
Exploring Bridges Between Creative Coding and Visual Generative AI

by

Jiaqi Wu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science
(Information)

in the University of Michigan
2024

Committee:

Professor Eytan Adar, Chair
Professor Steve Oney

ACKNOWLEDGEMENTS

I would like to thank Prof. Eytan Adar, and Dr. John Joon Young Chung for being my

advisors in my master’s research, and for Prof. Steve Oney’s advice on this thesis.

I would also like to thank Chloe Coleman for making my life happy.

Thank you Xuan Qiu for your company.

This thesis is also made possible by great artworks created by generative procedural

artists: Che-Yu Wu, Takafumi Oyama, Dae In Chung, Brian Jordan, Roope Rainisto, Okazz,

Naoki Tsutae, Luciana Diaferio, to name a few.

To the cold weather of Michigan.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

LIST OF TABLES . vi

ABSTRACT . vii

CHAPTER

1 Introduction . 1

1.1 Motivation . 1
1.2 Background . 2

1.2.1 Generative Procedural Art . 2
1.2.2 P5.js . 2
1.2.3 Di↵usion Models . 3

2 GenP5 . 7

2.1 Related Work . 7
2.1.1 Assisting the Creation of Generative Procedural Art with Generative

AI . 7
2.1.2 Assisting the Creation of Generative Procedural Art with Conditions 8

2.2 Method . 8
2.2.1 Stylizing Canvas Contents . 9
2.2.2 Conditioning Canvas Contents . 13

2.3 Evaluation . 18
2.4 Conclusion . 19
2.5 Limitations and Future Work . 20

3 P52Style . 21

3.1 Background . 21
3.1.1 What is Style? . 21
3.1.2 Style Learning Task . 23
3.1.3 Style Learning Task using DMs . 26
3.1.4 Generative Procedural Art Style Learning 27
3.1.5 Preliminary Study . 28
3.1.6 P5.gui . 30

iii

3.2 Method . 30
3.3 Evaluation . 35
3.4 Conclusion . 36
3.5 Limitations and Future Work . 37

4 What I Learned . 38

BIBLIOGRAPHY . 39

iv

LIST OF FIGURES

FIGURE

1.1 Generative procedural art examples . 3
5figure.caption.7

2.1 GenP5 method overview. numbers indicate frame index 10
2.2 UI elements that will be dynamically created when GenP5 library is used. The

above example shows two di↵erent project examples achieving di↵erent e↵ects
by applying di↵erent prompts on similar p5 contents. In this example, nothing is
drawn on the main canvas other than the background color. 2 stylize bu↵ers are
created each containing a ring-shape animation. 1 nonstylize bu↵er is created
containing bubble e↵ect filters. 11

2.3 4 simple examples of procedural art project using GenP5 functions for condition-
ing. The input contour maps are inverted. Input color image source: Restaurant
de la Machine à Bougival - Maurice de Vlaminck (row I), View of Collioure -
Henri Matisse (row II-III), The Starry Night - Vincent van Gogh(row IV) . . . 15

3.1 Example images and their style components. New images are generated by Visual
Style Prompting. N indicates no consideration for content leak for the reference
image. 24

3.2 Example correct (B) and incorrect (A, C) style unit sets. Reference image source:
Inner Demons by Che-Yu Wu . 25

3.3 Two famous art examples with zero freedom of shape variability. 25
3.4 Overview of swapping self-attention in visual style prompting, image from origi-

nal paper [9]. 27
3.5 Comparison of di↵erent approaches. Reference image sources: Inner Demons by

Che-Yu Wu (Row I-II), Painting with Circle Noise by Luciana Diaferio (Row
III-IV) . 29

3.6 Comparison of style learning result of di↵erent parameters and windows. Seed:
1024, inference step: 50, guidance scale: 7, prompt: a dog. Reference image
sources: Inner Demons by Che-Yu Wu . 29

3.7 Overview of p52style structure. 31
3.8 Overview of p52style UI. Reference image sources: Inner Demons by Che-Yu Wu 32

v

LIST OF TABLES

TABLE

2.1 GenP5 main function descriptions and details. 12
2.2 GenP5 main function descriptions and details, cont. 14

3.1 P52Style main function descriptions and details. 33

vi

ABSTRACT

How to bridge generative procedural art and visual generative artificial intelligence (AI)

for visual content creation is an under-explored topic. On one hand, there are many cases

where creative programmers can make use of generative AI, including stylizing canvas con-

tent and creating new content based on the existing styles of certain procedural art (style

learning). On the other hand, existing approaches don’t support creative programmers to

flexibly leverage visual generative AI methods within the creative coding environment.

In this work, we explore how to bridge generative procedural art creation and

visual generative AI (specifically di↵usion models) by programming function-

alities integrated into the creative environment. Specifically, we want to explore

methodologies to condition/stylize art content and perform style learning upon procedural

art via accessible interactions for artists and programmers.

We proposed two methods: GenP5, a novel p5.js library enabling generative procedural

art creation with flexibly stylizing canvas content and conveniently condition art creation

with pre-determined patterns; and P52Style, an extended library built upon p5.gui 1 allowing

flexible adjustment of art content and leverage of visual generative AI for style learning tasks.

These terms are equivalent in the context of this thesis:

creative coding = generative procedural art = procedural art

generative AI = generative model

creative programmer = generative procedural artist

1
https://bitcraftlab.github.io/p5.gui/

vii

https://bitcraftlab.github.io/p5.gui/

CHAPTER 1

Introduction

1.1 Motivation

The power of visual generative artificial intelligence (AI) can largely reduce human e↵orts

when it cooperates with human judgments in visual content creation. Meanwhile, gener-

ative procedural art is the type of art where the artist includes a pre-designed generative

or automatic process into the art creation process [5]. Currently, mainstream generative

procedural art is based on programming algorithms (creative coding). Various programming

languages/creative coding environments including Processing and p5.js 1 already make the

creation of generative art e�cient.

At the same time, how to bridge these two powerful computational methods for visual

content creation is still an under-explored topic. On one hand, there are many cases

where creative programmers can make use of generative AI. For example, it is not

easy for a generative procedural artist who wants an artwork consisting of moving shapes

in the style of Jackson Pollock. In this case, integrating generative AI into the procedural

art system enables artists to generate moving shapes first, then apply prompt guidance that

transforms those shapes into more stylized elements (e.g., “combination of angry acrylic

splatters”). On the other hand, existing approaches don’t support creative pro-

grammers to flexibly leverage visual generative AI methods within the creative

coding environment. For example, artists have no control over detailed canvas contents

when applying visual generative AI for stylization.

In this work, we explore how to bridge generative procedural art creation and

visual generative AI (specifically di↵usion models) by programming function-

alities integrated into the creative environment. Specifically, we want to explore

methodologies to condition/stylize art content and perform style learning upon procedural

art via accessible interactions for artists and programmers.

1
https://p5js.org/

1

https://p5js.org/

In each chapter of this thesis, we focus on one of the research questions and propose our

method and analysis. Specifically, we provide:

• GenP5, a novel p5.js library enabling generative procedural art creation with flexibly

stylizing canvas content and conveniently condition art creation with pre-determined

patterns

• P52Style, an extended library built upon p5.gui 2 allowing flexible adjustment of art

content and leverage of visual generative AI for style learning tasks.

1.2 Background

1.2.1 Generative Procedural Art

Generative procedural art is the type of art where the artist includes a pre-designed genera-

tive or automatic process into the art creation process [5]. Sometimes they are also referred

to as mathematical art to di↵er from art created by generative AI. There are three main

types of generative/automatic processes 3: randomness (random variables, noises, dis-

tributions, etc), rules (algorithm instruction, mathematics formula, ecosystem

simulation, etc) and natural systems (e.g., growing biological system). Though

following the same principles, the specific manifestations of generative procedural art can

vary 4 from digital to physical, static to dynamic, and shown in all kinds of styles (Fig. 1.1).

In this research, we focus on generative procedural art that is based on computer al-

gorithms (creative coding) focusing on the process of rules and randomness. The growing

popularity of the creative coding community has promised generative procedural art to have

an important role in new media [18].

1.2.2 P5.js

Processing 5 is a graphics library and integrated development environment based on the Java

programming language environment for visually oriented applications with an emphasis on

animation and interactions. It has been one of the most important tools for procedural art

creation and is popular among the creative coding and digital art communities. Inspired by

2
https://bitcraftlab.github.io/p5.gui/

3
https://www.amygoodchild.com/blog/what-is-generative-art

4
https://openprocessing.org/discover/#/trending

5
https://processing.org/

2

https://bitcraftlab.github.io/p5.gui/
https://www.amygoodchild.com/blog/what-is-generative-art
https://openprocessing.org/discover/%23%23/trending
https://processing.org/

Figure 1.1: Generative procedural art examples

and based on the core principles of Processing, p5.js 6 is a JavaScript client-side library that

makes creative coding more accessible just as any other JavaScript web application.

A simple p5.js project has the following structure:

index.html: The main HTML document that the web browser loads when accessing the

p5.js project. It serves as the container for p5.js sketch and typically includes links to the

p5.js library, custom JavaScript code for art content creation (such as sketch.js), and any

additional CSS stylesheets (like style.css).

style.css: This optional file contains Cascading Style Sheets (CSS) rules for styling the

HTML elements in p5 project.

sketch.js: The sketch.js file contains artists’ p5.js code to create art content, including

functions that define the behavior of the project. Two key functions in this file are:

• setup(): This function is called once when the program starts. It’s used to set up initial

properties such as canvas size, background color, and initial environment settings. It

runs only once.

• draw(): This function continuously executes the lines of code contained inside its block

until the program is stopped or noLoop() is called. It’s used to draw shapes, handle

interactions, and animate objects on the canvas, by creating animations from frames.

1.2.3 Di↵usion Models

One of the most popular visual generative AI nowadays is Di↵usion Model (DM) (e.g.,

Di↵usion Probabilistic Model [7]) that learns to gradually denoise an image step by step,

6
https://p5js.org/

3

https://p5js.org/

reversing the noise-adding process. Consequently, it is capable of generating images from

pure noise. Furthermore, Latent Di↵usion Model (LDM), for example, Stable Di↵usion

(SD) [13] applies the di↵usion process over a lower-dimensional compressed representation

of images to reduce the memory and compute complexity. By augmenting the underlying

UNet backbone with the cross-attention mechanism [16], It is also possible to perform image

generation tasks with various conditions, including DM with textual prompts (text2img DM)

and DM with depth information (depth2img DM) 7, by encoding these conditional inputs

into embeddings and feeding into the denoising process.

Fig. 1.2 shows the general architecture of a LDM, using the example of text2img DM 8.

With a text prompt and a seed as input, the latent seed is used to generate random latent

image representations, and the text prompt condition is transformed into text embeddings

via a certain encoder (in this example, CLIP’s text encoder). Then the U-Net iteratively

denoises the random latent image representations to output a noise residual, which is used

to compute a denoised latent image representation via a scheduler algorithm. The denoising

process is repeated by N times to step-by-step retrieve better latent image representations.

Finally, the latent image representation is decoded by the decoder part of the variational

auto-encoder (VAE). As discussed earlier, the U-Net, which performs the main denoising

task, consists of a number of self-attention and cross-attention blocks [9, 10]. In the cross-

attention module, condition embeddings (e.g., prompt text embeddings) serve as the key

and value to inject the condition concerning the query features from the previous layer.

Meanwhile, in the self-attention module, features with spatial dimensions generated from

the previous layer will serve as key, query, and value by themselves [9].

The abilities of these conditional DMs enable many useful visual content-creation tasks.

Image styliztion task is a common case of image translation, leveraging DM with image

condition (img2img DM 10). Instead of starting the di↵usion process from the random latent

image, it leverages a input reference image as the initial latent by adding noise upon the

latent of the reference image. The noise added is controlled by a strength value (0-1), to

adjust the level of influence of the initial image. Style learning task leverages the models’

ability to learn the features of a customized visual style and use that style in the generation

of new images (further discussed in Chapter 3). Other than the previously mentioned DM

backbones, these tasks are also enabled by recent development of DM architectures, includ-

ing fast inference architecture like latent consistency model [12] (LCM) enabling real-time

image generation with a few step inference, and various DM style learning methods (further

7
https://huggingface.co/stabilityai/stable-diffusion-2-depth

8
https://huggingface.co/blog/stable_diffusion

10
https://huggingface.co/docs/diffusers/v0.27.2/en/api/pipelines/stable_diffusion/

img2img#diffusers.StableDiffusionImg2ImgPipeline

4

https://huggingface.co/stabilityai/stable-diffusion-2-depth
https://huggingface.co/blog/stable_diffusion
https://huggingface.co/docs/diffusers/v0.27.2/en/api/pipelines/stable_diffusion/img2img%23%23diffusers.StableDiffusionImg2ImgPipeline
https://huggingface.co/docs/diffusers/v0.27.2/en/api/pipelines/stable_diffusion/img2img%23%23diffusers.StableDiffusionImg2ImgPipeline

Figure 1.2: Latent Di↵usion Model architecture 9

5

discussed in Chapter 3).

6

CHAPTER 2

GenP5

In this chapter, we introduce GenP5, a novel p5.js library enabling generative procedural art

creation with flexibly stylizing canvas content and conveniently condition art creation with

pre-determined patterns. This enables artists to make full use of both the programmability

of code and the stylization ability of DMs.

2.1 Related Work

2.1.1 Assisting the Creation of Generative Procedural Art with

Generative AI

Our work GenP5 is one of the approaches using generative AI (specifically, we leverage DMs)

to assist the creation of generative procedural art.

Relevant to our works, Liu el. al. [11] used music audio as an input condition, deploy-

ing a large language model like GPT4 and a DM like stable di↵usion to generate music

visualizations. SpellBurst [2] is an authoring tool leveraging large language models to fa-

cilitate users to create generative procedural art and explore various possibilities. Various

artists, including Takafumi Oyama 1, Roope Rainisto 2, and Brian Jordan 3 used image or

video generation models as post-processing step for procedural art to achieve various e↵ects.

Artists and technologists including Dae In Chung and Brian Jordan have been integrating

generative AI into programming stages of procedural art to create novel design experiences,

like programming with conversational text 4 and audio instructions 5.

Integrating DMs into a creative coding environment is still an under-explored area. Recent

fast-inference DM approaches like Latent Consistency Model (LCM) [12] enabled real-time

1
https://www.takafm.me/

2
https://twitter.com/rainisto

3
https://twitter.com/bcjordan

4
https://twitter.com/cdaein/status/1756161096778682728

5
https://twitter.com/cdaein/status/1759306141152985182

7

https://www.takafm.me/
https://twitter.com/rainisto
https://twitter.com/bcjordan
https://twitter.com/cdaein/status/1756161096778682728
https://twitter.com/cdaein/status/1759306141152985182

canvas stylization applications which are further extended to procedural art environments,

by calling DM APIs explicitly or implicitly to send canvas images and retrieve stylized re-

sults. For example, Dae In Chung created a plugin for Ssam.js 6 creative coding helper, using

Replicate Node.js API to generate SD image from HTML5 Canvas drawing. Meanwhile, it

is still not possible to conveniently manipulate any canvas contents for stylization with DMs

independently, and integrating DMs functionalities seamlessly into creative coding environ-

ments to enable an experience of “Use DM by code”. This motivates the creation of our

GenP5 library.

2.1.2 Assisting the Creation of Generative Procedural Art with

Conditions

Much research has focused on extending the current generative art programming environment

for more powerful design assistance and more broad applications. Some work focuses on using

input conditions to guide the generated art results. Barile et.al. [3] explored a way of using

generative programming to generate animated drawings, with a target input image as a

condition. Based on it, Wu [19] used input images as conditions, by designing a system that

can detect the saliency map of the input image and then apply it to render and generate an

animation consisting of various strokes.

Integrating generative art programming into downstream application tasks can also be a

meaningful exploration. Subbaraman and Peek [15] built p5.fab from the creative coding

environment p5.js, which provides an interface to control digital fabrication machines from

material exploration, fine-tuned control, and workflow iteration. These works further proved

that generative art based on algorithmic programming can not only be useful for media and

design applications but also applicable in more technical areas like fabrication and materials.

Inspired by all these works, we would like to explore how to condition procedural art

with modular and encapsulated functionalities integrated into a p5.js library, to enhance

the convenience of creating procedural art with various conditions and improve the whole

creative coding experience. This motivates us to extend the GenP5 library with functions

to condition canvas contents.

2.2 Method

Our proposed method, GenP5, is a customized JavaScript library that adds to the p5.js core

functionality.

6
https://github.com/cdaein/vite-plugin-ssam-replicate

8

https://github.com/cdaein/vite-plugin-ssam-replicate

2.2.1 Stylizing Canvas Contents

The first part of GenP5 is the functionalities to stylize canvas contents in real-time.

Overview With the GenP5 framework shown in 2.1. we first introduce some concepts.

original canvas refer to the p5 canvas that is created by default in any p5.js project. Stylize

bu↵er is the new o↵-screen graphics created that allow contents drawn there to be separated

from the original canvas. Specifically, the contents drawn on these bu↵ers will be stylized

with DMs later. Nonstylize bu↵er is also the new o↵-screen graphics created independently,

but the contents drawn on these bu↵ers will not be stylized with DMs later. Normally drawn

p5.js contents will be shown as rendered p5 animations of all the frames. However, to turn

them into processable entities for DMs, we need to capture frame images at a certain capture

rate. Original frame images are those images captured from di↵erent stylize bu↵ers, with

frame index as sequence numbers. They will be processed by DMs and result in stylized

frame images as a one-to-one correspondence. Finally, all the original frame images from

original canvas and all the stylized frame images in di↵erent stylize bu↵ers who share the

same frame index will be overlayed sequentially to create a single final frame image at this

frame index. Notice that a background-removal algorithm will be applied to all the stylize

bu↵ers before they are overlayed. Moreover, For the p5 content animations in the nonstylize

bu↵er, instead of turning the frames into frame images, we directly store each frame as p5

objects since they do not need to be stylized. In the final step, for all the final frame images

and stored frames from nonstylize bu↵er, if they share the same frame index, they will be

overlayed sequentially, to create final frames composing a final animation in a new final

canvas.

UI components When users use GenP5 library to create p5.js projects, there will also be

UI components generated automatically when initiating GenP5 instance. As shown in 2.2,

main p5 container contains the original canvas. Original frame image container

contains the original frame images captured from stylize bu↵ers. There will be N containers

when there are N stylized bu↵ers. The images will be displayed sequentially by frame index.

Stylized frame image container contains the stylized frame images. Similarly, there will

be N containers when there are N stylized bu↵ers. An original frame image will result in a

stylized frame image of the same frame index. The images will be displayed continuously by

frame index. Final frame image container contains the final frame images. There will

only be one final image container. Final frame images at index T will not be created until

all the stylized frame images at index T from di↵erent bu↵ers are ready. The images will be

displayed continuously by frame index. Final canvas container contains the final canvas

9

Figure 2.1: GenP5 method overview. numbers indicate frame index

and a button. When the button is clicked, a final animation will be displayed by combining

stored frames of nonstylize bu↵er and final frame images. The speed of the animation is

determined by the framerate.

Core Functionalities Specifically, users will directly interact with the following main

functionalities shown in 2.1:

The following sketch.js code snippet illustrates a simple project using GenP5 library for

content stylization.

1 let genP5;

2 var storedframes = [];

3 let captureinterval = 5;

4 let finalframerate = 30;

5 // initiate more variables

6 //

7

8 function setup () {

9 genP5 = new GenP5(canvas_size , canvas_bgcolor);

10 // initiate genP5 object with canvas size and background color

11

12 [buffer1 , buffer2] = genP5.createstylizebuffers (2);

13 // create 2 buffers to draw stylized contents

14

15 [buffer3] = genP5.createnonstylizebuffers (1);

10

Figure 2.2: UI elements that will be dynamically created when GenP5 library is used. The
above example shows two di↵erent project examples achieving di↵erent e↵ects by applying
di↵erent prompts on similar p5 contents. In this example, nothing is drawn on the main
canvas other than the background color. 2 stylize bu↵ers are created each containing a ring-
shape animation. 1 nonstylize bu↵er is created containing bubble e↵ect filters.

11

Function Name Parameters Return Value Introduction
create stylizebu↵ers bu↵ernumber

(number)

array of bu↵er objects Create stylize bu↵ers

create nonstylizebu↵ers bu↵ernumber

(number)

array of bu↵er objects Create nonstylize bu↵ers

clear stylizebu↵ercontent bu↵er

(p5.Graphics)

none Unlike bu↵er.clear(), this func-

tion clears everything on the

bu↵er except the background

color.

stylize bu↵ers stylizebu↵erlist

(array),

promptlist (array),

strengthlist (array),

captureinterval

(number),

canvas (canvas)

none Continuously capture the origi-
nal frame images from di↵erent

stylize bu↵ers and the original
canvas, get stylizes frame images
and finally creates final frame
images for all the frames.

setup finalcanvas finalframerate

(number),

storedframes

(array)

none Create a final canvas view with a

button.

When clicked, render the fi-

nal animation composed of final
frame images and stored frames

from nonstylize bu↵er. The

speed of the animation is deter-

mined by finalframerate

Table 2.1: GenP5 main function descriptions and details.

16 // create 1 buffer to draw not stylized contents

17

18 genP5.setupfinalcanvas(finalframerate , storedframes)

19 // create final canvas frame view + button to render final animation

20 }

21

22 function draw() {

23 genP5.clearstylizebuffercontent(buffer1) //clear contents for next

frame

24 //draw contents in buffer1

25 //

26 genP5.clearstylizebuffercontent(buffer2) //clear contents for next

frame

27 //draw contents in buffer2

28 //

29 buffer3.clear() // clear contents for next frame

30 //draw contents in buffer3

31 //

32 storedframes.push(buffer3.get()); // Store everyframe of buffer3

because it is not stylized buffer

12

33

34 promptlist =['prompt for buffer1 ', 'prompt for buffer2 ']
35 strengthlist = [strength1 , strength2]

36

37 genP5.stylize_buffers ([buffer1 , buffer2], promptlist , strengthlist

, 5, canvas);

38 // stylize buffer1 , buffer2

39 }

Listing 2.1: example

Usage and implementation detail GenP5 uses DM by creating a web socket connection

between p5.js project and a server.js in a node.js project. Server.js takes in images and

stylizes images by calling LCM API from fal.ai 7. The server contains queueing, checking,

and regenerating logic to make sure the stylized frame image of every frame index is returned

to p5.js project sequentially.

In summary, to use GenP5 for procedural art creation, the user only needs to start

server.js either remotely or locally, place library code in the same folder of the p5.js project

and declare the library in the HTML file. There are no other things to be changed other than

calling the above main function in sketch.js, without any requirements for devices. Here is

an outline of the workspace structure:

• (remote or local node.js project folder)

server.js

• (p5.js project folder)

genp5lib.js,

index.html,

sketch.js

2.2.2 Conditioning Canvas Contents

The second part of GenP5 is the functionalities to condition the art creation with predeter-

mined patterns (e.g., color, shape). These predetermined patterns are provided by external

images.

Core Functionalities Specifically, users will directly interact with the following main

functionalities shown in 2.2
7
https://fal.ai/

13

https://fal.ai/

Function Name Parameters Return Value Introduction
get NSampledColors imagepath(str),

numcolors(int)

sampled colors

(arrary, promise resolve)

sample colors from an im-

age

load ContourMap imagepath(str) call back function load the contour map of

an input black-white im-

age

find NearestContour positionx(number),

postiony(number),

searchrange(number)

nearest contour position

(vector)

Given input coordinate

and a search range, re-

turn the nearest coordi-

nate that is on the contour

map.

Sample ContourPoints numpoints(number) sampled points(arrary) sample points from the

contour

Check IfOnContour positionx(number),

positiony(number)

True/False Check if a coordinate is on

the contour

Table 2.2: GenP5 main function descriptions and details, cont.

Usage and implementation detail We provide 4 simple examples of procedural art

projects using the above functions for conditioning in 2.3. Similarly, users need to place

GenP5 library code, and pre-determined image in the same folder of the p5.js project and

declare the library in the HTML file. There are no other things to be changed other than

calling the above functions in sketch.js, and there are no requirements for devices. Since

these functions do not rely on DMs, they don’t need the node.js server.

• (p5.js project folder)

inputimage.png,

genp5lib.js,

index.html,

sketch.js

The following code snippet illustrates how to use GenP5 conditioning functions to create

a simple project (line II in 2.3), by controlling the color, initiated location, and movement of

art elements. It creates a moving and growing particle system by conditioning the initiation

of particles to be on the pre-determined contours and conditioning the movement of particles

to be within the contours. The color of the particles is randomly selected from a color palette

from the condition of the input color image:

1 // initialization

2 let particles = [];

3 maincanvassize = 400

4 let sampledColors = []

14

Figure 2.3: 4 simple examples of procedural art project using GenP5 functions for condi-
tioning. The input contour maps are inverted. Input color image source: Restaurant de la
Machine à Bougival - Maurice de Vlaminck (row I), View of Collioure - Henri Matisse (row
II-III), The Starry Night - Vincent van Gogh(row IV)

5

6 function setup () {

7 // initialize GenP5

8 genP5 = new GenP5(maincanvassize , '#FFFCFD ');
9 // get the sampled colors from image

10 genP5.getNSampledColors('./ colorimage.png', 16).then((colors) => {

11 sampledColors = colors;

12 //load contour map from image

15

13 genP5.loadContourMap('./ contourimage.png', setParticles);

14 }).catch((error) => {

15 console.error("Failed to load or sample colors:", error);

16 });

17

18 }

19

20 function draw() {

21

22 if (frameCount % 10 == 0) {

23 addParticlesBatch (1000); // Adjust the number of particles per

batch as needed

24 }

25 clear()

26 for (let p of particles) {

27 p.move();

28 p.update ();

29 p.display ();

30 }

31 }

32

33 function setParticles () {

34 particles = [];

35 let sampledPoints = genP5.sampleContourPoints (6); // sample particles on

contour

36 for (let point of sampledPoints) {

37 particles.push(new Particle(point.x, point.y));

38 }

39 }

40

41 function addParticlesBatch(numParticles) {

42 let sampledPoints = genP5.sampleContourPoints(numParticles); // grow

particles on contour

43 for (let point of sampledPoints) {

44 let color = random(sampledColors); // Select a random color

45 particles.push(new Particle(point.x, point.y, color));

46 }

47 }

48

49 class Particle {

50 constructor(x, y) {

51 this.posX = x;

52 this.posY = y;

16

53

54 // Random base size for each particle

55 this.size = random(1, 8);

56

57 // Random speed factors

58 this.xSpeedFactor = random(-5, 5);

59 this.ySpeedFactor = random(-5, 5);

60

61 // Select a random color from a predefined set and add random alpha

for transparency

62 this.color = random(sampledColors);

63 this.alpha = random (30, 150); // Adjusted for better visibility of

the blur effect

64 this.c = color(this.color);

65 this.c.setAlpha(this.alpha);

66 }

67

68 move() {

69 this.posX += random(-this.xSpeedFactor , this.xSpeedFactor);

70 this.posY += random(-this.ySpeedFactor , this.ySpeedFactor);

71

72 // restrict the movement of particles in the contour

73 // Check if the new position is on the contour; if not , re -generate

the position

74 let onContour = genP5.checkIfOnContour(this.posX , this.posY);

75 while (! onContour) {

76 this.posX = random(width);

77 this.posY = random(height);

78 onContour = genP5.checkIfOnContour(this.posX , this.posY);

79 }

80 }

81

82

83 update () {

84 // keep particles on canvas

85 if (this.posX < 0) this.posX = maincanvassize;

86 if (this.posX > maincanvassize) this.posX = 0;

87 if (this.posY < 0) this.posY = maincanvassize;

88 if (this.posY > maincanvassize) this.posY = 0;

89 }

90

91 display () {

92 // Set the stroke weight to the particle 's size for the blurriness

17

effect

93 strokeWeight(this.size);

94

95 // Use the particle 's color including its alpha for transparency

96 stroke(this.c);

97

98 // Draw the particle

99 point(this.posX , this.posY);

100 }

101 }

102 % }

Listing 2.2: example

As shown in the code snippet, getNSampledColors() and loadContourMap() need to

be used in line with the asynchronous nature of JavaScript. This ensures the contour map

and color palette are loaded properly before other functions.

It is worth notifying that using real images for conditioning is not the ideal way to make

use of GenP5 conditioning functions. GenP5 conditioning functions are designed to

leverage input patterns pre-generated by DMs, to enable turning randomness in

generative models to manipulatable conditions in p5.js.

2.3 Evaluation

Since there are no similar existing methods comparable to GenP5, we conduct the evaluations

using Cognitive Dimensions of Notations (CDs) [4]. We score each dimension as high, low,

mid, and standard (indicating the same level as any other p5.js or programming libraries,

the level is acceptable as long as the user has proper knowledge of p5.js programming).

Low Viscosity: Resistance to Change. The library is not viscous, and the changes in

content code don’t require changes in GenP5 function calls. The changes can be easily made

by adjusting function parameters or adding/deleting function calls.

Mid Visibility: Ability to View Components Easily. The library has simple UI components

with little/no labels and captions.

Standard Premature Commitment: Constraints on the Order of Doing Things. Like any

other p5.js library, initiating instances, including package code, and a certain sequence of

executing is necessary.

Low Hidden Dependencies: Important Links between Entities Are Not Visible. There are

certain dependencies in functionalities, but they are explicit in code information.

High Role-Expressiveness: The Purpose of an Entity Is Readily Inferred. The library

18

follows the cognitive habit of users as it has the same structure as any other p5.js library.

The purpose of di↵erent functions is well elaborated with function names and documentation.

Mid Error-Proneness: The Notation Invites Mistakes and the System Gives Little Protec-

tion. The library functions have simple and explicit usage, but there might be user mistakes

with no clear system feedback.

Standard Abstraction: Types and Availability of Abstraction Mechanisms. The library

functions have the same abstraction level as other p5.js libraries.

Low Secondary Notation: Extra Information in Means Other Than Formal Syntax. The

library functions don’t require users to record extra information like comments.

High Closeness of Mapping: Closeness of Representation to Domain. The purpose of

di↵erent functions is well elaborated with function names and documentation, whereas the

closeness of functions and behavior is standard in programming libraries.

High Consistency: Similar Semantics Are Expressed in Similar Syntactic Forms. The

library has high consistency, as a feature of programming languages.

Low Di↵useness: Verbosity of Language. The function calls have low di↵useness, as a

feature of programming languages. For UI components, the label texts are reduced to the

minimum.

Standard Hard Mental Operations: High Demand on Cognitive Resources. The function

calls have a standard level of hardness as programming languages. For UI components, the

icons and texts are easy to understand without cognitive burden.

Standard Provisionality: Degree of Commitment to Actions or Marks. The library has a

standard level of provisionality as any other programming library.

High Progressive Evaluation: Work-to-Date Can Be Checked at Any Time. The library

has a high progressive evaluation as any other programming library.

In summary, the evaluations by CDs indicate that GenP5 has fair usability in most

of the dimensions, meanwhile it requires improvements in Visibility and Error-Proneness.

To improve on these limitations, in future work, we hope to increase Visibility and Error

Proneness with more detailed UI labels and error messages to help better explain the problem

and guide users to find the solution.

2.4 Conclusion

In conclusion, to explore the flexible manipulation of procedural art contents with DMs

within the creative coding environment, we proposed GenP5, a novel p5.js library enabling

generative procedural art creation with flexibly stylizing canvas content and conveniently

conditioned art creation with pre-determined patterns. We also provided detailed documen-

19

tation and library usage examples, and evaluations based on CDs to show the usability of

the library.

2.5 Limitations and Future Work

Due to the time limit, there are certain limitations in GenP5 that we leave to future work.

Firstly, we hope to conduct qualitative analysis and user evaluations through real user

studies to test the usability of the tool.

Secondly, current GenP5 only supports overlaying non-stylized contents before and after

stylized contents. We would like to further enable a more flexible order of stylized/non-

stylized contents.

Thirdly, current approaches of retrieving processed images from DM are restricted by API

calls and network tra�c, we hope to further reduce latency by optimizing our workflow and

enabling local execution of DM.

Lastly, we provide simple principles of conditioning the p5 content with function calls,

but in practice, more complex functions for conditioning would be required (e.g., non-binary

masks, sample color range, generating skeleton of images other than contours), as well as

logics to use DM to retrieve pre-generated images to use as input patterns. We leave these

to future development.

20

CHAPTER 3

P52Style

In this chapter, we introduce P52Style, an extended library built upon p5.gui 1 (a library

enabling gui panels for p5 variable adjustment) allowing flexible adjustment of art content

and usage of DM for style learning tasks.

3.1 Background

3.1.1 What is Style?

The style of visual content always has a vague definition, with various expectations in dif-

ferent tasks. AesPA-Net [8] concluded that ”The unique pattern repeatability in each image

defines its own style”, indicating that not only the element but also the repeatability of the

local patterns is essential to representing style. Inspired by this, and given this thesis’s main

focus of generative procedural art which is mostly composed of computational art units (e.g.,

particles, shapes), we propose our decomposition of style in this work, which contains:

• Style unit set: it is created by keeping dividing a style reference image into unit pieces

and merging similar unit pieces until getting a set that:

1) Each unit in the set is di↵erent in either rough shape, texture, or dominant color. We

don’t consider small color di↵erences (e.g., same dominant color containing di↵erent

color degrees or small noise of other colors) or layout direction as a standard to di↵er

style units (e.g., same stroke with di↵erent direction in Fig. 3.1 2(I) are considered the

same unit; units with noised color in Fig. 3.1(IV) are not further divided).

1
https://bitcraftlab.github.io/p5.gui/

2
Style reference image sources:

I:https://openprocessing.org/sketch/2174599

II:https://openprocessing.org/sketch/1983166

III:https://openprocessing.org/sketch/2169008

IV:https://medium.com/red-buffer/johnson-et-al-style-transfer-in-tensorflow-2-0-57cfcba8af36

V:https://github.com/LouieYang/stroke-controllable-fast-style-transfer

21

https://bitcraftlab.github.io/p5.gui/
https://openprocessing.org/sketch/2174599
https://openprocessing.org/sketch/1983166
https://openprocessing.org/sketch/2169008
https://medium.com/red-buffer/johnson-et-al-style-transfer-in-tensorflow-2-0-57cfcba8af36
https://github.com/LouieYang/stroke-controllable-fast-style-transfer

2) Each unit in the set is no longer dividable. This means if we further divide a style

unit, the resulting style units all have the same rough shape, texture, and dominant

color. As demonstrated in Fig. 3.2, set A contains over-divided units with the same

shape, texture, and dominant color (stroke, line drawing, blue), and set B doesn’t

contain the smallest set which can be further divided.

For an image composed of segmentable pieces (e.g., Fig. 3.1 (II-IV)), we divide the

image by simply segmenting it. For an image composed of complex elements like

vague/continuous transition of color or numerous strokes (e.g., Fig. 3.1 (I)) or realistic

photo (e.g., Fig. 3.1 (V)), we divide the image by square patches.

Note that when a potential divide breaks a unit that is repeated in the image for more

than Nrep
3 times, we do not further divide that unit and keep it as a single style unit

(e.g., in V in Fig. 3.1, the stamens and petals can be further divided apart according

to previous definition, but kept as one unit because they appear in reference image lots

of times).

given shape S, dominant color C, texture T , for a style image with N style units, style

unit set = {U1, U2, U3, ...UN}, Ui = (Ci, Si, Ti)

• The composition method of style units. There are various possibilities of composition

methods, containing both structural (e.g., far apart, fit, overlay) and functional (e.g.,

neat overlay, messy overlay) information. This can be interpreted as the mixing method

and composition of strokes in traditional painting.

• Four-dimensional freedom {Fc, Fs, Fcomp, Fl} 2 [0, 1):

1) The freedom of the color and shape variability of style units beyond reference image.

This can be interpreted as the color scheme and shape feature of strokes in traditional

painting.

Given the number of colors in the unit set Nc, color freedom Fc = 1 � 1
Nc
..

When there is only 1 color in the unit set, Fs=0, meaning zero freedom in color

variability. When there are a large number of di↵erent colors in the unit set, Fc ! 1,

1 means maximum freedom in color variability.

Given the number of shapes in the unit set Ns, shape freedom Fs = 1� 1
Ns
.

When there is only 1 shape in the unit set, Fs=0, meaning zero freedom in shape

variability. (e.g., in Fig. 3.3, zero freedom in shape variability when there is only 1

shape in the style unit set (circle and rectangle respectively)). When there are a large

3
a big number, like 20

22

number of di↵erent shapes in the unit set, Fs ! 1, 1 means maximum freedom in

shape variability.

2) The freedom of style unit composition method Fcomp. This controls the freedom

of how the style units are composed. Based on the intuition that the more pattern

repetitive an image is, the more fixed the style unit composition method is, we define

Fcomp = 1
↵style

, where ↵style is the pattern repeatability measurement in

AesPA-Net [8].

3) The freedom of content leak degree. This will only be taken into account when the

style reference image has concrete objects (e.g., houses, flowers, stars). Freedom of

content leak degree is how much we tolerate the new images to contain objects inside

the style reference image and not specified in the prompt.

Given the area of concrete objects in style reference image Ao, the number

of concrete objects in the image No, and the total area of style reference

image At, freedom of content leak degree Fl = � · Ao
At

+ (1 � �) · No
10+No

. � is

hyperparameter that is usually 0.4.

Note that due to the complexity of visual elements, the precise numbers of freedoms are

usually hard to calculate, meanwhile, approximate values are good indications of the char-

acteristics of the styles (high or low freedom).

Fig 3.1 shows a simple illustration of the components of our style definition. It is worth

noticing that given the complexity of images, it is usually impossible to visualize the

actual style units and composition methods by limited images, especially if we only

sample from the style reference image. For example, example III of Fig 3.1 contains style

composition method of “Fit neat to each other”, and The illustrations for the composition

method is only one of the infinite ways the units can fit to each other. Although we proposed

general definitions of style components, given the complexity of visual contents, each style

component can be task-specific. Instead of acting as the rule for defining each style, our

proposed style components are more a way of evaluating and comparing how di↵erent images

represent specific styles given the specific task and comparing the features of di↵erent styles.

3.1.2 Style Learning Task

One of the many popular themes for visual computing is teaching the model to learn a

customized style. Since style is often a vague concept [17], there are many di↵erent focuses

and expectations of style learning. In this work, we define style learning task by specifying

the following scenario and expectation:

23

Figure 3.1: Example images and their style components. New images are generated by Visual
Style Prompting. N indicates no consideration for content leak for the reference image.

24

Figure 3.2: Example correct (B) and incorrect (A, C) style unit sets. Reference image source:
Inner Demons by Che-Yu Wu

Figure 3.3: Two famous art examples with zero freedom of shape variability.

25

• There are limited style reference images

• The reference image might be semantically and visually far from what we want to

model to inference, or contain a complex combination of style units (like examples in

Fig. 3.1)

• The model is capable of generating any new content precisely with similar style units,

composition methods, and the same levels of freedom as the style reference image.

3.1.3 Style Learning Task using DMs

Style Learning Tasks using DM (DM) have been widely explored in recent years. The naive

approach would be simply using the textual description of the style in the prompt, but this

yields two main problems: 1)It is hard to precisely describe a style in natural language, espe-

cially when the style is abstract; 2)The model would not be able to represent customized style

which the model didn’t see in the training stage. Many works have addressed the problem in

various ways. Few-shot tuning-based approach (DreamBooth variants [14]) fine-tune the

DMs with reference images in a few-shot manner with strategies to maintain object precision

and content diversity, which can be applied to learn not only objects but also styles. How-

ever, this approach is not style-specific and sometimes yields content-leaking problems [9].

Textual Inverstion-based approach(Textual Inversion (TI) [6] variants) use o↵-the-shelf

DMs, learning extra text embeddings to represent styles. Specifically, DreamStyler [1] lever-

ages multi-stage TI and Context-Aware Text Prompt to enhance the representation capacity

and alleviate the content leaking problem. However, our experiments still show that these ap-

proaches sometimes have limited performance when the semantic gap between the reference

image and the target image is large. Lastly, Cross-attention-based approach(IP-Adapter

variants [20] and InstantStyle [17]) manipulates cross-attention layers of DM and inject im-

age features, enabling great generalization ability of DMs with image reference. However,

these approaches are often better for image manipulation (e.g., augmentation, variation)

and creative visual blending rather than generating new content with a huge semantic gap.

Also, all the above methods require certain levels of training (upon large image datasets or

style-specific case-by-case) aside from inference.

To solve the limitations on style learning of previous methods, as a self-attention-based

train-free approach, Visual Style Prompting [9] focuses on self-attention of DMs, created

a training-free method by swapping the self-attention of the target image inference guided

by the inference of a reference image after inversion (illustrated in Fig. 3.4). Visual Style

Prompting showed amazing performance on the previous-defined style learning problem,

26

Figure 3.4: Overview of swapping self-attention in visual style prompting, image from original
paper [9].

which we find especially useful in the case of generative procedural art style learning,

where the style is always abstract.

3.1.4 Generative Procedural Art Style Learning

We target facilitating the process of generative procedural art style learning task, where

the artist generates new images with the style of existing procedural art as examples. As

discussed in the previous section, the key to the style learning task is to teach the model the

essence of a style with limited reference images (e.g., the reference image might be far from

what we want to model to paint or contain a complex combination of style units). This is

especially true for generative procedural art, where the reference images from the rendered

creative coding are often abstract, and di↵erent image variations for one specific art are often

similar. Thus, to learn to paint with the style of procedural art, the reference images from

the rendered canvas have limited variety and are often semantically far from what we want to

paint. Artists and creative communities have widely explored procedural art style learning.

One inspiring example is the Parametric Swimming 4 created by Takafumi Oyama 5, where

the artist explored the connection between abstract art and real-life images by injecting the

style of abstract art into real-world photos. However, since style learning methods require

4
https://www.takafm.me/project/parametricswimming

5
https://www.takafm.me/

27

https://www.takafm.me/project/parametricswimming
https://www.takafm.me/

reference images as conditions, current approaches require manually adjusting and choosing

the reference image as input to style learning models like DM architectures. Motivated by

this, we aim to explore how can we augment procedural art style learning using DM by

integrating the whole process in a creative programming environment smoothly.

3.1.5 Preliminary Study

Shown in 3.5, we investigated the SOTA DM style learning methods of each approach.

Specifically, we experimented with 1) simple, abstract procedural art as style reference images

and 2) complex, targeted procedural art as style reference images. For the new image

generated by DM, we experimented with both abstract and concrete prompts. Since di↵erent

methods use di↵erent architectures and parameters, it is hard to do a fair comparison; We fix

the seed, guidance scale, and inference timestep at the image inference stage, and keep other

parameters (e.g., training parameters) as default. For methods that require extra tokens or

prompts, we also provide them in detail 6.

Given our setting of style components and style learning task, it is apparent that only

InstantStyle and Visual Style Prompting succeed at capturing the style components and

generating an image corresponding to the prompt description. Since Visual Style Prompting

is more accurate at representing all the units (row 1,2)and composition methods (row 3,4),

we choose visual style prompting as our main DM method for style learning.

We also investigated how the parameters and image window of procedural art can a↵ect

the style learning result (Fig. 3.6). We took images with di↵erent parameters and window

sizes over the same procedural art example, then used Visual Style Prompting to generate

di↵erent images with the same seed and prompt. The results show a huge di↵erence in final

images, indicating that choosing image windows and adjusting parameters can be essential

for style learning tasks in procedural art.

6
DreamStyler: ref prompt: a black background with a colorful line in the style of {}

inf prompt: a cat in the style of {}, abstract angry circle scribbles in the style of {}
ref prompt: a drawing of a man with long hair in the style of {}
inf prompt: a car in the style of {},abstract art of mild flow in the style of {}
DreamBooth: instance prompt: spr generative art

class prompt: generative art

inf prompt: pcn generative art of a cat, pcn generative art of abstract angry circle scribbles

instance prompt: pcn generative art

class prompt: generative art

inf prompt: pcn generative art of a car, pcn generative art of abstract art of mild flow

28

Figure 3.5: Comparison of di↵erent approaches. Reference image sources: Inner Demons by
Che-Yu Wu (Row I-II), Painting with Circle Noise by Luciana Diaferio (Row III-IV)

Figure 3.6: Comparison of style learning result of di↵erent parameters and windows. Seed:
1024, inference step: 50, guidance scale: 7, prompt: a dog. Reference image sources: Inner
Demons by Che-Yu Wu

29

3.1.6 P5.gui

Since our preliminary study shows that the choice of variable numbers can have a huge

influence on the result of the style learning tasks, the first step of building a system to assist

generative procedural art style learning is to enable flexible variable adjustment. We found

an existing p5.js library—p5.gui 7 which enables the creation of graphical user interface

(sliders, color selector, etc) for variables, building upon other existing libraries. This enables

real-time adjustments of any variables while the art content is being rendered. However, we

observe that although the GUI components enable instant manipulation of variables, it is

hard to manipulate the features for animation art (e.g., the animation process that starts

after each run of the code), where the variables are not continuously accessed by the draw()

function, but only used at the initiation stage. Moreover, there lack of ways to create style

reference images for a style learning task, users lack a way to conveniently select frames at

di↵erent stages evolving through time, and di↵erent window patches of the desired frame.

3.2 Method

Overview As shown in Fig. 3.7, we generalize any p5.js project into 3 parts: function to

initialize contents, function to draw contents, and other supporting functions (eliminated in

the figure). Thus, we wrap up the function to initialize contents and the function to draw

contents separately to be the callback functions of our P52Style library functions. Typically,

initialize gui() adds all the variables as GUI components, and refresh() restarts the whole

animation. enable gui() enables the listeners to restart the whole animation on change of

any variables; draw with screenshotsquare() helps the drawing process of the p5 contents

and enables the frame index selector and screenshot square logic (to be discussed in next

paragraph).

UI Component and Usage When users use P52Style library to create p5.js projects,

there will also be UI components are generated automatically when using the library. As

shown in Fig 3.8, the core functionalities and UI components or P52Style are:

1) Variable panel: same as original p5.gui, contains all the variables of the art. Any

change of the variable will refresh the whole art animation.

2) Framestore counter: every time the art is refreshed, the counter will automatically

store N frames and show the storing progress. N is specified by the user in function calls.

3) Frameindex slider: once the framestore counter shows the completion of storing frames,

7
https://bitcraftlab.github.io/p5.gui/

30

https://bitcraftlab.github.io/p5.gui/

Figure 3.7: Overview of p52style structure.

the slider allows the user to adjust and rewind to any frame number (1-N), and conveniently

select any stage of the whole animation.

4) New image prompt: it allows the user to specify the prompt to generate new images

for style learning tasks.

5) Image capture square: when the user presses “Tab” of the keyboard, an image capture

square will be evoked, allowing the user to select any image patch to use as a reference style

image for style learning. Users can adjust the position and size of the square with a keyboard

and mouse.

6) New image generator: After the user clicks on the ideal location of the capture square,

the system will call Visual Style Prompting with the new image prompt and captured style

reference image, showing a new image generation process below the canvas. After the image

is generated, it will automatically shown below the canvas and downloaded locally.

Core functionalities Specifically, to leverage P52Style, the user will directly interact with

the following core functionalities in Tab. 3.1.

Below is a code snippet illustrating in detail how the user would leverage P52Style:

1 let gui; // For the GUI object

2

3 // GUI -controlled variables declared globally

4 var curlSpan = 75;

5 var rFacMin = 0.994;

6 var rFacMax = 0.995;

31

Figure 3.8: Overview of p52style UI. Reference image sources: Inner Demons by Che-Yu Wu

32

Function Name Parameters Return
Value

Introduction

createGui label(str),

maxFrames,

squareSize

gui instance create gui class instance

addGlobalsWithRanges argNames(array)

maxValues(array)

none add numerical variables to

the gui panel in a patch.

with their maximum ad-

justable values

refresh callback(user function to

initialize art)

none refresh/restart the whole

art animation process

enable gui callback(user function to

initialize art)

none enable the gui panel to

keep notice of any change

of variables, and refresh

the whole art animation

when anything changes

draw with screenshotsquare callback(user function to

draw art contents)

none start the loop to draw

contents, whole enabling

functionalities for frame-

store counter, frameindex

slider and image capture

square

Table 3.1: P52Style main function descriptions and details.

7 var copySpanMin = 20;

8 var copySpanMax = 90;

9 var strokeOpacity = 255;

10 var count = 50;

11 // GUI -controlled variables declared globally

12 let particles = [];

13 let cnv;

14

15 //url for Visual Style Prompting server

16 url = 'https ://bbce -34 -143 -236 -168. ngrok -free.app'
17

18 function setup () {

19 pixelDensity (3);

20 cnv = createCanvas (800 ,800);

21 background (100);

22

23 // Initialize GUI

24 gui = createGui('Parameters ', maxFrames = 300, squareSize = 200);

25

26 // Define arrays for argument names and their corresponding maximum

slider values

27 var argNames = ['count ', 'curlSpan ', 'rFacMin ', 'rFacMax ', '

33

copySpanMin ', 'copySpanMax ', 'strokeOpacity '];
28 var maxValues = [200, 200, 0.999 , 0.999 , 200, 200, 255];

29 // Use the new function to add globals with slider rangessss

30 gui.addGlobalsWithRanges(argNames , maxValues);

31

32 gui.refresh(initialize_canvas_particles);

33

34 gui.enable_gui (['count ', 'curlSpan ', 'rFacMin ', 'rFacMax ', '
copySpanMin ', 'copySpanMax ', 'strokeOpacity '],
initialize_canvas_particles)

35 }

36

37 function draw() {

38 frameRate (200)

39 gui.draw_with_screenshotsquare(draw_particles)

40

41 }

42

43 //user function to draw contents

44 function draw_particles (){

45 particles = particles.filter(p => p.alive);

46 particles.forEach(obj => {

47 obj.update ();

48 obj.draw();

49 });

50 }

51

52 //user function to initialize contents

53 function initialize_canvas_particles (){

54 fill (0);

55 rect(0,0,width ,height);

56 particles = [];

57 frames = [];

58 for(let i=0; i<count; i++){

59 particles.push(new Particle ({

60 p: createVector(width/2,height /2).add(createVector (-5,5)),

61 v: createVector (0 ,3.5).rotate(i/count*PI*2)

62 }));

63 }

64 }

65

66 class Particle {

67 // supporting class

34

68 }

69

70 % }

Listing 3.1: example

Implementation Details P52Style is implemented by adding functionalities in the exist-

ing p5.gui.js library code. For the usage of Visual Style Prompting, we provide Colab code

to set up a remote server using A100 GPU, connecting with p5.js frontend with flask ngrok.

The workspace structure:

• (remote server)

Colab notebook code

• (p5.js project folder)

p5.gui.js,

index.html,

sketch.js

3.3 Evaluation

Since there are no similar existing methods comparable to P52Style, we conduct the eval-

uations using Cognitive Dimensions of Notations (CDs) [4]. We score each dimension as

high, low, mid, and standard (which means the same level as any other p5.js or program-

ming libraries, the level is acceptable as long as the user has proper knowledge of p5.js

programming).

Low Viscosity: Resistance to Change. The library is not viscous, and the changes in

content code don’t require changes in P52Style function calls.

High Visibility: Ability to View Components Easily. The library has high visibility, with

all the UI components explicitly and adjustable to users.

Standard Premature Commitment: Constraints on the Order of Doing Things. Like any

other p5.js library, initiating instances and including package code is necessary.

Mid Hidden Dependencies: The way the user uses one library function will not a↵ect

other functions implicitly. Certain user code behaviors concerning the canvas display might

damage the performance of the library, like blend() call.

35

High Role-Expressiveness: The Purpose of an Entity Is Readily Inferred. The library

follows the cognitive habit of users as it has the same structure as any other p5.js library.

The purpose of di↵erent functions is well elaborated with function names and documentation.

Mid Error-Proneness: The Notation Invites Mistakes and the System Gives Little Protec-

tion. The library functions have simple and explicit usage, but there might be user mistakes

with no clear system feedback.

Standard Abstraction: Types and Availability of Abstraction Mechanisms. The library

functions have the same abstraction level as other p5.js libraries.

Low Secondary Notation: Extra Information in Means Other Than Formal Syntax. The

library functions don’t require users to record extra information like comments.

High Closeness of Mapping: Closeness of Representation to Domain. The purpose of

di↵erent functions is well elaborated with function names and documentation, whereas the

closeness of functions and behavior is standard in programming libraries.

High Consistency: Similar Semantics Are Expressed in Similar Syntactic Forms. The

library has high consistency, as a feature of programming languages.

Low Di↵useness: Verbosity of Language. The function calls have low di↵useness, as a

feature of programming languages. For UI components, the label texts are reduced to the

minimum.

Standard Hard Mental Operations : High Demand on Cognitive Resources. The function

calls have a standard level of hardness as programming languages. For UI components, the

icons and texts are easy to understand without cognitive burden.

Standard Provisionality: Degree of Commitment to Actions or Marks. The library has a

standard level of provisionality as any other programming library.

High Progressive Evaluation: Work-to-Date Can Be Checked at Any Time. The library

has a high progressive evaluation as any other programming library.

In conclusion, the analysis indicates that P52Style has fair usability in most of the di-

mensions, meanwhile requires improvements in Error-Proneness and Hidden Dependencies

with more error messages and guidance. To tackle the limitations, we plan to reduce Hidden

Dependencies and increase Error Proneness by updating more restrictions in documentation

to indicate certain functionalities that might bring errors and include more error messages

into the P52Style functionalities to help users tackle errors.

3.4 Conclusion

In conclusion, we conducted preliminary research to propose our definition for the compo-

nents of style and our problem scope of style learning tasks and studied various trending

36

DM style learning methods. To explore how to better assist the process of generative proce-

dural art style learning within the creative coding environment, we proposed P52Style, an

extended library built upon p5.gui allowing flexible adjustment of art content and leverage

of DM for style learning tasks. We also provided detailed documentation and library usage

examples, and evaluations based on CDs to show the usability of the library.

3.5 Limitations and Future Work

Due to the time limit, there are certain limitations in P52Style that we leave to future work.

Firstly, we hope to conduct qualitative analysis and user evaluations through real user

studies to test the usability of the tool.

Secondly, we would like to extend the library to support flexible manipulation of a large

number of variable types including color selection and random variables.

Thirdly, the current approach needs the user to manually pick what variables to add to

gui and test their functions in trials. In future work, we would like to integrate methods

for facilitating users in understanding the functionalities of variables and their impact on

the result of newly generated images in style learning automatically through a user-in-loop

workflow.

Lastly, we would like to further reduce latency by storing frames implicitly when there’s

no need for rendering.

37

CHAPTER 4

What I Learned

During this thesis, I enhanced my research abilities under the advisory of Prof. Eytan Adar.

Specifically, spending the whole summer exploring the interaction of generative procedural

art and generative AI and conducting numerous experiments using di↵erent tools helps me

learn more about how to find a valuable research question. It also tells me that spending

time trying out things that might end up being abandoned in the final paper is not a waste

of time but sometimes is the necessary way leading to the fulfillment of a project.

Generative procedural art is a really interesting and exciting area bridging computational

methods and art creation. I am happy that I gained knowledge and experience through this

thesis that allowed me to be part of the creative community and continue to contribute in my

unique way. Through this project, I also further deepened my understanding of how DMs

work by reading a large number of research papers on various DM approaches focusing on

style learning, and emergent APIs and applications enabling endless creativity for everyone.

Being my first web application project, building p5.js libraries also enriched my knowledge

of JavaScript web application test and development which would be useful in the future.

With the experience of this thesis, I look forward to keeping doing research and making

contributions in the domain of Human-Computer Interaction, AI, and Visual Computing.

38

BIBLIOGRAPHY

[1] Namhyuk Ahn, Junsoo Lee, Chunggi Lee, Kunhee Kim, Daesik Kim, Seung-Hun Nam,
and Kibeom Hong. Dreamstyler: Paint by style inversion with text-to-image di↵usion
models. arXiv preprint arXiv:2309.06933, 2023.

[2] Tyler Angert, Miroslav Ivan Suzara, Jenny Han, Christopher Lawrence Pondoc, and
Hariharan Subramonyam. Spellburst: A node-based interface for exploratory creative
coding with natural language prompts. UIST, 2023.

[3] Perry Barile, Vic Ciesielski, Marsha Berry, and Karen Trist. Animated drawings ren-
dered by genetic programming. In Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 939–946, 2009.

[4] Alan F Blackwell, Carol Britton, Anna Cox, Thomas RG Green, Corin Gurr, Gada
Kadoda, Maria S Kutar, Martin Loomes, Chrystopher L Nehaniv, Marian Petre, et al.
Cognitive dimensions of notations: Design tools for cognitive technology. In Cognitive
Technology: Instruments of Mind: 4th International Conference, CT 2001 Coventry,
UK, August 6–9, 2001 Proceedings, pages 325–341. Springer, 2001.

[5] Alan Dorin, Jonathan McCabe, Jon McCormack, Gordon Monro, and Mitchell
Whitelaw. A framework for understanding generative art. Digital Creativity, 23(3-
4):239–259, 2012.

[6] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik,
and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image gener-
ation using textual inversion, 2022.

[7] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising di↵usion probabilistic models.
2020.

[8] Kibeom Hong, Seogkyu Jeon, Junsoo Lee, Namhyuk Ahn, Kunhee Kim, Pilhyeon Lee,
Daesik Kim, Youngjung Uh, and Hyeran Byun. Aespa-net: Aesthetic pattern-aware
style transfer networks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 22758–22767, 2023.

[9] Jaeseok Jeong, Junho Kim, Yunjey Choi, Gayoung Lee, and Youngjung Uh. Visual
style prompting with swapping self-attention, 2024.

39

[10] Bingyan Liu, Chengyu Wang, Tingfeng Cao, Kui Jia, and Jun Huang. Towards under-
standing cross and self-attention in stable di↵usion for text-guided image editing. arXiv
preprint arXiv:2403.03431, 2024.

[11] Vivian Liu, Tao Long, Nathan Raw, and Lydia Chilton. Generative disco: Text-to-video
generation for music visualization. arXiv preprint arXiv:2304.08551, 2023.

[12] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency
models: Synthesizing high-resolution images with few-step inference. arXiv preprint
arXiv:2310.04378, 2023.

[13] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. High-resolution image synthesis with latent di↵usion models. 2022.

[14] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir
Aberman. Dreambooth: Fine tuning text-to-image di↵usion models for subject-driven
generation. 2022.

[15] Blair Subbaraman and Nadya Peek. P5. fab: Direct control of digital fabrication ma-
chines from a creative coding environment. In Proceedings of the 2022 ACM Designing
Interactive Systems Conference, pages 1148–1161, 2022.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[17] Haofan Wang, Qixun Wang, Xu Bai, Zekui Qin, and Anthony Chen. Instantstyle:
Free lunch towards style-preserving in text-to-image generation. arXiv preprint
arXiv:2404.02733, 2024.

[18] Iqbal P Wiguna, Adrian P Zen, and Cucu R Yuningsih. Painting with algorithms: The
potential for using the p5. js programming language for new media artist. In Embracing
the Future: Creative Industries for Environment and Advanced Society 5.0 in a Post-
Pandemic Era, pages 271–275. Routledge, 2022.

[19] Tao Wu. Saliency-aware generative art. In Proceedings of the 2018 10th International
Conference on Machine Learning and Computing, pages 198–202, 2018.

[20] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible
image prompt adapter for text-to-image di↵usion models. 2023.

40

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation
	Background
	Generative Procedural Art
	P5.js
	Diffusion Models

	GenP5
	Related Work
	Assisting the Creation of Generative Procedural Art with Generative AI
	Assisting the Creation of Generative Procedural Art with Conditions

	Method
	Stylizing Canvas Contents
	Conditioning Canvas Contents

	Evaluation
	Conclusion
	Limitations and Future Work

	P52Style
	Background
	What is Style?
	Style Learning Task
	Style Learning Task using DMs
	Generative Procedural Art Style Learning
	Preliminary Study
	P5.gui

	Method
	Evaluation
	Conclusion
	Limitations and Future Work

	What I Learned
	Bibliography

