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Abstract
Inverse reinforcement Learning (IRL) has emerged as a powerful paradigm for extracting expert
skills from observed behavior, with applications ranging from autonomous systems to human-
robot interaction. However, the identifiability issue within IRL poses a significant challenge, as
multiple reward functions can explain the same observed behavior. This paper provides a linear
algebraic characterization of several identifiability notions for an entropy-regularized finite horizon
Markov decision process (MDP). Moreover, our approach allows for the seamless integration of
prior knowledge, in the form of featurized reward functions, to enhance the identifiability of IRL
problems. The results are demonstrated with experiments on a grid world environment.
Keywords: Markov decision process, inverse reinforcement learning, identifiability

1. Introduction

Inverse reinforcement learning (IRL) is the problem of finding the reward function of an agent from
its behavior Ng and Russell (2000). IRL has gained significant attention in the research community
since having access to expert demonstrations can alleviate the burden of manually specifying a
reward function Abbeel and Ng (2004) and improve generalizability. A primary problem with
IRL is that it is fundamentally ill-posed. Indeed, there are multiple reward functions leading to
any observed behavior. Prior work has generally dealt with this ambiguity in reward learning by
using heuristics, e.g., Max Margin IRL Ratliff et al. (2006), Bayesian IRL Ramachandran and Amir
(2007), Max Entropy IRL Ziebart et al. (2008), Relative Entropy IRL Boularias et al. (2011), and
Deep Max Entropy IRL Wulfmeier et al. (2015) (see Arora and Doshi (2021) for a comprehensive
overview). These approaches are well-suited for learning an imitation policy since the learned
reward is guaranteed to induce a learned policy at least as good as the expert one. However, when
IRL is used for behavior modeling Li et al. (2022); Ashwood et al. (2022); Babes et al. (2011);
Ramponi et al. (2020); Jenner and Gleave (2021), or for policy transfer to novel environments
Cao et al. (2021); Rolland et al. (2022); Fu et al. (2018), it becomes crucial to address the reward
ambiguity problem. In such settings, finding one reward function that explains the agent’s behavior
is not enough since different reward functions can lead to different interpretations of the agent’s
preferences or completely different behaviors on a modified environment. Instead, it is necessary to
find the set of all possible rewards Metelli et al. (2021) that can explain the behavior.

This leads to different notions of reward equivalence. For example, two rewards are said to be
trajectory equivalent if they lead to the same distribution of trajectories under the optimal policy.
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Equivalence classes of rewards allow us to formalize the concept of identifiability of an MDP as
follows: identifiability holds when a reward can be identified up to the corresponding equivalence
class. In this context, our contribution is two-fold. First, we derive linear algebraic characteriza-
tions of weak, almost-strong, and strong trajectory equivalence classes of a reward function. This
leads to necessary and sufficient conditions for the corresponding notions of identifiability. Then,
we show how incorporating prior knowledge —in the form of featurized reward functions— can be
seamlessly integrated into the framework to enhance the identifiability of rewards in certain envi-
ronments.

2. Preliminaries

2.1. Notation

We denote by N and R the sets of natural and real numbers, respectively. The identity matrix in
Rn×n is denoted by In, the zero matrix in Rm×n is denoted by 0m×n, and the vector of ones in Rn

is denoted by 1n. For matrices A and B,
[
A B

]
is the horizontal concatenation of A and B. We

denote by ker(A) and ran(A) the null space and the column span of the matrix A respectively.
For a matrix A and a set X , AX is the set {Ax|x ∈ X}. For any two sets X and Y , X × Y is their
Cartesian product and X ⊕ Y is their Minkowski sum. For a vector x, x ⊕ Y denotes {x} ⊕ Y .
We denote by dim(V ) the dimension of a vector space V . The cardinality of a set Ω is denoted by
|Ω|, and ∆(Ω) denotes the set of probability measures over the set Ω. The support of a measure
µ ∈ ∆(Ω) is the set support(µ) = {x ∈ Ω | µ(x) > 0}. The “Dirac” distribution that sets a
point mass at state s ∈ Ω is denoted δs,Ω ∈ ∆(Ω). It will be denoted δs when Ω is clear from the
context. The indicator function 1(·) is 1(a = b) = 1 if a = b, and 0 otherwise. Given a function
f : X → Y , and a set A ⊆ X , we denote by f |A the restriction of f to A.

2.2. Markov Decision Processes

A Markov Decision Process (MDP) is a tuple (S,A, T , µ0, r, γ, T ), where S = {s(1), . . . , s(n)} is
a finite set of states with cardinality |S| = n; A = {a(1), . . . , a(m)} is a finite set of actions with
cardinality |A| = m; T : S × A → ∆(S) is a Markov transition kernel; µ0 ∈ ∆(S) is an initial
distribution over the set of states; r : S×A → R is a reward function (or reward for short); γ ∈ [0, 1]
is a discount factor; and T ∈ N is the non-negative time horizon. A policy πt : S → ∆(A) is a
function that describes an agent’s behavior at time step t by specifying an action distribution at each
state. We denote by π = (πt)

T−1
t=0 the time-varying stochastic policy throughout the entire horizon.

A trajectory τ (of length T ) is an alternating sequence of states and actions (ending with a state),
i.e., τ = (s0, a0, s1, a1, . . . , sT−1, aT−1, sT ) with st ∈ S and at ∈ A. Under a policy π, a trajectory
τ occurs with probability

Pπ
µ0
(τ) = µ0(s0)

T−1∏
t=0

πt(at|st)
T−1∏
t=0

T (st+1|st, at),

which depends on the distribution of initial states, the policy, and the Markov transition kernel. We
consider the Maximum Entropy Reinforcement Learning (MaxEntRL) objective given by:

JMaxEnt(π; r) = Eπ
µ0
[

T−1∑
t=0

γt
(
r(st, at) + λH(πt(.|st))

)
], (1)
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where λ > 0 is a regularization parameter, and H(πt(.|st)) = −
∑
a∈A

πt(a|st) log(πt(a|st)) is the

entropy of the policy πt. The expectation is with respect to the probability measure Pπ
µ0

. We
denote by Ω the support of Pπ

µ0
. Similarly, we denote by Ω(s0) the support of Pπ

δs0
, for some

s0 ∈ support(µ0). The reward of a trajectory τ is given by overloading the reward function

r(τ) =
T−1∑
t=0

γtr(st, at). We define the optimal policy set Π∗
r , corresponding to a reward function r,

as the set of maximizers of (1), i.e.,

Π∗
r = argmax

π
JMaxEnt(π; r). (2)

The non-uniqueness of the optimal policy stems from the fact that the policy can be arbitrarily
specified for the non-accessible states without changing the objective value. However, the policy
is unique over the accessible state-action pairs Kim et al. (2021). To formalize this, we define the
accessible states at time step t and those throughout the horizon T as:

Accesst = {s ∈ S | Pπ
µ0
(st = s) > 0 for some policy π},

Access = {(t, s) ∈ [0, T − 1]× S | s ∈ Accesst},

respectively. When we restrict the policies in Π∗
r to the accessible states, we obtain a unique policy,

denoted by π∗
r |Access1. Since the trajectory distribution for a given policy depends only on the

accessible states, we define the optimal trajectory distribution for a reward r as pr = Pπ∗
r

µ0 , where
π∗
r ∈ Π∗

r is arbitrary. In particular, pr is the distribution of trajectories when using an optimal policy
corresponding to r and starting from the support of µ0. Finally, we define an MDP Model as a tuple
(S,A, T , µ0, R, γ, T ) where R is a set of reward functions, and S, A, T , µ0, γ, and T are defined
as for an MDP.

2.3. Reward identifiability and Equivalence Classes

As in many identification problems, rewards can only be identified up to an equivalence class.
Roughly speaking, an MDP model is more identifiable when the equivalence class is smaller. In
what follows, we define a set of equivalence classes and use them to define different notions of
identifiability. Let R ⊆ Rnm be the set of reward functions for the given MDP model. Let∼⊆ R×R
denote an equivalence relation on R. For a given reward r ∈ R, the equivalence class of r with
respect to the relation ∼ is defined as [r]∼ = {r̂ ∈ R | r̂ ∼ r}, where we use the shorthand r̂ ∼ r
for (r̂, r) ∈∼. Some of the equivalence relations of interest are as follows.

Definition 1 (Distribution Equivalence ∼d) Given an MDP model, two rewards r and r̂ in R are
distribution equivalent, denoted by r ∼d r̂, if pr = pr̂.

In words, two rewards are distribution equivalent when they induce the same optimal trajectory
distribution.

Definition 2 (Policy Equivalence ∼π) Given an MDP model, two rewards in R are policy equiv-
alent, denoted by r ∼π r̂, if π∗

r |Access = π∗
r̂ |Access.

1. The notation πt, the policy at time step t, is overloaded with πr , the policy throughout the horizon [0, T − 1]
corresponding to r.
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Two rewards are policy equivalent if they induce the same optimal time-varying policy over the
accessible states. Since pr = pr̂ ⇐⇒ π∗

r |Access = π∗
r̂ |Access, distribution equivalence class and

policy equivalence class are the same, hence we use them interchangeably.

Definition 3 (Weak Trajectory Equivalence ∼τ Kim et al. (2021)) Given an MDP model, two
rewards in R are weak trajectory equivalent, denoted by r ∼τ r̂, if for all s0 ∈ support(µ0),
there exists cs0 ∈ R such that r(τ) = r̂(τ) + cs0 , for all τ ∈ Ω(s0).

Weak trajectory equivalence means that the two rewards are equivalent if their discounted sums
along trajectories starting from the same initial state are a unique constant apart.

Definition 4 (Strong Trajectory Equivalence ∼ω) Given an MDP model, two rewards in R are
strong trajectory equivalent, denoted by r ∼ω r̂, if there exists some c ∈ R such that r(τ) = r̂(τ)+c,
for all τ ∈ Ω.

Strong trajectory equivalence is similar to weak trajectory equivalence but requires the discounted
sums of rewards along all possible trajectories to be a unique constant apart independent of the
initial state.

Definition 5 (State-Action Equivalence ∼s,a Kim et al. (2021)) Given an MDP model, two re-
wards in R are state-action equivalent, denoted by r ∼s,a r̂, if there exists c ∈ R s.t. r(s, a) =
r̂(s, a) + c, for all (s, a) ∈ S ×A.

State-action equivalence means that the two rewards are equivalent if they are a unique constant
c apart at all state-action pairs. When the reward set is R = Rnm, state-action equivalence class
is the smallest equivalence class up to which it is possible to identify a reward. Indeed, from the
definitions, it is easy to see that:

r ∼s,a r̂ =⇒ r ∼ω r̂ =⇒ r ∼τ r̂ =⇒ r ∼d r̂. (3)

Different notions of identifiability of MDP models in the literature deal with the question of when
the reverse implications hold. In particular, we have the following definitions.

Definition 6 (Identifiability) An MDP model is said to be:

i. weakly identifiable if for all r, r̂ ∈ R, r ∼π r̂ ⇐⇒ r ∼τ r̂.

ii. almost-strongly identifiable if for all r, r̂ ∈ R, r ∼π r̂ ⇐⇒ r ∼ω r̂.

iii. strongly identifiable if for all r, r̂ ∈ R, r ∼π r̂ ⇐⇒ r ∼s,a r̂.

The definitions of weak and strong identifiability were introduced in Kim et al. (2021). It fol-
lows from Equation (3) that strong identifiability implies almost-strong identifiability, which implies
weak identifiability.

3. Linear Algebraic Characterizations of Identifiability

In this section, we derive linear algebraic characterizations for the different notions of reward equiv-
alence defined in Section 2.3. The different notions of identifiability are characterized by comparing
the corresponding equivalence classes. Throughout this section, we assume that R = Rmn.
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3.1. Policy-Preserving Equivalence

We first recall that the solutions of finite horizon MaxEntRL problems are usually time-varying
policies. However, in general not every time-varying policy is a solution to Problem (2) for some
reward. Therefore, we first characterize the conditions a time-varying policy should satisfy to be a
solution. Given a policy π = (πt)

T−1
t=0 , we vectorize it as follows:

πlogt = λ
[
log(πt(a1|s1)) log(πt(a1|s2)) · · · log(πt(am|sn))

]⊺ ∈ Rmn, t = 0, 1, . . . , T−1.

Furthermore, we define the matrices Γ ∈ RTmn×(Tn+mn) and Ξ ∈ RTmn as:

Γ =


I −E γP 0 · · · · · · 0
I 0 −E γP 0 · · · 0

I
...

...
. . . 0 −E γP

I 0 · · · · · · · · · 0 −E

 , Ξ =


πlog0

πlog1
...

πlogT−1

 ,

with I = Imn,E =
[
In · · · In

]⊺ ∈ Rnm×n and P =
[
P ⊺
a(1)

· · · P ⊺
a(m)

]⊺ ∈ Rnm×n, where
Pa(k) ∈ Rn×n is such that its ij-th entry is given by T (s(j)|s(i), a(k)), k ∈ {1, . . . ,m}. Given Γ, we
construct ΓAccess by only keeping the rows in Γ corresponding to accessible states. Similarly, we
construct ΞAccess. Details of this construction is given in Appendix A.1. Observe that ΓAccess and
ΞAccess have

∑T−1
t=0 m|Accesst| rows, which simplifies to Tnm when all states are accessible at

all times. Then, we have the following necessary and sufficient condition for a time-varying policy
π to be a solution of Problem (2) for some reward.

Proposition 7 A time-varying policy π = (πt)
T−1
t=0 solves Problem (2) for some reward if and only

if ΞAccess ∈ ran(ΓAccess).

Proof See Appendix A.1.

We use this result to first characterize the set of rewards that can induce π then derive the finite-
horizon policy-preserving equivalence class. To this end, we define the following affine subspace:

X = {x ∈ Rmn+Tn | ΓAccessx = ΞAccess}. (4)

Then, the set of rewards r such that π ∈ argmax
π

JMaxEnt(π; r), denoted byR, is given by:

R = PX , (5)

where P =
[
Imn 0mn×Tn

]
is the projection operator of a mn + Tn dimensional vector onto its

first mn components. By defining the following subspace:

KΓ = Pker(ΓAccess), (6)

we arrive at the following result.

Corollary 8 Given a time-varying policy π = (πt)
T−1
t=0 and an MDP model, let r be a reward that

induces π. Then, the policy-preserving equivalence class of r is

[r]∼π = r ⊕KΓ.

Proof See Appendix A.2.
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3.2. Weak Trajectory Equivalence and Weak Identifiability

Let K = |support(µ0)|, which denotes the number of initial states in the MDP. We denote
these states by {s(k)0 }Kk=1. Consider {Ω(s(k)0 )}Kk=1, where each Ω(s

(k)
0 ) corresponds to the set of all

trajectories starting from s
(k)
0 . For each s

(k)
0 , we construct the matrix M

s
(k)
0

∈ R|Ω(s
(k)
0 )|×mn as:

[M
s
(k)
0

]ij =
T−1∑
t=0

γt1(τ
(k)
i (t) = (s(j), a(j))), 1 ≤ i ≤ |Ω(s(k)0 )| and 1 ≤ j ≤ mn, (7)

where τ (k)i (t) denotes the state action pair at time step t of the i-th trajectory of Ω(s(k)0 ), for some ar-
bitrary ordering of trajectories. Using the definition above, we can characterize the weak-trajectory
equivalence class of a reward function.

Theorem 9 The weak-trajectory equivalence class for a reward r is given by:

[r]∼τ = r ⊕
⋂

k=1,...,K

(ran(1mn)⊕ ker(M
s
(k)
0

)).

Proof See Appendix A.3.

The following characterization of weak identifiability follows directly from Theorem 9.

Corollary 10 An MDP model with R = Rmn is weakly identifiable if and only if

KΓ ⊆
⋂

i=1,...,K

(
ran(1mn)⊕ ker(Ms

(i)
0

)

)
.

3.3. Strong Trajectory Equivalence and Almost-Strong Identifiability

The strong trajectory equivalence class of a reward can be characterized using a similar derivation
to that of Section 3.2. To this end, define the matrix M =

[
M⊺

s
(1)
0

M⊺

s
(2)
0

· · · M⊺

s
(K)
0

]⊺
.

Theorem 11 The strong-trajectory equivalence class for a reward r is given by:

[r]∼ω = r ⊕ ran(1mn)⊕ ker(M).

Proof See Appendix A.4

Using Theorem 11, we can directly characterize almost-strong identifiability as follows.

Corollary 12 An MDP model with R = Rmn is almost-strongly identifiable if and only if

KΓ ⊆ ran(1mn)⊕ ker(M).

The conditions given in Corollaries 11 and 12 can be computationally expensive to verify since the
number of trajectories in a stochastic MDP typically grows exponentially with the horizon length.
Hence, storing the matrices (M

s
(i)
0

)Ki=1 and computing their null-space can quickly become compu-
tationally infeasible, even for moderately sized MDPs. This means that verifying weak- and almost-
strong identifiability can be prohibitive. However, given our linear algebraic characterizations, we
can design an incremental algorithm to mitigate the aforementioned problem. The algorithm is
based on the following result for almost-strong identifiability.
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Proposition 13 Given an MDP model, let {k1, . . . , kr} be a basis for KΓ. Then the MDP model is
almost-strongly identifiable if and only if

∀j ∈ {1, . . . , r} ∃ξj ∈ R s.t. ∀i ∈ {1, . . . , |Ω|}Mikj = ξj ,

where Mi is the i-th row of M corresponding to the i-th trajectory in Ω.

Proof See Appendix A.5.

Proposition 13 says that we can check for almost-strong identifiability by checking a property for
individual trajectories instead of storing a large matrix of trajectories and computing its null-space.
The procedure is summarized in Algorithm 1 of Appendix B.1. The same algorithm can be directly
adapted to test weak identifiability by running it for each starting state {s(k)0 }Kk=1.

3.4. State-Action Equivalence and Strong Identifiability

For state-action equivalence, the following result follows directly from its definition.

Theorem 14 The state-action equivalence class for a reward r is given by:

[r]∼s,a = r ⊕ ran(1mn).

Strong identifiability can be characterized using this theorem as follows.

Corollary 15 An MDP model with R = Rmn is strongly identifiable if and only if

KΓ ⊆ ran(1mn).

Corollary 15 gives an efficient way to check if an MDP model is strongly identifiable. Indeed, we
can (i) compute the accessible states Access, (ii) compute the matrix ΓAccess, (iii) compute a basis
of its kernel, and (iv) compute the dimension of KΓ. This dimension is one if and only if the MDP
model is strongly identifiable. This consists of a polynomial time algorithm to check the strong
identifiability of an MDP model. In fact, the computational complexity can be further improved in
the fully accessible case as detailed in Appendix C. We note that this is in contrast to the strong
identifiability condition in Cao et al. (2021), which is exponential in the horizon T .

4. Feature-Based Identifiability

So far, we have studied identifiability of rewards in inverse reinforcement learning for the reward
set R = Rmn. However, a common assumption in reinforcement learning is that the agent is trying
to optimize a reward function that can be expressed as a linear combination of known features.
This means that the conditions in Corollaries 10, 12 and 15 can be made tighter, since not every
reward function in R can be written as a linear combination of the pre-determined features. Given
that features describe a subspace in the reward space, incorporating feature-based rewards into our
framework becomes just a matter of intersecting these subspaces with our previous results. In
particular, consider a feature function f : S × A → Rk. Define the mn× k matrix describing the
feature function as F =

[
f1(·) f2(·) · · · fk(·)

]
, where fi(·) is the i-th feature evaluated at all

the state-action pairs. Let Rf = {r ∈ Rnm|∃ ω ∈ Rk s.t. r(s, a) = ω⊺f(s, a), ∀(s, a) ∈ S × A}
be the space of featurized reward functions. We can directly see that r ∈ Rf ⇐⇒ r ∈ ran(F ).

7



SHEHAB ASPEEL ARÉCHIGA BEST OZAY

Moreover, to distinguish the equivalence classes when using R = Rf from the ones when R =
Rmn, we use [r]∼π,f

, [r]∼τ,f
, [r]∼ω,f

and [r]∼(s,a),f
. As in Section 3.1, where it is stated that not

every time-varying policy is induced by a reward, clearly not every time-varying policy is induced
by a featurized reward.

Theorem 16 Given a time-varying policy π = (πt)
T−1
t=0 and an MDP Model, the set of featurized

rewards r such that π ∈ argmax
π

JMaxEnt(π; r), denoted byRf , is given by:

Rf = R
⋂

ran(F ). (8)

Proof Follows from the construction ofR with the added constraint that r ∈ ran(F ).

We note that in Theorem 16, if π is not induced by a featurized reward, then Equation (8) gives
the empty set. As in the unconstrained reward case, we can show that the featurized equivalence
classes can be derived simply by taking the intersection between the equivalence classes studied in
Section 3 with ran(F ):

Theorem 17
[r]∼•,f = [r]∼• ∩ ran(F ), for • ∈ {π, τ, ω, (s, a)}. (9)

Proof Similar to the proofs of Section 3, while noting the new structure of Rf .

Equation (9) reveals that if ran(1mn) ⊆ ran(F ), then [r]∼(s,a),f
= [r]∼s,a . Otherwise,

[r]∼(s,a),f
= {r}. That is, if the vector of ones is not in the range of the feature matrix, it might

be possible to exactly identify a unique reward in the featurized setting. Moreover, the results in
Theorem 17 are not restricted to rewards constrained to subspaces via features but can easily be
generalized to arbitrary reward sets R by taking the intersection with R instead of ran(F ).

5. Numerical Experiments

In this section, we test our framework on different grid world examples with different dynamics. The
code to generate the results is available at https://github.com/mlshehab/learning_
true_objectives.

5.1. Unconstrained Reward Functions

We demonstrate our framework on three versions of a 5 by 5 grid world shown in Figure 1. The four
possible actions available for the agent are: UP,DOWN,LEFT,RIGHT. Each action succeeds with a
probability 0.9, and with probability 0.1 the agent moves randomly to one of the 4 neighboring cells
or stays in the same cell. The first grid world, shown in Figure 1(a), is the original grid world where
all transitions are admissible. In the second grid world, shown in Figure 1(b), we introduce a strip
blocking (denoted by the dashed line and red area) that the agent can not enter from outside, but
can escape if started inside. Note that all actions are still available at all states, but the outcome of
a blocked action is uniformly distributed over the available neighboring cells. Lastly, we introduce
a wall in the grid world of Figure 1(c) which forces the only possible transition on the left column
to be upward. For example, if the agent starts at the lower left corner, then the only way they can
reach the right side of the grid world is by first traveling along the left border until the blocking is
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(a) Original (b) Blocking 1 (c) Blocking 2

Figure 1: Three grid worlds considered in this section: (a) the original grid world with no blocking,
(b) the red strip is blocked from outside, and (c) the thick line only blocks transitions
from the left side.

cleared. We take the horizon length to be 15 and the initial distribution to be a single starting state;
results with varying horizon lengths and starting states are given in Appendix B.2. For the MDP
described by Figure 1(a), with any starting state, we find that KΓ = ran(1mn), which means that
the MDP model is strongly identifiable. We note that if we remove self-transitions, the MDP model
is not strongly identifiable anymore. On the other hand, we get that dim(KΓ) > 1 for the MDPs
of Figures 1(b) and 1(c), with a starting state inside the blocking and on the bottom left corner
respectively, and hence both are not strongly identifiable. We observe that the subspace KΓ is along
the states in the red strip in Figure 1(b) and along the states on the left most wall of Figure 1(c),
meaning that we can arbitrarily change the reward at these states and still induce the same optimal
policy. Additional results with weak and almost-strong identifiability are given in Appendices B.3
and B.4.

5.2. Featurized Reward Functions

In this section, we show how prior information, in the form of featurized rewards, can improve iden-
tifiability. Consider a scenario where the rewards depend on landmarks in a grid world and we want
to place the landmarks in a way to understand how much agents value different landmarks. In partic-
ular, we present four such cases in Figures 2(a), 2(b), 2(c) and 2(d), where the important landmarks
are a burger joint and a vehicle charging station. We denote the two landmarks by l1 and l2. The fea-
ture function f : S × A → R2 is given by fi(s, a) = −manhattan distance(s, li), ∀a ∈ A.
F is constructed by stacking the feature function values for all state-action pairs. We report the
results with a horizon of 15 and the varying horizon results are given in Appendix B.2. The starting
state is the lower left corner. Our framework shows that the any placement of the landmarks, e.g.
Figures 2(a), 2(b), 2(c) and 2(d), makes the MDP model strongly identifiable. In particular, we
find that KΓ ∩ ran(F ) = ran(1mn) for Figure 2(a). For Figures 2(b), 2(c) and 2(d), we find that
KΓ∩ran(F ) = 0. Since ran(1mn) ̸⊆ ran(F ) for all these placements, we conclude that the true
reward function can be exactly recoverable. Sparse feature results are given in Appendix B.5.

6. Related Works

Here we compare our results with some recent work on the reward ambiguity problem of IRL. In
their work, Cao et al. (2021) derive necessary and sufficient conditions for strong-identifiability in
infinite and finite horizons. For finite horizon, they characterize strong identifiability in terms of

9



SHEHAB ASPEEL ARÉCHIGA BEST OZAY

(a) Features 1 (b) Features 2 (c) Features 3 (d) Features 4

Figure 2: The blocked grid world of Figure 1(c) with features. The colored cells denote the position
of important landmarks.

the properties of “full-action rank” and “full access”. Our work builds on Cao et al. (2021) by
first deriving explicitly the set of rewards inducing a policy. Additionally, we demonstrate how
a linear algebraic characterization enables a polynomial-complexity test for strong identifiability
and extends to different notions of identifiability. Rolland et al. (2022) extend the work of Cao
et al. (2021) to find linear algebraic characterizations for strong-identifiability in infinite horizon
settings. Amin et al. (2017) studied how access to sequential tasks could enhance identifiability
and reduce the mismatch between the demonstrator’s objective and the learned reward function.
However, these previous works assume access either to demonstrations of the agents in multiple
sufficiently distinct environments, or multiple tasks. Instead, our work presents unified necessary
and sufficient conditions for weak and strong identifiability (with and without features) using the
policy in one single environment. Schlaginhaufen and Kamgarpour (2023) also derive a linear
algebraic characterization of strong identifiability in the infinite horizon constrained MDP setting.
The major commonality between these prior works is assuming an infinite horizon setting, for which
the optimal policy is known to be stationary and thus simplifies the analysis. Kim et al. (2021)
studied identifiability using the notions of weak and strong identifiability. However, their necessary
and sufficient conditions for strong identifiability requires the MDP model to be weakly identifiable,
for which a means of verification was not presented except for deterministic MDPs. Our results
allow verifying weak identifiability for any MDP. Finally, Skalse et al. (2023) generalize most of
the previous works by characterizing transformations on the rewards that preserve optimality under
different RL objectives. Our work is complementary to theirs by focusing on MaxEntRL objective
and extracting computable linear algebraic characterizations for different equivalence classes.

7. Conclusion

In this work, we established linear algebraic characterizations of weak-, almost-strong, and strong-
identifiability of MDPs. Our numerical examples illustrate how these new theoretical results can
be leveraged to choose features making the underlying MDP identifiable. In the future, we will
build on this approach to design identifiability preserving abstractions. Finally, we will investigate
the problem of reward identifiability from a finite set of expert trajectories, instead of knowing the
exact expert policy.
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Ozay. Outlier-robust inverse reinforcement learning and reward-based detection of anoma-
lous driving behaviors. In 25th International Conference on Intelligent Transportation Systems
(ITSC), pages 4175–4182, 2022.

Alberto Maria Metelli, Giorgia Ramponi, Alessandro Concetti, and Marcello Restelli. Provably
efficient learning of transferable rewards. In International Conference on Machine Learning,
pages 7665–7676. PMLR, 2021.

11



SHEHAB ASPEEL ARÉCHIGA BEST OZAY
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Appendix A. Proofs

A.1. Proof of Proposition 7

We build on the following result adapted from (Cao et al., 2021) by setting the terminal reward to
zero.

Lemma 18 For any time-varying policy π = (πt)
T−1
t=0 , and for any function ν : {0, . . . , T − 1} ×

S → R, the reward function given by

r(s, a) = λ log πt(a|s)− γEs′∼P (.|s,a)[νt+1(s
′)] + νt(s), (10)

with νT = 0, is the only reward function for which π is the optimal solution of (2) with value
function ν.

Lemma 18 describes implicitly all the possible reward functions for which a given policy π is opti-
mal. Since Equation (10) is linear in r and ν for all t in [0, T − 1], we can construct a linear system
of equations which the reward and value function have to satisfy in order to induce a given policy π.
This allows us to explicitly describe all the possible rewards inducing π. Proposition 7 is essentially
doing this by also taking the ambiguities due to (in)accessibility into account.

Proof [of Proposition 7] We create vectorized versions of the reward and value function as:

r =
[
r(s1, a1) r(s2, a1) · · · r(sn, am)

]⊺
,

νt =
[
νt(s1) νt(s2) · · · νt(sn)

]⊺
, t = 0, · · · , T − 1.

Equation (10) gives necessary and sufficient conditions that a reward and value have to satisfy in
order to induce a given time-varying policy π. Using the definitions of I,E,P and πlog

t , we can
write the equation as: [

I −E γP
]  r

νt
νt+1

 = πlog
t . (11)

If a state i is not accessible at time t, we delete all its corresponding rows from Equation (11). The
indices of the deleted rows are I = {nl + i | l = 0, · · · ,m − 1}. This amounts to deleting m
rows for each inaccessible state, corresponding to m state-action pairs that have no constraint at
time step t due to the state not being accessible. Finally, a reward r and value function ν satisfying
this equation exist if and only if ΞAccess ∈ ran(ΓAccess), which concludes the proof.

A.2. Proof of Corollary 8

Proof We first prove the ⊆ direction. Let r, r̂ be two rewards that induce the same time-varying
policy π. By Equation (5), we know that:

r = Px, r̂ = Px̂, where x, x̂ ∈ X .

Since x, x̂ ∈ X , then x − x̂ ∈ ker(ΓAccess). Thus, r − r̂ = P(x − x̂) ∈ KΓ, hence we have
[r]∼π ⊆ r⊕KΓ. For the ⊇ direction, let r be a reward inducing π and let r̂ = r+ v, v ∈ KΓ. Since

13
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r ∈ R, then there exists x ∈ X such that ΓAccessx = ΞAccess and r = Px. Define x̂ as:

x̂ = x+
[
v⊺ 0⊺Tn

]⊺︸ ︷︷ ︸
=η

.

Then ΓAccessx̂ = ΓAccessx + ΓAccessη = ΞAccess, hence x̂ ∈ X and r̂ = Px̂, so r̂ ∈ R. Thus
r̂ ∈ [r]∼π , and thus r ⊕KΓ ⊆ [r]∼π .

A.3. Proof of Theorem 9

We make use of the following lemma for general subspaces Si and a vector r:

Lemma 19 ⋂
i=1,...,K

r ⊕ Si = r ⊕
⋂

i=1,...,K

Si.

Proof We proceed by proving inclusion in both directions:
⊆: Let v ∈

⋂
i=1,...,K

r⊕ Si. Then, ∀i, v ∈ r⊕ Si. It follows that for every i, there exists si such that

v = r + si. Hence, v − r = si and then v − r ∈ Si for all i. Consequently, v − r ∈
⋂

i=1,...,K

Si and

it follows that v = r + s, with s ∈
⋂

i=1,...,K

Si.

⊇: Let v ∈ r ⊕
⋂

i=1,...,K

Si. Then, v = r + s, s ∈
⋂

i=1,...,K

Si. Hence, for all i, s ∈ Si. Thus, for all

i, v ∈ r ⊕ Si which leads to v ∈
⋂

i=1,...,K

r ⊕ Si, concluding the proof.

Now, we can prove Theorem 9.
Proof [of Theorem 9] Let r be a reward in R. Using Definition 3 and Equation (7), a reward r̂ is
weak-trajectory equivalent to r if and only if for all k = 1, . . . ,K, there exists ck ∈ R such that

M
s
(k)
0

(r − r̂) = ck1|Ω(s
(k)
0 )|. (12)

Using M
s
(k)
0

1mn = (
∑T−1

t=0 γt)1|Ω(s
(k)
0 )| and defining c̃k = ck/

∑T−1
t=0 γt, Equation (12) can be

rewritten M
s
(k)
0

(r − r̂ − c̃k1mn) = 0. This holds for some c̃k if and only if r̂ ∈ r ⊕ ran(1mn) ⊕
ker(M

s
(k)
0

). Since this must hold for all k = 1, . . . ,K, it gives

r̂ ∈
⋂

k=1,...,K

(r ⊕ ran(1mn)⊕ ker(Ms
(k)
0

)).

Using Lemma 19, this can be rewritten as

r̂ ∈ r ⊕
⋂

k=1,...,K

(ran(1mn)⊕ ker(Ms
(k)
0

)),

concluding the proof.

14
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A.4. Proof of Theorem 11

Proof Let r be a reward. Using Definition 4 and the definition of the matrix M , a reward r̂ is
strong-trajectory equivalent to r if and only if it exists c ∈ R such that

M(r − r̂) = c1|Ω|. (13)

Defining c̃ = c/
∑T−1

t=0 γt, and using M(c̃1mn) = c1|Ω|, Equation (13) can be rewritten M(r− r̂−
c̃1mn) = 0. Such a c̃ exists if and only if r̂ ∈ r ⊕ ran(1mn)⊕ ker(M).

A.5. Proof of Proposition 13

Proof Let {k1, . . . , kr} be a basis for KΓ. Then:

KΓ ⊆ ran(1mn)⊕ ker(M) (from Corollary 12)

⇐⇒ kj ∈ ran(1mn)⊕ ker(M), ∀j = 1, . . . , r

⇐⇒ ∃vj ∈ Rmn, ξ̄j ∈ R, s.t. kj = ξ̄j1mn + vj , Mvj = 0, ∀j = 1, . . . , r

⇐⇒ Mkj = ξj1|Ω|, ξj = (
T−1∑
t=0

γt)ξ̄j , ∀j = 1, . . . , r

⇐⇒ [Mkj ]i = ξj , ∀i = 1, · · · , |Ω|, ∀j = 1, . . . , r

which concludes the proof.

Appendix B. Algorithmic Details and Additional Examples

B.1. Test of Almost-Strong Identifiability

In Algorithm 1, we present an incremental procedure for testing almost-strong identifiability. The
same algorithm can be adapted to test weak-identifiability by running it for each starting state
{s(k)0 }Kk=1 and making sure the output is 1 for all starting states. We only have to keep track of
the variables (ξj)rj=1, and compute the state-visitation row of a trajectory at each time step.

B.2. Results with Varying Horizon Length and Starting States

In this section, we show the effect of horizon length and starting state on strong identifiability results.
Changing the starting state and horizon essentially changes Access, yielding different identifiabil-
ity results for different start state/horizon combinations. We generally expect longer horizons and
starting states with larger accessible sets to result in better identifiability. In Figures 3(a), 3(b) and
3(c), we show these changes for the examples of Section 5.1. In particular, we plot the dimension of
KΓ with varying horizons for different starting states. Since 1mn ∈ KΓ, we can equivalently say that
an MDP model is strongly identifiable if, and only if, dim(KΓ) = 1. We notice that the MDP model
is strongly identifiable for all starting states in Figure 1(a) beyond a horizon of 9. For Figures 1(b)
and 1(c), starting states that are most covering (i.e., states 7 and 4) yield the best identifiability
results beyond horizons 7 and 13. In Table 1, we show the results for those of Section 5.2.
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Algorithm 1: Test of Almost-Strong Identifiability
Input: basis for KΓ : {ki}ri=1

Output: 1, if MDP model is almost-strongly identifiable, 0 otherwise.
1 τ1 ← any starting trajectory
2 r1 ← corresponding row of τ1 in M, constructed using (7)
3 for j ← 1 to r do
4 ξj ← r⊺1kj
5 end
6 for each trajectory τi do
7 ri ← corresponding row of τi in M, constructed using (7)
8 for j ← 1 to r do
9 if r⊺i kj ̸= ξj then

10 return 0
11 end
12 end
13 end
14 return 1

Table 1: Identifiability with dense features from different initial states and different horizon lengths
for the grid world of Figure 1(c). strong: strongly identifiable, not strong: not strongly
identifiable, exact: exactly identifiable.

Landmarks Location
Identifiability Status

Starting State = 4 Starting State = 15
T ∈ [1, 5] T ∈ [6, 7] T ∈ [8, 20] T ∈ [1, 20]

(0, 24) not strong strong strong strong
(3, 1) not strong not strong exact exact
(3, 19) not strong exact exact exact
(14, 14) not strong exact exact exact

B.3. Example of Weakly Identifiable But Not Strongly Identifiable

Before giving out an illustrative example of an MDP model that is weakly identifiable but not
strongly identifiable, it is worth mentioning the following remark.

Remark 20 Given Equation (11) and the fact that the reward at the last time step is given by r =
π̄log
t +EνT−1, we can show that Eker(P) ⊆ KΓ. Thus, if ker(P) ̸⊆ ran(1n), the MDP model is

not strongly identifiable. Since P1n = 1mn, the previous condition is equivalent to ker(P) ̸= {0}.
Hence, we can equivalently say that an MDP model is strongly identifiable only if P is full rank.

Given our linear algebraic characterizations, it is possible to come up with examples that are weakly
identifiable, but not strongly identifiable. For example, consider an MDP with 3 states (s1, s2, s3)
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(a) Original (b) Blocking 1

(c) Blocking 2

Figure 3: The three grid worlds of Figure 1 with varying horizons and varying starting states. The
starting state numbering is such that the state on the top left is 0, and increases by 1 going
south, and by 5 going east.

and 2 actions a1, a2. s1 is the only starting state. Assume that the transition matrices are given by:

Pa1 =

1 0 0
0 0 1
0 0 1

 , Pa2 =

0 0 1
0 0 1
1 0 0

 .

With a horizon of 2, the trajectory matrix M is given by:

M =


1 + γ 0 0 0 0 0
1 0 0 γ 0 0
0 0 γ 1 0 0
0 0 0 1 0 γ

 .

We can directly see that ker(M) = ran(e2, e5), where ei is the i-th euclidean vector in R6. By
constructing Ψ, we get thatKΓ = ran(e1+e3+e4+e6, e2+e5). Thus, EKΓ ⊆ ran(16)⊕ker(M),
meaning that the MDP model is weakly identifiable (also follows from Kim et al. (2021) since
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deterministic MDPs are weakly identifiable). However, since P is not full-rank, the MDP model is
not strongly identifiable using Remark 20.

B.4. Weak and Almost-Strong Identifiability Results

We run Algorithm 1 on the MDP models in Figures 1(a), 1(b) and 1(c). We take the horizon length
to be 15. We get:

• The MDP model of Figure 1(a) is strongly identifiable, and thus it is trivially both weakly
identifiable and almost-strongly identifiable.

• The MDP model of Figure 1(b) is almost-strongly identifiable if the set of starting states is
completely outside the blocking, or a single state inside the blocking. It is weakly identifiable
for any set of starting states. We note that the basis of KΓ is exactly along the states in the
red strip (meaning that we can arbitrarily change the reward at these states and still induce
the same optimal policy). This means that if the starting state is outside the red strip, all
trajectories never visit these blocked states, and thus the inner product in line 9 of Algorithm 1
stays the same (in fact, equals 0). Also, if a trajectory starts inside the red strip, it has to leave
in 1 step and can not re-enter, and thus again the value of line 9 stays the same. If we allow
transitions inside the strip blocking, then the MDP model becomes strongly identifiable.

• Similarly, the MDP model of Figure 1(c) is almost-strongly identifiable if the set of starting
states is right of the wall, or a single state on the left column. It is weakly identifiable for
any set of starting states. The same reasoning as Figure 1(b) applies, since the basis of KΓ is
exactly along the states on the left-most wall.

B.5. Sparse Feature Function Setting

To highlight the importance of the feature function, we consider a more sparse feature function given
by fi(s, a) = 1, ∀a ∈ A if s = li, and 0 otherwise. We consider the MDP model of Figure 1(c). We
find that with this feature function, if we place any of the burger joint or the charging station on the
left most column, the MDP model is not strongly identifiable. However, we are free to place them
at any position on the right of the thick wall and obtain an exactly identifiable MDP model with
a sufficiently long horizon. This means that if the underlying reward function of agents is a linear
combination of these sparse features, then placing any of the burger joint or the charging station on
the left-most column is not ideal since we can not disambiguate which landmark the agent prefers.
Detailed results with varying horizons are given in Table 2.

Appendix C. Fully Accessible Case

In this section, we derive a closed form for KΓ in the case where Accesst = S for t = 0, · · · , T −
1. This allows us to directly derive interpretable sufficient conditions that the MDP model has to
satisfy in order to be strongly identifiable. We argue that full accessibility is a necessary condition
for knowing the policy π everywhere, which is the assumption in Cao et al. (2021). The first result
allows us to write KΓ in a more compact form.

Lemma 21 Let KΓ be defined as in Equation (6). Then

KΓ = ES,
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Table 2: Identifiability with sparse features from different initial states and different horizons
lengths for the grid world of Figure 1(c). strong: strongly identifiable, not strong: not
strongly identifiable, exact: exactly identifiable.

Landmarks Location
Identifiability Status

Starting State = 4 Starting State = 15
T ∈ [1, 10] T ∈ [11, 12] T ∈ [13, 20] T ∈ [1, 5] T ∈ [6, 20]

(0, 24) not strong not strong exact not strong exact
(3, 1) not strong not strong not strong not strong not strong
(3, 19) not strong not strong not strong not strong not strong
(14, 14) not strong exact exact not strong exact

where

S = {x ∈ Rn | PLtx ∈ ran(E), t = 0, · · · , T − 1}, L =
1

m

m∑
i=1

Pai . (14)

Proof ES ⊆ KΓ : Let xT−1 ∈ S . We want to show that ExT−1 ∈ KΓ. Since xT−1 ∈ S , then
there exists xT−2 ∈ Rn such that ExT−2 = γPxT−1. Given that E†P = L (where E† denotes
the pseudo-inverse of E), we can write xT−2 = γLxT−1. This gives that PxT−2 = γPLxT−1,
combined with xT−1 ∈ S , means that there exists xT−3 ∈ Rn such that ExT−3 = γPxT−2,
resulting in xT−3 = γ2L2xT−1. Repeating the same process, we can construct (xt)T−1

t=0 satisfying:

Ext = γPxt+1, t = 0, · · · , T − 2.

Now, construct the vector k =
[
r⊺ ν⊺0 ν⊺1 · · · ν⊺T−1

]⊺ where:

r = ExT−1 and νi =
T−1∑
t=i

xt, for i ∈ [0, T − 1].

Then, we can verify that:

r −Eνt + γPνt+1 = 0 ∀t = [0, T − 2], and r = EνT−1. (15)

Then, k ∈ ker(Γ) and thus r = Pk ∈ KΓ. Since r = EνT−1 = ExT−1, we conclude that
ExT−1 ∈ KΓ.
KΓ ⊆ ES : Let r ∈ KΓ. We want to prove that r ∈ ES , i.e., r = Ex for some x ∈ S.
Since r ∈ KΓ, then there exists k ∈ ker(Γ) such that r = Pk. The vector k can be written as[
r⊺ ν⊺0 ν⊺1 · · · ν⊺T−1

]⊺, with r and (νt)
T−1
t=0 satisfying conditions (15). Define xT−1 = νT−1

and xt = νt −
∑T−1

i=t+1 xi, t ∈ [0, T − 2]. Then Ext = γPxt+1 for all t ∈ [0, T − 2], yielding
xT−1 ∈ S. Since r = ExT−1, we conclude that r ∈ ES.

We also make use of the following lemma.

Lemma 22 Let x ∈ Rn. Then

Px ∈ ran(E) ⇐⇒ x ∈ ker(D),

where
D =

[
(Pa2 − Pa1)

⊺ (Pa3 − Pa1)
⊺ · · · (Pam − Pa1)

⊺
]⊺

. (16)
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Proof Let x ∈ Rn. Then:

Px ∈ ran(E) ⇐⇒ ∃v ∈ Rn such that

Pa1
...

Pam

x =

In...
In

 v,

⇐⇒ ∃v ∈ Rn such that Paix = v i = 1, · · · ,m
⇐⇒ (Pa1 − Pai)x = 0 i = 2, · · · ,m
⇐⇒ x ∈ ker(D).

Finally, we can write KΓ compactly as follows.

Proposition 23 Let L and D be defined as in Equations (14) and (16) respectively. Then:

KΓ = Eker(


D
DL
DL2

...
DLT−1

).

Proof Follows directly from Lemmas 21 and 22 by noting that PLtx ∈ ran(E) ⇐⇒ M tx ∈
ker(D) ⇐⇒ x ∈ ker(DM t).

The main implication of Proposition 23 is that checking the necessary and sufficient condition for
strong identifiability in MDP models can be done by computing the kernel of a Tmn by n matrix
as compared to Γ, which is Tmn by mn+ Tn. We can directly arrive at the following results:

Corollary 24 Assume γ ̸= 0. If any of the following conditions is true:

1. There exists t ≥ 0 such that rank(DLt) = n− 1,

2. There exists two actions ai ∈ A, aj ∈ A, i ̸= j such that rank(
[
Pai − Paj

]
) = n− 1,

Then the MDP model is strongly identifiable for all horizons T ≥ T ∗ (where T ∗ = t + 1 for the
first condition, and T ∗ = 1 for the second).

Proof Follows directly from the closed form of KΓ given by Proposition 23.

Remark 25 A particular case of Corollary 24 is that a fully accessible MDP model is strongly
identifiable for all horizons T ≥ 1 if rank(D) = n− 1. Interestingly, the same condition on D is
required in order to identify a reward function up to a constant by observing an expert act in two
identical MDP models with only different discount factors γ1 ̸= γ2 [Rolland et al. (2022), Corollary
5]. It is also equivalent to the condition for identification of an action-independent reward from a
single expert [Cao et al. (2021), Corollary 3].
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