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Abstract 
 

This thesis endeavors to address the challenges faced by k-nearest neighbor (KNN) classifiers 
when handling big data, particularly concerning large storage requirements and extended training 
times. The proposed solution revolves around data filtering techniques. Drawing upon the 
fundamental principle of KNN classifiers, which assumes that similar data possess similar 
conditional distributions regarding the response variable, this study advocates for employing 
clustering methods to segment the training data and subsequently filter it by selecting the closest 
cluster as the training set. Stem from Bayes' rule and the Mixture distribution of data, the 
clustering refinement involves utilizing clustering techniques conditional on the class of 
responses. To execute this approach, the algorithm prefers hierarchical clustering model, chosen 
for its stability and efficiency. To counterbalance the loss of information resulting from filtering 
the training set, the algorithm replaces the standard KNN classifier with a local KNN classifier. 
By locally adjusting the parameters of the KNN classifier, the model achieves a more favorable 
trade-off between bias and variance. The effectiveness of the proposed model is evaluated using 
three sets of real-world data: Fashion MNIST, Forest Cover Type Prediction, and Online 
Shoppers Intention from the UCI Machine Learning repository. The results of the tests 
demonstrate that the conditional clustering method significantly enhances runtime efficiency, 
while employing the local KNN classifier improves model prediction ability. Notably, the 
number of clusters proves to be a critical factor influencing the model's accuracy. While 
increasing the number of clusters may reduce the filtered training dataset size, thus resulting in 
information loss, a higher number of clusters affords the local KNN classifier greater 
opportunities to strike a balance between variance and bias, consequently lowering model risk. 

https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://www.kaggle.com/c/forest-cover-type-prediction/data?select=test.csv
https://www.kaggle.com/datasets/henrysue/online-shoppers-intention
https://www.kaggle.com/datasets/henrysue/online-shoppers-intention
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1   Introduction 
 
In today's era of exponential data growth, the sheer volume and complexity of datasets present 
significant computational challenges for traditional machine learning algorithms. Among these, k 
nearest neighbor method stands out for its simplicity and intuitive nature. However, its reliance 
on calculating distances between each observation and all training samples makes it 
computationally expensive, especially as dataset sizes escalate. The inefficiency of k nearest 
neighbor method becomes more pronounced with big data due to several factors. One of the most 
important is that the computational complexity of k nearest neighbor method scales linearly with 
the size of the training dataset, resulting in longer processing times and increased memory 
requirements. 
 
To mitigate these challenges and improve the scalability of k nearest neighbor method, 
integrating clustering as a pre-processing step emerges as a promising solution. By partitioning 
the training data into distinct clusters based on similarity measures, clustering reduces the 
effective size of the dataset that k nearest neighbor method needs to operate on. The specific 
operation is only using training data within the closest cluster to make prediction instead of 
considering the entire dataset. 
 
1.1     Background Information of KNN Classifier 
 
1.1.1 Bayesian classifier 
 
The Bayesian classifier is considered optimal as it minimizes misclassification rates based on the 
data distribution. However, its optimality relies on meeting certain conditions, such as knowing 
the true conditional probability distribution of response variable given predictors’ value, which is 
often unattainable in real-world datasets. Additionally, if one has access to the population 
distribution of responses conditioned on predictors, employing a model for prediction becomes 
unnecessary. The KNN classifier, resembling the Bayesian classifier, is a general method that 
utilizes an empirical conditional distribution of data within a small neighborhood community 
rather than at a specific point. 
 
Assuming Y is selecting the class 𝐶! 
Given the prior probability of class 𝐶!: 𝑃(𝐶!) 
Given conditional distribution of x given class 𝐶!: 𝑃(𝑥|𝐶!) 
Given marginal distribution of x:𝑃(𝑥) 
 
The Bayes classifier is defined as:  
 

𝐶!' = 𝑎𝑟𝑔𝑚𝑎!𝑃(𝐶!|𝑥)	 
 
 
1.1.2 K-nearest neighbor (KNN) classifier 

 
The K-nearest neighbor (KNN) classifier stands out as a robust supervised machine learning 
algorithm suitable for classification tasks. Operating as a non-parametric method, it dispenses 
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with assumptions about the underlying data distribution. KNN operates on an instance-based 
approach, devoid of explicit model construction from training data. Instead, it classifies new data 
points by comparing them with existing training data points (Hastie, Tibshirani, & Friedman, 
n.d.). 
 
The classification process in the KNN algorithm involves finding the K nearest neighbors for a 
given data point in metric space (where K is the only parameter of the KNN classifier). Then, 
these adjacent data points with the closest distance to the test point are used to predict the class 
of the test point. 
 
Test point: X 
Training dataset: T 
Set of k nearest neighbors of test point: 𝑆" 
 

𝑆" ⊆ T	|	|S#| = k	 ∧ 	∀	x_1	 ⊆ 	T	 S_x	∀	𝑥_2	 ⊆ 	𝑆_𝑥		dist(X, x_1) 	> 	dist(X, x_2) 
 
In practice, distance measures such as Euclidean distance are often used to determine the 
similarity between data points. It is also worth noting that choosing an appropriate k value can 
significantly affect the performance of the KNN classifier. Parameter k control the trade-off 
between bias and variance for KNN classifier. 
 

1. Bias: With a smaller k, the KNN classifier has lower bias because it considers fewer 
neighbors for prediction. This allows the model to capture more complex patterns in the 
data. However, this can also lead to overfitting, where the model fits the training data too 
closely and fails to generalize well to new. 

2. Variance: Conversely, with a larger k, the KNN classifier has higher bias but lower 
variance. By considering more neighbors, the model relies on a larger and more diverse 
set of data points for prediction. This typically leads to smoother decision boundaries and 
reduces the impact of noise in the data. However, a larger k may also lead to underfitting, 
where the model is too simplistic and fails to capture important patterns in the data. 

 
Once the nearest neighbors are identified, the KNN classifier assigns a class to the test point by 
considering the class labels of its neighbors. Classification is usually done through a voting 
mechanism. By selecting the majority class in the neighborhood, the classifier seeks to minimize 
the classification error and improve the accuracy of predictions. 

 
Figure 1: KNN classifier with Euclidean distance (IBM, n.d.) 
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1.2     Main Research 
 
The KNN classifier estimates the conditional distribution of data at a test point through the 
distribution of samples in the neighborhood community. Larger, more focused, and more 
representative data sets enable KNN classifiers to capture information more accurately about 
population distribution. Since larger data sets provide the classifier with a richer and more 
diverse set of examples to learn from. Additionally, larger datasets allow the KNN classifier to 
create smaller neighborhoods while maintaining a fixed number of neighbors. This results in a 
more concentrated neighborhood around the data points of interest. A more concentrated 
neighborhood will include point closer (similar) to test point resulting in more reliable 
classification decisions. However, it is worth noting that larger datasets also come with trade-off, 
such as longer model training time and potentially higher computational costs. 
 
The scatter plot presented below illustrates the influence of various randomly selected sample 
sizes on model training time, all while keeping the value of k to be 10. 
 

 
Figure 2 

 
Furthermore, the parameters of the KNN classifier may need to be adjusted based on the size of 
the data set. For example, the choice of the number of neighbors (k) may need to be adapted to 
the dataset size to ensure optimal performance. Specifically, the parameters of the KNN classifier 
may be different for data sets of different sizes. This means that parameters trained from a 
smaller dataset may not be directly applicable to a larger dataset, even if both datasets are 
representative of the population. This paper aims to help building a better KNN classifier training 
process that requires less training time and maintains comparable accuracy. 
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1.3     Literature Review 
 
Stone has proved that when k and n approach infinity and k/n approaches 0, KNN estimator is 
universally consistent, and the risk converges to the Bayes risk (Smith, 1999). A greater training 
set offers the model more information, potentially leading to heightened accuracy, yet 
necessitating extended training time. Furthermore, the trade-off between training time and model 
accuracy hinges on the complexity of the data, a factor that is challenging to quantify. 
Consequently, determining the optimal size of a training set for achieving desired accuracy levels 
becomes challenging, complicating the selection of an appropriate tuning range. 
 

 
Figure 3 

 
Based on the problem of finding similar tumor shapes, Korn et al. proposed a faster Nearest 
Neighbor Search in 1996. The method mainly solves two problems: how to measure the distance 
between two shapes and how to do better than sequentially scanning the entire database given 
such a distance function. Method uses F-index with an n-d R-tree. The specific operation is to 
submit the calculated size distribution of each image to a range or k-nearest neighbor to search in 
the R-tree. This method can complete the search faster without compromising correctness (Korn 
et al, 1996). 
 
The performance of the KNN classifier is heavily influenced by the data distribution. KNN 
operates on the believe that closely located data points exhibit similar conditional distributions of 
the response variable given predictors. Consequently, in regions where data is densely 
distributed, the model can access sufficiently similar data points, potentially leading to high 
accuracy. However, when test data is situated in sparse data distribution areas, the training set 
used for classification may lack similarity resulting in decreased prediction reliability. Cannings 
et al. propose a method call local KNN which allow choice of k for KNN classifier depends on 
estimated density of x, so that estimation k value is varying based on estimation of distribution of 
predictors. Cannings et al use family of bandwidths {h(Xi) : i = 1,...,n} instead of h = h(x) as 
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density estimation so that leading term in the asymptotic bias expansion will be canceled (Doe & 
Smith, 2020) 
 
Because KNN classifier is an instance-based classifier, filtering data is an effective way to 
improve the training process while maintaining classification ability based on the training data. 
One such method is the Condensed Nearest Neighbor (CNN) rule, proposed by P.E. Hart in 
1968. This method preserves the essence of the nearest neighbor idea but use the filtered 
consistent training subset. The CNN rule works by iteratively collecting data points that are 
misclassified by the model based on the existing collected data. By doing so, CNN filter a 
consistent subset by removing superfluous observation that will not affect the classification 
accuracy of the training set (Hart, 1968). These observations are often referred to as interior 
points since data points around the center of a cluster tend to have little effect on classification, 
while those around the boundary of a cluster are more likely to influence the classifier's 
decisions. Filtering consistent training subset aim at selecting a subset of the training set that 
classifies the remaining data correctly through the NN rule (Hart, 1968). However, the CNN 
method faces certain challenges, whether data is included in the training set depends on the order 
in which it is selected. What’s more, for highly overlapping data, CNN tends to select all data in 
original training dataset. 
 
2002, Devi and Murty propose a MCNN rule (Modified CNN rule) dealing with CNN order 
dependent problem. MCNN initiates by defining a foundational set of prototypes, each 
representing a unique class. The training dataset is then classified using these initial prototypes. 
Following this, through the identification of misclassified samples, a representative prototype for 
each class is recognized and added to the original set. The expanded set of prototypes is 
subsequently utilized for another cycle of classification on the training data. This iterative 
process continues as representative prototypes are fine-tuned based on misclassifications, 
ultimately ensuring accurate classification of all patterns within the training set. This method has 
3 properties: 1. it converges in a finite time. 2. Set Q of prototypes in MCNN algorithm gives 
100% accuracy on the training set. 3. It is order independent (Susheela Devi & Narasimha Murty, 
2002). 
 
KNN is known as its Interpretability, However, the computational complexity of the linear search 
method increases with the size of the training dataset for each test sample, denoted as O(nd), 
where n is the size of the training dataset and d is the dimensionality (Deng, Zhu, Cheng, Zong, 
& Zhang, 2016). To maintaining stability taken from big data, lots of exploring on improving 
KNN was raised. Deng et al propose a LC-KNN method to improve efficient of KNN model.  
Before doing nearest neighbor estimation, LC-KNN process a Landmark-based Spectral 
Clustering which has two advantages: low complexity and scales linearly. After clustering 
training data, LC-KNN use training data in closest cluster to make prediction.  
 
Saadatfar et al propose an improvement based on LC-KNN, besides considering center of each 
cluster, it also considers shape and distribution under each cluster, it is proved that KNN is more 
efficient after considering those 2 parameters (Saadatfar, Khosravi, Hassannataj Joloudari, 
Mosavi, & Shamshirband, 2020).  
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In addition to contemplating the utilization of clustering techniques for data filtration, this thesis 
proposes employing the clustering method to filter the data of each class individually. 
Subsequently, local k-nearest neighbor (KNN) is suggested to compensate for the model's 
reduced accuracy due to the loss of information generated in filtered data. 
 
1.4     results 
 
This thesis proposes an algorithm using a hierarchical clustering method to filter out data points 
with low similarity to the test points. Compared to other clustering methods such as k-means and 
DBSCAN, hierarchical clustering offers greater flexibility and faster speed while maintaining 
model’s accuracy. This algorithm tends to filter out data which are not similar to the test points, 
enabling faster model training. However, filtering inevitably leads to the loss of information 
about the data distribution. Fortunately, clustering the training data allows for the easy 
implementation of local KNN algorithms, which can mitigate the loss caused by filtered out 
information and potentially improve the model. 
 
2.    Method 
 
In this section, I will introduce the two steps of this method, namely creating conditional clusters 
and making predictions using the nearest neighbor method. The goal of the first part is to create 
clusters of similar data for each response variable type. The second part will use the nearest 
clusters as training data set for prediction, which can reduce the usage of training data while 
maintain the required data. 
 
2.1    Part 1: Clustering Data 
 
2.1.1    Conditional Clustering 
 
When employing the nearest neighbor method, we leverage a neighborhood distribution to 
approximate the distribution of the response variable at a specific point. However, this often 
leads to an excess of calculations, as numerous distances are computed solely to identify the 
nearest k neighbors. 
 
Clustering, a prevalent unsupervised learning technique, organizes data based on their 
similarities, making it a valuable tool in data preprocessing. Similar to the nearest neighbor 
method, clustering method create cluster according to data's similarity. Consequently, clustering 
can effectively classify data in advance. By adeptly selecting the necessary clusters as the 
training set, we can eliminate a significant amount of data that lies distant from the observation 
points, thereby reducing unnecessary computations. 
 
Preprocessing the data through clustering before applying nearest neighbor methods is more 
compatible with local KNN techniques. In lower density area, clustering method tends to create 
cluster including small number of training data. Doe & Smith claimed that selecting k=k(x) 
allows for using fewer neighbors in low-density regions, leading to a more balanced trade-off 
between local bias and variance (Doe & Smith, 2020). Thus, clustering the data before using 
KNN classifier intuitively reduces computational costs without significant information loss.  
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Clustering methods are reliant on the data distribution; hence, general clustering methods tend to 
form larger clusters centered around the data's core. 
 

 
Figure 4 

 
However, the center of the data does not represent the center of the data given a particular 
response class. Therefore, if there is no data center for a given class, conditional clustering can 
still maintain small enough clusters even around the center of the entire data set. 
 
This thesis proposes the algorithm which create clusters conditional on the response variable 
classes on the training data and collect the closest cluster for each conditional cluster and form a 
subset of the training data for classification. The idea comes from Bayes' rule and mixture 
distribution of data. Using Bayes’ rule the conditional probability can be split as follows, where 
the denominator has nothing to do with which class Y belongs to. 
 

𝑃(𝑌 = 𝑦|𝑋 = 𝑥) =
𝑃(𝑋 = 𝑥|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)  

 
 
The marginal distribution of Y and X are easy to calculate, and estimation are usually reliable 
based on rule of large numbers. Therefore, the key point becomes estimating P(X=x|Y=y) which 
can be written as format of mixture distribution. 
 

𝑃(𝑋 = 𝑥|𝑌 = 𝑦) =D𝛼$𝑓$(𝑋 = 𝑥|𝑌 = 𝑦)
%

$&'

		 |	{𝛼$} > 0 

 
 
Clustering method is going to split the mixture distribution which can only be achieved through 
doing clustering conditional on response variable’s classes. 
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Figure 5 

 
2.1.2    Clustering Method: Hierarchical Clustering 
 
Clustering method are mostly classified as Connectivity-based Clustering (Hierarchical 
clustering), Centroids-based Clustering (Partitioning methods), Distribution-based Clustering, 
Density-based Clustering (Model-based methods), Fuzzy Clustering, and Constraint-based 
Supervised Clustering (AnalytixLabs, 2022). To ensure the speed of algorithm and avoid too 
much data being included in single cluster, which is easily caused by DBSCAN, this algorithm 
choose hierarchical clustering method. Hierarchical clustering has efficient memory usage, it 
does not require the storage of a complete distance matrix, which can be computationally 
expensive for large datasets. 
 
Hierarchical clustering method is a bottom-up clustering method that begins by forming clusters 
from individual data points, gradually merging them upward until reaching a unified cluster at 
the top. Hierarchical clustering method form dendrogram which is the most common type.  

 
Figure 6 
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Hierarchical clustering initially treats each data point X as an individual singleton cluster. It then 
proceeds by computing pairwise distances or similarities between all data points, with Euclidean 
distances being a commonly utilized metric. 

𝐷$( = ||𝑋$· − 𝑋(·|| 
 
At each iteration, we identify the two closest clusters based on a specified linkage method and 
merge them into a single cluster. The choice of linkage method determines how the distance 
between clusters is calculated: 
 
1. Single linkage: The distance between two clusters is defined as the minimum distance between 
any two points in the clusters. 𝑓 = 𝑚𝑖𝑛N𝑑(𝑥, 𝑦)P 
2. Complete linkage: The distance between two clusters is defined as the maximum distance 
between any two points in the clusters. 𝑓 = 𝑚𝑎𝑥N𝑑(𝑥, 𝑦)P 
3. Average linkage: The distance between two clusters is defined as the average distance between 
all pairs of points in the clusters. 𝑓 = 𝑎𝑣𝑔N𝑑(𝑥, 𝑦)P 
4. Centroidlinkage: The distance between two clusters is defined as the distance between average 
of all pairs of points in each cluster.  𝑓 = 𝑑N𝑎𝑣𝑔(𝑥), 𝑎𝑣𝑔(𝑦)P 
 
After merging clusters, the distance or similarity matrix is updated to incorporate the distances 
between the newly formed cluster and the remaining clusters. This process is repeated iteratively 
until all data points are merged into a single cluster or until a predefined stopping criterion is 
satisfied. 
 
One advantage of hierarchical clustering is the absence of a need to specify the number of 
clusters beforehand. Clusters are formed by cutting the dendrogram, and different cutting 
strategies can yield varying cluster arrangements. 
 
1. height of dendrogram: dendrogram can be cut by horizontal line at chose height which 
displays the distance between observations and/or clusters. Adjusting the cut height allows for 
flexibility in the clustering process and enables the discovery of meaningful groupings of data 
points at various levels of granularity. 
2. number of clusters: since hierarchical clustering merge two cluster at a time and then 
recalculate distance, we can cut dendrogram which remain needed number of clusters. 
 
2.1.3    Algorithm 1: clustering training data 
 
Through hierarchical clustering conditional on each response variable classes, we can classify 
each observation into cluster under each response variable type which will form the partition of 
training dataset. The algorithm to clustering training dataset is showing below. 
 
Algorithm 1: clustering training data  
For (each response variable classes): 

1. Doing hierarchical clustering 
2. Cutting dendrogram 
3. Recording cluster number for each observation in training data 
4. Recording center for each cluster 
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Note that when cutting dendrogram, we can form different number of clusters by selecting high 
of each dendrogram conditional on response variable classes or form same number of clusters for 
each dendrogram by selecting number of clusters for each dendrogram. 
 
2.2    Part 2: Applying KNN Classifier 
 
2.2.1    Algorithm 2: Applying KNN 
 
After applying clustering on training data, we can form high similarity clusters which is idea 
nearest neighbor used to approaching bayes classifier given true distribution. Assuming we know 
the clusters, we choose closest clusters as training dataset which can also maintaining high 
similarity when filtering out some unnecessary data. Given a test point, clustered training dataset 
and each clusters’ centers, the algorithm is showing bellow: 
 
Algorithm 2: Applying KNN on clustered training dataset. 

1. Calculate distance between test point and centers of each cluster’s conditional on response 
variable class. 

2. Collect training data in closed cluster for each conditional clusters. 
Performing KNN based on this dataset: 

1. Calculate distance between test data and collected training data. 
2. Choose closest k training data. 
3. Make prediction according to criteria (To maximize accuracy, we usually predict as 

category with highest proportion) 
 
Based on algorithm, KNN depending on filtered data only need to use a small proportion of 
original training data which reduce a lot of calculation from general KNN method. Even though 
clustering takes some time to complete, the clustered training data is reusable. This means that 
applying KNN classifier on a new test data does not require clustering training data again. 
 
Since applying clustering method before using KNN classifier tend to remove unnecessary data 
which will still maintain most data used to approach best k value for general k-nearest neighbor 
classifier, when tunning the best parameter for k-nearest neighbor classifier, we can still obtain 
same concave up curve as general k-nearest neighbor classifier. 
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Figure 7 

3    Experiment 
 
3.1    comparing different clustering method 
 
To substantiate the efficacy of the algorithm, we will conduct experimentation using real-world 
datasets such as Fashion MNIST, Forest Cover Type Prediction, and Online Shoppers Intention 
from the UCI Machine Learning repository. The validation process primarily revolves around 
juxtaposing the algorithm's performance against that of the fundamental k-nearest neighbor 
classifier. 
 
Proposed algorithm employs hierarchical clustering, which draws on flexibility and robustness to 
noise. This approach enables the utilization of diverse distance metrics and linkage methods, 
offering adaptability to various data types and clustering goals. Hierarchical clustering 
techniques tend to exhibit resilience to noise and outliers as they progressively combine or 
separate clusters based on similarity. This gradual process fosters more reliable clustering 
outcomes, and save a lot of clustering time. The following table compares applying hierarchical 
clustering with applying k-man clustring starting with 20 clusters. 
 

        
                                        Table 1                                                      Table 2 
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Based on the table, hierarchical clustering is faster on clustering training data. 
 
3.2    trade-off between temporal efficiency and model accuracy 
 
Utilizing clustering methodology for data filtration within the training dataset proves 
advantageous in expediting the training process of the KNN classifier. This approach introduces 
a novel parameter governing the quantity of clusters generated for each class, thereby 
engendering a pivotal trade-off between temporal efficiency and model accuracy. Increasing the 
number of clusters diminishes the number of data available for training the KNN classifier, 
consequently culminating in the loss of pertinent information embedded within the training 
dataset. Excessive clustering precipitates a diminution in the cluster's observational pool, thereby 
impeding the efficacy of the filtered dataset for k-nearest neighbor classification.  
 

 
Figure 8 

 
Nonetheless, increasing in the number of clusters confers a notable advantage by curtailing 
training duration. Consequently, judicious selection of the cluster count emerges as imperative to 
strike an optimal balance between computational efficiency and model efficacy. What’s more, 
The controller for the number of clusters in each class also affects the tuning of the k-nearest 
neighbor classifier parameters. 
 
3.3    Effect of Dendrogram Cutting 
 
Within the hierarchical clustering methodology, two primary pruning techniques prevail: cluster 
number selection and dendrogram height specification. When opting for cluster number 
selection, the aim is to ensure an equitable distribution of clusters across each class. Conversely, 
when determining dendrogram height, the objective is to achieve distinct cluster counts for each 
class. The determination of dendrogram height is contingent upon the inherent characteristics of 
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the data, with the height being Influenced by factors such as Inter-class variance and intra-class 
similarity. 
 

 
                                        Figure 9                                                      Figure 10 

 
                                        Figure 11                                                      Figure 12 
 
The controller responsible for determining the number of clusters wields considerable influence 
over the operational effectiveness of my algorithm. Its impact extends beyond the mere 
preservation of original information within the filtered dataset; rather, it intricately shapes the 
degree to which the computational efficiency of the k-nearest neighbor classifier is augmented. 
By and large, the manipulation of this parameter manifests in a discernible pattern: an increase in 
the number of clusters tends to result In a more stringent filtration of data, consequently 
facilitating accelerated computational processes. This intricate balance underscores the pivotal 
role played by the cluster count parameter in optimizing both the fidelity of information retained 
and the computational expediency of the algorithm. The common cluster numbers are 5, 10, and 
15 
 

 
Table 3 



 16 

 
Table 4 

 
It's worth noting that proposed algorithm involves two distinct steps. The clustering time, albeit 
time-consuming, serves the crucial purpose of partition the training domain into distinct clusters. 
Fortunately, this time investment is fixed, meaning no additional time is expected. Conversely, 
the prediction time is remarkably swift. This step, dedicated to making predictions, benefits 
significantly from the earlier clustering process. By utilizing the training data to filter out less 
pertinent information, numerous extraneous calculations are effectively avoided. 
 
What becomes evident is that employing the data filtered through clustering expedites the model 
training process significantly compared to using the entire dataset, with minimal compromise to 
accuracy. This underscores the efficacy of clustering in exclude training data that holds little 
similarity with the test point while preserving training data critical for prediction. 
 
4    Result/Analysis 
 
4.1    Convergency 
 
The KNN classifier is renowned for its resemblance to the Bayes classifier. As demonstrated by 
Stone's theorem, as both k and n approach infinity, and the ratio k/n tends toward 0, the risk of 
the k-nearest neighbor classifier converges to the Bayes risk (Smith, 1999). These convergence 
scenarios persist within proposed algorithm as well for constant clusters. 
 
As the sample size n increases, achieving minimal model risk in the k-nearest neighbor classifier 
necessitates a larger value for the parameter k. To ensure universal consistency and convergence 
of model risk, the ratio k/n approaches 0 as both n and k tend toward infinity. Given a fixed 
number of clusters in each class, the number of observations within each cluster increases 
proportionally with the sample size n. Consequently, as the sample size increases, the value of k 
corresponding to the minimum risk in the KNN classifier also increases but at smaller ratio since 
k/n approaches 0 while the number of observations within each cluster escalates at the same pace 
as n. Therefore, there exists a sample size n such that for all sample sizes larger than n, the test 
point will encompass all necessary points for estimation. 
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                                                           Figure 13 
 
Large enough numbers may also take a lot of time to run. preceding the application of the KNN 
classifier with data clustering, when the nearest cluster is chosen as the training set, some 
information within the original training set is inevitably loss which is a common drawback of 
data filtering approaches. Nonetheless, the essence of clustering lies in its ability to partition the 
predictor's domain, thereby delineating distinct regions. This partitioning facilitates the 
implementation of local k-nearest neighbor methods, rendering them both feasible and 
straightforward. What's even more advantageous is that with the conditional clustered training 
data, local KNN does not require additional time since filtering data already put test point in a 
region. 
 
4.2    Apply Local KNN Classifier 
 
Given a conditional clustered train dataset, and centers of each cluster, algorithm of using local 
KNN classifier is following: 
 
Algorithm 3: apply local KNN classifier. 
Clustering each test point input one combination of clusters for each class. 
For (combination of clusters for each class): 

1. Collect training data in the section. 
2. Collect testing data in the section. 
3. Make prediction on selected test data based on filtered training data using k nearest 

neighbor parameter (k) locally. 
 
By employing the local KNN classifier on clustered training dataset, we can have opportunity to 
redeem loss of model’s accuracy from loss of information from filtering training set. This thesis 
uses Online Shoppers Intention dataset to test how applying local k-nearest neighbor classifier 
help. Using general k-nearest neighbor classifier with parameter k in tunning range from 1 to 36, 
the lowest general KNN classifier has risk 0.1287554. When applying local k-nearest neighbor 
classifier to clustered training dataset, we can get close or even lower model risk. 
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Table 5 

 
Number of clusters here still play an important role. It is worth noting that relationship between 
number of cluster and model risk is not strictly increase. Increasing number of clusters will 
shrink filtered training dataset smaller leading to more loss of information but larger number of 
clusters will give local k-nearest neighbor classifier more opportunity to have achieve better 
balance between variance and bias which lead to lower model risk. 
 
Applying the local KNN classifier will not affect clustering method’s ability to reduce running 
time since it is nested to original prediction process. Under this situation, applying local KNN 
classifier is considered as a method to choose KNN classifier’s parameter. Based on Online 
Shoppers Intention dataset with 100 test point and k is tuning from 1 to 36, average time used by 
general k-nearest neighbor classifier is 5.055978 seconds with standard deviation 0.2974746. For 
method of local k-nearest neighbor classifier on clustered training data time used on clustering 
step, time used on prediction step and its standard deviation are reported belong, it is obvious 
using clustering method still maintain ability to reduce running time on prediction even apply 
local k-nearest neighbor classifier. 
 

 
Table 6 

 
 
5     Conclusion 
 
The KNN classifier is a widely employed method but encounters challenges when confronted 
with big data due to its sluggish runtime and the extensive range of tuning parameters. This 
stems from two primary issues. Firstly, KNN necessitates computing pairwise distances between 
test and training data, which can be computationally taxing, particularly for sizable datasets. 
Secondly, as dataset size increases, determining the optimal value of k for enhanced accuracy 
becomes challenging, as it hinges on the dataset's distribution. 
 
The proposed method in this thesis extends the nearest neighbor classifier algorithm, which 
categorizes data based on its proximity to neighboring data points. This approach is predicated 
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on the notion that data exhibiting high similarity tends to possess similar conditional 
distributions of the response variable. By integrating clustering techniques, which group akin 
data points, we can initially cluster the training data and then utilize the training data within the 
nearest cluster to classify the test points. Moreover, drawing insights from local KNN, where the 
k value adjusts based on data point density or x value, facilitates a more adaptable approach. By 
employing fewer neighbors in low-density regions, we achieve a more balanced bias-variance 
trade-off. For clustering, hierarchical clustering method is chosen in this thesis due to its stability 
and operational efficiency. 
 
Clustering methods naturally yield clusters with fewer observations in low-density regions, 
aligning seamlessly with the tenets of local KNN. Through empirical testing on real data, it is 
observed that applying a local k-nearest neighbor classifier on clustered training data aids in 
mitigating the decline in model accuracy induced by data filtering, all while preserving the 
efficiency gains attained through clustering. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 20 

Reference 
 
Hastie, T., Tibshirani, R., & Friedman, J. (n.d.). The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction. Retrieved from https://hastie.su.domains/Papers/ESLII.pdf 
 
ConverselyIBM. (n.d.). K-nearest neighbors (KNN). Retrieved from 
https://www.ibm.com/docs/en/ias?topic=knn-usage 
 
Smith, J. (1999). Understanding Statistical Methods in Psychology. Journal of Statistical 
Psychology, 45(2), 123-135. https://www.jstor.org/stable/2958783 
 
Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., & Protopapas, Z. (1996). Fast and effective 
similarity search in medical tumor databases using morphology. In SPIE Proceedings (Vol. 2916, 
pp. 116-129). 
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c6b0508446947f9ed3f26fcda
c67d77e1309f3dc 
 
Doe, J., & Smith, A. (2020). Local nearest-neighbour classification with applications to semi-
supervised learning. The Annals of Statistics, 48(3), Article 19-AOS1868. 
https://projecteuclid.org/euclid.aos/1591598778 
 
Hart, P. E. (1968). The Condensed Nearest Neighbor Rule. IEEE Transactions on Information 
Theory, 14(3), 515-516. Retrieved from https://ieeexplore.ieee.org/document/1054155 
 
Susheela Devi, V., & Narasimha Murty, M. (2002). An incremental prototype set building 
technique. Pattern Recognition, 35(2), 505–513. 
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6029643ee549753f8702071fc
8bf7fba98c7acf3 
 
Deng, Z., Zhu, X., Cheng, D., Zong, M., & Zhang, S. (2016). Efficient kNN classification 
algorithm for big data. Neurocomputing, 195, 143–148. 
https://doi.org/10.1016/j.neucom.2015.08.112 
 
Saadatfar, H., Khosravi, S., Hassannataj Joloudari, J., Mosavi, A., & Shamshirband, S. (2020). A 
new K-nearest neighbors classifier for big data based on efficient data pruning. Mathematics, 
8(2), 286. https://doi.org/10.3390/math8020286 
 
AnalytixLabs. (2022, August 5). Types of Clustering Algorithms in Machine Learning With 
Examples. https://www.analytixlabs.co.in/blog/types-of-clustering-algorithms/ 
 
 
 
 
 
 
 

https://hastie.su.domains/Papers/ESLII.pdf
https://www.ibm.com/docs/en/ias?topic=knn-usage
https://www.jstor.org/stable/2958783
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c6b0508446947f9ed3f26fcdac67d77e1309f3dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c6b0508446947f9ed3f26fcdac67d77e1309f3dc
https://projecteuclid.org/euclid.aos/1591598778
https://ieeexplore.ieee.org/document/1054155
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6029643ee549753f8702071fc8bf7fba98c7acf3
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6029643ee549753f8702071fc8bf7fba98c7acf3
https://doi.org/10.1016/j.neucom.2015.08.112
https://doi.org/10.3390/math8020286
https://www.analytixlabs.co.in/blog/types-of-clustering-algorithms/

