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1 Abstract

Stencil shadows remain one of the viable realtime shadow algorithms which preserve
surface detail. However, existing approaches for generating the mesh silhouette polygons
necessary for computing shadow areas suffer from scalability issues because they rely on
non-optimal GPU features like geometry shaders, or are forced to use excessive memory when
leveraging compute shaders. We present a proof-of-concept method for generating shadow
volumes in real-time rasterization environments by taking advantage of Mesh Shaders in modern
graphics APIs.

2 Motivation

Lighting and shadows are considered among the most important aspects of look
development for communicating the appearance and feel of a scene, but realtime shadow
rendering remains a difficult and computationally-expensive part of the rendering process. As of
today, game developers mainly employ two methods: depth mapping and path tracing. Depth
mapping is the faster of the two and involves rendering a scene multiple times from the
perspective of each light to a texture, then sampling from that texture to determine what pixels
are in shadow, and for transparent objects, the shadow color. While reasonably efficient, this
method scales poorly with large numbers of lights and is limited by texture resolution and texture
memory access speeds, resulting in low-quality shadows and loss of detail. Ray tracing is an
alternative method which involves simulating photon interactions within a scene. While it is
more accurate than depth mapping, and can account for bounce lighting and refractions, it is not
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practical to implement in real time aside from environments with access to the most advanced
and most recent desktop graphics hardware.

This project focuses on a less popular method of shadow rendering: depth stencil
shadows, also known as shadow volumes. This method was first introduced in 1977 by Franklin
Crow [1]. In real time implementations of shadow volumes, the render engine generates a
polygon which represents the region of the scene blocked by the casting object with respect to a
given light, and then uses stencil texture operations to determine which pixels on surfaces are in
shadow. It has the benefit of producing pixel-perfect shadows, and scales better towards higher
light counts than depth mapping. However, most implementations require geometry shaders (a
feature typically not present on mobile) and do not handle transparency or edge softness. This
technique gained popularity in the early 2000s but fell out of use in favor of depth mapping, and
later, ray tracing.

Many graphics API vendors have recently introduced a new shader stage named mesh
shaders to address the limitations of geometry and tessellation shaders [13]. Mesh shaders
replace the vertex processing stages with two new stages: Object (also called Amplification or
Task) and Mesh. The object stage determines the number of mesh invocations and their
parameter data, and the mesh shader takes that data and emits meshlets, which are groups of
primitives. In contrast, vertex shaders lack programmable dispatch, and each vertex invocation
can only process one vertex in a vacuum. In 2022, Apple added mesh shaders to Metal 3, making
this API the only implementation of mesh shaders on mobile devices with broad support, at
present.

3 Context and Past Work

At present, the most popular method of rendering shadows in real-time applications is
depth mapping. The steps of this method for a deferred-lighting [2] render engine are listed in
Algorithm 1. Depth mapping has a few advantages. First, it is simple to implement. Second, it is
trivial to add transparent shadow casters, by including a color attachment to the depth-only pass
that includes the color information for the scene. However, it also has many disadvantages. Its
quality is limited by the resolution of the offscreen textures. If the resolution is too low, smaller
geometry details are lost. Increasing the resolution also increases the VRAM allocation
requirements, so properly capturing all geometry details becomes quite difficult. In addition,
floating point precision loss in the render target textures causes a phenomenon where speckles
appear on surfaces due to self-intersections (colloquially known as “shadow acne”). The issue
can be reduced in a couple different ways. One method involves adding a bias to the sampling,
effectively elevating all samples off their surfaces by a small amount. Another method inverts
the culling mode when executing the depth-only pass, eliminating acne on surfaces facing the
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light, but reintroducing it on oblique and narrow shadowed surfaces. Too much bias causes a
different phenomenon for both artifact reduction strategies known as peter-panning, where
shadows appear detached from their casters. Getting shadow maps to look correct requires
extensive artist involvement.

Algorithm 1 - Depth Map Shadows

1. For each light / in scene:
a. Let g be the depth geometry buffer from the deferred data collection pass.
b. Render a depth-only pass to an offscreen texture ¢ from the perspective of /
c. Render an additive-blending color pass from the camera’s perspective. For each
fragment f'in the render target:
1. Transform f'into the space of /
ii.  Sample depth value d, from ¢
ii.  Sample depth value d, from the depth geometry buffer
iv.  Ifd, <d,, execute the lighting calculation, otherwise, return vector 0

In addition to the quality issues with depth mapping, there are a myriad of performance issues.
Shadow map passes are difficult to batch, resulting in expensive state changes per light due to the
need to switch between shader programs multiple times. This issue can be alleviated by
allocating more shadow map textures, at the downside of increased VRAM requirements.

The shortcomings of shadow mapping pose serious issues to look-development in real
time applications. There have been attempts to address these shortcomings, with a variety of
these already shipping in market-leading products. One example, named Virtual Shadow Maps,
addresses the resolution limitation by emulating an infinite-size shadow map on a sparse texture
through a paging system. The mechanism bears similarity to how modern operating systems
provide programs with the entire address space while having less physical memory present. The
shadow system then renders tiles to these sparse textures which are loaded in as-needed,
allowing for virtually infinite resolution at the cost of extra processing time. Unreal Engine 5
uses virtual shadow maps [3] on directional lights.

Other methods try to mask the resolution issues, for example Percentage-Closer Filtering
(PCF), which involves sampling multiple pixels around the target pixel and calculating a
coverage percentage instead of a binary covered/not-covered value, creating a feathered edge at
shadow borders. Unfortunately, PCF incurs a higher bandwidth cost through its extra sampling,
which is mitigated somewhat on some GPUs with hardware support for PCF [7] though
hardware PCF is usually not configurable. In addition, PCF loses detail, which negatively affects
small geometry such as facial features.



Cascaded Shadow Mapping attempts to make better use of shadow map resolution by
allocating multiple light target depth textures, one at full resolution, one at half, one at
one-fourth, and so on. The render engine then renders to each target depth texture, zooming out
the projection matrix each time, so that objects closest to the camera consume the highest
resolution depth texture while further away objects use the lower resolution textures. The result
is better quality shadows up close, at a cost of worse shadows for objects further away. Cascade
Shadow Map systems are currently shipping in both Unity [5] and Unreal [6].

Shadow Volumes are a markedly different approach than shadow maps. Instead of
rendering the geometry to offscreen lightmap textures, the renderer analyzes the geometry
directly to determine the regions of the scene, or volumes, that are not accessible to the light. The
stencil shadow method determines the silhouette of every object, then extends these silhouettes
along the light vector and renders them to a depth-stencil only pass with face culling disabled
and a specific set of stencil write operations enabled. When the rasterizer draws a front face, it
increment-wraps that pixel in the stencil texture by one. When the rasterizer draws a back face, it
decrement-wraps the pixel in the stencil texture by one. Then during rendering the light pass, the
system applies a stencil test that rejects every pixel with a stencil value other than 0. The benefits
of this method are (1) no need to allocate additional framebufters, (2) it can provide pixel-perfect
shadow edges, and (3) it extensively leverages fixed-function GPU hardware rather than running
in software in a shader.

Unfortunately, shadow volumes are not without weakness. Before GPGPU, the render
engine needed to calculate the volumes on the CPU, uploading the new mesh buffers to the GPU
every time the volumes changed, which could be every frame depending on how the scene
changes. The host-side software approach is also memory-inefficient, because a copy of all
shadow caster geometry must reside in system memory. In GPU-driven implementations, the
engine either uses geometry shaders or a compute shader to generate the volumes. Even on
platforms with hardware support for geometry shaders, hardware vendors discourage their use
because they are slow [4] compared to compute shaders.

The specific problem with stencil shadows this paper aims to address is that calculating
the volumes on the host CPU or in geometry shaders is an expensive operation. Even when
geometry shaders are supported, they incur significant overhead, and when using a compute
shader, one must allocate potentially large buffers in VRAM to store intermediate results. This
paper aims to implement a proof-of-concept geometry volume generation system using mesh
shaders.

Geometry shaders [8] are an optional shader stage used for mesh amplification that are
passed a primitive (a vertex, line strip, or line loop) and can return zero or more new primitives
up to a user-specified limit. Newly-generated primitives are treated as part of the input mesh
since geometry shaders run as a stage along the traditional rasterization pipeline. The application
has relatively little control over geometry shader dispatch, so geometry shaders can also be
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instanced, meaning run multiple times on the same primitive. Pseudocode for a geometry shader
is provided in Code Block 1.

Code Block 1 - Example Geometry Shader

On input vertex v, uniform 1, output primitive line_strip:
if dot(v, 1) <0:
return;
EmitVertex(v + 1)
EmitVertex(v + 2)

In Code Block 1, mesh amplification has occurred because the number of output vertices is
greater than the number of input vertices. Note that this shader can terminate early resulting in
zero generated primitives, so geometry shaders can also be used for vertex culling.

In contrast to geometry shaders, Mesh shaders share many similarities with the
Map-Reduce algorithm [9]. Execution is divided into two phases, known as Object and Mesh,
with the programmer providing one shader for each phase. The Object shader decides what to
draw, and the Mesh shader decides how to draw it. The Object shader receives arbitrary data
from the application and decides the number of Mesh shader dispatches to generate and their
thread-group size, along with the data to provide to each invocation in a fixed-size struct known
as the object payload. The Mesh shader reads its parameter data from the object payload and
produces triangle information in another fixed-size struct known as the mesh payload, which is
passed directly to the rasterizer.

The traditional raster pipeline guarantees that triangles will appear on-screen as though
they were rendered in monotonically increasing index order. In practice, geometry shaders are
quite slow due to the synchronization points and excessive memory writes they cause in order to
satisfy this ordering guarantee, because additional vertices are treated as part of the original input
geometry. Unlike geometry shaders, mesh shaders only guarantee ordering within the results of
the output of a given mesh dispatch [10], therefore, they do not have the same memory overhead
or stalling due to synchronization.

A pseudocode implementation of a naive hair renderer with the traditional vertex-fragment and
compute shader pipelines is shown in Algorithm 2.



Algorithm 2 - Example Compute Shader Hair Renderer

1. Render the source mesh using its vertex and fragment shaders
2. Allocate a VRAM buffer containing the worst case number of generated hair Bézier
curves for every generated hair.
3. Allocate a VRAM buffer containing the worst case number of triangles needed to store
every generated hair.
4. DispatchCompute, given a list of coarse hair curves, where each thread writes to a
given slot in the hair curve buffer:
a. Determine if the given hair should exist. If not, exit (or return)bail, and write
NAN into the assigned VRAM buffer slot.
b. Write Bézier curve points for the generated hair in the assigned VRAM buffer
slot.
5. DispatchCompute, given the generated hair buffer, where each thread writes into a
given slot in the hair triangle buffer:.
a. Ifthe data is NAN, return. Fill the buffer assignment slot with NAN.
b. Generate triangles for the given Bézier curve.
c. Write NAN to any extra cells in the buffer assignment, because NAN vertices
will be culled by the rasterizer.
6. DrawPrimitives, given the hair triangle buffer

Algorithm 3 shows the corresponding pseudocode implementation of the renderer with
mesh shaders. Compared to Algorithm 2, Algorithm 3 gives us additional flexibility and a
reduction of unnecessary reads and writes in the mesh stage. Unlike with the compute shader
approach, allocations of large buffers as seen in steps 2 and 3 of Algorithm 2 are not required.
One can easily alter the mesh before drawing it, as shown in step 2-b-ii of Algorithm 3. By
culling invisible meshlets before rendering them (Step 2-a of Algorithm 3), one can reduce the
workload for the rasterizer, increasing efficiency. The mesh implementation can run in O(k)
memory, where k is the number of concurrent mesh dispatches, whereas the compute
implementation runs in O(n) memory, where n is the size of the input data. The graphics driver is
also free to schedule the dispatch of each object-mesh pair as is most efficient in the given
moment. The compute shader implementation can be made more efficient by creating smaller
buffers and doing a larger number of total dispatches, however, such implementations end up
approaching an emulation of what mesh shaders already provide.



Algorithm 3 - Example Mesh Shader Hair Renderer

1. Offline, generate meshlets of the source mesh. A meshlet is a small section of the
source mesh whose data 1s contained in a contiguous memory block, and each block is
the same size. Meshlet blocks are auxiliary buffers that reference the original vertex
and index buffers.

2. DispatchMeshThreadgroups on the number of meshlets

a. Object stage:
1. Determine the orientation of the meshlet. If all triangles are facing away
from the camera, exit.
ii.  Call dispatchMesh, passing the meshlet buffer references via the object
payload
b. Mesh stage
1. Retrieve the mesh data using the stage parameter data
ii.  Assemble the meshlet into a vertex and index buffer inside the mesh
payload by reading the auxiliary buffer. One can run a polygon
reduction or augmentation algorithm at this stage if a lower or higher
resolution mesh is desired.
1. Inform the API of the number of triangles written.
c. Fragment stage
1. This stage is the same as with the traditional pipeline.
3. DispatchMeshThreadgroups on the number of meshlets (this time for Aair), passing in
Bézier curve information encoding hair direction for each meshlet.
a. Object stage
i.  Determine if the meshlet hair is visible. One can use the depth buffer
from the previous dispatch and a meshlet bounding box to coarsely
determine this. If it is occluded, exit.
ii.  Determine the LOD for the given meshlet. One can use distance to the
camera as the deciding factor.
1ii.  Based on the LOD, fill a buffer within the object payload containing
Bézier curve points for each hair to be placed on the source meshlet.
Call dispatchMesh, passing in the Bézier curve data
b. Mesh stage
1. Given the Bézier curve data, for each curve, generate triangle data for
each hair and write to vertex and index buffers in the mesh payload.
1i. Inform the API of the number of triangles written.
c. Fragment stage
1. This stage is the same as with the traditional pipeline.




4 Implementation

Our implementation is divided into three stages, one offline during mesh loading, and
two online during rendering. At mesh load, along with creating the vertex and index buffers, the
implementation creates a third buffer, known as the edge buffer. This buffer contains the vertices
that compose each edge, along with the normal vectors of the triangles that share the edge. The
purpose of the edge buffer is to make determining the mesh silhouette on the GPU efficient.

The second two stages, the Object and Mesh stages, run during the lighting pass after the
renderer writes to the deferred render targets. The lighting pass uses Algorithm 4.

Algorithm 4 - CPU-Side Mesh Shader Dispatch

1. Let L = the set of unique lights in the scene
2. Let M = the set of all unique meshes in the scene
3. Forl € L:

a. Form = {m } € M:

m m
vert' ind  edge
1. nt=|m |

ii.  dispatchMeshThreadGroups with n threads on m

edge

iii.  Execute fragment shader for [, using results of stencil buffer as shadow
mask (a.k.a. the fragment-stencil stage)

As shown in Algorithm 5, given a mesh m and an edge, the Object stage dispatches the
Mesh stage if the current edge is part of the silhouette, writing the relevant data into the object
payload. The Object stage does not produce a complete list of edges, instead the graphics driver
is free to dispatch the relevant Mesh shader with no constraints in ordering, because stencil
shadows do not depend on the order in which the faces of a volume are rendered. In Algorithm 5,
there is no else stage for the final if statement, because we do not want to include edges that are
not part of the silhouette. If the casting mesh is such that no silhouette edges exist, then no Mesh
dispatches occur and no shadow is rendered.



Algorithm 5 - Object Shader Stage

1. Let E = the set of all Edges € m
2. LetV = the set of all Vertices € m
3. For (vl, vz), (nl, nz) € E:
a. Where n,n,are the normal vectors of the triangles sharing v,, respectively
b. Let vectors t,t, be the vectors from v,v,to [, with respect to the ordering.
c. Transform v v, to world space by applying the model matrix
d. Let d1 =net
e. Let d2 =n,st,
f. if sign(dl) #* sign(dz)
1. Letr= n, if d1 > d2 else n,
1. r is the reference normal, which is the surface normal of the

triangle in shadow
ii.  Execute Mesh Stage on (vl, v, )

The Mesh stage applies Algorithm 6 on the output from the Object stage and / from the
lighting pass. The use of the reference normal in Algorithm 6 allows the input mesh to have
arbitrary tessellation, not limited to a triangle strip, in contrast to many previous implementations
of stencil shadows. Instead of requiring a specific layout in memory for the winding order,
having a reference normal allows for the computation of the correct triangle orientation on the
fly. This is an important advantage because it allows the implementation to handle meshes
exported from artist content creation tools which encode geometry as triangle lists. In contrast,
implementations that require triangle strips only work correctly on meshes whose data has been
carefully arranged in memory, often manually because the optimal triangle strip algorithm is
NP-Complete [14].

The fragment-stencil stage implements the Z-Pass stencil technique [12]. After this stage
completes, all pixels with a stencil value other than zero are not accessible to the current light.
Subsequently, the lighting pass runs as usual, with the stencil mask set to only execute on pixels
that have a stencil value of 0.

Because the graphics driver is responsible for scheduling the dispatch of each workgroup
within a drawMeshThreadgroups call, and the memory that each dispatch uses is known, the
implementation does not need to allocate a worst-case sized buffer, unlike with compute shader



implementations. Instead, the payload structures only need to have enough space for one
generated plane.

Algorithm 6 - Mesh Shader Stage

1. Let t1‘ t2 = vectors from v, to [
2. Let kin ; be a sufficiently large real number for extending volume vectors
3. On input vertices (vl, vz) and reference normal r
a. Create new position vectors
. _ oo *
Loq=v + (normalize( tl) kl_nf)
. _ o «
. q,=v,+ (normalize( tz) kin f)
b. Determine the winding order of the new triangles using r
i. Letn' = (q1 — vl) X (q1 — vz)
ii. Letw =clockwiseifn'er > 0 else counterclockwise

c. Transform v p Yy 4y, q, into clip space by applying the view and projection

matrices.
d. Create triangles x X, from vertices (q Ay 1) and (q pVUpV 1), writing to the

mesh payload.
i.  The winding order is set following the right-hand rule. Use w to
determine the index order.

5 Results

Our implementation results in accurate pixel-perfect shadows by leveraging mesh shaders
to generate geometry volumes. It provides higher shadow edge quality than shadow mapped
implementations in existing products, such as Unity, can provide. It also offloads all of the
shadow processing during frame generation to the GPU, freeing up the CPU for domain-specific
tasks. In this section, we present figures and more detailed information regarding our results.
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Figure 1: The arbitrarily transformed cubes in the scene have accurate pixel-perfect shadows.

Figure 2: The same scene rendered with Unity’s default shadow mapped implementation at low
quality (the setting typically used on mobile), showing artifacts on the edge of the shadow.
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Figure 3: The same point-of-view rendered using the proposed mesh-shader based renderer. Note
the difference in shadow quality for the close-up object.

Figure 4:

An oblique caster rendered with the viewport
lighting system in Autodesk Maya. Note that
on more extreme edges, the shadow resolution

worsens.

Figure 5:

On oblique receivers, the shadows in our
mesh-shader based stencil shadow renderer do
not lose resolution.
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We compare the average total frame time of our mesh shader implementation with a direct port
of our mesh shader implementation that calculates the volumes on the CPU. Due to current
tooling limitations, we could not get more granular information than a total frame time.

Scene Mesh Shader CPU
8 cubes 1.9 ms 1.2 ms
20 cubes 2.9 ms 1.2 ms
50 cubes 5.5ms 1.5 ms
100 cubes 11.3 ms 1.9 ms
200 cubes 19.4 ms 4.3 ms

Hardware: Macbook Pro with Intel 19-9880H and AMD Radeon Pro 5500M
Resolution: 1600x1200

Our proof-of-concept implementation is fairly generic. Our performance results are not
particularly surprising to us because we did not tailor the algorithm to the specialized graphics
hardware that it was running on. In particular, calls to Dispatch(1,1,1), which we make in our
Object shader, are quite inefficient. A more optimized algorithm would use a smaller number of
total mesh dispatches from the Object shader that each generate multiple quads in the resulting
volume. Such a modification would more efficiently utilize GPU resources. Nevertheless, we
have achieved the goal of the thesis, to demonstrate that it is possible to use mesh shaders to
generate geometry volumes for use in stencil shadows.

6 Future Work

We were only able to get the algorithm working on arbitrarily transformed cube meshes.
However, previous implementations of stencil shadows have been demonstrated to work with
arbitrary meshes. The programmable nature of mesh shaders should simplify such efforts, but
this is left as future work.

Many naive approaches to generating the volumes also require the source geometry to be
watertight [11], a requirement that is often not satisfied in interactive environments. With mesh
shaders, geometry analysis can be easily moved to the GPU, freeing up CPU time for
domain-related computation, but this is left as future work.

As shown in the data table above, our implementation, while functional, performs poorly
compared to a CPU implementation. We believe our implementation parallelizes poorly on the
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GPU, and a smarter mesh dispatch with larger workgroup sizes should improve performance
significantly, but this is left as future work.

7 Glossary

This section introduces terminology used throughout this document. It is assumed that the reader
has a basic understanding of graphics programming.

Host, Device, and Memory

The host is the main computer consisting of a CPU and random-access memory, also
referred to as the system. The device is the GPU. In desktop computers, the host and the device
typically have separate memory because the device is often an add-in card, and on the device,
this memory is known as video memory or VRAM. To move data between these memory pools,
one must explicitly copy the data across the interconnect bus (typically PCI-Express). On devices
with a System-on-a-Chip (SoC), like mobile devices, it is common for the host and device to use
the same physical memory. In this case, both the host and the device can read or write to any
allocated address in the address space, so there is no need to perform an expensive copy to make
host data accessible to the device and vice-versa.

Pipeline

The GPU executs shaders in a predefined order, known as a pipeline. Some stages are
programmable, meaning the user can supply custom code to run, or they are fixed-function,
meaning that the behavior of the stage is predefined and can only be influenced by configuration
options. There are multiple types of pipeline. Render Pipelines include stages for geometry and
pixel processing. Compute Pipelines contain a single arbitrary shader that can read or write any
data. Modern graphics APIs like Metal, Vulkan, and DirectX12 consolidate all pipeline
configuration into Pipeline State Objects, or PSOs. In modern graphics APIs the programmer
explicitly creates and manages pipelines, while in OpenGL they are created implicitly.

[ 1A B vs B Hs B ps B Gs W Rs B Ps M om |

Figure 6: A diagram from the Renderdoc graphics debugger, showing the stages and their order
in the traditional rasterization pipeline. They are:

- IA: Input Assembly (fixed-function)

- VS: Vertex Shader

- HS: Hull Shader (or Tessellation Control Shader)

- DS: Domain Shader (or Tessellation Evaluation Shader)

- GS: Geometry Shader
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- RS: Rasterizer (fixed-function)
- PS: Pixel (or Fragment) Shader
- OM: Framebuffer output (fixed-function)

OS > MS =~ IA # RS =~ PS —~ OM

Figure 7: A diagram of a mesh shader pipeline. Mesh shader rasterization pipelines are a variant
of the traditional rasterization pipeline shown in Figure 6. Note that the VS—HS—DS—GS
stages from the traditional render pipeline have been removed, and the OS (Object Shader) and
MS (Mesh Shader) stages have been prepended to the input assembly stage. The specifics of
these stages are explained in the Context and Past Work section of this document.

Samplers, Depth Texture, Stencil Texture and Operations

GPUs store image data in textures. The result of pixel-processing shaders is written to
render target textures. When a shader wants to read a texture, it uses a sampler, providing a
unitized coordinate for the pixel to read. To determine depth sorting of geometry, the user can
add a depth render target, which includes the normalized distance of a written pixel from the
camera. Modern GPUs also offer a special 8-bit texture known as the Stencil texture, which is
typically not directly writable from a shader but can have configurable operations applied to it.
For example, the user can configure the stencil texture to increment when a front face is
rasterized, but only if the depth test has failed. The user can also configure the PSO to not run the
fragment shader on a given pixel if the value in the stencil buffer is greater than a provided value,
making the stencil texture a convenient way to implement shape masking. These tests are
typically implemented directly in hardware, and so are often faster than manually implementing
such behavior with samplers and the discard instruction.

Forward and Deferred rendering

It is common for render engines to make multiple render targets to store relevant data.
Textures that are not displayed to the user directly are known as offscreen textures. Offscreen
render target textures that contain geometry information, such as the normal vector of a given
triangle, are known as geometry buffers or gbuffers. The reference render engine in this
document implements an approach known as deferred lighting, whereby the render engine first
collects information about the geometry without lighting into gbuffers, then performs the lighting
calculations in a separate step. This is in contrast to forward rendering, where all lighting and
shading for an object happens in a single step. We chose deferred lighting for this
implementation to make the render engine easier to understand, because there is a clear
separation between lighting calculations and the rest of the rendering process.
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