
Explorations of In-Context Reinforcement Learning

by

Ethan Brooks

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2024

Doctoral Committee:

Professor Satinder Singh, Chair
Professor Richard L. Lewis, Co-Chair
Professor Honglak Lee
Professor Rada Mihalcea
Professor Thad Polk

Ethan Brooks

ethanbro@umich.edu

ORCID iD: 0000-0003-2557-4994

© Ethan Brooks 2024

Dedication

I dedicate this thesis to my beloved family, who supported me emotionally, editori-

ally, and culinarily throughout this work. When I needed wisdom, you gave it. When

I needed comfort, you gave it. When I needed solitude, you gave it. When I needed

caffeine, you gave it. I can never repay the debt, but you have my endless love and

gratitude.

ii

Acknowledgements

I am deeply grateful for the many individuals and institutions that have supported me

on my journey through the doctoral program and ultimately made this dissertation

possible.

Toyota Research Institute My initial steps into the world of reinforcement

learning research were funded by the Toyota Research Institute. While their grant did

not directly support the work presented here, their early investment provided me with

invaluable resources and opportunities to explore the field and lay the groundwork for

my future research.

Defense Advanced Research Projects Agency (DARPA) The DARPA

L2M grant marked a pivotal moment in my development as a researcher. This fund-

ing enabled me to produce my first research paper and provided formative experience

in the practical work of training deep RL agents and producing scientific knowledge.

Moreover, the ideas explored during this project laid the foundation for my later work

on generalization, which forms a significant component of this dissertation.

DeepMind My internship at DeepMind was a transformative experience. Not

only did I develop the core components of Chapter 2 within this intellectually vibrant

setting, but I also had the opportunity to savor a culture of scientific excellence and

innovation that is unparalleled in my experience. The endless stream of mind-bending

iii

conversations with my brilliant colleagues planted seeds of ideas that continue to grow

and blossom. I would like to especially call out the incredible support and mentorship

of my manager Vlad Mnih, and my colleagues Misha Laskin, Sebastian Flennerhag,

and Alex Neitz.

My Labmates, My Intellectual and Emotional Pillars: No journey of

this magnitude can be undertaken alone. I owe an immense debt of gratitude to my

lab-mates, especially Chris Grimm, Zeyu Zhang, and Risto Vuori. Their unwavering

intellectual and emotional support throughout my PhD journey has been immeasur-

able. From enduring countless pitches of hair-brained ideas and providing insightful

feedback to fanning the flames of hope during the inevitable setbacks of research, they

have consistently supported and often challenged me to push my boundaries, making

this journey not only more rewarding but also far more fun.

My Advisors and my Committee Members Finally, I express my deepest

gratitude to my advisors, Professor Satinder Singh and Professor Rick Lewis, and to

the rest of my Committee. First, I am honored by and thankful for the time and feed-

back of my committee members, Professor Honglak Lee, Professor Rada Mihalcea, and

Professor Thad Polk. I am also so grateful for the first-class scientific education that

I received from Rick Lewis, who has been a constant sounding board throughout my

research journey, subjecting my ideas and my writing to meticulous examination and

providing invaluable critiques. His unwavering support, particularly in the final stretch

of my dissertation, has been truly indispensible.

iv

To Satinder, I owe a profound debt of gratitude. At times, he “imparted truth

and health in rough electric shocks.” But I came to recognize that what at first could

seem like inflexibility arose from an unwavering dedication to intellectual and scientific

excellence. I am incredibly fortunate to have benefited from his uncompromising critical

lens these past six years, a lens which saved me months of frustration by steering me

away from many a dead-end project. He challenged me to meet intellectual standards

that truly felt out of reach at the start of this journey, and for that he has my lifelong

gratitude.

To each and every one of you, my heartfelt thanks. Your support and guidance

have shaped me not only as a researcher but also as a person.

v

Table of Contents

Dedication ... ii

Acknowledgements .. iii

List of Figures ... ix

List of Acronyms ... xiii

Abstract .. xiv

1 Introduction .. 1

1.1 The Importance of Rapid Adaptation .. 1

1.2 Meta-Learning .. 2

1.3 In-Context Learning ... 2

1.4 Meta Reinforcement Learning .. 3

1.5 Meta-Learning Challenges .. 4

1.6 An Alternative Approach to In-Context Learning .. 5

1.7 Summary of Chapters ... 7

2 In-Context Policy Iteration ... 10

2.1 Related Work .. 11

2.2 Background ... 16

2.3 Method ... 17

vi

2.4 Experiments .. 25

2.5 Conclusion .. 34

3 Algorithm Distillation + Model-Based Planning .. 35

3.1 Introduction .. 35

3.2 Background ... 37

3.3 Method ... 39

3.4 Model Training ... 40

3.5 Downstream Evaluation .. 40

3.6 Policy improvement .. 41

3.7 Related Work .. 45

3.8 Experiments .. 46

3.9 Conclusion .. 56

4 Bellman Update Networks .. 57

4.1 Preliminaries ... 58

4.2 Proposed Method .. 59

4.3 Related Work .. 70

4.4 Experiments .. 71

4.5 Conclusion .. 81

5 Conclusion ... 83

5.1 Reinforcement Learning as a Method of Exploration and Discovery 84

5.2 Generalization and Memorization ... 87

5.3 The continued relevance of reinforcement learning and generalization 88

vii

5.4 Foundation models for reinforcement learning .. 90

Bibliography ... 92

viii

List of Figures

Figure 1: Diagram of procedure used to generate rollouts and select actions. 11

Figure 2: Illustration of prompts used to elicit the four models: from left to right, the

reward model, the transition model, the termination model, and the policy model. 21

Figure 7: Diagram of the policy improvement cycle. The replay buffer is fed by a

behavior policy. Next we sample the trajectories used in the policy prompt from recent

episodes in the buffer. By sampling recent episodes only, we try to keep the prompt

policy close to the behavior policy. Next, we rely on the language model to infer the

distribution of actions in the prompt and yield a similarly distributed action for our

rollout policy. Therefore the rollout policy approximates the prompt policy. Finally,

by choosing actions greedily with respect to our value estimates, we implement a new

behavior policy that improves the rollout policy. ... 22

Table 8: Table of models and training data. .. 22

Figure 9: Example prompts for each domain, showcasing the text format and hints

(hints in italics). ... 23

Figure 10: Illustration of the five of the domains used in our experiments. Distractor-

Chain is omitted for brevity. .. 25

Chain ... 25

Maze .. 25

ix

Mini-Catch ... 25

Mini-Invaders ... 25

Point-Mass ... 25

Figure 16: Comparison of ICPI with three baselines. ... 29

Figure 17: Comparison of ICPI with ablations. .. 30

Figure 18: Comparison of different language models used to implement ICPI. Note that

all other figures in this chapter use code-davinci-002 for ICPI. 34

Figure 19: Diagram of inputs and outputs for the ADPI architecture. For succinctness,

we omit the superscripts for the inputs. However, note that each of these transitions is

sampled from the same task and learning history. ... 40

Figure 20: Diagram of the policy improvement cycle. The behavior policy 𝜋 generates

new actions and the environment generates new transitions which are appended to

the front of the context window. By retaining only the most recent transitions in the

context window, we ensure that the policy represented in the context approximates

the behavior policy. Next, we rely on the policy improvement operator learned by the

transformer to infer the distribution of actions in the context and yield an improved

action for our rollout policy. Therefore the rollout policy approximates the prompt

policy. Finally, by choosing actions greedily with respect to our value estimates, we

implement a new behavior policy 𝜋′ that improves the rollout policy. 43

Figure 21: Top-down view of the grid-world environment. The agent must first visit

the key and then the door. Note that in many of our experiments, unseen walls are

added to the interstices between grid cells. .. 47

x

Figure 22: Evaluation on withheld location pairs. .. 48

Figure 23: Evaluation on fully withheld locations. ... 48

Figure 24: Generalization to higher percentages of walls. 50

Figure 25: Generalization to higher percentages of walls with guaranteed achievability.

50

Figure 26: Accuracy of model predictions over the course of an evaluation rollout. . 50

Figure 27: Impact of model error on performance, measured by introducing noise into

each component of the model’s predictions. ... 51

Figure 28: Impact of scaling the length of training of the source algorithm. 52

Figure 29: Impact of scaling the training data along the IID dimension. 53

Figure 30: Evaluation on the “Sparse-Point” environment. 54

Figure 31: Evaluation on the “Half-Cheetah Direction” domain. 54

Figure 32: Evaluation on the “Half-Cheetah Velocity” domain. 54

Figure 33: Sketch of inputs and outputs for the Bellman Network Architecture archi-

tecture. ... 61

Figure 34: Diagram of the Bellman Update Network architecture. 62

Figure 35: Diagram showing how Q-value estimates output by the Bellman Update

Network are converted back into value estimates and fed back into the network. ... 64

Figure 36: Visualization of the first three curriculum stages for training the Bellman

Update Network. .. 64

Figure 37: How causal masking prevents the model from attending to the action cor-

responding to the target Q-value. .. 65

xi

Figure 38: How the number of applications of the Bellman Update Network varies

inversely with the value of 𝛿. ... 69

Figure 39: Comparison of root mean-square error for training vs. testing. 72

Figure 40: Regret of improved policy in the 5 × 5 grid-world, for different values of 𝛿

and different numbers of omitted state-action pairs. ... 74

Figure 41: Root mean-square error on 5 × 5 grid-world with walls. 75

Figure 42: Regret of improved policy on 5 × 5 grid-world with walls. 75

Figure 43: Root mean-square error of Bellman Update Network trained without ground-

truth targets using Algorithm 4. .. 77

Figure 44: Example observation from Miniworld environment described in Sec-

tion 4.4.2.2 ... 77

Figure 45: In-context reinforcement learning curves for Bellman Update Network and

Conservative Q-Learning (CQL). ... 78

Figure 46: Predictions by the 𝛿 = 1 variant (left) and by CQL (right) on an offline

trajectory with cumulative return of 2. .. 81

Figure 47: Predictions by the 𝛿 = 1 variant (left) and by CQL (right) on an offline

trajectory with cumulative return of 0. .. 81

xii

List of Acronyms

AD: Algorithm Distillation

AD++: Algorithm Distillation ++

BUN: Bellman Update Network

GPT: Generative Pre-trained Transformer

GRU: Gated Recurrent Unit

ICPI: In-Context Policy Iteration

LSTM: Long Short-Term Memory unit

LLM: Large Language Model

RL: Reinforcement Learning

xiii

Abstract

In-Context Learning describes a form of learning that occurs when a model accumulates

information in its context or memory. For example, a Long Short-Term Memory unit

(LSTM) can rapidly adapt to a novel task as input/target exemplars are fed into it.

While in-context learning of this kind is not a new discovery, recent work has demon-

strated the capacity of large “foundation” models to acquire this ability “for free,” by

training on large quantities of semi-supervised data, without the sophisticated (but

often unstable) meta-objectives proposed by many earlier papers (Finn et al. 2017;

Rakelly et al. 2019; Stadie et al. 2018). In this work we explore several algorithms which

specialize in-context learning based on semi-supervised methods to the reinforcement

learning (RL) setting. In particular, we explore three approaches to in-context learning

of value (expected cumulative discounted reward).

The first of these methods demonstrates a method for implementing policy iter-

ation, a classic RL algorithm, using a pre-trained large language model (LLM). We use

the LLM to generate planning rollouts and extract monte-carlo estimates of value from

them. We demonstrate the method on several small, text-based domains and present

evidence that the LLM can generalize to unseen states, a key requirement of learning

in non-tabular settings.

xiv

The second method imports many of the ideas of the first, but trains a trans-

former model directly on offline RL data. We incorporate Algorithm Distillation (AD)

(Laskin et al. 2022), another method for in-context reinforcement learning that directly

distills the improvement operator from data that includes behavior ranging from ran-

dom to optimal. Our method combines the benefits of AD with the policy iteration

method proposed in our previous work and demonstrates benefits in performance and

generalization.

Our third method proposes a new method for estimating value. Like the previous

methods, this one implements a form of policy iteration, but eschews monte-carlo roll-

outs for a new approach to estimating value. We train a network to estimate Bellman

updates and iteratively feed its outputs back into itself until the estimate converges.

We find that this iterative approach improves the capability of the value estimates to

generalize and mitigates some of the instability of other offline methods.

xv

1 Introduction

1.1 The Importance of Rapid Adaptation

Deep neural networks optimized by gradient descent have defined the most pioneering

techniques of the last decade of machine learning research. While other architectures

may provide stronger guarantees, they often require certain assumptions such as lin-

earity, convexity, and smoothness that are not present in reality. As a result, researchers

have turned to general-purpose algorithms that make few assumptions about the func-

tions they approximate.

However, these algorithms’ generality comes at a cost: they learn slowly and re-

quire thousands or millions of gradient updates to converge. This contrasts with human

learners, who can quickly master new tasks after brief exposure. Rapid adaptation is a

key feature of human intelligence, allowing us to behave intelligently and develop new

skills in unfamiliar settings (Lake et al. 2017)

In principle, we can retrain a deep network for each new task it encounters.

However, this approach has several drawbacks. Retraining requires long interruptions

and specialized datasets or simulations, requirements which many realistic settings do

not support. Additionally, we may not be able to distinguish or define new tasks, mak-

ing it difficult to determine when to retrain and what task to retrain on. Finally, non-

1

stationary approaches to training neural networks are prone to various failure modes

(French 1999; Kirkpatrick et al. 2017)

1.2 Meta-Learning

These concerns have reinvigorated a subdiscipline called “meta-learning” (Schmidhuber

1987) within the deep learning community. Meta-learning produces learning algorithms

which acquire speed through specialization to a setting, similar to earlier optimization

algorithms. Unlike these algorithms which commit to a priori assumptions, meta-learn-

ing discovers the properties of its setting through trial-and-error interaction. It then

uses these properties to generate fast, on-the-fly learning algorithms.

In general, meta-learning algorithms have a hierarchical structure in which an

inner-loop optimizes performance on a specific task and an outer-loop optimizes the

learning procedure of the inner-loop. Some approaches use gradient updates for both

levels (Finn et al. 2017; Stadie et al. 2018), while others use gradients only for the

outer-loop and train some kind of learned update rule for the inner-loop.

1.3 In-Context Learning

A common approach to learning an update rule involves learning some representation

of each new experience of the task, along with the parameters of some operator that

aggregates these representations. For example, the RL2 (Duan et al. 2016) algorithm

uses the Long-Short Term Memory (LSTM, (Hochreiter and Schmidhuber 1997)) ar-

chitecture for aggregation. Others (Team et al. 2023) have used Transformers (Vaswani

2

et al. 2017a) in place of LSTMs. PEARL (Rakelly et al. 2019) uses a latent context

that accumulates representations of the agent’s observations in a product of Gaussian

factors.

We call this aggregated representation memory or context. In many settings,

one observes a rapid increase in performance as new experiences accumulate in the

context of a neural architecture. This increase in performance is what we call in-context

learning.

In the context of meta-learning, in-context learning corresponds to the inner-

loop, which rapidly adapts the learner to a specific task. However, not all in-con-

text learning uses the inner/outer-loop meta-learning formulation. Famously, GPT-3

(Brown et al. 2020a) demonstrated that a large language model developed the ability

to learn in-context as an emergent consequence of large-scale training. Another inter-

esting example of in-context learning outside of meta-learning is Algorithm Distillation

(Laskin et al. 2022), which demonstrates that a transformer trained on offline RL data

can distill and reproduce improvement operators from the algorithm that generated

the data.

1.4 Meta Reinforcement Learning

Meta reinforcement learning (meta-RL) is a subdiscipline of meta-learning which fo-

cuses on reinforcement learning (RL) tasks. Meta-RL typically targets multi-task set-

tings in which the agent cannot infer the current task from any single observation, but

must discover its properties through exploration. Existing literature (Finn et al. 2017;

3

Rakelly et al. 2019; Zintgraf et al. 2019) typically evaluates meta-RL agents in special

multi-trial episodes in which the agent’s state resets once per trial and multiple times

per episode, but the task remains the same. The agent must maximize cumulative or

final reward per episode, with optimal performance requiring the agent to exploit in

later trials information that was discovered in earlier trials.

This setting demands a different strategy than multi-task RL, in which a fully

trained agent exploits a near-optimal policy, even in held-out evaluation settings. A

meta-RL agent must learn to explore initially and later transition to exploitation. For

example, in a gridworld, efficient exploration may entail a circuitous search policy that

never revisits any state more than once. Meanwhile an exploitation policy moves in a

straight path toward some goal, which earlier exploration has revealed.

1.5 Meta-Learning Challenges

The outer/inner-loop meta-learning formulation is powerful and general. However, the

approach has difficulty scaling to complex problems with large task spaces. One of

the difficulties inherent in this form of meta-learning is the coupling of the inner- and

outer-loop optimizations. This causes instability in the learning process and forces the

meta-learning algorithm to search not only the space of task solutions, but also the

space of learning algorithms that might produce each solution. When signal is sparse

or the task space is large, the outer loop will often fail to make progress.

Meta-RL algorithms are also susceptible to a local minimum in which they fail to

recognize that the information yielded from exploration can inform an efficient exploita-

4

tion policy, remaining in a permanent suboptimal exploration mode. In our gridworld

setting, the agent might fail to recognize that the goal appears in the same location

in every trial of an episode, repeatedly searching for it instead of moving toward it

efficiently. AdA (Team et al. 2023) is one of the only meta-RL works to have scaled

this approach to complex domains, but only with the help of sophisticated curriculum

techniques which may not apply to all settings.

1.6 An Alternative Approach to In-Context Learning

This thesis explores a meta-RL in-context-learning methodology which decouples the

inner- and outer-loop by sending learning signal in one direction only, from the meta-

process to the inner process, and from an external dataset to the meta-process. Without

feedback from the inner process, the meta-process is unable to completely specialize

to the downstream, inner-process setting, which limits its ability to match traditional

meta-learning in terms of downstream efficiency, but yields other benefits. In particu-

lar, we note that our methods can leverage large pre-existing offline datasets but unlike

existing offline RL techniques (Fujimoto et al. 2019; Kumar et al. 2020), they permit

further interaction with and exploration of the environment. We defer the exact details

of our methods to later chapters, but offer a cursory sketch at this point.

1.6.1 Value Estimation

We use a model trained on offline data to make context-conditional predictions, that

we use to estimate state-action values. This stage of training involves standard gra-

5

dient-based optimization and is analogous to outer-loop optimization in a traditional

meta-learning algorithm, insofar as this stage distills priors in the model that support

rapid downstream learning. The inputs to the model contain information relating to

the environment dynamics, the reward function, and the current policy — the parame-

ters of a value estimate — and we train the model to condition its predictions on this

information. We explore various techniques to encourage the model to attend to this

context (in-context learning) as opposed to resorting to priors encoded in its weights

(in-weights learning). Chan et al. (2022b) provides further discussion of this distinction.

The model will then demonstrate some capability to generalize its predictions to unseen

downstream settings, as long as those settings are adequately represented in the inputs

and these inputs are similarly distributed to the inputs in the training dataset.

1.6.2 Policy Improvement

We target a meta-RL setting in which the agent is unable to perform optimally at the

start of an episode, due to limited knowledge of the task and environment. Our method

therefore requires some mechanism for improving the policy as information accumulates

through interaction. This stage of training does not use gradients and is analogous to

the inner-loop of a traditional meta-learning algorithm, insofar as it adapts the learner

to a specific task. To induce policy improvement, our method combines the classic

policy iteration algorithm with in-context learning techniques. At each timestep, we

use the method described in the previous paragraph to estimate the state-action value

6

of each action in the action space. We then choose the action with the highest value

estimate.

In general, policy iteration depends on a cycle in which actions are chosen greed-

ily with respect to value estimates and value estimates are updated to track the newly

improved policy. Our action selection method satisfies the first half of this formulation.

To satisfy the second, we condition our model’s predictions exclusively on data drawn

from recent interactions with the environment, which reflect or approximate the cur-

rent policy. As the policy improves, the behavioral data will capture this improvement,

the model’s predictions will reflect the improvement through this data, and the greedy

action selection strategy will produce an improvement cycle.

1.7 Summary of Chapters

1.7.1 In-Context Policy Iteration

Our first chapter explores a method that bootstraps a pre-existing large language model

— Codex (Chen et al. 2021a) — to produce value estimates. This work restricts itself

to a set of toy domains that can be translated into text. Instead of predicting value di-

rectly, a form of quantitative reasoning that would strain the capabilities of a language

model, our method uses simulated rollouts to generate monte-carlo estimations of value,

similar to Model-Predictive Control (Pan et al. 2022). The work presents a series of

prompting techniques for eliciting these predictions from a pre-trained language model.

7

Continuing our analogy to traditional meta-learning, the outer-loop corresponds

to the pretraining of Codex. Of the three methods that we present in this work, this is

the purest instantiation of the “one-way learning signal” formulation that we posited

earlier, since the dataset on which Codex was trained was completely agnostic to the

downstream tasks on which we evaluate our method. Nevertheless, we present evidence

that our method leverages commonsense pattern completion and numerical reasoning

distilled in Codex’s weights.

1.7.2 Algorithm Distillaion + Model-Based Planning

Our second chapter extends the first by training a new model from offline reinforcement

learning (RL) data instead of using an existing pre-trained language model. We demon-

strate that learning planning primitives from the offline data helps speed up training

and facilitate generalization to novel dynamics and reward functions. Additionally, we

demonstrate that in-context policy iteration can be used in conjunction with Algorithm

Distillation (Laskin et al. 2022), superimposing the policy improvement operators in-

duced by both methods.

1.7.3 Bellman Update Networks

Our final chapter, in which we propose future work, describes an alternative to the

monte-carlo rollout estimation technique used in the other two chapters. This chapter

advocates a method which directly optimizes the accuracy of value predictions, instead

of optimizing surrogate world-model predictions. We initially present a naive method

8

for estimating values with a single inference step, but contrast it with an iterative ap-

proach that learns to approximate individual Bellman updates and generates estimates

through repeated applications of the model.

9

2 In-Context Policy Iteration

In the context of Large Language Models (LLMs), in-context learning describes the

ability of these models to generalize to novel downstream tasks when prompted with a

small number of exemplars (Brown et al. 2020b; Lu et al. 2021). The introduction of

the Transformer architecture (Vaswani et al. 2017b) has significantly increased interest

in this phenomenon, since this architecture demonstrates much stronger generalization

capacity than its predecessors (Chan et al. 2022a). Another interesting property of in-

context learning in the case of large pre-trained models (or “foundation models”) is that

the models are not directly trained to optimize a meta-learning objective, but demon-

strate an emergent capacity to generalize (or at least specialize) to diverse downstream

task-distributions (Brown et al. 2020b; Chan et al. 2022a; Lu et al. 2021; Wei et al.

2022). A litany of existing work has explored methods for applying this remarkable ca-

pability to downstream tasks (see Section 2.1), including Reinforcement Learning (RL).

Most work in this area either (1) assumes access to expert demonstrations — collected

either from human experts (Baker et al. 2022; Huang et al. 2022a), or domain-specific

pre-trained RL agents (Chen et al. 2021b; Janner et al. 2021a; Lee et al. 2022; Reed et

al. 2022; Xu et al. 2022) — or (2) relies on gradient-based methods — e.g. fine-tuning

of the foundation models parameters as a whole (Baker et al. 2022; Lee et al. 2022;

Reed et al. 2022) or newly training an adapter layer or prefix vectors while keeping the

10

original foundation models frozen (Karimi Mahabadi et al. 2022; Li and Liang 2021;

Singh et al. 2022).

Our work presents an algorithm, In-Context Policy Iteration (ICPI) which re-

laxes these assumptions. ICPI is a form of policy iteration in which the prompt content

is the locus of learning. Because our method operates on the prompt itself rather than

the model parameters, we are able to avoid gradient methods. Furthermore, the use of

policy iteration frees us from expert demonstrations because suboptimal prompts can

be improved over the course of training.

We illustrate the algorithm empirically on six small illustrative RL tasks —

chain, distractor-chain, maze, mini-catch, mini-invaders, and point-mass — in which

the algorithm very quickly finds good policies. We also compare five pretrained Large

Language Models (LLMs), including two different size models trained on natural lan-

guage — OPT-30B and GPT-J — and three different sizes of a model trained on pro-

gram code — two sizes of Codex as well as InCoder. On our six domains, we find that

only the largest model (the code-davinci-001 variant of Codex) consistently demon-

strates learning.

2.1 Related Work

A common application of foundation models to RL involves tasks that have language

input, for example natural language instructions/goals (Garg et al. 2022; Hill et al.

2020) or text-based games (Ammanabrolu and Riedl 2021; Majumdar et al. 2020; Peng

et al. 2021; Singh et al. 2021). Another approach encodes RL trajectories into token

11

Figure 1: Diagram of procedure used to generate rollouts and select actions.

sequences, and processes them with a foundation model, and passes the model outputs

to deep RL architectures (Li et al. 2022; Tam et al. 2022; Tarasov et al. 2022). Finally,

a recent set of approaches (which we will focus on in this Related Work section) treat

RL as a sequence modeling problem and use the foundation model itself to predict

states or actions. In this related work section, we will focus on a third set of recent

approaches that treat reinforcement learning (RL) as a sequence modeling problem and

utilize foundation models for state prediction, action selection, and task completion.

We will organize our survey of these approaches based on how they elicit these RL-

relevant outputs from the foundation models. In this respect the approaches fall under

three broad categories: learning from demonstrations, specialization (via training or

finetuning), and context manipulation (in-context learning).

2.1.1 Learning from demonstrations

Many recent sequence-based approaches to reinforcement learning use demonstrations

that come either from human experts or pretrained RL agents. For example, Huang et

12

al. (2022a) use a frozen LLM as a planner for everyday household tasks by constructing

a prefix from human-generated task instructions, and then using the LLM to generate

instructions for new tasks. This work is extended by Huang et al. (2022b). Similarly,

Ahn et al. (2022) use a value function that is trained on human demonstrations to rank

candidate actions produced by an LLM. Baker et al. (2022) use human demonstrations

to train the foundation model itself: they use video recordings of human Minecraft

players to train a foundation model to play Minecraft. Works that rely on pretrained RL

agents include Janner et al. (2021a) who train a “Trajectory Transformer” to predict

trajectory sequences in continuous control tasks by using trajectories generated by pre-

trained agents, and Chen et al. (2021b), who use a dataset of offline trajectories to train

a “Decision Transformer” that predicts actions from state-action-reward sequences in

RL environments like Atari. Two approaches build on this method to improve general-

ization: Lee et al. (2022) use trajectories generated by a DQN agent to train a single

Decision Transformer that can play many Atari games, and Xu et al. (2022) use a

combination of human and artificial trajectories to train a Decision Transformer that

achieves few-shot generalization on continuous control tasks. Reed et al. (2022) take

task-generality a step farther and use datasets generated by pretrained agents to train

a multi-modal agent that performs a wide array of RL (e.g. Atari, continuous control)

and non-RL (e.g. image captioning, chat) tasks.

Some of the above works include non-expert demonstrations as well. Chen et al.

(2021b) include experiments with trajectories generated by random (as opposed to ex-

pert) policies. Lee et al. (2022) and Xu et al. (2022) also use datasets that include tra-

13

jectories generated by partially trained agents in addition to fully trained agents. Like

these works, our proposed method (ICPI) does not rely on expert demonstrations—

but we note two key differences between our approach and existing approaches. Firstly,

ICPI only consumes self-generated trajectories, so it does not require any demonstra-

tions (like Chen et al. (2021b) with random trajectories, but unlike Lee et al. (2022), Xu

et al. (2022), and the other approaches reviewed above). Secondly, ICPI relies primarily

on in-context learning rather than in-weights learning to achieve generalization (like

Xu et al. (2022), but unlike Chen et al. (2021b) & Lee et al. (2022)). For discussion

about in-weights vs. in-context learning see Chan et al. (2022a).

2.1.2 Gradient-based training & finetuning on RL tasks

Many approaches that use foundation models for RL involve specifically training or

fine-tuning on RL tasks. For example, Janner et al. (2021a), Chen et al. (2021b), Lee

et al. (2022), Xu et al. (2022), Baker et al. (2022), and Reed et al. (2022) all use models

that are trained from scratch on tasks of interest, and (Singh et al. 2022), Ahn et

al. (2022), and Huang et al. (2022b) combine frozen foundation models with trainable

components or adapters. In contrast, Huang et al. (2022a) use frozen foundation models

for planning, without training or fine-tuning on RL tasks. Like Huang et al. (2022a),

ICPI does not update the parameters of the foundation model, but relies on the frozen

model’s in-context learning abilities. However, ICPI gradually builds and improves the

prompts within the space defined by the given fixed text-format for observations, ac-

14

tions, and rewards (in contrast to Huang et al. (2022a), which uses the frozen model

to select good prompts from a given fixed library of goal/plan descriptions).

2.1.3 In-Context learning

Several recent papers have specifically studied in-context learning. Laskin et al. (2022)

demonstrates an approach to performing in-context reinforcement learning by training

a model on complete RL learning histories, demonstrating that the model actually dis-

tills the improvement operator of the source algorithm. Min et al. (2022) demonstrates

that LLMs can learn in-context, even when the labels in the prompt are randomized,

problemetizing the conventional understanding of in-context learning and showing that

label distribution is more important than label correctness. Chan et al. (2022a) and

Garg et al. (2022) provide analyses of the properties that drive in-context learning,

the first in the context of image classification, the second in the context of regression

onto a continuous function. These papers identify various properties, including “bursti-

ness,” model-size, and model-architecture, that in-context learning depends on. Chen

et al. (2022) studies the sensitivity of in-context learning to small perturbations of

the context. They propose a novel method that uses sensitivity as a proxy for model

certainty. Some recent work has explored iterative forms of in-context learning, similar

to our own. For example, Shinn et al. (2023) and Madaan et al. (2023) use iterative

self-refinement to improve the outputs of a large language model in a natural language

context. These approaches rely on the ability of the model to examine and critique its

own outputs, rather than using policy iteration as our method does.

15

2.2 Background

2.2.1.1 Markov Decision Processes

A Markov Decision Process (MDP) is a problem formulation in which an agent inter-

acts with an environment through actions, receiving rewards for each interaction. Each

action transitions the environment from some state to some other state and the agent

is provided observations which depend on this state (and from which the state can

usually be inferred). MDPs can be “fully” or “partially” observed. A fully observed

MDP is defined by the property that the distribution for each transition and reward is

fully conditioned on the current observation. In a partially observed MDP, the distri-

bution depends on history — some observations preceding the current one. The goal

of reinforcement learning is to discover a “policy” — a mapping from observations to

actions — which maximizes cumulative reward over time.

2.2.1.2 Model-Based Planning

A model is a function which approximates the transition and reward distributions of

the environment. Typically a model is not given but must be learned from experience

gathered through interaction with the environment. Model-Based Planning describes

a class of approaches to reinforcement learning which use a model to choose actions.

These approaches vary widely, but most take advantage of the fact that an accurate

model enables the agent to anticipate the consequences of an action before taking it in

the environment.

16

2.2.1.3 Policy Iteration

Policy iteration is a technique for improving a policy in which one estimates the values

for the current policy and then chooses actions greedily with respect to these value

estimates. This yields a new policy which is at least as good as the original policy

according to the policy improvement theorem (assuming that the value estimates are

correct). This process may be repeated indefinitely until convergence. To choose ac-

tions greedily with respect to the value estimates, there must be some mechanism for

estimating value conditioned not only on the current state and policy but also on an

arbitrary action. The “greedy” action choice corresponds to the action with the highest

value estimate. Policy iteration is possible if our value estimates are unbiased for any

state-action pair and for the current policy.

Algorithm 1: Training Loop

1: initialize 𝒟 ▷ Replay Buffer

2: while training do
3: 𝑥0 ← Reset environment ▷ Get initial state

4: for each timestep 𝑡 in episode do
5: 𝑎 ← argmax𝑎𝑄𝜋(𝑥𝑡, 𝑎) ▷ Choose action with highest value

6: 𝑟𝑡, 𝑏𝑡, 𝑥𝑡+1 ← step environment with 𝑎 ▷ Receive reward and next state

7: 𝒟← 𝒟∪ (𝑥𝑡, 𝑎𝑡, 𝑟𝑡, 𝑏𝑡) ▷ Add interaction to replay buffer

8: end for
9: end while

2.3 Method

How can standard policy iteration make use of in-context learning? Policy iteration

is either model-based (Section 2.2.1.2) — using a world-model to plan future trajecto-

ries in the environment — or model-free — inferring value-estimates without explicit

17

Algorithm 2: Computing Q-values

1: function 𝑄(𝑥𝑡, 𝑎,𝒟)
2: 𝑢 ← 𝑡
3: 𝑥1 ← 𝑥𝑡
4: 𝑎1 ← 𝑎𝑡
5: repeat
6: 𝒟𝑏 ∼ time-steps with action 𝑎𝑢
7: 𝑏𝑢 ∼ LLM(𝒟𝑏, 𝑥𝑢, 𝑎𝑢) ▷ model termination

8: 𝒟𝑟 ∼ time-steps with action 𝑎𝑢 and termination 𝑏𝑢
9: 𝑟𝑢 ∼ LLM(𝒟𝑏, 𝑥𝑢, 𝑎𝑢) ▷ model reward

10: 𝒟𝑥 ∼ time-steps with action 𝑎𝑢 and termination 𝑏𝑢
11: 𝑥𝑢+1 ∼ LLM(𝒟𝑥, 𝑥𝑢, 𝑎𝑢) ▷ model termination

12: 𝒟𝑎 ∼ 𝑐 recent trajectories
13: 𝑎𝑢+1 ∼ LLM(𝒟𝑎, 𝑥𝑢+1) ▷ model policy

14: 𝑢 ← 𝑢 + 1
15: until 𝑏𝑢 is terminal ▷ model predicts termination

16: 𝑄𝜋(𝑥𝑡, 𝑎) = ∑
𝑇
𝑢=𝑡 𝛾

𝑢−𝑡𝑟𝑢 ▷ Estimate value from rollout

17: end function

planning. Both methods can be realized with in-context learning. We choose model-

based learning because planned trajectories make the underlying logic of value-esti-

mates explicit to our foundation model backbone, providing a concrete instantiation of

a trajectory that realizes the values. This ties into recent work (Nye et al. 2021; Wei

et al. 2022) demonstrating that “chains of thought” can significantly improve few-shot

performance of foundation models.

Model-based RL requires two ingredients, a rollout-policy used to act during

planning and a world-model used to predict future rewards, terminations, and states.

Since our approach avoids any mutation of the foundation model’s parameters (this

would require gradients), we must instead induce the rollout-policy and the world-

model using in-context learning, i.e. by selecting appropriate prompts. We induce the

rollout-policy by prompting the foundation model with trajectories drawn from the

18

current (or recent) behavior policy (distinct from the rollout-policy). Similarly, we in-

duce the world-model by prompting the foundation models with transitions drawn

from the agent’s history of experience. Note that our approach assumes access to some

translation between the state-space of the environment and the medium (language,

images, etc.) of the foundation models. This explains how an algorithm might plan

and estimate values using a foundation model. It also explains how the rollout-policy

approximately tracks the behavior policy.

How does the policy improve? When acting in the environment (as opposed to

planning), we choose the action that maximizes the estimated Q-value from the cur-

rent state (see Algorithm 1, line 5). At time step 𝑡, the agent observes the state of

the environment (denoted 𝑥𝑡) and executes action 𝑎𝑡 = argmax𝑎∈𝒜𝑄𝜋𝑡(𝑥𝑡, 𝑎), where

𝒜 = [𝒜(1),…,𝒜(𝑛)] denotes the set of 𝑛 actions available, 𝜋𝑡 denotes the policy of the

agent at time step 𝑡, and 𝑄𝜋 denotes the Q-estimate for policy 𝜋. Taking the greedy

(argmax) actions with respect to 𝑄𝜋𝑡 implements a new and improved policy.

2.3.1 Computing Q-values

This section provides details on the prompts that we use in our computation of Q-

values (see Algorithm 2 pseudocode & Figure 1 rollout). During training, we main-

tain a buffer 𝒟 of transitions experienced by the agent. To compute 𝑄𝜋𝑡(𝑥𝑡, 𝑎)

at time step 𝑡 in the real-world we rollout a simulated trajectory 𝑥1 = 𝑥𝑡, 𝑎1 = 𝑎,

𝑟1, 𝑥2, 𝑎2, 𝑟2, …, 𝑥𝑇 , 𝑎𝑇 , 𝑟𝑇 , 𝑥𝑇+1 by predicting, at each simulation time

step 𝑢: reward 𝑟𝑢 ∼ LLM(𝒟𝑟, 𝑥𝑢, 𝑎𝑢); termination 𝑏𝑢 ∼ LLM(𝒟𝑏, 𝑥𝑢, 𝑎𝑢); observation

19

𝑥𝑢+1 ∼ LLM(𝒟𝑥, 𝑥𝑢, 𝑎𝑢); action 𝑎1 ∼ LLM(𝒟𝑎, 𝑥𝑢). Termination 𝑏𝑢 decides whether

the simulated trajectory ends at step 𝑢.

The prompts 𝒟𝑟, 𝒟𝑏 contain data sampled from the replay buffer. For each

prompt, we choose some subset of replay buffer transitions, shuffle them, convert them

to text (examples are provided in table Section 2.4.1) and clip the prompt at the 4000-

token Codex context limit. We use the same method for 𝒟𝑎, except that we use random

trajectory subsequences.

In order to maximize the relevance of the prompt contents to the current infer-

ence we select transitions using the following criteria. 𝒟𝑏 contains (𝑥𝑘, 𝑎𝑘, 𝑏𝑘) tuples

such that 𝑎𝑘 equals 𝑎𝑢, the action for which the LLM must infer termination. 𝒟𝑟 con-

tains (𝑥𝑘, 𝑎𝑘, 𝑟𝑘) tuples, again constraining 𝑎𝑘 = 𝑎𝑢 but also constraining 𝑏𝑘 = 𝑏𝑘—that

the tuple corresponds to a terminal time-step if the LLM inferred 𝑏𝑢 = true, and to a

non-terminal time-step if 𝑏𝑢 = false. For 𝒟𝑥, the prompt includes (𝑥𝑘, 𝑎𝑘𝑥𝑘 + 1) tuples

with 𝑎𝑘 = 𝑎𝑢 and 𝑏𝑘 = false (only non-terminal states need to be modelled).

We also maintain a balance of certain kinds of transitions in the prompt. For ter-

mination prediction, we balance terminal and non-terminal time-steps. Since non-ter-

minal time-steps far outnumber terminal time-steps, this eliminates a situation wherein

the randomly sampled prompt time-steps are entirely non-terminal, all but ensuring

that the LLM will predict non-termination. Similarly, for reward prediction, we balance

the number of time-steps corresponding to each reward value stored in 𝒟. In order to

balance two collections of unequal size, we take the smaller and duplicate randomly

chosen members until the sizes are equal.

20

In contrast to the other predictions, we condition the rollout policy on trajec-

tory subsequences, not individual time-steps. Prompting with sequences better enables

the foundation model to apprehend the logic behind a policy. Trajectory subsequences

consist of (𝑥𝑘, 𝑎𝑘) pairs, randomly clipped from the 𝑐 most recent trajectories. More

recent trajectories will, in general, demonstrate higher performance, since they come

from policies that have benefited from more rounds of improvement.

Finally, the Q-value estimate is simply the discounted sum of rewards for the

simulated episode. For examples of these prompts, see Figure 2. Given this description

of Q-value estimation, we now return to the concept of policy improvement.

Figure 2: Illustration of prompts used to elicit the four models: from left to right, the
reward model, the transition model, the termination model, and the policy model.

2.3.2 Policy-Improvement

The argmax (line 5 of Algorithm 1) drives policy improvement in Algorithm. Critically

this is not simply a one-step improvement but a mechanism that builds improvement

on top of improvement. This occurs through a cycle in which the argmax improves

behavior. The improved behavior is stored in the buffer 𝒟, and then used to condition

the rollout policy. This improves the returns generated by the LLM during planning

rollouts. These improved rollouts improve the Q-estimates for each action. Completing

21

the cycle, this improves the actions chosen by the argmax. Because this process feeds

into itself, it can drive improvement without bound until optimality is achieved. See

Figure 7 for an illustration of this cycle.

Figure 7: Diagram of the policy improvement cycle. The replay buffer is fed by a
behavior policy. Next we sample the trajectories used in the policy prompt from recent
episodes in the buffer. By sampling recent episodes only, we try to keep the prompt
policy close to the behavior policy. Next, we rely on the language model to infer the
distribution of actions in the prompt and yield a similarly distributed action for our
rollout policy. Therefore the rollout policy approximates the prompt policy. Finally,
by choosing actions greedily with respect to our value estimates, we implement a new

behavior policy that improves the rollout policy.

Note that this process takes advantage of properties specific to in-context learn-

ing. In particular, it relies on the assumption that the rollout policy, when prompted

with trajectories drawn from a mixture of policies, will approximate something like

an average of these policies. Given this assumption, the rollout policy will improve

with the improvement of the mixture of policies from which its prompt-trajectories are

drawn. This results in a kind of rapid policy improvement that works without any use

of gradients.

2.3.3 Prompt-Format

The LLM cannot take non-linguistic prompts, so our algorithm assumes access to a tex-

tual representation of the environment—of states, actions, terminations, and rewards

—and some way to recover the original action, termination, and reward values from

22

Model Parameters Training Data
GPT-J (Wang and Komat-
suzaki 2021)

6 billion “The Pile” (Gao et al. 2020), an 825GB
English corpus incl. Wikipedia, GitHub,
academic pubs

InCoder cite() 6.7 billion 159 GB of open-source StackOverflow
code

OPT-30B cite() 30 billion 180B tokens of predominantly English
data

Codex cite() 185 billion 179 GB of GitHub code

Table 8: Table of models and training data.

their textual representation (we do not attempt to recover states). Since our primary

results use the Codex language model (see Table 8), we use Python code to represent

these values (examples are available in Figure 9).

In our experiments, we discovered that the LLM world-model was unable to

reliably predict rewards, terminations, and next-states on some of the more difficult en-

vironments. We experimented with providing domain emphhints in the form of prompt

formats that make explicit useful information — similar to Chain of Thought Prompt-

ing . For example, for the emphchain domain, the hint includes an explicit comparison

(== or !=) of the current state with the goal state. Note that while hints are provided

in the initial context, the LLM must infer the hint content in rollouts generated from

this context.

We use a consistent idiom for rewards and terminations, namely assert reward

==

x and assert done or assert not done. Some decisions had to be made when represent-

ing states and actions. In general, we strove to use simple, idiomatic, concise Python.

On the more challenging environments, we did search over several options for the choice

23

Chain assert state == 6 and state != 4
state = left()

assert reward == 0

assert not done

Distractor assert state == (6, 3) and state != (4, 3)
state = left()

assert reward == 0

assert not done

Maze assert state == C(i=2, j=1) and state != C(i=1, j=0)
state, reward = left()

assert reward == 0

assert not done

Mini Catch assert paddle == C(2, 0)

 and ball == C(0, 4)

 and paddle.x == 2 and ball.x == 0

 and paddle.x > ball.x

 and ball.y == 4

reward = paddle.left()

ball.descend()

assert reward == 0

assert not done

Mini Invaders assert ship == C(2, 0) and aliens == [C(3, 5), C(1, 5)]

 and (ship.x, aliens[0].x, aliens[1].x) == (2, 3, 1)

 and ship.x < aliens[0].x

 and ship.x > aliens[1].x

ship.left()

assert reward == 0

for a in aliens:

 a.descend()

assert not done

Point-Mass assert pos == -3.45 and vel == 0.00 and pos < -2 and vel == 0
pos, vel = decel(pos, vel)

assert reward == 0

assert not done

Figure 9: Example prompts for each domain, showcasing the text format and hints
(hints in italics).

of hint. For examples, see Figure 9. We anticipate that in the future, stronger founda-

tion models will be increasingly robust to these decisions.
24

2.4 Experiments

We have three main goals in our experiments: (1) Demonstrate that the agent algo-

rithm can in fact quickly learn good policies, using pretrained LLMs, in a set of six

simple illustrative domains of increasing challenge; (2) provide evidence through an

ablation that the policy-improvement step — taking the argmax over Q-values com-

puted through LLM rollouts — accelerates learning; and (3) investigate the impact of

using different LLMs (see Table 8) — different sizes and trained on different data, in

particular, trained on (mostly) natural language program code (Codex and InCoder).

We next describe the six domains and their associated prompt formats, and then de-

scribe the experimental methodology and results.

2.4.1 Domains and prompt format

For a visual illustration of each domain, see Figure 10.

Chain Maze Mini-Catch Mini-Invaders Point-Mass
Figure 10: Illustration of the five of the domains used in our experiments. Distractor-

Chain is omitted for brevity.

Chain: In this environment, the agent occupies an 8-state chain. The agent has

three actions: Left, right, and try goal. The try goal action always terminates the

episode, conferring a reward of 1 on state 4 (the goal state) and 0 on all other states.

Because this environment has simpler transitions than the other two, we see the clearest

evidence of learning here. Note that the initial batch of successful trajectories collected

from random behavior will usually be suboptimal, moving inefficiently toward the goal

25

state. We include a discount value of 0.8 in our diagram to show the improvement in

efficiency of the policy learned by the agent over the course of training. Prompt format.

Episodes also terminate after 8 time-steps. States are represented as numbers from 0 to

7, as in assert state == n, with the appropriate integer substituted for n. The actions

are represented as functions left(), right(), and try_goal(). For the hint, we simply

indicate whether or not the current state matches the goal state, 4.

Distractor Chain: This environment is an 8-state chain, identical to the chain

environment, except that the observation is a pair of integers, the first indicating the

true state of the agent and the second acting as a distractor which transitions randomly

within {0,…, 7}. The agent must therefore learn to ignore the distractor integer and

base its inferrences on the information contained in the first integer. Aside from the

addition of this distractor integer to the observation, all text representations and hints

are identical to the chain environment.

Maze: The agent navigates a small 3 × 3 gridworld with obstacles. The agent

can move up, down, left, or right. The episode terminates with a reward of 1 once the

agent navigates to the goal grid, or with a reward of 0 after 8 time-steps. This environ-

ment tests our algorithm’s capacity to handle 2-dimensional movement and obstacles,

as well as a 4-action state-space. We represent the states as namedtuples — C(x, y),

with integers substituted for x and y. Similar to chain, the hint indicates whether or

not the state corresponds to the goal state.

Mini Catch: The agent operates a paddle to catch a falling ball. The ball falls

from a height of 5 units, descending one unit per time step. The paddle can stay in

26

place (not move), or move left or right along the bottom of the 4-unit wide plane.

The agent receives a reward of 1 for catching the ball and 0 for other time-steps. The

episode ends when the ball’s height reaches the paddle regardless of whether or not the

paddle catches the ball. We chose this environment specifically to challenge the action-

inference/rollout-policy component of our algorithm. Specifically, note that the success

condition in Mini Catch allows the paddle to meander before moving under the ball

—as long as it gets there on the final time-step. Successful trajectories that include

movement away from the ball thus making good rollout policies more challenging to

learn (i.e., elicit from the LLM via prompts). Again, we represent both the paddle and

the ball as namedtuples C(x, y) and we represent actions as methods of the paddle

object: paddle.stay(), paddle.left(), and paddle.right(). For the hint, we call out

the location of the paddle’s 𝑥-position, the ball’s 𝑥-position, the relation between these

positions (which is larger than which, or whether they are equal) and the ball’s 𝑦-

position. Figure 9 provides an example. We also include the text ball.descend() to

account for the change in the ball’s position between states.

Mini Invaders: The agent operates a ship that shoots down aliens which de-

scend from the top of the screen. At the beginning of an episode, two aliens spawn at a

random location in two of four columns. The episode terminates when an alien reaches

the ground (resulting in 0 reward) or when the ship shoots down both aliens (the agent

receives 1 reward per alien). The agent can move left, right, or shoot. This domain

highlights ICPI’s capacity to learn incrementally, rather than discovering an optimal

policy through random exploration and then imitating that policy, which is how our

27

“No ArgMax” baseline learns (see Section 2.4.3). ICPI initially learns to shoot down

one alien, and then builds on this good but suboptimal policy to discover the better

policy of shooting down both aliens. In contrast, random exploration takes much longer

to discover the optimal policy and the “No ArgMax” baseline has only experienced one

or two successful trajectories by the end of training.

We represent the ship by its namedtuple coordinate (C(x, y)) and the aliens as a

list of these namedtuples. When an alien is shot down, we substitute None for the tuple,

as in aliens == [C(x, y), None]. We add the text: for a in aliens: a.descend(), in

order to account for the change in the alien’s position between states.

Point-Mass: A point-mass spawns at a random position on a continuous line

between −6 and +6 with a velocity of 0. The agent can either accelerate the point-mass

(increase velocity by 1) or decelerate it (decrease the velocity by 1). The point-mass

position changes by the amount of its velocity each timestep. The episode terminates

with a reward of 1 once the point-mass is between −2 and +2 and its velocity is 0 once

again. The episode also terminates after 8 time-steps. This domain tests the algorithm’s

ability to handle continuous states.

States are represented as assert pos == p and vel == v, substituting floats

rounded to two decimals for p and v. The actions are accel(pos, vel) and decel(pos,

vel). The hint indicates whether the success conditions are met, namely the relation-

ship of pos to −2 and +2 and whether or not vel == 0. The hint includes identification

of the aliens’ and the ship’s 𝑥-positions as well as a comparison between them.

28

2.4.2 Methodology and Evaluation

For the results, we record the agent’s regret over the course of training relative to an

optimal policy computed with a discount factor of 0.8. For all experiments 𝑐 = 8 (the

number of most recent successful trajectories to include in the prompt). We did not

have time for hyperparameter search and chose this number based on intuition. How-

ever, the 𝑐 = 16 baseline demonstrates results when this hyperparameter is doubled.

All results use 4 seeds.

For both versions of Codex, we used the OpenAI Beta under the API Terms of

Use. For GPT-J (Wang and Komatsuzaki 2021) , InCoder (Fried et al. 2022) and OP-

T-30B (Zhang et al. 2022), we used the open-source implementations from Huggingface

Transformers (Wolf et al. 2020), each running on one Nvidia A40 GPU. All language

models use a sampling temperature of 0.1. Code for our implementation is available at

https://github.com/ethanabrooks/icpi.

Figure 16: Comparison of ICPI with three baselines.

2.4.3 Comparison of ICPI with baseline algorithms.

We compare ICPI with three baselines (Figure 16).

The “No ArgMax” baseline learns a good policy through random exploration

and then imitates this policy. This baseline assumes access to a “success threshold” for

29

https://github.com/ethanabrooks/icpi

each domain — an undiscounted cumulative return greater than which a trajectory is

considered successful. The action selection mechanism emulates ICPI’s rollout policy:

prompting the LLM with a set of trajectories and eliciting an action as output. For this

baseline, we only include trajectories in the prompt whose cumulative return exceeds

the success threshold. Thus the policy improves as the number of successful trajectories

in the prompt increases over time. Note that at the start of learning, the agent will have

experienced too few successful trajectories to effectively populate the policy prompt. In

order to facilitate exploration, we act randomly until the agent experiences 3 successes.

“Tabular Q” is a standard tabular Q-learning algorithm, which uses a learning

rate of 1.0 and optimistically initializes the Q-values to 1.0.

“Matching Model” is a baseline which uses the trajectory history instead of

an LLM to perform modelling. This baseline searches the trajectory buffer for the most

recent instance of the current state, and in the case of transition/reward/termination

prediction, the current action. If a match is found, the model outputs the historical

value (e.g. the reward associated with the state-action pair found in the buffer). If

no match is found, the modelling rollout is terminated. Recall that ICPI breaks ties

randomly during action selection so this will often lead to random action selection.

As our results demonstrate, only ICPI learns good policies on all domains. We

attribute this advantage to ICPI’s ability to generalize from its context to unseen

states and state/action pairs (unlike “Tabular Q” and “Matching Model”). Unlike “No

ArgMax,” ICPI is able to learn progressively, improving the policy before experiencing

good trajectories.

30

Figure 17: Comparison of ICPI with ablations.

2.4.4 Ablation of ICPI components

With these experiments, we ablate those components of the algorithm which are not,

in principle, essential to learning (Figure 17). “No Hints” ablates the hints described

in the paragraph. “No Balance” removes the balancing of different kinds of time-steps

described in the paragraph (for example, 𝒟𝑏 is allowed to contain an unequal number

of terminal and non-terminal time-steps). The “No Constraints” baseline removes the

constraints on these time-steps described in the same paragraph. For example, 𝒟𝑟 is

allowed to contain a mixture of terminal and non-terminal time-steps (regardless of the

model’s termination prediction). Finally, “𝑐 = 16” baseline prompts the rollout policy

with the last 16 trajectories (instead of the last 8, as in ICPI).

In general, the ablations to ICPI exhibit a moderate drop in performance. How-

ever the two most significant are “No Hints” and “c=16.” The poor performance of the

“No Hints” model suggests that in several settings, Codex is unable to infer the salient

parts of the observations without domain-specific hints. Our hope is that the necessity

for hints of this kind will diminish as language models mature. On the other hand, the

poor performance of the “c=16” model is reassuring, as it demonstrates that the re-

cency mechanism works as intended: excluding older trajectories from the prompt helps

31

the action model approximate the current policy, as opposed to older policies. This

mechanism is necessary for the policy improvement properties described in to hold.

2.4.5 Comparison of Different Language Models

While our lab lacks the resources to do a full study of scaling properties, we did com-

pare several language models of varying size (see Figure 18). See Table 8 for details

about these models. Both code-davinci-002 and code-cushman-001 are variations of

the Codex language model. The exact number of parameters in these models is pro-

prietary according to OpenAI, but (Chen et al. 2021c) describes Codex as fine-tuned

from GPT-3 (Brown et al. 2020b), which contains 185 billion parameters. As for the

distinction between the variations, the OpenAI website describes code-cushman-001 as

“almost as capable as Davinci Codex, but slightly faster.”

We found that the rate of learning and final performance of the smaller models

fell significantly short of Codex on all but the simplest domain, chain. Examining the

trajectories generated by agents trained using these models, we noted that in several

cases, they seemed to struggle to apprehend the underlying “logic” of successful tra-

jectories, which hampered the ability of the rollout policy to produce good actions.

Since these smaller models were not trained on identical data, we are unable to isolate

the role of size in these results. However, the failure of all of these smaller models

to learn suggests that size has some role to play in performance. We conjecture that

larger models developed in the future may demonstrate comparable improvements in

performance over our Codex model.

32

2.4.6 Limitations

ICPI can theoretically work on any control task with discrete actions, due to the guar-

antees associated with policy iteration. However, there are two limitations worth not-

ing. First ICPI requires observations to be encoded as text. While any observation

can in principle be encoded numerically and therefore in text, some might be very

difficult for a language model to interpret. For example, a language model would be

likely fail to extract meaning from an array of RGB pixels. Such an array would also

have quite a verbose representation in text, preventing us from fitting the large number

of transitions into the context window, necessary for ICPI to infer the dynamics of

the environment. A second limitation is the requirement for all information about the

environment to be conveyed through the context. For some environments with complex

dynamics, it might be difficult for a model to infer them accurately based only on

example transitions. Also, the stochastic nature of the prompt can produce unstable

behavior. So in summary, we want to use a model that is somewhat specialized to its

domain in order to encode some useful priors in the weights and diminish the reliance

on context.

2.4.7 Societal Impacts

An extensive literature (Abid et al. 2021; Liang et al. 2021; Pan et al. 2023; Tamkin et

al. 2021) has explored the possible positive and negative impacts of LLMs. Some of this

work has explored mitigation strategies. In extending LLMs to RL, our work inherits

33

these benefits and challenges. We highlight two concerns: the use of LLMs to spread

misinformation and the detrimental carbon cost of training and using these models.

Figure 18: Comparison of different language models used to implement ICPI. Note that
all other figures in this chapter use code-davinci-002 for ICPI.

2.5 Conclusion

Our main contribution in this chapter is a method for implementing the policy iteration

algorithm using Large Language Models and the mechanism of in-context learning. The

algorithm uses a foundation model as both a world model and policy to compute Q-

values via rollouts. Although we presented the method here as text-based, it is general

enough to be applied to any foundation model that works through prompting, including

multi-modal models like (Reed et al. 2022) and (Seo et al. 2022). In experiments we

showed that the algorithm works in six illustrative domains imposing different chal-

lenges for ICPI, confirming the benefit of the LLM-rollout-based policy improvement.

While the empirical results are preliminary, we believe the approach provides an impor-

tant new way to use LLMs that will increase in effectiveness as the models themselves

become more powerful.

34

3 Algorithm Distillation + Model-Based

Planning

3.1 Introduction

Generalization to novel tasks is an important challenge in multitask reinforcement

learning (RL). This setting entails a training regime that includes a diversity of dynam-

ics or reward functions, and a test regime that evaluates the agent on unseen dynamics

or reward functions. A typical approach to this challenge is as follows: train a policy on

the training tasks and use various mechanisms to adapt the policy to the novel setting.

In this work, we explore the benefits of focusing instead on adapting a model as a means

to adapt a policy, as opposed to adapting the policy directly. If the model successfully

adapts to the evaluation setting, we may use a variety of planning methods to recover

a good policy.

Our approach builds on the previous chapter, using a similar methodology to

choose actions on the downstream evaluation task. Concretely, on each timestep, we

use our learned model to perform multiple rollouts, each starting from a different action

in the action space. We use these rollouts to estimate state-action values. Our behavior

policy (as opposed to the policy used in the rollouts) chooses the action corresponding

35

to the highest estimate. As we demonstrated in that work, this approach implements

a form of policy iteration, an algorithm proven to eventually converge to the optimal

policy.

Our previous work used generic foundation models, namely Codex (Chen et

al. 2021a), to implement both a world model and a policy during the aforementioned

rollouts. In contrast, our present work assumes access to a dataset of RL trajectories

and uses this data to train a causal transformer (Vaswani et al. 2017a) as a world

model. Because the transformer is trained on RL data and the evaluation task is sim-

ilarly distributed to the training tasks, the transformer is capable of modeling more

complex domains than the general-purpose foundation models from which we elicited

world-model predictions using a variety of prompting techniques. Another advantage

of training the model from scratch is that we can more easily assess generalization

by comparing training tasks with evaluation tasks. Such comparisons are not possible

when using a foundation model trained on a large, opaque dataset.

One possible rationale for our hypothesis, that planning with an adapted model

will generalize better than direct policy adaptation, is that a model relies only on lo-

cal information whereas a policy relies on non-local information. It is worth noting

that model-based planning gains this advantage at the cost of compound error — the

tendency for any approximate model to accumulate error in an auto-regressive chain,

compounding the errors of new predictions with the errors of prior predictions on which

they are conditioned. Why should we expect the benefit to outweigh the cost?

36

We argue that a function approximator can only learn a policy one of two ways:

either it learns the underlying logic of the policy, or it memorizes the policy without

distilling this logic — a strategy which does not generalize. However, this underlying

logic entails some kind of implicit value estimation, which entails implicit modeling of

the environment. In principle, these implicit operations are susceptible to compound

error accumulation in much the same way as explicit model-based planning methods.

Therefore the switch to model-based planning does not actually introduce compound

error as a new cost. Meanwhile, model-based planning does eliminate the possibility of

policy memorization, since actions and values are not inferred directly but computed.

Our conclusion is that the net benefit of model-based planning for generalization is

positive.

We tested this hypothesis in two sets of domains, a gridworld with randomly

spawned walls, and a simulated robotics domain implemented in Mujoco (Todorov et al.

2012). In the gridworld setting, we found that the model-based approach consistently

outperformed a direct policy adaptation approach, even as we varied the difficulty of

generalization and the quantity of training data. We reach a similar conclusion in the

robotics domain, though the results are less extensive.

3.2 Background

For a review of Markov Decision Processes (MDPs) and model-based-planning, see

Section 2.2.1.1 and Section 2.2.1.2, respectively.

37

3.2.1.1 Transformers

Transformers (Vaswani et al. 2017a) are a class of neural networks which map an input

sequence to an output sequence of the same length and utilize a mechanism known

as “self-attention.” This mechanism maps the 𝑖th element of the input sequence to a

key vector 𝑘𝑖, a value vector 𝑣𝑖, and query vector 𝑞𝑖. The output, per index, of self-

attention is a weighted sum of the value vectors:

Attention (𝑞𝑖, 𝑘, 𝑣) =∑
𝑗
softmax (𝑞𝑖𝑘𝑗/

√
𝐷)𝑣𝑗 (1)

where 𝐷 is the dimensionality of the vectors. The softmax is applied across all inputs

so that ∑𝑗 softmax (𝑞𝑖𝑘𝑗/
√
𝐷) = 1. A typical transformer applies this self-attention

operation multiple times, interspersing linear projections and layer-norm operations

between each application. A causal transformer applies a mask to the attention opera-

tion which prevents the model from attending from the 𝑖th element to the 𝑗th element if

𝑖 < 𝑗, that is, if the 𝑗th element appears later in the sequence. Intuitively, this prevents

the model from conditioning inferences on future information.

3.2.1.2 Algorithm Distillation

Algorithm Distillation (Laskin et al. 2022) is a method for distilling the logic of a source

RL algorithm into a causal transformer. The method assumes access to a dataset of

“learning histories” generated by the source algorithm, which comprise observation,

action, reward sequences spanning the entire course of learning, starting with initial

random behavior and ending with fully optimized behavior. The transformer is trained

to predict actions given the entire history of behavior or some large subset of it. Op-

38

timal prediction of these actions requires the model to capture not only the current

policy but also the improvements to that policy applied by the source algorithm. Auto-

regressive rollouts of the distilled model, in which actions predicted by the model are

actually used to interact with the environment and then cycled back into the model

input, demonstrate improvement of the policy, often to the point of near optimality,

without any adjustment to the model’s parameters. This indicates that the model does,

in fact, capture some policy improvement logic from the source algorithm.

3.3 Method

In this section, we describe the details of our proposed algorithm, which we call Algo-

rithm Distillation ++ (AD++). We assume a dataset of 𝑁 trajectories generated by

interactions with an environment:

𝒟 ≔ ((𝑥𝑛0 , 𝑎𝑛0 , 𝑟𝑛0 , 𝑏𝑛0 ,…, 𝑥𝑛𝑇 , 𝑎𝑛𝑇 , 𝑟𝑛𝑇 , 𝑏𝑛𝑇) ∼ 𝜋𝑛)
𝑁
𝑛=1 (2)

with 𝑥𝑛𝑡 referring to the 𝑡th observation in the 𝑛th trajectory, 𝑎𝑛𝑡 to the 𝑡th action, 𝑟𝑛𝑡

to the 𝑡th reward, and 𝑏𝑛𝑡 to the 𝑡th termination boolean. Each trajectory corresponds

with a single task 𝒯 and a single policy 𝜋, but the dataset contains as many as 𝑁 tasks

and policies. We also introduce the following nomenclature for trajectory histories:

ℎ𝑛𝑡 ≔ (𝑎𝑛𝑡−𝑐, 𝑟𝑛𝑡−𝑐, 𝑏𝑛𝑡−𝑐, 𝑥𝑛𝑡−𝑐+1,…, 𝑎𝑛𝑡−1, 𝑟𝑛𝑡−1, 𝑏𝑛𝑡−1, 𝑥𝑛𝑡) (3)

where 𝑐 is a fixed hyperparameter.

39

3.4 Model Training

Given such a dataset, we may train a world-model with a negative log likelihood (NLL)

loss:

ℒ𝜃 ≔ −∑
𝑁

𝑛=1
∑
𝑇−1

𝑡=1
log 𝑃𝜃(𝑎𝑛𝑡 | ℎ𝑛𝑡) + log𝑃𝜃(𝑟𝑛𝑡 , 𝑏𝑛𝑡 , 𝑥𝑛𝑡+1 | ℎ𝑛𝑡 , 𝑎𝑛𝑡) (4)

In this work we implement 𝑃𝜃 as a causal transformer. For action-prediction 𝑃𝜃(𝑎𝑛𝑡 |ℎ𝑛𝑡),

the inputs comprise chronological (𝑎𝑛𝑖−1𝑟𝑛𝑖−1𝑏𝑛𝑖−1𝑥𝑛𝑖)
𝑡
𝑖=𝑡−𝑐 tuples. Each index of the trans-

former comprises one such tuple, with each component of the tuple embedded and the

embeddings concatenated. For the other predictions 𝑃𝜃(𝑟𝑛𝑡 , 𝑏𝑛𝑡 , 𝑥𝑛𝑡+1 | ℎ𝑛𝑡 , 𝑎𝑛𝑡), we use the

same procedure but rotate each tuple such that index 𝑖 corresponds to 𝑟𝑛𝑖−1𝑏𝑛𝑖−1𝑥𝑛𝑖−1𝑎𝑛𝑖 .

See Figure 19 for a schematic illustrating the inputs and outputs of the architecture.

Figure 19: Diagram of inputs and outputs for the ADPI architecture. For succinctness,
we omit the superscripts for the inputs. However, note that each of these transitions is

sampled from the same task and learning history.

3.5 Downstream Evaluation

Our approach to choosing actions during the downstream evaluation is as follows. For

each action 𝑎 in a set of candidate actions (either our complete action space or some

subset thereof), we compute a state-action value estimate 𝑄(ℎ𝑡, 𝑎), where ℎ𝑡 is the his-

40

Algorithm 3: Estimating Q-values with monte-carlo rollouts.

1: function 𝑄(ℎ𝑡, 𝑎)
2: 𝑢 ← 1 ▷ time step for rollout

3: 𝑎𝑢 ← 𝑎
4: while termination condition not met do
5: 𝑟𝑢, 𝑏𝑢, 𝑥𝑢+1 ∼ 𝑃𝜃(· |ℎ𝑡, 𝑎𝑢) ▷ Model reward, termination, next observation

6: 𝑎𝑢+1 ∼ 𝑃𝜃(· |ℎ𝑡, 𝑟𝑡, 𝑏𝑡, 𝑥𝑡+1) ▷ Model policy

7: 𝑢 ← 𝑢 + 1 ▷ Append predictions to history.

8: end while
9: return ∑𝑡

𝑢=0 𝛾
𝑢−1𝑟𝑢

10: end function

tory defined in Equation 3. We do this by modeling a rollout conditioned on the history

ℎ𝑡, and from 𝑎. Modelling the rollout is a cycle of sampling values from the model

and feeding them back into the model auto-regressively. First we sample (𝑟𝑢, 𝑏𝑢, 𝑥𝑢+1)

(line 5 in Algorithm 3). Based on this prediction, we sample 𝑎𝑢+1 (line 6). Adding

this to the input allows us to sample (𝑟𝑢+1, 𝑏𝑢+1, 𝑥𝑢+2), repeating this cycle until some

termination condition is reached. For example, we might terminate the process once 𝑏𝑢

is true, or once the rollout reaches some maximum length.

The final step is to choose an action. Having modelled the rollout, we compute

the value estimate as the discounted sum of rewards in the rollout (line 9). Repeating

this process of modelling rollouts and computing value estimates for each action in a

set of candidate actions, we simply choose the action with the highest value estimate:

argmax𝑎∈𝒜𝑄(ℎ𝑡, 𝑎).

3.6 Policy improvement

If the downstream task is sufficiently dissimilar to the tasks in the training dataset,

or if the training dataset does not contain optimal policies, then it is unlikely that

41

the procedure described above will initially yield an optimal policy. Some method for

policy improvement will be necessary.

3.6.1.1 Policy Iteration

Our method satisfies this requirement by implementing a form of policy iteration. To

see this, first observe that our model is always trained to map a behavior history drawn

from a single policy to actions drawn from the same policy. A fully trained model will

therefore learn to match the distribution of actions in its output to the distribution

of actions in its input. Since our rollouts are conditioned on histories drawn from our

behavior policy, the rollout policy will approximately match this policy. Our value

estimates will therefore be conditioned on the current behavior policy. However, by

choosing the action corresponding to argmax𝑎∈𝒜𝑄𝜋(ℎ𝑡, 𝑎), our behavior policy always

improves on 𝜋, the policy on which 𝑄𝜋(ℎ𝑡, 𝑎) is conditioned, a consequence of the policy

improvement theorem. Thus, each time an action is chosen using this argmax method,

our behavior policy improves on itself.

Walking through this process step by step, suppose 𝜋𝑛 is some policy that we

use to behave. We collect a trajectory containing actions drawn from this policy. When

we perform rollouts, we condition on this trajectory and the rollout policy simulates

𝜋𝑛. Assuming that this simulation is accurate as well as the world model, our value

estimate will be an unbiased monte carlo estimate of 𝑄𝜋𝑛(ℎ𝑡, 𝑎) for any action 𝑎. Then

we act with policy 𝜋𝑛+1 ≔ argmax𝑎∈𝒜𝑄𝜋𝑛(ℎ𝑡, 𝑎). But 𝜋𝑛+1 is at least as good as 𝜋𝑛.

Using the same reasoning, 𝜋𝑛+2 will be at least as good as 𝜋𝑛+1, and so on. Note that

42

in our implementation, we perform the argmax at each step, rather than first collecting

a full trajectory with a single policy. See

Figure 20: Diagram of the policy improvement cycle. The behavior policy 𝜋 generates
new actions and the environment generates new transitions which are appended to
the front of the context window. By retaining only the most recent transitions in the
context window, we ensure that the policy represented in the context approximates
the behavior policy. Next, we rely on the policy improvement operator learned by the
transformer to infer the distribution of actions in the context and yield an improved
action for our rollout policy. Therefore the rollout policy approximates the prompt
policy. Finally, by choosing actions greedily with respect to our value estimates, we

implement a new behavior policy 𝜋′ that improves the rollout policy.

3.6.1.2 Algorithm Distillation

Our setting is almost identical to Algorithm Distillation (AD) (Laskin et al. 2022), if

we include the assumption that trajectories include a full learning history. Rather than

competing with AD, our method is actually complementary to it. If the input to our

transformer is a sufficiently long history of behavior, then the rollout policy will not

only match the input policy but actually improve upon it, as demonstrated in that pa-

per. Then the procedure described in Algorithm 3 for estimating 𝑄-values will actually

condition these estimates on a policy 𝜋′𝑛 that is at least as good as the input policy 𝜋𝑛.

Then 𝑉 𝜋𝑛 ≤ 𝑉 𝜋′𝑛 ≤ 𝑉 𝜋𝑛+1 . Therefore each step of improvement actually superimposes

the two improvement operators, one from the argmax operator, the other from AD.

43

3.6.2 Extension to Continuous Actions

When evaluating AD++ on continuous action domains, the formulation we have de-

scribed must be modified, since it is not possible to iterate over the action space.

Instead, we sample a fixed number of actions from 𝑃𝜃(· |ℎ𝑡, 𝑟𝑡, 𝑏𝑡, 𝑥𝑡+1) and for each

sampled action, perform a rollout per Algorithm 3. This step does not preserve the

policy improvement guarantees (Section 3.6), but works well enough in practice.

3.6.3 Beam search

The algorithm that we have described can be further augmented with beam Search,

similar to Janner et al. (2021b). While this proved useful in only one of the domains

that we evaluated, we describe it here for the sake of completeness. Using beam search

requires learning a value function which is used for pruning the tree. We augment

Equation 4 with the following term:

ℒ′𝜃 ≔ ℒ𝜃 +∑
𝑁

𝑛=1
∑
𝑇−1

𝑡=1
log 𝑃𝜃(∑

𝑇

𝑢=𝑡
𝛾𝑇−𝑢𝑟𝑢 | ℎ𝑛𝑡) (5)

When conditioning ℎ𝑛𝑡 , the model 𝑃𝜃 outputs two predictions, one corresponding to the

next action, the other corresponding to the value of the current state. For the latter,

we use the discounted cumulative sum of empirical reward as a target.

The procedure for estimating value with beam search is as follows. On each step

of the rollout procedure described in Algorithm 3, we sample 𝑁 actions (instead of

just one per rollout). Instead of a series of parallel chains, as in the original algorithm,

this procedure would result in an expanding tree with arity 𝑁 . For computational

44

tractability, we therefore rank the paths by value (as estimated by 𝑃𝜃) and discard the

bottom 𝑁−1𝑁 so that the number of active pathways per rollout step does not increase.

Ranking is performed across all rollouts, so all the descendants of a given node may

eventually be pruned.

3.7 Related Work

A paper that strongly influenced this work is Trajectory Transformer (Janner et al.

2021b), from which we borrow much of our methodology. We distinguish ourselves from

that work by focusing on in-context learning in partially observed multi-task domains,

and through the incorporation of Algorithm Distillation (Laskin et al. 2022).

Several recent works have explored the use of in-context learning to adapt trans-

former-based agents to new tasks. (Raparthy et al. 2023) study the properties that

are conducive to generalization in these kinds of agents, especially highlighting “bursti-

ness” (Chan et al. 2022b) and “multi-trajectory” inputs – inputs containing multiple

episodes from the same task, as used in Laskin et al. (2022) and in this work. Lee

et al. (2023) propose an approach similar to AD, but instead of predicting the next

action, they directly predict the optimal action. They demonstrate that this gives rise

to similar forms of in-context learning and outperforms AD on several tasks. Pinon et

al. (2022) train a dynamics model, similar to this work, and execute tree search, though

unlike this work, they use a fixed policy.

Transformers have also been studied extensively in the capacity of world models.

Micheli et al. (2022) train a transformer world-model using methods similar to our own

45

and demonstrate that training an agent to optimize return within this model is capable

of significantly improving sample-complexity on the Atari 100k benchmark. Robine et

al. (2023) augment this architecture with a variational autoencoder for generating com-

pact representations of the observations. “TransDreamer” (Chen et al. 2022) directly

emulates Dreamer V2 (Hafner et al. 2020) adjusting that algorithm to use transformers

in place of GRUs to capture recurrence.

3.8 Experiments

3.8.1.1 Domains

In this work, we chose to focus on partially observable domains. This ensures that both

the initial policy and the initial model in our downstream domain will be suboptimal,

since the true dynamics or reward function cannot be inferred until the agent has gath-

ered experience. Recovering the optimal policy will coincide with model improvement.

Model improvement will occur as the agent collects experience and the transformer

context is populated with transitions drawn from the current dynamics and reward

functions. Policy improvement relies on the mechanisms detailed in the previous sec-

tions. One hypothesis that our experiments test is whether these learning processes can

successfully happen concurrently.

Our first set of experiments occur within a discrete, partially observable, 5 × 5

grid world. The agent has four actions, up, left, down, and right. For each task, we

spawn a “key” and a “door” in a random location. The agent receives a reward of 1

46

for visiting the key location and then a reward of 1 for visiting the door. The agent

observes only its own position and must infer the positions of the key and the door

from the history of interactions which the transformer prompt contains. The episode

terminates when the agent visits the door, or after 25 time-steps. See Figure 21 for a

visualization of the grid-world environment.

Figure 21: Top-down view of the grid-world environment. The agent must first visit
the key and then the door. Note that in many of our experiments, unseen walls are

added to the interstices between grid cells.

3.8.1.2 Baselines

We compare our method with two baselines: vanilla AD and “Ground-Truth” AD++.

The latter is identical to our method, but uses a ground-truth model of the environ-

ment, which is free of error. The comparison with AD highlights the contribution of the

model-based planning component of our method. The comparison with Ground-Truth

AD++ establishes an approximate upper bound for our method and distinguishes the

contribution of model error to the RL metrics that we record.

47

Figure 22: Evaluation on withheld location pairs.

3.8.2 Results

3.8.2.1 Evaluation on Withheld Goals

In our first experiment, we evaluate the agent on a set of withheld key-door pairs, which

we sample uniformly at random (10% of all possible pairs) and remove from the training

set. As Figure 22 indicates, our algorithm outperforms the AD baseline both in time to

converge and final performance. We attribute this to the fact that our method’s down-

stream policy directly optimizes expected return, choosing actions that correspond to

the highest value estimate. In contrast, AD’s policy only maximizes return by proxy

— maximizing the probability of the actions of a source algorithm which in turn max-

imizes expected return. This indirection contributes noise to the downstream policy

through modeling error. Moreover, we note that our method completely recovers the

performance of the ground-truth baseline, though its speed of convergence lags slightly,

due to the initial exploration phase in which the model learns the reward function

through trial and error.

Next, we increase the generalization challenge by holding out key and door lo-

cations entirely. During training of the source algorithm, we never place keys or doors

48

Figure 23: Evaluation on fully withheld locations.

in the upper-left four cells of the grid. During evaluation, we place both keys and doors

exclusively within this region. As Figure 23 demonstrates, AD generalizes poorly in

this setting, on average discovering only one of the two goals. In contrast, our method

maintains relatively high performance. We attribute this to the fact that our method

learns low-level planning primitives (the reward function), which generalize better than

high-level abstractions like a policy. As we argued in Section 3.1, higher-level abstrac-

tions are prone to memorization since they do not perfectly distill the logic which

produced them.

3.8.2.2 Evaluation on Withheld Wall Configurations

In addition to evaluating generalization to novel reward functions, we also evaluated

our method’s ability to generalize to novel dynamics. We did this by adding walls to

the grid world, which obstruct the agent’s movement. During training we placed the

walls at all possible locations, sampled IID, with 10% probability. During evaluation,

we tested the agent on equal or higher percentages of wall placement. As indicated by

Figure 24, our method maintains performance and nearly matches the ground-truth

49

version, while AD’s performance rapidly degrades. Again we attribute this to the ten-

dency of lower-level primitives to generalize better than higher-level abstractions.

Figure 24: Generalization to higher percentages of walls.

Because walls are chosen from all possible positions IID, some configurations

may wall off either the key or the door. In order to remove this confounder, we ran a

set of experiments in which we train the agent in the same 10% wall setting as before,

but evaluate it on a set of configurations that guarantee the reachability of both goals.

Specifically, we generate procedural mazes in which all cells of the grid are reachable

and sample some percentage of the walls in the maze. As Figure 25 demonstrates, this

widens the performance gap between our method and the AD baseline.

Figure 25: Generalization to higher percentages of walls with guaranteed achievability.

3.8.2.3 Model Accuracy

In order to acquire a better understanding of the model’s ability to in-context learn, we

plotted model accuracy in the generalization to 10% walls setting. Note that while the

percentages of walls in the training and evaluation setting are the same, the exact wall

50

Figure 26: Accuracy of model predictions over the course of an evaluation rollout.

placements are varied during training and the evaluation wall placements are withheld,

so that the model must infer them from context. In Figure 26, we measure the accuracy

of the model’s prediction of termination signals (labeled “done / not done”), of next

observations (labeled “observation”), and of rewards (labeled “reward”). These predic-

tions start near optimal, since the agent can rely on priors: that most timesteps do not

terminate, that most transitions result in successful movement (no wall), and that the

reward is 0. However, we also measure prediction accuracy for these rare events: the

line labeled “done” measures termination-prediction accuracy for terminal timesteps

only; the “positive reward” line measures reward-prediction accuracy on timesteps with

positive reward; and the “wall” line measures accuracy on timesteps when the agent’s

movement is obstructed by a random wall. As Figure 26 demonstrates, even for these

rare events, the model rapidly recovers accuracy near 100%.

3.8.2.4 Contribution of Model Error to Performance

While Figure 27 indicates that our model generally achieves high accuracy in these

simple domains, we nevertheless wish to understand the impact of a suboptimal model

51

Figure 27: Impact of model error on performance, measured by introducing noise into
each component of the model’s predictions.

on RL performance. To test this, we introduced noise into different components of the

model’s predictions. In Figure 27, we note that performance is fairly robust to noise

in the termination predictions, but very sensitive to noise in the reward predictions.

Encouragingly, the model demonstrates reasonable performance with as much as 20%

noise in the observation predictions. Also, as indicated, the method is quite robust to

noise in the action model. We also note that AD’s sensitivity to noise in the policy

explains its lower performance in many of the settings previously discussed.

3.8.2.5 Data Scaling Properties

Figure 28: Impact of scaling the length of training of the source algorithm.

We also examined the impacts of scaling the quantity of data that our model was trained

on. In Figure 28, we scale the quantity of the training data along the IID dimension,

with the 𝑥-axis measuring the number of source algorithm histories in the training data

52

scaled according to the equation 256 × 2𝑥. In Figure 29, we scale the length for which

each source algorithm is trained, with the 𝑥-axis measuring the number of timesteps

of training scaled according to the same equation. This result was surprising, as we

expected AD to be more sensitive to reduced training time, since that algorithm is

more dependent on demonstration of the optimal policy. Nevertheless, we note that

our method outperforms AD in all data regimes.

Figure 29: Impact of scaling the training data along the IID dimension.

3.8.3 Continuous-State and Continuous-Action Domains

Finally, we evaluate the ability of AD++ to learn in domains with continuous states

and actions. In order to adapt AD++ to infinitely large action spaces, we use the sam-

pling technique described in Section 3.6.2. In the experiments that follow, the number

of actions sampled at the beginning of the rollouts is 128.

3.8.3.1 Sparse Point Environment

In the “Sparse Point” environment, a point spawns randomly on a half circle. The

agent does not observe the point and has to discover it through exploration. The agent

receives reward for occupying coordinates within a fixed radius of the goal. The agent’s

53

observation space consists of 2d position coordinates and its action space consists of

2d position deltas. The Sparse Point environment tests the ability of the agent to ex-

plore efficiently, since an agent that concentrates its exploration on the half-circle will

significantly outperform one that explores all positions with equal probability.

Figure 30: Evaluation on the
“Sparse-Point” environment.

Figure 31: Evaluation on
the “Half-Cheetah Direc-

tion” domain.

Figure 32: Evaluation on the
“Half-Cheetah Velocity” do-

main.

As Figure 30 demonstrates, vanilla AD fares quite poorly in this setting. Of

the 20 seeds in the diagram, only two discover the goal and only one returns to it

consistently. The AD agent either explores randomly in the vicinity of the origin —

emulating policies observed early in the source data — or commits arbitrarily to a

point on the arc and remains in its vicinity — emulating later policies, but ignoring

the lack of experienced reward. The Sparse Point environment highlights a weakness

in vanilla AD. During training, the source algorithm — which uses one agent per task

— can memorize the location of the goal. It therefore never exhibits Bayes-optimal

exploration patterns for AD to imitate.

Why should we expect AD++ to perform better? For the same reasons that

cause vanilla AD to fail, we should not expect the simulated rollouts of AD++ to

perform Bayes-optimal exploration. However, before the model experiences reward,

its reward predictions will reflect the prior, which has support on the semi-circle and

54

nowhere else. Therefore any rollouts that do not lead to the semi-circle should result

in a simulation of zero cumulative reward.

In order for AD++ to recover Bayes optimal exploration in the Sparse Point

environment, two random events must co-occur: some of the rollouts must lead to the

semi-circle, and the model must anticipate reward there, without having necessarily

experienced it. In practice, this does not happen consistently. The rollout policy often

degenerates into random dithering and the reward model often predicts no reward at all.

We found that the key to eliciting consistent performance from AD++ was to perform

beam-search as described in Section 3.6.3. This effectively increases the opportunities

for rollouts to lead to the arc and for the reward model to anticipate reward there. For

example, paths that do not lead to the arc can be pruned entirely, while those that

do can benefit from node-expansion. As Figure 30 demonstrates, both beam-search

methods significantly outperform vanilla AD and AD++.

3.8.3.2 Half-Cheetah Environments

In our final set of environments, we explore two variants on the well-known Mujoco

“Half-Cheetah” environment. This environment uses a 2D two-legged embodiment. In

order to instantiate a multi-task problem, we vary the reward function: for the “Half-

Cheetah Direction” environment, we instantiate two tasks, one which rewards the agent

for forward movement of the Cheetah and one that rewards it for backward movement.

For the “Half-Cheetah Velocity” environment, we choose a target velocity per task.

The agent receives a reward penalty for the difference between its current velocity and

55

the target. Per the original Half-Cheetah environment, the agent also receives a control

reward that penalizes large actions. As Figure 31 and Figure 32 demonstrate, AD++

outperforms vanilla AD on both domains.

3.9 Conclusion

This chapter presents an approach for combining ICPI with AD. The resulting method

scales to more complex settings than those explored in the previous chapter. Moreover,

the method significantly outperforms vanilla AD in a variety of settings.

56

4 Bellman Update Networks

In the previous two chapters, we demonstrated the capacity of a sequence model to

implement policy iteration in-context, enabling fast adaptation to novel RL settings

without recourse to gradients. This approach relies on some mechanism for estimating

state-action values, with respect to which the policy can choose actions greedily.

Previously, we satisfied this requirement by using a model to perform simulated

rollouts and using these rollouts to make monte-carlo estimates. This approach has

two drawbacks. First, monte-carlo estimates are generally susceptible to high variance.

Second and perhaps more fundamentally, our previous methods focused on training

an accurate model when value accuracy — not model accuracy — was our ultimate

concern. As a result, our model learned to focus equally on all parts of the observation

rather than skewing its resources toward those parts that contributed to the expected

value (Grimm et al. 2020) and away from parts that are purely “decorative.” Conversely,

error in modeling any part of the observation, decorative or otherwise, could throw off

the value estimate: a model trained on inputs containing only ground-truth observa-

tions might fail to generalize to observations corrupted by modeling error.

In this work, we attempt to address these issues by proposing a method for esti-

mating value directly instead of using model-based rollouts. In the next section we will

introduce the motivation, concept, and implementation for Bellman Update Networks.

57

In the subsequent section, we will review some results comparing this approach with

some baselines.

4.1 Preliminaries

4.1.1 Review of In-Context Model-Based Planning

In the preceding chapter, we described work in which we trained a causal model to

map a temporally sequential history of observations 𝑥≤𝑡, actions 𝑎≤𝑡, and rewards 𝑟<𝑡,

to predictions of the next observation 𝑥𝑡+1 and next reward 𝑟𝑡. Our model optimized

the following loss:

ℒADPI𝜃 ≔ −𝐸ℎ𝑛𝑡 ∼𝒟[∑
𝑇−1

𝑡=1
log 𝑃𝜃(𝑎𝑛𝑡 | ℎ𝑛𝑡) + log𝑃𝜃(𝑟𝑛𝑡 , 𝑏𝑛𝑡 , 𝑥𝑛𝑡+1 | ℎ𝑛𝑡 , 𝑎𝑛𝑡)] (6)

Here, ℎ𝑛𝑡 is a trajectory drawn from the 𝑛th task/agent pair:

ℎ𝑛𝑡 ≔ (𝑎𝑛𝑡−1−𝑐, 𝑟𝑛𝑡−1−𝑐, 𝑏𝑛𝑡−1−𝑐, 𝑥𝑛𝑡−𝑐,…, 𝑎𝑛𝑡−1, 𝑟𝑛𝑡−1, 𝑏𝑛𝑡−1, 𝑥𝑛𝑡) (7)

Note that the dataset 𝒟 from which the trajectory ℎ𝑛𝑡 is drawn contains multiple tasks

and agents, but as the superscript indicates, each trajectory corresponds to only one.

Here we use the term “agent” to denote the set of policies emitted by a single learning

algorithm. Henceforth in this chapter, we omit the 𝑛 superscript for the sake of brevity

and assume that there is one task and agent per trajectory. In the preceding chapter,

we implemented our model as a causal transformer (Vaswani et al. 2017a). Because the

model was conditioned on history, it demonstrated the capability to adapt in-context

to settings with novel transition or reward functions.

58

4.1.2 Naive Alternative Method

An almost identical technique might be used to predict value functions in place of

next-observations and next-rewards. In principle, a history of observations, actions, and

rewards should be sufficient to infer the dynamics and reward of the environment as

well as the current policy, all that is necessary to estimate value. Our model would

then minimize the following loss:

ℒ𝜃 ≔ −𝐸ℎ𝑡[∑
𝑇−1

𝑡=1
∑
𝑎∈𝒜

log 𝑃𝜃(𝑄(𝑥𝑡, 𝑎) | ℎ𝑡)] (8)

where 𝑥𝑡 is the last observation in ℎ𝑡 and 𝑄(𝑥𝑡, 𝑎) is the value of observation 𝑥𝑡 and

action 𝑎. We note that in general, ground-truth targets are not available for such a

loss. However, they may be approximated using bootstrapping methods as in Mnih et

al. (2015) or Kumar et al. (2020).

One question that we seek to understand is the extent to which this approach

generalizes to novel tasks and policies. We observe that the mapping from a history

of observations, actions, and rewards to values is non-trivial, requiring the model to

infer the policy and the dynamics of the environment, and to implicitly forecast these

estimates for multiple time steps. As a result, it is reasonable to anticipate some degree

of memorization.

4.2 Proposed Method

In the case of context-conditional models such as transformers, one factor that has a

significant impact on memorization is the extent to which the model attends to infor-

59

mation in its context — “in-context” learning — as opposed to the information distilled

in its weights during training — “in-weights” learning. The former will be sensitive to

new information introduced during evaluation while the latter will not. As Chan et al.

(2022b) suggests, the relevance or predictive power of information in a model’s context

strongly influences the balance of in-weights vs. in-context learning.

With this in mind, we note that the ground-truth values associated with each

time-step in the model’s context would be highly predictive of the value of the current

state. A model provided this information in its context should attend more strongly to

its context and memorize less. This would entail the following redefinition of ℎ𝑡, the

history on which we condition the model’s predictions:

ℎ𝑡 ≔ (𝑎𝑡−1−𝑐, 𝑟𝑡−1−𝑐, 𝑏𝑡−1−𝑐, 𝑥𝑡−1−𝑐, 𝑄(𝑥𝑡−𝑐+1, ·)…,𝑄(𝑥𝑡, ·), 𝑎𝑡−1, 𝑟𝑡−1, 𝑏𝑡−1, 𝑥𝑡,) (9)

The question remains how such input values might be obtained. After all, in a setting

where we intend to estimate values, we should not assume that we already have ac-

cess to good value estimates! To address this chicken-and-egg dilemma, we propose

an alternative approach to predicting values directly and instead take inspiration from

the classic Policy Evaluation algorithm (Sutton and Barto 2018), which iteratively im-

proves a value estimate using the Bellman update equation:

𝑄𝑘(𝑥𝑡, 𝑎𝑡) ≔ 𝑟(𝑥𝑡, 𝑎𝑡) + 𝛾𝐸𝑥𝑡+1𝑎𝑡+1[𝑄𝑘−1(𝑥𝑡+1, 𝑎𝑡+1)] (10)

For any 𝑄0 and for sufficiently large 𝑘, this equation converges to the true value of 𝑄.

We incorporate a similar approach in our method, proposing the following loss function:

60

ℒBUN𝜃 ≔ −𝐸[∑
𝑇−1

𝑡=1
∑
𝑎∈𝒜

log 𝑃𝜃(𝑄𝑘(𝑥𝑡, 𝑎) | ℎ
𝑄𝑘−1
𝑡)]

where ℎ𝑄𝑘−1
𝑡 ≔ (𝑎𝑡−1−𝑐, 𝑟𝑡−1−𝑐, 𝑏𝑡−1−𝑐, 𝑥𝑡−𝑐, 𝑄𝑘−1(𝑥𝑡−𝑐, ·)…,𝑄𝑘−1(𝑥𝑡−1, ·), 𝑎𝑡−1, 𝑟𝑡−1, 𝑏𝑡−1, 𝑥𝑡,)

(11)

Figure 33: Sketch of inputs and outputs for the Bellman Network Architecture archi-
tecture.

We call a model 𝑃𝜃 that minimizes this loss a Bellman Update Network (BUN). Ini-

tially, we may set 𝑄0 to any value. By feeding this initial input into the network and

then auto-regressively feeding the outputs back in, we may obtain an estimate of both

the target value, 𝑄𝑘(𝑥𝑡, 𝑎) and the context values 𝑄𝑘−1(𝑥𝑡−𝑐+1, ·),…,𝑄𝑘−1(𝑥𝑡−1, ·). By

conditioning predictions of 𝑄𝑘 on a context containing estimates of 𝑄𝑘−1, we gain many

of the benefits of the context proposed in Equation 9, in terms of promoting in-context

learning over in-weights learning, without privileged access to ground-truth values. For

a visualization of the inputs and outputs of the proposed architecture, see Figure 33.

This approach entails a tradeoff. By training on 𝑘 < ∞, we significantly increase

the space of inputs for which the model must learn good representations. Therefore,

the method takes longer to train and demands more of the capacity of the model. What

we gain are more robust representations, capable of better generalization to unseen

settings.

61

4.2.1 Setting

We now describe the data used to train the Bellman Update Network, though we defer

the details of training to a later section. We assume that we are given a dataset of

trajectories containing observations 𝑥, actions 𝑎, rewards 𝑟, terminations 𝑏, and policy

logits 𝜋(· |𝑥). We assume that this dataset contains a multitude of tasks and agents,

with one task/agent per trajectory. We also assume that we have estimates of value at

different numbers of Bellman updates 𝑘, although we defer the explanation of how to

acquire these to Section 4.2.4.

In the preceding chapter, an agent corresponded all policies generated by a

learning algorithm, starting with random policies and ending with near optimal poli-

cies. In some sections of this chapter, we will assume one policy per agent, for the sake

of analysis and simplicity.

4.2.2 Architecture

Figure 34: Diagram of the Bellman Update Network architecture.

As Figure 34 illustrates, the inputs to the network are a sequence of transitions from the

dataset. In principle, these transitions need not be chronological, except in a partially

observed setting. Importantly, the observations are offset by one index from the rest of

the components of the transition. This will be explained in Section 4.2.5. Each transi-

62

tion gets encoded and summarized into a single fixed-size vector. We compared several

methods for doing this, including small positional transformers, and found that Gated

Recurrent Unit (GRU) (Cho et al. 2014) demonstrated the strongest performance. Each

of these transition vectors gets passed through a transformer network (one vector per

transformer index) and the final outputs are projected to scalars.

Note that in Figure 34, we provide 𝑉𝑘 and not 𝑄𝑘 to the model, as in Equa-

tion 11. We found that computing

𝑉𝑘(𝑥𝑡) ≔∑
𝑎
𝜋(𝑎|𝑥𝑡)𝑄𝑘(𝑥𝑡, 𝑎) (12)

and providing this as input to the network, rather than providing the full array of Q-

values, improved the speed and stability of learning.

To regress the outputs of the model onto value targets, we use mean-square-

error loss:

ℒ𝜃 ≔∑
𝑇−1

𝑡=1
[𝑄𝜃(𝑥𝑡, 𝑎𝑡 | ℎ

𝑉𝑘
𝑡) − 𝑄̂𝑘+1(𝑥𝑡, 𝑎𝑡)]

2
(13)

where ℎ𝑉𝑘𝑡 is a sequence of transitions containing values 𝑉𝑘 and 𝑄̂𝑘+1 is a target Q

value computed using bootstrapping (details in Section 4.2.4). This loss is equivalent

to Equation 11 when 𝑃𝜃 is normally distributed with fixed standard deviation.

4.2.3 Value Estimation

As we alluded in Section 4.2, in order to estimate values using the Bellman Update

Network, we auto-regressively pass the outputs of the network back into it, repeating

this procedure a fixed number of steps, or until the estimates converge. One detail is

63

that the network receives values as inputs and produces Q-values as outputs. Therefore,

the output Q-values must be recombined into values before feeding them back into the

network. To achieve this, we simply take the dot product of the output Q-values and

the input policy logits. See Figure 35 for a visualization.

Figure 35: Diagram showing how Q-value estimates output by the Bellman Update
Network are converted back into value estimates and fed back into the network.

4.2.4 Training procedure

Figure 36: Visualization of the first three curriculum stages for training the Bellman
Update Network.

Here we describe a practical procedure for computing values to serve as inputs and

targets to the network, and for training the network. For all values of 𝑘 greater than 1,

64

we must choose between using inaccurate bootstrap values or adopting a curriculum.

Each approach introduces a different form of non-stationarity into the training proce-

dure. We favor the latter, since it avoids training the network on targets before they

are mostly accurate.

For a visual sketch of the training procedure, see Figure 36. Our curriculum

initially trains 𝑄1 bootstrapped from 𝑄0, which we set to 𝟎. We proceed iteratively

through higher order values until 𝑄𝐾 ≈ 𝑄𝐾−1. At each step in the curriculum, we con-

tinue to train 𝑄𝑘 for all values of 𝑘 ∈ 1,…,𝐾 (see line 6 of Algorithm 4). This allows

the network to continue improving its estimates for lower values of 𝑘 even as it begins

to train on higher values, thereby mitigating the effects of compound error. Another

benefit of continuing to train lower values of 𝑘 is that these estimates can benefit from

backward transfer as the curriculum progresses. As the network produces estimates,

we use them both to train the network (see line 16 in Algorithm 4) but also to produce

bootstrap targets for higher values of 𝑘 (see line 13).

4.2.5 Implementation Details

We implement the Bellman Update Network as a causal transformer, using the GPT2

(Radford et al. 2019) implementation from www.huggingface.co. Why is causal masking

necessary, given that the target does not appear in the input to the model? To answer

this question, we must draw attention to a disparity between the outputs from the

model on line 15 of Algorithm 4 and the targets used to train the model on line 16. For

each input observation 𝑥𝑡, we require the model to infer a vector of values, 𝑸(𝒙𝒕, ·),

65

https://huggingface.co/

Algorithm 4: Training the Bellman Update Network.

1: input 𝑐,𝒟 ▷ Context length, RL data

2: 𝑄0 ← 𝟎 ▷ Initialize Q-estimates to zero.

3: 𝐾 ← 0
4: repeat
5: repeat
6: for 𝑘 = 0,…,𝐾 do
7: (𝑎𝑡, 𝜋(· |𝑥𝑡), 𝑟𝑡, 𝑏𝑡, 𝑥𝑡+1)

𝑐
𝑡=0

∼ 𝒟 ▷ sample sequence from data.

8: for 𝑡 = 1,…, 1 + 𝑐 do
9: 𝑉𝑘(𝑥𝑡) ← ∑𝑎 𝜋(𝑎 | 𝑥𝑡)𝑄𝑘(𝑥𝑡, 𝑎) ▷ Compute values from Q-values

10: end for
11: ℎ𝑉𝑘 ← (𝑎𝑡, 𝜋(· |𝑥𝑡), 𝑟𝑡, 𝑏𝑡, 𝑥𝑡+1, 𝑉𝑘(𝑥𝑡+1))

𝑐
𝑡=0

▷ pair transitions with values

12: for 𝑡 = 1,…, 1 + 𝑐 do
13: 𝑄̂𝑘+1(𝑥𝑡, 𝑎𝑡) ← 𝑟𝑡 + (1 − 𝑏𝑡)𝛾𝑉𝑘(𝑥𝑡+1)

▷ Bootstrap target for observed ac-
tions.

14: end for
15: 𝑄𝑘+1 ← 𝑄𝜃(ℎ𝑉𝑘)

▷ Use Bellman Update Network to
estimate values

16: minimize ∑𝑡 [𝑄𝜃(𝑥𝑡, 𝑎𝑡 | ℎ
𝑉𝑘
𝑡) − 𝑄̂𝑘+1(𝑥𝑡, 𝑎𝑡)]

2
▷ Optimize predictions

17: end for
18: until 𝑄𝑘+1 ≈ 𝑄̂𝑘+1
19: 𝐾 ← 𝐾 + 1
20: until 𝑄𝑘+1 ≈ 𝑄𝑘

Figure 37: How causal masking prevents the model from attending to the action cor-
responding to the target Q-value.

one for each action in the action space. However, we are only able to train the model

on the single action observed in the dataset for that transition. If the model is able to

observe both the input observation 𝑥𝑡 and the action 𝑎𝑡 on which we condition the tar-

get value, the model will neglect all predictions besides 𝑄(𝑥𝑡, 𝑎𝑡). That is, it will learn

66

good predictions of 𝑄(𝑥𝑡, 𝑎) for 𝑎 = 𝑎𝑡, the action that appears in the dataset, but not

for the other actions in the action space. To prevent this degenerate outcome, we use

masking to prevent the model from observing 𝑎𝑡 when conditioning on 𝑥𝑡. This is also

why we offset the observations and value predictions by one index, as in Figure 34. See

Figure 37 for an illustration of how causal masking occludes the action corresponding

to the target Q-value for each input transition.

One consequence of masking is that predictions for values early in the sequence

are poor in comparison to predictions later in the sequence, since they benefit from

less context. Repeated bootstrapping from these poor predictions propagates error

throughout the sequence. To mitigate this, we rotate the sequence by fractions, re-

taining predictions from only the last fraction. For example, if we break the sequence

into three equal fractions (𝑋1, 𝑋2, 𝑋3), we apply three rotations, yielding rotated se-

quences (𝑋1, 𝑋2, 𝑋3), (𝑋2, 𝑋3, 𝑋1), and (𝑋3, 𝑋1, 𝑋2). We pass each rotation through

the model, and for each rotation, we retain only the predictions for 𝑋3, 𝑋1, and 𝑋2

respectively. We use this rotation procedure to produce the Q estimates on line 15 of

Algorithm 4.

Another important detail is that the bootstrap step on line 13 of Algorithm 4

leads to instability when generating targets for lower targets of 𝑘 which the model has

previously trained on. To mitigate this, we interpolate 𝑄̂𝑘+1 with its previous value,

using an interpolation factor of .5, which we chose based on hyperparameter search.

67

4.2.6 Downstream Evaluation

Once the network is trained, we can use it to estimate values in a new setting by using

the iterative method we described in Section 4.2. In addition, we can use the estimates

to act, by choosing actions greedily by value (see Algorithm 5).

Algorithm 5: Evaluating the Bellman Update Network.

1: input 𝑐,𝐾, 𝑇
▷ Context length, iterations, evaluation

length

2: 𝑄0 ← 𝟎 ▷ Initialize Q-estimates to zero.

3: (𝑥𝑡, 𝑎𝑡, 𝜋(· |𝑥𝑡), 𝑟𝑡, 𝑏𝑡)
𝑐
𝑡=0 ∼ random behavior

▷ Fill transformer context with random be-
havior.

4: 𝑥𝑐+1 ← reset environment
5: for 𝑡0 = 1,…, 1 + 𝑇 do
6: for 𝑘 = 0,…,𝐾 do
7: for 𝑡 = 𝑡0,…, 𝑡0 + 𝑐 do
8: 𝑉𝑘(𝑥𝑡) ← ∑𝑎 𝜋(𝑎 | 𝑥𝑡)𝑄𝑘(𝑥𝑡, 𝑎) ▷ Compute values from Q-values

9: end for
10: ℎ𝑉𝑘 ← (𝑎𝑡, 𝜋(· |𝑥𝑡), 𝑟𝑡, 𝑏𝑡, 𝑥𝑡+1, 𝑉𝑘(𝑥𝑡+1))

𝑡0+𝑐
𝑡=𝑡0

▷ pair transitions with values

11: 𝑄𝑘+1 ← 𝑄𝜃(ℎ𝑉𝑘)
▷ Use the Bellman Update Network to esti-
mate values.

12: end for
13: 𝑡 ← 𝑡0 + 𝑐
14: 𝑎𝑡 ← argmax𝑎𝑄𝐾+1(𝑥𝑡, 𝑎) ▷ Choose the action with the highest value.

15: 𝑟𝑡, 𝑏𝑡, 𝑥𝑡+1 ← step environment with 𝑎𝑡
16: 𝜋(· |𝑥𝑡) ← one-hot(𝑎𝑡) ▷ Use greedy policy for action logits

17: end for

4.2.6.1 Policy Iteration

Note that acting in this way implements policy iteration, much like the algorithms

discussed in previous chapters. As the model acts, it populates its own context with

new actions and action-logits. Since the model has been trained on a variety of poli-

cies, it conditions its value estimates on these actions and logits and by transitivity,

on the behavior policy. When we choose actions greedily, we improve on this behavior

policy, completing the policy iteration cycle. Note that in practice, the context of the

68

model will contain a mixture of older, lower-quality actions and newer, higher-quality

actions, with newer actions progressively dominating. We rely on the context-condi-

tioning capability of the model to approximate a policy mixing the multitude of policies

represented in the context.

4.2.7 Extension to multi-step Bellman Updates

The present formulation trains the Bellman Update Network to perform a single Bell-

man update. However, this can be generalized to multi-step updates, e.g. using the loss:

ℒ𝛿𝜃 ≔ −𝐸[∑
𝑇−1

𝑡=1
∑
𝑎∈𝒜

log 𝑃𝜃(𝑄𝑘(𝑥𝑡, 𝑎) | ℎ
𝑄𝑘−𝛿
𝑡)] (14)

where 𝛿 is some integer between 1 angitd 𝑘 − 1 (see Equation 11 for the definition of

ℎ𝑄𝑘−𝛿
𝑡). In our experiments, we vary 𝛿 between 1 and the maximum number of itera-

tions 𝛿max. We inversely vary 𝐾, the number of iterations in our evaluation (line 3 of

Algorithm 6), so that 𝛿 × 𝑘 = 𝛿max. Thus when 𝛿 = 𝛿max, we perform 𝑘 = 1 iterations,

reducing the algorithm to the “naive” method described in Section 4.1.2. See Figure 38

for a visualization of the relationship between the number of iterations and the value

of 𝛿.

Figure 38: How the number of applications of the Bellman Update Network varies
inversely with the value of 𝛿.

69

4.3 Related Work

An earlier work that anticipates many of the ideas used by Bellman Update Networks

is Value Iteration Networks (Tamar et al. 2016). Like a Bellman Update Network, a

Value Iteration Network uses a neural network to approximate a single step of value

propagation and performs multiple steps of recurrent forward passes to produce an

inference, with each new value estimate conditioned on a previous one. However, Value

Iteration Networks do not target in-context learning, and instead the paper focuses on

their ability to plan implicitly. Additionally, Value Iteration Networks rely on Convo-

lutional Neural Networks which assume a representation of the environment in which

the network can simultaneously observe the current state and those adjacent to it. As

a result, the paper focuses exclusively on top-down 2D and graph navigation domains.

A more recent work that incorporates many related ideas is Procedure Cloning

(Yang et al. 2022). In this work, the authors augment a behavior cloning dataset with

information relating to the procedure used to choose an action. For example, in a

maze environment, instead of cloning actions only, they also clone steps in a breadth-

first-search algorithm used to choose those actions. Bellman Update Networks may be

viewed as a specialization of this approach to the policy evaluation algorithm.

A variety of works, to include Schrittwieser et al. (2020), Okada and Taniguchi

(2022), Zhu et al. (n.d.) and Wen et al. (2023) consider methods of planning in a la-

tent space. We highlight two recent works in particular. Thinker (Chung et al. 2023)

performs Monte-Carlo Tree Search entirely in latent space, with states augmented by

anticipated rollout return and visit count. Another interesting work is Ritter et al.

70

(2020) which proposes “Episodic Planning Networks.” This architecture augments the

agent with an episodic memory that gets updated using a self-attention operation that

iterates multiple times per step. The authors observe that the self-attention operation

learns a kind of “value map” of states in the environment.

4.4 Experiments

Our experiments explore two settings: a tabular grid-world setting in which ground-

truth values can be computed using classical policy evaluation and a continuous

state, partially-observed domain implemented using Miniworld (Chevalier-Boisvert et

al. 2023). In the first setting, we investigate two training regimes. The first regresses

directly onto the ground-truth values, while the second incorporates the bootstrapped

training regime described in Section 4.2.4. This allows us to disentangle the effects of

the iterative value estimation method at the heart of the Bellman Update Network

algorithm from the specific procedure used to train the network.

4.4.1 Training with ground-truth values

When regressing onto ground-truth values, we simply minimize Equation 13, regressing

onto ground-truth values for 𝑄𝑛(𝑥𝑛𝑡 , 𝑎). Since we are able to optimize the value esti-

mates for all actions, we dispense with masking (recall the discussion in Section 4.2.5)

and positional encodings. This allows us to train estimates for all states and actions in

the sequence simultaneously. To evaluate this network, we adapt the iterative proce-

dure from Algorithm 5: we iteratively apply the network first to an initial 𝑄 estimate,

71

https://miniworld.farama.org/

Algorithm 6: Tabular evaluation of the Bellman Update Network.

1: function 𝑄(ℎ)
▷ Estimate values for all states in input se-

quence.

2: 𝑄0 ← 𝟎 ▷ Initialize Q-estimates to zero.

3: for 𝑘 = 0,…,𝐾 do
4: for 𝑥𝑡 ∈ ℎ do
5: 𝑉𝑘(𝑥𝑡) ← ∑𝑎 𝜋(𝑎 | ·)𝑄𝑘(𝑥𝑡, 𝑎) ▷ Compute values from Q-values

6: end for
7: ℎ𝑉𝑘 ← (𝑎𝑡, 𝜋(· |𝑥𝑡), 𝑟𝑡, 𝑏𝑡, 𝑥𝑡+1, 𝑉𝑘(𝑥𝑡+1))

𝑐
𝑡=0

▷ pair transitions with values

8: 𝑄𝑘+1 ← 𝑄𝜃(ℎ𝑉𝑘)
▷ Use Bellman Update Network to estimate

values

9: end for
10: return 𝑄𝐾+1
11: end function

then auto-regressively to its own output (after computing value estimates from the Q

estimates and the policy logits 𝜋(· |𝑥𝑡) per Equation 12). For details see Algorithm 6.

4.4.1.1 Do value functions overfit?

Figure 39: Comparison of root mean-square error for training vs. testing.

72

The first point that we wish to demonstrate in this setting is that values conditioned

on many policies are prone to overfitting. We therefore set 𝛿 = 𝛿max (Section 4.2.7)

and train the network on 80,000 randomly sampled policies in a 5 × 5 grid-world, with

a single goal of achievement. In this idealized setting, we provide the network with

the full cross-product of states and actions, so that perfect estimation is possible. We

evaluate the network in an identical setting but with 20,000 heldout policies. As the

upper-left graph of Figure 39 illustrates, we observe a significant gap between training

accuracy and test accuracy, as measured by root mean-square error. In addition, we

observe that test error mostly plateaus after update 100,000, even as training error

continues to decrease, indicating that all learning after this point entails memorization.

In the right two graphs of Figure 39, we randomly omit 14 and 12 of the state-action

pairs from the input. As the figures demonstrate, the gap between training and testing

widens slightly and the extent of memorization increases.

4.4.1.2 Does value prediction with a Bellman Update Network mitigate

overfitting?

In the lower half of Figure 39, we compare values estimated by the Bellman Update

Network. Note that the “test” lines in Figure 39 describe error for the full value es-

timate produced by 𝛿max steps of iteration (following the procedure described in Sec-

tion 4.4.1), not the error for a single Bellman update. As the figure demonstrates, test

error continues to diminish along with the training error, long after the test error for

the 𝛿max model has plateaued. While we observe a slight diminution in performance

73

as the number of omitted state-action pairs increases, the gap between train and test

remains constant.

4.4.1.3 Do values predicted by a Bellman Update Network inform good

policies?

Figure 40: Regret of improved policy in the 5 × 5 grid-world, for different values of 𝛿
and different numbers of omitted state-action pairs.

The utility of a value function is not entirely captured by its accuracy, since an inaccu-

rate value function can still induce a good policy. We therefore introduce the following

procedure for evaluating value estimates in a tabular setting:

1. We perform a single step of policy improvement, choosing actions greedily by value

estimate.

2. We use tabular policy evaluation to evaluate the resulting policy.

3. We compare the resulting value with the value of the optimal policy.

We refer to this metric as the “regret of the improved policy.” Note that this bears some

resemblance to the procedure described in Section 4.2.6 and Algorithm 5. However, the

procedure does not require the model to auto-regressively consume the actions (and

resulting transitions) produced by the new greedy policy and consequently there is no

in-context learning.

74

As Figure 40 demonstrates, all models achieve good performance in this rela-

tively simple setting. However, lower values of 𝛿 consistently outperform 𝛿max, indicat-

ing that the disparity in accuracy from Figure 39 does translate into performance. In

general, 𝛿 = 1 matches or slightly outperforms the higher values of 𝛿.

4.4.1.4 Can Bellman Update Networks generalize to novel tasks?

Figure 41: Root mean-square error on
5 × 5 grid-world with walls.

Figure 42: Regret of improved policy on
5 × 5 grid-world with walls.

Next we consider the effect of distribution shift in the environment dynamics from

train to test. To this end, we introduce random walls into the grid-world with 25%

probability per edge. The model does not observe walls and must infer their presence

based on the transition patterns in the inputs — if the agent fails to move into an

adjacent grid, this indicates the presence of a wall.

During testing, we evaluate the model on a randomly generated maze. This en-

sures that all grids are reachable, unlike the training setting in which grids may be

walled off in some cases. As Figure 42 indicates, the model achieves better general-

ization performance when trained with lower values of 𝛿. We also observe a similar

generalization gap in Figure 41 as in Figure 39.

75

4.4.2 Training without ground-truth targets

Until this point we assumed access to a set of ground-truth values computed using

tabular methods. In most realistic, non-tabular settings, we cannot make this assump-

tion. In this section, we turn our attention to the algorithm proposed in Section 4.2.4,

which uses a combination of curriculum-based training and bootstrapping to train the

Bellman Update Network.

Algorithm 4 introduces a handful of difficulties not present in the previous sec-

tion:

• The curriculum training approach introduces issues of non-stationarity.

• We can no longer assume complete coverage of state-action space, nor the capacity

to sample this space IID, as we did in earlier experiments.

• The use of causal masking, as discussed in Section 4.2.5, further limits the informa-

tion on which the model may condition its predictions.

In this section we test the ability of the transformer architecture to meet these chal-

lenges.

4.4.2.1 Can training without ground-truth targets yield accurate predic-

tions?

Our first set of experiments in this new setting reproduces those the previous section,

with a 5 × 5 grid-world using goals of achievement. Again, in order to give meaning

to the accuracy estimates in Figure 43, we compare against a simple baseline, analo-

gous to 𝛿max, which directly estimates 𝑄𝑘=∞. This baseline uses the same procedure as

76

Figure 43: Root mean-square error of
Bellman Update Network trained without
ground-truth targets using Algorithm 4.

Figure 44: Example observation from
Miniworld environment described in Sec-

tion 4.4.2.2

the original (Algorithm 4), except for two changes. First, we eliminate the curriculum.

Second, we eliminate 𝑘 from our loss, minimizing

ℒ𝜃 ≔ (𝑄𝜃(𝑥𝑡, 𝑎𝑡 | ℎ𝑡) − (𝑟𝑡 + 𝛾𝐸𝑥𝑡+1,𝑎𝑡+1[𝑄̂𝜃(𝑥𝑡+1, 𝑎𝑡+1)]))
2

(15)

instead of Equation 13. Here, 𝑄̂𝜃 is the output of 𝑄𝜃 interpolated with previous values.

To mitigate instability, we found it necessary to reduce the interpolation factor from 0.5

to 0.001, again using hyperparameter search. While lower values of 𝛿 clearly outperform

higher values in Figure 43, we do observe some overfitting toward the end of training

for 𝛿 = 1.

4.4.2.2 Can a Bellman Update Network induce in-context reinforcement

learning in a non-tabular setting?

Finally, we turn our attention to a non-tabular setting, implemented using Miniworld

(Chevalier-Boisvert et al. 2023). Miniworld is a 3D domain in which the agent re-

ceives egocentric, RGB observations of the environment (see Figure 44). We adapt the

77

https://miniworld.farama.org/

OneRoom environment to support multi-task training. We populate the environment

with two random objects which the agent must visit in sequence. We encode the high-

dimensional RGB observations used by Miniworld with a 3-layer convolutional network

before feeding them into the GRU transition encoder (Section 4.2.5). To perform eval-

uations in this setting, we use the auto-regressive rollout mechanism described in Al-

gorithm 5, choosing actions greedily by value estimate and feeding new transitions back

into the network.

Figure 45: In-context reinforcement learning curves for Bellman Update Network and
Conservative Q-Learning (CQL).

In our Miniworld experiments, we compare three settings of 𝛿 for the Bellman

Update Network. Note that for 𝛿 = 𝛿max, we eliminate the curriculum as discussed in

Section 4.4.2.1. We also compare these with the Conservative Q-Learning (CQL) algo-

rithm (Kumar et al. 2020), a state-of-the-art offline RL algorithm. Unlike the Bellman

Update Network, CQL integrates policy improvement into its loss function, minimizing

∑
𝑇−1

𝑡=1
(𝑄𝜃(𝑥𝑡, 𝑎𝑡 | ℎ

𝑉𝑘
𝑡) −max𝑎 𝑄̂(𝑥𝑡, 𝑎))

2
(16)

where 𝑄̂ is computed using bootstrapping. Note that the argmax operation cannot be

used in the loss when 𝑘 < ∞. Therefore this form of policy improvement is not available

to Bellman Update Networks. A well-known property of these kinds of losses is that

78

https://miniworld.farama.org/environments/oneroom/

they tend to produce overly optimistic value estimates, due to the sensitivity of the

max𝑎 operator to noise. To mitigate this, CQL introduces a “conservative” auxiliary

loss:

𝛼∑
𝑇−1

𝑡=1
log∑

𝑎
exp(𝑄(𝑥𝑡, 𝑎)) − 𝑄(𝑥𝑡, 𝑎𝑡) (17)

Thus the algorithm used to train CQL departs from Algorithm 4 in only two ways:

1. We use the max𝑎 targets from Equation 16 in place of the empirical targets from

Equation 13.

2. We add the regularizer from Equation 17 to our loss function.

In Figure 45, we compare CQL with the Bellman Update Networks under several set-

tings of 𝛿. The error bands denote the standard error computed across 20 seeds. We

also compare the results of training on different quantities of data by stopping the

training of the source algorithm at different points in time. For reference, the middle

graph in Figure 45, trained on 24,576 timesteps of data, terminates training just before

the source algorithm reaches optimal performance.

Both CQL and 𝛿 = 𝛿max experience some instability for the lower data regimes,

where the disparity in distribution between the policies represented in the training data

and the optimal policy is greatest. Moreover, we observe that the area under the curve

for CQL and 𝛿 = 𝛿max is smaller, perhaps reflecting limitations in the ability to gener-

alize to the mixture policy observed during downstream evaluation. We also observe a

slight advantage for 𝛿 = 1 over 𝛿 = 2 in the higher-data regimes, reflecting the disparity

observed in our earlier grid-world results.

79

4.4.2.3 Qualitative analysis

We conclude by performing some qualitative analysis on the values learned by CQL

and those learned by the Bellman Update Network. In Figure 46 and Figure 47, we

visualize the value estimates of 𝛿 = 1 and CQL on two trajectories from the offline

data. In the diagram, the arrows represent the path taken by the agent. The double-

headed arrows are color-coded to indicate predicted value (for the fore arrowhead) and

experienced reward (for the aft arrowhead). The rings indicate the radius around the

objects into which the agent must enter to receive reward. In Figure 46, the agent

receives a cumulative reward of two, one for entering the perimeter of the blue circle

and one for entering the perimeter of the red circle.

Note that the value predictions of the Bellman Update Network approach the

maximum near the point where reward is actually received and then gradually anneal

(as indicated by the yellow, orange, and red arrowheads). By contrast, the CQL pre-

dictions all appear to be at the maximum. Next we consider Figure 47, depicting a

trajectory in which the agent receives no reward. Here we see much lower value predic-

tions by CQL even as the agent approaches the rewarding blue circle. In contrast, the

predictions made by the Bellman Update Network are similar in distribution to those

in Figure 46. This provides one example in which CQL anticipates the remainder of a

trajectory, implying memorization. The Bellman Update Network does not anticipate

the remainder of the trajectory and its value predictions reflect the dynamics of the

environment.

80

Figure 46: Predictions by the 𝛿 = 1 variant
(left) and by CQL (right) on an offline tra-

jectory with cumulative return of 2.

Figure 47: Predictions by the 𝛿 = 1 variant
(left) and by CQL (right) on an offline tra-

jectory with cumulative return of 0.

4.5 Conclusion

This chapter presents an algorithm for performing in-context reinforcement learning.

It imports many of the concepts from preceding chapters, especially the integration

of context-based learning into the policy iteration algorithm. The chapter builds on

the work presented in the preceding chapters by freeing the algorithm from model-

based learning and monte-carlo rollouts. We observe that Bellman Update Networks are

better equipped to handle high-dimensional observation spaces (like Miniworld) than

AD++, since observations of this kind pose significant challenges for existing modeling

approaches, especially where partial observability is involved. Certainly observations of

this size cannot be modeled incrementally using the inline, sequence-based approach

proposed by Janner et al. (2021a), since a single observation would consume an entire

context window.

That said, AD++ retains some advantages over Bellman Update Networks. In

particular, this approach may struggle to propagate values over very long timesteps

(e.g. over 100), and certainly training a network for such a task could take a very long

81

time. It is likely that such a setting would benefit from values of 𝛿 higher than 𝛿 = 1,

and this should be thought of as a parameter to tune.

In general, a limitation of the approach proposed in this chapter is that it re-

quires learning values for a very large number of policies, whereas only the optimal

is ultimately of interest. However, learning only the optimal policy is in general not

possible within the paradigm of in-context reinforcement learning, which requires an

algorithm to yield a spectrum of policies transitioning from exploratory to exploitative

behavior.

82

5 Conclusion

Since beginning of this work, the science of artificial intelligence has undergone a par-

adigm shift. Not only have foundation models, particularly language models, come to

dominate the field, but priorities and expectations around research have shifted dra-

matically. In some ways, the work in this thesis aligns with these shifts. The thesis

anticipates a world in which RL algorithms acquire most of their knowledge through

supervised training on offline datasets, as we discussed in the introduction 1. In this

paradigm, learning does not happen in a single unbroken arc, from tabula-rasa random

weights to expert behavior, all driven by end-to-end gradient-descent-based deep RL

algorithms. Instead, learning happens in two stages: an initial stage in which the model

soaks up large quantities of information using strong supervised signals from offline

datasets, and a second stage in which the model adapts to its specific setting using

some form of in-context learning.

However, in some ways, this thesis is out of step with the current trajectory of

AI research. In particular, it focuses on two concerns which have fallen out of favor:

1. reinforcement learning as a method of exploration and discovery.

2. generalization instead of memorization.

We will begin by describing the ways in which attitudes towards these concerns have

changed, and make the case for their continued relevance.

83

5.1 Reinforcement Learning as a Method of Exploration and

Discovery

Reinforcement learning remains a component of some state-of-the-art AI systems, but

it’s role has fundamentally changed from what its pioneers envisioned. Early deep RL

researchers imagined agents that would explore their world with very little learning

signal, progressively acquire knowledge and skills, and slowly but surely improve their

behavior until optimal. Agents would acquire auxiliary skills as necessary in the ser-

vice of a simple, sparse reward (Silver et al. 2021), rather than optimizing those skills

directly. One of the most appealing aspects of this program was its rigorous economy

in aligning objectives: all learning would serve the accumulation of reward. An agent

might acquire language, for example, but only to the extent necessary for communi-

cating concepts essential to its mission. This ethos dictated that RL would gradually

shed crutches like reward shaping (Hu et al. 2020) and auxiliary losses (Burda et al.

2018) as research matured and discovered new pathways between short-term behavior

and long-term reward.

In Yann LeCun’s 2016 NeurIPS keynote (LeCun 2016), he laid out a paradigm

that came to be known as “LeCake”:

• Unsupervised learning is the “filling” of the cake, accounting for millions of bits of

learning per sample.

• Supervised learning is the “icing,” accounting for 10-10,000 bits per sample.

• Reinforcement learning is the “cherry on top,” accounting for a few bits per sample.

84

The talk caused a stir because it minimized the role of reinforcement learning, then the

dominant form of learning for AI problems. His argument was that there was simply

not enough information in reward signal to train the large neural networks that were

then coming to prominence in fields like computer vision.

In retrospect, the talk was incredibly prescient. Not only did the role of rein-

forcement learning in large-scale systems diminish, but many of the problems that were

once thought to be its exclusive purview, such as credit assignment, are now routinely

ignored. Reinforcement learning still plays a role in the training of some LLMs, but

primarily as a fine-tuning step during Reinforcement Learning from Human Feedback

(RLHF), after the bulk of training time has been spent on unsupervised learning —

indeed the “cherry on top.”

One problem that receives the most shocking neglect from modern systems and

which was once the very raison d’etre of reinforcement learning is “credit assignment.”

This is the problem of determining which actions, in a temporally extended sequence,

are responsible for a final outcome, good or bad. It is through credit assignment, for

example, that we learn that losing our queen on the 20th step of a chess game is

detrimental, even though we might not actually lose the game for another 80 turns.

Technically, language entails credit-assignment, since a particular conclusion may only

be reachable through a long sequence of thoughts, calculations or questions.

While many state-of-the-art models are not publicly documented (GPT-4, Gem-

ini, etc.) and others are cagey about the details of RLHF (Lieber et al. 2021), it is

clear that models increasingly ignore the credit-assignment problem by maximizing

85

one-step reward (Touvron et al. 2023) – and despite this, achieve top performance. Di-

rect Preference Optimization (Rafailov et al. 2023), an increasingly popular technique

for optimizing learned reward, actually brands itself as “RL-free” and completely dis-

regards credit-assignment.

What explains the precipitous shift in the role of RL in modern AI systems? In

short, a tradeoff: between the kind of rigorous alignment that RL prioritizes and the

kind of scale necessary to train most practical AI systems. Aligning behavior with re-

ward requires credit-assignment. Realistic settings require long-term credit assignment

under conditions of noise and uncertainty. Learning signal under these conditions is

inherently weak. Strong learning signal is necessary to train large networks on large

amounts of data. When GPT3 (Brown et al. 2020a) demonstrated the indisputable

power of scale, approaches that were incompatible began to fall out of favor.

Another important shift is that in many practical settings, imitation is enough.

To reiterate, many natural language tasks do entail credit assignment, especially when

multi-step, exploratory reasoning is involved (Wei et al. 2022). However, language mod-

els inherit a kind of imperfect credit assignment through imitation of the humans who

wrote their data (who already possess the capacity for credit assignment). RL provides

a framework for learning optimal credit assignment, but this framework does not em-

pirically work in realistic language settings. Of course, an unprincipled solution that

works is better than a principled solution that doesn’t.

86

5.2 Generalization and Memorization

Another significant shift in thinking is the attitude toward memorization, once thought

to be synonymous with generalization. Classical frameworks like the bias-variance

tradeoff (Franklin 2005) imply that modeling noise will lead to overfitting — failure to

generalize from training data to out-of-distribution test data — and that regularization

of some kind or truncation of training is necessary to prevent this. However, several

publications have documented the mismatch between these predictions and empirical

reality (Brown et al. 2021; Zhang et al. 2021). Some work has also presented theoretical

frameworks for understanding this mismatch (Feldman 2020).

In general, there has been a movement away from classical regularization tech-

niques that effectively limit model expressivity in order to discourage memorization

and encourage generalization, and a general recognition that these two tendencies may

be more in cooperation than in conflict (Tirumala et al. 2022). This general trend has

conveniently aligned with the rise of learning at large scales, which presents more op-

portunities for memorization due to the size of the architectures, and fewer costs due

to the size of the training data. When training data is large enough, there is no such

thing as “out-of-distribution.” When all test data already appears in some form in the

training data, the problem of generalization becomes obsolete.

87

5.3 The continued relevance of reinforcement learning and gen-

eralization

All three chapters of this thesis concern themselves extensively with temporally-ex-

tended reinforcement learning and generalization to unseen settings. How do we justify

this focus, given the current trajectory of AI research?

5.3.1 Language privileges imitation

For all its success in the realm of language, imitative learning faces challenges in other

domains. Language lends itself especially well to imitation — a model can reproduce

the exact words in its dataset. In contrast, other domains do not permit this kind of

exact reproduction, requiring the transfer of knowledge and skills from one setting to

a different one. In robotics, for example, the same behavior requires widely different

policies for different physical embodiments. The joint activation patterns that a 300-lb

steel robot must use to walk are significantly different from those of a 150-lb human.

For any robot to acquire some skill from existing embodiments, in the way that an LLM

acquires language understanding from human datasets, it must overcome a significant

problem of transfer.

Zero-shot transfer of the kind exhibited by LLMs is not likely for robots, espe-

cially if they learn through extensive memorization. Instead, some period of fine-tuning

or in-context learning will be necessary to adapt fundamental skills acquired from of-

fline data to specific embodiments and settings. Unlike language models, which acquire

credit-assignment strategies whole-cloth from their source data, robots will need to

88

adapt these strategies and learn new ones. Some framework like RL, capable of evalu-

ating and improving credit assignment, will be necessary. Andrychowicz et al. (2020)

offer one compelling approach to this problem.

5.3.2 Credit assignment is necessary for expertise

Advances in the technologies that power LLMs have been rapid and difficult to predict.

However, a general trend is that they improve the ability of models to imitate their

sources, not their ability to outperform them by any significant margin. As a rule,

LLMs do not outperform top experts in any field. This stands in stark contrast to

agents trained using reinforcement learning which, to date, stand at or near the top of

their class in several domains including Go (Silver et al. 2016), Starcraft (Vinyals et al.

2019), and DoTA (Berner et al. 2019).

Many areas of expertise entail reasoning or decision-making over multiple steps.

This is especially true of many of the loftier aspirations for AI systems, including sci-

entific discovery and artistic creativity. A program that neglects credit-assignment can

acquire human-level credit assignment through imitation. To a degree, it can acquire

super-human expertise through fine-tuning of the final result. However, the expertise

of its final inference or output will fundamentally be limited by the multi-step process

which led to the inference. Improving the process with respect to the final result re-

quires some form of credit-assignment.

89

5.3.3 Generalization is necessary for expertise

Finally, we argue that useful expertise will always entail transfer and generalization –

that is, a meaningful gap between training data and the domain of interest. Whatever

their limitations in terms of expertise, LLMs unquestionably distinguish themselves by

their breadth — their capacity to produce coherent, usually intelligent, responses to

almost any prompt. A system that combines the expertise of RL with the breadth of

LLMs does not currently exist. Therefore, the first of its kind will need to distill exper-

tise from specialists and then generalize it beyond those specializations. For example,

a model may acquire knowledge of advanced mathematics by training on textbooks,

or even by distilling the behaviors of RL agents specialized to certain mathematical

problems, like AlphaTensor (Fawzi et al. 2022). However, in order to advance the fron-

tiers of science, such a model would need to transfer this specialized intelligence to

other domains, domains which are not captured by any dataset since they potentially

lie beyond the limits of current human understanding.

5.4 Foundation models for reinforcement learning

A consequence of these reflections is that foundation models for RL will not look the

same as foundation models for language. “LeCake” provides a sketch that may still

apply — surely, RL agents can benefit from data beyond their immediate experience.

However, the exact program will need to be different in significant ways. This thesis

has offered some tentative ideas about RL foundation models. In the first chapter, we

observe that any sequence-based foundation model can, in principle, serve as a kind of

90

RL foundation model. In the second, we demonstrate that such a model gains capacity

when specialized to RL data. Through the incorporation of Algorithm Distillation, we

highlight the fact that such a model can not only distill the dynamics and policies in

the source data but also the learning operator of the source algorithm. In the final

chapter, we argue that such a model can benefit from the idea of value and can learn

representations that generalizes.

The broader questions remain — about credit-assignment, generalization, and

the challenges of scale. However, given the history and magnitude of innovations in this

vibrant community of research, we can be sure that revolutionary developments in the

science of RL foundation models are still to come.

91

Bibliography

Abid, A., M. Farooqi, and J. Zou. 2021. “Persistent anti-muslim bias in large language

models”. Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Soci-

ety, 298–306

Ahn, M., A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn,

K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A.

Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D.

Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor,

J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,

A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, and M. Yan. 2022. “Do As

I Can, Not As I Say: Grounding Language in Robotic Affordances”. arXiv. Accessed

August 9, 2022. http://arxiv.org/abs/2204.01691

Ammanabrolu, P., and M. Riedl. 2021. “Learning Knowledge Graph-based

World Models of Textual Environments”. Advances in Neural Information Process-

ing Systems, 3720–3731. Curran Associates, Inc.

Andrychowicz, O. M., B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pa-

chocki, A. Petron, M. Plappert, G. Powell, A. Ray, and others. 2020. “Learning

dexterous in-hand manipulation”. The International Journal of Robotics Research,

39 (1): 3–20. SAGE Publications Sage UK: London, England

92

http://arxiv.org/abs/2204.01691

Baker, B., I. Akkaya, P. Zhokhov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton,

R. Sampedro, and J. Clune. 2022. “Video PreTraining (VPT): Learning to Act by

Watching Unlabeled Online Videos”. arXiv. Accessed August 9, 2022. http://arxiv.

org/abs/2206.11795

Berner, C., G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D.

Farhi, Q. Fischer, S. Hashme, C. Hesse, and others. 2019. “Dota 2 with large scale

deep reinforcement learning”. arXiv preprint arXiv:1912.06680

Brown, G., M. Bun, V. Feldman, A. Smith, and K. Talwar. 2021. “When is

memorization of irrelevant training data necessary for high-accuracy learning?”.

Proceedings of the 53rd annual ACM SIGACT symposium on theory of computing,

123–132

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,

T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M.

Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,

A. Radford, I. Sutskever, and D. Amodei. 2020b. “Language Models are Few-Shot

Learners”. Advances in Neural Information Processing Systems, 1877–1901. Curran

Associates, Inc.

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A.

Neelakantan, P. Shyam, G. Sastry, A. Askell, and others. 2020a. “Language mod-

els are few-shot learners”. Advances in neural information processing systems, 33:

1877–1901

93

http://arxiv.org/abs/2206.11795
http://arxiv.org/abs/2206.11795

Burda, Y., H. Edwards, A. Storkey, and O. Klimov. 2018. “Exploration by ran-

dom network distillation”. arXiv preprint arXiv:1810.12894

Chan, S. C. Y., A. Santoro, A. K. Lampinen, J. X. Wang, A. Singh, P. H.

Richemond, J. McClelland, and F. Hill. 2022a. “Data Distributional Properties

Drive Emergent In-Context Learning in Transformers”. arXiv. Accessed August 11,

2022. http://arxiv.org/abs/2205.05055

Chan, S. C., A. Santoro, A. K. Lampinen, J. X. Wang, A. K. Singh, P. H.

Richemond, J. McClelland, and F. Hill. 2022b. “Data distributional properties drive

emergent in-context learning in transformers”. Advances in Neural Information Pro-

cessing Systems

Chen, C., Y.-F. Wu, J. Yoon, and S. Ahn. 2022. “Transdreamer: Reinforcement

learning with transformer world models”. arXiv preprint arXiv:2202.09481

Chen, L., K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A.

Srinivas, and I. Mordatch. 2021b. “Decision Transformer: Reinforcement Learning

via Sequence Modeling”. arXiv:2106.01345 [cs]

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,

Y. Burda, N. Joseph, G. Brockman, and others. 2021a. “Evaluating large language

models trained on code”. arXiv preprint arXiv:2107.03374

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,

Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H.

Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L.

Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F.

94

http://arxiv.org/abs/2205.05055

Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J.

Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike,

J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Mu-

rati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever,

and W. Zaremba. 2021c. Evaluating Large Language Models Trained on Code

Chen, Y., C. Zhao, Z. Yu, K. McKeown, and H. He. 2022. “On the Relation be-

tween Sensitivity and Accuracy in In-context Learning”. arXiv. Accessed September

28, 2022. http://arxiv.org/abs/2209.07661

Chevalier-Boisvert, M., B. Dai, M. Towers, R. de Lazcano, L. Willems, S. Lahlou,

S. Pal, P. S. Castro, and J. Terry. 2023. “Minigrid & Miniworld: Modular & Cus-

tomizable Reinforcement Learning Environments for Goal-Oriented Tasks”. CoRR

Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.

Schwenk, and Y. Bengio. 2014. “Learning phrase representations using RNN en-

coder-decoder for statistical machine translation”. arXiv preprint arXiv:1406.1078

Chung, S., I. Anokhin, and D. Krueger. 2023. “Thinker: Learning to Plan and

Act”. arXiv preprint arXiv:2307.14993

Duan, Y., J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel.

2016. “RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning”.

arXiv. Accessed August 11, 2022. http://arxiv.org/abs/1611.02779

Fawzi, A., M. Balog, B. Romera-Paredes, D. Hassabis, and P. Kohli. 2022. “Dis-

covering novel algorithms with AlphaTensor”

95

http://arxiv.org/abs/2209.07661
http://arxiv.org/abs/1611.02779

Feldman, V. 2020. “Does learning require memorization? a short tale about a

long tail”. Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of

Computing, 954–959

Finn, C., P. Abbeel, and S. Levine. 2017. “Model-agnostic meta-learning for

fast adaptation of deep networks”. International conference on machine learning,

1126–1135

Franklin, J. 2005. “The elements of statistical learning: data mining, inference

and prediction”. The Mathematical Intelligencer, 27 (2): 83–85. Springer

French, R. M. 1999. “Catastrophic forgetting in connectionist networks”. Trends

in cognitive sciences, 3 (4): 128–135. Elsevier

Fried, D., A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, W.-t.

Yih, L. Zettlemoyer, and M. Lewis. 2022. “InCoder: A Generative Model for Code

Infilling and Synthesis”. arXiv:2204.05999 [cs]

Fujimoto, S., D. Meger, and D. Precup. 2019. “Off-policy deep reinforcement

learning without exploration”. International conference on machine learning, 2052–

2062

Gao, L., S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H.

He, A. Thite, N. Nabeshima, S. Presser, and C. Leahy. 2020. “The Pile: An 800GB

Dataset of Diverse Text for Language Modeling”. arXiv:2101.00027 [cs]

Garg, D., S. Vaidyanath, K. Kim, J. Song, and S. Ermon. 2022. “LISA: Learning

Interpretable Skill Abstractions from Language”. arXiv:2203.00054 [cs]

96

Garg, S., D. Tsipras, P. Liang, and G. Valiant. 2022. “What Can Transformers

Learn In-Context? A Case Study of Simple Function Classes”. arXiv. Accessed Sep-

tember 28, 2022. http://arxiv.org/abs/2208.01066

Grimm, C., A. Barreto, S. Singh, and D. Silver. 2020. “The value equivalence

principle for model-based reinforcement learning”. Advances in Neural Information

Processing Systems, 33: 5541–5552

Hafner, D., T. Lillicrap, M. Norouzi, and J. Ba. 2020. “Mastering atari with

discrete world models”. arXiv preprint arXiv:2010.02193

Hill, F., S. Mokra, N. Wong, and T. Harley. 2020. “Human Instruction-Follow-

ing with Deep Reinforcement Learning via Transfer-Learning from Text”. arXiv:

2005.09382 [cs]

Hochreiter, S., and J. Schmidhuber. 1997. “Long short-term memory”. Neural

computation, 9 (8): 1735–1780. MIT press

Hu, Y., W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, F. Wu, and C. Fan. 2020.

“Learning to utilize shaping rewards: A new approach of reward shaping”. Advances

in Neural Information Processing Systems, 33: 15931–15941

Huang, W., P. Abbeel, D. Pathak, and I. Mordatch. 2022a. “Language Models

as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents”.

arXiv:2201.07207 [cs]

Huang, W., F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tomp-

son, I. Mordatch, Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S.

Levine, K. Hausman, and B. Ichter. 2022b. “Inner Monologue: Embodied Reasoning

97

http://arxiv.org/abs/2208.01066

through Planning with Language Models”. arXiv. Accessed August 9, 2022. http://

arxiv.org/abs/2207.05608

Janner, M., Q. Li, and S. Levine. 2021b. “Offline Reinforcement Learning as

One Big Sequence Modeling Problem”. Advances in Neural Information Processing

Systems

Janner, M., Q. Li, and S. Levine. 2021a. “Offline Reinforcement Learning as One

Big Sequence Modeling Problem”. arXiv. Accessed August 9, 2022. http://arxiv.

org/abs/2106.02039

Karimi Mahabadi, R., L. Zettlemoyer, J. Henderson, L. Mathias, M. Saeidi, V.

Stoyanov, and M. Yazdani. 2022. “Prompt-free and Efficient Few-shot Learning with

Language Models”. Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 3638–3652. Dublin, Ireland:

Association for Computational Linguistics

Kirkpatrick, J., R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.

Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, and others. 2017.

“Overcoming catastrophic forgetting in neural networks”. Proceedings of the national

academy of sciences, 114 (13): 3521–3526. National Acad Sciences

Kumar, A., A. Zhou, G. Tucker, and S. Levine. 2020. “Conservative q-learning

for offline reinforcement learning”. Advances in Neural Information Processing Sys-

tems, 33: 1179–1191

98

http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2207.05608
http://arxiv.org/abs/2106.02039
http://arxiv.org/abs/2106.02039

Lake, B. M., T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. 2017. “Build-

ing machines that learn and think like people”. Behavioral and brain sciences, 40:

e253. Cambridge University Press

Laskin, M., L. Wang, J. Oh, E. Parisotto, S. Spencer, R. Steigerwald, D. Strouse,

S. Hansen, A. Filos, E. Brooks, and others. 2022. “In-context reinforcement learning

with algorithm distillation”. arXiv preprint arXiv:2210.14215

LeCun, Y. 2016. “Predictive Learning”. Proceedings of the 30th International

Conference on Neural Information Processing Systems (NeurIPS)

Lee, J. N., A. Xie, A. Pacchiano, Y. Chandak, C. Finn, O. Nachum, and E. Brun-

skill. 2023. “Supervised Pretraining Can Learn In-Context Reinforcement Learning”.

arXiv preprint arXiv:2306.14892

Lee, K.-H., O. Nachum, M. Yang, L. Lee, D. Freeman, W. Xu, S. Guadarrama,

I. Fischer, E. Jang, H. Michalewski, and I. Mordatch. 2022. “Multi-Game Decision

Transformers”. arXiv. Accessed August 9, 2022. http://arxiv.org/abs/2205.15241

Li, S., X. Puig, C. Paxton, Y. Du, C. Wang, L. Fan, T. Chen, D.-A. Huang, E.

Akyürek, A. Anandkumar, J. Andreas, I. Mordatch, A. Torralba, and Y. Zhu. 2022.

“Pre-Trained Language Models for Interactive Decision-Making”. arXiv:2202.01771

[cs]

Li, X. L., and P. Liang. 2021. “Prefix-Tuning: Optimizing Continuous Prompts

for Generation”. https://doi.org/10.48550/arXiv.2101.00190

99

http://arxiv.org/abs/2205.15241
https://doi.org/10.48550/arXiv.2101.00190

Liang, P. P., C. Wu, L.-P. Morency, and R. Salakhutdinov. 2021. “Towards un-

derstanding and mitigating social biases in language models”. International Con-

ference on Machine Learning, 6565–6576

Lieber, O., O. Sharir, B. Lenz, and Y. Shoham. 2021. “Jurassic-1: Technical

details and evaluation”. White Paper. AI21 Labs, 1

Lu, K., A. Grover, P. Abbeel, and I. Mordatch. 2021. “Pretrained Transformers

as Universal Computation Engines”. arXiv:2103.05247 [cs]

Madaan, A., N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N.

Dziri, S. Prabhumoye, Y. Yang, and others. 2023. “Self-refine: Iterative refinement

with self-feedback”. arXiv preprint arXiv:2303.17651

Majumdar, A., A. Shrivastava, S. Lee, P. Anderson, D. Parikh, and D. Batra.

2020. “Improving Vision-and-Language Navigation with Image-Text Pairs from the

Web”. arXiv:2004.14973 [cs]

Micheli, V., E. Alonso, and F. Fleuret. 2022. “Transformers are sample efficient

world models”. arXiv preprint arXiv:2209.00588

Min, S., X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L.

Zettlemoyer. 2022. “Rethinking the Role of Demonstrations: What Makes In-Con-

text Learning Work?”. arXiv:2202.12837 [cs]

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.

Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, and others. 2015. “Human-

level control through deep reinforcement learning”. nature, 518 (7540): 529–533.

Nature Publishing Group

100

Nye, M., A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D.

Dohan, A. Lewkowycz, M. Bosma, D. Luan, C. Sutton, and A. Odena. 2021. “Show

Your Work: Scratchpads for Intermediate Computation with Language Models”.

arXiv. Accessed August 11, 2022. http://arxiv.org/abs/2112.00114

Okada, M., and T. Taniguchi. 2022. “DreamingV2: Reinforcement learning with

discrete world models without reconstruction”. 2022 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), 985–991

Pan, X., X. Chen, Q. Zhang, and N. Li. 2022. “Model Predictive Control: A

Reinforcement Learning-based Approach”. Journal of Physics: Conference Series,

12058

Pan, Y., L. Pan, W. Chen, P. Nakov, M.-Y. Kan, and W. Y. Wang. 2023. “On

the Risk of Misinformation Pollution with Large Language Models”. arXiv preprint

arXiv:2305.13661

Peng, X., M. O. Riedl, and P. Ammanabrolu. 2021. “Inherently Explainable

Reinforcement Learning in Natural Language”. arXiv:2112.08907 [cs]

Pinon, B., J.-C. Delvenne, and R. Jungers. 2022. “A model-based approach to

meta-Reinforcement Learning: Transformers and tree search”. arXiv preprint arXiv:

2208.11535

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. 2019.

“Language Models are Unsupervised Multitask Learners”

101

http://arxiv.org/abs/2112.00114

Rafailov, R., A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn.

2023. “Direct preference optimization: Your language model is secretly a reward

model”. arXiv preprint arXiv:2305.18290

Rakelly, K., A. Zhou, C. Finn, S. Levine, and D. Quillen. 2019. “Efficient off-pol-

icy meta-reinforcement learning via probabilistic context variables”. International

conference on machine learning, 5331–5340

Raparthy, S. C., E. Hambro, R. Kirk, M. Henaff, and R. Raileanu. 2023. “Gen-

eralization to New Sequential Decision Making Tasks with In-Context Learning”.

arXiv preprint arXiv:2312.03801

Reed, S., K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-

Maron, M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A.

Razavi, A. Edwards, N. Heess, Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar, and

N. de Freitas. 2022. “A Generalist Agent”. arXiv. Accessed August 9, 2022. http://

arxiv.org/abs/2205.06175

Ritter, S., R. Faulkner, L. Sartran, A. Santoro, M. Botvinick, and D. Raposo.

2020. “Rapid task-solving in novel environments”. arXiv preprint arXiv:2006.03662

Robine, J., M. Höftmann, T. Uelwer, and S. Harmeling. 2023. “Transformer-

based World Models Are Happy With 100k Interactions”. arXiv preprint arXiv:

2303.07109

Schmidhuber, J. 1987. “Evolutionary principles in self-referential learning, or on

learning how to learn: the meta-meta-... hook”

102

http://arxiv.org/abs/2205.06175
http://arxiv.org/abs/2205.06175

Schrittwieser, J., I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,

A. Guez, E. Lockhart, D. Hassabis, T. Graepel, and others. 2020. “Mastering atari,

go, chess and shogi by planning with a learned model”. Nature, 588 (7839): 604–

609. Nature Publishing Group UK London

Seo, Y., K. Lee, F. Liu, S. James, and P. Abbeel. 2022. “HARP: Autoregres-

sive Latent Video Prediction with High-Fidelity Image Generator”. arXiv. Accessed

September 28, 2022. http://arxiv.org/abs/2209.07143

Shinn, N., F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao.

2023. “Reflexion: Language Agents with Verbal Reinforcement Learning”

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and others. 2016.

“Mastering the game of Go with deep neural networks and tree search”. nature, 529

(7587): 484–489. Nature Publishing Group

Silver, D., S. Singh, D. Precup, and R. S. Sutton. 2021. “Reward is enough”.

Artificial Intelligence, 299: 103535. Elsevier

Singh, A. K., D. Ding, A. Saxe, F. Hill, and A. K. Lampinen. 2022. “Know your

audience: specializing grounded language models with the game of Dixit”. arXiv.

Accessed August 9, 2022. http://arxiv.org/abs/2206.08349

Singh, I., G. Singh, and A. Modi. 2021. “Pre-trained Language Models as Prior

Knowledge for Playing Text-based Games”. arXiv:2107.08408 [cs]

103

http://arxiv.org/abs/2209.07143
http://arxiv.org/abs/2206.08349

Stadie, B. C., G. Yang, R. Houthooft, X. Chen, Y. Duan, Y. Wu, P. Abbeel,

and I. Sutskever. 2018. “Some considerations on learning to explore via meta-rein-

forcement learning”. arXiv preprint arXiv:1803.01118

Sutton, R. S., and A. G. Barto. 2018. Reinforcement learning: An introduction.

MIT press

Tam, A. C., N. C. Rabinowitz, A. K. Lampinen, N. A. Roy, S. C. Y. Chan, D.

J. Strouse, J. X. Wang, A. Banino, and F. Hill. 2022. “Semantic Exploration from

Language Abstractions and Pretrained Representations”. arXiv:2204.05080 [cs]

Tamar, A., Y. Wu, G. Thomas, S. Levine, and P. Abbeel. 2016. “Value iteration

networks”. Advances in neural information processing systems, 29

Tamkin, A., M. Brundage, J. Clark, and D. Ganguli. 2021. “Understanding

the capabilities, limitations, and societal impact of large language models”. arXiv

preprint arXiv:2102.02503

Tarasov, D., V. Kurenkov, and S. Kolesnikov. 2022. “Prompts and Pre-Trained

Language Models for Offline Reinforcement Learning”

Team, A. A., J. Bauer, K. Baumli, S. Baveja, F. Behbahani, A. Bhoopchand,

N. Bradley-Schmieg, M. Chang, N. Clay, A. Collister, and others. 2023. “Hu-

man-Timescale Adaptation in an Open-Ended Task Space”. arXiv preprint arXiv:

2301.07608

Tirumala, K., A. Markosyan, L. Zettlemoyer, and A. Aghajanyan. 2022. “Mem-

orization without overfitting: Analyzing the training dynamics of large language

models”. Advances in Neural Information Processing Systems, 35: 38274–38290

104

Todorov, E., T. Erez, and Y. Tassa. 2012. “Mujoco: A physics engine for model-

based control”. 2012 IEEE/RSJ international conference on intelligent robots and

systems, 5026–5033

Touvron, H., L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bash-

lykov, S. Batra, P. Bhargava, S. Bhosale, and others. 2023. “Llama 2: Open foun-

dation and fine-tuned chat models”. arXiv preprint arXiv:2307.09288

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.

Kaiser, and I. Polosukhin. 2017b. “Attention Is All You Need”. arXiv. Accessed

August 11, 2022. http://arxiv.org/abs/1706.03762

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.

Kaiser, and I. Polosukhin. 2017a. “Attention is all you need”. Advances in neural

information processing systems, 30

Vinyals, O., I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,

D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, and others. 2019. “Grandmaster

level in StarCraft II using multi-agent reinforcement learning”. Nature, 575 (7782):

350–354. Nature Publishing Group UK London

Wang, B., and A. Komatsuzaki. 2021. “GPT-J-6B: A 6 Billion Parameter

Autoregressive Language Model”. https://github.com/kingoflolz/mesh-transformer-

jax

Wei, J., Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama,

M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J.

105

http://arxiv.org/abs/1706.03762
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Dean, and W. Fedus. 2022. “Emergent Abilities of Large Language Models”. arXiv.

Accessed August 11, 2022. http://arxiv.org/abs/2206.07682

Wei, J., X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. 2022.

“Chain of Thought Prompting Elicits Reasoning in Large Language Models”. arXiv:

2201.11903 [cs]

Wen, L., S. Zhang, H. E. Tseng, and H. Peng. 2023. “Dream to Adapt: Meta

Reinforcement Learning by Latent Context Imagination and MDP Imagination”.

arXiv preprint arXiv:2311.06673

Wolf, T., L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T.

Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y.

Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush.

2020. “Transformers: State-of-the-Art Natural Language Processing”. Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, 38–45. Online: Association for Computational Linguistics

Xu, M., Y. Shen, S. Zhang, Y. Lu, D. Zhao, J. B. Tenenbaum, and C. Gan.

2022. “Prompting Decision Transformer for Few-Shot Policy Generalization”. arXiv.

Accessed August 9, 2022. http://arxiv.org/abs/2206.13499

Yang, M. S., D. Schuurmans, P. Abbeel, and O. Nachum. 2022. “Chain of

thought imitation with procedure cloning”. Advances in Neural Information Pro-

cessing Systems, 35: 36366–36381

106

http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.13499

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals. 2021. “Understand-

ing deep learning (still) requires rethinking generalization”. Communications of the

ACM, 64 (3): 107–115. ACM New York, NY, USA

Zhang, S., S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M.

Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P.

S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer. 2022. “OPT: Open Pre-trained

Transformer Language Models”

Zhu, W., M. Okada, and T. Taniguchi. n.d. “Mastering Robotic Skills in Real

Visual Worlds through Model-based Reinforcement Learning”

Zintgraf, L., K. Shiarlis, M. Igl, S. Schulze, Y. Gal, K. Hofmann, and S. White-

son. 2019. “Varibad: A very good method for bayes-adaptive deep rl via meta-learn-

ing”. arXiv preprint arXiv:1910.08348

107

	Dedication
	Acknowledgements
	List of Figures
	List of Acronyms
	Abstract
	Introduction
	The Importance of Rapid Adaptation
	Meta-Learning
	In-Context Learning
	Meta Reinforcement Learning
	Meta-Learning Challenges
	An Alternative Approach to In-Context Learning
	Value Estimation
	Policy Improvement

	Summary of Chapters
	In-Context Policy Iteration
	Algorithm Distillaion + Model-Based Planning
	Bellman Update Networks

	In-Context Policy Iteration
	Related Work
	Learning from demonstrations
	Gradient-based training & finetuning on RL tasks
	In-Context learning

	Background
	Markov Decision Processes
	Model-Based Planning
	Policy Iteration

	Method
	Computing Q-values
	Policy-Improvement
	Prompt-Format

	Experiments
	Domains and prompt format
	Methodology and Evaluation
	Comparison of ICPI with baseline algorithms.
	Ablation of ICPI components
	Comparison of Different Language Models
	Limitations
	Societal Impacts

	Conclusion

	Algorithm Distillation + Model-Based Planning
	Introduction
	Background
	Transformers
	Algorithm Distillation

	Method
	Model Training
	Downstream Evaluation
	Policy improvement
	Policy Iteration
	Algorithm Distillation
	Extension to Continuous Actions
	Beam search

	Related Work
	Experiments
	Domains
	Baselines
	Results
	Evaluation on Withheld Goals
	Evaluation on Withheld Wall Configurations
	Model Accuracy
	Contribution of Model Error to Performance
	Data Scaling Properties

	Continuous-State and Continuous-Action Domains
	Sparse Point Environment
	Half-Cheetah Environments

	Conclusion

	Bellman Update Networks
	Preliminaries
	Review of In-Context Model-Based Planning
	Naive Alternative Method

	Proposed Method
	Setting
	Architecture
	Value Estimation
	Training procedure
	Implementation Details
	Downstream Evaluation
	Policy Iteration

	Extension to multi-step Bellman Updates

	Related Work
	Experiments
	Training with ground-truth values
	Do value functions overfit?
	Does value prediction with a Bellman Update Network mitigate overfitting?
	Do values predicted by a Bellman Update Network inform good policies?
	Can Bellman Update Networks generalize to novel tasks?

	Training without ground-truth targets
	Can training without ground-truth targets yield accurate predictions?
	Can a Bellman Update Network induce in-context reinforcement learning in a non-tabular setting?
	Qualitative analysis

	Conclusion

	Conclusion
	Reinforcement Learning as a Method of Exploration and Discovery
	Generalization and Memorization
	The continued relevance of reinforcement learning and generalization
	Language privileges imitation
	Credit assignment is necessary for expertise
	Generalization is necessary for expertise

	Foundation models for reinforcement learning

	Bibliography

