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Abstract

The prototypical customer relationship management (CRM) panel structure is composed

of many customers (large N), with short histories (small T ), and multiple outcome met-

rics (multiple P ). Our paper aims to tackle the challenges of causal inference that firms

face in such CRM settings, which are additionally characterized by unobserved hetero-

geneity, time dynamics, and staggered adoption. Despite the success of synthetic control

methods (SCM) in contemporary marketing applications, extant variants typically ne-

cessitate “small N , large T” data regimes to be performant – e.g., a handful of firm- or

jurisdiction-level donor units, each with long time series.

To extend to the “large N , small T , multiple P” setting, we bridge SCM to the broader

causal matrix completion (MC) paradigm and leverage the “multiple P” ubiquitous to

contemporary CRM: the presence of multiple outcomes enables a shared matrix singular

value decomposition (cf. SCM’s factorization), which helps jointly identify individual-

level latent factors to establish conditional ignorability, compensating for overall short

time series at the customer level. We employ a Bayesian causal inference approach, speci-

fying a joint posterior of the nonrandom missingness of potential outcomes, together with

the likelihood of the observed outcomes. We introduce two distinct variants of Bayesian

causal MC models, each estimated independently through the implementation of the

Gibbs sampling (independent multiple P ’s) and the Hamiltonian Monte Carlo (concur-

rent multiple P ’s) -based data augmentation procedure. We empirically illustrate our

approach through a comprehensive customer-level database of gift card purchases and

redemptions from a U.S. hospitality startup. We compare the effectiveness with extant

SCM under the German reunification empirical study and devise a generalized frame-

work for marketing and statistics researchers applicable to a wide range of CRM panel

structures.

Keywords: Customer-Base Analysis, Bayesian Causal Inference, Counterfactual Esti-

mation, Synthetic Control Method, Panel Data, Latent Factor Model, Matrix Completion
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1
Introduction

In the past decade, business-to-consumer (B2C) firms across the globe have been at

the forefront of embracing digital marketing, in an effort to reach a broader range of

customers and audiences more effectively and quickly. This digitization, in turn, has led

to an unprecedented drive by B2C firms towards more atomic and real-time customer

relationship management (CRM), a function typically found within a firm’s marketing

arm that collectively encompasses the strategies and technologies of audience engagement,

lifecycle marketing, and customer lifetime value (CLV). Of fundamental importance to

accurately calculating CLV is accurately modeling and predicting customers’ retention

rate — a forward-looking expectation on the likelihood of an individual remaining as a

customer over a given time period. In doing so, firms can proactively target customers

who are most vulnerable to quitting, personalize marketing communications to upsell

or cross-sell, and even use these predictions to segment customers who are of low- or

negative- value to the firm. Conventional methods make use of metrics such as recency

and demographics to address the cold start problem in CRM, which arises when firms are

faced with the challenge of making inferences about customers based on limited data at

the outset of the relationship. However, companies often encounter a situation where they

observe a newly acquired customer on only one occasion (Padilla and Ascarza 2021). This

challenge severely hinders their ability to track the behavior and impression of customers

throughout their subsequent purchases.

So how can we differentiate between customers who have terminated their relationship
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with the firm from those who are merely experiencing an extended pause in their pur-

chasing activity (Fader and Hardie 2009)? In contractual settings (e.g., subscription or

membership), we observe the time period at which customers churn (i.e., end their formal

relationship with the firm), and thus the CLV models can be straightforward. On the

other hand, in non-contractual settings, where firms do not explicitly observe customer

churning, it presents a significant challenge for firms to tell if a customer — in particular,

a newly acquired one — is going to be retained or churn in the next period.

A common solution in non-subscription settings is to construct the probabilistic models

for CLV (Netzer et al. 2008; Fader and Hardie 2009; Fader et al. 2010) that often rely

on three latent parameters: lifetime (how long the customer relationship lasts), purchase

rate (how often purchases occur), and monetary value (the value of future transactions).

These three measures, also known as recency (R), frequency (F), and monetary (M) value

in RFM analysis, are unobserved in non-subscription settings, yet crucial for probabilistic

models like “Pareto/Negative Binomial Distribution (NBD)” (Schmittlein et al. 1987),

which seeks to predict future customer transactions and overall lifetime value. However,

the rigid assumptions of such a model1 have proven to be less applicable to a broader

range of non-subscription customer-level observational CRM data (Fader et al. 2010).

In particular, such observational CRM data often contain many individual customers

(large N) with jagged arrayed2 time-series3 cross-sectional4 features. Known as panel

data or longitudinal data, such CRM data also accompany many dimensions (multiple

P ) regarding transaction types, such as purchases or redemptions. With RFM analysis

aforementioned, we can measure at least six dimensions for such CRM panel data (i.e.,

a combination of purchases or redemptions with recency, frequency, or monetary value).

One may also consider incorporating additional important outcome metrics, such as the

clumpiness (C), which can be extended by a metric-based approach in RFM framework

(Zhang et al. 2015).

Unfortunately, existing marketing literature lacks explicit models that can accommodate

the common data challenges encountered in CRM. Consequently, this study aims to

address this gap by proposing a model suitable for CRM panel data often characterized

by the challenge of large N , small T , and multiple P .

In Table 1.1, we illustrate a simulated individual-level transaction history for N customers

and T periods, where N ≫ T . If we observe each cross-sectional customer n = 1, 2, . . . , N

at certain discrete-time periods t = 1, 2, . . . , 8 (here, 8 indicates the last period we could

1A Poisson distribution assumes that transactions can occur at any time for customer purchasing
while active.

2Customer-level transaction with various starting and ending period
3Often across small T due to the nature that only a tiny portion of loyal customers have frequent

transactions
4Often across large N , a common pattern in CRM data
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observe), then we mark a “✓” for that block. From Table 1.1, we can see that individual

customers are not necessarily always observed with a transaction (either purchase or

redemption). From a customer segmentation perspective (Ascarza et al. 2018), customer

n = 1 is considered as a loyal customer who is engaged with the firm, so such category

is not our primary target to retain as many customers as we can. Customers n = 2 and

n = 3 are called silently gone customers, since they become inactive early on. Customers

n = 4 and n = 5, in contrast, are those newly acquired customers. Notably, customers

n = 3 and n = 5 are known as one-time purchasers (or one-time redeemers), characterized

by a single purchase (or redemption). Lastly, n = N signifies customers with sporadic

transaction patterns. This category shares characteristics with loyal customers in terms of

their time span (roughly the same T ), but has a more complicated underlying mechanism.

We will take an in-depth look at a real-world CRM panel data application in Section 5.2.

Table 1.1: Customer-Level Transaction History

Small T (Periods)

Large N (Customers) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

n = 1 ✓ ✓ ✓ ✓ ✓ ✓
n = 2 ✓ ✓ ✓
n = 3 ✓
n = 4 ✓ ✓ ✓
n = 5 ✓

...
...

n = N ✓ ✓ ✓

Recognizing such a panel data challenge and noting the growing popularity of quasi-

experiments that promote causality research in marketing (Goldfarb et al. 2022) beyond

models in customer-base analysis, we propose a Bayesian causal matrix completion (MC)

model (to be introduced in Section 4.2.3) that explicitly works with customer-level panel

data featuring jagged arrays, large N , small T , and multiple P .

The remainder of the paper is organized as follows: In Chapter 2, we conduct a detailed

literature review on quasi-experiments, specifying the considerations and motivations

behind the selection of our model. In Chapter 3, we outline the mathematical derivations

and the underlying assumptions adopted in our model. In Chapter 4, we introduce

relevant models with a motivating example, specifically the German reunification. In

Chapter 5, we apply our Bayesian causal MC model to real-world CRM panel data. In

Chapter 6, we discuss our model’s contributions in terms of methodological advances

compared to a baseline model and suggest future work for further refinement.
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2
Literature Review

With observational data being a prototypical marketing data setting in contrast to ex-

perimental data, quasi-experimental designs have been intensively applied in marketing

causality research (Goldfarb et al. 2022). Their goal is to estimate the counterfactual of

an object had the treatment not occurred, thereby enabling us to overcome the funda-

mental problem of causal inference1 (Holland 1986). Several quasi-experimental designs

appear promising for CRM causality research, including propensity score matching (PSM;

Rosenbaum and Rubin 1983), difference-in-differences (DiD; Ashenfelter and Card 1985),

and the synthetic control method (SCM; Abadie and Gardeazabal 2003; Abadie et al.

2010).

In observational studies, the assignment of treatment is often not random, so these quasi-

experimental methods have various assumptions and/or specific data characteristics in

order to estimate the causal effects out of unconfoundedness (Kim et al. 2020). In sum-

mary, PSM estimates the probability (propensity score) of a unit receiving the treatment,

given observed characteristics (Rosenbaum and Rubin 1983). Then, like other matching

methods (Abadie and Imbens 2006; Doudchenko and Imbens 2016), PSM matches the

propensity score for control and treated units. However, we notice that panel data often

have time-varying confounders. Traditional PSM (Rosenbaum and Rubin 1983) does not

account for changes over time in the covariates, unfortunately. In addition, PSM assumes

that the assignment of units to treatment and control groups, based on the propensity

1That is, we can compare the counterfactual outcome with the observed outcome for the same obser-
vational unit and, therefore, derive the causal effect.
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score, is as good as random (conditional independence assumption). According to Kim

et al. (2020), the estimated treatment effects will be biased if there are unobserved char-

acteristics that affect assignment to treatment and are not orthogonal to the outcome.

DiD, on the other hand, compares the changes in outcomes over time between a treatment

group and a control group. PSM can be used in conjunction with DiD to ensure that the

treatment and control groups are comparable on baseline covariates. The conventional

DiD method (Card and Krueger 1994) requires that the trends in outcomes for both

groups would have been parallel in the absence of the treatment. However, the selection

of comparison units to reduce biases in observational studies is ambiguous (Abadie et al.

2010).

The generalization of the DiD methods, SCM, has been developed and intensively used

in comparative case studies in political science (Abadie and Gardeazabal 2003; Abadie et

al. 2010), with an explicit data-driven control unit selection procedure (Kim et al. 2020).

With a single treated unit, SCM creates a weighted convex combination of untreated

(control) units to construct a synthetic counterfactual (Abadie et al. 2010). Even though

we could relax the constraint that the standard SCM is not limited to only a single treated

unit, it still relies on an assumption that all treated units receive the treatment at a single

point in time, known as the static treatment assignment or static adoption assumption

(Doudchenko and Imbens 2016; Ben-Michael et al. 2021).

SCM plays a significant role in recent marketing literature, notably in examining the

causal effect of a soda tax on firms’ and consumers’ behaviors in Berkeley, CA (Rojas

and Wang 2020; Kim et al. 2020), and in assessing the impact of offline TV advertising on

various dimensions of online chatter (Tirunillai and Tellis 2017). In Figure 2.1, we outline

a flowchart2 for selecting different quasi-experimental estimators, based on various data

characteristics and assumptions.

2.1 Limitations in Synthetic Control Method

SCM, despite being “arguably the most important innovation in the policy evaluation

literature in the last 15 years” (Athey and Imbens 2017), has been shown to be very

unlikely to hold in real-world applications due to its restrictive weighting constraints

(Doudchenko and Imbens 2016). Furthermore, the limitation to convex combinations

(non-negative weights that sum to one, without an intercept) biases the SCM estimator

(Ferman and Pinto 2019; Carvalho et al. 2018).

In terms of statistical inference, SCM is also untenable (Kim et al. 2020). Abadie et

2The essential structure is inspired by a mind map of the taxonomy of causal inference, first introduced
by Prof. Kathleen Li at a conference in May 2023.
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Figure 2.1: Choice of Quasi-Experimental Designs

al. (2010, 2015) adopt the placebo test, a form of permutation test, whose validity

is challenged by Hahn and Shi (2017). They argue that the symmetry assumption is

violated and that the current form of the permutation test cannot serve as a proper tool

for inference with SCM.

In addition to its inherent limitations, SCM requires extensions to be applicable to panel

data. In Section 2.2, we will discuss existing extensions of SCM and illustrate how our

model integrates into the broader context.

2.2 Extensions on Synthetic Control Method

There are, broadly speaking, three categories of extensions to SCM (Pang et al. 2021).

The first category involves extending standard matching or re-weighting methods to panel

data settings. This includes best subset methods (Hsiao et al. 2011), which combine

panel data methods that use observed data to construct counterfactuals; regularized

weights (Doudchenko and Imbens 2016), which introduce a more flexible SCM estimator

by allowing negative weights and additive differences; and panel matching (Imai et al.

2021), an extension of matching methods that incorporates treatment history matching

and covariate balance into time-series cross-sectional data.

The second category is hybrid methods, also known as doubly robust methods. Some

previous research on doubly robust estimators includes synthetic DiD (Arkhangelsky et

al. 2021; a computational implementation of the synthetic DiD estimator for estimating

treatment effects in various contexts with repeated observations over time), augmented

SCM (Ben-Michael et al. 2021; an extension of SCM to settings with imperfect pre-

treatment fit, using an outcome model to estimate and correct bias), and augmented DiD
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(Li and Van den Bulte 2022; an estimator that extends over SCM by better handling

heterogeneity between treatment and control units for estimating the average treatment

effect on the treated, ATT).

The third category is factor models, also known as the generalized SCM (Xu 2017). Bai

(2009) first implements latent factor models (LFMs) that consider large N and large T

panel data models with unobservable multiple interactive fixed effects (IFE). Pang (2010;

2014) proposes nonlinear IFE models with exogenous covariates in a Bayesian hierarchical

framework. Gobillon and Magnac (2016) demonstrate that IFE models outperform SCM

in DiD settings when the factor loadings of the treatment and control groups do not share

common support. Xu (2017) then proposes a generalized SCM that unifies SCM with

linear fixed effects models, under the framework of which DiD is a special case. More

recently, Athey et al. (2021) propose a class of MC estimators that summarizes the IFE

extension on SCM as a subset of MC methods.

The aforementioned extensions have somewhat relaxed the innate weighting constraints,

accommodated multiple treated units, and enhanced the predictive performance and ro-

bustness of counterfactual estimation in SCM (Pang et al. 2021). However, these existing

extensions still encounter challenges not only in inference but also in prediction. As pre-

viously mentioned, the interpretability of the SCM placebo test as a permutation test is

compromised due to non-random treatment assignment (Hahn and Shi 2017). Addition-

ally, Frequentist inferential methods necessitate a repeated sampling interpretation, such

as a bootstrapping procedure, for quantifying uncertainties of a LFM (Xu 2017). Beyond

inferential limitations, the rigid parametric assumptions of existing models restrict the

full utilization of available panel data sources3 for counterfactual predictions (Beck and

Katz 2007; Pang 2010, 2014).

2.3 Bayesian Causal Inference

Given these existing challenges, we recognize that the Bayesian causal inference frame-

work (Li et al. 2023) presents a viable alternative. First, the Bayesian approach compre-

hensively captures uncertainties from the data generation process (DGP), parameter esti-

mation, and model selection (Pang et al. 2021). Second, Bayesian hierarchical modeling

accommodates data heterogeneity and dynamics, enabling flexible functional forms and

the use of shrinkage priors for model feature selection (Gelman 2005). Lastly, within the

Bayesian causal inference framework, the counterfactual in SCM is treated as a missing

data problem (Rubin 1976). This approach relies on the posterior predictive distribu-

tion of the treated counterfactuals to draw inferences about the treatment effects on the

3For example, time-series relationships among units based on their outcome trajectories, cross-
sectional relationships among units based on their observed characteristics, and temporal relationships
within units between their known past and unknown future.
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treated, considering such missingness under the missing not at random (MNAR) frame-

work since the assignment mechanism is allowed to correlate with unobserved potential

outcomes (Pang et al. 2021).

Several pieces of literature have adopted the Bayesian approach as an extension to SCM.

For example, Kim et al. (2020) propose two fully Bayesian SCM models with horseshoe

and spike-and-slab priors that are designed for a single treated unit. Their models assume

the availability of a sufficiently large number of control units to form a synthetic control

unit. Pinkney (2021) offers an improved and extended Bayesian SCM that builds on the

LFM with IFE, essentially providing a Bayesian perspective to Xu (2017). Pang et al.

(2021) introduce the dynamic multi-level LFM and develop an estimation strategy using

Markov chain Monte Carlo (MCMC). More recently, Martinez and Vives-i-Bastida (2023)

propose the Bayesian SCM as an alternative method to perform inference for the family

of SCM. They derive a Bernstein-von Mises (BvM) style result, outlining conditions

under which the Bayesian SCM estimator and the maximum likelihood estimator (MLE)

converge in the total variation sense.

This study, therefore, aims to continue the exploration of Bayesian SCM. In particular,

we adopt and adapt the framework presented by Pang et al. (2021) to fit panel data.

We propose a Bayesian causal MC model, drawing inspiration from Athey et al. (2021),

and thereby generalize the family of SCMs to include more flexible forms. In Chapter

3, we will first re-examine the block structure of our working panel data, in line with

Athey et al. (2021). Then, we will introduce our causal estimands and explicitly outline

all necessary assumptions. We also aim to follow and enhance the posterior predictive

inference approach of Pang et al. (2021).
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3
Framework

In Chapter 3, we begin by reinvestigating the block structure as first developed by Athey

et al. (2021). Then, we introduce the causal estimands that this study primarily focuses

on. After reviewing the assignment mechanisms, we eventually derive the posterior pre-

dictive inference that fits into our Bayesian causal inference framework. In Chapter 3,

we also present some interesting observations from previous research and propose them

here so that readers may further consider these theoretical results for future work.

3.1 Block Structure

Consider a longitudinal study with N cross-sectional units observed over T time periods.

We index the units by i ∈ {1, 2, . . . , N} and the time periods by t ∈ {1, 2, . . . , T}.
Within the potential outcomes framework, each unit i at each time t is associated with

two potential outcomes: Yit(0) under control conditions, and Yit(1) under treatment

conditions. Recalling the fundamental problem of causal inference (Holland 1986), the

observable outcome for unit i at time t is Yit = Yit(wit), where wit is a binary indicator

of treatment exposure.

3.1.1 Treatment Matrix

The matrix W, with elements wit, represents the treatment assignments for all units

across all time periods in a binary fashion, with 1 indicating treatment exposure and 0
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indicating no treatment. This can be formally represented as

W =


0 1 · · · 1 1

0 0 · · · 1 1
...

...
. . .

...
...

0 0 · · · 0 1

0 0 · · · 0 0


N×T

,

where each row corresponds to a cross-sectional unit i and each column to a time period

t. The pattern of the above example matrix W follows the staggered nature of treatment

adoption. We formally define the staggered adoption below, following Athey and Imbens

(2022).

Definition 1 (Staggered Adoption). Staggered adoption is defined by assigning each

unit i in a longitudinal study an adoption time ai from the set A = {1, 2, . . . , T, c}. For

ai ≤ T , unit i is a treated unit, receiving treatment at time ai; for ai = c > T , unit i is

a control unit, never receiving treatment within the study period. The treatment status

of unit i at time t is denoted by wit = I(t ≥ ai), where I is the indicator function.

3.1.2 Matrix Representation and Partitioning

Following the definition of the staggered adoption and the treatment assignment matrix

W, we now introduce the potential outcome matrix Y. First, we define two sets, where

Y stands for observed entries and N stands for missing entries in Y, corresponding to

the treatment exposure represented in W. We define Y as the set of pairs (i, t) with

i ∈ {1, . . . , N} and t ∈ {1, . . . , T}, such that wit = 0, representing the observed entries.

Conversely, N is the set of pairs (i, t) where wit = 1, indicating the missing entries in the

outcome matrix due to treatment exposure.

The potential outcome matrix Y is constructed to match the dimensions of W, with each

element Yit corresponding to the observed outcome for unit i at time t. Formally, this

can be represented as

Y =


Y11 Y12 · · · Y1,T−1 Y1T

Y21 Y22 · · · Y2,T−1 Y2T

...
...

. . .
...

...

YN−1,1 YN−1,2 · · · YN−1,T−1 YN−1,T

YN1 YN2 · · · YN,T−1 YNT


N×T

,

where Yit is observed if Yit = Yit(0) with (i, t) ∈ Y , and Yit is missing if Yit = Yit(1) with
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(i, t) ∈ N . The matched matrix Y for the above example matrix W is given by

Y =


Y11(0) Y12(1) · · · Y1,T−1(1) Y1T (1) (Early Adopter)

Y21(0) Y22(0) · · · Y2,T−1(1) Y2T (1) (Progressive Adopter)
...

...
. . .

...
...

YN−1,1(0) YN−1,2(0) · · · YN−1,T−1(0) YN−1,T (1) (Late Adopter)

YN1(0) YN2(0) · · · YN,T−1(0) YNT (0) (Never Adopter)


N×T

,

where Yit(0) and Yit(1) indicate the observed and the missing portions of the panel data

for (i, t) ∈ Y and (i, t) ∈ N , respectively. In this example, an early adopter has a long

panel of missing data. On the other hand, a never adopter has observed data across

the entire time span. We define the matrix partitioning below to split the observed and

missing parts of Y.

Definition 2 (Matrix Partitioning). We partition the indices of Y into two sets

1. Sobs ≡ {(i, t)|wit = 0}, where the outcome Yit(wit) is observed,

2. Smis ≡ {(i, t)|wit = 1}, where the outcome Yit(wit) is missing.

The union S = Sobs ∪ Smis constitutes all indices. The observed and missing parts of Y

are denoted as Y(0) and Y(1), respectively.

3.1.3 Covariate Matrix

Then, we introduce the covariate matrix X to characterize the block structure of any

data characteristics. Let Xit be a (p+ 1)× 1 vector of exogenous covariates for unit i at

time t such that

Xit =


Xit1

Xit2

...

Xit,p+1


(p+1)×1

,

where Xitj is the j-th covariate of unit i at time t. The covariate matrix X for unit i over

T time periods, Xi, is a T × (p+ 1) matrix given by

Xi =


X⊤

i1

X⊤
i2
...

X⊤
iT

 =


Xi11 Xi12 · · · Xi1,p+1

Xi21 Xi22 · · · Xi2,p+1

...
...

. . .
...

XiT1 XiT2 · · · XiT,p+1


T×(p+1)

,

where each row X⊤
it represents the transposed covariate vector for unit i at time t.
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We define the full covariate matrix X for a population of N units as the collection

{X1, X2, . . . , XN}, where each Xi is stacked vertically to form

X =


X1

X2

...

XN

 ,

creating a block diagonal matrix where each block is a T × (p + 1) covariate matrix for

each unit.

This summarizes the theoretical formulation of the panel data characteristics. At the

beginning of Chapter 4, we present a treatment adoption plot for German reunification

that visually demonstrates the degree and shape of data missingness.

3.2 Estimands

Following the construction of the treatment and outcome matrices W and Y, we now

introduce key assumptions and define the causal estimands for our study. The following

assumptions are crucial for the validity of causal inference in the panel study setting.

Building upon the framework established by Athey and Imbens (2022), we tailor the

assumptions to the specific context of this study. In doing so, we introduce two key as-

sumptions designed to exclude the possibility of cross-sectional spillover and anticipation

effects.

Assumption 1 (Homogeneous Treatment Effect Across Units). For all units i, j, time

periods t, and adoption dates a and a′, the effect of adopting treatment at time a relative

to a′ on the outcome in period t is the same for all units, such that

Yit(a)− Yit(a
′) = Yjt(a)− Yjt(a

′).

This first assumption, adapted from the fourth assumption made by Athey and Im-

bens (2022), implies a constant treatment effect across units, negating the presence of

unit-specific treatment effect variations and cross-sectional spillover effects. It is also com-

monly referred to as the cross-sectional stable unit treatment value assumption (SUTVA).

Assumption 2 (No Anticipation). For any unit i and for all time periods before its

treatment adoption t < ai,

Yit(ai) = Yit(c),

where Yit(c) represents the potential outcome when the treatment vector is all zeros (i.e.,

under the pure control condition).
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The above assumption, adapted from the second assumption made by Athey and Imbens

(2022) by replacing Yit(∞) with Yit(c) for notation clarity, implies that the current un-

treated potential outcomes are not impacted by future treatment. The violation of this

assumption may occur if units anticipate certain policies or treatments prior to their im-

plementation. After introducing these two assumptions, which empirical researchers often

rely on without explicit acknowledgment, we introduce three important causal estimands

for this study.

Definition 3 (Treatment Effect). The (individual) treatment effect for a treated unit i,

with adoption time ai ≤ T , at time t ≥ ai, is defined as

δit = Yit(ai)− Yit(c),

representing the difference between the observed post-treatment outcome and the coun-

terfactual outcome, assuming the unit had never received treatment by period T .

Definition 4 (Sample Average Treatment Effect on the Treated, ATT). The sample

average treatment effect on the treated (ATT) for units under treatment for a duration

of τ periods is

δτ =

∑
i:T−τ+1≤ai≤T δi,ai+τ−1

Ntr,τ

,

where Ntr,τ is the number of treated units in the sample that have been under treatment

for τ periods.

Definition 5 (Root Mean Square Error, RMSE). Given a longitudinal study with N

cross-sectional units observed over T time periods, let Yit(wit) denote the observed out-

come for unit i at time t, where wit ∈ {0, 1} indicates the absence or presence of treatment.

Let Ŷit(0) and Ŷit(1) represent the predicted outcomes under control and treatment con-

ditions, respectively. The root mean square error (RMSE), denoted as ρ, is defined as

the square root of the average squared difference between the observed and predicted

outcomes, adjusted for the treatment status, across all units and time periods. It is given

by

ρ =

√√√√ 1

N × T

N∑
i=1

T∑
t=1

(
wit · (Yit(1)− Ŷit(1))2 + (1− wit) · (Yit(0)− Ŷit(0))2

)
,

where wit = 1 if unit i is treated at time t, and wit = 0 otherwise.

The treatment effect estimand is a critical indicator for testing the presence of causal

effects. In longitudinal studies, the interest often extends to such effects over various

periods, which implies the importance of examining the sample ATT. Lastly, the RMSE

plays a vital role in causal inference placebo tests. It quantifies the discrepancy between

13



observed outcomes and those predicted by a model under the null hypothesis of no treat-

ment effect, thereby measuring the effectiveness of control and treatment predictions. In

Chapter 5, we derive these estimands through our model from the data, offering readers

a comprehensive understanding of these causal estimands with practical implications at

that stage.

3.3 Assignment Mechanisms

The subsequent assumption adopted in this study is related to the treatment assignment

mechanism. First, we review the concept of the assignment mechanism. Among the three

basic restrictions on assignment mechanisms outlined in Imbens and Rubin (2015), we

adopt one as our forthcoming assumption.

Definition 6 (Assignment Mechanism). Let there be a finite set of units indexed by N =

{1, 2, . . . , n}, and let W be an assignment matrix where wi corresponds to the allocation

of unit i ∈ N . The assignment mechanism, denoted as P(W|X,Y(0),Y(1)), is a function

mapping the covariate space and potential outcomes to a probability distribution over

the Cartesian product {0, 1}N , the set of all possible assignments. Formally,∑
W∈{0,1}N

P(W|X,Y(0),Y(1)) = 1

for every possible realization of the covariate matrixX and potential outcomesY(0),Y(1).

This implies that P(W|X,Y(0),Y(1)) is row-exchangeable, as it is invariant under any

permutation of its index set N .

We assume that the assignment mechanism in this study can be decomposed into indi-

vidual probabilities for each unit, independent of the assignments of other units. This

assumption, called individualistic assignment, states that each unit’s likelihood of receiv-

ing treatment is unaffected by the treatment status of any other unit. For a rigorous

definition of individualistic assignment, as well as the other two assignment mechanisms,

readers are encouraged to read Chapter 3 of Imbens and Rubin (2015).

Assumption 3 (Individualistic Assignment). Consider a population of N units, each

denoted by i ∈ {1, 2, . . . , N}. Let W = (w1(a1), w2(a2), . . . , wN(aN)) represent the vector

of adoption times for treatment, X = (X1, X2, . . . , XN) the vector of covariates, Y(0) =

(Y1(0), Y2(0), . . . , YN(0)) the vector of observed potential outcomes (under control) for

each unit, and Y(1) = (Y1(1), Y2(1), . . . , YN(1)) the vector of missing potential outcomes

(under treatment) for each unit. The adoption time of unit i, wi(ai), is assumed to be

independent of the covariates or potential outcomes of other units, and also independent
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of their time of adoption, conditional on Xi, Yi(0), and Yi(1). Formally,

P(W|X,Y(0),Y(1)) =
N∏
i=1

P(wi(ai)|Xi, Yi(0), Yi(1)).

Assumption 4 (Positivity). We ensure that each unit has a non-zero probability of being

treated, satisfying the condition

0 < P(wi(ai)|Xi, Yi(0), Yi(1)) < 1 ∀ i.

The positivity assumption is essential for the validity of the individualistic assignment

assumption.

3.4 Posterior Predictive Inference

We note that P(wi(ai)|Xi, Yi) = P(wi(ai)|Xi, Yi(0), Yi(1)), indicating that the treatment

assignment mechanism may be correlated with Yi(1), the counterfactual outcome, as

discussed by Pang et al. (2021). To prevent potential confounding, it is common to

adopt another assumption known as the ignorability assumption (Rubin 1978).

Assumption 5 (Ignorability of Treatment Assignment). Let X represent pre-treatment

covariates, W the treatment assignment, and Y(0), Y(1) the potential outcomes under

control and treatment, respectively. The treatment assignment is said to be ignorable if

it satisfies the following condition:

(W ⊥⊥ Y(0),Y(1)) |X,

where ⊥⊥ denotes statistical independence.

The assumption specified above indicates that, conditional on the covariates X, the treat-

ment assignmentW is statistically independent of the potential outcomesY(0) andY(1).

This allows for the unbiased estimation of causal effects from observational data by ad-

justing for X. However, under conditions where data are MNAR, this assumption may

not hold. In MNAR scenarios, the relationship between the treatment assignment mech-

anism and unobserved (missing) outcomes could introduce bias that cannot be mitigated

merely by conditioning on the observed covariates and outcomes. Therefore, following

Pang et al. (2021), we propose a stricter assumption to address this challenge, which is

stated below.

Assumption 6 (Latent Ignorability). The assignment mechanism is independent of any

missing or observed untreated outcomes for each unit i, conditional on the observed pre-
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treatment covariates Xi and a vector of latent variables Ui = (ui1, ui2, . . . , uiT ). That

is,

P(wi(ai)|Xi, Yi, Ui) = P(wi(ai)|Xi, Yi(0), Yi(1), Ui) = P(wi(ai)|Xi, Ui),

where Xi may include both time-varying and time-invariant pre-treatment covariates,

and Ui captures unit-level heterogeneity, such as unit fixed effects and unit-specific time

trends.

The above assumption is considered an extension of the strict exogeneity assumption often

assumed in fixed effects (FE) models (Xu 2017). Once we condition on Xi and Ui, the

entire time series of Yi is assumed to be independent of wi(ai). This result is analogous

to the uncorrelatedness of error terms and covariates in the strict exogeneity assumption.

We present this finding as a proposition below. It precludes dynamic feedback from past

outcomes on current and future treatment assignments, conditional on Ui (Pang et al.

2021).

Proposition 1 (Latent Ignorability and Strict Exogeneity). Latent ignorability extends

the concept of strict exogeneity by incorporating latent variables that capture unobserved

heterogeneity. For a treatment assignment mechanism wi(ai), latent ignorability can be

formalized as

P(wi(ai)|Xi, Ui) = P(wi(ai)|Xi, Yi, Ui),

where Ui represents the latent variables that are potentially correlated with the unob-

served components of the outcome.

Proof. See Appendix A.1.

Below we state another proposition that connects the concept of latent ignorability with

the parallel trends assumption1 (Pang et al. 2021). The latent ignorability assumption

enhances this by considering not only observable covariates but also unobserved factors

through latent variables.

Proposition 2 (Latent Ignorability and Parallel Trends). Under the latent ignorability

assumption, if the latent variable Ui is a unit-specific constant such that ui1 = ui2 =

· · · = uiT = ui for all i, then the parallel trends assumption is satisfied. Specifically,

latent ignorability implies that, in the absence of treatment, the untreated potential

outcomes for all units would follow a parallel path over time.

Proof. See Appendix A.2.

1In the absence of treatment, the potential outcomes for treated and untreated units would exhibit
similar trends over time.
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We make an additional assumption, called the feasible data extraction assumption, to

allow the factorization of unit-specific time trends into multiple common trends with

heterogeneous impacts, as discussed in Xu (2017), Athey et al. (2018), Bai and Ng

(2021), and Pang et al. (2021). This assumption is fundamental to the factor-augmented

approach upon which our model is constructed.

Assumption 7 (Feasibility). For each unit i, it is assumed there exists an unobserved

covariate vector Ui, such that for the entire population of N units over T time periods,

the stacked (N × T ) matrix U = (U1, . . . , UN) can be approximated by the product of

two lower-rank matrices:

U ≈ Γ⊤f ,

where f = (f1, . . . , fT ) represents a (r×T ) matrix of common factors and Γ = (γ1, . . . , γN)

denotes a (r ×N) matrix of factor loadings, with the rank r ≪ min{N, T}.

This approximation suggests that the complex structure of unobserved covariates across

units and times can be effectively represented by a limited set of underlying factors (ft)

and their loadings on each unit (γi). This mechanism is akin to matrix factorization

(MF) and demonstrates a connection to SCM, which is further detailed in Appendix B.

However, it is important to note that the feasibility assumption might be compromised

if unit-specific time trends are highly idiosyncratic.

Before we can fully derive the posterior predictive inference, we further assume that the

exchangeability assumption is met. This assumption states that the statistical proper-

ties of (X⊥
it , Yit(c)) remain invariant regardless of the observation order. Additionally,

we revisit de Finetti’s theorem (de Finetti 1963) to provide readers with the necessary

background to understand our derivation of the posterior predictive distribution at the

end of Chapter 3.

Assumption 8 (Exchangeability). Given a vector of latent variables U, the sequence

{(Xit, Yit(c))}t=1,...,T
i=1,...,N is exchangeable. That is, the joint distribution of {(Xit, Yit(c))}

remains invariant to permutations in the indices i and t. Formally, for any permutation

π over the set I = {1, . . . , N} × {1, . . . , T}, it holds that

(Xπ(i)t, Yπ(i)t(c))
d
= (Xit, Yit(c)),

where
d
= denotes equality in distribution.

Theorem 1 (de Finetti 1963). For an infinite sequence of exchangeable binary random

variables (X1, X2, . . .), there exists a probability measure µ on [0, 1] such that the joint

distribution of any finite subsequence (X1, . . . , Xn) is a mixture of independent and identi-

cally distributed (i.i.d.) Bernoulli distributions. Specifically, for any n and any particular
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sequence (x1, . . . , xn) in {0, 1}n, we have

P(X1 = x1, . . . , Xn = xn) =

∫ 1

0

θs(1− θ)n−sdµ(θ),

where s =
∑n

i=1 xi is the number of 1’s in the sequence (x1, . . . , xn).

Proof. See Kirsch (2019).

Following the approach in Pang et al. (2021), we derive the posterior predictive distri-

bution of the counterfactual outcome Y(1) as

P(Y(1)|X,U,Y(0),W)

∝ P(X,U,Y(0),Y(1)) · P(W|X,U,Y(0),Y(1)) (Bayes’ Theorem)

∝ P(X,U,Y) · P(W|X,U,Y) (Latent Ignorability)

∝ P(X∗,Y) · P(W|X∗,Y) (X∗ = (X,U))

∝ P(X∗,Y) (Normalizing Constant)

∝ P ({X∗
it, Yit}) (Exchangeability)

∝
∫ ∏

it∈Smis

f(Yit(1)|X∗
it, θ

∗)
∏

it∈Sobs

f(Yit(0)|X∗
it, θ

∗)π(θ∗) dθ∗. (de Finetti’s Theorem)

We apply Bayes’ theorem in the second line. Then, we apply our latent ignorability as-

sumption and proceed to the third line. In the fourth line, we consider X∗ = (X,U),

which is a collection of covariates and latent variables. The fifth line omits the normal-

izing constant term P(W|X∗,Y) since this treatment assignment mechanism does not

depend on Y(1). The penultimate line applies the exchangeability assumption, where

each P ({X∗
it, Yit}) is assumed to be i.i.d., given some parameters and their prior distri-

butions. We apply de Finetti’s theorem to arrive at the last line, deriving that θ∗ is the

parameter governing the DGP of Yit, conditioned on X∗
it and θ∗ = (θ,U). We present

this development as a proposition, with a rigorous proof available in Appendix A.1 of the

Supplementary Materials of Pang et al. (2021).

Proposition 3 (Posterior Predictive Distribution). Given covariates X, latent variables

U, observed outcomes Y(0), and treatment assignment W, the posterior predictive dis-

tribution of the counterfactual outcome Y(1) is derived as

P(Y(1)|X,U,Y(0),W) ∝
∫ ∏

it∈Smis

f(Yit(1)|X∗
it, θ

∗)︸ ︷︷ ︸
posterior predictive distribution

∏
it∈Sobs

f(Yit(0)|X∗
it, θ

∗)︸ ︷︷ ︸
likelihood

π(θ∗) dθ∗,
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where Smis and Sobs denote the partitioning sets of missing and observed data indices,

respectively, and θ∗ are the parameters governing the DGP of Yit, conditioned on X∗
it and

latent parameters θ∗.

Proof. See Appendix A.1 of the Supplementary Materials of Pang et al. (2021).

This concludes Chapter 3. In Chapters 4 and 5, we define and later implement our model

in two empirical applications to demonstrate the core essence of our model and assess its

performance against existing extensions in SCM.
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4
Methodology

Chapter 4 can be divided into two parts. In the first part, we present a well-known

application of SCM — the German reunification — as motivation. This discussion will

cover the problem of interest and how it aligns with our paradigm of block structure, as

introduced in Section 3.1. The second part of Chapter 4 then explores previous methods

that have attempted to address this problem. We will reintroduce these methods using

consistent notation and ultimately derive the final functional form needed to implement

our model.

4.1 German Reunification

The event of German reunification unfolded between November 9, 1989, and March 15,

1991. The German Democratic Republic (East Germany) joined the Federal Republic of

Germany (West Germany), marking the end of a division that had been in place since

the end of World War II. The reunification of East and West Germany in 1991 is often

considered an important social science quasi-natural experiment (Redding and Sturm

2008), where, for instance, West Germany serves as our unique treatment unit. We have

data on GDP per capita for West Germany and other countries. Assuming we also have

the ability to collect covariates that could potentially influence GDP per capita growth,

the question arises: Can we leverage the existing data to estimate what the GDP per

capita of West Germany would have been had it not united with East Germany in 1991?
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The immediate answer to this question is straightforward. We consider the other countries

as our control units, or a donor pool (Abadie et al. 2014). Thanks to Hainmueller

(2014), replicated data for German reunification are available. This dataset includes 17

OECD member countries (including West Germany, the USA, the UK, Switzerland, and

others) with annual data from 1960 to 2003. The data contain a single outcome variable

Y, GDP per capita for West Germany, which is adjusted for Purchasing Power Parity

(PPP) and measured in 2002 USD. Additionally, the dataset includes a set of standard

economic predictors X, such as average trade openness, average inflation rate, average

industry share of value added from 1981 to 1990, average percentage of secondary school

attainment in the total population aged 25 and older from 1980 to 1985, and average

investment rate from 1975 to 1980. For simplicity, we treat German reunification as

a non-duration time event that occurred in 1991. Hence, the pre-intervention period

spans from 1960 to 1990 (inclusive), and the post-intervention period is from 1991 to

2003. Table 4.1 shows the pre-reunification characteristics of West Germany alongside

the population-weighted average of the other 16 OECD countries in the donor pool.

Table 4.1: Economic Indicators for West Germany and OECD Sample

Indicator (Units) West Germany OECD Sample

GDP per capita (USD) 15808.9 13669.4
Trade openness (%) 56.8 59.8
Inflation rate (%) 2.6 7.6
Industry share (%) 34.5 33.8
Schooling (%) 55.5 38.7
Investment rate (%) 27.0 25.9

Clearly, we see from Table 4.1 that the pre-reunification characteristics do not align

well if we simply consider the population-weighted average. The essence of computing

the counterfactual GDP per capita for West Germany lies in aligning the pre-treatment

characteristics (X) and outcome (Y) effectively. By assigning different weights to each

OECD member country, where the weights can be obtained via a convex optimization

algorithm (Abadie et al. 2014), we construct a counterfactual West Germany sample that

matches the pre-treatment data, including both the outcome and covariates. The core

idea here is to turn the observational data into a quasi-natural experiment, as long as

this process can control for those unobserved variables.

In Figure 4.1, we display the outcome variable (Y) in a time-series plot. There is no

missingness across Y; however, GDP per capita after 1990 for West Germany is funda-

mentally different from its former regime. The observed data for West Germany from

1991 to 2003 should instead be considered as MNAR, where we could apply our model

to impute the missingness and compute the GDP per capita of the counterfactual West

Germany had reunification not occurred. Figure 4.2 illustrates that West Germany, the

21



Figure 4.1: Trends in Per Capita GDP across 17 Countries

treated unit, is considered to have missing data after the intervention (colored dark red).

Recall Definition 3, the treatment effect can then be estimated via

δWest Germany,t = YWest Germany,t(1)− YWest Germany,t(0),

where δWest Germany,t is minimized to 0 before the intervention (year 1990, inclusive). Many

researchers have attempted to demonstrate a negative treatment effect resulting from the

German reunification (Abadie et al. 2014; Pinkney 2021; Pang et al. 2021). How

confident are their claims? In Section 4.2, we review and replicate the methods that

researchers have employed to address this question.

4.2 Modeling

Now, we review two models: the standard SCM as proposed by Abadie and Gardeazabal

(2003) and Abadie et al. (2010, 2014), along with the Bayesian alternative to the stan-

dard SCM, complemented by the IFE model as proposed by Pinkney (2021). Then, we

introduce our Bayesian causal MC model. Broadly speaking, we demonstrate how our

model integrates into the interdisciplinary area of Bayesian causal inference, with appli-

cations in econometric modeling, and probabilistic machine learning, with applications
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Figure 4.2: Treatment Status by Country Over Time

in recommender systems1.

We regard Bayesian causal MC as the most generalizable variant within the SCM family.

To demonstrate its dual advantages, we analyze its performance against other existing

SCM extensions (standard SCM and Bayesian SCM with IFE) in terms of efficiency and

illustrate how it fits our paradigm of large N , small T , and multiple P for enhanced

generalizability.

4.2.1 Underlying Factor Model of Standard SCM

SCM, initially introduced by Abadie and Gardeazabal (2003) and further developed by

Abadie et al. (2010), serves as a fundamental approach in causal inference studies. In a

longitudinal study with N +1 units observed over T time periods, where one unit (j = 0)

is treated and N units act as potential controls within a donor pool, SCM constructs

a synthetic control to estimate counterfactuals. For unit i at time t, let Yit denote the

observed outcome, with Yit(1) and Yit(0) representing potential outcomes under treatment

and control, respectively. The treatment assignment occurs at time T0+1, differentiating

pre-treatment periods (t = 1, . . . , T0) from post-treatment periods (t = T0 + 1, . . . , T ).

1Due to the length, we only cover the first perspective on Bayesian causal inference in Chapter 4.
For readers interested in gaining an understanding of our proposed model from a probabilistic machine
learning perspective, please visit Appendix B.
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The synthetic control’s outcome for the treated unit, Ŷ0t, is computed as

Ŷ0t =
N∑
j=1

ω̂jYjt(0),

where the weights ω̂ are optimized to minimize the squared difference between the treated

unit’s pre-treatment outcomes and the weighted average of the control units, subject to

the constraints that the weights are non-negative and sum to one.

Model 1 (Synthetic Control Method, SCM). The underlying factor model of SCM is

Yit = w⊤
itδit +X⊤

i ξt + αt + Γ⊤
i f

p
t + εit,

and its matrix representation is

Y = W⊤δ +X⊤ξ +α+ Γ⊤f + ε,

where Y is the matrix of potential outcomes for all units across times, including both

control and treatment cases. W, the binary treatment indicator matrix, assigns treatment

status across units and times. δit, represented by δ in matrix form, is the heterogeneous

treatment effect (HTE) for unit i at time t. X aggregates observed covariates into a

matrix, with columns for specific covariates and rows corresponding to units at different

times. Hence, Xi is the vector of covariates specific to unit i, structured within X. ξt,

denoted by ξ, captures time-varying effects. αt, represented by α, denotes fixed effects

associated with time t. ft, constituting the matrix f , is the (1× L) vector of unobserved

common factors. Γi, constituting the matrix Γ, is the (L × 1) vector of unknown factor

loadings. Lastly, εit, the error term for unit i at time t, is compiled in the error matrix ε.

In Model 1, we combine the factor model discussed by Abadie et al. (2010) with the SCM

component from Abadie et al. (2014), specifically, the synthetic control’s outcome part.

Here, we introduce the matrix representation and rearrange the matrix multiplication

order as in Abadie et al. (2010). Model 1 enables the estimation of the causal effect of

the intervention on the treated unit during post-intervention periods, denoted as δ0t =

Y0t(1) − Ŷ0t for t > T0. This estimator represents a more generalizable form of the DiD

estimator, given the relaxation of underlying assumptions. The relationship between

them is presented as a proposition below.

Proposition 4 (SCM as a Generalized Form of DiD). SCM can be viewed as a gener-

alized form of the DiD estimator when SCM assigns equal weights to control units that

satisfy the parallel trends assumption with the treated unit. Under these conditions, and

assuming additive effects, SCM could replicate the DiD estimator.

Proof. See Appendix A.3.
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4.2.2 Functional Form of Bayesian SCM with IFE

To understand Pinkney’s (2021) Bayesian SCM with IFE model, we divide it into two

components: the pure Bayesian version of the standard SCM (Tuomaala 2019; Kim et

al. 2020) and the IFE model in LFM (Bai 2009; Xu 2017), which belongs to the family

of panel data models in econometrics. Below, we reintroduce Pinkney’s (2021) Bayesian

SCM IFE model by correcting the notation used in their proposed functional forms.

Model 2 (Bayesian Synthetic Control Method with Interactive Fixed Effects, Bayesian

SCM IFE). We define the following functional form to accurately incorporate interactive

fixed effects

Yit = w⊤
itδit +X⊤

it ξ + Γ⊤
i ft + εit,

where Yit denotes the potential outcome for unit i at time t, w⊤
itδit represents the treatment

effect for unit i at time t, X⊤
it ξ captures the effects of observed covariates, Γ⊤

i ft describes

the interaction between unit-specific factor loadings and common latent factors, and εit

accounts for the idiosyncratic error term.

Its matrix representation is

Y = W⊤δ +X⊤ξ + Γ⊤f + ε,

with Y representing the matrix of potential outcomes across all units and time periods,

W⊤δ capturing the matrix of treatment effects across all units and time periods, X as

the covariate matrix with coefficients ξ, Γ signifying the matrix of unit-specific factor

loadings, f as the matrix of common latent factors, and ε compiling the error terms.

Model 2 enhances Bayesian SCM by integrating the IFE model, initially proposed by Bai

(2009), and further elaborated by Xu (2017) in a generalized SCM. Model 2 overcomes the

limitations of generalized SCM through a two-step estimation process: initially estimating

IFEs for the control group and subsequently capturing the treated unit’s latent factors

via their factor loadings in the pre-treatment phase. However, Pinkney (2021) critiques

this methodology for potentially reducing estimation efficiency due to the separate fitting

of latent factors and loadings. By estimating latent factors concurrently while preserving

the treated unit’s data in the treatment phase, Model 2 effectively utilizes more data for

estimation, yielding comprehensive uncertainty distributions for each parameter.

Bayesian SCM IFE incorporates the components X⊤
it , Γ

⊤
i , and ft, alongside an idiosyn-

cratic error term εit. Adhering to the methodological underpinnings suggested by Farouni

(2015), Model 2 employs a simplified approach for estimating Bayesian latent factor load-

ings and weights. This approach ensures the factors ft are uncorrelated, and applies

constraints on the factor loading matrix Γ⊤
i to set upper-triangular elements to zero
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and ensure positivity in the diagonal elements, therefore enhancing interpretability and

estimation efficiency.

4.2.3 Functional Form of Bayesian Causal MC

In this thesis, we present two versions of Bayesian causal MC models, each with its

advantages and preferred applications. The first model, Bayesian causal MC with in-

dependent multiple P ’s, extends the functional forms of Bayesian SCM as discussed in

Pang et al. (2021) and MC in Athey et al. (2021). This model enables multi-outcome

modeling through either an iterative or a separate Bayesian hierarchical modeling process

with dynamic factors. The second model, Bayesian causal MC with concurrent multiple

P ’s, employs an original approach that allows for simultaneous multi-outcome modeling

by utilizing a shared matrix singular value decomposition (SVD), comparable to SCM’s

factorization. This approach helps to jointly identify individual-level latent factors to

establish conditional ignorability. Although these Bayesian causal MC models differ in

their functional forms and specific implementations, they lead to similar expected out-

comes. Both models are well-suited for addressing challenges with large N , small T , and

multiple P , and we aim to demonstrate this in later empirical applications.

Model 3 (Bayesian Causal Matrix Completion with Independent Multiple P ’s). 2 Fol-

lowing the functional form proposed by Pang et al. (2021), we introduce a linear model

that estimates the counterfactual outcome for unit i at time t and outcome dimension p,

such that

Y p
it = X⊤

it ξ
p︸ ︷︷ ︸

Constant Effects

+ Z⊤
it ζ

p
i︸ ︷︷ ︸

Unit-level Effects

+ A⊤
itα

p
t︸ ︷︷ ︸

Time-level Effects

+ Γ⊤
i f

p
t︸ ︷︷ ︸

Latent Factors

+ εpit︸︷︷︸
Error Term

,

for p = 1, 2, . . . , P . The matrix representation of the model is

Yp = X⊤ξp + Z⊤ζp +A⊤αp + Γ⊤fp + εp,

where Yp is the matrix of potential outcomes for all units and times under outcome

dimension p. X, Z, and A are matrices of covariates with constant effects, unit-level

random effects, and time-level random effects, respectively, each associated with their

coefficient vectors ξp, ζp, and αp. The term Γ⊤fp captures the contribution of latent

factors, with Γ being the matrix of unit-specific factor loadings and fp the matrix of latent

factors. εp represents the matrix of error terms, assumed to be normally distributed with

mean zero and variance σ2.

2We have revised certain components in bpCausal, an R software developed by Pang et al. (2021).
We introduce a new framework, called BCMC, designed to be effectively implemented in scenarios with
large N , small T , and multiple P . Detailed replication codes, including the revised parts, can be found
in Appendix C.3.
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Model 4 (Bayesian Causal Matrix Completion with Concurrent Multiple P ’s). 3 We

define the jointly encoding multi-output SCM latent factor specification as a 3-way fac-

torization

Y p
it = ftΣ

pγi + εpit,

or, in its matrix representation,

Yp = fΣpΓ+ εp,

where Yp is the matrix of potential outcomes for all units across all times under outcome

dimension p. The matrix f is (T × L), with the row vector ft corresponding to the L-

dimensional latent factors at time t. Σp is the (L × L) diagonal scaling matrix, unique

to each outcome p, scaling the impact of the latent factors. The matrix Γ is (L × N)

and contains the factor loadings for each unit, with γi being the column vector for unit i.

The matrix εp is the (T ×N) matrix of error terms for outcome dimension p, with each

element εpit assumed to be normally distributed with mean zero and variance σ2.

4.3 Estimation and Inference

Algorithm 1 employs Gibbs sampling, adapted from Pang et al. (2021), to iteratively

estimate parameters of the Bayesian causal MC model for multiple outcomes. Starting

with robust parameter estimation, the algorithm leverages Gibbs sampling to sequentially

update posterior distributions. This method makes use of untreated observational data,

applying Bayesian shrinkage to minimize parameter uncertainty. Following parameter

estimation, the algorithm systematically generates predictive draws, which are then used

to construct counterfactuals iteratively.

Algorithm 2 outlines another Bayesian causal MC model that manages multiple outcomes

simultaneously, rather than iteratively. Beginning with a shared set of input data, we

apply Hamiltonian Monte Carlo (HMC) with the No-U-Turn Sampler (NUTS) to effi-

ciently explore the posterior distribution and estimate model parameters. Predictions

for counterfactuals are then generated for all outcomes simultaneously. This simultane-

ous prediction phase improves the computation of counterfactuals, potentially enhancing

consistency and correlated accuracy across multiple outcome dimensions. The third step

involves summarizing the posterior distribution of the predicted outcomes and conduct-

ing diagnostic tests to ensure the model’s convergence and the validity of its inferences.

Compared to the iterative approach, this simultaneous method may offer a more cohesive

understanding of the outcomes.

3The algorithms for concurrent multiple P ’s are implemented in JAX and NumPyro. The core functions
for Model 4 can be found in Appendix C.4.
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Algorithm 1 Bayesian Causal Matrix Completion with Independent Multiple P ’s

1: Input: Observed data {(Xit, Yit(0))} for all units i and times t in the control period,
set of untreated observations Sobs, number of draws G, number of outcomes P

2: Output: Posterior samples for parameters, counterfactual estimates, inference diag-
nostics

▷ Step 1: Model Parameter Estimation
3: for g ← 1 to G do
4: Estimate Bayesian causal MC model parameters using Bayesian shrinkage
5: Obtain posterior samples for parameters conditional on Θ
6: end for

▷ Step 2: Prediction and Integration
7: for each treated unit i in the interval ai ≤ t ≤ T do
8: Generate posterior predictive draws of Yit(1)
9: Construct empirical integration for counterfactuals
10: end for

▷ Step 3: Inference and Diagnostics
11: for each treated unit i do
12: Summarize the empirical posterior distribution of δit
13: Calculate the posterior mean, variance, and 95% credible intervals
14: end for
15: Perform Bayesian diagnostic tests on posterior distributions

Algorithm 2 Bayesian Causal Matrix Completion with Concurrent Multiple P ’s

1: Input: Observed data {(Xit, Yit(0))} for all units i and times t in the control period,
number of latent factors L, number of outcomes P

2: Output: Estimated parameters f , {Σp}Pp=1, Γ, counterfactual outcomes {Yp(1)}Pp=1,
posterior samples, and diagnostics

▷ Step 1: Model Parameter Estimation
3: for p← 1 to P do
4: Define Bayesian causal MC model for outcome p with Bayesian shrinkage
5: Data augment Yit = {Yit(0), Y

p
it (1)}

6: Execute HMC with NUTS to sample from posterior distributions
7: end for

▷ Step 2: Prediction and Integration
8: for p← 1 to P do
9: for all treated units i and times t do
10: Generate posterior predictive draws of Y p

it (1)
11: Aggregate posterior predictions to form Yp(1)
12: end for
13: end for

▷ Step 3: Inference and Diagnostics
14: for p← 1 to P do
15: Summarize the posterior distribution of Yp(1)
16: Calculate the mean, variance, and 95% credible intervals
17: end for
18: Conduct diagnostic tests on MCMC convergence and mixing
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4.4 Generalization

Building on Pang et al.’s (2021) generalization of existing SCM extensions, we also present

our Bayesian causal MC framework, in both its independent and concurrent versions, as

a Bayesian alternative generalized method for SCM. Our work draws inspiration from

Athey et al. (2021) to bridge the SCM literature in econometrics with the MC literature

in recommender systems. Specifically, we illustrate how our Bayesian causal MC method

with independent multiple P ’s can be viewed as the most generalizable form within the

SCM family. Following the claims made by Pang et al. (2021) and Athey et al. (2021),

we present Proposition 5. In a similar way, we discuss how our model could be seen

as a generalized form of Pinkney’s (2021) Bayesian SCM IFE in the originally stated

Proposition 6.

Proposition 5 (Bayesian Causal MC as a Generalized Form of Standard SCM). Consider

the Bayesian causal MC model with independent multiple P ’s for unit i at time t and

outcome dimension p

Y p
it = w⊤

itδ
p
it +X⊤

it ξ
p + Z⊤

it ζ
p
i + A⊤

itα
p
t + Γ⊤

i f
p
t + εpit,

where we incorporate the HTE δpit for unit i at time t with outcome dimension p and

binary treatment indicator wit, without loss of generality. This model generalizes the

underlying factor model of Abadie et al.’s (2010) SCM

Yit = w⊤
itδit +X⊤

i ξt + αt + Γ⊤
i f

p
t + εit,

by setting Zit = ∅ and Xi = Ai, which disallows A⊤
itα

p
t to vary over time, as well as

considering only a single outcome dimension. Hence, we can recover Abadie et al.’s

(2010) SCM via our Bayesian causal MC model.

Proof. See Appendix A.4.

Proposition 6 (Bayesian Causal MC as a Generalized Form of Bayesian SCM IFE).

Consider the Bayesian causal MC model as defined in Proposition 5. This model also

generalizes Pinkney’s (2021) Bayesian SCM IFE

Yit = w⊤
itδit +X⊤

it ξ + Γ⊤
i ft + εit,

by setting Zit = Ait = ∅ and considering only a single outcome dimension. Hence, we

can recover Pinkney’s (2021) model, as well as other latent factor models (e.g., Xu 2017),

via our Bayesian causal MC.

Proof. See Appendix A.5.
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5
Empirical Application

In Chapter 5, we reinvestigate the German reunification empirical example by applying

Abadie et al.’s (2014) SCM, Pinkney’s (2021) Bayesian SCM IFE, and our Bayesian causal

MC model. The first empirical application primarily serves as an effectiveness comparison

since it involves only one treated unit and has less complicated structures than panel data

characterized by large N , small T , and multiple P . In the second application, we test our

proposed model on a specific CRM panel dataset. We begin by analyzing its longitudinal

structure, fitting it into our modeling framework, and eventually discussing key findings

as well as the model’s performance and diagnostics.

5.1 Implementation in German Reunification

5.1.1 Replication of Standard SCM

We first re-implement Abadie et al.’s (2014) SCM by directly modifying their Synth

package in R (Abadie et al. 2011) based on specified regulations. To successfully replicate

the German reunification study, we follow the exact steps described in Abadie et al.

(2014), where we include a set of time-invariant covariates (trade openness, inflation rate,

industry share, schooling, and investment rate, all summarized by a sufficient statistic,

mean, across time periods; recall Table 4.1) on the side of X. To be consistent with

Abadie et al.’s (2014) SCM, we do not include fixed effects in this study, although Model
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1 does allow the addition of such effects. Abadie et al.’s (2014) model then estimates the

synthetic control weight for the rest of the 16 OECD countries efficiently by minimizing

a constrained minimization problem

β̂ = argmin
β∈Λ

T0∑
t=1

(
Y0t − β0 −

J∑
j=1

βjYjt

)2

,

where β0 is the intercept, and the constraints imposed on β are defined as

Λ =

{
β ∈ RJ+1 : β0 = 0, βj ≥ 0 for j = 1, . . . , J and

J∑
j=1

βj = 1

}
.

The algorithm produces two sets of weights, where we denote wvar (weights for 6 predictive

indicators in X) and wctr (weights for the rest of the 16 OECD countries), all subject to

the constraints that the weights are non-negative and sum to one (Abadie et al. 2014).

We present the computed weights for both sets in Table 5.1 below.

Table 5.1: Weights for Economic Indicators and OECD Countries

Indicator wvar Country wctr

GDP per capita (USD) 0.442 USA 0.219
Trade openness (%) 0.134 UK 0.001
Inflation rate (%) 0.072 Austria 0.418
Industry share (%) 0.001 Belgium 0.001
Schooling (%) 0.107 Denmark 0.001
Investment rate (%) 0.245 France 0.001

Italy 0.001
Netherlands 0.090
Norway 0.001
Switzerland 0.111
Japan 0.155
Greece 0.000
Portugal 0.000
Spain 0.001
Australia 0.000
New Zealand 0.000

Due to data missingness in several covariates, Abadie et al. (2014) took an approach

to only consider the average rate for industry share between 1981 and 1990, average

schooling between 1980 and 1985, and investment rate in 1980. Many researchers who

have replicated the German reunification study (Pinkney 2021; Pang et al. 2021) have

followed the same procedure. However, we apply multivariate imputation by chained

equations (MICE) via the mice package in R (van Buuren and Groothuis-Oudshoorn

2011) to impute the missing data in covariates. In particular, we evaluate average rates
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across industry share, schooling, and investment for the entire T , rather than selecting

specific periods as chosen by Abadie et al. (2014). The computed wvar and wctr are

slightly different from those in the exact replication by Abadie et al. (2014). With these

two sets of weights computed, we apply the equation

Ŷ0t =
16∑
j=1

ω̂var,jYjt(0)

to obtain Table 5.2 below1.

Table 5.2: Construction of Synthetic West Germany in Comparison with West Germany

Indicator West Germany Synthetic West Germany

GDP per capita (USD) 15808.9 15802.2
Trade openness (%) 56.8 56.9
Inflation rate (%) 2.6 3.5
Industry share (%) 34.5 34.3
Schooling (%) 55.5 55.2
Investment rate (%) 27.0 27.0

We now see that synthetic West Germany, constructed from a set of 16 OECD countries

with synthetic weights, aligns well with West Germany in pre-treatment characteristics.

This quasi-experimental design helps us discover a counterfactual West Germany, which

allows us to perform counterfactual estimation and also obtain treatment effects and

various other causal estimands, as we first introduced in Section 3.2. The time-series

trend for counterfactual West Germany is represented by the solid yellow line in Figure

5.1. We observe that the outcome of interest, GDP per capita (USD), aligns almost

exactly the same as that of observed West Germany (in brown solid line) in pre-treatment

periods (before 1990).

5.1.2 Replication of Bayesian SCM IFE

We then replicate Pinkney’s (2021) Bayesian SCM IFE from the provided Stan codes.

We import exactly the same dataset that we used in replicating Abadie et al.’s (2014)

SCM. Recall Model 2, the additional component incorporated latent factors. To stress the

sparsity-inducing horseshoe+ prior, we follow exactly Pinkney’s (2021) choice on L = 8,

which doubles Tuomaala’s (2019) choice, so that we could closely replicate Pinkney’s

(2021) German reunification study. However, with multiple testings on the number of

latent factors, any choice between L = 6 and L = 10 is reasonable.

After successfully revising and compiling the Stan codes and data list, we then set the

1The exact replicated codes can be found in Appendix C.1. I also detail a tutorial for re-implementing
Abadie et al.’s (2014) SCM, and the link can also be accessed in Appendix C.
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initial value to 0.1 with max treedepth at 14 and adapt delta set to 0.95, exactly based

on Pinkney’s (2021) selection. Also, the fit is performed using Stan with 4 parallel

chains, using 250 warm-up iterations and 250 post-warmup iterations. I only pick half

the number of Pinkney’s (2021) choice in order to speed up the long fitting process. We

analyze the fit on MCMC diagnostics in Appendix C.2, and the detailed replication codes

and additional supplemental implementation findings can also be found there.

To access the posterior distribution for counterfactual West Germany, i.e., the posterior

sample, which is in dimension 250, 4, and 2552, where 250 implies that there are 250

iterations, 4 implies that there are 4 parallel chains, and 2552 implies that there are

a total of 2552 parameters. The dimension for our desired samples for counterfactual

West Germany has 748 parameters, which is expected since 748 = 17 × 44. Now, we

create an empty array with dimensions 250, 4, 17, and 44. With a nested loop, we enter

each country first and then access the GDP per capita (USD) in each year. Then, we

report this matrix back to our giant array. The giant array is indeed composed of nested

matrices. Think of this array as a 17 × 44 matrix. Then, in each singular cell, it is

again a 250× 4 matrix, displaying GDP per capita (USD) under all iterations and chains

for this specific country in the specific year. With this giant array set up, we eventually

enter the nested loop again to extract some useful information for Bayesian inference. We

extract the mean, 2.5%, 97.5%, and mid-50% GDP per capita (USD) for each country

under each year. The time-series trend for counterfactual West Germany is represented

by the dashed blue line in Figure 5.1. For better demonstration purposes, we exclude the

mid-50% credible intervals (CI) in Figure 5.1. However, one interested in this replication

may refer to Appendix C and gain a deeper understanding of Pinkney’s (2021) Bayesian

SCM IFE through our detailed replication tutorial.

5.1.3 Implementation of Bayesian Causal MC

Finally, we implement our proposed Bayesian causal MC model in the German reunifica-

tion study as our first example. Given the length of constraints in this honors thesis, we

only implement Model 3, which involves the use of independent multiple P ’s rather than

concurrent multiple P ’s. Since the German reunification study only has one outcome of

interest, i.e., GDP per capita (USD), either choice of our Bayesian causal MC models

works exactly the same.

We also import exactly the same dataset that we used in replicating Abadie et al.’s

(2014). Although our model could enable the addition of unit fixed effects and unit-

varying coefficients, we do not consider them in the German reunification replication

since our replications for Abadie et al.’s (2014) SCM and Pinkney’s (2021) Bayesian

SCM IFE do not include them as well. However, our model incorporates time-varying

coefficients, where the other two models could not handle such effects, even though we

33



test and show that all the covariate coefficients are almost constant over time, according

to Pang et al. (2021). For latent factor selections, our model produces a rather different

implication for the suggestion of L. We test for the posterior distribution of a scaling

parameter to capture the importance of the corresponding factor, and it indicates that

any factors between 4 and 6 should work perfectly since they exhibit bimodal posteriors,

while several other factors show mixed posteriors (Pang et al. 2021). However, we still

pick L = 8 to serve as a baseline comparison with Pinkney’s (2021) Bayesian SCM IFE.

In implementing our Bayesian causal MC model, we import Pang et al.’s (2021) bpCausal

and pre-specify the following parameters. We enable the time-level random effects to fol-

low an AR(1) autoregressive process. We assume the covariates to exhibit time-level

random effects, but not constant (fixed) effects or unit-level random effects. Our pre-

specification involves setting up an MCMC model with 15,000 iterations, including a

5,000 iteration burn-in phase to ensure stability before recording results. LASSO regu-

larization, directly applied from Pang et al. (2021), is used across various model compo-

nents: constant coefficients (xlasso), unit-level random coefficients (zlasso), time-level

coefficients (alasso), and factor loadings (flasso), all set to 1 for enabling shrinkage.

Hyper-prior parameters for these components are set to diffuse values (0.001) to indicate

broad, non-informative priors, supporting a flexible approach to regularization. This

setup aims to balance computational efficiency with accuracy and interpretability of the

model, leveraging LASSO for sparsity and improved prediction accuracy. We obtain

the empirical posterior distribution for counterfactual West Germany, represented by the

dashed red line in Figure 5.1. Its 95% CI is also computed and visualized in Figure 5.1.

5.1.4 Counterfactual Estimation

With two replication models and our Bayesian causal MC model being successfully imple-

mented in the German reunification case, we have produced three distinct counterfactual

estimations for West Germany. In Figure 5.1, to verify the goodness-of-fit, we clearly

observe that the counterfactual GDP per capita (USD) for West Germany across all

three models matches well in the pre-treatment periods (before 1990). From a quasi-

experimental design perspective, we claim that all three models have effectively removed

confounders, allowing us to further derive a causal relationship.

For the post-treatment periods (after 1990), we note that the counterfactual GDP per

capita (USD) for West Germany in all three models has grown more rapidly than that

of the observed West Germany. This suggests that the German reunification has indeed

reduced the GDP per capita for West Germany. Our Bayesian causal MC model, depicted

with dashed red lines and pink shaded areas for the 95% CI, appears to be more extreme

and uncertain in its predictions. This might be attributable to the choice of a not-so-

accurate latent factor specification (e.g., L = 8). Overall, all three models have produced
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similar findings and align well with each other. We will take a closer look in Section 5.1.5

and discuss any evidence of treatment effects.

Figure 5.1: Trends in Per Capita GDP: West Germany under Counterfactual Predictions

5.1.5 Evidence of Treatment Effects

We draw inferences regarding the treatment effects of German reunification from Figure

5.2 in a time-series manner. Before reunification, we observe absolutely no treatment

effects, as there is no treatment or intervention happening, which aligns with our as-

sumptions. After immediate reunification and lasting for less than three years (namely,

1990 to 1993), we observe that the counterfactual West Germany, had the reunification

not occurred, exhibits a positive treatment effect, with a local peak around 1991. This

temporal effect suggests that if West Germany had not reunified with East Germany, the

GDP per capita (USD) for West Germany might have experienced a temporal increase.

However, such temporal effects quickly fade away and even transform into long-term neg-

ative treatment effects. This implies that after reunification, the GDP per capita (USD)

for West Germany has declined compared to a scenario where West Germany did not

undergo reunification.

All three models have provided similar evidence, indicating that there is indeed a negative

treatment effect. Both Pinkney’s (2021) Bayesian SCM IFE and our Bayesian causal

MC model have clearly indicated a negative treatment effect after 1993, as the 95%

CI does not include 0. For Abadie et al.’s (2014) SCM, making a confident statement is
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challenging without knowing the uncertainty ranges. However, given very similar outcome

predictions after reunification compared to the two Bayesian models, we would consider

the SCM to also suggest the existence of treatment effects. In particular, we notice that

our Bayesian causal MC model exhibits a much wider uncertainty range than Pinkney’s

(2021) Bayesian SCM IFE; it also demonstrates an overall more significant treatment

effect (evidenced by a steeper decline) compared to the Bayesian SCM IFE. This may

imply that incorporating time-varying coefficients results in a more uncertain posterior

distribution, thereby enhancing confidence that our model more accurately represents

the real counterfactual scenario compared to Abadie et al.’s (2014) SCM and Pinkney’s

(2021) Bayesian SCM IFE.

Figure 5.2: Estimated Treatment Effects in Per Capita GDP for West Germany

Following Definition 4, we compute the ATT for West Germany for a duration of τ = 13

years (after 1990). The corresponding ATT values are presented in Table 5.3, where we

also include the ATT values at both lower (2.5%) and upper (97.5%) credible intervals.

We observe similar patterns for the ATT values, with our Bayesian causal MC model

producing a stronger treatment effect in magnitude compared to the other two methods.

The overall average uncertainty range is also higher than that of Pinkney’s (2021) model.

5.1.6 Effectiveness

To conclude our discussion on this empirical application regarding German reunification,

the key takeaway is that our Bayesian causal MC model has demonstrated the capability
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Table 5.3: Average Treatment Effect on the Treated West Germany

Model ATT δτ

SCM (50%) -1699.7
Bayesian SCM IFE (2.5%) -2498.2
Bayesian SCM IFE (50%) -1897.6
Bayesian SCM IFE (97.5%) -1279.8
Bayesian Causal MC (2.5%) -3213.3
Bayesian Causal MC (50%) -2012.4
Bayesian Causal MC (97.5%) -809.7

to more efficiently uncover the treatment effect, offering a more reliable CI compared

to other SCM extensions. The flexibility of our proposed model enables us to leverage

detailed pre-specifications on prior selections and to set reasonable effects on covariates

(whether they be constant effects, unit-level random effects, or time-level random effects).

This approach allows us to utilize the LFM component to establish the conditional ig-

norability assumption, accurately identify the causal relationship, and derive the correct

treatment effect. To further illustrate the superior performance of our Bayesian causal

MC model, we extend our analysis beyond the single outcome problem of German re-

unification to address a more complex panel data structure in CRM. In the challenging

context of large N , small T , and multiple P scenario, neither Abadie et al.’s (2010)

SCM nor Pinkney’s (2021) Bayesian SCM IFE can directly resolve the issue, as the data

characteristics could immediately prove problematic in those circumstances.

5.2 CRM Panel Data

We begin our analysis by detailing the raw format of the data and outlining a method

to efficiently transform any non-structural data into a panel data framework. This study

leverages a comprehensive customer-level database of gift card purchases and redemptions

from a U.S. hospitality startup. Our primary data source consists of a collection of raw

JSON files, including cross-sectional data on brand tags, projects, and users’ information,

as well as time-series data on redemption history and revenue views spanning the years

2021, 2022, and the first month of 2023 (covering a duration of 25 months), extracted

from the firm’s CRM database.

5.2.1 Longitudinal Data Analysis

Before performing any data manipulation and wrangling, we first explore what the data

looks like. Although we have a total of 9 JSON files, for easier access to our data, we

initially convert all of them into tabular formats in SQL. We then import the results

into R and merge multiple tables together using the full join function from the dplyr
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package. We present some significant findings from the data descriptions and include a

link at the beginning of Appendix C for readers interested in familiarizing themselves

with additional aspects of the data.

Figure 5.3 provides a preview of all variables in our dataset after a series of data manip-

ulations and wrangling. Figure 5.3 displays a total of 34 variables, each with different

degrees of missingness, marked by a red dashed line at 75% implemented arbitrarily. This

is mainly due to two reasons. First, during the tabular merging process, we set some

common variables, in this case, user id (a unique label for various users), project id (a

unique label for various projects offered by a restaurant), created at (the date a project

was consumed by a user, in YYYY-MM-DD format), and account created at (the date

of user registration on the platform, in YYYY-MM-DD format), as the joining keys. The

four columns at the bottom have no missing data for this reason. However, in the merging

process, several other variables may not contain a particular row of these common keys,

thereby causing missingness. The second reason is more straightforward: the provided

raw JSON files initially have different degrees of missingness.

Figure 5.3: Missing Data Proportions in CRM Panel Dataset Variables

To transform the merged data into a panel (longitudinal) data frame, we initially create

a unique identifier by combining user id and project id. We explore different time

granularities (e.g., daily, weekly, bi-weekly, monthly, and quarterly) for the time index.

Considering the concerns regarding data sparsity and the level of granular clarity we aim
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to achieve, we opt for a bi-weekly time index as a balanced choice, constructed from

created at. This data wrangling process is efficiently facilitated by the pdata.frame

function from the plm package (Croissant and Millo 2018). With the panel data frame

now featuring bi-weekly granularity, we proceed to examine other variables and articulate

our research statement below.

5.2.2 Model-Free Evidence

Figure 5.4: Correlation Analysis for RFM of Purchases and Redemptions

Among the remaining 30 variables depicted in Figure 5.3, we identify two particularly

important outcome variables for our study: amount charged in usd (the amount of pur-

chase per user/project) and total redemption amount (the amount of redemption per

user/project). In Figure 5.4, we visualize the distribution of the frequency (F) of pur-

chases and redemptions made by each user per project at their most recent record in

columns 1 and 4, respectively. Similarly, the distribution of the monetary (M) values of

purchases and redemptions is presented in columns 2 and 5 of Figure 5.4. We observe an
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extremely long right tail for these four dimensions, which further suggests the sparsity

of data due to the accumulation of one-time purchasers/redeemers, indicative of the cold

start problem.

We further apply feature engineering techniques to expand our CRM panel data frame.

Considering the two important monetary (M) value outcomes of purchase and redemp-

tion, we can apply the group by and summarize functions in dplyr to quickly gain the

frequency (F) of purchases and redemptions. We can also apply the same functions to ob-

tain the recency (R), which can be computed by the difference between the current time

index and the end of the data recording time index. We convert the bi-weekly indexes

that our data inputs into the unit of days in Figure 5.4.

The distribution of recency differences for both purchases and redemptions exhibits sim-

ilar peaks and troughs, indicating the influence of seasonal promotions or holiday effects.

There is a notable increase in users making purchases and redemptions in recent days,

which could be attributed either to the growing popularity of the platform or a sig-

nificantly impactful holiday effect (e.g., Christmas and New Year, as inferred from the

detailed date information in our data). In Figure 5.4, we present another correlation plot

between the recency of both dimensions. Without any significantly extreme outliers, we

observe that the correlation is significantly positive (r = 0.854).

5.2.3 RFM Framework

Through model-free evidence, we have identified and derived our six outcomes of in-

terest: the recency (R), frequency (F), and monetary (M) value of both purchases and

redemptions. This constitutes the RFM framework for addressing our problem of in-

terest. This approach, informed by marketing domain knowledge, is adaptable across a

broad spectrum of disciplines. It offers a method to extract multiple dimensions from a

single P problem. As previously mentioned, accommodating multiple P ’s helps offset the

limitations of short time series (small T ) at the unit level.

We then perform transformations on our six-outcome P ’s. In Figure 5.5, we visualize the

distributions of RFM across purchases and redemptions with no transformation (column

1), square root transformation (column 2), and log transformation (column 3). The log

transformation proves to be more effective in rendering the distribution of each variable

more symmetric, especially for the frequency (F) and monetary (M) value variables.

Consequently, we apply a log transformation to every outcome variable.

After implementing the log transformation, we proceed with an adjusted min-max nor-

malization

v̂ =
10(v − vmin)

vmax − vmin
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to expand the range from [0, 1] to [0, 10], where v represents any value before the min-max

normalization is applied. This adjusted min-max normalization process is reversible, as

the function is surjective.

Figure 5.5: Distribution of Multi-Outcome P ’s with Transformations

Section 5.2.3 concludes our discussion on the final Y component, comprising a list of six

outcome variables. To gain a comprehensive understanding of how the CRM panel data

integrates with our Bayesian causal MC model, it is important to address two other types

of variables, W and X. These will be addressed in the subsequent subsections (Sections

5.2.4 and 5.2.5).
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5.2.4 Treatment Staggered Adoption

Recall the German reunification study, where we have 16 OECD countries as control

units and West Germany as the single treated unit. In this CRM panel data structure,

all customers are essentially in a “treated” status. Rather than defining real treatment

through promotional activities (despite having such information, labeled by utm ) or

other clear interventions, we conceptualize treatment here as a binary status, indicating

whether a data entry at a block is missing (wit = 1, in treatment) or observed (wit = 0,

in control).

Referring back to Table 1.1, the customer-level transaction history exhibits a pattern

resembling a sparse matrix. Although our Bayesian causal MC model can accommodate

this back-and-forth switch, we adopt an assumption by focusing only on a cumulative

outcome measure. Consequently, our six dimensions of outcome variables follow a non-

decreasing pattern. Should any missing entry occur at period t, we sum up its previous

entries and allocate this cumulative value to period t + 1. Under this assumption, our

“treatment” status exhibits a staggered adoption pattern (refer to Definition 1).

Figure 5.6: Treatment Status by Pair ID Over Time

In Figure 5.6, we plot a selection of users who make at least two purchases throughout

their entire CLV, representing a third of all users. Including one-time purchasers would

significantly compromise the dataset due to the presence of flat values across their entire

CLV. Given that the data span 25 months, equivalent to 55 bi-weeks, Figure 5.6 displays
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only bi-week indices up to 40. This means for any customers who joined our platform

very early, a portion of their data is obscured, allowing them to have at most 40 observed

periods (grey blocks, indicating control status). For those customers whose CLV length

is originally under 40, we withhold 5 periods and exclude them from our algorithms. The

hidden 5 periods of observed data (dark red blocks, indicating treated missing status)

are stored separately so that we can later evaluate our counterfactual predictions against

them and assess the treatment effect. The orange blocks denote those treated customers

in observed status.

To understand why the idea of SCM is applicable to this study, imagine thousands of

West Germanys (large N) paired with hundreds of OECD countries in control. Each of

these West Germanys possesses an additional 5 periods of observed data. Our Bayesian

causal MC model is designed to effectively compute the counterfactual estimation for

both the dark red and white blocks, imputing the missingness with these values. While

we cannot directly assess how our counterfactual estimation diverges from the multiple

outcome data at those white blocks (purely missing without any pre-holdoff data), we

can gauge the overall performance of the model by comparing each customer’s 5 holdoff2

periods’ observed outcomes with our imputed counterfactual outcomes.

Therefore, Figure 5.6 illustrates the structure of staggered adoption treatment, which

presents a more complex structure compared to Figure 4.1. Additionally, the y-axis is

labeled as Pair ID, which combines both user id and project id.

5.2.5 Covariates

We have now completed the discussion on Y and W. The remaining component in our

data is X. In fact, the covariate side of our model is not necessary. The Bayesian causal

MC model can be implemented in this CRM panel data study directly without inputting

any covariates. However, we still present some selections here to help readers gain a

better understanding of our data.

Our covariates mainly come from two sources. One source is depicted in Figure 5.3, where

we classify the remainder of non-outcome, non-treatment variables as covariates. The

other source involves utilizing Yelp’s Fusion API to web-scrape additional data related

to projects/restaurants.

However, several variables are in text format, e.g., utm (promotion-related covariates,

including promotion content, source, medium, and campaign). We adopt two approaches.

If the character types of data are countable and small in size (rule of thumb: ≤ 10), we

convert such variables into categorical levels and assign different factors, similar to one-hot

2Also known as the holdout period, i.e. the period during which data are withheld for testing a model.
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encoding. If the text data contains significantly varied texts, such as promotion contents

which are unique to each user, we employ natural language processing (NLP) models.

This includes NLP-based FastText word embeddings (Joulin et al. 2016) with principal

component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and

iterative imputer (sklearn.impute.IterativeImputer), as well as Clark et al.’s (2019)

efficiently learning an encoder that classifies token replacements accurately (ELECTRA,

a faster transformer model than Devlin’s (2018) bidirectional encoder representations

from transformers, BERT model), to convert them into vectors. The detailed implemen-

tation of Yelp’s Fusion API, tag embeddings based on FastText (Joulin et al. 2016), and

ELECTRA (Clark et al. 2019) can be found in Appendix C.5, C.6, and C.7.

In Table 5.4, we present the description of the enriched attribute that we obtain from

applying Yelp’s Fusion API. These additionally retrieved data are eventually merged with

our dataset shown in Figure 5.3.

Table 5.4: Description of Yelp Enriched Data Attributes

Attribute Description

yelp tag The categories the business falls under (e.g., “Restaurant”, “Cafe”).
rating The average Yelp rating of the business.
review num The total number of reviews the business has received on Yelp.
price level The price level of the business, represented by number of dollar signs

(e.g., $$$).
transactions Types of transactions the business offers (e.g., “pickup”, “delivery”).
yelp url The Yelp URL directing to the business’s Yelp page that allows us to

check manually.

5.3 Implementation in CRM Panel Data

Similar to Section 5.1.3, we now implement our proposed Bayesian causal MC model in

CRM panel data as discussed in Section 5.2. The algorithms of BCMC are implemented

within the Bayesian causal MC framework, accommodating independent multiple P ’s

under two scenarios: one without covariates and one with covariates. We implement

both examples separately below and compare the impact of including covariates.

Our defined BCMC function (see Appendix C.3) operates on a given dataset with specified

unit and time indices (index, in this case, pair ID), assessing the impact of a treatment

variable (Dname, in this case, a binary treatment status D holdoff with wit = 1 indicating

treatment and wit = 0 indicating control) on a vector of outcomes (Yname vector, in this

case, a vector of six outcomes including the recency, frequency, and monetary value

of purchase and redemption). The parameter re specifies the structure of the random

effects, incorporating two-way random effects selected from pair ID and bi-weekly index.
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The parameter ar1 indicates whether the time-level random effects adhere to an AR(1)

process, and we assume that the time-level random effects follow an AR(1) process, rather

than being multi-level and independent. The parameter r denotes the number of latent

factors in the model, for which we specify L = 8 in this study. The MCMC settings are

determined by the number of iterations (niter, where we set 15, 000) and the number

of burn-in steps (burn, where we set 5, 000). Regularization is applied to the coefficients

through LASSO, controlled by xlasso, zlasso, alasso, and flasso, where we pick

default values of 1, with hyper-prior parameters set to diffuse priors (0.001). In Figure

5.7, the counterfactual multi-outcomes are depicted with red lines, and their 95% CIs are

illustrated by shaded pink regions.

BCMC also allows for the inclusion of covariates with fixed effects (Xname), unit-level ran-

dom effects (Zname), and time-level random effects (Aname), relying on Pang et al.’s

(2021) Bayesian LFM. Since we follow the assumption that all outcome measures rely on

cumulative distributions, we should not perceive any temporal effects, therefore setting

A = ∅. Hence, we pick essential covariates that we believe will potentially affect six

outcomes from Figure 5.3 and Table 5.4, setting them as parts of Z and X. In Figure

5.8, the counterfactual multi-outcomes are similarly depicted in red lines with their 95%

CIs shown by shaded pink regions.

5.3.1 Counterfactual Estimation

From both Figure 5.7 and Figure 5.8, the observed cumulative functions for each of the

six dimensions are recorded up until the 0 index in Relative Time, where the computed

ATT across staggered adoption patterns finds an average treatment adoption time in the

algorithms. For time indices from 0 to 20, we depict them as missing data, shown in

dashed brown lines. The 5 periods of holdoff are depicted by the region between two

dashed blue lines. For time indices from −5 to 0, we can compare the counterfactual

outcome value with the observed holdoff counterpart. We present the treatment effect

over time on the y-axis of Figure 5.9. While our Bayesian causal MC model continues

predicting the missing components after 5 periods, we observe them deviating from the

pre-assumptions quickly. For example, we notice that the monetary dimensions for both

purchase and redemption, as well as the recency of purchase without covariates, begin to

decline at certain time indices after the holdoff period. This violates the assumption of

cumulative distributions across all six outcomes. We also observe the uncertainty range

increases at later periods. The computational power of our Bayesian causal MC model is

therefore optimized within a few future steps, given the case that we deal with a short T

problem. By withholding periods more than 5, we can test the model’s accuracy over a

longer timeline.

From Figure 5.7 and Figure 5.8, we observe that on average, a customer takes approx-
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Figure 5.7: Counterfactual Estimation Over Time (No Covariates)

Figure 5.8: Counterfactual Estimation Over Time (With Covariates)
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imately 40 units of time index to make another purchase, whereas only 5 units of time

index are required for another redemption. The monetary columns suggest similar find-

ings, where on average, an additional purchase is around $250, while an additional re-

demption amounts to less than $100. Analyzing the third columns of recency, we note

that on average, an additional purchase occurs about 15 bi-weeks (210 days), whereas

an additional redemption occurs in less than 10 bi-weeks (140 days). The advantage of

multi-outcome modeling ensures that data prediction aligns well. With the posterior dis-

tribution generated for all sample users on average, we can also examine each individual

user and see how their purchase and redemption might unfold in the next few periods

(for instance, 5).

By comparing Figure 5.7 and Figure 5.8, we do not observe much difference when in-

corporating additional covariates as predictors. This implies that our Bayesian causal

MC model can perform well as long as the number of latent factors is roughly specified

correctly. However, the addition of covariates reduces the uncertainty levels in several

dimensions, including the recency dimension for both purchases and redemptions.

5.3.2 Model Performance Evaluation

Figure 5.9: Prediction Accuracy for Purchase and Redemption Metrics Over Time

We compute the treatment effect for the 5 holdoff periods, as we have observed data

serving as a baseline for comparison. Since the treatment concerns time and status change

from missing to observed, we should, in theory, observe no treatment effect, implying that
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Ŷpred − Yobs = 0. In Figure 5.9, we note that in the frequency dimension of purchase and

redemption, the counterfactual estimation performs best in the subsequent 3 periods and

2 periods, respectively. Overall, for frequency in the next 3 periods, the prediction is

sufficiently accurate as the y-axis value is close to 0. Similar findings can be observed

in the monetary value dimension and the recency dimension, where any counterfactual

predictions within 2 periods are close enough to 0.

The results suggest that our Bayesian causal MC model effectively tackles the large

N , small T , and multiple P challenge by delivering accurate predictions for up to 2

or 3 forthcoming periods, although its predictive strength diminishes over the long term,

evidenced by a significantly wider uncertainty range. From an inferential perspective, the

Bayesian causal MC model excels at accurately predicting the counterfactual counterpart,

transforming missing data into imputed values. This model’s ability to predict multiple

outcomes accurately over the next few periods could be leveraged to develop a causal

recommender system.

Furthermore, an examination of the RMSE values across the six dimensions reveals that

for frequency and recency, the relatively small RMSEs signify the model’s precision and

low error rate. However, the monetary value dimension exhibits a larger error margin,

attributable to the inherent data variability in monetary amounts compared to the more

stable frequency and recency metrics measured in bi-weeks. With this, we conclude our

discussion on CRM panel data and the effectiveness of our proposed Bayesian causal MC

model.
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6
Discussion

Due to the length limit of the honors thesis, we discuss the conditions under which

our Bayesian causal MC model excels and where it faces limitations. We highlight 13

advantages and the flexibility of our model compared to Abadie et al.’s (2014) SCM in

the following colored framed text box, with their model serving as a baseline in this study.

However, we acknowledge that our model differs in purpose from the idea of SCM. Reit-

erating a point made by Pang et al. (2021), we recognize that both Abadie et al.’s (2014)

SCM and Ashenfelter and Card’s (1985) DiD are design-based models with more trans-

parent identification assumptions, which gain wider acceptance among researchers due

to their relatively weak assumptions. While our model critiques Abadie et al.’s (2014)

SCM for its constraints on weights (summing-to-one and non-negativity) and Ashenfelter

and Card’s (1985) DiD for its uniform weights constraint, we value the concept of their

directly interpretable weights. Conversely, our Bayesian causal MC model, which adopts

a model-based approach, often does not provide an intuitive interpretation of weights.

In particular, our Bayesian causal MC model with independent multiple P ’s faces several

shortcomings. These are noted in another colored framed text box below.
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Advantages of Bayesian Causal MC Method Over SCM

1. Relaxes constraint of non-negativity of weights.

2. Relaxes constraint of summing-to-one of weights.

3. Relaxes constraint of no intercept.

4. Accommodates multiple treated units.

5. Accommodates multiple outcomes.

6. Incorporates time-varying covariates.

7. Allows time-specific coefficients.

8. Allows unit-specific coefficients.

9. Allows model averaging.

10. Infers average treatment effects (ATE, ATT).

11. Infers individual treatment effects (ITE).

12. Incorporates interpretable Bayesian uncertainty measures.

13. Performs well when N ≫ T .

This list details the comparative benefits of using the Bayesian causal MC model with

independent multiple P ’s over Abadie et al.’s (2010) standard SCM, highlighting ad-

vancements in generalizability, flexibility, modeling capabilities, and inference.

Limitations of Bayesian Causal MC Method

1. Multiple P is not concurrently resolved.

2. Panel data characteristics have to follow staggered adoption assumption.

3. Bayesian approach is computationally expensive for extremely large N .

4. Number of pre-treatment periods for treated units needs to satisfy T0 > 20.

5. Weights are not directly interpretable.

6. There may be a violation of potential SUTVA assumption.

This list identifies the main limitations when applying the Bayesian causal MC model with

independent multiple P ’s. The constraints listed above should be carefully considered in

practice.
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However, the initial four limitations can be readily addressed by adopting Bayesian causal

MC with concurrent multiple P ’s, as demonstrated in Model 4 (see its implementation

in Appendix C.4). Specifically, Model 4 accommodates concurrent multiple P ’s by incor-

porating them into a (L× L) scaling matrix Σp.

Notably, Bayesian causal MC with concurrent multiple P ’s does not rely on the assump-

tion of staggered adoption, effectively overcoming the second limitation. Model 4 utilizes

a factorization method to model counterfactuals directly via latent factors and scaling

matrices, independent of any specific sequence of treatment adoption. This allows for

the generation of each unit’s counterfactual outcomes independently from the treatment

timings across units, thereby eliminating the need for assumptions regarding the tempo-

ral sequence of treatment exposure. Through the interplay of the matrices f , Σp, and Γ,

Model 4 enables the simultaneous estimation of counterfactuals across multiple outcome

dimensions p, sidestepping the constraints imposed by staggered treatment patterns.

The third limitation, concerning the computational expense associated with large datasets,

is efficiently addressed by our NumPyro program, which significantly enhances processing

efficiency. Built upon JAX, NumPyro supports automatic differentiation and GPU accelera-

tion, enabling substantial Bayesian computation speedups through vectorized operations

and parallel processing. This advancement effectively reduces the computational load

typical of large N Bayesian models.

Regarding the fourth limitation, the rationale behind our approach stems from address-

ing the challenge posed by short T and large N , particularly the difficulty in accurately

identifying γi. When individual-level time series data are limited, γi may remain un-

determined. We claim that by generating multiple concurrent outputs, we inherently

apply constraints through the functional form of Yp. This is because the same γi must

optimally apply to several outputs for the same donor i, thereby improving identification.

The last two limitations present more complex challenges that may not be readily ad-

dressed by our Bayesian causal MC model. According to Pang et al. (2021), addressing

the fifth limitation is contingent upon the weights carrying specific policy implications.

As for the sixth limitation, we encounter a distinct challenge in the presence of policy dif-

fusion or spillover effects, as discussed by Athey and Imbens (2018). These open questions

are left for future researchers to explore.
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Acronyms

1. ALS: Alternating Least Squares

2. API: Application Programming Interface

3. AR: Autoregressive Model

4. ATE: Average Treatment Effect

5. ATT: Average Treatment Effect on the Treated

6. BERT: Bidirectional Encoder Representations from Transformers

7. B2C: Business-To-Consumer

8. BvM: Bernstein-von Mises

9. CI: Credible Interval

10. CLV: Customer Lifetime Value

11. CRM: Customer Relationship Management

12. DiD: Difference-in-Differences

13. DGP: Data Generating Process

14. ELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements

Accurately

15. FE: Fixed Effects Model

16. HTE: Heterogeneous Treatment Effect

17. GDP: Gross Domestic Product

18. GPU: Graphics Processing Unit

19. HMC: Hamiltonian Monte Carlo

20. IFE: Interactive Fixed Effects Model

52



21. ITE: Individual Treatment Effect

22. LASSO: Least Absolute Shrinkage and Selection Operator

23. LFM: Latent Factor Model

24. MC: Matrix Completion

25. MCMC: Markov Chain Monte Carlo

26. MF: Matrix Factorization

27. MICE: Multivariate Imputation by Chained Equations

28. MLE: Maximum Likelihood Estimator

29. MNAR: Missing Not At Random

30. NBD: Negative Binomial Distribution

31. NLP: Natural Language Processing

32. NUTS: No-U-Turn Sampler

33. OECD: Organization for Economic Co-operation and Development

34. PCA: Principal Component Analysis

35. PPP: Purchasing Power Parity

36. PSM: Propensity Score Matching

37. RFM: Recency, Frequency, and Monetary Value Model

38. RMSE: Root Mean Squared Error

39. SCM: Synthetic Control Method

40. SGD: Stochastic Gradient Descent

41. SUTVA: Stable Unit Treatment Values Assumption

42. SVD: Singular Value Decomposition

43. t-SNE: t-distributed Stochastic Neighbor Embedding

44. USD: United States Dollar
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A
Theoretical Results

A.1 Proof of Proposition 1

We aim to provide a proof that demonstrates the relationship between latent ignorability

and strict exogeneity. Such a relationship was first proposed by Pang et al. (2021),

although no formal proof has been provided in the recent literature. Before outlining

the framework for such a proof, we define strict exogeneity (Engle et al. 1983) using the

language applied in this thesis.

Definition 7 (Strict Exogeneity). A variable Xi is said to be strictly exogenous with

respect to the error term εt if and only if the expectation of the error term, conditional

on the exogenous variables, is zero for all time periods such that

E[εt|Xi] = 0 ∀t,

where εt represents the error term at time t, and Xi denotes the matrix of exogenous

variables for unit i. This condition implies that the exogenous variables are uncorrelated

with the error term, which ensures they do not contain information about the error

process across all time periods.

Proof. To prove that latent ignorability extends strict exogeneity (Pang et al. 2021), we

need to demonstrate that under latent ignorability, the conditional independence of the

treatment assignment from the potential outcomes, given observed and latent covariates,
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implies that there is no correlation between the treatment assignment and any error term

in the model of potential outcomes.

Consider a linear model for the potential outcome such that

Yi(wi(ai)) = Xiβ + Uiγ + εi,

where εi represents the error term. The assumption of latent ignorability suggests that

the treatment assignment wi(ai) is independent of the potential outcomes Yi, conditional

on Xi and Ui

P(wi(ai)|Xi, Ui) = P(wi(ai)|Xi, Yi(wi(ai)), Ui).

Given latent ignorability, it must then hold that

E[εi|Xi, Ui, wi(ai)] = E[εi|Xi, Ui] = 0,

which fulfills the condition of strict exogeneity for the error term εi relative to the covari-

ates Xi and the latent variables Ui.

Therefore, by including latent variables Ui in our model, we are effectively adhering to the

strict exogeneity assumption by controlling for all unobserved heterogeneity that could

otherwise correlate with both the covariates Xi and the error term, as well as with the

treatment assignment. This demonstrates that latent ignorability, through the inclusion

of latent variables Ui, robustly extends the principle of strict exogeneity (Pang et al.

2021), ensuring the model against biases from unobserved heterogeneity.

A.2 Proof of Proposition 2

We aim to provide a proof that demonstrates the relationship between latent ignorability

and the parallel trends assumption, a connection implicitly mentioned by Pang et al.

(2021). Before outlining the framework for such a proof, we again define parallel trends

(Card and Krueger 1994) using the language applied in this thesis.

Assumption 9 (Parallel Trends). For any unit i, the expected change in the observed

outcomes Yit(0) over time, in the absence of treatment, is the same across units. If t and

s represent two time periods, then

E[Yit(0)− Yis(0)|Xi] = E[εit − εis],

where εit and εis are idiosyncratic errors for time periods t and s, respectively, and Xi

represents observed covariates. This assumes that the change in observed outcomes over

time is due to factors other than unobserved heterogeneity, which remains constant over

time for each unit.
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Proof. First, recall the expression for the potential outcome under no treatment for any

time period t:

Yit(0) = βXit + ui + εit,

where β is a vector of coefficients, ui is a unit-specific constant, and εit is the idiosyncratic

error term. Given two time periods, t and s, we note the difference in potential outcomes

as

Yit(0)− Yis(0) = (βXit + ui + εit)− (βXis + ui + εis).

Simplifying this expression, we observe that the unit-specific constant ui cancels out:

Yit(0)− Yis(0) = β(Xit −Xis) + (εit − εis).

To derive the expected difference, we take the expectation of both sides and obtain

E[Yit(0)− Yis(0)] = E[β(Xit −Xis)] + E[εit − εis].

Given that εit and εis are idiosyncratic error terms assumed to be i.i.d. with a mean of

zero, the expectation of their difference is also zero:

E[εit − εis] = 0.

In addition, since β(Xit −Xis) represents the fixed effects of covariates across time and

does not depend on the unit-specific latent variable ui, its expectation is a function of

time only. Therefore, we can express the expected difference in potential outcomes as

E[Yit(0)− Yis(0)] = E[β(Xit −Xis)].

This expected difference, being solely a function of time (and covariates) and not of

the unit-specific latent variable ui, is what constitutes the parallel trends assumption.

Hence, under the condition of latent ignorability and the assumption that Ui is a unit-

specific constant, we demonstrate that the expected difference in potential outcomes

under no treatment follows a parallel trend over time, hence satisfying the parallel trends

assumption. This completes the proof that latent ignorability implies the parallel trends

assumption when Ui is considered constant across time for each unit.

A.3 Proof of Proposition 3

Proof. Denote the observed outcome for any unit i at time t by Yit. Define the potential

outcomes under treatment and control as Yit(1) and Yit(0), respectively. Let wit be the

treatment indicator, with wit = 1 if unit i is treated at time t, and wit = 0 otherwise.
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The DiD estimator for the ATT is

∆DiD =
(
Y T,post − Y T,pre

)
−
(
Y C,post − Y C,pre

)
,

where Y T,post and Y T,pre denote the average outcomes for the treated units in the post-

treatment and pre-treatment periods, respectively. Similarly, Y C,post and Y C,pre represent

the corresponding averages for the control units.

The SCM constructs a synthetic control for the treated unit as a weighted average of

control units:

Ŷ0t(0) =
N∑
j=1

β̂jYjt(0),

where β̂j are the weights assigned to control units j, determined by minimizing the pre-

treatment prediction error, subject to β̂j ≥ 0 for all j and
∑N

j=1 β̂j = 1.

Assuming SCM assigns equal weights to control units satisfying the parallel trends as-

sumption with the treated unit, we have β̂j =
1
N

for these units, and β̂j = 0 otherwise.

The synthetic control outcomes in the pre-treatment and post-treatment periods are given

by

Ŷ0,pre(0) = Y C,pre, Ŷ0,post(0) = Y C,post,

effectively equating to the average outcomes of control units that adhere to the parallel

trends. The treatment effect on the treated, estimated by SCM in the post-treatment

period, is

δ0t = Y0t − Ŷ0t(0) =
(
Y T,post − Y C,post

)
,

which becomes equivalent to the DiD estimator ∆DiD when the pre-treatment trends

between the treated and control groups are parallel, i.e., Y T,pre − Y C,pre is constant.

Hence, under the conditions that SCM assigns equal weights to control units satisfying

the parallel trends assumption with the treated unit, SCM is mathematically equivalent

to the DiD estimator, thus demonstrating SCM as a generalization of DiD under these

specific conditions.

A.4 Proof of Proposition 4

Proof. The functional form of the Bayesian causal MC model with independent multiple

P ’s for unit i at time t and for outcome dimension p is

Y p
it = w⊤

itδ
p
it +X⊤

it ξ
p + Z⊤

it ζ
p
i + A⊤

itα
p
t + Γ⊤

i f
p
t + εpit.
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We begin by setting Zit = ∅, implying that Z⊤
it ζ

p
i is removed from the model. This

simplifies the Bayesian causal MC model to

Y p
it = w⊤

itδ
p
it +X⊤

it ξ
p + A⊤

itα
p
t + Γ⊤

i f
p
t + εpit.

Next, by setting Xi = Ai, we obtain

Y p
it = w⊤

itδ
p
it +X⊤

i ξ
p +X⊤

i α
p
t + Γ⊤

i f
p
t + εpit.

Assuming a single outcome dimension, we further simplify to

Yit = w⊤
itδit +X⊤

i ξt +X⊤
i αt + Γ⊤

i ft + εit.

Given that in SCM, ξt + αt can be seen as a single time-varying effect associated with

the covariates Xi, we combine these terms. This yields the SCM model

Yit = w⊤
itδit +X⊤

i (ξt + αt) + Γ⊤
i ft + εit.

By directly comparing the model to Abadie et al. (2010)’s underlying model of SCM, we

notice that upon setting ξt + αt to effectively represent the combined effect of covariates

over time, the Bayesian causal MC model has been successfully reduced to match the

SCM model. Therefore, by applying the specified conditions to the Bayesian causal MC

model, we have demonstrated that it is a generalized form of SCM.

A.5 Proof of Proposition 5

Proof. Similarly, the functional form of the Bayesian causal MC model with independent

multiple P ’s for unit i at time t and for outcome dimension p is

Y p
it = w⊤

itδ
p
it +X⊤

it ξ
p + Z⊤

it ζ
p
i + A⊤

itα
p
t + Γ⊤

i f
p
t + εpit.

We set Zit = Ait = ∅, which removes these terms from the model. This simplification

yields

Y p
it = w⊤

itδ
p
it +X⊤

it ξ
p + Γ⊤

i f
p
t + εpit.

Given the constraint of considering only a single outcome dimension, we get

Yit = w⊤
itδit +X⊤

it ξ + Γ⊤
i ft + εit.

This model aligns precisely with the functional form of Pinkney (2017)’s Bayesian SCM

IFE model. Hence, this shows that our Bayesian causal MC model, under the specified

conditions, is a generalized form of Pinkney (2017)’s Bayesian SCM IFE.
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B
Matrix Factorization

Matrix Factorization (MF)1 is a technique widely used in recommender systems to reduce

the dimensionality of complex data. According to Koren et al. (2009), the MF model

characterizes both users and items by vectors of factors inferred from item rating patterns.

By treating the data as a large user-item interaction matrix and further decomposing it

into a set of latent factors, which are the product of two lower-dimensional matrices,

the MF model allows for the capture of the underlying structure and hidden patterns in

the data, ultimately used for prediction. In particular, such a model is best suited for

collaborative filtering-based recommender systems.

In Appendix B, we first outline the prevalent strategies used in recommender systems.

Following this, we review the generalized MF model as introduced by Koren et al. (2009).

Subsequent sections, which adopt the empirical example used by Koren et al. (2009) to

more effectively demonstrate the modeling steps, are dedicated to exploring the advanced

features and algorithms behind the model. We then demonstrate its connection to SCM

(Abadie et al. 2010). Appendix B initiates an open discussion on the interplay between

these methodologies, ultimately framing our interpretation of the Bayesian causal MC

model through the lens of MF, offering a distinct perspective from the conventional SCM-

based approach.

1Please note that Appendix B represents an independent piece of writing produced during my previous
research. While the emphasis differs from the rest of the thesis, we include this separate piece to provide
additional understanding for readers. In particular, it aims to demonstrate how seemingly disparate
methods (SCM, MF, and MC) can be integrated within a systematic framework.
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B.1 Collaborative Filtering

As one of the two main strategies in recommender systems, the collaborative filtering

approach, unlike the content filtering approach which creates a singular profile for each

user or item to characterize its nature, aims to investigate the relationships between users

and interdependencies among items to identify new user-item associations. Collaborative

filtering can be easily adapted to various domains, addressing elusive data aspects that

content filtering fails to capture, and providing more accurate predictions. Contrary to

Koren et al.’s (2009) proposal, the cold start problem is not necessarily easier to address

under content filtering. Instead, collaborative filtering can make recommendations based

on similarities with other users or items in the data, even if there is implicit information

about them.

There are two primary areas of collaborative filtering: neighborhood methods and LFMs.

Neighborhood methods are more rudimentary as they focus solely on the relationships

between items (i.e., an item-oriented approach) or between users (i.e., a user-oriented

approach). The implementation of the MF model is based on the second area, LFMs. By

characterizing both items and users by several latent factors inferred from rating patterns,

these models provide clear dimensions for items and assess degrees of preference for users.

B.2 Generalized Model

The generalized MF model incorporates four components: user-item interactions, adding

biases, implicit preferences, and user attributes.

B.2.1 User-Item Interactions

First, the MF model maps both users and items to a joint latent factor space of di-

mensionality f , where the user-item interactions are treated as inner products in f .

Mathematically, each item i and each user u is associated with its corresponding vector,

qi ∈ Rf and pu ∈ Rf , respectively. For a given item i and a given user u, the elements of

qi and pu measure the extent to which the item possesses those factors or the degree of

interest that the user has in items. Intuitively, their interactions are expressed by q⊤i pu.

B.2.2 Adding Biases

Second, to account for the systematic differences among users and items, where some

users tend to rate higher and some items are widely perceived as better, an adding bias
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bui has been introduced by Koren et al. (2009), denoted as

bui = µ+ bi + bu,

where the intercept term µ stands for the overall average rating, and bi and bu represent

the observed deviations of item i and user u, respectively. This added bias is independent

of any user-item interactions, which explains why collaborative filtering is flexible in

dealing with various data aspects.

B.2.3 Implicit Preference

Third, to counter the cold start problem, an additional input may be supplied to help

gather behavioral information, regardless of the user’s willingness to provide explicit

ratings. This input is known as Boolean implicit feedback or, more specifically, a set of

items N(u) indicating each user u’s implicit preferences. Each item i is associated with a

vector xi ∈ Rf , and for a user u who prefers items i ∈ N(u), the preference is represented

by the vector

|N(u)|−
1
2

∑
i∈N(u)

xi.

Here, the sum is normalized for better interpretability and standardization purposes.

B.2.4 User Attribute

Fourth, similar to implicit preference, another optional input is user attributes (e.g.,

demographic information). Let A(u) denote a set of attributes that a user u may have.

A distinct factor vector ya ∈ Rf corresponds to each attribute, describing a user through

the set of associated user attributes as ∑
a∈A(u)

ya.

Model 5 (Basic Matrix Factorization Model). After incorporating these four compo-

nents, we propose the most basic form of the MF model (Koren et al., 2009) as

r̂ui = q⊤i pu︸︷︷︸
User-item Interactions

+µ+ bi + bu︸ ︷︷ ︸
Adding Biases

+ |N(u)|−
1
2

∑
i∈N(u)

xi︸ ︷︷ ︸
Implicit Preference

+
∑

a∈A(u)

ya︸ ︷︷ ︸
User Attribute

,

where r̂ui is the estimated rating of item i by user u.

Two additional advanced features, temporal dynamics and varying confidence levels, can

also be integrated into the equation above. We present them in Sections B.2.5 and B.2.6.
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B.2.5 Temporal Dynamics

Temporal dynamics account for situations when customers’ inclinations evolve and per-

ceptions of product popularity change. Specifically, this results in the item bias bi and

user bias bu becoming functions of time t, denoted by bi(t) and bu(t). Item-user interac-

tions are also influenced by temporal dynamics. As users may change their preferences,

the user vector pu becomes a function of time t, denoted by pu(t). However, unlike hu-

man characteristics, the item vector qi remains static. Implicit preferences are generally

considered to evolve over time; however, the treatment of user attributes is somewhat

controversial. Some user attributes may change (e.g., income level, age group, zip code),

while others may not (e.g., gender). Thus, after accounting for temporal dynamics, the

estimated rating of item i by user u is given by

r̂ui = q⊤i pu(t) + µ+ bi(t) + bu(t) + |N(u)|−
1
2

∑
i∈N(u)

xi(t) +
∑

a∈A(u)

(ya + ya(t)) .

B.2.6 Varying Confidence Levels

Adding a weight coefficient, such as varying confidence levels denoted by cui, can make

the estimate more realistic, as it helps prevent a small number of deliberately adversarial

ratings from damaging the entire recommender system. Varying confidence levels allow

us to quantify the likelihood of customers’ implicit preferences. For example, it is sensible

to assign a higher weight to a recurring event as an indicator that the customer is more

likely to provide a positive rating, and vice versa. This approach is particularly relevant

for non-subscription marketing research.

Model 6 (Complete Matrix Factorization Model with Temporal Dynamics and Varying

Confidence Levels). The complete MF model, extending temporal dynamics and varying

confidence levels to Koren et al.’s (2009) basic MF model, is defined as

r̂ui = cui

q⊤i pu(t) + µ+ bi(t) + bu(t) + |N(u)|−
1
2

∑
i∈N(u)

xi(t) +
∑

a∈A(u)

(ya + ya(t))

 ,

where r̂ui is the estimated rating of item i by user u, q⊤i pu(t) captures the temporal

user-item interactions through latent factors, µ represents the global average rating, bi(t)

and bu(t) are the time-dependent biases for item i and user u, respectively. The terms

|N(u)|−
1
2
∑

iinN(u) xi(t) and
∑

ainA(u) (ya + ya(t)) account for the implicit preferences and

user attributes, both static and time-evolving. The model assumes that the confidence

level cui scales the impact of each part on the final rating estimate, enhancing the relia-

bility of the rating data.
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B.3 Algorithms

Model 6, closely related to SVD, faces challenges due to the sparse nature of the user-

item interaction matrix, which often leads to overfitting. This is because SVD does not

handle missing ratings well, which are prevalent in real-world datasets. To address these

issues and improve estimation accuracy, we implement two machine learning algorithms:

stochastic gradient descent (SGD) and alternating least squares (ALS), based on Koren

et al.’s (2009) selection. These methods are designed to minimize the regularized squared

error on the known ratings, offering a solution that balances fitting the model to the

training data with maintaining the ability to generalize to unseen data.

B.3.1 Stochastic Gradient Descent

SGD optimization, suggested by Funk (2006), iteratively updates model parameters by

looping through all ratings in the training set. For each rating, the prediction error is

calculated and used to adjust the item and user parameters in the direction that reduces

the error. This method is computationally efficient and allows for quick adjustments to

the model parameters.

B.3.2 Alternating Least Squares

ALS, recommended by Bell and Koren (2007), alternates between fixing user parameters

to solve for item parameters and vice versa, facilitating the solving of two independent

least-squares problems. This method is particularly effective for datasets with implicit

feedback and can leverage parallelization to enhance computational efficiency. Unlike

SGD, ALS does not require the setting of a learning rate, making it easier to use in some

scenarios.

For both SGD and ALS, the goal is to minimize the objective function:

min
q∗,p∗,b∗

∑
(u,i)∈κ

cui
(
rui − qTi pu − µ− bu − bi

)2
+ λ

(
∥qi∥2 + ∥pu∥2 + b2u + b2i

)
,

where κ is the set of known (u, i) pairs, cui adjusts for confidence levels, µ is the global

average rating, λ is a regularization parameter to control overfitting, and γ is the learning

rate for SGD. See Algorithm 3 for detailed steps. We note that the convergence criteria

depend on the change in the objective function between iterations. A threshold can be

set to determine convergence.
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Algorithm 3 Matrix Factorization Learning Algorithm

1: Objective: Minimize the regularized squared error in MF:

min
q∗,p∗,b∗

∑
(u,i)∈κ

cui
(
rui − qTi pu − µ− bu − bi

)2
+ λ

(
∥qi∥2 + ∥pu∥2 + b2u + b2i

)
▷ SGD for Parameter Updates

2: for each (u, i) in κ do
3: Predict rui and compute error eui = rui − (qTi pu + µ+ bu + bi)
4: Update qi ← qi + γ(euipu − λqi) ▷ Update item latent vector
5: Update pu ← pu + γ(euiqi − λpu) ▷ Update user latent vector
6: end for

▷ ALS for Matrix Factorization
7: while convergence criteria not met do ▷ Iterate until convergence
8: for each i do
9: With pu fixed, optimize qi by minimizing the objective function
10: end for
11: for each u do
12: With qi fixed, optimize pu by minimizing the objective function
13: end for
14: end while

B.4 MF and SCM Interconnectedness

The interconnectedness between MF under collaborative filtering and the extended SCM,

namely, Xu (2017)’s generalized SCM and Pinkney (2021)’s Bayesian SCM IFE, can

broadly be seen in how they handle data and extract meaningful information from it.

MF is a broad class of latent variable models that includes factor analysis, encoder-

decoder models in deep learning, and many others. It is a versatile technique applicable

to a wide range of problems, from recommender systems to NLP and image recognition.

Essentially, MF reduces the dimensionality of complex data by decomposing it into a set

of latent factors, capturing the underlying structure in the data for future predictions.

Conversely, the extended SCM, designed for causal inference, utilizes a similar concept of

latent factors to capture unobserved time-varying confounders that could affect the out-

come variable. SCM is essentially a weighted combination of control units that closely

match the characteristics of the treated unit prior to the intervention, akin to how MF

uses latent factors to capture the underlying characteristics of users and items in a rec-

ommender system.
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In the context of Bai (2009)’s IFE model, the least squares minimization is defined as

N∑
i=1

(Yit −Xitβ − FtΛi)
2,

essentially measuring the difference between the observed data and the data predicted by

the model. This expression shares a similar structure with the regularized squared error

minimization in MF such that

min
q∗,p∗,b∗

∑
(u,i)∈κ

cui
(
rui − qTi pu − µ− bu − bi

)2
+ λ

(
∥qi∥2 + ∥pu∥2 + b2u + b2i

)
,

aiming to minimize the difference between the observed data and the data reconstructed

from the latent factors.

Hence, the extended SCM can be viewed as a specific manifestation of MF, tailored to

the unique context of causal inference. They adopt the broad principles of MF – the use

of latent factors to capture underlying structures in the data – and apply them within

a context with specific assumptions and constraints. This essence of interconnectedness

between MF and the extended SCM underlines that the former is a broad and versatile

technique with wide applicability, while the latter represents a specific application of

that technique. Stripping SCM back to a more primordial form is essentially a discovery

of its roots in MF. Understanding SCM in the MF context allows us to gain a deeper

insight into its principles and assumptions and potentially discover new ways to extend

and apply it. Our proposed Bayesian causal MC model finds itself at the intersection of

both MF and SCM, and in Section B.5, we discuss why the idea of MF could help us

better counter the large N , small T , and multiple P problem.

B.5 A Hybrid Approach of MF and SCM

In the context of a marketing dataset with a large number of customers (large N), a

short duration of time (small T ), and multiple marketing outcomes (multiple P ), the

interconnectedness between MF under collaborative filtering and extended SCM can offer

significant insights.

MF is adept at handling large-scale datasets by reducing the dimensionality of data

through the decomposition into a set of latent factors. This is particularly beneficial for

managing a large customer base (large N), enabling the capture of the underlying struc-

ture in customer data and unveiling hidden patterns for predictive purposes. However,

MF generally presumes that all data points are i.i.d., an assumption that may not al-

ways be valid in panel data frameworks where observations are collected over time. Here,

extended SCM becomes relevant.

70



SCM is equipped to manage time-varying confounders. Yet, traditional SCM might face

challenges in large N and small T situations, often presupposing that the amount of pre-

treatment periods is sufficient for estimating synthetic control weights – a notable small

T issue.

Within the context of Bai (2009)’s IFE model, the large N and large T concept is lever-

aged to address scenarios featuring both a significant number of cross-sectional units and

extensive time periods. This contrasts with our specific challenge of large N , small T , and

multiple P . To address this, adaptation of SCM or MF techniques, or a hybrid approach,

might be necessary. For example, MF could be employed to diminish the dimensionality

of customer data (addressing large N and multiple P ), followed by applying SCM or its

variants to manage the time-varying data component (tackling small T ). Furthermore,

exploration into recent SCM and MF developments designed for such scenarios could be

fruitful. For instance, some SCM variants have been introduced to accommodate a limited

number of time periods, alongside MF methods tailored for time-series data analysis.

In conclusion, the synergy between MF under collaborative filtering and extended SCM

can shed light on effective strategies for analyzing complex marketing datasets character-

ized by a vast customer base, brief time frames, and diverse outcomes. Acknowledging the

strengths and limitations of each method, along with the potential for a hybrid approach,

fosters the development of more advanced methodologies for prediction and inference. As

the first to establish a connection between these methodologies, leveraging the advantages

of both models has significantly contributed to the development of our proposed Bayesian

causal MC model. In future research, we aim to strengthen its direct relationship with

MF, creating a bridge between one of the SCM variants and the broader family of MF.
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C
Model Replications

In Appendix C, we present only the essential replication codes for the four models dis-

cussed in this thesis. Please note that visualizations, output analysis, and the dataset

have been omitted for clarity. Those interested in replicating these results are encour-

aged to visit my coding folders at https://rpubs.com/jiangzm, which is a collection of all

previous R implementations documented in Rmd files. Some work is also documented in

ipynb files, but these documents are not currently available online. If you are interested

in accessing these documents, particularly those related to NLP models, please send an

email to jiangzm@umich.edu, and I will provide the necessary code to you.

Please note that model replication is available exclusively for the German reunification

study. Due to a non-disclosure agreement signed with the company that provided the

CRM panel data, that particular dataset cannot be made public online. Those wishing to

test and compare the following four models should refer to Hainmueller (2014) to access

the German reunification data and run the codes below. If you encounter any difficulties,

consider consulting the following resources that I wrote for replication guidance:

For Standard SCM replication, visit https://rpubs.com/jiangzm/1053384,

For Bayesian SCM IFE replication, visit https://rpubs.com/jiangzm/1054792, and

For Bayesian causal MC implementations, refer to https://rpubs.com/jiangzm/1069496

or https://rpubs.com/jiangzm/1095460.
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C.1 Standard SCM

1 l i b r a r y ( Synth )

2

3 # Load German Reun i f i c a t i on Dataset

4 d <− read . dta ( ”repgermany . dta” )

5

6 # I n i t i a l data preparat ion f o r p r e d i c t o r s and dependent va r i ab l e

7 dataprep i n i t <− dataprep (

8 f oo = d ,

9 p r ed i c t o r s = c ( ”gdp” , ” trade ” , ” i n f r a t e ” ) ,

10 dependent = ”gdp” ,

11 uni t . v a r i ab l e = 1 ,

12 time . v a r i ab l e = 3 ,

13 s p e c i a l . p r e d i c t o r s = l i s t (

14 l i s t ( ” indus t ry ” , 1971 :1980 , c ( ”mean” ) ) ,

15 l i s t ( ” s choo l i ng ” , c (1970 , 1975) , c ( ”mean” ) ) ,

16 l i s t ( ” inve s t70 ” , 1980 , c ( ”mean” ) )

17 ) ,

18 treatment . i d e n t i f i e r = 7 ,

19 c on t r o l s . i d e n t i f i e r = unique (d$ index ) [ −7] ,

20 time . p r e d i c t o r s . p r i o r = 1971 :1980 ,

21 time . opt imize . s s r = 1981 :1990 ,

22 uni t . names . v a r i ab l e = 2 ,

23 time . p l o t = 1960:2003

24 )

25

26 # Synth i n i t i a l i z a t i o n

27 synth i n i t <− synth (

28 data . prep . obj = dataprep i n i t ,

29 Margin . ipop = .005 ,

30 S i g f . ipop = 7 ,

31 Bound . ipop = 6

32 )

33

34 # Main data preparat ion f o r p r e d i c t o r s and dependent va r i ab l e

35 dataprep main <− dataprep (

36 f oo = d ,

37 p r ed i c t o r s = c ( ”gdp” , ” trade ” , ” i n f r a t e ” ) ,

38 dependent = ”gdp” ,

39 uni t . v a r i ab l e = 1 ,

40 time . v a r i ab l e = 3 ,

41 s p e c i a l . p r e d i c t o r s = l i s t (

42 l i s t ( ” indus t ry ” , 1981 :1990 , c ( ”mean” ) ) ,

43 l i s t ( ” s choo l i ng ” , c (1980 , 1985) , c ( ”mean” ) ) ,

44 l i s t ( ” inve s t80 ” , 1980 , c ( ”mean” ) )

45 ) ,

46 treatment . i d e n t i f i e r = 7 ,
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47 c on t r o l s . i d e n t i f i e r = unique (d$ index ) [ −7] ,

48 time . p r e d i c t o r s . p r i o r = 1981 :1990 ,

49 time . opt imize . s s r = 1960 :1989 ,

50 uni t . names . v a r i ab l e = 2 ,

51 time . p l o t = 1960:2003

52 )

53

54 # Synth main c a l c u l a t i o n

55 synth main <− synth (

56 data . prep . obj = dataprep main ,

57 custom . v = as . numeric ( synth i n i t $ s o l u t i o n . v )

58 )

59

60 # Synth tab l e gene ra t i on

61 synth df <− synth . tab (

62 dataprep . r e s = dataprep main ,

63 synth . r e s = synth main

64 )

65

66 # GDP data preparat ion

67 dataprep gdp <− dataprep main$Y0
68

69 # Extract ing syn the t i c weights

70 synth weight <− synth main$ s o l u t i o n .w

71

72 # Calcu l a t ing syn th e t i c GDP

73 synth gdp <− dataprep gdp %∗% synth weight

Listing C.1: Implementation of Standard SCM using R

C.2 Bayesian SCM with IFE

1 l i b r a r y ( r s tan )

2

3 # Load German Reun i f i c a t i on Dataset

4 d <− read . dta ( ”/Users / apple /Desktop/repgermany . dta” )

5

6 # Load only outcome f o r German Reun i f i c a t i on

7 german un i f i c a t i o n <− read . csv ( ”german un i f i c a t i o n . csv ” )

8

9 # Data p r ep ro c e s s i ng f o r average computations

10 df avg <− d |> group by ( index , country ) |>
11 summarize at (

12 vars ( gdp , i n f r a t e , trade , industry , s choo l ing , invest70 , i nve s t80 ) ,

13 mean , na . rm = TRUE

14 )

15

16 # Investment data adjustment
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17 df avg <− mutate ( df avg , i nve s t80 = (1 / 100) ∗ i nve s t80 )

18

19 # Calcu la te average investment f o r 1975

20 df avg <− mutate ( df avg , i nve s t75 = mean( c a c r o s s ( c ( ” inve s t70 ” , ” inve s t80 ” )

) , na . rm = TRUE) )

21

22 # Prepare data f o r Bayesian SCM IFE

23 df J P <− df avg [ , c ( 3 : 7 , 10) ]

24 rownames ( df J P) <− 1 :17

25 colnames ( df J P) <− c ( ”avg gdp” , ”avg i n f r a t e ” , ”avg trade ” , ”avg indust ry ”

, ”avg s choo l i ng ” , ”avg inve s t75 ” )

26

27 df J T <− german un i f i c a t i o n [ , 2 : 4 5 ]

28 colnames ( df J T) <− 1960:2003

29 rownames ( df J T) <− 1 :17

30

31 # Stan model code ( s imp l i f i e d f o r b r ev i ty )

32 stan code <− ” func t i on s { . . . }” # Refer to Appendix o f Pinkney (2019)

33

34 # Data l i s t preparat ion f o r Stan

35 data l i s t <− l i s t (

36 T = length ( unique (d$year ) ) ,
37 J = length ( unique (d$ country ) ) ,
38 L = 8 ,

39 P = 6 ,

40 X = data . matrix ( t ( df J P) ) ,

41 Y = data . matrix ( df J T) ,

42 t r t t imes = max(d$year ) − 1990

43 )

44

45 # Control l i s t f o r Stan

46 c on t r o l l i s t <− l i s t (max treedepth = 14 , adapt de l t a = 0 . 95 )

47

48 # Stan model f i t t i n g

49 f i t <− stan (model code = stan code , data = data l i s t , i n i t = ” 0 .1 ” ,

50 c on t r o l = con t r o l l i s t , cha ins = 4 , warmup = 250 , i t e r = 500)

51

52 # Pos t e r i o r a n a l y s i s and output gene ra t i on

53 # Example code f o r gene ra t ing syn the t i c GDP outputs and t h e i r c r e d i b i l i t y

i n t e r v a l s

Listing C.2: Implementation of Bayesian SCM with IFE using Stan and R

C.3 Bayesian Causal MC with Independent Multiple

P ’s

1 # Load ex t e rna l C++ code
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2 Rcpp : : sourceCpp ( ”bpCausal−main/ s r c / b l a s s o . cpp” )

3

4 # Load e s s e n t i a l R s c r i p t s ( r e f e r to Pang et a l . 2021)

5 source ( ”bpCausal−main/R/ b l a s s o d e f au l t .R” )

6 source ( ”bpCausal−main/R/ b l a s s o core .R” )

7

8 # Def ine the main func t i on f o r Bayesian causa l MC model

9 BCMC <− f unc t i on ( data , index , Yname vector , Dname , Xname , Zname , Aname ,

10 re , ar1 , r , n i t e r = 15000 , burn = 5000 ,

11 x l a s s o = 1 , z l a s s o = 1 , a l a s s o = 1 , f l a s s o = 1 ,

12 a1 = 0 .001 , a2 = 0 .001 , b1 = 0 .001 , b2 = 0 .001 ,

13 c1 = 0 .001 , c2 = 0 .001 , p1 = 0 .001 , p2 = 0 .001 ) {
14

15 # Applying Bayesian Causal i n f e r e n c e on each outcome va r i ab l e

16 out <− l app ly (Yname vector , f unc t i on (Yname s i n g l e ) {
17 bpCausal ( data = data ,

18 index = index ,

19 Yname = Yname s i ng l e ,

20 Dname = Dname ,

21 Xname = Xname ,

22 Zname = Zname ,

23 Aname = Aname ,

24 re = re ,

25 ar1 = ar1 ,

26 r = r ,

27 n i t e r = n i t e r ,

28 burn = burn ,

29 x l a s s o = xlas so ,

30 z l a s s o = z l a s s o ,

31 a l a s s o = a la s so ,

32 f l a s s o = f l a s s o ,

33 a1 = a1 , a2 = a2 ,

34 b1 = b1 , b2 = b2 ,

35 c1 = c1 , c2 = c2 ,

36 p1 = p1 , p2 = p2 )

37 })
38

39 re turn ( out )

40 }
41

42 # Running BCMC fo r mu l t ip l e outcomes

43 OUT <−
44 BCMC( data = hypo synth t r t , index = c ( ” id ” , ”T” ) ,

45 Yname vecto r = c ( ”F purch” , ”M purch” , ”R purch” , ”F redem” , ”M

redem” , ”R redem” ) ,

46 Dname = ”D” , Xname = c ( ) , Zname = c ( ) , Aname = c ( ) ,

47 re = ”both” , ar1 = TRUE, r = 8)

48
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49 # Function to es t imate c oun t e r f a c tua l outcomes

50 c oun t e r f a c tua l e s t <− f unc t i on (x ) {
51 # I t e r a t i o n count

52 n i t e r <− dim(x$ sigma2 ) [ 2 ]

53

54 # Counter factua l outcomes

55 yct i <− x$ yct
56 yct i <− matrix ( c ( yct i [ , ( 1 ) : n i t e r ] ) , nrow ( yct i ) , n i t e r )

57

58 # Or ig ina l outcomes and i d e n t i f i e r s

59 yo t <− x$yo t

60 id t r <− x$raw . id . t r

61 time t r <− x$ time . t r

62

63 # Mean coun t e r f a c tua l e s t imate s

64 m yct mean <− apply ( yct i , 1 , mean)

65

66 # Cr ed i b i l i t y i n t e r v a l s

67 m yct c i l <− apply ( yct i , 1 , quant i l e , 0 . 025 )

68 m yct c i u <− apply ( yct i , 1 , quant i l e , 0 . 975 )

69

70 # Compile r e s u l t s

71 r e s u l t x <− data . frame (

72 id = id tr ,

73 T = as . i n t e g e r ( time t r ) ,

74 o r i g i n a l outcome = yo t ,

75 c oun t e r f a c tua l e s t imate = m yct mean ,

76 c i lower = m yct c i l ,

77 c i upper = m yct c i u

78 )

79

80 re turn ( r e s u l t x )

81 }
82

83 # Apply coun t e r f a c tua l e s t imat i on ac ro s s a l l outputs

84 c oun t e r f a c tua l r e s u l t s <− l app ly (OUT, coun t e r f a c tua l e s t )

Listing C.3: Implementation of Bayesian Causal MC for Independent Multiple P ’s using

R and Rcpp

C.4 Bayesian Causal MC with Concurrent Multiple

P ’s

1 import argparse

2 import pandas as pd

3 import numpy as np

4 import matp lo t l i b . pyplot as p l t

77



5 from jax import j i t , random , numpy as jnp

6 import numpyro as npr

7 from numpyro import i n f e r , d i s t r i b u t i o n s as d i s t

8

9 # Function to c r ea t e beta parameter

10 @j i t

11 de f make beta ( b e t a o f f : jnp . ndarray ,

12 lambd : jnp . ndarray ,

13 eta : jnp . ndarray ,

14 tau : jnp . ndarray ) :

15

16 cache = jnp . tan ( 0 . 5 ∗ jnp . p i ∗ lambd ) ∗ jnp . tan ( 0 . 5 ∗ jnp . p i ∗ eta )

17 tau = jnp . tan ( 0 . 5 ∗ jnp . p i ∗ tau )

18 out = jnp . diag ( cache ) @ ( b e t a o f f ∗ tau )

19

20 re turn out

21

22 # Function to c r ea t e Sigma matrix

23 @j i t

24 de f make Sigma ( Sigma diag ) :

25 L = Sigma diag . shape [ 1 ]

26 Sigma = Sigma diag [ : , : , jnp . newaxis ] ∗ jnp . eye (L)

27

28 re turn Sigma

29

30 # Function to c r ea t e Phi matrix

31 @j i t

32 de f make Phi ( Sigma : jnp . ndarray ,

33 F: jnp . ndarray ,

34 beta : jnp . ndarray ) :

35 # Calcu la te Phi matrix : KxLxL @ TxL @ LxJ = KxTxJ

36 Phi = F[ jnp . newaxis , : , : ] @ Sigma @ beta [ jnp . newaxis , : , : ]

37

38 re turn Phi

39

40 # Function to c r ea t e c oun t e r f a c tua l Y matrix

41 de f make Y( Y 1 pre : jnp . ndarray ,

42 Y 1 post : jnp . ndarray ,

43 Y 0 : jnp . ndarray ) :

44 # Concatenate Y 1 pre and Y 1 post to form a complete Y matrix

45 Y = jnp . concatenate ( [ Y 1 pre , Y 1 post ] ) # TxK

46 Y reshaped = Y. reshape (1 , ∗Y. shape ) # 1xTxK

47 Y = jnp . concatenate ( [ Y reshaped , Y 0 ] , ax i s=0) # JxTxK

48 Y = jnp . t ranspose (Y, axes =(1 , 0 , 2) ) # TxJxK

49 re turn Y

50

51 # Main model f unc t i on

52 de f model sur scm (Y 0 : jnp . ndarray , Y 1 pre : jnp . ndarray , L : i n t ) :
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53 # Model i n i t i a l i z a t i o n

54 J = Y 0 . shape [ 0 ] + 1

55 T = Y 0 . shape [ 1 ]

56 K = Y 0 . shape [ 2 ]

57 T post = T − Y 1 pre . shape [ 0 ]

58

59 # Def ine parameters and p r i o r s

60 eta = npr . sample ( ” eta ” , d i s t . Uniform ( ) )

61

62 # Sample lambda , tau , b e t a o f f , Sigma diag , F , kappa , d e l t a

63 # For each sampling , use appropr ia te numpyro d i s t r i b u t i o n

64 with npr . p l a t e ( ”L” ,L) :

65 lambd = npr . sample ( ”lambda” , d i s t . Uniform ( ) )

66

67 with npr . p l a t e ( ”J” , J ) :

68 tau = npr . sample ( ” tau” , d i s t . Uniform ( ) )

69

70 with npr . p l a t e ( ”L” , L , dim=−2) , npr . p l a t e ( ”J” , J , dim=−1) :

71 b e t a o f f = npr . sample ( ” b e t a o f f ” , d i s t . Normal ( ) )

72

73 with npr . p l a t e ( ”K” , K, dim=−2) , npr . p l a t e ( ”L” , L , dim=−1) :

74 Sigma diag = npr . sample ( ” Sigma diag ” , d i s t . Normal ( ) )

75

76 with npr . p l a t e ( ”T” , T, dim=−2) , npr . p l a t e ( ”L” , L , dim=−1) :

77 F = npr . sample ( ” f ” , d i s t . Normal ( ) )

78

79 with npr . p l a t e ( ”K” , K, dim=−2) , npr . p l a t e ( ”J” , J , dim=−1) :

80 kappa = npr . sample ( ”kappa” , d i s t . Normal ( ) )

81

82 with npr . p l a t e ( ”K” , K, dim=−2) , npr . p l a t e ( ”T” , T, dim=−1) :

83 de l t a = npr . sample ( ” de l t a ” , d i s t . Normal ( s c a l e =2) )

84

85 with npr . p l a t e ( ”K” , K) :

86 s i g e r r = npr . sample ( ’ L sigma ’ , d i s t . HalfCauchy ( ) )

87

88 # Data augmentation f o r post−treatment per iod

89 Y 1 post = npr . sample ( ”Y 1 post ” , d i s t . Normal ( ) . mask ( Fa l se ) )

90

91 # Calcu la te transformed va r i a b l e s : beta , Sigma , Phi

92 beta = make beta ( b e t a o f f , lambd , eta , tau )

93 Sigma = make Sigma ( Sigma diag )

94 Phi = make Phi ( Sigma , F , beta ) # Phi : KxTxJ

95 Y = make Y( Y 1 pre , Y 1 post , Y 0 ) # Y: TxJxK

96

97 # Calcu la te mu and reshape f o r l i k e l i h o o d

98 # Sample Y from Normal d i s t r i b u t i o n with mu reshaped and s i g e r r

99 mu = Phi + de l t a [ : , : , jnp . newaxis ] + kappa [ : , jnp . newaxis , : ]

100 mu reshaped = mu. t ranspose ( [ 1 , 2 , 0 ] ) . reshape (T ∗ J , K)
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101 Y reshaped = Y. reshape (T ∗ J , K)

102

103 with npr . p l a t e ( ”T∗J” , T ∗ J , dim=−2) , npr . p l a t e ( ”K” , K, dim=−1) :

104 npr . sample ( ”Y” , d i s t . Normal ( l o c=mu reshaped , s c a l e=s i g e r r ) , obs=

Y reshaped )

105

106 # Function to get data

107 de f ge t data ( path : s t r = None ) :

108 # Load and proce s s German r e u n i f i c a t i o n data

109 # Inc lude norma l i za t i on and whitening s t ep s

110 # Return proces sed data and whitening parameters

111

112 # Main func t i on

113 de f main ( args ) :

114 # I n i t i a l i z a t i o n s

115 rng key = random .PRNGKey( args . seed )

116 rng key , rng key mcmc , rng key p r ed i c t = random . s p l i t ( rng key , 3)

117 x va lues , Y 0 , Y 1 obs , Y 1 pre , whitening1 , whitening2 , whitening3 =

get data ( )

118

119 T = Y 0 . shape [ 1 ]

120 L = args . num latent

121 J = Y 0 . shape [ 0 ] + 1

122

123 # In f e r en c e

124 nu t s k e rn e l = i n f e r .NUTS( model sur scm , max tree depth=8,

t a r g e t a c c ep t p r ob =0.8)

125 mcmc = i n f e r .MCMC( nut s ke rne l , num warmup=args . i t e r , num samples=args .

i t e r , num chains=1)

126 mcmc. run ( rng key mcmc , Y 0 , Y 1 pre , L)

127

128 # Print

129 mcmc. print summary ( )

130 po s t e r i o r s amp l e s = mcmc . get samples ( )

131

132 # Pos t e r i o r P r ed i c t i v e D i s t r i bu t i on

133 ppd = i n f e r . P r ed i c t i v e ( model sur scm , po s t e r i o r s amp l e s , num samples=

args . i t e r , p a r a l l e l=True ) # Y i s TxJxK

134 Y counte r f ac tua l = ppd( rng key pred i c t , Y 0 , Y 1 pre , L) [ ”Y” ]

135 K=3

136 Y 1 counte r f a c tua l = jnp . array ( Y counte r f ac tua l ) . reshape ( [ args . i t e r ,T, J

,K] ) [ : , : , 0 , : ]

137 Y 1 counte r f a c tua l = Y 1 counte r f a c tua l . reshape ( [ args . i t e r ,T,K] )

138 Y1 1 counte r f a c tua l = Y 1 counte r f a c tua l [ : , : , 0 ]

139 Y2 1 counte r f a c tua l = Y 1 counte r f a c tua l [ : , : , 1 ]

140 Y3 1 counte r f a c tua l = Y 1 counte r f a c tua l [ : , : , 2 ]

141 y1p mu = Y1 1 counte r f a c tua l . mean( ax i s=0)

142 y2p mu = Y2 1 counte r f a c tua l . mean( ax i s=0)
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143 y3p mu = Y3 1 counte r f a c tua l . mean( ax i s=0)

144

145 i f name == ” main ” :

146 par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=” parse args ” )

147 par s e r . add argument ( ”−n” , ”−−num−l a t e n t ” , d e f au l t =30, type=in t )

148 par s e r . add argument ( ”−seed ” , d e f au l t =20240423 , type=in t )

149 par s e r . add argument ( ”− i t e r ” , d e f au l t =3000 , type=in t )

150

151 args = par s e r . p a r s e a r g s ( )

152 main ( args )

Listing C.4: Implementation of Bayesian Causal MC for Concurrent Multiple P ’s using

JAX and NumPyro

C.5 Yelp’s Fusion API

1 import pandas as pd

2 import r eque s t s

3 import time as t

4

5 # Load CRM panel data

6 JA Cov = pd . r ead c sv ( ”CRMpaneldata . csv ” )

7

8 # Def ine a func t i on to search Yelp based on p r o j e c t l o c a t i o n and f u l l

address

9 de f s e a r ch ye l p ( p r o j l o c , f u l l a d d r e s s , ap i key ) :

10 # Yelp API endpoint f o r bus in e s s search

11 endpoint = ” https : // api . ye lp . com/v3/ bu s i n e s s e s / search ”

12 headers = {
13 ”Author i zat ion ” : f ”Bearer { ap i key }” ,

14 }
15 params = {
16 ”term” : p r o j l o c ,

17 ” l o c a t i o n ” : f u l l a d d r e s s ,

18 ” l im i t ” : 1

19 }
20

21 # Make the API reque s t

22 re sponse = reque s t s . get ( endpoint , headers=headers , params=params )

23 i f r e sponse . s t a tu s code == 200 :

24 # Return JSON response i f s u c c e s s f u l

25 re turn response . j son ( )

26 e l s e :

27 # Error handl ing

28 pr in t ( f ”API reque s t f a i l e d f o r row { index } . ” )
29 re turn None

30
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31 # Place your Yelp API keys here

32 ap i key 1 = ” . . . ”

33 ap i key 2 = ” . . . ”

34

35 # I n i t i a l i z e a l i s t to s t o r e Yelp data

36 y e l p d a t a l i s t = [ ]

37

38 # Time delay between r eque s t s to avoid h i t t i n g ra t e l im i t

39 s l e ep t ime = 0 .5

40

41 # I t e r a t e through the CRM panel data

42 f o r index , row in JA Cov . i t e r r ows ( ) :

43 p r o j l o c = row [ ’ p r o j l o c ’ ]

44 f u l l a d d r e s s = row [ ’ f u l l a d d r e s s ’ ]

45

46 # Alternate between two API keys to balance the quota usage

47 cu r r en t ap i k ey = ap i key 1 i f index % 2 == 0 e l s e ap i key 2

48

49 # Cal l the Yelp search func t i on

50 r e s u l t = s ea r ch ye l p ( p r o j l o c , f u l l a d d r e s s , cu r r en t ap i k ey )

51

52 # Process the r e s u l t and append bus in e s s i n f o to the l i s t

53 i f r e s u l t and ’ bu s i n e s s e s ’ in r e s u l t :

54 f o r bus in e s s in r e s u l t [ ’ bu s i n e s s e s ’ ] :

55 y e l p d a t a l i s t . append ({
56 ’ y e l p tag ’ : ’ , ’ . j o i n ( [ cat [ ’ t i t l e ’ ] f o r cat in bus ine s s . get

( ’ c a t e g o r i e s ’ , [ ] ) ] ) ,

57 ’ r a t i ng ’ : bu s in e s s . get ( ’ r a t i ng ’ ) ,

58 ’ review num ’ : bu s in e s s . get ( ’ r ev iew count ’ ) ,

59 ’ p r i c e l e v e l ’ : bu s in e s s . get ( ’ p r i c e ’ ) ,

60 ’ t r an s a c t i on s ’ : ’ , ’ . j o i n ( bus in e s s . get ( ’ t r an s a c t i on s ’ , [ ] ) )

,

61 ’ y e l p u r l ’ : bu s in e s s . get ( ’ u r l ’ )

62 })
63 e l s e :

64 # Append None va lue s i f no bus ine s s i n f o i s found

65 y e l p d a t a l i s t . append ({
66 ’ y e l p tag ’ : None ,

67 ’ r a t i ng ’ : None ,

68 ’ review num ’ : None ,

69 ’ p r i c e l e v e l ’ : None ,

70 ’ t r an s a c t i on s ’ : None ,

71 ’ y e l p u r l ’ : None

72 })
73

74 # Wait f o r a s p e c i f i e d time be f o r e making the next r eques t

75 t . s l e e p ( s l e ep t ime )

76
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77 # Convert the l i s t o f Yelp data in to a DataFrame

78 ye lp data = pd . DataFrame ( y e l p d a t a l i s t )

79

80 # Concatenate the o r i g i n a l data with the r e t r i e v e d Yelp data

81 JA C yelp = pd . concat ( [ JA Cov , ye lp data ] , ax i s=1)

Listing C.5: Integrating Yelp’s Fusion API for Covariate Data Enrichment in Python

C.6 FastText Tag Embeddings

1 from gensim . models . f a s t t e x t import FastText

2 import pandas as pd

3 import numpy as np

4 from sk l ea rn . exper imenta l import e n ab l e i t e r a t i v e impu t e r

5 from sk l ea rn . impute import I t e r a t i v e Impute r

6 from sk l ea rn . met r i c s . pa i rw i s e import c o s i n e s im i l a r i t y

7 from sk l ea rn . decomposit ion import PCA

8 from sk l ea rn . mani fo ld import TSNE

9 import matp lo t l i b . pyplot as p l t

10 import time as t

11

12 # Load the FastText model us ing pre−t r a in ed data

13 model = FastText . l o ad f a s t t e x t f o rma t ( ” cc . en . 3 0 0 . bin ” )

14

15 # Data Loading from CSV

16 X = pd . r ead c sv ( ”CRMpaneldata . csv ” )

17

18 # Numerical data imputation

19 numerical X = X. s e l e c t d t y p e s ( i n c lude=[ ’ f l o a t 6 4 ’ , ’ i n t64 ’ ] ) . copy ( )

20 numerical X [ ’ p r i c e l e v e l ’ ] . r e p l a c e ({0 : np . nan } , i np l a c e=True )

21

22 imputer = I t e r a t i v e Impute r ( max i ter=10, random state=0)

23 numerical X imputed = imputer . f i t t r a n s f o rm ( numerical X )

24

25 numer ica l X imputed df = pd . DataFrame ( numerical X imputed , columns=

numerical X . columns , index=numerical X . index )

26 X[ numerical X . columns ] = numer ica l X imputed df

27

28 # Prepar ing tags f o r embedding ex t r a c t i on

29 X[ ’ y e l p t a g l i s t ’ ] = X[ ’ y e l p tag ’ ] . apply ( lambda x : s t r ( x ) . s p l i t ( ’ , ’ ) )

30

31 de f get embedding f rom tags ( tags , model ) :

32 embeddings = [ model .wv [ tag . s t r i p ( ) ] f o r tag in tags i f tag . s t r i p ( ) in

model .wv ]

33 re turn np .mean( embeddings , ax i s=0) i f embeddings e l s e np . z e r o s (model .

v e c t o r s i z e )

34
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35 X[ ’ average ye lp tag embedding ’ ] = X[ ’ y e l p t a g l i s t ’ ] . apply ( lambda tags :

get embedding f rom tags ( tags , model ) )

36

37 # PCA fo r d imens i ona l i t y reduct i on

38 embedding matrix = np . vstack (X[ ’ average ye lp tag embedding ’ ] . apply ( lambda x

: np . array (x ) ) )

39 pca = PCA( n components=9)

40 reduced embeddings = pca . f i t t r a n s f o rm ( embedding matrix )

41

42 # Compute co s i n e s im i l a r i t y f o r o r i g i n a l and reduced embeddings

43 s im i l a r i t y ma t r i x o r i g i n a l = c o s i n e s im i l a r i t y ( embedding matrix )

44 s im i l a r i t y ma t r i x r edu c ed = c o s i n e s im i l a r i t y ( reduced embeddings )

45

46 # t−SNE f o r d imens i ona l i t y reduct ion

47 t sne = TSNE( n components=2, random state=42)

48 reduced embeddings tsne = tsne . f i t t r a n s f o rm ( embedding matrix )

49

50 # Generate a combined panel data frame with o r i g i n a l data and ext rac t ed

f e a t u r e s

51 X[ ’ p c a f e a t u r e 1 ’ ] = reduced embeddings [ : , 0 ]

52 X[ ’ p c a f e a t u r e 2 ’ ] = reduced embeddings [ : , 1 ]

53 X[ ’ t s n e f e a t u r e 1 ’ ] = reduced embeddings tsne [ : , 0 ]

54 X[ ’ t s n e f e a t u r e 2 ’ ] = reduced embeddings tsne [ : , 1 ]

Listing C.6: Extracting and Analyzing FastText Embeddings from Yelp Tags in Python

C.7 BERT and ELECTRA

1 import pandas as pd

2 import numpy as np

3 from trans fo rmer s import ElectraToken izer , ElectraModel

4 import torch

5 from tqdm import tqdm

6

7 # Load data from CSV f i l e

8 X = pd . r ead c sv ( ”CRMpaneldata . csv ” )

9

10 # I n i t i a l i z e ELECTRA Small−Disc r iminator Model and Tokenizer

11 t ok en i z e r = Elec t raToken i ze r . f r om pre t ra ined ( ’ goog l e / e l e c t r a−small−
d i s c r im ina t o r ’ )

12 model = ElectraModel . f r om pre t ra ined ( ’ goog l e / e l e c t r a−small−d i s c r im ina t o r ’ )

13

14 # Function to generate embeddings in batches f o r g iven t ex t s

15 de f batch bert embedding ( t ex t s ) :

16 # Replace NaN tex t s with empty s t r i n g s

17 t e x t s = [ ’ ’ i f pd . i sna ( t ext ) e l s e t ex t f o r t ex t in t ex t s ]

18

19 # Tokenize the batch o f t e x t s
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20 inputs = token i z e r ( texts , padding=True , t runcat i on=True , max length=64,

r e t u r n t e n s o r s=”pt” )

21

22 # Generate embeddings without updating g rad i en t s

23 with torch . no grad ( ) :

24 outputs = model (∗∗ inputs )

25

26 # Extract the embeddings o f the f i r s t token ( [CLS ] token ) as sentence

embeddings

27 embeddings = outputs . l a s t h i d d e n s t a t e [ : , 0 , : ] . numpy( )

28

29 re turn embeddings

30

31 # Def ine batch s i z e f o r p ro c e s s i ng

32 ba t ch s i z e = 32

33

34 # Li s t o f UTM columns to proce s s

35 utm columns = [ ’ utm campaign ’ , ’ utm medium ’ , ’ utm content ’ , ’ utm source ’ ]

36

37 # Process each UTM column to generate embeddings

38 f o r c o l in tqdm( utm columns , desc=’ Proce s s ing UTM columns ’ ) :

39

40 # I n i t i a l i z e an array to hold a l l embeddings f o r the cur rent column

41 a l l embedd ings = np . empty ( ( 0 , 256) )

42

43 # Calcu la te the t o t a l number o f batches needed

44 t o t a l b a t c h e s = in t (np . c e i l ( l en (X) / ba t ch s i z e ) )

45

46 # Process each batch

47 f o r i in tqdm( range (0 , l en (X) , b a t ch s i z e ) , desc=f ’ Proce s s ing { c o l } ’ ,
t o t a l=t o t a l b a t c h e s ) :

48 # Se l e c t the cur rent batch o f data

49 batch = X[ co l ] [ i : i + ba t ch s i z e ]

50

51 # Generate embeddings f o r the batch

52 batch embeddings = batch bert embedding ( batch )

53

54 # Stack the embeddings to accumulate them

55 a l l embedd ings = np . vstack ( [ a l l embeddings , batch embeddings ] )

56

57 # Convert the embeddings in to a DataFrame

58 be r t d f = pd . DataFrame ( a l l embeddings , columns=[ f ”{ c o l } e l e c t r a { i }”
f o r i in range ( a l l embedd ings . shape [ 1 ] ) ] )

59

60 # Concatenate the new DataFrame o f embeddings with the o r i g i n a l data

61 X = pd . concat ( [X, b e r t d f ] , a x i s=1)

Listing C.7: Customer/Project-Level Covariate Data using BERT/Electra in Python

85


	Introduction
	Literature Review
	Limitations in Synthetic Control Method
	Extensions on Synthetic Control Method
	Bayesian Causal Inference

	Framework
	Block Structure
	Treatment Matrix
	Matrix Representation and Partitioning
	Covariate Matrix

	Estimands
	Assignment Mechanisms
	Posterior Predictive Inference

	Methodology
	German Reunification
	Modeling
	Underlying Factor Model of Standard SCM
	Functional Form of Bayesian SCM with IFE
	Functional Form of Bayesian Causal MC

	Estimation and Inference
	Generalization

	Empirical Application
	Implementation in German Reunification
	Replication of Standard SCM
	Replication of Bayesian SCM IFE
	Implementation of Bayesian Causal MC
	Counterfactual Estimation
	Evidence of Treatment Effects
	Effectiveness

	CRM Panel Data
	Longitudinal Data Analysis
	Model-Free Evidence
	RFM Framework
	Treatment Staggered Adoption
	Covariates

	Implementation in CRM Panel Data
	Counterfactual Estimation
	Model Performance Evaluation


	Discussion
	Theoretical Results
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5

	Matrix Factorization
	Collaborative Filtering
	Generalized Model
	User-Item Interactions
	Adding Biases
	Implicit Preference
	User Attribute
	Temporal Dynamics
	Varying Confidence Levels

	Algorithms
	Stochastic Gradient Descent
	Alternating Least Squares

	MF and SCM Interconnectedness
	A Hybrid Approach of MF and SCM

	Model Replications
	Standard SCM
	Bayesian SCM with IFE
	Bayesian Causal MC with Independent Multiple P's
	Bayesian Causal MC with Concurrent Multiple P's
	Yelp's Fusion API
	FastText Tag Embeddings
	BERT and ELECTRA


