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ABSTRACT

Transcriptional regulation in human cells is a complex process that requires the collaboration

of diverse genomic elements and chemicals. To understand the mechanisms, projects includ-

ing the Encyclopedia of DNA Elements (ENCODE), Roadmap Epigenomics, and 4D Nucle-

ome (4DN) have generated thousands of genomic and epigenomic datasets. These datasets

annotated functional elements for the human genome (e.g., enhancers and promoters), sum-

marized experimental results for epigenomic features (e.g., protein binding locations), and

linked different modalities with statistical models (e.g., GWAS and eQTLs). From the avail-

able data, it has become apparent that the human genome should not be over-simplified

as a 1-D linear sequence. Long-range dependencies on DNA sequences play a vital role in

human transcriptional regulation. For example, enhancers, the primary units of gene expres-

sion regulation, often reside hundreds of kilobases away from their target genes. Enhancers

engage in physical interactions with target genes across vast genomic distances to activate

them. Therefore, interpreting the human genome requires a more advanced data structure

capable of capturing long-distance and complicated relationships.

This dissertation discusses how to decipher the human genome as a graph. Graphs, com-

posed of nodes (or vertices) and edges, provide a powerful framework for modeling relation-

ships. Graphs have been proven effective in representing relationships in diverse real-world

scenarios, such as social networks, transportation systems, and communication networks.

In the subsequent chapters, the representations of the human genome as a graph will be

introduced and explored.

Chapter 2 introduces the application of chromosome conformation capture (3C) technol-

ogy, which unveils physical interactions among genomic regions. Analyzing the large-scale

contact maps generated by 3C technology is instrumental in uncovering the long-range de-

pendencies of genomic entities and understanding transcriptional regulation. Therefore, we

developed computational tools including scHiCTools and Quagga to extract structural fea-

tures from these maps.

In Chapter 3, we addressed the importance of high-resolution and high-quality chro-

matin contact maps. Therefore, we developed a computational model, CAESAR, to connect

epigenomics and high-resolution chromatin structure. CAESAR successfully imputes an un-

xvi



precedented number of high-resolution human chromatin contact maps, which allows users

to easily navigate these fine-scale chromatin structures and the corresponding regulatory

mechanisms.

Beyond 3D interactions, numerous data consortia and databases unveil the characteristics

of genomic entities and their relationships. Despite the invaluable insights provided by these

consortia, the separately stored tabular data remain in a 1D sequential framework, posing

inconveniences for genomic research and scientific discoveries. To address this challenge,

we introduce the Genomic Knowledgebase (GenomicKB) in Chapter 4. GenomicKB is a

knowledge graph that seamlessly integrates datasets and annotations related to the human

genome into a knowledge graph. Through a graph-based interpretation of the human genome,

we anticipate that genomic research will increasingly become data-driven. GenomicKB aims

to provide high-quality and integrated data for large-scale machine learning methods, thereby

facilitating scientific discoveries.
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CHAPTER 1

Introduction

1.1 Central dogma and transcriptional regulation in

the human genome

The central dogma, which is known as “DNA makes RNA, and RNA makes protein”, despite

some counter-examples like reverse transcription and RNA replication, is a well-accepted

model for explaining the genetic information flow in biological systems. However, diverse

cell and tissue types are generated from the same genome by varying the expression levels of

different genes, and the differential expression of genes is controlled by non-coding sequences

that regulate gene expression [23]. To understand the process, projects like Encyclopedia of

DNA Elements (ENCODE)[17], Roadmap Epigenomics [13], and 4D Nucleome (4DN) [22]

have generated thousands of epigenomic datasets in order to elucidate regulatory functions

of different genomic regions.

The precise control of transcriptional regulation requires the collaboration of enhancers,

promoters, transcriptional factors (TFs), and chromatin structures. The primary units of

gene expression regulation are enhancers, which can be characterized by different approaches

including CRISPRi functional validation, evolutionary conservation analysis, and epigenomic

profiling [75, 105, 141, 86]. Enhancers physically interact with the target genes across vast

genomic distances to activate them [32, 95, 106, 94, 136, 126].

Some preliminary computational models have been proposed for elucidating how enhancer

properties and E-P interaction strength relate to gene expression. For example, the activity-

by-contact (ABC) model [45] quantifies an element’s effect on a gene as its enhancer activity

multiplied by its 3D contact strength with the promoter under the assumption of a linear rela-

tionship between E-P interaction strength and gene expression. Nevertheless, other data sug-

gest that expression is a non-linear function of E-P interaction strength [132, 140, 152, 113].

In these models, enhancer features are profiled by ENCODE and RoadMap Epigenomics

(e.g., ATAC-seq and H3K27ac), and E-P interactions are profiled by Hi-C, Micro-C, and
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intact Hi-C contact maps from 4DN and ENCODE projects.

1.2 Human genome is not only a 1-D sequence

In eukaryotic species, only 2% of genome is for coding proteins, and the remainder is riddled

with cis-regulatory DNA elements such as promoters, enhancers, repressors, and insulators.

During transcriptional regulation, in which massive regulatory elements target their corre-

sponding genes, the existence of 3D “spatial regulomic elements” has been demonstrated in

various studies. Specifically, enhancers, the primary units of gene expression regulation, of-

ten reside hundreds of kilobases away from their target genes. Enhancers engage in physical

interactions with target genes across vast genomic distances to activate them. For exam-

ple, long-range spatial enhancer-promoter contacts can control the expression of Shh gene

[25, 138], polycomb-bound promoters around the Hox clusters can mediate gene repression

in mouse embryonic stem cell (ESC) [121], and super-enhancers formed by spatial clustering

of enhancers can work as a “regulatory factory” [63]. Other instances include long-distance

co-activation of genes and co-accessibility of genomic regions.

From the available data, it has become apparent that the human genome should not be

over-simplified as a 1-D linear sequence. Instead, long-range dependencies on DNA sequences

play a vital role in human transcriptional regulation, and interpreting the human genome

requires a more advanced data structure capable of capturing long-distance and complicated

relationships.

Chromatin 3D structures should be also taken into consideration in understanding the

regulatory process. For example, topological associating domains (TADs) and their bound-

aries control gene expression by assisting intra-domain enhancer–promoter links while in-

hibiting inter-domain contacts between regulatory elements to avoid gene mis-activation

[130]. Research shows that changing the distance between mouse Shh gene and its enhancer

zone within the TAD has little effect on gene expression, while disrupting the TAD results

in the loss of Shh expression [129]. However, TAD boundaries are not strictly impassible,

which is supported by results from promoter cHi-C [65] and expression quantitative trait loci

(eQTLs). Polycomb regions are one example of which regulatory elements affect multiple

TADs [121]. In addition, cohesin-mediated loops are usually considered as structural units

of gene expression control [30, 66], but they might only play a minor role in transcriptional

regulation since most active genes do not tend to locate near loop anchors [112] and anchor

depletion only results in few significant changes of gene expression [111]. For TADs and

loops, one assumption is that the absence of them will re-direct some enhancers or promot-

ers to alternative targets [122]. However, three-dimensional structures at lower hierarchies
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such as micro-TADs, short-range enhancer-promoter (E-P) and promoter-promoter (P-P)

links are not well-studied yet. Moreover, although many studies have demonstrated that 3D

chromatin interactions are established concomitantly with transcriptional regulation, people

still lack the evidence to show whether 3D structures are the cause or the consequence of

gene regulation.

1.3 The complex network of the human genome from

diverse data sources

Since the completion of the Human Genome Project [64], ever-evolving biotechnologies have

enabled us to characterize the human genome from different perspectives. Consequently,

several landmarking consortia have made tremendous progress towards understanding the

functions of human genome, such as the Encyclopedia of DNA Elements (ENCODE) [17],

Roadmap [13], Genotype-Tissue Expression (GTEx) [51], 4D Nucleome (4DN)[24], and the

Human BioMolecular Atlas Program (HubMAP) [19], among others. Each of these consortia

has generated thousands of datasets, and provided different insights regarding human genome

at an unprecedented scale and depth. Importantly, these consortia have provided credible

evidence about the connections among genomic, epigenomic, and transcriptomic entities.

For example,

• the functions of human genome are linked to different 3D chromatin organizational

structures, such as chromatin loops, stripes, topologically associating domains (TADs),

subTADs, microTADs, and compartments,

• a large number of genetic variants have been identified to be associated with gene

expression (i.e., eQTLs), transcription factor binding, chromatin accessibility or histone

modifications (i.e., chromQTLs), and 3D chromatin organization (i.e., 3dQTLs [49])

in a tissue-specific or cell type-specific manner, and

• spatially resolved gene expression data (e.g., Slide-seq [115]) and multiplex imaging

data (e.g., CODEX [47]) demonstrate that the spatial positions of the cells in tissues

strongly influence their functions.

• tissue/cell type-specifically expressed genes and super-enhancers are usually enriched

in tissue/cell type-specific frequently interacting regions (FIREs),

• non-coding variants influence the binding affinity of transcriptional factors (TFs),

which accounts for diverse human traits and diseases, and
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• genes that located in the same TAD are more likely to co-express and activated by the

same enhancer, but CTCF binding between them weakens their correlation,

However, these datasets and annotations are isolated in the sense that they are stored as

tabular-structured data matrices at individual data portals. As a result, it is difficult to

jointly analyze these datasets for scientific discoveries, such as understanding GWAS vari-

ants and eQTLs in the context of 3D chromatin organizations with a genomic region, un-

derstanding transcription regulation along a signaling pathway, and exploring cell-to-cell

communications from spatially resolved gene expression data.

Therefore, we propose to decipher the human genome as a graph. Graphs, composed of

nodes (i.e., vertices or entities) and edges (i.e., relationships), provide a powerful framework

for modeling relationships. Nodes represent entities, while edges denote connections or rela-

tionships between these entities. Graphs have proven effective in representing relationships

in diverse real-world scenarios, such as social networks, transportation systems, and com-

munication networks. In the subsequent chapters, different representations of the human

genome as a graph will be introduced and explored.
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CHAPTER 2

Revealing the 3D Structures of the Human

Genome with Chromatin Conformation

Capture (3C) Technology

As introduced in the previous chapter, long-range dependencies of genomic entities such as

E-P links are closely related to chromatin 3D structures. In the following chapter, we will

introduce the experimental technology to capture chromatin 3D structures at a genome-wide

scale. With the large-scale contact maps generated by 3C technology, analytical pipelines

are instrumental in uncovering the long-range dependencies of genomic entities. Therefore,

we developed computational tools including scHiCTools and Quagga to extract structural

features from these maps. These methods aim to capture structural features in the 3D

genome, revealing the genome-wide connection with transcriptional regulation.

Section 2.1 introduces the concept of 3C technologies and chromatin contact maps (e.g.,

Hi-C and Micro-C), and summarizes the hierarchical chromatin structures uncovered by the

technologies. Section 2.2 connects the chromatin structures with transcriptional regulation

in the nucleus. To exemplify the conclusion, section 2.3 introduces a typical example of

CTCF-mediated 3D structures affecting gene expression, which is also closely related to

genetic therapy.

Therefore, researchers are investigating 3D chromatin structures to comprehend the mech-

anisms of transcriptional regulation. During this process, analytical pipelines are vital in

extracting 3D structural features from raw contact maps. I developed two computational

tools for Hi-C/Micro-C contact map analysis, namely scHiCTools (section 2.4) and Quagga

(section 2.5).
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2.1 Introduction of Chromatin Conformation Capture

(3C) technology and chromatin contact maps

2.1.1 General concept of 3C technology

Chromosome Conformation Capture (3C) is a pioneering molecular biology technique that

utilizes formaldehyde cross-linking to fix chromatin interactions within the nucleus [21]. The

cross-linked chromatin is then digested with a restriction enzyme, and the resulting fragments

are ligated under dilute conditions, favoring intramolecular ligation events. The cross-links

are subsequently reversed, and the DNA is purified for analysis. Polymerase chain reaction

(PCR) or high-throughput sequencing can be employed to detect specific ligation products.

Results from 3C experiments reveal the proximity and interaction frequency of genomic

loci. By examining the ligated DNA fragments, researchers can infer the spatial relationships

between distant DNA sequences. This technique has been pivotal in uncovering the existence

of chromatin loops, which bring enhancers and promoters into physical proximity, influencing

gene expression patterns.

2.1.2 Hi-C technology

Hi-C builds upon the principles of 3C but extends the scope to a genome-wide scale [81]. After

cross-linking, the chromatin is digested with a restriction enzyme, similar to 3C. However,

in Hi-C, the digested fragments are end-ligated, irrespective of their linear proximity. This

process captures all possible chromosomal interactions within the nucleus. Subsequent high-

throughput sequencing generates a comprehensive map of the entire interactome.

Hi-C results provide detailed information on the spatial organization of the genome, re-

vealing topologically associated domains (TADs), chromatin loops, and long-range interac-

tions [112]. The details will be introduced in the following section. These findings have

significantly advanced our understanding of how the 3D genome structure influences gene

regulation and cell identity.

2.1.3 Micro-C technology

Recently, new approaches including DNase Hi-C[88] and Micro-C[62, 72] have begun to

provide increasingly higher-resolution 3D chromatin organization. Micro-C represents a re-

finement of Hi-C, introducing the use of micrococcal nuclease (MNase) to digest chromatin

[62, 72]. This enzyme preferentially cleaves linker DNA, yielding smaller fragments and en-

hancing the resolution of chromatin interaction maps. After digestion, the fragments are
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end-ligated and subjected to high-throughput sequencing.

Micro-C results offer higher-resolution maps of chromosomal interactions, allowing for

the identification of sub-TAD structures and finer details in the 3D genome organization.

Researchers can discern subtle variations in chromatin architecture, gaining insights into

how specific genomic elements, such as regulatory regions and insulators, contribute to the

overall spatial organization of the genome. This increased resolution is particularly valuable

for understanding the intricacies of gene regulation and the impact of chromatin structure

on cellular processes.

2.1.4 Hierarchical structural features revealed by chromatin con-

tact maps

Chromosome conformation capture (3C) techniques [21] are a set of molecular biology meth-

ods to analyze chromatin spatial organization. By proximity ligation, these methods quanti-

tatively measure contact frequencies between genomic loci in 3D space to obtain chromatin

contact maps, in which high-throughput sequencing technology can further increase the se-

quencing depth (referred as Hi-C [81]).

Hierarchical chromatin structures are revealed by 3C technologies. A/B compartments

[81] and sub-compartments [112] at megabase level are discovered with Hi-C. According to

contact profiles, the entire genome could be split into A and B compartments, in which

genomic loci tend to interact preferentially with loci in the same compartment. Further

analysis found that A compartment, which usually displaces the interior of the nucleus,

is richer in genes, G-C base pairs and histone marks for active transcription; B compart-

ment is opposite. Sub-compartments (A1/A2/B1/B2/B3/B4) [112] are only found in deep-

sequenced Hi-C data with billions of contacts, which also demonstrate the preference of

intra-sub-compartment interactions. Lower-level structure topological associating domains

(TADs)[104], discovered from Hi-C contact maps, are self-interacting genomic regions with

sub-megabase lengths, whose separation is controlled by binding proteins including CCCTC

binding factor (CTCF) and cohesin [111, 139]. Compartment switches happen frequently

during differentiation [28], while TADs are relatively conservative among different cell types

and even species [29]. Another type of structures at hundreds of kilobase (kb) level, chro-

matin loops (a.k.a. insulated neighbourhoods) [112], are usually formed by interactions

between two CTCF-bound sites and mediated by cohensin[43], which frequently link pro-

moters with enhancers, providing spatial restrictions for gene regulations [30, 52]. Finer-scale

structures at sub-TAD level (hundreds of bp to tens of kb) are newly discovered with Micro-

C [62, 72]. For example, micro-TADs are self-interacting domains like TADs but only spread
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tens of kilobases, whose boundary formation is more complex than CTCF/cohensin sepa-

ration. The structure of polycomb repressive regions is also observed to be nested sets of

inter-spaced contacts [62] instead of loops in previous low-resolution contact maps [33].

2.2 The relationships between transcriptional regula-

tion and 3D chromatin organization

In eukaryotic species, only 2% of the human genome is for coding proteins, and the remainder

is riddled with cis-regulatory DNA elements such as promoters, enhancers, repressors and

insulators. During transcriptional regulation, in which massive regulatory elements target

their corresponding genes, the existence of 3D “spatial regulomic elements” has been demon-

strated in various studies. For example, long-range spatial enhancer-promoter contacts can

activate gene transcription[25, 138]; polycomb-bound promoters around the Hox clusters can

mediate gene repression [121]; “super-enhancers” formed by spatial clustering of enhancers

can work as regulatory entities[63]. These 3D spatial regulatory elements are also related

to 3D chromatin structures introduced in last subsection. For example, TADs and their

boundaries control gene expression by assisting intra-domain enhancer–promoter links while

inhibiting inter-domain contacts between regulatory elements to avoid gene mis-activation

[130]. Research shows that changing the distance between mouse Shh gene and its enhancer

zone within the TAD has little effect on gene expression, while disrupting the TAD results

in the loss of Shh expression [129]. However, TAD boundaries are not strictly impassible,

which is supported by results from promoter CHi-C [65] and expression quantitative trait

loci (eQTLs). Polycomb regions are one example which regulatory elements effect across

multiple TADs [121]. Cohesin-mediated loops are usually considered as structural units of

gene expression control [30, 66], but they might only play a minor role in transcriptional

regulation since most active genes do not tend to locate near loop anchors [112] and an-

chor depletion only results in few significant changes of gene expression [111]. For TADs

and loops, one assumption is that the absence of them will re-direct some enhancers or

promoters to alternative targets [122]. However, 3D structures at lower hierarchies such as

micro-TADs, short-range enhancer-promoter (E-P) and promoter-promoter (P-P) links are

not well-studied yet. Moreover, although many studies have demonstrated that 3D chro-

matin interactions are established concomitantly with transcriptional regulation, people still

lack the evidence to show whether 3D structures are the cause or the consequence of gene

regulation.

∗This work was published on Elife, of which I am a co-first author. In this work, I did the analysis of Hi-C
contact maps, including Hi-C resolution enhancing and loop calling.



2.3 CTCF-mediated chromatin loops regulate fetal

hemoglobin expression[55]

In this section, we use an example to show that genetic editing and 3D genome changes can

have therapeutic implications in treating diseases [55]. In this example, the deletion of a

CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic

stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven

by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene

downstream of the locus, which can also be insulated by the inversion of the 3’HS1 CTCF

site.

2.3.1 Introduction: human β-globin and hemoglobinopathies

The human β-globin locus consists of five globin genes embedded in the olfactory recep-

tor cluster. During early development, these globin genes undergo gene switching from

embryonic ϵ-globin (HBE) to fetal γ-globin (HBG1/2) and finally to adult β-globin (HBB).

Inherited mutations in the HBB gene lead to dysfunction of the adult β-globin protein, caus-

ing hemoglobinopathies [9]. The symptoms of these disorders, including sickle cell disease

and β-thalassemia, can be alleviated by persistent expression of fetal hemoglobin (hereditary

persistence of fetal hemoglobin [HPFH]) throughout adulthood, which compensates for the

mutant adult β-globin [7, 54]. As such, multiple genome-editing strategies have been pro-

posed to mimic HPFH as a treatment for hemoglobinopathies [10, 14, 116, 118, 117, 131].

Two types of HPFH have been identified based on patient genetics. First is the non-deletional

HPFH caused by point mutations in the BCL11A binding site at the HBG1/2 promoters,

and disruption of this transcriptional repressor binding leads to the activation of these genes

[83, 93, 131]. Second is the deletional HPFH that consists of the excision of a large genomic

region within the β-globin locus, frequently including HBB and HBD [143]. These deletions

can vary in length, and it remains unclear as to how they lead to the expression of fetal

globin in adulthood [143].

The human β-globin gene locus is flanked by five CTCF binding sites (CBSs), which

form the anchors for six chromosomal loops. Two convergent CBSs, designated as 3’HS1

and HS5, are located at the borders of the globin gene cluster. These two CBSs are nested

between a downstream CBS (referred to as 3’-OR52A5-CBS) and two closely spaced up-

stream CBSs (referred together as 5’-OR51B5-CBSs). The HPFH deletions frequently cover

the 3’HS1 CBS (Figure 2.1a). Therefore, we hypothesized that 3’HS1 may play a role in

regulating β-globin cluster gene expression. To explore this, we first deleted the 3’HS1 us-
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ing CRISPR/Cas9 genome-editing technology in K562 myelogenous leukemia cells, which

express high levels of hemoglobin (Figure 2.1). At the same time, we also deleted HS5 as

a control in K562 cells. We observed that deletion of the HS5 CTCF site resulted in the

upregulation of the 3’ genes including HBB and HBG1/2. Interestingly, the disruption of

3’HS1 CBS led solely to the upregulation of HBG1/2 (Figure 2.1). These results show that

altering the CTCF binding profile across the locus can significantly change the expression

of the β-globin genes.

2.3.2 3’HS1 CTCF binding site in human β-globin locus regulates

fetal hemoglobin expression

We performed Hi-C and capture Hi-C to examine the changes to 3D chromatin organization

at the β-globin locus following alterations to the CBSs (Figure 1c–e). In situ Hi-C data was

generated with high resolution at 5 kb. A total of 15,207–16,529 loops could be detected in

the HUDEP-2 clones used for in situ Hi-C using Mustache. The CTCF bound around the β-

globin locus form four chromosomal loops and separate the cluster into three distinct domains

(Figure 2.1a and c). Of notice, we could detect the enhancer to target gene interaction

between the LCR and the HBB gene. We also tested the copy number variance (CNV) in

the three particular HUDEP-2 clones, we could verify all clones have chromosome number

49–50, XY, which is of the normal range in unmodified HUDEP-2 cells. Next, we tested if

the chromosomal loops were altered by the 3’HS1 editing. We applied the HiCCUPS method

to call the significant chromosomal loops in the β-globin locus, and four loops were identified

with q value less than 0.1 (Figure 2.1c and f). We then use the q value of the called loops

by HiCCUPS to quantify the strength of loop interactions between CBSs Of the convergent

CTCF interactions, 3’HS1 to 5’-OR51B5-CBSs was not called as loop with q value over 0.25.

One loop was called between the two forward CTCF CBSs – 3’HS1 and 3’-OR52A5 CBS

(Figure 2.1d and f). In the 3’HS1 deletion clone, the loss of CTCF at 3’HS1 resulted in the

total loss of loops between 3’HS1 and HS5 as well as loops between 3’HS1 and 5’-OR51B5-

CBSs (not called as loop). Concomitantly, a strong increase in the interaction between

HS5 and 3’-OR51A5-CBS was observed (Figure 2.1d and f). This reveals how the loss of a

CTCF anchor drastically alters the 3D chromatin organization in the β-globin locus. The

inversion of the 3’HS1 CTCF caused a significant increase in the interaction between 3’HS1

and 3’-OR52A5 CBS. Meanwhile, 3’HS1 upstream interactions with HS5 and 5’-OR51B5-

CBSs were decreased (Figure 2.1e and f). This revealed that the inversion of 3’HS1 CTCF

drove the formation of chromosomal loops between the convergent CBSs, which may lead to

stronger insulation of regulatory elements.
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Figure 2.1: 3’HS1 modulates the hemoglobin gene expression in β-globin gene
cluster.
a. Genome-wide Hi-C interaction map and regulatory landscape around β-globin gene cluster
in human HUDEP2 cells. ATAC-seq and CTCF track of HUDEP2 cells is shown in the lower
panel. Black cycle indicates the position of loops previously identified. Yellow dotted line
indicates the three sub-TAD domains identified previously. HPFH1-7 deletion is illustrated
and 3HS1 is marked in blue shade. b. The scheme of CTCF binding motif orientation
engineering in HUDEP-2 cells. c-e. In situ Hi-C contact map around β-globin gene cluster in
HUDEP-2 cells of wild type (c), 3HS1 deletion (d), and 3HS1 inversion (e). CTCF CUTRUN
tracks of WT, 3HS1 deletion and 3HS1 inversion HUDEP-2 cells are shown on the top of
corresponding Hi-C plots. All loops called in the HUDEP2 cells of three genotypes are
marked with circles of different colors. f. The HiCCUPS quantification of loops interaction
strength by q value in β-globin locus. Dotted line annotates q = 0.1. n.d.: not detected by
HiCCUPS (q value > 0.1). g. The composition of -like globin HUDEP-2 cells with 3HS1
deletion. qPCR measurement of -like globin HUDEP-2 in two clones (B6 and D3) of 3HS1
HUDEP-2 cells is shown. Mean ± SD is displayed, n = 3. h. Left panel: relative expression
of HBE, HBG (probe measures both HBG1 and HBG2), and HBB in the 3HS1 deleted
HUDEP-2 clone B6. Mean ± SD is displayed, n = 3. Right panel: relative expression of HBE,
HBG (probe measures both HBG1 and HBG2), and HBB in the 3HS1 inverted HUDEP-2
clone A2. Mean ± SD is displayed, n = 3. i. The right panel shows the High-performance
liquid chromatography (HPLC) for globin composition in Cas9-treated HUDEP-2 control
and 3HS1 deletion clone B6. j. Flow cytometry plot of HbF in HUDEP-2 cell clones with
3HS1 deletion (B6 and D3), 3HS1 inversion (A2 and G3), and ∆HS5 clone.
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Next, we evaluated the expression of the β-globin genes and found that the HBG1/2

and HBE genes upregulated 2.5- to 8-fold in the ∆3’HS1 clones (Figure 1G and H). In

contrast, the inversion of 3’HS1 resulted in a >50% reduction of HBE and near-complete

depletion of HBG1/2 (Figure 2.1h). With additional experiments, we show that the long-

range interaction of a distal enhancer in the OR52A1 gene drives the expression of HBG1/2

(which is out of the scope of this dissertation and not introduced in detail).

2.3.3 Summary and discussion

Our study reveals how CTCF binding at this locus modulates the accessibility of the fetal

HBG1/2 genes to a downstream enhancer. In the HPFH enhancer scenario, 3’HS1 limits the

HPFH enhancer access to HBG1/2 by forming the sub-TAD with 5’HS. When the 3’HS1 CBS

is deleted, the HPFH enhancer gains access to HBG1/2 without the hinder of 3’HS1–HS5

loop. When the 3’HS1 CBS motif is inverted, the HPFH enhancer is further restricted

by the pairing of 3’-OR52A5-CBS to the inverted 3’HS1 CBS, which results in the strong

chromosomal loop formation between the two CBSs. This insulation leads to the reduced

HBG1/2 expression and upregulation of OR52A5.

2.4 A Toolbox for analyzing single-cell Hi-C data:

scHiCTools[79]

Recent single-cell Hi-C sequencing (scHi-C) technologies profile three-dimensional (3D) chro-

matin contact maps in individual cells, allowing us to characterize chromatin organization

dynamics and cell-to-cell heterogeneity [99, 38, 109]. However, the interpretation of scHi-

C data exposes several inherent data analysis challenges. First, unlike RNA-seq data and

ATAC-seq data which are vectors of m-dimensional measures, Hi-C data are essentially sym-

metric matrices of m×m-dimensional pairwise measures, where the number of genomic loci

m is usually more than tens of thousands, depending on the resolution of the contact maps.

Second, scHi-C analysis suffers from high dimensionality, the sparsity of the contact maps,

and sequencing noise. Typically in a scHi-C experiment, up to a few thousand single cells are

profiled, whereas the number of contacts in each cell ranges from a few thousand to hundreds

of thousands. Third, single cells in one experiment usually reside in a low-dimensional man-

ifold, such as a circular cell cycle structure or a bifurcation differentiation structure. Thus,

proper embedding of scHi-C data in a low-dimensional Euclidean space is vital in scHi-C

data analysis.

∗This work was published on PLOS Computational Biology, of which I am the second author. I did the
mathematical derivation and implemented the first version of the Python code of scHiCTools.



In this work, we implemented a versatile scHiCTools which includes many common ap-

proaches in the entire workflow of analyzing single-cell Hi-C data [79]. In particular, we

implemented three similarity measures, including a faster version of HiCRep, a new “Inner-

Product” approach, and another efficient Hi-C similarity measure named Selfish [3]. Among

the three methods implemented, InnerProduct provides the most efficient and satisfactory

similarity measure. Benchmarking experiments demonstrate that the new InnerProduct ap-

proach runs thousands of times faster than the original HiCRep, and produces comparably

accurate projection. To deal with the sparsity in scHi-C data, different smoothing approaches

are implemented, including linear convolution, random walk, and network enhancing [135].

Among the three approaches, linear convolution appears to be most effective for smoothing

contact maps in our experiments. In addition to the computational components, our toolbox

supports different input file formats, diagnostic summary plots, and flexible projection plots

Our open-source toolbox, scHiCTools, as the first toolbox of such kind, can be useful for

analyzing scHi-C data.

2.4.1 Overview of the method

Our scHiCTools implements commonly used approaches to analyze single-cell Hi-C data. The

key component of the toolbox is a number of dimension reduction approaches which takes

a number of single cells’ contact maps as input, and embeds the cells in a low-dimensional

Euclidean space. The toolbox also provides a number of built-in auxiliary functions for

flexible and interactive visualization. The entire workflow of scHiCTools, illustrated in Fig

1, includes five steps: (1) reading single-cell data in .txt, .hic, or .cool format, generating

diagnostic summary plots, and screening cells by their contact number and contact distance

profile, (2) smoothing scHi-C contact maps using linear convolution, random walk, or network

enhancing, (3) calculating pairwise similarity between cells using fastHiCRep, InnerProduct,

or Selfish, (4) embedding or clustering the cells in a low-dimensional space using dimension

reduction methods, and (5) visualizing the two-dimensional or three-dimensional embedding

in a scatter plot (Figure 2.2). Except for the two pairwise similarity calculation methods,

fastHiCRep and InnerProduct, other methods are implemented as originally stated.

Three embedding approaches are implemented in scHiCTools. The first approach is a

faster implementation of original HiCRep [142]. Original HiCRep calculates m stratum-

adjusted correlation coefficients (SCCs) of the m strata near the diagonal of two contact

maps, and then uses weighted sum to aggregate them into one score. It is equivalent to

finding a feature vector for each contact map and then computing the inner product among

the feature vectors (Supplementary Note 1). This simplification reduces HiCRep’s computa-
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Figure 2.2: The workflow of scHiCTools.
The workflow of scHiCTools includes five steps: (1) reading input single-cell data in .txt, .hic,
or .cool format, generating the summary plots of the cells, and screening cells based on their
contact number and contact distance profile, (2) smoothing the scHi-C contact maps using
linear convolution, random walk, or network enhancing, (3) calculating the pairwise similarity
between cells using fastHiCRep, InnerProduct, or Selfish, (4) embedding or clustering the
cells in a low-dimensional Euclidean space using dimension reduction methods, and (5)
visualizing the two-dimensional or three-dimensional embedding in a scatter plot.
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tion complexity from O(n2) to O(n), and we name it fastHiCRep, which is implemented in

our toolbox. Alternatively, we can further simplify fastHiCRep by directly setting the con-

catenated z-normalized strata as feature vectors (Supplementary Note 1). With the feature

vectors, an inner product is then calculated to obtain the similarity matrix of a group of cells.

We name this second approach InnerProduct. In the end, a dimension reduction method,

Multidimensional Scaling (MDS), is used to get a lower-dimensional embedding of each cell.

The third embedding approach Selfish [3] was recently proposed for bulk Hi-C comparative

analysis. It first uses a sliding window to obtain a number of square regions along the diag-

onal of the contact map, and then counts overall contact numbers in each region. Then, it

generates a one-hot “fingerprint matrix” for each contact map based on pairwise comparison

of these reads. Gaussian kernels over the fingerprint matrices are calculated as similarities

among the cells.

Our toolbox scHiCTools includes three smoothing approaches. Linear convolution is

based on a 2D filters (a.k.a., convolution kernels) with equal values in every position, which

can be viewed as smoothing over nearby bins in Hi-C contact maps. For example, original

HiCRep uses a parameter h to describe a (2h+1)×(2h+1) kernel, i.e. h = 1 indicating a 3×3

kernel with each element equals 1
9
. Because this approach is similar to reducing resolution,

it is believed to be effective when contact maps are sparse. Random walk is a stochastic

process updating the elements of the input matrix W by W ′ = W ·B, in which Bij =
Wij∑
i Wij

.

In network enhancing [135], a special random walk is used to increase gaps between leading

eigenvalues of a doubly stochastic contact matrix, which makes the partition of contact maps

more prominent, enhancing the boundaries for topologically associated domains (TADs).

scHiCTools includes three different dimension reduction methods that use pairwise sim-

ilarity matrices among the cells to embed them in a low-dimensional Euclidean space. The

three dimension reduction methods are as follows. MDS (Multidimensional scaling)

takes in a pairwise distance matrix evaluated in the original space, and embeds the data

points in a lower-dimensional space which preserves the pairwise distance matrix. t-SNE

embeds high-dimensional data in a low-dimensional space with an emphasis on preserving

local neighborhood. PHATE (Potential of Heat-diffusion for Affinity-based Trajec-

tory Embedding) is a dimension reduction approach that preserves both local and global

similarity.

2.4.2 Details of scHi-C similarity calculation

The most important part of the approach is the calculation of scHi-C contact map similarities.

We introduce the detailed algorithms in details in this subsection.
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Let W denote the original scHi-C contact map of size N ×N , assuming the whole chro-

mosome or the genome is split into N bins at a certain resolution. Wi,j stands for the i-th

row and j-th column of the pairwise contact (adjacency) matrix. Next, we show HiCRep

score is a pairwise inner product of feature vectors from each contact map.

HiCRep [142] is based on stratum-adjusted correlation coefficient (SCC). The n-th stra-

tum vn (in this section, n indicates its distance from the matrix diagonal) captures all

interactions with genomic distances ∈ [n× resolution, (n+ 1)× resolution):

vn = [vn,1 vn,2 ... vn,N−n], vn,k = Wk,k+n

In practice, we only use the first s strata since there are too few long-distance contacts.

When calculating the reproducibility score between two contact maps (denoted as x and y),

Pearson correlation coefficient rn is obtained from vxn and vyn (the n-th stratum of matrix x

and y), then the overall similarity is calculated from the weighed average of all strata, in

which weight ωn =
Nn

√
var(vxn)var(v

y
n)∑s

n=1 Nn

√
var(vxn)var(v

y
n)
, Nn is the length of vxn and vyn, so Nn = N −n if we

do not delete any element. That is:

SCC =
s∑

n=1

rnNn

√
var(vxn)var(v

y
n)∑s

n=1 Nn

√
var(vxn)var(v

y
n)

However, if we denote the t-th element of vn as vn,t and length of vn as Nn, and define

var(vn) =
∑Nn

t=1(vn,t−vn)2

Nn
, then:

rn =

∑Nn

t=1(v
x
n,t − vxn)(v

y
n,t − vyn)√∑Nn

t=1(v
x
n,t − vxn)

2
∑Nn

t=1(v
y
n,t − vyn)2

=

∑Nn

t=1(v
x
n,t − vxn)(v

y
n,t − vyn)

Nn

√
var(vxn)var(v

y
n)

.

So overall similarity between contact maps x and y is actually a simple inner product of

concatenated strata vectors divided by a constant related to variances and lengths of strata:

rxy =
s∑

n=1

rnNn

√
var(vxn)var(v

y
n)∑s

n=1Nn

√
var(vxn)var(v

y
n)

=

∑s
n=1

∑Nn

t=1(v
x
n,t − vxn)(v

y
n,t − vyn)∑s

n=1Nn

√
var(vxn)var(v

y
n)

.

Here we can see the numerator is exactly the inner product of all s strata (subtracted by

its mean) and the denominator is some normalization factor which can also be represented

as an inner product. Therefore, we are able to implement a fast version of HiCRep, named

fastHiCRep, by first presenting the contact maps as vectors and then calculating SCC as an

inner product. Further more, we suspect that simply picking s strata and then normalizing

their individually, the model can also achieve good performance. We named the new method
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InnerProduct, which also starts calculation from strata vn (n from 1 to s). Then, z-

normalization is applied to each vn to get a zero-mean and unit-variance vector v′n. By

concatenating all strata, we could obtain the feature vector for each contact map: Vmap =

[v′1 v′2 ... v′s]. That is

v′n,t =
vn,t − vn√
var(vn)

.

If we directly calculate the inner product of the two feature vectors Vx and Vy of map x and

y, then we can find it’s also a kernel defined by inner product

rxy =
s∑

n=1

Nn∑
t=1

(vxn,t − vxn)(v
y
n,t − vyn)√

var(vxn)var(v
y
n)

.

By doing this for all chromosomes, we can obtain a kernel matrix for each chromosome.

Taking average keeps the matrix positive definite, and thus gives us an overall kernel matrix

of all cells in the dataset. However in practice, although taking median may make the matrix

no longer positive definite, sometimes it has the potential to remove outliers and improve

the result.

The intuition of Selfish is that although total contacts vary between different contact

profiles, the relative contact strength between regions is supposed to be consistent if two

contact maps are similar. When comparing two regions i and j, they set value Sij in the

fingerprint matrix as I(reads in i > reads in j), so that all ratios of contacts between two

regions are binarized to 0 or 1, which could possibly result in information loss. This approach

is also proved to be not as good for scHi-C embedding.

2.4.3 Benchmarking: scHiCTools calculates the similarity among

single-cell Hi-C contact maps and produces satisfactory pro-

jections

We benchmarked the projection performance and run time of these methods on a recent

scHi-C dataset [98], exactly following the evaluation procedure in a recent work [82]. In [82],

HiCRep + MDS was shown to be able to embed scHi-C data [99] into 2-D space to obtain

a circular pattern, with different stages of cell cycle correctly projected (Fig. 1a). This

provides us a way of mapping scHi-C data to pseudo-time throughout the cell cycle. Also,

in the Nagano dataset [99], the cells are labeled with 4 different stages (i.e. G1, early-S,

mid-S, late-S/G2) through the cell cycle. Thus, we can evaluate the algorithms by treating

the embedding as a clustering task. The specific steps are

• Calculate the pairwise distance of all cells in the Nagano dataset;
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Figure 2.3: Benchmarking experiment results. a. The embedding of single cells in a
cell cycle study [98]. b. Evaluating the three embedding methods with a cell-cycle phasing
task by average ROCs. c. Smoothing methods do not perform well when all positions in
Hi-C maps are randomly downsampled. The x-axis is the negative logarithm of sampling
rates; y-axis is the average AUCs from ROC curves. d. Linear convolution improves the
performance of embedding when the dropout rate is high.
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• Use MDS to get a 2-D embedding and transform it into polar coordinates;

• Only keep the angular term and fit each cluster with a von Mises distribution;

• Pick the means of the four distributions as cluster centroids, obtain true positive (TP)

and false positive (FP) rates then calculate the ROC curve and the area under the

curve (AUC).

• A higher average AUC indicates a better embedding result.

We had the following observations.

InnerProduct produced satisfactory projection. InnerProduct produced satisfactory

projection of the single cells (Fig. 2.3a), achieving an average area under the ROC curve

(AUC) of 0.943, which was as good as original HiCRep reported in the recent work [82].

The AUCs from fastHiCRep and Selfish were relatively lower (Fig. 2.3b). Implemented

fastHiCRep did not perform as well as the original HiCRep in this task, which might be due

to their subtle difference.

All the three embedding methods are efficient. The run time of the three methods was

compared in Supplementary Table 1. Overall, the three embedding methods were efficient.

For embedding 800 cells, all three methods finished within minutes up to an hour. Given the

fact that all of the three embedding approaches have O(n) computation complexity, they

can scale up very well for a large number of cells. FastHiCRep was slightly slower than

InnerProduct, which was slower than Selfish under the default parameters. Note that the

run time of these approaches depends on parameter settings, which is further discussed in

Supplementary Note 4.

Linear convolution smoothing and random walk improves projection at high

dropout rates. We applied two sparsification methods on the scHi-C dataset [98], and

applied InnerProduct together with the three smoothing approaches, and evaluated the

projection performance (see Supplementary Note 5 for additional details). The first sparsi-

fication method was used to randomly reduce 40% ∼ 99.9% of the contacts for all positions

(reducing the contact number from ∼200,000 to ∼500 in each cell). The second one was

used to discard contacts from 5% ∼ 60% genomic loci (to simulate dropouts in sequencing

data). It was observed that under the second sparsification method, linear convolution and

random walk showed some consistent improvement. Linear convolution increased projection

accuracy more effectively at higher dropout rates. However, none of the three improved the

projection performance when the first sparsification was used.

19



2.4.4 Availability and future directions

Our scHiCTools is implemented in Python. The source code is available and maintained at

Github: https://github.com/liu-bioinfo-lab/scHiCTools. This package is also available on

PyPI python package manager. The current code runs under Python 3.7 or newer versions.

Other dependency includes numpy, scipy, matplotlib, pandas, simplejson, six, and h5py. For

the interactive scatter plot function, you need to have plotly installed. In the future, we will

keep updating the toolbox with new scHi-C analysis algorithms, including new embedding

methods such as UMAP and new clustering methods such as hierarchical clustering.

2.5 An algorithm for identifying stripes from chro-

matin contact maps

Although we have introduced A/B compartments, TADs, and loops in previous sections,

there are additional chromatin 3D structural features that are less understood, including

stripes, micro-TADs, and polycomb complexes. In this section, we will introduce our research

on stripes, including what are stripes, how to identify stripes from chromatin contact maps,

and the biological factors related to stripes.

2.5.1 Stripes in chromatin contact maps

Chromatin conformation capture techniques, especially proximity ligation-based methods,

have revealed the hierarchical structures of DNA folding including compartments, topolog-

ically associating domains (TADs), and chromatin loops [27, 80, 102, 110, 124]. Recently,

with higher-resolution contact maps generated by in situ Hi-C, another chromosomal struc-

tural feature, architectural stripes [134]. On the contact frequency map, stripes appear as

vertical or horizontal lines extending from the main diagonal. These stripes reflect interac-

tions between a single locus (stripe anchor) and a continuum of genomic regions. Stripes

in Hi-C contact maps usually span hundreds of kilobases, and are interpreted as the result

of asymmetric extrusion of CTCF and cohesin, i.e., one cohesin subunit is captured by a

proximal CTCF-binding site, while another one slides across the domain; biologically, stripe

anchors represent major hubs of transcription and recombination [134]. With new techniques

such as Micro-C, our understanding of fine-scale 3D chromatin organization has increased to

nucleosome resolution [61, 73, 107], where far more stripe patterns were discovered. Different

from Hi-C stripes, these patterns are much smaller (∼10–50 kb) and frequently link genes

and promoters with regulatory elements in a CTCF/cohesin-independent manner. Moreover,

∗This is an ongoing work and has been presented at the 4DN annual meeting in Boston in December 2023.
I proposed the initial idea and implemented the data processing and stripe statistical evaluation parts of
the package.



Micro-C stripes’ significant correlation with Pol II binding, accessible chromatin, and active

histone marks demonstrates another mechanism of stripe formation [61].

An integrated analysis of stripes with genomic and epigenomic features at a genome-wide

scale shows vast potential in understanding the cooperation between regulatory elements in

3D space [148, 61]. However, unlike compartments, TADs, and loops, there are few well-

established algorithms for automatically identifying stripes in the genome (“Zebra” used by

previous papers does not consider the effect of loops, TADs, and sub-compartments and

requires manual removal of some stripes). Other methods require biological data such as

CTCF or NIPBL chromatin immunoprecipitation sequencing (ChIP-seq) tracks in order to

infer stripes from the genome [134]. These data are not necessarily available and do not

match the resolution of newer, high-resolution techniques such as Micro-C, and so the need

for a newer stripe calling method that can operate on a minimal amount of data is necessary.

Therefore, we have developed a Python package, Quagga, to call stripes solely from Hi-

C/Micro-C/HiChIP chromatin contact maps efficiently in an unbiased way. In Quagga we

propose a new, lightweight approach to determining architectural stripes that considers the

local signal bias in contact matrices. We aggregated a benchmark on multiple, real Hi-

C, Micro-C datasets to measure its speed and performance, and investigated the potential

biological impacts of found stripes.

2.5.2 Overview of quagga

Stripes are architectural features of the genome that represent asymmetric extrusions of

CTCF and cohesion, thought to play regulatory roles in a cell’s development or state. There-

fore, integrated analysis of stripes with genomic and epigenomic features at a genome-wide

scale shows vast potential in understanding the cooperation between regulatory elements in

3D space. However, unlike compartments, TADs, and loops, there are few well-established

algorithms for automatically identifying stripes in the genome (“Zebra” used by previous

papers does not consider the effect of loops, TADs, and sub-compartments and requires

manual removal of some stripes). To this end, we developed Quagga, a tool for the detection

and statistical verification of genomic architectural stripes from Hi-C or Micro-C chromatin

contact maps. Quagga relies on robust image processing techniques and poisson sampling

for enrichment. Quagga outperforms other stripe detection methods in speed and accuracy

and is robust when working with Hi-C or Micro-C data. Our method provides a flexible,

easy-to-use tool to help scientists explore the relationships between chromatin architectural

stripes and important biological questions.
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Figure 2.4: Overview of Quagga.
a. Outline of the workflow. Hi-C file via cooler file or hic file is processed into a horizontally
or vertically loaded matrix and a naive peak finding algorithm is used. b. Stripe indices and
width are calculated based on the vertically or horizontally averaged row or column sums.
c. Significance testing is applied to called stripe peaks. Called region windows are used to
determine the appropriate length of the stripe and whether or not the stripe is enriched over
the local background.
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Input files. The only required inputs for Quagga are a contact frequency map and the

genomic assembly chromosomal lengths file. For contact frequency maps, Quagga takes

any edgelist information that may be related to chromosome contact mapping. Quagga

was developed and tested with Hi-C and Micro-C chromatin contact maps in hic or cooler

formats. As an optional input, centromere regions may also be input to Quagga using

supplying appropriate bed-files; these regions can be intentionally excluded from Quagga

calls.

Preprocessing and Detection of stripe position and width. In order to determine

stripe coordinate and stripe width, a rough pass over the contact map is made using the

mean sum over rows or columns to form a spectrograph of contact frequencies, limited by a

distance from the main diagonal of the contact frequency matrix. The user may determine

to what distance from the main diagonal to use, as well as how many spaces off the main

diagonal should be blanked, to diminish its dominating influence. Prior to computing row-

sums or column-sums, we also apply Gabor filter to focus the contact frequency into the most

essential components and denoise. Using the derived mean-frequency spectrograph, scipy’s

1D Gaussian filter is applied to smooth the spectrogram, and a local peak finding algorithm

is applied to find local peaks on the 1D array (Fig. 2.4A-B). Stripe width is determined by

estimating the width of the peak from a relative distance to the total height of the peak call.

Stripe checking and statistical validation

For example, to identify horizontal stripes, we first calculate the observed contact value

of each pixel on a candidate stripe and its neighbor regions. The observed value of the

interaction between bins i and j (i < j) is:

Obsi,j = medianj−w<k<j+wMi,k

in which M represents the normalized contact matrix and w is the window size. The use

of the median, as opposed to the mean, mitigates the influence of significantly large values

resulting from chromatin loops. The average of neighbor regions is then calculated as follows:

Exp(i,j) = max(mediani−w<l<i,j−w<k<j+wMl,k,mediani<l<i+w,j−w<k<j+wMl,k)

in which the top and bottom neighbor regions are calculated separately. Taking a maxi-

mum of the two neighbor regions avoids TAD boundaries being called. To assess whether a

pixel exhibits significantly higher contacts than its upper/lower neighbor regions, we employ

Poisson statistics to derive a corresponding P value.

Due to sparsity or noise, the enrichment might not be significant for some pixels along the
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stripe. Therefore, after obtaining all P values along the horizontal line, we allow breaking

points when identifying stripes. The start and end positions are pinpointed as follows.

head, tail = argmaxst,ed

ed∑
st

log
thr

Pi

,

in which head, tail are two ends of the stripe, thr is the threshold and Pi is the P value of

pixel i. This maximization is performed with the efficient dynamic programming approach.

In the end, the significance (p-value) of the stripe is determined through the calculation:

Pstripe−i = exp(meanhead≤k≤tail(logPi,k)).

2.5.3 Quagga detects stripes from publicly available chromatin

contact maps

We ran Quagga on Hi-C contact maps for GM12878 and K562 from Rao et. al. [110], as well

as the Hi-C and Micro-C contact maps for H1 and HFFc6 from Krietenstein et. al. [73]. We

selected GM12878 and K562 due to their high sequencing depth and available orthogonal

datasets such as SPRITE and HiChIP. H1 and HFFc6 are chosen to unbiasedly compare

Hi-C and Micro-C stripes and evaluate the default parameters for calling Hi-C and Micro-C

stripes. We applied the preset parameters: 5 kb resolution, distance range within 2 Mb, 200

kb minimum stripe length, σ=2, and p=0.15 to Hi-C contact maps, and p=0.25 to Micro-C

contact maps. Quagga calls 142 stripes for GM12878 and 77 stripes for K562 (Hi-C), and

372 stripes for H1 and 444 stripes in HFFc6 (Micro-C). These called stripes appear to be

authentic during our visual validation.

Quagga’s time and memory usage are related to parameter settings. A finer resolution

and a longer distance range increases the time and memory consumption. For GM12878

running 5 kb resolution on chromosome 1 is 708 seconds, chromosomes 1 and 5 are 1,246

seconds, and 1, 5, and 10 are 1,651 seconds. The inclusion of more chromosomes also results

in a longer running time and larger memory, but the time-chromosome length relationship

is concave instead of linear. This is because Quagga accelerates statistical tests by storing

previous results and importing pre-computed results, and therefore most statistical tests

are simplified when calculating the later chromosomes. Quagga takes advantage of multi-

processing, and for multicore workstations or computer clusters, it can operate parallel over

a user-specified number of CPU cores.
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2.5.4 Quagga detects stripes related to CTCF-cohesin extrusion

A common assumption of the Hi-C stripe mechanism is one-sided extrusion, signifying a

strong correlation between Hi-C stripes and the enrichment of CTCF/RAD21 proteins,

as well as the orientation of CTCF binding sites. In this section, we examine whether

Quagga effectively captures these crucial epigenomic characteristics of Hi-C stripes within

the GM12878 dataset. In our study, we identified 3,667 stripes at a 10 Kb resolution. The

binding sites of CTCF/RAD21 are identified from available ChIP-seq data, and the ori-

entations of CTCF binding sites were annotated based on the underlying DNA sequence

motifs.

Our analysis revealed a significant enrichment of CTCF and RAD21 at the anchor points

of stripes identified by Quagga (Figure 2.5a). Notably, Quagga exhibited a higher level of

CTCF/RAD21 enrichment when compared to the baseline method, Stripenn, implying its

superior ability to detect the characteristic CTCF/RAD21-extrusion stripes in Hi-C data.

By further categorizing the Quagga-identified stripes into two groups — 3’ stripes span-

ning downstream and 5’ stripes spanning upstream, we detect distinct patterns of CTCF

orientation for the two groups of stripes. Specifically, the 3’ stripes exhibited a significant

enrichment of forward-strand (+) CTCF orientations and a depletion of backward-strand (-)

CTCF orientations, with the reverse being true for the 5’ stripes. This observation serves

as additional evidence that Quagga effectively identifies the prototypical CTCF/RAD21-

extrusion stripes in Hi-C data.

CTCF plays a pivotal role in regulating chromosomal structure. Previous studies have

demonstrated that targeted degradation of CTCF leads to the dissociation of topologically

associating domains (TADs) and loop structures on a genome-wide scale. Since CTCF also

contributes to the maintenance of Hi-C stripes, we investigated whether CTCF knockout

results in the depletion of stripes in Hi-C contact maps.

We obtained contact maps for mouse embryonic stem cells (mESC) in both wild-type

(WT) and CTCF-knockout (KO) scenarios from Nora et al. [103]. Using Quagga, we

identified stripes at a 20 Kb resolution. In the WT mESC contact map, we detected 362

stripes, while only 122 were found in the CTCF-KO contact map, despite the latter having a

deeper sequencing depth. Notably, 95.2 % (296 out of 311) of the lost stripes in the CTCF-

KO contact map had a CTCF-binding anchor. This finding confirms that Quagga effectively

identifies stripe depletion in Hi-C contact maps resulting from CTCF knockout.
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Figure 2.5: Hi-C stripes called by Quagga are closely related to CTCF/RAD21
extrusion.
a-b. For both 3’ and 5’ stripes, CTCF and RAD21 are enriched at GM12878 stripe anchors.
c. The 3’ stripe anchors are more enriched in positive-strand CTCF, and the 5’ stripes are
more enriched in negative-strand CTCF. d. Quagga identifies that the majority of Hi-C
stripes will disappear after CTCF knockout, in which 95.2 % of the lost stripes are anchored
at CTCF binding sites. e. Two example regions illustrate that Quagga identified the stripe
loss after CTCF knockout.
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2.5.5 Conclusion

Quagga offers a flexible, powerful method that gives researchers control to tighten the tool to

search and statistically test for stripes on a variety of chromatin contact data. Quagga will

allow researchers to efficiently and extensively extract features from Hi-C/Micro-C contact

maps.
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CHAPTER 3

Connecting High-resolution 3D Chromatin

Organization with Epigenomics

Although chromosome conformation capture (3C) technologies [21] have been evolving for

almost two decades, 3D chromatin structures are rarely utilized by computational models for

understanding chromatin states [35, 57] due to 1) the lack of high-resolution and high-quality

chromatin contact maps and 2) difficulties for jointly analyzing 1D epigenetic features with

3D chromatin structure in one model.

In this chapter, we will introduce how to use deep learning models to impute high-

resolution chromatin contacts with 1D epigenomic features, and how the imputed contact

maps help reveal regulatory processes in the human genome [37].

3.1 Introduction

Whereas 3D chromatin organization at the large scale of topologically associating domains

(TADs) and compartments has been well characterized in many cell and tissue types by

Hi-C technology [110], our understanding of fine-scale 3D chromatin organization at the

nucleosome resolution has just begun [61, 73, 107]. With the increasing evidence that fine-

scale chromatin organization at the nucleosome resolution is closely related to epigenomic

state [125, 71], one intriguing question to ask is whether we can accurately extrapolate

such high-resolution chromatin contact maps from epigenomic features such as chromatin

accessibility, histone modifications, and transcription factor binding profiles. To explore

this, we proposed CAESAR (Chromosomal structure And EpigenomicS AnalyzeR), a deep

learning approach to predict nucleosome-resolution 3D chromatin contact maps from existing

epigenomic features and lower-resolution Hi-C contact maps.

Our model leverages cutting-edge deep learning approaches to identify representations rel-

evant to high-resolution chromatin organization. In particular, 1D convolutional and graph
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convolutional layers [70] identify epigenomic patterns over the linear chromatin fiber and

over the 3D spatial chromatin organization that is relevant to impute high-resolution chro-

matin contact maps. With existing high-resolution Micro-C contact maps, Hi-C contact

maps, and a number of cell-type matched epigenomic data on human H1-hESC (hESC),

mouse ESC (mESC), and human foreskin fibroblasts (HFF), we systematically evaluated

the model’s performance across different chromosomes, across different cell types, and across

different species. In the experiments, the model accurately imputes many fine-scale chro-

mosomal structures that Hi-C sequencing fails to detect, including short-range chromatin

loops and stripes. The model is more accurate at imputing evolutionarily conserved regions,

active A compartment, and early-replicating regions, which indicates that the fine-scale 3D

chromatin organization is strongly influenced by the nature of the epigenomic factors in

these regions. The imputed chromatin contacts also recapitulate enhancer activities previ-

ously elucidated by CRISPRi experiments [44], and manifest expression quantitative trait

loci (eQTLs) previously profiled by GTEx project [85]. CAESAR is also coupled with an

attribution method which identifies epigenomic features explanatory to these fine-scale 3D

chromatin structures. The explanatory features help to further subtype fine-scale chromatin

structures and elucidate the interplay between histone modifications and nucleosome-level

chromatin organization.

CAESAR connects 3D genome organization with epigenomics at nucleosome resolution

and unprecedented scale. First, compared with previous computational models for imputing

Hi-C contact maps, such as HiCPlus [149], HiCGAN [84], and HiC-Reg [146], CAESAR

reaches a much higher resolution. Since the majority of epigenomic activities (TF bind-

ing and histone modifications) take place at the nucleosome resolution, it is desirable to

develop the predictive model that connects epigenomics and chromatin organization at the

nucleosome resolution. Second, although previous models EpiTensor [151] and DeepTACT

[77] also reconstruct sparse 3D chromatin interactions from epigenomics at an ultra-high

resolution, CAESAR learns from real Micro-C contact maps and predicts all chromatin con-

tacts within a distance range, which reveals diverse fine-scale structures such as stripes,

TADs, and polycomb interactions between repressive regions. Third, different from Akita

[41] and DeepC [123] which predict chromatin contact maps from conserved DNA sequences,

CAESAR generates tissue-specific or cell line-specific predictions from epigenomic features.

Therefore, it imputes an unprecedented number of high-resolution human chromatin con-

tact maps, including 57 tissue samples, 16 cell lines, 12 primary cells, and 6 in vitro dif-

ferentiated cells. The imputed high-resolution contact maps are shared on a web server

(https://nucleome.dcmb.med.umich.edu/), which allows users to easily navigate these fine-

scale chromatin structures and the corresponding explanatory epigenomic features. In ad-
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dition, CAESAR includes an attribution component, which reveals detailed relationships

between 3D chromatin organization and epigenomic features.

3.2 A deep learning model imputing high-resolution

chromatin contact maps

We proposed CAESAR, a supervised deep learning model to impute chromatin contact maps

at nucleosome resolution. CAESAR’s inputs include a lower-resolution Hi-C contact map

and a number of histone modification features (e.g., H3K4me1, H3K4me3, H3K27ac, and

H3K27me3), chromatin accessibility (e.g., ATAC-seq), and protein binding profiles (e.g.,

CTCF) (Supplementary Note 2). CAESAR captures the Hi-C contact map as a graph G
with nodes representing genomic regions of 200 bp long, weighted edges representing chro-

matin contacts between the regions, and N epigenomic features modeled as N -dimensional

node attributes. The architecture of CAESAR (Figure 3.1a) includes ordinary 1D convo-

lutional layers which extract local epigenomic patterns along the 1D chromatin fiber, and

graph convolutional layers which extract spatial epigenomic patterns over the neighborhood

specified by G. The concatenated outputs from the convolutional layers capture all rele-

vant features for one particular 200 bp bin, which are further fed into two parallel output

layers — a fully-connected layer predicts the contact profile for each 200 bp bin, and an

inner product layer predicts loops between bins. The outputs from the fully-connected layer

and the inner product layer are summed up as CAESAR’s final output. Using Micro-C

contact maps from hESC, mESC, and HFF as the prediction target, the model was trained

with backpropagation [137], in which the aforementioned convolutional features were learned

adaptively. Other than leveraging a number of epigenomic features, our model architecture

differs from HiCPlus [149] and DeepHiC [59] which treats Hi-C contact maps as images and

performs grid-convolution to improve the resolution. With the graph convolutional networks

and additional epigenomic features, CAESAR not only enhances the resolution of contact

maps, but also predicts the structures which are not captured by Hi-C, including polycomb

repressive regions, short-range loops and stripes (Figure 3.1b).

3.2.1 Detailed model architecture

The model includes two major parts — one for predicting chromatin loops, and the other

for predicting contact profile. Each part includes consecutive input layers, convolutional

layers, and output layers. CAESAR captures the interpolated Hi-C contact map as a graph

G with nodes representing genomic regions of 200 bp long, and weighted edges representing
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Figure 3.1: Overview of the model.
a, Model architecture. The model inputs are a Hi-C contact map and a number of epigenomic
features including histone modifications, chromatin accessibility, and protein binding profiles.
The lower-resolution Hi-C contact map is first interpolated into a 200 bp-resolution contact
map, and then transformed into a graph G in which the nodes represent 200 bp genomic bins
and the edges represent the interpolated contacts between the nodes. Positional encoding
is unrelated to Hi-C or epigenomic data and only encodes node order in the genome. The
epigenomic features and positional encoding are assigned to the corresponding nodes as
node attributes. The inputs are fed into 1D convolutional and graph convolutional layers to
generate hidden representations, which extract features from both nearby genomic regions
along the 1D DNA sequence and spatially-contacting regions specified by G. The output
layers take input the hidden representations and predict the contact profile at each 200 bp
bin as well as the chromatin contacts between bins. b, In an example region, the polycomb
interactions are accurately predicted by CAESAR. In another example region, loops and
stripes undetected by Hi-C are accurately predicted by CAESAR.
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chromatin contacts. A is the adjacency matrix of G. For both parts, the inputs include

the graph adjacency matrix A and the epigenomic features X. As one 250 kb region is fed

into the model each time, the dimension of the input adjacency matrix is 1250×1250. In a

6-epigenomic model, the size of the epigenomic feature matrix is 6×1250. In addition, eight

positional encoding dimensions are concatenated to the epigenomic features. The positional

encoding is calculated with the following method, in which pos is from 0 to 1249 and i is

from 0 to 7 [133].

PE(pos,2i) = sin
(
pos/100002i/8

)
PE(pos,2i+1) = cos

(
pos/100002i/8

)
In deep learning models, convolutional kernels are small filters sliding through the input

to extract certain patterns. When the filter is applied to an input element, it calculates

the weighted sum of the element with its local neighbors. In a convolutional layer, multiple

kernels work in parallel to learn different sets of weights and extract different patterns. There

are two types of convolutional layers, 1-D convolutional (Conv1D) and graph convolutional

(GC) layers in CAESAR. Conv1D layers operate along the genome fiber, aggregating the

epigenomic features from nearby bins. GC layers extract spatial epigenomic patterns over

the spatial neighborhood specified by G. Here, we use the GC layer

Y = σ(ÃXW )

in which X and Y are the input and output, Ã is the normalized graph adjacency matrix,

W is the trainable parameters, and σ is the relu activation function [100]. GC layers pro-

vide additional structural patterns for imputing high-resolution chromatin architecture. For

example, if two distant loci i and j are in the same TAD, then nodes i and j are neighbors

on the graph. Therefore, when we predict the contact profile of i, the information flows from

j to i in the GC layers, so that the features at j contribute to the prediction of i, and vice

versa. The window size for each 1-D convolution kernel is 15 in the contact profile predicting

part and 5 in the loop predicting part, which captures relevant features from a 3 kb and 1

kb neighborhood, respectively.

For the contact profile predicting part, the output layer is a fully-connected layer. The

input of this layer is the concatenation of convolutional layers’ outputs and the Hi-C con-

tact profile, and the output is the imputed contact profile of each 200 bp bin. For the loop

predicting part, the output layer is an inner product layer. This layer also takes the concate-

nation of convolutional layers’ outputs as input, and calculates the inner product between

each bin pairs’ representation to predict the chromatin loops. The outputs of the two output

layers are summed up to generate the final imputation result. The model includes 2 million
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parameters, which is much fewer than the number of elements (∼15 billion) in the contact

matrix.

3.3 Evaluation of the deep learning algorithm

3.3.1 Accurately predicting high-resolution chromatin contact

maps

With existing Micro-C data on mESC, hESC, and HFF, we evaluated CAESAR in three

different sets of experiments, including a cross-chromosome experiment, a cross-cell type

experiment, and a cross-species experiment, so as to evaluate the model’s generalizability

in different scenarios. In the cross-validation experiment on hESC, we divided the human

chromosomes into a train set, a test set, and a tune set of similar sizes. CAESAR and

two baseline models, including HiCPlus [149] which only used low-resolution chromatin con-

tact maps, and HiC-Reg [146] which only used epigenomic features, were trained with the

train set and evaluated with the test set. We used the tune set to tune hyperparameters.

For CAESAR and HiC-Reg, 6 epigenomic features were used, including ATAC-seq, CTCF,

H3K4me1, H3K4me3, H3K27ac, and H3K27me3. CAESAR outperformed HiCPlus and HiC-

Reg in terms of the stratum-adjusted correlation coefficient (SCC) with the observed Micro-C

contact map (Figure 3.2a). The results demonstrated that it is necessary to leverage both

the contact maps and epigenomic features in the prediction of high-resolution contact maps.

In the cross-cell type experiment, we used the same train set of chromosomes to build a

model on HFF, and then tested it on hESC with the same test set of chromosomes as in

the cross-chromosome experiments. The HFF-trained model imputed almost as well as the

hESC-trained model for chromatin contacts within 100 kb and 200 kb range (Figure 3.2b). In

the cross-species experiment, we trained the model on mESC and tested the performance on

hESC. In order to stay consistent with cross-chromosome and cross-cell-type evaluation, we

also divided mouse chromosomes into train, tune, and test sets of similar sizes. We trained

the model with mESC’s train set and then tested its performance on the same aforemen-

tioned test set of hESC. It was observed that the model trained on mESC also moderately

generalized to hESC, and the generalization deteriorates as the contact distance increases.

In addition, we tested CAESAR’s performance in predicting fine-scale structures includ-

ing loops and stripes. In the test set of HFF, CAESAR captured 72% of the loops and

63% of the stripes from Micro-C contact maps, whereas only less than 1% were captured

from the input Hi-C contact maps (Figures 3.2c and 3.2e). Since loops called from two Hi-C

replicates only agree ∼60% [114], we believe that our imputed contact map recovers a good
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portion of these fine-scale structures. By piling up all the loop and stripe regions called

from the Micro-C contact maps, we observed comparable enrichment from our predicted

high-resolution contact maps and the observed Micro-C contact maps, but the pile-up re-

sults from the input Hi-C contact maps showed little enrichment (Figures 3.2d and 3.2f).

Chromatin contact maps imputed by CAESAR also show comparable cell-type variability

as real Micro-C contact maps in terms of SCC and cell type-specific fine-scale structures

including chromatin loops and stripes.

3.3.2 Factors influencing CAESAR’s performance

In order to optimize CAESAR’s efficiency, we next explored the factors influencing its per-

formance. As CAESAR’s principle inputs are epigenomic and Hi-C data, we began by

evaluating the minimum required number of datasets to achieve good imputed results. Four

sets of epigenomic features were chosen based on common availability (Figure 3.3a), and we

observed comparable performance among the 13-epi, 7-epi, 6-epi, and 3-epi models (Figure

3.3b). Although the SCC of the 3-epi model (including ATAC-seq, CTCF, and H3K27ac)

did not drop significantly, it over-predicted fine-scale structures. Therefore, we recommend

using the commonly profiled 6 epigenomic features in CAESAR. We also asked what is the

requirement for input Hi-C contact maps. Using Hi-C data from Rao et. al. [110] and Kri-

etenstein et. al. [73], we tested four contact maps, including the original Hi-C contact maps

with around 1 billion contacts, two down-sampled Hi-C contact maps with 100 million and

10 million contacts, and a surrogate Hi-C contact map with 1 billion contacts aggregated

from four unmatched cell lines. The surrogate contact map acts as a replacement when no

chromatin contact map is available for a particular cell type. Although the SCC curve does

not drop significantly with the down-sampled contact maps, surrogate Hi-C performs better

(Figure 3.3c). The model trained with surrogate Hi-C can still capture 69% of the loops and

61% of the stripes from Micro-C contact maps in the test set. Therefore, if the matched

Hi-C contact map is unavailable to complement the epigenomic data in a particular analysis,

a surrogate contact map can be used in CAESAR.

We further investigated the relationship between CAESAR’s performance, measured with

Spearman’s correlation between the imputed and the observed Micro-C contact maps, and

evolutionary conservation, measured with phastCons scores. It was observed that the model

imputed more accurately in the regions with higher evolutionary conservation (Figure 3.3d).

In addition, we also discovered that the model imputes more accurately in A compartment

than B compartment, and in early-replicating regions than late-replicating regions (Figures

3.3e and 3.3f). The results indicate that fine-scale chromatin organization is more closely
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Figure 3.2: Evaluating CAESAR’s performance in multiple tasks.
a, The distance-stratified Pearson’s correlation with the observed Micro-C contact map from
CAESAR and two baselines, HiC-Reg and HiCPlus, in a cross-chromosome experiment. The
black dotted lines in a and b are the correlation between the input Hi-C contact map and
the observed Micro-C contact map. b, The distance-stratified Pearson’s correlation with the
observed Micro-C contact map from CAESAR in 1) a cross-chromosome experiment (train
on hESC train set and test on hESC test set), 2) a cross-cell type experiment (train on HFF
train set and test on hESC test set), and 3) a cross-species experiment (train on mESC train
set and test on hESC test set). c, The Venn diagram of the loops called from 1) the input Hi-
C contact map, 2) the CAESAR-imputed contact map, and 3) the observed Micro-C contact
map. d, The pile-up visualization of the loops called from 1) the input Hi-C contact map, 2)
the CAESAR-imputed contact map, and 3) the observed Micro-C contact map. e, The Venn
diagram of the stripes called from 1) the input Hi-C contact map, 2) the CAESAR-imputed
contact map, and 3) the observed Micro-C contact map. f, The pile-up visualization of the
stripes called from 1) the input Hi-C contact map, 2) the CAESAR-imputed contact map,
and 3) the observed Micro-C contact map.
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related to the 6 epigenomic factors at evolutionarily conserved regions, A compartment, and

early-replicating regions.

3.3.3 Recapitulating CRISPRi-validated enhancer activities

With publicly available epigenomic data, we imputed high-resolution chromatin contact maps

for 15 human cancer cell lines. In some cancer cell lines, noncoding regions with their

regulating genes have been interrogated by CRISPR interference (CRISPRi) technology [44].

The profiled CRISPRi score indicates genomic loci’s capability to regulate an essential gene,

and the peaks (both positive and negative) often correspond to enhancers and promoters.

We used the CRISPRi scores profiled near two essential genes - MYC and GATA1, to val-

idate our imputed contact maps. On the imputed contact maps for the chronic myelogenous

leukemia cell K562, MYC gene strongly interacts with PVT1, which matches with the peaks

of CRISPRi scores at PVT1 locus (Figure 3.4a). The imputed contact map also showed

a significant interaction between GATA1 and HDAC6, which matches the CRISPRi score

peak at HDAC6 locus (Figure 3.4b). The matching of chromatin contacts and CRISPRi

score peaks demonstrates our model recapitulates gene-enhancer interactions in cancer cell

lines.

3.3.4 Recovering eQTL-gene interactions

With the large-scale epigenomic data available from ENCODE and Roadmap Epigenomics

Project, we imputed the high-resolution contact maps for 57 human tissue samples and 2 cell

lines – IMR-90 and GM12878 (Supplementary Tables 4a and 4b). With eQTLs profiled by

GTEx [85], we asked whether our imputed chromatin contacts are enriched between genes

and their eQTLs in the corresponding tissue or cell line. Previous works [145] have shown

eQTLs are enriched in tissue-specific frequently interacting regions on Hi-C contact maps at

40 kb resolution, but a large portion of eQTLs reside too close to their gene transcriptional

start sites (TSS) to be seen on a low-resolution contact map (Figure 3.5a). For example, two

eQTLs that are specific in pancreas and lung respectively both locate in chr16:57,950,000-

58,050,000. The loop between the pancreas-specific eQTL and its target USB1 gene can

only be called from the CAESAR-imputed contact maps of pancreas. The loop between

lung-specific eQTL and its target TEPP gene can be called from the CAESAR-imputed

contact maps of both lung and pancreas, which demonstrates some tissue-specific eQTLs do

not necessarily correspond to exclusive loops in the tissue (Figure 3.5a).

To evaluate the overall contact enrichment between eQTLs-TSS pairs, we piled up the

contact regions between tissue-specific eQTLs and their gene TSS. In the pile-up results
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Figure 3.3: The relationships between CAESAR’s performance with Hi-C quality,
the number of epigenomic features, evolutionary conservation, A/B compart-
ments, and early/late replication timing.
a, The epigenomic features in 13-epi, 7-epi, 6-epi, and 3-epi CAESAR models are listed
in the table, which are chosen based on common availability. b, The distance-stratified
Pearson’s correlation with the observed Micro-C contact map from CAESAR in a cross-cell
type experiment with different numbers of epigenomic features (i.e., 13, 7, 6, and 3). c,
The distance-stratified Pearson’s correlation with the observed Micro-C contact map from
CAESAR in a cross-cell type experiment when 1) using the original Hi-C contact map with
about 1 billion contacts, 2) randomly down-sampling the Hi-C contact map at different
down-sampling rates (resulting in 100 million and 10 million chromatin contacts), and 3)
using a surrogate Hi-C contact map with 1 billion contacts aggregated from HFF, GM12878,
IMR-90, and K562 with equal proportions. d, The model performance in a specific region
is quantified by the Spearman’s correlation coefficient between the CAESAR-imputed and
the Micro-C contact map. In cross-chromosome and cross-cell-type experiments, the model
performance (i.e., Spearman’s correlation coefficient) is significantly correlated with evolu-
tionary conservation evaluated by sequence alignment scores (n[regions]=1,203, 960, and
240, one-sided t-test). In all the boxplots, the center line indicates median; the box limits
are upper and lower quartiles; the whiskers are 1.5×interquartile range; the points are out-
liers. e, In cross-chromosome and cross-cell-type experiments, the correlation coefficient is
significantly larger in A compartment than in B compartment (n[regions]=1,018 and 1,388,
one-sided t-test). f, In cross-chromosome and cross-cell-type experiments, the correlation
coefficient is significantly larger in early-replicating regions than in late-replicating regions
(n[regions]=1,203, 960, and 240, one-sided t-test).
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Figure 3.4: The interactions between genes and their CRISPRi-validated en-
hancers in CAESAR-imputed contact maps.
a, The CAESAR-imputed contact map of K562 at MYC region (chr8: 127,600,000-
127,850,000) demonstrates significant contacts between MYC and PVT1, which agree with
with CRISPRi score peaks, but are not shown on the original input Hi-C contact map. The
magnitude of the epigenomic features is the observed value divided by the genome-wide av-
erage. b, The CAESAR-imputed contact map of K562 at GATA1 region (chrX: 48,725,000-
48,825,000) demonstrates significant contacts between GATA1 and HDAC6, which agree
with with CRISPRi score peaks, but are not shown on the original input Hi-C contact map.
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of twelve tissue/cell lines, seven CAESAR-imputed contact maps (adrenal gland, heart left

ventricle, IMR-90, pancreas, sigmoid colon, spleen, and transverse colon) have the high-

est contact values for their tissues/cell line-specific eQTL-TSS interactions. Another four

CAESAR-imputed contact maps (GM12878, lung, stomach, and tibial nerve) also have close-

to-highest contact values for their tissues/cell line-specific eQTL-TSS interactions. These

results demonstrate that tissue/cell line-specific enhancer-promoter interactions are recov-

ered by CAESAR. In addition, the moderate enrichment on Micro-C and CAESAR-imputed

contact maps from unmatched tissue/cell lines further demonstrates the eQTL-TSS interac-

tions are not necessarily exclusive even if the eQTLs are tissue or cell line-specific (Figure

3.5b). This suggests that some fine structural interactions are conserved across tissues or

cell types but the regulatory functions remain specific.
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Figure 3.5: The enrichment of eQTL-gene interactions in CAESAR-imputed con-
tact maps.
a, The loop between gene USB1’s TSS and its pancreas-specific eQTL, which cannot be
observed on the original Hi-C contact map, appears on the CAESAR-imputed contact map
for pancreas. Although gene TEPP’s eQTL is lung-specific, the corresponding loop can be
called from the CAESAR-imputed contact maps for both lung and pancreas. b, Pile-up
analysis of the chromatin contacts between eQTLs and their corresponding gene TSS from
twelve different human tissues and cell lines on CAESAR-imputed contact maps and Micro-
C contact maps. The average contact values in the central 5×5 squares are marked on the
plots, in which the bold fonts indicate that eQTLs and CAESAR-imputed contact maps are
from the same tissue/cell line.
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3.4 Imputing high-resolution contact maps for more

than 90 human samples

As the cross-cell type model is validated, we used the trained model to impute high-resolution

chromatin contact maps for other human tissues and cell lines. We collected the epigenomic

signals from a total number of 57 tissue samples, 16 cell lines, 12 primary cells, and 6 in

vitro differentiated cells (Table 3.1). If the ATAC-seq signal was unavailable, DNase-seq was

collected as an alternative. The 6-epi CAESAR model trained with both hESC and HFF’s

train set was used. For IMR-90, GM12878, and K562, we used their deeply sequenced (above

1B contacts) Hi-C contact maps as input. For cell lines or tissues without Hi-C or with only

shallowly sequenced Hi-C, we used the surrogate Hi-C as input.

The imputed high-resolution contact maps are shared on a web server

(https://nucleome.dcmb.med.umich.edu/), which allows users to easily navigate these

fine-scale chromatin structures, and the corresponding explanatory epigenomic features.

The back-end of the server uses python Flask with sqlite. The front-end of the server

uses bootstrap framework. The web server utilizes multi-threading to allow multiple users

to access it at the same time. Our web server processes host data at multiple ports at

localhost. We use Nginx to perform the reverse proxy that passes internet requests to them.

After contact maps are generated, we run Nucleome Browser on our web server. Nucleome

Browser is an open platform to integratively and interactively browse coordinate-based

genome data. Nucleome Browser extends conventional track-based genome browsing to

panel-based genome browsing, thus breaks the linear limitation of stacked tracks view mode.

Different panel modules host and render different modality data including visualized tracks

and reconstructed 3D chromatin structures.

3.5 Identifying epigenomic features relevant to fine-

scale 3D chromatin organization

Although deep learning models are often referred to as “black boxes”, their outputs can be

traced back and interpreted. In our model, we used integrated gradient [128] to attribute the

predicted chromatin contacts to each genomic locus of each input epigenomic feature. The

attribution results illustrate which parts of the epigenomic features are the most determi-

native for the model’s predictions. By attributing the entire contact map to all epigenomic

features, we evaluated the overall contribution for each feature, and low attribution is another

reason for leaving H3K4me2 out from the 7-epi model besides limited availability.
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Table 3.1: CAESAR-imputed tissues and cell lines

Tissue
Adrenal gland Ascending aorta Body of pancreas
Breast epithelium Esophagus muscularis mucosa Esophagus squamous epithelium
Gastrocnemius medialis Gastroesophageal sphincter Heart left ventricle
Lung Ovary Pancreas
Peyer’s patch Prostate gland Right atrium auricular region
Sigmoid colon Spleen Stomach
Suprapubic skin Testis Thoracic aorta
Thyroid gland Tibial artery Tibial nerve
Transverse colon Upper lobe of left lung Uterus
Vagina

Cell line
A549 A673 GM12878
GM23338 HCT116 HeLa-S3
HepG2 IMR-90 K562
Karpas-422 MCF-7 MM1S
OCI-LY7 PC-3 PC-9
SK-N-SH

Primary cell
B cell CD14-positive monocyte Astrocyte
Endothelial cell of umbilical vein Fibroblast of dermis Fibroblast of lung
Foreskin fibroblast Foreskin keratinocyte Keratinocyte
Mammary epithelial cell Osteoblast Skeletal muscle myoblast

In vitro differentiated cell
Bipolar neuron Cardiac muscle cell Hepatocyte
Myotube Neural progenitor cell Smooth muscle cell

This method can be applied to arbitrary regions on the contact map, which allows us to

connect fine-scale structures with the most explanatory epigenomic features. Surprisingly,

many of the peaks in the input epigenomic features do not necessarily help the model to

predict fine-scale structures. For example, the H3K27ac peaks showed negative attribution

in predicting the stripe in Figure 3.6a and the loop in Figure 3.6b. With attribution calcu-

lated by integrated gradient, the predicted chromatin structures can be further analyzed and

subtypes.
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Figure 3.6: Attributing CAESAR outputs to epigenomic features via integrated gradient.
Larger attribution magnitudes indicate more contribution to the model’s prediction.
a, The significant attribution of the particular stripe are from its anchor. Although all 6
epigenomic features have peaks at the anchor locus, the model predicts the stripe mostly
from 1) ATAC-seq and CTCF peaks at the anchor, and 2) H3K4me1 modification sur-
rounding the anchor. b, The significant attribution of the particular loop are from its two
anchors. Although H3K27ac have peaks at the left anchor locus, its contribution is negative
towards predicting the loop. The CTCF binding at the anchors and H3K4me1/H3K4me3
modifications next to the anchors have positive attribution in predicting the loop.
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3.6 Discussion and future directions

Our study connects nucleosome-resolution chromatin structures with epigenomic features.

Leveraging the currently available Micro-C contact maps for hESC, mESC, and HFF from

the 4DN consortium and the corresponding epigenomic profiles from ENCODE and Roadmap

Epigenomics Project, we systematically mapped 1D epigenomic profiles to fine-scale 3D chro-

matin structures with CAESAR. The mapping was validated by high SCCs with observed

Micro-C contact maps and the accurate capture of fine-scale loops and stripes. CAESAR

can be applied to generate high-resolution contact maps for any cell line or tissue as long

as their common epigenomic features are profiled. Our model further connects transcrip-

tome with fine-scale structures and epigenomics by identifying the spatial interactions be-

tween genes and regulatory elements. Therefore, the imputed high-resolution contact maps

will be useful for target finding, hypotheses generating, and other downstream analyses.

All imputed human chromatin contact maps across 57 tissues, 16 cell lines, 12 primary

cells, and 6 in vitro differentiated cells have been made publicly available on our web server

(http://nucleome.dcmb.med.umich.edu/) for ease of access by biomedical researchers to per-

form further analyses.

While CAESAR presents a novel way to investigate fine details of 3D chromatin struc-

ture, we note that it is an evolving methodology with certain shortcomings that can be

improved. First, since Micro-C data mostly outperforms Hi-C in the detection of short-

range interactions, CAESAR also performs best at genomic distances of less than 200 kb.

As a result of this, CAESAR-imputed contact maps are not well suited for analyses of large

3D chromatin structures such as compartments. Second, because Micro-C and Hi-C gen-

erate short-read sequences, our study is still limited to pairwise chromatin contacts, and

therefore higher-order interactions are insufficiently studied. Third, our analyses showed

that CAESAR performed well according to multiple evaluation metrics, yet there was a

clear bias towards A compartment, evolutionarily conserved regions, and early-replicating

regions. This is likely a reflection that the epigenomic features in the study are generally

more enriched in these regions. As such, it is possible that including additional epigenomic

features may shift this bias effect accordingly. Fourth, though CAESAR demonstrated clear

relationships between epigenomic features and 3D fine-scale chromatin organization, we did

not observe significant improvement in imputed contact maps with an increasing number

of epigenomic datasets. This suggests that epigenomic data may not explain all the fea-

tures observed in 3D chromatin organization. There may be unexplored layers of genetic

and/or epigenetic information that play a role in the organization of chromatin inside the

nucleus. So far, CAESAR demonstrated a framework for jointly analyzing 3D chromatin
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structures and 1D epigenomic features at a matched resolution, and further integration of

1D DNA sequences is possible. For example, our model can potentially include DNA se-

quences as features and elucidate 3D QTLs [49] in the context of high-resolution chromatin

organization.
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CHAPTER 4

GenomicKB: A Knowledge Graph for the

Human Genome

This chapter introduces the work of GenomicKB, a knowledge graph for the human genome

[36]. Genomic Knowledgebase (GenomicKB) is a relational database for researchers to ex-

plore and investigate human genome, epigenome, transcriptome, and 4D nucleome with

simple and efficient queries. The database uses a knowledge graph to consolidate genomic

datasets and annotations from over 30 consortia and portals, and includes 347 million ge-

nomic entities, 1.36 billion relations, and 3.9 billion entity and relation properties. Ge-

nomicKB is equipped with a relational query system which allows users to query the knowl-

edge graph with customized graph patterns and specific constraints on entities and rela-

tions. Compared with traditional tabular-structured data stored in separate data portals,

GenomicKB emphasizes the relations among genomic entities, intuitively connects isolated

data matrices, and supports efficient queries for scientific discoveries. GenomicKB trans-

forms complicated analysis among multiple genomic entities and relations into coding-free

and interactive queries, and facilitates data-driven genomic discoveries in the future.

4.1 Background: why do we need a knowledge graph?

Since the completion of the Human Genome Project [64], ever-evolving biotechnologies have

enabled us to characterize the human genome from different perspectives. Consequently,

many landmarking consortia have made tremendous progress towards understanding the

functions of human genome in different aspects, such as the Encyclopedia of DNA Elements

(ENCODE) [17], Roadmap Epigenomics [13], Genotype-Tissue Expression (GTEx) [51], and

4D Nucleome (4DN) [24], among others. Although these consortia provided different insights

at an unprecedented scale and depth, the separately-stored tabular data is inconvenient for

genomic research and scientific discoveries. First, merging multi-modal data often requires

joining multiple tables, which takes tremendous storage space and efforts. Second, it is
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Figure 4.1: An example subgraph of GenomicKB.
In this subgraph, three GWAS variants of type II diabetes are connected with entities in-
cluding genes, tissues, and 3D chromatin structures.

challenging to reconcile multiple data sources for the same topic (e.g., enhancers annotated

by ENCODE CCRE [34] and ENdb [5]). In addition, extracting information from these

isolated data requires coding skills, making open science and reproducible research difficult.

To solve this problem, we build Genomic Knowledgebase (GenomicKB), which seamlessly

integrates datasets and annotations related to the human genome into a knowledge graph.

Knowledge graphs intuitively represent connected data entities, and have been applied to

biological domains [119, 144, 6, 56, 96, 8]. Compared with traditional tabular-structured data

stored at separate portals, GenomicKB emphasizes the relations between genomic entities at

multiple resolutions and from multiple tissues and cell types. Entities from each consortium

automatically and explicitly cross-link with one another in the knowledge graph without any

operations such as table joining and sorting. In addition, our GenomicKB is rigorously built

with well-defined schema, identity, and ontology to maintain the data structure, disambiguate

genomic concepts, and support future extension. As a result, GenomicKB is not only flexible

to adapt updates of nodes, relations, and entire data sources, but can also connect with other

knowledge graphs in related biomedical domains.

To support customized user queries, GenomicKB is equiped with a user-friendly web por-

tal (https://gkb.dcmb.med.umich.edu/). To the best of our knowledge, this is the first

graph pattern query system for the human genome, in which a query does not necessarily
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start with a genomic region or a specific genomic entity. Instead, GenomicKB supports

customized pattern queries such as “finding two genes which are both related to signal

transduction, locate on the same chromosome, and form ligand-receptor pairs”. As a re-

sult, GenomicKB transforms multi-modal data analysis into intuitive queries, and enables

large-scale cross-modality pattern searching and learning in a highly-integrated knowledge

graph. With this integrated data source and a robust data-sharing web portal, biomedi-

cal scientists can easily query, compare and investigate the high quality, high resolution,

and comprehensive knowledge graph regarding chromatin organization, regulatory elements,

epigenomic markers, and transcriptional regulation in various human tissues/cell lines at

multiple resolutions.

4.2 Building GenomicKB

4.2.1 Collecting data for GenomicKB

Our knowledge graph integrates over 30 well-established data sources, including GEN-

CODE [53], the Eukaryotic Promoter Database (EPD) [31], dbSuper [69], RNAcentral [15],

Genotype-Tissue Expression (GTEx) [51], GWAS [89], Database of Genomic Variants (DGV)

[90], NCBI dbVar [74], 4D Nucleome (4DN) [24], FIRE studies [120], ENCODE [17], Mo-

tifMap [20], NCBO ontologies [92], etc. (Tables 4.1 and 4.2). Each of these consortia incor-

porates thousands of datasets and provides different insights regarding human genome at an

unprecedented scale and depth. To the best of our knowledge, the coverage of GenomicKB

exceeds any knowledge graphs in related fields [119, 144, 6, 56, 96, 8]. One vital advantage

of our knowledge graph structure is its flexibility which allows easy inclusion of new data in

different formats. In addition, the query efficiency only drops insignificantly as we increase

data entries.
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Table 4.1: Number of entities included in the genomic graph and their data sources

Entity Type Entity Sub-type Data source Number of Entities
4*Coding elements Genes GENCODE 61186

Transcripts GENCODE 236816
Exons GENCODE 643060
Proteins GENCODE 106140

9*Non-coding elements 4*Enhancers ENCODE Candidate cis-Regulatory Elements (CCRE) 809429
EnhancerAtlas 2895013
FANTOM5 32689
ENdb 249

Insulators ENCODE Candidate cis-Regulatory Elements (CCRE) 56766
2*Promoters The Eukaryotic Promoter Database (EPD) 21071

ENCODE Candidate cis-Regulatory Elements (CCRE) 34803
Super-enhancers dbSuper 38030
non coding RNA RNAcentral 474310

5*Genomic variants 2*SNPs Genotype-Tissue Expression (GTEx) 4295337
GWAS 167191

insertion/deletion Genotype-Tissue Expression (GTEx) 337120
2*Structural variants Database of Genomic Variants (DGV) 808608

NCBI dbVar 67718
4*3D structures Topological associating domains (TADs) 4D Nucleome (4DN) 44643

Chromatin loops 4D Nucleome (4DN) 37892
A/B compartments 4D Nucleome (4DN) 7879
Frequently interacting regions (FIREs) FIRE studies 20960

6*Epigenomic features ChromHMM states UCSC genome browser 4143552
Replication timing 4D Nucleome (4DN) 354962
Transcriptional factor binding profile ENCODE 219830128
Transcriptional factor binding motifs MotifMap 3996453
DNase-hypersensitivity sites ENCODE 21858996
Histone binding profiles ENCODE 44947427

6*Ontologies 3*Tissue and cell lines Cell ontology (CL) 2493* 3*27783*
Uber-anatomy ontology (UBERON) 15398*
BRENDA tissue ontology (BTO) 6520*

Experimental factors Experimental factor ontology (EFO) 11299* 28472*
Genes Gene ontology (GO) 50635
Transcriptional factors Human transcriptional factors 2765

*Ontologies including CL, UBERON, BTO, and EFO have some shared terms. Numbers
on the left are the count of terms that starts with the corresponding ontology name (e.g.,
BTO:0006563), and those on the right indicate terms that are categorized as “tissue and cell
lines” or “experimental factors”.

4.2.2 Schema, identity, and ontology in GenomicKB

Schema: Schemata prescribe high-level structures and semantics that the knowledge

graph follows, which reduces data errors and allows reasoning over the data graph [58].

In GenomicKB, we formally define node schema and edge schema as follows. Nodes

are labeled with hierarchical classes. The top level includes six classes, namely chro-

mosome chain, coding element, non-coding element, epigenomic feature, variant, and

ontology. Each class also consists of sub-classes (Table 4.1). Edge schema defines the

rules of node connections. Edges are categorized into position, regulation, expression,

and annotation, and each sub-type has corresponding start and end node types (Table

4.2). For example, an “express in” edge must start from a gene and point to a tissue

or cell line, and a “correlate with” edge only corresponds to the correlation between
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Table 4.2: Number of relationships included in the genomic graph and their data sources

Relationship type Relationship subtype From To Data source Number of relationships
2*Positional Connect (next loc/lower resolution) Genomic sequence Genomic sequence NCBI 19517799

Locate at

(locate on chain)
All entities that have a location property Genomic sequence All data sources 1057172343

5*Expression
Express into

(express into)
Genes Transcriptional factors humanTF 2765

Express in

(express in)
Genes Ontologies Genotype-Tissue Expression (GTEx) 3032424

Transcribe

(transcribe into)
Genes Transcripts Ensembl 236816

Translate

(translate into)
Transcripts Proteins Ensembl 106140

Include Transcripts Exons Ensembl 1274728
6*Regulatory 2*Regulate Genes Genes RegNetwork 129129

Enhancers Genes EnhancerAtlas/ENdb 9112174
Expression QTLs

(correlate with)
Variants Genes/Ontologies Genotype-Tissue Expression (GTEx), dbVar, GWAS 14058410

3*SNP and gene SNP in gene 3*Sequence variants 3*Genes 3*GWAS 104178
SNP upstream gene 432326
SNP downstream gene 457807

6*Annotation 2*Belong to Gene Ontology Ensembl 2*343858
Non coding RNA Ontology RNAcentral

Gene sub-type Gene ontology Gene ontology Gene ontology (GO) 4*151939
3*Tissue/cell sub-type 3*Cell/Tissue ontology 3*Cell/Tissue ontology Cell ontology (CL)

Uber-anatomy ontology (UBERON)
BRENDA tissue ontology (BTO)

variants and gene expression or phenotype. Node schema and edge schema are exactly

followed during data importing to ensure GenomicKB’s structure, semantics, and data types.

Identity: Identity consolidates a set of unique identifiers and disambiguates different

genomic identities in the knowledge graph. Since different data sources may follow different

conventions to represent the same concept (e.g., ENSG00000223972 and gene DDX11L1),

or use the same name to describe different concepts (e.g., gene p53 and protein p53), we use

globally-unique identifiers and external identity links in GenomicKB. For example, for genes,

transcripts, and exons, we refer to Ensembl [60] IDs for their external identity links. For

epigenomic entities without external identity links such as ChIP-seq peaks, we define their

globally-unique identifiers according to their genomic coordinates, cell lines, and histone/TF

types.

Ontology: Ontology is a uniform language to describe scientific terms. Concepts such as

cell lines and tissues are represented as ontology URLs and IDs instead of common names

to ensure disambiguity and future integration with other knowledge graphs. GenomicKB

includes well-established ontologies related to genes (GO [18] and HGNC [108]), tissues and

cell lines (UBERON [97], BTO [50], CL [26], and EFO [91]). These ontologies serve two

roles in GenomicKB. First, some entities directly connect to ontologies and are accessible

in queries. For example, users can query all genes linked to the same specified GO term.
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Second, scientific terms such as diseases and cell line names are encoded in ontology IDs.

Therefore, different conventions of the same concept, such as “IMR-90”, “IMR90”, and “cells

- cultured fibroblasts” are unified in GenomicKB.

4.3 GenomicKB supports graph-based relational

queries

We design a web interface (http://gkb.dcmb.med.umich.edu/) that supports customized

query of diverse entities, relations and properties. The query system consists of three com-

ponents - a canvas, an editor panel, and a console. On the canvas, users can draw customized

graph patterns by inserting nodes and edges. When adding a node/edge or a node/edge is

selected, the corresponding editor panel on the top left activates to enable node/edge con-

figuration, such as edit the type of the node/edge or add property constraints. During the

process, the bottom left console shows real-time hints to guide users to create valid queries.

After the user specifies the query conditions, the user needs to click the “Submit” button on

the bottom to submit the query, which re-directs to a result page.

The result page includes two panels. The left panel displays the result sub-graph with

moving and zooming functions. If positional relationships (such as overlap and downstream)

are included in the query, genomic regions that entities locate in are also visualized as

connected bins, whereas other entities related to this region are displayed around it. The

right panel displays detailed properties when a node is selected. If the retrieved sub-graph is

overly large, then only partial results (e.g., five to twenty matched patterns) are visualized,

and the complete query result can be downloaded by clicking “export all”. The downloaded

result is in json or excel format. A video tutorial is also attached on our front page.

4.4 Applications of GenomicKB

4.4.1 GenomicKB simplifies cross-modality analysis as queries

over the knowledge graph

GenomicKB integrates complementary data sources into a knowledge graph and simplifies

multi-modal analysis as queries over the knowledge graph. For example, to identify genes and

genetic variants related to type II diabetes (T2D), traditional approaches require integrating

multiple data sources as follows. First, all variants correlated with T2D are retrieved from

portals such as GWAS Catalog [89]. Then, variants are linked to genes by identifying intra-
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gene variants with gene coordinates from GENCODE [53]. Additional restrictions about the

gene may be applied as well, such as the minimum gene expression level in pancreas (from

consortia such as ENCODE [17] and GTEx [51]). Lastly, function annotations of the genes

are identified from Gene Ontology [18]. With GenomicKB, the aforementioned analysis can

be easily completed with a sub-graph query over the knowledge graph (Figure 4.2). All

restrictions and sub-graphs can be specified via the user-friendly interface, and we no longer

require complex queries in individual data sources or any coding skills. At the backend, the

submitted query pattern is automatically translated into a Cypher query [39], and the query

results are returned and visualized as graphs (Figure 4.2). With consolidated data and an

intuitive query process, GenomicKB makes it easier for researchers to discover new genomic

insights.

4.4.2 GenomicKB encodes positional relations among different ge-

nomic entities

Most genomic entities locate on specific regions on the chromosome with positional relations

between each other. GenomicKB supports queries based on positional relations including lo-

cate in (one entity is completely included by another), overlap (two entities have a coordinate

overlap), upstream/downstream (one entity does not overlap and is upstream/downstream

of another on the same chromosome), and same chr (two entities are on the same chro-

mosome). For example, to investigate transcription factor (TF) binding at chromatin loop

anchors called at 5 Kb resolution, the traditional approach is to call loops from chromatin

contact maps available at 4DN data portal and collect TF binding profile from epigenome

consortia such as ENCODE and Roadmap Epigenomics, and then identify their overlap with

computational tools. In GenomicKB, a query “TF binding site overlap loop” provides the

same result (Figure 4.3). When restricting the query to GM12878 cell line and TF name to

CTCF, 4,724 distinct loops are returned. As a comparison, 5,758 are returned from the query

of all GM12878 loops without specifying the overlap with TF binding sites. Therefore, 82%

of loops in GM12878 have at least one anchor bound by CTCF. A similar query of loops

overlapping two different CTCF binding sites results in 2,680 returned entries, indicating

that 47% of the 5,758 loops are between two CTCF binding sites.

To represent positional relations in GenomicKB, we first split all chromosomes into regions

of a particular size (i.e., resolution), represent each region as a node, and connect them with

edges. The series of nodes and edges are referred to as “chromosome chains”, which are

constructed in 200, 1000, 5000, 10000, and 50000 base-pair resolutions. Afterwards, entities

that locate on specific regions are connected to the corresponding chromosome chain nodes.
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Figure 4.2: GenomicKB simplifies cross-modality analysis as queries over the
knowledge graph.
If a user is interested in relations between T2D and genes, then instead of searching multiple
databases including GWAS, ENCODE, and GO, a sub-graph query over GenomicKB returns
all variants, genes, and gene ontologies that satisfy the query criteria.
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Figure 4.3: GenomicKB supports queries related to positional relations between
genomic entities.
An example query of CTCF binding to loop anchors is illustrated.

The chromosome chains are intermediate nodes for capturing any positional relations between

genomic entities (Figure 4.3).

4.4.3 GenomicKB reconciles consensus or conflicting data sources

of the same problem

For some genomic entity, multiple data sources may provide either consensus or conflicting

evidence. Knowledge graphs are able to reconcile moƒ facts in the light of well-defined schema,

identities, and ontologies. We use the example of enhancers to show that GenomicKB recon-

ciles multiple data sources for the same problem. As key regulatory elements, enhancers are

annotated by several data sources, such as ENdb [5], EnhancerAtlas [46], ENCODE CCRE

[17], and FANTOM5 [2]. To identify enhancers from one database in GenomicKB, users can

query the node “enhancer” with restrictions such as “data source = FANTOM5”. By defin-

ing enhancers from different data sources with coordinate overlaps as consensus ones, one

can also query how many enhancers from two sources (e.g., CCRE and EnhancerAtlas) agree

with each other (Query 1 in Figure 4.4). In addition, relations from one data source can be

cross-validated by other data sources. For example, EnhancerAtlas provides enhancer-gene

interactions, which can be validated by other approaches that map enhancers to genes such
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Figure 4.4: GenomicKB reconciles multiple data sources for the same problem,
such as identifying enhancers and mapping enhancers to genes.
Query 1 demonstrates how GenomicKB evaluates the consensus enhancers between CCRE
and EnhancerAtlas. Query 2 illustrates how enhancer-gene mapping from EnhancerAtlas is
validated by eQTL-gene pairs in GenomicKB.

as eQTL-gene correlation as follows. First, a query “enhancer regulate gene” with restric-

tion “cell line=GM12878” and “data source=EnhancerAtlas” returns 118,610 enhancer-gene

pairs from EnhancerAtlas. Then, we can identify the eQTLs of the gene locating in the en-

hancer, which can be represented as “variant overlap enhancer”, enhancer regulate gene”,

and “variant correlate with gene” (Query 2 in Figure 4.4). The number of distinct enhancer-

gene pairs decreases to 16,871 in the result, indicating that 16,871 enhancer-gene pairs from

EnhancerAtlas can be validated by GTEx eQTLs.

4.5 Discussion and future directions

In conclusion, GenomicKB integrates our existing knowledge regarding human genome,

epigenome, transcriptome, and 4D nucleome in a large knowledge graph. Different from

traditional tabular-structured data, it emphasizes the relations between different perspec-

tives and provides explicit connections between entities of interest. With the flexibility,

well-defined schemata and ontologies used in the knowledge graph, it is quite easy to up-

date the existing entities and relations and incrementally add more entities and relations.

Since GenomicKB adapts external unique identifiers for nodes and edges, it is convenient to
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connect it with other biomedical knowledge graphs. To increase accessibility, GenomicKB

is equipped with a web portal (http://gkb.dcmb.med.umich.edu/) for users to specify and

submit intuitive graph-based queries. With this portal, GenomicKB is capable of answer-

ing human genomics-related questions and conducting multi-modal analysis with coding-free

and interactive queries. Therefore, we expect that GenomicKB can attract researchers with

diverse backgrounds and enhance open science in genomic research.

In recent years, artificial intelligence plays increasingly important roles in problems related

to transcription regulation [150, 68, 67, 4], chromatin 3D structures [42, 11, 147, 78], and

single-cell genomics [40, 87]. Nevertheless, we are still looking for a “universal model” that

captures large-scale genomic data from different perspectives and comprehensively decodes

the human genome. Similar to the field of natural language processing in which new language

models and question-answering systems are based on large knowledge graphs [16, 101] (e.g.,

the Wiki knowledge graph), we expect that genomic research becomes increasingly data-

driven, and GenomicKB provides high-quality and integrated data for large-scale machine

learning methods and facilitates scientific discoveries.
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CHAPTER 5

Conclusion

5.1 Dissertation summary: graph-based representa-

tions of genomic knowledge

This dissertation introduces the intricate landscape of transcriptional regulation in the hu-

man genome and proposes that the human genome can be deciphered with graphs.

The introductory chapter elucidates the complexity of transcriptional regulation, em-

phasizing the collaboration of enhancers, promoters, transcriptional factors, and chromatin

structures. It emphasizes the need to move beyond a simplistic 1-D sequence understanding

and explores the intricate network of the human genome from diverse data sources.

Chromatin 3D structure is the first graph view for the human genome (Chapters 2 and 3),

in which genomic regions are nodes, chromatin contacts between regions are relationships,

and genomic/epigenomic features are node properties. Chapter 2 introduces Chromatin Con-

formation Capture (3C) technology, which uncovers hierarchical structural features through

chromatin contact maps. It focuses on the relationships between transcriptional regulation

and 3D chromatin organization, showcasing the role of CTCF-mediated chromatin loops in

regulating fetal hemoglobin expression. Additionally, we present 3D genome-related com-

putational tools, including scHiCTools for analyzing single-cell Hi-C data and Quagga for

identifying stripes from chromatin contact maps. Chapter 3 introduces the work connecting

high-resolution 3D chromatin organization with epigenomics using a deep-learning model

This model, CAESAR, imputes chromatin contact maps for more than 90 human samples.

The chapter evaluates the algorithm’s accuracy, factors influencing its performance, and its

ability to recapitulate CRISPRi-validated enhancer activities and recover eQTL-gene inter-

actions. It also explores the identification of epigenomic features relevant to fine-scale 3D

chromatin organization.

Chapter 4 introduces another graph view of the human genome - knowledge graphs. Pub-

lished data from landmarking consortia including ENCODE, Roadmap, GTEx, 4DN, and
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HubMAP have provided multifaceted insights into the human genome’s functions, connec-

tions, and relationships. The chapter highlights the importance of considering the human

genome as a complex network, proposing a shift from the aforementioned isolated datasets to

a graph-based representation - GenomicKB. It details the process of building GenomicKB,

including data collection, schema, identity, and ontology. The chapter highlights how Ge-

nomicKB supports graph-based relational queries and discusses its applications in simplifying

cross-modality analysis, encoding positional relations among genomic entities, and reconcil-

ing consensus or conflicting data sources.

The dissertation aims to contribute a comprehensive understanding of transcriptional

regulation in the human genome through a graph-based representation. This novel approach

has the potential to unlock new insights into the relationships between genomic, epigenomic,

and transcriptomic entities, fostering a deeper comprehension of the regulatory mechanisms

governing gene expression in human biology.

5.2 Perspective: data mining, data integration, and

hypothesis-generating for human genomics

Following this dissertation, we can propose potential next steps in the research community.

5.2.1 Data mining and data integration: accumulating the knowl-

edge of human genome at a larger scale

Knowledge and expertise are limited for a single biologist or research team. However, in the

past half a century, millions of research papers, posters, and abstracts have been published in

all domains of the human genome. By accumulating knowledge from the entire community,

we expect more scientific discoveries can be made.

GenomicKB is an early effort to uniformly integrate data and provide user-friendly access

functions. In the future, we plan to extend the work in the following directions.

5.2.1.1 Using artificial intelligence to extract a wider range of knowledge

Although GenomicKB integrates data from more than 30 databases and data consortia,

it only covers part of the discoveries from the research community. Another direct way

of extracting knowledge is text mining from research papers. It is possible to apply the

state-of-the-art named-entity recognition (NER) and relation extraction (RE) algorithms,

and leverage descriptions of biological terms and their biologically interactive information to
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achieve entity and relation extraction [12, 76]. The extracted knowledge can be consolidated

with GenomicKB.

5.2.1.2 Integrate GenomicKB with other knowledge graphs

GenomicKB is the pioneer knowledge graph for the human genome, but not the only knowl-

edge graph in the biomedical domain. Previous knowledge graphs focused more on proteins,

chemicals, and drugs [119, 144, 6, 56, 96, 8]. It is possible to integrate them together as long

as the same identity and ontology system is applied.

Our ultimate goal is to build a reliable data source for the biomedical domain. This

data source not only helps researchers perform cross-modality queries but also provides

efficient representations for computers and artificial intelligence models. Similar to the field

of natural language processing in which new language models and question-answering systems

are based on large knowledge graphs [16, 101] (e.g., the Wiki knowledge graph), we expect

that genomic research becomes increasingly data-driven, and GenomicKB provides high-

quality and integrated data for large-scale machine learning methods and facilitates scientific

discoveries.

5.2.2 Integrated analysis and hypothesis generation for the human

genome

Once our computational framework has integrated enough data, we expect to develop compu-

tational pipelines to let them work like biologists. Two example applications are introduced

in this chapter.

5.2.2.1 Knowledge-driven integrated analysis

Modern artificial intelligence models, such as ChatGPT, have made it possible to generate

sentences and figures according to user-specified prompts. This is achieved by both well-

designed deep learning architecture and large-scale training corpus. Similarly, with large-

scale machine-readable knowledge integrated into our knowledge graphs, we also propose

to develop a knowledge-based or prompt-based analysis platform. For example, the user

could provide a list of genes that are upregulated in their experiments, and ask “please

summarize the common features of this group of genes”. We expect that with the integrated

knowledge, our model could generate meaningful responses such as “these genes are enriched

in chromosome 6”, “a large proportion of these genes are related to inflammation response”,

or even “a previous paper generated a similar gene list as you provided”.
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5.2.2.2 Hypothesis generation for human genomics

Beyond conventional analysis, our computational framework also has the potential to gen-

erate hypotheses in human genomics. Computational models have been published to learn

rules from knowledge graphs and generate novel hypotheses of undiscovered relationships

[48, 1, 127]. Similarly, our system will leverage its comprehensive understanding of inte-

grated datasets to propose novel hypotheses. For example, if a researcher is interested in

a disease, our computational approaches could predict which genes, variants, and biological

pathways should be paid attention to when investigating the disease. Since large models ac-

cumulate the knowledge and expertise of millions of researchers from the research community,

we expect the accuracy of the hypotheses to be significantly higher than the experience-based

decision from a single biologist.

60



BIBLIOGRAPHY

[1] Uchenna Akujuobi, Michael Spranger, Sucheendra K Palaniappan, and Xiangliang
Zhang. T-pair: Temporal node-pair embedding for automatic biomedical hypothesis
generation. IEEE Transactions on Knowledge and Data Engineering, 34(6):2988–3001,
2020.

[2] Robin Andersson, Claudia Gebhard, Irene Miguel-Escalada, Ilka Hoof, Jette Born-
holdt, Mette Boyd, Yun Chen, Xiaobei Zhao, Christian Schmidl, Takahiro Suzuki,
et al. An atlas of active enhancers across human cell types and tissues. Na-
ture, 507(7493):455–461, 2014. [PubMed:24670763] [PubMed Central:PMC5215096]
[doi:10.1038/nature12787].

[3] Abbas Roayaei Ardakany, Ferhat Ay, and Stefano Lonardi. Selfish: Discovery of dif-
ferential chromatin interactions via a self-similarity measure. bioRxiv, 2019.
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