
Hall thruster simulations in WarpX

IEPC-2024-409

Presented at the 38th International Electric Propulsion Conference, Toulouse, France
June 23-28, 2024

Thomas Marks∗ and Alex A. Gorodetsky†

University of Michigan, Ann Arbor, Michigan, 48105, United States of America

Two-dimensional (axial-azimuthal) simulations of a Hall thruster are performed using
the open-source particle-in-cell code WarpX. The simulation conditions are chosen to
match those of the LANDMARK axial-azimuthal benchmark reported by Charoy et. al. in
2019. Additionally, a range of numerical and solver parameters are investigated in order
to find those which yield the best performance. By extending the code via its python
interface, it is found that WarpX can simulate the benchmark case in 3.8 days on an Nvidia
V100 hailing from the same era as the original benchmark, and just in 1.8 days on a more
recent Nvidia H100 GPU. Of the numerical parameters investigated, it is determined that
the field-solve tolerance and particle resampling thresholds have the largest effect on the
simulation wall time, but that particle resampling may artificially widen electron velocity
distribution functions, leading to unphysical heating. Using the results of the parameter
investigation, an optimized simulation is then performed which completes the benchmark
in just 36 hours on a single GPU. The results of this work are discussed in the context of
advancements in GPU hardware and the suitability of kinetic Hall thruster simulations for
engineering applications.

I. Introduction

Kinetic whole-device simulations of Hall thruster discharges have long been too expensive for use in
engineering contexts. While capable of resolving the physics driving the growth and growth and saturation

of micro-instabilities that lead to so-called “anomalous” electron transport,1 such simulations require grid
spacings on the scale of the electron Debye length (∼ 10−6 m) and timesteps on the order of the electron
plasma frequency (∼ 10−12 s). At the same time, any Hall thruster simulation must run long enough to
capture the long length- and time-scales over which the Hall thruster plasma achieves a quasi-steady state
(around 10−1 m and 10−3 s, respectively) to be useful for engineering simulations of real devices. These
stringent requirements and the prohibitively-long run-times that result have led to such simulations being
considered inadequate for engineering purposes.

As a result, the community has adopted other approaches for incorporating turbulent effects into Hall
thruster simulations. Most commonly, anomalous electron transport has been incorporated into simulations
via the inclusion of ad-hoc transport coefficients. This approach has been very successful at producing
converged simulations that match experimental data.2 However, the transport coefficients must be tuned
per-thruster or even per-operating condition, and are not typically generalizable across devices or operating
regimes.3 Other authors have attempted to remedy this problem by developing closure models of how
the micro-turbulence should scale with bulk fluid plasma properties, i.e. temperature, density, and velocity.
However, to data, no such model has proved capable enough to be recommended for general use in engineering
applications.4

In light of the shortcomings of these lower-fidelity approaches, and with recent advancements in computing
hardware, there has been renewed interest in applying kinetic simulation to the problem of whole-device Hall
thruster simulation. For example, Vilafana, Cuenot, and Vermorel presented 3D, particle-in-cell simulations
of a simplified Hall thruster on an unstructured mesh5. Additionally, large-scale multi-GPU computing has

∗Postdoctoral Research Fellow, Department of Aerospace Engineering, marksta@umich.edu
†Associate Professor, Department of Aerospace Engineering

1
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



recently produced unprecedented speed-ups in kinetic simulations of other plasma devices, such as tokamaks6

and plasma wakefield accelerators.7 While significant differences exist between these systems and Hall thruster
plasmas, the challenges of whole device simulation—namely that the a large range of length- and time- scales
must be resolved—are similar. The recent success of massively-parallel kinetic simulations in these devices s
suggests that a similar approach may be able to provide dramatic speed-ups in kinetic simulations of Hall
thrusters.

In this work, we apply WarpX, a highly-optimized open-source, massively-parallel particle-in-cell code,
to the problem of Hall thruster simulation. WarpX was designed to scale to the largest supercomputing
clusters.8 and is highly extensible. As such, it serves as a good starting point for developing Hall thruster
codes with similar scalability. We use WarpX to simulate the 2D axial azimuthal benchmark of Charoy et al9,
which concerns the growth of the electron cyclotron drift instability thought to be a key driver of anomalous
electron transport in Hall thrusters in a simplified Hall thruster geometry. While this benchmark simulation
lacks some important physics present in real Hall thrusters, such as ionization and neutral dynamics, it
captures enough of the physics driving anomalous transport to be useful as a starting point in our efforts to
develop scalable, GPU-enabled Hall thruster simulations. We demonstrate both WarpX’s ability to efficiently
solve the problem on hardware contemporaneous to that of the original benchmark, as well as the large
speedups made possible by recent developments in GPU hardware.

This paper is organized as follows. In Section II, we describe the conditions of the benchmark, the
capabilities of the WarpX code, and our modifications to WarpX to support Hall thruster simulations. We
then provide details of the numerical parameters investigated in our simulations. In Section III, we present the
results of our study. We demonstrate that our simulations in WarpX are capable of matching the benchmark
results at a significantly-reduced computational cost compared to previous efforts at this benchmark, and
assess the impact of different simulation options on performance. We discuss these results in the context of
past kinetic simulation efforts and improvements in GPU hardware. Finally, in Section IV, we conclude with
some thoughts on the implications for our work on the use of particle-in-cell simulations in the engineering
and design of Hall thrusters.

II. Methods

A. Benchmark simulation

In this section we describe our target benchmark simulation — Case 2a of the LANDMARK low-temperature
plasma benchmark effort.10 This case is designed to capture the main kinetic effects governing Hall thruster
discharges – namely the onset and growth of drift-driven turbulence. As such, it is a good test case for
kinetic codes targeting Hall thruster applications. In particular, we compare our efforts to results of several
codes from throughout the community, reported by T. Charoy et al in 20199. In this section, we briefly
summarize the conditions of this benchmark. For a more detailed description of the benchmark conditions
and its results, the reader is referred to the original paper.

The benchmark is a two-dimensional axial-azimuthal particle-in cell simulation of a simplified Hall thruster
geometry. The simulation domain is shown in Figure 1, where the axial (x) and azimuthal (y) dimensions
have lengths of Lx = 2.5 cm and Ly = 1.28 cm, respectively. The azimuthal dimension is assumed periodic
and no curvature effects are considered. A magnetic field Bz(x) with a piecewise-Gaussian profile is applied
to the domain. This field points purely in the radial (z) direction, and the maximum magnetic field strength
of 10 mT occurs at x = 0.75 cm.

We divide the computational domain into 512 cells in the axial direction and 256 cells in the azimuthal
direction. At this grid resolution, the corresponding axial and azimuthal grid spacings are ∆x = 4.88× 10−5

m and ∆y = 5 × 10−5 m, respectively. We employ a simulation timestep of 5 × 10−12 seconds. These
conditions are sufficient to resolve both the electron Debye length as well as the electron plasma frequency,
which are critical to the stability and accuracy of the particle-in-cell method.

The benchmark does not include the dynamics of neutral atoms; instead, we inject electron-ion airs
according to a specified ionization rate profile within the interval bounded by x = 0.25 cm and x = 1 cm.
This “injection region” is depicted in darker blue in Figure 1. Injecting particles in this manner allows
simulations to avoid resolving both ionization oscillations and start-up transients. As a result, the simulation
settles to a steady state within 20 microseconds of simulation time, instead of the 500 microseconds or more
required if these effects were included. The temperatures of the newly-injected electrons and ions are 10 and
0.5 eV, respectively. Between the anode at x = 0 and a “virtual cathode” at x = 2.4 cm, we apply a DC

2
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



L
y
 =

 1
.2

8
 c

m
 (

2
5

6
 c

e
lls

)

Lx = 2.5 cm (512 cells)

Injection Region

 
 =

 0
 V

 
 =

 2
0

0
 V

C
a

th
o

d
e

P
e

a
k
 B

-
e

ld

x
 =

 0
.7

5
 c

m

A
n

o
d

e

x
 =

 2
.4

 c
m

Figure 1: The 2D axial-azimuthal benchmark simulation domain.

voltage of 200 V. To maintain current continuity, any net current that crosses the anode plane is re-injected
as electron current at the cathode.

The original benchmark considers three cases, differentiated by the weight of the computational macropar-
ticles, and therefore by the number of particles in the simulation–Case 1, initialized with 150 particles per
cell, Case 2, with 75, and Case 3, with 300 initial particles per cell. In this work, we simulate all three of
these cases, but treat the second of these cases as our baseline case when performing our numerical parameter
investigation.

The initial condition of the simulation is a uniform plasma with a plasma density of ne = 5× 1016 m−3,
with electron and ion temperatures of 10 and 0.5 eV, respectively. We run the simulation for 20µs, which
corresponds to four million timesteps, and report plasma properties averaged over the last four microseconds
of the run. Finally, we summarize the benchmark parameters in Table 1.

B. Extending WarpX for Hall thruster simulations

WarpX is an open-source, time-dependent, relativistic, electrostatic and electromagnetic particle-in-cell code
developed as part of the United States Department of Energy’s Exascale Computing Project.8 While the
primary application of WarpX is simulating high-energy laser-plasma interactions,11 the generality of the
code’s algorithms makes it well-suited for a wide variety of plasma physics. The code is designed to scale
well to very large problem sizes, on both CPU and GPU12-dominated clusters.

WarpX is based on AMReX, a high-performance adaptive mesh-refinement (AMR) framework.13 While
we do not employ AMR in this work, it may prove enabling for future Hall thruster simulations, as regions
of the discharge with small Debye lengths, i.e. those with high densities and/or low temperatures, could be
resolved without requiring unduly-small cell sizes throughout the domain.

In this work, we employ single-precision arithmetic for particle advancement and double-precision arith-
metic for the field solve. As GPUs typically have significantly more single-precision processing power than
double-precision, mixing precisions in this way gives a significant speed-up while maintaining an acceptable
level of accuracy.

1. Summary of WarpX’s solution procedure

As with most particle-in-cell codes, WarpX performs four main actions at each timestep when running in
electrostatic mode. These are:

1. Gather fields to particles: The electric and magnetic fields on the grid are interpolated to the
particles using a prescribed kernel or “shape function”.

2. Push particles: The particles are moved to new positions based on their velocities and the timestep,
while their velocities are updated using the fields gathered in the previous step. By default, and in our
simulation, WarpX uses a relativistic extension of the well-known Boris scheme for particle advancement.

3
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.

https://ecp-warpx.github.io/


This algorithm is explicit and second-order in time, and has the advantage of exactly preserving particle
orbits around magnetic field lines.

3. Deposit charge: The charge density ρ and current density j are computed on the grid from the
particle positions, weights, and charges. This interpolation uses a shape function which matches that
used to gather the fields onto the particles.

4. Solve fields: Given the charge density on the grid and appropriate boundary conditions, the code
solves Poisson’s equation (Eq. 1) to determine the electrostatic potential U and electric field E:

∇2U = −∇ ·E = ρ/ϵ0, (1)

where, ϵ0 is the permittivity of free space, 8.854× 10−12 Fm−1. The electric field is then gathered to
the particles and the loop is repeated.

Internally, WarpX fuses the first two steps (gather and push) into a single step which can be efficiently
executed. Taken together, the steps listed above comprise a Monte Carlo approach14 to the solution of
the time-dependent Vlasov-Poisson system of equations for a collisionless plasma.15 However, these steps
on their own are not sufficient to simulate a Hall thruster. Hall thrusters include ionization, which adds
charged particles to the domain throughout the simulation, and a cathode that injects sufficient electrons
to neutralize the ion beam ejected by the thruster and establish current continuity. To handle Hall thruster
simulations, WarpX must be extended to handle these additional effects.

2. Extensions for benchmark simulations

WarpX provides the ability for end-users to extend its physics without altering its internal structure. Users
running WarpX from its Python interface can specify callback functions which are triggered at specific points
in the computational cycle and can access WarpX’s internal data-structures. These callbacks can both view
and modify the state of the simulation, whether on CPU or GPU. This feature enables us to implement Hall
thruster-related functionality without modifying the source code. There are three parts of the benchmark
which are not included in WarpX’s core functionality and require new implementations: the creation of
particles in the injection region, the injection of particles at the cathode to support current continuity, and
the zero-volt internal Dirichlet boundary condition at the cathode plane. Here, we briefly describe each
of these components, and give some details about their implementation into WarpX. We illustrate how
each of these extensions slots into WarpX’s main loop in Figure 2. Additionally, we provide a link to our
implementation at the end of the paper.

WarpX main loop Python callbacks

Particle

injection

Potential

adjustment

Cathode

injection

Charge

deposition

Field

solve

Particle

push

Particle

gather

Figure 2: WarpX’s main computation loop, including the Python callbacks implemented to support the
benchmark simulations.

Particle injection
At every timestep, electron-ion pairs are created in the injection region according to a prescribed ionization
profile. Per the benchmark conditions9, the ionization rate is given as a function of axial position as

4
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



S(x) =

S0 cos
(
π x−xm

x2−x1

)
x1 ≤ x ≤ x2

0 otherwise
. (2)

In the above, S0 = 5.23 × 1023 m−3s−1 is the maximum ionization rate, x1 = 0.25 cm, x2 = 1 cm, and
xm = (x1 + x2)/2 = 0.625 cm. The number of electron-ion pairs to be injected at each timestep can be
computed by integrating this profile over the area of the domain and multiplying by the timestep. This gives

Ninject,0 =
2S0

πW0
Ly(x2 − x1)∆t (3)

Here, W0 is the base particle weight, or the number of real particles represented by a single computational
macro-particle at simulation startup. This is computed as

W0 =
n0LxLy

Nppc,iniNxNy
. (4)

With the number of initial particles per cell, Nppc,ini, equal to 75, this gives a base weight of W0 = 1.627×106

real particles per macro-particle. Plugging this into Eq. 3, we find that we need to inject 98.195 particles per
timestep of each species.

To implement this in WarpX, we define a callback that executes every timestep in the particleinjection
position. This takes place after the particles have been pushed to new positions, but before the particles’
charge is deposited onto the grid. Inside of this callback, we first obtain the containers holding the electrons
and the ions. We then sample a uniform random number between zero and one to determine whether to
inject 98 or 99 particles, as follows

Ninject(t) = ⌊Ninject,0⌋+

1 r0 < (Ninject,0 − ⌊Ninject⌋), r0 ∼ U(0, 1)
0 otherwise.

(5)

The ionization rate profile (Eq. 2) gives the probability distribution of a new particle being created at a
given axial location. We can sample this distribution by applying an inverse-CDF transform. The axial and
azimuthal positions of a new electron-ion pair are thus given by9

xi = xm + sin−1(2r1 − 1)
x2 − x1

π
(6)

yi = r2Ly, (7)

where both r1 and r2 are samples from uniform distributions on the interval [0, 1]. The particle velocities
are Maxwellian, drawn from 3-D normal distributions with zero mean and standard deviations equal to the
thermal speed, vt,j =

√
Tj/mj for j ∈ {i, e}. The weights of the newly-injected particles are equal to W0.

Once the particle positions, velocities, and weights have been generated, we use WarpX’s add_particles
function to add the newly-generated particles to their containers.

Cathode injection
To maintain current continuity, the benchmark prescribes that all net charge leaving the domain through
the anode boundary is re-injected as electron current at the cathode. To do this, we make use of WarpX’s
BoundaryScrapingDiagnostics feature. This allocates a buffer into which particles that leave the domain
through specified boundaries are logged. We record all particles that leave through the anode boundary at
x = 0. Then, in a callback function placed in the particleinjection position, we count how many electrons
and ions are in the buffer. We then inject a number of electrons equal to the difference between the number
of ions and number of electrons in that buffer. Mathematically, the flux of electrons injected at the cathode
each timestep, Γe,c, is given by

Γe,c = Γe,a − Γi,a, (8)

where Γe,a and Γi,a are the numbers of electrons and ions, respectively, that had left the anode boundary
that timestep and are now present in the boundary buffer. We inject the electrons at x = xe = 2.4 cm,
with a uniform distribution in the azimuthal dimension, with velocities sampled from a zero-mean full 3D

5
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



Maxwellian distribution with a temperature of 10 eV. The newly-injected cathode electrons have weight
W0. After the electrons have been added to the particle container, we clear the boundary buffer to avoid an
increasing memory footprint as the simulation proceeds.

Potential adjustment
In the LANDMARK benchmark, the electrostatic potential is adjusted at every timestep so that the potential
drop between the anode at x = 0 and the cathode at xe = 2.4 cm is 200 V. To accomplish this adjustment,
after the particles have been deposited on the grid, we first solve the fields with a Dirichlet boundary of
0 V at x = Lx, giving a potential U(x, y), and then we average the potential at the cathode line, giving

Ue = (
∫ Ly

0
U(xe, y)dy)/Ly. Next, we compute the corrected electrostatic potential at this timestep, ϕ(x, y),

using9:

ϕ(x, y) = U(x, y)− x

xe
Ue. (9)

To implement this procedure in WarpX, we create a callback, adjust_potential, in the afterEsolve

position. This position ensures that the callback will be invoked only after Poisson’s equation has been solved
at that timestep. Next, we obtain both the axial electric field and the potential from WarpX. As the location
of the cathode line does not directly correspond to a cell center, we interpolate the potential from the cells
on either side of the cathode line to xe. We can then average this interpolated potential over the azimuthal
potential to get Ue, and then apply the correction given by Eq. 9 to the potential. Finally, we differentiate
Eq. 9 to get a correction to the axial electric field:

Ex = −∂ϕ

∂x
= − ∂

∂x
U(x, y) +

Ue

xe
= Ex +

Ue

xe
. (10)

Here, we have made use of the fact that the uncorrected axial electric field, Ex, is simply equal to the derivative
of U in the x−direction. Following a similar procedure for the azimuthal direction, it can be shown that
Ey = Ey, so the azimuthal electric field does not need to be corrected.

C. Simulation outputs

We configure WarpX to output grid-based diagnostics every 5000 iterations. These diagnostics include
the electric field vector, electrostatic potential, and charge densities of all species. Additionally, due to
the large number of particles in the domain, it proved infeasible to save information about the simulation
macro-particles directly Instead, at every output step, we compute the moments of the each species’ velocity
distribution function at every cell. In particular, we calculate the zeroth (density), first (bulk velocity vector),
second (pressure tensor) and contracted third (heat flux vector) moments. In addition to these outputs, we
also save the number of particles at each output timestep and record the time taken by each simulation step.
Lastly, we obtaie code profiling information via AMReX’s TinyProfiler tool built into WarpX. This allows
us to investigate the relative cost of the different parts of the PIC computational cycle.

D. Numerical parameter investigation

In addition to demonstrating the feasibility of Hall thrusters in WarpX, we also investigate in this work the
sensitivity of the simulation results and performance to several numerical options. These are described below,
along with the range of investigated parameters.

Particle shape function
As discussed in Section II.B.1, an important part of the particle-in-cell method is the selection of a suitable
particle shape function. Typically, these shape functions are multi-dimensional B-splines.16 When gathering
grid quantities to the particles, or depositing charge and current onto the grid, the order of these shape
functions determine how many nearby grid cells influence and are influenced by a given particle. Higher-order
shape functions include more grid cells, and thus potentially reduce the sampling noise inherent to the PIC
method,16 at an increased computational cost compared to lower-order functions. Here, we consider linear,
quadratic, and cubic shape functions.

Particle sorting interval

6
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



When running on GPUs, WarpX periodically sorts particles so that particles that are physically near to
one another are also nearby in memory. This aids performance by improving memory locality during the
deposition step, where particle quantities are interpolated to the grid. However, it also introduces a small
performance overhead which has the potential to slow down the simulation if sorting is called too frequently.
To find the optimal setting, we varied the sorting interval between 5 and 1000 iterations.

Particle resampling parameters
WarpX supports particle resampling, which is useful to ensure the simulation is adequately resolved and has
an even distribution of computational macro-particles throughout the domain. This is particularly useful the
simulation features continuous particle injection, as ours does, which could lead to an unnecessary build-up
of particles in the injection region and a corresponding reduction in simulation speed. In this work, we
use the leveling-thinning algorithm developed by Muraviev et. al.17, which is WarpX’s default resampling
option. This algorithm down-samples (merges) particles while trying to maintain an accurate representation
of their velocity distribution function. This resampling is performed per-species and is controlled by three
parameters:

1. resampling_algorithm_target_ratio, which corresponds to the ratio of the number of particles
before a resampling step to the number after a resampling step.

2. resampling_trigger_max_avg_ppc, which defines the maximum number of particles per cell, averaged
over the whole domain, above which resampling is triggered.

3. resampling_min_ppc, which is the threshold number of particles per cell below which a cell will not
be resampled.

In our simulations, we left the first parameter at the WarpX default of 1.5 as we had no reason, a priori,
to use a different value, and varied the other two. We vary the maximum average particle count per cell
between 200 and 300 and the minimum particle count between 75 and 200.

Field solve tolerance
For electrostatic simulations, WarpX uses the Multi-Level Multi-Grid (MLMG) method to solve Poisson’s
equation to obtain the electric field. Starting from the fields solved at the previous timestep, this method
iteratively reduces the error in the solution of Poisson’s equation until a user-specified relative tolerance
(hereafter, “multigrid precision”) is reached. We test tolerances between 10−2 (i.e. 1% of the initial error)
and 10−6 (0.0001% of the initial error) in this paper.

Coulomb collision interval
While the original benchmark does not include binary collisions, WarpX supports binary collisions using the
Direct Simulation Monte Carlo (DSMC) method.18 Considering a binary collision between species A and
species B, this method works by first pairing up all available members of species A with others of species B,
splitting particles when necessary to ensure that every particle of species A has a partner particle of species
B. The collision probability for each pair is then computed, considering the relative velocities of the partners
and the collision cross-section. Finally, if the collision probability is less than a uniform random number in
the interval [0, 1], a collision occurs and the particle velocities are adjusted according the type of collision.
For charged particle collisions, WarpX uses a relativistic version of this algorithm developed by Perez et al.19

In Hall thrusters, it is expected that “anomalous” scattering events will dominate classical ones across
most of the discharge. Nevertheless, in some areas of the discharge, particularly near the location of the peak
magnetic field, the anomalous collision frequency may drop below the classical value.3 In other regions of
the discharge, classical collisions may modify instabilities giving rise to anomalous transport by providing
additional mechanisms for energy transport, and randomizing particle velocities. Additionally, in more
advanced codes which include neutrals, both electron-neutral collisions and ionization collisions will require
the use of a DSMC-like algorithm. To assess the cost of checking for collision events on WarpX’s computational
cycle, we therefore perform some additional simulations which incorporate a selection of classical collisions.
As there are no neutrals in our simulations, we consider only electron-electron (e-e), electron-ion (e-i) and
ion-ion (i-i) collisions. The relevance of these collisions to the physics of the present simulations can be
determined by computing the effective electron-ion collision frequency for a plasma with density ne and
temperature Te, which is given in SI units by20

7
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



νei =
e

5
2ne lnλei

(4πϵ0)2m
1/2
e T

3/2
e

(11)

where lnλei = 24− ln
(
10−3n

1/2
e T−1

e

)
is the Coulomb logarithm for Te > 10 eV.20 Picking ne ≈ 2× 1017 m3

and Te ≈ 20 eV as representative values, we find that λei ≈ 10 and the corresponding electron-ion collision
frequency is νei ≈ 1.94 ×104 s−1. This is a very low collision frequency (approximately four collisions per
electron across the simulation duration), and it is therefore unlikely that Coulomb collisions will have a large
impact on the simulation physics. In real thrusters, the classical collision frequency (considering electron-ion
and and electron-neutral collisions) is on the order of 105 − 106 s−1,2 and will have a larger impact on the
physics. Despite the low frequency of the included collisions, the majority of the computational cost of the
DSMC algorithm involves checking for collision events,18 so we include them despite their limited effect on
the physics of the simulation. Given the expected low collision frequency relative to the simulation timestep,
we super-cycle the collision computations, applying them only after several global timesteps have elapsed.
We vary the number of global timesteps per collision check (the “collision interval”) between 10 and 10,000.
These intervals can resolve collision frequencies between 107 and 1010 s−1 and should therefore serve as an
adequate test of the relative impact of collision checks on a full-scale Hall thruster simulation.

E. Summary of simulation parameters

Table 1 summarizes the parameters employed in this work. The top half of the table contains the benchmark
parameters common to all simulations, discussed in Sec. II.A, while the bottom half shows the ranges of the
variable numerical parameters discussed above. The parameters of the baseline case are underlined.

Table 1: Simulation parameters employed in this work.

Benchmark parameters

Axial domain length, Lx 2.5 cm

Azimuthal domain length, Ly 1.28 cm

Axial resolution, Nx 512

Azimuthal resolution, Ny 256

Time step, ∆t 5× 10−12 s

Discharge voltage, U0 200 V

Maximum magnetic field, Bmax 10−2 T

Initial plasma density, n0 5× 1016 m−3

Initial electron temperature, Te,0 10 eV

Initial ion temperature, Ti,0 0.5 eV

Simulation duration, tmax 20× 10−6 s

Averaging start time, tavg 16× 10−6 s

Particle precision Single

Field-solve precision Double

Additional parameters

Initial particles per cell 75, 150, 300

Particle shape function linear, quadratic, cubic

Resampling: max particles per cell no resampling, 200, 250, 300

Resampling: min particles per cell no resampling, 75, 100, 150, 200

Particle sort interval 10, 50, 100, 500, 1000

Multigrid precision 10−2, 10−3, 10−5, 10−6

Coulomb collision interval 10, 1000, 10000, no collisions

We perform all but one of our simulations on a single Nvidia H100 GPU, with 80 GB of onboard memory.21

8
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



This is a new GPU, launched in 2023 designed primarily for machine learning workloads but with large general-
purpose compute capability. To determine how much of WarpX’s performance compared to the benchmark
depends on the code architecture versus advancements in hardware in the intervening five years, we run a
single simulation using the baseline case parameters on an Nvidia V100. The V100 GPU was released in
2017 and hails from the same era as the computational hardware used in the 2019 benchmark.

III. Results and discussion

A. Baseline simulation

In Table 2, we summarize the performance, in terms of wall time, of each of our simulations. We first focus
on the the results of our baseline simulation, highlighted in grey in this table, as well as the other cases
from the 2019 benchmark. For the baseline simulation, we initialized the domain with 75 particles per
cell, performed no resampling, sorted the particles every 500 iterations, used linear shape functions for the
particles, a multigrid precision of 10−5, and did not include collisions. In Figure 3, we compare the results
of this simulation to those of Case 2 of the 2019 benchmark. As that benchmark contained a number of
different codes with slightly varying results, we show in light red the range of the benchmark results, rather
than the result of any one code. It is apparent that our results lie well within the acceptable range of the
benchmark, so our modifications to WarpX appear to have been successful.

0 1 2
x [cm]

0

10

20

30

40

50

60

El
ec

tri
c f

iel
d 
[kV

/m
]

0 1 2
x [cm]

0

1

2

3

Nu
m
be

r d
en

sit
y [

m
−3

]

1e17

0 1 2
x [cm]

0

10

20

30

40

50

El
ec

tro
n 
te
m
pe

ra
tu
re
 [e

V]

(a) (b) (c)

This work Benchmark Peak magnetic field Cathode plane Injection region

Figure 3: (a) Electric field, (b) ion number density, and (c) electron temperature for the baseline simulation.
The range of benchmark results from Case 2 of Charoy et al, 20199 is indicated in pale red.

WarpX’s completed the full 20µs simulation duration in 1.81 days on the H100 GPU and 3.81 days on the
V100 GPU. In comparison, typical wall times for this case ranged from 3 to 11 days in the 2019 benchmark,
with the best result achieved by a code developed by the Princeton Plasma Physics Laboratory (2.5 days on
112 CPUs). The only GPU-based code which participated in the 2019 effort required 9 days to finish Case
2 on an Nvidia A100 GPU, a more powerful contemporary of the V100.22,23 However, this code used an
implicit particle pusher, which had a much larger computational overhead than the explicit scheme employed
by our WarpX simulations. As such, it is not directly comparable to our results.
In Table 2, we compare the performance of our WarpX simulations on all three 2019 benchmark cases. We
also report a summary of the time spent in by WarpX in different parts of the PIC cycle (see Figure 2) in
the first two cases. Due to a cluster issue, the Case 3 simulation prematurely terminated at 19 microseconds,
and as such did not output profiling information. We extrapolate the runtime of Case 3 to 20 microseconds
when reporting it in able 2. Cases 1 and 3 — which have two and four times as many particles, respectively,
as Case 2 — took 58% and 179% longer than the baseline case to complete. This nearly linear scaling in
computational time indicates that WarpX is using close to all of its available resources when executing the
baseline case (i.e., few parts of the GPU that WarpX can make use of are left idle). In the baseline case, the

9
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



Table 2: Performance for the baseline simulation (Case 2, highlighted in grey) as well as Cases 1 and 3, on
both H100 and V100 GPUs. The performance of Case 3 is extrapolated from 19 microseconds due to a
premature termination.

Benchmark case Case 2 Case 1 Case 3

Initial particles/cell 75 150 300

Final particles/cell 290 590 1200

Wall time (H100) 1.81 days 2.86 days 5.06 days*

Wall time (V100) 3.81 days N/A N/A

Best benchmark sim (PPPL)9 2.5 days (112 CPU) 2.5 days (224 CPU) 2.5 days (448 CPU)

Fraction of time spent on PIC subroutines

Particle gather and push 48.81 % 63.79% N/A

Field solve 40.86 % 24.21 % N/A

Charge deposition 8.43 % 10.72 % N/A

Particle injection and

field correction (Python)
1.9 % 1.28 % N/A

computational time was split roughly evenly between particle-based and grid-based parts of the code. As the
particle count increased in cases 1 and 3, the fraction of time WarpX spent in the particle routines increased
by up to 50%.

B. Impact of higher-order shape functions

In Table 3, we reported that using higher-order shape functions for particles had a detrimental impact on
performance. However, if using these shape functions reduces noise, it is feasible that the simulation could
be run with fewer computational particles. To assess the degree of noise reduction, we show the electron
temperature at the final simulation timestep (t = 20 µs) when using for linear, quadratic, and cubic particle
shape functions.

In each of the images, a small amount of noise or grain can be seen. This noise is inherent to the
particle-in-cell method; as each computational particle stands for millions or billions of real particles, the
observed distribution functions and moments represent coarse Monte Carlo approximations of those that
would be obtained by using Eulerian kinetic approximations, or by increasing the number of particles.24

However, qualitatively, it does not appear that using quadratic or cubic shape functions significantly reduced
the noise in the simulation compared to using linear shape functions. This likely has to do with the fact
that WarpX applies a low-pass filter to the charge density at each timestep. This helps remove some of the
spurious high-frequency noise, but may limit the usefulness of higher-order shape functions.

C. Effect of resampling

Of the parameters tested, only the use of particle resampling had a significant effect on the benchmark results.
In the remainder of cases, the results were largely indistinguishable (within the uncertainly of the range of
benchmark simulations) from those of the baseline case presented in Figure 3.

Given the results in Table 2, the average particles per cell of the baseline simulation at steady state was
only 290. It is thus unsurprising that resampling only when the average number of particles per cell exceeded
300 did not alter the results at steady state, as effectively no resampling was performed. The small increase
in performance (a decrease in run-time from 1.81 to 1.76 days, about 1 hour and 12 minutes) seen in Table 3
when employing resampling at a threshold of 300 can be attributed to resampling particles in the startup
phase, when the particle count transiently exceeded 300 particles per cell.

In contrast, resampling below 300 particles per cell per cell had a much more significant performance
impact, decreasing run-time by up to 25%. However, the chosen resampling algorithm seemed to adversely
affect the physical fidelity of the simulation. When resampling at these lower thresholds, the plasma density
and electric field were very similar to those of the baseline case; however, the electron temperature at the

10
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



Table 3: Recorded wall times for each parameter set. The baseline case parameters are highlighted in grey.

Parameter value Wall time

Initial particles per cell

75 1.81 days

150 2.86 days

300 5.06 days

Particle shape function

Linear 1.81 days

Quadratic 2.17 days

Cubic 2.59 days

Resampling thresholds

Min particles Max particles

No resampling 1.81 days

75 300 1.76 days

200 275 1.66 days

150 275 1.66 days

100 275 1.66 days

75 275 1.66 days

200 250 1.58 days

150 250 1.55 days

100 250 1.54 days

75 250 1.54 days

150 200 1.40 days

100 200 1.40 days

75 200 1.39 days

Particle sorting interval

5 iterations 1.76 days

10 iterations 1.76 days

50 iterations 1.76 days

100 iterations 1.76 days

500 iterations 1.81 days

1000 iterations 1.80 days

Multigrid precision

10−2 1.59 days

10−3 1.59 days

10−5 1.81 days

10−6 1.93 days

Collision interval

10 2.71 days

100 1.87 days

1000 1.79 days

10,000 1.80 days

No collisions 1.81 days

Optimized 1.52 days

11
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



(a)

(c)

(b)

E
le

c
tro

n
 te

m
p
e
ra

tu
re

 [e
V

]
E

le
c
tro

n
 te

m
p
e
ra

tu
re

 [e
V

]
E

le
c
tro

n
 te

m
p
e
ra

tu
re

 [e
V

]

Figure 4: Electron temperature at t = 20 µs for (a) linear, (b) quadratic, and (c) cubic shape functions.

12
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



0 1 2
x [cm]

0

10

20

30

40

50

60

El
ec

 ri
c 

fie
ld

 [k
V/

m
]

0 1 2
x [cm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r d

en
si 

y 
[m

−3
]

1e17

0 1 2
x [cm]

0

10

20

30

40

50
El

ec
 ro

n 
 e

m
pe

ra
 u

re
 [e

V]

(a)

0 1 2
x [cm]

0

10

20

30

40

50

60

El
ec

 ri
c 

fie
ld

 [k
V/

m
]

0 1 2
x [cm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Nu

m
be

r d
en

si 
y 

[m
−3

]

1e17

0 1 2
x [cm]

0

10

20

30

40

50

El
ec

 ro
n 

 e
m

pe
ra

 u
re

 [e
V]

(b)

0 1 2
x [cm]

0

10

20

30

40

50

60

El
ec

 ri
c 

fie
ld

 [k
V/

m
]

0 1 2
x [cm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r d

en
si 

y 
[m

−3
]

1e17

0 1 2
x [cm]

0

10

20

30

40

50

El
ec

 ro
n 

 e
m

pe
ra

 u
re

 [e
V]

(c)

0 1 2
x [cm]

0

10

20

30

40

50

60

El
ec

 ri
c 

fie
ld

 [k
V/

m
]

0 1 2
x [cm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r d

en
si 

y 
[m

−3
]

1e17

0 1 2
x [cm]

0

10

20

30

40

50

El
ec

 ro
n 

 e
m

pe
ra

 u
re

 [e
V]

(d)

Figure 5: Effect of resampling on electron temperature profiles, with resampling thresholds of (a) 200 particles
per cell, (b) 250 particles per cell, (c) 275 particles per cell, and (d) 300 particles per cell. In all cases, the
resampling minimum parameter was set to 150 particles per cell. The grey-shaded area on the figures indicates
the particle injection region. The pale red area represents the range of results obtained in the benchmark.9

right boundary varied significantly from the baseline case depending on the chosen resampling parameters.
In Figure 5, we show how the simulated electron temperature changed as the maximum average particles per
cell increased from 200 to 300 particles per cell. While the solution remained in good agreement with the
benchmark result upstream of the location of maximum magnetic field, it begins to deviate in the downstream
half of the domain. At the right boundary, the electron temperature at a maximum resampling threshold of
200 particles per cell is 7 eV higher than that of the baseline case.

To investigate why this might occur, we plot in Figure 6 the ion density and electron temperature at the
last timestep of the baseline case. This figure shows that in the region downstream of the peak magnetic field
(x > 0.75 m), a long-wavelength mode develops where the electron temperature and density vary in phase
with one another. In the high-density regions of this mode, the particle density may exceed the threshold for
resampling. This resampling leaves the density (and therefore electric field, via Poisson’s equation) unchanged,
but could result in a small spread of the velocity distribution functions, and therefore heating, if the particle
resolution in these high-density regions is not sufficiently high. This could then produce the anomalously-high
electron temperatures observed in the right half of the domain.

(a) (b)

Figure 6: (a) Ion density (m−3) and (b) electron temperature (eV) of the baseline simulation at the last
timestep (t = 20 µs).

Given these results, it seems that particle resampling should be used with caution in WarpX, at least in
low-temperature plasmas. While resampling can improve performance significantly, it risks distorting the
higher moments of the particles’ velocity distribution function and altering the simulation in an unphysical
manner if care is not taken to preserve these moments.25 As such, the resampling threshold, if one is used,
should be set to a value close to the expected steady-state particle count, so that resampling only occurs

13
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



during transient events. For the benchmark simulation, it seems that 300 particles per cell is an adequate
threshold.

D. Other parameters

The results in Table 3 demonstrate that, on average, more frequent particle sorting results in better simulation
performance. However, there does not appear to be a significant difference between sorting every 5 iterations
and sorting every 100. Additionally, as expected, collision checks slow down the simulation when performed
too frequency. Interestingly, however, checking for collisions every 1000 and 10,000 iterations seem to
moderately improve performance (by about 48 minutes and 24 minutes, respectively) over the baseline case.
To perform collisions in each grid cell, the DSMC method first sorts particles to determine which grid cell
they occupy. This likely has similar performance effects to increasing the particle sorting interval.

Lastly, we found that decreasing the tolerance of the field solver dramatically improved performance.
This performance improvement was very coarse-grained—in the baseline case, the iterative algorithm used
to solve the fields only needed to perform three iterations, on average, to converge on the requested relative
tolerance of 10−5. Increasing the tolerance to 10−3 decreased the number of iterations needed to two, and
decreasing it to 10−6 increased the iteration count to four. Further increasing the tolerance to 10−2 had no
effect, as two iterations was already sufficient to converge to within this tolerance. We found that simulations
performed at these higher tolerances were not qualitative or quantitatively different than those performed at
lower tolerances, within the noise threshold of the PIC method and the run-to-run variance.

E. Optimized simulation

Taking all of the performance results from Table 3 together, it is clear that the resampling threshold, particle
sorting interval, and the field solve tolerance had the largest performance implications of the investigated
parameters. We performed one final “optimized” simulation, resampling at particle counts above 300 parti-
cles/cell, sorting every 50 iterations, and using a field solve tolerance of 10−3. This simulation completed in
1.52 days, or 36.5 hours, with results indistinguishable from those of the baseline simulation.

F. Role of GPU hardware

The performance on the older Nvidia V100 (3.81 days compared to 1.81 days on the H100 GPU) is still
significantly faster than all but two of the codes in the 2019 benchmark. This indicates that at least some
of the improvements seen in this work are due to WarpX’s code architecture. However, the simulation on
the H100 was nearly twice /as fast with no change in algorithm or configuration. This result highlights the
important role of increasingly powerful GPU hardware in accelerating kinetic simulations of low-temperature
plasma devices like Hall thrusters.

Despite WarpX’s good benchmark performance across hardware generations, one major gap in its abilities
is lack of support for the reduced-precision and tensor computations needed to fully exploit newer AI-focused
GPUs like the H10021. In particular, while the H100 PCI-e GPU has a capacity of 26 and 51 teraFLOPS
(1012 floating point operations per second), respectively, for non-tensor double- and single-precision floating
point operations, respectively, it can support up to 756 teraFLOPS for TF32 tensor operations and 1513
FLOPS for FP16 operations. New algorithms for PIC that can effectively make use of these reduced-precision
operations may lead to even more dramatic performance improvements. As the demand for increasingly
powerful GPUs for machine learning and artificial intelligence applications increases, it is likely that even
greater speed-ups in particle-in-cell simulations of Hall thrusters will be made possible, provided the codes
can make efficient use of the new hardware.

We note that all of our simulations were performed on a single GPU. When scaling to 3D simulations,
the ability to use multiple GPUs in parallel is critical. We believe that WarpX’s demonstrated GPU scaling
capabilities12 make it an excellent target for these much larger thruster simulations. Lastly, while we did not
employ adaptive mesh refinement in this study, the AMR capabilities built into WarpX have the potential to
further accelerate Hall thruster simulations by resolving regions of the discharge that need it without wasting
resources on those that don’t.

14
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



G. Kinetic simulations in an engineering context

Combining increases in hardware capabilities with new algorithms for reducing noise and improving the parallel
efficiency of PIC simulations may bring kinetic Hall thruster simulations down in cost enough to be useful in
an engineering contexts. The main challenge remaining is the long simulation times needed to adequately
resolve the dynamics of real thrusters. Including ionization introduces breathing mode oscillations which
have frequencies on the order of 10 kHz.1 As such, simulations that capture these oscillations must be run for
timescales of ∼ 1ms, about 50 times longer than the simulation durations employed in this work. Additionally,
recent 3D particle-in-cell simulations of Hall thrusters have demonstrated that many important aspects of the
instabilities governing anomalous transport are not well-resolved by 2D axial azimuthal simulations.5 Even
accounting for significant improvements in hardware, these constraints likely means kinetic, whole-device Hall
thruster simulations will require wall times measuring in the months, if not years. However, when accounting
for the time needed to build a thruster, and collect the data necessary to calibrate current non-predictive
engineering models of Hall thrusters3, it is still possible that kinetic simulations may soon become useable
in engineering applications.

IV. Conclusion

In this work, we have demonstrated the applicability of the open source particle-in-cell code WarpX for
kinetic Hall thruster simulations. To do this, we performed the well-known 2-D axial azimuthal benchmark
simulation of Charoy et al., and found that the results we obtained agreed satisfactorily with those previously
published. Next, we investigated the impact of a variety of numerical parameters on the simulation perfor-
mance and physics. We found that while resampling particles in regions of high densities has the potential
to significantly speed up simulations, the method employed here appears to produce un-physical particle
heating when the resampling threshold is too low. Therefore, this technique must be applied with care.
In comparison to the effect of resampling, the remaining physical parameters, including the particle shape
function, the precision of the multigrid Poisson solver, and the particle sorting interval, had little impact
on the physical output of the simulation. The performance implications of the particle sorting interval were
relatively minor, with slightly better performance seen at shorter sorting intervals. However, reducing the
Poisson solver relative tolerance from 10−5 to 10−3 accelerated the simulation by about 13%, or 5 hours,
with no visible impact on solution quality.

We also found that the impact of the particle shape function on performance was large. Using a cubic
shape function for the particles, our simulation took 40% longer than when using a linear shape function.
However, using higher-order shape functions did not reduce the noise in the computed particle moments.

Lastly, we demonstrated the vast improvement in recent GPUs by performing one simulation on an older
Nvidia V100 GPU. This simulation took over twice as long to complete as our baseline simulation, which
used a newer Nvidia H100.

Using these findings, we performed a final simulation using the best parameters from each of our numerical
investigations. This “optimized” simulation completed in just 36 hours on a single Nvidia H100 GPU,
significantly faster than any published result to date and using far fewer computational resources. As WarpX
is an open source code, this work provides a common baseline for researchers to compare to and expand upon.
Our results highlight the potential of advancements in GPU hardware for accelerating kinetic simulations of
Hall thrusters and similar low-temperature plasma devices and suggests that such simulations could soon be
viable for use in certain engineering contexts.

V. Acknowledgements

This work was funded by Los Alamos National Laboratories under the project “Algorithm/Software/Hardware
Co-design for High Energy Density applications” at the University of Michigan, and used computing resources
provided by an AFOSR DURIP under Program Manager Dr. Fariba Fahroo and grant number FA9550-
23-1-006 The authors acknowledge additional computational resources and support provided by Advanced
Research Computing, a division of Information and Technology Services at the University of Michigan.

15
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



VI. Code and data availability

WarpX is an open-source code, available on Github at https://github.com/ECP-WarpX/WarpX. Our simu-
lations were performed on version 24.05. The scripts used to perform simulations in this work are available
on Github at https://github.com/archermarx/warpx-hall. The data generated for the baseline benchmark
case, as well as the code used to analyze them, are available online at thomasmarks.space/content/iepc-2024.

References

1 Jean Pierre Boeuf. Tutorial: Physics and modeling of hall thrusters. Journal of Applied Physics, 121, 1
2017. ISSN 10897550. doi: 10.1063/1.4972269.

2 Ioannis G. Mikellides and Alejandro Lopez Ortega. Challenges in the development and verification
of first-principles models in hall-effect thruster simulations that are based on anomalous resistivity and
generalized ohm’s law. Plasma Sources Science and Technology, 28:48, 1 2019. ISSN 13616595. doi:
10.1088/1361-6595/aae63b.

3 Thomas A. Marks and Benjamin A. Jorns. Challenges with the self-consistent implementation of closure
models for anomalous electron transport in fluid simulations of Hall thrusters. Plasma Sources Sci.
Technol., 32(4):045016, April 2023. ISSN 0963-0252. doi: 10.1088/1361-6595/accd18.

4 Thomas A. Marks and Benjamin A. Jorns. Evaluation of algebraic models of anomalous transport in
a multi-fluid Hall thruster code. Journal of Applied Physics, 134(15):153301, 10 2023. ISSN 0021-8979.
doi: 10.1063/5.0171824.

5 W. Villafana, B. Cuenot, and O. Vermorel. 3d particle-in-cell study of the electron drift instability
in a hall thruster using unstructured grids. Physics of Plasmas, 30, 3 2023. ISSN 10897674. doi:
10.1063/5.0133963.

6 Rob Farber. Wdmapp – the first simulation software in fusion history to couple tokamak core to edge
physics. Exascale Computing Project, Jul 2022. URL https://www.exascaleproject.org/highlight/

wdmapp-the-first-simulation-software-in-fusion-history-to-couple-tokamak-core-to-edge-physics/.

7 Luca Fedeli, Axel Huebl, France Boillod-Cerneux, Thomas Clark, Kevin Gott, Conrad Hillairet, Stephan
Jaure, Adrien Leblanc, Rémi Lehe, Andrew Myers, Christelle Piechurski, Mitsuhisa Sato, Nëıl Zaim,
Weiqun Zhang, Jean-Luc Vay, and Henri Vincenti. Pushing the frontier in the design of laser-based
electron accelerators with groundbreaking mesh-refined particle-in-cell simulations on exascale-class super-
computers. In SC22: International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12, 2022. doi: 10.1109/SC41404.2022.00008.

8 J.-L. Vay, A. Almgren, J. Bell, L. Ge, D.P. Grote, M. Hogan, O. Kononenko, R. Lehe, A. Myers, C. Ng,
J. Park, R. Ryne, O. Shapoval, M. Thévenet, and W. Zhang. Warp-x: A new exascale computing
platform for beam–plasma simulations. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 909:476–479, 2018. ISSN 0168-9002.
doi: 10.1016/j.nima.2018.01.035. 3rd European Advanced Accelerator Concepts workshop (EAAC2017).

9 T Charoy, J P Boeuf, A Bourdon, J A Carlsson, P Chabert, B Cuenot, D Eremin, L Garrigues, K Hara,
I D Kaganovich, A T Powis, A Smolyakov, D Sydorenko, A Tavant, O Vermorel, and W Villafana. 2d
axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas. Plasma
Sources Science and Technology, 28(10):105010, oct 2019. doi: 10.1088/1361-6595/ab46c5.

10 JP Boeuf et al. Landmark plasma test cases, 2019. URL https://jpb911.wixsite.com/landmark/

test-cases. Accessed: 2024-06-07.

11 Luca Fedeli, Axel Huebl, France Boillod-Cerneux, Thomas Clark, Kevin Gott, Conrad Hillairet, Stephan
Jaure, Adrien Leblanc, Rémi Lehe, Andrew Myers, Christelle Piechurski, Mitsuhisa Sato, Nëıl Zaim,
Weiqun Zhang, Jean-Luc Vay, and Henri Vincenti. Pushing the frontier in the design of laser-based
electron accelerators with groundbreaking mesh-refined particle-in-cell simulations on exascale-class super-
computers. In SC22: International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12, 2022. doi: 10.1109/SC41404.2022.00008.

16
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.

https://github.com/ECP-WarpX/WarpX
https://github.com/archermarx/warpx-hall
https://www.thomasmarks.space/content/iepc-2024
https://doi.org/10.1063/1.4972269
https://doi.org/10.1088/1361-6595/aae63b
https://doi.org/10.1088/1361-6595/aae63b
https://doi.org/10.1088/1361-6595/accd18
https://doi.org/10.1063/5.0171824
https://doi.org/10.1063/5.0133963
https://doi.org/10.1063/5.0133963
https://www.exascaleproject.org/highlight/wdmapp-the-first-simulation-software-in-fusion-history-to-couple-tokamak-core-to-edge-physics/
https://www.exascaleproject.org/highlight/wdmapp-the-first-simulation-software-in-fusion-history-to-couple-tokamak-core-to-edge-physics/
https://doi.org/10.1109/SC41404.2022.00008
https://doi.org/10.1016/j.nima.2018.01.035
https://doi.org/10.1088/1361-6595/ab46c5
https://jpb911.wixsite.com/landmark/test-cases
https://jpb911.wixsite.com/landmark/test-cases
https://doi.org/10.1109/SC41404.2022.00008


12 A. Myers, A. Almgren, L.D. Amorim, J. Bell, L. Fedeli, L. Ge, K. Gott, D.P. Grote, M. Hogan, A. Huebl,
R. Jambunathan, R. Lehe, C. Ng, M. Rowan, O. Shapoval, M. Thévenet, J.-L. Vay, H. Vincenti, E. Yang,
N. Zäım, W. Zhang, Y. Zhao, and E. Zoni. Porting warpx to gpu-accelerated platforms. Parallel
Computing, 108:102833, 2021. ISSN 0167-8191. doi: 10.1016/j.parco.2021.102833.

13 Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy Chan, Marcus Day, Brian
Friesen, Kevin Gott, Daniel Graves, Max Katz, Andrew Myers, Tan Nguyen, Andrew Nonaka, Michele
Rosso, Samuel Williams, and Michael Zingale. AMReX: a framework for block-structured adaptive mesh
refinement. Journal of Open Source Software, 4(37):1370, May 2019. doi: 10.21105/joss.01370.

14 A. Y. Aydemir. A unified Monte Carlo interpretation of particle simulations and applications to non-
neutral plasmas. Physics of Plasmas, 1(4):822–831, 04 1994. ISSN 1070-664X. doi: 10.1063/1.870740.

15 C.K. Birdsall. Particle-in-cell charged-particle simulations, plus monte carlo collisions with neutral atoms,
pic-mcc. IEEE Transactions on Plasma Science, 19(2):65–85, 1991. doi: 10.1109/27.106800.

16 Dominic A.S. Brown, Matthew T. Bettencourt, Steven A. Wright, Satheesh Maheswaran,
John P. Jones, and Stephen A. Jarvis. Higher-order particle representation for particle-in-
cell simulations. Journal of Computational Physics, 435:110255, 2021. ISSN 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2021.110255.

17 A. Muraviev, A. Bashinov, E. Efimenko, V. Volokitin, I. Meyerov, and A. Gonoskov. Strategies for
particle resampling in pic simulations. Computer Physics Communications, 262:107826, 2021. ISSN
0010-4655. doi: 10.1016/j.cpc.2021.107826.

18 G. A. Bird. Approach to Translational Equilibrium in a Rigid Sphere Gas. The Physics of Fluids, 6(10):
1518–1519, 10 1963. ISSN 0031-9171. doi: 10.1063/1.1710976.

19 F. Pérez, L. Gremillet, A. Decoster, M. Drouin, and E. Lefebvre. Improved modeling of relativistic
collisions and collisional ionization in particle-in-cell codes. Physics of Plasmas, 19(8):083104, 08 2012.
ISSN 1070-664X. doi: 10.1063/1.4742167.

20 J. D. Huba. NRL Plasma Formulary. Revised 2023. Washington, DC : Naval Research Laboratory,
1950-. URL https://www.nrl.navy.mil/News-Media/Publications/NRL-Plasma-Formulary/.

21 NVIDIA H100 Tensor Core GPU Datasheet. Nvidia Corporation, 2024. URL https://resources.

nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet. Accessed: 2024-06-18.

22 NVIDIA V100 Tensor Core GPU Datasheet. Nvidia Corporation, 2020. URL https://images.nvidia.

com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf. Ac-
cessed: 2024-06-18.

23 NVIDIA A100 Tensor Core GPU Datasheet. Nvidia Corporation, 2024. URL
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/

nvidia-a100-datasheet-nvidia-us-2188504-web.pdf. Accessed: 2024-06-18.

24 Alexey V. Arefiev and Boris N. Breizman. Magnetohydrodynamic scenario of plasma detachment in a
magnetic nozzle. Physics of Plasmas, 2005. ISSN 1070664X. doi: 10.1063/1.1875632.

25 D. Faghihi, V. Carey, C. Michoski, R. Hager, S. Janhunen, C.S. Chang, and R.D. Moser. Moment
preserving constrained resampling with applications to particle-in-cell methods. Journal of Computational
Physics, 409:109317, 2020. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2020.109317.

17
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.

https://doi.org/10.1016/j.parco.2021.102833
https://doi.org/10.21105/joss.01370
https://doi.org/10.1063/1.870740
https://doi.org/10.1109/27.106800
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110255
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110255
https://doi.org/10.1016/j.cpc.2021.107826
https://doi.org/10.1063/1.1710976
https://doi.org/10.1063/1.4742167
https://www.nrl.navy.mil/News-Media/Publications/NRL-Plasma-Formulary/
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://doi.org/10.1063/1.1875632
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109317

	Introduction
	Methods
	Benchmark simulation
	Extending WarpX for Hall thruster simulations
	Summary of WarpX's solution procedure
	Extensions for benchmark simulations

	Simulation outputs
	Numerical parameter investigation
	Summary of simulation parameters

	Results and discussion
	Baseline simulation
	Impact of higher-order shape functions
	Effect of resampling
	Other parameters
	Optimized simulation
	Role of GPU hardware
	Kinetic simulations in an engineering context

	Conclusion
	Acknowledgements
	Code and data availability

