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ABSTRACT

Advancements in sequencing technologies have revolutionized our ability to measure biomolecules.
Single-cell single-omics sequencing allows for the examination of genome, transcriptome, epigenome
at unprecedented resolution, providing a detailed view of cellular diversity and function. Fur-
thermore, it addressed the limitations of bulk RNA sequencing that only profiles averaged gene
expression across cells, masking the cellular heterogeneities. Following this, single-cell multimodal
omics enables simultaneous analysis of multiple types of molecular measurements in the same cell.
Such paired information has revealed genetic and epigenetic landscapes as well as their relationships.
Further, spatial sequencing technologies provide molecular measurements with localization within
tissues, adding an essential dimension to our understanding of biological complexity. They have
assisted our research about how cells interact within spatial context, crucial for comprehending
tissue organization, development, and disease pathology. In this dissertation, I propose three com-
putational methods to address the challenges posed by each of these data types for identifying the
heterogeneities within cell populations and tissue regions, advancing our knowledge of biological
systems.

Integrating diverse single-cell unimodal datasets offers tremendous opportunities for unbiased,
comprehensive, quantitative definition of cell identities. The published single-cell data integration
approaches are not designed for integration of multiple modalities or not scalable to massive
datasets. None of these methods can incorporate new data without recalculating from scratch.
To this end, I develop an online learning algorithm to solve the integrative nonnegative matrix
factorization (Online iNMF). For cell type inference, I apply Online iNMF to integrate large-
scale, continually arriving single-cell datasets of diverse molecular modalities, including gene
expression, chromatin accessibility, and DNA methylation. Online iNMF converges rapidly
and decouples the peak memory usage from the size of the entire dataset. Online iNMF shows
that the improved computational efficiency is not at the cost of dataset alignment and cluster
preservation performance. Online iNMF’s ability to iteratively incorporate data is useful in
building single-cell multi-omic atlases.

Single-cell multimodal epigenomic profiling simultaneously measures multiple histone mod-
ifications and chromatin accessibility in the same cells. Such parallel measurements provide
opportunities to investigate how epigenomic modalities vary together across cell populations. I

xi



propose ConvNet-VAE, a variational autoencoder comprising one-dimensional convolutional lay-
ers, for dimensionality reduction. After window-based genome binning, ConvNet-VAE leverages
the multi-track and sequential nature of these data. I apply ConvNet-VAE to integrate histone
modification marks and chromatin accessibility profiled from juvenile mouse brain and human
bone marrow. Compared to multimodal VAEs with only fully connected layers, ConvNet-VAE
can achieve better performance in dimensionality reduction and batch correction, while using
significantly fewer parameters. The advantage of ConvNet-VAE increases with the number of
modalities, making it a promising tool as the number of jointly profiled epigenomic modalities
grows.

Multimodal spatial profiling has allowed for the simultaneous investigation of transcriptomics,
proteomics, and epigenomics at the individual cell/bead/spot level in the tissue. I devise spaMVGAE,
a multimodal variational autoencoder employing graph convolutional networks. By incorporating
spatial location information, spaMVGAE adapts to various modalities and learns a joint low-
dimensional embedding of cells/beads/spots for domain detection. I apply spaMVGAE to spatially
resolved multimodal datasets from different biological contexts, such as breast cancer, mouse
bone development, and adult mouse brain. spaMVGAE accurately detects regions of interest by
capturing the heterogeneous and complex molecular makeup of the cells or tissue microenvironments.
spaMVGAE scales to large datasets and carries out joint integration across multiple tissue sections.
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CHAPTER 1

Introduction

1.1 Motivation and Research Objectives

Cells, the fundamental units of life, show remarkable diversity in shape and function, influenced
by their location, developmental stages, external stimuli, and differences between healthy and
diseased states. A multitude of biomedical research, such as comprehending brain functions, finding
novel therapeutics, and studying the formation of complex tissues from a single cell, are all tied to
understanding the variations in gene expression and epigenetic marks in these cells.

After the initial sequencing of the human genome, bulk DNA sequencing became a ubiquitous
tool to profile transcriptomic or epigenomic information from the cells in entire tissues. For
instance, RNA-seq assesses the overall gene expression levels in a bulk tissue (Stark et al. 2019),
whereas the assay for transposase-accessible chromatin with sequencing (ATAC-Seq) determines
chromatin accessibility across the genome, yielding a broad picture of the epigenetic landscape
in cell populations (Grandi et al. 2022). These sequencing methods have helped researchers to
understand basic cellular functions and disease mechanisms, leading to the development of targeted
therapies, for example, for cancer (Hong et al. 2020). Over the past decade, researchers have
continually driven the field forward with cumulative technological advances.

More recently, the field of biomedical sciences has been revolutionized by the advent of single-
cell sequencing technologies, which have vastly expanded our understanding of the complexity
and diversity of cellular processes. Unlike bulk sequencing, which analyzes a mixture of cells
from a tissue sample and provides an averaged view of gene expression or epigenomic features
across all cells in the sample, single-cell sequencing offers a more granular view of cell biology by
isolating and analyzing the genetic material and other molecules from individual cells, allowing
for the investigation of cellular heterogeneity and the identification of rare cell types that may
be lost in bulk analyses. These single-cell technologies have become crucial tools in biomedical
research, offering insights into the molecular mechanisms that underlie health and disease at an
unprecedented resolution.

The current frontier of molecular assay development is molecular profiling within a spatial
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context, literally introducing a new dimension into our understanding of the complexity of biological
tissues. This advancement enables researchers to observe not only the molecular composition of
cells but also their precise spatial arrangement and interactions within tissues, thus providing a
more comprehensive picture of biological processes and disease pathogenesis. It allows for a more
accurate and detailed investigation of tissue architecture and cellular microenvironments, potentially
leading to the identification of novel biomarkers and therapeutic targets.

Given rapidly evolving sequencing protocols, the development of computational methods to
analyze different data types is essential for advancements in biomedical research. The ideal methods
should be able to tackle challenges such as integrating multiple data modalities through efficient
joint dimensionality reduction for novel insights in molecular biology. To retain meaningful and
significant patterns across biological conditions, sophisticated statistical and machine learning
techniques are required. My work closely follows the frontier of molecular assay development and
aims at devising tailored tools to extract latent structure of the data that can be used to answer a
variety of biological questions. In this dissertation, I present these methods designed for three broad
categories of sequencing technologies: single-cell single omics, single-cell multimodal omics, and
spatially resolved multimodal data, and showcase their utilities in integrative analysis.

1.1.1 Single-cell single-omics

Next Generation Sequencing (NGS) technologies, characterized by high-throughput, cost-
effectiveness, and wide application, have greatly accelerated the pace of genomic research (Van Dijk
et al. 2014). NGS serves as the technological foundation for single-cell sequencing, an advanced
application of NGS that focuses on analyzing the genetic material from individual cells. This finer
resolution provides a more detailed and nuanced understanding of biology. The first single-cell
whole-transcriptome sequencing (scRNA-seq) was introduced by Tang et al. (Tang et al. 2009).
Since then, significant improvements in single-cell sequencing have enhanced its capabilities and
applications. Advances in molecular assay technology have: 1) substantially improved the sensitivity
and accuracy of molecule detection, increasing data quality; 2) increased throughput, enabling large-
scale studies like organism-wide cell type maps; 3) reduced cost, leading to widespread adoption in
research. Multiplexing capabilities, where multiple samples can be sequenced simultaneously in a
single run, largely contributed to these improvements. They not only permit higher throughput and
lower cost, but also reduces technical variability. The many sequencing methods that have been
developed can be categorized into two primary groups. Microfluidic droplet-based transcriptomics
encapsulates individual cells in tiny droplets, each containing a bead with unique DNA barcodes.
The droplets are created at high throughput, allowing the analysis of thousands to millions of cells
in a single experiment. Examples include Drop-seq (Macosko et al. 2015) and inDrop (Indexing
Droplets) (Klein et al. 2015). On the other hand, micro-well plate-based transcriptomics approach
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uses micro-well plates, where each well is designed to capture a single cell along with a uniquely
barcoded bead, for instance, Smart-Seq (Ramsköld et al. 2012), Smart-Seq2 (Picelli et al. 2014),
and Smart-Seq3 (Hagemann-Jensen et al. 2020).

Beyond scRNA-seq, a number of other single-cell sequencing technologies measure a single
modality, each capturing different aspects of cellular biology at the single-cell level. Single-cell
DNA Sequencing focuses on analyzing genomic DNA in single cells, which is used for detecting
genomic variations such as single nucleotide polymorphisms (SNPs) (Dong et al. 2017), copy
number variations (CNVs) (Mallory et al. 2020), and other mutations within individual cells.
Single-nucleus ATAC-seq (snATAC-seq) is used to assess the chromatin accessibility landscape in
individual cells (Cusanovich et al. 2015, Preissl et al. 2018). Another example sequencing protocol
for epigenomic studies is single-cell bisulfite sequencing, such as snmC-seq and snmC-seq2 (Luo
et al. 2017, 2018). These techniques are employed for investigate DNA methylation patterns, a
crucial epigenetic modification that influences gene expression across single cells.

Named “Method of the Year (2013)” (Editorial 2014), single-cell single-omic technologies
have expanded our ability to understand the complexity of biological systems in a highly detailed
and nuanced manner. Each of them offers the potential for utilizing a specific cellular feature in
cataloging cell types. More importantly, the combined use of these single-omics data allows scien-
tists to reexamine traditional categorizations of cell types and states in a methodical, quantitative,
and impartial manner. This quantitative approach to defining cell identity is poised to transform
our comprehension of cell biology in various areas, including neuroscience and developmental
biology. Additionally, creating a benchmark for the molecular states of healthy cells will facilitate
investigations into the origins of cellular irregularities, potentially leading to the innovation of new,
targeted treatments. To accomplish this objective, there is a need for an computational method that
can assemble diverse molecular features from different batches of cells into a joint representation
for cell identity inference.

A number of methods for integrating single-cell single-omics, such as Seurat v3 (Stuart et al.
2019) and Harmony (Korsunsky et al. 2019a), have emerged. However, these methods are not
equipped to handle the integration of multiple data types or are unable to manage extremely large
datasets. Additionally, these existing techniques lack the capability to add new data without having
to start the calculations over from the beginning. I addressed these limitations by developing online
integrative nonnegative matrix factorization (iNMF), an algorithm that allows scalable and iterative
integration of single-cell datasets generated by different omics technologies, by extending the iNMF
approach at the heart of the published LIGER method (Welch et al. 2019, Liu et al. 2020).
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1.1.2 Single-cell multimodal omics

Single-cell multimodal omic experiments are more advanced techniques can simultaneously
capture and analyze multiple types of molecular data from the same cell. These methods are
groundbreaking as they provide a more comprehensive and integrated understanding of cellular
function and state, making them “Method of the Year (2019)” (Teichmann and Efremova 2020).
For example, G&T-seq (Macaulay et al. 2015) can measure both the genome and transcriptome,
offering novel insights into the genome-transcriptome correlations. Later on, the simultaneous
isolation of genomic DNA and total RNA (SIDR) (Han et al. 2018) was developed. This concurrent
extraction can minimize sample loss and handling errors, potentially leading to more accurate
and reliable correlations between genomic and transcriptomic data. TARGET-seq is designed for
targeted sequencing of genomic regions, which allows for a more focused and in-depth analysis of
particular genes or mutations of interest (Rodriguez-Meira et al. 2019). Moreover, CITE-seq allows
for the concurrent detection of protein markers and RNA transcripts in individual cells (Stoeckius
et al. 2017). It bridges the gap between genotype and phenotype, providing insights into how gene
expression is translated into functional protein molecules. In 2017, researchers modified Nucle-
osome Occupancy and Methylome-sequencing (NOMe-seq) to measure chromatin accessibility
and endogenous DNA methylation in single cells (scNOMe-seq) (Pott 2017). Afterwards, the
plate-based Sci-CAR-seq (Cao et al. 2018) and the droplet-based SNARE-seq (Chen et al. 2019a)
were introduced with improved scalability. The commercialized 10x Genomics Multiome platform
also provides joint profiling of chromatin accessibility and gene expression.

Studying the epigenetic modifications of the genetic material has been a long-term goal in
molecular biology. In 2019, single-cell chromatin immunoprecipitation followed by sequencing
(scChIP-seq) (Grosselin et al. 2019), a single-omics approach, aimed to reveal chromatin landscapes
in individual cells with high accuracy, and investigate cell populations by identifying discriminating
chromatin features such as transcriptional permissive or repressive marks. Recently, researchers
introduced the approach of nano-CUT&Tag (nano-CT) (Bartosovic and Castelo-Branco 2022) that
enables simultaneous profiling of up to three different epigenomic features at the single-cell level
with notably enhanced sensitivity and high sequencing depth per cell. Another method, single-cell
nanobody-tethered transposition followed by sequencing (scNTT-seq) (Stuart et al. 2022), is also
capable of measuring the genome-wide presence of multiple histone modifications at single-cell
resolution.

Advanced statistical and computational methods are needed for single-cell multimodal omic data
analysis to address questions such as how to perform cross-modal integration and cell type inference
using these molecular measurements. Specifically for the study of epigenome, it’s crucial to take
into account the multi-track and ordered sequential nature of single-cell multimodal epigenomic
data when developing the analytical tools. I tackled this challenge by devising the ConvNet-VAE,
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a variational autoencoder framework that employs convolutional layers, for multimodal epigenomic
data integration.

1.1.3 Spatially resolved multimodal data

Spatial transcriptomics, designated “Method of the Year (2020)”, has been a revolutionary tech-
nology in the field of molecular biology that combines histological and transcriptomic information
from tissue samples (Marx 2021). Traditional sequencing technologies, such as scRNA-seq, provide
detailed information about gene expression level but lack spatial context. However, it is critical to
recognize that the arrangement of cellular compartments, macro-structures, and the interactions
between cells is crucial for the functioning of multicellular organisms (Baysoy et al. 2023). This
has motivated researchers to develop sequencing technologies that reveal the spatial organization of
gene expression in tissues.

The spatial transcriptomic technologies developed so far can be broadly categorized into three
groups based on the technology applied. Imaging-based methods use fluorescent in situ hybridization
(FISH) to visualize and quantify RNA molecules directly within tissue sections or cultured cells.
Examples include multiplexed single-cell in situ RNA profiling by sequential hybridization (Lubeck
et al. 2014) based upon the single-molecule FISH (smFISH) technique (Femino et al. 1998). The
Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH) (Chen et al. 2015a)
can simultaneously image a large number of RNA species with high accuracy. Researchers have
demonstrated its utility by applying it to approximately 10 million cells and generating spatially
resolved cell atlas of the whole mouse brain (Zhang et al. 2023a). Moreover, the latest 10x Genomics
Xenium platform (Janesick et al. 2023) offers high-throughput high-resolution spatial mapping of
RNA expression in tissues. Different from imaging-based methods, sequencing-based technologies
directly profile biomolecules of interest within tissue samples using NGS. The researchers reported
the development of “spatial transcriptomics” (Ståhl et al. 2016) in 2016, which they applied to
produce spot-level (diameter: 100 µm) RNA-seq data, along with two-dimensional positional
coordinates from the mouse brain and human breast cancer. Since then, technologies like Visium
from 10x Genomics (diameter: 55 µm) and Slide-seq (bead size: 10 µm) (Rodriques et al. 2019)
have pushed the boundaries further in terms of resolution and multiplexing capabilities. The
third category is the laser capture microdissection (LCM)-based technologies. In this approach,
the isolation of a region of interest in the tissue section is achieved by laser cutting. Chen et al.
introduced geographical position sequencing (Geo-seq) (Chen et al. 2017), which combines laser
capture microdissection (LCM) and scRNA-seq to carry out spatial profiling.

With the same scientific motivation as single-cell multimodal omics, the investigation of multiple
data modalities within the same cell, bead, or spot using spatial sequencing is one of the latest
frontiers in molecular assay technology. In practice, the scientists are presented with the choice to
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utilize techniques like Hematoxylin & Eosin (H&E) or Nissl staining on either the sequenced tissue
slice or adjacent sections. This approach provides valuable morphological details about cells, beads,
or spots, which in turn enriches our comprehension of cell and tissue types, thereby augmenting
our knowledge of cellular functions and tissue structures. Recently, cutting-edge technologies have
surfaced that allow profiling of multiple molecular modalities in a single bead or spot. The spatial
assay for transposase-accessible chromatin and RNA using sequencing (spatial ATAC-RNA-seq)
(Zhang et al. 2023b) is able to simultaneously analyze chromatin accessibility and messenger
RNA expression in two-dimensional grid of spatially barcoded tissue pixels. Additionally, Russell
et al. developed the Slide-tags (Russell et al. 2023) technique, which labels nuclei with spatial
barcodes, enabling direct application of any single-cell multimodal assay with the addition of spatial
coordinates.

Tailored computational methods are required for integrating these spatially resolved multimodal
data to distinguish cell populations within tissue sections. To this end, I developed spaMVGAE,
a multimodal variational graph autoencoder, which efficiently incorporates spatial location infor-
mation and multiple modalities to learn joint low-dimensional embeddings of spatially resolved
measurements for spatial clustering.

1.2 Outline of Dissertation

The goal of this dissertation is to address these rising challenges associated with integrative
analysis of large-scale single-cell and spatial multimodal omics data. The dissertation is outlined as
follows.

Chapter 2 – Iterative single-cell multi-omic integration using online learning In this chapter,
we propose online iNMF: an Online Learning algorithm to solve the Integrative Nonnegative
Matrix Factorization problem for integrating large, diverse, and continually arriving single-cell
datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively
incorporates new datasets as they are generated, and allows many users to simultaneously analyze a
single copy of a large dataset by streaming it over the internet. Iterative data addition can also be
used to map new data to a reference dataset. Comparisons with previous methods indicate that the
improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance.
We demonstrate the effectiveness of online iNMF by integrating more than a million cells on a
standard laptop, integrating large single-cell RNA-seq and spatial transcriptomic datasets, and
iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex.

Chapter 3 – Integrating single-cell multimodal epigenome data using 1D-convolutional
neural networks In this work, we focus on the single-cell multimodal epigenomic profiling, which
measures multiple histone modifications and chromatin accessibility within the same cell. Such
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parallel measurements provide exciting new opportunities to investigate how epigenomic modalities
vary together across cell types and states. A pivotal step in using this type of data is integrating the
epigenomic modalities to learn a unified representation of each cell, but existing approaches are
not designed to model the unique nature of this data type. Our key insight is to model single-cell
multimodal epigenome data as a multi-channel sequential signal. Based on this insight, we developed
ConvNet-VAEs, a novel framework that uses 1D-convolutional variational autoencoders (VAEs)
for single-cell multimodal epigenomic data integration. We evaluated ConvNet-VAEs on nano-CT
and scNTT-seq data generated from juvenile mouse brain and human bone marrow. We found
that ConvNet-VAEs can perform dimension reduction and batch correction better than previous
architectures while using significantly fewer parameters. Furthermore, the performance gap between
convolutional and fully-connected architectures increases with the number of modalities, and deeper
convolutional architectures can increase performance while the performance degrades for deeper
fully-connected architectures. Our results indicate that convolutional autoencoders are a promising
method for integrating current and future single-cell multimodal epigenomic datasets.

Chapter 4 – Integrating spatially resolved multimodal data using variational graph autoen-
coder Recent advancements in spatial profiling have allowed for the simultaneous investigation of
transcriptomics, proteomics, and epigenomics at the individual cell/bead/spot level in the tissue.
These technologies have been instrumental in revealing the heterogeneous and complex molecular
makeup of the cells or tissue microenvironments. Deeper insights into the biological process can
be gained by incorporating high-resolution image modalities. We present spaMVGAE for spatially
informed multimodal integration, a multimodal variational graph autoencoder employing graph
convolutional networks. It learns a joint embedding of cells/beads/spots by correlating molecu-
lar measurements (e.g., gene expression, chromatin accessibility), cell morphology (e.g., H&E
histology), and spatial location information. The resulting low-dimensional embeddings can be
used for diverse tasks such as domain detection. By applying spaMVGAE on spatially resolved
multimodal datasets generated in a variety of biological contexts, we show that spaMVGAE can
harness different sources of information and learn a refined representation of the observations by
taking advantage of the spatial information, in a computationally efficient fashion.

Finally, I conclude the projects completed in this dissertation in Chapter 5 by summarizing the
contributions and discussing the future directions.
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CHAPTER 2

Iterative Single-Cell Multi-Omic Integration Using Online Learning

In this chapter, we propose Online iNMF: an Online Learning algorithm to solve the
Integrative Nonnegative Matrix Factorization problem for integrating large, diverse, and con-
tinually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using
fixed memory, iteratively incorporates new datasets as they are generated, and allows many users to
simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative
data addition can also be used to map new data to a reference dataset. Comparisons with previous
methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster
preservation performance. We demonstrate the effectiveness of Online iNMF by integrating
more than a million cells on a standard laptop, integrating large single-cell RNA-seq and spatial
transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse
motor cortex.

2.1 Introduction

Cell types have long been qualitatively characterized by a combination of features such as
morphology, presence or absence of cell surface proteins, and broad function (Ye and Sarkar 2018).
Recently, high-throughput single-cell sequencing technologies have enabled researchers to profile
multiple molecular modalities, including gene expression, chromatin accessibility and DNA methy-
lation (Stuart et al. 2019). Integrating diverse single-cell datasets offers tremendous opportunities
for unbiased, comprehensive, quantitative definition of discrete cell types and continuous cell states.

Several recent single-cell data integration approaches have been developed, including Seurat
v3 and Harmony (Stuart and Satija 2019, Korsunsky et al. 2019a), but these approaches are not
designed to integrate multiple modalities or do not scale to massive datasets. Furthermore, none of
these existing methods can incorporate new data without recalculating from scratch.

We address these limitations by developing Online iNMF, an algorithm that allows scalable
and iterative integration of single-cell datasets generated by different omics technologies. We extend
the nonnegative matrix factorization approach at the heart of our recently published LIGER method
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(Welch et al. 2019) to develop an online learning algorithm (Figure 2.1a). LIGER infers a set of
latent factors (“metagenes”) that represent the same biological signals in each dataset while also
retaining the ways in which these signals differ across datasets; these shared and dataset-specific
factors are then jointly used to identify cell types and states while also identifying and retaining
cell-type-specific differences in the metagene features that define cell identities. In the present study,
we combine LIGER with techniques for “online learning” (Mairal et al. 2010), in which calculations
are performed iteratively and incrementally as new datasets become available. Note that online
learning is a technical term that does not refer to the internet—an online learning algorithm is not
necessarily a web tool, although internet applications with continually arriving data often benefit
from such approaches. Online iNMF enables scalable and efficient data integration with fixed
memory usage, as well as incorporating new data without recalculating from scratch.

Figure 2.1: Overview of the Online iNMF algorithm. (a) Schematic of integrative nonnegative
matrix factorization (iNMF): the input single-cell datasets are jointly decomposed into shared (W )
and dataset-specific (V i) metagenes and corresponding “metagene expression levels” or cell factor
loadings H i). These metagenes and cell factor loadings provide a quantitative definition of cell
identity and how it varies across biological settings. (b-d), Three different scenarios in which online
learning can be used for single-cell data integration. (b) Scenario 1: the single-cell datasets are large
but fully observed. Online iNMF processes the data in random mini-batches, enabling memory
usage and/or disk storage independent of dataset size. Each cell may be used multiple times in
different epochs of training to update the metagenes. (c) Scenario 2: the datasets arrive sequentially,
and Online iNMF processes the datasets as they arrive, using each cell to update the metagenes
exactly once. (d) Scenario 3: Online iNMF is performed as in scenario 1 or scenario 2 to learn
W and V i. Then cell factor loadings for the newly arriving dataset are calculated using the shared
metagenes (W ) learned from previously processed datasets. The new dataset is not used to update
the metagenes.
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2.2 online iNMF: An Online Learning Algorithm for Iterative Single-Cell Multi-Omic
Integration

We developed an algorithm for Online iNMF inspired by the online nonnegative matrix
factorization approach of (Mairal et al. 2010). Online iNMF provides two significant advantages:
(1) integration of large single-cell multi-omic datasets by cycling through the data multiple times in
small mini-batches and (2) integration of continually arriving datasets, where the entire dataset is
not available at any point during training.

We envision using Online iNMF to integrate single-cell datasets in three different scenarios.
In scenario 1, where the datasets are large and fully observed, the algorithm accesses mini-batches
from all datasets at the same time and repeatedly updates the metagenes (W,V i) and cell factor
loadings (H i). Each cell can be revisited throughout multiple epochs of training (Figure 2.1b). A
key advantage of scenario 1 (compared to batch iNMF) is that only a single mini-batch needs to be
in memory at a time. Scenario 1 even allows processing of large datasets without downloading them
to disk, by streaming them over the internet. In scenario 2, the input datasets arrive sequentially, and
the online algorithm uses each cell exactly once to update the metagenes, without revisiting data
already seen (Figure 2.1c). The key advantage of scenario 2 is that the factorization is efficiently
refined as new data arrives, without requiring expensive recalculation each time. A third scenario
allows us to project new data into the latent space already learned, without using the new data to
update the metagenes. In scenario 3, we first use Online iNMF to learn metagenes as in scenario
1 or scenario 2. Then, we use the shared metagenes (W ) to calculate cell factor loadings for a new
dataset, without using the new data to update the metagenes. Scenario 3 efficiently incorporates
new data without changing the existing integration results, allowing users to query their data against
a curated reference (Figure 2.1d).

2.3 Results

2.3.1 Online iNMF Converges Efficiently Without Loss of Accuracy Compared to Batch
iNMF

In our first experiment, we evaluated the convergence performance of the Online iNMF

algorithm on the adult mouse cortex dataset (Saunders et al. 2018), which comprises 156, 167 cells
from the frontal cortex and 99, 186 cells from the posterior cortex. The Online iNMF algorithm
converges much faster than previous batch iNMF algorithms on both the training set and a held-out
test set (Figure 2.2a-b), converging to a significantly lower training iNMF objective in a fixed
amount of time (Figure 2.2c). Online iNMF also shows superior performance on several other
datasets from different biological contexts (Figure 2.3). Furthermore, the convergence behavior of
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the online algorithm on both training and test sets is relatively insensitive to the mini-batch size
(Figure 2.2d-e).

Figure 2.2: Online iNMF converges much faster than previously published batch algorithms.
(a,b) The Online iNMF algorithm converges much more rapidly to a similar or better objective
function value compared to the previously published batch methods–alternating nonnegative least
squares (ANLS) and multiplicative updates (Mult)—on both training and testing sets. (c) Box plots
comparing the objective function values achieved by applying online and batch iNMF algorithms
on the mouse cortex data (n = 255, 353) after a fixed amount of training time. Center line shows
the median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; and points are
outliers. (d-e) The convergence behavior of Online iNMF is nearly identical for mini-batch sizes
from 1, 000 to 10, 000. (f) The Online iNMF algorithm becomes increasingly efficient (in terms
of decrease in objective function value per unit time) as dataset size increases. The time required for
the algorithm to converge does not significantly increase with growing dataset size once the dataset
size exceeds 50, 000 cells.

Moreover, for a fixed test set, the runtime needed to reach convergence remains nearly constant
once the total number of cells exceeds some minimum threshold (around 50, 000, in this case).
(Figure 2.2f). This behavior likely occurs because, for a cell population of fixed complexity (for
example, a tissue containing 12 cell types), only some fixed number of observations is required to
effectively learn the metagenes. Thus, using the entire dataset to update the shared and data-specific
metagenes at each iteration becomes increasingly inefficient as the dataset size exceeds the minimum
threshold size needed to learn the metagenes. Conversely, the relative efficiency of Online iNMF

compared to batch methods increases with dataset size.
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Figure 2.3: Convergence behavior for Online iNMF and batch iNMF algorithms on scRNA-
seq data from the adult mouse brain, human PBMC and human pancreas. Online iNMF
algorithm exhibits faster convergence and better objective minimization after a fixed amount of
training time. The advantage of the online algorithm in convergence speed is more apparent for
larger datasets. (a-c) Adult mouse brain (n = 691, 962 cells, 9 individual datasets). (d-f) Human
PBMCS (n = 13, 999 cells, 2 individual datasets). (g-i) Human pancreas (n = 14, 890 cells,
8 individual datasets). Center lines of box plots show the median; box limits, upper and lower
quartiles; whiskers, 1.5× interquartile range; and points are outliers.
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Next we investigated whether Online iNMF yields similar dataset alignment and cluster
preservation to our previously published alternating nonnegative least squares (ANLS) algorithm.
(We refer to the ANLS algorithm as batch iNMF in subsequent discussions, to distinguish it from
Online iNMF.) We applied both Online iNMF and batch iNMF to three scRNA-seq data
collections, then visualized the factor loadings using UMAP plots (Figure 2.4). The Online
iNMF algorithm yields visualizations that are qualitatively very similar to batch iNMF, suggesting
nearly identical dataset alignment and accurate preservation of the original cluster structure for all
three data collections.

Figure 2.4: Online and batch iNMF yield highly similar UMAP visualizations. We performed
Online iNMF and batch iNMF on data from mouse cortex (n = 255, 353 cells), human PBMC
(n = 13, 999 cells), and human pancreas (n = 14, 890 cells). Online iNMF and batch iNMF pro-
duce very similar visualizations, suggesting that the approaches give very similar dataset alignment
and cluster preservation. We subsequently confirmed this qualitative observation using quantitative
metrics.
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2.3.2 Online iNMF Yields State-of-the-Art Single-Cell Data Integration Results Using
Significantly Less Time and Memory

We next benchmarked Online iNMF (scenario 1) against batch iNMF (Welch et al. 2019)
and two state-of-the-art single-cell data integration methods, Seurat v3 (Stuart et al. 2019) and
Harmony (Korsunsky et al. 2019a). We selected these methods for comparison because a recent
paper benchmarked 14 single-cell data integration methods and found that Harmony, Seurat, and
LIGER consistently achieved the best dataset alignment and cluster preservation on a range of
datasets (Tran et al. 2020).

To benchmark time and memory usage, we generated five datasets of increasing sizes (ranging
from 10, 000 to 255, 353 cells in total) sampled from the same adult mouse frontal and posterior
cortex data. Then we utilized them to compare the runtime and peak memory usage of Online
iNMF (mini-batch size = 5, 000) and the other methods (Figure 2.5a).

As expected, the runtime required for Online iNMF does not increase significantly as the
dataset size grows, and the amount of memory needed for storing each minibatch is independent
of the total number of cells. Online iNMF is also the fastest method overall, with Harmony
the second fastest. Notably, the gap between Harmony and Online iNMF widens as the dataset
size increases; on a dataset of 1.3 million cells from the mouse embryo, Online iNMF finishes
dimension reduction in 25 minutes using 1.9 GB of RAM on a laptop, whereas Harmony requires
98 minutes and 109 GB of RAM on a large-memory server. Seurat and batch iNMF are significantly
slower than Online iNMF and Harmony on the mouse cortex data, and the runtime of Seurat
increases the most rapidly of any method.

Furthermore, the Online iNMF algorithm uses far less memory than any other approach, with
memory usage primarily determined by mini-batch size, which is independent of the number of
cells. Updating the factors with a mini-batch size of 5, 000 and K = 40 factors requires less than
500MB. In contrast, the memory requirements of batch iNMF, Harmony, and Seurat grow quickly
with dataset size.

Next, we quantified the dataset alignment and cluster preservation performance for Online
iNMF and the other methods (Figure 2.5b-c). Following the benchmarking strategy used by Tran
et al. (2020), we assessed both the alignment performance (measured using two metrics) and
cluster preservation performance (measured using two metrics). Our results show that Online
iNMF performs as well as or better than the state-of-the-art methods. The online and batch iNMF
algorithms align the PBMC (Kang et al. 2018) and pancreas (Grün et al. 2016, Muraro et al.
2016, Lawlor et al. 2017, Baron et al. 2016, Segerstolpe et al. 2016) datasets equally well, beating
Harmony and Seurat. Furthermore, the online algorithm achieves scores close to batch iNMF on
both data collections, confirming that the gain in computational efficiency does not come at the cost
of accuracy in data embedding. The difference between iNMF and the other methods is especially
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Figure 2.5: Benchmark of Online iNMF, batch iNMF, Harmony, and Seurat. The data are
sampled from the adult mouse cortex (n = 10, 000, 50, 000, 100, 000, 200, 000, 255, 353 cells, 2
individual datasets), human PBMC (n = 13, 999 cells, 2 individual datasets) and human pancreas
(n = 14, 890 cells, 8 individual datasets). (a) The runtime and peak memory usage required for
Online iNMF, batch iNMF, Harmony and Seurat to integrate the frontal and posterior cortex
datasets. (b,c) Quantitative assessment of data integration and low-dimensional embedding carried
out by four methods on the human PBMC and human pancreas datasets. Higher values are better
for all 4 metrics. Error bars indicate standard deviation across 100 random initializations. The
results from iNMF approaches (100 initializations each) are presented as mean values ± standard
deviation, while Harmony and Seurat were only run once.
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pronounced when comparing the values of kBET. We suspect that this difference occurs because
our approach includes quantile normalization, which is stronger than the alignment strategies used
by Harmony or Seurat. Consistent with our results, the benchmark of Tran et al. (2020) also
included the pancreas dataset and found that LIGER (batch iNMF) gave substantially higher kBET
values than competing methods (Tran et al. 2020). The online and batch iNMF algorithms produce
comparable clustering results to the other approaches, although Harmony and Seurat give slightly
higher cluster purity and adjusted rand index. This may be because the cluster labels we used for
comparison are not real ground truth, but derived from PCA followed by clustering, which is more
similar to the approaches used by Harmony and Seurat.

Figure 2.6: Benchmarking integration across data modalities (RNA+ATAC). 5, 000 cells from
the snRNA-seq dataset and 5, 000 cells from the snATAC-seq dataset from MOP data collection
were integrated using four different methods. The cells are exhibited in 2-dimensional UMAP space
and colored by dataset.
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We also compared the performance of Online iNMF, Seurat, Harmony and BBKNN when
integrating two datasets of different modalities (Figure 2.6). Harmony and BBKNN showed
inferior alignment, possibly because these approaches were not originally designed for multi-modal
integration, unlike LIGER and Seurat. In contrast, both LIGER and Seurat produced UMAP
visualizations indicating successful alignment of snRNA-seq and snATAC-seq data. Furthermore,
the kBET and alignment metrics indicate that LIGER (alignment score = 0.714, kBET = 0.574)
better integrates that datasets than either Seurat (alignment score = 0.481, kBET = 0.231) or
Harmony (alignment score = 0.113, kBET = 0.041).

2.3.3 Online iNMF Rapidly Factorizes Large Datasets Using Fixed Memory

To demonstrate the scalability of our approach, we used Online iNMF (scenario 1) to analyze
the scRNA-seq data of (Saunders et al. 2018), which contains 691, 962 cells sampled from nine
regions (stored in nine individual datasets) spanning the entire mouse brain. Using Online

iNMF, we factorized all of the datasets in 24 minutes on a MacBook Pro using about 1 GB of
RAM. We note that the published analysis by Saunders et al. (2018) did not analyze all nine
tissues simultaneously due to computational limitations, and that performing this analysis using our
previous batch algorithm would have taken approximately 3.8 hours and 25 GB of RAM.

Cells within each class are well grouped together, and the distribution of neurons varies widely
across regions, indicating neuronal subtypes specialized to different parts of the brain (Figure
2.7a). For example, neurogenic cells are identified predominantly in the hippocampus and striatum,
consistent with reports of hippocampal and striatal neurogenesis in adult mammals Saunders et al.
2018, Toda et al. 2019, Ernst et al. 2014.

We used the factorization to group the cells into 40 clusters by assigning each cell to the factor
on which it has the largest loading. We then examined differences in the regional proportions of
each cell cluster. Neurons and oligodendrocytes show the most regional variation in composition,
consistent with previous analyses (Zeisel et al. 2018). The total proportion of oligodendrocytes
varies by region, but individual subtypes of oligodendrocytes are not region-specific, as expected.
In contrast, individual subtypes of neurons are highly region-specific, reflecting diverse regional
specializations in neuronal function (Figure 2.7b). We also investigated the biological properties of
these cell factor loadings. Reassuringly, our cluster assignments largely represent subtypes within
the broad cell classes and do not span class boundaries. As expected, neurons show by far the most
diversity with eight subclusters. In contrast, ependymal cells, macrophages, microglia, and mitotic
cells each correspond to only a single cluster (Figure 2.7c).

To further demonstrate the scalability of Online iNMF, we analyzed the mouse organogenesis
cell atlas (MOCA) recently published by Cao et al. (2019).18. After filtering, MOCA contains
1, 363, 063 cells from embryos between 9.5 to 13.5 days of gestation. We performed Online
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Figure 2.7: Joint analysis of nine regions of the adult mouse brain (n = 691, 962 cells) using
Online iNMF.
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Joint analysis of nine regions of the adult mouse brain (n = 691, 962 cells) using Online
iNMF. (a) UMAP visualization of the iNMF factors learned for each brain region, colored by
published cell class. (b) Dot plot showing the proportion of each of 40 clusters inferred from iNMF
in each brain region. (c) Proportion of cells from each cluster in every cell type. The cells in each
cluster mostly correspond to a single cell type.

iNMF on this dataset in 25 min using about 1.9 GB of RAM on a MacBook Pro. By comparison,
we were not able to run Harmony on a laptop because of its high memory usage; running Harmony
on a large-memory server required 98 minutes and 109 GB of RAM. Note that Online iNMF’s
memory usage is higher for MOCA than for the mouse brain dataset primarily because of the higher
value of K and a larger number of variable genes, not because of the number of cells. UMAP
visualization shows that the cells from all five gestational ages are well aligned (Figure 2.17a),
and the structure of 10 different developmental trajectories as defined by Cao et al. (2019) is also
accurately preserved (Figure 2.17b).

Because Online iNMF processes only one mini-batch at a time, our approach allows process-
ing datasets by streaming them over the internet instead of from disk. To demonstrate this capability,
we created an HDF5 file containing the mouse cortex datasets (n = 255, 353 cells), saved the file
on a remote server, then read mini-batches directly over the internet. Processing the cortex dataset
in this fashion took about 18 minutes, compared to around 6 minutes using local disk reads. This
capability provides the unique advantage that many users can simultaneously analyze a single copy
of a large cell atlas, without requiring each user to download and store the entire data collection.

2.3.4 Online iNMF Efficiently Integrates Large Single-Cell RNA and Spatial Transcrip-
tomic Datasets

We next used Online iNMF to integrate single-cell RNA-seq and spatial transcriptomic
datasets (Slide-seq and MERFISH). These spatial transcriptomic protocols provide spatial coor-
dinates, but each has tradeoffs compared to scRNA-seq: Slide-seq may capture multiple cells on
each barcoded bead and provides sparse transcriptome-wide measurements (Rodriques et al. 2019,
Stickels et al.), and MERFISH measures only selected genes (Chen et al. 2015b). Integration with
scRNA-seq data mitigates these limitations by incorporating deeper, transcriptome-wide data. Both
spatial technologies can measure millions of cells, necessitating scalable methods for integration.

We used Online iNMF in scenario 3 to project Slide-seq data from mouse hippocampus
(59, 858 beads) onto a large single-cell RNA-seq dataset (193, 155 cells) (Rodriques et al. 2019, Yao
et al. 2021). Each Slide-seq bead may contain transcripts from more than one cell; thus, identifying
H i using W serves as a “deconvolution” operation in this case (Rodriques et al. 2019). The original
Slide-seq paper performed a similar analysis using conventional nonnegative matrix factorization
of single-cell RNA-seq data (Rodriques et al. 2019). Consistent with the published analysis, we
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Figure 2.7: Online iNMF integrates large single-cell RNA-seq and spatial transcriptomic
datasets. (a) The number of cells per cell type in scRNA-seq (n = 193, 155 cells) and Slide-seq
(n = 59, 858 beads) datasets from mouse hippocampus. (b) Number of cell types assigned to each
bead in the Slide-seq analysis. (c) Slide-seq beads colored by labels derived from projection onto
scRNA-seq data using Online iNMF (scenario 3). The coordinates of each bead reflect its spatial
position within the tissue. (d) UMAP plot of cell factor loadings (Online iNMF, scenario 1)
for scRNA-seq data from mouse hippocampus. (e) UMAP plot of MERFISH cells from mouse
hypothalamus (n = 1, 026, 840 cells), colored by published cluster assignments. The UMAP
coordinates are derived from Online iNMF (scenario 3) integration of MERFISH and scRNA-seq
data. (f) UMAP plot of scRNA-seq cells from mouse hypothalamus (n = 31, 250 cells), colored by
published cluster assignments. The UMAP coordinates are derived from Online iNMF (scenario
3) integration of MERFISH and scRNA-seq. (g) MERFISH slices, ordered from anterior to posterior,
colored by labels derived from the Online iNMF integration. The coordinates of each cell reflect
its spatial position within the tissue.
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found that most Slide-seq beads contained a single dominant cell type, though a small number
contained two cell types or no clear cell types (Figure 2.7b). Overall, the proportions of cell types
were consistent across technologies, except that the scRNA-seq data contained fewer non-neurons,
because the cells were experimentally enriched for neurons (Figure 2.7a). The spatial distributions
of our annotated cell types reflect the known organization of the hippocampus, with Ammon’s
horn, dentate gyrus, white matter, part of the ventricles, and adjacent deep cortical layers clearly
visible (Figure 2.7c). Thus, this integration reveals the spatial distributions of the clusters from the
scRNA-seq data (Figure 2.7d).

We also used Online iNMF (scenario 1 and 3) to integrate MERFISH (n = 1, 026, 840 cells)
and scRNA-seq (n = 31, 250 cells) data from the preoptic region of mouse hypothalamus (Moffitt
et al. 2018). Scenario 1 and scenario 3 gave very similar results (Figure 2.82). This integration
analysis revealed the correspondence between scRNA-seq and MERFISH clusters (Figure 2.7e-f),
which had been analyzed only separately in the original publication. The spatial distributions of our
joint clusters accord well with the known structure of the hypothalamus (Figure 2.7g).

Figure 2.8: Scenario 1 and scenario 3 achieve similar results on MERFISH data. The result of
scenario 1 on the MERFISH dataset yielded similar MERFISH (a) and RNA (b) cluster placement
as using scenario 3 (Figure 2.7). The performance of the different approaches showed remarkable
similarity, as demonstrated by the alignment, kBET, cluster purity, and ARI scores shown in the
table.
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2.3.5 Online iNMF Enables Iterative Refinement of Single-Cell Multi-Omic Atlas from
Mouse Motor Cortex

One of the most appealing properties of our online learning algorithm is the ability to incorporate
new data points as they arrive. This capability is especially useful for large, distributed collaborative
efforts to construct comprehensive cell atlases (Ecker et al. 2017, lcai@ caltech. edu 21 b Shendure
Jay 9 Trapnell Cole 9 Lin Shin shinlin@ uw. edu 2 e Jackson Dana 9 et al. 2019, Regev et al. 2017).
Such cell atlas projects involve multiple research groups asynchronously generating experimental
data with constantly evolving protocols, making the ultimate cell type definition a moving target.

To demonstrate the utility of Online iNMF for iteratively refining cell type definitions, we
used data generated by the BRAIN Initiative Cell Census Network (BICCN) (Yao et al. 2020).
During a pilot phase starting in 2018, the BICCN generated single-cell datasets from a single
region of mouse brain (primary motor cortex, MOp) spanning 4 modalities (single-cell RNA-seq,
single-nucleus RNA-seq, single-nucleus ATAC-seq, single-nucleus methylcytosine-seq) and totaling
786, 605 cells.

Following scenario 2 (Figure 2.1c), we used Online iNMF to incorporate the MOp datasets
in chronological order, refining the factorization with each additional dataset (Figure 2.9). Our
approach successfully incorporated each new single-cell or single-nucleus RNA-seq dataset without
revisiting previously processed cells, using each cell exactly once during the optimization process
(Figure 2.9a). UMAP visualizations indicate that the structure of the datasets is iteratively refined
with each successive dataset that is added. We jointly identified 15 cell types from the transcriptomic
and epigenomic datasets (Figure 2.9d). Alignment and kBET metrics also indicate that the datasets
are well aligned (Alignment score = 0.786, kBET = 0.324). To put these numbers in context,
Seurat achieved scores of 0.481 and 0.231 on a simpler integration analysis of one scRNA-seq and
one snATAC-seq dataset (Figure 2.6).

The results from performing this single-cell multi-omic integration are very similar whether the
integration is performed iteratively (scenario 2), using all of the data at once (scenario 1), or by
projecting the epigenomic data onto the transcriptomic data (scenario 3; 2.10). We also confirmed
that scenario 2 is robust to the order of dataset arrival. To do this, we inspected the effect of random
initializations and orderings of the input datasets on the iterative multi-omic integration (scenario
2). We integrated all eight datasets in their original order using 10 different initializations as well
as five different orderings where each of the other sc/snRNA- seq datasets served as the first input.
With our annotations as the reference, different orderings result in comparable variation in final
cluster assignments compared to the variation from random initialization (average ARI = 0.759

from random input orders vs. 0.744 from random initializations).
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Figure 2.9: Iterative refinement of cell identity using multiple single-cell modalities from
the mouse primary motor cortex. We integrated four scRNA-seq datasets, two snRNA-seq
datasets, one snATAC-seq dataset and one snmC-seq dataset (n = 408, 885 neurons). (a) Sequential
integration of six scRNA-seq datasets (scenario 2). Each panel shows a UMAP plot using cell
factors obtained after adding an additional dataset. (b) UMAP plot of cell factors obtained by
adding snATAC-seq to the latent space learned from six RNA datasets in a (scenario 2). (c) UMAP
plot of cell factors obtained by adding DNA methylation data (snmC-seq) to the latent space learned
from the seven datasets shown in b (scenario 2). (d) Clusters obtained using the cell factor loadings
of all eight aligned datasets. The clusters were named using marker genes from Tasic et al. (2016).
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Figure 2.10: Performing Online iNMF in three scenarios produces similar results. These
analyses were carried out separately to integrate 8 MOp datasets (scRNA-seq, snRNA-seq, snATAC-
seq and snmC-seq, n = 408, 885) using Online iNMF in scenario 1 (a), scenario 2 (b), and
scenario 3 (c). The results are visualized in UMAP coordinates and the cells are colored by the cell
type annotations from Figure 2.9.

2.4 Discussion

By reading mini-batches from disk, Online iNMF not only converges faster than batch
approaches, but also decouples memory usage from dataset size. The efficiency gains of Online
iNMF will be even greater as the scale of single-cell datasets increases.

We envision Online iNMF enabling iterative single-cell data integration in three different
scenarios. In scenario 1, when all single-cell datasets are currently available, the Online iNMF

algorithm rapidly factorizes the single-cell data into metagenes and cell factor loadings using
multiple epochs of training. In scenario 2, the online algorithm iteratively incorporates single-cell
datasets as they arrive sequentially. We anticipate that scenario 2 will prove useful as researchers
continually incorporate newly sequenced cells to build comprehensive cell atlases. Scenario 3 holds
great promise for rapidly querying datasets against a large, curated reference atlas.

We anticipate that Online iNMF will become increasingly useful for integrating single-cell
multi-omic datasets of growing scale from projects such as the BRAIN Initiative, Human Body
Map, and Human Cell Atlas.
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2.5 Methods

2.5.1 About Online iNMF

2.5.1.1 Utility of Online iNMF

In this study, we extend the online NMF approach of Mairal et al. (2010) to make it suitable for
iNMF. Online iNMF provides two significant advantages: (1) integration of large multi-modal
datasets by cycling through the data multiple times in small mini-batches and (2) integration of
continually arriving datasets, where the entire dataset is not available at any point during training
(Figure 2.1).

We envision using Online iNMF to integrate single-cell datasets in three different scenarios
(Figure 2.1). We note that our Online iNMF approach is distinct from stochastic gradient descent
(SGD), a general optimization technique that can be used for a range of objective functions. Instead
of employing SGD, we have derived an online learning algorithm specifically tailored to the iNMF
objective function. Our approach has two key advantages compared to SGD: (1) SGD requires
choosing a data-dependent schedule of learning rates that vary over the whole learning process,
while our approach does not involve a learning rate parameter at all and (2) we use optimization
techniques that leverage the unique structure of the iNMF optimization problem, allowing theoretical
convergence guarantees and fast empirical convergence. Mairal et al. (2010) explain this distinction
in more detail.

2.5.1.2 Derivation of iNMF Updates

iNMF takes N single-cell multi-omic datasets X1, . . . , XN as input. After normalization,
gene selection (m variable genes selected) and scaling, we have the preprocessed input data
X i ∈ Rm×ni

+ (i = 1, ..., N) The goal is to find the shared and dataset-specific factors (metagenes)
W ∈ Rm×K

+ , V i ∈ Rm×K
+ and H i ∈ Rni×K

+ (i = 1, ..., N) that minimize the following empirical
cost of the iNMF problem, given parameters K and λ.

min
W,V i,Hi≥0
i=1,··· ,N

N∑
i=1

(
∥∥X i − (W + V i)H i⊤∥∥2

F
+ λ

∥∥V iH i⊤∥∥2
F
) (2.1)

For given W and V i, we update H i by numerically solving a nonnegative least squares problem:

H i = argmin
H≥0

∥∥∥∥∥
(
W + V i

√
λV i

)
H⊤ −

(
X i

0m×ni

)∥∥∥∥∥
2

F

(2.2)

We derived hierarchical alternating least squares (HALS) updates to calculate W and V i, holding
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the other two matrix blocks fixed:

W ∗
·j =

[
W·j +

∑
i(X

iH i)·j − (W + V i)(H i⊤H i)·j∑
i(H

i⊤H i)jj

]
+

V i∗
·j =

[
V i
·j +

(X iH i)·j − (W + (1 + λ)V i)(H i⊤H i)·j
(1 + λ)(H i⊤H i)jj

]
+

(2.3)

See Supplementary Note (Available online) for detailed derivation of HALS updates.

2.5.1.3 Optimizing a Surrogate Function for iNMF

We developed an online learning algorithm for integrative nonnegative matrix factorization by
adapting a previously published strategy for online dictionary learning (Mairal et al. 2010). The key
innovation that makes it possible to perform online learning is to optimize a “surrogate function”
that asymptotically converges to the same solution as the empirical iNMF cost. In the NMF problem
with a sparsity penalty (e.g. L1 regularization), we want to find the nonnegative factors W ∈ Rm×K

+ ,
H ∈ Rn×K

+ that optimally reconstruct the input X ∈ Rm×n
+ (n data points) by minimizing the

following empirical cost function:

fn(W ) =
1

n

n∑
s=1

ℓ(xs,W ) (2.4)

ℓ(xs,W ) = min
h≥0

N∑
s=1

(
∥∥xs −Wh⊤

s

∥∥2
2
+ λ

∥∥h⊤
s

∥∥
1
) (2.5)

where xs is the sth data point and h represents a row of H . The goal is to minimize the expected
cost:

f(W ) = Ex[ℓ(x,W )] = lim
n→∞

fn(W ) (2.6)

Assuming we randomly sample a data point x(t) at the tth iteration, the original Mairal paper
proved that the following surrogate function f̂T (W ) converges almost surely to fT (W ) (and to a
local minimum) as T →∞:

f̂t(W ) =
1

T

T∑
t=1

(
∥∥x(t) −Wh(t)⊤∥∥2

2
+ λ

∥∥h(t)⊤∥∥
1
) (2.7)

where x(t), W , h(t) are nonnegative and T is the total number of iterations. Mairal et al. derived
an online learning algorithm that performs NMF by updating h and W in an alternating fashion. They
first solve for h(t) using W (t−1) from the previous iteration and then obtain W (t) that minimizes the
surrogate function. Intuitively, this strategy allows online learning because it expresses a formula
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for incorporating a new observation x(t) given the factorization result W and h for previously seen
data points. Thus, we can iterate over the data points one-by-one or in small mini-batches.

In the proposed Online iNMF algorithm, we process the data in mini-batches, which improves
convergence speed. Assuming we have data matrices X i ∈ Rm×ni

+ (i = 1, . . . , N) and mini-batch
X

(t)
M of size p, where X(t)

M comprises data points X i(t)
M sampled from X i, the empirical cost of iNMF

is given by:

min
W,V i,Hi≥0
i=1,··· ,N

1∑N
i ni

N∑
i=1

(
∥∥X i − (W + V i)H i⊤∥∥2

F
+ λ

∥∥V iH i⊤∥∥2
F
) (2.8)

The corresponding surrogate function after the Tth iteration is:

f̂t(W,V 1, · · · , V N) =
1

T × p

T∑
t=1

N∑
i=1

(
∥∥∥X i(t)

M − (W + V i)H
i(t)⊤
M

∥∥∥2
F
+ λ

∥∥∥V iH
i(t)⊤
M

∥∥∥2
F
) (2.9)

where subscript M indicates a sampled mini-batch. For a new mini-batch X
(t)
M , we first compute

the corresponding cell factor loadings H i(t)
M for all input data using the shared (W (t−1)) and dataset-

specific (V i(t−1)) factors from the last iteration. The authors of the original online learning paper
employed the least angle regression algorithm (LARS) in their study. Here we use the ANLS
update instead because it is highly efficient, designed specifically for NMF (rather than dictionary
learning in general) and addresses the subproblem by running the solver exactly once within a single
iteration of the Online iNMF algorithm. We also tried using a HALS update for H i(t)

M , but found
that convergence was slower (Figure 2.11). Upon acquiring H

i(t)
M , we utilize the HALS method to

update the shared W (t) and V i(t), which is analogous to the updates used by Mairal et al. (2010) but
derived specifically for iNMF. Because the updates for W and V i depend on all of the previously
seen data points and their cell factor loadings, a naive implementation would require storing all of
the data and cell factor loadings in memory. However, the HALS updates depend on X i and H i

only through the matrix products H i⊤H i and X iH i (see Supplementary Note for details). These
matrix products have only K2 and mK elements respectively, allowing efficient storage, and can be
computed incrementally with the incorporation of each newly sampled mini-batch X

i(t)
M of size pi:

Ai(t) = Ai(t−1) +
1

pi
H

i(t)⊤
M H

i(t)
M

Bi(t) = Bi(t−1) +
1

pi
X

i(t)
M H

i(t)
M

(2.10)

Note that, analogous to the mini-batch extension of the original online dictionary learning
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Figure 2.11: Comparison of methods for updating cell factor loadings (H). The training data
are subsets (80%) of the adult mouse frontal (n = 124, 934) and posterior cortex (n = 79, 349)
datasets. 1, 111 were selected variable genes for this analysis. ANLS for H clearly outperforms the
other in minimizing the objective.

algorithm, we divide by pi to average the inner products across all data points within each mini-
batch.

2.5.1.4 Implementation of Online iNMF

Algorithm 2.1 summarizes our implementation of Online iNMF. We use our previous Rcpp
implementation of the block principal pivoting algorithm5 to calculate the ANLS updates for H i(t)

M .
We implement the HALS updates for W and V i using native R, since the updates require only
matrix operations, which are highly optimized in R. Because the online algorithm does not require
all of the data on each iteration (only a fixed-size mini-batch), we use the hdf5r package to load
each mini-batch from disk on the fly. By creating HDF5 files with chunk size no larger than the
mini-batch size, we achieve a time- and memory-efficient implementation that never loads more
than a single mini-batch of the data from disk at once. In fact, we can go a step further and analyze
datasets that are not stored on the same physical hard drive as the machine performing iNMF. We
show that it is possible to analyze data by streaming over the internet without downloading the
entire dataset onto the disk.

For scenario 1, in which the mini-batch size p specifies the total number of cells to be processed
per iteration across all datasets, we sample pi cells from each dataset i, proportional to its full
dataset size (pi = p× ni/

∑N
i ni). Thus, each mini-batch in scenario 1 contains a representative
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Algorithm 2.1: Online Learning for Integrative Nonnegative Matrix Factorization
Data: X i ∈ Rm×ni

+ , i = 1, · · · , N
1 Initialize Ai(0) ∈ 0K×K , Bi(0) ∈ 0M×K , i = 1, . . . , N ;
2 Initialize W (0) with random samples from a uniform distribution over [0, 2];
3 Initialize V i(0) with random samples from X i, i = 1, . . . , N ;
4 for t = 1→ T do
5 for i = 1→ N do
6 Sample a mini-batch X

i(t)
M of size pi from X i, i = 1, · · · , N ;

7 Compute H
i(t)
M using ANLS, i = 1, · · · , N ;

8 H
i(t)
M = argminH≥0

∥∥∥∥(W (t−1) + V i(t−1)
√
λV i(t−1)

)
H⊤ −

(
X

i(t)
M

0m×pi

)∥∥∥∥2
F

;

9 Update Ai(t) and Bi(t) (remove old information older than 2 epochs);
10 Ai(t) ← β(t)Ai(t−1) + 1

pi
H

i(t)⊤
M H

i(t)
M ;

11 Bi(t) ← β(t)Bi(t−1) + 1
pi
X

i(t)⊤
M H

i(t)
M ;

12 end
13 Initialize W (t) = W (t−1);
14 for j = 1→ K do

15 W
(t)
·j =

[
W

(t)
·j +

∑
i B

i(t)
·j −(W (t)+V i(t−1))A

i(t)
·j∑

i A
i(t)
jj

]
+

;

16 end
17 Initialize V i(t) = V i(t−1), i = 1, . . . , N ;
18 for j = 1→ K do

19 V
i(t)
·j =

[
V

i(t)
·j +

B
i(t)
·j −(W (t)+(1+λ)V i(t))A

i(t)
·j

(1+λ)A
i(t)
jj

]
+

;

20 end
21 end
22 Compute H i(T ) using ANLS, i = 1, . . . , N ;
23 return W (T ), V i(T ), H i(T ), i = 1, . . . , N .
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sample of cells from all datasets. For scenario 2, in which only one dataset is available at a time, we
sample the entire mini-batch from the current dataset. We also employ three heuristics that were
used in the original online NMF paper: (1) we initialize the dataset-specific metagenes using K cells
randomly sampled from the corresponding input data; (2) we downscale Ai(t−1) and Bi(t−1) when
obtaining Ai(t) and Bi(t) using H

i(t)
M ; and (3) we remove information older than two epochs from

matrices Ai(t) and Bi(t) (only once at the start of a new epoch, exclusive to scenario 1 in practice).
The intuition behind the second and third heuristics is as follows. By design, Ai(t) and Bi(t) carry
all the H

i(t)⊤
M H

i(t)
M and X

i(t)
M H

i(t)
M values respectively from t iterations. Each time when the same

data points are revisited (assuming t iterations comprise multiple epochs), the accuracy of resulting
cell factor loadings is improved because the metagene factors get refined during the implementation
of the algorithm. Consequently, the variability in the quality of cell factor loadings is carried over to
Ai(t) and Bi(t) by summing up matrix products shown above. Therefore, by downscaling Ai(t−1)

and Bi(t−1)(old information), the weight of the latest H i(t)⊤
M H

i(t)
M and X

i(t)
M H

i(t)
M increases. Mairal

et al. (2010) observed faster convergence of online learning on small datasets by removing the
matrix product involving the less-refined cell factor loadings and thus they adopted this heuristic
in their online learning implementation. An example of applying heuristic (2) and (3) for Ai(t) is
shown in algorithm 2.2 (the same strategy applies to Bi(t)).

Algorithm 2.2: Example of Heuristic (2) and (3)
1 if 3rd epoch starts at tth iteration (t ≥ 3) then
2 Ai(t−1) ← Ai(t−1) − Ai(t−2) // Remove old information
3 β(t) = t−2

t−1
;

4 Ai(t) ← β(t)Ai(t−1) + 1
pi
H

i(t)⊤
M H

i(t)
M // Downscale old information

5 end

Additionally, we implemented dataset preprocessing—including library size normalization,
variable gene selection, and gene scaling—using fixed-size mini-batches, so that preprocessing
requires only a prespecified amount of memory.

2.5.2 Data Loading Methods and Overhead

To investigate whether loading data from disk causes significant overhead, we ran Onine

iNMF (scenario 1) with 1,111 variable genes on the mouse cortex datasets stored either on disk
or in memory. Then we implemented both approaches with different choices of mini-batch size
(n = 1, 000, 5, 000, 10, 000, 50, 000) for 50 iterations, while keeping the other parameters the same
(K = 40, λ = 5). The average runtime for 50 iterations for each setting is reported in the barplot.
The standard deviation is displayed as error bars (Figure 2.12).

30



Figure 2.12: Reading mini-batches from disk adds minimal overhead. In this study, each chunk
in HDF5 files stores 1, 000 samples (cells). Pulling data from the disk does not add significant
overhead compared to loading the data from memory, as long as the mini-batch size is close to the
specified chunk size. Mean time per iteration (processing one mini-batch) (±SD) of 50 iterations in
each setting is displayed.

2.5.3 Quantile Normalization and Joint Clustering

We also implemented a much more efficient strategy for quantile normalization (See Algorithm
2.3) than our previously published approach (Welch et al. 2019). We found that, rather than
performing time- and memory-intensive shared factor neighborhood clustering to identify joint
clusters, we can perform the following steps: (1) assign each cell to the factor on which has the
highest loading, giving a number of joint clusters equal to the number of metagene factors K. Note
that one can center the cell factor loadings at first if the distribution of cell factor loadings from
a given dataset significantly differs from the others (e.g. due to different data modalities); (2) for
each input dataset, efficiently find approximate within-dataset nearest neighbors using the RANN
package (k-nearest neighbors k = 20 and ϵ = 0.9 by default) and then correct these maximum factor
assignments by taking a majority vote among within-dataset nearest neighbors; and (3) perform
quantile normalization on the refined joint clusters as before (Welch et al. 2019). By default, we
choose the dataset with the largest number of cell samples as the reference dataset. Then, for cells
from each of the joint clusters, we normalize the quantiles of the factor loadings for each metagene
factor in the other datasets to match the quantiles of the factor loadings for the same metagene in
the reference dataset. This strategy performs just as well as shared factor neighborhood clustering,
but uses significantly less time and memory. Unless otherwise specified, we implemented quantile
normalization with k = 20 (default) for k-nearest neighbors in analyses of both real and simulated
datasets (note that k is denoted as Q in algorithm 2.3 ).

After performing quantile normalization, one can perform a second clustering step (e.g., Louvain
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community detection) using the normalized cell factor loadings H i (or unnormalized H i if the data
are aligned well even without quantile normalization).

2.5.4 Quantitative Metrics for Evaluating Alignment and Clustering

Alignment score, devised by Butler et al. (2018), measures the uniformity of mixing among
samples from different datasets (N ≥ 2) in the aligned latent space. High score (close to 1) implies
the datasets share underlying cell types and are well integrated, while low score (close to 0) indicates
the datasets do not share cognate populations and the samples are not aligned. In the manuscript, we
report the alignment score calculated from the cell factor loading matrices H (dimension = number
of metagenes K). We also employ the k-nearest neighbor batch-effect test (kBET) Büttner et al.
(2019) to assess the data integration results on H . kBET first creates a k-nearest neighbor graph
(we used k = 20 for all analyses in the paper), and then randomly samples 1, 000 cells to examine
the batch label distribution in the cell’s neighbourhood against the global batch label distribution,
using a χ2 -test (100 repeats) under the null hypothesis that input data batches are mixed well.
If the datasets are well integrated, the local batch label distribution will be similar to the global
batch label distribution and the statistical tests will not reject the null hypothesis, resulting in a low
rejection rate for 1, 000 tested data points in each repeat. In our analyses, we took the median of
the rejection rates from all repeats and subtracted it from 1 to report the overall acceptance rate.
High acceptance rate indicates well-mixed datasets. To quantify clustering performance, we used
the purity metric and the adjusted Rand index (ARI) (Hubert and Arabie 1985). Purity assesses the
resulting clusters with respect to a reference clustering. To calculate purity, one can assign each
cluster to the dominant class in the cluster and count the number of correctly assigned samples
in it. Then the purity is calculated by taking the sum over all clusters and dividing by the total
number of samples. ARI is another popular method to compare clustering results. It counts pairs of
samples where two clustering results agree or disagree. ARI was built upon the Rand index (RI)
(Rand 1971), and fixes the issues in practice suffered by RI such as narrow range and non-constant
baseline. ARI lies between 0 (no match) and 1 (perfect match).

2.5.5 Integrative Analyses on Real Data

2.5.5.1 Study of Convergence Behavior of Online iNMF

To investigate the convergence behavior of Online iNMF (scenario 1), we utilized several
strategies and datasets. The first experiment was conducted on the adult mouse frontal (n =

156, 167) and posterior cortex (n = 99, 186) datasets, generated by Saunders et al. (2018). We
split both into training (80%) and testing sets (20%). Three methods were used for comparison:
Online iNMF (mini-batch size = 5, 000 cells), ANLS (batch iNMF) and multiplicative updates
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Algorithm 2.3: Quantile Normalization
Data: H i ∈ Rni×K

+ , i = 1, . . . , N
1 for i = 1→ N do
2 for j = 1→ K do
3 Scale H i

·j (centering is optional) // Cell (from X i) loadings on jth
metagene factor

4 end
5 end
6 Set XR as reference dataset (R = argmaxi ni);
7 for i = 1→ N do
8 for s = 1 to ni do
9 cis = argmaxj H

i
sj;

10 end
11 end
12 for i = 1→ N do

// Cluster re-assignment of xi
s

13 for s = 1→ ni do
14 Identify Q nearest neighbors of xi

s;
15 Obtain cis(q), q = 1, · · · , Q;
16 ci∗s = argmaxj

∑Q
q=1 I[cis(q) = j];

17 end
18 end
19 for j = 1→ K do
20 for i = 1→ N (i ̸= R) do
21 for k = 1→ K do
22 Obtain HR

j,k // loadings of the cells (from XR) in

cluster j on kth metagene factor
23 Obtain H i

j,k // loadings of the cells (from X i) in

cluster j on kth metagene factor
24 Match the quantiles of HR

j,k and H i
j,k;

25 end
26 end
27 end
28 return normalized H i, i = 1, . . . , N .
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(Mult). With 1, 111 genes jointly selected from the input datasets, we tracked the training and testing
objectives calculated based on the resulting factors (Figure 2.2a,b). In order to evaluate the testing
objective, we calculated cell factor loadings for cells in the testing set using the metagene factors
obtained from the training set. As the Online iNMF algorithm aims to minimize the expected
cost, we expect the Online iNMF to converge more rapidly than batch methods on the testing set,
which can be viewed as a surrogate of the expected cost. Mairal et al. (2010) took a similar approach
to evaluate their Online iNMF algorithm. In the second experiment, we monitored the iNMF
objective on the training set after 500 seconds and repeated 20 times with random initializations,
in order to further demonstrate the efficiency of the algorithms (Figure 2.2c). For the third part
of this study, we focused on the effect of the mini-batch size. We applied Online iNMF on the
same training and testing cortex datasets, but with mini-batches of increasing size (n = 1, 000,
5, 000, 10, 000, 50, 000, 100, 000, 150, 000, 200, 000). Similarly, we tracked the training and testing
objectives until the algorithm converged (Figure 2.2d,e). Lastly, we implemented Online iNMF

on multiple subsets of different sizes sampled from the training set (Figure 2.2f). At multiple time
points throughout the training process, we used the learned metagenes to solve for the cell factor
loadings on the testing set, and calculated the testing objective. We set the key parameters K = 40

and λ = 5 for all analyses discussed above.
We also carried out three additional analyses on different datasets to support our conclusions,

where we looked at the trajectories of training/testing objectives as well as the minimization of the
training objective within a given amount of time (Figure 2.3). The datasets and key parameters
are listed as follows. 1) adult mouse brain (DropViz), 9 datasets (each corresponds to a brain
region), n = 691, 962, K = 40, λ = 5, mini-batch size = 5, 000; 2) human PBMC (SeuratData
package), n = 13, 999, 2, 000 variable genes (selected through Seurat pipeline), K = 20, λ = 5,
mini-batch size = 2, 000; 3) human pancreas (SeuratData package), n = 14, 892, 2, 000 variable
genes (selected through Seurat pipeline), K = 40, λ = 5, mini-batch size = 3, 000.

2.5.5.2 Benchmark of Runtime and Peak Memory Usage

The benchmark study was carried out on the adult mouse frontal (n = 156, 167) and posterior
cortex (n = 99, 186) datasets from the DropViz data collection (Saunders et al. 2018) (Figure 2.5a).
We created four pairs of subsets of increasing sizes by sampling from each of the full datasets.
Within each pair, the subset from the frontal cortex and the one from the posterior cortex held the
same ratio as their full datasets (61.2 : 38.8). This resulted in five pairs of inputs (n = 10, 000,
50, 000, 100, 000, 200, 000, 255, 353) for Online iNMF (scenario 1), batch iNMF, Harmony and
Seurat v3. To ensure fair comparison, we preprocessed the data as suggested by each method.
The preprocessing steps suggested by each method differ slightly as follows: (1) Online iNMF

and batch iNMF normalize the gene expression measurements for each cell and then scale the
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gene expression data without centering to zero mean, because iNMF expects nonnegative inputs.
(2) Seurat log-transforms the normalized gene expression matrices. (3) Harmony log-transforms
the normalized gene expression and scales each gene to unit variance, and centers to zero mean
(Note that we ran Harmony using the SeuratWrappers package.).For fair comparison, we used
the same set of 1, 111 variable genes for all approaches, the same number of dimensions of the
latent space (K = 40) and the same penalty parameter λ = 5 for iNMF-based approaches. We ran
Online iNMF for 5 epochs, the default setting. We also ran batch iNMF, Seurat and Harmony.
During the benchmark, we measured runtime (using the tictoc package) and peak memory
usage (peakRAM package) for factorization and alignment (quantile normalization included for
online/batch iNMF). We did not include data preprocessing (normalization and scaling) in runtime
and memory benchmarks.

2.5.5.3 Analysis of Human PBMC and Pancreas

We analyzed the human PBMC (n = 13, 999 cells) and human pancreas (n = 14, 890) datasets
in several experimental settings. The human PBMC dataset consists of two batches, control (n =
6,548) and stimulated cells (n = 7, 451). The human pancreas dataset comprises eight batches
(n = 638, 1, 937, 1, 004, 2, 285, 1, 724, 3, 605, 1, 303, 2, 394) across five different technologies
(SMARTSeq2, Fluidigm C1, CelSeq, CelSeq2, inDrops). In the first experiment (Figure 2.3b-c),
we used these datasets to study the convergence behavior of the algorithms (discussed above). In
the second experiment (Figure 2.4), we performed Online iNMF (scenario 1) on the PBMC
with 1, 778 variable genes (K = 20, λ = 5, mini-batch size = 2, 000, epochs = 5), and on the
pancreatic islets with 2, 051 variable genes (K = 40, λ = 5, mini-batch size = 3, 000, epochs
= 5), followed by quantile normalization. We ran batch iNMF with the same variable genes, K,
and λ until convergence. For the third experiment (Figure 2.5b-c), we used the human PBMC and
pancreas to benchmark Online iNMF (scenario 1), along with batch iNMF, Harmony and Seurat,
with respect to alignment and clustering performance. We used the top 2, 000 highly variable genes
selected by Seurat for all algorithms. For online and batch iNMF, the analytical pipelines and the
key parameters stayed the same as in the previous experiment. To account for the effect of random
initialization, the iNMF-based analyses were repeated 100 times. For Harmony and Seurat, we ran
the analyses once, with the number of dimensions for the latent space set to 20 and 40 respectively
(matching the iNMF K). We also ran additional analyses on human PBMC to inspect the data
reconstruction ability of Online iNMF, as well as the effect of λ on resulting data integration
using Online iNMF (see Supplementary Note for details).
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2.5.5.4 Analysis of Adult Mouse Brain

The adult mouse brain dataset (DropViz) comprises nine individual scRNA-seq datasets, each
generated from a specific brain region. The brain regions assayed include frontal cortex (n =

156, 167), posterior cortex (n = 99, 186), cerebellum (n = 26, 139), entopeduncular (n = 19, 214),
globus pallidus (n = 66, 318), hippocampus (n = 113, 507), striatum (n = 77, 454), substantia
nigra (n = 44, 416) and thalamus (n = 89, 561), totaling 691, 962 cells. We picked 1, 111 variable
genes and integrated the frontal and posterior cortex datasets using Online iNMF (scenario 1)
and batch iNMF. Then we obtained the UMAP coordinates from the quantile normalized cell factor
loadings and colored the cells by datasets and published cell type labels. Although all 255, 353 cells
from the cortex were used for factorization, 117, 985 of them were annotated by Saunders et al.
(2018). and shown in the plot (Figure 2.4). Moreover, we integrated the data across all nine brain
regions (Figure 2.7). We identified 1, 914 genes that are highly variable in at least one of the regions.
Using these genes, we performed 3 epochs of Online iNMF (scenario 1) with mini-batch size of
5, 000, K = 40 and λ = 5. In this analysis, we found that quantile normalization was not necessary
for these dataset–iNMF alone was sufficient for integration.

2.5.5.5 Analysis of Spatial Transcriptomic Data

In the Slide-seq analysis, we filtered the scRNA-seq data for low quality cells–labeled in the
original annotation file–for a total of 193, 155 cells. We combined Pucks 190921, 191204, and
200115 from the Slide-seq data for a total of 59, 858 beads. We selected 16, 655 variable genes.
We ran scenario 1 with K = 30 for 5 epochs, λ = 5 on the scRNA-seq data, then projected the
Slide-seq data following scenario 3. After factorization, we performed quantile normalization and
Louvain clustering. We then colored the Slide-seq beads with the new labels generated based on the
marker genes. Because each Slide-seq bead may contain more than one cell, we used the cell factor
loadings to estimate the proportion of each cell type on each bead. To do this, we annotated each
iNMF factor to assign it to a cell type, as described in the original Slide-seq paper.The loading value
of each metagene factor then indicates the cell proportions of the corresponding cell types on each
bead. We excluded the beads with no clear cell type, and for those with two cell types contributing
more than 35% to the factor loadings, we colored the beads by the one with the higher loading.
In the second analysis, we used the MERFISH dataset (n = 1, 026, 840 cells) and scRNA-seq
(n = 31, 250) in scenario 1 and scenario 3. We used the 134 genes measured in the MERFISH
dataset. We used K = 30 and λ = 5. Scenario 1 was run for 5 epochs, and the slides plotted for
Figure 2.7g are from animal 1.
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2.5.5.6 Analysis of Mouse Primary Motor Cortex

The mouse primary motor cortex (MOp) datasets were generated by the BRAIN Initiative
Cell Census Network (BICCN). The eight datasets span four modalities (single-cell RNA-seq,
single-nucleus RNA-seq, single-nucleus ATAC-seq, single-nucleus methylcytosine-seq) and include
786, 605 cells. For most of the analyses on MOp, we only used the neurons, 408, 885 in total,
except for the analyses involving oligodendrocytes. These datasets are (in the chronological order
they were generated) allen smarter cells (n = 6, 244 neurons), allen 10x cells v2 (n = 121, 440

neurons), allen smarter nuclei (n = 5, 911 neurons), allen 10x cells v3 (n = 69, 727 neurons),
allen 10x nuclei v3 (n = 39, 706 neurons), macosko 10x nuclei v3 (n = 101, 647 neurons),
ecker ren atac (n = 54, 844 neurons), ecker ren met (n = 9, 366 neurons). The RNA and ATAC
datasets were preprocessed following the standard LIGER pipeline. We selected variable genes
using the genes shared across all datasets. We preprocessed methylation data as described in the
original LIGER paper (Welch et al. 2019). Briefly, we inverted the direction of gene-body mCH
methylation (which is anticorrelated with gene expression) by taking the difference between the
maximum of the matrix and each matrix element. The resulting gene-level methylation features
are positively correlated with gene expression. Methylation data does not require library size
normalization because its values are already ratios (the number of methylated nucleotides divided
by the number of detected nucleotides). For iterative multi-omic integration using Online iNMF

(scenario 2), we performed a single epoch of training (each cell participates in exactly one mini-
batch). When adding a new dataset i (1 ≤ i ≤ N ), we incorporated a new dataset-specific metagene
V i and randomly initialized it. We did not use the data previously seen to refine the metagenes after
the initial single epoch per dataset. Then we re-computed the cell factor loadings for all datasets
(H1, . . . , HN ) using the latest metagenes and quantile normalized them.

For integration of the entire MOp dataset (N = 8) in scenario 2 (Figure 2.9), we identified
4, 783 variable genes from the first input (i.e. allen smarter cells) and used a fixed mini-batch size
of 5, 000 cells, K = 30, λ = 1. For integrating all MOp datasets in scenario 1 (Figure 2.10a), we
applied the same parameter setting except for λ = 5. Moreover, we attempted another strategy,
where we integrated the first six sc/snRNA-seq datasets sequentially in scenario 2 and then projected
both epigenomic datasets (snATAC-seq and snmC-seq) into the learned latent space, followed by
quantile normalization and Louvain clustering (Figure 2.10c). In order to benchmark the cross-
modality data integration performance across algorithms (Figure 2.6), we randomly sampled 5, 000

cells from the snRNA-seq dataset (macosko 10x nuclei v3) and 5, 000 cells from the snATAC-seq
dataset (ecker ren atac). We implemented data integration using Online iNMF (scenario 1, 3, 717
variable genes, K = 30, λ = 5) as well as Seurat v3, Harmony and BBKNN with the same set of
genes and dimension = 30 for dimension reduction process. Unlike the other methods, BBKNN
only outputs a graph, on which alignment score and kBET cannot be calculated. Therefore, in
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the main text we only reported these metrics for Online iNMF, Seurat v3 and Harmony, which
produce the latent coordinates. In addition, we tried calculating the alignment metrics on the UMAP
coordinates. In this setting, Online iNMF is still the best (alignment score = 0.816, kBET
= 0.651), followed by Seurat v3 (alignment score = 0.747, kBET = 0.544), BBKNN (alignment
score = 0.409, kBET = 0.218) and Harmony (alignment score = 0.139, kBET = 0.092).

For other supplementary analyses, we retained or held out the cell types of interest and carried
out Online iNMF in scenario 1, 2, and 3 as introduced in the supplementary notes (Figure 2.13,
2.14, 2.15). More specifically, for the analyses in scenario 2 reported in Figure 2.13a, we used
2, 011 and 1, 997 variable genes respectively. Similarly, for the analyses reported in Figure 2.13b,
we selected 2, 019 variable genes for both. The other key parameters are K = 30, λ = 1, and
k = 200 for quantile normalization. For the results displayed in Figure 2.14a, we used the same
2, 111 variable genes and set K = 30 for all approaches, while using λ = 1 for Online iNMF

(scenario 2) and λ = 5 for Online iNMF (scenario 1) as well as batch iNMF. Upon completion
of the factorization, we performed quantile normalization with k = 2, 000.

In order to generate Figure 2.14b, we integrated two sc/snRNA-seq datasets with 2, 045 genes,
K = 30, λ = 5 in scenario 1, and then projected the snATAC-seq dataset into the learned latent
space. We quantile normalized the cell factor loadings with k = 1, 000.

For the analysis shown in Figure 2.15, we used 2, 210 variable genes, K = 30, λ = 5 for the
part done in scenario 1. After the last dataset was incorporated in scenario 3, we ran quantile
normalization with k = 200.

As shown in Figure 2.16, we factorized snATAC-seq and snmC-seq data both alone and jointly
with a snRNA-seq dataset using Online iNMF in scenario 1 (2, 008 variable genes, K = 30,
λ = 5). Then we run quantile normalization and louvain clustering following standard procedure.

2.5.5.7 Analysis of Mouse Organogenesis Cell Atlas

The mouse organogenesis cell atlas (MOCA) consists of 1, 363, 063 cells from embryos between
9.5 to 13.5 days of gestation (e9.5, e10.5, e11.5, e12.5, e13.5). We first selected 2, 557 variable genes
and then integrated the five MOCA datasets in scenario 1 with the following setting: mini-batch
size = 5, 000 cells, K = 50, λ = 5, epochs = 1. As the alignment was quite good without quantile
normalization, the 3D UMAP coordinates were obtained from the unnormalized cell factor loadings.
Lastly, we visualized the cells, colored by datasets (gestational age) and published developmental
trajectory labels using the rgl package (Figure 2.17). We employed Harmony for this analysis
with the same set of variable genes and dimensionality of the latent space (PCA).
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Figure 2.13: Performance of Online iNMF (scenario 2) with missing rare cell clusters (real
data). The L5/6 NP and L6b cells missing from early- or late- arriving datasets are successfully
identified. (a) The rare cell types were missing from the first input (allen 10x cells v2). (b) The
rare cell types were missing from the second input (macosko 10x nuclei v3).
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Figure 2.14: Online iNMF results in minimal spurious alignment for non-overlapping
datasets (real data). (a) Online iNMF (scenario 1 & 2) and batch iNMF are utilized to integrate
one dataset containing only interneurons (scRNA-seq, n = 27, 555) and another containing only
oligodendrocytes (snRNA-seq, n = 21, 404) using 30 metagenes. (b) Projection of completely non-
overlapping dataset into the existing latent space leads to minimal spurious alignment. An scRNA-
seq dataset (n = 27, 555) and a snRNA-seq dataset (n = 15, 255) containing only interneurons
are first integrated in scenario 1. Then an snATAC-seq dataset containing only oligodendrocytes
(n = 8, 557) is projected into this aligned latent space.
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Figure 2.15: Online iNMF (scenario 3) leads to little spurious alignment when integrating
partially-overlapping datasets. 6 sc/snRNA-seq datasets from the MOp (n = 344, 675) were
integrated using Online iNMF (scenario 1). Then an snATAC-seq dataset (n = 49, 167) without
MGEs (i.e. Pvalb, Sst and Chodl cells) was projected (scenario 3) into the atlas already built. (a)
The UMAP visualization annotated by our cell class labels. (b) UMAP plot colored by dataset.
Almost no cells from snATAC-seq data are observed in the clusters corresponding to Pvalb, Sst and
Chodl cells (red boxes).
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Figure 2.16: Integrating methylation or chromatin accessibility data with RNA data better
separates clusters. (a) 6 more clusters are observed after joint analysis of snATAC-seq data
(n = 54, 844) and snRNA-seq data (n = 101, 647) than analysis of snATAC-seq data alone. (b) 3
more clusters are obtained after incorporating the snRNA-seq data than investigating snmC-seq data
(n = 9, 366) alone.
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Figure 2.17: Online iNMF (scenario 1) efficiently factorizes the mouse organogenesis cell
atlas (MOCA). The MOCA dataset consists of 1, 363, 063 cells from embryos between 9.5 to 13.5
days of gestation. The Online iNMF analysis required 25 minutes and less than 2 GB of RAM on
a MacBook Pro, compared to 98 minutes and 109 GB of RAM for Harmony, which could only be
run on a large-memory server. (a-b) 3D UMAP plot of the Online iNMF results (n = 200, 000
cells sampled for visualization), colored by dataset (a) and published developmental trajectory
labels (b).

2.5.6 Integrative Analyses on Simulated Data

2.5.6.1 Generating Simulated scRNA-seq Data

We employed the R package Splatter (Zappia et al. 2017) to simulate scRNA-seq datasets.
Each dataset has 50, 000 cells and 10, 000 genes, separated into 6 batches and 8 cross-batch cell types
(clusters). We adopted the settings from the recently reported benchmark study (Tran et al. 2020)
while adjusting the proportion of each batch and cluster according to our needs. We determined
the dataset compositions following one of these three strategies: 1) randomly sample the cluster
proportions from the Dirichlet distribution for each simulation while keeping the batch sizes (also
generated by Dirichlet distribution) in each simulation the same (Figure 2.18, 2.21); 2) randomly
sample the batch sizes from the Dirichlet distribution for each simulation while keeping the cluster
proportions (also generated by Dirichlet distribution) in each simulation the same (Figure 2.18);
3) use the same cell type and batch proportions to isolate the effect of differences in cell cluster
membership across partially overlapping datasets (Figure 2.21, 2.19, 2.20).
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2.5.6.2 Analysis of Simulated Data with Unbalanced Cell Clusters and Dataset Sizes

We generated the datasets for this analysis following the first and second data generation
strategies described in the “Generating simulated scRNA-seq data” section, corresponding to the
analysis of unbalanced cell clusters and datasets sizes respectively. To quantitatively measure the
level of imbalance in each analysis, we computed the Shannon entropy (H) of both the cluster
proportions (Hcluster) and batch sizes (Hbatch) using the equation below, where P is a vector of n
probabilities that add up to 1:

H(P ) = −
n∑

i=1

pilog2(pi)

Where P = p1, ..., pn, 0 < pi < 1,
∑n

i=1 pi = 1. We then measured the performance of Online
iNMF in scenario 1 and 2 (Table 2.1, 1st row). We also computed the spearman correlation between
the evaluation metrics (Alignment, Purity, ARI, and kBET) and the entropy of cluster proportions
and batch sizes (Figure 2.18e).

2.5.6.3 Analysis of Simulated Data with Missing Cell Clusters

We generated the datasets used in this analysis following the third data generation strategy
described above. In this case, the cluster proportions and batch sizes were exactly the same for
all 10 simulations, to isolate the effect of variable batch compositions. We then excluded 1-5 cell
types from the first 5 batches to mimic the situations when the newly arriving data (Batch 6) share a
varying number of common cell types with the reference data (Figure 2.19a). We applied Online
iNMF in scenario 1 and 2 (Table 2.1, 2nd row) and visualized the evaluation metrics against the
number of held-out cell types in line plots (Figure 2.19e). To test the performance of Online
iNMF (scenario 3), we ran the pipeline again while treating the first 5 batches with missing cell
types as the “reference data” and the last batch as the “projected data” (Table 2.1, third row). We
plotted the results from the two evaluation metrics for Online iNMF on all cells, cells in the
missing cell types, and cells in the shared cell types, along with the number of held-out cell types
(Figure 2.20).

2.5.6.4 Analysis of Simulated Data with No Cell Types Shared Across All Datasets

We generated the datasets used in this analysis following the first data generation strategy
described in previous section. Within each simulation, we excluded one different cluster in 5
batches and excluded the other three remaining clusters in the sixth batch to ensure that the
intersection of cell types across all batches is the empty set (Figure 2.21a). To measure the
performance of Online iNMF (scenario 1 and 2), we ran a number of regular LIGER analyses
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Figure 2.18: Performance of Online iNMF under unbalanced cell clusters and dataset sizes
(simulations). (a) Schematic plot showing the composition of 8 clusters and 6 batches in each
simulated dataset (with 10, 000 genes and 50, 000 cells). (b-d) UMAP representations of an example
integration result plotted using batch labels (b), LIGER cluster assignments (c), and ground truth
cluster labels (d). (e) Line plots of four evaluation metric scores for Online iNMF (scenario
1 & 2) versus the Shannon entropy of cell type and batch size (larger H means more balanced
composition). The data are presented as mean values ± standard deviation (5 random initializations
for each simulated dataset, n = 50, 000 cells in each simulated dataset). The p-value was obtained
from one sided Spearman’s rank correlation test without adjustment for multiple comparisons.
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Figure 2.19: Performance of Online iNMF (scenario 1 and 2) with missing cell clusters
(simulations). (a) Schematic plot showing the equal proportions of 8 clusters and 6 batches in
each simulated dataset (with 10, 000 genes and 50, 000 cells) with 1-5 cell types excluded. (b-d)
UMAP representations of an example integration result from scenario 1 from a simulation with
three held-out cell types. The plots are colored using batch labels (b), LIGER cluster assignments
(c), and ground truth cluster labels (d). (e) Line plots of two evaluation metrics for Online iNMF
(scenario 1 & 2) versus the number of cell types excluded. The data are presented as mean values ±
standard deviation (10 random initializations for each simulated dataset, n = 50, 000 cells in each
simulated dataset before holding out any cell clusters).
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Figure 2.20: Performance of Online iNMF (scenario 3) with missing cell clusters (simu-
lations). (a) Schematic plot showing the equal proportions of 8 clusters and 6 batches in each
simulated dataset (with 10, 000 genes and 50, 000 cells) with 1-5 cell types excluded. (b-d) UMAP
representations of an example integration result from scenario 3 from a simulation with 3 held-out
cell types. The plots are colored using batch labels (b), LIGER cluster assignments (c), and ground
truth cluster labels (d). (e) Line plots of two evaluation metric scores for Online iNMF (scenario
3) on all cells (red line), cells in missing clusters (blue line), and cells in shared clusters (green
line), versus the number of cell types excluded. The data are presented as mean values ± standard
deviation (10 random initializations for each simulated dataset, n = 50, 000 cells in each simulated
dataset before holding out any cell clusters).
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using mostly default parameters (Table 2.1, 4th row) and drew the boxplots using each evaluation
metric calculated from 50 runs (Figure 2.21e).

2.5.6.5 Analysis of Simulated Data with Varying Number of Factors (K

The datasets used in this analysis were generated following the third data generation strategy
described in the “Generating simulated scRNA-seq data” section, without any further subsetting
or filtering. To measure the performance of Online iNMF (scenario 1 and 2) across a range of
K values, we ran a number of analyses (Table 2.1, last row), and drew the line plots to show the
relationship between each of the four evaluation metrics and values of K ranging from 10 to 40
(Figure 2.22).

Integration Mini-batch Variable # of iNMF # of # of total
Figure Strategy K λ size Genes Initializations Simulations Runs

2.18
Scenario 1 20 5 5,000 ∼ 3,000 (*) 5 20 100
Scenario 2 20 10 1,000 3,000 (**) 5 20 100

2.21
Scenario 1 20 5 5,000 ∼ 3,000 (*) 5 10 50
Scenario 2 20 10 1,000 3,000 (**) 5 10 50

2.19
Scenario 1 20 5 5,000 ∼ 3,000 (*) 10 5 50
Scenario 2 20 10 1,000 3,000 (**) 10 5 50

2.20 Scenario 3 20 5 5,000 ∼ 3,000 (***) 10 5 50

2.22
Scenario 1 10-40 5 5,000 ∼ 3,000 (*) 1 70 70
Scenario 2 10-40 10 1,000 3,000 (**) 1 70 70

* Selected from all batches
** Selected from the first batch
*** Selected from batches with missing cell types

Table 2.1: Key parameter settings for integrated analysis on simulated data

2.6 Supplementary Note: Benchmarking Online iNMF Performance Across a Range of
Conditions Using Real and Simulated Data

2.6.1 Benchmarking Online iNMF with Simulation Studies

We have demonstrated in the former sections the robust performance of Online iNMF on
multiple real datasets including human PBMC, human pancreas, and mouse cortex. To provide
additional theoretical understanding, we performed extensive simulations using the Splatter scRNA-
seq simulator. We investigated the effects of different dataset orderings, relative dataset sizes, and
cell type compositions. To give a clearer view, these results are separated into five figures and
organized in a similar fashion, including a schematic plot of the simulation design (a, Figure 2.18,
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Figure 2.21: Performance of Online iNMF with no cell types shared across all datasets
(simulations). (a) Schematic plot showing the composition of 8 clusters and 6 batches in each of
ten simulated datasets; data were further filtered to make sure the intersection of all batches in each
simulation is the empty set while the pairwise intersections of all batches are non-empty. (b-d)
UMAP representations of an integration example result under scenarios 1 & 2 plotted using batch
labels (b), LIGER cluster assignments (c), and ground truth cluster labels (d). (e) Bar plot of the
two evaluation metric scores for Online iNMF (scenario 1 & 2) simulated data. The data are
presented as mean values ± standard deviation (50 runs in total for each metric, n = 50, 000 cells
in each simulated dataset).
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Figure 2.22: Performance of Online iNMF with varying K (number of metagenes) (simula-
tions). (a) Schematic plot showing the composition of 8 clusters and 6 batches in each simulated
dataset (with 10, 000 genes and 50, 000 cells). (b-d) UMAP representations of an example result
plotted using batch labels (b), LIGER cluster assignments (c), and ground truth cluster labels (d). (e)
Line plots of four evaluation metric scores for Online iNMF (scenario 1 & 2) versus K varying
from 10 to 40 incremented by 5. The data are presented as mean values ± standard deviation (10
random initializations for each K, n = 50, 000 cells in each simulated dataset).
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2.19, 2.20, 2.21, 2.22), UMAP plots of a representative integration result (b-d, Figure 2.18, 2.19,
2.20, 2.21, 2.22), and box or line plots of evaluation metrics (e, Figure 2.18, 2.19, 2.20, 2.21, 2.22).

Overall, we found that imbalanced cell cluster proportions and dataset sizes have very little
effect on the results of Online iNMF, although scenario 2 is slightly more sensitive to imbalances
in cell proportions than scenario 1. We computed the Spearman correlations between the Shannon
entropy of batch and cluster sizes and the four evaluation metrics we employed (see Online Methods
section for details). Most of the correlation p-values are much larger than 0.05, indicating that
Online iNMF performance is not significantly affected by imbalances in dataset size or cluster
proportions. The one exception is that for Online iNMF (scenario 2), there is a statistically
significant correlation between cluster entropy and both adjusted rand index and alignment, indi-
cating that scenario 2 is slightly more sensitive to imbalances in cell proportions than scenario 1.
Furthermore, we used random dataset arrival orders in benchmarking scenario 2, and found that the
relative order of small vs. large batches in scenario 2 makes little difference (Figure 2.18).

With missing cell clusters, the proportion of the missing cell types also has little effect on the
results of iNMF (scenarios 1 and 2) (Figure 2.19). Under the same condition, we also performed
simulations to test whether scenario 3 will force cells into the existing feature space. These results
showed that Online iNMF does not cause spurious alignment, even if one or more cell types in
the dataset to be projected are missing from the reference dataset. In the case of multiple cell types
missing from the reference dataset, all of the new cell types cluster with each other (but not with
the reference cells). This causes a decrease in overall Purity and ARI (Figure 2.20e, red line), but
a much more gradual decrease in purity and ARI for the cell types shared between reference and
query datasets (Figure 2.20e, green line). This behavior makes sense, because the shared metagenes
(W) learned from the reference dataset cannot be expected to distinguish among multiple unseen
cell types, which explains the poor evaluation metrics for the cells in the missing cell types (Figure
2.20e, blue line).

We also designed simulations in which no cell types occurred in every batch, but every pair of
batches shared at least one cell type. This allowed us to test the performance of iNMF on data with
complex biological compositions. Our results indicate that Online iNMF is quite robust to these
situations and identifies every cluster clearly (Figure 2.21). It seems that the most important factor
determining the difficulty of identifying a particular cluster is the total number of cells in the cluster
observed across all datasets, independent of how those cells are distributed across datasets.

2.6.2 Reading Mini-Batches from Disk Adds Minimal Overhead

One highlight of the proposed Online iNMF algorithm is that it streams the mini-batches
from the files on the disk without loading the entire data into the memory. Here we demonstrate that
little overhead is added through this approach on the mouse frontal and posterior cortex scRNA-seq
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datasets (details are discussed in 2.5). For a mini-batch size of 5, 000 cells, reading each mini-batch
from disk does not require significant overhead (an average of less than 0.56 seconds per iteration
over 50 iterations) (Figure 2.12).

2.6.3 Online iNMF Is Robust to Initialization and Input Ordering

The Online iNMF algorithm starts with randomly initialized metagene factors (W and V i).
Therefore, we inspected the effect of random initialization on the analyses on the MOp datasets by
assessing the agreement, as measured by ARI, between the resulting cell clusters and our annotations
generated in scenario 2 (Figure 2.9d). First, we performed Online iNMF (scenario 1) on all
eight MOP datasets with 10 different random initializations, using the same variable genes that we
used for the scenario 2 analysis in Figure 2.9. Based on the output cell clusters, the average ARI
(vs. our annotations from scenario 2, shown in Figure 2.9d) is 0.725. Similarly, we ran Online
iNMF (scenario 2) with 10 different initializations using the same set of genes (inputs ordered
chronologically) and obtained an average ARI (vs annotations) of 0.744. These results indicate that
Online iNMF scenario 1 and 2 are both robust to the effects of random initialization.

To investigate the effects of different dataset orders on scenario 2 results, we repeated the
scenario 2 analysis using each of the other five sc/snRNA-seq datasets as the initial dataset. As with
the analysis shown in Figure 2.9, we selected over 4, 000 variable genes from the first dataset and
sequentially incorporated all remaining MOp datasets. We found that initiating the analysis with any
of the six sc/snRNA-seq datasets leads to clusters in good agreement with our annotation (average
ARI = 0.759), indicating that the results are robust to choice of starting dataset. We can even select
genes from the snATAC-seq dataset, and use it as the first input, with slightly lower agreement
(ARI = 0.627). If we instead use the snATAC-seq dataset as the starting dataset but use the genes
selected from the first RNA dataset (SMARTer cells), the ARI is 0.752. Because the distribution of
methylation is so different from gene expression, the statistical model for variable gene selection
reported zero variable genes, and thus we were not able to select genes from the methylation data.
Additionally, the results from scenario 1 and 2 are quite congruent (ARI = 0.773).

2.6.4 Integration with RNA Data Detects More Clusters from Epigenome

In the original LIGER paper, we showed that integrating single-cell methylation data with
scRNA-seq data resolved more methylation clusters than using methylation data alone. Here we
confirmed that this still holds true for Online iNMF on the mouse primary motor cortex (MOp)
datasets: integrating methylation (snmC-seq) or chromatin accessibility data (snATAC-seq) with
RNA data (snRNA-seq) better separates clusters compared to the epigenome data alone (Figure 2.16).
In the first experiment (Figure 2.16a), we started by factorizing the snATAC-seq data (n = 54, 844)
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and obtained 9 clusters. After incorporating the snRNA-seq data (n = 101, 647), the two datasets
are well aligned. More importantly, we are able to observe 15 clusters, which implies the structure
within the data is refined. Similarly, in the second experiment (Figure 2.16b), the “resolution” of
snmC-seq data (n = 9, 366) is also increased after being jointly analyzed with the same snRNA-seq
data, where 3 additional clusters are detected.

2.6.5 Online iNMF Identifies Rare Cell Types Present in Only a Subset of the Datasets

We also looked into the detection of rare cell types in MOp data, L5/6 NP and L6b, in separate
analyses (Figure 2.13). In the first experiment, we held out L5/6 NP and L6b cells from the first
input (allen 10x cells v2, n = 117, 382) in scenario 2. Next, we incorporated an snRNA-seq
dataset (macosko 10x nuclei v3, n = 101, 647) that includes L5/6 NP cells (3.3% of all cells).
After Louvain clustering on the learned latent space, 96.4% of the L5/6 NP cells in the snRNA-seq
dataset grouped together and formed a distinct cluster (highlighted with a red box). In the second
experiment, we held out the L6b cells from the scRNA-seq dataset (n = 119, 183) and subsequently
incorporated the snRNA-seq dataset (n = 101, 647), in which L6b cells make up 1.5% of all cells.
L6b is rarer than L5/6 NP, which makes this task more challenging. Additionally, the L6b cluster
is more continuous with the L6 CT cells, and the cluster boundary is somewhat unstable across
different clustering runs. Nevertheless, 91.8% of the L6b cells formed a distinct cluster. Thus, these
results indicate that Online iNMF in scenario 2 can still detect rare cell types in late arriving
datasets. We observed very similar results if the rare cell type was missing from the first dataset
(99.3% of L5/6 NP cells formed a distinct cluster, and 94.3% of L6b cells formed a distinct cluster).
Consistent with our simulation results, these analyses suggest that the order of dataset arrival is not
strongly influential in whether rare cell types are detected.

2.6.6 Online iNMF Robustly Integrates Datasets with Non-Overlapping or Partially-
Overlapping Cell Types

First, we examined the performance of Online iNMF in integrating datasets of the same
modality that do not share any common cell types. For this evaluation in scenario 2, we selected
two datasets generated from MOp and only retained cells of dissimilar classes. The first input in
scenario 2 (scRNA-seq, 10x v2) consists only of interneurons (n = 27, 555), including medial
ganglionic eminence (MGE)-derived cells and caudal ganglionic eminence (CGE)-derived cells. In
contrast, the second input (snRNA-seq, 10x v3) only contains oligodendrocytes (n = 21, 404). We
also performed this analysis using Online iNMF (scenario 1) and batch iNMF for comparison.
The results are visualized in 2-dimensional UMAP coordinates (Figure 2.14a). As expected, there
is very little spurious alignment between the two cell classes when implementing online learning in
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scenario 2. The corresponding alignment scores for Online iNMF (scenario 2), Online iNMF

(scenario 1) and batch iNMF are 0.106, 0.034 and 0.027 respectively, while the kBET acceptance
rates are 0.050, 0.014 and 0.002. Thus, all three approaches are quite comparable in their ability to
avoid spurious alignment of the non-overlapping cell types. Moreover, 30 metagenes effectively
capture the structure within the interneurons. We were also interested in how Online iNMF

would perform in scenario 3 in a similar setting. In this experiment, we started by creating a
curated atlas of interneurons using scRNA-seq dataset (n = 27, 555) and a snRNA-seq dataset
(n = 15, 255) through scenario 1. Then we projected a snATAC-seq dataset, which only consists
of oligodendrocytes, into this atlas (n = 8, 557). As Figure 2.14b shows, the oligodendrocytes are
clearly separated from interneurons, while the structure of interneurons are retained. This indicates
that scenario 3 can still detect outliers even if the query sample has extra cell types, even across
modalities.

Next, we investigated cases where the cell types in the input datasets partially overlap. As was
discussed in the previous section, Online iNMF (scenario 2) performs well at identifying the
rare cell types in partially-overlapping datasets. We anticipate that scenario 3 is most useful for
projecting small and specialized samples onto a large and comprehensive atlas, so we investigated
performance when the reference dataset contains more cell types than the query (Figure 2.15).
We first integrated 6 sc/snRNA-seq datasets from the MOp (n = 344, 675) using Online iNMF

in scenario 1. Afterwards, we held out the MGEs (i.e. Pvalb, Sst and Chodl cells), which are
approximately 10.4% of all the cells, from the snATAC-seq dataset. Then we projected this processed
ATAC dataset (n = 49, 167) into the established atlas. The UMAP visualization annotated by our
cell class labels is exhibited for reference (Figure 2.15a) and it shows that different cell types are
effectively identified. By coloring the cells by their data sources (Figure 2.15b), it can be observed
that very few cells from snATAC-seq data are spuriously aligned to the clusters corresponding to
Pvalb, Sst and Chodl cells (highlighted in the red boxes).

2.6.7 Online iNMF Achieves Accurate Data Reconstruction

Here we demonstrate Online iNMF’s capability of data reconstruction by providing a sup-
plementary figure showing only the reconstruction portion of the objective (Figure 2.23). The
resulting iNMF factors do indeed reconstruct the data comparably to PCA, batch iNMF, and regular
NMF. In this experiment, we evaluated the performance of Online iNMF on reconstructing the
human PBMC dataset (n = 13, 999) along with batch iNMF, regular NMF and PCA, using 2, 001

variable genes. Next, we implemented the listed methods on the scaled data using the same setting
(K = 30 for all methods and λ = 5 for iNMF-based methods). The metric for comparison is the
mean squared error (MSE) between the scaled and the reconstructed gene expression matrices. We
repeated the experiment 10 times for iNMF/NMF-based approaches to account for the effect of
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random initialization and reported the average MSE. As is displayed in the plot, the performances of
Online iNMF (mean MSE = 0.831), batch iNMF (mean MSE = 0.830) and batch NMF (mean
MSE = 0.830) are quite similar, while PCA (mean MSE = 0.825) accomplishes this task slightly
better.

Figure 2.23: Comparison of data reconstruction among iNMF, NMF and PCA. Human PBMC
dataset (n = 13, 999) was used for this analysis. Average mean squared error (MSE) is shown and
error bars indicate the standard deviation (10 random initializations for each method except for
PCA, which is deterministic). Individual data points are shown for the NMF approaches.

2.6.8 Selection of Key Parameters (Knd λ

Selecting the dimensionality of the latent space is a perennial challenge in unsupervised data
analysis. Due to the lack of ground truth, there is no way to pick the single best value for this
parameter. In our previous paper, we described a heuristic for guiding the selection of K, by
identifying an“elbow” in the plot of K vs. factor entropy. This is analogous to picking the number
of eigenvectors for principal component analysis by inspecting a plot of the eigenvalue spectrum.
In general, cell populations with a larger number of distinct cell types/states benefit from a larger
K; for example, a sample of frontal cortex contains many more distinct subsets of cells than a
sample of peripheral blood mononuclear cells. In practice, any K value between 20 and 40 usually
gives reasonable results. Here we added analyses to demonstrate that Online iNMF performs
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well across different choices of K on simulated data (Figure 2.22). The results show that, with any
K in the range of 10 to 25, Online iNMF (scenario 1 or 2) successfully aligns the datasets and
recovers the 8 true cell clusters.

We also examined the effect of regularization parameter λ on data alignment (Figure 2.24). To
do so, we jointly analyzed the human PBMC datasets while varying λ and fixing K at 20. Similar
to the original LIGER paper, an “elbow” shape was observed, which implies that the alignment
quality remains robust for any λ ≥ 1.

Figure 2.24: Selecting λ on human PBMC dataset. The human PBMC datasets (n = 13, 999)
were used to demonstrate the effect of λ on the data integration. Alignment score (a) and kBET (b)
are reported to quantitatively assess dataset integration.

2.6.9 ANLS Outperforms HALS for Updating Cell Factor Loadings

We discovered an implementation detail that is crucial for achieving optimal Online iNMF

performance: using ANLS to calculate H (cell factor loading) updates. Although in principle
either HALS (hierarchical alternating least squares) or ANLS can be used to update H

i(t)
M for each

minibatch, we found empirically that the ANLS updates converge much faster than HALS updates
(Figure 2.11). This may be because ANLS gives an optimal solution for all of the cell factor loadings
(rows of H) simultaneously, while HALS updates are only optimal for one individual column of
H at a time, requiring multiple iterations. We note also that Mairal et al. (2010) opted for least
angle regression (LARS), which is directly analogous to our ANLS update, rather than a HALS-like
update for H in their implementation.
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CHAPTER 3

Integrating Single-Cell Multimodal Epigenome Data Using 1D-Convolutional
Neural Networks

Recent experimental developments enable single-cell multimodal epigenomic profiling, which
measures multiple histone modifications and chromatin accessibility within the same cell. Such
parallel measurements provide exciting new opportunities to investigate how epigenomic modalities
vary together across cell types and states. A pivotal step in using this type of data is integrating the
epigenomic modalities to learn a unified representation of each cell, but existing approaches are
not designed to model the unique nature of this data type. Our key insight is to model single-cell
multimodal epigenome data as a multi-channel sequential signal. Based on this insight, we developed
ConvNet-VAEs, a novel framework that uses 1D-convolutional variational autoencoders (VAEs)
for single-cell multimodal epigenomic data integration. We evaluated ConvNet-VAEs on nano-CT
and scNTT-seq data generated from juvenile mouse brain and human bone marrow. We found
that ConvNet-VAEs can perform dimension reduction and batch correction better than previous
architectures while using significantly fewer parameters. Furthermore, the performance gap between
convolutional and fully-connected architectures increases with the number of modalities, and deeper
convolutional architectures can increase performance while performance degrades for deeper fully-
connected architectures. Our results indicate that the convolutional autoencoders are a promising
method for integrating current and future single-cell multimodal epigenomic datasets.

3.1 Introduction

Single-cell sequencing technologies have revolutionized our understanding of cellular het-
erogeneity and the complexity of biological systems. Recently, single-cell multimodal chromatin
profiling has emerged as an exciting new experimental approach to investigate the cellular epigenetic
landscape. Two independent studies fused nanobodies (nb) to a transposase enzyme (Tn5) and used
these nb-Tn5 conjugates to detect up to three epigenome layers (histone modification or chromatin
accessibility) within the same cell (Bartosovic and Castelo-Branco 2022, Stuart et al. 2022). The
nano-CT and scNTT-seq technology can in principle be used to detect transcription factor binding
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as well, though this has not yet been demonstrated. These multimodal datasets provide simultane-
ous measurements of multiple epigenomic layers within individual cells, offering unprecedented
opportunities to unravel how histone modifications and chromatin states drive cellular diversity.
For example, one can use this type of data to investigate how different histone modifications at
the same genomic locus combine to activate or repress transcription of nearby genes. However,
the structure of single-cell multimodal epigenomic data is unique compared to other single-cell
data types: each modality is a one-dimensional genomic track, and the total measurement for a cell
consists of multiple one-dimensional tracks measured at the same genomic positions. This is quite
different from any other type of single-cell data–such as scRNA-seq, snATAC-seq, CITE-seq, or
10X multiome–in which the space of features is most naturally represented in terms of genes or
discrete peaks.

A number of computational approaches have been designed to perform joint dimension reduction
on single-cell multimodal data types such as CITE-seq and 10X multiome. For example, the
Seurat weighted nearest neighbor algorithm, the multi-omic factor analysis (MOFA+), and the
multiVI perform linear or nonlinear dimension reduction on single-cell multimodal datasets that
can be represented as genes and peaks (Hao et al. 2021, Argelaguet et al. 2020, Ashuach et al.
2023). Approaches based on variational autoencoders (VAEs) are especially powerful for learning
joint representations from single-cell multimodal data. VAEs are unsupervised probabilistic deep
learning models that excel at distilling compact and meaningful representations of complex data,
as evidenced by their successful applications in single-cell RNA-sequencing (scRNA-seq) data
integration (Lopez et al. 2018). For multimodal problems, a VAE based on the concept of the
Product of Experts (PoE) was introduced (Wu and Goodman 2018). This method factorizes the joint
distribution over the latent variables into a product of conditional distributions, each representing
the output of a modality-specific “expert” model. Each expert is comprised of a encoder and a
decoder, designed to model a specific data modality. Beyond their initial applications in image
transformation and machine translation, such VAEs have been adapted for multimodal single-cell
sequencing data. For example, Cobolt and multiVI use multimodal VAEs to integrate paired
measurements, such as gene expression and chromatin accessibility (peaks), and learn a unified cell
embedding for cell clustering and visualization (Gong et al. 2021, Ashuach et al. 2023). Although
multimodal VAEs can in principle use any type of neural network layers, single-cell multimodal
VAEs have only used fully-connected layers due to the unordered nature of gene features. Thus, we
refer to these previous approaches as FC-VAEs.

However, directly applying such approaches to single-cell multimodal epigenomic data has
several disadvantages. First, it requires calling peaks separately on each epigenomic layer, which
results in extremely high-dimensional data because each epigenomic modality is measured across
the whole genome. The number of peaks per modality usually exceeds 105, and the peaks often do
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not overlap across modalities, further increasing the number of peaks as the number of modalities
per cell increases. Second, by using a peak-centric feature representation, previous approaches
neglect the ordered sequential nature of single-cell epigenomic data, in which the epigenomic state
of a particular locus shares strong conditional dependence with the states of loci immediately before
and after it in linear genome order. Finally, using genes and peaks neglects the multi-track nature
of single-cell multimodal epigenomic data, removing the crucial information of shared genome
position across modalities. This third limitation is especially problematic because it prevents
integration algorithms from learning the relationship among different epigenome modalities at a
given position within a single cell, which is one of the key motivations for performing single-cell
multimodal epigenomic measurement in the first place.

One-dimensional convolutional neural networks (1D-CNNs) have shown success in the analysis
of sequential data, especially when the spatial or temporal relationships within the data are crucial
(Kiranyaz et al. 2021). In particular, deep learning models using 1D CNN layers have been widely
used in analysis of bulk RNA-seq and bulk epigenome data. Such networks have been trained on
bulk data from cell lines and tissues to predict transcriptional and epigenetic profiles from DNA
sequence (Kelley et al. 2018, Chen et al. 2022). Recently, Yuan et al. extended this line of work to
single-cell ATAC-seq data: scBasset (Yuan and Kelley 2022) takes DNA sequences as input and
utilizes CNNs to predict chromatin accessibility in single cells. However, to our knowledge, only
FC-VAEs have been used to perform dimension reduction and integration of single-cell data.

Here, we present a novel 1D convolutional variational autoencoder framework (ConvNet-VAEs)
tailored for integrating single-cell multimodal epigenomic data. We model single-cell multimodal
epigenomic data as a multi-channel sequential signal. A key innovation of our method is that, by
performing convolution over ordered feature space, it adopts a more appropriate inference bias than
VAEs with only the fully-connected layers that are suitable for unordered features. Our approach
combines two streams of work: 1D CNNs for bulk genomic data and VAEs for dimension reduction
of single-cell data. Importantly, our method is fundamentally different from this previous work in
several key aspects: (1) we utilize a window-based genome binning strategy on the multimodal
profiles from single cells and model the fragment count in each bin; (2) we use 1D convolutional
layers that operate over different epigenetic modalities instead of nucleotide bases; and (3) unlike the
previous multimodal VAEs, ConvNet-VAEs consists of only one encoder-decoder pair. We show
that ConvNet-VAEs can leverage the strengths of both VAEs and convolution. They effectively
reduce data dimensionality and extract local genomic features with a more economical parameter
usage compared to that of FC-VAEs.
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3.2 ConvNet-VAE: 1D-convolutional neural networks for single-cell multimodal
epigenomics integration

We introduce ConvNet-VAE, a novel approach designed to efficiently learn biologically
meaningful low-dimensional cell representations from high-throughput single-cell multimodal
epigenomic data. This framework capitalizes on recent advancements in chromatin profiling tech-
nologies which permit parallel measurements of histone modifications (e.g., H3K27ac, H3K27me3)
and chromatin states at single-cell resolution (Bartosovic and Castelo-Branco 2022, Stuart et al.
2022). The sequenced fragments over the genome are obtained from each individual cell (Figure
3.1a).

Because single-cell multimodal epigenomic experiments measure different features over the
same sequential domain (i.e., the genome), we reasoned that the data is most naturally represented
as a multi-channel 1D sequential signal. This is a quite different approach than previous single-cell
multimodal neural networks, which treat each modality as if it measured completely unrelated
features (e.g., distinct genes or peak locations for each modality). Additionally, previous approaches
often use a separate encoder and decoder network for each modality, while ours uses a single encoder
and a single decoder that operate on multi-channel signals. By operating on this multi-channel
representation of the data, we introduce an appropriate inductive bias that significantly reduces the
number of parameters and enforces statistical dependence among neighboring genomic locations
within a modality and across modalities at a given genomic locus.

ConvNet-VAE is a convolutional variational autoencoder based upon a Bayesian generative
model (Figure 2.1b). To apply 1D-convolutional filters (Conv1D), the input multimodal data are
transformed into 3-dimensional arrays (cell × modality × bin), following window-based genome
binning at 10 kilobase resolution (Chen et al. 2019b) (Figure 2.1a). The encoder efficiently extracts
latent factors, which are then mapped back to the input feature space by the decoder network. We
use a discrete data likelihood (Poisson distribution) to directly model the observed raw counts.

We also extended ConvNet-VAEs to incorporate conditional information such as experimental
batches, allowing batch correction using conditional VAEs, which has proven an effective strategy
for scRNA-seq data (Lopez et al. 2018). In our model, the categorical variables (e.g., batch
information) are one-hot encoded and then concatenated with the flattened convolutional layer
outputs, instead of being combined directly to the multimodal fragment count data over the sorted
genomic bins. We incorporated the conditional information in this way because, unlike fully-
connected layers, convolutional layers are more naturally suited to accommodate sequential data,
rather than one-hot encodings. Thus, we found it more natural to inject the batch information after
the convolutional layers.

In the following sections, we showcase the effectiveness and superiority of ConvNet-VAEs by
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Figure 3.1: Overview of ConvNet-VAE. (a) For each cell, the fragments of each measured
epigenomic modalities are acquired by multimodal single-cell epigenome profiling (e.g., H3K27ac
+ H3K27me3). Followed by genome binning, we obtain the fragment count data with dimension
cell × modality × Bin. (b) ConvNet-VAE applies 1D-convolution and learns low-dimensional
representations of the cells from the binned multimodal fragment count of input.
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evaluating them on real data and comparing with FC-VAEs.

3.3 Results

3.3.1 ConvNet-VAEs learn cell representations using fewer parameters

A key advantage of ConvNet-VAEs is the proper inductive bias induced by convolution, which
should result in considerable parameter savings. This advantage should increase with the number of
modalities per cell: The number of peaks per modality usually exceeds 105, and the peaks often do
not overlap across modalities.

To investigate the advantage of ConvNet-VAEs on real data, we analyzed a recently published
single-cell bimodal dataset from juvenile mouse brains generated by the nano-CUT&Tag (nano-CT)
technology (Bartosovic and Castelo-Branco 2022). After preprocessing, the dataset consists of
11, 981 cells from 4 experimental batches with H3K27ac and H3K27me3 modalities. We extracted
the top 25, 000 bins identified across both modalities as the input feature set. We then separately
examined the effects of (1) kernel size and stride and (2) number of convolutional layers on number
of parameters and performance of ConvNet-VAE models. When examining the effects of kernel
size and stride, we used architectures with a single convolutional layer and varied kernel size (K)
and stride (S) from 11 to 51, with K = S in each case. Second, we examined the effects of varying
the number of convolutional layers from 1 to 3, while keeping a fixed kernel size of 11 and stride
of 3. (Note that we used a smaller S = 3 with multiple convolutional layers to avoid the output
dimensionality being too small.) We compared all models against FC-VAEs. To ensure a fair
comparison, we ran all models through 5-fold cross-validation, with 300 training epochs.

Single-Conv1D-layer ConvNet-VAEs do indeed require fewer trainable parameters than
FC-VAEs in this setting. For example, ConvNet-VAE (K51, S51) only uses 20% of the pa-
rameters that are needed for FC-VAEs, while ConvNet-VAE (K31, S31) uses 33%. As shown in
Figure 3.2c, as the number of convolutional layers increases, ConvNet-VAEs uses fewer parame-
ters. According to the UMAP visualization (colored by the published labels) of the cell embeddings
obtained by the selected models, ConvNet-VAEs from varying K, S, and number of layers result
in qualitatively similar embeddings compared to the FC-VAE (Figure 3.2a).

ConvNet-VAEs took slightly longer to complete the training (Figure 3.2d). The most compact
ConvNet-VAE (K51, S51) led to a 2.5% decrease in average marginal log-likelihood on the
validation sets (Figure 3.2e), but the (K11, S11) model achieved comparable or better marginal
likelihood using 1M fewer parameters than the FC-VAE. Increasing the number of convolutional
layers or stride resulted in worse marginal likelihood. However, the models with slightly worse
marginal likelihood still excelled in learning low-dimensional cell representations that could re-
produce the published cluster assignments (Figure 3.2f). The Adjusted Rand Index (ARI) first
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Figure 3.2: ConvNet-VAEs integrate single-cell bimodal epigenomic profiling data from
mouse brain.
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ConvNet-VAEs integrate single-cell bimodal epigenomic profiling data from mouse brain.
(a) UMAP visualization of cell embeddings from ConvNet-VAEs (Left, Middle) and FC-VAE
(Right). (b) For single-Conv1D-layer ConvNet-VAE, more channels in the convolutional layer
lead to larger marginal log likelihood of the validation set at the cost of longer runtime in training,
according to the result from 5-fold cross-validation. (c) The number of trainable parameters depends
on the number of Conv1D layers and stride. ConvNet-VAEs from Group 1 (Blue) require fewer
parameters than FC-VAEs (Pink) while those from Group 2 (Green) need more parameters. (d)
Average training time is reported for each model. Error bars indicate standard deviation across 5-fold
cross-validation. (e) Average negative marginal log likelihood of validation set estimated through
importance sampling. Lower value implies larger marginal log likelihood. Error bars indicate
standard deviation across 5-fold cross-validation. (f) Comparisons between ConvNet-VAEs with
single Conv1D layer (Group 1) and FC-VAEs in terms of the quality of cell embeddings (training
set: left; validation set: right). The bars show the median number of clusters obtained by the
Louvain algorithm from 5 splits in cross-validation over a range of resolutions. The corresponding
average Adjust Rand Index (ARI) is calculated by comparing to the published cell type labels,
displayed as a line plot. Error bars indicate standard deviation across 5-fold cross-validation. (g)
Comparisons between ConvNet-VAEs with multiple Conv1D layer (Group 2) and FC-VAEs in
terms of cell embeddings’ quality (training set: Left; validation set: Right), exhibited in the same
way as (f).

increased as more cell clusters were identified by the Louvain algorithm at a higher clustering
resolution, then decreased due to potential over-clustering. ConvNet-VAE (K51, S51) achieved
the same highest ARI of 0.83 (average over 5 random runs of the Louvain clustering) as single-layer
FC-VAE did on the training sets, and beat FC-VAEs with ARI of 0.82(±0.01). Similarly configured
ConvNet-VAE with smaller kernels and stride displayed a comparable pattern in cluster counts
and ARI scores. The two-layer ConvNet-VAE performed slightly better in terms of ARI than the
one-layer, while one fully-connected layer performed the best, with each additional layer worsening
performance. In summary, this first set of tests indicates that ConvNet-VAE can achieve similar
or better performance compared with FC-VAE using fewer parameters.

3.3.2 ConvNet-VAEs show a larger advantage with increasing number of modalities per
cell

Because our approach treats each modality as a different channel along a shared sequential
domain, we expect the advantage of our approach to increase with the number of modalities profiled
per cell. To investigate this, we expanded the analysis by incorporating a 3rd modality, chromatin
accessibility, which was measured alongside H3K27ac and H3K27me3 by the developers of nano-
CT using assay for transposase-accessible chromatin (ATAC-seq) (Bartosovic and Castelo-Branco
2022). A total of 4, 434 cells from 2 experimental batches have ATAC, H3K27ac and H3K27me3
profiles (three modalities per cell). As in the previous section, we selected the 25, 000 bins with the
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highest counts across modalities and generated a 4, 434× 3× 25, 000 input for ConvNet-VAEs.
Through qualitative evaluation in the UMAP space, the single-Conv1D-layer ConvNet-VAE

model with a large kernel and stride (K51, S51) results in more compact cell clusters than single-
layer FC-VAE (Figure 3.2a), while requiring 87% fewer trainable parameters (Figure 3.2b). This
efficiency remained notable even with a smaller kernel and stride (K11, S11), with a 39% reduction
in parameters. The gap in runtime between ConvNet-VAEs and FC-VAEs also becomes narrower.
For instance, single-Conv1D-layer ConvNet-VAE (K51, S51) takes 14% more time than the
single-layer FC-VAEs to finish 300 training epochs, a decrease from the 25% longer runtime
seen in the bimodal analysis (Figure 3.2c). There was no statistical difference in the marginal
log-likelihoods across all investigated VAE variants (Figure 3.2d), implying equivalent capabilities
in modeling the data distribution.

The advantage of ConvNet-VAEs becomes even more apparent when evaluating the quality
of the cell embeddings (Figure 3.2e,f). On both training and validation sets, the single-Conv1D-
layer ConvNet-VAEs lead in clustering accuracy (highest ARI: 0.78(±0.02) at resolution 1.0

for training 0.69(±0.01) at resolution 1.1 for validation), as compared to the FC-VAEs’ highest
ARI of 0.74(±0.01) at resolution 0.6 for training and 0.67(±0.03) at resolution 1.1 for validation
(Figure 3.2e). This superiority is further supported by the performance of the multi-Conv1D-layer
VAEs, which are top performers at almost all clustering resolutions (Figure 3.2f). For exam-
ple, 2-Conv1D-layer ConvNet-VAE (K11, S3) stands out by producing an ARI of 0.81(±0.01)
and 0.72(±0.01) on the training and validation sets respectively. Interestingly, unlike FC-VAEs,
where additional layers usually lead to lower quality of the cell latent factors in the training data,
ConvNet-VAEs can actually benefit from extra convolutional layers (Figure 3.2g, 3.2f). Further-
more, the ConvNet-VAEs are more effective than FC-VAEs as more modalities are added, as
evidenced by the collective results from bimodal and trimodal integrative analyses.

3.3.3 ConvNet-VAEs allow for improved batch-effect correction

Single-cell data are often generated from different experiments, leading to batch effects that
stem from technical rather than biological differences. Therefore, correcting for these effects is
essential for clustering and visualization to accurately reflect the underlying biology. A number of
methods have been introduced to address this problem in single-cell uni-modal data (Welch et al.
2019, Gao et al. 2021, Stuart et al. 2019, Korsunsky et al. 2019a). The same challenge occurs with
these single-cell multimodal epigenomics datasets (Figure 3.2a, 3.2c). Without removing batch
effects, the cells with bimodal and trimodal measurements from different datasets are poorly aligned,
resulting in clusters that separate by dataset rather than underlying biological cell type.

Here, we selected ConvNet-VAEs with single and multiple Conv1D layers to demonstrate
their capacity to remove batch-associated technical variation. There are four different batches in
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Figure 3.2: ConvNet-VAEs integrate single-cell trimodal epigenomic profiling data from
mouse brain.
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ConvNet-VAEs integrate single-cell trimodal epigenomic profiling data from mouse brain.
(a) UMAP visualization of cell embeddings from ConvNet-VAEs (Left) and FC-VAE (Right).
(b) The number of trainable parameters of ConvNet-VAEs from Group 1 (Blue), Group 2 (Green),
and FC-VAEs (Pink). (c) Average training time is reported for each model. (d) Average negative
marginal log likelihood of validation set estimated through importance sampling. Lower value
implies larger marginal log likelihood. (e,f) Comparisons between ConvNet-VAEs and FC-VAEs
in terms of the quality of cell embeddings (training set: left; validation set: right). The bars show
the median number of clusters obtained by the Louvain algorithm from 5 splits in cross-validation
over a range of resolutions. The corresponding average Adjust Rand Index (ARI) is calculated by
comparing to the published cell type labels, displayed as a line plot. Error bars indicate standard
deviation across 5-fold cross-validation.

Figure 3.2: Benchmark of ConvNet-VAEs on batch-effect removal. VAE models were applied
on the entire tested datsets without training/validation splitting. (a, c) UMAP visualizations of cell
embeddings from selected models on the bi- and trimodal data, before and after alignment. (b, f)
Quantitative comparison between ConvNet-VAEs and FC-VAEs based on four different metrics.
The bars show average scores with standard deviation from 5 random runs.
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the single-cell bimodal juvenile mouse brain data with measurement of H3K27ac and H3K27me3.
When we apply the ConvNet-VAE with 2 convolutional layers (K11, S3) with batch information,
the cells are well mixed in each cluster (Figure 3.2a). In the trimodal setting (simultaneous profiling
of chromatin accessibility, H3K27ac, and H3K27me3), the cells from two replicates are clearly
separated as shown. Based on the quality of batch mixing, the architecture with a single Conv1D-
layer (K31, S31) successfully aligned these cells from both batches (Fig. 3.2c).

Beyond the qualitative evaluation, we further carried out quantitative assessment of batch-effect
removal. To do this, we calculated four metrics: Average silhouette width (ASW, Batch), Graph
Connectivity, Graph iLISI, and kBET (Luecken et al. 2022). In comparison to FC-VAEs, both
selected ConvNet-VAEs showed similar or better performance in terms of ASW (Batch) and
Graph connectivity, while the ConvNet-VAE with a single convolutional layer (K31, S31) is
less favored with respect to Graph iLISI and kBET (Fig. 3.2b). Encouragingly, the selected
ConvNet-VAEs excelled across all metrics when more modalities were involved (3.2d). The
improvements in ASW (batch) and k-BET were particularly significant. These results align with
the results from the previous section, indicating that ConvNet-VAEs show greater advantage over
FC-VAEs as the number of epigenomic modalities increases.

3.3.4 ConvNet-VAEs integrate histone modifications from scNTT-seq data

In addition to nano-CT, Stuart et al. (Stuart et al. 2022) developed nanobody-tethered trans-
position followed by sequencing (scNTT-seq), enabling genome-wide measurement of multiple
histone modifications at single-cell resolution. In this part, we showcase the adaptability and
consistent performance of ConvNet-VAEs when applied to multimodal data obtained through
varied sequencing methods.

Toward this goal, we integrated single-cell bimodal (H3K27ac and H3K27me3) epigenomic data
profiled from bone marrow mononuclear cells (BMMCs) of healthy human donors (N = 5, 236).
According to the UMAP plots, H3K27ac itself doesn’t carry sufficient information to distinguish
different cell types, whereas H3K27me3 provides sufficient information to identify the major cell
types. Combining both modalities with the selected single-layer ConvNet-VAE (K11, S11), we
achieved more compact cell clusters (Figure 3.3a).

Although training ConvNet-VAEs with multiple convolutional layers, or those with larger
kernels and strides, might require additional time compared to FC-VAEs (Figure 3.3c), the
ConvNet-VAEs display comparable or superior performance in estimating the marginal log-
likelihood for the validation data, making them preferable as generative models (Figure 3.3d). More
strikingly, the proposed ConvNet-VAEs outperform the FC-VAEs on the training and validation
sets by a large margin, when comparing ARI as the measure of the effectiveness of dimension
reduction (Figure 3.3e,f).
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Figure 3.3: ConvNet-VAEs effectively integrate scNTT-seq data.
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ConvNet-VAEs effectively integrate scNTT-seq data. (a) UMAP visualization of cell embed-
dings from ConvNet-VAE (single Conv1D layer, Kernel size 11, stride 11) on BMMCs data
containing H3K27ac and H3K27me3 (Left), H3K27ac (Middle), and H3K27me3 (Right). (b)
The number of trainable parameters of ConvNet-VAEs from Group 1 (Blue), Group 2 (Green),
and FC-VAEs (Pink). (c) Average training time is reported for each model. (d) Average negative
marginal log likelihood of validation set estimated through importance sampling. Lower value
implies larger marginal log likelihood. (e,f) Comparisons between ConvNet-VAEs and FC-VAEs
in terms of the quality of cell embeddings (training set: left; validation set: right). The bars show
the median number of clusters obtained by the Louvain algorithm from 5 splits in cross-validation
over a range of resolutions. The corresponding average Adjust Rand Index (ARI) is calculated by
comparing to the published cell type labels, displayed as a line plot. Error bars indicate standard
deviation across 5-fold cross-validation.

In order to examine whether the convolutional layers are able to exploit the sequential relation-
ships among genomic locations, we randomly shuffled genomic bins from this BMMC dataset and
re-analyzed it with ConvNet-VAEs. The decline in ARI upon bin shuffling confirmed that the
convolutional layers are indeed sensitive to local epigenomic patterns. In terms of the marginal
log-likelihood, the negative effect brought by bin shuffling becomes more apparent when larger
kernel size is used (Supplementary Figure 3.3). All these observations underscore the ability
of 1D-convolutional layers to capture spatial dependencies in the tested single-cell multimodal
epigenomic data.

Moreover, we investigated the applicability of ConvNet-VAEs on unimodal single-cell data.
In analyses of PBMCs gene expression, PBMC ATAC (peaks), as well as the mouse organo-
genesis ATAC (peaks), single-Conv1D-layer ConvNet-VAEs perform on par with FC-VAEs.
ConvNet-VAEs lead the performance in reducing the dimension of the large-scale mouse cortex
and hippocampus transcriptomic profile (Supplementary Figures 3.4,3.4,3.4,3.4).

3.4 Discussion

In this study, we proposed the ConvNet-VAE framework, specifically designed to model single-
cell multimodal epigenomic data. This model comprises 1D-convolutional layers and hence takes
multi-channel binned fragment counts as input. The encoder network within this framework learns
low-dimensional representations of cells that facilitate cell type inference following clustering.
We validated ConvNet-VAEs’ utilities through integrative analyses of bimodal (H3K27ac +
H3K27me3) and trimodal juvenile mouse brain data (ATAC + H3K27ac + H3K27me3), as well as
bimodal data from human bone marrow mononuclear cells (H3K27ac + H3K27me3).

As demonstrated by the results, ConvNet-VAEs are able to extract information about chromatin
states and histone modifications, accurately capture the data distribution, and correct for batch effects.
The 1D-convolution layers are capable of capturing the spatial relationships among sequentially
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Figure 3.3: Performance of ConvNet-VAEs after shuffling genomic bins. Side-by-side com-
parison between the results from the ordered bins and shuffled bins. Bimodal juvenile mouse
brain (Left column), trimodal junvile mouse brain (Middle column), BMMCs (Right column). (a)
Comparison of the marginal log likelihood (validation set). (b) The highest average ARI that each
model can achieve on the training sets over a range of clustering resolution. (c) The highest average
ARI that each model can achieve on the validation sets over a range of clustering resolution. Error
bars indicate the standard deviation from 5-fold cross-validation.
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Figure 3.4: Evaluation of ConvNet-VAEs on PBMCs (gene expression).
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Evaluation of ConvNet-VAEs on PBMCs (gene expression). (a) The number of trainable
parameters of ConvNet-VAEs from Group 1 (Blue), Group 2 (Green), and FC-VAEs (Pink). (b)
Average training time is reported for each model. Error bars indicate standard deviation across
5-fold cross-validation. (c) Average negative marginal log likelihood of validation set estimated
through importance sampling. (d,e) Comparisons between ConvNet-VAEs and FC-VAEs on
cell embeddings’ quality. The bars show the median number of clusters obtained by the Louvain
algorithm from 5 splits in cross-validation over a range of resolutions. The corresponding average
Adjust Rand Index (ARI) is calculated by comparing to the published cell type labels (line plot).
Error bars indicate standard deviation across 5-fold cross-validation.

arranged genomic bins. In qualitative and quantitative benchmarking with FC-VAEs, which
solely utilize fully connected layers, ConvNet-VAEs show effectiveness by achieving on-par or
enhanced performance using far fewer parameters. Unlike FC-VAEs, ConvNet-VAEs can also
benefit from including more layers (Conv1D) in the model architecture. Notably, the advantage of
ConvNet-VAEs over FC-VAEs becomes more evident when jointly analyzing three modalities
instead of two.

Nevertheless, the ConvNet-VAEs presented in this report are not without limitations. Due to
the use of convolutional filters, they require that all modalities share the same feature space (i.e. an
identical set of bins). Moreover, there is potential to further refine model performance by optimizing
parameters like kernel size and stride length.

To summarize, the ConvNet-VAE framework stands out for its performance in integrating
single-cell multimodal epignomic data. We anticipate that the utility of our approach will become
more promising as the number of modalities and cells in single-cell multimodal epigenomic datasets
increases in the future.

3.5 Methods

3.5.1 Generative probabilistic model of epigenomic data

We modeled the count data of a given feature (e.g., a histone modification such as H3K27ac)
by using a Poisson distribution. Consider multimodal single-cell data comprised of M modalities
from B different experimental batches, with a total of N cells. All modalities share the same set
of features G (e.g., binned genomic regions). We represent cell i with a latent factor zi sampled
from N (0, I), characterized by batch information bi, and a modality-specific library size factor lim.
We model the generative process of the count xi

mg of the molecular feature g within modality m

(m ∈ {1, 2, . . . ,M}) as follows:
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Figure 3.4: Evaluation of ConvNet-VAEs on PBMCs (ATAC peaks).
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Evaluation of ConvNet-VAEs on PBMCs (ATAC peaks). (a) The number of trainable pa-
rameters of ConvNet-VAEs from Group 1 (Blue), Group 2 (Green), and FC-VAEs (Pink). (b)
Average training time is reported for each model. Error bars indicate standard deviation across
5-fold cross-validation. (c) Average negative marginal log likelihood of validation set estimated
through importance sampling. (d,e) Comparisons between ConvNet-VAEs and FC-VAEs on
cell embeddings’ quality. The bars show the median number of clusters obtained by the Louvain
algorithm from 5 splits in cross-validation over a range of resolutions. The corresponding average
Adjust Rand Index (ARI) is calculated by comparing to the published cell type labels (line plot).
Error bars indicate standard deviation across 5-fold cross-validation.

ρimg = fDec(zi,bi)

wi
mg = softmax(ρimg)

λi
mg = wi

mgl
i
m

xi
mg ∼ Poisson(λi

mg)

Here, xi
mg ∈ N0 represents the count data, zi ∈ RD is the latent representation of each cell in

a D-dimensional space, with D selected according to the complexity of the data. The modality-
specific library size factor is denoted as lim ∈ N0. bi is a B-dimensional one-hot encoded vector
containing batch information. The function fDec denotes the decoder neural network, which
consists of convolutional layers and/or fully connected layers. Through the application of a softmax
activation function in the final layer, the decoder network maps the latent factors and batch label
of cell i to the original feature space. In this study, we also implemented negative binomial (NB)
distribution in the models, which is able accommodate overdispersion in the data by including
an extra parameter for dispersion. In our experiments spanning three single-cell multimodal
datasets, we observed that ConvNet-VAEs employing negative binomial distribution exhibited
negligible differences compared to those utilizing Poisson distributions (Supplementary Figure 3.4).
Under this distributional assumption, ConvNet-VAEs also maintain their edge over FC-VAEs
(Supplementary Figures 3.5, 3.6, 3.7). With these observations, our studies focus on Poisson-based
modeling in the rest of this report.

3.5.2 Multimodal variational autoencdoers

3.5.2.1 Variational autoencoders (VAEs)

As previously described, we consider the observed feature vector xm of a cell derived from
hidden variable z, from batch b. Researchers have harnessed the VAE framework for efficient
approximation of the posterior distribution for z (Kingma and Welling 2013). VAEs, as deep
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Figure 3.4: Evaluation of ConvNet-VAEs on mouse cortex and hippocampus (gene expres-
sion).

76



Evaluation of ConvNet-VAEs on mouse cortex and hippocampus (gene expression). (a) The
number of trainable parameters of ConvNet-VAEs from Group 1 (Blue), Group 2 (Green), and
FC-VAEs (Pink). (b) Average training time is reported for each model. Error bars indicate standard
deviation across 5-fold cross-validation. (c) Average negative marginal log likelihood of validation
set estimated through importance sampling. (d,e) Comparisons between ConvNet-VAEs and
FC-VAEs on cell embeddings’ quality. The bars show the median number of clusters obtained
by the Louvain algorithm from 5 splits in cross-validation over a range of resolutions. The
corresponding average Adjust Rand Index (ARI) is calculated by comparing to the published cell
type labels (line plot). Error bars indicate standard deviation across 5-fold cross-validation.

generative models, exploit neural networks for variational inference, facilitating representation
learning from high-dimensional data. The functionality is crucial for single-cell data integration
and subsequent cell type identification (Lopez et al. 2018). Typically, VAEs are trained to optimize
the evidence lower bound (ELBO) using stochastic gradient methods. In a unimodal scenario where
M = 1, the ELBO for a feature vector x1 is defined as follows:

ELBO(x1) ≜ Eqϕ(z|x1,b)[log pθ(x1|z,b)]−DKL(qϕ(z|x1,b) ∥ p(z)), (3.1)

where qϕ(z|x1,b) and pθ(xi|z,b)p(z) are the inference model (parameterized by ϕ) and genera-
tive model (parameterized by θ) respectively. To address the challenges in modeling multimodal
single-cell data, we introduce multimodal VAEs in the next sections.

3.5.2.2 Convolutional variational autoencoders with 1D-convolutional layers (ConvNet-VAE)

Convolutional neural networks (CNNs) effectively perform tasks such as data compression and
classification by learning representations of the input (for example, 1D for signals or sequences, 2D
for images) (LeCun et al. 2015). In the context of 1D-CNNs, Conv1D filters work on the 1D input
sequences and move in one direction. We introduce ConvNet-VAE, a variational autoencoder
architecture that utilizes 1D-convolutional layers to model and integrate single-cell multimodal
epigenomic data. By incorporating Conv1D layers, ConvNet-VAE efficiently embeds high-
dimensional multimodal epigenomic features of the cells into a low-dimensional space suitable for
clustering tasks. For compatibility with 1D-CNN, we treat the fragment count of different modalities
along the binned genome as 1D sequence with multiple channels, where each channel corresponds
to a different modality. Given N cells, then we have {Xi}Ni=1, and Xi ∈ NM×G

0 . For instance, in a
bimodal setting, xi

1· denotes the first channel, and xi
2· the second. The ELBO is formulated as below.

ELBO(X) ≜ Eqϕ(z|X,b)[log pθ(X|z,b)]−DKL(qϕ(z|X,b) ∥ p(z)) (3.2)

Note that we assume different modalities xm (channels of X) are conditionally independent on z
and b for tasks involving multiple modalities.
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Figure 3.4: Evaluation of ConvNet-VAEs on mouse organogenesis (ATAC peaks).
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Evaluation of ConvNet-VAEs on mouse organogenesis (ATAC peaks). (a) The number of
trainable parameters of ConvNet-VAEs from Group 1 (Blue), Group 2 (Green), and FC-VAEs
(Pink). (b) Average training time is reported for each model. Error bars indicate standard deviation
across 5-fold cross-validation. (c) Average negative marginal log likelihood of validation set esti-
mated through importance sampling. (d,e) Comparisons between ConvNet-VAEs and FC-VAEs
on cell embeddings’ quality. The bars show the median number of clusters obtained by the Louvain
algorithm from 5 splits in cross-validation over a range of resolutions. The corresponding average
Adjust Rand Index (ARI) is calculated by comparing to the published cell type labels (line plot).
Error bars indicate standard deviation across 5-fold cross-validation.

The architecture of ConvNet-VAE is depicted in Figure 3.1. This research focuses on two
main configurations of ConvNet-VAE models. The first group of models comprises a single
convolutional layer with varying sizes of kernel (K) and stride (S). The second group features
multiple convolutional layers with constant kernel size and stride. By experimenting single-Conv1D-
layer ConvNet-VAE (with a kernel size of 31 and stride of S31) on the bimodal juvenile mouse
brain dataset, we notice an increase in the marginal log-likelihood of validation data when more
kernels (output channels) are applied. However, there is a disproportionately large increase in
computational time compared to the gains in capturing the data distribution when the kernel count
is doubled from 32 to 64 (Figure 3.2b). Therefore, for single-Conv1D-layer ConvNet-VAEs, we
set the kernel count to 32. In the case of models incorporating a second or third convolutional layer,
the output channels are set to 64 and 128, as is commonly done in CNN architectures. Complete
specifications are provided in Table 3.1, including the number of feature channels produced by the
convolutional layers (indicated in the parentheses). The final Conv1D layer in the decoder produces
an output with a channel count that matches the number of data modalities.

In general, Conv1D and FC layers are followed by Batch Normalization (1D), ReLU activation,
and Dropout layers. We perform softmax activation on the output from the last decoding Conv1D
layer, without any other transformation. FC(µ,σ) as well as the FC layer in the decoder are linear
layers. The pooling layer is replaced by applying a large stride (≥ 3). For enhanced numerical
stability, each input channel—representing a different modality—undergoes log transformation
(log (x + 1)).

3.5.2.3 Variational autoencoders with fully connected layers (FC-VAE)

In order to demonstrate the advantage of ConvNet-VAE, we include FC-VAE for benchmark
analyses. To address the problem of learning joint representations of multiple modalities, the idea
of product-of-experts (PoE) was introduced by Wu and Goodman in 2018 (Wu and Goodman 2018).
We adapted the PoE approach for our specific task of multimodal inference within the context of
single-cell epigenomics. Consistent with the settings described in the previous sections, we establish
the following joint posterior by assuming conditional independence between p(xm|z,b),
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Figure 3.4: Models with Poisson and negative binomial distributions lead to comparable
performance on studied datasets. Bimodal junvile mouse brain (Left column), trimodal junvile
mouse brain (Middle column), BMMCs (Right column). (a) Comparison of the marginal log
likelihood (validation set) from ConvNet-VAEs under Poisson and negative binomial distributional
assumption. (b) The highest average ARI that each model can achieve on the training sets over a
range of clustering resolution. (c) The highest average ARI that each model can achieve on the
validation sets over a range of clustering resolution. All error bars indicate the standard deviation
from 5-fold cross-validation.
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Figure 3.5: Evaluation of 1-Conv1D-layer ConvNet-VAEs with negative binomial distribu-
tion: ARI. Comparison between ConvNet-VAEs (Group 1) using negative binomial modeling
and FC-VAEs on the quality of cell embeddings, evaluated by ARI. (a) Bimodal junvile mouse
brain. (b) Trimodal junvile mouse brain. (c) BMMCs. Error bars indicate the standard deviation
from 5-fold cross-validation.
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Figure 3.6: Evaluation of multi-Conv1D-layer ConvNet-VAEs with negative binomial distri-
bution: ARI. Comparison between ConvNet-VAEs (Group 2) using negative binomial modeling
and FC-VAEs on the quality of cell embeddings, evaluated by ARI. (a) Bimodal junvile mouse
brain. (b) Trimodal junvile mouse brain. (c) BMMCs. Error bars indicate the standard deviation
from 5-fold cross-validation.
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Figure 3.7: Evaluation of ConvNet-VAEs with negative binomial: Marginal log likeli-
hood (Validation). Comparison of the marginal log likelihood of the validation set between
ConvNet-VAEs (negative binomial modeling) and FC-VAEs.

p(z|X,b) = p(z|x1, x2, . . . , xM ,b) ∝
∏M

m=1 p(z|xm,b)∏M−1
m=1 p(z)

(3.3)

We further approximate the true single-modality posterior p(z|xm,b) using q(z|xm,b) (a Gaus-
sian “expert”) learned from modality-specific neural networks (parameterized by ϕm).

q(z|xm,b) ≡ qϕm(z|xm,b)p(z) (3.4)

The product of Gaussian experts is still Gaussian distributed (Cao and Fleet 2014). Assuming
that the m-th expert outputs µm and Vm and setting Tm ≡ V −1

m , we can define the product Gaussian
of z with the following parameters:

µPoE =

∑
m µmTm

(
∑

m Tm)−1

ΣPoE = (
∑
m

Tm)
−1

We configured FC-VAEs under three different settings with their architectures detailed in Table
3.2. Each expert model is comprised of two fully connected (FC) layers in the encoder and an
additional two FC layers in the decoder, similar to that employed in scVI (Lopez et al. 2018). An
example model architecture is shown in Figure 3.8. Like ConvNet-VAEs, FC-VAEs apply Batch
Normalization (1D), ReLU activation, and Dropout layers in the FC layers, except for FC(µ,σ)
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FC-VAE Model Architecture
Layers* Encoder Layers Decoder Layers

For each expert
1 FC FC(µ,σ) FC FC
2 FC FC FC(µ,σ) FC FC FC
3 FC FC FC FC(µ,σ) FC FC FC FC

* Number of encoding layers (excluding FC(µ,σ))

Table 3.2: FC-VAE Model Architecture

and the final FC decoding layer. The models are trained to optimize the ELBO defined as 3.5.
In addition to the comparable architectures of FC-VAEs and ConvNet-VAEs, we use exactly
the same dimension (D) for the latent space, dropout rate, training/validation data splits, training
scheme, and parameters for clustering, to ensure fair comparison (detailed in 3.5.7).

Figure 3.8: Architecture of FC-VAE (bimodal). An brief illustration of the architecturea of a
bimodal FC-VAE based on Product of Experts (PoE). Each expert corresponds to a modality. It
easily extends to additional modalities by adding encoder-decoder pairs.

ELBO(x1, . . . , xM) ≜ Eqϕ(z|x1,...,xM ,b)[
∑

xm∈X

log pθ(xm|z,b)]−DKL(qϕ(z|x1, . . . , xM ,b) ∥ p(z)])

(3.5)
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3.5.3 Evaluation on batch-effect correction

To evaluate model efficacy in data integration, we utilized four distinct metrics: ASW (Batch),
graph connectivity, graph iLISI, and kBET. These metrics, introduced by Luecken et al., are tailored
to assess batch-effect removal (Luecken et al. 2022).

Average silhouette width (ASW) quantifies the separation of clusters. ASW (Batch) measures
batch mixing, ranging from 0 to 1, where 1 indicates perfect mixing. Graph connectivity investigates
how well the cells with same identity are connected in the k-nearest neighbor (kNN) graph built
from integrated data. A graph connectivity score of 1 implies good integration, where all cells
with same label are connected in the kNN graph. Korsunsky et al. employed integration Local
Inverse Simpson’s Index (iLISI) to measure the batch distribution using local neighbors chosen
on a pre-defined perplexity (Korsunsky et al. 2019a). As an extension, Graph iLISI is able to
take graph-based integration outputs and higher score represents better data integration. k-nearest
neighbor batch-effect test, known as kBET, starts by constructing a kNN graph, and then examines
the batch label distribution in the cell’s neighbourhood against the global batch label distribution
through random sampling (Büttner et al. 2019). The detailed descriptions of these metrics are
available in their original publications.

In this benchmark analysis, we trained VAE models using the entire dataset and 5 different
random initializations. We computed these metrics with default settings using the resulting cell
embeddings. All metrics reported in this study are average scores across 5 runs.

3.5.4 Evaluation of VAEs’ ability to capture data distribution

To benchmark Bayesian probabilistic models in a uni-modal setting (x1), a popular strategy is
to compare the marginal likelihood. A VAE model that is better at capturing the data distribution
and generating samples is expected achieve a higher marginal log-likelihood log p(x1) on the
test set. Similarly, here we used joint conditional log-likelihood log p(x1, x2) and log p(x1, x2, x3)

as the evaluation metrics in the multi-modal settings, to compare the quality of the tested deep
generative models. These marginal log-likelihoods (marginal with respect to latent variable z) can
be approximated through importance sampling (Owen and Zhou 2000, Wu and Goodman 2018).
Assuming test data x1, x2, as well as the latent representation z from a given sample i in the bimodal
setting, hence we have

log p(x1, x2|b) ≈ logEqϕ(z|x1,x2,b)

[
pθ(x1, x2|z,b)p(z)
qϕ(z|x1, x2,b)

]
(3.6)

The RHS of 3.6 can be estimated by Eq. (3.7):
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logEqϕ(z|x1,x2,b)

[
pθ(x1, x2|z)p(z,b)
qϕ(z|x1, x2,b)

]
≈ log

1

NS

Ns∑
s=1

pθ(x1|zs,b)pθ(x2|zs,b)pN (0,1)(zs)
qN (µ(x1,x2,b),σ(x1,x2,b))(zs)

, (3.7)

where the samples zs are randomly drawn from the importance distribution N (µ(x1, x2,b),
σ(x1, x2,b)) defined by the output from the inference networks. Ns is the number of importance
samples. pθ(x1|zs) and pθ(x2|zs) are calculated with data distribution obtained by the decoders. We
estimated the mean joint log-likelihood of the validation set of 100 importance samples (Ns = 100)
on all datasets and reported the average values over 5-fold cross-validation.

3.5.5 Evaluation of the cell representations learned by VAEs

We applied the Louvain community detection algorithm (Waltman and Van Eck 2013) to the
low-dimensional representations of cells generated by the models on the training and validation
sets. Resolution is a parameter that influences the number of identified clusters–a higher value
yields more clusters. By running the Louvain clustering over a range of resolution values, we then
compare the resulting clusters against the published cell type annotations using the Adjusted Rand
Index (ARI) (Hubert and Arabie 1985) as a measure of how well the learned representations capture
the underlying structure of the data.

3.5.6 Data pre-processing

3.5.6.1 Juvenile mouse brain

Bartosovic et al. recently developed nano-CUT&Tag technology, enabling multimodal chromatin
profiling at single-cell resolution (Bartosovic and Castelo-Branco 2022). The authors succeeded
in measuring up to three modalities, ATAC, H3K27ac and H3K27me3, simultaneously within
individual cells from the mouse brains (19-day old). Starting with the fragment data of each
modality, we used Signac to segmented the genome into windows, resulting in a count matrix
(fragment count in each genomic bin) with the dimension of cell by bin (Stuart et al. 2021). Fang
et al. showed that bin size ranging from 1kb to 10kb performed similarly in their benchmark
studies(Fang et al. 2021). Therefore, we set the bin width to be 10kb to reduce the input dimension
for this analysis. We excluded the bins that overlap with the regions in the ENCODE mouse genome
(mm10) blacklist(Amemiya et al. 2019). We retained the cells with authors’ annotation for the
analysis. After filtering, H3K27ac and H3k27me3 were measured in total N = 11, 981 cells (4
biological replicates: N1 = 2, 117, N2 = 2, 479, N3 = 2, 392, N4 = 4, 993), and 4, 434 of them (2
biological replicates: N1 = 2, 084, N3 = 2, 350) have additional ATAC measurements. We further
selected the 25, 000 bins with the largest counts jointly from all of the modalities (i.e. the union of
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bins of highest fragment count of each modality) to reduce sparsity. For bimodality data, we used
28 cell type labels generated on the H3K27ac (similar to labels generated on H3K27me3) for model
performance evaluation. For the dataset encompassing three modalities, we utilized 26 cell classes
from WNN analysis conducted by the authors. For convolutional neural networks, we constructed
3-dimensional input arrays (cell × modality × bin).

3.5.6.2 Human bone marrow mononuclear cells (BMMCs)

Stuart et al. collected bone marrow mononuclear cells from healthy human donors, and jointly
profiled H3K27ac and H3K27me3 using single-cell Nanobody-tethered transposition followed by
sequencing (scNTT-seq) technology(Stuart et al. 2022). We downloaded the processed R object
from Zenodo (https://zenodo.org/record/7102159), which contains N = 5, 236 cells with top 71, 253

bins from H3K27ac modality and top 43, 170 bins from H3K27me3 (bin size = 1 kb) used for
the original analysis, where 15 different cell types were identified through WNN workflow on
aggregated bin data by the authors. For our analysis, we obtained the genome bin features from
fragment files and selected top 25, 000 bins (bin size = 10 kb) using the same strategy described
above.

3.5.6.3 Human peripheral blood mononuclear cells (PBMCs)

The PBMC sample was obtained from a healthy female donor (N = 11, 909 before quality
control). The dataset was generated by 10x Genomics using single Cell Multiome ATAC + Gene
Expression (publicly available on 10x Genomics website). For each cell, 36, 601 genes and 106, 056

peaks were profiled in parallel. We followed the Weighted-Nearest Neighbor (WNN) workflow
(Seurat V4) to generate the cell type labels through joint analysis of the transcriptomics (RNA-seq)
and chromatin accessibility (ATAC-seq) profiles. We kept the cells (N = 11, 402) that meet the
specified criteria for quality control (number of ATAC-seq counts ∈ [5, 000, 70, 000]; number of
RNA-seq counts ∈ [1, 000, 25, 000], > 20% mitochondrial counts). Top 5, 000 genes and top 25, 460

peaks were selected for WNN analysis. As a result, the Louvain algorithm (resolution = 0.25)
led to 15 clusters, which were further used for method benchmark after cell type annotation. For
ATAC peak data, the read (fragment end) count are converted to the fragment count, as suggested
by Martens et al. (estimated fragment count = (odd read count + 1)/2) (Martens et al. 2023).

3.5.6.4 Mouse cortex and hippocampus

Yao et al. sequenced approximately 1.3 million cells in the adult mouse cortex and hippocampus
regions and obtained their transcriptomic profiles, leading to a thorough assortment of glutamatergic
and GABAergic neuron types (Yao et al. 2021). For this study, we used the single-cell transcriptomic
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data generated by 10x Genomics Chromium platform (version 2 chemistry). We downloaded the
processed data (N = 1, 169, 213) from the Neuroscience Multi-omic (NeMO) Data Archive as
part of the BRAIN Initiative Cell Census Network. Out of genes measured in total, we selected
5, 000 highly variable genes from the normalized dataset using LIGER pipeline (Welch et al. 2019,
Gao et al. 2021, Lu and Welch 2022). For evaluation on the investigated methods, we used 42 cell
classes and subclasses annotated by the authors following Tasic et al.’s work (Tasic et al. 2018).

3.5.6.5 Mouse organogenesis

Argelaguet et al. investigated the mouse early organogenesis by simultaneously profiling gene
expression and chromatin accessibility in the same nuclei (10x Multiome) from mouse embryos
between 7.5 to 8.75 days (E7.5-8.75) of gastrulation(Argelaguet et al. 2022). Specifically, we
selected the E7.5, E8, E8.5 and E8.75 embryos ATAC-seq datasets (N = 68, 804), and preprocessed
the fragment files following the ArchR pipeline provided by the authors(Granja et al. 2021).
After excluding the cells identified as low-quality or doublets, we obtained the peak count matrix
comprising 191, 407 peaks from N = 41, 705 cells. We further selected the 25, 000 peak features
with the highest total number of counts across all cells for analysis. Fragment count was estimated
using read count following the same approach described above.

3.5.7 Experiments

We benchmarked the selected models through 5-fold cross-validation over a variety of datasets.
For model training, we used a mini-batch size of 128, Adam optimizer (learning rate = 0.001).
Each fully connected layer has 128 hidden units. The architecture incorporated Batch Normalization
and ReLU activation functions in the majority of layers, alongside a dropout rate of 0.2 to prevent
overfitting. We performed the Louvain algorithm (k-nearest neighbors: k = 20) on the latent cell
embeddings for clustering. The algorithm was run with 5 random starts unless stated otherwise.
The cluster assignment with the best quality was recorded. For the juvenile mouse brain data, the
dimension of the latent space D was set to 30 and all models underwent 300 epochs of training.
For the BMMCs data, we used D = 30 and 200 training epochs. For single-cell unimodal datasets:
D = 20 and 200 training epochs were employed for PBMCs data; D = 30 and 15 training epochs
for mouse cortex and hippocampus data; D = 30 and 50 training epochs for mouse organogenesis
data.

3.5.8 Model implementation

All reported VAE models were implemented in Pytorch 1.10.1 and Python 3.8, trained with 2.9
GHz Intel Xeon Gold 6226R and NVIDIA A40 GPU.
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CHAPTER 4

Integrating Spatially Resolved Multimodal Data Using Variational Graph
Autoencoder

Recent advancements in spatial profiling have allowed for the simultaneous investigation of
transcriptomics, proteomics, and epigenomics at the individual cell/bead/spot level in tissue. These
technologies have been instrumental in revealing the heterogeneous and complex molecular makeup
of the cells or tissue microenvironments. Deeper insights into the biological process can be
gained by incorporating high-resolution image modalities. For spatially informed multimodal
integration, we present spaMVGAE, a multimodal variational graph autoencoder that employs graph
convolutional networks. It learns a joint embedding of cells/beads/spots by correlating molecular
measurements (e.g., gene expression, chromatin accessibility), cell morphology (e.g., Hematoxylin
and Eosin (H&E) histology), as well as spatial location information. The resulting low-dimensional
embeddings can be used for diverse tasks such as domain detection. By applying spaMVGAE on
spatially resolved multimodal datasets generated in a variety of biological contexts, we show that
spaMVGAE can harness different sources of information and learn a refined representation of the
observations by taking advantage of the spatial information, in a computationally efficient fashion.

4.1 Introduction

Single-cell multimodal omics technologies have gained their popularity by having the ability
to investigate multiple types of molecular information, including transcriptomics, proteomics, and
epigenomics, from an individual cell. Examples are 10x single-cell Multiome ATAC + Gene Expres-
sion (RNA + ATAC), CITE-seq (RNA + Protein) (Stoeckius et al. 2017), nanobody-based single-cell
CUT&Tag (ATAC + H3K27ac + H3K27me3) (Bartosovic and Castelo-Branco 2023). These omics
modalities collectively unravel the heterogeneous nature of cells. Lately, the development of spatial
transcriptomics is revolutionary, as it provides a comprehensive view of gene expression within
the spatial context of the tissues. (Rodriques et al. 2019, Stickels et al. 2021, Baysoy et al. 2023).
Moreover, the researchers have the option to apply techniques such as Hematoxylin & Eosin (H&E)
staining on the sequenced tissue slice or the adjacent ones (Janesick et al. 2023). Such morphologi-
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cal information of the cells/beads/spots provides an additional aspect of the cell types and tissue
types, enhancing our understanding of cellular function and tissue architecture. Most recently, the
technologies that profile multiple molecular modalities in the same bead or spot have emerged. For
instance, Zhang et al. (Zhang et al. 2023b) developed the spatial assay for transposase-accessible
chromatin and RNA using sequencing (spatial ATAC-RNA-seq), which measures chromatin acces-
sibility and messenger RNA expression in parallel in up to 10, 000 barcoded pixels. Russell et al.
(Russell et al. 2023) introduced the Slide-tags approach that can label nuclei with spatial barcodes,
and applied it to multi-omics sequencing (Slide-tags multiome).

While these spatially resolved multimodal datasets offer tremendous opportunity in making
new biological discoveries, there are several challenges that we need to take into consideration
when devising a tailored computational method for integrative analysis. The method needs to
(1) be able to jointly embed 2, 3 or more modalities into the shared latent space for downstream
tasks, given that the sequencing technology is rapidly evolving; (2) be scalable to high-throughput
dataset, as the state-of-the-art technologies like Xenium can produce datasets comprising hundreds
of thousands of observations (Janesick et al. 2023); (3) be capable of integrating multiple tissue
sections; (4) properly incorporate the spatial location information. A few computational tools have
been developed to integrate this type of data, however they fail to meet all the requirements. Hu et
al. proposed a graph convolutional network (GCN)-based method, spaGCN (Hu et al. 2021), for
spatial domain detection. It utilizes gene expression, location, and histology to detect clusters in an
iterative fashion. However, spaGCN extracts imaging features by deriving a weighted sum of the
RGB values. It doesn’t generate a joint embedding of different modalities. Additionally, this method
suffers from scalability issues. Bao et al. developed a multimodal autoencoder, MUSE, to integrate
both transcriptomic profile and cell morphologies for spatial clustering (Bao et al. 2022). Yet,
MUSE doesn’t explicitly incorporate the spatial location information. It requires initial cell labels
for model training. MUSE also has difficulty dealing with large-scale datasets and joint analysis
of multiple tissue sections. Recently published CellCharter (Varrone et al. 2023) relies on
scVI to perform dimensionality reduction on the transcriptomic and epigenomic profiles separately
before feature aggregation among neighboring cells for spatial clustering. SpatialGlue (Long
et al. 2023), a VAE framework, utilizes GCN layers for incorporating spatial information and the
attention mechanism for multimodal fuision. However, it requires the dimensionality of input to be
reduced through principal component analysis (PCA). Its adaptability to multi-section data has not
been validated.

To address the computational needs for this multimodal integration problem, we developed
spaMVGAE, a scalable variational graph autoencoder that can infer joint latent space of the
cells/beads/spots from multiple spatial data modalities (e.g., RNA, ATAC, cell morphology) multiple
tissue sections. spaMVGAE models the molecular measurements in an end-to-end manner without
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additional dimension reduction procedure on the input. It takes advantage of spatial information
through the implementation of GCN. spaMVGAE shows its applicability and utility on a variety of
spatial datasets, including slide-seq, spatial ATAC-RNA-seq, 10x Genomics Xenium.

4.2 Multimodal variational graph autoencoder for spatially resolved multimodal data

The recent technological advancement has allowed for simultaneous measurement of multiple
modalities, including transcriptome, epigenome, with spatial context from individual cells, beads,
or spots, based on the platform. In addition to the multi-omics data, morphological information
can also be acquired by methods such as H&E staining (Figure 4.1a). To effectively integrate these
data modalities for identification of meaningful spatial domains, we present spaMVGAE, a scalable
Bayesian variational inference framework that is able to jointly model high-throughput spatially
resolved multimodal data.

Figure 4.1: Overview of spaMVGAE. (a) In spatially resolved data, multiple modalities can be
acquired for each cell/bead/spot (e.g., gene expression, chromatin accessibility, H&E histology). A
K-nearest neighbor graph is built based on the 2-dimensional coordinates. (b) An illustration of
spaMVGAE architecture. It consists of modality-specific encoder-decoder pairs. The spatial graph
is shared across all graph convolutional encoders. The joint latent space is inferred through the
Product of Experts (PoE).

The core of the spaMVGAE is a multimodal variational graph autoencoder (Figure 4.1b). The
joint distribution of multi-omic profile and morphological information is captured through the
implementation of the concept of product of experts (PoE) (Wu and Goodman 2018). spaMVGAE
correlates heterogeneous modalities and provides a unified view of the data. The joint latent space
enables tasks such as spatial domain detection and trajectory inference. spaMVGAE also offers
the flexibility to accommodate the growing variety of modalities produced by spatial profiling.
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For the model input, we select the top highly variable features from molecular measurements,
and then generate cell/bead/spot by feature count matrices. As for the images, we obtain the
feature vectors from pre-trained image classification models (Bao et al. 2022). In spaMVGAE, each
encoder (inference) network is tailored to a specific modality. The encoding process is accomplished
by the graph convolutional networks (GCN) (Kipf and Welling 2016a), which is able to capture
the similarities between the observations in the local regions. To incorporate the spatial location
information, we build a KNN graph for each cell/bead/spot and other cells/beads/spots in close
proximity defined by the Euclidean distance. The resulting adjacency matrix, together with the
feature matrices, serves as input to the GCN layers. Our results show that the aggregation of
information from the cell/bead/spot neighborhood is crucial for learning their low-dimensional
representation. Moreover, spaMVGAE can easily handle the multimodal datasets from multiple
tissue sections by concatenating the adjacency matrices and feature matrices (See Section 4.5).

In the subsequent sections, we demonstrate the performance of spaMVGAE on multimodal
integration using a variety of real datasets, in comparison to the selected baseline models.

4.3 Results

4.3.1 spaMVGAE enables domain detection on HER2 breast cancer data

To demonstrate the power of spaMVGAE in spatially informed multimodal integration, we first
applied it for domain detection in the HER2 (human epidermal growth factor receptor 2)-positive
breast tumor tissue section (Figure 4.2a) (Andersson et al. 2021). The data were generated using
the Spatial Transcriptomics (ST) technology (Ståhl et al. 2016). By taking the gene expression
data, image features extracted from cropped H&E image tiles, and the spatial graph, spaMVGAE
was able to reduce the dimensionality of the input data. We performed Leiden clustering (Traag
et al. 2019) on these spot embeddings for clustering so that domains of interest can be detected. By
comparing against the manual annotation from an experienced pathologist (Figure 4.2a,b), we can
tell that spaMVGAE indeed captures the structure of the tumor tissue. It successfully identifies the
cancer in situ, invasive cancer, adipose tissue, and regions with immune infiltration (Figure 4.2c).

Next, we benchmarked spaMVGAE against a VGAE that only uses gene expression and the
published MUSE (multi-modal structured embedding) model. All methods use the same set of highly
variable genes (top 2, 000). For fair comparison, spaMVGAE and MUSE also take as input the same
image feature matrix generated by a pre-trained convolutional neural network model. We ran each
method with 20 different random model initializations, and obtained the Leiden cluster assignments
from the resulting spot embeddings over a range of clustering resolutions. For each run, we only
record the highest adjusted Rand index (ARI) (calculated against the published labels) over all the
tested resolutions, and report the average highest ARI across these 20 runs. As shown in Figure 4.2d,
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spaMVGAE takes advantage of both transcriptomic and morphological information for accurate
spatial dimension reduction, outperforming the VGAE (p < 0.0004). This observation highlights
that the additional image modality indeed improves the model’s capability in domain detection.
Notably, spaMVGAE beats MUSE by a large margin in terms of average ARI (p < 2E-21).

Figure 4.2: spaMVGAE achieves accurate domain detection. (a) H&E staining image of HER2-
positive breast tumor tissue. (b) Spots are plotted using 2-dimensional coordinates and colored based
on the manual annotation. (c) Spots are colored by Leiden cluster assignments from spaMVGAE
output. (d) Benchmark between spaMVGAE, spaVGAE, and MUSE. The boxplot shows ARI
averaged over 20 runs with different random model initializations. Note that the spots with
undetermined identity are excluded from ARI calculation.

4.3.2 spaMVGAE identifies multi-layer growth plate structure in a knockout mouse

Understanding the process of bone development is crucial for unraveling mechanisms of bone
diseases. Growth plates are the multi-layered cellular template near the ends of the long bones,
which can be divided into three zones: resting, proliferating, and hypertrophic chondrocytes. One
of the key signaling pathways involves Indian hedgehog (Ihh)/parathyroid hormone-related protein
(PTHrP) negative-feedback loop (Kronenberg 2003). PTHrP promotes proliferation of chondrocytes.
In order to further elucidate the role of PTHrP in bone development, Dr. Orikasa and Dr. Ono from
the University of Texas Health Science Center utilized PTHrP-mCherry knock-in reporter mice. In
such mice, the Pthrp allele is modified to express a red fluorescent protein in place of a functional
PTHrP protein. They extracted fresh frozen sections of leg tissue from a PthrpmCherry/mCherry

(PTHrP-KO) mouse at embryonic day (E) 18.5, and obtained spatial transcriptomic profiles using
CurioSeeker (v1.0) (boxed region) (Figure 4.3a).

In addition to the expression data of the top 2, 000 variable genes, we also registered the H&E
image of the neighboring tissue section to the sequenced beads and cropped a 100 × 100-pixel
image centered around each bead (Figure 4.4b). 2048-dimensional feature vectors were generated
from the resulting image tiles. We applied spaMVGAE to a total of 50, 465 beads that passed
quality control, which effectively learned the low-dimensional embeddings of the beads jointly
from transcriptome and morphology. The Leiden algorithm (Traag et al. 2019) led to 18 clusters
using the bead embedding. In particular, three of them are identified in the growth plate (enclosed
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Figure 4.3: spaMVGAE characterizes multi-layer structure in growth plate of mouse bone. (a)
H&E histology of mouse leg tissue from the adjacent tissue section. The spatial transcriptomic
profiling was applied to the the boxed region. The dashed line highlights the growth plates in
tibia and femur. (b) spaMVGAE embedded the beads using gene expression, morphology, and the
spatial information. The beads are plotted with original spatial coordinates, colored by cluster
assignment through the Leiden algorithm. (c) The clusters in growth plates are superimposed on the
corresponding regions in H&E images. The growth plate can be divided into three zones, resting
zone (RZ), proliferation zone (PZ), and hypertrophic zone (HZ). The dashed lines represent manual
annotations based on histology. (d) The dot plot shows the expression level of the selected marker
genes. The size of the dot represents the fraction of cells expressing a specific gene. Darker color
indicates higher mean expression in the cluster. (e) Trajectory analysis of three clusters of interest.
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by dashed lines), the region of interest (Figure 4.3b), corresponding to resting chondrocytes (RC),
proliferating chondrocytes (PC), and hypertrophic chondrocytes (HC) respectively. In contrast, a
similar model without incorporating the location information of the beads failed such task (Figure
4.4c). We noticed the unimodal version of spaMVGAE (H&E images only) was able to achieve
similar results, with inferior stratification of the proliferation zone (Figure 4.4d).

Figure 4.4: Analyses of PTHrP-KO mouse data (slide-seq). (a) Spatial plot showing the total
UMI count for each bead. (b) Example H&E staining image tiles used for feature extraction. (c)
Leiden clustering result from multimodal VAE spaMVAE that doesn’t incorporate neighborhood
graph. (d) Leiden clustering result from VGAE using H&E image information only. The clusters of
interest are superimposed on the growth plate regions in the H&E image.

The identified cellular layers in both tibia and femur agree well with the manual annotation
(dashed lines) from our collaborators (Figure 4.3c). Notably, the proliferation zone is much smaller
due to PTHrP knockout. As expected, the PCs show the highest mean expression of Col2a1 as
compared to the other populations. Consistent with previous studies, Col10a1, a specific marker
of chondrocytes undergoing hypertrophy, is most abundant in the hypertrophic zone (Yang et al.
2014). Furthermore, we can see the PCs in the knockout mouse express the most Pth1r (Figure
4.3d). This is because the missing of PTHrP causes a breakage of the PTHrP-Ihh negative feedback
loop. In this case, PCs try to express more PTH1R to try to compensate for the loss of PTHrP. In
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addition, we performed PAGA trajectory inference (Wolf et al. 2019). The properly ordered nodes
representing three chondrocyte populations in the growth plate match the underlying biology, further
indicating that spaMVGAE embeds the beads properly using transcriptomics, morphology, as well
as the spatial location information (Figure 4.3e).

4.3.3 spaMVGAE allows for integration of spatial transcriptome and epigenome of mouse
brain

Next, we applied spaMVGAE on the spatial chromatin accessibility (ATAC) and transcriptome
(RNA) co-sequencing dataset (9, 215 pixels) of P22 mouse brain. The profiled region is marked
on the Nissl-stained image obtained from the adjacent tissue section, and the corresponding brain
structures are shown in the image registered to the Allen Mouse Brain Atlas (Figure 4.5a) for
reference. With 3, 000 highly variable genes and 6, 000 highly variable peaks, neither the RNA
modality nor the ATAC modality is able to properly identify all the brain structures by itself (Figure
4.5b). For instance, the RNA clusters poorly stratify the layers in the cortex (Cluster 0, 2, and 5),
partly due to the fact that the pixels from Cluster 2 have lower quality, with the lowest transcript
count among the three (Figure 4.6b). In contrast, spaMVGAE jointly modeled both modalities
and achieved pixel embeddings of higher quality, leading to smoother spatial clustering and more
accurate identification of spatial domains (Figure 4.5c). We further show that the incorporation of
spatial location information is critical, as multimodal VAE without GCN failed to achieve the same
performance on learning meaningful representations of these pixels (Figure 4.6c).

The resulting clusters agree well with the anatomical annotations. For example, Cluster 1 and
4 match the striatum. Cluster 6 depicts corpus callosum and anterior commissure. Cluster 11
corresponds to the lateral ventricle. Notably, genes closely related to the major island of Calleja
(islm) are highly expressed in Cluster 12, such as Rreb1 (a marker of striatal projection neurons,
p < 2E-25) and Isl1 (a gene essential for proper formation of D1 and D2 neurons, p < 6E-17)
(Figure 4.5d) (Stanley et al. 2020). Moreover, the pixels in Cluster 3 stand out with high expression
of genes associated with neurons in the cortex region (Figure 4.5e). Specifically, Cux1 (p < 3E-8)
and Cux2 (p < 2E-10) are markers of pyramidal neurons, a major population of nerve cells in the
cerebral cortex (Matho et al. 2021). This observation aligns well with the significant expression
of Slc30a3 (p = 0.02), reported as a marker of excitatory neurons in Layer 2/3 and 4/5 isocortex
(Yao et al. 2021). Furthermore, we also identified differentially expressed markers of excitatory
neurons (Tle4: p = 1.7E-4; Nxph3: p = 2E-6) from Layer 6b of isocortex (CTX) in Cluster 10
(Yao et al. 2021), as well as Slc17a7 (p = 0.02), a marker of glutamatergic neurons (Yao et al.
2023), in Cluster 0 and 2 covering piriform area (PIR) and anterior cingulate area (ACA), and L6a
CTX (Figure 4.5f, Figure 4.6d).
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Figure 4.5: spaMVGAE identifies the mouse brain structures in coronal section (a) (Left) Nissl
staining of the adjacent coronal section. (Right) Mapped brain structure by registering the Nissl
stain image to the Allen Mouse Brain Atlas. (b) Pixels colored by Leiden cluster assignments
resulted from VGAE using gene expression and chromatin accessibility respectively. (c) Joint
modeling through spaMVGAE. The clusters are visualized by UMAP (Left) and original spatial
coordinates (Right). (d) Violin plots of the expression of selected genes in Cluster 12 and the other
clusters. (e) Marker gene expression of Cluster 3 in UMAP space. (f) Heatmap of marker genes
associated with Cluster 0, 2, and 10. For each gene, the mean expression is scaled by subtracting
the minimum and dividing by its maximum.
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Figure 4.6: Analyses of mouse (P22) brain data. (a) The distribution of UMI count (Left) and
fragment count (Right) per pixel in the tissue section. (b) Violin plot showing the total UMI counts
for Cluster 0, 2, and 5. (c) Result from multimodal VAE without using spatial location information.
(Left) Leiden clusters visualized in 2-dimensional UMAP space. (Right) Pixels are plotted with
their spatial coordinates and colored by cluster identity. (d) Table of marker genes associated with
clusters of interest. The fold change and adjusted p-value are reported for each gene.
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4.3.4 spaMVGAE efficiently integrates multi-section human breast cancer data

Finally, we applied spaMVGAE to a high resolution spatial transcriptomics dataset generated by
10x Xenium platform. This data consists of gene expression measurement on 313 genes across two
tissue sections, with DAPI imaging information available. Breast cancer is a highly heterogeneous
and multifaceted disease, characterized by pronounced intratumoral and intertumoral variability
in both histological and molecular attributes. In the 10x Xenium data, spaMVGAE jointly models
both tissue sections, incorporating gene expression measurements and DAPI imaging information
as modalities. Regardless of the inclusion of DAPI imaging information, spaMVGAE successfully
identifies clusters, including ductal carcinoma in situ (DCIS) clusters and invasive ductal carcinoma
(IDC) clusters, demonstrating its robustness (Figure 4.7a). However, with the incorporation of DAPI
imaging information, spaMVGAE can further elucidate intratumoral heterogeneity within DCIS
regions (Cluster 2 and Cluster 9), a feature that is not captured when modeling only gene expression
across multiple sections (Figure 4.7a,b).

To investigate intratumor heterogeneity in the DCIS regions, we conducted differential expres-
sion (DE) analysis and gene set enrichment analysis (GSEA) between Cluster 2 and Cluster 9, as
identified by spaMVGAE when DAPI imaging information was incorporated. Our DE analysis
revealed 254 DE genes, with the top DE genes highlighted in the volcano plot (Figure 4.7c). The
top 10 up-regulated genes in the DCIS cluster (Cluster 9) include ERBB2 (Swain et al. 2023),
S100A4 (Fei et al. 2017), CTTN (Moon et al. 2023), SERHL2 (Paul et al. 2023), KRT8 (Scott
et al. 2020), SCD (Kubota and Espenshade 2022), ENAH (Di Modugno et al. 2006), TENT5C
(Kazazian et al. 2020), CCND1 (Valla et al. 2022), and RUNX1 (van Bragt et al. 2014), all of which
have been previously identified as breast cancer-related marker genes in previous studies (Figure
4.7c). Notably, S100A4 has been associated with poor prognosis in breast cancer patients (Fei
et al. 2017), and CCND1, located on chromosome 11q13, is linked to high histopathological grade,
high proliferation, and the Luminal B subtype of breast cancer (Valla et al. 2022). Moreover, our
GSEA analysis identified the top 10 gene sets related to breast cancer (Figure 4.7d). These include
“CLIMENT BREAST CANCER COPY Number UP,” “WP ERBB SIGNALING PATHWAY,” and
“NIKOLSKY BREAST CANCER 11Q12 Q14 AMPLICON,” all of which are associated with breast
cancer-related gene sets and pathways. These results suggest differences in the functional properties
of tumors between Cluster 2 and Cluster 9.

In addition to the intratumor heterogeneity identified by spaMVGAE when DAPI imaging
information was utilized, we observed that by including imaging information, the identified clusters
exhibited greater consistency with important marker gene expression patterns. For instance, Cluster
11, identified by spaMVGAE with DAPI information, which is situated in the outer layer of the
DCIS region, is consistent with the marker genes SERPINA3 and KRT14 (Figure 4.7e). Specifically,
SERPINA3 is a marker gene highly expressed in myeloid cells, epithelial cells, and dendritic cells,
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Figure 4.7: spaMVGAE characterizes intratumoral and inter-tumoral heterogeneity in 10x
Xenium breast cancer data. (a) Clusters identified by spaMVGAE with gene expression only and
with DAPI imaging information added. (b) Two DCIS related clusters identified by spaMVGAE
only when adding the DAPI imaging information. (c) Volcano plot displays the DE genes between
Cluster 2 and 9. (d) GSEA analysis identified the enriched gene sets. (e) spaMVGAE identified
Cluster 11, which is consistent with the immune cells and basal epithelial cells marker genes
SERPINA3, and KRT14.
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which characterize the important immune environment near the DCIS region (Yu et al. 2023).
KRT14 is a marker gene that characterizes basal epithelial cells and has been found to be markedly
more highly expressed in DCIS of non-basal-like subtypes compared to their invasive counterparts,
particularly in the basal-like subtype (Bergholtz et al. 2020). These results underscore the benefits
of spaMVGAE in jointly modeling both gene expression and imaging information across multiple
sections.

4.4 Discussion

In this work, we proposed spaMVGAE, a multimodal graph variational autoencoder, to address
the challenges presented in integrating spatially resolved multimodal data generated by the latest
spatial sequencing technologies. As an end-to-end probabilistic method, spaMVGAE is able to
directly model the transcripts (gene expression) and the fragments (chromatin accessibilty) as
count data, without additional treatment such as principal component analysis. The spatial location
information is incorporated by graph convolutional layers during data encoding. spaMVGAE

effectively extracts the biologically meaningful low-dimensional embeddings of the cells/beads/spots
that can be used for spatial clustering to gain biological insight of the data.

spaMVGAE manages data produced by different sequencing platforms. The versatility of
spaMVGAE is demonstrated through its application on spatially resolved data of various combina-
tions of modalities and biological contexts. To summarize, spaMVGAE makes use of transcriptomic
and H&E image features of the spots in HER2-positive human breast tumor tissue, showing the
superior capability of domain detection. Next, by incorporating the histology information in addition
to the bead-level gene expression data, spaMVGAE successfully stratifies the multi-layer structure
in the growth plate in tibia and femur from PTHrP-Knockout mouse that is consistent with the
underlying biology of bone development. Furthermore, spaMVGAE integrates the spatially resolved
transcriptome and accessibility of chromatin from barcoded pixels, and captures the brain structure
within P22 mouse brain with better accuracy than using single modalities. Lastly, we showcase that
spaMVGAE is scalable to large datasets by integrating the transcriptomic profile and DAPI images
from two adjacent human breast cancer tissue sections. Beyond the utility of spaMVGAE on these
real datasets, we can potentially increase its performance by making additional modifications. One
improvement can be made is the incorporation of the subgraph-based training scheme (Zeng et al.
2019, Bai et al. 2021), which further boosts the model’s scalability in rapidly growing size of the
data. Another direction to explore is the addition of modality-specific weight, which allows the
model to prioritize more informative modalities.

To conclude, spaMVGAE framework is efficient in spatially informed multimodal integration,
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without restrictions on the number of modalities and data types. We envision that spaMVGAE will
be increasingly useful as more modalities will be available in spatially resolved data thanks to the
rapid technological development in this field.

4.5 Methods

4.5.1 Spatial multimodal variational graph autoencoder

We propose spatial multimodal variational graph autoencoder (spaMVGAE) to integrate spatially
resolved multimodal datasets to obtain joint low-dimensional representation of the cells (Note that
they can also be beads, spots depending on the sequencing technologies being used). In this
framework, we employ the product of experts (PoE) (Wu and Goodman 2018) for joint posterior
inference on the latent space. Then we are able to detect meaningful spatial domains by running
clustering methods, such as the Leiden algorithm (Traag et al. 2019). With the assumption that the
biological state of a cell is influenced by its immediate environment in the tissue, we want to take
into account the information from the neighboring cells during the embedding process. In order
to capture this local context, we built a graph for the cells and their surrounding neighbors, and
implemented the graph convolutional network (GCN) to aggregate their features.

Consider a total of N cells from T tissue sections, the spatially resolved multimodal dataset
comprises M modalities (X = {X1, . . . ,XM}), for instance, gene expression, peak, histology. For
the ith cell, its feature vector xm for each modality contains Gm profiled features. In general,
we employed a Poisson distribution to model the count data of gene expression or chromatin
accessibility (peaks). Meanwhile, we used mean squared error (MSE) to quantify the reconstruction
loss of imaging features. For integration of the transcriptomic profile and morphological features,
we applied MSE for both modalities.

4.5.1.1 Graph construction

We first construct a neighborhood graph G = (V , E) for the cells using their spatial coordinates,
where V represents the nodes (i.e., the cell and its K nearest neighbors (KNN) defined by Euclidean
distance) and E denotes the edges connecting these nodes. The choice of K depends on the dataset
and sequencing technologies. Finally, we obtain the adjacency matrix A of G depicting the spatial
relationship among all the cells in the tissue. In dealing with multiple tissue sections (X1, . . . ,XT ),
we built graphs separately for them and stacked the resulting adjacency matrices along the diagonal:
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A =


A1

. . .

AT

 (4.1)

4.5.1.2 Multimodal variational graph autoencoder

The variational graph autoencoder was proposed for unsupervised learning on data with graph
structure (Kipf and Welling 2016b). To extend it for joint cell embeddings from multiple modalities,
we adopt the concept of product-of-experts (PoE), introduced by Wu and Goodman for multimodal
unsupervised learning (Wu and Goodman 2018). In our setting, each expert is a variational graph
autoencoder trained on data from a specific modality (Xm), where graph G is constructed using
the spatial location of the cells, and shared across different modalities. In the multimodal VGAE,
we modeled the latent space (Z) of the cells as a Gaussian distribution, and formulated the joint
posterior with the assumption of conditional independence between p(Xm|Z,A). Then we have

p(Z|X,A) = p(Z|X1,X2, . . . ,XM ,A) (4.2)

=
p(Z)

p(X1, . . . ,XM)

M∏
m=1

p(Z|Xm)p(Xm)

p(Z)
(4.3)

∝
∏M

m=1 p(Z|Xm,A)∏M−1
m=1 p(Z)

(4.4)

Given each modality and the shared graph information, its true posterior p(Z|Xm,A) can be
approximated by qϕm(Z|Xm,A) through the graph convolutional encoder (parameterized by ϕm) of
the forementioned “expert” model. The decoder, parameterized by θm, reconstructs each modality
by pθm(Xm|Z) using fully connected layers. This differs from the original VGAE which learns to
reconstruct the adjacency matrix of the input graph. The proposed multimodal VGAE is trained to
optimize the evidence lower bound (ELBO) below:

ELBO(X1, . . . ,XM) ≜ Eqϕ(Z|X1,...,XM ,A)[
∑

Xm∈X

log pθ(Xm|Z,A)]−DKL(qϕ(Z|X1, . . . ,XM ,A) ∥ p(Z)])

(4.5)
To demonstrate the advantage of leveraging the cells’ spatial locations, we also configured a

multimodal variational autoencoder (MVAE) for benchmark analyses. It is based on the same PoE
approach, but without utilizing the graph G.
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Encoder Layers Decoder Layers
GCNConv GCNConv GCNConv(µ, σ) FC FC

Table 4.1: Architecture of modality-specific encoder-decoder

4.5.1.3 Model setting and implementation

Given the feature matrix from a measured modality, the encoder infers the modality-specific
latent distribution through graph convolutional layers, whereas the decoder reconstructs the input
via fully connected (FC) layers. The architecture of a encoder-decoder pair is detailed below 4.1.

The PoE approach is employed to obtain the joint distribution of the latent space of all data
modalities. For model training, we input the entire dataset and the complete graph. The Adam
optimizer (learning rate = 0.0001) was applied. The GCN layers (GCNl, l ∈ {1, . . . , L}, L = 2 by
default) in the encoder output 128-dimensional feature maps (Hl), except for GCNµ(HL,A) and
GCNσ(HL,A) which depends on the choice of the dimension (D) of cell/bead/spot embedding. The
FC layers have 128 hidden units. Non-linearity was modeled through the ReLU activation function.
Dropout layers (dropout rate = 0.2) were applied to prevent overfitting. Batch Normalization was
only applied to FC-layers.

All spaMVGAE models were implemented in Pytorch 1.10.1 and Python 3.8, trained with a
2.9 GHz Intel Xeon Gold 6226R and an NVIDIA A40 GPU. Graph convolutional netoworks were
implemented with PyTorch Geometric 2.2.0. MUSE was run with TensorFlow 2.7.0.

4.5.2 Downstream analyses

4.5.2.1 Clustering

We used the scanpy pipeline with default settings to perform the Leiden algorithm on the
low-dimensional cell/bead/spot embeddings for domain detection (Wolf et al. 2018). The resolution
for clustering varies across different experiments.

4.5.2.2 Differential expression analysis

To identify differentially expressed genes across cell clusters, we utilized non-parametric
Wilcoxon rank sum test (Mann and Whitney 1947, Korsunsky et al. 2019b) and reported the
adjusted p-values corrected by Benjamini-Hochberg method (Benjamini and Hochberg 1995).

4.5.2.3 Trajectory inference

Following Leiden clustering, we applied the partition-based graph abstraction (PAGA) (Wolf
et al. 2019) via scanpy to investigate the developmental trajectories of individual cells/beads/spots.

105



In the output graph, each node represents cell cluster, and the edges show the transitions between
the identified cell populations.

4.5.3 Data pre-processing

4.5.3.1 Human breast cancer (spatial transcriptomics and histology)

Andersson et al. applied the Spatial Transcriptomics technology to measure spot-level gene
expression in HER2-positive tumors tissues from eight donors (patient A-H). For this analysis, we
focused the data generated from patient H. In addition to the expression profile of 15, 029 genes, we
obtained the H&E image tile centered around each of the 613 spot, with each side measuring 150
pixels. These image tiles were then used as input to the pre-trained Inception v3, which outputs
the 2048-dimensional feature vectors (Bao et al. 2022). Top 2, 000 variable genes were used for
integration. For this analysis, we use K = 10 to build the KNN graph. The spaMVGAE was trained
for 5, 000 epoachs, with latent dimension(D) set to 30. MSE loss was applied.

4.5.3.2 Mouse (E18.5) bone development (spatial transcriptomics and histology)

Our collaborators Shion Orikasa and Noriaki Ono, from the Department of Diagnostic and
Biomedical Sciences, University of Texas Health Science Center at Houston, extracted the tissue
from the leg of PTHrP-KO mouse at embryonic day (E) 18.5. Spatial transcriptomics data were
generated using CurioSeeker (v1.0) technology, which is based on slide-seq. In this dataset, UMI
count of 28, 514 genes were profiled from 69, 138 beads. In the quality control step, we kept 50, 465
beads with at least 50 UMI count and no more than 1, 000 (Figure 4.4a). We excluded genes
expressed in fewer than 3 beads. After log normalization, 2, 000 highly variable genes were selected
using Seurat for integration. In addition, H&E image was obtained from the adjacent tissue
section, then registered to the beads. We cropped the image tile centered around each bead, with
each side measuring 100 pixels. Then we resized these histology image tiles to 299×299 pixels and
extracted 2048-dimensional feature vectors using pre-trained Inception v3. We built KNN graph
with K = 10, and used it to train spaMVGAE with the dimension of the latent space (D) set to 30,
and 600 epochs. MSE loss was applied for both data modalities.

4.5.3.3 Mouse (P22) brain (spatial transcriptomics and epigenomics)

Zhang et al. jointly profiled chromatin accessibility and transcriptome of P22 mouse brain
coronal sections by applying the latest spatial ATAC-RNA-seq (Zhang et al. 2023b). This technology
allows for sequencing up to 10, 000 pixels per tissue section. The published data object consists
of 9, 215 pixels, with 22, 914 genes and 121, 068 peaks profiled. In addition, the author generated
24, 027 ATAC features that are associated with genes. The median number of transcripts and
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fragments per pixel is 2, 168 and 6, 653 respectively (Figure 4.6a). For joint modeling, we used
the same set of highly variable genes reported by the authors, and selected top 6, 000 variable
peaks. To incorporate the spatial information, we built KNN graph with K = 4, and used it to
train spaMVGAE with the dimension of the latent space (D) set to 30, and 1000 epochs. Poisson
distributional assumption was applied for both transcript and peak count data.

4.5.3.4 Multi-section human breast cancer (high-throughput spatial transcriptomics and
morphology)

Janesick et al. from 10x Genomics applied their latest image-based Xenium technology and
profiled 313 genes in the human breast cancer tissues (Janesick et al. 2023). After removing cells
with fewer than 100 transcripts, there are 124, 945 in tissue section 1 (Replicate 1), and 90, 424 in
tissue section 2 (Replicate 2). The segmented grayscale DAPI image of each cell was first resized to
299× 299, then stacked three times so that they could used to extract the 2048-dimensional feature
vector via Inception v3 (requires RGB image input). We used all genes for integrative analyses. We
used all 313 genes and the image features for multi-section multimodal integration. The spatial
information was taken into account through the construction of KNN graph with K = 10. The
spaMVGAE was trained for 1000 epochs, with the dimension of the latent space (D) set to 50 and
MSE loss.
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CHAPTER 5

Conclusion

This dissertation has focused on developing efficient computational methods to tackle the
challenges in integrative analysis of single-cell unimodal omics, single-cell multimodal omics, and
spatially resolved multimodal data. The goal is to extract a biologically meaningful, low-dimensional
representation of cells from single-cell data and cells/beads/spots from spatial sequencing data.
These embeddings capture cellular heterogeneities in transcriptome, epigenome, and morphology.
They can be used for cell type inference and spatial domain detection, thereby enhancing our
understanding in cell and disease biology. The contribution of the completed studies can be
summarized below.

In chapter 2, I focused on the integration of high-throughput single-cell unimodal datasets,
each measuring the same or different molecular modalities. For this purpose, I developed Online
iNMF, which is able to iteratively refines the metagene factors by reading mini-batches from disk.
Online iNMF stands out for its speedier convergence compared to other batch algorithms and
its ability to keep memory usage independent of the dataset size. Online iNMF accomplishes
iterative integration of single-cell data across three scenarios. In the first scenario, where all
single-cell datasets are already available, Online iNMF rapidly factorizes the single-cell data
into metagenes and cell factor loadings through multiple training epochs. The second scenario
involves Online iNMF iteratively incorporating single-cell datasets as they sequentially arrive.
This approach is expected to be particularly beneficial for researchers who regularly add new
sequenced cells to comprehensive cell atlases. The third scenario is promising for querying datasets
with a vast, well-established reference atlas. The performance of Online iNMF is validated on
simulated data and real datasets generated from mouse brain, human PBMC, and human pancreas.
The increasing utility of Online iNMF is anticipated in the integration of large-scale single-cell
multi-omic datasets from major projects like the BRAIN Initiative, Human Body Map, and Human
Cell Atlas.

In chapter 3, my work centers around the integration of single-cell multimodal epignomic
data. I take the window-based genome binning approach and count the fragments (measurement
of histone modification or chromatin accessibility) in each bin for each modality. To model the
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count data jointly for all modalities, I introduce the ConvNet-VAE framework, characterized by
its use of 1D-convolutional layers specially designed to accommodate the multi-track and sequential
nature of the binned multimodal epigenomic data. ConvNet-VAE successfully integrates bi-
modal (H3K27ac + H3K27me3) and tri-modal juvenile mouse brain data (ATAC + H3K27ac +
H3K27me3), as well as bi-modal data from human bone marrow mononuclear cells (H3K27ac +
H3K27me3). ConvNet-VAE shows proficiency in extracting joint embeddings from chromatin
states and histone modifications, precisely capturing the data distribution, and correcting for batch-
effects. The advantage of ConvNet-VAE is more pronounced when analyzing three modalities,
rather than just two. ConvNet-VAE does have certain limitations. The necessity for all modalities
to have a uniform feature space due to the convolutional filters is one such limitation. Additionally,
there’s room for enhancing model efficacy by fine-tuning parameters like kernel size and stride
length. Most recently, researchers have attempted to profile up to 6 epigenomic modalities in single
cells (Lochs et al. 2023). As the scale and complexity of such datasets grow, we expect the relevance
and utility of this approach to increase significantly.

In chapter 4, I concentrated on the spatially informed integration of multimodal data. I de-
vise spaMVGAE, a multimodal graph variational autoencoder, specifically designed to tackle the
complexities of integrating spatially resolved multimodal data generated by cutting-edge spatial
sequencing technologies. spaMVGAE is adaptable to data from various sequencing platforms and
demonstrates its versatility across a range of modalities (e.g., gene expression, chromatin accessibil-
ity, morphology) and biological contexts (e.g., breast tumor mouse brain, mouse bone). spaMVGAE
is capable of multi-section integration and scalable to hundreds of thousands of cell. Potential im-
provments to spaMVGAE include adopting a subgraph-based training scheme for further increasing
scalability with growing data sizes, and incorporating modality-specific weights to prioritize more
informative modalities.

In summary, I have developed three computational methods for integrating single-cell and spatial
multimodal data. These methods effectively capture the biological information from each modality
and learn joint cell embeddings for clustering, enabling the identification of cell populations and
tissue structures. I believe that these developed tools will assist researchers in analyzing complex
biomedical data, thereby facilitating biological discovery.
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Stefania Giacomello, Michaela Asp, Jakub O Westholm, Mikael Huss, et al. Visualization and analysis
of gene expression in tissue sections by spatial transcriptomics. Science, 353(6294):78–82, 2016.

Samuel G Rodriques, Robert R Stickels, Aleksandrina Goeva, Carly A Martin, Evan Murray, Charles R
Vanderburg, Joshua Welch, Linlin M Chen, Fei Chen, and Evan Z Macosko. Slide-seq: A scalable
technology for measuring genome-wide expression at high spatial resolution. Science, 363(6434):
1463–1467, 2019.

Jun Chen, Shengbao Suo, Patrick PL Tam, Jing-Dong J Han, Guangdun Peng, and Naihe Jing. Spatial
transcriptomic analysis of cryosectioned tissue samples with geo-seq. Nature protocols, 12(3):566–580,
2017.

Di Zhang, Yanxiang Deng, Petra Kukanja, Eneritz Agirre, Marek Bartosovic, Mingze Dong, Cong Ma, Sai
Ma, Graham Su, Shuozhen Bao, et al. Spatial epigenome–transcriptome co-profiling of mammalian
tissues. Nature, 616(7955):113–122, 2023b.

Andrew JC Russell, Jackson A Weir, Naeem M Nadaf, Matthew Shabet, Vipin Kumar, Sandeep Kambhampati,
Ruth Raichur, Giovanni J Marrero, Sophia Liu, Karol S Balderrama, et al. Slide-tags enables single-
nucleus barcoding for multimodal spatial genomics. Nature, pages 1–9, 2023.

Zi Ye and Casim A Sarkar. Towards a quantitative understanding of cell identity. Trends in cell biology, 28
(12):1030–1048, 2018.

112



Tim Stuart and Rahul Satija. Integrative single-cell analysis. Nature reviews genetics, 20(5):257–272, 2019.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix factorization and
sparse coding. Journal of Machine Learning Research, 11(1), 2010.

Arpiar Saunders, Evan Z Macosko, Alec Wysoker, Melissa Goldman, Fenna M Krienen, Heather de Rivera,
Elizabeth Bien, Matthew Baum, Laura Bortolin, Shuyu Wang, et al. Molecular diversity and specializa-
tions among the cells of the adult mouse brain. Cell, 174(4):1015–1030, 2018.

Hoa Thi Nhu Tran, Kok Siong Ang, Marion Chevrier, Xiaomeng Zhang, Nicole Yee Shin Lee, Michelle Goh,
and Jinmiao Chen. A benchmark of batch-effect correction methods for single-cell rna sequencing data.
Genome biology, 21:1–32, 2020.

Hyun Min Kang, Meena Subramaniam, Sasha Targ, Michelle Nguyen, Lenka Maliskova, Elizabeth McCarthy,
Eunice Wan, Simon Wong, Lauren Byrnes, Cristina M Lanata, et al. Multiplexed droplet single-cell
rna-sequencing using natural genetic variation. Nature biotechnology, 36(1):89–94, 2018.

Dominic Grün, Mauro J Muraro, Jean-Charles Boisset, Kay Wiebrands, Anna Lyubimova, Gitanjali Dhar-
madhikari, Maaike van den Born, Johan Van Es, Erik Jansen, Hans Clevers, et al. De novo prediction of
stem cell identity using single-cell transcriptome data. Cell stem cell, 19(2):266–277, 2016.

Mauro J Muraro, Gitanjali Dharmadhikari, Dominic Grün, Nathalie Groen, Tim Dielen, Erik Jansen, Leon
Van Gurp, Marten A Engelse, Francoise Carlotti, Eelco Jp De Koning, et al. A single-cell transcriptome
atlas of the human pancreas. Cell systems, 3(4):385–394, 2016.

Nathan Lawlor, Joshy George, Mohan Bolisetty, Romy Kursawe, Lili Sun, V Sivakamasundari, Ina Kycia,
Paul Robson, and Michael L Stitzel. Single-cell transcriptomes identify human islet cell signatures
and reveal cell-type–specific expression changes in type 2 diabetes. Genome research, 27(2):208–222,
2017.

Maayan Baron, Adrian Veres, Samuel L Wolock, Aubrey L Faust, Renaud Gaujoux, Amedeo Vetere, Jen-
nifer Hyoje Ryu, Bridget K Wagner, Shai S Shen-Orr, Allon M Klein, et al. A single-cell transcriptomic
map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell systems, 3
(4):346–360, 2016.
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and discrete neuron types of the adult murine striatum. Neuron, 105(4):688–699, 2020.

Katherine S Matho, Dhananjay Huilgol, William Galbavy, Miao He, Gukhan Kim, Xu An, Jiangteng Lu,
Priscilla Wu, Daniela J Di Bella, Ashwin S Shetty, et al. Genetic dissection of the glutamatergic neuron
system in cerebral cortex. Nature, 598(7879):182–187, 2021.

Zizhen Yao, Cindy TJ van Velthoven, Michael Kunst, Meng Zhang, Delissa McMillen, Changkyu Lee, Won
Jung, Jeff Goldy, Aliya Abdelhak, Matthew Aitken, et al. A high-resolution transcriptomic and spatial
atlas of cell types in the whole mouse brain. Nature, 624(7991):317–332, 2023.

Sandra M Swain, Mythili Shastry, and Erika Hamilton. Targeting her2-positive breast cancer: Advances and
future directions. Nature Reviews Drug Discovery, 22(2):101–126, 2023.

Fei Fei, Jie Qu, Mingqing Zhang, Yuwei Li, and Shiwu Zhang. S100a4 in cancer progression and metastasis:
A systematic review. Oncotarget, 8(42):73219, 2017.

So-Jeong Moon, Hyung-Jun Choi, Young-Hyeon Kye, Ga-Young Jeong, Hyung-Yong Kim, Jae-Kyung
Myung, and Gu Kong. Cttn overexpression confers cancer stem cell-like properties and trastuzumab
resistance via dkk-1/wnt signaling in her2 positive breast cancer. Cancers, 15(4):1168, 2023.

Evan D Paul, Barbora Huraiova, Natalia Valkova, Natalia Birknerova, Daniela Gabrisova, Sona Gubova,
Helena Ignacakova, Tomas Ondris, Silvia Bendikova, Jarmila Bila, et al. Multiplexed rna-fish-guided
laser capture microdissection rna sequencing improves breast cancer molecular subtyping, prognostic
classification, and predicts response to antibody drug conjugates. medRxiv, pages 2023–12, 2023.

Madeleine KD Scott, Maneesha Limaye, Steven Schaffert, Robert West, Michael G Ozawa, Pauline Chu,
Viswam S Nair, Albert C Koong, and Purvesh Khatri. A multi-scale integrated analysis identifies krt8
as a pan-cancer early biomarker. In BIOCOMPUTING 2021: Proceedings of the Pacific Symposium,
pages 297–308. World Scientific, 2020.

Casie S Kubota and Peter J Espenshade. Targeting stearoyl-coa desaturase in solid tumors. Cancer research,
82(9):1682–1688, 2022.

Francesca Di Modugno, Marcella Mottolese, Anna Di Benedetto, Andrea Conidi, Flavia Novelli, Letizia
Perracchio, Irene Venturo, Claudio Botti, Elke Jager, Angela Santoni, et al. The cytoskeleton regulatory
protein hmena (enah) is overexpressed in human benign breast lesions with high risk of transformation
and human epidermal growth factor receptor-2–positive/hormonal receptor–negative tumors. Clinical
Cancer Research, 12(5):1470–1478, 2006.

Karineh Kazazian, Yosr Haffani, Deanna Ng, Chae Min Michelle Lee, Wendy Johnston, Minji Kim, Roland
Xu, Karina Pacholzyk, Francis Si-Wah Zih, Julie Tan, et al. Fam46c/tent5c functions as a tumor
suppressor through inhibition of plk4 activity. Communications biology, 3(1):448, 2020.

Marit Valla, Elise Klæstad, Borgny Ytterhus, and Anna M Bofin. Ccnd1 amplification in breast cancer-
associations with proliferation, histopathological grade, molecular subtype and prognosis. Journal of
Mammary Gland Biology and Neoplasia, 27(1):67–77, 2022.

Maaike PA van Bragt, Xin Hu, Ying Xie, and Zhe Li. Runx1, a transcription factor mutated in breast cancer,
controls the fate of er-positive mammary luminal cells. Elife, 3:e03881, 2014.

Qiyi Yu, Tianyuan Xie, Yidong Zhang, Tianyue Pan, Yongmei Tan, Hai Qin, and Simin Yan. Exploration
of serpina family functions and prognostic value in breast cancer based on transcriptome and in vitro
analysis. Environmental Toxicology, 2023.

117



Helga Bergholtz, Tonje G Lien, David M Swanson, Arnoldo Frigessi, Maria Grazia Daidone, Jörg Tost,
Fredrik Wärnberg, and Therese Sørlie. Contrasting dcis and invasive breast cancer by subtype suggests
basal-like dcis as distinct lesions. NPJ Breast Cancer, 6(1):26, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Jiyang Bai, Yuxiang Ren, and Jiawei Zhang. Ripple walk training: A subgraph-based training framework
for large and deep graph neural network. In 2021 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2021.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016b.

F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene expression data
analysis. Genome biology, 19:1–5, 2018.

Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is stochastically
larger than the other. The annals of mathematical statistics, pages 50–60, 1947.

Ilya Korsunsky, Aparna Nathan, Nghia Millard, and Soumya Raychaudhuri. Presto scales wilcoxon and
auroc analyses to millions of observations. BioRxiv, page 653253, 2019b.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1):289–300,
1995.

Silke JA Lochs, Robin H van der Weide, Kim L de Luca, Tessy Korthout, Ramada E van Beek, Hiroshi
Kimura, and Jop Kind. Combinatorial single-cell profiling of major chromatin types with mabid. Nature
Methods, pages 1–11, 2023.

118


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Introduction
	Motivation and Research Objectives
	Single-cell single-omics
	Single-cell multimodal omics
	Spatially resolved multimodal data

	Outline of Dissertation

	Iterative Single-Cell Multi-Omic Integration Using Online Learning
	Introduction
	online iNMF: An Online Learning Algorithm for Iterative Single-Cell Multi-Omic Integration
	Results
	Online iNMF Converges Efficiently Without Loss of Accuracy Compared to Batch iNMF
	Online iNMF Yields State-of-the-Art Single-Cell Data Integration Results Using Significantly Less Time and Memory
	Online iNMF Rapidly Factorizes Large Datasets Using Fixed Memory
	Online iNMF Efficiently Integrates Large Single-Cell RNA and Spatial Transcriptomic Datasets
	Online iNMF Enables Iterative Refinement of Single-Cell Multi-Omic Atlas from Mouse Motor Cortex 

	Discussion
	Methods
	About Online iNMF
	Utility of Online iNMF
	Derivation of iNMF Updates
	Optimizing a Surrogate Function for iNMF
	Implementation of Online iNMF

	Data Loading Methods and Overhead
	Quantile Normalization and Joint Clustering
	Quantitative Metrics for Evaluating Alignment and Clustering
	Integrative Analyses on Real Data
	Study of Convergence Behavior of Online iNMF
	Benchmark of Runtime and Peak Memory Usage
	Analysis of Human PBMC and Pancreas
	Analysis of Adult Mouse Brain
	Analysis of Spatial Transcriptomic Data
	Analysis of Mouse Primary Motor Cortex
	Analysis of Mouse Organogenesis Cell Atlas

	Integrative Analyses on Simulated Data
	Generating Simulated scRNA-seq Data
	Analysis of Simulated Data with Unbalanced Cell Clusters and Dataset Sizes
	Analysis of Simulated Data with Missing Cell Clusters
	Analysis of Simulated Data with No Cell Types Shared Across All Datasets
	Analysis of Simulated Data with Varying Number of Factors ()


	Supplementary Note: Benchmarking Online iNMF Performance Across a Range of Conditions Using Real and Simulated Data
	Benchmarking Online iNMF with Simulation Studies
	Reading Mini-Batches from Disk Adds Minimal Overhead
	Online iNMF Is Robust to Initialization and Input Ordering
	Integration with RNA Data Detects More Clusters from Epigenome 
	Online iNMF Identifies Rare Cell Types Present in Only a Subset of the Datasets
	Online iNMF Robustly Integrates Datasets with Non-Overlapping or Partially-Overlapping Cell Types
	Online iNMF Achieves Accurate Data Reconstruction
	Selection of Key Parameters (and )
	ANLS Outperforms HALS for Updating Cell Factor Loadings


	Integrating Single-Cell Multimodal Epigenome Data Using 1D-Convolutional Neural Networks
	Introduction
	ConvNet-VAE: 1D-convolutional neural networks for single-cell multimodal epigenomics integration
	Results
	ConvNet-VAEs learn cell representations using fewer parameters
	ConvNet-VAEs show a larger advantage with increasing number of modalities per cell
	ConvNet-VAEs allow for improved batch-effect correction
	ConvNet-VAEs integrate histone modifications from scNTT-seq data

	Discussion
	Methods
	Generative probabilistic model of epigenomic data
	Multimodal variational autoencdoers
	Variational autoencoders (VAEs)
	Convolutional variational autoencoders with 1D-convolutional layers (ConvNet-VAE)
	Variational autoencoders with fully connected layers (FC-VAE)

	Evaluation on batch-effect correction
	Evaluation of VAEs' ability to capture data distribution
	Evaluation of the cell representations learned by VAEs
	Data pre-processing
	Juvenile mouse brain
	Human bone marrow mononuclear cells (BMMCs)
	Human peripheral blood mononuclear cells (PBMCs)
	Mouse cortex and hippocampus
	Mouse organogenesis

	Experiments
	Model implementation


	Integrating Spatially Resolved Multimodal Data Using Variational Graph Autoencoder
	Introduction
	Multimodal variational graph autoencoder for spatially resolved multimodal data
	Results
	spaMVGAE enables domain detection on HER2 breast cancer data
	spaMVGAE identifies multi-layer growth plate structure in a knockout mouse
	spaMVGAE allows for integration of spatial transcriptome and epigenome of mouse brain
	spaMVGAE efficiently integrates multi-section human breast cancer data

	Discussion
	Methods
	Spatial multimodal variational graph autoencoder
	Graph construction
	Multimodal variational graph autoencoder
	Model setting and implementation

	Downstream analyses
	Clustering
	Differential expression analysis
	Trajectory inference

	Data pre-processing
	Human breast cancer (spatial transcriptomics and histology)
	Mouse (E18.5) bone development (spatial transcriptomics and histology)
	Mouse (P22) brain (spatial transcriptomics and epigenomics)
	Multi-section human breast cancer (high-throughput spatial transcriptomics and morphology)



	Conclusion
	Bibliography

