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Abstract 

The wide heterogeneity in adverse outcomes of stressful experiences unexplained in existing 

literature suggests that more research is needed to understand the developmental risk and 

resilience to adversity. Specifically, why and how do certain experiences lead to mental health 

problems for some but not others? What neural mechanisms could account for the long-term 

effects of adverse experiences on mental health? This dissertation addressed these questions 

using prospective longitudinal data from a population-based birth cohort sample. The findings 

demonstrate that the developmental impact of adversity is specific to the types of experiences 

and neural features, thus requiring approaches that can capture the complexities of both the 

environment and the brain. Study one examined the differential neural mechanisms implicated in 

the long-term neural and behavioral consequences of childhood adversity across 21 years. 

Results show that household instability during childhood was associated with structural brain 

network organization in adolescence, even after accounting for other types of adversities. 

Moreover, structural network organization indirectly explained the association between 

childhood instability and depressive symptoms in young adulthood, demonstrating the prolonged 

influence of the early environment on mental health through experience-specific neural 

correlates. In study two, data-driven person-specific functional connectivity subgroups in 

adolescence were identified to predict mental health outcomes and stress susceptibility six years 

later, during the highly stressful period of the global pandemic. Findings revealed that 

individuals with greater functional connectivity involving specific emotion-related key regions 

(amygdala, subgenual cingulate cortex, ventral striatum) showed an increased trajectory of 
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anxiety symptoms and were more susceptible to future stress, relative to those with connectivity 

involving other brain regions (dorsal anterior cingulate cortex, insula). These findings suggest 

that the associations between adverse experiences and mental health differ based on specific 

emotion-linked neural regions. Finally, study three built upon the previous studies by addressing 

heterogeneity in childhood adversity as well as adolescent brain networks using person-oriented 

approaches. First, data-driven latent profiles were identified using adverse experiences across 

multiple contexts during the first nine years of life. These profiles were then used to estimate 

differences in prospective youth mental health outcomes and person-specific functional brain 

networks. Findings demonstrate that youth with a profile indicated by high exposure to multi-

domain adversity, as well as those with an adversity profile characterized by exposure to high 

maternal depression, exhibited the highest levels of internalizing and externalizing symptoms in 

adolescence. These patterns were also reflected in the brain function of these youth during 

emotion processing; specifically, youth with the high-adversity and maternal depression profiles 

showed the highest density within the default mode network. Additionally, those with the high 

childhood adversity profile showed attenuated salience network density and greater 

frontoparietal network density, suggesting aberrant network communication in key emotion 

regulatory regions. Collectively, this dissertation provides empirical evidence that the neural 

mechanisms of adversity are specific to the types of experiences, the brain regions involved, and 

their contextual interactions, which underscore the importance of considering development as an 

individualized process to parse heterogeneity in the influence of adversity. This work informs 

future studies by integrating broader environmental measures in characterizing adversity and 

adopting novel approaches in modeling brain development across multiple levels of analysis. 



 1 

Chapter 1  
Introduction 

Childhood adversity is a major risk factor for psychological well-being and is a pervasive 

problem in the US. Close to 30% of global psychiatric problems were attributed to childhood 

adversity (Kessler et al., 2010), with approximately two-thirds of US adults surveyed between 

2011 and 2020 reporting at least one adverse childhood experience, and one in six indicating 

exposure to four or more adversities (Swedo, 2023). Childhood adversity also contributes to the 

vast health inequality within the US, as it is disproportionately experienced by individuals with 

marginalized identities and those with fewer economic resources (Giano et al., 2020).  

Landmark cross-species studies have compellingly shown that adverse experiences can 

have long-term implications for socioemotional health. For instance, experimental research in 

rodents and non-human primates has found that stressful conditions, such as disruptions in the 

early mother-infant relationship, variations in the licking and grooming practices of dams, or 

limited bedding and nesting, can lead to long-term behavioral disturbances in infants 

(Champagne et al., 2003; Levine, 2005; Meaney, 2001; Walker et al., 2017a). In nonhuman 

primates, unpredictable foraging conditions can produce behavioral problems (Rosenblum & 

Paully, 1984) and cause sustained elevation in the excretion of stress hormones in their infants 

(Coplan et al., 1996, 2001).  

The harmful consequences of early adversity for emotional health are also well-

established in humans. Evidence from classical studies examining the influence of maternal 

separation on orphanage children has shown how severe social deprivation in early childhood 
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can lead to poor long-term mental health outcomes (Goldfarb, 1945; Gunnar et al., 2007; Rutter, 

1998). More contemporary developmental psychology and epidemiological studies have also 

consistently linked adversity across multiple contexts with a wide range of psychiatric disorders 

later in life (Chapman et al., 2004; Cicchetti & Lynch, 1993; Finkelhor, 1995; Kessler et al., 

1997; Sameroff et al., 1987). These studies collectively demonstrate the long reach of childhood 

adversity in shaping socioemotional development.  

 

1.1 The Neural Embedding of Adversity 

Adverse experiences during the formative period of childhood are particularly influential, 

as early life experiences can become biologically embedded, shaping the entire life course of 

development (Berens et al., 2017). Exposure to stress can alter the body's stress regulatory 

system, responsible for maintaining homeostasis, thus increasing allostatic load—the "wear and 

tear" on the body—that can have profound health implications (McEwen, 1998). The brain is 

central to this process, playing a pivotal role in initiating stress regulatory responses (McEwen, 

1998). Repeated stress can heighten the activation and release of neurotransmitters, such as 

glucocorticoids, leading to eventual dysregulation of the hypothalamic-pituitary-adrenocortical 

(HPA) axis (Loman & Gunnar, 2010), which, in turn, can alter the course of neural development 

(Berens et al., 2017; Sapolsky, 1992).  

Subcortical structures, such as the amygdala and other limbic structures, were found to be 

important regions because they contain a high density of glucocorticoids receptors (Tottenham & 

Sheridan, 2010). As a result, they are proposed to be highly susceptible to stressful experiences 

(see reviews: Hein & Monk, 2017; Tottenham & Sheridan, 2010). In addition to their functional 

and structural properties, the connections between these structures and regions in the prefrontal 
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cortex, which are involved in higher-order cognitive processes, have important implications for 

emotion regulation (Gee et al., 2013; Hanson et al., 2015; Hardi et al., 2022). Other studies have 

also begun to examine the neural connections between these structures and other regions of the 

brain in relation to adverse experiences (Goetschius, Hein, McLanahan, et al., 2020; Goetschius, 

Hein, Mitchell, et al., 2020; McLaughlin et al., 2019) to demonstrate the widespread influence of 

adversity on the brain.  

In humans, the long-term effects of adversity on brain development have been most 

compellingly demonstrated through longitudinal studies. For instance, the seminal randomized 

controlled trial of institutionalized children, the Bucharest Early Intervention Project (Zeanah et 

al., 2003), revealed marked differences in critical neural structures between severely neglected 

Romanian children and those who were never institutionalized (Sheridan et al., 2012). Similar 

findings have been observed in other samples of adopted children in the U.S. (Tottenham et al., 

2010), as well as in other cases of abuse and neglect in relation to brain function and structure 

(McLaughlin et al., 2019; Teicher et al., 2016). Collectively, these studies inform how adversity 

can “get under the skin” to influence health and behaviors across the lifespan (Hertzman, 2012).  

 

1.2 Current Challenges 

Despite extensive research on the neural embedding of adversity in relation to mental 

health outcomes, there remains an urgent need for further studies on this topic. In particular, 

although childhood adversities are pervasive across multiple contexts (e.g., caregiving, 

neighborhood, society) and are well-established risk factor for mental health, inconsistencies in 

the literature suggest that current findings have not adequately captured the broad heterogeneity 

of environmental influences on neural development (Cohodes et al., 2021). These inconsistencies 
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encompass the types of adverse experiences, the brain regions linked to these experiences, the 

direction of effects (i.e., increased or decreased activity in key regions), as well as variations in 

the developmental timing of experience that relate to neural differences (e.g., early childhood vs. 

later in development) (Holz et al., 2023; Hosseini-Kamkar et al., 2023; Vannucci et al., 2023). 

These findings underscore the need for more research to clarify the individual differences in the 

developmental outcomes of adverse experiences.  

 

1.3 Theoretical Frameworks 

1.3.1 Equifinality and multifinality 

Conceptual frameworks based on longstanding developmental theories can provide 

insights into these broad heterogeneous outcomes of adversity. For instance, principles of 

developmental psychopathology such as the Equifinality and Multifinality (Cicchetti & Rogosch, 

1996) describe the diversity of developmental pathways and outcomes observed in individuals 

who experience similar or dissimilar risk factors. These principles emphasize the importance of 

considering individual differences when understanding an individual’s onset and course of 

psychopathology. Equifinality refers to the process through which different experiences or 

processes can lead to the same eventual end state. For instance, two individuals growing up in 

seemingly contrasting environments can develop similar manifestations of psychopathology 

through many different circumstances, indicating that multiple pathways can lead to a similar 

outcome. Conversely, Multifinality posits that a single event can lead to vastly different 

outcomes, resulting in a wide variety of potential consequences. For example, the same adverse 

event may result in maladaptive behavior in one individual but not in another, suggesting that 

each mental disorder can have unique causal pathways.  
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1.3.2 Conceptual models of human development 

Both equifinality and multifinality underscore the variability in individuals' responses to 

risk factors and stressors. These conceptual models are well aligned with the principles of human 

development described by Bronfenbrenner’s Bioecological Model (Bronfenbrenner & Morris, 

2007). This theoretical model provides a framework for understanding human development 

within the context of various ecological systems. It emphasizes the bidirectional interplay 

between individuals and their environment, acknowledging that development is influenced by 

multiple layers of interacting systems. Individual characteristics, including biology, are nested 

within multiple contexts—such as family, school, neighborhood, society—and development is 

shaped by the dynamic interactions of these factors across time. 

This complex interplay between nature (i.e., person) and nurture (i.e., environment) is 

also captured by other person-environment interaction models that address how and why 

individual differences in developmental outcomes arise. For example, Sameroff’s Transactional 

Model (Sameroff, 1975) and subsequently, his Unified Theory of Development, focuses on 

transactional processes across multiple levels of analysis (Sameroff, 2010). These models depict 

children as active agents who create a continuous feedback loop between individual and various 

contexts (home, school, community), where they learn, play, and socialize (Bronfenbrenner & 

Ceci, 1995; Sameroff, 2010). The Holistic-Interactionistic perspective and Dynamic Systems 

Theory both outlined how variations in development can emerge from the interactions of 

multiple factors within the individual (Magnusson, 2001; Molenaar, 2015; Thelen & Smith, 

1994). These conceptual models explain how individuals could arrive in similar or differential 

outcomes through individual factors that are context-dependent, non-linear, and transactional. 

The interplay between individuals and their environment is also illustrated by the Gene-
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Environment Interaction models, which posit how shared genetic and environmental variations 

interact to shape development (Manuck & McCaffery, 2014; Rutter & Silberg, 2002). Other 

models, such as the Diathesis-Stress Model and the Differential Susceptibility to Stress model 

(Belsky et al., 2007; Belsky & Pluess, 2009; Boyce & Ellis, 2005; Rudolph et al., 2016), describe 

how varying sensitivities to context across individuals can explain the equifinality and 

multifinality of adverse experiences. Whereas the diathesis-stress model suggests that certain 

individuals are predisposed to stress (increasing their risk for negative outcomes), the differential 

susceptibility model extends this principle by positing that highly susceptible individuals may be 

more sensitive not only to adverse but also to supportive environments. Together, these 

theoretical frameworks underscore the importance of bidirectional interactions between 

individual characteristics and environmental contexts as foundational to children’s development. 

 

1.3.3 Conceptual models of adversity 

While theoretical models of human development explain how and why individual 

variations arise, conceptual models of adversity provide contextual understanding of how this 

could apply to children exposed to adversity. The prevailing approach in understanding how 

adversity can lead to developmental risks is explained by the cumulative model. Rutter and 

colleagues initiated this model in the Isle of Wight study, where they created a ‘Family Adversity 

Index’ to represent the accumulating risk of multiple forms of adversity (Rutter et al., 1979). 

Similarly, in the Rochester Longitudinal Study, Sameroff and colleagues combined scores from 

multiple family environment factors to establish cumulative effects on children's cognitive and 

socioemotional functioning (Sameroff et al., 1987). This model was formalized in the seminal 

epidemiological studies on Adverse Childhood Experiences (ACEs) (Felitti et al., 1998), which 
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found that exposure to more than four ACEs led to increased health risks. The cumulative 

approach has since been widely adopted in research across diverse experiences, such as 

maltreatment, family violence, maternal stress, parental psychopathology, and financial hardship, 

with these findings replicated in numerous subsequent studies (see review: Evans et al., 2013).  

While the prevailing cumulative risk model has well established that the risk for mental 

health problems increases with greater exposure to adverse experiences, addressing multiple 

risks simultaneously through intervention and prevention efforts is extremely difficult. Thus, 

there has been considerable interest in identifying specific mechanisms that can inform more 

targeted strategies, potentially enhancing the feasibility of interventions. Pollak and colleagues 

(2000), for instance, examined potential differences in emotion recognition among children who 

were physically abused compared to those who were neglected. They found that neglected 

children had difficulty distinguishing between different emotions, while those who were 

physically abused were particularly attuned to angry facial expressions (Pollak et al., 2000). 

These disparate patterns of emotion processing have motivated research to further explore 

whether differential mechanisms underlie abuse and neglect. Identifying such mechanisms could 

increase the specificity of neural targets for interventions and improve our understanding of the 

vast individual differences in childhood maltreatment outcomes.  

Thus, new conceptual models of adversity were proposed. The Dimensional Model of 

Adversity and Psychopathology (Sheridan & McLaughlin, 2014) posits that discrete neural 

mechanisms are associated with different dimensions of adversity (threat vs. deprivation), which 

can lead to either emotion-linked or cognitive-linked difficulties. Belsky and colleagues 

differentiate the mechanistic processes underlying unpredictability from those associated with 

environmental harshness (e.g., poverty) (Belsky et al., 2011). More recently, efforts were made 
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to integrate unpredictability into the dimensional model of adversity (Ellis et al., 2022; 

McLaughlin et al., 2021), though more research is needed to establish their differential 

mechanistic processes. All these theoretical models collectively aim to increase the specificity of 

identified neural mechanisms underlying adverse experiences.  

Evidence on differential neural correlates along the dimensions of threat and deprivation 

underscores that different adverse experiences can influence brain development through distinct 

underlying mechanisms (McLaughlin et al., 2021). For instance, studies have found that 

exposure to violence, but not deprivation, was related to functional connectivity or activity in the 

amygdala (Goetschius, Hein, McLanahan, et al., 2020; Hein et al., 2020), while others found that 

deprivation was more strongly linked to deficits in cognitive abilities (Machlin et al., 2019; 

Miller et al., n.d., 2018). Davis and colleagues (2017) found that unpredictable maternal signals 

were associated with poor cognitive function in both rats and human samples, and that these 

fragmented signals were associated with greater density in the white matter tract uncinate 

fasciculus (Glynn & Baram, 2019). These studies demonstrate how the downstream effects of 

adversity can influence health through distinct neurodevelopmental pathways.  

 

1.3.4 Heterogeneity problem 

Other potential reasons for inconsistencies in current literature is the challenge of 

translating animal models, which informed the early work on the neural embedding of adversity, 

to human research. Unlike humans, the sources of stress for rodents are fairly homogeneous and 

are strictly controlled within an experimental paradigm. Conversely, adverse experiences in 

humans are incredibly heterogeneous, even within the same type of experience. Abuse, for 

instance, can be accompanied by physical or emotional violence, occur intermittently or 



 9 

constantly, be perpetrated by single or multiple parties, and last for short or long periods 

(Warmingham et al., 2019). Moreover, humans undergo an incredibly protracted ontogenetic 

process compared to other species, offering an extended opportunity for environmental 

imprinting (Tottenham, 2020), resulting in greater individual differences over the course of 

development. This protracted development also provides a prolonged period for exploration in 

human children, arguably allowing the young developing brain to play a much larger role in 

driving environmental input, which contributes to greater variations in phenotypic expressions.  

This is compounded by recent evidence that convincingly demonstrates how highly 

idiosyncratic the human brain is, underscoring the need to examine individual differences in 

brain development (Foulkes & Blakemore, 2018). This observation is evident given that human 

development is a non-ergodic process (Molenaar, 2004), which attributes to the uniqueness of 

the developmental process to an individual across time. This implies that inferences that are 

drawn from intra-individual analyses (comparison among individuals) may not generalize to 

inter-individual variations (changes occurring within an individual) (Cattell, 1952; Molenaar, 

2004; Sterba & Bauer, 2010). Thus, to adeptly examine individual differences, neural models of 

human development require approaches that can accommodate individual trajectories, factor 

models, and variances. However, early research on adversity and the brain largely employed 

common approaches that rely on averages across individuals, precluding granularity in parsing 

heterogeneity. This is particularly predominant for models examining neural function that 

conventionally utilize univariate contrast methods (i.e., differences in neural activity in a 

particular brain region between task conditions). These approaches not only exhibit poor test-

retest reliability (Elliott et al., 2020) but are also suboptimal in capturing the vast heterogeneity 

in brain function across individuals (Finn et al., 2015; Gordon et al., 2017). Thus, there is a 
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pressing need for further research that adopts new approaches to examining individual 

differences in the neural embedding of adversity that underlie mental health risks.   

 

1.3.5 Network neuroscience 

To address this heterogeneity problem, increased specificity and precision in identified 

neural correlates of adversity are needed. Just as the individual is an organism of many 

intersecting processes, the brain is best characterized as a complex system with numerous 

individual components working in tandem. Multivariate network modeling in neuroscience can 

provide more holistic models of the brain, and increase reliability in clinical prediction (Spisak et 

al., 2023). Studies examining individual brain patterns using resting-state functional 

neuroimaging data, for instance, have found that brain function is highly individualized and that 

the locations of brain regions differ among individuals (Gordon et al., 2017). This implies that 

the localized function of one particular region may vary from individual to individual, suggesting 

that methods focusing on only one specific region may not adequately capture the brain’s 

complexity. Furthermore, network approaches circumvent the need for an overreliance on 

singular seed-to-target connectivity, which has been shown to be less reliable (Noble et al., 

2019), and provide greater statistical power by summarizing more information across the 

connectome (Kragel et al., 2021; Taxali et al., 2021). Thus, beyond the activation of specific 

structures and their correspondence with other brain regions, further consideration is needed to 

understand how stressful experiences relate to brain networks (Menon, 2011; Pessoa, 2017). 

Beyond connectivity, the topological organization of these connections can also provide 

important insights into the development of neural systems. Network organization can be 

quantified by applying graph analytical methods to reveal the structural organization of neural 
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connections (E. T. Bullmore & Sporns, 2009). These metrics have been shown to be important 

for providing new insights into brain development. For instance, studies have found that network 

structures become increasingly efficient over time as the brain optimizes to its environment 

(Hagmann et al., 2010), and that brain organization is sensitive to environmental influences 

(Astle et al., 2023; Guassi Moreira et al., 2021). These studies establish that employing a 

network approach to model brain organization can reveal novel insights into individual 

differences in how adverse experiences modulate the brain and mental health.  

 

1.3.6 Person-oriented approaches  

Moreover, studies on the neural mechanisms of adversity predominantly examines 

questions using variable-centered methods. These methods focus on the characteristics of 

individual variables, quantifying the role of a particular variable in a study, rather than the 

characteristics of individuals or groups. When used to examine variations between individuals, 

variable-centered approaches can obscure important information about individuals and reduce 

the generalizability of inferences from groups to individuals (Curran & Bauer, 2011; Fisher et 

al., 2018; Molenaar, 2015). In contrast, person-oriented approaches place emphasis on the 

individual and are powerful tools for elucidating heterogeneity in ways that variable-centered 

methods cannot (Bergman & Magnusson, 1997; Cicchetti & Rogosch, 1996). Methods under the 

umbrella of person-oriented approaches vary from less restrictive variable-oriented methods such 

as latent growth curve models, to classification methods such as mixture models or cluster 

analysis and single-subject or person-specific methods (Sterba & Bauer, 2010). Collectively, 

these approaches consider development as a product of complex interaction of various processes 

and factors occurring within the individual.   
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1.3.6.1 Person-centered approach 

While variable-centered approaches operate under the assumption that relationships 

between variables are consistent across the entire sample, person-centered methods assumes that 

there are multiple subpopulations within the overall population that are qualitatively different 

from one another (Howard & Hoffman, 2018; Morin et al., 2016). Person-centered approach has 

been applied in research for decades to try to describe psychological processes within particular 

individuals (Laursen & Hoff, 2006; Magnusson & Stattin, 2007). These methods utilize 

individual-specific information to identify groups of individuals who share similar experiences 

or characteristics in the sample (Lanza & Cooper, 2016; Scotto Rosato & Baer, 2012). Moreover, 

unlike variable-centered approaches that treat experiences as separate entities, person-centered 

approaches do not assume equal weight for each variable (Bergman & Magnusson, 1997; 

Laursen & Hoff, 2006). This is critical given that not all adverse experiences operate similarly 

across individuals (Briggs et al., 2021; Lacey & Minnis, 2020), nor do we fully understand what 

constitutes high or low risk for each person (Masten, 2001). To address this, a holistic approach 

to characterizing the child’s environment can be achieved using person-centered methods that 

can account for the complex interactions among contextual factors that contribute to 

development (Bergman & Magnusson, 1997).  

 

1.3.6.2 Person-specific approach 

 Whereas a variable-centered approach relies on population averages and person-centered 

approach summarize patterns across subpopulations, the person-specific approach is capable of 

capturing finer-grained information of individuals. Person-specific analyses operate under the 

assumption that individuals within a population are unique, thus questions that seek to 
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understand variations among people require individualized models (Howard & Hoffman, 2018; 

Molenaar, 2004; Molenaar & Campbell, 2009). This is particularly notable for brain function (as 

captured by functional neuroimaging data) that represents moment-to-moment fluctuations in 

neural activity that are highly amenable to person-specific features (Finn et al., 2015; Gordon et 

al., 2017; Gratton et al., 2018). One such person-specific method is the application of Group 

Iterative Multiple Model Estimation (GIMME) (Gates & Molenaar, 2012) on the time-series of 

functional neuroimaging data. GIMME produce personalized networks that contain connections 

that are common across the sample, as well as those that are unique to the individual. Thus, 

allowing for more granularity in modeling individual brain function while simultaneously 

preserving information across individuals.  

 

1.4 Specific Aims of the Dissertation 

This dissertation focused in addressing three aims: 1) examine variations stemming from 

types of adversity by establishing differential neural mechanisms underlying the long-term 

influence of adversity on development; 2) examine variations stemming from brain regions by 

examining the differential neural patterns associated with prospective stressful experiences and 

psychopathology; and 3) examine variations across types and neural networks by parsing 

population heterogeneity in experiences to identify more precise neural models of adversity. In 

all three studies, I employed a network neuroscience approach in examining differences in neural 

structures and function implicated in psychopathology using a longitudinal analytic design across 

multiple developmental stages. In the first study, I examined the differential neural mechanisms 

associated with various types of adverse experiences using topological measures of structural 

connectivity. The second and third studies applied a similar network principle, with the addition 
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of a person-specific estimation method (i.e., GIMME) in modeling functional brain networks to 

address the highly individualized nature of brain function. The second study established 

differential mental health outcomes related to economic stress during the COVID-19 pandemic, 

as predicted by person-specific functional network connectivity. In the third study, person-

centered multi-domain adversity profiles were examined in association with functional network 

connectivity and adolescent mental health. 

 

1.4.1 Sample 

All three studies in this dissertation examined data from the Future Families and Child 

Wellbeing Study (FFCWS; formerly known as the Fragile Families and Child Wellbeing Study) 

(Reichman et al., 2001) and the Study of Adolescent Neurodevelopment (SAND). The FFCWS 

is a population-based longitudinal cohort of 4,898 families recruited from large cities (population 

over 200,000) across the U.S. The study oversampled for children of non-marital births at a ratio 

of 3:1, and included a large representation of minority and low-income families (49% Black, 

25% Hispanic, 18% White, 8% other/multiracial; median household income at child’s birth 

$22,500)—groups who are underrepresented in neuroimaging research (Falk et al., 2013). Data 

were collected at child’s birth and at ages 1, 3, 5, 9, and 15 through a series of home visitations, 

phone interviews, and survey administrations. At age 15, a subsample of individuals was invited 

to participate in the SAND study at the University of Michigan, Ann Arbor, where data (both 

mental health and neuroimaging) were collected from 237 youth and families (76% Black, 13% 

White, 6% Hispanic, 5% other/multiracial; median household income $36,195). This subsample 

was continually followed, with non-neuroimaging data collected through phone interviews two 

years later, and again six years later during the COVID-19 pandemic. 
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Chapter 2 1 

Early Childhood Household Instability, Adolescent Structural Neural Network 

Architecture, and Young Adulthood Depression: A 21-Year Longitudinal Study 

2.1 Introduction  

Childhood adversity is experienced by 40% of individuals and is linked to close to 30% 

of mental health disorders (Kessler et al., 2010; McLaughlin et al., 2012). Early adversity can 

increase susceptibility for psychopathology later in life through modulation of critical neural 

systems as demonstrated by both animal (Sánchez et al., 2001) and human studies (Gur et al., 

2019; McLaughlin et al., 2019; Nelson & Gabard-Durnam, 2020; Tottenham et al., 2010). 

Though theoretical and empirical work has linked several types of adversities to specific 

developmental and neurobehavioral outcomes, little research has examined the links between 

unstable environments with human brain development despite growing interest in cross-species 

translation of neural mechanisms associated with unpredictability (Ellis et al., 2022; Gee, 2021; 

McLaughlin et al., 2021). Highly variable or stressful environments (e.g., limited bedding or 

nesting, maternal separation or unpredictable rearing) have primarily been linked to synaptic 

maturation in rodents (Bath et al., 2016; Guadagno et al., 2020; Ono et al., 2008; Strzelewicz et 

al., 2019; Walker et al., 2017b), and studies focusing on unpredictability and human brain 

development have only recently emerged (Granger et al., 2021).  

 
1 Chapter 2 corresponds to Hardi et al., 2023 published in Developmental Cognitive Neuroscience 
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Instability can create unique challenges as environments that are constantly shifting 

heighten demands for adaptation and increase the production of stress hormones (Coplan et al., 

2001; Martf & Armario, 1997; Muir & Pfister, 1986) that play important roles for neural regions 

implicated in socioemotional development (Dallman et al., 2004; McEwen, 2008). These effects 

are especially pronounced during early childhood when rapid neural development is occurring, 

with long-lasting implications through adolescence and young adulthood (Hensch & Bilimoria, 

2012; Luby et al., 2020; Pechtel & Pizzagalli, 2011). For example, unstable environments 

marked by frequent residential moves (Ziol-Guest & McKenna, 2014) and family instability 

(Fomby & Osborne, 2017; Mitchell et al., 2015) during early childhood were linked to increased 

child internalizing and externalizing behaviors. Similarly, environmental unpredictability was 

associated with increased behavioral problems in adolescence (Belsky et al., 2011), specifically 

when these changes were experienced during early years of childhood (Doom et al., 2016).  

These observed differences in both neural development and mental health outcomes 

could potentially vary as a function of instability that reflects environmental adaptation. Such 

inference is consistent with the life history strategy theory (Belsky et al., 2011; Promislow & 

Harvey, 1990), which posits that early experiences shape one’s strategy for survival, leading to 

certain phenotypic traits that increase the organism’s chances of survival and reproduction. 

These patterns were established in animal models such as squirrels (Dantzer et al., 2013), birds 

(Martin, 1995), nonhuman primates (Pereira & Fairbanks, 2002), and rodents (Careau et al., 

2009), whereby variations in the environment are associated with reproductive behaviors and 

offspring growth. Such increased growth, however, could come with a potential trade-off cost of 

shorter lifespans. The “weathering hypothesis” for instance, posits that exposures to adversities 

could increase allostatic load and accelerate aging (Geronimus, 1992; McEwen, 2007), 
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suggesting that while increased pace of development could be advantageous in the short-term, it 

could also pose long-term health consequences. 

Despite evidence linking unstable early environments, neural development, and mental 

health, no study to date has examined environmental unpredictability and white matter networks. 

White matter structures are particularly important markers of neural development as myelination 

of white matter solidifies neural connections and limits the extent to which the brain remains 

plastic and sensitive to the environment (Hensch & Bilimoria, 2012). While unpredictable 

maternal signals have been linked to density of preadolescence white matter corticolimbic 

structures (Granger et al., 2021), little is known about how unstable environment across early 

childhood relate to network organization of structural connections. Furthermore, most work 

examining white matter tractography relating to early adverse experiences and psychopathology 

have focused on specific major white matter tracts (Granger et al., 2021; Hanson et al., 2013; 

Hein et al., 2018) or microstructures (Goetschius, Hein, Mitchell, et al., 2020; Hardi et al., 2022), 

which do not capture the spatial characteristics of structural networks that represent information 

exchange in the brain (E. T. Bullmore & Sporns, 2009; Menon, 2011; Rubinov & Sporns, 2010). 

Measures of network organization can be accomplished by applying graph analysis to 

reconstructed white matter fibers streamlines using diffusion magnetic resonance imaging 

(dMRI) data (Nucifora et al., 2007). Network integration quantified by global efficiency 

represents how quickly information can travel across the brain through network connections (E. 

T. Bullmore & Sporns, 2009). Network organization can also be characterized by the presence of 

interconnected nodes (i.e., clusters) that quantify network robustness, which signifies the degree 

to which structural integrity is retained when the network is perturbed (e.g., removal of any 

individual node) (E. T. Bullmore & Sporns, 2009). Finally, network segregation measured by the 
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modularity index represents the extent to which a network can be subdivided into separate 

modules (E. T. Bullmore & Sporns, 2009). These network organization measures leverage the 

strength of structural connectivity among brain regions to provide valuable insight into how 

information is transmitted across the brain via white matter structures.  

Beyond examining the direct link between unstable early environment and neural 

mechanisms relating to mental health, more work is needed to establish evidence for neural 

specificity linked to different types of childhood experiences. Extant research on childhood 

adversity has largely focused on distinguishing the effects of emotional and cognitive enrichment 

that parents are able to provide to children (Brooks-Gunn & Duncan, 1997; McLoyd, 1998); 

parent-child interaction (e.g., harsh or supportive parenting) (Chang et al., 2003; Gard et al., 

2017; Wiggins et al., 2015); or differential dimensions of adversity across threat-related or 

deprivation exposures (Goetschius, Hein, McLanahan, et al., 2020; Goetschius, Hein, Mitchell, 

et al., 2020; Hein et al., 2020; McLaughlin et al., 2019; Sheridan & McLaughlin, 2014). These 

efforts have collectively shown that specific types of childhood experiences could have 

differential impact on children’s brain and socioemotional development. In regards to 

unpredictability, events such as residential moves and caregiver transitions contain elements of 

stochasticity that may not be present in the experiences of poverty or parental harshness (Belsky 

et al., 2011; Ellis et al., 2022).  

The present investigation sought to examine the neural developmental pathways between 

unstable environments and white matter structures by testing three aims: (1) examine the 

association between childhood household instability (i.e., residential moves, household 

composition, and caregiver transitions during first five years of life) (age 0-5) and adolescent 

structural network architecture (age 15); (2) determine the specificity in childhood adversity by 
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examining the associations between household instability and structural networks are distinct 

from the association of other types of adversity (i.e., harsh parenting, neglect, poverty) and 

structural organization; and (3) test indirect effects of household instability through structural 

networks on prospective anxiety and depressive symptoms during young adulthood (age 21). 

Additionally, to provide specificity, an exploratory aim of the study was to identify specific 

regions that may be particularly important by examining the association of early instability and 

structural connectivity strength of network regions (overall, within-region, between-regions). We 

hypothesized that greater childhood instability would be related to patterns of more developed 

structural networks that are more integrated (i.e., increased global efficiency), more robust (i.e., 

increased transitivity), and less segregated (i.e., decreased modularity) (Hagmann et al., 2010), 

and that these associations would be distinct from associations with other types of adverse 

experiences. Furthermore, we hypothesized that instability would predict subsequent symptoms 

of anxiety and depression via individual differences in white matter organization.  

 

2.2 Methods 

2.2.1 Samples and procedures 

 Participants were recruited from Future Families and Child Wellbeing Study (FFCWS), a 

population-based sample of 4,898 children born in large cities in the United States (population 

over 200,000) with a 3:1 oversampling for non-marital births (Reichman et al., 2001). Given this 

sampling strategy (i.e., urban births to unmarried parents), low-income families were 

disproportionately represented in the FFCWS. These children were followed throughout 

childhood and when children were 15-17 years old, a cohort of 237 families from midwestern 

sites (Detroit, MI; Toledo, OH; Chicago, IL) participated in the Study of Adolescent Neural 
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Development (SAND) (N=237; mean age 15.87 years; 52% females, 76% Black, median 

household income $36,195; descriptive statistics on included sample are in Supplemental Table 

2-2). Six years later (coinciding with the pandemic), participants self-reported their anxiety and 

depressive symptoms through online and phone interviews. All participants provided informed 

consent or verbal assent as minors with parents’ consent at each wave, and study protocols were 

approved by the University of Michigan ethics committee.   

 

2.2.2 Household instability  

The early household instability construct was adapted from prior literature examining 

environmental unpredictability (Belsky et al., 2011; Doom et al., 2016) and applied to the Future 

Families and Child Wellbeing Study longitudinal data (Reichman et al., 2001). The construct of 

early household instability in the present study includes the extent of residential moves (i.e., 

number of times family moved from one wave to the next), change in household composition 

(i.e., difference in the number of individuals living within the home between waves), and change 

in living situation with caregivers (i.e., mother, father, mother’s cohabitating partners, and 

grandparents moved in and out of the home between waves) during the first five years (between 

ages 0-1, 1-3, 3-5). Scores across each component were then standardized and summed to create 

an overall household instability score for each individual. More details on this construct are 

available in the Supplement.  

 

2.2.3 Neuroimaging measures 
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2.2.3.1 Data acquisition and preprocessing 

Magnetic Resonance Imaging (MRI) scans were acquired using 3T GE Discovery 

MR750 scanner with 8-channel head coil at the University of Michigan Functional MRI 

laboratory. Head movement was limited through the use of head paddings and detailed 

instructions provided to participants. T1-weighted gradient echo images were first captured 

(TR=12ms, TE=5ms, TI=500ms, flip angle=15°, field of view=26cm, slice thickness=1.44mm, 

256x192 matrix, 110 slices). Diffusion MRI (dMRI) data were then acquired using spin-echo 

EPI diffusion sequence using repetition time of 7250ms, minimum echo time, 128x128 

acquisition matrix, FOV=22cm, 3mm no-gap thick slices with 40 slices acquired using 

alternating-increasing order, b-value of 1000s/mm2, 64 non-linear directions. dMRI images were 

first inspected visually for quality, and slices with an average intensity < 4 standard deviations or 

more were marked as outliers and replaced with predicted models (Andersson et al., 2016). 

Participants were excluded if more than 5% of slides were replaced and images for 10 

participants who had most replaced slices were further visually inspected. These data were also 

utilized in previous publications (Calabrese et al., 2022; Goetschius et al., 2019; Goetschius, 

Hein, Mitchell, et al., 2020; Hardi et al., 2022; Hein et al., 2018). 

In the present investigation, preprocessed dMRI data were then processed using the 

MRtrix pipeline to estimate structural connectivity (Tournier et al., 2012). MRtrix utilizes a 

novel tensor-fitting method called the Constrained Spherical Deconvolution (CSD) (Farquharson 

et al., 2013; Tournier et al., 2004, 2007) that outperforms diffusion tractography imaging (DTI) 

or other conventional deterministic methods, especially in crossing fibers regions (Tournier et 

al., 2012). This improved method of tracking white matter fibers is further strengthened by the 

addition of Anatomical Constrained Tractography algorithm, which takes into account other 
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biological tissues (e.g., cerebral spinal fluid) during estimation to restrict fiber tracking only to 

anatomically plausible fibers (Smith et al., 2012). These advancements in methodology improve 

the ability to estimate white matter fibers more precisely using dMRI data. Ten million 

streamlines were generated using probabilistic tractography, which were then combined with 

nodes from the anatomical AAL2 atlas (Rolls et al., 2015) to create a 94x94 individualized 

connectome matrix representing the number of streamlines or structural connectivity (i.e., edges) 

between each brain regions (i.e., nodes). Additionally, to examine regional specificity, these 

nodes were subdivided into 8 brain regions based on AAL2 anatomical parcellation (Rolls et al., 

2015): frontal lateral, frontal medial, orbitofrontal, temporal, limbic, subcortical, parietal, and 

occipital (Figure 2-1). Details on specific nodes and coordinates are in Supplemental Table 2-5 

and more specific details on steps of MRtrix pipeline are available in the Supplement.  

 

2.2.3.2 Graph analysis 

The resulting white matter connectomes were subsequently processed as weighted, 

undirected, and unthresholded (Civier et al., 2019) graphs using the Brain Connectivity Toolbox 

(Rubinov & Sporns, 2010) in MATLAB to generate three weighted global metrics of network 

architecture: global efficiency (Latora & Marchiori, 2001; Onnela et al., 2005; Y. Wang et al., 

2017); transitivity (Opsahl & Panzarasa, 2009); and modularity (Newman, 2006; Reichardt & 

Bornholdt, 2006). Additionally, a localized metric of nodal strength (i.e., strengths of edge 

connections attached to individual nodes) (Sporns, 2002) was computed and within-region 

strength (i.e., strength of connections that are within the same region) and between-region 

strength (i.e., strength of connections between one region and other regions) using custom codes 

in R. For a weighted graph, global efficiency is the inverse of path with greatest structural 
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connectivity within the network. Thus, highly efficient networks typically contain strong 

network connections that facilitate faster information transfer within the network (E. T. Bullmore 

& Sporns, 2009). As a measure of network clustering, transitivity was utilized in this study to 

reduce bias of identifying clusters in a weighted graph (Opsahl & Panzarasa, 2009). Transitivity 

is a localized measure of efficiency, and captures the presence of triangles in the network. A 

greater transitivity score indicates a greater number of triangles and often signifies the robustness 

of information transfer when individual nodes are removed on a local level (E. T. Bullmore & 

Sporns, 2009). Modularity is a measure of network segregation and quantifies the extent to 

which the network can be subdivided into separate modules (E. T. Bullmore & Sporns, 2009); 

greater modularity score indicates a more segregated network. These metrics were computed for 

each person based on individual structural connectomes and extracted for further analysis. More 

information on their computation is in the Supplement.  

 

2.2.4 Anxiety and depressive symptoms  

Anxiety and depressive symptoms during young adulthood (age 21) were self-reported 

using the 21-item Beck Anxiety Inventory (BAI) (Beck et al., 1988) and 20-item Beck 

Depression Inventory (BDI) (Beck et al., 1996). The scales showed good internal reliability 

(Cronbach’s α = .95 for BAI; Cronbach’s α = .91for BDI). These data were collected during the 

early peak of the COVID-19 pandemic (between April 30th, 2020 and June 26th, 2021).  

 

2.2.5 Covariates 
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The following covariates were included to adjust for demographical characteristics: 

gender (male, female); ethnoracial identity (Black, white, Hispanic/LatinX, other), a social 

construct included to control for differences in exposure to structural racism and other 

discrimination; birth city (Detroit, Toledo, Chicago, other), to account for any sampling 

differences by geographical location; pubertal development (parent and self-reported at age 15), 

to account for neural developmental stemming from puberty; economic hardship (parent-reported 

at ages 1, 3, 5), to account for differences in socioeconomic circumstances. The following 

variables were also included to examine the specificity of instability in predicting 

neurobehavioral outcomes versus other adverse experiences during early childhood: harsh 

parenting (standardized sum score of parent-reported physical violence and psychological 

aggression subscales in the Conflict Tactics Scale at ages 3 and 5, and parent-reported spanking 

at age 1); neglect (sum score of parent-reported neglect in the Conflict Tactics Scale at ages 3, 

5); food insecurity (parent-reported at ages 3, 5). In addition, to ensure that anxiety and 

depressive symptoms during young adulthood were not confounded by earlier levels of 

symptoms, pre-pandemic levels of symptoms (scores measuring anxiety and depression using 

self-reported Screen for Anxiety Related Disorders (Birmaher et al., 1997) and Mood and 

Feelings Questionnaire (Angold et al., 1995) at age 17 (Cronbach’s α = .95 and Cronbach’s α = 

.96 respectively) were also accounted for during sensitivity analyses. More details on these 

constructs and sensitivity analyses are available in Supplement.  

 

2.2.6 Statistical analyses 

All statistical analyses were conducted using R Statistical Software v4.2.1 and MPlus v8 

(Muthén & Muthén, 2017). For the first aim, zero-order correlations between early childhood 
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instability and structural network properties (i.e., global efficiency, transitivity, modularity) were 

examined. Distribution of each variable was examined, and models were tested without extreme 

or influential outliers as robustness checks. For the second aim, a path model was tested using 

MPlus v8 with early instability, other types of early adversity, and demographic covariates 

(gender, puberty, ethnoracial identity, birth city, economic hardship) predicting structural 

network metrics (global efficiency, transitivity, modularity). For the third aim, indirect effects 

models predicting anxiety and depressive symptoms during young adulthood were separately 

tested in association with instability, other adverse experiences, and demographic covariates. 

Pre-pandemic symptoms were subsequently also added in the mediation model as sensitivity 

analyses (see Supplement for additional information on robustness checks and sensitivity 

analyses). Finally, for the fourth exploratory aim, zero-order correlations were tested between 

childhood instability and structural connections of each lateral subregion. False Discovery Rate 

(FDR) (Benjamini & Hochberg, 1995) was applied to correct for multiple comparisons across 8 

structural subregions. Path models were assessed using standard fit indices (Hu & Bentler, 1999) 

and were utilized to account for shared variance across multiple types of adverse experiences 

while retaining the full number of participants in the sample. Full Information Maximum 

Likelihood estimation with robust standard errors (MLR) was used to account for missing data 

and to deviations in normality of variables and residuals for the path models tested using Mplus. 

For the models examining zero-order correlations between instability and network metrics or 

subregion-specific structural connections, subjects with missing household instability data were 

listwise deleted (N=161). There were no demographical differences across the full sample 

(N=237) and subsample with missing instability data (N=161) (Supplemental Table 2-4), and 

results do not differ when path models were tested using either sample (see Supplement).  
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2.3 Results 

2.3.1 Early instability was related to greater adolescent structural networks efficiency. 

Greater instability during early childhood was related to greater global efficiency in 

structural networks (b*=.180, p=.028; Figure 2-1). Instability was not related to clustering or 

modularity (transitivity: b*=.143, p=.149; modularity: b*=-.062, p=.432) (Figure 2-2). The 

association between instability and global efficiency remained after adjusting for covariates 

(b*=.164, p=.042) (see Supplemental Table 2-3 for zero-order correlations of all variables).  

 

2.3.2 Associations between early childhood instability and adolescent structural network 

efficiency remained after accounting for other types of early adverse experiences. 

The association between early instability and global efficiency remained after controlling 

for harsh parenting, neglect, and food insecurity (b* [SE]=.183 [.077], p=.017) (Figure 2-3). 

Beyond instability, increased harsh parenting also related to increased transitivity (b* [SE]=.312 

[.142], p=.029). Path model showed excellent model fit (CFI=.986, TLI=.968, RMSEA=.036, 

SRMR=.042) and included controls for all demographics (gender, ethnoracial identity, puberty, 

birth city, economic hardship; see Supplemental Figure 2-1 for full path model).  

 

2.3.3 Greater structural network efficiency in adolescence related to increased depressive 

symptoms in young adulthood. Household instability predicted depressive symptoms via 

network efficiency.  

 Greater adolescent global efficiency was related to increased depressive symptoms during 

young adulthood (b* [SE]=.523 [.168], p=.002). Further, instability predicted depressive 
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symptoms later in adulthood via global efficiency during adolescence (specific indirect effect via 

global efficiency b* [SE]=.100 [.049], p=.042) (Figure 2-4). There were no indirect effects via 

transitivity (b* [SE]=-.041 [.031], p=.190) or modularity (b* [SE]=-.007 [.011], p=.510). The 

model showed excellent fit to the data (CFI=.987, TLI=.957, RMSEA=.035, SRMR=.039; see 

Supplemental Figure 2-2 for full path model). Additionally, results remained after sensitivity 

analyses including previous levels of depressive symptoms (instability related to global 

efficiency b* [SE]=.179 [.077], p=.021; efficiency related to depression b* [SE]=.582 [.156], 

p<.001; specific indirect effect via efficiency b* [SE]=.104 [.052], p=.043; model fit: CFI=.988, 

TLI=.947, RMSEA=.035, SRMR=.037). There were no significant direct or indirect effects 

between instability, structural networks, and anxiety symptoms (model fit: CFI=.986, TLI=.955, 

RMSEA=.036, SRMR=.040; association between anxiety and global efficiency b* [SE]=.201 

[.156], p=.196; indirect association through global efficiency b* [SE]=.038 [.032], p=.245). 

Furthermore, beyond instability, harsh parenting was associated with transitivity (b* [SE]=.317 

[.142], p=.025), but transitivity was not related to symptomatology, nor did transitivity indirectly 

explain the association between harsh parenting and depression (b* [SE]=-.101 [.067], p=.131).  

 

2.3.4 Structural connectivity of the fronto-lateral and temporal regions was associated with 

early instability. 

Exploratory analyses on to identify regional specificity found that early instability was 

most strongly related to structural connectivity strength of the left frontolateral nodes (b*=.23, 

q=.029) (Figure 2-5). Furthermore, early instability was related to between-region strength 

connectivity (i.e., connectivity among left frontolateral nodes and all other regions) (b*=.22, 

q=.037), as well as between-region connectivity among left temporal nodes and all other regions 
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(b*=.20, q=.037) (Figure 2-5). All results from subregional connectivity analyses are available in 

Supplemental Table 2-6.  

 

2.4 Discussion 

 Using a longitudinal design across 21 years, childhood household instability during the 

first five years of childhood was associated with greater structural network efficiency in 

adolescence, which in turn predicted to greater depressive symptoms in young adulthood. 

Furthermore, structural network efficiency indirectly explained the association between 

instability and depression, and these associations remained even after accounting for other types 

of adversity (i.e., harsh parenting, neglect, food insecurity) and earlier symptoms of depression. 

Moreover, exploratory findings showed that associations with structural connectivity were 

strongest within the left frontolateral subregion and between temporal and other subregions were 

associated with greater instability. These results suggest that instability during early childhood 

was related to greater structural network efficiency, particularly in regions important for 

regulation and cognition, and that these associations may have consequences for mental health 

later in life. These findings demonstrate the potential long-term neurobehavioral consequences of 

exposure to early instability and highlight a model in which early instability may lead to greater 

risk for psychopathology via modulation of structural white matter networks.  

Increased attention has been placed recently to identify the differential influence of 

unpredictability and instability for child development (Ellis et al., 2022; Gee, 2021; McLaughlin 

et al., 2021). Our findings here are one of the first to establish associations between household 

instability and white matter network organization in relation to mental health. While previous 

work has focused on unpredictability within the caregiving environment through observations of 
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mother-child dyads at a more granular timescale (Granger et al., 2021), the present results 

provide complementary evidence by examining neural mechanisms associated with unstable 

environment across several years. While parent-child interaction is critical for understanding 

how caregiving environments impact brain development, a multi-year snapshot of the child’s 

environment could capture the potential accumulation of stress resulting from unstable 

environment. The interplay between these constructs would be an intriguing avenue for further 

inquiry as instability at large timescales is likely to be correlated with instability at smaller 

timescales. For instance, frequent residential moves can lead to an array of experiences such as 

changes in schools or routines that create instability on a daily basis. Furthermore, instability 

caused by relocations or fathers moving in and out of the home could also have downstream 

effects on child development through caregiving practices, given that these events could also 

function as a potential source of stress for the mothers.  

Greater levels of instability during early childhood in the present investigation was 

associated with network organization that facilitates faster information flow in the brain (i.e., 

greater global efficiency)—a pattern commonly observed with brain maturation (Chen et al., 

2013; Hagmann et al., 2010; Richmond et al., 2016; Vértes & Bullmore, 2015). It is possible that 

this increased efficiency in structural network reflects an adaptive response to household 

instability, though with potential long-term implications for mental health. Such inference is 

consistent with theoretical models such as life history theories (Belsky et al., 2011; Promislow & 

Harvey, 1990) and the stress acceleration hypothesis (Callaghan & Tottenham, 2016), which 

posit that less predictable early environments or increased exposure to early life stress 

accelerates biological maturation to increase organism survival, though potentially at later costs. 

Relatedly, evidence on the “weathering hypothesis” (Geronimus, 1992; McEwen, 2007) have 
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also demonstrated how adverse environments are associated with increased allostatic load, more 

rapid aging, and health inequalities, especially among Black mothers. For humans, the prolonged 

juvenile period may be developmentally advantageous as it allows for continued sensitivity to 

the environment. Thus, a reduced window of plasticity due to early maturation of neural 

structures may limit opportunities for subsequent enrichment, potentially increasing 

susceptibility to psychopathology. From a network theoretical perspective, increased efficiency 

relating to greater risk for mental health may reflect a greater topological cost of maintaining a 

more densely structured networks (E. Bullmore & Sporns, 2012). While greater network density 

could improve communication efficiency, greater allostatic load and vulnerability to 

environmental stressors could occur if such increase in wiring cost were attained prematurely 

and constrain future development and adaption to later contexts.  

Despite these inferences, conclusive evidence for accelerated neural development relating 

to instability requires multiple timepoints of neuroimaging data, which is not possible in present 

investigation. Even though many studies have found efficiency of structural networks to increase 

with age (Chen et al., 2013; Hagmann et al., 2010; Richmond et al., 2016; Vértes & Bullmore, 

2015), there are evidence to show that global efficiency of streamline-based structural 

connectivity decreases (Koenis et al., 2015) or stabilizes during adolescence (Koenis et al., 

2018). It is important to note however, that current developmental trajectories of structural 

network organization are predominantly based on samples that are markedly distinct from 

present investigation. This emphasizes the critical need for developmental trajectories of brain 

development using more diverse and representative samples (Falk et al., 2013; Garcini et al., 

2022; Ricard et al., 2022) to allow for a more definitive understanding of how white matter 

structures change across time. 
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The associations between household instability with structural networks was observed 

after adjusting for other types of early adverse experiences, suggesting that instability could have 

unique neural correlates for mental health. Additionally, whereas instability had the strongest 

association with global efficiency, harsh parenting during early childhood was related to greater 

network clustering. Furthermore, although harsh parenting was related to more clustered 

networks, transitivity was not related to symptomatology. These results suggest that instability is 

qualitatively different from exposure to harsh parenting and that different types of early adverse 

experiences may contribute to the development of different elements of network organization 

that are potentially implicated in psychopathology. These findings are also in line with the 

integrated model of childhood adversity (Ellis et al., 2022; McLaughlin et al., 2021) that 

proposed distinct neural mechanisms through which different types of adverse experiences (i.e., 

threat, deprivation, unpredictability) could lead to psychopathology. Further research is 

warranted to identify the common facets between the different types of adversity (e.g., household 

instability and harsh parenting), and whether the intersections of multiple types of adverse 

experiences may contribute to more unique neural mechanisms relating to psychopathology or, 

conversely, whether an environment with differential combinations of adverse experiences can 

contribute to similarities in neural correlates (i.e., equifinality and multifinality) (Cicchetti & 

Rogosch, 1996).   

While the present study does not examine the directional nature of household changes 

(e.g., whether the child moved into a better or worse neighborhood; or whether a grandparent’s 

move into the home produced beneficial caregiving support or introduced novel stress for the 

child), these findings suggest that changes in either direction were linked to the organization of 

white matter networks. This is consistent with evidence showing that adjustment to both positive 
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and negative life changes can produce stress with consequences for health (Brown & McGill, 

1989). However, future investigations on the destination of residential moves or children’s 

perception of these changes are warranted, in addition to their developmental timing effects. For 

instance, Moving to Opportunity (Chetty et al., 2016), a randomized control trial in which 

families were given the opportunity to move to a lower-poverty area or remain in their homes, 

found that relocating to a more economically affluent neighborhood produced more beneficial 

developmental outcomes for youth who moved during early, but not later, childhood. These 

findings suggest that the impact of household instability on development could be age or 

developmental stage specific.  

In the present investigation, we found associations between efficiency with depression 

during COVID-19, a period marked with heightened stress. The pandemic has presented 

stressors such as social isolation, financial adversity, and uncertainty that increase risk for 

anxiety and depression, especially for young adults (Lee et al., 2020). Thus, it is possible that 

these elevated symptoms of depression indicate a potential susceptibility to stress. There were 

also no associations observed between network metrics and depression at age 17 (before the 

pandemic), suggesting that these effects could be unique to the circumstance of heightened stress 

during COVID, or could indicate that these brain-depression findings only emerge later in 

development when rates of depression continue to increase. Interestingly, we found no 

association between network connectivity and anxiety symptoms, echoing the potentially 

differential neural mechanisms relating to anxiety and depression during this period (Hardi, 

Goetschius, McLoyd, et al., 2023), thus indicating a future direction to further tease apart the 

distinct etiology preceding these mental health disorders.  
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Results on subregional structural connectivity in the current study suggests that early 

instability was particularly related to structural connectivity of the frontolateral and temporal 

regions. Specifically, the average strength of edges within the frontolateral regions (i.e., within-

region connectivity strength), as well as connectivity between the frontolateral and temporal 

nodes with other brain regions (i.e., between-region connectivity strength) were related to greater 

early instability. These regions play an important role in higher-order processing and are 

sensitive to rearing environment in rodents (Greenough et al., 1973). More work is thus needed 

to further examine the significance of structural connectivity of these regions in relation to early 

environment and mental processes implicated in psychopathology.  

Though the current study had several strengths including a 21-year longitudinal study 

with a well sampled and underrepresented sample, the combination of early measures of 

adversity with cutting-edge metrics of white matter organization, and the ability to control for 

multiple other types of adversity, there are a few limitations. First, longitudinal data during early 

childhood were collected in intervals of one to two years and no data were collected at ages 2 

and 4, thus, additional changes occurring within the household (specifically, parental transitions) 

during that period may not be accounted for. Nevertheless, the present study captured changes 

across four waves within a period of five years for all individuals. Second, no information 

regarding experience of other types of adverse experiences (i.e., neglect, food insecurity) were 

collected prior to age 1; however, these experiences are unlikely to vastly differ across time, and 

the present investigation showed consistent results when accounting for a multitude of factors 

across multiple timepoints (i.e., ages 3 and 5). Third, while events such as residential moves and 

caregiver transitions could be unpredictable and have been deemed as such in previous works, 

we were not able to determine whether these events are truly unpredictable for the child in 



 34 

present investigation (i.e., regular moves may be interpreted as predicted by a child). Thus, more 

research is needed to establish whether household changes experienced by the child and family 

as those measured here are unpredictable. Fourth, the present investigation focused on a narrow 

age range (ages 0-5) as data were collected at longer and unequal intervals in subsequent waves. 

This limited our ability to capture developmental timing-specific effects of instability during 

later childhood or preadolescence; thus, more research is needed to test the developmental timing 

hypothesis of instability using other longitudinal samples in the future. Lastly, no data on 

externalizing behaviors were collected at age 21.  

 

2.5 Conclusion 

Household instability during childhood is a known risk factor for subsequent mental health 

problems, but less is known about its neurodevelopmental correlates. Here, using a network 

analysis approach with diffusion tractography of white matter, we found that early childhood 

instability related to greater structural network efficiency in adolescence and these network 

differences were linked to greater depressive symptoms in a lower-income, well-sampled cohort 

of young adults who are underrepresented in neuroimaging research (Falk et al., 2013). These 

findings suggest that early childhood household instability was related to greater efficiency in 

neural networks, which, in turn increased susceptibility for mental health problems in young 

adulthood. At the same time, these associations may also reflect neural adaptation that is 

protective against increased instability early in life, thus it is possible that there may be benefits 

of increased efficiency in structural networks that were not examined in this study. Taken 

together, these results could inform interventions that promote household stability during early 

childhood to benefit long-term development of child mental health and well-being.    
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Figure 2-1 Structural networks subdivided into 8 subregions 

 

Structural nodes and edges for one subject. Structural networks were subdivided into 8 regions 

based on the AAL2 anatomical parcellation (Rolls et al., 2015). Details on each node and 

coordinates are available in Supplemental. Within-region connections are depicted in the same 

color as the subregion, while between-regions connections are shown in grey. Thickness of edges 

(i.e., connections) differ based on edge weight (i.e., structural connectivity strength). Edges 

shown in 25% sparsity for visualization purposes only and figures were created using BrainNet 

Viewer (Xia et al., 2013).   
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Figure 2-2 Associations between household instability and white matter structural networks 

 

Zero-order correlations between instability and structural network properties. From left to right: 

greater instability was related to greater structural network efficiency (b*=.173, p=.028), but not 

transitivity (b*=.143, p=.149) or modularity (b*= -.062, p=.432). Distributions for each variable 

are shown in brown (instability), blue (global efficiency), purple (clustering), and green 

(modularity). Outliers (n=2) were omitted for ease of visualization; results were consistent with 

or without inclusion of outliers. Household instability was represented by standardized scores.   
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Figure 2-3 Path model testing associations among early instability, other types of childhood 
adversity, and adolescent structural networks 

 

Associations between instability and global efficiency remained (b* [SE] = .183 [.077], p = .017) 

even after adjusting for other types of early adversity (i.e., harsh parenting, neglect, food 

insecurity). Additionally, harsh parenting was also associated with greater transitivity (b* [SE] = 

.312 [.142], p = .029). Model was adjusted for demographic covariates (gender, ethnoracial 

identity, birth city, puberty, economic hardship) and had excellent fit (CFI = .986; TLI = .968; 

RMSEA = .036; SRMR = .042). Standardized coefficients are shown, and dotted path lines 

indicate non-significant estimated paths.   
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Figure 2-4 Early household instability indirectly related to depression at young adulthood via 
adolescent structural network efficiency 

 

Childhood instability was related to greater structural network efficiency (b*[SE] = .192 [.077], p 

= .013), which in turn related to greater depressive symptoms at young adulthood (b*[SE] = .523 

[.168], p = .002). Global efficiency indirectly explains the association between instability and 

depression (b*[SE] = .100 [.049], p = .042). Model had excellent fit (CFI = .987; TLI = .957; 

RMSEA = .035; SRMR = .039) and was adjusted for all covariates (gender, ethnoracial identity, 

birth city, puberty, economic hardship, harsh parenting, neglect, food insecurity). Standardized 

coefficients are shown, and dotted path lines indicate non-significant estimated paths.   
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Figure 2-5 Associations between regional structural connectivity and early instability 

 

LEFT: Circular plots illustrating within-region (i.e., connections between nodes within each 

region) and between-regions (i.e., connections between nodes of each region with all other 

regions) structural connectivity of one individual in the sample. 

RIGHT: Instability was particularly associated with the overall strength of structural paths 

connected to the left frontal lateral nodes (b* = .23, q = .029). Additionally, instability was 

related to connections between left frontal lateral nodes and other regions (b* = .19, q = .037), as 

well as connections between left temporal nodes and other regions (b* = .20, q = .037). Each 

square box denotes standardized estimate of the association between instability and each 

subregion connectivity metrics, and whiskers indicate confidence intervals.  
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2.6 Appendix 

 

2.6.1 Exclusionary criteria 

Participants were excluded based on whether or not they completed MRI scan (for reasons 

including refused MRI, exceeded weight limit, medical restrictions, braces or other metal in the 

body, pregnancy, Autism Spectrum Disorder diagnosis, not completing dMRI scan), and imaging 

artefact (found in preprocessed structural or tractography during quality control, extreme outliers 

in network measures) (Supplemental Table 2-1).  

 

2.6.2 Household instability 

Household instability construct was adapted from (Belsky et al., 2011) and measured by 

composite score comprising of residential moves, changes in household composition, and 

caregiver transition between ages 0 to 5. At each wave (child aged 0, 1, 3, and 5), mother 

reported on the number of individuals living in the home and who those individuals are. At child 

ages 1, 3, and 5, mother also reported on the number of times that the family had moved since 

last wave. Residential moves were computed by adding up the number of moves between ages 0-

1, 1-3, and 3-5. Similarly, change in household composition was computed by adding the 

difference in the number of people who are living in the household between ages 0-1, 1-3, and 3-

5. Finally, caregiver transition was computed by adding the number of times that mother, father, 

mother’s cohabitating partners, and either grandparent moved in and out of the home from ages 

0-1, 1-3, and 3-5. Scores across each component were then standardized and summed to create 

an overall household instability score for each individual. 
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2.6.3 Covariates 

The following covariates were included to adjust for demographical characteristics: gender 

(dummy-coded variable of male, female); ethnoracial identity (dummy-coded variables of Black, 

white, Hispanic/LatinX, other), a social construct included to control for differences in exposure 

to structural racism and other discrimination; birth city (parent-reported during child’s birth; 

dummy-coded variables of Detroit, Toledo, Chicago, other); pubertal development (composite 

score of self-reported and parent-reported responses on the Pubertal Development Scale 

(Petersen et al., 1988) at age 15 that measured changes in child height, body hair, skin, facial hair 

and voice (males only), breast development and menarche (females only). Responses on the 

scale were coded on 4-point scale: 1 = no development to 4 = completed development, and score 

was a sum of all items endorsed; economic hardship status (parent-reported at ages 1, 3, 5 

averaged across time) were based on the sum of 8-items (1 = yes, 0 = no) on whether the family 

had difficulty paying bills or experienced other financial difficulties and was included as a 

proximal measure of in-home poverty (Bauman, 1999; Hardi et al., 2022; Mayer & Jencks, 

1989). The following variables were included to adjust for other types of adverse experiences 

during early childhood: harsh parenting, neglect, and food insecurity. Harsh parenting was 

measured as a standardized sum score of parent-reported 5-items physical violence, 5-items 

psychological aggression subscales taken from the Conflict Tactics Scale (Straus et al., 1998) 

across ages 3 and 5 (1 = has happened one or more times, 0 = has never happened), and parent 

responses to 2 questions at age 1 about spanking (1 = yes, 0 = no). Neglect was a sum of 5-items 

parent-reported neglect subscale in the Conflict Tactics Scale across ages 3, 5 (1 = has happened 

one or more times, 0 = has never happened). Food insecurity was measured as a sum score of 
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parent responses to 16 questions (1 = yes, 0 = no) averaged across ages 3, 5 that captures the 

extent that the families skipped meals or could not afford more food (Bickel et al., 2000). 

Additionally, pre-pandemic levels of anxiety and depressive symptoms were included to account 

for any initial levels of symptoms. Data on anxiety and depression were collected at age 17 using 

the self-reported 38-items Screen for Anxiety Related Disorders (SCARED) anxiety scale 

(Birmaher et al., 1997) and the self-reported 30-items Mood and Feelings Questionnaire (MFQ) 

(Angold et al., 1995) depression scale.  

 

2.6.4 dMRI-based streamline connectome and graph analysis metrics estimation  

Preprocessed dMRI data was further processed using MRtrix pipeline for streamline 

tractography estimation (Tournier et al., 2012) and steps outlined in recommended publications 

(Tahedl, 2018; Tournier et al., 2012) were followed. Fiber orientation densities (FOD) were 

estimated using the dhollander algorithm and dwi2fod command. Resulting diffusion images 

were visually inspected and normalized for further processing. Next, T1-weighted images were 

utilized to create a mask for MRtrix’s Anatomically Constrained Tractography (ACT) that would 

restrict streamline estimation to biologically plausible spaces, and then streamlines were 

estimated using probabilistic tractography using tckgen command. Ten (10) million streamlines 

were estimated based on recommendations of published pipeline (Tahedl, 2018) and resulting 

streamline maps were again visually inspected then refined using tcksift. Individualized structural 

connectivity connectomes were then created by registering the streamlines to the AAL2 (Rolls et 

al., 2015) structural atlas and imported into MATLAB for graph analysis using Brain 

Connectivity Toolbox (Rubinov & Sporns, 2010).  
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 Structural connectivity connectomes were treated as weighted undirected 

unthresholded graphs (Civier et al., 2019) and three weighted whole-brain metrics (i.e., global 

efficiency, transitivity, modularity) were estimated using scripts available in the Brain 

Connectivity Toolbox (Rubinov & Sporns, 2010). Global efficiency was measured by the 

average of the inverse shortest path length, and represents the efficiency of the network (Latora 

& Marchiori, 2003; Onnela et al., 2005; Y. Wang et al., 2017). Global efficiency in a weighted 

network is defined by 𝐸! = "
#
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 where 𝑁 indicates the set of nodes in a 

network, 𝑛 to be the number of nodes, (𝑖,𝑗) is the edge between nodes, and 𝑑$-
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shortest weighted path length between 𝑖 and 𝑗 (Latora & Marchiori, 2003; Rubinov & Sporns, 

2010). Transitivity is defined as the ratio of triangles to triplets or the presence of triangles in the 

network and is a classical version of clustering coefficient that is recommended for use in 

weighted graphs (Onnela et al., 2005; Opsahl & Panzarasa, 2009; Rubinov & Sporns, 2010). 

Transitivity is measured by computing the average efficiency between nodes in a graph defined 
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 in a weighted graph where 𝑘$ refers to the degree (number of edges 

connected to a node) of a node (Newman, 2003; Rubinov & Sporns, 2010). Lastly, weighted 

modularity measures the extent to which the network can be subdivided into distinct or non-

overlapping groups of nodes (Newman, 2006; Reichardt & Bornholdt, 2006) and was computed 

by 𝑄. = "
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2 𝛿5&,5! where 𝑙. refers to the sum of all network weights, 𝑤$- 

refers to the connection weights between 𝑖 and 𝑗, 𝑘$. and 𝑘-. refer to the weighted degree of 𝑖 

and 𝑗 respectively, and 𝑚$ refers to the module including node 𝑖 (Newman, 2004; Rubinov & 

Sporns, 2010). In addition to whole-brain network metrics, connectomes were divided into 8 

subregions and strength of connectivity (Sporns, 2002; Sporns et al., 2005) of each subregion, as 



 44 

well as within-region and between-regions strength were computed. Within-region strength was 

computed by averaging weighted edges connected to each node of a particular region to nodes of 

the same region by the number of possible connections within that region (total number of nodes 

minus one), and then taking the average sum of all within-region nodal strength within that 

region. Between-region strength was computed by averaging weighted edges connected to each 

node of a region to nodes of different regions by the number of nodes within the region, and then 

averaging the sum of all between-region nodal strength with all possible connections.  

 

2.6.5 Robustness checks and sensitivity analyses 

Outliers in the zero-order correlation models were examined by examining Cook’s D to ensure 

that results were not driven by statistical outlier. One extreme outlier (N=1) in graph analysis 

metric was identified (transitivity value exceeded upper limit of Q3+3*IQR) and subject was 

excluded from analysis as a result (additional robustness check including this subject did not 

change results). Additionally, to ensure that there were no differences driven by sample size 

between full sample used in path model (N=237) and subsample in the multiple regression 

analyses (N=161), statistical comparisons were performed on key predictors, outcomes, and 

demographical covariates. Results show that the two samples do not differ in all measures 

(Supplemental Table 2-4). Furthermore, path models testing the associations between early 

instability, other types of early adversity, and demographic covariates (i.e., analysis testing the 

second aim) and mediation model predicting anxiety and depressive symptoms (i.e., third aim) 

were checked using the subsample (N=161) and results were consistent with results using full 

sample. Associations between early instability and global efficiency remained after accounting 

for other types of adversity and covariates (b* [SE]=.168 [.069], p=.015; path model fit 
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CFI=.992, TLI=.981, RMSEA=.031, SRMR=.047). Global efficiency indirectly explains the 

association between early instability and depression (early instability related to global efficiency 

b* [SE]=.167 [.069], p=.015; global efficiency related to depression b* [SE]=.534 [.174], p=.002; 

indirect effect through global efficiency b* [SE]=.089 [.043], p=.040; path model fit CFI=.993, 

TLI=.977, RMSEA=.029, SRMR=.044).  

 

Supplemental Table 2-1. Neuroimaging data excluded from analyses (n=56) 

Reason for exclusion  Excluded  
Refused MRI 16 
Exceeded MRI table weight limit 3 
Medical restriction 1 
Braces or other metal in body 7 
Risk of pregnancy 1 
Excluded for Autism Spectrum Disorder diagnosis 2 
Did not complete dMRI scan 11 
Significant structural artefact a 14 
Extreme outlier in network measure b 1 
a  Significant motion or distortion artefacts as detected during visual inspection or those marked with 
>5% outlier slices during preprocessing.  
b  Extreme outlier determined by values exceeding upper limit of Q3+3*IQR; robustness checks 
including this subject were subsequently performed  

 

Supplemental Table 2-2. Descriptive sample information (N=237) 

Measures Frequency (%) 
Gender Male = 113 (47.7%) 

Female = 124 (52.3%) 
Ethnoracial identity Black = 181 (76.4%) 

White = 32 (13.5%) 
Hispanic/LatinX = 13 (5.5%) 
Other/Multi = 11 (4.6%) 

Birth city Detroit = 154 (64.98%) 
Toledo = 43 (18.14%) 
Chicago = 33 (13.92%) 
Other = 7 (2.95%) 

 Mean SD Max Min 
Pubertal development 3.270 0.476 4.000 1.500 
Instability (ages 0-5) 
   Residential moves 

-0.059 
1.867 

2.108 
2.068 

10.014 
14.000 

-2.991 
0.000 
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   Change in household composition 
   Caregiver transitions 

3.646 
1.785 

2.365 
1.847 

14.000 
8.000 

1.000 
0.000 

Harsh parenting (ages 1,3,5) 2.364 1.164 5.522 0.000 
Neglect (ages 3,5) 0.356 0.907 8.000 0.000 
Food insecurity (ages 3,5) 1.246 2.412 14.000 0.000 
Economic hardship (ages 1,3,5) 1.048 1.065 5.333 0.000 
Network properties (age 15) 
   Global efficiency 
   Transitivity (clustering) 
   Modularity 

 
0.063 
0.003 
0.585 

 
0.010 
0.001 
0.017 

 
0.092 
0.005 
0.622 

 
0.044 
0.002 
0.530 

Anxiety (age 17) 15.930 13.220 61.000 0.000 
Depression (age 17) 13.620 13.619 56.000 0.000 
Anxiety (age 21) 10.269 11.780 63.000 0.000 
Depression (age 21) 11.038 9.082 38.000 0.000 
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Supplemental Table 2-3. Zero-order correlations among key variables 
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Supplemental Table 2-4. Sample comparisons across full sample and subsample  

Measures Full sample  
(N=237) 

Subsample  
(N=161) 

Statistical 
comparison 

 N % N % c2  p 
Gender Female 124 52.321 89 55.280 .229 .632 

Male 113 47.680 72 44.721 
Ethnoracial 
identity 

Black 181 76.371 122 75.776 .700 .873 
White 32 13.502 20 12.422 
Hispanic/LatinX 13 5.485 12 7.453 
Other/Multiracial 11 4.641 7 4.348 

Birth city Detroit 154 64.980 107 66.460 3.795 .285 
Toledo 43 18.143 22 13.665 
Chicago 33 13.924 30 18.634 
Other 7 2.954 2 1.242 

 Mean SD Mean SD t p 
Pubertal development 3.270 0.476 3.267 0.582 -.508 .612 
Instability -0.059 2.108 -0.047 1.899 -.061 .951 
Harsh parenting  2.364 1.164 2.435 1.186 -.465 .643 
Neglect 0.356 0.907 0.410 0.998 -.501 .617 
Food insecurity 1.246 2.412 1.328 2.546 -.320 .749 
Economic hardship 1.048 1.065 1.085 1.105 -.318 .751 
Global efficiency 0.063 0.010 0.063 0.010 -.131 .896 
Transitivity 0.003 0.001 0.003 0.001 -.063 .950 
Modularity 0.585 0.017 0.585 0.017 .387 .700 
Anxiety (age 17) 15.930 13.220 16.530 12.767 -.386 .700 
Depression (age 17) 13.620 13.619 13.738 12.898 -.076 .940 
Anxiety (age 21) 10.269 11.780 10.342 11.012 -.053 .958 
Depression (age 21) 11.038 9.082 11.591 9.273 -.485 .628 

 

Supplemental Table 2-5. Subregional nodes coordinates  

* adapted from AAL2 anatomical parcellation (Rolls et al., 2015) 

Subregions AAL2 nodes Coordinates (x, y, z) 
Frontal 
lateral 

Superior frontal gyrus 
Middle frontal gyrus 
Inferior frontal gyrus, oper. 
Inf. frontal gyrus, triangular 

L: -20.20, 36.00, 35.20  |  R: 22.60, 33.20, 37.30 
L: -35.50, 32.90, 29.90  |  R: 38.80, 32.90, 29.30 
L: -48.80, 11.50, 17.80  |  R: 49.90, 13.70, 20.20 
L: -45.90, 28.70, 12.60  |  R: 50.10, 28.90, 12.80 

Frontal 
medial 

Superior frontal gyrus, medial 
Supplementary motor area 
Paracentral lobule 

L: -5.20, 47.90, 29.60  |  R: 8.80, 49.50, 28.90 
L: -5.70, 3.60, 60.10  |  R: 8.20, -1.10, 60.50 
L: -8.00, -26.70, 68.70  |  R: 7.10, -32.90, 66.80 

Frontal 
orbital 

Superior frontal gyrus, med orb 
Frontal inferior orbital 
Gyrus rectus 

L: -5.40, 52.20, -8.90  |  R: 7.80, 50.40, -8.50 
L: -41.40, 31.10, -8.10|  R: 45.80, 33.40, -8.00 
L: -5.40, 35.70, -19.60  |  R: 8.00, 34.50, -19.40 
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Medial orbital gyrus 
Anterior orbital gyrus 
Posterior orbital gyrus 
Lateral orbital gyrus 
Olfactory 

L: -14.20, 35.60, -21.10  |  R: 16.40, 37.10, -21.30 
L: -25.00, 46.80, -16.10  |  R: 28.60, 48.50, -16.20 
L: -28.70, 23.40, -19.50  |  R: 33.00, 24.90, -19.40 
L: -42.50, 39.90, -15.10  |  R: 47.80, 36.70, -16.20 
L: -8.30, 13.90, -12.70  |  R: 10.10, 14.70, -12.60 

Temporal Superior temporal gyrus 
Heschl’s gyrus 
Middle temporal gyrus 
Inferior temporal gyrus 

L: -53.40, -22.00, 5.80  |  R: 57.80, -23.00, 5.40 
L: -42.30, -20.00, 8.70  |  R: 45.90, -18.10, 9.00 
L: -55.90, -35.00, -3.60  |  R: 57.20, -38.60, -2.80 
L: -50.00, -29.30, -24.50  |  R: 53.40, -32.10, -23.70 

Limbic Temporal pole: superior 
Temporal pole: middle 
Anterior cing. & paracing. gyri 
Mid cingulate & paracing. gyri 
Posterior cingulate gyrus 
Hippocampus 
Parahippocampal gyrus 
Insula  

L: -40.20, 13.90, -21.40  |  R: 47.90, 13.50, -18.20 
L: -36.70, 13.30, -35.40  |  R: 44.00, 13.20, -33.50 
L: -4.40, 34.20, 12.50  |  R: 8.10, 35.70, 14.40 
L: -5.90, -16.10, 40.20  |  R: 7.70, -10.20, 38.40 
L: -5.20, -44.20, 23.30  |  R: 7.20, -43.10, 20.50 
L: -25.30, -22.00, -11.40  |  R: 28.90, -21.00, -11.60 
L: -21.50, -17.30, -21.90  |  R: 25.10, -16.30, -21.70 
L: -35.40, 5.40, 2.20  |  R: 38.70, 5.00, 0.80 

Subcortical Amygdala 
Caudate nucleus 
Putamen 
Pallidum 
Thalamus  

L: -23.50, -1.90, -18.50  |  R: 27.10, -0.60, -18.80 
L: -11.80, 9.70, 8.10  |  R: 14.50, 10.80, 8.10 
L: -24.20, 2.60, 1.10  |  R: 27.50, 3.70, 1.20 
L: -18.10, -1.40, -1.00  |  R: 20.90, -1.10, -1.10 
L: -11.20, -18.80, 6.60  |  R: 12.70, -18.80, 6.70 

Parietal Superior parietal gyrus 
Inferior parietal gyrus 
Angular  
Supramarginal  
Precuneus  

L: -23.70, -60.80, 57.70  |  R: 25.80, -60.40, 60.70 
L: -43.10, -47.00, 45.40  |  R: 46.30, -47.60, 48.20 
L: -44.40, -62.10, 34.30  |  R: 45.20, -61.20, 37.30 
L: -56.10, -34.90, 29.10  |  R: 57.30, -32.80, 33.10 
L: -7.60, -57.30, 46.60  |  R: 9.70, -57.30, 42.40 

Occipital Superior occipital gyrus 
Middle occipital gyrus 
Inferior occipital gyrus 
Cuneus 
Calcarine fiss. and surrounding  
Lingual  
Fusiform  

L: -16.80, -85.60, 26.90  |  R: 24.00, -82.20, 29.30 
L: -32.60, -82.00, 14.80  |  R: 37.10, -81.00, 18.10 
L: -36.50, -79.60, -9.20  |  R: 37.90, -83.20, -9.00 
L: -6.30, -81.40, 25.80  |  R: 13.20, -80.60, 26.90 
L: -7.50, -79.80, 5.10  |  R: 15.70, -74.40, 8.00 
L: -14.90, -68.90, -6.00  |  R: 16.10, -68.10, -5.20 
L: -31.40, -41.40, -21.60  |  R: 33.70, -40.20, -21.50 

 

Supplemental Table 2-6. Subregional connectivity analyses results 

Subregions Strength Within-region Between-regions 
Left Right Left Right Left Right 

Frontal 
lateral 

b=.228, 
p=.004, 
pFDR=.029 

b=.125, 
p=.113, 
pFDR=.223 

b=.186, 
p=.018, 
pFDR=.148 

b=.087, 
p=.275, 
pFDR=.523 

b=.216, 
p=.006, 
pFDR=.037 

b=.145, 
p=.066, 
pFDR=.037 

Frontal 
medial 

b=.134, 
p=.089, 
pFDR=.141 

b =.162, 
p=.040, 
pFDR=.223 

b=.123, 
p=.120, 
pFDR=.257 

b=.155, 
p=.049, 
pFDR=.394 

b=.155, 
p=.050, 
pFDR=.100 

b=.183, 
p=.020, 
pFDR=.100 
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Frontal 
orbital 

b=.140, 
p=.076, 
pFDR=.141 

b=.127, 
p=.109, 
pFDR=.223 

b=.122, 
p=.123, 
pFDR=.257 

b=.111, 
p=.160, 
pFDR=.427 

b=.176, 
p=.025, 
pFDR=.067 

b=.155, 
p=.049, 
pFDR=.067 

Temporal b=.179, 
p=.023, 
pFDR=.093 

b=.126, 
p=.110, 
pFDR=.223 

b=.079, 
p=.322, 
pFDR=.368 

b=.028, 
p=.729, 
pFDR=.757 

b=.205, 
p=.009, 
pFDR=.037 

b=.154, 
p=.051, 
pFDR=.037 

Limbic b=.147, 
p=.067, 
pFDR=.141 

b =.079, 
p=.319, 
pFDR=.319 

b=.101, 
p=.204, 
pFDR=.273 

b=-.025, 
p=.757, 
pFDR=.757 

b=.131, 
p=.098, 
pFDR=.157 

b=.116, 
p=.144, 
pFDR=.157 

Subcortical b=.119, 
p=.132, 
pFDR=.150 

b=.103, 
p=.195, 
pFDR=.223 

b=.111, 
p=.161, 
pFDR=.257 

b=.124, 
p=.117, 
pFDR=.427 

b=.115, 
p=.147, 
pFDR=.196 

b=.075, 
p=.344, 
pFDR=.196 

Parietal b=.128, 
p=.106, 
pFDR=.141 

b=.109, 
p=.171, 
pFDR=.223 

b=.118, 
p=.136, 
pFDR=.257 

b=.077, 
p=.329, 
pFDR=.523 

b=.088, 
p=.264, 
pFDR=.302 

b=.111, 
p=.161, 
pFDR=.302 

Occipital b=.099, 
p=.212, 
pFDR=.212 

b=.111, 
p=.159, 
pFDR=.223 

b=.064, 
p=.420, 
pFDR=.420 

b=.068, 
p=.393, 
pFDR=.523 

b=.058, 
p=.467, 
pFDR=.467 

b=.084, 
p=.292, 
pFDR=.467 

 

Supplemental Table 2-7. Associations among instability, global efficiency, and depression at 
age 17 

Variable 1 2 
1. Instability    
2. Global efficiency .17*   
3. Depression at age 17 -.05 -.07 

Note. * indicates p < .05. 

 

Supplemental Table 2-8. Associations among instability at specific timepoints and network 
metrics 

Variable 1 2 3 4 5 
1. Instability ages 0-1           
2. Instability ages 1-3 .27**         
3. Instability ages 3-5 .15* .34**       
4. Global efficiency .08 .14 .12     
5. Transitivity .03 .13 .05 .86**   
6. Modularity -.06 -.06 -.00 -.38** -.27** 

Note. * indicates p < .05. ** indicates p < .01. 
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Supplemental Figure 2-1. Full path model of instability predicting structural network metrics 
adjusting for other types of adversity. 

 

Full path model of instability and other types of adversity (in purple) predicting structural 

network metrics (in yellow), adjusting for demographical covariates (in grey). Only significant 

paths are displayed, and estimates shown are standardized coefficients.    
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Supplemental Figure 2-2. Full path model of main predictors testing indirect effects of 
instability on young adulthood depression via structural connectivity metrics.  

 

Full path model of instability and other types of adversity (in purple) predicting structural 

network metrics (in yellow) and depression at young adulthood (in blue), adjusting for 

demographical covariates (in grey). Only significant paths are displayed, and estimates shown 

are standardized coefficients.   
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Chapter 3 2 

Adolescent Functional Network Connectivity Prospectively Predicts Adult Anxiety 

Symptoms Related to Perceived COVID-19 Economic Adversity 

3.1 Introduction 

The COVID-19 pandemic is an unprecedented crisis that has increased the prevalence of 

mental disorders through profound stressors, including financial hardship, health concerns, and 

social isolation (Xiong et al., 2020), especially for marginalized and underserved communities 

that are disproportionately impacted due to systemic inequities (Tai et al., 2021). Although 

highly stressful experiences often precipitate anxiety and depression (McLaughlin & Nolen-

Hoeksema, 2012), only a subset of individuals develop these disorders, potentially due to an 

increased biological sensitivity to environmental context (Boyce & Ellis, 2005). Young adults 

may be particularly vulnerable to the stressful impact of the pandemic, given that adolescence 

and young adulthood are critical developmental stages for neural change as well as shifts in 

social, occupational, and economic contexts. Further, approximately half of mental health 

symptoms begin during adolescence and about three quarters manifest before age 24 (Kessler et 

al., 2005), suggesting that stress susceptibility during these periods may be key in forecasting 

future anxiety and depression.  

Studies have attempted to identify neural signatures from individuals who are more 

susceptible to stress, finding modest predictive links between brain function during active 

 
2 Chapter 3 corresponds to Hardi et al., 2023 published in Journal of Child Psychology and Psychiatry 
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emotion processing with later anxiety and depression (Mattson et al., 2016; Swartz et al., 2015). 

Many studies linking brain function to psychopathology have utilized univariate contrast-based 

methods that average data across time and individuals (Elliott et al., 2020; Gordon et al., 2017) 

and recent methodological advances show that multivariate network-based approaches may yield 

more reliable and predictive estimates of dynamic neural activity (Kragel et al., 2021; Noble et 

al., 2021; Taxali et al., 2021). Additionally, much of the literature focusing on neural network 

has utilized neuroimaging data collected at rest; however, without the presence of tasks, resting 

scans may introduce heterogeneity in cognitive processes that individuals are engaging in during 

the scan (e.g., one participant may be close to sleep, while another is making lists), leading to 

greater variance in neural function (Finn, 2021). In contrast, neuroimaging during behavioral 

tasks may impose boundaries for neural activity that could facilitate better prediction of 

clinically-relevant traits (Finn et al., 2017; Greene et al., 2018).  

In the present investigation, we employed a within-person (in this case, person-specific) 

approach to map functional connectivity during an emotion task among select neural regions to 

cluster individuals with similar patterns of connectivity using a data-driven algorithm. This 

method grouped individuals into subgroups based on similarities and differences in their person-

specific networks, thus identifying patterns of heterogeneity (i.e., greater variations in their 

person-specific connectivity) and homogeneity (i.e., fewer variations in connectivity). 

Combining hypothesis-driven model-based approaches and data-driven algorithms provides a 

powerful way to identify patterns of connectivity or clusters of individuals without a priori 

clustering assumptions; this maximizes power by leveraging the within-person nature of 

functional time series as well as the between-person sample size. We focused on the 

frontostriatal-limbic circuitry (i.e., amygdala, striatum, insula, cingulate, prefrontal cortex) that is 
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implicated in anxiety- and depression-like behaviors in both animal models and clinical samples 

(Etkin & Wager, 2007; Janiri et al., 2020; Price & Drevets, 2010). In addition to clustering 

individuals based on their functional network, connectivity was characterized in several ways, 

including network density (i.e., connections within a network) and centrality (i.e., connections 

involving specific regions of a network) (E. T. Bullmore & Sporns, 2009), revealing both 

comprehensive brain patterns as well as distinct roles of specific brain regions within networks.  

Critically, beyond identifying specific neural patterns that could predict future anxiety 

and depression, there is a need to examine the psychological impact of stress within groups of 

individuals who are underrepresented in neuroimaging research and are at increased risk for 

stress exposure (Falk et al., 2013). The present study examined neural network relating to stress 

susceptibility in a sample of 174 young adults with a substantial representation of African 

Americans and low-income families, and tested the following hypotheses: 1) that data-driven 

neural connectivity network would identify subgroups of adolescents with new onset or 

worsening symptoms of anxiety and depression six years later during a highly stressful period 

(COVID-19 pandemic); and 2) these adolescent functional network subgroupings would show 

differential anxiety and depression susceptibility to COVID-19 adversity. These questions were 

examined using functional network analyses at a critical time for neural development (age 15) to 

predict escalation in symptoms over time as well as in response to adversity. Moreover, given the 

divergent rates of anxiety and depression among men and women (Kessler et al., 1994), we 

examined sex differences in these associations.  

 

3.2 Methods 

3.2.1 Sample and procedures  
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 Participants were recruited from Future Families and Child Wellbeing Study (FFCWS), a 

population-based sample of 4,898 children born in large US cities (population over 200,000) 

with an oversampling (3:1) for non-marital births, which resulted in a high representation of low-

income families (Reichman et al., 2001). When children were 15-17 years old, a cohort of 237 

families from midwestern cities (Detroit, MI; Toledo, OH; Chicago, IL) were invited to 

participate in the Study of Adolescent Neural Development at the University of Michigan, Ann 

Arbor, where all neuroimaging data and symptom indicators included in this study were 

collected. Of these 237 youths who participated in the study, magnetic resonance imaging (MRI) 

data from 174 youths (mean age 15.9 years) were collected (see Appendix 3.6.1 and 

Supplemental Figure 3-1 for exclusion criteria). At baseline, the included sample was 54% 

female, 76% African American, with median household income of $37,000. Two years after 

their first visit, youth were recontacted, and 128 participants were assessed over the phone. Six 

years after their first visit (during the pandemic), 119 participants completed online/phone 

assessments. These data were collected during the peak of the early waves of the pandemic (first 

participant data was collected on April 30th, 2020; last participant data collected on June 26th, 

2021). Participants did not differ in demographic characteristics across each wave or the full 

sample (Supplemental Table 3-1). Study participants provided informed consent or assent (when 

minors, with parent consent) at all timepoints. Study protocols were approved by the University 

of Michigan ethics committee (IRB: HUM00167754; HUM00074392). 

 

3.2.2 Neuroimaging Measures 
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3.2.2.1 Functional MRI (fMRI) acquisition, task paradigm, and processing  

MRIs were acquired using 3T GE Discovery MR750 scanner with 8-channel head coil. 

Participants completed an emotion faces task in which they identified the gender of the actor 

(counterbalanced for gender and race). Functional data of each participant across all emotion 

trials (fear, happy, sad, neutral, angry) during the entire task (including crosshairs presentation) 

were extracted for subsequent processing (see Supplemental Figure 3-2 for task paradigm). This 

approach was taken to maximize power and avoid confounds associated with contrast modeling. 

Standard fMRI preprocessing pipeline were utilized using detailed codes in FSL v6.0 (Beltz et 

al., 2019) (details on MRI data acquisition, task paradigm, and preprocessing are available in 

Supplemental Table 3-2 and Supplemental Table 3-3). After preprocessing, time-series 

functional data were extracted from seven bilateral regions of interest (ROIs): amygdala, dorsal 

anterior cingulate, dorsomedial prefrontal cortex, insula, orbitofrontal cortex, subgenual anterior 

cingulate, and ventral striatum. ROIs were 8mm-diameter spheres centered around corresponding 

Montreal Neurological Institute (MNI) coordinates (Supplemental Table 3-2) extracted from 

NeuroSynth (Yarkoni et al., 2011), a meta-analytic tool for establishing neural peak activation, 

and preregistered prior to analyses (see Appendix 3.6.4 for additional information on ROI 

selection and data extraction). To ensure that results pertained to functional network connectivity 

of hypothesized ROIs, a sensitivity analysis was completed in which functional connectivity was 

estimated from other ROIs as a comparison network that was not hypothesized to predict 

susceptibility to stress (e.g., areas of the brain pertaining to audio, visual, sensorimotor, and 

language processing), and the resulting subgroup memberships were compared (see Appendix 

3.6.5 for details of comparison network, Supplemental Table 3-3 for MNI coordinates of 

comparison ROIs, and Supplemental Table 3-4 for comparison of resulting subgroups).  
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3.2.3 Anxiety and depressive symptoms 

Symptoms were based on self-reported measures. Anxiety symptoms were measured 

using Screen for Child Anxiety Related Disorders at wave 1 (baseline) and 2 (pre-COVID), and 

using the Beck Anxiety Inventory at wave 3 (COVID-19). Depressive symptoms were measured 

using Mood and Feelings Questionnaire at wave 1 and 2, and using Beck Depression Inventory 

at wave 3. Scales showed good internal reliability across all waves (see Appendix 3.6.6). Initial 

(wave 1) anxiety symptoms were related to symptoms at both wave 2 (r = .58, p < .001) and 

wave 3 (r = .31, p < .001); anxiety at waves 2 and 3 were related at r = .58, p < .001. Initial 

depression symptoms were related to depression at wave 2 (r = .39, p < .001) and wave 3 (r = 

.38, p < .001), and symptoms at waves 2 and 3 were related at r = .42, p < .001. Standardized 

scores were utilized in subsequent analyses.  

 

3.2.4 COVID-19 economic adversity 

At wave 3, participants self-reported economic adversity experienced relating to the 

pandemic (M = 2.08, SD = 1.71). Participants self-reported yes (1) or no (0) on: employment loss 

due to the COVID-19 pandemic and income loss due to the COVID-19 pandemic. Participants 

also reported on the financial state of their household: comfortable (0), enough but not extra (1), 

have to cut back (2), or cannot make ends meet (3); and any food scarcity experienced by the 

household: no food insecurity (0), sometimes (1), and often (2). These questions were scaled 

then summed to compute the economic adversity score (Cronbach’s α = .72), with higher scores 

denoting greater pandemic economic adversity. Mean-centered scores were utilized in interaction 

models to aid interpretation and reduce collinearity (Schumacker et al., 2009). 
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3.2.5 Covariates 

To account for confounding effects, the following covariates were added to statistical 

models in sensitivity analyses: sex (parent-report: male, female), age during fMRI scan (in 

years), pubertal development (youth-report), ethnoracial identity (youth-report: Black, white, 

Hispanic, other/multiracial; a social construct included to account for the impacts of unmeasured 

structural racism), annual household income at baseline (age 15; parent-report), pandemic 

duration (number of days since the study commenced, April 20th, 2020; to account for 

differences in the timing of participation), framewise displacement, early adversity (parent-

report: violence exposure; social deprivation (Hein et al., 2020), cognitive ability (reading 

comprehension; mathematical abilities (Woodcock et al., 2001), cohabitation status (self-report: 

living with partner or not), parental status (self-report: living with child or not). See Appendix 

3.6.7 for details of each covariate.  

 

3.2.6 Statistical Analyses 

Data-driven analysis: Subgrouping Group Iterative Multiple Model Estimation (S-GIMME) 

Statistical analyses were conducted in R, v4.0.3. S-GIMME (Gates et al., 2017) was 

applied to extracted functional time-series data. S-GIMME iteratively estimates person-specific 

unified structural equation models, which contain both positive and negative directed first-order 

lagged and contemporaneous connections among a priori ROIs; those connections can apply to 

everyone in a sample (reflecting homogeneity), a subset of individuals in a sample (when a 

subgrouping algorithm is applied through S-GIMME), or just an individual (reflecting 

heterogeneity). Default GIMME parameters established and supported by largescale simulation 

studies (Gates et al., 2017; Gates & Molenaar, 2012; Lane et al., 2019) were used in the present 
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investigation. Beginning with a null model, group-level connections were added for everyone if 

they significantly improved model fit for at least 75% of the sample as determined by the 

Lagrange Multiplier tests (Lütkepohl, 2005), then individuals were classified into subgroups 

using a Walktrap unsupervised community detection algorithm (Gates et al., 2017), which 

clusters individuals into data-driven subgroups without any a priori clustering assumptions and 

without averaging data across individuals. Finally, subgroup-level connections were added for 

everyone in a subgroup if they significantly improved model fit for at least 50% of members as 

determined by Lagrange Multiplier tests. Individual-level connections were estimated for each 

person (again based on Lagrange Multiplier test) until the networks fit well, and 

contemporaneous edges were then extracted for subsequent analyses, consistent with previous 

investigation (e.g., (Goetschius, Hein, McLanahan, et al., 2020)). See Appendix 3.6.8 for more 

information and Supplemental Figure 3-3 for a visual representation of the S-GIMME process. 

GIMME and S-GIMME are validated and reliable person-specific functional connectivity 

analysis approaches that have been used or discussed in over 300 scientific articles (Beltz & 

Gates, 2017; Gates & Molenaar, 2012). GIMME outperformed 38 commonly-used approaches in 

modeling functional connectivity (Gates & Molenaar, 2012) and S-GIMME has high precision 

and recall in estimating connections in largescale simulations of data with similar properties 

(length and sample size) as this study (Lane et al., 2019). In this study, several robustness checks 

were performed: psi values were examined to ensure model overfit did not affect inferences; 

split-half reliability was examined by applying S-GIMME separately to odd versus even volumes 

of the functional data to ensure data reliability; lastly, S-GIMME was applied to five randomly 

drawn subsamples, containing 80% of participants (Supplemental Figure 3-4), to ensure stability 

in subgroup estimation. More details on each procedure are available in Appendix 3.6.9.  
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3.2.6.1 Subgroup differences analyses 

Demographic characteristics in resulting S-GIMME subgroups were first examined using 

Welsch t-tests to account for heterogeneity of variances between groups. Then, subgroup 

network characteristics (i.e., density, node centrality) were compared between groups. Density 

was computed as the number of actual contemporaneous connections divided by the total number 

of possible connections (Bassett & Bullmore, 2017). Node centrality was computed as a 

proportion of contemporaneous connections attached to corresponding nodes (i.e., ROIs) from 

the number of overall contemporaneous connections. Next, two linear multilevel growth curves 

were estimated separately for anxiety and depression to examine changes in anxiety and 

depression across three waves. Waves were nested within participants using unstructured error 

covariance matrices for random intercepts and slopes. Individual intercepts and slopes were then 

extracted from each model for subsequent analyses. Next, to isolate subgroup differences in 

symptom change over time, functional network-derived subgroup memberships and intercept 

(individual symptoms at wave 1; age 15) were used to predict slope (change over waves across 

ages 15, 17, and 21). As sensitivity analyses, covariates were added in sequential order: main 

covariates (i.e., age, pubertal development, gender, ethnoracial identity, income, study days), 

followed by additional sensitivity covariates (i.e., motion, violence exposure, social deprivation, 

reading comprehension, mathematical abilities, residential status with partner during pandemic, 

residential status with child during pandemic; see Appendix 3.6.10 for robustness checks). A 

similar approach was taken to probe ROI specificity by examining the associations between each 

region node centrality predicting change in anxiety and depressive symptoms over time while 

adjusting for initial level of symptoms. To account for multiple comparisons, models including 

node centrality were Bonferroni-corrected (noted by p-adjust). Finally, to probe sex differences, 
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associations between sex and symptoms were examined at each timepoint, and subgroup-sex 

interactions were tested to predict symptoms. 

 

3.2.6.2 Subgroup-adversity interaction analyses 

Main effects between reported COVID-19 economic adversity with symptoms at wave 3 

(during the pandemic) were first tested for anxiety and depression separately. Then, interactions 

between subgroup-adversity and symptoms (at wave 3; during the pandemic) were tested to 

examine whether there were subgroup differences in COVID-19 stress susceptibility. In 

subsequent steps, models were examined with inclusion of initial symptoms (i.e., individual 

intercepts from growth curves), main covariates, and additional covariates as sensitivity analyses.  

 

3.3 Results 

3.3.1 Adolescent data-driven neural network subgroups 

S-GIMME derived a two-subgroup model with excellent fit (average model fit indices: 

root mean square error of approximation = .051, standard root mean residual = .050, non-normed 

fit index = .924, confirmatory fit index = .952). Subgroup B (N = 94) individuals were older and 

more advanced in pubertal development than Subgroup A (N = 80) individuals, but there were no 

significant differences in other demographic characteristics across the two subgroups (Table 

3-1). There were significant subgroup differences in network characteristics. First, Subgroup A 

network was characterized by greater heterogeneity (i.e., more individual-level connections; MA 

= 17.45, SDA = 4.69; MB = 15, SDB = 3.62; t(147.36) = 3.81, p < .001) and relatively greater 

density compared to subgroup B (MA = .36, SDA = .05; MB = .30, SDB = .04; t(147.36) = 8.47, p < 
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.001) (Figure 3-1). Moreover, individuals in subgroup A showed significantly greater centrality 

in the left amygdala (t(170.72) = 3.93, p-adjust = .002), right subgenual anterior cingulate 

(t(171.19) = 8.92, p-adjust < .001), and left ventral striatum (t(167.23) = 8.17, p-adjust < .001) (Figure 

3-2). In contrast, individuals in subgroup B showed significantly greater centrality in the left 

dorsal anterior cingulate (t(171.32) = 4.09, p-adjust < .001) and bilateral insula (left: t(171.14) = 

3.28, p-adjust = .017; right: (t(167.95) = 4.28,  p-adjust < .001) (Figure 3-2) (see Supplemental Table 

3-5 for comparison of node centrality across subgroups).  

 

3.3.2 Prospective associations of neural network with symptoms  

Accounting for initial symptoms, subgroup A membership predicted greater change in 

anxiety over time (b = .138, p = .042) relative to subgroup B, and these subgroup differences 

remained after adjusting for main covariates (b = .194, p = .023) (Table 3-2) and additional 

covariates (b = .257, p = .011) (Supplemental Table 3-6). Results were specific to anxiety: 

subgroup membership did not predict change in depression (b = .089, p = .243) (Table 3-2) 

(Figure 3-3). When examining specific ROIs, individual node centrality did not predict change in 

anxiety or depression after Bonferroni-correction for multiple comparison (Supplemental Table 

3-7). Sex differences in symptoms were most pronounced at age 15 when both anxiety (b = .342, 

p < .001) and depressive (b = .348, p < .001) symptoms were more prevalent in females than 

males (Supplemental Figure 3-5), but symptoms did not differ across sex during the pandemic 

(anxiety: b = .075, p = .420; depression: b = .020, p = .829). Additionally, there were no 

subgroup-sex interactions predicting anxiety (b = -.0005, p = .997) or depression (b = .070, p = 

.644) during the pandemic. These results pertained to functional network of hypothesized ROIs; 
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there were no subgroup differences in symptoms from prediction analyses using comparison 

network (i.e., non-hypothesized set of ROIs; see Appendix 3.6.5; Supplemental Table 3-4).  

 

3.3.3 Susceptibility to COVID-19 economic adversity  

Increased economic adversity during the pandemic was related to greater anxiety 

symptoms during COVID-19 across all participants (b = .367, p < .001). Moreover, there was a 

significant adversity-subgroup interaction (b = .307, p = .006), such that participants in the more 

heterogeneous Subgroup A reported greater anxiety during the pandemic in response to 

pandemic-related economic adversity relative to subgroup B (Figure 3-4), and this interaction 

effect remained after adjusting for initial level of anxiety and covariates (b = .237, p = .021) 

(Table 3-3), and additional covariates (b = .259, p = .031) (Supplemental Table 3-6). There was 

a similar association in which economic adversity was associated with depression across all 

participants (b = .356, p < .001), but adversity-subgroup interaction effect was not statistically 

significant for depression (b = .196, p = .088) (Figure 3-4). Subgroups did not statistically differ 

in their reports of COVID-19 economic adversity (Table 3-1). Furthermore, subgroup-adversity 

interaction did not predict symptoms when analyses were done using subgroups that were 

derived from comparison network (i.e., non-hypothesized set of ROIs; see Appendix 3.6.5; 

Supplemental Table 3-4).  

 

3.4 Discussion 

Using a person-specific functional neural connectivity mapping, data-driven subgroups 

prospectively predicted increasing anxiety and stress susceptibility during a highly stressful 
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event. Two subgroups emerged, a more heterogeneous subgroup characterized by relatively 

greater variation in person-specific networks and greater network density as well as more 

connections involving the amygdala, subgenual anterior cingulate, and striatum; and a more 

homogenous subgroup, characterized by lower network density and greater involvement of the 

insula and dorsal anterior cingulate cortex. Relative to individuals in the more homogenous 

subgroup, individuals in the more heterogeneous subgroup experienced escalating trajectories of 

anxiety symptoms from age 15 to 21 (during COVID-19 pandemic) when adjusting for initial 

symptoms. Moreover, despite exposure to equivalent amounts of economic adversity during the 

pandemic, the more heterogeneous subgroup experienced greater anxiety as economic adversity 

increased, and the results remained after controlling for initial levels of anxiety at adolescence 

and other covariates. These results identify potential neural signatures of susceptibility and 

resiliency to anxiety-related stress. These conclusions are strengthened by the use of an 

unsupervised data-driven and personalized approach to network mapping using a six-year 

longitudinal population-based sample with substantial representation of marginalized participants 

who are at greater risk for adversity exposure.  

The distinction across subgroups in the progression of anxiety symptoms and in relation 

to adversity demonstrates how network analysis was able to identify individuals whose anxiety 

symptoms would generally worsen across adolescence and particularly, in response to increased 

adversity. Notably, reported economic adversity during the pandemic was comparable across the 

neural subgroups, suggesting that this finding was not driven by disparity in experienced stress, 

but by individual differences in stress response. Furthermore, though rates of anxiety and 

depression are often higher in women (Kessler et al., 1994), we found that this sex difference 

was diminished during the pandemic and there was no evidence that sex interacted with 
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subgroup membership, nor was a confounder in findings. Thus, these networks appear to be 

relevant for both men and women. These results are broadly consistent with the biological 

sensitivity to context model (Boyce & Ellis, 2005), which posits that some individuals are more 

susceptible to the environment (in this case, economic adversity). However, here we only tested 

susceptibility related to a negative outcome, leaving open the question of whether these 

individuals would also achieve more favorable outcomes in a more positive environment.  

These results also suggest that more heterogeneous adolescent neural networks, 

specifically those involving the amygdala, subgenual cingulate, and striatum, may indicate 

sensitivity to future stress. Individuals with greater heterogeneity in their networks (i.e., more 

connections that were different from connectivity patterns found in all participants) and greater 

network density (i.e., more connections among ROIs) showed greater increases in anxiety and 

susceptibility to stress. These results are consistent with evidence showing that greater reactivity 

of emotion-related regions predicts risk for psychopathology (Greicius et al., 2007; Schwartz et 

al., 2003; Stein et al., 2007). Furthermore, greater heterogeneity in the more susceptible group in 

present investigation suggests that psychopathology may be related to more variations in neural 

connectivity, consistent with the notion that there may be a greater neural heterogeneity in 

biological features of psychopathology and fewer variations in neural patterns (i.e., 

homogeneity) in the general population (Fair et al., 2012; Feczko et al., 2019; Finn et al., 2020). 

Notably, the detection of neural heterogeneity in the present study was accomplished by 

clustering individuals using their personalized neural networks, thus demonstrating the strength 

of person-specific connectivity mapping in teasing apart similarities and differences in neural 

patterns for prediction of mental health phenotypes. These inferences can be strengthened by 

future investigations that examine whether such heterogeneity persists with time, or whether 
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neural function converges to more homogenous patterns of connectivity with improvements in 

symptomatology. Furthermore, future research can benefit from further testing of whether there 

are other neural networks implicated in stress susceptibility beyond the brain regions examined 

in present investigation.  

The present results identified distinct responses to stress within an important sample of 

participants who represent identities and groups that are underrepresented in biomedical research 

during a historic global event. Though one neural-network based subgroup did appear to be more 

susceptible to pandemic-related adversity, the other group was relatively resilient, at least on the 

measures we examined. Evidence of this type of resilience is critical in identifying why and how 

some individuals thrive despite adversity, particularly for those facing increased stress via 

marginalization and oppression. Even with compounding economic stress, health-related distress, 

police brutality, and other forms of social unrest that occurred during the pandemic, individuals 

with sparser adolescent functional network and more connections involving the insula and dorsal 

anterior cingulate showed remarkable resilience against accumulating stressors. These findings 

echo clinical studies showing increased connectivity between the insula and dorsal anterior 

cingulate in non-anxious individuals (Klumpp et al., 2012), which suggests that adaptive 

mechanisms involving these regions may be protective against stress. More research is thus 

needed to identify mechanisms through which resilience can be bolstered for individuals that are 

facing chronically high stress.  

Results showing significant effects for anxiety but not depression are consistent with 

recent findings on the mental health impact of the COVID-19 pandemic (He et al., 2021; 

Zeytinoglu et al., 2021). There may be several explanations for these findings. First, the 

pandemic and economic adversity may have a more immediate effect on anxiety in the short-
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term, as compared to depression, which may require a longer time to manifest. Unpredictable 

external situations such as the pandemic may provoke cognitive states of heightened threat that 

are more aligned with anxious schemas (Beck & Clark, 1988), and since our measures of 

symptoms were taken within the first year of the pandemic, we may have captured the rise in 

anxiety before a later rise in depression (that occurred as the stress became more chronic). 

Second, our results demonstrate that the group difference in the associations between economic 

adversity and symptoms was more pronounced for anxiety, suggesting that both groups may be 

equally more depressed as a function of economic impact of the pandemic. Third, these findings 

may indicate potential distinct circuitries between anxiety and depression (Z. Wang et al., 2021), 

but given that our study had only tested for network within selected regions, more research is 

needed to test the specific processes that are driving these differences.  

Though our study is buoyed by several strengths, including prospective longitudinal data 

of underrepresented individuals and the use of computational methods, there are several 

limitations. First, COVID-19 adversity was measured at the same time as anxiety and depression; 

thus, determination of the direction of links between adversity and symptoms is not possible. 

Nevertheless, the positive associations between adversity and symptoms suggest an increase in 

psychological distress that was accompanied with increased adversity. Second, we were not able 

to collect data from all participants from FFCWS that we attempted to recruit, nor did all 

participants in the neuroimaging study participate at all 3 waves reported on here; however, 

sampling attrition is expected in longitudinal studies, and included sample did not differ 

demographically across included waves. Third, anxiety and depression were measured using the 

same scale at wave 1 and 2, but not wave 3 because the measures were shifted to be more 

developmentally appropriate, changing from well-validated adolescent to adult measures at age 
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20 (Y.-P. Wang & Gorenstein, 2013). Nonetheless, correlations between these measures were 

comparable, suggesting measurement correspondence across waves. Fourth, as with many other 

neuroimaging studies, the present analyses were conducted with the assumption of functional-

structural correspondence across participants. The use of the same location for ROIs across 

individuals facilitates the estimation of similarities between people and detection of subgroup 

membership. Finally, we recognize the limitations of our modestly sized sample; however, this 

study examined within-person symptomatic change that provides critical information about 

underrepresented individuals during a notable historical period; within-person analyses can boost 

power and reliability (Curran & Bauer, 2011). Furthermore, the reliability in the data and 

methods we utilized for subgrouping and functional connectivity estimation was demonstrated 

by additional checks (i.e., split-half, 80% test), which reflected robustness of model estimation 

across split-half of the functional data and subsets of the sample (see Appendix 3.6.9).  

 

3.5 Conclusion 

In this 6-year prospective study, a data-driven adolescent neural network characterized by 

relatively more heterogeneity and density involving amygdala, subgenual cingulate, and striatal 

regions identified a subgroup of individuals with increasing anxiety symptoms that further 

increased during COVID-19. These findings demonstrate potential neural features indicating 

susceptibility to future stress, which may confer risk and resilience for mental health in young 

adults who are making the important transition to adulthood.  
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Table 3-1 Characteristics of neural-based subgroups 

Measure 
Subgroup A  

(N=80) 

Subgroup B  

(N=94) 

Statistical 

comparison 

 Mean SD Mean SD t p 

Age during fMRI scan (years) 15.78 .51 15.94 .53 -2.02 .045 

Pubertal development  3.15 .59 3.35 .55 -2.29 .024 

Anxiety (wave 1)1 17.27 11.33 17.14 11.17 .07 .941 

Anxiety (wave 2)1 16.51 12.34 14.93 12.22 .72 .475 

Anxiety (wave 3; COVID-19)1 12.62 13.01 8.67 10.34 1.80 .074 

Depression (wave 1)2 15.52 10.08 15.43 9.96 .06 .951 

Depression (wave 2)2 15.37 14.25 12.36 12.44 1.24 .220 

Depression (wave 3; COVID-19)2 11.91 8.69 10.32 8.53 1.00 .320 

COVID-19 economic adversity 2.22 1.67 1.97 1.74 .78 .439 

Days since study commenced 168.90 99.10 140.66 84.28 1.75 .083 

       

 N % N % c2  p 

Sex Female 43 53.75 51 54.26 0 1 

Male 37 46.25 43 45.74   

Ethnoracial 

identity3 

Black 63 78.75 70 74.47 0.47 .789 

White 9 11.25 12 12.77   

Hispanic/LatinX 5 6.25 7 7.45   

Other/Multiracial 3 3.75 5 5.32   

<$15,000 24 30 17 18.09 4.86 .182 
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Annual 

household 

income 

(baseline at 

wave 1)4 

$15,000-39,999 18 22.5 31 32.98   

$40,000-69,999 18 22.5 22 23.40   

>$70,000 19 23.75 24 25.53   

Unknown 1 1.25 0 0   

1  Wave 1 and 2 anxiety was measured by Screen for Child Anxiety-Related Emotional 

Disorders. Anxiety during COVID-19 (wave 3) was measured by Beck Anxiety Inventory. 

2  Wave 1 and 2 depression was measured by Mood and Feelings Questionnaire. Depression 

during COVID-19 (wave 3) was measured using Beck Depression Inventory. 

3 Other/Multiracial group was collapsed with Hispanic/LatinX group for chi-square estimation 

4 Unknown group was collapsed with <$15,000 group for chi-square estimation 
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Table 3-2 Models with subgroups predicting change in anxiety and depressive symptoms   

 

Change in anxiety Change in depression 

Model 1 Model 2 Model 1 Model 2 

b p b p b p b p 

Subgroup (A) .138 .042 .194 .023 .089 .243 .120 .194 

Initial 

symptoms 
-.456 <.001 -.379 <.001 -.100 0.189 .072 .432 

Male   .068 .538   .210 .080 

Puberty   .008 .937   -.030 .798 

Age   .086 .308   .018 .846 

White   .160 .078   -.060 .539 

Hispanic   -.011 .898   .098 .281 

Other   -.118 .155   -.103 .252 

Baseline 

income 
  .031 .726   .089 .351 

Pandemic 

duration 
  .022 .795   -.093 .310 

 
F(2,170)=24.56, 

p<.001 

F(10,120)=3.82, 

p<.001 

F(2,170)=1.46, 

p=.235 

F(10,120)=1.31, 

p=.233 
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Table 3-3 Models examining subgroup differences in the associations between COVID-19 
economic adversity and anxiety/depressive symptoms  

 

Anxiety during pandemic Depression during pandemic 

Model 1 Model 2 Model 1 Model 2 

b p b p b p b p 

Subgroup (A) .136 .106 .181 .024 .069 .428 .048 .473 

COVID-19 

adversity 
.157 .154 .177 .105 .223 .053 .141 .127 

Subgroup (A) x 

adversity 
.307 .006 .237 .021 .196 .088 .069 .420 

Initial symptoms   .399 <.001   .710 <.001 

Gender   .016 .877   .068 .416 

Puberty   .055 .574   -.023 .778 

Age   .095 .237   .005 .935 

White   .207 .015   -.009 .901 

Hispanic   .036 .641   .136 .037 

Other   -.048 .537   -.001 .989 

Baseline income   .067 .435   .056 .434 

Pandemic 

duration 
  -.008 .924   -.073 .272 

 
F(3,114)=10.23, 

p<.001 

F(12,104)=6.76, 

p<.001 

F(3,114)=6.97, 

p<.001 

F(12,104)=13.18, 

p<.001 
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Figure 3-1 Neural networks derived during an emotion processing task 

 

A: S-GIMME derived group-level, subgroup-level, and illustrative individual-level connections. 

Nodes shown are as follows: amygdala (Am; grey), dorsal anterior cingulate cortex (dAC; 

yellow), dorsomedial prefrontal cortex (dm; green), insula (Ins; blue), orbitofrontal cortex (OF; 

dark red), subgenual anterior cingulate cortex (sg; dark blue), and ventral striatum (VS; purple). 

Eighty (N=80) individuals were clustered into Subgroup A while ninety-four (N=94) individuals 

were clustered into Subgroup B. Group-level paths (connections present in at least 75% of the 

entire sample) are shown in black; subgroup paths (connections present in at least 50% of 

individuals in each subgroup) are shown in red (Subgroup A) and blue (Subgroup B). Thresholds 

were default parameters used in connectivity and subgrouping estimation based on large-scale 

simulations. All connections were positive on average, in exception for left dorsomedial 

prefrontal cortex (dm) to right insula (Ins) Subgroup B path (all average path estimates reported 

in Supplemental Table 3-8).  
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B: Network density (i.e., the proportion of actual contemporaneous connections from the number 

of possible connections in a network) for each individual in Subgroup A (red) and Subgroup B 

(blue). Network density was significantly greater in Subgroup A as compared to Subgroup B 

(MA = .36, SDA = .05; MB = .30, SDB = .04; t(147.36) = 8.47, p < .001).  

 

C: Person-specific network maps (i.e., individual-level functional connectivity estimated for 

each individual in the sample) for one individual in Subgroup A (red) and another individual in 

Subgroup B (blue). L. and R. indicate left/right hemisphere. The Subgroup A individual had a 

more heterogeneous network, with more connections beyond group- and subgroup-level 

connections, while Subgroup B individual had a more homogenous network, with fewer 

connections overall but more similar connections to the group- and subgroup-level patterns. All 

edges shown were contemporaneous, and figures were created using customized R codes and 

circlize package (Gu et al., 2014).  
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Figure 3-2 Node centrality across each ROI plotted for each subgroup 

 

*** Bonferroni-corrected p<.001; ** Bonferroni-corrected p<.01; * Bonferroni-corrected p<.05  

Left to right: amygdala (Amyg), dorsal anterior cingulate (dACC), dorsomedial prefrontal 

cortex (dmPFC), insula, orbitofrontal (OFC), subgenual anterior cingulate (sgACC), ventral 

striatum (VS). Hemispheres denoted by R. and L. Compared to Subgroup B (blue), Subgroup A 

(red) showed significantly greater node centrality, specifically in the left amygdala (L.Amyg), 

left striatum (L.VS), and right subgenual anterior cingulate (R.sgACC). In contrast, Subgroup B 

showed greater node centrality in the left dorsal anterior cingulate (L.dACC) and bilateral insula 

(R.Insula, L.Insula). P-values were Bonferroni-corrected for multiple comparisons 

(Supplemental Table 3-5).  
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Figure 3-3 Anxiety and depressive symptoms across three waves 

 

A: Illustration of timepoints and ages at each wave of data collection.  

B: Anxiety and depression for each subgroup (A: more heterogeneous network with greater 

centrality in the amygdala, subgenual, and striatum; B: relatively sparser network with greater 

centrality in the insula and dorsal anterior cingulate) across each wave. Participants across 

subgroups did not differ in initial anxiety and depression at wave 1, but symptoms began to 

diverge at wave 2, which persisted through wave 3. For anxiety, this divergence was exacerbated 

by COVID-19 at wave 3, whereas subgroup difference for depression during COVID-19 

remained similar to pre-pandemic difference. Each point represents mean value, and the bars 

indicate standard errors. 

  



 78 

Figure 3-4 Differential effects of COVID-19 economic adversity on anxiety and depression 
across neural-based subgroups 

 

Symptoms during COVID-19 (wave 3) were elevated as a function of COVID-19 economic 

adversity, especially for subgroup A. Subgroup-adversity interaction was significant for anxiety 

(b=.275, 95% CI=[.470, .080], p=.006), but not depression (b=.175, 95% CI=[-.026, .376], 

p=.088). Subgroup A slope is depicted in red and Subgroup B slope in blue. COVID-19 

adversity scores were mean-centered to aid interpretation.   

 

LEFT: Subgroup-adversity interaction for anxiety symptoms. Subgroup A slope (b=.366, 95% 

CI=[.218, .514], p<.001); Subgroup B slope (b=.092, 95% CI=[-.035, .219], p=.154).  

RIGHT: Subgroup-adversity interaction for depressive symptoms. Subgroup A slope (b=.304, 

95% CI=[.151, .457], p<.001); Subgroup B slope (b=.129, 95% CI=[-.001, .260], p=.053). 
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3.6 Appendix 

 

3.6.1 Exclusions for neuroimaging scan 

Out of 237 youths who participated in the SAND study at baseline, 16 declined to participate in 

MRI scanning, 3 exceeded MRI table weight limit, 1 reported a medical restriction, 7 had braces 

or other metal in body, 1 had a risk of pregnancy, and 2 were excluded for diagnosis of Autism 

Spectrum Disorder. After these exclusions, of 207 youths who participated in MRI scanning, 5 

did not finish scan, 6 had significant artifacts in structural anatomical MRI data, 5 was excluded 

for significant motion artifacts in the functional data, and 17 had accuracy below 70% on fMRI 

task. The final sample used for time-series extraction and subsequent analyses was 174. See 

Supplemental Figure 3-1 for illustration.  

 

3.6.2 MRI data acquisition and preprocessing  

MRIs were acquired using 3T GEDiscovery MR750 scanner with 8-channel head coil. Head 

padding and instructions limited movement. T1-weighted gradient echo images were first 

captured (TR=12ms, TE=5ms, TI=500ms, flip angle=15°, FOV=26cm, slice thickness=1.44mm, 

256x192 matrix, 110 slices). fMRI T2*-weighted blood oxygenation level dependent (BOLD) 

images were then captured using reverse spiral sequence (Glover & Law, 2001) of 40 contiguous 

axial 3mm slices (TR=2000ms, TE=30ms, flip angle=90°, FOV=22cm, voxel 

size=3.44x3.44x3mm, ascending acquisition, parallel to AC-PC line). Anatomical images were 

skull-stripped (f=.25) using Brain Extraction Tool (BET) in FSL version 6.0 (Jenkinson et al., 

2012) and segmented into gray matter, white matter, and cerebrospinal fluid using FSL FAST. 
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After large temporal spikes in the k-space functional data (>2 SD) were removed, field maps 

were corrected, and functional images were reconstructed using MATLAB. Noise from cardiac 

and respiratory motion were removed using RETROICOR and slice-timing correction using 

SPM8 (Wellcome Department of Cognitive Neurology, London, UK; 

http://www.fil.ion.ucl.ac.uk). Moreover, first ten volumes of functional data were removed to 

ensure the stability of signal intensity. Following these steps, the functional data were further 

preprocessed using FSL fMRI Expert Analysis Tool (FEAT). Functional images were skull-

stripped and spatially smoothed using FSL FMRIB’s Automated Segmentation Tool (Woolrich 

et al., 2001), and registered to subject-specific previously skull-stripped and segmented 

anatomical images. Motion correction was performed using MCFLIRT and spatial smoothing 

using a Gaussian kernel of FWHM 6.0mm was applied. Grand-mean intensity of the entire 4D 

dataset was normalized by a single multiplicative factor and FSL motion outliers were ran to 

extract framewise displacement motion parameters (Power et al., 2012). ICA-AROMA was used 

to remove motion-related artifacts in the data, nuisance signal derived from white matter and 

cerebrospinal fluid were regressed out, and data with signal below 0.01Hz were then high-pass 

filtered. These preprocessing steps were applied using detailed scripts (Beltz et al., 2019) that 

were also utilized in previous investigation (Goetschius, Hein, McLanahan, et al., 2020).  

 

3.6.3 fMRI task paradigm 

Neuroimaging data was collected using event-related emotion (faces) task (see Supplemental 

Figure 3-2 for visual representation of task paradigm design). Participants were shown a series of 

emotional faces (Tottenham et al., 2009) and indicated if they were viewing a female or male 

face. Gender (female, male), race (European American, African American), and emotion 
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(fearful, happy, sad, neutral, angry) of the actor were counterbalanced and randomly presented 

across 100 trials. Each trial consisted of a fixation cross (500ms) followed by 250ms of an 

emotion stimulus, then 1500ms of blank screen during which participants are expected to 

respond using button press. Functional data from each participant across all trials of emotion task 

(without any contrasting) were extracted for subsequent processing. 

 

3.6.4 ROI selection and data extraction 

The present investigation focused on seven bilateral regions that have been shown to be 

implicated in processes related to anxiety and depression: amygdala, anterior cingulate cortex, 

dorsomedial prefrontal, insula, orbitofrontal, subgenual cingulate, and ventral striatum. The 

amygdala has most commonly been linked to salience and fear processing (M. Davis, 1992; 

Janak & Tye, 2015), and amygdala function has been widely found to be implicated in anxiety 

and depression (Davidson, 2002; Rauch et al., 2003; Thomas et al., 2001; Whalen et al., 2002). 

Similarly, the anterior cingulate cortex has been found to be substantially involved in processes 

relating to affective and mood disorders (Drevets et al., 2008; Greicius et al., 2007; Margulies et 

al., 2007; Stevens et al., 2011). Most prominently, evidence from clinical trials demonstrates that 

deep brain stimulation of the subgenual cingulate can reduce depressive symptoms (Mayberg et 

al., 2005), suggesting the importance of this region in mood disorders. Both the dorsomedial and 

orbitofrontal cortex are believed to be implicated in emotion regulation and higher-order 

processing. Evidence has shown that disruption in brain function within these regions is 

important in affective disorders (Drevets, 2007; Eickhoff et al., 2016; Moses-Kolko et al., 2010). 

The insula is another important region for salience processing (Menon & Uddin, 2010; Uddin, 

2015) and the bidirectional communication between insula and dorsal anterior cingulate cortex 
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has been linked to anxiety disorders in both clinical and non-clinical populations (Klumpp et al., 

2012, 2013). Finally, the ventral striatum is central to reward processing and reward-based 

learning (Pagnoni et al., 2002; Schultz et al., 1992), which are important features of depressive 

and affective disorders (Robinson et al., 2012).  

Consistent with our previous investigation (Goetschius, Hein, McLanahan, et al., 2020), 

ROI coordinates were extracted from NeuroSynth (Yarkoni et al., 2011) 

(https://neurosynth.org/analyses/) and preregistered (https://osf.io/tgj3s/). NeuroSynth is a meta-

analytic tool that combines results from published neuroimaging articles using an automated 

parser. Findings from published articles are tagged with a specific term to produce a statistical 

inference map for activation maps associated with tagged keywords. Specific ROI names (i.e., 

“amygdala”, “anterior cingulate”, “dorsomedial”, “insula”, “orbitofrontal”, “subgenual”, “ventral 

striatum”) were used as keywords to search for peak activity on the NeuroSynth website and 

corresponding association maps were then downloaded. Voxel coordinates from downloaded 

images were subsequently extracted using FSL and then utilized to create an ROI 8mm-diameter 

sphere using fslmaths. To ensure that there were no significant differences in functional data 

driven by sphere size, functional data were extracted from one ROI (i.e., left and right amygdala) 

using 6.5mm-radii sphere that were previously used in prior investigation (Goetschius, Hein, 

McLanahan, et al., 2020), and extracted data were compared with data extracted using 8mm-

diameter sphere used in present investigation. There were no significant differences between the 

two, and results can be found in Supplemental Table 3-9.  

 

3.6.5 Comparison network 
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To ensure that the results pertained to hypothesized ROIs we selected based on theory, functional 

connectivity network was estimated from a set of comparison ROIs (7 nodes from each 

hemisphere) related to visual, auditory, motor, and language processing that were hypothesized 

to be unrelated to susceptibility to anxiety and depression. Similar procedures were utilized to 

obtain ROI coordinates: specific terms were used as keywords in NeuroSynth (i.e., “audio”, 

“fusiform”, “language”, “sensor”, “supplementary motor area”, “visual”); corresponding voxel 

coordinates were then extracted and then utilized to create an 8mm-diameter ROI sphere using 

fslmaths (see Supplemental Table 3-3 for MNI coordinates of ROIs in comparison network). 

These ROIs were then registered to subject-specific anatomical images and time-series data were 

extracted for S-GIMME processing. S-GIMME arrived at a 2-subgroup solution, but there were 

no statistically significant differences in anxiety or depression between the two subgroups in the 

comparison network adjusting for initial symptoms (anxiety: b=.026, p=.706; depression: 

b=.053, p=.490). Furthermore, no significant subgroup-adversity interaction was found in 

relation to anxiety (b=.054, p=.630) or depression (b=.148, p=.188) during the pandemic. Results 

from comparison network analyses are reported in Supplemental Table 3-4. 

 

3.6.6 Measures for anxiety and depressive symptoms 

Anxiety at wave 1 and wave 2 was measured using the 38-item Screen for Anxiety Related 

Disorders (Birmaher et al., 1997) (Cronbach’s α = .92 at wave 1; Cronbach’s α = .95 at wave 2). 

Anxiety at wave 3 was measured using the 21-item Beck Anxiety Inventory (Beck et al., 1988) 

(Cronbach’s α = .95). Depression at wave 1 and wave 2 was measured using the Mood and 

Feelings Questionnaire (Angold et al., 1995) (34 items at wave 1, 30 items at wave 2) 
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(Cronbach’s α = .91 at wave 1; Cronbach’s α = .96 at wave 2). Depression at wave 3 was 

measured using the 20-item Beck Depression Inventory (Beck et al., 1996) (Cronbach’s α = .91). 

 

3.6.7 Covariates 

Sex was parent-report at child aged 1 (0 = female, 1 = male). Pubertal development was 

measured at wave 1 by youth report on the Pubertal Development Scale (Petersen et al., 1988) 

that measured changes in child height, body hair, skin, facial hair and voice (males only), breast 

development and menarche (females only). Responses were coded on 4-point scale: 1 = no 

development to 4 = completed development; and score was a sum of all items endorsed. 

Ethnoracial identity was self-identified by youth at age 15 (wave 1): Black, non-Hispanic; white, 

non-Hispanic; Hispanic or LatinX; and Other. In cases where youth did not identify 

race/ethnicity (N = 8), parent report of race/ethnicity was utilized. Three dummy-coded variables 

were created to represent ethnoracial identity with Black as the reference variable. Annual 

household income was reported by primary caregiver at wave 1. If caregiver did not report 

annual household income, income was determined by other caregiver’s report who are 

cohabitating with child. In the case that neither caregiver reported income, annual income was 

imputed by regression-based imputation. Framewise displacement was computed in FSL as a 

measure of in-scanner motion by averaging differences in rotation and translation parameter 

(Power et al., 2012). Early adverse experiences (i.e., violence exposure, social deprivation) were 

included as covariates to account for early childhood experiences that may relate to 

neurobiological development as found by previous investigation using this sample (Goetschius, 

Hein, McLanahan, et al., 2020; Goetschius, Hein, Mitchell, et al., 2020; Hein et al., 2020; 

Peckins et al., 2020). Both violence exposure and social deprivation were measured using 
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composite scores of exposure at ages 3, 5, and 9. Violence exposure was based on: (1) parent 

responses on child physical and emotional abuse questions in the Parent-Child Conflict Tactics 

Scale (Straus et al., 1998); (2) child exposure to neighborhood violence; (3) maternal report of 

intimate partner violence. Social deprivation was based on: (1) parent report on physical and 

emotional neglect on the Parent-Child Conflict Tactics Scale (Straus et al., 1998); (2) 

neighborhood cohesion. For both measures, scores were first standardized and z-scores across 

each dimension of early adversity (violence exposure; social deprivation) across each timepoint 

were summed. Cognitive abilities (i.e., reading comprehension, mathematical abilities) were 

measured at age 9 using the Passage Comprehension and Applied Problems subtests taken from 

then Woodcock Johnson test (Woodcock et al., 2001). Passage Comprehension involves 

matching symbolic pictures to word representation as well as reading a passage and identifying 

missing words in the passage. The items progressively become more difficult by increasing 

passage length and complexity of vocabulary, syntactic, and semantic cues. Applied Problems 

subtest involves solving math problems, which increases in difficulty with item level. Child’s 

percentile rank was used for both subtests. Cohabitation status was self-reported at wave 3 

(during the pandemic). Participants reported whether they are living with spouse, partner, or 

girlfriend/boyfriend during the pandemic (1 = yes, 0 = no). Similarly, parental status was self-

reported at wave 3. Participants reported whether they are living with biological, step, adopted or 

foster children during the pandemic (1 = yes, 0 = no). All continuous variables were mean 

centered for further statistical analyses.  

 

3.6.8 S-GIMME  
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S-GIMME begins with a null model. First, group-level connections are added for everyone if 

they significantly improve model fit for at least 75% of the sample as assessed by the Lagrange 

Multiplier tests (Gates et al., 2010). Individuals are then classified into subgroups using a 

Walktrap community detection algorithm (Gates et al., 2017), allowing for an unsupervised 

model search that reflects personalized network without averaging across individuals. Subgroup-

level connections are then added for everyone in a given subgroup if they significantly improve 

models for at least 51% of individuals within each subgroup. Lastly, individual-level connections 

(i.e., connections unique for each person) are added until individual model well-fit the observed 

data. After person-specific networks were generated, contemporaneous edges were extracted for 

subsequent analyses, consistent with previous investigations (Goetschius, Hein, McLanahan, et 

al., 2020) as lagged connections are amenable to hemodynamic temporal dependencies (Gates et 

al., 2010; Smith, 2012). See Supplemental Figure 3-3 for an illustration of S-GIMME process. 

 

3.6.9 Robustness checks for functional connectivity estimation 

To establish reliability in the functional data, split-half reliability test was performed by applying 

S-GIMME separately to odd and even volumes of the data (Elliott et al., 2021; Pronk et al., 

2022). Results show good correspondence between the resulting subgroups. Two subgroups 

emerged from analyses of both datasets with high correspondence in subgroup membership and 

connectivity (subgroups did not differ across runs: c2(1)= 0.299, p=.585; r=.83, p<.001 for 

subgroup A path count; r=.82, p<.001 for subgroup B path count) (Supplemental Table 3-10). 

Anxiety and depressive symptoms for each subgroup did not differ between the datasets 

(Subgroup A anxiety: t(90)=.360, p=.720; depression: t(92)=-.034, p=.973; Subgroup B anxiety: 

t(144)=-.331, p=.741; depression: t(142)=-.047, p=.963). Furthermore, to establish robustness in 
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functional connectivity estimation for the sample, S-GIMME was applied to five randomly 

drawn subsamples (80%, sampled with replacement; N=139). Consistent with original results, 

two subgroups were derived with good correspondence in subgroup membership and 

connectivity between all five subsamples and the full sample (Supplemental Table 3-11; 

Supplemental Figure 3-5).  

 

3.6.10 Robustness checks in predictive models 

Several robustness checks were performed to all models. First, models were re-examined without 

inclusion of subjects that had standardized network model psi values of above 1 (N=18 for 

subgroup A; N=20 for subgroup B), which would reflect greater than 100% unexplained 

variation for an ROI in the model – an impossible value that could reflect model overfitting 

(Lütkepohl, 2005). Next, model residuals were examined, and any influential outliers identified 

using Cook’s distance were excluded in subsequent models for sensitivity checks. Finally, 

sensitivity analyses were performed to account for covariates that may explain variance in the 

outcome (i.e., age, sex, pubertal development, ethnoracial identity, annual household income, 

days since study commenced) and additional covariates (i.e., scanner framewise displacement, 

violence exposure, social deprivation, reading comprehension, mathematical abilities, residential 

status with partner during pandemic, residential status with child during pandemic).  
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Supplemental Table 3-1. Full and included sample comparisons 

 Full sample (N=237) Wave 1 (baseline) sample (N=174) 
Age (years) M = 15.87 | SD = 0.54 M = 15.86 | SD = 0.53 
Sex F = 124 (52.3%) | M = 113 (47.7%) F = 94 (54.0%) | M = 80 (46.0%) 
Ethnoracial 
identity 

Black = 181 (76.4%) Black = 133 (76.4%) 
White = 32 (13.5%) White = 21 (12.1%) 
Hispanic/LatinX = 13 (5.5%) Hispanic/LatinX = 12 (6.9%) 
Other/Multiracial = 11 (4.6%) Other/Multiracial = 8 (4.6%) 

Annual Income <$15,000 = 57 (24.1%) <$15,000 = 41 (23.6%) 
$15,000-39,999 = 70 (29.5%) $15,000-39,999 = 49 (28.2%)  
$40,000-69,999 = 58 (24.5%) $40,000-69,999 = 40 (23.0%) 
>$70,000 = 51 (21.5%)  >$70,000 = 43 (24.7%) 
Missing/Not reported = 1 (0.4%) Missing/Not reported = 1 (0.6%) 

   
 Wave 2 sample (N=128) Wave 3 (COVID-19) (N=119) 
Age (years) M = 15.85 | SD = 0.54 M = 15.87 | SD = 0.54 
Sex F = 77 (60.2%) | M = 51 (39.8%) F = 74 (62.2%) | M = 45 (37.8%) 
Ethnoracial 
identity 

Black = 92 (71.9%) Black = 83 (69.7%) 
White = 18 (14.1%) White = 19 (16.0%) 
Hispanic/LatinX = 11 (8.6%) Hispanic/LatinX = 10 (8.4%) 
Other/Multiracial = 7 (5.5%) Other/Multiracial = 7 (5.9%) 

Annual Income <$15,000 = 25 (19.5%)  <$15,000 = 27 (22.7%) 
$15,000-39,999 = 31 (24.2%)  $15,000-39,999 = 28 (23.5%) 
$40,000-69,999 = 34 (26.6%) $40,000-69,999 = 26 (21.8%) 
>$70,000 = 38 (29.7%) >$70,000 = 37 (31.1%) 
Missing/Not reported = 0 (0%) Missing/Not reported = 1 (0.8%) 

a  Samples did not differ in age: F(3,654)=.038, p=.99; sex: c2(3)=4.323, p=.229; race: c2(9)=3.419, p=.943; 
annual income: F(3,651)=1.194, p=.311. 

 
 
Supplemental Table 3-2. MNI coordinates of individual Regions of Interest (ROI) 

Hemisphere Regions of Interest (ROI) MNI coordinates  

Left 

Amygdala -18, -6, -20  
Dorsal anterior cingulate cortex -10, 26, 26  
Dorsomedial prefrontal cortex -16, 46, 36  
Insula  -34, 22, 0  
Orbitofrontal prefrontal cortex -10, 38, -18  
Subgenual cingulate cortex -10, 22, -16  
Ventral striatum -10, 10, -6  

Right 

Amygdala 18, -6, -20  
Dorsal anterior cingulate cortex 10, 26, 26  
Dorsomedial prefrontal cortex 16, 46, 36  
Insula  34, 22, 0  
Orbitofrontal prefrontal cortex 10, 38, -18  
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Subgenual cingulate cortex 10, 22, -16  
Ventral striatum 10, 10, -6  

 
 
Supplemental Table 3-3. MNI coordinates of ROIs in comparison network 

Hemisphere NeuroSynth key terms MNI coordinates  

Left 

Audio -50, -18, 6  
Fusiform -42, -50, -20  
Language  -56, -42, 4  
Language -46, 16, 22  
Sensorimotor -36, -20, 54  
Supplementary motor area -5, -6, 60  
Visual -46, 70, 2  

Right 

Audio 50, -18, 6  
Fusiform 42, -50, -20  
Language  56, -42, 4  
Language 46, 16, 22  
Sensorimotor 36, -20, 54  
Supplementary motor area 5, -6, 60  
Visual 46, 70, 2  

 
 
Supplemental Table 3-4. Results from predictive models using comparison network 

 Change in anxiety Change in depression 
b p b p 

Subgroup 0.026 0.706 0.053 0.490 
Initial symptoms -0.451 <.001 -0.091 0.236 
 F(2,170)=22.02, p<.001 F(2,170)=1.01, p=.366 

 

 Anxiety at wave 3 Depression at wave 3 
b p b p 

Subgroup -0.102 0.243 -0.101 0.246 
COVID-19 adversity 0.339 0.003 0.268 0.018 
Subgroup x COVID-19 adversity 0.054 0.630 0.148 0.188 
 F(3,114)=6.52, p<.001 F(3,114)=6.66, p<.001 

 
Supplemental Table 3-5. Node centrality for each subgroup 

Hemisphere Node Subgroup A Subgroup B t-test results1 

  Mean SD Mean SD  
Left Amygdala .123 .033 .101 .042 t(170.72)= 3.93,  

p-adjust=.002 
Dorsal anterior 
cingulate cortex 

.131 .043 .159 .047 t(171.32)= -4.09,  
p-adjust<.001 
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Dorsomedial 
prefrontal cortex 

.152 .043 .172 .051 t(172)= -2.75,  
p-adjust= .092 

Insula  .141 .044 .164 .048 t(171.14)= -3.28,  
p-adjust= .017 

Orbitofrontal 
prefrontal cortex 

.147 .041 .161 .038 t(163.08)= -2.33,  
p-adjust= .298 

Subgenual 
cingulate cortex 

.153 .040 .144 .042 t(170)= 1.43,  
p-adjust= 1.00 

Ventral striatum .162 .043 .108 .043 t(167.23)= 8.17,  
p-adjust<.001 

Right Amygdala .102 .044 .107 .048 t(171.16)= -.80,  
p-adjust= 1.00 

Dorsal anterior 
cingulate cortex 

.158 .040 .154 .045 t(171.89)= .74,  
p-adjust= 1.00 

Dorsomedial 
prefrontal cortex 

.117 .047 .130 .053 t(171.5)= -1.66,  
p-adjust= 1.00 

Insula  .156 .037 .184 .051 t(167.95)= -4.28,  
p-adjust<.001 

Orbitofrontal 
prefrontal cortex 

.138 .035 .147 .047 t(168.57)= -1.46,  
p-adjust= 1.00 

Subgenual 
cingulate cortex 

.195 .043 .134 .047 t(171.19)= 8.92,  
p-adjust<.001 

Ventral striatum .124 .040 .135 .037 t(163.33)= -1.80,  
p-adjust= 1.00 

1 p-values were Bonferroni-corrected (p-adjust) for multiple 14 model comparisons 
 
Supplemental Table 3-6. Models predicting anxiety and depressive symptoms, adjusted for 
covariates  

Model: Change in symptoms (slope) ~ subgroup + initial symptoms (intercept) + all covariates 

 Change in anxiety Change in depression 
b p b p 

Subgroup (A) 0.257 0.011 0.145 0.182 
Initial symptoms -0.315 0.002 0.119 0.246 
Male 0.099 0.427 0.248 0.067 
Puberty 0.076 0.525 0.024 0.853 
Age 0.127 0.172 0.010 0.919 
White 0.211 0.037 -0.019 0.860 
Hispanic 0.081 0.391 0.151 0.142 
Other -0.114 0.211 -0.102 0.305 
Baseline income 0.012 0.902 0.109 0.318 
Pandemic duration 0.012 0.899 -0.077 0.461 
Motion -0.082 0.394 0.002 0.987 
Violence exposure 0.004 0.968 0.032 0.784 
Social deprivation 0.057 0.598 -0.068 0.563 
Reading comprehension 0.171 0.146 0.158 0.218 
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Math abilities -0.045 0.707 0.074 0.574 
Living w/ partner 0.142 0.124 0.131 0.198 
Living w/ child 0.194 0.040 0.139 0.179 
 F(17,92)=2.68, p=.001 F(17,92)=1.35, p=.178 

 
Model: Symptoms during pandemic ~ subgroup * COVID-19 economic adversity + initial level 
of symptom + all covariates 

 Anxiety at wave 3 Depression at wave 3 
b p b p 

Subgroup (A) 0.238 0.007 0.037 0.624 
COVID-19 adversity 0.133 0.263 0.030 0.771 
Subgroup x COVID-19 adversity 0.259 0.031 0.145 0.160 
Initial symptoms 0.406 0.000 0.735 0.000 
Male 0.024 0.827 0.084 0.362 
Puberty 0.039 0.705 -0.051 0.569 
Age 0.109 0.184 -0.030 0.674 
White 0.247 0.005 0.007 0.921 
Hispanic 0.096 0.241 0.139 0.052 
Other -0.041 0.604 -0.003 0.966 
Baseline income 0.021 0.816 0.041 0.602 
Pandemic duration 0.030 0.726 -0.011 0.881 
Motion -0.146 0.094 -0.036 0.628 
Violence exposure -0.087 0.374 -0.025 0.763 
Social deprivation 0.093 0.324 -0.036 0.660 
Reading comprehension 0.147 0.157 0.098 0.280 
Math abilities -0.075 0.480 0.028 0.762 
Living w/ partner 0.113 0.164 0.058 0.407 
Living w/ child 0.105 0.228 0.052 0.486 
 F(19,89)=4.90, p<.001 F(19,88)=8.20, p<.001 

 
Supplemental Table 3-7. Models with individual node centrality predicting change in 
symptoms, adjusting for initial levels 

Models / Predictor 
(tested in separate models) 

Change in anxiety Change in depression 
b p-adjust b p-adjust 

L. Amygdala .042 1.00 .042 1.00 
R. Amygdala -.049 1.00 -.188 .183 
L. Dorsal anterior cingulate .058 1.00 .043 1.00 
R. Dorsal anterior cingulate -.030 1.00 .022 1.00 
L. Dorsomedial prefrontal .059 1.00 .084 1.00 
R. Dorsomedial prefrontal -.018 1.00 .072 1.00 
L. Insula -.022 1.00 .047 1.00 
R. Insula -.106 1.00 -.205 .096 
L. Orbitofrontal -.018 1.00 .105 1.00 
R. Orbitofrontal -.016 1.00 .004 1.00 
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L. Subgenual cingulate -.055 1.00 -.151 .666 
R. Subgenual cingulate .160 .263 .124 1.00 
L. Ventral striatum .085 1.00 .026 1.00 
R. Ventral striatum -.164 .221 -.063 1.00 

 
Supplemental Table 3-8. Average path estimates for group- and subgroup-level connections 

Path type Connection1 N Mean SD Max Min 
Group L. Amyg – R. Amyg 174 .412 .204 1.01 -.297 

L. dACC – R. dACC 174 .446 .267 1.03 -.604 
R. dmPFC – L. dmPFC  174 .414 .252 1.07 -.238 
R. Ins – L. Ins 174 .414 .245 .852 -.438 
L. Ins – L. dACC 174 .215 .213 .993 -.393 
R. OFC – R. sgACC  174 .394 .244 1.19 -1.03 
L. sgACC – L. OFC 174 .365 .257 1.36 -.546 
L. sgACC – R. VS 174 .253 .212 .897 -.557 
R. VS – L. VS 174 .478 .197 .891 -.376 

Subgroup (A) L. dmPFC – L. dACC 80 .223 .288 1.26 -.276 
R. OFC – L. OFC 80 .196 .317 .673 -1.16 
R. sgACC – L. Amyg 80 .103 .210 .531 -.494 
R. sgACC – L. sgACC 80 .355 .305 1.06 -.649 
R. sgACC – L.VS 80 .222 .201 .712 -.394 
L. VS – R. Ins 80 .182 .223 .747 -.313 

Subgroup (B) L. dmPFC – R. Ins 94 -.151 .199 .464 -.732 
R. Ins – R. dACC 94 .180 .186 .536 -.306 
L. OFC – R. OFC 94 .367 .200 .857 -.044  

1  L. and R. indicate left/right hemisphere; Amyg = amygdala; dACC = dorsal anterior cingulate; dmPFC = 
dorsomedial prefrontal; Ins = insula; OFC = orbitofrontal; sgACC = subgenual cingulate; VS = ventral striatum 

 
Supplemental Table 3-9. Comparison between extracted data using 4mm-radii and 6.5mm-radii 
node spheres 

Region Mean (SD) 
(8mm-diameter) 

Mean (SD) 
(6.5mm-radii) 

t-test results 

Left Amygdala 6785.061 (781.231) 6749.546 (704.276) t(346)=.445, p=.657 
Right Amygdala 7294.925 (885.737) 7205.825 (783.190) t(346)=.995, p=.320 

 
 
Supplemental Table 3-10. Split-half reliability test results 

GIMME subgroups  Count (%)  Path (non-lagged) count M (SD)  
Subgroup A Odd = 73 (41.95%) 

Even = 67 (38.51%) 
Odd = 29.00 (5.68) 
Even =  24.75 (6.44) 

Subgroup B Odd = 101 (58.05%) 
Even = 107 (61.49%) 

Odd = 28.70 (3.82) 
Even = 24.56 (4.40) 
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 Subgroup A Subgroup B 
Odd 73 101 
Even 67 107 
c2(1)= 0.299, p = .585 
 
Supplemental Table 3-11. Results from 80% randomly drawn subsample test 

Sample Subgroup membership 1 

Count (%) 
Path (non-lagged) 1 
 M (SD) 

Anxiety comparison 
with full sample 

Full sample 
(N=174) 

A = 80 (45.98%) 
B = 94 (54.02%) 

A = 32.4 (4.69) 
B = 27.0 (3.62) 

N/A 

Subsample 1 
(N =139) 

A = 60 (43.17%) 
B = 79 (56.83%) 

A = 32.0 (4.95) 
B = 27.4 (3.75) 

t(89)=-.400, p=.690 
t(119)=.090, p=.929 

Subsample 2 
(N =139) 

A = 69 (49.64%) 
B = 70 (50.36%) 

A = 33.3 (4.57) 
B = 26.9 (3.64) 

t(98)=-.027, p=.979 
t(110)=.004, p=.997 

Subsample 3 
(N =139) 

A = 76 (54.68%) 
B = 63 (45.32%) 

A = 32.8 (5.06) 
B = 27.1 (3.51) 

t(102)=-.367, p=.714 
t(110)=.213, p=.832 

Subsample 4 
(N =139) 

A = 55 (39.57%) 
B = 84 (60.43%) 

A = 35.5 (4.50) 
B = 26.8 (3.39) 

t(88)=.181, p=.857 
t(121)=.551, p=.583 

Subsample 5 
(N =139) 

A = 65 (46.76%) 
B = 74 (53.24%) 

A = 34.0 (4.40) 
B = 27.1 (3.58) 

t(95)=.146, p=.884 
t(117)=.046, p=.963 

 
Chi-square test results comparing subgroup membership of original sample and subsamples  
 Subgroup A Subgroup B 
Subgroup membership in original sample 62 77 
Subgroup membership in Subsample 1 60 79 
c2(1)= .015, p = .904 
 
Subgroup membership in original sample 69 70 
Subgroup membership in Subsample 2 69 70 
c2(1)= 1, p = 1 
 
Subgroup membership in original sample 67 72 
Subgroup membership in Subsample 3 76 63 
c2(1)= .922, p = .337 
 
Subgroup membership in original sample 63 76 
Subgroup membership in Subsample 4 55 84 
c2(1)= .722, p = .396 
 
Subgroup membership in original sample 65 74 
Subgroup membership in Subsample 5 65 74 
c2(1)= 1, p = 1  
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Supplemental Figure 3-1. Exclusionary criteria for neuroimaging data 

 

 

Supplemental Figure 3-2. fMRI task paradigm 
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Supplemental Figure 3-3. S-GIMME flowchart  

 

 

Supplemental Figure 3-4. GIMME results based on 5 randomly drawn 80% subsamples 
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Supplemental Figure 3-5. Anxiety and depression for each subgroup, stratified by sex 

 

Anxiety and depression for each subgroup stratified by sex. Sex differences in both anxiety and 

depression were most pronounced at adolescence (age 15) where females were reporting greater 

symptoms, especially those with denser network profiles. Observed sex differences were 

markedly diminished during COVID-19 for both subgroups. Both males and females with 

Subgroup A denser network profiles (in red) showed greater anxiety symptoms during COVID-

19 compared to Subgroup B (in blue). Each point represents mean value, and the bars indicate 

standard errors. 
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Chapter 4  
Latent Profiles of Childhood Adversity Identify Distinct Patterns of Mental Health 

Outcomes and Emotion-Related Neural Network Connectivity in Adolescence  

4.1 Introduction 

Adverse childhood experiences are prevalent risk factors for health across the lifespan 

and are associated with nearly 30% of all psychiatric disorders (Green et al., 2010; Hughes et al., 

2017; McLaughlin et al., 2012). Childhood adversity have been linked with differences in brain 

function during emotion processing in human and animal research (Anda et al., 2006; Gee, 2021; 

Goetschius, Hein, McLanahan, et al., 2020; Hardi, Goetschius, McLoyd, et al., 2023; Hosseini-

Kamkar et al., 2023; McLaughlin et al., 2019), thus providing insight into how adversity could 

disrupt critical domains of development that contribute to psychopathology later in life.  

Adverse experiences, ranging from maltreatment and family violence to household 

instability and community violence, often co-occur and interact (Dong et al., 2004; Felitti et al., 

1998; Finkelhor et al., 2015; Hughes et al., 2017; McLaughlin et al., 2012). Nevertheless, 

exposure to one adversity does not necessarily indicate the presence of another; variations in 

additional adverse experiences exist within groups exposed to specific adversity (Dong et al., 

2004; Hughes et al., 2017), underscoring the broad heterogeneity of adverse environments. 

However, most studies examining neural correlates of adversity focused on singular exposures or 

the cumulative indices of multiple adversities. While the additive effect of multiple adversities 

on mental health is widely recognized (Felitti et al., 1998; Hughes et al., 2017; Rutter et al., 

1978), cumulative approaches assume that each adverse experience operates in a similar manner 
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and holds equal importance for each individual (Bergman & Magnusson, 1997; Briggs et al., 

2021; Lacey & Minnis, 2020; Laursen & Hoff, 2006). These limitations undercut the 

identification of precise adversity-linked neural correlates that can improve interventions.   

Thus, more work is needed to parse heterogeneity within individuals’ multifaceted 

adverse environments. To improve precision in clinical interventions, a growing body of work 

has sought to identify latent subpopulations that share similar characteristics (Feczko et al., 2019; 

Mori et al., 2020; Sterba & Bauer, 2010). While these person-oriented approaches have largely 

been applied to classify subgroups of individuals with complex health outcomes (Beijers et al., 

2019; Hack et al., 2023; Karalunas & Nigg, 2020; Mattoni et al., 2021; Xiao et al., 2024), they 

have not focused on explaining variations in adolescent mental health and brain function 

simultaneously, specifically in population-based samples with rich contextual information about 

adverse experiences across multiple developmental years. Additionally, person-centered 

clustering methods, which identify data-driven hidden classes or subtypes of individuals, can be 

combined with person-specific network neuroscience methods that allow for estimation of neural 

patterns across the group, subgroups, and individual-levels (Gates & Molenaar, 2012; Henry et 

al., 2019). Thus, increasing the ability to reveal commonalities and differences within the 

population and capturing more granularity in modeling individual processes.  

Work in clinical neuroscience postulates that disrupted communication within brain 

networks such as the default mode network (DMN) (Raichle, 2015), salience network (SN) 

(Seeley, 2019), and fronto-parietal network (FPN) (Zanto & Gazzaley, 2013) underlies 

vulnerabilities to psychiatric disorders (Menon, 2011). Adversities such as threat, neglect, and 

unpredictability have been found to be differentially associated with these neural networks 

during rest (Chahal et al., 2022; Goetschius, Hein, McLanahan, et al., 2020); however, the extent 
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to which they differ among distinct broad-based adverse environments during active emotion 

processing is unknown. Neuroimaging data collected during behavioral tasks may characterize 

neural patterns that are more representative of processes implicated in psychopathology, thus can 

improve the prediction of clinical traits (Finn, 2021; Ooi et al., 2022). 

This study aimed to characterize heterogeneity in mental health and network function 

during emotion processing among subgroups of youth with different profiles of multi-domain 

childhood adversity. We used longitudinal data from a population-based birth-cohort sample that 

includes a substantial proportion of marginalized individuals who are at a greater risk for 

adversity (Sacks & Murphey, 2018) and are underrepresented in biomedical research (Falk et al., 

2013). Individuals were first clustered based on reported adversity across multiple contexts 

experienced during childhood (0-9 years) and the resulting adversity profiles were then examined 

to predict mental health in adolescence (age 15). This clustering method was then combined with 

person-specific connectivity approach to allow for estimation of profile-specific emotion-linked 

network patterns in a neuroimaging subsample. We hypothesize that this data-driven approach 

would identify distinct patterns of mental health and functional network connectivity in youth 

based on their exposures to adverse childhood experiences across multiple contexts.  

 

4.2 Methods 

4.2.1 Setting and Participants 

Participants were from the Future Families and Child Wellbeing study, a birth cohort 

population-based sample of children born in large U.S. cities (population over 200,000) between 

1998 and 2000, with oversampling (3:1) of non-marital births (Reichman et al., 2001). Data 

collected at ages 1, 3, 5, 9, and 15, capturing information about the child environment from birth 
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to age 9, from 4210 individuals were included in the present study (Supplemental Table 4-1). 

Participants who did not reside with the mother at least half of the time at any point (n=290) and 

those with adversity data at fewer than two timepoints were excluded from analyses (n=398). 

There were no differences between the samples (Supplemental Table 4-1). When the children 

were 15, a cohort of families participated in the Study of Adolescent Neural Development at the 

University of Michigan, Ann Arbor, where neuroimaging data were collected. After exclusions 

for ineligibility for scanning and quality control (n=63), neuroimaging data from 167 individuals 

were included in the present study (Supplemental Table 4-2; Supplemental Figure 4-1).  

 

4.2.2 Childhood adversity measures 

Ten indicators measured in the first 9 years of child life were selected to represent 

adverse experiences within and outside of the home that could contribute to youth mental health 

problems: childhood maltreatment (emotional abuse, physical abuse, neglect; measured by 

Parent-Child Conflict Tactics Scale) (Straus et al., 1998), intimate partner violence (measured by 

relationship quality questionnaire) (Hunt et al., 2017), maternal depression (measured by 

Composite International Diagnostic Interview – Short Form) (Kessler et al., 1998), parental 

stress (measured by Parent Stress Inventory) (Abidin et al., 2006), residential moves (measured 

by frequency of moves between waves) (Hardi, Goetschius, Tillem, et al., 2023), and 

neighborhood-level factors such as neighborhood violence (measured by neighborhood violence 

questions) (Zhang & Anderson, 2010) and lack of protective influences (community cohesion 

measured by Social Cohesion and Trust Scale (Sampson, 1997; Sampson et al., 1997); and social 

control measured by Informal Social Control Scale) (Sampson, 1997; Sampson et al., 1997) 

(more information in the Appendix 4.5.1).  
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4.2.3 Functional Magnetic Resonance Imaging (fMRI) data 

Neuroimaging data were acquired using a 3T GE Discovery MR750 scanner with an 8-

channel head coil. Two types of fMRI data were collected: while participants completed an in-

scanner emotion task (task-based data) in which they were asked to identify the gender of the 

actor who was displaying affective facial expressions (fear, happy, sad, neutral, angry) 

(Supplemental Figure 4-2); and while participants were passively looking at a fixation cross 

(resting-state data) (Appendix 4.5.5). Consistent with a previous investigation (Hardi, 

Goetschius, McLoyd, et al., 2023), task-based functional data were extracted across the entire 

task (including all emotion conditions and cross-hair presentations) and standard fMRI 

preprocessing pipeline (Beltz et al., 2019) were applied using FSL v6.0 (Appendix 4.5.6). 

Preprocessed time-series data were extracted from 9 bilateral regions of interest (ROIs) 

representing the DMN, SN, and FPN. Coordinates for each node were established using 

NeuroSynth (Goetschius, Hein, McLanahan, et al., 2020; Hardi, Goetschius, McLoyd, et al., 

2023; Yarkoni et al., 2011) (Supplemental Table 4-3).  

 

4.2.4 Youth mental health outcomes 

Internalizing and externalizing problems were measured using separate second-order 

multi-informant latent factors (Appendix 4.5.2). Confirmatory factor analyses were conducted on 

both parent- and youth-reported measures collected at age 15. The internalizing symptoms factor 

was comprised of three scales: parent-reported internalizing scale of the Child Behavioral 

Checklist (CBCL) 6-18 (Achenbach, 2001); youth-reported items from the Brief Symptom 

Inventory 18 (Derogatis & Kathryn, 2000); and youth-reported items from the Center for 

Epidemiologic Studies Depression Scale (Radloff, 1977) (Supplemental Figure 4-3). The 
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externalizing behaviors factor comprised of three scales: parent-report externalizing scale of the 

CBCL (Achenbach, 2001); youth-reported items from the Delinquency scale adopted from the 

National Longitudinal Study of Adolescent Health (Harris, 2013); and youth-reported substance 

use (Supplemental Figure 4-4).  

 

4.2.5 Statistical Analysis 

4.2.5.1 Latent Profile Analysis (LPA) 

LPA was used to identify latent profiles of childhood adversity and was modeled using 

Mplus v8.8 (Muthén & Muthén, 2017) on the full sample (n=4,210). LPA is a data-driven latent 

variable modeling approach which identifies unobserved subpopulations (i.e., clusters of 

individuals) using a set of selected indicators (e.g., multiple types of childhood adversity). In this 

study, latent profiles were identified using within-person mean exposure to each adversity across 

childhood (age 0-9). Multiple model parameters (AIC, BIC, ABIC, LMR) and classification 

characteristics (Entropy, average posterior probabilities) were then compared to determine the 

most parsimonious best-fitting model (Berlin et al., 2014; Faubert, 2020; Nylund et al., 2007; 

Sinha et al., 2021; Vermunt & Magidson, 2002) (Appendix 4.5.4). Missing data were addressed 

using maximum likelihood estimation with robust standard errors. 

 

4.2.5.2 Estimation of profile-specific functional network connectivity  

In the neuroimaging subsample (n=167), person-specific functional network connectivity 

was estimated for each latent profile using Confirmatory Subgrouping Group Iterative Multiple 

Model Estimation (GIMME) in R v4.2.1 (Team, 2013). GIMME iteratively estimates 
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connections among preselected ROIs using a unified structural equation model framework that 

includes estimation of group-level (present for at least 75% of all  individuals), subgroup-level 

(present for at least 50% of individuals in each latent profile subgroup), and individual-level 

(present for each individual) connections group (Gates & Molenaar, 2012; Henry et al., 2019) 

(Appendix 4.5.6.2).  

Two types of connectivity metrics were computed using the resulting network maps: 

overall network density (i.e., network connectivity across all three networks) and network 

density specific to each network (i.e., DMN density, SN density, FPN density). Network density 

was represented as a proportion of corresponding connections (e.g., number of connections 

involving all DMN ROIs) from the overall network connections. Procedures were first applied to 

task-based neuroimaging data. Then, to determine that resulting functional connectivity networks 

were unique to emotion-related processes, GIMME analyses were repeated using resting-state 

functional neuroimaging data and compared to the task-based results (Appendix 4.5.7).  

 

4.2.6 Analyses examining symptom and functional network differences among profiles 

A one-way analysis of variance was used to test differences among adversity profiles in 

both internalizing/externalizing symptoms and connectivity metrics (overall, DMN, SN, FPN 

density). Pairwise comparisons were conducted with adjustment for multiple comparisons using 

the Tukey-Kramer test. Several robustness checks were then conducted. Sensitivity analyses with 

covariates were conducted to adjust models for important sociodemographic differences (see 

Appendix 4.5.3). Further, to account for sex as a biological variable, statistical analyses were 

repeated separately for males and females (Appendix 4.5.8).  
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4.3 Results 

4.3.1 Adversity latent profiles 

Zero-order correlations between adversity measures are in Supplemental Table 4-4 

(associations ranged from r=.05 to .64). A four-class model was the final selected model 

(Appendix 4.5.4; profile-specific sociodemographic characteristics are in Table 4-1). Individuals 

in the first profile (n=1,230; 29.2%) scored the lowest in all adversity indicators (Figure 4-1). 

Individuals in the second (n=1,973; 46.9%) and third profiles (n=550; 13.1%) had similarly 

moderate levels of adversity, except that maternal depression was distinctly elevated in profile 3 

(Supplemental Table 4-10). Individuals in profiles 2 and 3 did not differ in levels of physical 

abuse, neglect, intimate partner violence, lack of neighborhood cohesion, and neighborhood 

violence (Supplemental Table 4-12). Differences between other indicators (i.e., emotional abuse, 

parental stress, residential move, lack of social control) were statistically significant, but small in 

magnitude compared to a relatively large elevation in maternal depression in profile 3. Lastly, 

relative to all other profiles, individuals in profile 4 (n=457; 10.9%) scored the highest in all 

adversity indicators, except for maternal depression. To reflect these patterns, in subsequent 

sections, profile 1 was referred as “Low-adversity”, profile 2 “Medium-adversity”, profile 3 

“Maternal Depression” (MD), and profile 4 “High-adversity”.  

 

4.3.2 Profile comparison in youth internalizing and externalizing symptoms  

Adolescent internalizing and externalizing scores were the lowest in the Low-adversity 

profile followed by Medium, MD, and High-adversity profiles (Figure 4-2) (Internalizing: 

F(3,3333)=37.84, p<.001; Externalizing: F(3,3332)=60.04, p<.001). Adolescent internalizing 
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symptoms did not differ between the MD and High-adversity profiles (mean difference 0.11, 

p=.177) (Supplemental Table 4-13), despite MD and Medium-adversity profiles sharing the most 

similarities in adversity levels. Mean differences in externalizing symptoms differ among all 

profiles (all adjusted-ps<.05) (Supplemental Table 4-13). These findings remained after adjusting 

for sociodemographic covariates (Supplemental Table 4-14). Exploratory analysis found that the 

non-significant difference between MD and High-adversity profiles was particularly important 

for females (Supplemental Table 4-18).  

 

4.3.3 Profile-specific subgroup comparison in functional network connectivity  

Confirmatory Subgrouping GIMME generated person-specific models with excellent fit 

(average indices: root mean square error of approximation = .057, standard root mean residual = 

.047, non-normed fit index = .922, confirmatory fit index = .951). Group-level connections 

pertaining to individuals across all profiles were detected within the DMN, SN, and FPN 

(Supplemental Figure 4-6). Subgroup-level and individual-level connections that are specific to 

each profile were also identified across all three networks, with more person-specific 

connections present for the High-adversity profile (Figure 4-3). There were also profile 

differences in both the overall density across the entire network as well as specific network 

densities. Overall network density differed among profiles (F(3,163)=10.65, p<.001) (Figure 4-

3). Relative to the High-adversity profile, other adversity profiles showed decreased density in 

the overall network (Supplemental Table 4-15). There were also differences in specific network 

features and specific pairwise differences among adversity profiles (Figure 4-4). First, for the 

DMN, MD and High-adversity profiles showed higher density relative to the other profiles 

(F(3,163)=11.14, p<.001; Supplemental Table 4-15). The High-adversity profile also showed 
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lower SN density compared to Low-adversity (F(3,163)=3.16, p=.026; Supplemental Table 

4-15), and the highest FPN density compared to other profiles (F(3,163)=18.96, p<.001; 

Supplemental Table 4-15). These profile differences remained when the models were adjusted 

for sociodemographic covariates (Supplemental Table 4-16). Moreover, these network 

connectivity profile differences were observed using task-based functional networks, but not 

resting-state networks, providing evidence of the specificity of effects to emotion processes 

(Supplemental Table 4-17; Supplemental Figure 4-7).  

 

4.4 Discussion 

 This study investigated the relationships between person-centered childhood adversity 

profiles and youth behavior and emotion-related brain function within a population-based birth 

cohort, characterized by a substantial representation of marginalized individuals and those facing 

substantial adversity. Four person-centered, latent, multi-domain childhood adversity profiles 

were identified: Low, Medium, Maternal Depression (MD), and High. Whereas individuals in 

the Medium and MD profiles shared similar levels of exposure to adversity, the MD profile 

exhibited elevated internalizing symptoms similar to the High-adversity profile. Individuals in 

the MD and High-adversity profiles displayed the highest DMN density compared to those in the 

other two profiles. Additionally, those in the High-adversity profile exhibited attenuated SN 

density relative to the Low-adversity profile and the highest FPN density relative to those in all 

other profiles. These network patterns were observed during an emotion task, but not at rest.  

 The differences in symptomatic presentation among adversity profiles highlight the 

significant impact of clustered multi-domain childhood adversity on adolescent mental health. 

Consistent with evidence indicating that the accumulation of exposures to various risk factors 
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could result in adverse health outcomes (Evans et al., 2013), the present study found that high 

exposure to adversity across multiple domains was associated with the highest mental health 

symptoms. Notably, a profile emerged with moderate levels of adversity exposure and a high 

level of maternal depression (the MD profile) that most closely resembling levels of adversity of 

the Medium-adversity profile across multiple adversities. Despite those similarities, youth with 

the MD profile showed mental health outcomes akin to those who were exposed to high levels of 

adversity across all domains (the High-adversity profile), especially for internalizing symptoms. 

This suggests that exposure to maternal depression may exert a particularly influential role in 

shaping youth mental health.  

 The intergenerational transmission of depression from mothers to children is widely 

recognized to involve both genetic and environmental mechanisms (Goodman et al., 2011; 

Goodman & Gotlib, 1999; Monk et al., 2008). Infants born to mothers with depression are at 

heightened risk of increased stress sensitivity and negative caregiving behaviors (Goodman et al., 

2011). In the present study, youth with high maternal depression in childhood had elevated levels 

of internalizing problems, consistent with studies indicating strong links between maternal 

depression and child psychopathology. Moreover, these patterns were particularly important for 

females relative to males, consistent with previous work showing sex differences in stress-linked 

anxiety and depression (Goodman et al., 2011; Hankin et al., 2007). 

 There were also profile-specific differences in brain function that underlie youth mental 

health differences. Youth with the MD profile exhibited distinct patterns closely resembling 

those of the High-adversity profile, specifically in the DMN. Notably, these findings emerged for 

functional connectivity during emotion task but not at rest, suggesting that these network patterns 

were specific to affective conditions. Given that the DMN is typically deactivated during tasks 
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(Raichle et al., 2001), these findings suggest a more pronounced neural disengagement to 

emotional cues in youth who had relatively high exposure to maternal depression and those who 

were exposed to many forms of adversity. Moreover, youth with the High-adversity profile also 

showed network differences across the SN and FPN networks compared to youth in other 

profiles. Whereas weak SN engagement has been attributed to disruptions in brain network 

communications (Menon, 2011; Uddin, 2015), increased connectivity within the control regions 

within the FPN could be indicative of a compensatory mechanism that is reflected in increased 

regulatory processes (Bertocci et al., 2023; Etkin et al., 2009). Thus, the present study suggests 

that multi-domain exposures to adverse childhood experiences can potentially underlie these 

aberrant network communications within key emotion regulatory regions.  

 

4.4.1 Limitations 

 First, there could be other adverse experiences that were not measured or collected in the 

sample. Nonetheless, the present investigation used information from broad-based measures of 

adversity across development and multiple levels of risk factors, which have likely captured most 

of the variance in the child’s adverse experiences. Second, although youth psychopathology was 

represented by multi-informant measures, many of the childhood adversity measures were 

parent-reported. Thus, further research is needed to include data from other informants (e.g., 

teachers) that could provide important information about children’s early environment. Third, as 

this is not a genetically-informed study, we are not able to disentangle genetic versus 

environmental influences, particularly among the links with maternal depression and child 

psychopathology outcomes. Fourth, the neuroimaging sample examined here is modestly sized, 

which precluded the examination of brain-behavior associations; thus, more research is needed to 
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reproduce these results in larger neuroimaging samples. Fifth, GIMME requires a priori 

specification of ROI and networks, thus these findings need to be examined across large-scale 

networks across the entire brain. Finally, there are limitations inherent in the latent profile 

approach. First, LPA is unable to capture developmentally specific variations in adverse 

experiences. Thus, although the present results represent adversities across the first 9 years of 

age, they could not address differences in the effects of adversity experienced at specific 

developmental periods. Moreover, while LPA well describes specific samples, the extent to 

which these profiles generalize to other samples need to be tested in subsequent studies; though 

notably, the latent profiles identified in present investigation were modeled in a large 

representative sample, which serves to improve generalizability to the population.  

 

4.4.2 Conclusion 

 In this 15-year longitudinal study of a population-based birth cohort sample with a large 

proportion of individuals facing adversity, four latent profiles of childhood adversity with 

distinct patterns of adolescent mental health and emotion-related brain function were identified. 

Adolescents who were exposed to high maternal depression and multi-domain risks in childhood 

were at the highest risk for psychopathology and had differential patterns across brain networks 

implicated in emotion processing relative to those with low- and medium-adversity risks. This 

study is the first to combine subtyping with individualized network estimation methods to parse 

heterogeneity both within childhood adverse environment and subsequent brain networks in a 

longitudinal population-based sample. This study demonstrates the benefit of individual-oriented 

approaches to increase precision of neural mechanisms linked to adverse childhood experiences.  
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Table 4-1. Sociodemographic descriptive of each adversity latent profile (N=4,210) 

 Low-

adversity 

(n=1,230) 

Medium-

adversity 

(n=1,973) 

Maternal 

Depression 

(n=550) 

High-

adversity 

(n=457) 

Statistical 

test 

Ethnoracial identity, No. (%)  

   Black (non- 

   Hispanic) 

308 (25) 791 (40) 221 (40) 165 (36) c(12) = 

185.9,  

p < .001    White (non- 

   Hispanic) 

252 (20) 185 (9) 92 (17) 22 (5) 

   Hispanic 213 (17) 383 (19) 67 (12) 96 (21) 

   Other/multi 68 (6) 105 (5) 27 (5) 36 (8) 

   Unknown 389 (32) 509 (26) 143 (26) 138 (30) 

Sex at birth, No. (%)  

   Female 581 (47) 948 (48) 254 (46) 216 (47) c(3) = 

0.665,  

p = .881 

   Male 649 (53) 1025 (52) 296 (54) 241 (53) 

Parental marital status, No. (%)  

   Married 468 (38) 404 (20) 116 (21) 80 (18) c(3) = 

149.64,  

p < .001 

   Unmarried 762 (62) 1569 (80) 434 (79) 377 (82) 

Poverty ratio 3.25 (3.09) 1.98 (2.08) 2.01 (2.13) 1.52 (1.69) F(3,4206) 

= 95.31,  

p < .001 
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Figure 4-1. Childhood adversity latent profiles  

 

Standardized values of each adversity indicator in the four-class model of childhood adversity 

profiles. Of N=4,210 individuals in the included sample, N=1,230 (29.2%; in yellow) 

experienced the lowest rate of adversity; N=1,973 (46.9%; in green) were exposed to medium-

level adversity risk; and N=457 (10.9%; in red) experienced the highest level of risk across the 

ten adversity types. N=550 (13.1%; in purple) individuals had similar levels of exposures with 

the medium-risk profile (green), but with markedly elevated levels of maternal depression (MD) 

compared to all other profiles.   
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Figure 4-2. Internalizing and externalizing symptoms among adversity profiles 

 

Boxplots comparing levels of internalizing and externalizing symptoms. The MD and High-

adversity profiles do not differ for internalizing symptoms, but differ among all profiles for 

externalizing symptoms. *** padj < .001; ** padj < .01; * padj < .05; NS padj > .05  
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Figure 4-3. Network connectivity properties of adversity profiles 

 

A: Regions of interest and large-scale network connectivity. The Default Mode Network (DMN; 

blue) included the bilateral inferior parietal lobule, posterior cingulate cortex, and medial 

temporal gyrus. The Salience Network (SN; orange) included the bilateral insula, amygdala, and 

dorsal anterior cingulate cortex. The Fronto Parietal Network (FPN; pink) included the bilateral 

dorsolateral prefrontal cortex, anterior inferior parietal lobule, and posterior parietal cortex.  

B: Boxplots comparing the overall network density of individual connectivity maps across 

adversity profiles. Individuals with the high-adversity profile (red) have the highest overall 

network density compared to individuals with the low- (yellow), medium-adversity (green), and 

maternal depression (purple) profiles. *** padj < .001; ** padj < .01; NS padj > .05 

C: Subgroup-specific connectivity maps of each adversity profile. Subgroup-specific 

connections were the highest for individuals with the maternal depression (MD; purple) and 

high-adversity (red) profiles.   



 114 

Figure 4-4. Comparison of functional connectivity within subnetworks among adversity profiles 

 

 

Boxplots showing differences in subnetwork-specific connections across adversity profiles. From 

left to right: Individuals in the maternal depression (MD) and high-adversity profiles showed the 

highest density of DMN compared to low- and medium-risk adversity profiles; The high-

adversity profile showed the lowest SN density compared to low-adversity profile; The high-

adversity profile showed the highest FPN density compared to the all other groups.  

*** padj < .001; ** padj < .01; * padj < .05; NS padj > .05  
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4.5 Appendix 

 

4.5.1 Childhood adversity measures 

Ten variables were examined as indicators of childhood adversity spanning across four 

waves (ages 1, 3, 5, and 9) capturing information about the child environment from birth to age 

9. Use of these variables was justified in past publications (Goetschius, Hein, McLanahan, et al., 

2020; Goetschius, Hein, Mitchell, et al., 2020; Hardi, Goetschius, Tillem, et al., 2023; Hein et 

al., 2020; Peckins et al., 2020) as available constructs representing salient childhood adversities 

in this sample. These variables provide information on child maltreatment (physical abuse, 

emotional abuse, and neglect), intimate partner violence (IPV), maternal depression, parental 

stress, residential moves, and neighborhood adversities (lack of cohesion, lack of social control, 

neighborhood violence), each types of adversities with large literatures connecting them to 

negative outcomes, particularly internalizing and externalizing psychopathology. 

Childhood maltreatment data were collected at child ages 3, 5, and 9. Each maltreatment 

type (physical abuse, emotional abuse, and neglect) was measured by separate subscales in the 

Parent-Child Conflict Tactics Scale (Straus et al., 1998). Emotional abuse was parent-reported 

using the 5-item psychological aggression subscale capturing past year frequency that primary 

caregiver reported to have engaged in behaviors such as “shouted, yelled, or screamed at” or 

“swore or cursed at” child (0 = did not happen, 1 = has happened one or more times) (Straus et 

al., 1998). Physical abuse was parent-reported using the 5-item physical assault subscale 

capturing past year frequency that primary caregiver reported to have engaged in behaviors such 

as “spanked [child] on the bottom with their bare hand” or “hit [child] on the bottom with 

something like a belt, hairbrush, a stick or some other hard object.” (0 = did not happen, 1 = has 
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happened one or more times) (Straus et al., 1998). Neglect was parent-reported using the 5-item 

neglect subscale capturing past year frequency that primary caregiver reported to have engaged 

in behaviors such as “had to leave their child home alone, even when they thought some adult 

should be with him/her” or “was not able to make sure their child got to a doctor or hospital 

when he/she needed it.” (0 = did not happen, 1 = has happened one or more times) (Straus et al., 

1998). Average scores for each subscale across all waves were computed to represent the extent 

of childhood physical abuse, emotional abuse, and neglect.  

Intimate partner violence (IPV) data were collected at child ages 1, 3, 5, and 9 using 

parent-reported 6-item questions on physical, emotional, or sexual intimate partner violence such 

as “how often does father slap or kick you?” or “how often does father try to isolate you from 

friends/family?” (0 = never, 1 = sometimes, 3 = often) perpetrated by the child’s father or 

parent’s romantic partner. These items were selected based on a previous study on adverse 

childhood experiences in this sample (Hunt et al., 2017). In cases where mother was no longer in 

a relationship with the child’s biological father during data collection wave, mother reported 

information about her current partner. An average score across all waves were computed to 

represent IPV.  

Maternal depression was measured using self-reported data on the Composite 

International Diagnostic Interview – Short Form (CIDI-SF) (Kessler et al., 1998) across child 

age 1, 3, 5, 9. The CIDI-SF, consistent with the Diagnostic and Statistical Manual of Mental 

Disorders – Fourth Edition (Bell, 1994), included questions on mother’s feelings of depressed 

mood or anhedonia (loss in pleasure or interest in activities that they usually found enjoyable) in 

the past year that lasted two weeks or more (1 = yes, 0 = no). If so, they were asked more 

detailed questions about losing interest, tiredness, changes in weight, sleep, concentration, 
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worthlessness, and any suicidal ideation. Diagnostic criteria were met if mother endorsed 

depressed mood or anhedonia lasting at least half of the day nearly every day and two or more 

additional symptoms. Average scores across all waves were computed to represent maternal 

depression across childhood.  

Parental stress was measured at child ages 1, 3, 5, and 9 using 4-item parent-reported 

questionnaire adapted from the Child Development Supplement of the Panel of Study of Income 

Dynamics (Hofferth et al., 1997) such as “I often feel tired, worn out, or exhausted from raising a 

family” and “I feel trapped by my responsibilities as a parent.” (0 = strongly disagree, 1 = 

somewhat disagree, 2 = somewhat agree, 3 = strongly agree). Several items for this scale were 

taken from the Parent Stress Inventory (Abidin et al., 2006), which measures stress triggered by 

changes in employment, income or other factors. An average score across all waves was 

computed to represent parental stress. 

Frequency of residential moves or household instability was parent-reported at child ages 

1, 3, 5, and 9 to capture changes occurring in between waves (i.e., between ages 0-1, 1-3, 3-5, 

and 5-9). At each wave, mothers or primary caregivers provided answers on whether the family 

has moved since the prior wave, and if yes, how many times. Average scores across all waves 

were computed to represent residential moves across childhood. 

Three neighborhood factors (lack of community cohesion, lack of social control, 

neighborhood violence) were reported at child ages 3, 5, and 9. Lack of neighborhood cohesion 

was measured using parent-reported reverse-coded 4-item questions taken from the Social 

Cohesion and Trust Scale (Sampson, 1997; Sampson et al., 1997) such as “people around here 

are willing to help their neighbors” and “this is a close-knit neighborhood” (0 = strongly agree, 1 

= agree, 2 = disagree, 3 = strongly disagree). Lack of neighborhood social control was measured 
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using reverse-coded 5-item questions taken from the Informal Social Control Scale (Sampson, 

1997; Sampson et al., 1997) such as “how likely neighbors intervene if children skipping school 

and hanging on street?” and “how likely neighbors intervene if fight broke out in front of the 

house?” (0 = very likely, 1 = somewhat, 2 = not very unlikely, 3 = very unlikely). Neighborhood 

violence was measured using 3 parent-reported items such as “in the past year, how often did 

you see person get hit, slapped, punched?” and “in the past year, how often did you see person 

attacked with weapon?” (0 = never, 1 = once, 2 = 2-3 times, 3 = 4-10 times, 4 = more than 10 

times) based on prior investigations (Zhang & Anderson, 2010). Average scores across all waves 

for each construct were computed to represent lack of community cohesion, lack of social 

control, and neighborhood violence during childhood.   

 

4.5.2 Youth internalizing and externalizing symptoms 

Internalizing symptoms were measured as a multi-informant latent factor comprised of all 

available FFCWS measures of internalizing symptoms at age 15: parent-reported internalizing 

scale (i.e., anxious/depressed and withdrawn items) from the Child Behavioral Checklist 6-18 

(CBCL) (Achenbach, 2001); youth-reported items from the Brief Symptom Inventory 18 (BSI-

18) (Derogatis & Kathryn, 2000); and youth-reported items from the Center for Epidemiologic 

Studies Depression Scale (CES-D) (Radloff, 1977). The CBCL is comprised of 8 questions (6 

anxious/depressed items and 2 withdrawn items) (0 = not true, 1 = sometimes true, 2 = often 

true), and higher scores indicate greater youth internalizing symptoms. The BSI-18 contains 6 

questions from the anxiety subscale (0 = strongly disagree, 1 = somewhat disagree, 2 = 

somewhat agree, 3 = strongly agree), and higher scores indicate greater anxiety symptoms. The 

CES-D contains 4 questions (0 = strongly disagree, 1 = somewhat disagree, 2 = somewhat agree, 
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3 = strongly agree), and higher scores indicate greater youth depressive symptoms. Confirmatory 

factor analysis was conducted using MPlus v8.8 (Muthén & Muthén, 2017) with WLSMV 

estimator to account for categorical variables. Each question was loaded onto three latent factors 

reflecting the measures (CBCL, BSI-18, CES-D), which were then loaded onto a higher-order 

latent factor of overall internalizing symptoms. Model fit indices indicate adequate model fit 

(CFI = .931, TLI = .921, RMSEA = .065, SRMR = .075) (Hu & Bentler, 1999) (Supplemental 

Figure 4-3). Internalizing factor scores were extracted as individual scores for further analysis.  

Externalizing behaviors were measured as a multi-informant latent factor comprised of 

all available FFCWS measures of externalizing behavior at age 15: parent-reported externalizing 

scale (i.e., aggressive and rule-breaking items) from the Child Behavioral Checklist 6-18 

(CBCL) (Achenbach, 2001); youth-reported items from the Delinquency scale adopted from the 

National Longitudinal Study of Adolescent Health (Add Health) (Harris, 2013); and youth-

reported substance use. The parent-reported CBCL items comprise of 19 questions (10 

aggressive behavior items and 9 rule-breaking behavior items) (0 = not true, 1 = sometimes true, 

2 = often true), and higher scores indicate greater youth externalizing symptoms. Youth-reported 

delinquency was measured by 13 questions (0 = never, 1 = sometimes, 2 = often), and higher 

scores indicate greater youth delinquent behavior. Substance use was measured using 5 binary 

questions (0 = no, 1 = yes) capturing alcohol use (more than 2 drinks without parents), tobacco, 

and other substances (marijuana, illicit drugs or nonmedical use of prescription drugs). 

Confirmatory factor analysis was conducted using Mplus v8.8 (Muthén & Muthén, 2017) with 

WLSMV estimator to account for categorical variables. Each question was loaded onto three 

latent factors reflecting the measures (CBCL, Delinquency, Substance), which were then loaded 

onto a higher-order latent factor of overall externalizing behavior. Model fit indices indicate 
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excellent model fit (CFI = .955, TLI = .952, RMSEA = .031, SRMR = .092) (Hu & Bentler, 

1999) (Supplemental Figure 4-4). Externalizing factor scores were then extracted as individual 

participant scores for further analysis. 

 

4.5.3 Sociodemographic covariates 

The following covariates were included in sensitivity analyses: ethnoracial identity, 

parental marital status, household income. Two additional covariates were included in the 

neuroimaging subsample analysis: age of youth during the neuroimaging scan and in-scanner 

motion. Ethnoracial identity was included to account for unequal exposures to experiences of 

race-related adversity such as discrimination and structural racism, and was youth-reported at 

age 15 (Black/African American, non-Hispanic; white, non-Hispanic; Hispanic/Latino, all races; 

multi-racial, non-Hispanic; other, non-Hispanic). As the group with the highest prevalence in the 

sample, the Black group was used as the reference group in statistical models. Parental marital 

status was included to account for FFCWS sampling strategy (Reichman et al., 2001), and was 

parent-reported when each child was age 1 (0 = Unmarried, 1 = Married). Household income 

was included to account for differences in family socioeconomic resources, and was measured by 

poverty ratio (ratio of total household income to the official poverty thresholds designated by the 

U.S. census bureau), which was parent-reported at age 1 (higher poverty ratio indicated higher 

socioeconomic status). Youth age was included to account for differences in stages of normative 

brain development and was computed using youth-reported date of birth at age 15. In-scanner 

motion was measured using the framewise displacement metric computed in FSL by averaging 

differences in rotation and translation parameters (Power et al., 2012), and was included to 

ensure that results were robust after adjustment for motion differences. Analysis of covariance 
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(ANCOVA) models were first tested to examine differences in network connectivity metrics 

among profiles, accounting for all covariates. Pairwise multiple comparisons were then 

conducted with adjustment for multiple comparisons using the Tukey-Kramer test.  

 

4.5.4 Procedures and robustness checks for LPA  

Latent profile analysis was conducted using Mplus v8.8 (Muthén & Muthén, 2017). 

Latent class models were estimated by adding classes in consecutive order; starting with a two-

class model, classes were added iteratively until the final model was identified. In all models, 

proportional covariance structure was used to assist in convergence for complex models (Liu & 

Rubin, 1998). Here, covariance in a class was freely estimated and used as a referent, resulting in 

equal correlation matrices without constrained homogeneity of covariance structures across 

classes (Barnard et al., 2000; Liu & Rubin, 1998; McNeish et al., 2022; Proust-Lima et al., 

2017). Classes were initially fitted using 500 random starts with 20 iterations, and then repeated 

with 1000 and, subsequently, 2000 starting values to ensure that results reflect a global 

maximum (Nylund et al., 2008).  

Multiple model fit indices and classification characteristics (log-likelihood (LL), Akaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC), adjusted BIC (ABIC), Lo-

Mendell-Rubin Adjusted Likelihood Ratio test (LMR), Entropy, average latent class posterior 

probabilities, class sizes) were used to determine model selection (Faubert, 2020; Nylund et al., 

2008; Sinha et al., 2021). LL represents the goodness-of-fit of the model, with higher values 

indicating a better fit. AIC (Akaike, 1987), BIC (Schwarz, 1978), and ABIC (Sclove, 1987) are 

statistical information criteria, with lower values indicating a better model fit. LMR (Lo et al., 

2001) is a test comparing the specified model k with k-1 class (model with one less class), and 
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assesses if there are statistically meaningful improvements in model fit with the addition of one 

class. Classifications diagnostics were also examined for class selection (Masyn, 2013). Entropy 

is a measure of class separation and assesses the classification accuracy (Celeux & Soromenho, 

1996), where high values (1.0 being the maximum, .80 to be acceptable) (Celeux & Soromenho, 

1996) indicate high separation among classes. The average posterior probabilities represent the 

certainty of latent profile assignment, whereby high classification quality is achieved when the 

diagonal values are high (as close to the maximum value of 1.0) and off-diagonal values are low 

(as close to the minimum value of 0) (Muthén & Muthén, 2000). Finally, class sizes were 

examined to ensure that no classes have fewer than 50 individuals or 5% of the sample, which 

are prone to model misspecifications (Faubert, 2020; Nylund et al., 2008). 

Loglikelihood was replicated for all fitted classes across different starting values in 

exception for the 6-class model. Multiple model fit indices improved with greater number of 

classes (i.e., increases in LL and decreases in AIC, BIC, and ABIC values with more fitted 

classes) until the 6-class model, for which poorer model fit and classification were examined 

across multiple parameters (Supplemental Table 4-5), suggesting that a 6-class model may be too 

high in complexity for the present data. Thus, no additional models beyond the 6-class model 

were estimated. The model fit and classification indices were then compared among the 

remaining estimated classes for final model selection.  

Results demonstrate a 4-class model to be the best-fitting solution with the greatest 

parsimony. Specifically, the 4-class model showed improvements across all model fit indices 

(highest LL and lowest AIC, BIC, and ABIC values) compared to the 2- and 3-class models, and 

the highest classification accuracy (highest Entropy and average posterior probabilities) among 

all other class models (Supplemental Table 4-5). In the four-class model, average posterior 
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probabilities ranged from .874 to .919 (Supplemental Table 4-6), with approximately 11.8% of 

the sample with values below .70. These statistics indicate greater classification quality of the 4-

class model compared to the 3-class and the 5-class models (Supplemental Table 4-7), for which 

several diagonal class posterior probabilities fall below the optimal range of .80 to .90 (Faubert, 

2020; Muthén & Muthén, 2000), and contained a greater proportion of individuals with low 

posterior probability of below .70 (Nagin, 2009) (3-class: 12.9%; 5-class: 19.8%).  

To determine the internal consistency and robustness of the selected final model, LPA 

with a fitted 4-class model was repeated for a total of 20 supplementary analyses leaving out one 

site (i.e., sample city) (Reichman et al., 2001) at a time. The consistency of model fit parameters 

and prevalence of resulting class memberships were then examined across these analyses. 

Results demonstrated convergence across these separate supplementary analyses, which reflect 

highly similar model fit and class memberships to the full sample (Supplemental Table 4-8), 

demonstrating internal consistency of the selected latent profile 4-class model. Resulting profile 

membership of the 4-class model was extracted for additional analysis.  

 

4.5.5 Neuroimaging data acquisition and preprocessing 

MRI data were acquired using a 3T GEDiscovery MR750 scanner with an 8-channel 

head coil. Head padding and instructions limited movement. T1-weighted gradient echo images 

were first captured (TR=12ms, TE=5ms, TI=500ms, flip angle=15°, FOV=26cm, slice 

thickness=1.44mm, 256x192 matrix, 110 slices). fMRI T2*-weighted blood oxygenation level 

dependent (BOLD) images were then captured using reverse spiral sequence (Glover & Law, 

2001) of 40 contiguous axial 3mm slices (TR = 2000ms, TE = 30ms, flip angle = 90°, FOV = 

22cm, voxel size = 3.44mm x 3.44mm x 3mm, ascending acquisition, parallel to AC-PC line).  
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Task-based functional neuroimaging (fMRI) data were collected using an event-related 

emotion (faces) task (see Supplemental Figure 4-2 for visual representation of task paradigm 

design). Participants were shown a series of emotional faces (Tottenham et al., 2009) and 

indicated if they were viewing a female or male face. Gender (female, male), race (European 

American, African American), and emotion (fearful, happy, sad, neutral, angry) of the actor were 

counterbalanced and randomly presented across 100 trials. Each trial consisted of a fixation cross 

(500ms) followed by 250ms of an emotional face, then 1500ms of blank screen during which 

participants are expected to respond using a button press. Functional data from each participant 

across all trials of the emotion task (without any contrasting across emotion conditions) were 

extracted for subsequent processing. Resting-state neuroimaging data were collected while 

participants were awake and passively viewing a fixation cross.  

Identical preprocessing steps were applied to both task-fMRI and resting-state fMRI data. 

Anatomical images were first skull-stripped (f=.25) using Brain Extraction Tool (BET) in FSL 

version 6.0 (Jenkinson et al., 2012) and segmented into gray matter, white matter, and 

cerebrospinal fluid using FSL FAST. After large temporal spikes in the k-space functional data 

(>2 SD) were removed, field maps were corrected and functional images were reconstructed 

using MATLAB. Noise from cardiac and respiratory motion were removed using RETROICOR 

and slice-timing correction using SPM8 (Wellcome Department of Cognitive Neurology, 

London, UK; http://www.fil.ion.ucl.ac.uk). Moreover, the first ten volumes of functional data 

were removed to ensure the stability of signal intensity. Following these steps, the functional 

data were further preprocessed using FSL fMRI Expert Analysis Tool (FEAT). Functional 

images were skull-stripped and spatially smoothed using FSL FMRIB’s Automated 

Segmentation Tool (Woolrich et al., 2001), and registered to subject-specific previously skull-
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stripped and segmented anatomical images. Motion correction was performed using MCFLIRT 

and spatial smoothing using a Gaussian kernel of FWHM 6.0mm was applied. Grand-mean 

intensity of the entire 4D dataset was normalized by a single multiplicative factor and FSL 

motion outliers were ran to extract framewise displacement motion parameters.(Power et al., 

2012) ICA-AROMA was used to remove motion-related artifacts in the data, nuisance signal 

derived from white matter and cerebrospinal fluid were regressed out, and data with signal below 

0.01Hz were then high-pass filtered. These preprocessing steps were applied using detailed 

scripts (Beltz et al., 2019) similar to prior work (Goetschius, Hein, McLanahan, et al., 2020; 

Hardi, Goetschius, McLoyd, et al., 2023).  

  

4.5.6 Functional connectivity across neural networks estimation 

4.5.6.1 ROI selection and data extraction 

The present investigation focused on eighteen bilateral regions that represent the tripartite 

network (Menon, 2011): Default Mode Network (DMN), Salience Network (SN), 

Frontopariental Network (FPN) (Supplemental Table 4-3). The DMN extends across the lateral 

parietal, posterior cingulate, and medial temporal cortices (Raichle, 2015). It is often linked to 

introspective self-referential mental processes, and is conventionally believed to deactivate 

during task engagement (Raichle et al., 2001). The SN includes the anterior insula, cingulate 

cortex, and amygdala, and plays a central role in detecting important environmental cues (Seeley, 

2019) and facilitating bottom-up signals to other networks (Menon, 2011). The FPN, which 

encompasses the inferior lobule, dorsolateral prefrontal, and posterior parietal cortices, is 

implicated in cognitive control and goal-directed processes (Zanto & Gazzaley, 2013). 
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Consistent with our previous investigations (Goetschius, Hein, McLanahan, et al., 2020; 

Hardi, Goetschius, McLoyd, et al., 2023), ROI coordinates were extracted from NeuroSynth 

(Yarkoni et al., 2011), a meta-analytic tool that combines results from published neuroimaging 

articles using an automated parser. Specific ROI names (i.e., “Default Mode”, “Salience”, 

“Frontoparietal”) were used as keywords to search for peak activity on the NeuroSynth website 

and corresponding association maps were then downloaded. Voxel coordinates from downloaded 

images were subsequently extracted using FSL and then utilized to create an ROI 6.5mm-

diameter sphere using fslmaths (Goetschius, Hein, McLanahan, et al., 2020). The ROIs for DMN 

and SN in this study were consistent with a previous investigation (Goetschius, Hein, 

McLanahan, et al., 2020), and three additional nodes were selected to represent the FPN.  

 

4.5.6.2 Confirmatory Subgrouping Group Iterated Multiple Model Estimation (GIMME) 

Confirmatory Subgrouping GIMME (Henry et al., 2019) is an extension of GIMME 

(Gates & Molenaar, 2012), a functional connectivity analysis method that iteratively fits unified 

structural equation models to arrive at person-specific networks that contain group-, subgroup-, 

and individual-level connections. GIMME estimates both directed contemporaneous (occurring 

at the same time or functional volume) and lagged (occurring at a different time or functional 

volume) connections among a priori regions of interests (ROIs). GIMME has been validated in 

multiple largescale simulations, outperformed 38 other commonly-used approaches in estimation 

connectivity maps among neural nodes (Gates & Molenaar, 2012), and has been discussed in 

over 400 scientific articles (Beltz & Gates, 2017; Gates & Molenaar, 2012). GIMME begins 

search for group model with autoregressive paths freed for estimation. GIMME first estimates 

connections among preselected brain ROIs that pertain to at least 75% of the entire sample if the 
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connections significantly improve individual model fit (as assessed by Lagrange Multiplier tests) 

(Gates et al., 2010). In the Confirmatory Subgrouping extension (Henry et al., 2019), subgroup-

specific connections are then estimated for individuals in each prespecified subgroup if the 

connections significantly improve model fit for at least 51% of individuals within each subgroup. 

Finally, individual-level connections that are specific to each person in the sample are estimated 

until the connectivity model fits the observed data for each individual well, according to 

traditional model fit indices. Contemporaneous connections estimated using GIMME were then 

extracted for subsequent analyses, consistent with previous investigations (Goetschius, Hein, 

McLanahan, et al., 2020; Hardi, Goetschius, McLoyd, et al., 2023).  

 

4.5.7 Analyses comparing functional connectivity networks during emotion task vs non-task  

There were differential patterns of resting-state network connectivity among adversity 

profiles compared to task-based network connectivity (Supplemental Table 4-17). Repeated 

measures ANOVAs were conducted with Greenhouse–Geisser correction to examine the 

differences between scan type (task vs. rest) in predicting network density (DMN, SN, FPN). 

Results demonstrated that task-based network connectivity significantly differed from network 

connectivity during the resting-state (Supplemental Table 4-17). Results from repeated-measure 

ANOVA comparing task-based from resting-state network connectivity found differences 

between scan type and by profiles (Supplemental Table 4-17). In particular, there were 

significant differences between scan type within person for overall network density 

(F(1,150)=0.78, ges=.092, p<.001) and SN density (F(1,150)=9.71, ges=.026, p=.001). 

Moreover, there were significant scan type by profiles differences. Specifically, there were 

differences between task-based and resting-state data network connectivity in the DMN for low 
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and medium-adversity profiles (F(3,150)=7.52, ges=0.63, p<.001); SN for maternal depression 

and high-adversity profiles (F(3,150)=5.22, ges=0.42, p=.001); and FPN for low-adversity and 

high-adversity profiles (F(3,150)=16.56, ges=.133, p<.001) (Supplemental Table 4-17).  

 

4.5.8 Exploratory analysis examining differences among adversity profiles, stratified by sex 

In exploratory analyses, sex was accounted for as a biological variable by separately examining 

the mean differences in mental health outcomes and metrics of functional connectivity networks 

among adversity profiles for males and females. Sex was mother-reported at child birth (baseline 

wave) as “Male” or “Female”. For youth internalizing and externalizing outcomes, similar 

patterns to the analysis with the entire sample were observed. Youth internalizing and 

externalizing outcomes increased from Low-adversity to Medium-adversity, MD, High-adversity 

profiles. For females, internalizing and externalizing symptoms do not differ between the MD 

and High-adversity profiles; whereas for males, internalizing and externalizing symptoms do not 

differ between the Medium-adversity and the MD profiles (Supplemental Figure 4-8; 

Supplemental Table 4-18). There were no notable sex differences between males and females 

groups in stratified analyses examining mean difference in brain network metrics (Supplemental 

Table 4-19).  
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Supplemental Table 4-1. Statistical comparison between the full FFCWS and included samples 
 

FFCWS sample (n = 4,898) Included sample (n = 4,210) Test 

Ethno-
racial 
identity 
No. (%)  

Black non-Hispanic = 1,601 (33%) 
White non-Hispanic = 590 (12%) 
Hispanic = 813 (17%) 
Other/multi = 261 (5%) 
Unknown = 1,633 (33%) 

 Black non-Hispanic = 1,485 (35%) 
 White non-Hispanic = 551 (13%) 
 Hispanic = 759 (18%) 
 Other/multi = 236 (6%) 
 Unknown = 1,179 (28%) 

c(3) = 
0.109,  
p = .991 

Child 
sex  
No. (%) 

Female = 2,568 (52%) 
Male = 2,329 (48%) 
Unknown = 1 (0.02%) 

 Female = 1,999 (48%) 
 Male = 2,211 (53%) 
 

c(1) = 
.003,  
p = .958 

Parental 
marital 
status 
No. (%) 

Married = 1,187 (24%) 
Unmarried = 3,710 (76%) 
Unknown = 1 (0.02%) 

 Married = 1,068 (25%) 
 Unmarried = 3,142 (75%) 

c(1) = 
1.488,  
p=.222 

Poverty 
ratio  
M (SD) 

2.22 (2.41)  2.30 (2.47) t(8838.4) 
= -1.589,  
p=.112 

Child 
birth 
city 
No. (%) 

Oakland, CA = 330 (7%) 
Austin, TX = 326 (7%) 
Baltimore, MD = 338 (9%) 
Detroit, MI = 327 (7%) 
Newark, NJ = 342 (7%) 
Philadelphia, PA = 337 (7%) 
Richmond, VA = 327 (7%) 
Corpus Christi, TX = 331 (7%) 
Indianapolis, IN = 325 (7%) 
Milwaukee, WI = 348 (7%) 
New York, NY = 384 (8%) 
San Jose, CA = 326 (7%) 
Boston, MA = 99 (2%) 
Nashville, TN = 102 (2 %) 
Chicago, IL = 155 (3%) 
Jacksonville, FL = 100 (2%) 
Toledo, OH = 101 (2%) 
San Antonio, TX = 100 (2%) 
Pittsburgh, PA = 100 (2%)  
Norfolk, VA = 99 (2%) 
Unknown = 1 (0.02%) 

 Oakland, CA = 281 (7%) 
 Austin, TX = 282 (7%) 
 Baltimore, MD = 294 (7%) 
 Detroit, MI = 283 (7%) 
 Newark, NJ = 274 (7%) 
 Philadelphia, PA = 300 (7%) 
 Richmond, VA = 267 (6%) 
 Corpus Christi, TX = 296 (7%) 
 Indianapolis, IN = 286 (7%) 
 Milwaukee, WI = 312 (7%) 
 New York, NY = 312 (7%) 
 San Jose, CA = 270 (6%) 
 Boston, MA = 90 (2%) 
 Nashville, TN = 86 (2%) 
 Chicago, IL = 136 (3%) 
 Jacksonville, FL = 88 (2%) 
 Toledo, OH = 89 (2%) 
 San Antonio, TX = 88 (2%) 
 Pittsburgh, PA = 91 (2%) 
 Norfolk, VA = 85 (2%) 

c(19) = 
3.187,  
p = 1.00 

Note. Unknown group was omitted in chi-square estimation; Poverty ratio represents a ratio of 
total household income to the official poverty threshold and higher values represent higher 
socioeconomic status, and was measured at baseline (child birth).  
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Supplemental Table 4-2. Descriptives and statistical comparison between included and 
neuroimaging samples 

 
Included FFCWS sample  
(n = 4,210)  

 Neuroimaging subsample  
 (n = 167)  

Compa 
rison 

Ethno-
racial 
identity 
No. (%) 

 Black non-Hispanic = 1,485 (35%) 
 White non-Hispanic = 551 (13%) 
 Hispanic = 759 (18%) 
 Other/multi = 236 (6%) 
Unknown = 1,179 (28%) 

 Black non-Hispanic = 128 (77 %) 
 White non-Hispanic = 20 (12%) 
 Hispanic = 11 (7%) 
 Other/multi = 8 (5%) 

c(3) = 
51.66,  
p < .001 

Child 
sex 
No. (%) 

 Male = 2,211 (53%) 
Female = 1,999 (48%) 

 Male = 76 (46%) 
 Female = 91 (55%) 

 

c(1) = 
2.89,  
p = .09 

Parental 
marital 
status 
No. (%) 

 Married = 1,068 (25%) 
 Unmarried = 3,142 (75%) 

 Married = 37 (22%) 
 Unmarried = 130 (78%) 

c(1) = 
0.72,  
p = .40 

Poverty 
ratio 
M (SD) 

 2.30 (2.47)  2.11 (2.31) t(181.31) 
= 1.07,  
p = .28 

Child 
birth 
city 
No. (%) 

 Oakland, CA = 281 (7%) 
 Austin, TX = 282 (7%) 
 Baltimore, MD = 294 (7%) 
 Detroit, MI = 283 (7%) 
 Newark, NJ = 274 (7%) 
 Philadelphia, PA = 300 (7%) 
 Richmond, VA = 267 (6%) 
 Corpus Christi, TX = 296 (7%) 
 Indianapolis, IN = 286 (7%) 
 Milwaukee, WI = 312 (7%) 
 New York, NY = 312 (7%) 
 San Jose, CA = 270 (6%) 
 Boston, MA = 90 (2%) 
 Nashville, TN = 86 (2%) 
 Chicago, IL = 136 (3%) 
 Jacksonville, FL = 88 (2%) 
 Toledo, OH = 89 (2%) 
 San Antonio, TX = 88 (2%) 
 Pittsburgh, PA = 91 (2%) 
 Norfolk, VA = 85 (2%) 

 Baltimore = 1 (0.6%) 
 Detroit = 113 (68%) 
 Indianapolis = 2 (1%) 
 Chicago = 24 (14%) 
 Toledo = 26 (16%) 
 Pittsburgh = 1 (0.6%) 

c(5) = 
193.52,  
p < .001 

Note. Unknown group was omitted in chi-square estimation; Poverty ratio represents a ratio of total 
household income to the official poverty threshold and higher values represent higher socioeconomic 
status, and was measured at baseline (child birth); Only the six birth cities in the neuroimaging 
subsample were included in chi-square estimation.  
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Supplemental Table 4-3. MNI coordinates of neural Regions of Interest (ROIs)  

Default Mode Network (DMN) 
DMN_1 R. Inferior Parietal Lobule  46 -52 48 
DMN_2 L. Inferior Parietal Lobule  -42 -52 48 
DMN_3 R. Posterior Cingulate Cortex 8 -52 28 
DMN_4 L. Posterior Cingulate Cortex -4 -52 28 
DMN_5 R. Medial Temporal Gyrus 58 -16 20 
DMN_6 L. Medial Temporal Gyrus -62 -26 -18 
Salience Network (SN) 
SN_1 R. Insula 36 20 -4  
SN_2 L. Insula -34 20 -4 
SN_3 R. Amygdala 24 -2 -16 
SN_4 L. Amygdala -24 -6 -16 
SN_5 R. Dorsal Anterior Cingulate Cortex 4 26 28 
SN_6 L. Dorsal Anterior Cingulate Cortex 0 46 6 
Fronto Parietal Network (FPN) 
FPN_1 R. Dorsolateral Prefrontal Cortex 38 26 34 
FPN_2 L. Dorsolateral Prefrontal Cortex -44 28 32 
FPN_3 R. Anterior Inferior Parietal Lobule 26 4 50 
FPN_4 L. Anterior Inferior Parietal Lobule -14 8 50 
FPN_5 R. Posterior Parietal Cortex 18 -66 50 
FPN_6 L. Posterior Parietal Cortex -14 -66 52 

 
 
Supplemental Table 4-4. Zero-order correlations of adversity variables  

Variables (avg. 0-9yo) 1 2 3 4 5 6 7 8 9 
1. Physical abuse                   
2. Emotional abuse  .64**                 
3. Neglect .27** .22**               
5. Maternal depression .22** .13** .19**             
4. Intimate partner 

violence .10** .05* .14** .19**           

6. Parental stress .23** .18** .24** .26** .15**         
7. Residential moves .14** .12** .09** .20** .06** .08**       
8. Lack of community 

cohesion .22** .16** .14** .19** .14** .19** .14**     

9. Lack of community 
control .09** .09** .12** .09** .13** .14** .11** .56**   

10. Neighborhood 
violence .18** .14** .13** .15** .07** .13** .08** .31** .15** 

Note. * indicates p < .05. ** indicates p < .01. 
 
 
 



 132 

Supplemental Table 4-5. Model fit indices between latent profile classes 

Model 
Log-likelihood 
(LL) (df) 

% reduction 
in LL  AIC BIC ABIC Entropy 

2-class -45462.39 (32) NA 90988.77 91191.82 91090.14 0.78 
3-class -44309.84 (44) 2.54*** 88707.68 88986.87 88847.06 0.76 
4-class -43538.83 (56) 1.74*** 87189.66 87544.99 87367.05 0.82 
5-class -43033.89 (68) 1.16*** 86203.79 86635.26 86419.19 0.79 
6-class -48469.01 (80) -12.63 97098.02 97605.64 97351.43 0.78 

Note. ***p<.001 in likelihood ratio test. AIC indicates Akaike Information Criteria. BIC indicates 
Bayesian Information Criteria. ABIC indicates adjusted BIC. 
 

Supplemental Table 4-6. Average posterior probabilities of assigned profile membership (4-
class model) 

Class 
membership 

Probability of being assigned to latent profile Descriptive 
Class 1 Class 2 Class 3 Class 4 Range % <.70  

1 .87 .13 .00 .00 .43 – 1.00 4 % 
2 .06 .91 .01 .02 .50 – 1.00 5 % 
3 .00 .02 .92 .06 .42 – 1.00 1 % 
4 .00 .05 .03 .92 .47 – 1.00 1 % 

Note. High classification quality is determined by high diagonal average posterior probabilities values 
(as close to 1; in bold) and low off-diagonal values (as close to 0; in italics) (Muthén & Muthén, 2000). 
Range indicates the range of posterior probabilities within the specific class. % <.70 indicates the sample 
proportion with posterior probability of less than .70 with the specific class membership. 
 
 
Supplemental Table 4-7. Average posterior probabilities of the 3-class and 5-class models 

Class 
membership 

Probability of latent profile assignment Descriptive 
Class 1 Class 2 Class 3 Range % <.70  

1 .87 .13 .00 .43 – 1.00 5 % 
2 .06 .90 .05 .46 – 1.00 6 % 
3 .00 .09 .91 .50 – 1.00 2 % 

 
Class 
membership 

Probability of latent profile assignment Descriptive 
Class 1 Class 2 Class 3 Class 4 Class 5 Range % < .70  

1 .82 .12 .06 .00 .00 .35 – 1.00  5 % 
2 .10 .77 .13 .00 .00 .36 – 1.00 8 % 
3 .02 .05 .89 .01 .02 .33 – 1.00 5 % 
4 .00 .00 .03 .93 .05 .48 – 1.00 1 % 
5 .00 .00 .05 .04 .92 .49 – 1.00 0.9 % 

Note. High classification quality is determined by high diagonal average posterior probabilities values 
(as close to 1; in bold) and low off-diagonal values (as close to 0; in italics) (Muthén & Muthén, 2000). 
Range indicates the range of posterior probabilities within the specific class. % <.70 indicates the sample 
proportion with posterior probability of less than .70 with the specific class membership. 
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Supplemental Table 4-8. Supplementary latent profile analyses (4-class model) leaving one site out  

 

 

N AIC BIC ABIC Entropy 
Low-

adversity  
No. (%) 

Medium-
adversity  
No. (%) 

Maternal 
Depression 

No. (%) 

High-
adversity  
No. (%) 

All sites 4210 87189.66 87544.99 87367.05 0.82 1230 (29%) 1230 (47%) 550 (13%) 457 (11%) 
Site 1 out 3929 81222.94 81574.40 81396.46 0.82 1204 (31%) 1204 (46%) 507 (13%) 401 (10%) 
Site 2 out 3928 81504.20 81855.65 81677.71 0.82 1182 (30%) 1182 (46%) 505 (13%) 423 (11%) 
Site 3 out 3916 80857.59 81208.87 81030.93 0.82 1167 (30%) 1167 (46%) 522 (13%) 424 (11%) 
Site 4 out 3927 80808.92 81160.36 80982.42 0.82 1180 (30%) 1180 (46%) 504 (13%) 430 (11%) 
Site 5 out 3936 81203.29 81554.85 81376.91 0.82 1167 (30%) 1167 (46%) 513 (13%) 438 (11%) 
Site 6 out 3910 80574.01 80925.20 80747.26 0.82 1160 (30%) 1160 (47%) 495 (13%) 427 (11%) 
Site 7 out 3943 81422.73 81774.40 81596.45 0.82 1147 (29%) 1147 (47%) 512 (13%) 422 (11%) 
Site 8 out 3914 81318.65 81669.90 81491.96 0.82 1115 (28%) 1115 (47%) 517 (13%) 429 (11%) 
Site 9 out 3924 81173.05 81524.44 81346.50 0.82 1169 (30%) 1169 (47%) 517 (13%) 407 (10%) 
Site 10 out 3898 80571.40 80922.42 80744.47 0.82 1145 (29%) 1145 (47%) 500 (13%) 415 (11%) 
Site 11 out 3898 81485.90 81836.92 81658.97 0.82 1092 (28%) 1092 (47%) 520 (13%) 443 (11%) 
Site 12 out 3940 81872.98 82224.60 82046.66 0.82 1179 (30%) 1179 (46%) 531 (13%) 414 (11%) 
Site 13 out 4120 85330.99 85685.11 85507.17 0.82 1197 (29%) 1197 (47%) 537 (13%) 443 (11%) 
Site 14 out 4124 85470.72 85824.90 85646.96 0.82 1198 (29%) 1198 (47%) 524 (13%) 460 (11%) 
Site 15 out 4074 84521.67 84875.16 84697.22 0.82 1199 (29%) 1199 (46%) 542 (13%) 443 (11%) 
Site 16 out 4122 85385.23 85739.38 85561.44 0.82 1204 (29%) 1204 (47%) 539 (13%) 442 (11%) 
Site 17 out 4121 85481.38 85835.52 85657.57 0.82 1214 (29%) 1214 (47%) 537 (13%) 450 (11%) 
Site 18 out 4122 85403.94 85758.09 85580.15 0.82 1150 (28%) 1150 (48%) 528 (13%) 467 (11%) 
Site 19 out 4119 85515.74 85869.84 85691.90 0.82 1191 (29%) 1191 (47%) 534 (13%) 456 (11%) 
Site 20 out 4125 85416.84 85771.03 85593.08 0.82 1206 (29%) 1206 (47%) 534 (13%) 454 (11%) 
Note. AIC indicates Akaike Information Criteria. BIC indicates Bayesian Information Criteria. ABIC indicates adjusted BIC. 
A list of each site is available on Supplemental Table 4-1 and Supplemental Table 4-2. 
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Supplemental Table 4-9. Descriptives of each adversity latent profile in the neuroimaging 
subsample (N=167) 

 Low-
adversity 
(n=38) 

Medium-
adversity 
(n=83) 

Maternal 
Depression 
(n=22) 

High-
adversity 
(n=24) 

Statistical 
test 

Ethnoracial identity, No. (%)  
   Black (non- 
   Hispanic) 

24 (63.2)  66 (79.5) 18 (81.8) 20 (83.3) c(3) = 
5.17,  
p = .16    White (non- 

   Hispanic) 
8 (21.1) 8 (9.6) 3 (13.6) 1 (4.2) 

   Hispanic 3 (7.9) 8 (9.6)  0 (0) 0 (0) 
   Other/multi 3 (7.9) 1 (1.2) 1 (4.6) 3 (12.5) 
Sex at birth, No. (%)  
   Female 26 (68.4) 43 (51.8) 9 (40.9) 13 (54.2) c(3) = 

4.85,  
p = .18 

   Male 12 (31.6) 40 (48.2) 13 (59.1) 11 (45.8) 

Parental marital status, No. (%)  
   Married 13 (34.2) 16 (19.3) 6 (27.3) 2 (8.3) c(3) = 

6.59,  
p = .09 

   Unmarried 25 (65.8) 67 (80.7) 16 (72.7) 22 (91.7) 

Poverty ratio 
M (SD) 

3.33 (3.19) 1.93 (2.03) 1.84 (1.69) 1.04 (1.07) F(3,163) = 
5.97,  
p < .001 

Note. Chi-square test for ethnoracial identity was conducted using two groups (Black vs non). 
 
 

Supplemental Table 4-10. Mean and standard deviation of adversity for each profile (N=4210) 

Indicators Low-
adversity  
M (SD) 

Medium-
adversity 
M (SD) 

Maternal 
depression 
M (SD) 

High-
adversity 
M (SD) 

F value 

Emotional abuse 0.69 (0.29)  0.97 (0.37) 1.04 (0.34) 1.11 (0.43) 169.2*** 
Physical abuse 0.58 (0.38) 0.94 (0.51) 0.98 (0.49) 1.02 (0.58) 124.4*** 
Neglect 0.09 (0.27) 0.39 (0.41) 0.47 (0.69) 0.58 (1.74) 313*** 
Maternal 
depression 

0.04 (0.16) 0.27 (0.38) 2.11 (0.59) 1.12 (1.03) 2675*** 

Intimate partner 
violence 

0.05 (0.16) 0.31 (0.51) 0.33 (0.51) 1.96 (1.83) 666.9*** 

Parental stress 0.67 (0.30) 0.95 (0.42) 1.08 (0.40) 1.13 (0.48) 242.1*** 
Residential moves 0.48 (0.40) 0.78 (0.62) 0.91 (0.71) 1.09 (1.05) 127*** 
Lack of social 
cohesion 

0.55 (0.30) 0.99 (0.41) 0.98 (0.43) 1.20 (0.50) 347.4*** 

Lack of social 
control 

0.41 (0.34) 0.95 (0.59) 0.83 (0.57) 1.09 (0.73) 236.6*** 
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Neighborhood 
violence 

0.11 (0.23) 0.52 (0.65) 0.51 (0.62) 1.60 (1.57) 341.9*** 

Note. Mean and standard deviation above are based on standardized values. ***p < .001. 
 

Supplemental Table 4-11. Mean and standard deviation of adversity in the neuroimaging 
subsample (N=167) 

Indicators Low-
adversity  
M (SD) 

Medium-
adversity 
M (SD) 

Maternal 
depression 
M (SD) 

High-
adversity 
M (SD) 

F value 

Emotional abuse 0.67 (0.20) 0.93 (0.34) 1.06 (0.29) 1.22 (0.35) 15.6*** 
Physical abuse 0.60 (0.29) 0.92 (0.43) 0.99 (0.38) 1.17 (0.42) 10.1*** 
Neglect 0.02 (0.11) 0.26 (0.44) 0.5 (0.55) 1.73 (1.71) 27.55*** 
Maternal 
depression 0.02 (0.11) 0.28 (0.37) 1.85 (0.55) 1.40 (0.9) 

104*** 

Intimate partner 
violence 0.07 (0.22) 0.34 (0.60) 0.55 (0.76) 1.46 (1.62) 

13.69*** 

Parental stress 0.68 (0.28) 0.87 (0.41) 1.04 (0.40) 1.27 (0.35) 13.39*** 
Residential moves 0.42 (0.36) 0.72 (0.56) 0.89 (0.67) 1.25 (0.97) 9.59*** 
Lack of social 
cohesion 0.58 (0.32) 0.95 (0.37) 0.91 (0.36) 1.29 (0.41) 

18.21*** 

Lack of social 
control 0.40 (0.32) 0.82 (0.57) 0.85 (0.49) 1.29 (0.77) 

11.98*** 

Neighborhood 
violence 0.14 (0.22) 0.62 (0.62) 0.40 (0.54) 1.70 (0.996) 

30.4*** 

Note. Mean and standard deviation above are based on standardized values. ***p < .001. 
 
 
Supplemental Table 4-12. Pairwise test comparing adversity levels among latent profiles  

 Pairwise 
contrast 

Mean 
difference 

95% CI 
Lower bound 

95% CI 
Upper bound 

padjust 

Emotional 
abuse 

Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.278 
0.348 
0.419 
0.070 
0.141 
0.072 

0.238 
0.293 
0.360 
0.020 
0.086 
0.004 

0.318 
0.403 
0.479 
0.120 
0.197 
0.139 

<.001 
<.001 
<.001 
.002 
<.001 
.031 

Physical abuse Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.359 
0.398 
0.444 
0.039 
0.085 
0.046 

0.305 
0.323 
0.363 
-0.030 
0.009 
-0.046 

0.413 
0.473 
0.526 
0.108 
0.161 
0.138 

<.001 
<.001 
<.001 
.469 
.020 
.566 

Neglect Med – Low 
MD – Low 

0.300 
0.380 

0.213 
0.260 

0.387 
0.500 

<.001 
<.001 
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High – Low 
MD – Med 
High – Med 
High – MD 

1.52 
0.080 
1.220 
1.141 

1.391 
-0.030 
1.100 
0.995 

1.650 
0.189 
1.340 
1.287 

<.001 
.245 
<.001 
<.001 

Maternal 
depression 

Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.235 
2.077 
1.082 
1.841 
0.847 
-0.995 

0.189 
2.011 
1.012 
1.780 
0.781 
-1.075 

0.282 
2.142 
1.152 
1.903 
0.913 
-0.914 

<.001 
<.001 
<.001 
<.001 
<.001 
<.001 

Intimate partner 
violence 

Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.266 
0.283 
1.909 
0.017 
1.645 
1.626 

0.192 
0.174 
1.797 
-0.086 
1.537 
1.493 

0.340 
0.392 
2.022 
0.120 
1.751 
1.760 

<.001 
<.001 
<.001 
.974 
<.001 
<.001 

Parental stress Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.284 
0.408 
0.462 
0.124 
0.178 
0.054 

0.247 
0.356 
0.407 
0.076 
0.126 
-0.010 

0.321 
0.460 
0.518 
0.173 
0.231 
0.118 

<.001 
<.001 
<.001 
<.001 
<.001 
.136 

Residential 
moves 

Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.295 
0.425 
0.612 
0.131 
0.317 
0.187 

0.235 
0.341 
0.522 
0.051 
0.232 
0.082 

0.355 
0.510 
0.703 
0.210 
0.403 
0.291 

<.001 
<.001 
<.001 
<.001 
<.001 
<.001 

Lack of social 
cohesion 

Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.442 
0.425 
0.647 
-0.017 
0.205 
0.222 

0.400 
0.367 
0.584 
-0.037 
0.146 
0.150 

0.483 
0.483 
0.710 
0.071 
0.264 
0.294 

<.001 
<.001 
<.001 
.852 
<.001 
<.001 

Lack of social 
control 

Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.538 
0.420 
0.687 
-0.119 
0.148 
0.267 

0.481 
0.339 
0.600 
-0.193 
0.067 
0.168 

0.595 
0.500 
0.773 
-0.044 
0.230 
0.366 

<.001 
<.001 
<.001 
<.001 
<.001 
<.001 

Neighborhood 
violence 

Med – Low 
MD – Low 
High – Low 
MD – Med 
High – Med 
High – MD 

0.408 
0.397 
1.490 
-0.011 
1.093 
1.082 

0.328 
0.285 
1.370 
-0.091 
0.971 
0.958 

0.489 
0.508 
1.610 
0.114 
1.193 
1.229 

<.001 
<.001 
<.001 
.992 
<.001 
<.001 
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Supplemental Table 4-13. Comparison of youth internalizing and externalizing among 
adversity profiles  

Internalizing 
  95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.188 0.104 0.272 <.001 
MD – Low 0.348 0.231 0.466 <.001 
High – Low  0.462 0.336 0.589 <.001 
Med – MD  -0.160 -0.269 -0.051 .001 
High – Med 0.274 0.155 0.393 <.001 
High – MD  0.114 -0.030 0.259 .177 

 
Externalizing 
  95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.247 0.175 0.319 <.001 
MD – Low 0.370 0.269 0.471 <.001 
High – Low  0.496 0.387 0.605 <.001 
Med – MD  -0.123 -0.217 -0.029 .004 
High – Med  0.249 0.147 0.351 <.001 
High – MD 0.126 0.002 0.250 .046 

 
 
Supplemental Table 4-14. Comparison of youth internalizing and externalizing among 
adversity profiles, adjusting for covariates 

Pairwise test  95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.196 0.107 0.285 <.001 
MD – Low 0.351 0.227 0.474 <.001 
High – Low  0.462 0.327 0.597 <.001 

Internalizing  
df Sum Sq Mean Sq F value p value 

Adversity profiles 3 64.6 21.520 33.857 <.001 
White non-Hispanic 1 4.3 4.273 6.722 .010 
Hispanic 1 7.4 7.422 11.677 <.001 
Other/multi 1 3.0 3.000 4.719 .030 
Parental marital status 1 4.8 4.783 7.525 .006 
Poverty ratio 1 0.5 0.538 0.846 .358 
Residuals 3022 1920.8 0.636   
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Med – MD  -0.155 -0.270 -0.040 .003 
High – Med  0.266 0.140 0.393 <.001 
High – MD 0.112 -0.042 0.265 .241 

 
 

 
Pairwise test  95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.251 0.176 0.326 <.001 
MD – Low 0.365 0.261 0.469 <.001 
High – Low  0.498 0.385 0.612 <.001 
Med – MD  -0.114 -0.211 -0.017 .013 
High – Med  0.247 0.141 0.354 <.001 
High – MD 0.133 0.005 0.262 .039 

 
 
Supplemental Table 4-15. Comparison of functional connectivity density among adversity 
profiles 

Overall Network Density 
 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -2.373 -5.608 0.863 .231 
MD – Low -1.450 -5.875 2.975 .830 
High – Low  5.868 1.562 10.175 .003 
Med – MD  -0.923 -4.884 3.038 .930 
High – Med  8.241 4.413 12.069 <.001 
High – MD 7.318 2.443 12.194 <.001 

 
 
DMN Density 
 95% confidence interval  

Externalizing  
df Sum Sq Mean Sq F value p value 

Adversity profiles 3 75.3 25.114 55.884 <.001 
White non-Hispanic 1 1.4 1.366 3.040 .081 
Hispanic 1 2.6 2.612 5.812 .016 
Other/multi 1 0.9 0.855 1.903 .168 
Parental marital status 1 22.4 22.387 49.816 <.001 
Poverty ratio 1 10.8 10.773 23.972 <.001 
Residuals 3021 1357.6 0.449 
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Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -0.005 -0.019 0.008 .724 
MD – Low 0.019 0.0002 0.037 .046 
High – Low  0.026 0.007 0.044 .002 
Med – MD  -0.024 -0.041 -0.008 .001 
High – Med  0.031 0.015 0.047 <.001 
High – MD 0.007 -0.014 0.027 .834 

 
 
SN Density 
 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -0.005 -0.018 0.007 .672 
MD – Low -0.010 -0.027 0.008 .496 
High – Low  -0.020 -0.037 -0.003 .017 
Med – MD  0.004 -0.012 0.020 .906 
High – Med  -0.014 -0.030 0.001 .075 
High – MD -0.010 -0.030 0.009 .527 

 
 
FPN Density 
 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.016 0.002 0.030 .015 
MD – Low 0.005 -0.014 0.024 .903 
High – Low  0.052 0.033 0.070 <.001 
Med – MD  0.011 -0.006 0.028 .326 
High – Med  0.036 0.019 0.052 <.001 
High – MD 0.047 0.026 0.068 <.001 

 
 
Supplemental Table 4-16. Comparison of functional connectivity density among profiles, 
adjusting for covariates 

Overall Network Density  
df Sum Sq Mean Sq F value p value 

Adversity profiles 3 1294 431.2 12.637 <.001 
White non-Hispanic 1 45 45.3 1.328 .251 
Hispanic 1 64 64.2 1.882 .172 
Other/multi 1 0 0.1 0.002 .964 
Parental marital status 1 87 86.9 2.545 .113 
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Pairwise test  95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -2.373 -5.344 0.599 .166 
MD – Low -1.450 -5.514 2.614 .791 
High – Low  5.868 1.913 9.824 .001 
Med – MD  -0.923 -4.560 2.715 .912 
High – Med  8.241 4.725 11.757 <.001 
High – MD 7.318 2.841 11.796 <.001 

 
 

 
Pairwise test  95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -0.005 0.019 0.008 .723 
MD – Low 0.019 0.0002 0.037 .046 
High – Low  0.026 0.007 0.044 .002 
Med – MD  -0.024 -0.041 -0.008 .001 
High – Med  0.031 0.015 0.047 <.001 
High – MD 0.006 -0.014 0.027 .833 

 
SN Density  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 0.006 0.002 3.241 .024 

Poverty ratio 1 135 144.9 4.245 .041 
Age during 
neuroimaging scan 

1 4 4.2 0.124 .725 

Framewise displacement 1 932 931.7 27.303 <.001 
Residuals 156 5323 34.1   

DMN Density  
df Sum Sq Mean Sq F value p value 

Adversity profiles 3 0.024 0.008 11.178 <.001 
White non-Hispanic 1 0.004 0.004 5.993 .016 
Hispanic 1 0.000 0.000 0.027 .870 
Other/multi 1 0.000 0.000 0.263 .609 
Parental marital status 1 0.000 0.000 0.238 .627 
Poverty ratio 1 0.000 0.000 0.095 .759 
Age during 
neuroimaging scan 

1 0.000 0.001 0.964 .328 

Framewise displacement 1 0.000 0.000 0.001 .970 
Residuals 156 0.112 0.001   
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White non-Hispanic 1 0.000 0.000 0.159 .691 
Hispanic 1 0.002 0.002 3.702 .056 
Other/multi 1 0.001 0.001 1.218 .271 
Parental marital status 1 0.001 0.001 1.92 .168 
Poverty ratio 1 0.002 0.002 3.288 .072 
Age during 
neuroimaging scan 

1 0.000 0.000 0.11 .740 

Framewise displacement 1 0.001 0.001 0.868 .353 
Residuals 156 0.098 0.001   
 
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -0.005 -0.018 0.007 .683 
MD – Low -0.010 -0.027 0.008 .485 
High – Low  -0.020 -0.037 -0.003 .015 
Med – MD  0.004 -0.012 0.020 .902 
High – Med  -0.014 -0.029 0.001 .070 
High – MD -0.010 -0.029 0.009 .516 

 
FPN Density  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 0.043 0.014 18.897 <.001 
White non-Hispanic 1 0.000 0.000 0.311 .578 
Hispanic 1 0.002 0.002 3.246 .073 
Other/multi 1 0.000 0.000 0.076 .782 
Parental marital status 1 0.000 0.000 0.251 .617 
Poverty ratio 1 0.000 0.000 0.053 .817 
Age during neuroimaging 
scan 

1 0.000 0.000 0.373 .542 

Framewise displacement 1 0.002 0.002 2.124 .147 
Residuals 156 0.119 0.001   
 
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.016 0.002 0.030 .016 
MD – Low 0.005 -0.014 0.024 .903 
High – Low  0.052 0.033 0.070 <.001 
Med – MD  0.011 -0.006 0.028 .327 
High – Med  0.036 0.019 0.052 <.001 
High – MD 0.047 0.026 0.068 <.001 
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Supplemental Table 4-17. Comparison of network connectivity metrics estimated using 
neuroimaging data during emotional faces task vs resting state data 

Overall density df SSn SSd F ges p value 
Between groups 3, 150 2138.24 7609.44 14.05 .136 <.001 
Within (scan type) 1, 150 1372.49 6001.06 34.31 .092 <.001 
Between:Within 3, 150 93.50 6001.06 0.78 .007 .507 

 
DMN density 
 df SSn SSd F ges p value 
Between groups 3, 150 0.01 0.12 5.81 .061 <.001 
Within (scan type) 1, 150 0.00 0.09 0.03 <.001 .857 
Between:Within 3, 150 0.01 0.09 7.52 .063 <.001 

Task – Rest pairwise test 
Profile Estimate SE df t Adjusted p 
Low-adversity 0.014 0.006 150 2.329 .021 
Medium-adversity -0.014 0.004 150 -3.568 .001 
Maternal Depression  0.014 0.008 150 1.891 .061 
High-adversity -0.012 0.007 150 -1.614 .109 

 
SN density df SSn SSd F ges p value 
Between groups 3, 150 0.01 0.12 3.71 .041 .013 
Within (scan type) 1, 150 0.01 0.09 9.71 .026 .002 
Between:Within 3, 150 0.01 0.09 5.22 .042 .002 

Task – Rest pairwise test 
Profile Estimate SE df t Adjusted p 
Low-adversity 0.008 0.006 150 1.364 .175 
Medium-adversity -0.005 0.004 150 -1.184 .238 
Maternal Depression  -0.027 0.007 150 -3.696 <.001 
High-adversity -0.015 0.007 150 -2.068 .040 

 
FPN density df SSn SSd F ges p value 
Between groups 3, 150 0.03 0.11 11.47 .109 <.001 
Within (scan type) 1, 150 0.00 0.10 0.26 <.001 .613 
Between:Within 3, 150 0.03 0.10 16.56 .133 <.001 

Task – Rest pairwise test 
Profile Estimate SE df t Adjusted p 
Low-adversity -0.034 0.006 150 -5.469 <.001 
Medium-adversity 0.006 0.004 150 1.447 .150 
Maternal Depression  0.003 0.008 150 0.378 .706 
High-adversity 0.032 0.008 150 4.194 <.001 
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Supplemental Table 4-18. Exploratory analysis comparing youth internalizing and externalizing 
among adversity profiles, stratified by sex 

Internalizing (Females) 
 df Sum Sq Mean Sq F value p value 
Adversity profiles 3 31.200 10.393 15.190 <.001 
Residuals 1589 1087.200 0.684   
 
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.183 0.058 0.309 .001 
MD – Low 0.385 0.206 0.565 <.001 
High – Low  0.402 0.206 0.597 <.001 
Med – MD  -0.202 -0.370 -0.034 .011 
High – Med  0.218 0.034 0.403 .013 
High – MD 0.016 -0.208 0.241 .998 

 
Internalizing (Males)  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 43.200 14.400 25.700 <.001 
Residuals 1740 975.000 0.560   
 
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.195 0.084 0.306 <.001 
MD – Low 0.326 0.174 0.479 <.001 
High – Low  0.524 0.360 0.687 <.001 
Med – MD  -0.131 -0.272 0.010 .080 
High – Med  0.329 0.176 0.482 <.001 
High – MD 0.198 0.012 0.383 .032 

 
 
Externalizing (Females)  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 43.400 14.461 34.630 <.001 
Residuals 1589 663.500 0.418   
 
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.277 0.179 0.375 <.001 
MD – Low 0.468 0.328 0.608 <.001 
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High – Low  0.427 0.274 0.579 <.001 
Med – MD  -0.191 -0.322 -0.060 .001 
High – Med  0.149 0.005 0.293 .038 
High – MD -0.042 -0.217 0.134 .929 

 
Externalizing (Males)  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 43.100 14.350 29.350 <.001 
Residuals 1739 850.100 0.489   
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.216 0.112 0.319 <.001 
MD – Low 0.276 0.133 0.418 <.001 
High – Low  0.540 0.387 0.693 <.001 
Med – MD  -0.060 -0.192 0.072 .645 
High – Med  0.324 0.181 0.467 <.001 
High – MD 0.264 0.091 0.438 .001 

 

 

Supplemental Table 4-19. Exploratory analysis comparing functional connectivity density 
among adversity profiles, stratified by sex 

Overall Network Density (Females)  
df Sum Sq Mean Sq F value p value 

Adversity profiles 3 465.600 155.200 5.465 .002 
Residuals 87 2470.900 28.400   

Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -2.261 -5.729 1.207 .326 
MD – Low -2.863 -8.262 2.536 .509 
High – Low  4.154 -0.588 8.896 .107 
Med – MD  0.602 -4.515 5.719 .990 
High – Med  6.415 1.997 10.833 .001 
High – MD 7.017 0.964 13.070 .016 

 
Overall Network Density (Males)  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 928.000 309.250 5.526 .002 
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Residuals 72 4029.000 55.960   
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -2.300 -8.776 4.176 .787 
MD – Low -0.212 -8.088 7.664 1.000 
High – Low  8.068 -0.144 16.281 .056 
Med – MD  -2.088 -8.370 4.193 .818 
High – Med  10.368 3.670 17.066 .001 
High – MD 8.280 0.220 16.340 .042 

 
 
DMN Density (Females) 
 df Sum Sq Mean Sq F value p value 
Adversity profiles 3 0.014 0.005 5.770 .001 
Residuals 87 0.071 0.001   
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low -0.009 -0.028 0.009 .572 
MD – Low 0.015 -0.014 0.044 .517 
High – Low  0.026 0.000 0.051 .048 
Med – MD  -0.024 -0.052 0.003 .100 
High – Med  0.035 0.011 0.058 .001 
High – MD 0.010 -0.022 0.043 .837 

 
DMN Density (Males)  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 0.010 0.003 5.548 .002 
Residuals 72 0.045 0.001   
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.000 -0.021 0.022 1.000 
MD – Low 0.024 -0.002 0.050 .087 
High – Low  0.027 0.000 0.055 .054 
Med – MD  -0.024 -0.045 -0.003 .022 
High – Med  0.027 0.004 0.049 .013 
High – MD 0.003 -0.024 0.030 .989 
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SN Density (Females)  
df Sum Sq Mean Sq F value p value 

Adversity profiles 3 0.004 0.001 1.692 .175 
Residuals 87 0.070 0.001   

 
SN Density (Males)  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 0.002 0.001 1.358 .263 
Residuals 72 0.035 0.000   

 
 
FPN Density (Females)  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 0.030 0.010 12.800 <.001 
Residuals 87 0.067 0.001   
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.016 -0.002 0.034 .110 
MD – Low 0.002 -0.026 0.030 .998 
High – Low  0.056 0.032 0.081 <.001 
Med – MD  0.014 -0.013 0.040 .528 
High – Med  0.041 0.018 0.064 <.001 
High – MD 0.054 0.023 0.086 <.001 

 
FPN Density (Males)  

df Sum Sq Mean Sq F value p value 
Adversity profiles 3 0.014 0.005 6.090 .001 
Residuals 72 0.056 0.001   
Pairwise test 95% confidence interval  

Contrast Mean 
Difference Lower bound Upper bound Adjusted p 

Med – Low 0.016 -0.008 0.041 .284 
MD – Low 0.007 -0.023 0.036 .933 
High – Low  0.046 0.016 0.077 .001 
Med – MD  0.010 -0.014 0.033 .688 
High – Med  0.030 0.005 0.055 .013 
High – MD 0.040 0.009 0.070 .005 
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Supplemental Figure 4-1. Exclusionary criteria for the neuroimaging subsample 

 
 
 

Supplemental Figure 4-2. fMRI task paradigm  

 

 
Note. Figure was previously reported in;(Hardi, Goetschius, McLoyd, et al., 2023) 
ms denotes milliseconds. ITI denotes Inter Trial Interval. 
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Supplemental Figure 4-3. Internalizing latent factor structure and loadings 

 
Note. CBCL indicates the Child Behavioral Checklist. BSI indicates the Brief Symptom Inventory 
18. CES-D indicates the Center for Epidemiologic Studies Depression Scale. Model fit indices 
indicate adequate model fit (CFI = .931, TLI = .921, RMSEA = .065, SRMR = .075).  
 

Supplemental Figure 4-4. Externalizing latent factor structure and loadings 

 
Note. CBCL indicates the Child Behavioral Checklist. DEL indicates the Delinquency scale 
adopted from the National Longitudinal Study of Adolescent Health (Add Health). SUB indicates 
youth-reported substance use. Model fit indices indicate excellent model fit (CFI = .955, TLI = 
.952, RMSEA = .031, SRMR = .092).  
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Supplemental Figure 4-5. Prevalence of adversity indicators for the 4-class model within the 
neuroimaging subsample (N=167) 

 
Note. MD denotes Maternal Depression profile 

 
 
Supplemental Figure 4-6. Confirmatory Subgrouping Group Iterative Multiple Model 
Estimation network plots for each adversity profile 

 
Note. Group-level connections (present for at least 75% of all individuals in the sample) are 
shown in black. Subgroup-level connections (present for at least 50% of individuals in each 
latent profile subgroup) are shown in green. Individual-level connections (present for each 
person) are shown in grey. Specific labels for the ROI represented by individual nodes (e.g., 
DMN_1) can be found on Supplementary Table 4-3 . 
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Supplemental Figure 4-7. Boxplot showing network density estimated using resting-state 
functional neuroimaging data  

 
Note. *** padj < .001; ** padj < .01; * padj < .05; NS padj > .05 
 
 
Supplemental Figure 4-8. Youth mental health, stratified by sex 

 

Note. *** padj < .001; ** padj < .01; * padj < .05; NS padj > .05 
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Chapter 5  
General Discussion  

Adverse and stressful experiences are significant contributors for the emergence of 

psychopathology across development. Existing research has focused on the neural mechanisms 

underlying adversity to establish how these experiences could differentially influence mental 

health. Despite progress, existing mechanistic processes have not adequately explained the broad 

heterogeneity in outcomes, nor have they predicted who may be at the greatest risk. This hinders 

our ability to identify precise targets for prevention and intervention. This dissertation aims to 

address these limitations by examining the neural mechanisms of adversity and psychopathology 

within a longitudinal, population-based birth cohort sample. 

 

5.1 Summary 

5.1.1  Chapter 2 

The study described in Chapter 2 examines differential neural mechanisms underlying the 

effects of adversity on mental health. The study employed a longitudinal design over 21 years to 

demonstrate the long-term neural and behavioral consequences of childhood adversity. Findings 

revealed that increased household instability was associated with more efficient structural 

networks, and that adolescent structural brain networks indirectly explained the impact of early 

childhood household instability on depressive symptoms in young adulthood. These findings 

suggest a neural adaptation to an unpredictable environment, aligned with faster life history 
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strategies, with a potentially developmental cost later in life. Moreover, these associations 

remained evident after accounting for other types of adverse experiences, such as harsh 

parenting, neglect, economic deprivation, and various sociodemographic covariates, indicating 

that structural network development could represent a specific neural mechanism that explains 

the influence of environmental unpredictability on mental health.  

 

5.1.2  Chapter 3 

 The study described in Chapter 3 utilized person-specific, data-driven functional 

connectivity subgroups to predict future mental health outcomes and susceptibility to stress. In 

this study, youth were initially clustered based on their network maps across key emotion-linked 

regions. The resulting subgroup memberships were then used to predict patterns of anxiety and 

depression across adolescence and young adulthood, and were examined in association with 

financial adversity during a highly stressful period (the COVID-19 pandemic). Results revealed 

two subgroups: one more heterogeneous, characterized by greater variation in individual-specific 

networks and higher network density, especially in regions such as the amygdala, subgenual 

anterior cingulate, and striatum; and one more homogeneous, characterized by lower network 

density and greater involvement of the insula and dorsal anterior cingulate cortex. Compared to 

the homogeneous subgroup, the heterogeneous subgroup experienced escalating trajectories of 

anxiety symptoms from ages 15 to 21 and exhibited greater anxiety symptoms in response to 

economic adversity during the pandemic. These findings collectively suggest the potential neural 

signatures of susceptibility and resilience to stress related to anxiety, established using a data-

driven personalized network approach in connectivity mapping and clustering. 
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5.1.3  Chapter 4 

The study described in Chapter 4 addressed heterogeneity in childhood adverse 

experiences by identifying data-driven, person-centered adversity profiles based on experiences 

across multiple contexts. Subsequent mental health outcomes and functional brain networks 

associated with these profiles were then examined. Findings identified four latent, multi-domain 

childhood adversity profiles: Low-adversity, Medium-adversity, High-adversity, and one profile 

with markedly high exposure to maternal depression (MD profile). Despite the similarities in 

levels of childhood adversity between individuals in the Medium-adversity and MD profiles, 

youth in the MD profile had characteristics of mental health and brain function more closely 

resembling to those in the High-adversity profile. Notably, internalizing and externalizing 

symptoms were the highest among youths in the MD and High-adversity profiles, particularly for 

internalizing symptoms. The MD and high-adversity profiles also exhibited increased default 

mode network (DMN) density during an emotion task. Furthermore, the High-adversity profile 

showed attenuated salience network density compared to the Low-adversity profile and the 

highest frontoparietal network density relative to all other profiles. These findings suggest that 

interventions targeting multiple risk factors and placing additional focus on maternal mental 

health could yield the most substantial benefits for youth well-being. 

 

5.2 Integrative Themes  

The work discussed here supports several notable themes that will inform future research. 

First, more consideration for the individual operationalization of adversity is needed in the 

literature. The findings from all three chapters demonstrate that adverse experiences do not affect 

individuals uniformly; neural mechanisms may be specific to the types of adversity and to the 



 154 

individuals. The findings from Chapter 2 indicate specific neural mechanisms related to 

instability that were not apparent for other types of adversity. The findings Chapter 3 show that 

stress susceptibility and anxiety may be specific to certain brain regions or to particular groups of 

individuals. Chapter 4 illustrates how individual-focused characterizations of adversity reveal 

differences in youth mental health outcomes and brain function. Collectively, these studies 

highlight the differential neural mechanisms that may underlie specific experiences. 

Second, all three chapters of this dissertation demonstrate that novel methodological 

approaches can enhance precision in understanding the neural mechanisms of adversity. In 

Chapter 2, the combination of cutting-edge tractography and graph analytic approaches allowed 

for the individualized estimation of structural brain networks' topological organization. In 

Chapter 3, the application of a person-specific network mapping approach and a data-driven 

community detection method enabled the identification of groups of individuals who were more 

or less susceptible to adversity. Chapter 4 employed a person-centered method that clustered 

individuals into childhood adversity profiles, coupled with a data-driven connectivity estimation 

method, facilitating the identification of distinct connectivity patterns specific to each adversity 

profile. Collectively, these approaches introduce novel multivariate methods that extend beyond 

conventional techniques, advancing the research on environmental influences on development. 

Finally, the work featured in this dissertation underscores the lifelong consequences of 

childhood adversity on brain and mental health in a population-based sample. All three studies 

utilized longitudinal designs spanning multiple developmental stages—childhood, adolescence, 

and young adulthood—in a birth cohort sample that includes a high representation of minority 

and low-income families. This work builds upon the growing appreciation of representative 

sampling in neuroimaging research, especially when studying experiences of adversity that 
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disproportionately impact marginalized identities in the US, contributing to vast health 

inequalities. Thus, this dissertation contributes valuable insights that will inform future research 

focused on improving population health across the lifespan. 

 

5.3 Future Directions  

This dissertation demonstrates the critical importance of adverse experiences in shaping both 

brain and socioemotional development, while also highlighting several future directions. 

 

5.3.1 Refining neurobiological mechanisms of adversity  

The evidence presented in this dissertation suggest that more research is needed to parse 

the significant heterogeneity in early experiences, specifically to identify precise mechanisms 

underlying the effects of stress on development. In particular, as demonstrated in the first and 

third study of this dissertation, specific types of adverse experiences (e.g., instability, maternal 

depression) could have differential neural pathways that underlie individual outcomes in mental 

health. Building upon these findings, more research is needed to establish greater specificity in 

current mechanistic models of adversity.  

Parallel to initiatives such as the Research Domain Criteria (RDoC) (Cuthbert, 2014) or 

Hierarchical Taxonomy of Psychopathology (HITOP) (Kotov et al., 2017), which aim to refine 

psychiatric nosology across heterogeneous symptomatic presentations of mental disorders, 

similar principles could be applied to discern specific neurobiological mechanisms underlying 

various domains of early experience. In addition to further research to establish neural correlates 

associated with the three identified dimensions of adversity—threat, deprivation, and 
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unpredictability—identifying other elements of adversity that cut across multiple types of events 

could enhance the precision of the resulting neural markers (Cohodes et al., 2021; Gee, 2021). 

Cohodes and colleagues (2021) have recently proposed additional dimensions such as 

controllability, an element thus far absent in current dimensional models. Another element 

previously unconsidered is the processes underlying the harmful effects of racism. Despite 

growing evidence of the consequences of racial trauma on mental health (Bernard et al., 2021) 

and neural effects of racial disparities (Harnett, 2020), current models of adversity do not yet 

account for processes specific to these experiences. In particular, the experience of identity threat 

due to discrimination constitutes a chronic risk to psychological safety (Wanless, 2016) and may 

be differentially internalized than threats in other contexts.  

These research directions could be enhanced by greater integration of cross-species 

translational work, which can provide foundational bases for understanding these mechanistic 

processes. Crucially, refining the basic elements of adverse experiences could facilitate efforts to 

align work based on animal models with human findings. One direction that warrants further 

exploration is how children’s perception of adverse events can drive neural variations in the 

effects of adversity (Smith & Pollak, 2021). To this end, integrating well-established cognitive 

science principles could illuminate specific systems involved in event perception and memory 

(Norman & Rumelhart, 1970), as well as how their underlying neural processes may differ 

during stress (Schwabe et al., 2022). As suggested this dissertation, this may require expanding 

the focus of investigation beyond key neural regions that have informed existing theoretical 

models. For instance, future research can further explore how the crosstalk between critical brain 

regions involved in basic cognitive and emotion processes might lead to variations in how 

individuals process and experience adversity across different contexts and development stages.  
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5.3.2 Distinguishing universality and individuality  

Human development is defined by processes that are ubiquitous, as well as attributes that 

are unique to each individual. As discussed earlier in this dissertation, most neuroimaging studies 

have focused on characterizing group-based neural patterns to maximize statistical power and 

signal-to-noise ratio (Dubois & Adolphs, 2016), despite the acknowledged importance of 

individual differences. On the other extreme, examining individual-level patterns carry concerns 

about the generalizability of resulting neural markers for population-level prediction. This 

dissertation work has demonstrated how person-oriented methods can be leveraged to achieve a 

balance between capturing population-level inferences and individual-level patterns (e.g., by 

combining person-centered and person-specific approaches that can simultaneously parse 

population heterogeneity and heterogeneous brain network connectivity). While this approach 

can increase the precision of the identified neural correlates of adversity, additional studies using 

other samples are needed to formally distinguish neural pathways and processes that are 

universal and those that are specific to certain individuals. 

A major constraint in studying neural development in individuals is the limited 

availability of neuroimaging data that provide representative information about the population. 

These efforts are becoming more feasible with the increasing availability of longitudinal datasets 

accessible to the scientific community (Monk & Hardi, 2023). The utility of these datasets is 

enhanced by large-scale sampling and increased computational resources (Fair et al., 2021), 

enabling the implementation of more sophisticated neural models. However, to understand 

universal processes versus individual-specific ones, population-level findings using big data need 

to be complemented by insights from developmental psychology that focus on rich individual-

level processes in smaller samples (Gratton et al., 2022; McLaughlin, 2014). Moreover, 
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increasing the frequency of neuroimaging data collection, as in the case of dense sampling 

(Poldrack, 2017), could also enhance our understanding of individual differences.  

An increasing focus on sampling also highlights the importance of examining 

characteristics of individuals who deviate from common patterns. For instance, Greene and 

colleagues (2022) investigated model failures in brain-behavior predictive models and examined 

characteristics of individuals for whom these models poorly represent. They found that model 

misclassifications were associated with a host of sociodemographic and behavioral indices, 

including age, race, education, and cognitive ability. Misclassifications occurred in individuals 

who defied expected patterns across these indices (e.g., in individuals with high education but 

low cognitive scores, or vice versa) (Greene et al., 2022). These findings suggest that universal 

models may not apply uniformly to all individuals, and there is a need to establish which 

processes could apply to whom. These inferences can also be complemented with other resources 

that are becoming more publicly available. For instance, recent progress in large-scale data 

sharing has yielded human brain charts that aggregate structural neuroimaging data from more 

than 100,000 individuals ranging from birth to 100 years of age (Bethlehem et al., 2022). Such a 

resource can help quantify individual deviations from normative developmental trajectories, 

similar to how pediatric growth charts are used to track children’s physical growth (Rutherford et 

al., 2022). Applying these cutting-edge approaches will forge a new frontier in distinguishing 

universal developmental processes from those specific to individuals.  

 

5.3.3 Modeling adaptation to adversity as a dynamic process across the life course 

Human development is understood to be a complex and dynamic process, as discussed 

earlier in this dissertation. However, despite the understanding that these dynamic interactions 
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result in a probabilistic course of development (Gottlieb, 2007), research on adversity has 

heavily relied on examining exposures-outcomes processes with deterministic approaches. As 

demonstrated by study three, person-oriented approaches that capture the interaction of multiple 

intersecting factors within person can better account for this dynamic patterns of human 

development. When applied to scientific questions pertaining to the influence of adversity on 

mental health, it can lead to greater specificity in the neural regions implicated in this 

association, and revealed experiences that are particularly important for individuals in the 

sample. This work can inform future research to begin integrating person-oriented approaches in 

capturing the complexity of rich environmental contexts as large-scale longitudinal data become 

more readily available. Moreover, the application of computational approaches to modeling 

developmental change could also provide novel insights. For instance, generative network 

models have been proposed as a framework to model dynamic systems (Astle et al., 2023) and 

could be employed to provide empirical evidence of the link between random neural variation 

and early life stress (Carozza et al., 2023).  

A potential extension of this work is the integration of a life course approach to model 

stress exposure. In addition to accounting for the complexities of developmental processes, 

considering fluctuations that occur throughout the life course is also necessary to characterize 

neural adaptation to adversity. For instance, although much research has focused on the 

developmental timing of early adversity (Gard et al., 2021; Gee, 2021; Hardi et al., 2022; 

Tottenham & Sheridan, 2010), with specific emphasis on the critical importance of early 

experiences as potential sensitive periods (Hensch & Bilimoria, 2012; Knudsen, 2004; Luby et 

al., 2020), less work has addressed environmental variability across the lifetime. Moreover, a 

mismatch between early and adult environments could increase risks for disease, as neural 
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mechanisms resulting from adaptation to adverse environments may not be optimized to other 

contexts (Nederhof & Schmidt, 2012). More research is needed to test this hypothesis, especially 

to determine which neural properties could be least accommodating to changing contexts and 

which may be malleable regardless of the environment. Neural flexibility, in this regard, may 

reflect a resilience factor against the harmful effects of adversity, thus providing a tangible 

mechanistic target for intervention. Moreover, certain adversity may exert greater influence at 

specific developmental stages, as experience-expectant processes differ across development.  

 

5.4 Conclusion 

Research on the neural embedding of adversity has burgeoned in the past decade, 

attracting scientists and scholars from incredibly diverse disciplines. This interdisciplinary 

research continues to forge new directions and exciting work on this topic. However, it is 

imperative not to lose sight of the ultimate goal: to improve individual well-being by centering 

this work on the individuals it serves. Despite decades of research, adverse childhood 

experiences remain one of the leading causes of mental disorders (Centers for Disease Control 

and Prevention, 2021), imposing an annual economic cost of $14.1 trillion nationally, $88,000 

for each affected adult, and $2.4 million over their lifetime (Peterson et al., 2023). Moreover, 

childhood adversity is disproportionately experienced by children in marginalized communities 

(Slopen et al., 2016), further contributing to health disparities in the US. Thus, research focused 

on understanding how children learn and develop in stressful environments should continue to 

prioritize how findings could be leveraged to improve policies that protect children from adverse 

events and interventions that can reverse the harmful effects of adversity.  
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