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1 Introduction

Within the field of epidemiology, there has been a great interest in modeling essential
mechanisms that characterize the development of an infectious disease (Keeling and
Ross, 2008). The potential for devising corresponding policies that could minimize
and control the impact of infectious diseases leads to the call for developing statistical
methods customized for time series data. Multiple approaches have been undertaken by
statisticians to model the spread of infectious diseases, such as measles. Measles disease
dynamics have been an active area of research due to the high quality of readily avail-
able data and life-long immunity post-infection, which made it easier to model (Glass
et al., 2003). Its unique characteristics enable researchers to test newly developed mod-
els against previous studies to gain insights into the modeling ability before applying
them to model other disease outbreaks (Gibson and Renshaw, 2001). From nonlinear
stochastic dynamical models to Bayesian approaches, each model offers unique insights
into the disease, but with trade-offs that sacrifice modeling accuracy (Liu and West,
2001). For instance, several methods may work only under restricted assumptions and
may not be applicable across various scenarios. The complex nature of disease out-
breaks and the intrinsic unpredictability of infectious disease results in the challenges
faced in the modeling process (Gibson and Renshaw, 2001).

Apart from the challenges mentioned above, the Partially Observed Markov Process
(POMP) model aims to overcome these obstacles (Ionides et al., 2006). The unique
characteristic of the algorithm for the POMP model lies in its plug-and-play property,
which lifts the requirement of explicit expressions for transition probabilities and in-
stead obtains results from dynamic model simulation (He et al., 2010). Building upon
the development of POMP, the POMP package enables the implementation of such
a method in a statistical analysis setting (King et al., 2015). The extension of the
method to panelPOMP allows for constructing POMP models for each individual unit
and incorporates shared parameters to capture disease characteristics (Breto et al.,
2022).

He et al. (2010) investigated how this continuous time model, POMP, is applica-
ble to varying population sizes while accounting for the effect of environmental and
demographic stochasticity by analyzing measles outbreak data. He et al. (2010) fur-
ther indicated that the data suggests little deviation from mass-action transmission
and unveils the relationship between heterogeneity in transmission and population size,
leading to the conclusion that extra-demographic variability played an important role
in the measles outbreak. Nevertheless, the observation that γ (recovery rate for infected
individuals) varies with population size, which was modeled through log relationships
and the observation that Latent period and infectious period have a linear relationship
with population size, both required additional investigation and further explanation to
address interpretation concerns from a biological context.

Following the case study, an R package, measlespkg (available at https://github.com/AJAbkemeier/measlespkg)
was developed to facilitating the fitting process for PanelPOMP Models, which is used
in this research paper for fitting POMP models. The Monte Carlo profile confidence
intervals (MCAP) provides both theoretical and computation foundation for testing
whether a parameter specified in the model proposed in the He et al.(2010) paper
should be shared or unit-specific (Ionides et al., 2017). Having the parameter being
shared aligns with the biological interpretation that some inherent characteristics of the
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disease are common across populations with varied sizes. This study is thus prompted
to have a focus on fitting shared parameter models; additionally, the MCAP extension
under development could be taken to our advantage of things we learn about fitting
shared parameter models. By incorporating the shared parameters, we hope to explore
the possibility of a model that could better capture the underlying dynamics of disease
spread. We further hypothesize that the MCAP approach could be adapted to include
multiple shared parameters, which remains to be tested.

The insights and challenges from previous studies motivate this research project to
provide empirical support for prior conclusions and newly proposed shared parameter
modeling approaches. Thus, we apply the POMP model to the England and Wales
dataset and extend the study by He et al. (2010) to include an additional 200 cities.
Within the field of interest, though He et al. (2010) has conducted a case study on
20 cities, there has been no prior research done on a set of 200 cities using mecha-
nistic model. Moreover, Becker and Grenfell (2017) suggested the challenge of using
mechanistic model on large data sets by indicating that POMP may not be efficient
in analyzing 100+ time series as it takes a long period of time for them to converge.
Since the time needed for fitting the model scales linearly, as it took us 1.25 hours to fit
one city, the model fitting process needs 5 days to complete the process of fitting 100
cities. Although the computational challenges are apparent, including 200 cities would
allow us to explore measles disease dynamics across varied population sizes, investi-
gate prior observations that required empirical evidence, and validate the application
of the POMP model to large data sets. The research also attempts to investigate the
relationship between different parameters and how parameter estimates vary with pop-
ulation size. Through this dataset analysis, we aim to demonstrate the limitations and
capabilities of mechanistic models through empirical evidence.

2 Data

Since we aim to extend the scope of previous research to include more cities, we used
the data from Korevaar et al. (2020) as well as the 20 UK cities data set from He
et al. (2010). From a pool of 1402 cities in the England and Wales data set combining
Korevaar et al. (2020) and He et al. (2010), we randomly selected 200 cities, which
excluded the 20 cities used in He et al. (2010). The parameter estimates for the 20
cities presented in the He et al. (2010) paper were used to confirm the accuracy of the
simulation and modeling process before proceeding to other cities. Random selection
of the additional cities ensured we have good coverage of cities with varying population
sizes and characteristics, where the population size range from 660 to 3,389,620. Com-
pared to cities with a larger population size, small cities tend to have fewer observations
and more fadeouts, which are more likely to result in weak identifiability for parameter
estimates in the POMP model. The chosen dataset includes: weekly reported measles
cases, birth rates, and yearly population data for each city covering the period from
1950 to 1964. We follow the approaches undertaken by He et al. (2010) and Fine and
Clarkson (1982) to only include cases from 1950 and after to ensure the data were not
disrupted by World War II and the introduction of the National Health Service. The se-
lection of cities built a solid foundation for a comprehensive analysis of measles disease
dynamics and the application of POMP models across a wide range of environments,
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extending the scope of the original study. In Figure 1, we presented a visualization for
the time series data for a selected 30 cities from the combined data set.

Figure 1: Time series for each selected 30 cities. (RD indicates rural areas outside of
the cities)

3 Method

3.1 Partially Observed Markov Process

In epidemiological modeling, the Partially Observed Markov Process (POMP) models,
also known as Hidden Markov Models or state-space models, are utilized to describe the
dynamics of infectious disease transmission when the system is only partially observed.
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These models are tailored for scenarios where direct observation of the system’s state
is obscured and must be inferred from incomplete and noisy data (Ionides et al., 2006).

Within the SEIR modeling framework for infectious disease modeling, the POMP
model segments the population into compartments according to their infection status:
Susceptible (S), Exposed (E), Infected (I), and Recovered (R). The count of individ-
uals in each category at time t is denoted by S(t), E(t), I(t), and R(t), respectively.
Transition between these states follows a Markov process X1:N , reflecting the stochastic
nature of disease progression.

The observable data, represented as Y1:N and derived from case reports, are the only
source of information to infer the hidden states. Each observation Yn is conditionally
dependent only on the state Xn at that time and is conditionally independent from
the other states given the current state. S(t) is related to X1:N via Xn = X(tn) in
that S(t) is a part of each state X(tn) observed at specific times t1, t2, . . . , tN . Changes
in S(t) over time help inform the understanding of how the disease spreads and what
interventions might be effective.

The mathematical formulation of a POMP model is defined by several densities. The
transition density fXn|Xn−1(xn|xn−1; θ) describes the probability of transitioning from
one state to the next. The measurement density fYn|Xn(yn|xn; θ) represents the proba-
bility of observing a data point given the current state. The initial density fX0(x0; θ)
specifies the starting point of the stochastic process. The likelihood function for the
POMP model, which plays an important role in parameter estimation, is the product
of these densities integrated over all possible state paths:

L(θ) = fY1:N
(y∗1:N ; θ) =

∫
fX0(x0; θ)

N∏
i=1

fYn|Xn(y
∗
n|xn; θ)fXn|Xn−1(xn|xn−1; θ)dx0:N (1)

The PanelPOMP framework is a distinct adaptation of the POMP model, which is
specialized in separating hidden and observable processes into different units. It also
allows us to use shared parameters across different cities. In a dataset featuring panel
structure with K discrete time series, there exist K individual units symbolized as
u1, u2, . . . , uK . Each of these units is associated with a sequence of Nk periodic obser-
vations. These observations are encapsulated by a stochastic process {yk,1, . . . , yk,Nk

}
for each entity k, reflecting the systematic measurements over time. This property
allows for processing each unit independently and creating individual POMP models
for each unit. This framework is thus preferable for analyzing complex systems that
consist of multiple independent units. In this case, PanelPomp is a crucial modeling
framework for us as we have cities that are independent from one another and we model
some parameters to be shared.

3.2 Panel Iterated Filtering (PIF)

The Iterated Filtering algorithm (IF2) is an iterative approach to parameter estimation
for POMP models that employs a series of particle filters and a decreasing random
walk variance to converge to the maximum likelihood estimates (Ionides et al., 2015).
Building on IF2, the Panel Iterated Filtering (PIF) method is particularly adept at
dealing with cases where the units are independent from one another and shared pa-
rameters could be incorporated into the model. The algorithm simulates the initial
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state and transitions of the latent process and evaluates the likelihood of the observed
data given these latent states. It iteratively refines the estimates of θ through a series
of simulations and likelihood evaluations (Bretó et al., 2019). The algorithm could be
summarized by the following pseudocode:

1. For each iteration m from 1 to M :

(a) For each unit u from 1 to U :

i. Perturb the initial parameter vector Θ
(m)
u,0 using the perturbation density

hu,0.

ii. Simulate the initial latent states X
(m)
u,0 from the initial state density fXu,0

with the perturbed parameters.

iii. For each time point n from 1 to Nu:

A. Perturb the parameters Θ
(m)
u,n for each particle using the perturbation

density hu,n with diminishing variance.

B. Predict the next states X
(m)
u,n using the transition density fXu,n|Xu,n−1 .

C. Compute weights w
(m)
u,n based on the measurement density fYu,n|Xu,n

and the observed data.

D. Resample the parameters and states according to the computed
weights.

iv. Update the final parameter vector for unit u in iteration m to the re-
sampled parameters after the last observation.

(b) Consolidate the final parameters for all units to define the parameter vector
Θ(m) for iteration m.

2. Yield the final parameter swarm {Θ(M)
j }Jj=1 as the output.

The algorithm resembles the process of natural selection where parameter estimates
evolve, and those fitting the data best survive and propagate. The decreasing variance
of the parameter estimate perturbations automatically shrinks the scope of the search as
the parameter space is explored so it can converge on the MLE. Like IF2, the algorithm
benefits from the plug-and-play property, allowing for flexibility in modeling the state
transitions without the need for explicit transition probabilities.

3.3 Initial Conditions and Parameter Descriptions

We adopt the standard susceptible-exposed-infectious-recovered (SEIR) framework to
describe the transitions between the states of the disease, which is the same framework
used in the He et al. (2010) paper. This model simulates a group of people, each of
whom could be susceptible to the disease (S), exposed (E), infectious (I), and finally
recovered (R), on each day (denoted as t) within the considered timeframe.

The number of individuals transitioning between states is modeled as follows, where
we simplify the notation by omitting the city index and t represents time in days:

(St − ASE
t+1 − ASD

t+1, A
SE
t+1, A

SD
t+1) ∼ Eulermultinom(St, µ

SE(t), µSD)

(Et − AEI
t+1 − AED

t+1, A
EI
t+1, A

ED
t+1) ∼ Eulermultinom(Et, µ

EI(t), µED)

(It − AIR
t+1 − AID

t+1, A
IR
t+1, A

ID
t+1) ∼ Eulermultinom(It, µ

IR(t), µID),
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where ABS
t+1 ∼ Pois(µBS(t)). ABC

t+1 is the number of transitions from state B to C that
take place between times t and t+ 1.

The probability of not transitioning within the next day is given by p0 = exp(−µ1−
µ2), and the probability of transitioning to state i given that the person is transitioning
is pi =

µi

µ1+µ2−p0
.

The rate µBS(t), at which individuals become susceptible, depends on the birth rate
b(t) and is adjusted to account for the higher likelihood of measles spread at the start
of the school year. We follow the same approach taken by He et al. (2010) to include
a term δ(t − t0 mod 365) to add a Dirac delta impulse to the recruitment rate. This
occurs when t falls on the same calendar day as t0, the designated school admission day
in England would be t0 = 251 (He et al., 2010). The rate µSE(t) at which individuals
become exposed is determined by the force of infection β(t), the number of infectious
individuals I(t), the population size N(t), and a gamma white noise process γw(t) with
intensity σSE.

The force of infection β(t) varies with the school term, incorporating an amplitude
a and the proportion of the year p that the school term occupies: During the school
term: β(t) = β0(1 + a(1− p)/p), and during vacation: β(t) = β0(1− a).

In order to avoid significant distortion, the latent period (LP) and infectious period
(IP) can be calculated as

µEI(t) = σ, LP =
1

1− e−
µEI
365

(2)

µIR(t) = γ, IP =
1

1− e−
µIR
365

(3)

The basic reproduction number R0 is related to the transition rates µIR(t) and µID

as:
β0 = R0(1− exp(−(µIR(t) + µID)))

The remaining transition rates are assumed to be constant, with µEI(t), µIR(t), µSD,
µED, and µID set to 0.02, which indicates a constant per-capita death rate (He et al.,
2010). Table 1 provides the meaning for each notation used during this research. By
investigating the spatial and temporal patterns of measles spread in the 200 cities, we
employed the POMP model for a nuanced understanding of disease dynamics in varying
population sizes. We wanted to look for any patterns in the estimated parameter that
were taken into account previously but lack empirical evidence from a large data set.
For example, one of the relationships we want to investigate is whether there exists
a relationship between γ and population size. Another goal we have is to show that
POMP models are useful for fitting large amounts of time series data in a reasonable
time frame.

We then conducted the analysis in two main phases, where in the first stage, we
mainly focused on fitting the unit-specific model (the model that was used in the He
et al. (2010) research) to the 200 cities extending the scope of the original research,
thus testing the validity of the POMP model developed in the He et al. (2010) paper.
Following the analysis of parameter estimates from the 200 cities and insights we learned
from the results, we then proposed alternative models in the second phase that modified
the original model to test whether it improved the modeling of the measles outbreak
and increased the identifiability of parameter estimates.
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Notation Meaning
N Population Size
S0, E0, I0, R0 At time 0 , the proportion of individuals who are in states S,E, I, R.
µij Rate for an individual who transition from state i to state j.
γ Per-capita rate for an individual who in state I to state R.
a Amplitude of seasonality due to school term.
α Mixing exponent.
R0 Basic reproduction number.
c The cohort entry fraction.
ρ Reporting probability.
ι Mean number of imported infectious individuals.
ψ Measurement overdispersion parameter.
σ Per-capita rate for an individual who in state E to state I.
σSE Standard error of gamma white noise during transmission.

Table 1: Description of the notation used in the model.

For each model, we ran 36 replications of IF2 using 5,000 particles. We then eval-
uated the unit log likelihood using the particle filter 36 times, which then led us to
obtain an estimate for each unit log likelihood by averaging those 36 estimates.

3.4 Model 1 (Unit Specific)

Model 1 uses the He et al. (2010) model to fit the 200 cities with each parameter being
unit specific. Before fitting the 200 cities using the model with its implementation code
specified in measlespkg, we first tested the implementation using the twenty cities in the
He et al. (2010) data set and compared the results with the previous parameter estimates
presented in the paper. In particular, we included a careful review of log likelihood
estimates and model parameter estimates to ensure there was no implementation error
on the coding side. The 200 additional cities were divided into 10 sets, each consisting
of 20 cities. The first stage of data analysis consisted of two rounds, with round 2
built upon round 1 results. Along with reduced random walk standard deviation, we
further used previous round 1 results for parameter estimates to increase the accuracy
of the new rounds of fitting using restricted conditions. For each fit, we recorded and
organized the parameter estimates for each city and drew insights from the diagnostic
plots. In particular, we explored trace plots, simulation plots, and pair plots, which
were graphed for each of the three models.

3.5 Model 2 (log(ι) varying linearly with log(Population Size
N))

Motivated by the observation made in He et al. (2010) indicating that gamma has
a power-law relationship with population size when tested on a 20-city data set, we
decided to move forward by investigating the relationship between other parameter
estimates and population size. We also explored whether there appeared to be rela-
tionships between pairs of parameter estimates. Aside from pair plots that provided a
comprehensive overview of the relationships, the relationships between each individual
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parameter and population size were plotted using scatterplots and modeled with linear
models, using R2 being an additional metric evaluating relationship strength. Among
those relationship plots, we found ι to have a relatively strong linear relationship with
population size as modeled by their log relationship, which is supported by the observa-
tion made by the He et al. (2010) paper that suggested ι varies linearly with population
size based on a set of 20 cities. The scatterplot in Figure 2, the R2 value of 0.1888,
and the idea that the mean number of imported infectious individuals would be greater
for larger cities lead us to conclude that we should take this log linear relationship into
account when modeling. Thus, we made log(ι) to vary linearly with log(N), with the
formula

log(ιn) = ι0 + ι1 log(N) (4)

The slope and the intercept are made to be shared parameters. Since the cities are
independent of each other and we use shared parameters, this model is considered a
PanelPOMP model.

3.6 Model 3 (shared parameter model with unit specific ι)

As measles was more likely to be extinct in smaller cities than in larger ones, it would
be reintroduced through the people who traveled from other cities, which is captured
by the parameter ι. Since this parameter depends on other cities, its estimate is not
as fine-tuned as many of the other parameters especially for smaller cities. Since, our
data set contains cities with varying sizes, we have many smaller cities that are more
sensitive to ι. These reasons lead us to model ι as unit-specific in this model rather than
being shared in the previous model, so we could compare the efficacy of the different
approaches. Additionally, we added more shared parameters as we were motivated by
the model employed in the Ionides et al. (2022) paper, where all the other parameters
are made to be shared, except for parameters representing initial values and reporting
rates. It is worth noting that, unlike in the Ionides et al. (2022) paper, ψ is not made
to be a shared parameter because it varies across populations and is well-identified, the
estimated values vary across cities, and the log likelihoods are sensitive to ψ. Similar
to model 2, this is also considered a PanelPOMP model as cities are independent of
each other and have shared parameters.

4 Results

In table 2, the Model 1 parameter estimates for the 30 selected cities are presented.
The use of Model 1 further demonstrated the validity of the unit-specific model and
its capacity to be applicable across large samples. Following parameter estimation, we
further explored how parameters (including γ, ι, σ, and others) varied with population
size. We also investigated relationships between parameters to explore the possibility of
future model reparameterization. The general results are shown in the pair plots (figure
4). Furthermore, we fit linear models to test the relationship strength and reported R2

values as a metric for evaluation.
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City N α a cohort γ ι ψ R0 ρ σ σSE IP LP

London 3389620 0.96 0.55 0.66 27.22 4.16 0.11 62.86 0.49 32.90 0.09 13.91 11.60
Birmingham 1117900 0.99 0.33 0.81 31.67 0.01 0.18 37.37 0.56 52.43 0.07 12.03 7.47
Liverpool 802300 0.98 0.23 0.32 45.59 0.18 0.13 31.98 0.49 76.51 0.04 8.52 5.29
Manchester 704500 0.91 0.51 0.48 52.46 2.34 0.14 38.35 0.57 19.44 0.12 7.47 19.28
Sheffield 515000 1.01 0.32 0.17 57.13 0.75 0.16 31.96 0.66 66.87 0.05 6.90 5.97
Leeds 509700 1.01 0.36 0.66 24.33 1.33 0.17 56.84 0.66 39.85 0.11 15.51 9.67
Bristol 442600 1.01 0.19 0.15 54.90 0.66 0.17 27.56 0.63 185.47 0.03 7.16 2.51
Nottingham 307000 0.99 0.19 0.11 75.08 0.53 0.23 25.26 0.59 84.11 0.04 5.38 4.86
Hull 302100 0.98 0.68 0.05 23.64 0.32 0.23 84.52 0.54 22.65 0.18 15.95 16.62
Bradford 294300 1.01 0.66 0.34 24.75 1.39 0.21 84.54 0.57 21.02 0.18 15.25 17.87
Cardiff 244600 0.99 0.21 0.35 40.08 0.59 0.28 27.16 0.58 1795.13 0.03 9.62 1.01
Hastings 65690 0.97 0.50 0.04 65.38 0.13 0.42 45.26 0.69 46.91 0.11 6.10 8.29
Keighley 56980 1.03 0.36 0.01 125.03 0.11 0.31 38.22 0.59 39.33 0.08 3.44 9.78
Eccles 44370 0.97 0.39 0.66 52.99 0.31 0.33 37.86 0.64 81.66 0.09 7.39 4.98
Uckfield.RD 42230 0.94 0.17 0.13 119.02 0.08 0.45 19.26 0.94 64.76 0.09 3.59 6.15
Consett 39130 0.95 0.54 0.24 1370.03 0.01 0.35 68.81 0.66 24.34 0.12 1.02 15.50
Darwen 31030 1.02 0.05 0.49 41.91 0.29 0.42 19.78 0.87 639.49 0.04 9.21 1.21
Bedwellty 28930 0.99 0.04 0.14 51.89 0.15 0.94 19.40 0.32 1640.12 0.04 7.55 1.01
Runcorn 24000 0.97 0.02 0.24 28.97 0.18 0.57 228.36 0.57 29.03 0.38 12.11 13.07
Northwich 18330 0.97 0.68 0.26 28.18 0.34 0.34 22.02 0.89 69.52 0.24 13.46 5.77
Southam.RD 12870 0.91 0.42 0.04 88.96 0.03 0.74 68.37 0.53 41.53 0.13 4.62 9.29
Oswestry 10970 1.03 0.34 0.05 117.06 0.04 0.47 52.70 0.61 42.16 0.08 3.64 9.17
Dalton.in.Furness 10560 0.99 0.02 0.07 504.43 0.02 0.66 31.38 0.46 65.42 0.11 1.34 6.09
Romsey 6580 1.03 0.62 133.31 0.04 0.91 12.46 0.40 0.07 486.41 0.02 3.26 1.35
Mold 6409 1.07 0.20 0.43 79.33 0.05 2.43 13.68 0.15 332.26 0.01 5.12 1.67
Lees 4247 0.97 0.01 0.49 23.66 0.28 0.63 104.50 0.64 76.58 0.48 15.93 5.28
Llandrindod.Wells 3586 0.96 0.01 0.88 51.52 0.00059 2.0031 2015.29 0.31 925.80 0.44 7.59 1.08
St.Ives.1 3310 1.04 0.83 0.12 34.17 0.61 0.67 73.51 0.64 37.48 1.32 11.18 10.24
Withnell 2870 1.01 0.47 0.47 21.07 0.11 0.69 139.89 0.55 6386.61 0.53 17.82 1
Halesworth 2171 0.99 0.47 0.01 170.09 0.0071 0.60 92.90 0.78 29.60 0.24 2.68 12.84

Table 2: Parameter Estimates for Selected 30 Cities using model 1

Figure 2: Scatterplot showing log-linear relationship between ι and population

Among those parameter estimates, we also paid close attention to the relationship
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between γ, σ, and R0 due to their collective influence on the disease dynamics. Specifi-
cally, R0 and γ together determine the infection rate, while σ and γ describe the disease
progression cycle. We also found α to be consistently estimated to be around 1, which
is consistent with the estimates from He et al. (2010). Additionally, we wanted to
highlight two key relationships that are of interest. In He et al. (2010), a power-law
relationship between γ and population size was observed but was questioned due to a
lack of biological interpretation. Since this observation was made on a relatively small
sample of 20 cities and is closely related to how we should improve our previous model,
we wanted to test this hypothesis on a larger sample of 200 cities. The larger sample
showed that the observed linear relationship between γ and population size in He et al.
(2010) is due to random chance. Specifically, the scatterplot in Figure 3 did not show
a strong relationship between the two variables, and the corresponding low R2 value of
0.00443 suggested weak relationship strength.

Figure 3: Scatterplot showing relationship between γ and population

The parameter estimates for Model 2 are shown in table 3. In order to determine
whether shared parameters could better model the measles and improve the accuracy
of parameter estimates, we then developed Model 3, with the parameter estimates
presented in Table 4.
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Figure 4: Pair Plot showing relationships between parameters and population size using
the 200 cities
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Parameter Value

Amplitude 0.20
Cohort 0.19
γ 34.81
ι1 -3.91
ι2 0.86
R0 27.68
σ 43.90
σSE 0.06
IP 10.05
LP 8.82

(a) Shared Parameter Values across All Cities

City ψ ρ

London 0.10 0.49
Birmingham 0.12 0.55
Liverpool 0.13 0.50
Manchester 0.13 0.63
Sheffield 0.12 0.66
Leeds 0.12 0.73
Bristol 0.19 0.60
Nottingham 0.27 0.63
Hull 0.24 0.56
Bradford 0.21 0.63
Cardiff 0.24 0.60
Hastings 0.37 0.73
Keighley 0.34 0.57
Eccles 0.42 0.63
Uckfield.RD 0.45 0.82
Consett 0.39 0.67
Darwen 0.39 0.84
Bedwellty 0.91 0.33
Runcorn 0.60 0.53
Northwich 0.48 0.76
Southam.RD 0.61 0.54
Oswestry 0.49 0.60
Dalton.in.Furness 0.94 0.46
Romsey 0.77 0.43
Mold 8.49 0.05
Lees 0.56 0.67
Llandrindod.Wells 11.70 0.10
St.Ives.1 0.65 0.57
Withnell 0.65 0.58
Halesworth 0.69 0.84

(b) Unit-Specific Parameters

Table 3: Parameter Estimates and Values using Model 2: (a) Parameter values across
all 30 units. (b) Parameter estimates for selected 30 cities.

14



Parameter Value

Amplitude 0.28
Cohort 1.25e-11
γ1 38.25
R0 28.27
σ 242766264
σSE 0.07
IP 10.95
LP 8.82

(a) Shared Parameter Values across All Cities

City ι ψ ρ

London 1.60 0.09 0.48
Birmingham 2.51 0.14 0.60
Liverpool 3.06 0.14 0.49
Manchester 0.76 0.13 0.57
Sheffield 1.31 0.11 0.64
Leeds 1.61 0.14 0.67
Bristol 0.58 0.17 0.62
Nottingham 0.62 0.26 0.59
Hull 0.42 0.21 0.57
Bradford 1.22 0.18 0.59
Cardiff 0.39 0.26 0.61
Hastings 0.24 0.35 0.72
Keighley 0.33 0.31 0.59
Eccles 0.46 0.37 0.63
Uckfield.RD 0.26 0.41 0.97
Consett 0.33 0.38 0.64
Darwen 0.32 0.36 0.81
Bedwellty 0.15 0.81 0.32
Runcorn 0.27 0.55 0.58
Northwich 0.31 0.36 0.77
Southam.RD 0.15 0.71 0.51
Oswestry 0.11 0.49 0.57
Dalton.in.Furness 0.15 0.96 0.41
Romsey 0.05 1.01 0.36
Mold 0.05 6.03 0.07
Lees 0.17 0.55 0.66
Llandrindod.Wells 0.01 26.16 0.06
St.Ives.1 0.04 0.65 0.62
Withnell 0.09 0.71 0.54
Halesworth 0.05 0.55 0.81

(b) Unit-Specific Parameters

Table 4: Parameter Estimates and Values using Model 3: (a) Parameter values across
all 30 units. (b) Parameter estimates for selected 30 cities.

Along with parameter estimation, we plotted trace plots and simulation plots to
facilitate data analysis. An example simulation plot is shown in figure 5, in which we
plotted simulated observations and compared how those resemble the actual observed
data. The simulation plot contains the results of two simulations. The y-axis is the
number of cases simulated from the model, and the x-axis represents the time in which
those cases took place.
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Figure 5: Simulation Plot showing the data points simulated from the model, used to
compare with the actual data to determine whether the two align

While trace plots were plotted for each parameter in all three models, figure 6,
7, and 8 show examples of the traces of plots for R0 across the three models. All
36 replications were plotted against each other and showed trends that indicated how
the parameter space is explored. The trends of these traces thus suggested that our
estimates for R0 converge from the 36 replications, rather than diverging to different
values. For instance, in figure 7, we can see that the 36 iterations eventually converge
to the range between 30-40. The estimation for R0 from the three models is consistently
higher than commonly found R0 values for measles, which ranges from 12 to 18 (Keeling
and Ross, 2008). Nevertheless, this pattern for higher estimation is consistent with the
R0 estimation made in the He et al. (2010) paper. This could be explained by the high
values of R0 required by homogeneous population models to be consistent with the data
(He et al., 2010).
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Figure 6: Trace Plot for R0 from model 1

Figure 7: Trace Plot for R0 from model 2

Similar to the findings in He et al. (2010), we found discrepancies between the
estimation for infectious periods and latent periods in our three models and those in
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Figure 8: Trace Plot for R0 from model 3

the existing literature. While clinical observations indicate that LP should range from
8-10 days and IP should range from 4-6 days Keeling and Ross (2008), our estimates
for LP and IP across all three models are not consistent, which are shown in table 2, 3,
and 4. This observation suggests weak identifiability of the two estimates. Though He
et al. (2010) concludes that LP and IP share relationships with population size where
small populations tend to have estimates that are close to what was clinically found,
our estimates obtained using a larger data sets suggest that this is more likely due to
random chance.

The estimated values for σ were not consistent across the three models, with Model
1, 2, and 3 having unusually high values. Moreover, compared to the R0 trace plots
that indicate convergence across the different replications, the trace plots shown in
figure 9, 10, and 11 for σ did not suggest good convergence of the 36 replications. For
instance, in figure 11, the traces for sigma are diverging to different values ranging from
1× 104 to 4.6× 1028. Among the three models, Model 2 with ι varies log-linearly with
population size had some traces converging around 1 × 104, while others diverging to
different values. Furthermore, among the three models, the σ estimate for Model 2 is
the lowest, which suggests that we could explore how shared parameter models could be
adjusted further to produce better estimates for σ. These evidences led us to conclude
that σ is a weakly identified parameter that required further modification.
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Figure 9: Trace Plot for σ from model 1

Figure 10: Trace Plot for σ from model 2
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Figure 11: Trace Plot for σ from model 3

The design of the three models considers whether parameters were shared or unit-
specific, which can lead to the differences in the number of parameters being included
in the model and its dimensionality. If we had 20 units in the model, using a unit
specific parameter would add 20 to the model dimension, while employing a shared
parameter would only increase the model dimension by 1. Thus, we experienced the
tradeoff between model specificity and overfitting. Due to this case, we established
our goal to find a balance between the two, thus increasing predictive power and fitting
accuracy. The two model evaluation metrics we used were unit log-likelihood and Akaike
information criterion (AIC), to compare models’ ability to quantitatively describe the
observed data. Table 5 shows the comparison across unit log likelihood between the
three models for a selection of 30 cities. The value for log-likelihood reflects how well the
models were able to estimate the parameters and produce better fits for the data. When
holding the unit fixed, Model 1 showed consistently higher unit log-likelihood than
Model 2 and Model 3. Moreover, Model 1 had the lowest AIC value when compared to
Model 2 and Model 3, as shown in table 6. The low AIC value indicates that Model 1
is capable of balancing the trade-off between goodness-of-fit and complexity.
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Unit m1 ull m2 ull m3 ull

London -3803.61 -3934.44 -3971.18
Birmingham -3238.24 -3334.11 -3302.75
Liverpool -3399.41 -3500.80 -3521.16
Manchester 3238.61 -3395.42 -3400.28
Sheffield -2813.63 -2852.86 -2852.97
Leeds -2916.02 -3026.36 -2984.99
Bristol -2680.42 -2706.91 -2738.73
Nottingham -2705.18 -2717.37 -2724.92
Hull -2717.54 -2741.95 -2754.81
Bradford -2580.42 -2637.23 -2626.38
Cardiff -2363.83 -2392.78 -2385.18
Hastings -1583.19 -1589.62 -1587.18
Keighley -1460.37 -1462.70 -1463.39
Eccles -1550.48 -1560.80 -1555.03
Uckfield.RD -1533.71 -1545.90 -1541.14
Consett -1356.28 -1364.57 -1367.98
Darwen -1361.99 -1359.07 -1362.15
Bedwellty -1125.01 -1131.06 -1127.97
Runcorn -1214.65 -1226.00 -1228.31
Northwich -1191.51 -1201.15 -1197.14
Southam.RD -956.54 -963.39 -961.64
Oswestry -695.04 -703.03 -706.53
Dalton.in.Furness -726.71 -738.37 -740.03
Romsey -404.21 -411.58 -413.50
Mold -296.37 -306.09 -301.42
Lees -547.87 -554.92 -553.12
Llandrindod.Wells -147.27 -165.11 -156.90
St.Ives.1 -398.08 -413.15 -412.83
Withnell -366.15 -370.16 -372.85
Halesworth -315.51 -317.78 -317.38

Table 5: Comparison for unit log likelihood across the three models

Model 1 AIC Model 2 AIC Model 3 AIC

231980.16 233769.81 233809

Table 6: Total AIC for the three models

5 Discussion

This research project demonstrates the ability of POMP models to be applicable across
cities of varying sizes. By extending the original research scope of 20 cities to 200 cities,
we showcased the reliability of POMP models in an epidemiology mechanistic modeling

21



context. However, the scale and depth of the project is still limited to an extent and
has room for improvement. From parameter estimation and model comparison for the
200 cities, we found consistencies that aligns with prior research as well as new insight
that could empower future investigations. As the observation made in He et al. (2010)
suggests a power-law relationship between γ and population size, based on the data
analysis conducted on the 200 cities, we provided empirical evidence to conclude that
this observation is likely due to random chance.

On the other hand, the ι log-linear relationship with population size that was con-
cluded in He et al. (2010) was supported by the evidence found by fitting 200 cities
using unit-specific models, which was then taken into consideration for model fitting.
Similar to He et al. (2010), we found a pattern of relatively large value of R0 estimation
across all three models. This phenomenon can be explained by several factors, includ-
ing the disproportionate impact of peak incidences on R0 and reporting rates, which
results in higher R0 values aligning with the peaks in observed epidemics. Additionally,
the overestimation of R0 could reflect the initial stages of epidemic spread, potentially
capturing the higher contact rates among school-aged children rather than across the
entire population. The model’s tendency to extend these rates to adults, who are less
represented in the data, could further inflate R0 estimates. The assumptions related
to the transmission’s age structure also contribute to the variability in R0 calculations,
with the model’s limitations in fully accounting for age-specific transmission dynamics.
Moreover, the larger R0 figures may be influenced by the spatial distribution of trans-
mission, particularly in more populated urban settings, where the model’s estimates
diverge from expected values based on household data (He et al., 2010).

Another shared pattern across the three models is the differences in the infectious
period and latent period as compared to previous literature, which was also found by He
et al. (2010) when conducting analysis on the 20-city data set. However, when fitting
on this large data set, we found the relationship between LP, IP, and population size
that was suggested in He et al. (2010) is more likely due to random chance. Our results
do show the inverse relationship between the two, as IP and LP should add up to be
about 14 days (Keeling and Ross, 2008). Thus, more effort in the future could be put
into improving the weak identifiability of LP and IP, potentially by adding more shared
parameters and re-parameterizing the model to capture the disease characteristics more
accurately.

To compare the models’ ability to quantitatively describe the observed data, we used
AIC and log likelihood to facilitate our evaluation. The larger log likelihood value and
smaller AIC value for Model 1 when compared to the other two models suggests that
Model 1 produced parameter estimates of high accuracy and better fitting. However,
this result does not lead us to directly conclude that models with shared parameters
should not be considered in future modeling processes. We should instead fit a second
round for the shared parameter models using previously learned information from the
first round of fitting. For unit-specific models, we could choose the best parameter
estimates from all 36 replications, thus leading to high log likelihood. However, this
optimization strategy is not applicable to shared parameter models, as using shared
parameter estimates from different fits and combining different shared parameter esti-
mates could lead to lower log likelihood, making it less ideal. Unfortunately, due to
time constraints, we only had the chance to conduct 1 round of fitting for the cities. In
future investigations, we would take the top fit for the shared model and then replicate
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it 36 times. While fixing the shared parameter, we want to find the best parameter
estimates for the unit specific parameters, thus improving the log likelihood estimate.

Since the raw data set contains 1,402 cities, it would be interesting to see how the
POMP models could be adapted to fit all those cities and produce parameter estimates
of high accuracy. Although the data was carefully collected to record measles cases
back in the 1950s, it might still contain a few outliers that could have resulted from
multiple factors, including hospital closure during holidays or misrecorded cases in
small cities. Since researchers in the He et al. (2010) paper conducted detailed outlier
removal for the 20 cities and concluded that several data points were considered outliers,
future research studies could consider cleaning the raw data for the 1,402 cities through
rigorous outlier removal procedure to further improve the accuracy of model fitting
and parameter estimation. The decision to make a parameter shared or unit specific
could still be an interesting topic to explore in the future with ongoing development
of the MCAP method. Thus, it would be worthwhile to explore the possibility of
reparameterizing other parameters in the context of measles, further improving model
fitting.
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