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Non-Expected Utility Preferences in the  

Hylland & Zeckhauser Model 

By JACKSON JOYCE 

There are many situations in which individuals must be allocated to 

positions with limited capacities and in which money is not an 

acceptable means of eliciting individuals’ preferences. Aanund 

Hylland and Richard Zeckhauser (1979) created a mechanism that 

can be used in such situations that results in an efficient allocation. 

However, in the nearly 50 years since they made that discovery, much 

empirical research has called into question one of the central 

assumptions of the mechanism: that all individuals follow expected 

utility theory. In this paper, I attempt to resolve this problem by 

replacing expected utility theory with three different non-expected 

utility theories: subjective expected value theory (SEVT), simple 

decision weighted utility theory (SDWUT), and rank dependent utility 

theory (RDU). For SEVT and SDWUT, a counterexample can be 

constructed to show a case in which the mechanism will fail to 

achieve an efficient outcome. For RDU, a counterexample can be 

constructed to show that the existence of an efficient outcome cannot 

be proven using the same method Hylland and Zeckhauser used. 

Thus, the mechanism seems to be reliant on all individuals being 

expected utility maximizers. 
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I. Introduction 

There are many situations in which individuals must be assigned to positions with 

limited capacities and in which money is not an acceptable means of eliciting 

individuals’ preferences. Examples include allocating legislators or faculty 

members to committees, college students to oversubscribed classes, and even 

allocating energy production among different power plants.1 Creating a mechanism 

that elicits honest preferences, results in an efficient allocation, and is adaptable to 

various distributional objectives without using money was thought to be impossible 

until Hylland and Zeckhauser (1979) developed a mechanism that could do just 

that. In the nearly 50 years since their paper was published, new research and 

discoveries in the field of decision theory have called into question one of the 

central assumptions of their paper: that individuals follow expected utility theory.2 

Many empirical studies that will be mentioned throughout this paper show that a 

lot of people treat risk and probabilities differently than expected utility theory 

would predict. For these individuals, maximizing expected utility may not 

maximize their actual utility; instead, they would be better off maximizing some 

non-expected utility theory that better represents how they value prospects. Thus, 

it is important to know whether Hylland and Zeckhauser’s mechanism can 

accommodate various non-expected utility theories. 

In this paper, I will test three specific non-expected utility theories in the Hylland 

and Zeckhauser mechanism: subjective expected value theory (SEVT), simple 

decision weighted utility theory (SDWUT), and rank dependent utility theory 

(RDU). SEVT induces a probability weighting function that can represent 

 
1 Examples identified by Hylland and Zeckhauser (1979). 
2 Expected utility theory states that individuals attempt to maximize the sum of the probability of each outcome multiplied 
by the utility of each outcome, or 𝐸𝑈 = ∑𝑝𝑢 where 𝑝 is the probability of some outcome and 𝑢 is the utility of some 
outcome. 
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pessimism towards low probabilities and aversion to randomization towards higher 

probabilities.3 SDWUT includes a utility weighting function in addition to a 

probability weighting function that can represent the idea that two changes in utility 

of the same magnitude, one from a starting point very close to the reference point 

and another from one farther away, will not be valued the same.4 RDU also includes 

a probability weighting function, but unlike SEVT and SDWUT, it is monotonic 

since the weight attached to each probability is dependent on both the true 

probability of that consequence and the rank of that consequence relative to others.5 

While expected utility theory can represent risk aversion through a concave 

Bernoulli utility function, it cannot account for any of these other attitudes. 

Having identified these theories as representative of how some individuals 

actually think, I decided to test each one in Hylland and Zeckhauser’s mechanism. 

I will go into detail about how the mechanism works in Section II, but for now, it 

is sufficient to know that the mechanism operates by assigning hypothetical 

endowments of pseudo-currency to each individual being allocated, creating a 

pseudomarket that exchanges probability shares in positions, then allocating those 

shares to the individuals based on the market clearing prices determined by the 

pseudomarket. For SEVT, SDWUT, and RDU, assuming market clearing prices 

have been determined, the outcome will be Pareto optimal when any one of them 

replaces expected utility theory in the mechanism. However, it could not be proven 

for any of them that market clearing prices will always exist. For SEVT and 

SDWUT, a counterexample can be easily constructed to show an exact case in 

which no market clearing prices exist. For RDU, such a counterexample is not as 

easy to identify. However, a counterexample can be constructed to show that the 

 
3 See Tversky and Kahneman (1992) and Quiggan (1982). 
4 See Tversky and Kahneman (1992). 
5 See Quiggan (1982). 
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existence of market clearing prices cannot be proven using the same method 

Hylland and Zeckhauser used. 

In the rest of this paper, I will begin by going further in depth on how the 

mechanism works. Then, in Section III, I will show the central role that expected 

utility theory plays in the mechanism by explaining how demand works in the 

mechanism and how market clearing prices are proven to exist. I will also go 

through an example that shows how the market clearing prices are determined in 

practice. In Section IV, I prove that non-expected utility theories with curved or 

non-parallel indifference curves will still result in a Pareto optimal outcome as long 

as market clearing prices have been determined. In Section V, I explain what the 

shortcomings of expected utility theory are. In Section VI, I explain SEVT and 

SDWUT in greater depth and go through a counterexample in which market 

clearing prices do not exist. In Section VII, I explain RDU in greater detail and 

show a counterexample in which market clearing prices cannot be proven to exist 

using the same method that Hylland and Zeckhauser used. Finally, in Section VIII, 

I discuss the results and conclude. 

II. Overview of Hylland & Zeckhauser’s Mechanism 

Hylland and Zeckhauser have three main goals they are attempting to achieve 

with this mechanism (296). The first goal is to elicit preferences that are honest 

from the participants of the game. The second goal is to efficiently allocate the 

individuals to positions based on those preferences. Finally, the last goal is to meet 

prescribed distributional objectives, which may vary based on the unique situation 

the mechanism is being used for. In some scenarios, we may want to treat everyone 

equally, but in others, we may want to favor certain individuals. 

Hylland and Zeckhauser begin with some basic assumptions (296). They assume 

that giving lotteries over jobs is permissible. They state that each person’s 
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preferences are assumed to concern solely his or her own assignment, meaning he 

or she is indifferent to where others get assigned. They also assume that the jobs 

have no preference over who is assigned to them and that interests external to 

individuals’ preferences, such as institutional interests, play no role. 

The algorithm is formulated as follows (296-297). Let 𝐼 be the total number of 

individuals, and let 𝐽 be the total number of jobs (or positions). Let there be 𝑀! 

individuals assigned to job 𝑗, and assume that ∑ 𝑀!! = 𝐼, meaning there are exactly 

enough jobs for the number of individuals being allocated. Let 𝑢"! be the utility of 

individual 𝑖 getting job 𝑗. Let 𝑤" = (𝑤"#, … , 𝑤"! , … , 𝑤"$) be 𝑖’s reported vector of 

von Neumann-Morgenstern utilities and let 𝑊 = (𝑤#, … , 𝑤" , … , 𝑤%) be the total 

submission of preferences. It is important to note that 𝑢"!, which represents the 

actual utility individual 𝑖 gets from job 𝑗, and 𝑤"!, individual 𝑖’s reported utility for 

job 𝑗, which may or may not be truthful, are distinct. They will only be equal when 

individual 𝑖 reports his or her true utilities. Let 𝑝" = (𝑝"#, … , 𝑝"! , … , 𝑝"$) be the 

assignment of probabilities over positions given to individual 𝑖 and let 𝑃 =

(𝑝#, … , 𝑝%) be the total assignment. Let 𝑞 = (𝑞#, … , 𝑞! , … , 𝑞$)  be the price vector 

where 𝑞! is the price of a probability share in position 𝑗. Finally, let 𝐵" be the initial 

budget given to individual 𝑖. 

Hylland and Zeckhauser then make three more important assumptions (298-301). 

The first is: 

(1) ∑ 𝑝"! = 1	for	all	i!  

 

This states that the sum of all probabilities in individual 𝑖’s probability vector is 1, 

guaranteeing that individual 𝑖 gets one and only one position.  

The second assumption is: 
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(2) ∑ 𝑝"! = 𝑀! 	for	all	j"  

 

This tells us that the sum of the probabilities demanded by all individuals for 

position 𝑗 must sum up to the total number of openings for position 𝑗. This ensures 

that each job is exactly filled to the number of openings. 

Finally, the last assumption is: 

(3) Maximize	𝐸𝑈 = ∑ 𝑝"!𝑢"!!  

Subject to 0 ≤ 𝑝"! ≤ 1 and ∑ 𝑝"!𝑞!! ≤ 𝐵" 

 

This tells us that agents act according to Expected Utility Theory, meaning they 

seek to maximize the equation above. Players are also subject to the constraints that 

each probability 𝑝"! must be in the range [0,1] and that the total assignment given 

to each individual must be priced less than or equal to that person’s budget 

constraint. 

Given all the assumptions made above, Hylland and Zeckhauser’s procedure can 

be summarized in four steps (300). First, hypothetical endowments of a pseudo-

currency are distributed to individuals. Next, von-Neumann Morgenstern utilities 

are elicited from individuals. This is simply a vector with 𝐽 entries that gives the 

individual’s utility for each position. Third, a pseudomarket is employed to assign 

lotteries to each individual in a way that produces an efficient outcome. The 

“commodity” being exchanged in this pseudomarket is probability shares. For 

instance, if the price of position 𝑗 is 𝑞!, then a 0.5 chance at position 𝑗 would cost 

0.5𝑞!. The pseudomarket uses the reported von-Neumann Morgenstern utilites to 

determine the market clearing prices resulting in an efficient allocation. In many 

cases, a trial-and-error procedure will do the job of determining the market clearing 

prices, but there may be cases in which adjusting prices up or down based on excess 
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demand or supply will not converge. In such cases, Hylland and Zeckhauser turn to 

their adaptation of Scarf’s mechanism that he developed in sections 4.5-4.7 of his 

book The Computation of Economic Equilibria. The application of this mechanism 

clears the market and is arbitrarily close to the Pareto frontier. Everyone’s 

assignment will be arbitrarily close to being optimal at the given prices, which, 

according to Hylland and Zeckhauser, is fine for all practical purposes. It is also 

important to note that, when two or more lotteries have equal expected utilities for 

an individual, the least expensive one is always chosen. 

Finally, the last step is to employ a specialized mechanism to conduct the lottery. 

This mechanism takes the probability vectors as determined by the market clearing 

prices and offers each individual the precise lottery on positions that the individual 

has purchased using his or her hypothetical endowment.6 

For this procedure to be successful and achieve Hylland and Zeckhauser’s goals, 

it must ensure that individuals provide honest preferences (307). Hylland and 

Zeckhauser claim that we can be confident that players will provide honest 

preferences when the pseudomarket assigns probability shares for each individual 

as he or she would choose in a real market (which the mechanism does) and when 

no individual has a noticeable ability to manipulate market prices through 

manipulation of his or her own reported preferences. Assuming agents take prices 

as given, we do not have to worry about players manipulating their preferences. 

The final important aspect of this procedure to note is that it is both ex-ante and 

ex-post Pareto optimal (298). Ex-ante Pareto optimality implies that there is no 

other assignment of lotteries that is weakly preferred by all players and strictly 

preferred by at least one. This is measured before the lottery is conducted, which in 

this case, is done by using expected utility theory. Ex-post Pareto optimality implies 

that after the lottery is conducted, the resulting allocation is Pareto optimal. Hylland 

 
6 A formal treatment of this procedure is given in Appendix C of Hylland and Zeckhauser (1979) Discussion Paper 51. 
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and Zeckhauser claim that, because the procedure is ex-ante Pareto optimal, it is 

also ex-post Pareto optimal. 

III. Expected Utility Theory in the Mechanism 

A. Demand in the Mechanism 

To understand how market clearing prices are determined by the pseudomarket, 

it is necessary to understand how demand is determined in the setting presented by 

the mechanism. The assumption of expected utility theory is essential to this 

determination. As a reminder, the pseudomarket chooses an assignment 𝑃 such that 

each 𝑝" is chosen to maximize expected utility 

(3) Maximize	𝐸𝑈 = ∑ 𝑝"!𝑢"!!  

 

subject to the following constraints where 𝑞! is the price of job 𝑗: 

(A) ∑ 𝑝"! = 1	for	all	i!  

(B) 0 ≤ 𝑝"! ≤ 1	for	all	j 

(C) ∑ 𝑝"!𝑞!! ≤ 𝐵" 

 

When these conditions hold, there is a solution to the optimization problem in 

which each individual 𝑖 purchases shares in exactly two positions (301). Thus, it is 

reasonable to represent an individual 𝑖’s demand assuming that there are two 

positions: position 𝐴 and position 𝐵. First, we can represent constraint (A), or the 

probability constraint, graphically with the solid, black line below: 
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FIGURE 1 

Figure 1 represents the probability constraint for each individual when there are only two positions. The x-axis is the 
probability share of position 𝐴, and the y-axis is the probability share of position 𝐵. The probabilities in each individual’s 
von Neumann Morgenstern utility vector must sum to 1, meaning it must fall on the line above. 

 

Individual 𝑖 must select probability shares such that his or her probability vector 

falls on this line. Otherwise, the sum of the total probabilities will be less than or 

greater than 1, and the probability constraint will not be met. 

Individual 𝑖’s budget constraint line will be determined by the prices 𝑞& and 𝑞' 

of positions 𝐴 and 𝐵, respectively. Each player must select a distribution that lies 

either on or below the budget constraint. Depending on the prices, the budget 

constraint line will look different. First, consider the case where 𝑞& > 𝐵" and 𝑞' <

𝐵": 
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FIGURE 2 

Figure 2 shows how demand looks for individual 𝑖 when 𝑞! > 𝐵" and 𝑞# < 𝐵". The x-axis is the probability share of position 
𝐴, and the y-axis is the probability share of position 𝐵. The solid, black line represents the probability constraint, and the 
dashed, blue line represents the budget constraint. The thicker, green segment of the probability constraint represents the 
bundles that individual 𝑖 can demand. 

 

The dashed, blue line is the budget constraint of individual 𝑖. As can be seen in 

the graph above, if a player was to only demand shares of position 𝐴, then he or she 

would receive 𝐵" 𝑞&L , which is less than 1, and if a player was to only demand shares 

of position 𝐵, he or she would receive 𝐵" 𝑞'L , which is greater than 1. Because 

individual 𝑖 can only demand below the budget constraint and on the probability 

constraint, individual 𝑖 can only demand distributions on the thicker, green portion 

of the probability constraint. 

We know that if the utility of position 𝐵 is greater than that of position 𝐴, meaning 

𝑢' >	𝑢&, then individual 𝑖 will demand 𝑝"' 	= 	1 and 𝑝"& 	= 	0, since this will 

maximize utility. If 𝑢' <	𝑢&, individual 𝑖 will demand as much of 𝑝"& as possible, 

which is the point where the probability constraint and budget constraint intersect. 

This can be calculated by solving the following system of equations: 
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𝑝"& + 𝑝"' = 1, 𝑞&𝑝"& + 𝑞'𝑝"' = 𝐵" 

 

Solving for 𝑝"& and 𝑝"' results in: 

𝑝"& =
(𝐵" − 𝑞')

(𝑞& − 𝑞')O , 𝑝"' 	= 	
(𝑞& − 𝐵")

(𝑞& − 𝑞')O  

 

These will be the probability shares that individual 𝑖 will demand when 𝑢' <	𝑢&. 

Now, suppose 𝑞& < 𝐵" and 𝑞' > 𝐵". The graph will look like this: 

 

FIGURE 3 

Figure 3 shows how demand looks for individual 𝑖 when 𝑞! < 𝐵" and 𝑞# > 𝐵". The x-axis is the probability share of position 
𝐴, and the y-axis is the probability share of position 𝐵. As in Figure 2, the solid, black line represents the probability 
constraint, and the dashed, blue line represents the budget constraint. The thicker, green segment of the probability constraint 
represents the bundles that individual 𝑖 can demand. 

 

Once again, individual 𝑖 can only demand probability vectors on the thicker, green 

line segment. Using the same logic as above, when 𝑢& > 𝑢', individual 𝑖 will 

demand 𝑝"& = 1 and 𝑝"' = 0. When 𝑢& < 𝑢', individual 𝑖 will demand the point 
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at the intersection of the two constraints, or where 𝑝"& =
(𝐵" − 𝑞')

(𝑞& − 𝑞')O  and 

𝑝"' 	= 	
(𝑞& − 𝐵")

(𝑞& − 𝑞')O . Finally, when 𝑢& = 𝑢', individual 𝑖 will be 

indifferent over any distribution on the thicker, green line segment. 

Now, suppose 𝑞& > 𝐵" and 𝑞' > 𝐵". The graph will look like this: 

 

FIGURE 4 

Figure 4 shows how demand looks for individual 𝑖 when 𝑞! > 𝐵" and 𝑞# > 𝐵". The x-axis is the probability share of position 
𝐴, and the y-axis is the probability share of position 𝐵. The solid, black line represents the probability constraint, and the 
dashed, blue line represents the budget constraint. Because the entire budget constraint falls below the probability constraint, 
it will be impossible to meet the probability constraint. 

 

The individual cannot satisfy constraint (A) because the budget constraint falls 

completely below the probability constraint. Thus, there is no probability vector 

that can be demanded. If this was the case in an example with two total jobs, then 

new prices would have to be determined to meet the probability constraint. If this 

game has more than two jobs, then it may be necessary to mix between two different 

jobs than the ones being represented above. 

Now, suppose 𝑞& < 𝐵" and 𝑞' < 𝐵". The graph will look like this: 
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FIGURE 5 

Figure 5 shows how demand looks for individual 𝑖 when 𝑞! < 𝐵" and 𝑞# < 𝐵". The x-axis is the probability share of position 
𝐴, and the y-axis is the probability share of position 𝐵. The solid, green line represents the probability constraint, and the 
dashed, blue line represents the budget constraint. Because the entire probability constraint falls below the budget constraint, 
any bundle on the probability constraint can be demanded. 

 

Here, all points on the probability constraint are part of the green line, meaning all 

points on the probability constraint can be demanded. Thus, if 𝑢& > 𝑢', individual 

𝑖 will demand 𝑝"& = 1 and 𝑝"' = 0. If 𝑢& < 𝑢'individual 𝑖 will demand 𝑝"& = 0 

and 𝑝"' = 1. Finally, if 𝑢& = 𝑢', individual 𝑖 will be indifferent over the entire 

probability constraint. 

The same results will hold if either 𝑞& = 𝐵" or 𝑞' = 𝐵" and the other 𝑞! is less 

than or equal to 𝐵", like in the graph below: 
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FIGURE 6 

Figure 6 shows how demand looks for individual 𝑖 when 𝑞# = 𝐵" and 𝑞! < 𝐵". The x-axis is the probability share of position 
𝐴, and the y-axis is the probability share of position 𝐵. The solid, green line represents the probability constraint, and the 
dashed, blue line represents the budget constraint. Because the entire probability constraint falls below the budget constraint, 
any bundle on the probability constraint can be demanded. 

 

The probability constraint and the budget constraint will intersect at one of the 

axes, and the rest of the probability constraint will be below the budget constraint, 

meaning individual 𝑖 will demand 𝑝"! = 1 of whichever utility is higher and will be 

indifferent over the entire line when the utilities are equal. 

When the other 𝑞! is greater than 𝐵", on the other hand, then the constraint lines 

will intersect at one of the axes, and the rest of the budget constraint line will lie 

below the probability constraint, such as in the graph below: 
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FIGURE 7 

Figure 7 shows how demand looks for individual 𝑖 when 𝑞# = 𝐵" and 𝑞! > 𝐵". The x-axis is the probability share of position 
𝐴, and the y-axis is the probability share of position 𝐵. The solid, black line represents the probability constraint, and the 
dashed, blue line represents the budget constraint. Because the entire budget constraint except for (0, 1) falls below the 
probability constraint, it will be impossible to meet the probability constraint unless (0, 1) is demanded. 

 

This means that no matter what the utilities are, individual 𝑖 will be forced to play 

𝑝"& = 1 and 𝑝"' = 0 if 𝑞& = 𝐵" or 𝑝"& = 0 and 𝑝"' = 1 if 𝑞' = 𝐵". 

The final case to consider is when 𝑞& = 𝑞' = 𝐵". In this case, the probability 

constraint and the budget constraint will be the same line. Thus, whichever position 

has the higher utility will be demanded fully by individual 𝑖, and if the utilities are 

the same, individual 𝑖 will be indifferent over the entire line. 
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B. Proof of Existence of Market Clearing Prices 

Hylland and Zeckhauser prove the existence of market clearing prices using 

Kakutani’s fixed-point theorem. Getting to the point at which Kakutani’s theorem 

can be used requires several steps that I will walk through in this section.7 

The proof only considers price vectors in which at least one price is 0, so let 

𝑄 = {𝑞R = (𝑞#, 𝑞(, … , 𝑞))|𝑞! ≥ 0	for	all	j, 𝑞! = 0	for	some	j} 

 

Letting 𝑖 be fixed, for each 𝑞R ∈ 𝑄, define 𝐹"(𝑞R) as the set of lotteries individual 𝑖 

can buy without exceeding his or her budget. 𝐹"(𝑞R) is closed and bounded. Also, 

because at least one price is always 0, it is non-empty. 

Let 𝑢" be 𝑖’s utility function. Since all agents are expected utility maximizers, 𝑢" 

is linear. Next, define 𝐺"(𝑞R) as the set of lotteries 𝑖 can choose that, first, maximizes 

utility, and from among those, has the lowest price. Because 𝐺"(𝑞R) is determined 

from 𝐹"(𝑞R) by maximizing and minimizing continuous functions, 𝐺"(𝑞R), like 𝐹"(𝑞R), 

will be nonempty. Also, since 𝑢(𝑥̅) and 𝑥̅ ⋅ 𝑞R are both linear functions of 𝑥̅, it is 

clear that 𝐺"(𝑞R) is a convex set. 

The next step is to prove that 𝐺"(𝑞R) is an upper semicontinuous correspondence. 

This is done through proof by contradiction. Let 𝑞R(+), 𝑘 = 1, 2, … be a convergent 

series of points in Q. Let 𝑥̅(+), 𝑘 = 1, 2, … be a convergent series with 𝑥̅(+) ∈

𝐺"_𝑞R(+)`	for	every	𝑘. Let 𝑞R and 𝑥̅ be the limits of the two sequences. The next step 

will be to prove that 𝑥̅ ∈ 𝐺"(𝑞R). 

Because 𝑥̅ ⋅ 𝑞R ≤ 𝐵", 𝑥̅ is within individual 𝑖’s budget and is thus an element of 

𝐹"(𝑞R). Suppose, for the sake of contradiction, that 𝑥̅ is not an element of 𝐺"(𝑞R), and 

instead some 𝑦R ∈ 𝐺"(𝑞R) is chosen. It must then be the case that either the utility of 

 
7 See Hylland and Zeckhauser (1979) Discussion Paper 51 Appendix A for this proof in their words. 
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𝑦R is greater than the utility of 𝑥̅ or the utilities are equal and the price of 𝑦R is less 

than the price of 𝑥̅. 

If the first case is true, meaning 𝑢"(𝑦R) > 𝑢"(𝑥̅), a sequence can be constructed 

such that 𝑦R(+) ∈ 𝐹"_𝑞R(+)`	for all 𝑘 and lim(𝑦R(+)) = 𝑦R. If 𝑦R ⋅ 𝑞R(+) ≤ 𝐵", then each 

𝑦R(+) will be an element of 𝐹"_𝑞R(+)`, so 𝑦R(+) = 𝑦R can be chosen. Otherwise, define 

𝑎+ =
𝐵"

𝑦R ⋅ 𝑞R(+)O  and let 𝑗+ be such that 𝑞!!
(+) = 0. Then, define 𝑦R(+) as: 

𝑦R!(+) = 𝑎+ ⋅ 𝑦! , for	𝑗 ≠ 𝑗+ 

𝑦R!!
(+) = 𝑎+ ⋅ 𝑦!! + 1 − 𝑎+ 

 

Clearly, 𝑦R(+) ∈ 𝐹"(𝑞R(+)). Assuming 𝐵" > 0 and knowing that lim
+→.

𝑦R ⋅ 𝑞R(+) = 𝑦R ⋅

𝑞R ≤ 𝐵", it is evident that 𝑎+ will approach 1 and lim
+→.

𝑦R(+) = 𝑦R. Since, by 

assumption, 𝑢"(𝑦R) > 𝑢"(𝑥̅), the continuity of 𝑢" means 𝑢"(𝑦R(+)) > 𝑢"(𝑥̅(+)) for 

some 𝑘. This contradicts the previous assumption that 𝑥̅(+) ∈ 𝐺"_𝑞R(+)`. 

If the second case is true, meaning 𝑢"(𝑦R) = 𝑢"(𝑥̅) and 𝑦R ⋅ 𝑞R < 𝑥̅ ⋅ 𝑞R, there exists 

a 𝑘 for which 𝑦R ⋅ 𝑞R(+) < 𝑥̅(+) ⋅ 𝑞R(+). Then, 𝑦R ∈ 𝐹"(𝑞R(+)) and 𝑥̅(+) ∈ 𝐺"_𝑞R(+)` imply 

that 𝑢"(𝑥̅(+)) > 𝑢"(𝑦R). Since both 𝑥̅ and 𝑦R cost at most 𝐵", there is some 𝜆 such that 

((1 − 𝜆) ⋅ 𝑦R + 𝜆 ⋅ 𝑥̅(+)) ⋅ 𝑞R ≤ 𝐵" for 0 < 𝜆 ≤ 1. Define 𝑥̅∗ = (1 − 𝜆) ⋅ 𝑦R + 𝜆 ⋅

𝑥̅(+). It is clear that 𝑥̅∗ ∈ 𝐹"(𝑞R). By linearity of 𝑢", 𝑢"(𝑥̅∗) > 𝑢"(𝑦R), which 

contradicts 𝑦R ∈ 𝐺"(𝑞R). Therefore, 𝐺" is upper semicontinuous. 

The next step is to define 𝐺(𝑞R) as the set comprised of all possible total demand 

vectors with prices given by 𝑞R in which each individual 𝑖 selects a vector contained 

in 𝐺"(𝑞R). Given that 𝐺(𝑞R) is an infinite sequence that is closed, bounded, and has a 

convergent subsequence and that 𝐺"(𝑞R) is a closed and bounded subset of all 
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lotteries, it is straightforward to prove that 𝐺 is an upper semicontinuous 

correspondence. 

The market clearing price vector will be a 𝑞R for which the vector 

(𝑀#, 𝑀(, … ,𝑀)) ∈ 𝐺(𝑞R). Because 𝐺 is an upper semicontinuous correspondence, 

Kakutani’s fixed-point theorem can be applied to prove that a market clearing price 

vector will always exist. However, a few problems must be dealt with first; to use 

Kakutani’s theorem, 𝑄 must be defined on a compact and convex set. 

To deal with the problem of non-convexity, Hylland and Zeckhauser propose 

creating a new set that is homeomorphic to 𝑄. This set 𝑆 transforms the vectors in 

𝑄 into a set that is convex and can be used to solve the convexity problem. To solve 

the non-compactness problem, Hylland and Zeckhauser find a subset 𝑆0 of 𝑆 that is 

bounded and closed. This subset is determined by choosing a 𝑞!∗ so large that 

excess demand is not possible given what the players can afford with their budgets. 

The correspondence 𝑆0 is convex and compact, so Kakutani’s theorem can be used 

on it. The result is then transformed back to 𝑄 to give us the market clearing price 

vector. 

C. Example Showing Determination of Market Clearing Prices 

To show more clearly how market clearing prices are determined, consider the 

following example. Suppose there are 2 positions 𝑗 = 𝐴, 𝐵 with 2 openings each 

and 4 individuals 𝑖 = 1, 2, 3, 4. The 4 individuals report their von Neumann-

Morgenstern utilities as follows: 

 

 

 

 

 



 19 

 Position A Position B 

Individual 1 100 0 

Individual 2 100 20 

Individual 3 100 60 

Individual 4 40 100 

 

Suppose each player is given a budget of 𝐵" = 1. To find market clearing prices, 

each individual’s demand must be investigated. Immediately, it is clear that position 

𝐴 would be oversubscribed if 𝑞& ≤ 1 because individuals 1, 2, and 3 prefer 𝐴 to 𝐵 

and would thus demand 𝑝& = 1 if they could afford it. Thus, assuming 𝑞& > 1, the 

graph for each player will look like Figure 2 from Section III, shown again below: 

 

FIGURE 2 

Figure 2 shows how demand looks for individual 𝑖 when 𝑞! > 𝐵" and 𝑞# < 𝐵". The x-axis is the probability share of position 
𝐴, and the y-axis is the probability share of position 𝐵. The solid, black line represents the probability constraint, and the 
dashed, blue line represents the budget constraint. The thicker, green segment of the probability constraint represents the 
bundles that individual 𝑖 can demand. 
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Because individuals 1, 2, and 3 have utilities such that 𝑢& > 𝑢', they will demand 

as much of position 𝐴 as possible, which is the furthest right point on the thicker, 

green segment of the probability constraint. On the other hand, individual 4 has 

utilities such that 𝑢& < 𝑢'. This means individual 4 will want to consume as far left 

on the green line segment as possible. 

It is important to remember assumption (2) before proceeding from here. As a 

reminder, assumption (2) states that the total number of probability shares 

demanded for each job j must sum to the total number of openings available for that 

job. In this case, 𝑀! = 2 for 𝑗	 = 	𝐴, 𝐵. 

Returning to the example at hand, individuals 1, 2, and 3 will demand the 

intersection point of the budget constraint and the probability constraint since it is 

the furthest right point on the green line segment. To find the intersection point of 

the two lines, the following system of equations must be solved: 

𝑝"& + 𝑝"' = 1, 𝑞&𝑝"& + 𝑞'𝑝"' = 1 

 

Solving for 𝑝"& and 𝑝"' gives: 

𝑝"& =
(1 − 𝑞')

(𝑞& − 𝑞')O , 𝑝"' 	= 	
(𝑞& − 1)

(𝑞& − 𝑞')O  

 

Prices also must be selected such that assumption (2) is met. This gives the 

following two equations: 

𝑝#& + 𝑝(& + 𝑝1& + 𝑝2& = 2, 𝑝#' + 𝑝(' + 𝑝1' + 𝑝2' = 2 

 

Since 𝑝2' = 1 and 𝑝2& = 0, these two equations become: 

𝑝#& + 𝑝(& + 𝑝1& = 2, 𝑝#' + 𝑝(' + 𝑝1' = 1 
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Because individuals 1, 2, and 3 will all demand the same probability distribution, 

which is the point of intersection of the budget constraint and probability constraint, 

the equations for 𝑝"& and 𝑝"' can be plugged into the equations above to get: 

3(1 − 𝑞')
(𝑞& − 𝑞')O = 2, 3(𝑞& − 1)

(𝑞& − 𝑞')O = 1 

 

Since one price will always be 0, 𝑞' = 0 because if 𝑞& = 0, individuals 1, 2, and 

3 will all demand (1,0), which would violate assumption (2) since 𝑀& = 3 ≠ 2. 

Thus, the equations simplify to: 

𝑞& = 3
2L , 𝑞' = 0 

 

These prices will result in individuals 1, 2, and 3 demanding the vector 

(2 3L , 1 3L ), which is the intersection point of the budget constraint and the 

probability constraint, and individual 4 demanding the vector (0,1). These prices 

satisfy all assumptions and constraints and are the market clearing prices. 

IV. Proof of Pareto Optimality 

Assuming market clearing prices have been determined, Hylland and Zeckhauser 

prove that the cleared market will result in a Pareto optimal allocation. As I will 

show in this section, this claim does not rely on the assumption that all agents are 

expected utility maximizers. Thus, if market clearing prices can be identified, then 

non-expected utility theories with non-parallel or non-linear indifference curves 

can be used in place of expected utility theory. 
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Hylland and Zeckhauser begin their proof by defining an assignment 𝑃 that is the 

result of the market-clearing price vector 𝑞 and an assignment 𝑃’ that is assumed to 

be better for somebody and worse for nobody. Suppose 𝑖# is the person made better 

off. Then, 𝑝’"# ⋅ 𝑞 > 𝐵" and 𝑝’"# ⋅ 𝑞 > 𝑝"# ⋅ 𝑞. If 𝑝’"# ⋅ 𝑞 > 𝐵"  were not true, then 

individual 𝑖# would have initially demanded that allocation since we assume that 

agents demand the best bundle they can afford. Thus, since we know that 𝑝"# ⋅ 𝑞 ≤

𝐵" and 𝑝’"# ⋅ 𝑞 > 𝐵", we can conclude that 𝑝’"# ⋅ 𝑞 > 𝑝"# ⋅ 𝑞. This claim does require 

the assumption that agents are expected utility maximizers; it only requires that 

agents follow the weak axiom of revealed preferences.8 

The next claim the proof makes is that, given what was just proved above, there 

is some other player (denoted 𝑖() for which 𝑝’"( ⋅ 𝑞 < 𝑝"( ⋅ 𝑞. This claim also does 

not require the assumption that agents are expected utility maximizers because of 

assumption (2), which states ∑ 𝑝"! = 𝑀! = ∑ 𝑝′"!"" . Thus, since 𝑝’"# ⋅ 𝑞 > 𝑝"# ⋅ 𝑞, 

there must be some 𝑝’"( that is less than the 𝑝"( from the original assignment for the 

constraint to hold. Because 𝑝’"( and 𝑝"( are being multiplied by the same price 

vector 𝑞, it is clear that 𝑝’"( ⋅ 𝑞 < 𝑝"( ⋅ 𝑞. 

The final claim states that “𝑖( must be worse off with the lottery 𝑝’"( than with 

𝑝"(; otherwise 𝑖( would not have chosen 𝑝"( in the first place” (302). To prove this 

claim, it is important to remember the assumption that “it is essential that the least-

expensive lottery be chosen if utility is equal” (302). For sake of contradiction, 

assume that this is not the case and that between two or more lotteries with equal 

utility, the more expensive one is chosen. The result would be an outcome that is 

not Pareto optimal; there is a scenario in which at least one individual can be made 

better off with no individuals being made worse off. That scenario would occur 

 
8 The weak axiom of revealed preferences states that when some bundle 𝑎 is purchased over some other bundle 𝑏 when 
both are affordable, the agent reveals that he or she prefers 𝑎 to 𝑏. Then, if 𝑏 was to be chosen over 𝑎 in some other budget 
set, it must be that 𝑎 is no longer feasible in the new budget set. See Samuelson (1938). 
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when the player with the two lotteries that have equal utilities (we will call this 

player 𝑖3) chooses to instead take the lottery that is less expensive. This would result 

in additional shares of more highly valued positions being made available for other 

players to demand. The more expensive lottery is more expensive because it 

includes more shares in positions that are highly valued by the market (as 

determined by the market clearing prices) than the other lottery in question. The 

market clearing prices are determined by individuals’ utilities for each position, so 

the higher-priced shares are more highly desired. Thus, some other player could 

conceivably be made better off when player 𝑖3 chooses the less expensive lottery 

because that would allow for there to be more shares of highly valued positions 

available for everyone else. 

Once again, the final claim of the proof states that “𝑖( must be worse off with the 

lottery 𝑝’"( than with 𝑝"(; otherwise 𝑖( would not have chosen 𝑝"( in the first place” 

(302). Below is a graph showing indifference curves (red, dotted lines) induced by 

expected utility theory in the Hylland & Zeckhauser model graphed on the budget 

constraint and probability constraint: 
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FIGURE 8 

Figure 8 shows individual 𝑖’s indifference curves (red, dotted lines) subject to expected utility theory. The x-axis is the 
probability share of position 𝐴, and the y-axis is the probability share of position 𝐵. Once again, the solid, black line 
represents the probability constraint, the dashed, blue line represents the budget constraint, and the thicker, green segment of 
the probability constraint represents the bundles that individual 𝑖 can demand. Individual 𝑖 will seek to maximize utility by 
demanding the point on the green line segment that intersects the highest indifference curve. 

 

These indifference curves are all linear and parallel. Because only probability 

vectors on the probability constraint can be demanded, no other point on the 

indifference curve that the chosen bundle lies on can be demanded. This explains 

why Hylland and Zeckhauser’s proof works; the lottery that 𝑖( is forced to take 

when 𝑖# takes 𝑝’"# will result in 𝑖( demanding a probability vector 𝑝’"( that is on a 

less-preferred indifference curve than the indifference curve 𝑝"( is on. 

Now, suppose we no longer assume that indifference curves must be parallel. 

Refer once again to the following graph for individual 𝑖(: 
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FIGURE 2 

Figure 2 shows how demand looks for individual 𝑖 when 𝑞! > 𝐵" and 𝑞# < 𝐵". The x-axis is the probability share of position 
𝐴, and the y-axis is the probability share of position 𝐵. The solid, black line represents the probability constraint, and the 
dashed, blue line represents the budget constraint. The thicker, green segment of the probability constraint represents the 
bundles that individual 𝑖 can demand. 

 

Because indifference curves cannot intersect in the first quadrant under the premise 

of rationality, the non-parallel indifference curves must intersect in some other 

quadrant. This then results in a situation very similar to that of expected utility 

theory. Any linear indifference curve will only intersect the probability constraint 

at one point (unless the indifference curve is the same line as the probability 

constraint). Thus, it can be assumed that each individual is already demanding the 

bundle on the highest possible indifference curve. The lottery that 𝑖( is forced to 

take when 𝑖# takes 𝑝’"# will result in 𝑖( demanding a probability vector 𝑝’"( that is 

on a less-preferred indifference curve than the indifference curve 𝑝"( is on. 

Therefore, the proof still holds. 

Now, suppose we assume that indifference curves can be curved. Suppose we 

have a curved indifference curve that intersects the probability constraint at 𝑝"( and 
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at least one other point within individual 𝑖(’s budget constraint on the probability 

constraint. Individual 𝑖( would be indifferent between these points because they are 

on the same indifference curve, meaning they have the same utility. Now, suppose 

one of the other points where the indifference curve and probability constraint 

intersect, 𝑝’"(, is such that 𝑝’"( ⋅ 𝑞 < 𝑝"( ⋅ 𝑞. This would prove Hylland and 

Zeckhauser wrong if not for their assumption that when utility is equal, the lottery 

that is the least expensive is always chosen. Because this lottery 𝑝’"( is within 

individual 𝑖(’s budget constraint, then we assume that 𝑖( would have demanded that 

bundle in the first place because it has equal utility to 𝑝"( but is less expensive. 

Thus, we find that Hylland and Zeckhauser’s proof still holds with curved 

indifference curves. 

Therefore, assuming market clearing prices can be determined, Hylland and 

Zeckhauser’s mechanism will still result in a Pareto optimal outcome even when 

we allow agents to have utility functions that are nonparallel or nonlinear. 

V. Shortcomings of Expected Utility Theory 

Before attempting to implement specific non-expected utility theories into the 

Hylland and Zeckhauser mechanism, it is important to discuss the shortcomings of 

expected utility theory. I will discuss not only what these shortcomings are, but also 

how they apply to the types of allocation problems the Hylland and Zeckhauser 

mechanism solves. 

Von Neumann and Morgenstern (1944) were among the first to determine axioms 

for expected utility theory. They derived it from three axioms: ordering, continuity, 

and independence. Ordering means that expected utility theory satisfies both 

completeness and transitivity. Completeness means that for any two prospects 𝑞 

and 𝑟, either 𝑞 ≽ 𝑟	or	𝑟 ≽ 𝑞	or both. Transitivity implies that for some prospects 
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𝑞, 𝑟, 𝑠, if	𝑞 ≽ 𝑟	and	𝑟 ≽ 𝑠, then	𝑞 ≽ 𝑠. Continuity means that for all 𝑞, 𝑟, 𝑠 where 

𝑞 ≽ 𝑟	and	𝑟 ≽ 𝑠, there is some 𝑝 such that (𝑞, 𝑝; 𝑠, 1 − 𝑝) ∼ 𝑟. 

The third axiom, independence, is the most controversial and is relaxed by nearly 

all non-expected utility theories. Independence states that for prospects 𝑞, 𝑟, 𝑠, 

𝑖𝑓	𝑞 ≽ 𝑟	then	(𝑞, 𝑝; 𝑠, 1 − 𝑝) ≽ (𝑟, 𝑝; 𝑠, 1 − 𝑝)	for all	𝑝. 

Allais (1953) was the first to explain why expected utility theory may not 

accurately depict how individuals value prospects due to violations of the 

independence axiom. There are two main effects Allais identified that result in these 

violations: the common consequence effect and the common ratio effect. The 

common consequence effect can be shown through the following hypothetical 

choice problem. Allais creates two situations, each with two different prospects. 

The first situation has the prospects 𝑠# = ($1M, 1)	and	𝑟# =

($5M, 0.1; $1M, 0.89; 0, 0.01). The second situation has prospects 𝑠( =

($1M, 0.11; 0, 0.89)	and	𝑟( = ($5M, 0.1; 0, 0.9). Allais believes that in the first 

situation, people will choose the guaranteed $1M that prospect 𝑠# offers instead of 

𝑟#, which offers the chance of getting even more money, but also the small chance 

of coming away with nothing. However, in the second situation, Allais believes 

people will choose 𝑟( since both prospects result in a high chance of coming away 

with nothing, but 𝑟( gives the small chance of coming away with $5M, which Allais 

believes is preferred to the slightly larger, but still small, chance of coming away 

with $1M. 

If Allais is right, then this would be a violation of expected utility theory, which 

states that one must either choose only 𝑠 or only 𝑟 in both situations. The violation 

comes from Savage’s (1972) “sure-thing principle,” which is a principle of 

expected utility theory. In the first situation, both prospects give a 0.89 chance of 

coming away with $1M. In the second situation, both prospects give a 0.89 chance 

at coming away with $0. The sure-thing principle states that it should not matter 
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whether there is 0.89 chance at $1M, $0, or any other dollar amount since 

otherwise, the two sets of prospects are exactly equal. Thus, individuals who choose 

𝑠# and 𝑟( violate expected utility theory. According to Starmer (2000), many 

empirical studies since Allais’ initial hypothesis have supported this type of 

violation of expected utility theory. 

Now, let us explore the other effect Allais hypothesized, which is the common 

ratio effect. Suppose we have another pair of hypothetical situations. In the first, 

we get a choice between a guaranteed $750 or a 0.8 chance at $1000. In the second 

situation, we get a choice between a 0.25 chance at $750 or a 0.2 chance at $1000. 

Allais hypothesized, and much empirical evidence since then has shown, that in the 

first situation, agents will frequently choose the guaranteed $750, but in the second, 

choose the 0.2 chance at $1000. Expected utility theory would tell us that an agent 

must choose the $750 in both situations or the $1000 in both situations since the 

ratio of the probabilities is the same. Hence the name “common ratio effect.” 

The goal of non-expected utility theories is to better represent these violations of 

independence that Allais discovered. There are two broad categories of non-

expected utility theories: conventional and non-conventional. In this paper, I only 

explore conventional theories, which means agents act as if they are optimizing 

some underlying preference function. Within this broad category, I am only 

exploring theories that have decision weights, meaning they assume that 

individuals assign subjective attitudes to objective probabilities. This is done by 

putting the probability 𝑝 of some outcome through a function 𝜋(𝑝). Examples of 

individuals subjectively weighting objective probabilities can be seen in the papers 

Ali (1977), Thaler and Ziemba (1988), and Jullien and Salanié (1997). All of these 

papers explore racetrack betting and show that many of the bettors they studied are 

oversensitive to the chance of winning on longshots and, at the same time, 

oversensitive to the chance of losing on a favorite. 
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The functional form of 𝜋(𝑝) is a very important part of all conventional non-

expected utility theories. Quiggan (1982) proposes an inverted s-shaped function, 

which has been supported by research from Preston and Baratta (1948) and Prelec 

(1998). Figure 9 below shows what this function looks like: 

 

FIGURE 9 

Figure 9 shows the inverted s-shaped function 𝜋(𝑝) = 𝑝$

5(𝑝$ + (1 − 𝑝)$)
!
"8

9 	for 𝛿 = 0.5 often used to weight probabilities 

in conventional non-expected utility theories. The values on the x-axis are the objective probabilities, and the values on the 
y-axis are the subjective, weighted probabilities. 

 

There are several functional forms that achieve inverted s-shaped graphs. In this 

paper, I opt to use the single parameter weighting function developed by Tversky 

and Kahneman (1992): 
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The function is concave below the inflection point 𝑝∗ and is convex above it, 

meaning lower probabilities are overweighted, reflecting real-life behavior of many 

agents. It can be viewed as a form of pessimism, which is closely related to risk 

aversion. The convex part of the curve implies greater aversion to randomization, 

so above the inflection point, agents are more averse to randomization. 

Additionally, in the middle range of probabilities, agents act more closely to what 

expected utility theory would predict than at the extremes (Quiggan 1982). 

The three non-expected utility theories I will be applying to the Hylland and 

Zeckhauser mechanism are subjective expected value theory (SEVT), simple 

decision weighted utility theory (SDWUT), and rank dependent utility theory 

(RDU). Each one builds off the other. SEVT uses a probability weighting function 

but keeps utilities as they are. SDWUT uses a utility weighting function in addition 

to a probability weighting function. Finally, RDU takes into account the ranked 

order of preferences and, unlike the other two, is monotonic. 

VI. Subjective Expected Value Theory and  

Simple Decision Weighted Utility Theory 

A. Overview of the Theories 

Both SEVT and SDWUT take on the following general form: 

𝑉 =� 𝜋(𝑝") ⋅ 𝑢(𝑥")
"

 

 

With SEVT, 𝑢(𝑥") = 𝑥", meaning utilities are kept as they are and are not 

transformed. Edwards (1955, 1962) was the first discuss this theory, and Handa 

(1977) was the first to recommend the use of 𝜋(𝑝") as the decision weight. It is the 

most basic form of decision weighted utility theories since the only transformation 
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it makes from expected utility theory is the weighting of probabilities through 

𝜋(𝑝"). 

SDWUT extends beyond SEVT by no longer requiring 𝑢(𝑥") = 𝑥", meaning in 

addition to probabilities being weighted, utilities can also be weighted. The idea of 

having a utility weighting function was first introduced by Kahneman and Tversky 

(1979). They proposed a utility function that is concave for gains and convex for 

losses from some reference point. Their reasoning is that two changes in utility of 

the same magnitude, one from a starting point very close to the reference point and 

another from one farther away, will not be valued the same. A concave utility 

function for gains and a convex function for losses takes this into account. 

In addition, the utility function ought to be steeper for losses than it is for gains. 

This is because a loss is thought of by many agents as more impactful than an 

equivalent gain. 

A common utility weighting function that applies well to individuals in many of 

the situations that this mechanism will encounter is 𝑢(𝑥") = 𝑥"5	for	0 < 𝛾 < 1. 

This function sets the reference point at 0, which is a reasonable reference point for 

most applications of the mechanism since the mechanism uses a pseudomarket with 

fake money. Everyone is effectively starting from nothing in the context of the 

relevant allocation problem. Whichever position is allocated to a given individual 

will be seen as a gain. Figure 10 below shows what the utility weighting function 

looks like for 𝛾 = 0.95: 
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FIGURE 10 

Figure 10 shows the utility weighting function (𝑥") = 𝑥"% for 𝛾 = 0.95. The values on the x-axis are the initial utilities, and 
the values on the y-axis are the weighted utilities. Utility weighting functions such as this are used in many conventional 
non-expected utility theories. 

 

B. Implementation Into Hylland & Zeckhauser Mechanism 

Substituting SEVT in for expected utility theory in the Hylland and Zeckhauser 

mechanism causes it to no longer be able to determine market clearing prices in 

some cases, which is essential to the success of the mechanism. In this section, I 

will lay out a specific counterexample that shows a case in which market clearing 

prices cannot be determined. Also, it is important to note that because SEVT is a 

special case of SDWUT, this counterexample rules out both SEVT and SDWUT as 

potential substitutes for expected utility theory in the mechanism. 

Suppose there are four individuals 𝐼 = 1, 2, 3, 4 and two positions 𝐽 = 𝐴, 𝐵 each 

with two openings. Thus, there are 4 total job openings and 4 individuals. The 

individuals have the following von Neumann-Morgenstern utilities: 
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 Position A Position B 

Individual 1 100 0 

Individual 2 100 0 

Individual 3 100 70 

Individual 4 0 100 

 

Suppose each individual is subject to SEVT. For individuals 1 and 2, regardless 

of whether they are subject to EUT or SEVT, they will choose to demand as high 

of a probability share in position A as they can afford. They both have 0 utility for 

position 𝐵, so the only way to maximize utility will be to spend their entire budget 

on position 𝐴. The same can be said for individual 4, the only difference being that 

she prefers position 𝐵 to 𝐴, so she will demand as much of position B as she can 

afford. 

Individual 3, however, will be a more unique case. Individual 3’s utility will be 

subject to the following function: 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦1 = 100𝜋(𝑝#) + 70𝜋(𝑝() 

 

The function 𝜋(𝑝") is the inverted s-shaped function 𝜋(𝑝) =

𝑝4

�(𝑝4 + (1 − 𝑝)4)
"
#�|  with 𝛿 = 0.5. Below is a graph that shows what individual 

3’s indifference curves look like: 
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FIGURE 11 

Figure 11 shows individual 3’s indifference curves (red, dotted lines) as determined by SEVT graphed on top of the 
probability constraint. The x-axis is individual 3’s probability share of position 𝐴, and the y-axis is individual 3’s probability 
share of position 𝐵. 

 

A particular indifference curve of interest is the one beginning at (0, 1) that 

intersects the probability constraint a second time at (0.8566… , 0.1444… ). The 

figure below isolates that specific indifference curve: 
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FIGURE 12 

Figure 12 isolates a specific indifference from Figure 11 that intersects the probability constraint at both (0, 1) and 
(0.8566… , 0.1444… ). The x-axis is individual 3’s probability share of position 𝐴, and the y-axis is individual 3’s 
probability share of position 𝐵. This indifference curve will be used to show why it is impossible to attain market clearing 
prices for this counterexample. 

 

Now, consider the possible combinations of market clearing prices (𝑞&, 𝑞'). One 

of the assumptions of the Hylland and Zeckhauser algorithm and the proof of 

market clearing prices is that at least one price must be 0. It is clear to see that 

making 𝑞& = 0 would not work because individuals 1, 2, and 3 all prefer position 

A to position B and would want to demand (1, 0). However, this clearly violates 

constraint (2) since the sum of the total probability shares demanded for position 2 

is greater than the number of openings of position 2. Thus, it must be that 𝑞' = 0, 

which makes sense intuitively since only individual 4 prefers position B to position 

A. 

Given 𝑞' = 0, I will now go through individual 3’s demand with every possible 

price of position A. When 𝑞& is in the range [0, 1], individual 3 will demand (1, 0) 

and will receive utility of 100. When 𝑞& is in the range (1, 1.17), which corresponds 
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to the part of the graph where 𝑝& is in the range (0.86, 1), individual 3 will demand 

as much of position A as possible, or ( #
6$
, (1 − #

6$
)).9 When 𝑞& = 1.17, individual 

3 will be indifferent between (0, 1) and (0.86, 0.14) because both have equal utility 

of 70. Finally, when 𝑞& is greater than 1.17, individual 3 will demand (0, 1). 

Now, I will show that there is no possible value of 𝑞& whereby market clearing 

prices can be determined. I will start by considering 0 ≤ 𝑞& ≤ 1. This set of prices 

will not work because individuals 1, 2, and 3 will all demand (1, 0), which will 

result in constraint (2) being violated because ∑ 𝑝"&" = 3 ≠ 𝑀&. 

Now, let us assume that 1 < 𝑞& < 1.17. In this case, individual 3 will demand 

( #
6$
, (1 − #

6$
)). Individual 4, as always, will demand (0, 1), and individuals 1 and 2 

will want to demand as much of 𝑝& as they can afford, so they will also demand 

( #
6$
, (1 − #

6$
)). With 𝑞& in this range, there is no way for constraint (2) to be met. 

Individuals 1, 2, and 3 all demand 𝑝& =
#
6$

, and there is no value in the range 1 <

𝑞& < 1.17 where constraint (2) is met. 

Next, let us assume that 𝑞& = 1.17. It is now the case that individual 3 is 

indifferent between (0.86, 0.14) and (0, 1). However, demanding either of these 

bundles will result in constraint (2) not being met. First, with the bundle (0, 1), 

∑ 𝑝"&" < 𝑀&	and ∑ 𝑝"'" > 𝑀'. With the bundle (0.86, 0.14), ∑ 𝑝"&" > 𝑀&	and 

∑ 𝑝"'" < 𝑀'. Thus, 𝑞& = 1.17 is not a viable solution. 

Finally, let us assume that 𝑞& > 1.17. In this case, individual 3 will always 

demand the vector (0, 1). As were the cases before, individual 4 will still demand 

(0, 1), and individuals 1 and 2 will demand as much of position A as they can. Once 

again, there is no possible 𝑞& in which constraint (2) is met. Individuals 1 and 2 

 
9 All decimals are rounded to the hundredth place in this section. 
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will demand 𝑝& =
#
6$

, while individuals 3 and 4 will demand 𝑝& = 0, which will 

always result in ∑ 𝑝"&" < 𝑀&. Q.E.D. 

Therefore, this counterexample shows that when SEVT is used instead of 

expected utility theory, Hylland and Zeckhauser’s mechanism no longer works 

because it cannot always attain market clearing prices. It is worth noting that it was 

only necessary in this counterexample for individual 3 to have preferences subject 

to SEVT. The other three individuals could have been expected utility maximizers, 

and the counterexample would still have caused the mechanism to not produce 

market clearing prices. 

VII. Rank Dependent Utility Theory 

A. Overview of the Theory 

One drawback of both SEVT and SDWUT is that both are non-monotonic. This 

makes it possible, as was shown in both counterexamples above, that the sure option 

could be chosen over potential outcomes that mix between the worse option and 

better option that stochastically dominate the sure option. Some people may be 

subject to this type of thinking if they are very averse to randomization, but there 

are likely many people who are not. 

RDU was developed to solve this monotonicity problem. First proposed by 

Quiggan (1982), RDU solves the problem by making the weight attached to each 

probability dependent on both the true probability of that consequence and on the 

rank of that consequence relative to others. Like any decision weighted theory, 

RDU takes on the general form: 

𝑉 =� 𝑤" ⋅ 𝑢(𝑥")
"
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In SEVT and SDWUT, 𝑤" = 𝜋(𝑝"). However, in RDU, it is a bit more complicated: 

𝑤" = 𝜋(𝑝" +⋯+ 𝑝7) − 𝜋(𝑝"8# +⋯+ 𝑝7) 

 

Consequences are indexed from worst to best such that 𝑥# is the worst and 𝑥7 is the 

best. It is important to note here that SEVT and SDWUT are not special cases of 

RDU, so we cannot use the previous counterexample to disprove RDU. 

The same 𝜋 used before is used once again for RDU. In the words of Gonzalez 

and Wu (1999, 135), it describes the “psychophysics of risk in agents’ heads.” It 

distorts objective probabilities into subjective interpretations of them. The 

weighting function 𝑤, on the other hand, decides how the probability weights enter 

the actual value function, 𝑉. It subtracts the individual’s weighted probability of 

getting an outcome better than 𝑖 from the weighted probability of getting outcome 

𝑖 or better. 

RDU satisfies a weakened form of independence called “co-monotonic 

independence” (Wakker, Weber 1994). The standard independence axiom states 

that for any two prospects with common outcome 𝑥 occurring with probability 𝑝, 

substituting 𝑥 for some other outcome 𝑦 will not affect the preference order of the 

two prospects. Co-monotonic independence states that this axiom is true if and only 

if the substitution of 𝑦 for 𝑥 does not affect the ranked order of the outcomes in 

either prospect. The idea of ranking prospects also has the benefit that really “good” 

or “bad” outcomes relative to the others will receive very high or low weights, 

respectively. 

B. Implementation Into Hylland & Zeckhauser Mechanism 

Because RDU is monotonic, it does not make Hylland and Zeckhauser’s 

mechanism fail to attain market clearing prices as obviously as SEVT and SDWUT 

did. There is no indifference curve crossing the probability constraint at two unique 
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points, as can be seen in the graph below of the indifference curves (red, dotted 

lines) subject to RDU for the same individual 3 in the previous counterexample: 

 

FIGURE 13 

Figure 13 shows individual 3’s indifference curves (red, dotted lines) as determined by RDU graphed on top of the probability 
constraint. The x-axis is individual 3’s probability share of position 𝐴, and the y-axis is individual 3’s probability share of 
position 𝐵. 

 

Instead, using the proof of the existence of market clearing prices from Section 

III, a counterexample can be created to show that the mechanism with RDU cannot 

be proven to attain market clearing prices using the same method that Hylland and 

Zeckhauser used. 

To reiterate from Section III, it is necessary for 𝐺"(𝑞R) to be a convex set for 

market clearing prices to exist. In other words, the set of bundles that meet the 

requirements of the mechanism, meaning the bundles that maximize utility and are 

least cost when utilities are equal, must be a convex set for each individual and for 

any given price vector 𝑞 that satisfies the constraints of the problem. It is here where 

a potential counterexample arises.  
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Suppose we have three individuals 𝐼 = 1, 2, 3 and three positions 𝐽 = 𝐴, 𝐵, 𝐶 with 

the following utilities: 

 

 Position A Position B Position C 

Individual 1 100 0 0 

Individual 2 0 0 100 

Individual 3 100 70 0 

 

It is clear that individuals 1 and 2 will demand as much of positions A and C, 

respectively, as they can. For individual 3, it is less clear what he or she will 

demand. There are some price vectors 𝑞 for which individual 3 will not want to 

demand as much of position A as possible, even though it is the most preferred 

position for that individual. This can be seen clearly in Figure 13 above that shows 

individual 3’s indifference curves. 

To construct the counterexample, let us set 𝑞 = (2.69, 1.40, 0).10 This price 

bundle was calculated so that the budget constraint intersects one of individual 3’s 

indifference curves at two distinct points, as shown in the graph below: 

 
10 All decimals are rounded to the hundredth place in this section. 
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FIGURE 14 

Figure 14 isolates a specific indifference from Figure 13 that intersects the budget constraint for the price vector 𝑞 =
(2.69, 1.40, 0) at two points. The x-axis is individual 3’s probability share of position 𝐴, and the y-axis is individual 3’s 
probability share of position 𝐵. This indifference curve will be used to show a violation of one of the central assumptions of 
Hylland and Zeckhauser’s proof of the existence of market clearing prices. 

 

The budget constraint intersects the indifference curve at its x and y intercepts, 

which are (0.37, 0) and (0, 0.71), respectively. Both points are on the budget 

constraint, meaning they cost the same, and to ensure they are on the probability 

constraint, the excess demand must be placed placed in position 3 since that 

position costs $0 per probability share. That gives us the points (0.37, 0, 0.63) and 

(0, 0.71, 0.29). It is easy to see from the graph above that both bundles will 

maximize utility because they are on the same indifference curve, and it is the 

highest up indifference curve on or below the budget constraint. Thus, because both 

bundles satisfy all necessary constraints, maximize utility, and are equal in cost, 

both are part of the set 𝐺"(𝑞R) for 𝑖 = 3 and 𝑞 = (2.69, 1.40, 0). 

The violation arises here: the set 𝐺1(𝑞R) for 𝑞 = (2.69, 1.40, 0) is not convex. For 

the set to be convex, every point on the line segment connecting the two points in 
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the set must be weakly preferred to those points. It is easy to see in the graph that 

this will not be the case in this example. The indifference curve intersecting 

(0.37, 0, 0.63) and (0, 0.71, 0.29) is entirely above the line segment connecting 

those two points (which is the same line as the budget constraint). Thus, every point 

on that line segment is on a lower indifference curve than the points in the set 𝐺1(𝑞R) 

for 𝑞 = (2.69, 1.40, 0). Thus, the set is not convex. Q.E.D. 

Therefore, the assumption that 𝐺"(𝑞R) is always a convex set is no longer true, 

meaning market clearing prices cannot be proven to exist using the method Hylland 

and Zeckhauser used. 

VIII. Discussion and Conclusion 

The counterexample for SEVT and SDWUT makes it clear that market clearing 

prices will not always exist when either of those non-expected utility theories are 

implemented into the mechanism. While the result for RDU is not as conclusive, 

since the counterexample only shows that the existence of market clearing prices 

cannot be proven through the same method that Hylland and Zeckhauser used, it 

certainly does raise a lot of doubt upon the potential of finding a way to prove that 

market clearing prices do always exist with RDU. Thus, it seems that Hylland and 

Zeckhauser’s mechanism is heavily reliant on individuals being expected utility 

maximizers. This can be a cause for concern, since as I explained throughout this 

paper, many individuals violate the tenants of expected utility theory and act in 

ways only non-expected utility theories predict. 

The results of this paper do not mean that Hylland and Zeckhauser’s model is not 

compatible with any non-expected utility theories. There could be a method of 

proof different from the one Hylland and Zeckhauser used that proves the existence 

of market clearing prices when RDU is used. In addition, this paper only explores 

three non-expected utility theories. There are many more that exist that could be 
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tested as well. However, many of these are built from the foundation of SDWUT 

and RDU, making it unlikely for a lot of them to work. Still, it may be worthwhile 

to test some of these other non-expected utility theories in future research. 

The conclusion of this research is not that Hylland and Zeckhauser’s model 

should be considered completely useless. However, it does call into question 

whether the resulting allocation of the mechanism truly maximizes total utility. If 

even one individual thinks in a way that is better represented by some non-expected 

utility theory than expected utility theory, then the mechanism will likely not assign 

a lottery to that individual that maximizes his or her utility. A mechanism that is 

adaptable to both expected utility theory and various non-expected utility theories 

would be a very valuable tool in many real-life allocation problems and thus 

constitutes further research. 
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