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PREFACE

Medicine is the science of uncertainty and the art of probability.

WILLIAM OSLER

All models are wrong, but some are useful.

GEORGE B0x
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ABSTRACT

Despite great promise, developing and implementing machine learning (ML) models for healthcare
remains a challenging engineering task. The progression of disease generates complex longitudinal
data that can be difficult to harness when developing models. Additionally, the practice of medicine
is inherently dynamic, meaning that implemented models must be responsive to changes.

This dissertation aims to address some of these challenges. In the first part, we focus on the
issues surrounding the development of models for use in the setting of occupational injuries. This
field has typically focused on developing models that predict injured patients’ return to work dates
using information collected around the time of their injury. We demonstrate that a reformulated
model using longitudinal observations has better predictive performance than a baseline represen-
tative of the existing approaches.

Parts two and three focus on the implementation of ML models. In the second part, we inves-
tigate the phenomena of prospective performance degradation. Although ML models experience
degradation over time, the amount of degradation expected and the mechanisms through which
degradation occurs are unclear. We introduce methods to formally quantify this degradation. Ad-
ditionally, we present techniques to isolate the leading causes of this degradation, splitting fempo-
ral shift (changes in patients and practice) from information technology (IT) infrastructure shift
(differences in the data pipelines serving retrospective model development and prospective imple-
mentation). These techniques and ancillary analyses allow model developers to debug models to
improve prospective model performance.

In the third part, we focus on the problem of updating risk stratification models that have been
integrated into clinical practice. Model developers may seek to maintain or improve ML model
performance over time. Thus, model developers might update models as part of their regular
maintenance. We focus on how updated models may change the risk stratification of patients,
leading to poor clinician-model team performance. We propose a new rank-based compatibility
measure for assessing risk stratification model updates. In addition to describing the behavior of
this measure, we also introduce a technique for model developers to generate updated models that
balance high rank-based compatibility against discriminative performance. Altogether, this work
provides model developers with methods to analyze and develop updates for risk stratification

models that support clinical decision making.

XVi



CHAPTER 1

Introduction

Machine learning (ML) holds great promise for advancing the practice of medicine. Modern
evidence based medicine (EBM) practice depends on synthesizing copious amounts of informa-
tion across large populations of patients. [1, 2] ML as a field provides a set of techniques to build
data-driven prediction models to fulfill the goals of EBM. Difficult medical information synthe-
sis tasks, such as detecting patients at risk for uncommon conditions may be aided by using ML
models. [3] There are over 100 Food and Drug Administration (FDA) certified ML systems sup-
porting physicians in a variety of tasks, ranging from electrocardiogram analysis to mammogram
breast cancer detection. [4] Additionally, health systems and health information technology (HIT)
vendors are developing and implementing ML systems that do not require FDA certification. [5, 6]
These systems are meant to inform physicians by providing risk estimates that can be incorporated
into medical decision making.

The development and implementation of ML systems for use in healthcare has not been without
issue. [5, 7] Development is the set of processes involved creating an ML model. One of the first
issues is access to datasets. [8] Having obtained data, model developers may realize that healthcare
data, like healthcare itself, is complicated. [9] Processing and transforming data for use in ML
model development requires a special mix of clinical and technical expertise. [10] Additionally,
time plays a critical role in the practice of medicine, as the temporal ordering of information is
often a key indicator in diagnostic and therapeutic decision making. [11-13] As such, models may
need to respect the temporal nature of the data and healthcare processes. After being developed,
models must be carefully internally and, in some settings, externally validated to assess if they will
provide benefits to patients, physicians, or healthcare systems. [5, 10] However, external validation
may be challenging due to restrictions in data sharing. [14—16]

Implementation is the set process of necessary to integrating and utilize an ML model in clinical
care. The implementation process may begin once a model is validated. Implementation raises a
host of issues not typically confronted during model development. The technical work needed
to implement models often requires cobbling together disparate HIT systems, such as databases,

web services, and electronic health record (EHR) interfaces. [17] Additionally, implementation
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requires special attention to human factors and systems design. [18-21] These models are not
used in a vacuum; developers must carefully consider users and their workflows. Finally, there
is the issue of monitoring and maintaining these ML systems. As healthcare systems change,
ML systems may experience performance degradation due to changes in patient populations or
medical practice. [7, 22-25] Thus developers may need to update their models over time. Despite
their promise, successfully developing, implementing, and periodically updating ML models for
healthcare is a challenging engineering task.

The longitudinal nature of healthcare makes it an especially daunting application area. Many of
the decision tasks being conducted have a strong dependence on time; for example, the temporal
ordering of symptoms differentiates diseases. [11] Additionally, treatment delivery times can im-
pact a variety of patient outcomes for diseases, ranging from traumatic injuries to cancer. [12, 13]
Moreover, the practice of medicine itself is inherently dynamic: physician behavior, patient risk
factors, and disease characteristics all change over time. [26-28]

This dissertation aims to address some of these challenges. In Chapter 2, we assess the value
of incorporating longitudinal observations into models developed to predict return to work (RTW)
for patients experiencing occupational injuries (OIs). In Chapters 3 and 4, we switch our focus to
implementation issues that arise during the longitudinal use of models. Over time, environmental
and IT infrastructure issues may cause models to experience performance degradation. To counter
this, model developers may seek to update models in use. In Chapter 3 we develop techniques to
investigate the causes of model performance degradation observed over time after implementation.
And in Chapter 4, we develop methods that enable updating models that have been integrated into
clinical workflows. Figure 1.1 shows an overview of the ML model development and implementa-
tion life cycle as well as the foci of each chapter. In the following section, we provide more details
about these chapters and discuss the challenges they tackle. This introductory chapter is concluded

with an enumeration of our technical contributions.

1.1 Challenges & Opportunities

ML techniques hold great promise to improve the practice of medicine. However, successfully
developing and implementing healthcare ML systems in longitudinal settings is a demanding engi-
neering and clinical task. These systems must benefit patients, physicians, and healthcare systems
while respecting privacy, cost, HIT infrastructure, and workflow constraints. This dissertation ex-
amines problems across the spectrum of healthcare ML model development and implementation,
with the following application areas: occupational health, infectious disease, and hospital early
warning systems. We now catalog some of the challenges and opportunities associated with devel-

oping and implementing healthcare ML models.
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Figure 1.1: Development & Implementation Life Cycle. We contextualize this thesis by placing
the foci and contributions of each technical chapter on the main components of the ML model
development and implementation life cycle.

Model Development for Occupational Injuries

First, we focus on the development of ML models in the context of longitudinal data. In Chapter
2, we develop prediction models to monitor patients recovering from occupational injurys (OlIs).
Ols cause an immense burden on the U.S. population. Prediction models could help focus re-
sources on patients at greatest risk of a delayed RTW. RTW depends on factors that develop over
time, such as the diagnoses and treatments that are rendered over the patient’s recovery process.
However, existing methods only use information collected at the time of injury. This presents an
opportunity to investigate a new modeling approach for RTW prediction. Thus, we explore the per-
formance benefits of dynamically estimating RTW, using longitudinal observations of diagnoses
and treatments collected beyond the time of initial injury.

We characterize the difference in predictive performance between an approach that uses infor-



mation collected around the time of initial injury (baseline model) and a proposed approach that
uses longitudinal information collected throughout the patient’s recovery period (proposed model).
To control the comparison, both models use the same deep learning architecture and differ only in
the information used. We utilize a large longitudinal observation dataset of OI claims and compare
the performance of the two approaches in terms of daily prediction of future work state (working
vs. not working).

Experimental results show that the proposed model outperforms the baseline model on this task
in terms of both discriminative and calibration performance. These results highlight the value of
using longitudinal observations to produce RTW predictions. This approach may enable physi-
cians and workers’ compensation programs to manage large populations of injured workers more

effectively.

Implementation

Implementing ML models into clinical care is challenging. During model implementation, the
goal is to use models to estimate unknown information that can be used to guide various healthcare
processes. This exposes models to the transient behaviors of the healthcare system. Over time
we expect the model’s performance to change. Even though the model in use is not changing, the
healthcare system is, and these changes in the healthcare system may reflect new patterns that the
model was not trained to identify.

We contrast this with the fact that the model in use may also change over time. Although this
dissertation focuses on static models (that may be updated by model developers), some models
are inherently dynamic. These models change their behavior over time. Employing updating and
dynamic models means that model performance is expected to change over time. This change
would be driven by new model behaviors and changes in the healthcare system.

We now provide some examples:

* A model flags patients based on their risk of developing sepsis. There is an increase in
the population of patients admitted with respiratory complaints due to a viral pandemic.
This change in patient population leads to a massive increase in the number of patients the
model flags, and the overall model performance drops because these patients do not end up
experiencing sepsis. [7] This is an example of a static model being impacted by the changes

in the healthcare system over time.

* A model identifies physicians who could benefit from additional training. The model uses
a limited set of specially collected information. [29] Model developers create a new model

version that utilizes EHR data. After implementation, the updated model identifies physi-



cians with better accuracy. This is an example of a static model being updated to improve

performance over time.

Integration into clinical care requires the model to be connected to systems that can present it
with data in real-time. We refer to these systems as infrastructure. Infrastructure are the systems
(primarily IT systems) needed to take data recorded as a part of clinical care operations and present
it in a format accessible to ML models. This infrastructure determines the availability, format, and
content of information. Although data may be collected in the same source HIT system (e.g.,
an EHR system), the data may be passed through a different series of extract, transform, and
load (ETL) processes (sometimes referred to as pipelines) depending on the data use target.

Once integrated into clinical care, ML models may need monitoring and updating. For example,
developers may want to incorporate knowledge about a new biomarker that changes how a disease
is diagnosed and managed. Model developers may thus consider updating models as a part of their
regular maintenance.

This maintenance is complicated because models do not operate in a vacuum. In many ap-
plication areas users interact with models and learn to about their behavior over time. [30] In
safety-critical applications like healthcare, models and users may function as a team. [31-33] The
user and model each individually assess patients. The decision maker, usually the user, considers
both assessments (their own and the model’s) and then makes a decision based on all available
information. The performance of this decision is the user-model team performance.

Part of the user’s decision-making will involve integrating the model’s assessments with their
own. After using the model repeatedly over time, the user will develop knowledge on the behavior
of the model’s predictions. We term this knowledge user expectations. User expectations represent
the user’s anticipated correct behavior of the model’s assessment. If the model is suddenly replaced

with an updated one, then user expectations may be subverted. This is problematic when:

* The user expected an assessment to be correct, and now the updated model produces an
incorrect assessment. In this case, the user might have chosen to act on an incorrect assess-

ment.

* When the user expected an assessment to be incorrect, and now the updated model produces

a correct assessment. In this case, the user might ignore a correct assessment.

Over time the user will come to recognize this behavior and have their knowledge match the up-
dated model. However, during the intervening adaptation time, the user-model team may have its
overall performance suffer. [31-33]

Compatibility measures quantify how much an updated model continues to produce the cor-

rect behavior exhibited by an original model. This can be contrasted with performance measures



that focus on the correct behavior of one model. Compatibility measures assess two models and
measure the correct behavior of the updated model in the scenarios where the original model had
behaved correctly. One interpretation of a compatibility measure is the probability that the updated
model has the correct behavior, given that the original model had the correct behavior. We expect
that with high compatibility team performance will suffer less immediately following a specific
model update.

Risk stratification models produce continuous values, usually between 0 and 1, to rank patients
by their risk of being affected by a specific condition in the future. Risk stratification models may
be used to classify patients into different classes (e.g., low- vs. high-risk). This may be done
by employing a decision threshold, which is a number in the range of values produced by the
risk stratification model. Any patient with a risk estimate below this decision threshold will be

classified as low-risk, and patients with estimates above will be classified as high-risk.

Performance Degradation Observed After Model Implementation

We first focus on the problem of static models performing worse than expected when applied in
real-time. It is widely accepted that performance may degrade over time due to changes in care
processes and patient populations. However, the extent to which this occurs is poorly understood.
In Chapter 3, we seek to prospectively characterize the changes to model performance over time
after model implementation.

We compare the 2020-2021 prospective performance of a patient risk stratification model for
predicting healthcare-associated infections to a 2019-2020 retrospective validation of the same
model. We define the difference in retrospective and prospective performance as the prospective
performance gap. We estimate how two major sources of dataset shift contribute to the prospective
performance gap: 1) temporal shift, changes in clinical workflows and patient populations, and ii)
HIT infrastructure shift, changes in access, extraction, and transformation of data.

In terms of discriminative performance, the observed prospective performance gap was primar-
ily due to infrastructure shift and not temporal shift. So long as we continue to develop and validate
models using data stored in large research data warehouses, we must consider differences in how
and when data are accessed, measure how these differences may negatively affect prospective per-

formance, and work to mitigate those differences.

Updating Implemented Models

In Chapter 4, we examine updating and its impact on the expectations of clinical users. More
specifically, we focus on how updated models may change the risk stratification of patients, leading

to poor clinician-model team performance. Compatibility measures quantify, in part, the impact



a model update may have on clinician expectations. In the setting of patient risk stratification,
existing compatibility measures depend on a single model decision threshold; however, clinicians
often differ in their belief about the most appropriate decision threshold. As a result, existing
measures cannot be directly applied to settings where the model is used to produce a ranking of
patients based on estimated risk (e.g., without a set decision threshold). We propose a new rank-
based compatibility measure in light of these and other limitations.

We characterize the proposed compatibility measure in terms of the discriminative performance
of the original and updated models, develop bounds, and show the central tendency of rank-based
compatibility. These bounds demonstrate that it is possible to achieve very high rank-based com-
patibility while also maximizing the discriminative performance of the updated model. However,
theory and empirical studies on the Multi-parameter Intelligent Monitoring for Intensive Care -
[T (MIMIC-III) 48-hour mortality prediction task suggest updated model selection based on im-
proved discriminative performance may not achieve the highest level of compatibility. We intro-
duce a new loss function based on our proposed rank-based compatibility measure that can be
used for updated model selection. This loss function encourages the selection of updated models
that balance improvements in discriminative performance against higher levels of compatibility.
Additionally, we present a real-world case study focused on prostate cancer outcome prediction;
in this case study, we show how model developers can use our proposed compatibility measure
to understand the implications of model updating on clinician expectations. Altogether, this work
provides model developers with techniques to analyze and develop updates for risk stratification

models used in healthcare.

1.2 Contributions

This thesis presents new methods to develop and implement ML models for use in healthcare. We

summarize the main contributions of each chapter below.

Chapter 2. In this chapter, we present the development of a risk prediction model that uses
longitudinal data. It is focused on the application area of RTW prediction for workers experiencing

Ols. The main contributions found in this chapter are as follows:

* RTW as an ML for healthcare application area. We provide an introduction to the problem of
RTW, reviewing the existing literature and state of the art. We note that the most widely used
models are proprietary and have not been described in the literature. In addition to reviewing

existing techniques, we identify sources of data and potential implementation targets.

* Reformulation of RTW prediction as dynamic work status prediction. We introduce the first,



to our knowledge, reformulation of the RTW prediction problem in a longitudinal setting.
Existing approaches predict the RTW using data collected at the time of the initial OI. As
patients recover, physicians and the health system collect a great deal of additional informa-
tion. Instead of generating a single static prediction, we repeatedly predict if the patient will

be at work (their work status) in the future as new data are collected.

* Recurrent neural network (RNN) implementation and accompanying training procedure. To
produce updated predictions in response to inputs collected over time we use a recursive
model that stores information about all of the longitudinal observations collected about a
patient (i.e., their history). We use RNNs to encode this information over time and to derive

predictions regarding the patient’s future work status.

* Longitudinal observation performance evaluation. We evaluate the predictive performance
of our proposed approach to RTW prediction. Additionally, we compare the proposed ap-
proach to a baseline representing a strong static prediction model that uses the information
collected near the initial time of OI. This enables us to evaluate the performance benefits of
utilizing longitudinal observation data compared to an optimistic hypothesis of the function

of proprietary models.

* Additional studies using simpler model architectures. We investigate if longitudinal infor-
mation still benefits predictive performance if simpler model architectures are employed.
Although limited compared to the proposed RNN model, these results suggest that longitu-

dinal observations still provide a benefit.

The work presented in Chapter 2 has been accepted for publication by the Journal of the American
Medical Informatics Association. It has been presented in part at the 2019 INFORMS Annual
Meeting and the 2019 Machine Learning for Healthcare Conference. The methods described in
this chapter are covered under a USPTO patent application.

Chapter 3. We present a careful evaluation of a prospectively implemented risk prediction
model. Through this evaluation, we isolate the causes of performance degradation when transi-
tioning models from retrospective development and validation to prospective implementation. The

main contributions from this chapter are as follows:

» Formalization of the notion of the prospective performance gap when validating ML-based
models in clinical care. We provide a formal definition of the prospective performance gap.
Using this, model developers can calculate the amount of performance degradation observed

when transitioning into model implementation from model development.



Formulation of the relationship between the prospective performance gap, temporal shift,
and infrastructure shift. We introduce and formally define two constituent components of the
prospective performance gap. The first component captures changes in the population and
care processes, temporal shift, and the second represent differences in the data infrastructure

used for development and implementation, infrastructure shift.

Characterize the differences between a retrospective pipeline and a prospective pipeline and
the resulting impact on the performance gap. We provide the first, to our knowledge, ratio-

nale and example for why infrastructure shift may contribute to the prospective performance

gap.

Quantifying how much of the performance gap can be attributed to temporal shift and infras-
tructure shift. We expand the formal analysis of the prospective performance gap to isolate

its components.

Develop methods and approaches to identify contributors to the performance gap. These
new methods enable model developers to determine which features contribute most to tem-
poral and infrastructure shift. Features associated with significant contributions to infras-

tructure shift may be targeted by model developers to be fixed in model updates.

Highlight approaches for mitigating the effects of differences in retrospective versus prospec-
tive data infrastructure on the performance gap. By focusing on our model implementation,
we provide examples of improvements that model developers may consider to ameliorate the

effects of infrastructure shift.

The results of the work in Chapter 3 were presented at the 2021 Machine Learning for Healthcare

Conference and published in the Proceedings of Machine Learning Research. [17]

Chapter 4. We propose and analyze a new rank-based compatibility measure to fill in the gaps

associated with existing compatibility measures that assume a single decision threshold. This new

rank-based compatibility measure is designed for evaluating updates to risk stratification models

that do not depend on a single decision threshold. This measure may be used for updated model

selection as an additional criterion focused on modeling user expectations. Alternatively, we show

how model developers may incorporate it into model development. The main contributions pre-

sented in this chapter are as follows:

* To the best of our knowledge, we introduce the first rank-based compatibility measure based

on the concordance of risk estimate pairs.



» We characterize the extent to which the new compatibility measure may vary over all po-
tential model updates. This helps to establish the relationship between the discriminative
performance of the original and updated models and the new rank-based compatibility mea-
sure. In addition to providing a direct connection between model discrimination performance
and rank-based compatibility, we also introduce several ancillary measures to examine the
characteristics of risk stratification model updates. The ancillary measures also contextualize
and compare the rank-based compatibility values produced for updates considered to serve as

secondary criteria for model selection among models of similar discriminative performance.

* We provide bounds on the rank-based compatibility, which provide insights about optimistic
and pessimistic outcomes of potential updates. Additionally, the bounds show that as the
discriminative performance of the models increases, the lower bound of rank-based compat-
ibility increases. We also show that rank-based compatibility exhibits a central tendency.
Common model development approaches may provide many more updated models with
rank-based compatibility values towards the center of the bounds. Thus, while some rank-
based compatibility arises from maximizing the area under the receiver operating character-
istic curve (AUROC) of the updated model, additional search procedures may be necessary

to find a model with desired rank-based compatibility.

» We introduce a custom loss function that incorporates ranking incompatibility which can be
used to engineer model updates with improved rank-based compatibility characteristics. We
show that utilizing the incompatibility loss during updated model training results in higher
rank-based compatibility on held-out data. This higher rank-based compatibility comes at a

small cost in terms of discriminative performance.

» Using MIMIC-III, we present empirical results that show the updated models with larger
rank-based compatibility values can be generated using incompatibility loss. In addition
to examining the rank-based compatibility observed through standard model selection, we
analyze the impact of incorporating incompatibility loss as an alternative model selection
criterion. This experiment shows that candidate update models built using standard training
procedures provide a limited range for rank-based compatibility, which can be overcome by

using a new loss function that incorporates ranking incompatibility.

* We present a real-world use using the rank-based compatibility measure to understand the
potential impact of updating a risk stratification model currently used for predicting prostate

cancer outcomes.

We presented early versions of this work at the 2021 INFORMS Annual Meeting and the 2021
INFORMS Healthcare Meeting. We plan to submit the methods portion of this work to a refereed
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Conference. We plan to submit the case study and some of the more general findings to an archival
journal.

Careful development and implementation are critical for ML models used in healthcare, espe-
cially in longitudinal settings. While there are many issues to be addressed in this domain, this
dissertation makes an effort to advance the state of the art in ML model development and imple-
mentation using real-world use cases drawn from occupational health, infectious diseases, hospital
early warning systems, and cancer. Chapters 2, 3, and 4 describe the technical details of our con-
tributions. The final chapter, Chapter 5, summarizes our findings and discusses future directions

building on the work presented in this dissertation.
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CHAPTER 2

Dynamic Prediction of Work Status for Workers
with Occupational Injuries

2.1 Introduction

Occupational injuries (Ols) cause an immense burden on the U.S. population and economy. Mil-
lions of workers are injured annually, leading to pain, emotional suffering, and economic hardship.
In addition to resulting in time away from work, Ols increase medical expenditures and shorten
lifespans; furthermore, they disproportionately affect minorities. [34—41] Ols have far-reaching
economic consequences due to decreases in corporate productivity and are high costs to govern-
ment organizations. [34-36] As in other facets of medicine, timely and clinically appropriate inter-
vention is critical to the injured worker’s healing and recovery. [42—44] In occupational medicine,
the primary clinical outcome is return to work (RTW).

The RTW process, like most medical episodes, is complex. [45] It requires individual medical
management by highly trained physicians; additionally, injuries are often reviewed for treatment
utilization by reviewers, or recovery managers, who oversee thousands of simultaneous cases on
behalf of workers’ compensation programs. [46] The current state of the art for injury recovery
prediction are models and guidelines used at the onset of the injury. [47—49] Payers often use these
models to estimate a worker’s RTW date. Predicted RTW duration is a clinical and administrative
tool ingrained into the occupational health framework. [50] The most prevalent modeling tech-
niques for this approach are Cox proportional hazards models, time to event models that estimate
the probability that a worker will return to work in a given period. [51-54] These models estimate
RTW based on information at the time of a worker’s injury. They provide guidance on the expected
resources needed for a worker’s recovery and enable stratification of the injured worker popula-
tion. While these models assist initial triage of resources for injured workers, their utility decreases
over time as they fail to account for the diagnoses and treatments workers receive throughout their
recovery. To our knowledge, longitudinal data like insurance claims streams are not currently used

to generate or update RTW predictions.
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We investigate the predictive performance benefits of using longitudinal observations collected
during a workers’ compensation case to support decision-making over worker recovery. The use of
longitudinal observations has been shown to improve performance in the prediction of cardiovas-
cular events and in many other healthcare setting. [55, 56] However, to the best of our knowledge,
this has not been characterized for the prediction of RTW. In this work, we measure the differ-
ence in predictive performance between the current approach to RTW prediction (baseline model),
which only uses information collected near the time of injury, to an approach that uses longitudinal
observations (proposed model) collected throughout a worker’s recovery.

To do this, we present a new model to predict the RTW of injured workers dynamically. The
proposed model reframes the prediction of RTW into a dynamic prediction task. For injured work-
ers, it seeks to learn the relationship between observations collected daily and the worker’s future
work status, i.e., whether the worker is working or not. To evaluate whether longitudinal obser-
vation data collected beyond the first week of injury can help predict work status, we developed a
model capable of analyzing longitudinal observations inputs. We trained this proposed model with
the entire history of longitudinal observations available in the training dataset. Given daily longitu-
dinal observations, the model will return future work status predictions. Although the predictions
are dynamic, the underlying model parameters are static.

We compare the performance of this proposed model against a baseline model, which is repre-
sentative of current RTW prediction approaches. To assess the benefit of the proposed approach,
we use a large claims dataset from the state of Ohio’s workers’ compensation program to develop
the models. [49] Both models are implemented as RNNs to learn this relationship. [57-60] We
evaluate the predictive performance difference between these two approaches using a held-aside

portion of the claims dataset.

2.2 Contributions

The main contributions from this work are as follows:

* RTW as an ML for healthcare application area. We provide an introduction to the problem of
RTW, reviewing the existing literature and state of the art. We note that the most widely used
models are proprietary and have not been described in the literature. In addition to reviewing

existing techniques, we identify sources of data and potential implementation targets.

* Reformulation of RTW prediction as dynamic work status prediction. We introduce the first,
to our knowledge, reformulation of the RTW prediction problem in a longitudinal setting.

Existing approaches predict the RTW using data collected at the time of the initial OI. As
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patients recover, physicians and the health system collect a great deal of additional informa-
tion. Instead of generating a single static prediction, we repeatedly predict if the patient will

be at work (their work status) in the future as new data are collected.

* RNN implementation and accompanying training procedure. To produce updated predictions
in response to inputs collected over time we use a recursive model that stores information
about all of the longitudinal observations collected about a patient (i.e., their history). We use
RNNs to encode this information over time and to derive predictions regarding the patient’s

future work status.

* Longitudinal observation performance evaluation. We evaluate the predictive performance
of our proposed approach to RTW prediction. Additionally, we compare the proposed ap-
proach to a baseline representing a strong static prediction model that uses the information
collected near the initial time of OI. This enables us to evaluate the performance benefits of
utilizing longitudinal observation data compared to an optimistic hypothesis of the function

of proprietary models.

* Additional studies using simpler model architectures. We investigate if longitudinal infor-
mation still benefits predictive performance if simpler model architectures are employed.
Although limited compared to the proposed RNN model, these results suggest that longitu-

dinal observations still provide a benefit.

The work presented in this chapter has been accepted for publication by the Journal of the
American Medical Informatics Association.! It has been presented in part at the 2019 INFORMS
Annual Meeting and the 2019 Machine Learning for Healthcare Conference. The methods de-

scribed in this chapter are covered under a USPTO patent application.

2.3 Problem Setup & Related Work

The prediction of RTW for an OI is fundamental to decision-making by employers, occupational
health physicians, and recovery managers — all of whom share the common goal of minimizing
the employee’s absence. Disability management is a human resources process conducted by many
employers who recognize it as a critical component of workplace productivity. [61-63] On an
individual basis, if the predicted RTW duration is short, then minimal personnel shifting needs to

occur. On the other hand, with a longer prediction, employers face more operational decisions,

I'This publication was co-authored by Erkin Otles, Jon Seymour, Haozhu Wang, and Brian T. Denton. EQO led the
core study design, data analysis, and manuscript preparation. JS, HW, and BTD assisted in study design refinement,
data interpretation, and manuscript revisions. EOQ was primarily responsible for all of the core contributions presented
in this chapter.
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including whether to hire temporary workers or to offer the injured employee modified duty during
the recovery.[64] On an aggregate basis, actual RTW performance against predicted RTW forms
an essential metric for many businesses. [65] Questions that an employer may seek to use an RTW
model are: Will the employer need to replace the worker on a temporary or permanent basis? Is
modified duty a worthwhile option for this worker? Does the organization measure up to RTW
benchmarks?

RTW predictions are related to the expert prognoses generated by occupational health physi-
cians, who are often asked to supply absence notes for injured patients. [50, 66] Importantly, RTW
patients are often seen by general primary care physicians. [67] As such, RTW predictions are used
as a part of treatment guidelines for non-specialist physicians to benchmark occupational injuries.
[68] A question that a physician may use an RTW model to answer: How long is this patient’s
absence from work expected to be?

Recovery managers, typically working on behalf of insurance organizations, are often assigned
to cases based on the RTW prediction. Workers with longer predicted RTW durations are usually
associated with more severe or complex injuries; that case is often directed to a more experienced
manager. The RTW prediction is used to manage expectations and to dictate operational processes
across clinical and corporate stakeholders. A recovery manager may use an RTW model to answer:
How should this case be triaged? Should I alert other stakeholders that the RTW duration has
exceeded the prediction?

Due to the close relationship between RTW prediction and treatment, predictive models are
bundled with treatment and resource management guidelines. [69, 70] In this chapter, we focus
our work on the task of RTW prediction and leave additional guidance for future work. From
the existing RTW literature, it is essential to note that the state art in OI modeling has several
potential avenues for further exploration. The first is that published models are, to the best of
our knowledge, based on a static time-to-event prediction of RTW, designed for usage only at the
time of injury, and incapable of handling newly observed information. [51-54] The second is that
models are traditionally made for specific diseases with custom collected data. [51, 53, 54, 71-74]
The current literature presents a gap to be explored. Specifically, what is the value of producing
dynamic RTW predictions using longitudinal observations from claims data?

For an extended discussion of the RTW literature, please see Appendix Section A.1.1.

Problem Statement

To address this question, we reformulate Ol modeling as a dynamic prediction task, where the
prediction of a worker’s RTW is made sequentially over the time horizon of their injury. These

repeated predictions would be based on observational data commonly available to decision-makers
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like physicians and workers’ compensation programs. For example, each day, new claims obser-
vations may be fed to a model, which returns the likelihood that the injured worker would be at
work a week in the future.

Stated more formally, we seek to learn a model, f(-), that when given a sequence of diagnoses
and treatments observations, X; ;, over time, ¢, for a given worker injury, ¢, produces an estimate of

the likelihood of return to work within a defined period, Pr(y;, = 1).

Sequence-to-Sequence Learning

The problem we consider is a sequence-to-sequence learning task, where a model captures the map-
ping between a given sequence of observations and a sequence of predictions. Markov chain-based
models have successfully been used for sequence-to-sequence learning tasks. [75-78] However,
we would like the model to learn to use the longitudinal observations directly (e.g., no grouping or
curation of diagnoses or treatments), and we would like the proposed model to learn a representa-
tion of the accumulated observations (or history).

RNN:ss, a type of deep neural network, are naturally well suited for this task. They can handle se-
quences with long-range time dependencies [57-60] and learn representations for high-cardinality
categories (e.g., diagnoses and treatment codes) with minimal modification. [79-83] We cover the
rational for the use of RNNs in Appendix Section A.1.1. Additionally, we note that other types
of deep neural networks, such as convolutional neural networks (CNNs) or transformers, which
have become widely used in sequence-to-sequence learning tasks. [58, 84] Although these other
models may be applied to sequential data, we focus on an RNN based architecture as it was the

most common at the time.

2.4 Methods

We assess the value of utilizing longitudinal observations by reframing RTW prediction as a dy-
namic task. Our proposed model reframes the RTW prediction problem to produce future work
status predictions using observations of diagnoses and treatments collected over time. We compare

this to a baseline model that only uses information collected around the time of injury.

2.4.1 Approach

Let the set of worker injuries be denoted by /, with ¢ denoting an individual worker. Time was
discretized using a fixed time-step duration 6 € R™, with ¢ set to 1 day for this study and ¢t =

1,2, ..., Tynar Where 1., 1s the maximum number of days of a worker injury case. We limited
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case durations to the typical cut-off for maximal medical improvement (7,,,,, = 365 days). [85]
This discretization and transformation are further described in Section 2.6. Moreover, Figure 2.1
depicts an example of an injury transformation.

Each injury, 7, had two types of data collected. The first type was characteristic data, which in-
cludes all time-invariant demographic data (e.g., biological sex and job classification). The second
type was longitudinal observations, which includes time-stamped information collected over time
(e.g., procedure information). For every injury, ¢, we created a characteristic vector, c;, of size d.,
to represent time-invariant information that was known before the time of injury. We created an
observation vector, 0, ¢, of size d, for every injury, ¢, at every time-step ¢; these vectors represent
information collected each day of an injured worker’s recovery. Characteristic and observation
vectors both contain information encoded as either real numbers and or as integers (for categorical
data). Missing observations were denoted with a special missing value (see Appendix Section

wo_
i,t_l

A.1.3.1 for more detail). We let OXZ denote the work status of an injured worker over time; o
indicates “working” status and OX‘{ = ( represents “not working” status.

Characteristic and observation vectors were used to generate the model’s input features and
output labels. Model input features x;; denote the vector of injured worker’s characteristics and
observations over all time-steps x;; = (c;,0;;) V i € I,t € T. An example calculation of x;,
is depicted and explained in Figure 2.1. Readers may find additional details on data variables in
Appendix Section A.1.2.1. The model output label, the future work status, denoted as y; ; was also
indexed in terms of injuries and time-steps. For this work, each y; , was related to the observed
work status. We define vy, ; = 0% 14 Where ¢ is termed the offset, a positive integer value for the

number of time-steps in the future we would like to predict work status.

2.4.2 Proposed Model

Both the proposed and baseline model utilize an RNN architecture that operate upon learned em-
beddings of the longitudinal observations. This overall architecture is broken down into three
subcomponents that each have a role. We now describe these subcomponents in more detail.

At every time-step, the model uses all the observed longitudinal observation information col-
lected on an injured worker to estimate the probability that they will be at work in the future
Pr(y;+ = 1). We denote the overall model as f(-) and the model’s parameters as 6, formally
[ (X, Xit) = Pr(y;; = 1) € [0,1]. The model is composed of three functions, the input
encoder f;,(+), the history encoder f,,;4(-), and the output estimator f,,.(-). Each function is de-
scribed in more detail below. The parameters of the overall model, f(-), @ is the combination of
the parameters of these functions 6;,,, 0,,,;4, and 0.

The model does not directly use x;, to predict Pr(y;,); instead, instead, it uses two inter-
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Day Jan5 Jan6 Jan7 Jan8 Jan9 Jan10

Diagnoses -

Procedures

Age 55
Bio. Sex Male Not Not Not Not

Job Postal Worker Work-status oty iy Working

Working Working Working

¢ =(1,78) of = (1,0) 0,1  ©0 00 (1,00 (00
of, = (10,0) 0,15 00 (00 (169,0) (0,0)
Y= 0 0 0 0

Figure 2.1: Example Occupational Injury Timeline and Corresponding Characteristic and Observa-
tion data. In this example, worker injury 1, a 55-year-old male postal worker, is injured on January
5th. This information is encoded in the real characteristic vector, ¢ = (55), which contains the
age information, and the categorical characteristic vector, ¢{ = (1, 78), which encodes biological
sex (male = 1) and job code (postal worker = 78). His injury case runs until the last observed date,
January 10th. Diagnoses and procedures are observed throughout. This information is encoded in
daily observation vectors. On the first day of the worker’s injury, January 5th, the real observation
vector, ofl = (1,0), contains information regarding the number of diagnoses and procedures ob-
served for the injured worker at ¢ = 1 (1 diagnosis and O procedures). The categorical observation
vector ofl = (10, 0), encodes diagnosis (ankle sprain = 10) and the no procedures observed token
(0). The input vector at ¢t = 1, x; ; is the concatenation of the observation vectors at that time and
the characteristic vectors (55, 1,78,1,0,10,0). The model will then map the input vector to the
output, y; 1, which is the work status 1 day in the future (¢ = 1 for this example).

mediaries. These intermediaries are lower-dimensional approximations: the encoded observation
vector, X;;, and the encoded history vector, fl@t. The encoded feature vector, X; ¢, is a transforma-
tion of x;, that replaces the categorical integer values with real-valued embeddings. [80, 82, 83]
We compute X; ; using fi,(x;+) which uses the parameters 6;,,.

Similarly, the encoded history vector, flm, approximates the whole history of the injury’s ob-
servations, X; 1, ...,X;;. The encoded history vector, flm, is a real-valued vector of size dj, that
is updated by the middle function, f,,;4(-). This recursive function takes the current time-step’s

encoded input, X; ;, along with the encoded history from the previous time-step, h;;_;. It returns

an updated encoded history for the current time-step, h; ;. It uses the parameters 0,,,;4.
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Figure 2.2: Proposed Model Diagram. Longitudinal observations, x;,, and the prior history en-
coding, fli,t_l, are used as inputs at every time-step, t. Observations are encoded with 6;,, to learn
representations of high-cardinality categories (X;,). Using 0,,,; these representations are then en-
coded into the current history, fllt Finally, 6,,; utilizes the current history to predict the injured
worker’s likelihood of being at work in the future, Pr(y; ; = 1).

The encoded history vector, fllt represents the injury’s entire history including the current time-
step. Thus, it can be used to estimate a worker’s health outcome. The out function, f,(+), controls
this mapping which. This function takes in fli,t and returns a probability estimate of the worker
being at work in the future. The out function f,,,(-) is parameterized by 6,,;. We can then use the
probability estimate produced by f,,; to estimate the outcome label by employing a threshold, 7.

For example:

. Lif Pr(y;.) > 7
Yit = )
0 otherwise
In summary, the prediction process from inputs to estimated probability of being at work in the

future is:

ii,t = fm(th) 2.1
hiy = fomia(Xis, g 1) (2.2)
Pr(yi; = 1) = fou(hiy) 2.3)

This recurrent approach yields a model that maps to clinical decision-making. Note, although
the model updates the history encoding in response to observations collected across time, the
underlying parameters of the model remain static across time-steps. A model block diagram is
depicted in Figure 2.2. Because the overall model processes information through a series of sub-
models consisting of one or more neural network layers, the entire model may be trained end-to-

end via back-propagation. [58]
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2.4.3 Baseline Model

Industry standards for predicting return to work are based on regression models that predict case
duration given information about a worker collected early in their recovery process. This infor-
mation includes characteristic data that was known at the time of injury, such as age, biological
sex, job class, and comorbidities. Additionally, longitudinal information, such as initial diagnoses,
collected early in the recovery process, the first week or so, may also be used. All of this infor-
mation is then passed into a model that returns the estimated RTW date. ODG and MDGuidelines
have deployed these models in their web-based subscription services for treatment guidance and
resource management. [69, 70] The model sold by ODG was developed with the same dataset
we used for this study. However, these models are proprietary and not available for use without
purchase. [68]

As such, we sought to create a baseline model analogous to the industry-standard proprietary
models. [49] Our approach was to modify the proposed model only to utilize the information avail-
able to the industry-standard proprietary models. This meant that the baseline model functions
identically to the proposed model for the first week. However, after the first week, the baseline
model receives no new longitudinal information. All daily inputs contain only the known charac-
teristic information. This setup was employed at both training and testing time.

This process was carried out through the used of “missing observations” tokens where ¢t > 7.
We provide more technical information about these tokens along with high cardinality categories
in Appendix Section A.1.3.1.

2.5 Experiments & Results

We now present experiments that focus on understanding the behavior and benefits of the proposed
model for use in the reformulated RTW prediction task. We first catalog our main experimental
questions. We then provide an overview of the dataset and experimental setup employed to an-
swer these questions. A description of the dataset then follows this. We finally present our main

experimental results, followed by subpopulation analyses.

Questions. These experiments seek to answer two related questions. The first relates to the
primary study objective, which is to assess the value of longitudinal observations. The second is

an initial investigation of potential bias in the proposed model. These questions are:

1. Does the additional longitudinal observations lead to improved predictions of future work
status? (Section 2.5.3, Figure 2.3)
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2. How does the proposed model perform on subpopulations of interest? (Section 2.5.4, Fig-
ures 2.2 and 2.4)

2.5.1 Data & Experimental Setup

Data. We utilized the Peers Health Ohio Workers’ Compensation Dataset for this work. This
dataset contains longitudinal workers’ compensation claims information for over 1.2 million work-
place injuries collected in Ohio from January 2001 to October 2010. For each injury record, demo-
graphic information describes the age, sex, and job type of the worker at the time of their injury.
This demographic information is accompanied by time-stamped longitudinal information repre-
senting diagnoses and procedures. (Procedures are activities rendered by healthcare providers to
improve a worker’s health, like physical rehabilitation.) Finally, for each injury record, the dates of
a worker’s departure and return to work are recorded (an injury record may contain multiple depart
from and return to work dates). This work was conducted with approval from the University of

Michigan Institutional Review Board. Peers Health provided the data underlying this study.

Model Development. Based on preliminary experiments, we sample 300, 000 injuries to achieve
a suitable trade-off between model training time and predictive performance. We exclude all in-
juries with case durations of less than seven days, as a predictive model would provide marginal
utility for these cases. For our study, we set the offset to one week (or seven days, thus ¢ = 7)
to predict work status for 1 week in the future. Note, when t 4+ ¢ surpasses the last observed
OZ[; value, the last observed OZ‘{ value is filled forward. Injury cases are only considered to have
reached completion once the injured worker has reached their maximal recovery or has transitioned
to long-term disability at the 365-day cutoff we employ above. [85] Thus, the work status observed
on their last day is likely to be their lasting work status.

We split the dataset evenly between training, validation, and test datasets (1/3, 1/3, 1/3, respec-
tively). The size of the sub-models, f;,, fmids» and f,.;, and the activation functions for all their
layers were model hyperparameters. Additional hyperparameters included the width and depth of
each sub-model, drop-out rate applied to the inputs and between layers, learning rate, and layer
activation functions. Thus, they were selected as a part of the hyperparameter search process. We
used hyperband, selecting hyperparameters that yielded the best performance in terms of validation
AUROC. [86] For full details on the possible values for each hyperparameter, please see Section
A.1.3.1.

After finding the best hyperparameters, the final model training was conducted using a com-
bined dataset consisting of both the training and validation datasets. Training was conducted using

stochastic gradient descent (SGD) with early stopping based on the validation AUROC. Finally,
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the held-out test dataset was used to evaluate the performance of our proposed model against the
baseline model.

To compare between the baseline model to our proposed model, we sought to ensure that they
had the same overall capacity and used the same training procedure. As such, we used the same
framework and searched over the same hyperparameters; and only limited the baseline so that it
only used information typically used for the proprietary models. This setup replicates the data
used to create the Cox proportional hazards models traditionally used for this task with an added
benefit; the baseline model can learn from the initial observation data and the observation timing.
By using the same architecture, searching over the same hyperparameter space, and only using the
first seven days of observations, we sought to create a strong baseline representing the best possible
performance of existing proprietary models. The restriction to the first seven days is an optimistic
interpretation of existing proprietary models, as they generally only use information collected at
the time of injury. By comparing our proposed method against the baseline model, we can estimate
the potential improvement of using longitudinal observations over the current industry approach of
using information collected around the time of injury.

We implemented the entire data preprocessing, model training, and evaluation pipeline using
python 3.6.9, using the TensorFlow docker container (tag:latest-gpu-jupyter accessed on June 9th
2021) running on an Ubuntu 18.04 workstation with an Intel Xeon 6146 CPU, 256 gigabytes
of RAM, and an NVIDIA Titan V graphics card. [87] The proposed and baseline models were
implemented using TensorFlow and Keras. [88—90] Additionally, we utilized the SQLite, SKLearn,
NumPy, pandas, and tableone python packages. [91-96] We have released our data transformation
code and model training python framework on GitHub. A U.S. Utility patent application covers
the methods and approaches described above. [97]

Evaluation. We evaluated the daily predictions on the held-out test dataset of OlIs. For each
injury, all daily predictions, Pr(y;: = 1), were compared against the true label, y;;. We use
this time-step-level approach (also known as time-horizon approach [5]) as model users can in-
tervene on patients daily. We measured discriminative performance using the receiver operating
characteristic (ROC) and the area under it (AUROC). Calibration performance was assessed using
calibration curves and the expected calibration error (ECE). [98, 99]

To assess the variation in performance, we computed 90% confidence intervals for all curves
and measures. Confidence intervals were generated using bootstrap sampling; in this procedure,
the population of injuries in the test set was resampled with replacement 100 times to estimate
model performance under varying distributions of injured workers.

We also evaluated several models using simpler machine learning architectures. We used L2-

regularized logistic regression and random forest regression. We discuss these evaluations in Ap-
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pendix Section A.2.

2.5.2 Dataset Characteristics

We first describe the characteristics of the dataset we used for this study. After applying our

minimum case duration of seven days exclusion criteria, we had 294, 103 OI cases.

Table 2.1: Population characteristics. Demographic information (age and biological sex) is equally
used between the baseline and proposed models. Both models do not use observations such as
diagnoses and procedures equally, as the baseline model is limited to longitudinal observations
within the first week of the injury. These observation characteristics are counted per worker for the
baseline and proposed models.

Population Characteristics n: 294,103
Demographic Characteristics Entire Population
Age, Median (IQR) 35 (26, 45)

Biological Sex, n (%)
n missing: 3,876

Female, n (%) 92,674 (31.9)
Male, n (%) 197,553 (68.1)
Case Duration (days), Mean (Standard Dev.) 88.9 (111.7)
Observation Characteristics Baseline Proposed
Per Worker Model Model

Number of Diagnoses, Median (IQR) 0(0,0) 1(1,2)
Number of Procedures, Median (IQR) 4(2,6) 5(3,10)

The median age of injured workers at the time of injury was 35 years old, with an interquartile
range (IQR) between 26, 45 years old. Most of the workers were male, with only 31.9% having
a biological sex of female. In total, these workers represented 595 different occupation classifica-
tions, with the five most common occupations being: city employees, restaurant workers, school
district employees, nursing home workers, and automobile service workers (Appendix Table A.4).
The median number of diagnoses observed per injured worker was 1 (IQR: 1, 2), and the number
of procedures was 5 (3, 10). When limited to observing the first week of the worker’s recovery, as
in the case of the baseline model, the number of diagnoses observed was 0 (0, 0). The number of
procedures was 4 (2, 6). See Appendix Section A.1.3.1 for a discussion of this. The most com-
monly observed diagnoses and procedures are categorized in Appendix Table A.5 and Appendix
Table A.6. Since the RTW observations were not limited to the first week, the baseline and our
proposed model observed 1.1 (standard deviation: 0.5) RTW events per injured worker. These

numbers are also summarized in Table 2.1.
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2.5.3 Model Performance

We now investigate the performance of the proposed and baseline models. By doing so, we seek to
answer the question: Does the additional longitudinal observations lead to improved predictions
of future work status?

When evaluated on daily predictions generated over the test dataset, our proposed model had
an AUROC of 0.728 (90% confidence interval: 0.723, 0.734), compared to the baseline model’s
AUROC of 0.591 (0.585, 0.598). In terms of calibration, our proposed model had an ECE of 0.004
(0.003, 0.005) versus 0.016 (0.009, 0.018) for the baseline model. The values, along with ROC
curves and calibration curves, are displayed in Figure 3 2.3. Despite under-estimation of RTW
likelihood in low-likelihood cases, the proposed model displays better overall calibration (smaller
expected calibration error) than the baseline model. The baseline model shows under-estimation
of RTW likelihood in both low- and high-likelihood cases but also shows over-estimation in mid-
likelihood cases.

From this experiment, we can see that the proposed model utilizing longitudinal observations
outperforms the baseline model. This suggests that longitudinal observations may provide higher

quality estimates of future work status.

2.5.4 Subpopulation Analysis

We now investigate our second question: How does the proposed model perform on sub-
populations of interest? To answer this, we computed the performance of the proposed and baseline
model on subpopulations of workers. These subpopulations were defined by stratifying the worker
population by age and sex.

When examining the performance of our proposed model and the baseline model in subpopula-
tions of injuries occurring in workers of different ages or sexes, their performance varies slightly.
However, our proposed model always matches or exceeds the baseline model, Figures 2.2 and 2.4.
There is only one subpopulation and performance measure where the proposed model does not
demonstrate statistically significant performance. This is the ECE of workers aged less than 25
years old.

In all the other subpopulations, the proposed model outperforms the baseline model. It is im-
portant to note that the proposed model’s performance varies across the subpopulations, but these
differences do not appear to be very large or statistically significant. Although this analysis is not
proof that the proposed model is not biased, it does show that we can expect the proposed model

to work consistently and provide benefit over the baseline model across these subpopulations.
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Figure 2.3: Predictive performance of the proposed model compared to the baseline model. In the
left subfigure, discriminative performance is plotted in terms of the ROC, the proposed model is
blue, and the baseline model is orange. The proposed model has a significantly better discrimi-
native performance by dominating the ROC curve of the baseline model and having a larger area
under the ROC curve, which is depicted in the legend. Quintile calibration curves for the proposed
model (blue) and baseline model (orange) are displayed in the right subfigure. Despite under-
estimation of RTW likelihood in low-likelihood cases, the proposed model displays better overall
calibration (smaller ECE) than the baseline model. The baseline model shows under-estimation
of RTW likelihood in both low- and high-likelihood cases but also shows over-estimation in mid-
likelihood cases.
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Table 2.2: Performance on Subpopulations of Injuries Based on the Age of Workers at Time of
Injury. The discriminative performance is depicted with ROC curves and quantified in terms of
AUROC. Calibration performance was assessed in terms of calibration curves and the ECE. All
measures were bootstrap sampled at the injury level with replacement to create 90% confidence
intervals, depicted as lighter curves and in parentheses. Generally, the findings from the entire
population hold in each age subpopulation, with our proposed model outperforming the baseline
model in terms of both discrimination and calibration. We observe the proposed model’s worst
discriminative performance in the subpopulation of workers under 25 years old. Additionally, this
subpopulation has equivalent ECEs between the two models.
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2.5.5 Summary of Simpler Model Architecture Experiments & Results

The additional experiments utilizing simpler model architectures discussed in Section A.2 rein-
force the findings of the primary experiments. These simpler model architectures generally had
worse discriminative performance than the proposed deep learning model. However, simpler ar-
chitectures using longitudinal observations outperformed their respective baselines (without longi-
tudinal observations). For example, the logistic regression model using longitudinal observations
had an AUROC of 0.607 (0.606, 0.607) compared to an AUROC of 0.581 (0.580, 0.581) for the
logistic regression model without longitudinal observations (see Figure A.3 for full details).
Additionally, when we examined the importance of longitudinal observations, we saw that the

longitudinal observation data played a prominent role in predicting future work status. We ob-
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Figure 2.4: Performance on Subpopulations of Injuries Based on the Biological Sex of Worker.
Discriminative Performance is depicted in terms of discrimination with ROC curves and quantified
in terms of AUROC. Calibration performance was assessed in terms of calibration curves and
the ECE. All measures were bootstrap sampled at the injury level with replacement to create
90% confidence intervals, depicted as lighter curves and in parentheses. The findings from the
entire population hold in each sex subpopulations, with our proposed model outperforming the
baseline model in terms of discrimination and calibration. Our proposed model has slightly worse
calibration (in terms of ECE) when used for females than the males.

28



served that 9 out of the top 25 features of the logistic regression model corresponded to longitudinal
observations. These features and their coefficients are displayed in Appendix Table A.9. Using
permutation importance, we also observed the importance of longitudinal observations. Procedure
Codes, a type of longitudinal observation, constituted the second largest group of features that

impacted the discriminative performance of the logistic regression model, Appendix Table A.S.

2.6 TemporalTransformer Package

As mentioned above, the data used for the OI prediction is made up of a combination of character-
istic information linked with longitudinal observations. Both the characteristics and longitudinal
observations have elements that are very high cardinality. Similar dataset structures can be found
across the domain of healthcare. This structure often necessitates additional aggregation and trans-
formation mechanisms when preparing data for ML model development. Custom pipelines often
are costly to develop, in terms of both time and money, may not be resilient to changes in datasets,
and obscure many of the transformation assumptions. We designed a Python package to aid in
preparing the data for this project. This package, Temporal Transformer (T2), is designed to ingest
EHR or claims datasets and transform them for use with our proposed model (or other sequence
modeling approaches).

T2 is a Python package (GitHub) that standardizes, simplifies, and speeds up the healthcare data
preprocessing process. We designed T2 to make the data transformation process as easy as possible
so that clinicians and researchers can develop models faster by spending less time prepping data.
Several other packages have similar functionality to T2, namely FIDDLE and gpmodels. [100, 101]
These packages were unavailable at the outset of this project.

To do this T2 extends the relational database structure often employed by analytical databases
and research data warehouses (RDWs) tied to EHRs. Data tables and their configuration are passed
to T2, which then automatically transforms the underlying data into a sequential format. This
transformation is saved so that the exact same transformation can be applied to held-out partitions
of the data or other datasets.

Table configuration helps to determine the relationship between tables and how data columns
should be transformed. Tables have a tabular structure like standard SQL tables and are composed
of one or more data columns. Additionally, tables must have an ID column, with each ID repre-
senting a unique entity (e.g., patients or workers). If the table represents longitudinal observations,
it must either have time-stamps or time-spans (start/stop times). The presence of temporal infor-
mation informs T2 on which tables contain characteristic or longitudinal observation data. The ID
column enables T2 to link information across tables. Table configurations denote the names and

data types of all columns in a table. In Appendix Section A.3.2, we show the T2 configurations
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used for the OI project.

In addition to loading the table data and table configurations, several other parameters such as
the time-step duration and data filtration methods must be defined. The time-step duration is the
time between successive predictions; in the case of the OI project, we set this to 1 day. The data
filtration methods help to remove outliers numerical (e.g., abnormally large or small values) and
categorical data (extremely infrequent categories). We set the filtration parameter for the OI project
to be 0, so no data was filtered.

Once these additional parameters are provided, T2 transforms the underlying dataset automati-
cally. The general transformation process includes filtration, aggregation, and normalization. Ex-
treme values are filtered out of the dataset according to the specified filtration process and pa-
rameter. Longitudinal observation data are then aggregated to correct temporal granularity. The
functions used in aggregation depend on the data type of the column. Real valued columns are
aggregated with summary statistics (e.g., min, mean, median, max). Low cardinality category
columns have their categories counted. And high cardinality categories are packaged into a list of
all the distinct categories observed. For example, all the diagnoses a worker receives on a given
day are concatenated into a list. Columns in characteristics tables do not go through the aggrega-
tion process. Normalization applies Z-score normalization to the transformed real valued and low
cardinality categories. The high cardinality categories are ignored during this step. This process
yields a transformed dataset and a transformation configuration information that can be saved and
loaded.

The transformation process utilizes an in-memory database management system (DBMS) in
order to achieve good run times. This DBMS stores all of the transformation steps for traceability
of the transformation. Additionally, if persistence is desired or memory is an issue, DBMS can be
run on disk. The transformed dataset may be exported out of the DBMS in several ways. The two
most notable export formats are Tensorflow and Numpy.

The Tensorflow export utilizes Tensorflow’s built in Dataset functionality. Additionally, it pro-
vides the initial ingestion layers for a TensorFlow model to be able to receive the transformed data.
We used this option for the OI project and f;,, was initialized automatically by T2. The benefit of
this is that the list of high cardinality categories can efficiently be passed between the dataset and
the model with no additional intervention needed on the part of the model developer. The Numpy
export produces three-dimensional Numpy arrays packaged into a dictionary with the transformed
column names as keys.

The full T2 configuration and transformation process used for the OI project can be found in
Program A.1. Dataset partitions can be provided to T2; this ensures that transformation will be fit
only using training data and that the held-out evaluation data will also be transformed in the same

manner. By specifying the same underlying dataset, partitions, and configuration, we could use T2
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to generate the transformed data on the fly for all of our model development. The training of the
proposed and baseline models took full advantage of the TensorFlow export process using both the
TensorFlow Dataset and the initial TensorFlow ingestion models. The simpler model architectures
used the Numpy export process as the SKLearn models required Numpy arrays and could not take

advantage of the TensorFlow ingestion models.

2.7 Discussion

We found that utilizing longitudinal observations improves the performance of RTW prediction
compared to approaches that only use the information at the time of injury. Despite both mod-
els using the same RNN based deep learning architecture, the proposed model outperformed the
baseline model in terms of discrimination and calibration. The baseline model is analogous to the
current state of the art in RTW prediction, as it uses information collected at the time of injury to
generate predictions. In contrast, the proposed model uses treatment information collected daily to
update RTW predictions. The performance differences we observed between our proposed model
and the baseline model show the potential practical benefit of reframing the RTW task as a dynamic
prediction task.

Our proposed approach uses standard longitudinal data routinely collected by workers’ compen-
sation programs and exploits deep learning capabilities to build a dynamic model that outperforms
methods that only use information collected around the time of injury. Our python framework,
T2, transforms readily available injury claims data into sequences of daily observations. These
observations encode characteristic information, like diagnoses and treatment codes, and are com-
bined with longitudinal observation data (e.g., worker demographics). The framework then trains
an RNN based deep learning model to map these daily observations to the future work status of
an injured worker. Thus, the learned model could be used to repeatedly generate RTW predictions
given a sequence of longitudinally observed diagnoses and treatments.

Updating RTW in response to observed diagnostic and treatment information could be valu-
able for employers, physicians, and OI recovery managers. Existing RTW prediction models and
treatment guidelines software have already been implemented into EHR systems. [43, 44] Our
proposed approach may provide additional value as the dynamic assessment of the worker’s fu-
ture work status relates to how physicians and other clinicians assess injuries over time. Like the
proposed model, physicians update their understanding of an injured worker’s recovery and future
recovery prognoses based on information they collect over time. Additionally, this formulation
helps to monitor populations effectively. As near real-time observations are collected for individ-
ual injured workers, the proposed model can generate RTW estimates. RTW estimates can then be

used by OI recovery managers to allocate treatment resources to injured workers. These estimates
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can also be used by people with managerial responsibility for workforce coverage in industry or-
ganizations. Furthermore, this model may eventually be used to help answer “what-if questions”;
using the model to assess the impact of potential treatment choices on work status could help
support clinical decision making. Altogether, the dynamic prediction of work status may assist
in managing Ols, ultimately positively impacting injured workers and organizations that support

them (e.g., workplaces and governmental organizations).

Implementation. To be useful, this dynamic model needs to be implemented within feasible
workflows. We will briefly sketch potential implementations method that would enable predic-
tions to be used by recovery managers. This implementation would utilize insurance claims data.
A hosted model fed claims data automated or manually could provide predictions for recovery
managers and employers. Another potential implementation mirrors a project implemented at
Kaiser Permanente [43, 44] with direct integration of the proposed model into an EHR via Health
Level Seven (HL7), Fast Healthcare Interoperability Resources (FHIR), or other application pro-
gramming interfaces. Integration with an EHR would allow physicians and other clinicians to get
real-time RTW predictions embedded directly in their clinical documentation and decision-making
workflows. Transferring the model to the EHR setting would require careful validation and may
require additional training with data collected directly from EHR systems. [17]

Both potential implementations raise many questions, ranging from privacy concerns to data
infrastructure issues. [17] Of note, evaluation of Ols in terms of RTW depends on desired use case
and implementation. We used a daily evaluation for this initial development study as it is the most
plausible evaluation frequency. We present potential implementations not as finalized solutions but

as ideas to inform future studies in this space.

Bias & Fairness. An essential set of issues that arise as we consider the translation of this model
from “bench to bedside” are the issues of algorithmic bias and fairness. These must be carefully
considered and studied before, during, and after any implementation of this work. [102] As noted in
Section 2.5.4, our results show that the proposed model outperforms the baseline model for all age
and sex subpopulations. This is an example of some of the analysis necessary, but not sufficient,
to identify sources of algorithmic bias. Although this assessment was not the primary focus of
this work, we present a brief discussion of some potential issues regarding bias and fairness of this
proposed model.

One potential issue is the non-representativeness of the underlying claims data employed to de-
velop the models. For example, undocumented workers may be underrepresented in this dataset.
Generally, these workers are less likely to have their Ols properly documented, treated, and as-

signed to workers’ compensation resources by employers. [103] Other socio-economic factors
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obscured from claims data may also exert pressure on RTW decision making, for example, RTW
duration has been shown to correlate with the size of an injured worker’s family. [104] Blindly
developing and implementing models may reinforce negative structures in society that harm vul-
nerable groups of people. As such, it could be problematic to implement the proposed model
directly. Instead, we emphasize that these challenges are areas for careful future study, which

should combine additional analytical work with further data collection and research.

Limitations. The main set of limitations pertains to the inaccessible baseline models and the
deep learning architecture used for this study. To assess the proposed approach’s improvement
yields, we must compare it against a representative baseline. We trained a baseline analogous to
proprietary models by limiting the data to the first week after injury. [49] We tried to ensure parity
in capacity between our proposed model and the baseline model using the same framework and
hyperparameter space. We believe this yielded a generous baseline, representing the predictive
performance of using information collected around the time of injury. We note that this is not an
attempt to measure the performance of existing proprietary models.

In addition, we employ deep learning approaches, which are powerful but problematic. In initial
experiments our proposed had over 3 million parameters. This presents issues terms of complexity,
power usage, and interpretability. [105—-107] Work described in Appendix Section A.2 examines
longitudinal observations’ impact on future work status prediction using simpler machine learn-
ing architectures. These results suggest that longitudinal observation data is vital in predicting
future work status. Notably, these models demonstrate worse discriminative performance than the
proposed model implemented with deep learning. Further study is needed to explore architecture
tradeoffs fully. Although we observed performance degradation when using simpler model ar-
chitectures, some of the benefits of longitudinal data are still realized under simpler architectures.
There may be modeling approaches that provide similar performance benefits to deep learning with
less complexity and more interpretability. [108—110] This could be a fruitful direction for future
research.

Although the proposed model shows an improvement over the baseline there are several other
limitations that must be headed when considering the generalizability and potential implementation
of this model. Several of these limitations pertain to the dataset we used to create and validate
our model. We utilized a large dataset from the state of Ohio’s workers’ compensation program,
containing OlIs and subsequent observations observed between 2001 and 2010. Using data from
a single state limits the potential generalizability of the model to other regions, as some of the
data collected are specially tailored to Ohio (e.g., procedure codes specific to the state of Ohio’s
workers’ compensation program).

Additionally, other U.S. states or regions outside of the U.S. may have a different composition
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of occupations, injuries, and treatments. Moreover, diagnoses and treatments may have changed
since the end of the data collection. For example, this dataset is unlikely to capture the recent shift
away from opioid-based analgesics in treating pain. [46, 111] Despite validating the model in a
single region, our work provides a valuable foundation for which to replicate our study for other
regions.

Given the scope of this work, we focused entirely on utilizing retrospectively collected data.
The proposed model would need to be studied with a prospective implementation to fully assess
the utility of using longitudinal observations in real-world usage. Finally, using claims-based
workers’ compensation data provides a limited view of the recovery process, especially from the
lens of algorithmic bias. Although our claims dataset contains time-stamped information regarding
diagnoses and treatments, this is an incomplete depiction of recovery from Ols. For example, job
type is a limited representation of the worker’s occupation, and a great deal of recovery depends
on psychosocial factors that are not explicitly captured through claims. [45, 112] With additional
psychosocial information, the proposed framework would likely be able to create models with
greater predictive performance that account for these factors.

Another limitation is that we do not fully understand how the benefits of longitudinal observa-
tions change over the duration of OI cases. Analysis like Oh et al. [110], Singh et al. [6], and Wong
et al. [5] may show how much of an early warning benefit the proposed model provides over the
baseline model.

To the best of our knowledge, our study is the first to evaluate the potential of dynamically
predicting RTW for injured workers using longitudinal observations. Future work using other

large claims or EHR datasets may address the abovementioned limitations.

Conclusion. In this chapter, we established the value of using longitudinal observations for the
return to work prediction task by comparing approaches that use information collected in the first
week of an occupational injury (OI) to longitudinal information collected throughout recovery. We
proposed a new formulation for occupational injury (OI) prediction as a dynamic work status pre-
diction task for this comparison. We utilized an approach that transforms longitudinal claims data
into a sequence of observations. These longitudinal observations were fed to a recurrent neural
network (RNN) based model to generate predictions about an injured worker’s future work status.
The model yields updated estimates as new longitudinal observations are collected daily. Thus, the
longitudinal observation approach could help physicians and payers efficiently manage large popu-
lations and enable industrial organizations to better plan for their workforce needs. Supposing our
initial findings are borne out through subsequent modeling and validation studies, dynamic predic-
tion of return to work (RTW) may provide crucial support in clinical decision making, addressing

a problem that plagues many insurers, governments, and workers.
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CHAPTER 3

Mind the Prospective Performance Gap

3.1 Introduction

To date, the application of ML for patient risk stratification in clinical care has relied almost en-
tirely on “retrospective” electronic health record (EHR) data. [113, 114] That is, researchers typi-
cally train and validate models using data sourced from a database downstream from data used in
clinical operations (e.g., a RDW or MIMIC-III). [113] These data are extracted, transformed, and
stored to serve researchers without interrupting hospital operations. While critical to initial model
development, model evaluation using such data may not represent prospective model performance
in clinical practice. Importantly, it is the prospective or “real-time” model performance that ulti-
mately impacts clinical care and patient outcomes. [115, 116] Although retrospective performance
serves as an approximation of prospective performance, the validity of such an approximation re-
lies on the assumption that the two datasets come from the same distribution (i.e., the datasets have
no significant differences in the relationships of covariates and outcome). However, many ML
models are developed and validated with datasets that do not accurately represent their intended
prospective use. [117] Without prospective evaluation, it is impossible to estimate a priori how a
model will perform when deployed.

The need for prospective validation has been previously recognized in the context of screening
for diabetic retinopathy. [118—120] However, these studies rely primarily on imaging data, so the
difference in infrastructure for model development and deployment is minimal. Researchers have
started reporting prospective performance with respect to models that rely on structured EHR data.
For example, Kang et al. [121] prospectively compared a model to predict in-hospital resuscitation
events with existing standards of care (e.g., rapid response team activation). In addition, Brajer
et al. [122] prospectively validated an in-hospital mortality prediction model. While these studies
take an essential step towards model integration in clinical care, they do not specifically assess the
root cause of discrepancies between prospective and retrospective performance.

To date, factors driving the differences between prospective and retrospective model perfor-
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mance have primarily been attributed to clinical workflow changes [25, 123] or patient popula-
tions. [124, 125] For example, a global pandemic might lead to differences in personal protective
equipment protocols. This change in gowning and gloving may impact infectious diseases within
the hospital, which may affect model performance. However, such changes are difficult, if not
impossible, to anticipate before an outbreak. [126, 127]

Here, we compare the effects of temporal shift (i.e., changes due to differences in clinical work-
flows and patient populations) on model performance to another kind of shift: infrastructure shift.
We define infrastructure shift as changes due to differences in the data extraction and transforma-
tion pipelines between retrospective and real-time prospective analyses. For example, some data
available retrospectively may not be available prospectively because of the processing pipeline at
one’s institution (e.g., vitals might be backdated by the clinical care team). Differences in how the
data are sourced and preprocessed between retrospective and prospective pipelines may be more
systematically addressed if recognized. However, it is currently unknown to what extent degrada-
tion in prospective performance can be attributed to changes in temporal shift vs. infrastructure
shift.

In this chapter, we explore the prospective validation of a data-driven EHR-based patient risk
stratification tool for predicting hospital-associated Clostridioides difficile infection (CDI) at Uni-
versity of Michigan Health, a large tertiary care academic health system. CDI is associated with
increased length of stay, hospital costs and considerable morbidity and mortality. [128—131] The
ability to accurately predict infections in advance could lead to more timely interventions, in-
cluding patient isolation and antibiotic stewardship strategies, curbing the incidence and spread
of disease. We measure the prospective performance gap between prospective and retrospective
pipelines. More specifically, we quantify how much of the prospective performance gap can be

attributed to temporal and infrastructure shifts.

3.2 Contributions

As the field of ML for healthcare advances and more models move from ‘bench’ to ‘bedside,
prospective validation is critical. Most ML models are developed and initially validated using
retrospective data. We explore the impact this disconnect can have on the prospective performance
gap (i.e., the difference between prospective performance and retrospective performance) through
a case study in which we prospectively validated an EHR-based patient risk stratification model

for CDI. Our contributions are as follows:

» Formalization of the notion of the prospective performance gap when validating ML-based

models in clinical care. We provide a formal definition of the prospective performance gap.
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Using this, model developers can calculate the amount of performance degradation observed

when transitioning into model implementation from model development.

» Formulation of the relationship between the prospective performance gap, temporal shift,
and infrastructure shift. We introduce and formally define two constituent components of the
prospective performance gap. The first component captures changes in the population and
care processes, temporal shift, and the second represent differences in the data infrastructure

used for development and implementation, infrastructure shift.

* Characterize the differences between a retrospective pipeline and a prospective pipeline and
the resulting impact on the performance gap. We provide the first, to our knowledge, ratio-
nale and example for why infrastructure shift may contribute to the prospective performance

gap.

* Quantifying how much of the performance gap can be attributed to temporal shift and infras-
tructure shift. We expand the formal analysis of the prospective performance gap to isolate

its components.

* Develop methods and approaches to identify contributors to the performance gap. These
new methods enable model developers to determine which features contribute most to tem-
poral and infrastructure shift. Features associated with significant contributions to infras-

tructure shift may be targeted by model developers to be fixed in model updates.

* Highlight approaches for mitigating the effects of differences in retrospective versus prospec-
tive data infrastructure on the performance gap. By focusing on our model implementation,
we provide examples of improvements that model developers may consider to ameliorate the

effects of infrastructure shift.

We do not present a new ML algorithm or architecture, but rather share novel insights gained
through our experience developing and validating an EHR-based model for patient risk stratifica-
tion. We highlight practical considerations for model developers moving from the ‘retrospective’
to ‘prospective’ setting. Given that the ultimate goal of ML for healthcare is to improve patient
care, early considerations regarding prospective validation are critical to ensuring success.

The results of the this work were presented at the 2021 Machine Learning for Healthcare Con-
ference and published in the Proceedings of Machine Learning Research! . [17]

'This publication was co-authored by Erkin Otles, Jeeheh Oh, Benjamin Li, Michelle Bochinski, Hyeon Joo, Justin
Ortwine, Erica Shenoy, Laraine Washer, Vincent B. Young, Krishna Rao, and Jenna Wiens. EO, JO, and JW led the
core study design. EO developed the prospective performance gap attribution methods. Data analysis was conducted
by EO and JO. Manuscript preparation was conducted by EO and JW. All authors assisted in manuscript revisions.
EQO was primarily responsible for the formalization of the prospective performance gap, along with its separation into
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3.3 Problem Setup & Related Work

Risk stratification model performance evaluation utilizes a dataset, D, composed of model inputs
and labels representing a population of patients. Model inputs, denoted as X, are a matrix of real
values with each row corresponding to a patient and each column corresponding to an input fea-
ture. Labels, y, are a binary vector with each value corresponding to a patient’s outcome. A risk
stratification model, f, maps each row in X to a risk estimate, Pr(y = 1). This risk stratification
model may be evaluated using a performance measure function, p, on the given dataset. We eval-
uate f applied to D using a performance measure function, denoted as p : D — R. To simplify
notation, we assume that the goal is to maximize p during model development (e.g., models pro-
ducing larger AUROC scores are preferred). This notation implicitly denotes two steps: one, the
application of the model to inputs of the dataset to create risk estimates, and two, the evaluation
of those risk estimates against the labels of the dataset. The data used for model development and
validation is often collected retrospectively. We denote retrospective validation data as D,.; this
held-out data is often used to estimate the expected performance of the model via p(D,..;).

Although risk stratification models may be developed with retrospective data, they are often
used prospectively. During implementation, they may be connected to data streams, like near-real-
time EHR datasets; we label this data as D,,,. As noted above, prospective performance, p(me),
may be less than what was estimated by retrospective data p(D,.;).

We seek an evaluation framework to quantify the differences in performance between ML mod-
els applied in real-time and the anticipated performance based on retrospective datasets. In framing
this problem, we expect two sources of differences: one, the shift in the relationships between the
features and labels over time due to changes in clinical workflows and patient populations; this is
related to the concept of dataset shift. And two, the difference in the infrastructure for extracting
data retrospectively versus prospectively. We now briefly discuss dataset shift and the differences

in data infrastructure.

Dataset Shift

After models are developed, their performance tends to degrade over time. [24, 125] This problem
is partly due to the healthcare environment’s non-stationary behavior. [132, 133] Dynamic changes
in the environment leading to changes in patient information are termed dataset shift, also known
as covariate shift and concept drift. Data may be observed or collected over a time interval. We
denote an example time interval a as 7;,. The set of input and label data for 7, are denoted as X,

and y, respectively.

temporal and infrastructure shifts, and developing methods to identify factors impacting the prospective performance
gap. EO collaborated with other authors to present and formalize the other core contributions presented in this chapter.
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Formally defined, dataset shift occurs when Pr(X,,y.) # Pr(X,,ys) where T;, and T, are
distinct time intervals. Dataset shift occurs not only over the joint distribution Pr(X,y), but also
the covariate Pr(X) distribution, the class distribution Pr(y), the posterior distribution Pr(y|X),
and the conditioned covariate distribution Pr(X]y); each reveals different facets of a potentially
complex changes in the environment and patients we seek to risk stratify. Although dataset shift
is recognized to impact the performance of models developed for medicine, it is unclear what the
expected effect size should be and how to untangle its effects from differences in prospective and

retrospective infrastructure. [132, 134—139]

Data Infrastructure

To highlight how infrastructure may impact observed performance, we now share important details
regarding the data extraction and processing pipelines at University of Michigan Health. These
pipelines were available for model development and prospective implementation and are summa-
rized in Figure 3.1. Though some aspects (e.g., the precise downstream research database) may
be unique to our institution, many parts of these data pipelines are generally representative of

infrastructure available across academic medical centers.

Retrospective Pipeline. Data used for model development and retrospective validation were ex-
tracted from a research data warehouse (RDW) at the University of Michigan. These data were
extract, transform, and load (ETL) from University of Michigan Health’s Epic EHR instance
(Epic Systems Corporation, Verona, WI) and LIS (Soft Computer Consultants, Clearwater, FL).
More precisely, the majority of EHR data were extracted nightly from the EHR’s underlying Epic
Massachusetts General Hospital Utility Multi-Programming System (MUMPS)-based Chronicles
database and then transformed and loaded into our instance of Epic Clarity, a Structured Query
Language (SQL) database. Then, a second ETL process was carried out, with data passed to a
second SQL database, RDW. RDW is based on a health information exchange data model (ini-
tially developed by CareEvolution, Ann Arbor, MI). However, to support research operations, it
has undergone significant additional custom design, development, and maintenance by the RDW
development team at the University of Michigan. The timing of this second ETL process varied.
However, the total delay between data being entered in the EHR and arriving in RDW typically
ranged between one day and one week. In addition to this data pipeline, our EHR also passes hos-
pital occupancy information directly to RDW via an ADT interface. Finally, RDW also captures
information from the LIS using an LR interface. RDW is designed for large queries of trans-
formed EHR data. Thus, we refer to these data as ‘retrospective’ since they were primarily used

for retrospective analyses.
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Figure 3.1: Prospective and Retrospective Pipelines. The information generated from the care
process is documented in the EHR, produced by Epic Systems Corporation, and the laboratory in-
formation system (LIS), produced by Soft Computer Consultants (SCC). Data are extracted from
these sources using two different pipelines. The near-real-time prospective pipeline for EHR data
is primarily based on a web service architecture and has its information stored in near-real-time
(near real-time (NRT)) database tables. It extracts data from the EHR more frequently, with less
lead time and processing, allowing for the prospective implementation of predictive models (i.e.,
it produces prospective datasets, D,,,). The bottom pipeline is a retrospective data pipeline that
extracts data less frequently but with more curation and processing (i.e., it generates large retro-
spective datasets, D,..;). Both pipelines rely on an lab results (LR) interface that passes information
from the LIS and an admission, discharge, and transfer (ADT) interface that passes admission in-
formation from the EHR. Components in the pipeline that can be interacted with in near-real-time
(i.e., prospectively) are depicted in red. Components in which subsets of data require time to pass
before having complete information (i.e., retrospectively) are colored blue. The near-real-time
query utilizes historical patient information; although, this information is technically collected via
the retrospective pipeline, it is considered up-to-date when queried by the near-real-time query.

Prospective Pipeline. Not all data included in the retrospective model were available in near-
real-time through the pipeline described above (e.g., medications or laboratory values for current

encounters). Thus, we developed a near-real-time prospective pipeline, which built upon the exist-
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ing retrospective pipeline by adding daily updates (ETL) of data that were previously unavailable
in real-time. We developed custom EHR web services to update the data necessary for model
predictions. Specialized NRT database tables were created to access medications, vital sign mea-
surements, and hospital locations, in near-real-time; i.e., with a delay of less than an 8-hours.
This maximum delay corresponds with the maximum duration for recording non-urgent informa-
tion into the EHR (i.e., the length of a typical nursing shift). In conjunction with the EHR web
services, laboratory results and admission information are passed to the NRT tables using the afore-
mentioned LR and ADT interfaces, respectively. Additionally, we continued to use components
of the retrospective pipeline to extract historical patient data (e.g., medications associated with
previous encounters).

Overall, daily data extracts were inherently different from historical data and required careful
validation to ensure queries were accessing the correct aspects of the EHR. Once extracted, we
applied identical preprocessing steps. Using these daily data streams, we generated daily risk
scores for all adult hospital encounters in our study cohort. Model results were generated daily and
stored on a secure server. These scores were not made available to any clinical care team members

and were only accessed by the authors.

3.4 Methods

In the context of inpatient risk stratification, we present an evaluation framework to quantify the
differences in performance between ML models applied in real-time and the anticipated perfor-
mance based on retrospective datasets. In framing this problem, we examine two major sources
of differences: 1) the shift in the relationships between the features and labels over time due to
changes in clinical workflows and patient populations (i.e., temporal shift) and, 2) the difference in
the infrastructure for extracting data retrospectively versus prospectively (i.e., infrastructure shift).

To date, it is unknown to what extent differences in infrastructure contribute to the prospective
performance gap relative to differences that arise due to temporal shift. Thus, to control for tempo-
ral shift and estimate the effect of infrastructure shift on the prospective performance gap, one can
use their retrospective pipeline to query data for the prospective validation time period, in order to

generate D/ _,. Using the datasets D,.,, D,.,, and D,,,, we may estimate A;”f "% and A?me.

ret® ret?

3.4.1 Estimating the Prospective Performance Gap

Let the labeled data extracted from retrospective and prospective pipelines be denoted as D,..; and
D,ro, respectively. We assume that we are given a predictive model, f, that maps a given data

input matrix vector, X, to a vector of estimated of patient risks, Pr(y = 1). While p(D,..;) often
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Figure 3.2: Retrospective Evaluation and Prospective Implementation Timeline. The dashed verti-
cal line denotes the model implementation time, marking the start of the silent prospective deploy-
ment. Before implementation, the retrospective pipeline was used to retrospectively validate the
model, f, applied to D,.;. After the model implementation the model is applied to D,,, using the
prospective pipeline. Once sufficient time has elapsed, the retrospective pipeline may be used to
extract D/, data from the same period of time as the prospective dataset.

serves as an estimate for how the model will likely perform in the future, given differences between
retrospective and prospective pipelines (discussed above) we do not necessarily anticipate p(D,..;)
to equal p(D,,,). The difference between the retrospective and prospective model performance

with respect to p is the prospective performance gap:

Ap = p(Dret) = P(Dypro)- 3.1)

When comparing model performance on retrospective data, D,.;, to model performance on
prospective data, D,,,, there are two unique sources of potential differences: the shift in time

period from 7., to T}, (i.e., temporal shift) and the shift in pipelines (i.e., infrastructure shift).

1. Temporal Shift arises due to changes in the underlying data generation process (DGP) over
time (e.g., the evolution of disease pathology, updates in clinical practice/workflows and
changes in patient characteristics). If the retrospective and prospective pipelines were iden-
tical, then any difference between retrospective and prospective pipeline would be attributed
to Afjme, defined as:

A = p(Dyer) — p(Dhey)- (3.2)

We control for changes in infrastructure by re-extracting the data from the prospective period

using the retrospective pipeline, D..,.

2. Infrastructure Shift occurs when the data returned from the retrospective and prospective

pipelines differ, after controlling for changes in time period. We calculate A;”f "* by compar-
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ing performance on the prospective dataset, D,,,, to performance on a retrospective dataset
generated for the identical time period D, , (Figure 3.2). Once aligned in time, the only

differences come about from the pipeline infrastructure used to create the datasets:

A;;nfm = (D;"et) (me)' (3.3)

The prospective performance gap from Equation 3.1 can be broken into these two sources of

differences:

(Drer) -
(Dr) = 1 m>+( P(Dyer) + p(D,) )
(Dyer) -

p( ret) + (D;‘et) p(DpT‘O)
— Atlme +Aznfra

3.4.2 Analyzing Sources of Infrastructure Shift

We may use D,,, and D, to pinpoint differences in infrastructure. This is because these two
datasets represent the same population at the same point in time and only differ in the infrastructure
used to collect the data.

First, we can focus on the difference in the estimated risk between the two datasets. Since
performance measures like AUROCs summarize risk estimates across populations of patients, they
may hide differences. Thus, we propose comparing the risk scores output by the retrospective
versus prospective pipeline for every patient observed prospectively. These correspond to D.._, and
D,ro, Which share the same patients; thus, the model’s output for both datasets can be compared
directly. Score pairs can be found by aligning risk estimates for each patient using the prospective
pipeline and the retrospective pipeline. Graphical or statistical methods may be used to compare
these score pairs. For example, extremely discordant prospective and retrospective score pairs may
be identified by selecting points far away from the best fit line.

To understand factors that could potentially be addressed with modifications to infrastructure,
by

computing differences in feature inputs between the two datasets. The difference in the two data

we may also compare the pair of feature vectors present for each patient in D,,, and D),
pipelines (D,,, and D,,) may be quantitatively assessed for every feature at the patient level. For
example, features may be deemed discrepant if their prospective and retrospective values are not
exactly equivalent.

Finally, large differences in features can result in minimal differences in estimated risk if the

features that vary greatly are not deemed important by the model. Thus, we introduce a new
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technique called feature swap analysis to determine which features contribute most to the observed
infrastructure shift. Feature swap analysis calculates the effect of swapping out individual aspects
of the prospective pipeline with the retrospective pipeline on overall prospective performance.

For every feature, we compute the model’s performance on a modified version of D,,., where the

!/

feature matrix X, has a column corresponding to the feature replaced with values from X’ _,.

The feature swap importance of feature k, F'ST }’j , is calculated in the following manner.

FSIF = p(Dy.,) = p(Dpro). (3.4)

pro

DF s the modified version of D,ro where column k has been replace in X, with the value of

pro

the column % from X’

ret*

The larger FS[Z’j, the more impact feature k£ has on the infrastructure

shift, making it a feature to target for debugging.

3.4.3 Analyzing Sources of Temporal Shift

To determine sources of model performance degradation due to population and workflow changes
over time, we seek to uncover the impact of temporal shift by controlling for infrastructure shift
sources. For example, sources of temporal shift can be interrogated by comparing the distribution

of features between D,; and D, ,.

3.5 Experiments & Results

For this experimental work, we leveraged a previously developed model designed to identify
hospital-associated CDI in adult inpatients. This model and its development framework were retro-
spectively validated. [56, 110] We first list our experimental questions. We then describe how this
framework was applied retrospectively to develop and validate the CDI model currently in silent
prospective deployment. Finally, we provide results focused on addressing our main experimental

questions.

Questions. These experiments seek to answer four related questions:

1. What was the performance of the CDI model prospectively? And how does it compare to the
expected retrospective performance? (Section 3.5.3, Figures 3.3, 3.4, and 3.5)

2. What is the prospective performance gap for the CDI model? What portion of the prospective
performance gap is attributable to infrastructure shift? What portion of the prospective

performance gap is attributable to temporal shift? (Section 3.5.4, Figure 3.6)
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3. What are the contributing factors to the infrastructure shift of the CDI model? (Section
3.5.5, Figures 3.7, and Figures 3.8)

4. What are the contributing factors to the temporal shift of the CDI model? (Section 3.5.6,
Table B.1)

3.5.1 Data & Experimental Setup

We evaluated model performance over time, comparing the same model applied to i) retrospec-
tive data from 2019-2020, D,, and i1) prospective data from 2020-2021, D,,,. We analyzed the
prospective performance gap that arises between these two datasets. We measured the gap in terms
of the AUROC because optimizing for discriminative performance was the primary goal of prior
work. However, calibration is known to be sensitive to temporal changes. [123, 140, 141] We
also measured the prospective performance gap in the Brier score. [142, 143] However, since
one aims to minimize the Brier score and the prospective performance gap assumes the goal is
to maximize the performance measure, we take the negative of the Brier score when computing
the gap. Confidence intervals for the prospective performance gap values were calculated using
an empirical bootstrap where the samples (1, 000 replications) were independently drawn for each
data distribution.

When comparing model performance on D,.; to model performance on D,,,, there are two
unique sources of potential differences: the shift in time period from *19-°20 to ’20-’21 (i.e.,
temporal shift) and the change in pipelines (i.e., infrastructure shift). Thus, to control for temporal

shift and estimate the effect of infrastructure shift on the prospective performance gap; we used

/

the retrospective pipeline to query data for the prospective validation time period, generating D, ;.

We estimated A/ and A using the datasets Dyct, D, ;, and Dy, -

ret>

3.5.1.1 Study Cohort

The University of Michigan Institutional Review Board approved this retrospective and prospective
cohort study. Our study population included all adult hospital patient encounters (i.e., inpatient
admissions) from January 2013 through June 2021 to University of Michigan Health. University
of Michigan Health has over 1,000 beds and is the tertiary care academic health center associated
with the University of Michigan. Because we were interested in primary, non-recurrent, hospital-
associated CDI, we excluded encounters with a length of stay less than three calendar days and
individuals who tested positive in the first two calendar days of the encounter or in the proceeding

14 days prior to the hospital encounter. [144]
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3.5.1.2 Prediction Task

The task was formulated as a binary classification task where a patient encounter was labeled 1 if
the patient tested positive for CDI during the encounter and 0 otherwise. The diagnosis of CDI was
identified using a tiered approach, reflecting the institution’s Clostridioides difficile (C. difficile)
testing protocol when clinicians obtained stool samples for C. difficile based on clinical suspicion
of active disease. First, samples were tested using a combined glutamate dehydrogenase antigen
enzyme immunoassay and toxin A/B EIA (C. Diff Quik Chek Complete, Alere, Kansas City, MO).
No further testing was needed if the results were concordant. If discordant, a secondary polymerase
chain reaction (PCR) for the presence of toxin B gene (GeneOhm Cdiff Assay, BD, Franklin Lakes,
NJ) was used to determine the outcome. That s, if positive by PCR, the encounter was considered
a CDI positive case. We make predictions daily, intending to identify high-risk patients as early as

possible during an encounter and prior to their diagnosis.

3.5.1.3 Model Development

Training Data. Our training cohort included patient admissions between 2013-2017 who met
our inclusion criteria. When applying our inclusion criteria, we relied on patient class codes to
identify hospitalized patient encounters. For each patient admission included in the training data,
we extracted a binary classification label and information pertaining to a patient’s demographics,
medical history, laboratory results, locations, vitals, and medications. Once retrospective data were
extracted, we transformed the data into d-dimensional binary feature vectors representing each day
of a patient’s admission (i.e., an encounter-day). Features were transformed into a binary repre-
sentation. Categorical features were transformed using one-hot encoding. Real-valued (numerical)
features were split into quintiles and one-hot encoded. This is described in further detail in the

feature preprocessing section of Oh et al. [110] and Appendix Section B.1.

Training Details. We employed a previously described and validated modeling approach. [56,
110] This validation was conducted at multiple institutions. In brief, we used a logistic regression
model that uses a multitask transformation of the inputs to learn time-varying parameters. [109]
The multitask regularized logistic regression model seeks to learn an encounter level label (i.e.,
if the patient is ever diagnosed over their entire encounter). It does so by minimizing the cross-
entropy loss at the encounter-day level. We subsampled encounter-days to reduce bias towards
patient encounters with longer lengths of stay. This was done by randomly selecting 3 encounter-
days per encounter (our inclusion criteria dictate that all encounters will have a length of stay of
at least 3 days). This ensured that all encounters were represented by an equivalent number of

encounter-days. Cross-validation folds were determined by year to partially account for dataset
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shift. Hyperparameters were selected based on cross-validation across years in the training data
optimizing for the AUROC. This approach is described in detail by Oh et al. [110] and Wiens et al.
[56].

3.5.1.4 Model Validation

The model takes as input data describing each day of a patient’s hospital encounter, extracted
through either the retrospective or near-real-time prospective pipeline described above (e.g., lab-
oratory results, medications, procedures, vital sign measurements, and patient demographics) and
maps these data to an estimate of the patient’s daily risk of CDI. This estimate is updated through-
out the patient’s hospital encounter to help clinicians identify patients at risk of developing CDI

over the remainder of the patient’s hospital encounter.

Retrospective Validation. We validated the model on data on patient hospital encounters from
the study cohort from 2018-2020. We extracted these data using the retrospective pipeline and
identified hospitalized patients using patient class codes as we did in the training data (see above
for inclusion criteria). In our primary analyses, we focus on performance during the more recent
year, i.e., " 19-°20. For completeness, results from *18-"19 are provided in Appendix Section B.4.

We measured the AUROC and the sensitivity, specificity, and positive predictive value when
selecting a decision threshold based on the 95" percentile from *18-’19. In addition, we computed
the Brier score by comparing the max probability of the outcome (i.e., risk score) during a patient’s
visit with their actual outcome. We calculated empirical 95% confidence intervals on each test set

using 1,000 bootstrap samples.

Prospective Validation. We applied the model prospectively to all hospital encounters from July
10th, 2020, to June 30th, 2021, estimating the daily risk of CDI for all patients who met our inclu-
sion criteria. We relied on the hospital census tables instead of the patient class codes to identify
our study population in real-time. The hospital census table tracked all hospitalized patients in
real-time and enabled reliable identification of patients who were in the hospital for three calendar
days or more.

We compared retrospective performance in *19-"20 to prospective performance in *20-’21. We
evaluated model performance in terms of discrimination and calibration using the same metrics
described above. In addition, to account for seasonal fluctuations in CDI rates [145], we further
compared AUROC performance on a month-by-month basis. We compared monthly retrospective
performance in ’19-’20 to monthly prospective performance in *20-’21. Although encounters may
span across multiple months, encounters were grouped into month-years based on the date of

admission. Finally, given the large shift in care processes resulting from the onset of the COVID-19
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pandemic, we conducted a separate follow-up analysis in which we compared model performance
before and following March 2020 (Appendix Section B.3).

3.5.2 Study Cohort Characteristics

We now describe our study cohort. Our training cohort included 175,934 hospital encounters, in
which 1,589 (0.9%) developed hospital-associated CDI. Feature extraction and processing resulted
in 8,070 binary features. Our *19-°20 retrospective validation set (D,.;) consisted of 25,341 hospi-
tal encounters, in which 157 (0.6%) met the CDI outcome. Prospectively in *20-"21, we identified
26,864 hospital encounters, in which 188 (0.7%) met the CDI outcome (D,,,). Study population
characteristics for both validation cohorts are reported in Table 3.1. During the prospective vali-
dation of the model, the prospective pipeline failed to run due to circumstances beyond the study
team’s control in 10 out of the 356 days. Specifically, from mid-December to February of 2021, an
ADT data-feed issue led to a lag in processing some of the prospective data. Risk scores were not

generated on days when the model failed to run.

Table 3.1: Yearly Cohort Characteristics. Retrospective and prospective cohorts from *19-°20, and
’20-’21 each span from July 10th to June 30th of the following year. The cohorts have similar
characteristics across years. For median values, we also present the interquartile range (IQR).

19-°20 ’20-°21

(Dret) (Dpro)

n=25,341 n=26,864
Median Age (IQR) 59 (41,70) 60 (42,71)
Female (%) 51% 51%
Median Length of Stay (IQR) 54,9 54,9
History of CDI in the past year (%) 1.5% 1.4%
Incidence Rate of CDI (%) 0.6% 0.7%

3.5.3 Validation Results

We first investigated the performance of the model on the different data sources. We sought to
answer the questions: What was the performance of the CDI model prospectively? And how does
it compare to the expected retrospective performance? Using the experimental setup described
above, we calculate the model performance in terms of both AUROC and the Brier score.
Applied to the *19-°20 and *20-’21 validation cohorts, the model achieved an AUROC of 0.778
(95% CI: 0.744, 0.815) and 0.767 (95% CI: 0.737, 0.801) and a positive predictive value of 0.036
and 0.026, respectively (Figure 3.3). Model calibration was fair across both *19-’20 and ’20-’21
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datasets, Brier scores: 0.163 (95% CI: 0.161,0.165) and 0.189 (95% CI: 0.186, 0.191), respec-
tively. Additionally, we break this analysis down by month for the AUROC. Monthly, prospective
performance during *20-’21 did not differ significantly from the retrospective performance during
"19-20, except in March and May (Figure 3.5).

1.0

0.8 1

True Positive Rate

0.2 9 —— 719-20 - AUROC 0.778 (0.744,0.815)
—— ’20-21 - AUROC 0.767 (0.737,0.801)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3.3: Risk Prediction Model Performance on °19-°20, and *20-’21 Validation Datasets. Com-
pared with the model’s retrospective validation period (*19-’20) performance, the model demon-
strated slightly worse discriminative performance during its prospective validation period (’20-
'21).

We observed that the prospective discriminative performance (AUROC) was slightly less than
what would have been expected by the evaluation on retrospective data. This difference is not
statistically significant. In calibration performance (Brier score), we observed that the model dis-
played worse performance on the prospective dataset than expected by retrospective evaluation.

The calibration difference was statistically significant.
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Figure 3.4: Risk prediction model performance on 19-°20, and *20-°21 validation datasets. Com-
pared with the model’s retrospective validation period (’19-’20) performance, the model demon-

strated slightly worse sensitivity, specificity, and positive predictive value during its prospective
validation period (°20-’21).
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Figure 3.5: Monthly AUROC Performance. AUROC for *20-’21 prospective dataset and the *19-
’20 retrospective dataset was broken down by month and bootstrap sampled 1, 000 times to gener-
ate empirical 95% confidence intervals. Performance fluctuates month by month, with the prospec-

tive pipeline generally outperforming or on par with retrospective performance with the exceptions
of March and May.
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Table 3.2: Model Performance Comparison. The prospective validation ran from July 10th, 2020
to June 30th, 2021 (°20-’21) and yielded dataset, D,,,, and performance results. The 20-’21 retro-
spective dataset, D, ,, uses the retrospective pipeline to pull the same population observed in D,,,.
The retrospective *19-"20 retrospective dataset pulled data from July 10th, 2019 to June 30th, 2020
to have an equivalent annual comparison. We see a positive AUROC prospective performance gap
and a negative Brier Score prospective performance gap indicating degraded prospective perfor-

mance.

’19-°20 Retrospective ’20-’21 Retrospective

(Dret) (IDqlnet) (Dpro)
n=25,341 n=26,864 n=26,864

AUROC (95% CL:)  0.778 (0.744,0.815)  0.783 (0.755,0.815) | 0.767 (0.737, 0.801)
Brier Score (95% CI: )  0.163 (0.161,0.165)  0.186 (0.184,0.188) | 0.189 (0.186, 0.191)

’20-"21 Prospective

3.5.4 Prospective Performance Gap

We now turn our attention to the primary set of questions for this chapter: What is the prospective
performance gap for the CDI model? What portion of the prospective performance gap is at-
tributable to infrastructure shift? What portion of the prospective performance gap is attributable
to temporal shift?

Overall, the prospective performance gap between D, in *19-°20 and D,,, in ’20-’21 was
Avroc = 0.011 (95% CI: —0.033, 0.056) and A g, = 0.025% (95% CI: 0.016, 0.110). Applied
to the re-extracted retrospective 20-’21 cohort (D,.,) the model achieved higher discriminative
and calibration performance, AUROC=0.783 (95% CI: 0.755, 0.815) and Brier score=0.186 (95%
CI: 0.184, 0.188). Thus, according to Equations 3.1, 3.2, and 3.3, the prospective performance
gap breaks down as follows:

Aavroc = AUROC(Dye) — AUROC(Dyyo) = - 0.011 (95% CI: —0.033, 0.056)
Alifoc = AUROC(D,,) — AUROC(D,) =  0.016 (95% CI: —0.022, 0.058)
Atime - — Aavroc — AR = —0.005 (95% CI: —0.051, 0.036)
Aprier = —(Brier(D,) — Brier(D,,,)) =  0.025 (95%CI: 0.016, 0.110)
ARSI = —(Brier(D,,,) — Brier(Dy,)) = 0.002 (95% CI: — 0.021, 0.064)
Atime ABrier — AT = 0.023 (95% CI: —0.003, 0.084)

Figure 3.6 visualizes the breakdown of the AUROC (Ayroc) prospective performance gap into

time infra
AlTroc and Ay proc-

Regarding discriminative performance (AUROC), the differences in infrastructure pipelines be-

2Clarification: Reader may wonder why this isn’t 0.026, this is simply due to rounding.
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tween retrospective and prospective analyses had a larger impact on the prospective performance
gap than temporal shift. However, the converse is true for calibration (Brier score) gap, where
the shift from *19-°20 to *20-°21 had a greater impact on calibration performance. We note that
only the prospective performance gap in terms of calibration is significant. All the discriminative
prospective performance gap as well as all of the infrastructure and temporal shift have confidence

intervals that overlap with 0.

i 1
1401 A 'l‘_ll—b i 1920 (Dyey)
120 Ai”frdlﬁ_l_' 2021 (D)
[

2021 (Dipro)

0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82

Bootstrapped AUROC Distribution

Figure 3.6: Relationship between prospective risk scores and retrospective risk scoring. The boot-

strapped distribution of the AUROCSs of the model applied to three different datasets are shown

along with the prospective performance gap, Aauroc, and its components, AZ{{IQSC, and Alme .

The overall gap is positive demonstrating discriminative performance degradation. This degrada-
tion is primarily due to the infrastructure shift since Ay, frq > Apime.

The infrastructure performance gaps indicate that the data extraction and processing pipeline
differences led to a small (though not statistically significant) decrease in performance. When we
compared the risk scores output by the model when applied to the retrospective versus prospective
pipeline for every encounter in our *20-’21 cohort, we measured a correlation of 0.9 (Figure 3.7).
46 (0.2%) encounters had extreme score differences (greater than 0.5, denoted by the bounding
dashed lines in the plot). 41 of these 46 encounters had a large number of days (more than 7 days

for nearly all encounters) during which the prospective pipeline failed to run.
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3.5.5 Sources of Infrastructure Shift Results

We now conduct a series of analyses to determine: contributing factors to the infrastructure shift
of the CDI model.

We compared the risk scores output by the retrospective versus prospective pipeline for every
encounter observed prospectively. These correspond to D.., and D,,,, which share encounter-days;
thus, the model’s output for both datasets can be compared directly. Score pairs representing the
maximum score were found for each encounter using the prospective and retrospective pipeline.
These score pairs were graphed as a scatter plot and then were analyzed for their concordance in
terms of Pearson’s correlation coefficient and the slope of the best-fit line. Extremely discordant
prospective and retrospective score pairs were identified by selecting points far away from the best

fit line (i.e., score pairs with a difference > 0.5).
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Figure 3.7: Infrastructure Performance Gap Scatter Plot. Risk scores generated by the *20-’21
prospective pipeline vs. '20-’21 retrospective pipeline are shown. Although highly correlated,
some of the prospective and retrospective risk scores noticeably differ.

To understand factors that could potentially be addressed with modifications to infrastruc-

ture, we compared the pair of feature vectors present for each instance (a patient hospitaliza-

/
ret

tion encounter-day) in D,,, and D, ., by computing differences in feature inputs between the two
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datasets. The difference in the two data pipelines (D,,, and D, ,) was quantitatively assessed for
every feature, at the encounter-day level. Since our model utilized a binary feature space, we
deemed features discrepant at the encounter-day level if their prospective and retrospective val-
ues were not exactly equivalent. This can be extended to real-valued (numerical) features through
either exact equivalency or by using ranges. To assess the impact of these features, we stratified

features by the absolute value of their model coefficients and the proportion of discrepancies.
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Figure 3.8: Infrastructure Performance Gap Analysis Feature Distribution. The distribution of
features is based on how discrepant the features are (i.e., percent of instances where a feature is
discrepant between retrospective and prospective *20-’21). We see that although most features
have low levels of discrepancy, there exists a subset of features whose values can vary greatly from
the prospective to the retrospective pipeline.

Comparing the input features, we found that 6,178 (77%) of the 8,070 features had at least
one instance (i.e., encounter day) in which that feature differed across the two pipelines (Figure
3.8). However, only 1,612 features (20%) differed in more than 1% of instances. However, not
all features are equally important. To measure the actual impact of the discrepancies on model
performance, we must look at the feature swap analysis.

We conducted a feature swap analysis on the feature groups defined in Appendix Section B.1
using AUROC as the performance measure. Due to computational complexity, this analysis was

54



only conducted at the mid-point of our study and, as such, only uses data from July 10th to De-
cember 21st for both D,,, and D,,,.

Applied to data from the first half of the prospective study period, the model achieved an
AUROC performance of 0.769 on D,,,. The AUROC after each feature group swap is displayed
in Table 3.3. Hx: Medications, Idx: Medications, and Idx: In-Hospital Locations were the fea-
ture groups with the largest positive swap difference AUROC, corresponding to improved model
performance when given feature information from the retrospective pipeline. In the case of Hx:
Medications, one would think these features would be consistent prospectively and retrospectively.
However, we use both retrospective and prospective pipelines to calculate prospective values. To
obtain 90-day patient histories, we augment retrospective tables with prospective tables to fill the
gap between when the data is logged in the EHR and when the data appears within RDW’s tables.
In addition, to identify which previous admissions were inpatient admissions, we use patient class
codes, which are dynamic similar to laboratory results and medications. In addition to these more
subtle changes, data that may be considered ‘static’ (e.g., where a patient lives or BMI) is liable to
change throughout a patient encounter as information is collected and updated by the clinical care

team. The complete feature swap analysis is displayed in Supplemental Table B.2.

Table 3.3: Infrastructure Performance Gap Analysis - Feature Swap Performance. By swapping
column values corresponding to feature groups between X,,, and X', we were able to quantify
the performance impact of differences in the infrastructure related to each feature group. Note, this
analysis was conducted at an interim time-point of our study, as such only uses data from July 10th
to December 21st for both D,,, and D,..,. In addition to the feature group name, and the number of
features in each feature group we display the AUROC on D,,, after the feature swap. Originally,
we observed an AUROC of 0.769 on D,,,, the final column displays the difference between this
value after the swap and the original 0.769. We restrict this table to only positive differences, that is
feature swaps that improve AUROC, all feature swap values are displayed in Supplemental Table
B.2, Appendix Section B.2. Hx: Medications, Idx: Medications, and Idx: In-Hospital Locations
had the largest positive swap difference in terms of AUROC, corresponding to improved model
performance when given feature information from the retrospective pipeline.

Feature Group AUROC After Swap Difference
Hx: Medications 0.787 0.018
Idx: Medications 0.774 0.005
Idx: In-Hospital Locations 0.772 0.003
Hx: Previous Encounters (Length of Stay) 0.770 0.001
Demographics: Body Mass Index 0.770 0.001
Demographics: County & State 0.770 0.001
Idx: Colonization Pressure 0.770 0.001

Descriptions of feature groups can be found in Table B.1.

55



3.5.6 Sources of Temporal Shift Results

We round out our analyses by examining: the contributing factors to the temporal shift of the CDI
model.

We identified sources of temporal shift by comparing the distribution of features between D,..;
and D)

ret*

Specifically, for each binary feature we conducted a Z-test with a Bonferroni correction
to test the difference in the proportion of times that feature was "turned on’ in one time period
versus the other, controlling for differences in infrastructure. E.g., was a particular medication
used more frequently in one time period? We report the number of significant differences within
each feature group (see Appendix Section B.1 for feature grouping).

Table 3.4: Significantly Different Features Between *19-°20 & ’20-°21 Study Populations. By
feature group, lists the number of features that are significantly different between the *19-’20 study
population and the *20-’21 study population. Significance was determined using a Z-test of the
difference in proportions with a Bonferroni correction. One day was randomly sampled from each
hospital encounter so that all feature instances are independent. Note, data that may be considered
‘obviously static’, like the location a patient lives (i.e., County & State) may be updated throughout
an encounter, leading to discrepancies between prospective and retrospective data.

Feature Group Npmber of Significantly Total Number of Features
Different Features
Demographics 0 124
Hx: History of CDI 0 2
Hx: Diagnoses 1 983
Idx: Vital Sign Measurements 1 17
Idx: Admission Details 5 22
Hx: Previous Encounters 5 10
Idx: Laboratory Results 6 508
Idx: Colonization Pressure 7 10
Hx: Medications 23 2,731
Idx: In-Hospital Locations 30 932

Idx: Medications 38 2,731

Descriptions of feature groups can be found in Table B.1.

Comparing the feature distributions between and D,..; *19-°20 and D/,

ret

’20-’21 we noted signif-
icant differences in 116 (1.44%) of the features. Features pertaining to medications and in-hospital
locations, had the largest fraction of differences. However, these categories also had a large num-
ber of overall features Table 3.4. Colonization pressure, patient history pertaining to number of
previous encounters, and admission details had the greatest differences in fractions of differences

within each category.
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3.6 Iterative Debugging

After the initial publication of this work, we continued to refine the prospective infrastructure in

preparation for a feasibility study. We discovered three additional bugs in the prospective data

/

1~ These were:

pipeline that contributed to differences between D,,, and D
1. Persistence issues with the logging of prospective scores,
2. Truncation of historical data lists, and
3. Inconsistent processing of diagnosis codes.

We now discuss these issues in further detail.

Persistence issues with the logging of prospective scores. The CDI model produces scores
daily for all hospitalized patients. As mentioned above, we used near-real-time census tables to
determine the current hospitalized patient population. Additionally, the daily scores produced by
the model are not used directly. A cumulative mean was applied to the daily scores to smooth
out any large daily changes. For evaluation, we calculated performance at the encounter level
by taking the maximum score observed throughout the encounter. To facilitate the prospectively
smoothing calculation, we stored a log with all the encounters’ current and historical scores. For
memory efficiency, we removed all encounters from the log when they were no longer observed in
the census table.

We eventually determined that occasionally a patient encounter will be missing from the census
table during the middle of their encounter. For example, a patient hospitalized from March 1st
till the 21st might have been missing from the census table when we queried it on the 10th. This
introduced an infrastructure discrepancy in two ways. First, was that that example encounter would
be missing a prospective score on March 10th. Second, the cumulative mean would be reset starting
March 11th for the prospective scores. It would be practically impossible for prospective and
retrospective scores to match from March 11th to the 21st.

We are unsure of why this census table “encounter dropping” occurs. However, we posit that
this might happen when a patient leaves their room for a procedure or test as these events are cap-
tured as separate “children” encounters of the “parent” hospital encounter. Given that the census
table depends on a vendor-developed web service, it was not in our purview to modify it. We re-
solved this issue by increasing the length of time before encounters were removed from the score
log. We now wait a week from the last census observation before we remove an encounter from

the score log.
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Truncation of historical data lists. Both data pipelines extract data from the SQL based RDW.
SQL queries are run parameters that ensure the results conform to some standard, e.g., rows no
longer than 1, 024 characters. We noticed a difference in the maximum column lengths by compar-
ing the raw data from the prospective and retrospective query results. The prospective query had its
columns limited to 256 characters. Although most columns used significantly fewer characters, we
noticed that columns containing lists of information tended to be truncated. For example, this dis-
crepancy explains the differences we observed in historical medications. We resolved this issue by

modifying the prospective SQL query’s parameters to match the retrospective query’s parameters.

Inconsistent processing of diagnosis codes. We also traced the feature extraction process, ex-
amining the transformation of raw data from the retrospective and prospective queries. Through
this tracing, we noticed that diagnoses were not handled consistently by the prospective version
of the feature extraction pipeline. Retrospectively, we implemented a procedure to group the di-
agnoses by their top-level International Classification of Disease (ICD)-9 code (e.g., using only
the digits preceding the decimal point). Interestingly this bug does not seem to have induced a

significant infrastructure gap. This may be due to the sparse nature of diagnoses.

3.7 Discussion

In healthcare, risk stratification models are trained and validated using retrospective data that have
undergone several transformations since being initially observed and recorded by the clinical care
and operations teams. In contrast, during deployment, models are applied prospectively to data
collected in near-real-time. Thus, relying on retrospective validation alone can result in an over-
estimation of how the model will perform in practice. In this paper, we sought to characterize
the extent to which differences in how the data are extracted retrospectively versus prospectively
contribute to a gap in model performance. We compared the performance of a patient risk strat-
ification model when applied prospectively from July 2020-June 2021 to when it was applied
retrospectively from July 2019-June 2020. Overall, the prospective performance gap was small.
However, differences in infrastructure had a greater negative impact on discriminative performance
than differences in patient populations and clinical workflows.

To date, much work has focused on addressing changes in model performance over time due
to temporal shift. [123, 141, 146, 147] In contrast, we concentrated on gaps due to differences in
infrastructure. We relied on data extracted from a research data warehouse for model development
and retrospective validation. In contrast, we leveraged data extracted from a combination of custom
web services and existing data sources for near real-time prospective application of the model.

Prospectively, we had to shift to using the hospital census tables to identify our study cohort (i.e.,
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who was in the hospital) in real-time, partly because inpatient classification is dynamic and can
shift over time. But even after accounting for differences in population, differences in how and
when the data were sourced continued to contribute to a gap in performance. Our analysis pointed
to two sources of inconsistencies between the retrospective and prospective pipelines: 1) inaccurate
prospective infrastructure and i1) dynamic data entry.

The first cause can be mitigated by revisiting the near-real-time extraction, transformation, and
load processes (e.g., rebuilding prospective infrastructure to pull from different components of
the EHR). For example, our analysis identified discrepancies in patient location codes between
prospective and retrospective datasets. While the EHR passed the same location information to
both pipelines, the two pipelines transformed and served this information in an inconsistent man-
ner. Thus, we can rebuild the prospective infrastructure using the same processing code as the
retrospective infrastructure. The second cause is more difficult to address. The EHR is inherently
dynamic as it serves many operational purposes [148]. For example, medication start and end
dates can change over time as the desired treatment plan changes, and laboratory result names can
change as initial results lead to further testing. In addition, specific aspects of features, such as
laboratory result abnormality flags, can populate after the actual test results are filed (up to a day
in our systems).

To mitigate the impact of these differences on the prospective performance gap, one can update
the model to rely less on such dynamic elements of the EHR. For example, in our project, we
substituted medication orders for medication administration. Although order time is available
earlier than administration, orders are frequently cancelled or updated after a physician initially
orders them. In contrast, medication administration information is more stable across time. Our
findings underscore the need to build pipelines representative of the data available at inference
time. The closer the retrospective representation of data are to data observed prospectively, the
smaller the potential prospective performance gap.

Beyond differences in infrastructure, it is reassuring that changes in patient populations and
workflows between time periods (i.e., temporal shift) did not increase the gap in discriminative
performance. On a month-by-month basis, the only significant differences in performance were
during March and May, otherwise, the model performed as well, if not better, prospectively. Inter-
estingly, predicting which patients were most likely to acquire CDI during the current hospital visit
was significantly easier in March 2020 compared to March 2021. This discrepancy is likely due to
significant operational changes at University of Michigan Health due to the onset of the COVID-
19 pandemic. Comparing the expected feature vectors in *19-°20 vs. *20-’21, we noted significant
differences in locations and admission types, changes likely attributed to the COVID-19 pandemic.
For example, new patient care units were created for patients hospitalized for COVID-19 [149],

and patient volume to existing units and services decreased significantly. [150—152] Additionally,
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colonization pressure depends on locations. As such, we expect this to change with the distribution
of patients in locations changing. This drastic change in the patient population may also explain
the other changes in feature groups. While these changes made the problem easier during prospec-
tive validation (Appendix Section B.3), in-line with previous work, the calibration performance

of the model was negatively impacted by the temporal shift. [123, 140, 141]

Limitations. This study is not without limitations. Aside from the limitations associated with
studying a single model at a single center, there is another nuanced limitation that pertains to the
timing of data. The age (i.e., time between data collection and use for this analysis) of the ret-
rospective data varied in our analysis. Some validation data had been present in RDW for over
two years, while other data were populated far more recently. Data collected in large retrospec-
tive databases are always subject to change, but the likelihood of changes decreases over time as
updates from clinical care and billing workflows settle. As we use data closer to the present (July
2021), it is possible that the data may continue to change. Thus, if we were to revisit the analysis in
the future, the infrastructure gap could further increase. However, most updates to the retrospective

data occur within 30 days of discharge, and thus we expect the impact on our results to be limited.

A note on statistical significance. While the performance gap we studied here was not statisti-
cally significant, it could result in significant performance degradation if left unaddressed. With
this analysis, we aim to identify and mitigate differences that are well within our control, enabling
the resolution of prospective performance gaps. Many issues arise when implementing models,
and it behooves model developers to minimize all the potential sources of model performance
degradation they can control. Temporal shifts that occur during implementation may be impos-
sible to predict and mitigate in an a priori manner. Infrastructure shifts, by comparison, may be
addressed by the efforts of model developers and system administrators. There exists an opportu-
nity to eliminate any degradation caused by infrastructure shift. With the proper infrastructure, it
should be possible to get the data presented by the prospective infrastructure to exactly match the
data presented by the retrospective infrastructure.’ In theory, this means that there would be no
performance degradation due to infrastructure shift.

Rooting out infrastructure shift causes is of great practical concern in machine learning for
healthcare. Predictive tasks are often difficult and minor improvements in model performance
are often achieved through collection of additional data or with extensive model selection search
procedures. Eliminating avoidable infrastructure shift performance degradation (even if small)

may be a fruitful way to allocate the limited resources of model developers.

3If all data were accurately timestamped and immutable throughout all the infrastructure used then we would
expect that there would be no way for infrastructure shift to occur. Alas, this does not reflect reality since entries are
frequently updated retrospectively and are modified as they pass through IT systems.
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Moreover, unaddressed infrastructure shifts present a “backdoor” for temporal shift vulnera-
bilities. Temporal shifts may be obscured or compounded by infrastructure shifts. For example,
an infrastructure shift involving improper processing of diagnosis codes may become more prob-
lematic over time if the number of a patients with a particular important diagnosis code increases.
Although isolating and mitigating the causes of infrastructure shift is an additional effort for model

developers, it is likely worthwhile when implementing ML models for healthcare.

Conclusion. The prospective performance gap is due, in part, to the fact that we are trying to
capture a moving target with a single snapshot. Existing EHR and associated database systems are
primarily designed to support care operations. Therefore, they lack features to help develop and
deploy real-time predictive models. EHR vendors are working to create tools to efficiently and
effectively deploy ML models. [153] However, to the extent that we continue to develop models
using data extracted from databases that are several steps removed from clinical operations, issues
are likely to remain. While overwriting records and values may have little consequence for care
operations, retrospective training is fraught with workflow issues. Mechanisms are needed to keep
track of what the database looked like at every moment in time - a la Netflix’s time machine. [154]
However, in lieu of such solutions, thorough prospective validation and analysis can help bridge
the gap, providing a more accurate evaluation of production model behavior and elucidating areas

for improvement.
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CHAPTER 4

Rank-Based Compatibility for Use in Updating
Patient Risk Stratification Models

4.1 Introduction

As machine learning (ML) models become more commonplace in healthcare, there is a growing
need to understand the impact of updating models in use by clinicians. Although model updating
may lead to improved model performance, it may also affect clinician expectations, i.e., how clin-
icians believe a model will perform given a set of patients to evaluate. Thus, updating can pose
an issue when clinicians use models to augment their medical decision-making. [155] As such,
it may not be sufficient to select updated models based on performance alone; when given multi-
ple models with adequate discriminative performance model developers may want to choose the
model that minimizes the disruption to clinical users. Thus, there is a need for effective tools to
estimate how clinician expectations may influence the adoption of updated models without directly
querying users. Fundamentally, we would like a way to answer this question: if a user works with
a model and then the model is updated, how different will the updated model’s results be from the
user’s expected results?

Compatibility measures seek to answer this question. Given an original model, a potential up-
dated model, and an evaluation dataset, compatibility measures provide a sense of how much the
clinician’s mental model may be perturbed by switching to the updated model. Existing compati-
bility measures were primarily developed for supervised classification, with original and updated
models being assessed in terms of the accuracy of their predicted labels. [31, 156] They can be
modified for use in risk stratification settings by using decision thresholds to compare model cat-
egorization. However, this fails to capture essential differences between risk stratification models
across decision thresholds or in environments where fixed decision thresholds cannot be employed.
The existing compatibility measures are not directly comparable to discriminative performance
measures (e.g., area under the receiver operating characteristic curve (AUROC)) making model

development trade-off decisions between compatibility and discriminative performance hard to
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assess. Additionally, the existing compatibility measures may be sensitive to changes in model
calibration that occur naturally over time. [157] Thus, there is a need for compatibility measures
that do not depend on a threshold, especially in the context of evaluating updates to patient risk
stratification models.

In light of this gap, we propose the first rank-based compatibility measure, which is based on
existing approaches to measure concordance in ranking. Specifically, rank-based compatibility es-
timates the probability that both models will correctly rank a pair of discordantly labeled patients (a
patient-pair) given the original model correctly ranked that patient-pair. Considering the ranking
concordance between the output of two models, we can detect meaningful changes to risk strati-
fication models when models are updated, which previously proposed measures fail to do. These
measures can be compared directly with AUROC as both measure proportions of correctly ranked
patient-pairs. Moreover, they may be more robust to calibration shifts, a commonly observed phe-
nomenon in healthcare. [123, 140, 158] In sum, the new measure we propose is well suited for use
in the evaluation of updates for models in healthcare as they are better able to detect changes in risk
stratification models that may affect user expectations and subsequently affect trust in the updated
models. We present a theoretical examination of this new measure showing its behavior in relation
to the discriminative performance of original and updated models being considered. In addition
to proposing and analyzing this new rank-based compatibility measure, we develop a related loss
function that can be used to engineer model updates so that model developers can balance improve-
ments in discriminative performance against compatibility. This work enables the evaluation and

development of model updates that could lead to better clinician-model joint performance.

4.2 Contributions

We propose and analyze a new rank-based compatibility measure to fill in the gaps associated
with existing compatibility measures that assume a single decision threshold. This new rank-based
compatibility measure is designed for evaluating updates to risk stratification models and does not
depend on setting a decision threshold. It may be used for updated model selection as an additional
criterion focused on modeling user expectations or incorporated into model development.

We presented early versions of this work at the 2021 INFORMS Annual Meeting and the 2021
INFORMS Healthcare Meeting. We plan to submit the methods portion of this work to a refereed
Conference. We plan to submit the case study and some of the more general findings to an archival

journal.!

I'The forthcoming works will be co-authored by Erkin Otles, Brian Denton, and Jenna Wiens. One of these pieces
may also include authors representative of the MUSIC collaborative. EO was primarily responsible for all of the core
contributions presented in this chapter.
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The main contributions from this work are as follows:

* To the best of our knowledge, we introduce the first rank-based compatibility measure based

on the concordance of risk estimate pairs.

» We characterize the extent to which the new compatibility measure may vary over all po-
tential model updates. This helps to establish the relationship between the discriminative
performance of the original and updated models and the new rank-based compatibility mea-
sure. In addition to providing a direct connection between model discrimination performance
and rank-based compatibility, we also introduce several ancillary measures to examine the
characteristics of risk stratification model updates. The ancillary measures also contextualize
and compare the rank-based compatibility values produced for updates considered to serve as

secondary criteria for model selection among models of similar discriminative performance.

* We provide bounds on the rank-based compatibility, which provide insights about optimistic
and pessimistic outcomes of potential updates. Additionally, the bounds show that as the
discriminative performance of the models increases, the lower bound of rank-based compat-
ibility increases. We also show that rank-based compatibility exhibits a central tendency.
Common model development approaches may provide many more updated models with
rank-based compatibility values towards the center of the bounds. Thus, while some rank-
based compatibility arises from maximizing the AUROC of the updated model, additional

search procedures may be necessary to find a model with desired rank-based compatibility.

» We introduce a custom loss function that incorporates ranking incompatibility which can be
used to engineer model updates with improved rank-based compatibility characteristics. We
show that utilizing the incompatibility loss during updated model training results in higher
rank-based compatibility on held-out data. This higher rank-based compatibility comes at a

small cost in terms of discriminative performance.

» Using MIMIC-III, we present empirical results that show the updated models with larger
rank-based compatibility values can be generated using incompatibility loss. In addition
to examining the rank-based compatibility observed through standard model selection, we
analyze the impact of incorporating incompatibility loss as an alternative model selection
criterion. This experiment shows that candidate update models built using standard training
procedures provide a limited range for rank-based compatibility, which can be overcome by

using a new loss function that incorporates ranking incompatibility.

» We present a real-world use using the rank-based compatibility measure to understand the
potential impact of updating a risk stratification model currently used for predicting prostate

cancer outcomes.

64



We present several technical innovations: a new rank-based compatibility measure—the rank-
based compatibility measure’s relationships with discriminative performance and its concentrated
distribution. And a differentiable incompatibility loss function to help engineer updates with de-
sired rank-based compatibility characteristics. These technical innovations are aimed to aid model
developers who wish to provide high-quality updates to risk stratification models in use by clini-

cians.

4.3 Problem Setup & Related Work

In this section, we provide background and setup for the problem of assessing risk stratification
model updates in terms of user expectations. We start by defining notation, followed by a summary
of the existing backwards trust compatibility measure.

In the context of learning patient risk stratification models, a patient ¢ is represented by the
tuple (x;,y;), where x; € RY represents the feature vector and y; € {0, 1} represents the binary
label (e.g., outcome). We are generally interested in risk stratification models, f(-), that output
risk estimates, p; € [0, 1], which estimate Pr(y; = 1|x;). These risk estimates can be converted to
predicted labels, ; = 1(p; > 7), where 7 is some model developer-defined decision threshold.

In this work, we seek to assess the impact on user expectations when updating from an original
model, f°(-), to an updated model, f“(-). Note that the original and updated models are specific
instantiations of the risk stratification models introduced above. They produce risk estimates de-
noted as p¢ and pY, representing the Pr(y; = 1 |x;) estimated by the original and updated models.
Given an original model in use, we would like to either directly train an updated model or select
one from a set of candidate updates such that desired performance and compatibility characteristics
are met. In this work, we are interested in evaluating moving from an original model currently in
use to a candidate updated model. We refer to the combination of an original and updated model
as a model-pair.

We will provide a background for discriminative and compatibility measures shortly; however,
we will first give some additional definitions and notation. These definitions and notation can
be used to describe the evaluation dataset and will aid our discussion of the existing literature
and subsequent discussion. The original and candidate update risk stratification models will be
evaluated on a held-out set of patients, denoted as /. This set of patients can be partitioned into
two mutually exclusive subsets based on the label of the patient: 0-labeled patients, I°, and 1-
labeled patients, I'. The size of these subsets of patients are denoted as n° and n!, respectively,
and their sum, n, is the cardinality of /.

We formalize the notion of a patient-pair, a pair of patients 7 and j that do not share the same

label (i.e.,i € I° and j € I'). The total number of patient-pairs, m, is the product n°n'. We denote
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the number of patient-pairs correctly ranked by the original and updated models as m°* and m“*

respectively. Both m®t and m“* are integers taking on values between 0 and m inclusively.

Discriminative Performance

Discriminative performance measures a model’s ability to separate patients with different labels.
[159] AUROC is widely used to evaluate the performance of risk stratification models in healthcare
as the class balance of a dataset does not unduly influence it. [160] AUROC is the probability of
correctly ranking two patients with differing labels based on the risk estimates produced by the
model. [161] The AUROC of a model, such as f°(-), may be estimated by counting the number
of patient-pairs ranked correctly by that model, m°*, and then normalizing that value by the total
number of patient-pairs. We define the AUROC metric for an evaluation dataset based on the above
notation:

Sy U<

€]V jelt m

AUROC(f°) = = 4.1

m m

The AUROC ranges between 0 and 1, naturally matching its probabilistic interpretation. Values
corresponding to 0.5 correspond to essentially random ordering of patient-pairs.

The AUROC is related to the concordance index (c-index), which can be used to evaluate pre-
dictions against non-binary ordinal outcomes (e.g., binned survival times). The c-index estimates
the probability that a model will correctly rank a patient-pair in terms of a prognostic score (e.g.,
estimated survival time) compared to actual survival time. [160] Although the c-index can be in-
terpreted as a probability of correct ranking, it can also be thought of as a correlation measure and
is directly related to Kendall-Goodman-Kruskal rank correlations. [162] In the non-binary ordinal
case, the c-index is related to Kendall’s-7 rank correlation; in the binary case the c-index is equal
to the AUROC and related to the Wilcoxon-Mann-Whitney U statistic. [159]

Backwards Trust Compatibility

Researchers have recently proposed compatibility measures in the context of correct labels pro-
duced by classification models. [31, 33, 156] Here, we review the primary compatibility measure
described in the literature: backwards trust compatibility (CBT), which is defined based on the
agreement between the true label and the predicted labels produced by the original and updated
model. It measures the label agreement between the two models by counting the number of pa-
tients both labeled correctly and normalizing by the number of patients the original model correctly

labeled. We now provide a definition of CB7 that aligns with our notation:
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Note that CB7T calculation depends on the using evaluation set of patients, I, and that the CBT value
ranges between 0 and 1. When the updated model fails to correctly label all of the patients labeled
correctly by the original, then CBT = 0. CB" is maximized to 1 when the updated model correctly

CBT is not symmetric, as CBT(fo, f)

labels all of the patients the original model correctly labeled.
does not necessarily equal CET(f*, f°).

Using CBT provides model developers a measure of the degree to which clinicians might have
their expectations met when an updated model is introduced into their workflows. However, this
evaluation is only in terms of the correct labeling of patients, which presents problems when ap-
plied to risk stratification models designed to rank patients.

In the context of patient risk stratification models that output a continuous risk score or a ranking
of patients the CBT requires thresholding predictions. However, many settings in healthcare do not
use a strict decision threshold. Instead, risk stratification models may produce continuous risk
estimates. Moreover, using a decision threshold may be driven by clinician opinions, resource
constraints or other factors that may change over time or with respect to the state of the healthcare
system. [163, 164] So evaluating a single decision threshold would provide limited utility.

Additionally, there is no direct relationship between CB*

and the discriminative performance of
the two models. Related work on the relationship between accuracy and discrimination by Cortes
and Mohri [165] suggests that while there may be a positive correlation between the mean CBT
and AUROC, the values for discriminative performance can be subject to significant variation.
Altogether, these factors suggest that there is a need for a compatibility measure that functions

without setting decision thresholds.

4.4 Methods

We first introduce the concept of our proposed rank-based compatibility measure, C®, that does not
depend on setting a decision threshold for the risk prediction models being considered. Inspired by
the AUROC measure, it evaluates patient-pairs in terms of their correct ranking concordance be-
tween the original and updated model’s risk estimates. Next, we examine the relationship between
the discriminative performance of the two models. This discussion will naturally lead to the formal
definition of C®, followed by an enumeration of its properties. After discussing C*’s properties,

we will focus on developing methods to update models that emphasize high levels of C®.
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Table 4.1: Relationship between original and updated model discriminative performance, propor-
tion of patient-pairs (POP) and count variables.

Original Model Original Model

Ranks Correctly Ranks Incorrectly
Updated Model 44 omtt —+ _ mt wy _ mt
Ranks Correctly o =T = AUROC(f*) = =5
Updated Model e gt —_ m— _ u
Ranks Incorrectly o= o= L — AUROC(f")

AUROC(f°) = ™~ 1~ AUROC(f°) |1

4.4.1 Original & Updated Model Discriminative Performance

The relationship between the rank-based compatibility, C?, and the traditional model performance
measure of AUROC provides bounds for rank-based compatibility. This relationship arises be-
cause C® and AUROC both involve counting correct patient-pairs rankings (i.e., if a patient-pair’s
ordering agrees with the ordering of the labels). To clarify these relationships, we introduce sev-
eral ancillary rank-based compatibility variables. Four proportion of patient-pairs (POP) variables
measure how the two models rank (correctly vs. incorrectly) patient-pairs. The POP variables
follow the convention of ¢, where a represent how the original model ranks patient-pairs cor-
rectly (4) vs. incorrectly (—), and b represents the same information for the updated model. For
example, the POP variable for patient-pairs correctly ordered by both models is denoted by ¢,
and the proportion of patient-pairs incorrectly ordered by both models is ¢~ .

There are four POP variables in total, ™", ¢T~, ¢~ T, and ¢~ . They all sum to 1 and have
relationships with the AUROC of both models. For a given dataset, the observed AUROC of the
original model should be equal to the sum of the two POP variables where the original model ranks
correct (a = +), with AUROC(f°) = ¢** 4 ¢*~. The AUROC of the updated model is equal to
the sum of the two POP variables representing that the updated model ranks correctly (b = +) with
AUROC(f*) = ¢™t + ¢~ . Each POP variables corresponds to a patient-pair count variable:
m*™T, m™,m~", and m~~. These variables follow the same convention as the POP variables.
They are the un-normalized counts of the number of patient-pairs that each model ranked correctly
or incorrectly. For example, m™* ™" represents the number of patient-pairs that both models ranked
correctly. The relationships between the POP variables, the count variables, and discriminative
performances can be expressed in a tabular manner, as depicted in Table 4.1.

The count variables will be used to construct relationships between discriminative performance
and rank-based compatibility. Additionally, the POP variables can be used as ancillary rank-based
measures to understand how clinical users might be impacted by changing from the original to the
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updated model. This will be discussed in detail in Section 4.6. Now focus on the definition of our

proposed rank-based compatibility measure.

4.4.2 Rank-Based Compatibility Definition

The rank-based compatibility, presented in Equation 4.3, compares the ranking produced by the
updated model against the rankings produced by the original model. Like the AUROC measure, the
evaluation is conducted on patient-pairs. However, in contrast to the AUROC, it counts the number
of patient-pairs that both models rank correctly and is normalized by the number of patient-pairs
that the original model ranked correctly.

> > LBy <pj) - L(py < pf)

i€l0 jell _m

> % 1 < p9) ~ met — AUROC(f?)
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++ o+t 43)

CR(fo. f*) =

Note, we arrive at the last term by dividing the patient-pair counts by the total number of patient-
pairs, m. Like CBT, C® requires the use of a set of evaluation patients, I. However, it operates
on pairs produced by the mutually disjoint subsets /° and I'. C® measures the concordance of

CBT

ranking instances and ranges from O to 1. In contrast measures concordance with respect to

binary predictions. Additionally, C® may be more robust to model miscalibration because, unlike

CBT, the rankings are not dependent on the actual values of the risk estimates. Instead, C® focuses

on the relative ranking of patients produced by the original and updated model.

4.4.3 Rank-Based Compatibility Bounds & Central Tendency

We start by stating some assumptions that we believe will hold for all original and updated risk
stratification models being considered for use in healthcare. These assumptions are 1) both models
will have a discriminative performance better than random and 2) that the updated model will have

equivalent or better performance than the original model:

0.5 < AUROC(f°) < AUROC(f*) < 1. (4.4)

4.4.3.1 Rank-Based Compatibility Bounds

Given values for AUROC(f°) and AUROC/(f"), we can bound all POP variables. We will focus
only on the POP variable that represents both models ranking patient-pairs correctly, ¢*+, as it is

the only one used directly in C®. The bounds on ¢+ are:
AUROC(f°) + AUROC(f*) —1 < ¢*tt < AUROC(f°)
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These bounds follow from the fact that the minimum value ¢ can take is the smallest proportion
of correctly ordered instance-pairs by both models. Since the AUROCSs of both models must be at
least 0.5, the smallest this proportion is when there is minimal overlap in the set of correctly ordered
patient-pairs for each model. This is the sum of the two AUROC:S subtracted by 1. The maximal
value for ¢ is determined by the smaller of the two model’s AUROC’s which is AUROC/(f°).
This yields the following bounds on the rank-based compatibility metric:

AUROC(#°) + AUROC/(f*) — 1
AUROC(f°)

We produce a plot for the lower bound of the rank-based compatibility measure (Figure 4.1).

<CR(fo, 1) <1 (4.5)

For the regime of model updating that we are interested in (i.e., Assumptions 4.4), only the lower

bound of C® varies, increasing as the discriminative performance of the two models grow.

L0

0.9

0.8 1~

~—
~—

—
~—

5 s

.
-
-
.
7
’
.
#
/
.
.
’
.
-
,
.
#
-
s
’
- Iy
— -
~— L,
~ ()
le
0
’
-
0.7 -
. ’
-
-
/
-
s

7] P
4
p
1’
#
0.6 93
.
f’l

>
<
\ s~
/I"
@,
v

AUROC(")

0.5+~ . . : ,
0.5 0.6 0.7 0.8 0.9 1.0

AUROC(f?)

Figure 4.1: The lower bound of C? with respect to the discriminative performance of the original
and updated models. The upper bound of rank-based compatibility is fixed at 1 when 0.5 <
AUROC(f°) < AUROC(f") (the triangular area above the dashed line). Note the lower bound
increases as both models’ performance increases. For context, we have boxed a region with dotted
lines to demarcate a typical discriminative performance region. In this region, we would expect to
observe C®s no smaller than 0.5.

These bounds can be used to contextualize the C® of an update, as the range of C® changes

depending on the model performances being considered. Additionally, they underscore a relation-
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ship between the rank-based compatibility and the models’ discriminative performance. The lower
bound of C® increases with respect to the AUROC of the updated model.

For the model updating region we are interested, in the upper bound is always 1. Any updated
model that correctly ranks all the patient-pairs that the original ranked correctly will produce C? =
1 by setting m™™ = m°". Ignoring the questions around the feasibility of constructing such
updated models, we can see that there is always a possibility to construct an updated model with
CR = 1. This updated model would rank all of the original model’s correctly ranked patient-pairs.

The combination of C®’s increasing lower bound and its fixed upper bound for our region of
interest suggests that it is theoretically possible to always find a candidate update model that leads
to an increase in discriminative performance and high levels of rank-based compatibility (or even
perfect rank-based compatibility) It is now natural to wonder if we might expect high levels of
rank-based compatibility alongside the creation of updated models that maximize AU ROC( f*).

We revisit this later when we discuss our numerical experiments.

4.4.3.2 Central Tendency of Rank-Based Compatibility

Despite being informative in contextualizing the rank-based compatibility measure, the bounds
in Equation 4.5 provide a limited understanding of the behavior of C®. The bounds show that
C® increases with model AUROCs However, they do not explain how it would be distributed
between the bounds. For updated models that are trained to minimize binary cross entropy loss,
we hypothesize that the observed C? values will tend towards a value in the middle of the range.
We present a brief analytical sketch of C’s behavior to explore this hypothesis.

Note, we do not seek to create a distribution for the C® generally (e.g., for all data, for all
models, and updating techniques); instead, we seek to build intuition for how C® may vary with
both models” AUROC. This analytical approach is based on a combinatorial argument. We analyze
the number of ways a given C* can occur given AUROCS for the original and updated models. This
analysis is based on how each model ranks each patient-pair. A patient-pair’s ranking for a given
model is whether that model correctly ranks (e.g., p; < p; for the updated model) or incorrectly
ranks that patient pair.

We can use the ranking of all patient-pairs to represent the behavior of original and updated
models. All patient-pairs are distributed between two sets: correctly and incorrectly ranked. Sup-
pose we constrain the distribution of patient-pairs between these two sets to align with the discrim-
inative performance of the model being represented. In that case, we can then get a sense of the
number of patient-pairs that both models rank correctly. This number is m™" and can be directly
used to calculate the C? as per Equation 4.3. As mentioned in Section 4.4.3.1, m™* may range
between m°t + m¥* — m and m°", corresponding to the bounds C* introduced in Equation 4.5.

Assuming models do not have any restrictions on how patient-pairs may be ranked we would
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like to understand the behavior of C®. To do this we will count the number of ways that each value
of m** =k, where k € {m°t +m"*" —m, ...,m°"}, can be achieved given that each model meets
a specific discriminative performance. This setup allows us to develop a closed-form expression
for the number of combinations (or ways of ranking all patient-pairs) that yield m** = k. This
can be viewed as a measure of the size of the search space which we expect to be correlated wih
the likelihood of selecting such a model.

The number of combinations is the numerator of the hypergeometric distribution with parame-
ters related to the number of patient-pairs correctly ranked by the original and updated models. The
number of patient-pairs that both models ranked correctly, m™* = k, is defined in relation to the
number of total patient-pairs, m, the number of patient-pairs we are interested in selecting, m°*,

and the number of selections, m"“*. The number of combinations that produce a given m** = k
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The location of the maxima and shape of this function provides us with a sense of the behavior

is as follows:

of C® conditional on maintaining a fixed level of discrimination. We would expect this function’s
maxima to coincide with the mode of the corresponding hypergeometric distribution. For large
values of m°*, m“*, and m we expect the mode of the hypergeometric distribution to be approx-
imately equal to its mean. Equation 4.6 has its maxima at m™" = k*, where k* is the value that

provides the largest number of combinations.’This is:

T m¥", and m.

o+ 1 u+ 1 o+, u+
k= {(m +D)(m* + )J ~ for large m°

m + 2

We can then plot Equation 4.6 to investigate the behavior of C® given AUROC(f°) and
AUROC(f*). Figure 4.2 shows the number of combinations for each C® value given original-
updated model pairs. Each model pair had the same original model AUROC of 0.65, and the
updated model AUROCSs ranged between 0.65 and 0.95. Examination of these curves reveals sev-
eral findings. First, the £* for each model pair aligns with the AUROC of the updated model.
Second, these curves exhibit a robust central tendency as the number of combinations decreases
exponentially (note the logarithmic vertical axis) as m™" = k diverges from k*.

As expected, these curves cover the range between the bounds on C® for a given model pair.
However, the number of combinations that produce the C® values at the upper and lower bounds
are many orders of magnitude smaller than the maximal number of combinations. Additionally,

we observe a difference in the number of combinations for the upper and lower bounds of a given

2This maxima is expressed in terms of m™*, which can be converted to be in terms of C® by dividing by m°*.
+ et

moT m"T m* = AUROC(fu)

mot m m

This maxima occurs at
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original and updated model pair. There are significantly more combinations that yield a C® equal

to the lower bound than those that produce a C? equal to the upper bound.

Rank-based Compatibility (CR)
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

10116 -

10104 -

=

o
©
N
L

= 1080 -

Number of Combinations
|{(m++ =k|m0+ mU+)}|

10°8 1 AUROC(fY), max, LB, UB
—— 0.65, 1019, 1077, 10°
101 — .70, 10194, 1077, 1024
0.75, 109, 1074, 103>
1044 0.80, 1085, 1068, 1040
0.85, 107, 10°, 1040
1032~ 0.90, 1054, 1047, 1035
—— 0.95, 1033, 1030, 1024

1020 T T - . . . r -

140 160 180 200 220 240 260
mtt =k

Figure 4.2: Central Tendency of C®. We plot the combinations for each C® value given original-
updated model pairs. Each model pair had the same original model AUROC of 0.65, and the
updated model AUROCSs ranged between 0.65 and 0.95. The updated model’s AUROC is plotted
as a vertical dotted line. We set m = 400. The m™* = k* value that achieves the largest number
of combinations is plotted as a dot on the curves. This point aligns with AU ROC(f°). Because
all model-pairs have the same original model discriminative performance, the m™* values can be
normalized by m°" to provide the C? (top horizontal axis). These curves exhibit a strong central
tendency as the number of combinations decreases increasingly (note the logarithmic vertical axis)
as m™T = k diverges from the k*.

For this analysis, we assume that both models can select any subset of patient-pairs. This means
that either model may select any patient-pair (or not). We note that this assumption may not entirely
hold for all datasets and model types; for example, it may not be possible for a model to select one
patient-pair and a not-select another patient-pair for a given dataset. Although employing this
assumption limits our analysis’s generalizability, we believe the analysis still provides utility by
giving us a general sense of how C? may behave.

Additionally, although Equation 4.6 relates to the hypergeometric distribution, we have inten-
tionally avoided using this probability mass function for this analysis. This is because the true
distribution for C® given the discriminative performances likely would not be directly modelled by

the hypergeometric distribution. This is because the observation of each of the combinations being
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counted in Equation 4.6 likely do not all have the same probability. Furthermore, just because
there are more ways to produce & does not mean it is more probable. For example, if m°" is close
to m, the number of combinations may be small, but this may be more probable. Finally, given
specific data generation processs (DGPs) and model generating processes, we are more likely to
observe some combinations than others. As mentioned above, some combinations may not even
be possible.

This analysis is meant to illustrate a couple of crucial points about this problem. One, there are
potentially many updated models to be explored that meet the given levels of original and updated
model discriminative performance. This increases as we relax the search for updated models from
a specific discriminative performance (e.g., AUROC(f*) = 0.65) to a range in discriminative
performance (e.g., AUROC(f*) > 0.65). There are now many more combinations to be explored
beyond what would be presented as a single curve on Figure 4.2. Additionally, this complicates
any attempt to directly translate the notion of number of combinations into a sense of likelihood.

Two, the analysis also shows there some combinations achieve the bounds established above.
For example, the upper bound of C® = 1 can always be achieved in theory. This can be done
by using the original model as the updated model or producing an updated model that produces
the same correct patient-pair rankings. Three, more combinations will produce the lower bound
than the upper bound. The number of combinations that produce a C® = 1 is the smallest number
of combinations observed in the whole range. Four, there is a central tendency in the number of
combinations for CR, as there are many more ways to produce a C® between the bounds than there

are ways to produce C® values close to either bound. For Equation 4.6, this center is located at
metmut
m

While we do not believe this specific center to hold for all DGPs and model updating proce-
dures, we hypothesize that C® central tendency does. In Section 4.5.2, we investigate the central
tendency of C® for original and updates trained using real data. The above analysis is still illu-
minating as it provides a way to estimate the relative number of combinations between different
rank-based compatibility levels. There are many more ways for an updated model to achieve a
moderate rank-based compatibility (near the value of the AUROC of the updated model) than a
very high level compatibility (e.g., above 0.95). This suggests that achieving very high levels of
rank-based compatibility may be difficult without directed search efforts, which we discuss in the

next section.
4.4.4 Training Model Updates Using Rank-Based Incompatibility Loss

Risk stratification models are often trained by minimizing the binary cross-entropy loss function,
ﬁBCE.
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Minimizing £B°F is equivalent to minimizing the log-loss and maximizing the log-likelihood.

[58, 166, 167] Training with the £Z“* function attempts to optimize the discriminative perfor-

mance of the model by reducing the probability estimates for O-labeled patients and increasing

them for 1-labeled patients. This in turn, indirectly optimizes the correct ranking of patient-pairs,

the AUROC. [165] However, L% only examines the relationship between a patient’s label and

the risk estimates produced by a model. To incorporate the rank-based compatibility, additional
information in the form of the original model’s risk estimate is needed.

Model developers may seek to generate updated models with high rank-based compatibility
directly. Thus, we propose augmenting model update training to incentivize rank-based com-
patibility. This would allow model developers to avoid potentially fruitless searches over many
updated models (i.e., model selection) and more directly create updates that balance discriminative
performance improvement and high rank-based compatibility.

To do this, we introduce a loss function called rank-based incompatibility, L¥. Which we define

as:

Lh=1-¢ck. (4.8)

Rank-based incompatibility can be used as an additional loss term for model training. For example,
suppose updated models were initially trained using binary cross entropy, £LZ¢F. In that case,
update training may be augmented to use a weighted combination of binary cross entropy and

rank-based incompatibility:

alPYF (1 — a)L" where a € [0,1]. (4.9)

The objective function presented in Equation 4.9 enables us to train models by balancing the
loss typically used to train risk stratification models (£LP“F) with compatibility (in the form of
L), At the extremes, if o = 1, then we train models by only focusing on minimizing £L”“¥, and
if o = 0, we only focus on reducing incompatibility (thus, maximizing compatibility). Varying «
in the interval [0, 1] provides a means to trade-off two important criteria.

The use of rank-based incompatibility has two stipulations. 1) Predictions produced by the orig-
inal model must be incorporated into the loss function. 2) The exact function is non-differentiable
due to the ranking indicator function (1(p; < p;)). The first stipulation can be overcome by ei-
ther embedding the original model into the loss function or calculating the original model’s risk

estimates ahead of the updated model training time. The second stipulation means rank-based in-
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compatibility cannot be directly used in gradient based optimization procedures. We introduce a
differentiable approximation of rank-based incompatibility (E:f).

This approximation replaces the ranking indicator function used to evaluate patient pairs with
a ranking sigmoid function. The ranking sigmoid function utilizes a standard sigmoid function to
operate on the estimated risk difference, ci]z [168] This is the difference in risk estimates produced
for a patient pair, csz- = p; — pi, where chZ- naturally ranges between —1 and 1. A correct ranking
corresponds to chi > ( and an incorrect ranking corresponds to ch,. < 0. In order to align with the
behavior of the ranking indicator function we encapsulate UZji in a sigmoid function, which returns

values between 0 and 1. This is the ranking sigmoid function and it is defined as follows:

1

g dAZ = =
() 1+ exp(—s - dj;)

When dj; > 0, o(d;;) will return a value between 0.5 and 1 and when d;; < 0, o(d;;) will return
a value between 0 and 0.5. Ideally, to match the behavior of the ranking indicator function the
ranking sigmoid function would only return values of 0 and 1. We can drive these values closer to
0 and 1 using the spreading hyperparameter, s. Using s helps to ensure that differences close to 0
still get converted to values near 0 and 1. Note that using a sigmoid to overcome discontinuity in
loss function is similar to work introduced to optimize for the AUROC directly. [169]

Using the ranking sigmoid function, we define the differentiable approximation of rank-based
compatibility as follows:
> 2 o —p7) - o(pf —py)
iel~ jeI+

> 2 o(pf —py)

iel~ jeI+

CR(f°, f*) =

(4.10)

As mentioned, this C® approximation functions by converting the differences between the risk
estimates for patients into values close to 0 and 1 in a differentiable manner. The exact C* cannot be
used in settings dependent on gradient computation as it depends on the ranking indicator function,

which is non-differentiable.

Ranking Function Visualization. Because approximate incompatibility loss operates on the set
of all patient-pairs it isn’t easy to visualize directly. Instead, we show two visualizations of the
ranking indicator and ranking sigmoid functions. These visualizations serve as representations
for the functionality of the exact and approximate loss functions for a single patient-pair. Both
visualizations show the behavior of the loss component. The exact loss component is 1 minus the
ranking indicator function, and the approximate loss component is 1 minus the ranking sigmoid

function. The loss components simulate the behavior of £# and L for a single patient-pair.
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The first visualization, Figure 4.3, shows the behavior of the ranking functions given a patient-
pair with fixed risk for the 0-labeled patient (p; = 0.25). The second visualization, Figure 4.4,
shows this behavior while varying the risk estimates for both the 0- and 1-labeled patients (p; €
[0,1] and p; € [0, 1]). In both of these figures, we show the behavior of the approximate loss
component for various s values and compare these to the exact loss component.

As s gets larger, we see that the ranking sigmoid function more closely matches the behavior
of the ranking indicator function. This behavior is desirable until some point, as the gradient of
the function becomes steeper and steeper. We have found that very large values of s (e.g., s ~
100, 000) lead to numerical instability while training models with stochastic gradient descent. To
avoid numerical instability issues, we set s = 100 for the experimental work using the approximate
incompatibility loss. Experiments showing the robustness of the results to the setting of s > 100
can be found in Section C.2.0.2.

Note that the ranking sigmoid function is not the only differentiable alternative to the ranking
indicator function. Another approach is to define a gradient for the ranking indicator function ilike
the ReLLU activation function. [58]
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Figure 4.3: Visualization of the Behavior of Ranking Indicator Function and the Ranking Sigmoid
Function Sweeping a Single Risk Estimate. We sweep the risk estimate for the 1-labeled patient
(p; € [0,1]) and plot loss components. The approximate loss component is plotted at various s
values using a fixed p;. For this comparison, we fix the risk estimate for the O-labeled patient
(p; = 0.25). We then plot the exact loss component as a reference against the approximate loss
component. We evaluate the ranking sigmoid function at various s values. As s increases, the
gradient for the ranking sigmoid function (and approximate incompatibility) becomes much steeper
but more closely approximates the ranking indicator function (and exact incompatibility loss).
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Figure 4.4: Visualization of the Behavior of Ranking Indicator Function and the Ranking Sigmoid
Function Sweeping Both Patient Risk Estimates. Ranking sigmoid function at s = 1, s = 10, and
s = 100 both p; and p; are varied between 0 and 1. We compare the exact loss component against
the approximate loss component. We plot the approximate loss component value for patient-pairs
i, 7 where y; = 0 and y; = 1. Their risk estimates p;, p; are denoted on the horizontal and vertical
axes, respectively. The area above the white line corresponds to an exact loss component value of 0.
The area below corresponds to a value of 1. The color represents the approximate loss component,
with blue representing values close to 0 and yellow representing values close to 1. As s increases,
the gradient for this function (and approximate incompatibility) becomes much steeper but more
closely approximates the exact incompatibility loss using the greater than operation.

4.5 Experiments & Results

We now present experiments that focus on understanding and engineering the behavior of model
updates in terms of C® using a real-world dataset. We generated and analyzed model updates on
the MIMIC-III mortality prediction dataset. After describing the dataset and model updating setup,
we examine the C® observed for updated models created using standard updated model generation
procedures. Additionally, we investigate the utility of engineering model updates such that C® is

incorporated as a part of the updated model training process.

Questions. These experiments seek to answer two related questions:

1. Does C® demonstrate a central tendency on model-pairs generated using standard update

model generation when using real data? (Section 4.5.2, Figure 4.6)

2. Compared to standard update model generation and selection approaches, can we use the
rank-based incompatibility loss, LT, to generate updates with better C®? And can this be
accomplished without a loss of AUROC? (Section 4.5.3, Figures 4.7 and 4.8)
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4.5.1 Data & Model Updating Setup

We simulate model updating using the MIMIC-III 48-hour mortality risk stratification dataset. We
utilized this task as it is a widely available benchmark for healthcare machine learning and was
employed by Bansal et al. [31]. All of the data were transformed using FIDDLE. [100] For details
regarding the data inclusion and transformation, please see the procedures detailed by Tang et al.
[100]. The only notable difference is that for computational efficiency, we reduce the number of
features from 350, 832 to 35, 000 by random sampling.

This simulation was conducted by randomly splitting the MIMIC-III data into three disjoint
datasets. Two of these datasets were allocated for model development and validation. The third
dataset was reserved for held-out evaluation. Of the 8,577 patients in the MIMIC-III mortality
dataset, 1,000 were allocated to the original model dataset. 5,000 were assigned to the updated
model dataset, and 2, 577 were held-out for the evaluation dataset. This distribution was chosen
as it aligned with the distribution employed by Bansal et al. [31] and represents real-world model
updating processes by enabling more data to be used for the updated model development. The two
model datasets were used to develop and validate the original and updated models. The model
datasets were each equally split (50/50%) into development and validation datasets. The dataset
partitions and their sizes are depicted in Figure 4.5.

Original and updated models utilize a logistic regression architecture, which was implemented
in TensorFlow, and training was conducted using SGD. [89] During the original model training
validation loss was calculated using the original validation dataset, enabling the use of early stop-
ping regularization. The updated models were initialized with the original model’s weights and
bias and then trained using the updated model development dataset. The updated model validation
dataset was used for early stopping during updated model training and for updated model selec-
tion. The selected updated models were evaluated in terms of C® and AUROC on the held-out
evaluation dataset. This procedure was replicated 40 times to understand how these results may
vary. In Program C.1, we present an example python code that demonstrates dataset splitting and

model-pair development.
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Figure 4.5: The MIMIC-III mortality data was partitioned into three datasets. Two of these datasets
were allocated for model development and validation, one was held-out for evaluation. The model
datasets were each split into development and validation datasets and were utilized for original and
updated model development. Model-pairs were evaluated on the evaluation dataset.

4.5.2 Rank-Based Compatibility Central Tendency

We first investigated the central tendency posited by the theoretical analysis shown in Section
4.4.3.2 is observed when generating realistic updates. We seek to answer the question of: Does C?
demonstrate a central tendency on model-pairs generated using standard update model generation
when using real data? Using the experimental setup described above, we used standard updated
model generation procedures to create 150 updated models for each original model. These 150
updated models were created through a combination of dataset resampling, shuffling, and regular-
ization weights. The updated model development dataset was either resampled (45 of the times)
or shuffled (5 of the times) and then models were trained using binary cross entropy loss with one
of three L2 regularization weights {0.1,0.01,0.001}. This of regularization range was selected
using a preliminary scoping analysis, this is discussed in detail in Appendix Section C.2.0.1. This
combination of dataset modification and regularization yielded 50 x 3 = 150 updated models in
total.

Standard updated model generation was conducted as follows. All updated models were initial-
ized using the weights and biases of the original models. They were then all trained using updated
model development dataset using SGD to minimize binary cross entropy loss, LZ“F. The training
procedure was regularized using early stopping based on the validation AUROC.

We then examined the resultant C® distribution across the candidate update models. This distri-
bution was assessed in terms of the empirical 95% confidence interval. We repeated this procedure
for each replication. Each replication yielded new dataset splits, new original models, and new

updated candidate models.
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Figure 4.6: Central Tendency of C® For Model Updates on the MIMIC-III Mortality Task. The
95% confidence intervals for C® (gray) of the 100 candidate update models generated by standard
update model generation. The AUROC of the original model (blue) and set of candidate update
models (red, 95% confidence intervals) are plotted along with the upper and lower bounds for C®.
We note the restricted range of the confidence intervals for C? despite a large number of candidate
models.

In addition to C®, we calculated the AUROC of the original model, the distribution of the
AUROC:s for the candidate updated models, and the expected bounds of C®. The results for all
replications are depicted in Figure 4.6. This figure demonstrates that the observed C* values for
the set of candidate updates occupies a small portion of the feasible range (between the lower® and
upper bounds).

From this experiment, we see a central tendency in C* for updated models generated on real data
using standard update model generation. This central tendency in C® means that model developers
may be constrained if they wish to develop updated models that try to balance AUROC and C®
using standard update generation procedures. We now turn our attention to evaluating the proposed

model updating method via the weighted updated loss function.

4.5.3 Weighted Loss vs. Standard Updated Model Selection

We now investigate our second question: Compared to standard update model generation and

selection approaches, can we use the rank-based incompatibility loss, LT, to generate updates

3Note, that the lower bound is presented as a range. This is because each candidate update model has a separate
lower bound depending on its AUROC.
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with better C®? To answer this question, we compare the updated models generated using the
standard updated model generation approach (described above) against updated models trained
using the rank-based incompatibility loss function.

For each replication, we generated 150 models using the standard update model generation
procedure. We refer to these as the “selection models.” Using the same original model and data, we
generated additional update models, we refer to these as the “engineered models.” The engineered
models were also initialized with the original model’s weights and bias. However, they utilize the
approximate rank-based compatibility loss (E%) introduced in Section 4.4.4 as a part of training.
They were then trained using the weighted loss function on the updated model development dataset.

The weighted updated loss function is based on Equation 4.9:

alBCF 4 (1 — a)LR, (4.11)

This weighted updated loss function includes a hyperparameter o that controls the trade-off be-
tween LBCF and LF. When a = 1, the weighted updated loss function equals £Z“F allowing
us to replicate the standard model training procedure. When @ = 0, the weighted updated loss
function equals Zfé, and for o = 0.5, the weighted updated loss function weights the £L5“¥ and
L% equally.

This procedure was conducted for each « in the set {0,0.1,0.2,...,0.9, 1} and each L2 weight.
Thus, there were 33 engineered models. Using the updated model validation dataset the best
performing engineered model for each o was selected. In addition to using the weighted updated
loss function, the engineered models had their early stopping criteria modified to align with their
loss function, specifically, we used: « AU ROC + (1 — a)CE,

To assess the impact of using the weighted updated loss function versus the standard update
model generation procedure, we need a method to compare the candidate update models produced
by both approaches. We do this by selecting a single selection model and comparing it directly
against an engineered model. There are many potential ways to conduct this selection, a variety
of which are cataloged in Section C.3. However, we focus on the one that aligns most with the
standard update model generation procedure. This is a selection procedure based on AUROC.
The candidate update model with the highest AUROC observed on the updated model validation
dataset is the one that is selected. This selected model is then compared against each engineered
model by calculating the difference in rank-based compatibility, A CR, and difference in AUROC,
AAUROC. These are defined as follows:

ACR =CR(f*, f°) — CR(f5, f°) (4.12)
AAUROC = AUROC(f*) — AUROC(f*) (4.13)
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Where f* is the engineered updated model created using the weighted updated loss function with
a trade-off weight of o and f* is the selected candidate update model.

In Figure 4.7 we show the C® and AUROC values calculated on the held-out evaluation data
for all of the engineered models and for a subset of the selection models. This subset represents the
selection models along the pareto frontier of the trade-off between C® and AU ROC (calculated
using the updated model validation data). We also depict an example of how A C® and AAU ROC
would be calculated between the engineered model where o = (.5 and the selected candidate
update with the best AUROC.

For this example, we note that the circled engineered model induces a positive A C® which de-
notes an increase in C¥, and a negative AAU ROC which represents a reduction in AUROC. Al-
though the AAU ROC' is negative, this does not mean that this updated model performs worse than
the original model, which has an AU ROC = 0.805. Instead, the engineered update (AU ROC' =
0.848) does not perform as well as the best-performing selection model (AU ROC' = 0.855).

As in the first experiment, we replicated this procedure 40 times and calculated 95% confidence
intervals. These results are shown in Figure 4.8. From this figure, we can see that engineered
models with more weight on incompatibility (lower « values) have higher compatibility and lower
AUROCs. As « increases C? decreases, and AUROC increases. At o values < 0.6 we see statis-
tically significant increases in C® (A C® > 0). For some « values less than 0.6 we see statistically
significant decreases in AUROC (AAUROC < 0 occurs at « € {0.0,0.1,0.2,0.4}). These
results pick the selection model based on the updated model validation AUROC. This selection
procedure is most in line with standard model update generation procedures. In Appendix Section
C.3 we show that these results do not vary greatly for other selection procedures that may be used.

In sum, these results suggest that using the weighted updated loss function, we can generate
updated models with larger C® values than would be observed through standard update generation
procedures. It is important to note that this increase in C® appears to be accompanied by a cost
in terms of the AUROC produced by the engineered models. In order to achieve the benefit of
increased C®, the resulting AUROC of the selected update model may be lower than an updated
model generated through standard procedures.

This experiment suggests that updated models with improved rank-based compatibility can be
trained using a weighted loss function incorporating incompatibility. Strong emphasis on compati-
bility may come at a cost in terms of discriminative improvement. However, this may be desirable
in specific use-cases where compatibility is critical for good joint user-model performance. Using
the incompatibility loss function may help model developers create updated models that balance

user expectations and performance improvement.
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Figure 4.7: Example of Engineered Model vs. Selection Model Results. The AUROC and C%
calculated on held-out evaluation dataset are reported for the engineered models and a subset of
the selection models. In this example, we note that the circled engineered model (o« = 0.5) induces
a positive A CR, which denotes an increase in C®, and a negative AAUROC which indicates a
reduction in AUROC.
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Figure 4.8: Engineered Models vs. Selection Models. Comparing engineered update models
against selection models for 40 replications, each replication re-samples the mortality dataset and
generates a new original model. 95% confidence intervals across all the replications are depicted
for each « value (colored vertical bars), and the selection models (dashed gray lines) are depicted
for C® (top left) and AUROC (top right). These graphs show that engineered models with more
weight on incompatibility (lower o values) have higher C® and lower AUROCs. As « increases
C® decreases and AUROC increases. In the bottom graphs, we calculate A C? (bottom left) and
AAU ROC (bottom right) for each replication and depict 95% confidence intervals. Using these
graphs, we can assess statistical significance. At o values < 0.6 we see statistically significant in-
creases in C® (A C® > 0) and at o values of 0.0, 0.1, 0.2, and 0.4 statistically significant decreases
in AUROC (AAUROC < 0).
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4.6 Risk Stratification Model Updates for Prostate Cancer
Case Study

Rank-based compatibility estimates the discrepancy between what clinicians expect and the up-
dated model’s risk stratification. To highlight its utility to model decision makers we present a
case study focused on model updating of prostate cancer (PCa) prediction modeling. This case
study extends a recent model development study and demonstrates how model developers may use
rank-based compatibility and related measures to assess a potential model update.

This recent study examined an ML model (known as the Memorial Sloan Kettering (MSK)
model) currently being used for non-organ confined disease (NOCD) prediction in patients with
prostate cancer. Additionally, it introduced a new model (known as the Michigan Urological
Surgery Improvement Collaborative (MUSIC) model). The MUSIC model exhibited better perfor-
mance than the MSK model in terms of discrimination and calibration. Based on this information
policymakers may recommend that urologists switch to the MUSIC model if they are currently us-
ing the MSK model. However, before making this recommendation, they may want to understand
the impact this change will have on urologists’ expectations.

We study this by evaluating NOCD risk stratification between the MSK and MUSIC models
using the MUSIC validation dataset. This allows us to take the role of MUSIC administrators
and understand the impact of recommending that all urologists in the collaborative switch to using
the MUSIC model. Understanding the effects of this change is vital as there is a model perfor-
mance improvement to be gained if the urologists were to switch from using the MSK model to
the MUSIC model. This is because the MSK model has a lower AUROC of 0.68 (bootstrapped
95% confidence interval of: 0.66, 0.70), compared to the MUSIC model’s AUROC of 0.74 (0.72,
0.76). This performance evaluation and dataset details were initially presented in a study by Otles
et al. [170]. Using these AUROC, values we calculated bounds for rank-based compatibility. We
then examined the potential update by calculating the rank-based compatibility on the MUSIC
validation cohort.

The MUSIC validation cohort contained information from 2,911 patients collected from 41
urology practices across the state of Michigan. Each practice that contributed data to the MUSIC
validation cohort had previously obtained an exemption or approval for participation from a lo-
cal institutional review board. Using the previously reported AUROCSs of the MSK and MUSIC,
we could calculate that the rank-based compatibility would be between 0.62 and 1.00. The ob-
served rank-based compatibility observed in the MUSIC validation cohort was 0.88 (0.87, 0.89).
Confidence intervals were generated using 1,000-fold bootstrapping. The distribution of the dis-
criminative performances of the models and the rank-based compatibility are displayed in Figure:
4.9.
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Figure 4.9: Original (MSK) and updated (MUSIC) model discriminative performance and rank-
based compatibility for the non-organ confined disease prostate cancer risk prediction task. Left
two histograms: discriminative performance of the MSK model currently in use is compared to the
MUSIC model being considered as an update. Right histogram: rank-based compatibility of the
potential update. The histograms were generated by bootstrapping with 1,000 replications.

We can utilize the bounds and the theoretical distributions to contextualize the observed values
of the rank-based compatibility. We note that the rank-based compatibility falls in the upper half
of its bounds.

Additionally, decision makers can use the observed rank-based compatibility and POP variable
values when considering how to best facilitate the implementation of the updated model. POP
values, along with the bootstrapped 95 percent confidence intervals, for this update are displayed
in Table 4.2. ¢™*, was 0.59, meaning that the majority of the patient-pairs were correctly ranked
by both models, a desirable attribute. The remaining POP variables were as follows: ¢~ = 0.08,
¢~ =0.15, and ¢~ = 0.18. Generally speaking, we would like ¢~ to be lower as it represents
the proportion of patient-pairs that were originally ranked correctly but would be ranked incorrectly
by the updated model, which is an unwanted attribute of a candidate update. Having a larger ¢~
may be desirable. This may mean that the updated model achieves a high level of discriminative

performance by correcting ranking errors.
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It is important to contrast ¢+ and ¢, as they indicate how the updated models is deriving
its AUROC. For this example, we see that the updated model’s AUROC is primarily derived from
ot as (¢t JAUROC(f*) ~ 0.594/0.74 = 0.81), not from ¢~+, which is desirable. Finally,
¢~ = 0.18, this represents the proportion of patient-pairs that both models incorrectly rank.
Lower is generally better for this value as it means that the updated model can fix ranking errors
that the original model made.

Other than being able to comment generally on what values may be desirable, e.g., high ¢, it
is hard to classify this update as good or bad at this juncture. This is due to the fact that we are only
assessing one updated model due to the relative novelty of the rank-based compatibility measure
and the related POP variables. Without a user-based study it is difficult to judge the quality of
the update or the impact of the update on clinical workflows and patient outcomes. Additionally,
as more model updates are evaluated, we may develop a sense of ranges for these values that
correspond to good and bad updates (like we currently have with discriminative performance).

Although these measures do not give us a definitive absolute assessment of the potential MUSIC
update, they do allow us to examine if certain urologists will have their expectations impacted more
than others. We can calculate these update measures for each of the different urological surgery
practices and assess the relative differences. This secondary analysis examining the performance,
rank-based compatibility, and POP variables at the level of individual MUSIC practices can be
seen in Figure 4.10.

In the bottom left sub-figure of 4.10, we see the rank-based compatibility value over the whole
population of patients compared against the value observed by the individual practices. It is im-
portant to note that some practices that will see rank-based compatibility worse than the level
presented at the population level. In these cases model administrators might choose to make a
different decision regarding updating for these predictions. Or they may choose to use the update
for these practices and counteract the problems by providing additional training or preparation for
urologists at those practices. The four panels on the right depict the POP variables. As in the case
of rank-based compatibility, we see that some practices would experience worse modification to

expectations than the population level would suggest.
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Figure 4.10: Performance, Rank-Based Compatibility, and POP Variable Values Calculated at
the Individual Practice Level. In the top left, we see the discriminative performance for the two
models compared in terms of the population level AUROC (vertical lines) and the distribution of
the AUROC:s observed by individual practices. In the bottom left panel, we depict the rank-based
compatibility value for the whole population (vertical line) and observed by the individual practices
(distribution). It is important to note that some practices that will see rank-based compatibility
worse than the level presented at the population level. In these cases model administrators might
choose to make a different decision regarding updating for these predictions. Or they may choose
to use the update for these practices and counteract the problems with expectation by providing
additional training or preparation for urologists at those practices. The four panels on the right
depict the POP variables. As in the case of rank-based compatibility, we see that there are some
practices that would experience worse modification to expectations than the population level would
suggest.

4.7 Discussion

In this study, we propose the first rank-based compatibility measure. This rank-based compatibility
measure functions by examining the concordance in ranking between a current model and a candi-

date updated model being considered for use. In addition to defining this rank-based compatibility
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measure we show its connection to the discriminative performance of each of the original and
updated models. This relationship suggests that increased rank-based compatibility accompanies
improved discriminative performance, as the lower bound of rank-based compatibility increases as
each model’s discriminative performance increases. Despite the existence of this relationship, we
show analytically and empirically that it is extremely unlikely to observe very high levels of rank-
based compatibility through standard model development. As such, we introduce a new rank-based
incompatibility loss function that can be incorporated into updated model development to control
the trade-off between improvements in AUROC and against model rank-based compatibility.

We present these findings in the context of empirical work using the MIMIC-III mortality pre-
diction task. We examined the rank-based compatibility and discriminative performance observed
for standard updated model generation procedures. These results also suggest that standard ap-
proaches may provide limited rank-based compatibility benefits, further motivating the use of the
incompatibility loss function. We then use the incompatibility loss function as a part of updated
model development. These experiments show statistically significant improvements in rank-based
compatibility. If rank-based compatibility is greatly emphasized over discriminative performance,
then improvements may come at a cost by decreasing discriminative performance improvement.

In addition to the empirical work using MIMIC-III mortality, we presented a model-updating
case study. This case study focused on models used to stratify patients with PCa based on their risk
of having NOCD. This case study explores the implications of updating a risk stratification model
by applying rank-based compatibility and related concepts.

The rank-based compatibility measure serves a different role than Bansal et al.’s [156] original
backwards trust compatibility measure. Depending on the use case, one may want to use one or
the other. Use cases that strongly depend on decision thresholds, such as sending a page when
a patient scores above a specific cutoff, may have user mental models best represented by Bansal
etal.’s [156] original compatibility measure. Alternatively, suppose a model is used without a fixed
decision threshold, such as in a deterioration risk setting where the number of patients evaluated
is tied to some resource constraint, e.g., number of available ICU beds. In that case, this new
rank-based compatibility measure may best represent clinician mental models.

Compatibility measures seek to measure the impact to user expectations given a change in
model being used. User expectations can be considered a component of trust, which is “the attitude
that [a model] will help achieve an individual’s goals in a situation characterized by uncertainty
and vulnerability.” [30] Trust plays an essential role in user’s willingness to rely on models; it
is formed through a dynamic process depending on the user, model, and situation in which they
interact. [171, 172]

If an updated model with poor compatibility is implemented, users may have their expectations

subverted initially. This may lead to poor team performance. [31-33] However, users will continue
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to be informed over time, and they may adapt to the new model’s performance. Although this adap-
tion is expected, model developers may want to avoid the period with degraded team performance.
This would be done through updated model selection focusing on high levels of compatibility.

Adaptation of user expectations over time is an example of a compensatory mechanism em-
ployed by users. [30] Users might employ a wide variety of other mechanisms. One notable
example might be that users recognize an obvious failure mode of the model and can correct incor-
rect behavior for certain types of patients or scenarios. In this specific case, it may be beneficial to
keep the updated model behavior consistent for given specific incorrect behavior. C? is not directly
equipped to handle this scenario; however, the POP variables, specifically ¢~ ~, may be employed
in this case.

Compatibility measures cannot be considered a proxy for user trust, but it can be considered
as representation of user’s mental models which are built over time. We know that user’s mental
models are perturbed by updates, which can negatively impact the joint user-model team’s per-
formance. [31-33] Using our proposed incompatibility loss may help model developers create
updated models that better match the mental models of clinician users. As long as incompatibility
is not very heavily weighted, we can expect updated models to be generated with little to no cost
in terms of improvement in discriminative performance.

There may be other ways to achieve high levels of team performance besides choosing up-
dated models with high compatibility. The two primary mechanisms for this are education and
collaboration. Education can take place after the updated model selection process, providing users
with information about the differences between the original and updated models. Collaboration
occurs during the model updating process and involves a dialogue between model developers and
users. Users can provide model developers with their model behavior expectations and prefer-
ences. Model developers may then modify their updated model selection process to meet objec-
tives aligned with user expectations and preferences. Additionally, model developers may inform
users about changes. This process may be repeated until an updated model that satisfies users’

needs is selected.

Limitations. This work is not without limitations. The first limitation relates to our analytical
results, which assume that the discriminative performance is fixed and known for the evaluation
dataset. While it might not be known precisely, we likely have a good sense of the model’s dis-
criminative performance based on validation data.

A related issue is the concept of dataset shift. This work’s analytical and empirical findings
may not hold exactly when updating in a regime in which dataset shift is occurring. The funda-
mental issue is the relationship between the features and the labels. If this relationship changes,

both models’ discriminative performances will suffer, which may affect rank-based compatibility.

93



Those changes may also lead to changes in clinician mental models. All together these changes
make understanding the behavior of C® in settings with dataset shift difficult. This is an avenue of
interest for future work.

Although we know the absolute scale of rank-based compatibility with 0 being perfect incom-
patibility and 1 being perfect compatibility we don’t have a sense of what the numbers in between
mean and how they compare across model updates. Ideally, we would like to have a sense of what
is a good rank-based compatibility value, like we do with the AUROC measure (e.g., a rule like:
AUROC(f) > 0.75). This will likely come with further study of models being updated across
different tasks. One advantage C® does present is that its improvements can be directly compared
against improvements in AUROC by examining the POP variables.

Finally, while we discussed the different use cases for rank-based compatibility vs. Bansal
et al. [31]’s backwards trust compatibility measure, we do not clearly understand clinicians’ pref-
erences. There may be update tasks that this measure is better suited for. We do not yet have a
good understanding of the relationship between rank-based compatibility and user mental models.
Additionally, rank-based compatibility captures the “global” user perspective. Modifying rank-
based compatibility to focus on individual user perspectives may lead to better compatibility and
parity with clinician expectations. We believe there is much work to do with this measure in terms

of human user studies.

Conclusion. These limitations notwithstanding, we believe the rank-based measure and incom-
patibility loss presents a new way to think about model maintenance and updating models. Rank-
based compatibility functions similar to the AUROC and extends the concept of compatibility mea-
surement by considering the rank concordance between the output of two models. Additionally,
rank-based compatibility has a direct relationship with AUROC and may be more robust to calibra-
tion shifts, a commonly observed phenomenon in healthcare. [123, 140, 158] This new measure is
better suited for evaluating healthcare risk stratification models. In addition to proposing the new
rank-based compatibility measure we develop a related loss function that can be used to engineer
model updates, such that model developers may be able to balance improvements in discrimina-
tive performance against rank-based compatibility. In sum, this work enables the evaluation and

development of model updates that would lead to better clinician-model joint performance.
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CHAPTER 5

Summary

This dissertation addressed three problems across the spectrum of healthcare ML development
and implementation. In Chapter 2, we assessed the value of longitudinal observations in relation
to return to work (RTW) prediction. In Chapter 3, we formalized the concept of the prospective
performance gap and its constituent components. Finally, in Chapter 4, we developed a rank-based
compatibility measure and development procedure to assess and engineer updated risk stratification
models. These projects advance our knowledge of ML applied for use in longitudinal healthcare
settings.

We began this dissertation with a focus on ML development. Development is the set of processes
conducted to build ML models. We targeted the occupational injury (OI) field, which uses models
to predict Return to Work (RTW). The standard models used in this field are limited to making
a single prediction about RTW at the time of initial injury, only using information known at that
time. [47-49] The Ol recovery process is dynamic, with additional information collected over time.
From other healthcare ML tasks it is widely recognized that longitudinal observations improve
predictive performance. [56] Thus, we assessed the value of longitudinal observations collected in
the RTW setting by developing a new RTW model using claims data. We found that the inclusion
of longitudinal observation data significantly improved the performance of RTW prediction.

We then switched our focus to ML implementation. Implementation consists of the processes
related to initial model integration into clinical use, and the maintenance tasks necessary to keep
the model functional over time. When models are implemented for prospective use in healthcare,
they may demonstrate degradation in their predictive performance. [125] The inherently dynamic
nature of the healthcare setting obscures the root causes of these prospective performance gaps.
As such, we designed new methods to isolate causes of performance degradation associated with
temporal shift, changes over time, from infrastructure shift, changes in deployment IT infrastruc-
ture. We applied these methods to a newly implemented CDI risk stratification model and observed
that infrastructure changes contributed to performance degradation more than temporal changes.
We then explored techniques to identify and mitigate specific infrastructure changes negatively

impacting performance.
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To overcome performance degradation due to temporal changes, model developers may update
their models over time. However, once models are implemented, users begin to form expectations
of the model’s behavior, and updates may lead to changes that negatively impact user-model feam
performance. [31] Existing compatibility measures, which quantify the impact of a model update,
are limited to a single decision threshold. This does not align well with model usage in healthcare,
where there may be no threshold or several thresholds may be used simultaneously (e.g., by dif-
ferent physicians). We designed a new rank-based compatibility measure and a method to create
updated models that balances this measure against discriminative performance improvement. We
showed how this measure might be used to assess new model updates being considered and also
demonstrated the utility of our updated model creation method.

Altogether these studies tackled projects at the intersection of ML and healthcare; each un-
derscored the vital role time plays in the context of medicine and modeling. We can utilize the
findings from these studies to inform future work in this field. Chapter 2 provided additional
evidence for the utility of longitudinal observation information in healthcare ML model develop-
ment. If possible, developers should seek to address predictive problems using updated information
over time to represent the state of patients. Chapter 3 demonstrated two related findings. First,
although changes in patients and care practice may affect model performance over time, infras-
tructure differences also contribute to the prospective performance gap. Second, infrastructure
differences may arise from temporal factors; without a keen understanding of clinical documenta-
tion processes, model developers may rely on information that may not be available in real-time.
Finally, Chapter 4 examined risk stratification model updating with a specific focus on rank-based
compatibility. This work provides model developers with tools to assess and design updated risk

stratification models that may be implemented over time.

Avenues of Future Work

This dissertation has many exciting potential avenues for future work. We provide a brief overview

of possible extensions for each technical chapter.

Chapter 2. One of the most obvious avenues for future work is the continued assessment of the
proposed model created for the reformulated RTW prediction task. To assess the potential value
of this model, we must study it in a representative setting. This setting would involve integration
with the workflows of recovery managers or physicians, as they are the key decision-makers in
OI management. Such a study would ultimately entail a prospective pilot or clinical trial. In the
lead-up, it would be necessary to validate the performance of the proposed model externally, using

a separate dataset. For example, using workers’ compensation claims from another geographic
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region.

Another future direction is the continued development T2 framework we introduced. For exam-
ple, this framework could be integrated with RDWs to aid model development. Wrapping T2 and
its database bindings into a WYSIWYG user interface could enable physicians or other clinical
users with limited technical skills to select and transform data. We could pair this infrastructure
with auto-ML tools, allowing researchers to rapidly develop and test new ML models. Addition-
ally, T2 could be expanded to enhance model portability and validation across different institutions.
With the addition of model and data transformation packaging, entire pipelines could be ported rel-
atively easily.

A third direction of future study is to explore incorporating other data. Significant factors in
RTW include psychological and social state factors, which are missing from our proposed model.
[51, 53, 54, 71, 72] Integration with EHRs and patient-reported outcomes may help provide this

perspective.

Chapter 3. There remains a great deal of work to do in understanding and mitigating the impacts
of infrastructure shift. As mentioned in Chapter 3, model developers and users may benefit from
a “time-machine” like infrastructure. A time-machine like the one developed by Netflix [154]
would allow healthcare ML model developers to access data in a manner that replicates the real-
time or near-real-time data stream. This is a complex problem that depends on the foundational
infrastructure of the HIT technology stack. Work may need to be done by EHR vendors: Epic or
Cerner. Third-party vendors that develop data transfer, storage, and interoperability tools, like
Redox, may also be able to address the gap. Successfully addressing infrastructure shift will
involve careful re-design of data systems. Modern HIT systems must support both the operational
work of medicine and the computational work needed to integrate ML properly into clinical care.
Aside from foundational infrastructure work, additional theoretical work focused on detecting
data elements at risk for infrastructure and temporal shifts would be valuable extensions of this
work. Detection may help model developers avoid certain features or enable them to be closely
monitored. Additionally, this may help develop our understanding of the nature of these shifts
and their behavior in different predictive tasks and settings. It will be necessary to build software

packages to enable the careful custom analysis presented in Chapter 3 to be replicated at scale.

Chapter 4. There are many potential extensions of our rank-based compatibility work. The most
obvious next step would be to study how model updating impacts clinical user expectations. We
may find that clinical users do not experience the same performance degradation when updates do
not meet their expectations. A human subject study would also enable us to understand how well

the rank-based compatibility measure aligns with real human expectations. It would be ideal to
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study this in a clinical setting with clinical users. However, it may be dangerous to conduct this
study in a manner that would impact clinical care. Thus a simulation or a survey methodology may
need to be employed. Either way, this study would require many resources and careful design.
Additionally, it would involve a time frame beyond the scope of this dissertation. This work might
be suitable for a longer-term study supported by an NIH grant.

Another direction of future work would be to understand how model updates may be made
over time. The model updating decision is not singular; instead, it can be thought of as a process
where models are trained, implemented, and updated continuously over time. This process’s goal
is always to use the model that best supports the user-model team performance. Suppose model
developers can update models over time. In that case, the decisions about which models to choose
and when to update them will depend on compatibility and other factors, like performance and
implementation costs. Further study is needed to uncover the best way to drive this decision-
making process.

There are additional methodological extensions of this work to consider. The rank-based com-
patibility and its updating methodology are focused on global compatibility. By focusing on indi-
vidual users and their experience with the model, there may be additional flexibility in generating
compatible updated models.

Another exciting area of future direction is to clarify and optimize the role of model users,
model implementers, and model developers. Currently, the roles and relationships between these
parties are unclear. Clear governance structures and roles may help to improve model develop-
ment and implementation processes. Moreover, it may also help ensure that models are designed
and function in the desired manner. We present the task of monitoring model performance as an
example.

We argue that the task of model performance is the responsibility of at least three parties, the
model developers, the model implementers, and the model users. Each of these parties has differing
access and perspectives on the implemented model. The model developer likely has the best initial
understanding of the model’s functionality and may be best suited for identifying different failure
modes. For example, in retrospective validation studies, the model may show weak performance
in specific subpopulations. Thus, the model’s performance on these subpopulations should be
monitored prospectively.

The model implementer may have the best understanding of the infrastructure on which the
model runs prospectively. They may be responsible for run-time monitoring issues. For exam-
ple, during technical integration testing, the model implementer may note that the model takes a
long time to run. If infrastructure is modified this may mean that some patients may not receive
predictions from the model because of extended model run times.

Finally, users should be encouraged to monitor model performance and report issues they ob-
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serve. Clinical users have the greatest chance of catching model mistakes as they happen. Even
if model users do not fully understand the underlying model, they should be able to raise patient
safety issues or suggest ways for models to be improved. Ultimately, if users do not believe a
model to be well suited for their clinical use, they may choose to ignore its predictions. In order
to avoid this, we must address user performance concerns. We can enable this by building strong

feedback loops from model users to model developers.

Conclusion

We look forward to building upon the work presented in this thesis; the three technical chapters
provide a foundation to explore the intersection of ML for healthcare further. These chapters each
contribute to the body of knowledge in this area. Chapter 2 assessed the value of longitudinal ob-
servations in the context of RTW prediction. Chapter 3 formalized the concept of the prospective
performance gap and its constituent components. Chapter 4 presented a rank-based compatibility
measure and development procedure to assess and engineer updated risk stratification models. Al-
though they focused on developing and implementing ML models for different clinical prediction
tasks, they all share a particular focus on the longitudinal nature of medicine. We believe there
is still much to explore about how healthcare ML models act and react to the inherently temporal
nature of medicine. This work has the potential to increase the efficiency of healthcare systems,

aid physicians, and most importantly, improve patient care.
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APPENDIX A

Appendix For Chapter 2

A.1 Details for Main Study

In this section, we provide additional details for the main study presented in Chapter 2.

A.1.1 Problem Setup & Related Work
Return to Work Literature

As mentioned above, in the United States, Ols affect millions of patients annually and cost hun-
dreds of billions of dollars. The actual burden of these injuries is likely to be significantly under-
estimated. [34-36, 173] In addition to physical symptoms, patients with OIs often experience
complicating psycho-social issues, like depression However, these issues are rarely detected or
treated. [174] Together, these factors incentivize patients, workplaces, physicians, and payers to
understand the amount of time a patient will be away from work to help minimize it eventually.
There have been many retrospective studies that seek to identify factors affecting RTW. Signif-
icant factors include patient demographics, injury-related, professional, workplace-related, treat-
ment, and psycho-social factors. [S1, 53, 54, 71, 72] Examples of specific elements are highlighted
in Table A.1. Predictors of shortened RTW duration include job control, work ability, perceived
(good) health, and high socio-economic status. Some predictors of lengthened RTW duration in-
clude job strain, anxiety/depression, comorbidities, older age, and educational attainment. [73, 74]
These studies provide a view into how RTW is shaped by various factors across patients, work-
places, and injuries. However, the findings from these studies cannot easily be generalized across
large populations of injured patients. This is due to 1) a specific focus on injury subpopulations
and 2) the use of specially collected data. The focus on specific injury subpopulations, such as
patients who experience a lumbar disc herniation, prevent findings from generalizing across the

population of OlIs. [72] Specially collected data, like many of the variables presented in Table
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Table A.1: Factor groups and specific factors that are related to RTW duration.

Factor Group Specific Examples

Patient Demographics Age, Functional status, Medical comorbidities

Injury severity, Body region affected,

Injury-Related Number of hospitalizations, Work ability

Level of education, Type of work,

Professional . . .
Union membership, Compensation

Workplace arrangements, Physical demands,
Workplace-Related Perception of injury relatedness to work,
Job control, Job strain

Treatment Opioid prescriptions

Self-efficacy, Recovery-expectations,
Psycho-social Mental health comorbidities,
Perceived health, Socio-economic status

A.1, must be collected from patients, providers, or workplaces with special research workflows.
[51,53,54,71, 72]

RTW modeling has traditionally taken the form of a time-to-event prediction task. Much of the
modeling work done in this field treats RTW as a single event. In this setup, model developers
seek to predict the time of RTW when a patient is initially injured. The most prevalent modeling
technique used for this approach is the Cox proportional hazards model. There have been examples
of time to RTW using hazard models, with slight modifications to predict the length of receiving
benefits and to identify prolonged claims. [51-54]

ML techniques, like decision trees, naive Bayes, and gradient boosted machines, have been
used for problems related to RTW. They are not routinely used for the prediction of RTW, which
is dominated by the time-to-event approach, and the major work is focused on ancillary prediction
tasks. Two examples include appropriate rehabilitation intervention selection, where ML tech-
niques out-perform clinicians, and classification of patient final disposition (e.g., eventually return
or never return). [175, 176]

Even though ML is not heavily utilized for RTW prediction, it has seen increased usage in the
greater field of OI, specifically for use in automated injury coding. For example, ML models have
been used in construction-related injuries to retrieve injury etiology from free-text reports auto-
matically. [177] These models can potentially augment human-based injury surveillance systems,
classify injuries and intervention categories, and guide prevention efforts and policy. [178-180]

From this existing literature, we note that RTW prediction has several potential avenues for
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further exploration. First, models are generally made for specific diseases with custom collected
data. Second, is that RTW models are generally based on static time-to-event prediction, designed
for usage just at the time of injury, and incapable of handling newly observed information.

Modeling specific injuries through custom research databases helps physicians to refine their
understanding of patient recovery from those injuries. However, it limits the overall utility of mod-
els. We seek to build a model that can be used for the multitude of Ols that patients experience,
so we must employ a dataset representative of this variety. This dataset must be relatively uni-
versal in terms of its availability and its representation of patient injuries and recoveries. Gross
et al. [175]’s work on ML-assisted rehabilitation intervention selection utilizes data from an ad-
ministrative database. [175] Statewide administrative databases of workers’ compensation claims
represent a potential avenue for accessible and routinely collected data regarding patient injuries.
[181] These databases have been shown to have high concordance with BLS occupational injury
statistics and thus are a source of relatively high-quality large-scale data. [182]

RTW duration predictions made at the injury onset are helpful for patients, workplaces, physi-
cians, and payers. This information helps set patients expectations, allows workplaces to plan, and
helps physicians and payers categorize patients and plan for eventual resource usage. However, the
value of this information degrades over time. Plans made with initial predictions must be updated
without the guidance of validated models, and there are no tools to directly compare the trajectory
of a patient currently recovering to that of historical patients.

We could alleviate the issues by employing RTW prediction models that update over time.
Barriers to creating dynamic models for patient conditions have included small data-set sizes,
methodological constraints, and insufficient hardware. However, these constraints have recently
been overcome. [58] Recently, several related dynamic prediction models have been published,
helping physicians to screen for traumatic brain injuries, assess risk factors for recovery from non-
work-related injury, and predict the need for hospitalization in pediatric asthma exacerbations.
[183-185]

Sequence-to-Sequence Learning Models

We seek to present a new approach to modeling RTW prediction that can be used dynamically,
unlike the existing static time-to-event framework. This new approach would treat the input as a
sequence of information and the outputs as a related sequence of information. The input sequence
is all of the longitudinal observations collected on a patient. The output sequence can take several
forms, either directly predicting the time-to-event of RTW or estimating probabilities of RTW at
future time points. Thus, we have two sequences. The desired task is to sequentially predict the
outcome sequence given the observation sequence, a sequence-to-sequence prediction task.

Markov chains are a well-studied modeling technique for sequences consisting of a series of
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states, s;, over time, . A Markov Chain is a stochastic process that enforces a conditional distribu-
tion between the current state, s;, and the future state s,, ;. It assumes that given the current state,
s¢, the future state, s;.1, is independent of all past states sg, S1, ..., S;—1. This means that future
states are only dependent on the current state. [77, 186, 187] Markov models are widely used in
medicine due to their elegant structure and ease of clinical interpretability. They have been used to
model immune responses, cancer outcomes, and to analyze the histories of patients with strokes.
[188-192]

A notable extension of the Markov chain is that of the hidden Markov model (HMM), which en-
ables the modeling of a sequence of observed signals generated from an unobserved (hidden) series
of states. HMMs are frequently used to study sequences generated from systems with stochastic-
ity. They have been used throughout medicine, from studying protein sequences, analyzing human
movement, and predicting treatment decisions. [75, 193—195] For a more thorough review of the
theory and application of Markov models to problems of longitudinal data analysis, see Bartolucci
et al. [78].

Despite their wide use, Markov chains are limited by their underlying formulation, which re-
stricts the sequential dependence of s;; to only s;. More complicated processes can be trans-
formed into a Markov chain formulation by redefinition of the states. [186] Thus, fixed-length
histories can be embedded into the current state, allowing for the representation of history by state-
space expansion. Time-homogeneity is often a fundamental assumption, as the probability of tran-
sitioning to s, depends only on s;, independent of the current time-step unless this dependence
is represented using the state-space.

The observations for patients returning to work are of exceptionally high cardinality, as they
include several types of categorical variables that may take on many possible values. An exam-
ple of this is diagnosis. There are thousands of possible diagnoses for patients injured at work.
Additionally, on any given day, patients may have zero, one, or more diagnosis codes assigned
to them. Treatment is another high-cardinality category. The timing and order of treatments may
impact the recovery of an injured patient. Thus, history beyond the current observation may prove
important in modeling RTW. This high cardinality and history dependence make Markov models
ill-suited for the task. We could reduce this cardinality by restricting the problem definition to a
specific disease (e.g., lower back sprain). Or we could use category groups to lower the cardinality
of high cardinality categories. However, both these approaches demand a great deal of clinician
time. Clinicians may need to manually group categories or suggest reasonable ways to reduce the
scope. Additionally, this would counter our goal of creating a general model. Instead, we have
turned to a series of techniques from deep learning to help address these challenges.

Deep Learning offers a set of alternatives to Markov models. Deep learning methods have

gained popularity in recent years due to improved hardware performance, the ubiquity of large
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datasets, and the availability of high-quality deep learning frameworks, such as TensorFlow and
PyTorch. [88, 196] RNNs are a class of deep learning based sequential prediction modeling tech-
niques. RNNs can selectively store information in a vector called the hidden state. They can pass
the hidden state to future time steps and update it as needed. [57] According to Goodfellow “RNNs
are useful when we believe that the distribution [of the outcome] may depend on a value of [an
input] from the distant past in a way that is not captured by the effect of [a one-step transition].”
[58] They may also be used for sequence labeling. [59]

Thus, RNNs have desirable properties that may increase potential model performance compared
to other approaches. RNNs can model long-range dependencies as the hidden state generated can
store any observed information instead of being limited to the previous time step. They can also
express a larger hidden state space than Markov chain based models. [60] RNNs have been very
successful in speech recognition and natural language processing. [197] While not as pervasive as
Markov chain based models in medicine, they have been successfully used to predict heart failure
onset and events in clinical event occurrence. [198, 199] One notable recent project utilizing RNNSs,
was a study conducted by the Google Deep Mind Health team that created a model to dynamically
predict acute kidney injury in hospitalized patients. [200]

RNNSs can become increasingly difficult to train due to error signals vanishing or exploding
when conducting training. This problem is exacerbated by the length of time between signals.
[201, 202] Though this is not a problem for every application of standard RNNs, there exist sev-
eral modifications of standard RNNs to help overcome these issues: Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU). LSTMs include alterations in how the hidden state
is computed, allowing models to explicitly forget previous information and input new informa-
tion. [203-205] GRUs share this modification; however, the forget/input operations are combined,
reducing the number of parameters in the model, thus potentially making them easier to train.
[206-208]

Deep learning allows models to learn feature representations as a part of model training. A deep
learning feature representation technique called word embeddings enables models to naturally learn
groups of category values when handling high cardinality categorical values. [79-83]

Categorical values are often embedded in a fixed-size vector, where the components are binary.
One hot encoding is a particularly popular approach as it ensures that each category is treated
independently. Unfortunately, these approaches scale linearly with the category dimension and
do not allow for learning encoding of knowledge between categories. Word embeddings map
category values to real-valued vectors, which can be updated throughout training. After training,
similar categories will be closer to one another in this representation space than other categories.

Once learned, embeddings can be reused and interrogated for their representational meaning.
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A.1.2 Methods
A.1.2.1 Data Variable Details

Characteristic Data. Each injury, ¢, has a vector of characteristics, c;, composed of a real char-
acteristic data vector ¢ and a categorical data encoding vector c¢’. For each injury 4, ¢! represents
a vector of real numbers of size dcfi; c¢ represents a vector of positive integers encoding character-
istic information from high-cardinality categorical data. As a part of the overall learning process,
representations of these categories will also be learned. We have employed these high-cardinality
encodings to represent job codes, of which there are hundreds. The choice to encode data as high-
cardinality categories is left to the model developer; however, the number of features encoded in
this manner is denoted as dC?' The characteristic vector, c;, is the concatenation of cf and cl-c for
each worker, ¢; = (c£, c{).

Longitudinal Observation Data. For every injury 7 and time-step ¢ there is a vector of longi-
tudinal observations, o;;. Three components may be represented by the longitudinal observation
vector: a real observation data vector oft of size d,r, a high-cardinality category observation vec-
tor oft of size d,c and the current work status value OXZ (optional). To highlight the utility of
other observational data, we chose not to include the current health-state in the observation data
for this work. Note: the dimension of these observation vectors is constant across time. Like the
high-cardinality characteristic data, representations of these categories will be learned through the
training process. Examples of observational data encoded as high-cardinality categories are diag-
noses and procedure codes. Each of these categories have thousands of unique values. [209] We
denote vector o, ; as the concatenation of oft and ogt for each worker, o;; = (of} ogt).

it

A.1.2.2 Evaluation

area under the receiver operating characteristic curve: computed on a per prediction day
basis. Experiments that reweighted predictions such that every injury contributed equally (i.e. each

prediction is weighted 1/ (injury case duration)) yielded similar results in preliminary experiments.

Expected calibration error: computed by calculating a calibration curve with 5 uniformly sized
bins, which we then grouped the daily predictions into, and then calculated the fraction of those
instances positive (future work status = Working). These were used to generate calibration curves.

The mean squared error of these curves were used to compute their ECE.

Window-level Evaluation: The daily predictions were used to calculate performance measures.

We use this window-level approach (also known as the time-horizon approach [5]) as model users
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can intervene on patients daily. In Figure A.1, we show an example of how this calculation takes

place.
Patient Day/Timestep Future Work Estimated
(i) (t) Status Probability
(Vie) (Pr(y;: =1))

=)o

2 1 0 0.17
2 2 0 0.19
2 73 1 0.73
2 74 1 0.74

=ie

99 1 0 0.10
99 2 0 0.13
99 47 1 0.69
99 48 0 0.66

101 1 0 0.45
101 2 1 0.51
101 67 1 0.79
101 68 1 0.81

Figure A.1: Example Window-Level Evaluation. All daily predictions for the patients in the eval-
uation dataset are aggregated into a vector (right-most column) and compared against the ground
truth future work status vector (second column from the right). All daily predictions contribute

equally to the calculation of the evaluation measures.



Proposed Baseline
Model Model

Yes

No
Observation
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No
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Figure A.2: Flowchart Showing the Relationship Between Time and Longitudinal Observations.
For a given patient, ¢, at time-step, ¢, we generate x;; for every time-step using characteristic, c;,
and observation data, o, ;. Let’s say that categorical two values are observed over time representing
diagnosis and procedure, d(oR) = 2. We now highlight the difference between the proposed and
baseline model. For the proposed models, the input if there were no observations observed on a
given time-step, ¢, we have o,; = (0,0), which represents two missing observations. Because the
baseline model represents approaches currently in use, where predictions are based on information
only available near the time of injury, we need some mechanism to replicate this. Thus, the baseline
model has an additional check. If the time-step is after the 7th, day we automatically censor all the
observations with the missing observation vector.

A.1.3 Experiments & Results
A.1.3.1 Experimental Setup

Data preprocessing: Observations (Diagnoses & Procedures). The raw injury claims data has
information about diagnoses and information about procedures. Both sets of information have
dates and codes denoting the procedure and diagnostic information observed for a worker’s in-
jury. In addition to the dates and procedure codes, the raw procedure data also contains procedure
diagnosis codes. These diagnoses that justify the rationale for ordering (thus and billing for) the
procedure code. When encoding the procedure information, we intentionally stripped the proce-
dure diagnosis codes as these are unconfirmed diagnoses, and their addition adds computational
complexity to the model.
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We only used the diagnosis codes that came from the raw diagnosis data. These diagnosis
codes may have different observation timestamps than the procedures. These codes generally are
documented after procedure codes and usually after the first week of an injury occurring. This

explains why we observed 0 for the number of diagnoses observations in the baseline model.

Data preprocessing: TemporalTransformer. Observation and Characteristic data were pro-
cessed by the TemporalTransformer package (GitHub). The configuration used to process the
injury claims data is shown in Section A.3.2. The transformation was conducted with the fol-
lowing settings: no data filtering (fit_filter percentile cutoff = 0.0) and a high-
cardinality category channel size of 1 (has_time _hdc_channels = 1). This second setting
dictated that if multiple of the same type of high-cardinality observations (e.g., multiple diagnoses)
were observed on the same day only, 1 would be passed to the model. This observation was chosen

randomly.

High-cardinality category embeddings. Embeddings were configured based on the training
set. We mapped high-cardinality category values to integer indices (from 1 to n, where n =
cardinality(category)). Two additional index tokens were added, 0 and n + 1, enhancing the ob-
servation representations. The 0 index token represents a missing observation (e.g., no observation
of that high-cardinality category at the time-step for the given injury). In addition to preserving the
structure of inputs for the neural network, it also allows the proposed model to assign meaning to
missing observations. The 0 token was used to censor observations beyond the seventh day for the
baseline model. This usage of the missing observation token depicted in Figure 4 A.2.

The n + 1 index token represents an observation value of “other.” During training, “other” may
be a catchall for extremely infrequent category values. And during testing, category values that
have never previously been observed will be replaced with “other.” Since we did not use the filter
setting of TemporalTransformer, this “other” token was not employed during training. It was used
at inference time, potentially slightly negatively impacting performance

High-cardinality category embeddings: we utilized the quarter-power rule of thumb [83] to
automatically size the real valued embeddings based on the cardinality of the category. The number
of index tokens (2 + cardinality(category)) is the input dimension of the embedding. We raised
this to the quarter power, rounded, and added 1 to determine the embedding’s output dimension

(the dimension of the embedding each category value maps to).

output dimension = round (input dimension/*) + 1

In Table A.2, we catalog the input and output dimensions of the embeddings used in our approach.
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https://github.com/eotles/TemporalTransformer

Table A.2: Model High-Cardinality Category Embedding Information. For each high-cardinality
category, we show the observed input dimension (from the training dataset), the output dimen-
sion, and the total number of parameters needed for this embedding. The input dimension is
2 + cardinality(category). For example, in the training dataset, TemporalTransformer observed
564 unique job code values. It then added 2 special category index-tokens, for a total input dimen-
sion of 566. Using our modified quarter-power rule, TemporalTransformer determined the 6 as the
ideal output dimension for the job code category. Multiplying the input dimension with the output
dimension yields 3, 396, the total number of parameters needed to embed the job code category.

High-cardinality Input Output Embedding
Category Dimension Dimension Parameters
Job Code 566 6 3,396
Diagnoses Code 1,679 7 11,753
Procedure Code 3,832 9 34,488

Hyperparameters We conducted an extensive hyperparameter search using the training dataset
for both the proposed and baseline models. We used the Hyperband hyperparameter search method.
We optimized hyperparameter selection based on the AUROC on the development set. [86] For
Hyperband search, we used a factor of 3 and a maximum of 8 training epochs for each trial. Both
models had access to the same hyperparameter space, shown in Table A.3.

After hyperparameter selection, each model was then trained for up to 30 epochs (there was
potential for early stopping as we set epoch improvement patience to 5). The best-performing
model in terms of development dataset AUROC performance was saved at the end of each epoch.

This procedure yielded the final proposed and baseline models used in the evaluation.

Table A.3: Hyperparameter Search Values. Several hyperparameter search values were layer de-
pendent and conditional on other search values. These are denoted with *. For example, the size
and activations of each layer in f,,(-) (the out sub-model) are determined independently after
number of Out Layers is determined. The only limitation to this scheme was that the RNN layers
did not have an activation search — they utilized the default Keras LSTM layer activation.

Hyperparameter Search Values
Activations* {linear, relu, elu, tanh}
Widths* (16,32, 64, 128}
Initial Dropout {0.0,0.1,0.2,0.3,0.4,0.5}
Hidden Layer Dropout  {0.0,0.1,0.2,0.3,0.4,0.5}
Number of In Layers {0,1,2}
Number of RNN Layers {1,2}
Number of Out Layers {0,1,2}
Learning Rate {le —2,1e — 3,1e — 4}
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A.1.3.2 Population Characteristics Details

Table A.4: Top 10 Most Frequent Job Codes. The entire dataset contained 595 unique job codes.
The number of injuries with each job code is shown, along with the count column and percentage
of injuries. Note that over 10% of the injuries occurred in workers with jobs tied to a municipality
(city, county, and school districts). Restaurant, healthcare, and manufacturing jobs are among the
top 10 most frequent job codes. Job Descriptions were found by searching for Ohio-specific NCCI

or job codes. We conducted this search in June 2021.

Job Code Description Job Code Count %0
City employees* ™! 9431 13,604 4.63%
Restaurants? 9082 11,843 4.03%
Local school districts™> 0434 9,675 3.29%
Nursing Or Convalescent Home—all Employees* 8829 9,569 3.25%
Automobile—service Or Repair Center & Drivers® 8380 9,011 3.06%
Restaurant: Fast Food® 9083 8,151 2.77%
County employees™’ 9430 6,802 2.31%
Machine Shop Noc? 3632 6,655 2.26%
Metal Stamped Goods Mfg. Noc’ 3400 5,604 191%
Plastics Mfg.—laminated Molded Products Noc!® 4484 5,517 1.88%

£

1
2 https://www.workerscompensationclasscodes.com/2017/11/30/restaurant/
3

4

employees

https://www.insurancexdate.com/classreport.php?search=8380&state=OH
https://www.insurancexdate.com/class/OH/5g0y/restaurant-fast-food

5
6
7
8 https://www.insurancexdate.com/class/OH/rXMS5/machine-shop-noc
9

Denotes “all employees & clerical, clerical telecommuter, salespersons, drivers.”
https://www.bwc.ohio.gov/downloads/blankpdf//oac4123-17-72appendixe.pdf

https://www.bwc.ohio.gov/downloads/blankpdf//oac4123-17-34appendixa.pdf
https://www.insurancexdate.com/class/OH/nM5 X/nursing-or-convalescent-home-all-

https://www.bwc.ohio.gov/downloads/blankpdf/oac4123-17-72appendixe.pdf

https://www.insurancexdate.com/class/OH/V glD/metal-stamped-goods-mfg-noc

10 https://www.insurancexdate.com/class/OH/ggM9/plastics-mfg-laminated-molded-products-

noc
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Table A.5: Top 10 Most Frequent Diagnosis Codes. The entire dataset contained 2,292 unique
diagnosis codes. The number of observations with the diagnosis code is shown, along with the
count and percentage of all diagnosis observations (403,931 in total). Back sprains account for
over 18% of all diagnoses, and hand wounds account for over 10%. Leg, knee, ankle, and foot
sprains were also in the top 10 most frequent diagnosis codes. Diagnosis Code Descriptions were
found by searching for www.icd9data.com for the ICD-9 diagnosis codes. [210] We conducted

this search in June 2021.

Diagnosis Code Descriptions Diagnosis Code Count %0
Open wound of finger(s)! 883 35,859 8.77%
Sprain of lumbar ™2 847.2 24,096 5.89%
Sprains & strains of other and unspecified parts of back® 847 14,029 3.43%
Sprains & strains of unspecified site of shoulder & upper arm* 840.9 13,306 3.25%
Sprains & strains of sacroiliac region’ 846 12,863 3.15%
Sprain of thoracic™® 847.1 12,368 3.02%
Sprains & strains of ankle & foot’ 845 11,296 2.76%
Sprains & strains of unspecified site of knee & leg® 844.9 10,480 2.56%
Open wound of hand except finger(s) alone’ 882 10,016 2.45%
Contusion of knee'° 924.11 9912 2.42%

*

Denotes sub-category of “Sprains and strains of other and unspecified parts of back.”
http://www.icd9data.com/2012/Volume 1/800-999/880-887/883/default.htm
http://www.icd9data.com/2012/Volume1/800-999/840-848/847/847.2.htm
http://www.icd9data.com/2014/Volume1/800-999/840-848/847/default.htm
http://www.icd9data.com/2014/Volume1/800-999/840-848/840/840.9.htm
http://www.icd9data.com/2012/Volume 1/800-999/840-848/846/default.htm
http://www.icd9data.com/2014/Volume1/800-999/840-848/847/847.1.htm
http://www.icd9data.com/2013/Volume1/800-999/840-848/845/845.htm
http://www.icd9data.com/2014/Volume 1/800-999/840-848/844/844.9.htm
http://www.icd9data.com/2014/Volume1/800-999/880-887/882/default.htm
10 http://www.icd9data.com/2014/Volume 1/800-999/920-924/924/924.11 htm
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A.2 Simpler Model Architectures

The deep learning architecture we explore in this study is capable of learning complex temporal
relationships. However, this complexity comes at a cost in terms of interpretability. Specifically,
it can be difficult to understand the importance of features. Using a simpler model architecture,
we can examine the importance of the individual features. This feature examination enables us to

tease apart the contribution of characteristic vs. longitudinal observation features.

A.2.1 Methods

This section examines two simpler model architectures: 1) L2-penalized logistic regression and
2) random forest regression.[212, 213] Logistic regression presents one of the most straightfor-
ward architectures possible, allowing us to directly examine coefficient values to understand the
importance of various features. Random forest regression represents a middle ground with addi-
tional complexity. A sense of its behavior can be established by directly examining some of the
component trees of the random forest ensemble.

Training these models requires a deviation from the formulation presented in the main methods.
The primary deviation is the removal of the encoded history vector ljl“g Building this encoded
history introduces significant complexity to the model, reducing our ability to examine the direct
impact of individual features. Instead, we use a simpler architecture that directly maps a modified
encoding of the worker’s input features, X; ;, to the probability of the worker’s future work status,
Yir, formally: Pr(yi: = 1) = fadditiona(X’). This architecture modifies how we encode the input
feature vector and abandons the encoded history vector flm. To create the modified input feature
encoding X; ; we re-scale real values to range between 0 and 1 (converting them from their standard
normally scaling). We modify category encoding so that all categories are encoded with one-
hot encoding (we contrast this with x;;, which employs word embeddings for high-cardinality
categories).

The changes to the input feature encoding and removal of the encoded history vector changes
enable us to understand the impact of specific features more directly. However, these changes may

come at a cost to predictive performance.

A.2.2 Experiments & Results

Questions. We examine two related questions with these simpler model architectures.

1. Does the utilization of longitudinal observations by the proposed model provide any benefits

in the prediction of future work status? (Section A.2.2.2, Figure A.3)
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2. Which features are the most important for the simpler model architectures utilizing longitu-
dinal observations? (Section A.2.2.3, Table A.9, Figure A.4 and Figure A.5)

A.2.2.1 Experimental Setup

We use the same train/validation/test dataset split and the same offset value of 7 days (¢ = 7). We
then trained L2-penalized logistic regression and random forest models using the training dataset.
The validation dataset was used to aid in the hyperparameter grid search. The hyperparameter
search space for both model architectures is displayed in Table A.7. As in the primary methods,
we train “baseline” versions of these models, which only utilize characteristic data and do not

include longitudinal observations.

Table A.7: Simple Model Architecture Hyperparameter Search Values.

Model Architecture Hyperparameter  Search Values

Logistic Regression C {1E — 4, ..., 1F4}
Random Forest Max Depth {2,5,7,9}
N Trees {5,10, 15,20}

A.2.2.2 Performance

The predictive performance for the best models found for both model architectures are displayed
in Figure A.3. We note that the discriminative performance of all the simpler model architecture
is smaller than the model proposed in the main methods. Additionally, we note that for each model
architecture, the models utilizing the longitudinal observations outperform the baseline models,
which only use the static characteristic data.

The performance results for these simpler model architectures also suggests that the longitudinal
observation information may be valuable for predicting future work status. However, this analysis

does not directly tell us the value of the longitudinal data.

A.2.2.3 Feature Importance

To understand the importance of the features, we conduct two additional analyses using the simpler
model architectures. The first involves examining the learned model, and the second consists of a
feature evaluation technique.

We examine the learned models, fuq4itiona; in terms of their direct inputs, the modified input

feature encoding, x;;, composed of 4, 868 encoded features. For the logistic regression architec-
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Figure A.3: Performance for Simpler Model Architectures.
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ture, the top 25 encoded features, in terms of absolute coefficient value, are displayed in Table A.9.
Since all the encoded feature values are restricted between 0 and 1, we can compare these values
to determine their relative weight in generating the predictions. Of these 25 top encoded features,
9 are longitudinal observation encoded features. Since a substantial portion of the top 25 encoded
features are longitudinal observations, this further suggests the value of longitudinal observations.

We can conduct a similar examination of the model learned with the random forest architecture.
Instead of examining the model’s coefficients, we plot one of the regression trees in Figure A.4. In
this tree, encoded Procedure Codes features play an important role. The first node of both example
trees splits based on the encoded feature Procedure Code = Empty (e.g., if a procedure code was
observed or not). Many other Procedure Code splits occur further down the example trees. These
nodes all correspond to splits using longitudinal observation features. The relative simplicity of
these model architectures allows us to easily observe the relative importance of the longitudinal

observations.
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Table A.9: Coefficient Values for Logistic Regression Model. These coefficients correspond to
the values used by f,qaitionar Operating on the modified input feature encoding, S{Qt Bolded lines
denote features that are longitudinal observations.

Encoded Feature Name . Absolute
Coefficient

TableName/FeatureName_Value Coefficient
characteristic_dem/age —13.33810 13.33810
characteristic_dem/job_4233 —4.51670 4.51670
characteristic_dem/job_6102 —4.31268 4.31268
samples_pr/count —4.27146 4.27146
characteristic_dem/job_3000 —4.25290 4.25290
characteristic_dem/job_6005 —4.00636 4.00636
characteristic_dem/job_7771 —3.83329 3.83329
characteristic_.dem/job_2913 —3.83070 3.83070
characteristic_dem/job_2131 3.23588 3.23588
samples_dx/count —3.11486 3.11486
samples_pr/concat_cd_w0105 —3.03534 3.03534
characteristic_dem/job_2063 —2.96478 2.96478
samples_pr/concat_cd 99232 —2.94987 2.94987
samples_pr/concat_cd_99231 —2.94126 2.94126
characteristic_dem/job__empty_ —2.90068 2.90068
characteristic_dem/job_2211 2.82609 2.82609
samples_pr/concat_cd_w0120 —2.73202 2.73202
characteristic_dem/job_1642 2.72051 2.72051
characteristic_dem/job_2000 —2.62837 2.62837
samples_pr/concat_cd 90718 2.44883 2.44883
samples_pr/concat_cd_90471 2.44060 2.44060
samples_pr/concat_cd w0179 —2.40318 2.40318
characteristic_dem/job_3152 2.39431 2.39431
characteristic_dem/job_5905 2.36187 2.36187
characteristic_dem/job_8102 —2.34343 2.34343

This simplicity enables direct examination of these models. Additionally, it allows relatively
fast inference (compared to the proposed model). This speed and the removal of the history encod-
ing enables an additional avenue for feature evaluation called permutation importance. Permuta-

tion importance allows model developers to understand the importance each features being used by

117



comparing the model’s performance on the test dataset against its performance on the same dataset
where the feature of interest has randomly been permuted among all the instances.[214]

For the permutation importance analysis, we conducted the permutations on the un-encoded
features (at the level of x; ; as opposed to the modified input feature encoding x; ;). This enables us
to understand the impact of categorical variables as a single unit. We present plots of permutation
importance in terms of the difference in discriminative performance (AUROC) with 10 replications
in Figure A.5. We can see that for the logistic regression model, the top three most important
features at the level of z;; are Job Code, Procedure Code, and Age, with a mean difference in
AUROC values of 0.049 (standard deviation: 1.9F — 4), 0.031 (1.0E — 4), and 0.021 (1.4E — 4)
respectively. Of these, the Procedure Code is a longitudinal observation variable. For the random
forest, the top three most important features are Procedure Code 0.033 (1.0£ — 4), Age 0.030
(2.3E — 4), and Job Code 0.011 (5.1F — 5).

These experiments on the simpler model architectures help to underscore the importance of
the longitudinal observations for this predictive task. Their results reinforce that the differences
in predictive performance observed between the proposed and baseline model arise due to the

longitudinal observations’ value.
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A.3 Data Definition and TemporalTransformer Configuration

A.3.1 Data Definition

We briefly describe the longitudinal claims dataset we employed for this study. Although the data
arrived in a single . csv file, it is best represented by a relational database structure. We converted
the data to a series of tables and then used our TemporalTransformer package to process the data

in preparation for ML tasks. The tables are now described in the following paragraphs.

characteristic._dem!: describes non-longitudinal demographic information about each in-
jured worker. Contains one row per patient. Has four columns: i_id, age, sex, and job. i_id
is a unique key that identifies each injured worker. age is an integer value. sex is a categorical
variable representing male, female, and other. job is a categorical variable representing job type
(see Table A.4 for additional description).

samples dx: describes longitudinal observation information (samples) about the diagnoses
each injured worker received over time. Contains many rows per patient, each row represents
a diagnosis being given to an injured worker. Has four columns: i_id, i_st (start time), i_et
(end time), and dx. i_id connects the observation to the injured worker. i _st represents the date
at which the diagnosis is given. i_et is the day after the date of the diagnosis being given.’dx is a
categorical variable representing ICD-9 diagnosis codes (see Table A.5 for an additional descrip-

tion).

samples pr: describes longitudinal observation information (samples) about the procedures
each injured worker received over time. Contains many rows per patient, each represents a pro-
cedure being given to an injured worker. Has four columns: i_id, i_st, i_et, and cd. i_id,
i_st, and i_et are all defined as per above. cd represents CPT procedure codes (see Table A.6

for an additional description).

A.3.2 TemporalTransformer Configuration

Below is the data transformation configuration provided to Temporal Transformer. Although Tem-

poralTransformer now has the functionality to handle timestamp representations of time, the initial

I characteristic is misspelled in some of our pre-processing code as “characterisitic”. This misspelling is corrected
in the main text and supplemental.

>The TemporalTransformer framework allows for observations to span across time-points (e.g., across days), by
setting the i_et (end time) to the day after i_st (start time), we represent an observation that occurred on the day of
the start time.
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version of TemporalTransformer we used for this project used integer representation of time. As
such, we recorded observation timestamps to integers representing the number of days since injury.
Note, TemporalTransformer now has a time discretization parameter dt. However, at the time of
this work dt was a default parameter set to 1 that was not exposed to end-users.

ds is a dataset is an object which contains each of the separate datasets (e.g., train, development,
test). This dataset can then be used with TemporalTransformer’s Prepper module to automatically
build a model with the proper in a f;,(+) and f,,;(-) components given some user definition for the
history encoder ( f,,:q(+))-
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e

Example python code
Provided under a polyform strict license

given data:

partition_data { lists of lists (lol), where each list has injury id (i_id)
and dataset partion name (e.g. train/dev/test)

characteristic_dem { lol, where each list has i_id, age, sex, and job code

sample _dx { lol, where each list has i_1id, observation start time (i_st),
observation end time (i_et), and the diagnosis code

sample_pr - lol, where each list has i_1id, i_st, i_et, and the procedure code

From TemporalTransformer import Hopper

From TemporalTransformer import Prepper

h = Hopper.dbms (verbose=False)
h.set_partitions (partition_data)

tc = Hopper.table_config("characteristic_dem",
["age", "sex", "job"],
["real", llldcll, "hdc"],
has_times=False,
primary_key=True)

h.create_fvm_with_data(tc, characteristic_dem)

_tc = Hopper.table_config("samples_dx",

["dx"],

["hdc"],
has_times=True,
primary_key=False)

h.create_fvm_with_data(_tc, sample_dx)

tc = Hopper.table_config("samples_pr",

["cd"],

["hdc"],
has_times=True,
primary_key=False)

h.create_fvm_with_data(_tc, sample_pr)

h.dew_it (fit_normalization_via_sqgl_qgds=False,
default_first=0,
fit_filter_percentile_cutoff=0.0)

p = Prepper.tf_prepper (h)

p.fit (offsets=[7],

label_ fns=["samples_ws/avg_ws", 1,
partition="train",
ignore_fns=["samples_ws/avg_ws", "samples_ws/count"],

has_time_hdc_channels=1)

ds = p.transform_to_ds ()

Program A.1: Temporal Transformer Configuration Code. Used to prepare and transform longitu-
dinal claims data for use with RNNs.
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Figure A.5: Permutation Importance For Simpler Model Architectures. The difference in AUROC
was plotted for 10 replications of permutation importance for each of the x; ; level features. Bolded
features correspond to longitudinal observation information.
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APPENDIX B

Appendix For Chapter 3

B.1 Feature Groups

Feature groups are a grouping of features that have a shared meaning or source. We utilize them
to pinpoint sources of discrepancies between the prospective and retrospective pipelines. Feature
groups may be composed of other feature groups, Table B.1 displays this hierarchical aspect of
feature groups. For example, feature group “Idx: Admission Details” contains the feature groups

“Idx: Admission Type” and “Idx: Insurance Type”.

Table B.1: Feature Groups and Their Descriptions. Feature groups are hierarchical, with two ma-
jor categories Demographics and Clinical Characteristics. Demographics are generally static
patient-level attributes. Clinical characteristics are dependent on time and may change through-
out an encounter. Clinical characteristics may also be broken into two major categories, based on
which encounters the information is tied to: historical encounters or index encounters. Historical
encounter information may be denoted in the main text with a “Hx” prefix and represents infor-
mation collected in the encounters leading up to the current encounter. This history look-back is
limited to 90 days. The index encounter information pertains to the current encounter and may be
denoted with the “Id” prefix. Descriptions of each feature group are provided, along with the num-
ber of features included in this feature group. Various levels of feature group hierarchical structure
are employed depending on the analysis.

Feature Group Number of Features
Demographics 124
Age 5
Gender
Race 8
Marital Status
County & State 102

Continued on next page
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Table B.1 — Continued from previous page

Feature Group Number of Features

Body Mass Index 5
Clinical Characteristics

Historical Encounters (Hx)

History of CDI 2
Previous Encounters (stats) 10
Number of Previous Encounters 3
Length of Stay 7
Diagnoses (Diagnosis-Related Group/ICD9/ICD10) 983
Medications 2,731
Medication 1,886
Ingredient 620
Class 225
Index Encounter (Idx)

Admission Details 22
Admission Type 3
Patient Type 12
Insurance Type 6
Emergency Visit 1

In-Hospital Locations 932

Vital Sign Measurements 17

Laboratory Results 508

Medications 2,731
Medication 1,879
Ingredient 629
Class 223

Colonization Pressure 10
Unit-based

Hospital-wide
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B.2 Infrastructure Performance Gap Analysis

Table B.2: Infrastructure Performance Gap Analysis - Full Feature Swap Performance. By swap-
ping column values corresponding to feature groups between swap analysis between X, and X/,
we were able to quantify the performance impact of differences in the infrastructure related to each
feature group. Note, this analysis was conducted at an interim time-point of our study. As such, it
only uses data from July 10th to December 21st for both D,,, and D.,. In addition to the feature
group name, and the number of features in each feature group we display the AUROC on D,,,, after
the feature swap. Originally, we observed an AUROC of 0.769 on D,,,, the final column displays
the difference between this value after the swap and the 0.769. Hx: Medications, Idx: Medications,
and In-Hospital Locations were the feature groups that had the largest positive swap difference in
terms of AUROC, corresponding to improved model performance when given feature information

from the retrospective pipeline.

Feature Category AUROC After Swap Difference
Hx: Medications 0.787 0.018
Idx: Medications 0.774 0.005
Idx: In-Hospital Locations 0.772 0.003
Hx: Previous Encounters (Length of Stay) 0.770 0.001
Demographics (Body Mass Index) 0.770 0.001
Demographics (County & State) 0.770 0.001
Idx: Colonization Pressure 0.770 0.001
Demographics (Race) 0.769 0.000
Idx: Admission Details (Emergency Visit) 0.769 0.000
Demographics (Gender) 0.769 0.000
Hx: History of CDI 0.769 0.000
Idx: Admission Details (Patient Type) 0.769 0.000
Demographics (Age) 0.769 0.000
Demographics (Marital Status) 0.769 0.000
Idx: Admission Details (Admission Type) 0.769 0.000
Idx: Admission Details (Insurance Type) 0.769 0.000
Hx: Previous Encounters (Number of Previous Encounters) 0.769 0.000
Idx: Laboratory Results 0.768 -0.001
Hx: Diagnoses 0.767 -0.002
Idx: Vitals 0.766 -0.003

Descriptions of feature groups can be found in Table B.1.
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B.3 Model Performance Pre vs During COVID-19

To measure the impact of COVID-19 on model performance, we look at monthly AUROC per-
formance before and during COVID-19 in Figure B.1. We notice that performance pre-Covid is
generally lower than during Covid except April, which has long error bars due to small cases.
We hypothesize the improved performance during Covid may be due to a simplification of the
task. Our task is to predict hospital-associated CDI. However, our method for distinguishing
between hospital-associated vs community-associated/recurrent, hospital-associated is dictated
by guidelines that may or may not always reflect ground truth. We hypothesize that the in-
creased contact precautions led to fewer hospital-associated cases and relatively more community-
associated/recurrent cases. The latter is easier to identify because it only requires identifying sus-

ceptibility versus susceptibility and exposure.

1.0

® Pre-Covid (Mar-Dec ’19) +

® During Covid (Mar-Dec ’20)

0-5 I I I

@‘bﬁ V"Q& @‘bﬂ /509 ﬁ& Yy‘ﬁo C\OQJQ Qv $04 QQJ
Month

Figure B.1: Impact of COVID-19 Pandemic on Model Performance. Monthly performance of
model in 2019 vs 2020 to show trends in performance before and during COVID-19. We see that
performance is slightly higher during COVID-19.
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B.4 ’18-’19 Retrospective Validation

All validation datasets include encounters from July 10th to June 30th of the following year. After
applying inclusion criteria, the *18-"19 retrospective validation set consisted of 26,450 hospital en-
counters. Population characteristics are detailed in Table B.3. It should be noted that the *18-"19
time period overlaps with the model validation period in 2018. This means that feature distribu-
tions from 2018 were used to help inform the decision to discard rare features. Applied to the
retrospective validation data from *18-’19, the risk prediction model achieved AUROCsS of 0.794
(95% CI: 0.767, 0.823) (Figure B.2). Selecting a decision threshold based on the 95th percentile of
risk from the training set and applying on ’18-"19 led to positive predictive values of 0.045, 0.036,
and 0.027, respectively (Figure B.3). Monthly performance for *18-"19 is displayed in Figure B.4.

Table B.3: ’18-"19 Cohort Characteristics.

18-’19

n=26,450
Median Age (IQR) 59 (41, 70)
Female (%) 51%
Median Length of Stay (IQR) 54,9
History of CDI in the past year (%) 1.7%
Incidence Rate of CDI (%) 0.7%
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Figure B.2: Risk Prediction Model AUROC on the Retrospective *18-"19 Validation Dataset.
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Figure B.3: Risk Prediction Model Confusion Matrix on the Retrospective *18-’19 Validation
Dataset.
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Figure B.4: Monthly AUROC Performance. AUROC for *20-’21 prospective dataset and the *19-
’20 retrospective dataset broken down by month and bootstrap sampled 1, 000 times to generate
95% confidence intervals. We see that performance fluctuates month by month with higher perfor-
mance in January, February, and April. There appear to be some monthly trends in performance
across the years. Similar to *19-’20, we see lower, less variable scores in the later months of the
year with higher and more variable scores in the earlier months.
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APPENDIX C

Appendix For Chapter 4

C.1 Experiments & Results

C.1.1 Experimental Setup
C.1.1.1 Implementation in TensorFlow

All models were implemented as logistic regression models trained using stochastic gradient de-
scent in TensorFlow. [88] Example code demonstrating the original and updated model training

procedure is highlighted in Program C.1.

C.2 Results

C.2.0.1 Scoping Analysis

In order to guide selection of dataset size and L2 regularization weights for the main experimental
setup we conducted a scoping experiment using the MIMIC-III dataset. We trained L2 regularized
logistic regression models using a variety of dataset sizes, ranging from 100 to 3000 patients,
and a variety of regularization weights {E' — 5, F — 4, ..., E4, E5} as well as no regularization.
We measured the AU ROC' performance of these models on a held-out validation dataset. This
procedure was repeated five times in order to calculated the mean validation AU ROC'. Results are

summarized in Figure C.1.

C.2.0.2 Hyperparameter Sensitivity Analyses

Due to the size of the MIMIC-III dataset experiments requiring many replications take a great
deal of time. As such, we used another publicly available healthcare dataset to build original and
updated risk stratification models. This dataset was the Kaggle Stroke Prediction dataset.
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[

Example python code

Provided under a ##*x license

e

from sklearn import model_selection
from scipy import sparse

import numpy as np

_Xtr = sparse.load_npz('data/mortality/s_Xtr.npz').toarray/()

_Xte

= sparse.load_npz('data/mortality/s_Xte.npz') .toarray ()

_ytr = np.load('data/mortality/_ytr.npy")

_yte

= np.load('data/mortality/_yte.npy"')

size_o, size_ou_d = 0.15, 0.8
=0.8

X_o, X_u, y_o, y_u = model_selection.train_test_split (Xtr, ytr, train_size=size_o)
X _od, X oe, y_od, y_oe = model_selection.train_test_split(X_o, y_o, train_size=size_ou_d)
X_ud, X_ue, y_ud, y_ue = model_selection.train_test_split(X_u, y_u, train_size=size_ou_d)

alpha_list = 0.5
size_od_prime, size_ud_prime = 200, 3000

res = []
for f_o_rep in tgdm(range(n_f_o_reps)):

X_od_prime, _, y_od_prime,

X_ud_prime, _, y_ud_prime,

_ = model_selection.train_test_split(X_od, y_od,

train_size=size_od_prime)

_ = model_selection.train_test_split(X_ud, y_ud,

train_size=size_ud_prime)

f_o = OriginalLRModel ()
f_o.fit (X _od_prime, y_od_prime)

p_hat_o_ud_prime = f_o.predict_proba (X_ud_prime)
p_hat_o_ue = f_o.predict_proba (X_ue)
p_hat_o_e = f_o.predict_proba (X_e)

auroc_o_ue = metrics.roc_auc_score(y_ue, p_hat_o_ue)
auroc_o_e = metrics.roc_auc_score(y_e, p_hat_o_e)

f_u = UpdatelLRModelExact (loss_function_weight=alpha,
incompatibility_loss_weight=1-alpha)
f_u.fit (X _ud_prime, y_ud_prime, p_hat_o_ud_prime)

p_hat_u_ue = f_u.predict_proba (X_ue)
p_hat_u_e = f_u.predict_proba (X_e)

auroc_u_ue = metrics.roc_auc_score(y_ue, p_hat_u_ue)
auroc_u_e = metrics.roc_auc_score(y_e, p_hat_u_e)
compat_ue = cm.np_pr_btc_score(y_ue, p_hat_o_ue, p_hat_u_ue)
compat_e = cm.np_pr_btc_score(y_e, p_hat_o_e, p_hat_u_e)
_res = {'f_o_rep': f_o_rep,

'"AUROC (f_o, ue)': auroc_o_ue,

'"AUROC (f_u, ue)': auroc_u_ue,

'"AUROC (f_o, e)': auroc_o_e,

'"AUROC (f_u, e)': auroc_u_e,

'C"R(ue)': compat_ue,

'C"R': compat_e,
}

res.append(_res)

Program C.1: Data Setup and Model-Pair Training.

133



0.85 4

0.80 1

0.75 A

0.70 4

0.65 1

E4.0

0.55 1 E5.0

Mean Model Validation AUROC

0.50 1

0.45 A

0 500 1000 1500 2000 2500 3000
Size of Model Developement Dataset

Figure C.1: Mean AU ROC' Performance vs. Dataset Size and L2 Regularization Weight.

Using this dataset we get similar results, showing the utility of using the engineered update loss

function.

Initialization. The primary experiment involves randomly initializing the weights (~ U[0,0.01])
each updated model being trained. This means that each of the updated models trained with the
engineered update loss function (e.g., at each « value) have different initial starting points. In order
to assess the robustness of the engineered update loss function to initialization we conducted an
additional experiment where we examined the impact of having all updated models for the same
original model has the same initialization.

This experiment had 1 original model created, then the updated model creation process was
replicated 100 times. This was done by randomly generating an initialization (all weights and the
bias terms were randomly sampled uniformly between —0.1 and 0.1) and using this for all updates
generated for the same original model. We controlled other hyperparameters (such as dataset
sampling for the updated model, solver, epochs, etc. ) by keeping them static for this experiment.

In Figure C.2 we see that using the same initialization for all updated models yields similar

results to the primary experiment, where updated models have different initialization.

Solver. The experiments presented in this work use the Adam solver. In order to assess the
robustness of the engineered update loss function to choice of solver we conducted an additional

experiment where we examined the impact of solver being used for updated model training.
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Figure C.2: Performance and C® of Engineered Model Updates with Same Initialization. We see
behavior similar to what the primary experiment where models have different initialization.

This experiment had 1 original model created, then the updated model creation process was
replicated 10 times. Updated model creation used the engineered update loss function with o =
0.5. We controlled other hyperparameters (such as dataset sampling for the updated model, epochs,
etc. ) by keeping them static for this experiment, the only sources of variation were the ordering of
data during training and updated model initialization. In addition to Adam two other solvers were
tested: RMSProp and SGD.

In Figure C.3 we see Adam and SGD yield results that are not statistically different for either
AUROC of C®. RMSProp produces a statistically significant lower value in terms of C® compared
to Adam, but is not different in terms of AUROC.

Epochs. The experiments presented in this work use 100 epochs for the updated model training.
In order to assess the robustness of the results presented we examined the impact of varying the
number of epochs used to train updated models.

This experiment had 1 original model created, then the updated model creation process was
replicated 10 times. Updated model creation used the engineered update loss function with o =
0.5. For each replication we trained an updated model with the number of epochs varied between
1 and 10000 ({1, 10, 20, 50, 100, 200, 500, 1000, 10000}). We controlled other hyperparameters
(such as dataset sampling for the updated model, solver, efc. ) by keeping them static for this
experiment, the only sources of variation were the ordering of data during training and updated

model initialization.

135



0.01
L Median
0.99 = Mean
| 95% CI 0.01
0.99 i 4
0.99 %
- 0.01 1
= e h
S =)
-
0.99 = 4
b 0.01 i
0991 |
0.01
0.99
RMSIprop adalim sgld RMSIprop adzlim 5gld
Solver Solver

Figure C.3: Performance and C® of Engineered Model Updates with Same Different Solvers.
We see Adam and SGD yield results that are not statistically different for either AUROC of CR.
RMSProp produces a statistically significant lower value in terms of C® compared to Adam, but is
not different in terms of AUROC.

In Figure C.4 we see variation in solutions up until a certain number of epochs. Once the
updated model is trained with 50 epochs there appears to be little change in the resultant updated

model.

Early Stopping The experiments presented in this work use 100 epochs with early stopping for
the updated model training. Early stopping utilizes a patience parameter, which determines how
many epochs it will permit observing increasing loss values before stopping. We utilize a patience
value of 5. In order to assess the robustness of the results presented in relation to this patience value
we varied the patience hyperparameter and assessed the impact to the updated model trained.

This experiment had 1 original model created, then the updated model creation process was
replicated 10 times. Updated model creation used the engineered update loss function with o =
0.5. For each replication we trained an updated model with the batch size varied between 8 and
128 ({8, 16, 32,64, 128}). We controlled other hyperparameters (such as dataset sampling for the
updated model, solver, efc. ) by keeping them static for this experiment, the only sources of
variation were the ordering of data during training and updated model initialization.

In Figure C.5 we only see large variation in solutions when using patience= 0.

Batch Size The experiments presented in this work use a batch size of 32 for the updated model

training. To test the sensitivity of the results presented to batch size 32 we varied the batch size
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Figure C.4: Performance and C* of Engineered Model Updates with Respect to Epochs. We see
variation in solutions up until a certain number of epochs. Once the updated model is trained with
50 epochs there appears to be little change in the resultant updated model.
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Figure C.5: Performance and C* of Engineered Model Updates with Respect to Patience. We only
only see large variation in solutions when using patience= 0.

and assessed the impact to the updated model trained.
This experiment had 1 original model created, then the updated model creation process was
replicated 10 times. Updated model creation used the engineered update loss function with @ =

0.5. For each replication we trained an updated model with the atch size varied between 0 and
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20 ({0,1,3,5,7,10,15,20}). We controlled other hyperparameters (such as dataset sampling for
the updated model, solver, etc. ) by keeping them static for this experiment, the only sources of
variation were the ordering of data during training and updated model initialization.

In Figure C.5 we see that both AAU ROC and C® vary as a function of batch size. AAU ROC
decreases as a function of batch size, whereas C® increases. Batch size determines how many
patient-pairs are evaluated in terms of ranking simultaneously. This then may make the LE com-
ponent have lower values at training time when given larger batch sizes, this may in turn lead the
model to emphasize better rank-based compatibility over discriminative performance.

The value we use, 32, may represent a “happy medium” between the competing effects. When
training models using the engineered update loss function special attention should be paid to this

parameter.
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Figure C.6: Performance and C® of Engineered Model Updates with Respect to Batch Size.
AAUROC decreases as a function of batch size, whereas C* increases.

Spreading Hyperparameter, s We employ a set spreading hyperparameter value of s = 100
for all our updated model training. In order to assess the robustness of the results presented we
examined the impact of varying the s used to train updated models.

This experiment had 1 original model created, then the updated model creation process was
replicated 10 times. Updated model creation used the engineered update loss function with
a = 0.5. For each replication we trained an updated model with s varied between 1 and 10°
({1,10,100, 10%,10*,10°}). We controlled other hyperparameters (such as dataset sampling for

the updated model, solver, efc. ) by keeping them static for this experiment, the only sources of
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variation were the ordering of data during training and updated model initialization.

In Figure C.7 we see that both AAUROC and C® vary as a function of s. Small values of
s produce larger AAU ROC values and smaller C®. Mid values of s produce larger AAU ROC
values and smaller C®. Finally large values of s lead to large variation in AAU ROC' values and
smaller C®. s controls the steepness of the gradient used in the model training procedure. When
the gradient becomes too steep the model training procedure may suffer from numerical instability.

The value we use, s = 100, may represent a “happy medium” between the competing effects,
and we believe this may be a good value to use generally. However, depending on the use-case

model developers may want to consider tuning this hyperparameter.
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Figure C.7: Performance and C® of Engineered Model Updates with Respect to Spreading Hyper-
parameter, s. AAU ROC' decreases as a function of batch size, whereas C® increases.

C.3 Other Updated Model Selection Approaches

In addition to selecting a the selection model based on the best AUROC observed on the updated
model validation dataset model developers may apply other selection criteria if they are seeking to

produce models with high levels of C® in addition. These approaches include selection based on:
e best validation C%
* best weighted combination of C* and C®

In figure C.8 we show the performance differences for these approaches. Additionally, we show

the performance for an aggressive baseline that selects a baseline model for each the engineered
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models by filtering out all models with AUROC:S less than the engineered model and then selecting

the best remaining model based on C®.
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Figure C.8: Performance Differences Between Optimization and Selection.
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