pore space is represented by 

0s, three dimensions of topological features can be observed and interpreted as follows. 

Examples of each type of feature are illustrated in Figure 3.4. 

0th dimension topological features represent pore bodies. Their birth values are negative 

because they appear as the pore phase shrinks. Their death values are positive if death occurs by 
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disappearance as the pore phase expands, suggesting that the pore body is isolated from flow 

channels. These pores (negative birth, positive death) are shown in the second quadrant (Q2) of 

the PD. A negative death value suggests that a pore death occurs as the pore space shrinks. Thus, 

0th dimensional features in the third quadrant (Q3) represent pore bodies within connected pore 

space. The birth value of a feature in either quadrant represents its size (radius), as computed 

using the Euclidean distance to the nearest pore boundary. Its persistence represents its degree of 

isolation from other features of the same dimension. Figure 3.4(b) illustrates a typical 0th 

dimensional PD. 

 

Figure 3.4: Figure reprinted from Herring et al., (2019) serves as a guide for PD interpretation. (a) Shows an 
example sketch of pore vs mineral space, and (b)-(d) show 0th-2nd dimension example pore geometries, respectively. 

1st dimension topological features represent flow channels or loops within the porous 

media. Features with positive-positive birth-death values (first quadrant, Q1) both appear and 

disappear as the pore phase expands and therefore represent mineral space with some concavities 

that allow them to be detected in the 1st dimension. Negative birth values indicate channels that 

appear as the mineral phase expands. Features in Q2 disappear when they encounter solid phase; 

these are toroidal loops around grain spaces. The birth values of these points correspond to the 
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width of the narrowest pore throat in the loop, and the death value represents the diameter of the 

grain that the pore loop encloses. Those in Q3 disappear when they encounter other pore space, 

indicating narrower channels within the loop that allow pore bodies to merge. Figure 3.4(c) 

shows possible features within the 1st dimensional PD space.  

The complement to 0th dimensional features, 2nd dimensional features represent convex 

mineral grains. The points in this PD fall primarily in Q1 and the death value of these points 

indicates the size of the grains. Figure 3.4(d) shows possible geometries of these features. 2nd 

dimensional data are available but are not the focus of this study.  

3.4 Results and Discussion 

Initial analysis focuses on the 0th dimensional PDs of the three rocks described above at 

the sections closest to the core inlet and outlet (Figure 3.5). In the following diagram, the inlet 

changes are shown in the top row and outlet changes in the bottom row for each rock sample. PD 

diagrams show progress of reaction from left to right. Color bars indicate density of datapoints. 

0th dimension PDs of both the Indiana and Edwards Limestones show little change over the 

course of reaction close to the outlet, but substantial expansion into Q3 near the inlet. The 

increase in number and size of large, negative points indicate more, larger connected pore bodies 

along the flow channel. The large, negative birth values of these points indicate large pore radii, 

and the varying death values indicate varying degrees of spatial isolation from other pore spaces. 

The relatively little change in the Q2 features demonstrates that permeability increase in this case 

is unlikely to be driven by breakthrough to previously isolated pore bodies, but instead by 

widening of existing connected pore spaces. Higher change closer to the inlet suggests that 

preferential flow paths could be forming as the reaction progresses along the length of the core. 

This suggests that the fast reaction rate caused the fluid to quickly decrease in reactivity as it  
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Figure 3.5: 0th dimension PDs from the subsections closes to the inlet and outlet for each rock. 
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progressed through the rock, resulting in an unstable reaction front that effectively confined 

dissolution reactions to a few existing channels. A more detailed discussion of reactive transport 

behavior is included below. Figure 3.6 shows downsampled post-reaction scans with large flow 

channels highlighted. 

The Lueders Limestone 0th dimensional PD also shows expansion into Q3, but to a much 

lesser extent than Indiana or Edwards Limestone. Where there is expansion, points stay close to 

the b=d line, indicating low persistence. Unlike both the Indiana and Edwards Limestones, 

changes were similar at the inlet and outlet; this discrepancy is a topic of further exploration 

below. The large preferential flowpaths observed near the inlet of each sample are visible in the 

XCT data; examples are included in Appendix Figure B.1. As seen in Figure 3.6, the Lueders 

sample contained one very large dominant flow path after reaction. 

 

Figure 3.6: Visualizations of large flow channels in post-reaction scans of (a) Indiana Limestone, (b) Edwards 
Limestone, and (c) Lueders Limestone cores. The inlet is at the top of each image. Images were downsampled to 
200x200x200 pixels to highlight the largest flow paths. 
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Study of the 1st dimension PDs shows relatively little change compared to the 0th 

dimension PDs (Appendix Figures B.2-B.4). In the Indiana Limestone, the body of the PD 

cluster remains similar throughout the course of reaction (Appendix Figure B.2). There is some 

expansion into Q2 and Q3 away from the b=d line indicating some growth of looping pathways 

within the pore space, particularly close to the inlet. The 1st dimension features of the Edwards 

Limestone show slightly more change (Appendix Figure B.3). This core experienced spreading 

in Q2, which indicates an increase in persistence that could be due to narrowing of the inner 

diameter of loops in the pore space. The most remarkable change is in Q1, where a large increase 

in both the size and persistence of these 1st dimensional features is observed. This corresponds to 

a substantial decrease of features in the 2nd dimension and could be due to changes in the 

geometry of grains that cause them to be captured as 1st dimension instead of 2nd dimension 

features. Like the Indiana Limestone, the Edwards Limestone saw expansion into more negative 

values in Q3, especially close to the inlet. This is consistent with the findings of enhanced 

alteration near the inlet that were seen in the 0th dimension. 1st dimensional data from Lueders 

show negligible change over the course of reaction (Appendix Figure B.4). This core has very 

few points in Q2 and Q3, indicating few looping pathways that remain effectively unchanged. 

There is a slight expansion in the post-reaction 2 scan near the outlet that appears closer to the 

inlet values, which could indicate an increase in self-similarity of the grain phase along the core 

as reaction progresses. Overall, the relatively small changes in 1st dimension PDs compared with 

0th dimension PDs suggest that permeability change in these experiments was not driven by 

increase in the size of flow loops within the porous medium. 

The prior qualitative discussion identified the 0th dimension, Q3 features (connected pore 

bodies) as the most notable region of change for all three samples, so this region was isolated for 
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further study. Quantitative analysis focuses on the size and spatial heterogeneity of the connected 

pore bodies to determine which characteristics are most important for predicting dissolution 

behavior. Figure 3.7 shows the size distributions of the 0th dimension, Q3 features before and 

after two stages of reaction. The means and 25th-75th percentiles change slightly after reaction for 

the Indiana (orange) and Edwards (purple) samples, and slightly more for the Lueders (green) 

sample. The most striking difference is in the spread of outliers: these extend to larger values for 

all three cores, especially near the inlet. This shows that the effect seen in the inlet-outlet PD 

comparison above is present along the full length of the core, and that the greatest size change 

occurs in outlier pores that are much larger than the bulk of the pore bodies within each system. 

All three cores show growth in outliers, but their changes in size distribution behave 

differently. The boxplots show that Indiana and Edwards Limestones have similar initial 

distributions, with the bulk of the pore sizes between 2 and 4 voxels. After reaction, there is a 

shift in skewness to the right. Lueders has a much tighter initial distribution across the length of 

the core, but again shows rightward skewness after reaction. This is confirmed by a comparison 

of skewness of size distribution along the core (Figure 3.8). Indiana and Edwards (orange and 

purple, respectively) have nearly identical, uniform skewness of size distribution prior to reaction 

and see similar changes after reaction. This could indicate the size and/or number of outlier pores 

increases after reaction (see further discussion below). The Lueders core, meanwhile, has a great 

deal of heterogeneity in its initial skewness. Sections 5 and 7 had very high skewness prior to 

reaction that remained nearly unchanged after reaction. Other areas increased dramatically in 

skewness, resulting in an overall smoothing to a uniform, higher skewness post-reaction. This 

suggests that  
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Figure 3.7: Boxplots showing sizes (birth values) of 0th dimension, 3rd quadrant features, the maximally inscribed 
sphere within connected pore bodies. For each box plot, the red line indicates the median and the boxes represent the 
25th-75th percentiles. Outliers are indicated by black dots and indicate points greater than 1.5 interquartile ranges 
(IQR) beyond the 1st or 3rd quartile. Each dataset has on the order of 10,000 datapoints 

the areas of the rock that already had extreme outlier pores saw minor change in the size of those 

outliers, and areas with fewer, smaller large pores saw the greatest increase. This could be due to 

the higher surface area-to-volume ratio of the largest pores in the flow path: already large pores 

have less reactive surface area per volume of reactive fluid passing through, so they experience 

less change in size over time. This result highlights the importance of analyzing along-core size 

heterogeneity to predict regions that will experience the greatest change due to dissolution. 

Locally large pores, if small in comparison to other large pores along the flow path, can 

experience dramatic growth that may contribute more significantly to net permeability increase.  
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Figure 3.8: Skewness of 0th dimension, Q3 size distributions along the length of each core, before (solid) and after 
(dashed) reaction. 

In discussing skewness of pore size distribution, it is important to note that any pore size 

distribution generated from XCT data is expected to exhibit some rightward skewness. This is 

because XCT is a relatively low-resolution imaging method that cannot resolve pores smaller 

than one voxel, in this case, 15 µm. A common assumption is that features smaller than 2-3 

voxels in size cannot reliably be resolved due to partial volume effects. The Lueders limestone in 

particular had a very low initial permeability (0.12 mD), which suggests that the percolating 

network of pores and pore throats in the initial media was very unlikely to be resolved fully. 

Micron- to nanometer- sized pore bodies exist in great numbers in these rocks, as observed in the 

MIP data above, but they are not expected to be as important for fluid transport. This analysis is 

limited to the change in the large pores that are expected to dominate flow. 
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The single largest connected pore body in each subsection (here referred to as a “locally 

large pore”) of each sample was isolated to compare changes depending on initial size and size 

heterogeneity. Looking at the single largest 0th dimension, Q3 feature for each core subsection, it 

is again observed that Lueders has a decrease in along-core heterogeneity after reaction (Figure 

3.9(a)). Although all the largest pores in each subsection grew to some extent, the along-core size 

distribution of locally large pores was much smoother than the initial distribution. In contrast, the 

Edwards and Indiana samples initially had nearly uniform locally large pore sizes and instead 

showed an increase in size heterogeneity post-reaction (particularly near the inlet). The change in 

size of each locally large pore was plotted against its initial size and a linear regression was fitted 

to the data for each sample. (Figure 3.9(b)). In the Indiana and Edwards samples, there was no 

correlation between initial size and change in size, suggesting that the distance along the core 

was a stronger driver of pore size increase. However, in the Lueders sample, which initially had 

a great deal of along-core pore size heterogeneity, the normalized locally large pore size increase 

was strongly correlated with its initial size (R2 = 0.90). In this sample, this correlation is 

consistent with the hypothesis that the largest of the large pores do not increase in size as 

dramatically because they have less reactive surface area per volume of fluid. It also highlights 

the importance of locally large pores that are relatively small compared to other regions in the 

flowpath as specific locations that are likely to experience substantial growth under dissolution. 

In addition to initial pore size and size distribution, persistence itself provides a metric of 

pore space heterogeneity that shows some utility in predicting pore size evolution. Figure 3.10 

shows the change in mean connected pore body size (0th dimension Q3 size) in each subsection 

as a function of the initial standard deviation of 0th dimension feature persistence (including both 

isolated and connected pore bodies). A linear regression fitted to the aggregated data shows 
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moderate positive correlation (R2 = 0.49, shown here in blue). This is consistent with our 

understanding of porosity-permeability progression in a rock with an unstable reaction front 

(Szymczak & Ladd, 2011). Persistence is a proxy for the degree of spatial isolation of a pore 

body. A system with more isolated pore bodies is more likely to experience flow confined to an 

existing preferential flow path and is less likely to merge with previously disconnected pores, so 

as dissolution occurs it expands the existing connected pore bodies. Interestingly, when the rock 

samples are considered independently, the correlation that was observed in aggregate does not 

apply. Nor are the size changes aligned with the degree of permeability change observed in each 

sample (Lueders experienced the greatest increase in permeability, followed by Edwards, 

followed by Indiana). Analyzing the degree of pore persistence heterogeneity (as measured by 

standard deviation of 0th dimension persistence) may provide a useful tool for predicting size 

 

Figure 3.9: (a) Size of the largest 0th dimension, Q3 feature before (solid) and after (dashed) reaction. (b) Change in 
size of the largest 0th dimension, Q3 feature in each subsection (normalized by initial feature size) as a function of 
initial size. Markers indicate datapoints, solid lines indicate linear regressions fitted to each sample, and dotted lines 
indicate 95% confidence intervals around each regression. 
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change in different dissolving carbonates, but was not found to be useful for predicting regions 

of change within a given rock core.  

 

Figure 3.10: Percent change in the mean size of 0th dimension, Q3 features as a function of the initial standard 
deviation of persistence of all 0th dimension features. Indiana Limestone data are shown in orange, Edwards 
Limestone data in purple, and Lueders Limestone data in green. Linear regressions are fitted to each set of sample 
data, as well as in aggregate (blue). 

As discussed previously, the 1st dimension features saw little change over the course of 

reaction, suggesting that changes in looping features did not contribute substantively to 

permeability change. Boxplots of 1st dimension, Q2 and Q3 feature persistence values are 

available in Appendix Figure B.5. These values represent the difference between the narrowest 

pore throat that makes up the loop and the diameter of the grain (Q2) or narrowing region (Q3) 

that the loop encircles. Changes in each rock core were minor and consistent along the length of 

the core. This suggests that along-core heterogeneity did not affect 1st dimension feature 

evolution as much as it did 0th dimension feature evolution. Indiana Limestone (orange) showed 
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a slight increase in persistence across distribution in each subsection. This is consistent with 

erosion causing the inner radii of toroidal pore features to decrease.  

Edwards Limestone (purple) had a very small decrease in median persistence, which 

could indicate that the largest features in this dimension merged with other features during 

dissolution. The Lueders Limestone (green) 1st dimension features had a very tight distribution 

prior to reaction and saw little change during reaction, other than the appearance of a few large 

outliers which could again be due to dissolution around a few key narrow points in the mineral 

space. In this analysis, it is important to note the decrease in overall counts of features in Q2 and 

Q3 during dissolution: the post-dissolution number of 1st dimension features is a small fraction of 

the initial number. Many of the loops formed by narrow points in the grain features of original 

rock cores were washed out during the course of dissolution, so it is only possible to observe the 

distributions of the limited number that remained after dissolution. 

The results of this study support the hypothesis that pore space homology is an important 

factor in driving regions of larger effects of dissolution, but this is just one among many 

parameters – both properties of the rocks themselves and reactive flow conditions – that 

contribute. It is well established that the reactive transport regime, described by the 

dimensionless Damköhler (Da) and Péclet (Pe) numbers, influence the progression of porosity 

and permeability in dissolving carbonates (Gouze & Luquot, 2011; Hommel et al., 2018; M. Liu 

& Mostaghimi, 2017; Mostaghimi et al., 2016; Zhang et al., 2022). Advective Da is a 

dimensionless parameter that describes the relative importance of advective transport versus 

chemical kinetics. It is defined as the ratio of the characteristic time of advection to the 

characteristic time of reaction. A system with a high Da is transport-limited: the chemical 

reaction outpaces the rate at which unreacted fluid is carried to reaction sites. Pe describes the 
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relative importance of advective versus diffusive transport and is defined as the ratio of the 

characteristic time of diffusion to the characteristic time of advection. High Pe indicates a system 

in which advective flow dominates mass transport. In a laboratory environment using natural 

rock, precise control of Da and Pe is challenging due to the constantly evolving porosity and 

reactive surface area. Advective Da was estimated to be on the order of 103 to 105, and Pe was 

estimated to be on the order of 104 to 105, indicating that the reaction was transport-limited and 

that advective flow dominated over dispersion. A full table of values used for these calculations 

is available in Appendix Table B.2. The presence of large preferential channels supports the 

assumption that these experiments were transport-limited and that advection dominated over 

diffusion, consistent with the findings of Kalia & Balakotaiah, (2007) and Kang et al., (2003). 

This likely contributed to the enlargement of the largest pore bodies within existing flow 

channels, whereas a uniform dissolution regime may see more uniform change. The growth of 

connected pores along existing flow channels is consistent with extensive prior research into the 

formation and propagation of preferential flowpaths in dissolving carbonates, whereby increased 

flow velocity in high permeability regions carries more acid to those regions, causing accelerated 

dissolution relative to other areas of the sample (Fredd & Fogler, 1998; Hoefner & Fogler, 1988). 

The homogenization of large pore sizes along the flow path (particularly in the Lueders sample) 

is similar to prior observations of wormhole formation (Rötting et al., 2015; Siddiqui et al., 

2006). Future work could use numerical simulations to investigate the relationship between pore 

space topology evolution and reactive transport regime based on natural rock samples.  

3.5 Conclusions 

Persistent homology provides a metric of pore network heterogeneity that incorporates 

both pore size and connectivity information. This analysis can help identify locations within a 
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porous rock medium that are most likely to change during dissolution and the degree to which 

pore bodies in a flow path will expand. It also offers a more detailed understanding of the 

mechanisms by which permeability increases in a dissolving carbonate. 

In this study, the two more homogenous limestone cores saw similar behavior: 

permeability changes were driven by increase in size of large, connected pores. These changes 

were more pronounced near the inlet, suggesting the initiation of preferential flow paths along 

the core which were confirmed by visual observation of the XCT data. The more heterogeneous 

core saw an increase in along-core homogeneity after dissolution. Its largest pores saw little 

change in size while its smaller controlling pores grew to match the largest. This sample 

contained a single very large flow path after reaction, and the differences in pore size change are 

expected to be due to differences in surface area-to-volume ratios. 

The initial size of the largest connected pore body showed strong negative correlation 

with the degree of large pore body size increase in the most heterogeneous core, suggesting that 

the largest pores in the media were relatively unchanged over the course of dissolution. This 

implies that even locally large pores along the length of the core can serve as controlling features 

of permeability increase in the presence of larger pores.  

When the three samples were considered in aggregate, the standard deviation of 

persistence of pore bodies was found to have a moderate positive correlation with the normalized 

change in mean pore body size, suggesting that a sample with higher spatial variability of pore 

bodies experiences a greater increase in pore size, highlighting the importance of spatial 

heterogeneity in predicting dissolution behavior. However, within any individual sample this 

correlation did not hold, suggesting that differences in spatial variability within a single sample 
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were relatively unimportant for predicting size change within the sample. This discrepancy 

would be an interesting topic for future investigation but was beyond the scope of this study. 

Improving the understanding of driving features of pore space evolution during 

dissolution can enhance predictions of porous media behavior in numerous subsurface 

applications. Through its combined information about pore body size, connectivity, and spatial 

heterogeneity, persistent homology can identify rock types and locations most susceptible to 

changes in the pore space. 
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Chapter 4 Evolving Scales of Heterogeneity in Dissolving Limestones Analyzed with XCT-

Derived Fractal Dimension 

4.1 Introduction 

Accurate prediction of carbonate dissolution patterns is essential for the safety and 

sustainability of numerous subsurface energy applications, including carbon capture utilization 

and storage (CCUS), geothermal energy production, and enhanced oil recovery (EOR). 

Dissolution fronts in carbonates can vary widely depending on injection conditions, reservoir 

chemistry, and physical rock characteristics. Of particular interest are large preferential flow 

channels that create regions of high permeability and alter the reactive transport regime during 

flow. In some applications, these preferential flowpaths are desirable because they enable high 

fluid throughput and extend reach into distal regions of the reservoir; in others they are 

undesirable because they carry unbuffered reactive fluid deep into the reservoir while leaving 

other regions near the wellbore untouched. Predicting the development and spatial characteristics 

of such flowpaths is therefore broadly applicable for subsurface energy projects. Centimeter-

scale core plugs are commonly used to estimate petrophysical properties of target reservoirs. It is 

essential to quantify and analyze the importance of core- and sub-core-scale heterogeneities on 

dissolution front characteristics and preferential flowpath development. It is also important to 

observe how the scales of these heterogeneities change over the course of dissolution, as this 

knowledge can help optimize modeling parameters. X-ray computed tomography (XCT) imaging 

is an excellent tool for heterogeneity analysis because it allows nondestructive visualization of 

the pore structures and distribution in these core plug samples.  
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The fractal dimension (FD) is a quantitative metric of geometric complexity that has been 

used in the geosciences, including to describe pore space and wormholes formed by dissolution 

in carbonates. FD was introduced by mathematician Benoit Mandelbrot to describe a curve or 

shape using non-integer dimensions (Mandelbrot, 1967). A smooth curve occupies very little 2D 

space and may therefore be approximated as a 1D Euclidean object. A rough curve, however, 

fills more 2D space and behaves as an object existing between the 1st and 2nd dimensions. An 

object’s FD is a ratio of the space it occupies to the scale at which it is observed. A classical 

example of this is the coastline paradox, which states that the length of a coastline of a landmass 

apparently increases when the landmass is observed at closer scale. By measuring the coastline 

of Great Britain using varying scales of measurement, Mandelbrot found its FD to be 1.25 

(Mandelbrot, 1967). 

The FD of wormholes resulting from dissolution has been an area of interest in carbonate 

research for many years as it gives a quantitative parameter with which to compare wormhole 

complexity (Kalia & Balakotaiah, 2007). In a series of numerical simulations, Maheshwari et al. 

(2013) investigated the influence of porous media heterogeneity on the FD of resulting 

wormholes and found an exponential relationship between porosity variability and wormhole 

FD, supporting the hypothesis that greater pore space heterogeneity results in more complex 

branching in preferential flowpaths. Liu et al. (2012) modeled wormhole formation under 

different acid strength and injection conditions and used the FD of acid-etched wormholes to 

recommend injection conditions for reservoir treatment near oil production wells. Optimization 

of this parameter can aid in the extractive industries as well as in carbon utilization and other 

sustainable subsurface energy technologies.  
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Other, recent works have studied FD of the initial pore network as a predictor of other 

physical properties. Zhou et al. (2022) used SEM image analysis to study the relationship 

between pore space FD and diagenetic markers and found a positive linear relationship between 

FD and both diagenetic dissolution and precipitation in sandstones. Wu et al. (2019) observed 

consistent variation trends between porosity and FD calculated from XCT data along the length 

of a low permeability sandstone core. Zhang et al. (2018) found good negative correlation 

between pore space FD estimated from MICP data and porosity, permeability, sorting 

coefficient, and skewness. Fu et al. (2019) studied the FD of pore space that formed in 

manufactured geomaterials and found good correlation between FD (measured from XCT 

imagery taken at 40 μm voxel size) and porosity, pore shape factor, and pore surface area in 

aerated concrete blocks. To date, no known work has examined the relationship between the FD 

of the initial pore network and that of the resulting preferential flowpath.  

Numerous prior works have studied the relationship between injection conditions, 

characterized by the Péclet (Pe), advective Damköhler (DaI), and diffusive Damköhler (DaII) 

numbers, and dissolution regime. These studies observe that preferential flowpath formation is 

promoted by high advective flow and reaction rates relative to diffusion rates (high Pe and DaII). 

Such conditions concentrate flow (and therefore carry more reactive fluid) along paths of least 

resistance, exacerbating existing flow channels  (Mostaghimi et al., 2016). In an engineered 

system, forced injection of reactive fluid can create regions of advective-controlled flow, 

increasing the possibility of wormhole-like features rather than strictly uniform dissolution, so it 

is valuable to consider means of predicting the properties of such flowpaths.  

Injection conditions cannot be considered in isolation from the properties of the rocks 

themselves when injecting into natural geologic formations. The degree to which pore-scale 
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heterogeneities influence core- to reservoir-scale heterogeneities is an open area of research. 

Prior work suggests that such heterogeneities are more important in systems with high Pe and 

DaI (Y. Zhang et al., 2022). Other modeling work suggests that nonreactive flow regime in a 

porous medium becomes less sensitive to Pe as the spatial distribution of pores becomes more 

heterogeneous (Babaei & Joekar-Niasar, 2016). Similarly, in a study that incorporated reactive 

flow to simulations of dissolving carbonates with varying degrees of spatial self-similarity, the 

reaction front destabilized at wider Pe range when the pore network had a higher correlation 

length (Min Liu & Mostaghimi, 2017).  In experimental studies, the presence of heterogeneities 

such as vugs and styolites has been associated with unstable reaction front formation and 

wormhole-like structures (Carroll et al., 2013; Siddiqui et al., 2006). Menke et al. (2018) 

observed higher focusing of preferential flowpaths in a limestone with an initially heterogeneous 

flowfield compared to one with more homogenous streamlines. These experimental findings are 

consistent with modeling efforts that also suggest that pore space heterogeneities can initiate the 

formation of unstable reaction fronts (Hao et al., 2019). 

Dissolution can cause an increase in the magnitude of pore space heterogeneities 

measured transverse to flow. This has been observed as an increase in variance of velocity 

distribution (Menke et al., 2015). It follows that the correlation length of pore space, or other 

similar metrics of spatial clustering, would be expected to increase in the plane transverse to flow 

following nonuniform dissolution. Along the axis of flow, however, heterogeneity of the pore 

space has been observed to decrease. Pereira Nunes et al. (2016) observed an increase in 

homogeneity along the axis of flow following dissolution, according to two metrics: a narrowing 

of the slice-averaged velocity distribution curve and a tendency for slice-average porosity to 

increase more in low-porosity slices. Thompson et al. (2021) observed an increase in along-core 
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heterogeneity as measured by the size of the largest macropores and the skewness of the pore 

size distribution. Little known work to date has quantified the increase in spatial scale of 

heterogeneity either transverse or longitudinal to flow.  

In this study, we compared the FD of the initial pore space to that of the pore space post-

dissolution. We also examined the relationship between the FD of the initial pore network and 

that of the resulting preferential flowpath formed through dissolution. We quantified the FD of 

three limestone cores using XCT scans, then induced dissolution using dilute acid with a high-

pressure core flooding apparatus, and isolated and analyzed the preferential flow channels using 

repeat XCT imaging. We used spectral analysis to study the scales of variability of the pore 

space before and after dissolution and found that the post-reaction pore space had higher 

variance, which was dominated by lower-frequency spectral signals. This indicated a growth in 

the spatial scale of pore space heterogeneities. We also observed strong positive correlation 

between pore space FD and flow channel FD, suggesting that more geometrically complex pore 

space is associated with more branching behavior in preferential flowpaths. Using XCT imagery, 

we can identify important scales of heterogeneity. We can then make more informed predictions 

of formations and locations within formations that may experience channeling or branching of 

preferential flowpaths.  

4.2 Materials and Methods 

4.2.1 Experimental methods 

Three limestone cores -- Indiana, Edwards, and Lueders Limestone -- of 2.5 cm in 

diameter and 4 cm in length were studied using a series of core flooding and imaging iterations.  

Cores were pre-saturated under vacuum prior to flooding. Flooding experiments were 

performed in a high-pressure flowthrough apparatus. Permeability was determined by flowing 
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deionized water through the cores at five different flow rates, monitoring the upstream-

downstream pressure differential, and calculating permeability using Darcy’s Law. Confining 

pressure was maintained with water, surrounding the core held in a viton sleeve, at least 3.4 MPa 

(500 psi) higher than flow pressure. The outlet side of the core was open to atmospheric pressure, 

and an inlet flow plug maintained a constant volumetric flowrate. Hydrochloric acid diluted to 

pH 3 was flowed through the cores to induce dissolution. Pre- and post-reaction permeability and 

porosity values are included in Table 4.1.  

Table 4.1: Permeability and porosity values for each core. 

 Sample Indiana Edwards Lueders 

Pre-reaction 
Porosity (Saturation method) 0.17 0.25 0.11 

Permeability (mD) 32 9.8 0.12 

Post-reaction 
Porosity (Saturation method)  0.18 0.27 0.13 

Permeability (mD) 240 170 54 

 

Precise control of Damköhler and Péclet numbers in an experimental setting is 

challenging, but effort was made to maintain consistent reactive transport regimes (DaI and Pe 

>> 1) for all three samples. With an estimated DaI on the order of 103 to 105 and an estimated Pe 

on the order of 104 to 105 (see Appendix Table C.2f for values used in these estimations), it is 

reasonable to assume that transport controlled the reaction rate and advection dominated over 

dispersion. 

4.2.2 Imaging and image processing methods 

The cores were flushed with water to remove residual acid, then vacuum dried prior to 

imaging. They were imaged at a voxel resolution of 15 µm using a Nikon XT H 225 ST 
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industrial CT scanner at the Computed Tomography in Earth and Environmental Sciences 

(CTEES) laboratory at the University of Michigan. Additional scan parameters are listed in 

Appendix Table C.1. XCT scanning has an inherent tradeoff between image resolution and field 

of view; this was the highest resolution at which visualization of the full core diameter was 

possible using this instrument. Prior work suggests that it is reasonable to assume that FD 

calculated from XCT data would agree well with a higher-resolution imaging technique. Alfonso 

et al. (2018) performed a comparative study using scanning electron microscopy (SEM) (0.4 

µm/pixel), optical microscopy (OM) (91 µm/pixel), and XCT (260 μm/pixel) and found that the 

FD was consistent across the three methods. So, while the image datasets used for this study are 

only able to resolve the macropores of each core sample, it is assumed that the fractal 

characteristics of those macropores are sufficiently representative of the fractal characteristics of 

the full (resolved and unresolved) pore network. 

After cropping out scanning artifacts near the edge of each core, the resulting image 

stacks were 2000x2000x2000 voxels. Other scan parameters are included in the Supporting 

Information (Appendix Table C.1). The images were processed using an unsharp mask filter for 

contrast enhancement, a bilateral filter for noise reduction, and a beam hardening correction. 

This filter combination was selected based on prior work by Thompson et al. (2021), which 

found that these three filters resulted in porosity values that had lower variability and were more 

consistent with experimental findings. The processed datasets were segmented by machine 

learning using the Trainable Weka Segmentation plugin for ImageJ (Arganda-Carreras et al., 

2017). An example image from each pre-reaction XCT scan before processing, after processing, 

and after segmentation is shown in Figure 4.1. 
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Figure 4.1: Sample image taken from pre-reaction XCT scan of each sample (top to bottom: Indiana, Edwards, 
Lueders) demonstrating original image (left), processed image (center), and segmented image (right). Figure 
reprinted with permission from Thompson et al. (2023). 

4.3 Data 

The image datasets were cropped to 1024x1024x2000 voxels to isolate the core from its 

background while creating square images of a power of 2 pixels per 2D image slice. Each of the 

2000 slices was analyzed using the box counting algorithm with the hausDim package for 

MATLAB (Costa, 2023). This algorithm begins by creating boxes with a side length ε of one 

pixel and records the number of occupied boxes as N(ε). It then doubles the box side length to ε 

= 2 and again records the number of occupied boxes, N(2). This process continues until the side 
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length is equal to the size of the full image, ε =1024. The number of occupied boxes as a 

function of the size of the boxes is plotted on a log-log scale. A line is fitted to the data using the 

least-squares method, and the slope of this line is the FD (Figure 4.2).  

 

Figure 4.2: Demonstration of the box counting algorithm. The box side length ε increases by powers of 2 and the 
number of occupied squares is recorded as N(ε). The slope of the log(1/ ε) vs log(N) graph is the fractal dimension 
FD. 

The FD was calculated for each 2D image slice along the length of the core for the pre-

reaction pore space, post-reaction pore space, and post-reaction preferential flow path. The 

autocorrelation of the FD along the flowpath was calculated, and the correlation length was 

computed. Correlation length describes the spatial scale at which a variable is self-similar and 

can take on various specific quantitative definitions by discipline. Here it refers to the distance at 

which the autocorrelation function falls below a value of 1/e (Elson et al., 1983). To reduce the 

influence of spurious oscillations in the autocorrelation function, 1000 realizations of a Gaussian 

white noise process with the same variance as that of the sample were generated and plotted 
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along with the sample autocorrelation. Their upper and lower bounds were used to create 

confidence intervals about the autocorrelation function. 

The FD along the length of the core was analyzed as a spectral series. The datasets had 

been divided into 250-slice subsections for segmentation due to processing constraints. This 

resulted in artifacts in the first and last slice of each subsection and discontinuities between 

subsections. The anomalous values were excluded from analysis and discontinuities were 

smoothed. The spectral signal was estimated using the Bartlett window closing technique. This is 

a nonparametric empirical approach to spectral estimation. The process involves computing 

smoothed spectral estimates with progressively smaller bandwidths and allowing prominent 

features to emerge. Wide bandwidths tend to have high bias but low variance and can only 

capture large features in the spectrum. Narrow bandwidths tend towards low bias and high 

variance and can allow for more detailed observations but with the possibility of instability in the 

spectral estimate. The objective is to select a bandwidth at which the estimates have converged 

but have not yet destabilized (Jenkins & Watts, 1968). Window shape can sometimes impact the 

spectral density estimate; Tukey and Parzen lag windows were also tested and produced nearly 

identical results.  

For the post-reaction scans, the large preferential flowpath was identified through visual 

inspection and the path was isolated using a 4-neighbor floodfill operation starting at the inlet of 

the core. This scan, too, was cropped to 1024x1024x2000 voxels, ensuring that the full 

preferential flow path was included (Figure 4.3). The Indiana and Edwards samples showed 

larger, branching pathways of preferential dissolution, whereas the Lueders sample was 

dominated by a single, large channel. This was consistent with the observations of Hao et al. 

(2019), who found in upscaled simulations that more permeable rocks tended to form multiple 
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dissolution fingers along the direction of flow, whereas less permeable rocks tended to form a 

single dissolution channel.  

 

Figure 4.3: 3D tomograms highlighting large preferential flowpaths that formed in each core: (a) Indiana, (b) 
Edwards, and (c) Lueders Limestone. Reproduced from Thompson & Ellis (2023). 

4.4 Results 

The FD of the pore space of each image slice was plotted from inlet to outlet for all three 

cores, before and after chemical reaction. This is shown in Figure 4.4. Indiana and Edwards 

samples had relatively high, relatively homogeneous FD prior to reaction, and both experienced 

a drop in FD mean and an increase in FD variance after reaction. These permeable samples had a 

high porosity and complex pore space along the length of the core, and the drop in mean FD is 

consistent with a smoothing of complex pore space. This could be due to the dissolution of 

constriction points resulting in a rounder, smoother flow space, consistent with the observations 

of Pereira Nunes et al. (2016) and others. The increase in variance could indicate regions of 

channeling and branching that emerge as the preferential flowpath develops. The Lueders 

sample, on the other hand, looked quite different before reaction and evolved differently. This 

sample had a great deal of along-core heterogeneity and a very low overall FD compared to the 



 82 

other two samples. It showed a modest increase in mean FD after reaction and an increase in 

variance. This could be due to the presence of large, vuggy pore structures irregularly distributed 

along the length of the core. The preferential flowpath that developed in Lueders and dominated 

the post-reaction flow space (shown above in Figure 4.3) was still very smooth and had distinct 

branches out from the main channel.  

 

Figure 4.4: The fractal dimension for each core: Indiana (orange dots), Edwards (purple dashes), and Lueders (green 
solid line). The FD before reaction is shown in dark color, and after reaction in light color. Each slice is 15 µm in 
length. 

The FD of the pre-reaction pore space was compared to the FD of the post-reaction pore 

space. Figure 4.5 shows the autocorrelation function of the FD for each sample pre- and post-

reaction. The confidence intervals generated by realizations of a Gaussian white noise process as 

described above are shown in light color. The correlation length is shown using a dashed gray 

line. These results indicate an increase in correlation length for all three samples after reaction. 
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This suggests that the spatial scale of heterogeneity increased after reaction, and a larger REV 

would be necessary to fully capture the heterogeneities in fractal dimension after reaction than 

would be needed pre-reaction. These three samples show a negative relationship between the 

initial correlation length and the degree of correlation length increase. This may indicate that if 

the scale of heterogeneities is large prior to reaction, those heterogeneities may be exacerbated 

but remain roughly the same size. In samples with smaller-scale self-similarity, minor 

perturbations in the flow field could result in larger-scale regions of similar degrees of 

complexity. 

 

Figure 4.5: Autocorrelation functions for the three samples pre- and post-reaction. Confidence intervals are shown 
in light color and correlation length is indicated with a dashed gray line. 

The spectral signals of the pre-reaction and post-reaction pore spaces were estimated 

using the Bartlett window closing method, according to the methods described by Jenkins and 

Watts (1968). Truncation point (L) values of 100 through 2000 were tested, and L=1600 was 
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determined to be a reasonable stopping point for all scans. At this bandwidth, major features of 

the sample spectrum have converged from previous bandwidths, but the estimator has not yet 

destabilized and become erratic. Estimates ranging from L=600 to L=1600 are included in the 

analyses here. The dominant peaks were identified by visual inspection. These results are shown 

in Figure 4.6.  

In the Indiana Limestone, the shape of the sample spectrum remains relatively unchanged 

after reaction. Most of the variance is accounted for by the lowest-frequency peak around f = 

5x10-4 (~2000 slices), as is to be expected (Jenkins & Watts, 1968). It is inadvisable to draw any 

hard conclusions from this frequency because its period is approximately the same length as the 

full dataset so only one full period was observed, but it is of note that the peak remained post-

reaction. In the pre-reaction scan, three other prominent peaks were identified, and two of these 

(3 and 4) may have merged into a single peak (3) after reaction. The differences are subtle for 

this sample, yet they point towards a trend that was observed more strongly in the other two 

samples: the sample spectrum post-reaction is simpler and explained by fewer, lower-frequency 

peaks.  

In the Edwards Sample, the shape of the sample spectrum density function is 

approximately the same again pre- and post-reaction, but the higher-frequency peaks (2 and 3) 

have diminished post-reaction, and the low-frequency peak (1) is much steeper and narrower. 

This indicates that more of the variance is explained by the low-frequency peak and the high-

frequency signals are less important after reaction.  
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Figure 4.6: Sample spectrum density functions for pre- (left) and post- (right) reaction. Wider bandwidths tested are 
shown in dashed lines, and the selected stopping bandwidth is shown in bold blue. The 80% confidence interval 
about this function is shown in orange. Prominent peaks are numbered, and their corresponding frequencies are 
listed. 
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The Lueders Limestone sample shows a noticeably more complex pre-reaction spectral 

density function, with a large peak at low frequency (1) and two clusters of higher-frequency 

peaks (2 and 3). After reaction, the high-frequency peaks have all but disappeared, and the low-

frequency peak is again narrower and steeper than pre-reaction.  

These results suggest two main takeaways:  

(1) The spectral signal is simplified post-reaction, such that more of the variance is explained 

by the low-frequency oscillations. So, while the overall post-reaction variance has 

increased, the smaller-scale heterogeneities that were important pre-reaction have less 

influence after acid-driven dissolution. 

(2) As the spectral signal gets simpler and lower frequencies become more dominant, a larger 

REV becomes necessary to capture the full picture of pore space heterogeneity. This is 

agreeable with the observation that smaller-scale heterogeneities lessen in importance: a 

lower-resolution but larger-scale REV may be preferable to characterize the samples after 

acid-driven dissolution. 

The preferential flowpath that developed in each core was isolated from the post-reaction 

XCT scan. The FD of the pre-reaction pore space was compared to the FD of the post-reaction 

preferential flowpath for each 2D image slice from each rock. This resulted in 2000 data points 

for each of the three rocks (excluding two points from the Lueders Limestone that showed 

scanning artifacts). These data were considered in aggregate, shown in Figure 4.7. The results 

show a strong positive correlation between the pre-reaction pore space FD and the post-reaction 

preferential flow path FD (R2 = 0.80). This suggests that high pore space complexity is 

associated with higher preferential flow path complexity. A least squares linear regression may 
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therefore be useful for predicting large-scale regions of higher or lower flowpath complexity in a 

system with multiple units with different pore space properties, but it loses some utility when 

observing variation within an individual unit. The data in this regression are clustered by rock, 

indicating that there is greater variability between rocks than among any given rock (for both the 

predictor and response variables). This model fits the Lueders data (green) moderately well, but 

consistently underestimates the response variable for the Indiana datapoints (orange) and 

consistently overestimates the response variable for the Edwards datapoints (purple), making it 

challenging to interpret the predictive capability of the pre-reaction pore space FD within any 

given core.  

 

Figure 4.7: Pre-reaction pore space FD versus post-reaction preferential flowpath FD, fitted with a least-squares 
linear regression (R2 = 0.80). Data are color-coded by rock: Lueders in green, Indiana in orange, and Edwards in 
purple. 
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4.5 Conclusions 

Predicting the evolution of carbonate rock properties under the influence of acid-driven 

dissolution is essential for the development of sustainable subsurface energy technologies. 

Small-scale heterogeneities have been found to have an impact on upscaled reservoir behavior, 

but it is not always known to what extent. Optimizing the scale at which observations are 

collected and systems are simulated will be crucial for advancing these technologies. XCT is an 

excellent tool for analyzing laboratory-scale physical characteristics because it is nondestructive 

and widely available. In this study, the fractal dimension of the pore space was computed from 

XCT data before and after acid core flooding of three limestone samples. 

The correlation function of the fractal dimension along the direction of flow was found to 

increase after reaction for all three samples. This suggests that the scale of heterogeneity 

increased as a result of reaction, and a larger field of view would be necessary to fully capture 

the variability of the pore fractal dimension than was needed prior to reaction. The along-core 

fractal dimension was analyzed as a spectral series, and for all three samples the series simplified 

and was dominated by lower-frequency signals after reaction. This suggests that smaller-scale 

heterogeneities that contributed to overall variance prior to reaction lessened in importance. It 

indicates that a larger sample size will be necessary to fully represent the variability in geometric 

complexity, but also that lower resolution is likely sufficient after reaction.  

Each core formed a large preferential flowpath during dissolution. The flowpath was 

isolated from XCT datasets and its fractal dimension along the length of the core was compared 

to the fractal dimension of the initial pore space. When all datapoints for all samples were 

considered in aggregate, there was a good positive correlation between these two variables, 

suggesting that rock samples with more complex pore space yield more complex branching in 
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preferential flowpaths. However, there was little to no correlation within any core, suggesting 

that heterogeneities in pore space along the length of the core are not predictive of locations of 

complex branching and channeling at the sub-core scale. These findings contribute to a growing 

body of research investigating the scales of heterogeneity in carbonates and their influence on 

reactive transport behavior. 

4.6 References 

Alfonso, I., Beltrán, A., Abatal, M., Castro, I., Fuentes, A., Vázquez, L., & García, A. (2018). 
Fractal Dimension Determination of Rock Pores by Multi-Scale Analysis of Images 
Obtained Using OM, SEM and XCT. Fractals, 26(05), 1850067. 
https://doi.org/10.1142/S0218348X18500676 

 
Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., & 

Sebastian Seung, H. (2017). Trainable Weka Segmentation: a machine learning tool for 
microscopy pixel classification. Bioinformatics, 33(15), 2424–2426. 
https://doi.org/10.1093/bioinformatics/btx180 

 
Babaei, M., & Joekar-Niasar, V. (2016). A transport phase diagram for pore-level correlated 

porous media. Advances in Water Resources, 92, 23–29. 
https://doi.org/10.1016/j.advwatres.2016.03.014 

 
Boving, T. B., & Grathwohl, P. (2001). Tracer diffusion coefficients in sedimentary rocks: 

correlation to porosity and hydraulic conductivity. Journal of Contaminant Hydrology, 
53(1–2), 85–100. https://doi.org/10.1016/S0169-7722(01)00138-3 

 
Busenberg, E., & Plummer, L. N. (1986). A comparative study of the dissolution and crystal 

growth kinetics of calcite and aragonite (Studies in Diagenesis No. 1578). U.S. 
Geological Survey. 

 
Carroll, S., Hao, Y., Smith, M., & Sholokhova, Y. (2013). Development of scaling parameters to 

describe CO2–rock interactions within Weyburn-Midale carbonate flow units. 
International Journal of Greenhouse Gas Control, 16, S185–S193. 
https://doi.org/10.1016/j.ijggc.2012.12.026 

 
Costa, A. (2023). Hausdorff (Box-Counting) Fractal Dimension. Matlab Central File Exchange. 

Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/30329-
hausdorff-box-counting-fractal-dimension 

 
Elson, J. M., Rahn, J. P., & Bennett, J. M. (1983). Relationship of the total integrated scattering 

from multilayer-coated optics to angle of incidence, polarization, correlation length, and 



 90 

roughness cross-correlation properties. Applied Optics, 22(20), 3207. 
https://doi.org/10.1364/AO.22.003207 

 
Fu, J., & Yu, Y. (2019). Experimental Study on Pore Characteristics and Fractal Dimension 

Calculation of Pore Structure of Aerated Concrete Block. Advances in Civil Engineering, 
2019, 1–11. https://doi.org/10.1155/2019/8043248 

 
Hao, Y., Smith, M. M., & Carroll, S. A. (2019). Multiscale modeling of CO2-induced carbonate 

dissolution: From core to meter scale. International Journal of Greenhouse Gas Control, 
88, 272–289. https://doi.org/10.1016/j.ijggc.2019.06.007 

 
Jenkins, G. M., & Watts, D. G. (1968). Spectral analysis and its applications. San Francisco, 

Calif.: Holden-Day. 
 
Kalia, N., & Balakotaiah, V. (2007). Modeling and analysis of wormhole formation in reactive 

dissolution of carbonate rocks. Chemical Engineering Science, 62(4), 919–928. 
https://doi.org/10.1016/j.ces.2006.10.021 

 
Lai, P., Moulton, K., & Krevor, S. (2015). Pore-scale heterogeneity in the mineral distribution 

and reactive surface area of porous rocks. Chemical Geology, 411, 260–273. 
https://doi.org/10.1016/j.chemgeo.2015.07.010 

 
Liu, Min, & Mostaghimi, P. (2017). Characterisation of reactive transport in pore-scale 

correlated porous media. Chemical Engineering Science, 173, 121–130. 
https://doi.org/10.1016/j.ces.2017.06.044 

 
Liu, Ming, Zhang, S., & Mou, J. (2012). Fractal nature of acid-etched wormholes and the 

influence of acid type on wormholes. Petroleum Exploration and Development, 39(5), 
630–635. https://doi.org/10.1016/S1876-3804(12)60086-X 

 
Maheshwari, P., Ratnakar, R. R., Kalia, N., & Balakotaiah, V. (2013). 3-D simulation and 

analysis of reactive dissolution and wormhole formation in carbonate rocks. Chemical 
Engineering Science, 90, 258–274. https://doi.org/10.1016/j.ces.2012.12.032 

 
Mandelbrot, B. (1967). How Long Is the Coast of Britain? Statistical Self-Similarity and 

Fractional Dimension. Science, 156(3775), 636–638. 
https://doi.org/10.1126/science.156.3775.636 

 
Menke, H. P., Bijeljic, B., Andrew, M. G., & Blunt, M. J. (2015). Dynamic Three-Dimensional 

Pore-Scale Imaging of Reaction in a Carbonate at Reservoir Conditions. Environmental 
Science & Technology, 49(7), 4407–4414. https://doi.org/10.1021/es505789f 

 
Menke, H. P., Reynolds, C. A., Andrew, M. G., Pereira Nunes, J. P., Bijeljic, B., & Blunt, M. J. 

(2018). 4D multi-scale imaging of reactive flow in carbonates: Assessing the impact of 
heterogeneity on dissolution regimes using streamlines at multiple length scales. 
Chemical Geology, 481, 27–37. https://doi.org/10.1016/j.chemgeo.2018.01.016 



 91 

 
Morrow, N., & Buckley, J. (2006). Wettability and Oil Recovery by Imbibition and Viscous 

Displacement from Fractured and Heterogeneous Carbonates (Technical Report No. 
DE-FC26-02NT15344). University of Wyoming. Retrieved from 
https://www.osti.gov/servlets/purl/888663 

 
Mostaghimi, P., Liu, M., & Arns, C. H. (2016). Numerical Simulation of Reactive Transport on 

Micro-CT Images. Mathematical Geosciences, 48(8), 963–983. 
https://doi.org/10.1007/s11004-016-9640-3 

 
Pereira Nunes, J. P., Blunt, M. J., & Bijeljic, B. (2016). Pore‐scale simulation of carbonate 

dissolution in micro‐CT images. Journal of Geophysical Research: Solid Earth, 121(2), 
558–576. https://doi.org/10.1002/2015JB012117 

 
Siddiqui, S., Nasr-El-Din, H. A., & Khamees, A. A. (2006). Wormhole initiation and 

propagation of emulsified acid in carbonate cores using computerized tomography. 
Journal of Petroleum Science and Engineering, 54(3–4), 93–111. 
https://doi.org/10.1016/j.petrol.2006.08.005 

 
Thompson, E. P., & Ellis, B. R. (2023). Persistent Homology as a Heterogeneity Metric for 

Predicting Pore Size Change in Dissolving Carbonates. Water Resources Research, 
59(9), e2023WR034559. https://doi.org/10.1029/2023WR034559 

 
Thompson, E. P., Tomenchok, K., Olson, T., & Ellis, B. R. (2021). Reducing User Bias in X-ray 

Computed Tomography-Derived Rock Parameters through Image Filtering. Transport in 
Porous Media, 140(2), 493–509. https://doi.org/10.1007/s11242-021-01690-3 

 
Wu, Y., Tahmasebi, P., Lin, C., Zahid, M. A., Dong, C., Golab, A. N., & Ren, L. (2019). A 

comprehensive study on geometric, topological and fractal characterizations of pore 
systems in low-permeability reservoirs based on SEM, MICP, NMR, and X-ray CT 
experiments. Marine and Petroleum Geology, 103, 12–28. 
https://doi.org/10.1016/j.marpetgeo.2019.02.003 

 
Zhang, K., Pang, X., Zhao, Z., Shao, X., Zhang, X., Li, W., & Wang, K. (2018). Pore structure 

and fractal analysis of Lower Carboniferous carbonate reservoirs in the Marsel area, Chu-
Sarysu basin. Marine and Petroleum Geology, 93, 451–467. 
https://doi.org/10.1016/j.marpetgeo.2018.03.027 

 
Zhang, Y., Jiang, F., & Tsuji, T. (2022). Influence of pore space heterogeneity on mineral 

dissolution and permeability evolution investigated using lattice Boltzmann method. 
Chemical Engineering Science, 247, 117048. https://doi.org/10.1016/j.ces.2021.117048 

 
Zhou, N., Wang, M., Lu, S., Dodd, T. J. H., Liu, W., & Guan, Y. (2022). Evolution of Fractal 

Pore Structure in Sedimentary Rocks. Earth and Space Science, 9(6). 
https://doi.org/10.1029/2021EA002167 

 



 92 

Chapter 5 Conclusions 

5.1 Conclusions and implications 

This dissertation contributes to a growing body of research in using imaging technology 

to characterize carbonate rock core samples and predict their behavior when subjected to acid-

driven dissolution. Prior work suggests that pore space heterogeneities at the scales observed in 

the laboratory may influence behavior at the reservoir scale, but it is not known to what extent 

(An et al., 2020; Babaei & Joekar-Niasar, 2016; Erfani et al., 2019; Guo et al., 2020; Liu & 

Mostaghimi, 2017; Navarre-Sitchler & Jung, 2017). Most of the efforts to quantify this impact 

have been computational (An et al., 2020; Babaei & Joekar-Niasar, 2016; Erfani et al., 2019; 

Guo et al., 2020; Liu & Mostaghimi, 2017; Navarre-Sitchler & Jung, 2017). These provide 

useful context for expected results and the ability to forecast many scenarios, but they cannot 

capture the full scope of complexities present in natural systems. Prior experimental studies have 

been largely qualitative in nature (Al-Khulaifi et al., 2017; Menke et al., 2017). In this 

dissertation, I have developed quantitative metrics of heterogeneity from X-ray computed 

tomography (XCT) imagery of natural carbonate samples and tested their ability to predict 

various aspects of pore space evolution during dissolution observed in laboratory studies.  

The research presented in Chapter 2 studied the impact of image processing filters on 

petrophysical properties derived from XCT data. The use of three image filters in succession was 

found to result in significant improvement in the accuracy and precision of porosity estimates in 

limestones when digitally derived values were compared to experimental values. XCT data are 
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commonly used to estimate system porosity because XCT analysis is nondestructive and widely 

available. Porosity is used for other downstream estimates of petrophysical properties, including 

permeability, which is an essential input for reservoir-scale simulations of flow. Estimates of 

porosity depend on segmentation of XCT data into pore and mineral space, a process that can be 

highly subjective and prone to user bias (Deng et al., 2016; Iassonov et al., 2009; Leu et al., 

2014; Pini & Madonna, 2016). Reducing the impact of user bias is essential for making objective 

assessments of core samples and their influence on potential project viability. This work is 

particularly impactful because it finds improvements for benchtop XCT scanners, which are 

lower resolution than synchrotron scanners but much more widely available and commonly used.  

In Chapter 3, a novel approach to studying the pore space in XCT scans of rock cores 

was applied and yielded new insight into the evolution of pore space during dissolution. 

Persistent topology is a tool borrowed from algebraic topology that quantitatively describes 

topological features. When applied to imaging data of rock samples, it can provide detailed 

information about the size, connectivity, and spatial distribution of pore space (Suzuki et al., 

2021). Each of these (size distribution, pore network connectivity, and pore spatial distribution) 

has been studied independently, but persistent topology allows the simultaneous investigation of 

all three parameters. Prior research has found persistent topology to be an effective predictor of 

nonreactive flow characteristics and percolation behavior (Dong & Blunt, 2009; Herring et al., 

2019; Moon et al., 2019; Robins et al., 2016, p. 201; Suzuki et al., 2021). Some recent numerical 

simulation studies have found persistent topology to correlate well with dissolution front 

formation, but prior to this work no known studies had performed experimental work to 

benchmark the topological changes that occur in a pore network due to chemical reaction (Lisitsa 

et al., 2020; Prokhorov et al., 2022). Our study found permeability changes to be driven by the 
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growth of large, connected pores. The largest connected pore body in each section of the core 

was isolated, and its size change was studied. It was found that the largest of the large pores saw 

little size increase, whereas locally large pores that were smaller than their neighbors grew 

substantially. The ability to isolate specific regions where pore growth is expected can help 

optimize the computational efficiency of modeling work. This work also reinforces the validity 

of using the relatively low-resolution XCT data available from benchtop XCT scanners for 

analysis and predictive work. The most important pore spaces for permeability development in 

all three samples studied were well above the spatial resolution of benchtop XCT scanners.  

Chapter 4 applies another metric of heterogeneity derived from XCT data – the pore 

space fractal dimension – to quantitatively describe the pore network’s geometric complexity. 

The fractal dimension along the length of the core was studied using spectral analysis before and 

after acid-promoted dissolution. This revealed the dominant frequencies of along-core 

heterogeneity that contributed to variance. In all three samples studied, the post-reaction spectral 

signals were dominated by lower-frequency signals; higher-frequency signals lessened in 

importance or disappeared altogether. This is important because it reveals the changes in the 

relevant scales of heterogeneity that occur as a result of chemical reaction. As preferential 

flowpaths develop as the rocks dissolve, small heterogeneities are washed out. This suggests that 

in modeling such a system, a larger spatial scale of observation at lower resolution would be 

preferable for capturing the variability in pore space complexity. Optimizing spatial scales and 

resolution (while maximizing computational processing efficiency) is crucial for upscaling 

laboratory work to the meter and kilometer scale. This is an early step advancing our 

understanding of how reactive transport processes translate across scales in natural systems. In 

addition, the preferential flowpath that developed in each rock sample was isolated and its fractal 
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dimension was studied. We observed a good positive correlation between the pore space 

complexity and the branching complexity of the preferential flowpath when all three samples 

were considered, but poor correlation within any one sample. This suggests that the pore space 

complexity analyzed from XCT data is a good predictor of how much that rock will branch 

versus channel. It also suggests that sub-centimeter perturbations in geometric complexity are 

not as important for determining branching locations. This helps optimize the scales at which we 

characterize sample heterogeneity and use those characterizations to inform larger models.  

In summary, this dissertation advances the field of reactive transport in porous media 

through the following contributions:  

(1) Improving the estimates of primary rock characteristics gathered from XCT, a 

commonly used imaging technology. This will improve the accuracy of downstream 

parameters derived from these data and therefore confidence in predictions of system 

viability and performance. 

(2) Identifying regions within a core where the greatest increases in pore size are 

expected. This will aid in optimizing modeling resolution for system performance.  

(3) Determining how spatial scales of heterogeneity evolve during dissolution. This will 

help modeling efforts by optimizing the scale at which heterogeneities are observed 

and represented in numerical simulations of reactive flow.  

(4) Identifying samples that are expected to experience complex branching or channeling 

preferential flowpaths. This will aid in larger-scale predictions of the spatial extent of 

reaction that will be expected.  

(5) Demonstrating the efficacy of three tools from applied mathematics and statistics 

(persistent homology, fractal dimension, and spectral analysis) for analyzing 3D 
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imagery data and predicting the evolution of limestone pore spaces during 

dissolution. Interdisciplinary work in the sciences and engineering is essential for 

understanding the interplay between designed systems and the natural world.  

5.2 Future work 

Advancement of the work in this dissertation follows three suggested lines of inquiry: 

 (1) Furthering our understanding of how imaging and image processing affect rock 

parameter estimates. The work published in Chapter 2 tested the effects of image processing 

parameters on XCT-derived porosity, permeability, and pore size distribution based on binary 

segmentation. Binary segmentation is still the predominant method in the field, but some efforts 

have used a three-phase segmentation approach (pore, mineral, mixed) to quantify sub-voxel 

pore space and its impact on total porosity (Qajar et al., 2013; Qajar & Arns, 2022). Further 

research is necessary to optimize the XCT imaging and processing parameters to obtain accurate 

results for macro- and micro-porosity from imaging data with >1 μm voxel size.  

In addition, there is ample opportunity for furthering the impact of image processing 

optimization by studying its impact on downstream rock parameter estimates. The work in 

Chapter 2 mostly focused on porosity, which is a primary parameter often used to extrapolate to 

other rock properties. A case study was performed on one sample to test the consistency of pore 

size distribution and permeability estimates compared to experimental data. The pore size 

distribution analysis was limited by the differences in resolution between imaging and 

experimental technology. The micro-porosity optimization described above would allow this 

work to continue with more samples with different pore size distributions. The permeability 

analysis was done using a computational fluid dynamics model, but the size and resolution of the 

model was limited by computing resources. Future work would apply high performance 
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computing resources to gain further understanding of these samples at higher resolution and size. 

Finally, other parameters including pore network coordination number and other inputs into pore 

network models, Betti number and other topological metrics, mineral composition, and impacts 

on reactive transport modeling results all merit investigation.  

(2) Optimizing scales of observation and analysis. As computational researchers apply 

the knowledge gained in laboratory experiments to their numerical simulations at the meter to 

kilometer scale, it is critical to optimize the scale at which we capture sample heterogeneity to 

maximize processing efficiency. The work in Chapters 3 and 4 suggests that the most influential 

changes in the pore space as a result of dissolution tend to occur at larger scales than the 

minimum resolution we can observe using microscopic methods. Furthermore, the results of 

Chapter 4 suggest that the relevant scales of heterogeneity tend to increase after dissolution has 

occurred. To validate these findings, investigation at multiple scales is recommended. This 

would ideally involve the imaging of smaller cores at higher resolution and larger cores at 

coarser resolution to determine if the same results hold. Results of this area of investigation 

would help reservoir-scale modelers maximize simulation efficiency by selecting the most 

relevant grid size for parameter representation. 

(3) Investigating dominant frequencies of heterogeneity. In Chapter 4 we introduced the 

use of spectral analysis of a spatially discretized dataset to observe changes in the dominant 

frequencies of fractal dimension heterogeneity in three carbonate rock samples. XCT data is 

well-suited to this analytical approach because it generates thousands of images of a sample 

along the length of the flowpath. This opens many opportunities for analyzing the spectral signal 

of other rock parameters – porosity, mean pore size, pore size variance, pore correlation length, 

micropore fraction, and more – and how they change during dissolution. Quantifying changes in 
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these dominant frequencies can help to optimize the scales of heterogeneity that we study and 

track in dissolving carbonate systems. This analysis could aid in the development of reservoir-

scale simulations of flow through engineered subsurface systems before and after permeability 

promotion with acid dissolution.  
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Appendix A: Supplementary Information for Chapter 2 

Appendix Table A.1 shows the complete list of XCT scan parameters used in this study.  

Appendix Table A.1: XCT scan parameters. 

 Indiana 
Limestone 

Edwards 
Limestone 

Berea 
Sandstone 

Berea 
Sandstone high-

res 

Beam energy (kV) 180 160 179 68 

Beam current (μA) 75 77 65 68 

Power (W) 11.7 12.3 11.6 4.6 

Magnification 7.102 6.896 6.896 25.006 

Exposure (s) 1 1 1 4 

Gain (dB) 24 24 24 24 

Minimize artifacts Yes Yes Yes Yes 

Optimize Yes Yes Yes Yes 

Frames per projection 4 4 4 4 
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Appendix Figure A.1 shows the results of the sensitivity analysis performed on different 

numbers of training regions of interest.  

 

Appendix Figure A.1: Number of training regions sensitivity analysis showing box and whisker plots of porosity 
values obtained using different numbers of training regions (n=3 for each). Red lines show medians, boxes show 
25th through 75th percentiles, and whiskers show most extreme data points. 

  

 

 

 

 

 

 

 

 

 



 104 

Appendix Table A.2 shows the results of the sensitivity analysis performed on the 

disconnect particles parameter. Mean pore radius shows little sensitivity to k above k≈0.2. 

Standard deviation of pore radius is also relatively insensitive to k except at very low values. 

This is illustrated in Figure 2.8 by the very similar peaks and widths of the curves corresponding 

to high k values. Skewness shows the most sensitivity at low k values. 

Appendix Table A.2: Disconnect particles parameter sensitivity analysis. This table shows the sensitivity of mean, 
standard deviation, and skewness to changes in k value from the base case of k=0.7.  

k Mean pore 
radius (μm) 

% change 
from k=0.7 

value 

Standard 
deviation of pore 

radius (μm) 

% change from 
k=0.7 value Skewness % change from 

k=0.7 value 

0 73.76 -20.16 65.41 19.80 6.40 611.29 
0.1 82.07 -11.17 65.05 19.13 3.06 240.66 
0.2 88.17 -4.57 61.17 12.04 1.78 98.43 
0.3 90.18 -2.39 58.74 7.58 1.38 53.50 
0.4 91.15 -1.34 57.07 4.52 1.17 30.12 
0.5 91.80 -0.63 56.01 2.59 1.04 15.50 
0.6 92.14 -0.26 55.08 0.88 0.95 5.87 
0.7 92.39 -- 54.60 -- 0.90 -- 
0.8 92.47 0.10 54.37 -0.43 0.88 -2.45 
0.9 92.50 0.12 54.33 -0.50 0.87 -3.08 
1 92.50 0.12 54.33 -0.50 0.87 -3.08 

 

Matlab code used for image analysis is included below. 
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Matlab Code for bilateral filter parameterization: 

%Matlab code to find sigma_r parameter for bilateral filter in imageJ 
 

%Input: before running, import Excel sheet ROI2.xls into Matlab. This Excel file has 
one 
%column per ROI. Rows 1-256 are counts for each intensity value, row 257 is 
%the mean intensity value for that ROI, row 258 is the standard deviation. 
%There are no header columns or rows. 
 
data = table2array(ROI2WF);               %convert from excel table to an array 
sigmaRarray = zeros(1,length(data(1,:))); %initialize     
 
for i = 1:size(data,2) 
    mu = data(257,i);                    %mean intensity for ith ROI 
    sigma = data(258, i);               %stdev intensity for ith ROI 
    alpha = round(mu - sigma);          %starting value of alpha=mean-stdev 
    if alpha<1  
        alpha=1; 
    end 
    beta = round(mu + sigma);           %starting value of beta=mean+stdev 
    if beta>258 
        beta = 258; 
    end 
    
    histo=0;                            %initialize 
     
    while histo < 0.95                  %stop when 95% of values are included in 
range 
        histo = sum(data(alpha:beta,i))/sum(data(1:256,i)); 
        val = beta-alpha;               %range 
                if alpha > 1             
                    alpha = alpha - 1;   %step bottom bound down by one 
                else  
                    alpha = 1;           %keep alpha=1 if already at lowest possible 
value 
                end 
                if beta < 256           
                    beta = beta + 1;     %step upper bound up by one 
                else  
                    beta = 256;          %keep beta=256 if already at highest 
possible value 
                end        
    end 
    sigmaRarray(i)=val;                      
end 
 
sigmaR = max(sigmaRarray) 
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Matlab Code for beam hardening correction: 

% code to import stack of images from imagej 
% 
% Before running:  
% 1) update fname name to import a new stack 
% 2) update image input parameters (nX, nY, limitval, zshift) 
fname = 'IndianaLS01_Post1_bilateral.tif'; 
info = imfinfo(fname); 
imageStack = zeros(963,963); %change to size of image 
numberOfImages = length(info); 
for k = 1:numberOfImages 
    currentImage = imread(fname, k, 'Info', info); 
    imageStack(:,:,k) = currentImage; 
end  
 
% imageStack is variable A for Beam Hardening Function to be applied 
A = imageStack; 
 
% adjust parameters in BHC_Function before running 
[CorrectedStack] = BHC_function(A); 
 
% we achieved "CorrectedStack Variable" after BHC_function 
% convert each layer of stack to tiff with same file output 
imwrite(CorrectedStack(:,:,1),'IndianaLS01_Post1_BH.tif'); 
for i = 2:size(CorrectedStack, 3) 
imwrite(CorrectedStack(:,:,i),'IndianaLS01_Post1_BH.tif','WriteMode','append'); 
end 
 
function [CorrectedStack] = BHC_function(A) 
% To find coefficients “a” of best fit to a function expressed by: MTMa = MTf 
% M_corr = BH corrected image 
% Surfacefit = Surface fit values 
 
% Image input parameters (update for each new stack) 
nX=963; % X dimension of the input image 
nY=963; % Y dimension 
limitval=0; %This is the value for black background on my image (min set by auto in 
imagej, which is 0) 
zshift=118; % This can be changed according to image grey-scale range, this value is 
what imagej shows the average to be 
 
% Main function 
for i = 1:size(A,3) %create for loop to apply function to each slice 
    slice = A(:,:,i); 
[r,c,v] = find(slice > limitval); 
M= zeros(size(c,1),6); 
M(:,1)=1; 
M(:,2)=c; % x indices 
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M(:,3)=r; % y indices 
M(:,4)=c.^2; 
M(:,5)=c.*r; 
M(:,6)=r.^2; 
 
cyl = slice > limitval; % To extract the grey-scale value of only the object material 
of the 2-D slice. 
R = cyl.*slice; 
[m,n,f]= find(R); 
a = (M'*M)\(M'*f); 
p = a(1).*M(:,1)+ a(2).*M(:,2)+ a(3).*M(:,3)+ a(4).*M(:,4)+ a(5).*M(:,5)+ 
a(6).*M(:,6); 
corr= f - p + zshift; 
S = sparse(r, c, corr, nX, nY); 
M_corr=full(S); 
p1=sparse(r, c, p, nX,nY); 
Surfacefit=full(p1); 
M_corr=uint16(M_corr); %corrected slice 
 
output(:,:,i) = M_corr; %inputing each new corrected slice into a 3-D matrix 
end 
 
CorrectedStack = output; 
end 
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Appendix B: Supplementary Information for Chapter 3 

Appendix Table B.1 shows the X-ray computed tomography (XCT) scan parameters used 

in this study. Appendix Table B.2 shows values used to estimate Damköhler and Péclet numbers. 

Appendix Figure B.1 shows XCT imagery of preferential flowpaths near the inlet of each rock 

sample. Appendix Figure B.2-4 show three figures of 1st dimension persistence diagrams (PDs) 

for the three rock cores used in this study. Each figure shows PDs from the section closest to the 

inlet and the section closest to the outlet at three stages of dissolution. Appendix Figure B.5 

shows boxplots of 1st dimension persistence values before and after reaction. 

Appendix Table B.1: XCT scan parameters. 

 Edwards Limestone Indiana Limestone Lueders Limestone 

Beam energy (kV) 169 175 170 

Beam current (µA) 74 74 76 

Power (W) 12.5 13.0 13.330 

Magnification 13.330 13.337 13.330 

Voxel size (µm) 15 15 15 

Exposure time (s) 1 1 1 

Gain (dB) 24 24 24 

Minimize ring artifacts Yes Yes Yes 

Frames per projection 2 2 2 

Filter None None None 
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Appendix Table B.2: Values used to calculate dimensionless parameters to describe reactive flow regime. 

Parameter Variable Units Indiana Edwards Lueders Source 

Porosity φ -- 0.154 0.244 0.138 MIP data 

Length L m 4.08 x 10-2 4.00 x 10-2 4.08 x 10-2 Measured 

Diameter d m 2.50 x 10-2 2.50 x 10-2 2.50 x 10-2 Measured 

Cross-

sectional area 

A m2 4.91 x 10-4 4.91 x 10-4 4.91 x 10-4 Calculated 

Core volume V m3 2.00 x 10-5 1.96 x 10-5 2.00 x 10-5 Calculated 

Sample mass m kg 3.89 x 10-2 4.58 x 10-2 4.78 x 10-2 Measured 

Pore volume Vp m3 3.08 x 10-6 4.79 x 10-6 2.76 x 10-6 Calculated 

Pore 

characteristic 

lengthscale 

l m 1.01 x 10-5 4.99 x 10-6 1.56 x 10-4 MIP data 

Equilibrium 

concentration 

Ca2+ 

Ceq mol-m-3 0.976 0.976 0.976 Modeled in Visual 

MINTEQ 

Reaction rate r mol-m-2-s-1 8.91 x 10-5 8.91 x 10-5 8.91 x 10-5 Busenberg & 

Plummer (1986) 

Specific 

surface area 

SSA m2-g-1 0.34 0.20 0.79 Lai et al. (2015); 

Morrow et al. 

(2006) 

Reactive 

surface area 

SA m2 13.2 9.20 37.7 SA = SSA * m 

Characteristic 

time of 

reaction 

τrxn 

 

s 0.003 0.006 0.001 τ_rxn=φ*V*Ceq/(

r*SA) 

 



 110 

Diffusivity D m2-s 1 x 10-11 1 x 10-11 1 x 10-11 Boving & 

Grathwohl (2001) 

Dynamic 

viscosity 

μ 

 

Pa-s 8.90 x 10-4 8.90 x 10-4 8.90 x 10-4 Constant for water 

at 20 C 

Density of 

water 

ρ 

 

kg-m-3 998.21 998.21 998.21 Constant for water 

at 20 C 

Kinematic 

viscosity 

ν 

 

m2-s-1 8.92 x 10-7 8.92 x 10-7 8.92 x 10-7 Constant for water 

at 20 C 

Flowrate Q m3-s-1 3.33 x 10-7 5.00 x 10-7 1.67 x 10-8 Measured 

Reynolds 

number 

Re -- 0.050 0.023 0.043 Re = ρuL/μ 

 

Peclet 

number 

Pe -- 1.80 x 107 1.67 x 107 1.00 x 106 Pe=uL/D 

 

Characteristic 

time of 

advection 

τadv 

 

s 9.25 9.58 166 τadv = Vp/Q 

 

Damköhler 

number 

Da -- 3.6 x 103 1.7 x 103 2.1 x 105 Da = τadv/τrxn 

 

 

Appendix Figure B.1: Large preferential flowpaths visible in XCT data for (a) Indiana, (b) Edwards, and (c) Lueders 
Limestones. 
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Appendix Figure B.2: 1st dimension persistence diagrams for Indiana Limestone at three stages of reaction, near 
inlet (top) and outlet (bottom) of core. 

 

 
Appendix Figure B.3: 1st dimension persistence diagrams for Edwards Limestone at three stages of reaction, near 
inlet (top) and outlet (bottom) of core. 
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Appendix Figure B.4: 1st dimension persistence diagrams for Lueders Limestone at three stages of reaction, near 
inlet (top) and outlet (bottom) of core. 

 

Appendix Figure B.5: Persistence values of 1st dimension topological features from Q2 and Q3 before and after 
reaction. In each boxplot, the red line indicates the median, the boxes show the 25th-75th percentiles, whiskers extend 
to 1.5 IQR beyond the boxes. Pre-reaction distributions are in dark colors, post-reaction distributions are in light 
colors, and outliers are shown with black dots. 
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Appendix C: Supplementary Information for Chapter 4 

Appendix Table C.1: XCT scan parameters. Reproduced from Thompson & Ellis (2023). 

 Edwards Limestone Indiana Limestone Lueders Limestone 

Beam energy (kV) 169 175 170 

Beam current (µA) 74 74 76 

Power (W) 12.5 13.0 13.330 

Magnification 13.330 13.337 13.330 

Voxel size (µm) 15 15 15 

Exposure time (s) 1 1 1 

Gain (dB) 24 24 24 

Minimize ring artifacts Yes Yes Yes 

Frames per projection 2 2 2 

Filter None None None 

 

Appendix Table C.2: Values used to calculate dimensionless parameters to describe reactive flow regime. 
Reproduced from Thompson & Ellis (2023). 

Parameter Variable Units Indiana Edwards Lueders Source 

Porosity φ -- 0.154 0.244 0.138 MIP data 

Length L m 4.08 x 10-2 4.00 x 10-2 4.08 x 10-2 Measured 

Diameter d m 2.50 x 10-2 2.50 x 10-2 2.50 x 10-2 Measured 

Cross-

sectional area 

A m2 4.91 x 10-4 4.91 x 10-4 4.91 x 10-4 Calculated 

Core volume V m3 2.00 x 10-5 1.96 x 10-5 2.00 x 10-5 Calculated 

Sample mass m kg 3.89 x 10-2 4.58 x 10-2 4.78 x 10-2 Measured 
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Pore volume Vp m3 3.08 x 10-6 4.79 x 10-6 2.76 x 10-6 Calculated 

Pore 

characteristic 

lengthscale 

l m 1.01 x 10-5 4.99 x 10-6 1.56 x 10-4 MIP data 

Equilibrium 

concentration 

Ca2+ 

Ceq mol-m-3 0.976 0.976 0.976 Modeled in Visual 

MINTEQ 

Reaction rate r mol-m-2-s-1 8.91 x 10-5 8.91 x 10-5 8.91 x 10-5 Busenberg & 

Plummer (1986) 

Specific 

surface area 

SSA m2-g-1 0.34 0.20 0.79 Lai et al. (2015); 

Morrow et al. 

(2006) 

Reactive 

surface area 

SA m2 13.2 9.20 37.7 SA = SSA * m 

Characteristic 

time of 

reaction 

τrxn 

 

s 0.003 0.006 0.001 τ_rxn=φ*V*Ceq/(

r*SA) 

 

Diffusivity D m2-s 1 x 10-11 1 x 10-11 1 x 10-11 Boving & 

Grathwohl (2001) 

Dynamic 

viscosity 

μ 

 

Pa-s 8.90 x 10-4 8.90 x 10-4 8.90 x 10-4 Constant for water 

at 20 C 

Density of 

water 

ρ 

 

kg-m-3 998.21 998.21 998.21 Constant for water 

at 20 C 

Kinematic 

viscosity 

ν 

 

m2-s-1 8.92 x 10-7 8.92 x 10-7 8.92 x 10-7 Constant for water 

at 20 C 

Flowrate Q m3-s-1 3.33 x 10-7 5.00 x 10-7 1.67 x 10-8 Measured 
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Reynolds 

number 

Re -- 0.050 0.023 0.043 Re = ρuL/μ 

 

Peclet 

number 

Pe -- 1.80 x 107 1.67 x 107 1.00 x 106 Pe=uL/D 

 

Characteristic 

time of 

advection 

τadv 

 

s 9.25 9.58 166 τadv = Vp/Q 

 

Damköhler 

number 

Da -- 3.6 x 103 1.7 x 103 2.1 x 105 Da = τadv/τrxn 
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