Exploring Bridges Between Creative Coding and Visual Generative Al

by
Jiaqi Wu

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Master of Science
(Information)
in the University of Michigan
2024

Committee:

Professor Eytan Adar, Chair
Professor Steve Oney

ACKNOWLEDGEMENTS

I would like to thank Prof. Eytan Adar, and Dr. John Joon Young Chung for being my
advisors in my master’s research, and for Prof. Steve Oney’s advice on this thesis.

I would also like to thank Chloe Coleman for making my life happy.

Thank you Xuan Qiu for your company.

This thesis is also made possible by great artworks created by generative procedural
artists: Che-Yu Wu, Takafumi Oyama, Dae In Chung, Brian Jordan, Roope Rainisto, Okazz,
Naoki Tsutae, Luciana Diaferio, to name a few.

To the cold weather of Michigan.

i

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e e ii
LIST OF FIGURES e v
LIST OF TABLES e vi
ABSTRACT . . . e vii
CHAPTER
1 Introduction 1
1.1 Motivation oL 1
1.2 Background 2
1.2.1 Generative Procedural Art L. 2
1.22 P5.Js . o o oo 2
1.2.3 Diffusion Models 3
2 GenPb5 . . . 7
2.1 Related Work oo 7
2.1.1 Assisting the Creation of Generative Procedural Art with Generative
AL e 7
2.1.2 Assisting the Creation of Generative Procedural Art with Conditions 8
2.2 Method 8
2.2.1 Stylizing Canvas Contents 9
2.2.2 Conditioning Canvas Contents 13
2.3 Evaluation 18
24 Conclusion 19
2.5 Limitations and Future Work 20
3 P52Style 21
3.1 Background 21
3.1.1 What is Style? 21
3.1.2 Style Learning Task oL 23
3.1.3 Style Learning Task using DMs 26
3.1.4 Generative Procedural Art Style Learning 27
3.1.5 Preliminary Study 28
3.1.6 Phoguio 30

il

3.2 Method 30

3.3 Evaluation 35
3.4 Conclusion 36
3.5 Limitations and Future Work 37
4 What I Learned s, 38
BIBLIOGRAPHY . . . s, 39

v

LIST OF FIGURES

FIGURE

1.1

2.1
2.2

2.3

3.1

3.2

3.3
3.4

3.5

3.6

3.7
3.8

Generative procedural art examples 3

Sfigure.caption.7

GenP5 method overview. numbers indicate frame index 10
UI elements that will be dynamically created when GenP5 library is used. The
above example shows two different project examples achieving different effects
by applying different prompts on similar p5 contents. In this example, nothing is
drawn on the main canvas other than the background color. 2 stylize buffers are
created each containing a ring-shape animation. 1 nonstylize buffer is created
containing bubble effect filters. L L. 11
4 simple examples of procedural art project using GenP5 functions for condition-
ing. The input contour maps are inverted. Input color image source: Restaurant
de la Machine a Bougival - Maurice de Vlaminck (row I), View of Collioure -
Henri Matisse (row II-IIT), The Starry Night - Vincent van Gogh(row IV) . . . 15

Example images and their style components. New images are generated by Visual
Style Prompting. N indicates no consideration for content leak for the reference

Example correct (B) and incorrect (A, C) style unit sets. Reference image source:
Inner Demons by Che-Yu Wu oo 25
Two famous art examples with zero freedom of shape variability. 25
Overview of swapping self-attention in visual style prompting, image from origi-
nal paper [9]. 27
Comparison of different approaches. Reference image sources: Inner Demons by
Che-Yu Wu (Row I-II), Painting with Circle Noise by Luciana Diaferio (Row
II-IV) Lo 29
Comparison of style learning result of different parameters and windows. Seed:
1024, inference step: 50, guidance scale: 7, prompt: a dog. Reference image
sources: Inner Demons by Che-Yu Wu 29
Overview of p52style structure. 31
Overview of p52style Ul. Reference image sources: Inner Demons by Che-Yu Wu 32

LIST OF TABLES

TABLE

2.1
2.2

3.1

GenP5 main function descriptions and details
GenP5 main function descriptions and details

,cont. ... oL

P52Style main function descriptions and details.00 L.

vi

ABSTRACT

How to bridge generative procedural art and visual generative artificial intelligence (Al)
for visual content creation is an under-explored topic. On one hand, there are many cases
where creative programmers can make use of generative Al, including stylizing canvas con-
tent and creating new content based on the existing styles of certain procedural art (style
learning). On the other hand, existing approaches don’t support creative programmers to
flexibly leverage visual generative Al methods within the creative coding environment.

In this work, we explore how to bridge generative procedural art creation and
visual generative AI (specifically diffusion models) by programming function-
alities integrated into the creative environment. Specifically, we want to explore
methodologies to condition/stylize art content and perform style learning upon procedural
art via accessible interactions for artists and programmers.

We proposed two methods: GenP5, a novel p5.js library enabling generative procedural
art creation with flexibly stylizing canvas content and conveniently condition art creation
with pre-determined patterns; and P52Style, an extended library built upon p5.gui ! allowing
flexible adjustment of art content and leverage of visual generative Al for style learning tasks.

These terms are equivalent in the context of this thesis:

creative coding = generative procedural art = procedural art

generative Al = generative model

creative programmer = generative procedural artist

'https://bitcraftlab.github.io/p5.gui/

vil

https://bitcraftlab.github.io/p5.gui/

CHAPTER 1

Introduction

1.1 Motivation

The power of visual generative artificial intelligence (AI) can largely reduce human efforts
when it cooperates with human judgments in visual content creation. Meanwhile, gener-
ative procedural art is the type of art where the artist includes a pre-designed generative
or automatic process into the art creation process [5]. Currently, mainstream generative
procedural art is based on programming algorithms (creative coding). Various programming
languages/creative coding environments including Processing and p5.js ! already make the
creation of generative art efficient.

At the same time, how to bridge these two powerful computational methods for visual
content creation is still an under-explored topic. On one hand, there are many cases
where creative programmers can make use of generative Al. For example, it is not
easy for a generative procedural artist who wants an artwork consisting of moving shapes
in the style of Jackson Pollock. In this case, integrating generative Al into the procedural
art system enables artists to generate moving shapes first, then apply prompt guidance that
transforms those shapes into more stylized elements (e.g., “combination of angry acrylic
splatters”). On the other hand, existing approaches don’t support creative pro-
grammers to flexibly leverage visual generative AI methods within the creative
coding environment. For example, artists have no control over detailed canvas contents
when applying visual generative Al for stylization.

In this work, we explore how to bridge generative procedural art creation and
visual generative AI (specifically diffusion models) by programming function-
alities integrated into the creative environment. Specifically, we want to explore
methodologies to condition/stylize art content and perform style learning upon procedural

art via accessible interactions for artists and programmers.

https://p5js.org/

https://p5js.org/

In each chapter of this thesis, we focus on one of the research questions and propose our

method and analysis. Specifically, we provide:

e GenP5, a novel p5.js library enabling generative procedural art creation with flexibly
stylizing canvas content and conveniently condition art creation with pre-determined

patterns

2

e P52Style, an extended library built upon p5.gui © allowing flexible adjustment of art

content and leverage of visual generative Al for style learning tasks.

1.2 Background

1.2.1 Generative Procedural Art

Generative procedural art is the type of art where the artist includes a pre-designed genera-
tive or automatic process into the art creation process [5]. Sometimes they are also referred
to as mathematical art to differ from art created by generative Al. There are three main

3. randomness (random variables, noises, dis-

types of generative/automatic processes
tributions, etc), rules (algorithm instruction, mathematics formula, ecosystem
simulation, etc) and natural systems (e.g., growing biological system). Though
following the same principles, the specific manifestations of generative procedural art can
vary * from digital to physical, static to dynamic, and shown in all kinds of styles (Fig. 1.1).

In this research, we focus on generative procedural art that is based on computer al-
gorithms (creative coding) focusing on the process of rules and randomness. The growing
popularity of the creative coding community has promised generative procedural art to have

an important role in new media [18].

1.2.2 P5.js

Processing ° is a graphics library and integrated development environment based on the Java
programming language environment for visually oriented applications with an emphasis on
animation and interactions. It has been one of the most important tools for procedural art

creation and is popular among the creative coding and digital art communities. Inspired by

Zhttps://bitcraftlab.github.io/p5.gui/
3https://www.amygoodchild.com/blog/what-is-generative-art
‘https://openprocessing.org/discover/#/trending
Shttps://processing.org/

https://bitcraftlab.github.io/p5.gui/
https://www.amygoodchild.com/blog/what-is-generative-art
https://openprocessing.org/discover/%23%23/trending
https://processing.org/

7102023
by garabatospr by Alejandro by Amy Goodchild

Enfantines Il. Enfantillages Pittoresques Genuary Day 4 - Next next Fidenza

Figure 1.1: Generative procedural art examples

and based on the core principles of Processing, p5.js © is a JavaScript client-side library that
makes creative coding more accessible just as any other JavaScript web application.

A simple p5.js project has the following structure:

index.html: The main HTML document that the web browser loads when accessing the
p5.js project. It serves as the container for p5.js sketch and typically includes links to the
p5.js library, custom JavaScript code for art content creation (such as sketch.js), and any
additional CSS stylesheets (like style.css).

style.css: This optional file contains Cascading Style Sheets (CSS) rules for styling the
HTML elements in p5 project.

sketch.js: The sketch.js file contains artists’ p5.js code to create art content, including

functions that define the behavior of the project. Two key functions in this file are:

e setup(): This function is called once when the program starts. It’s used to set up initial
properties such as canvas size, background color, and initial environment settings. It

runs only once.

e draw(): This function continuously executes the lines of code contained inside its block
until the program is stopped or noLoop() is called. It’s used to draw shapes, handle

interactions, and animate objects on the canvas, by creating animations from frames.

1.2.3 Diffusion Models

One of the most popular visual generative Al nowadays is Diffusion Model (DM) (e.g.,
Diffusion Probabilistic Model [7]) that learns to gradually denoise an image step by step,

Shttps://p5js.org/

https://p5js.org/

reversing the noise-adding process. Consequently, it is capable of generating images from
pure noise. Furthermore, Latent Diffusion Model (LDM), for example, Stable Diffusion
(SD) [13] applies the diffusion process over a lower-dimensional compressed representation
of images to reduce the memory and compute complexity. By augmenting the underlying
UNet backbone with the cross-attention mechanism [16], It is also possible to perform image
generation tasks with various conditions, including DM with textual prompts (text2img DM)
and DM with depth information (depth2img DM) 7, by encoding these conditional inputs
into embeddings and feeding into the denoising process.

Fig. 1.2 shows the general architecture of a LDM, using the example of text2img DM &,
With a text prompt and a seed as input, the latent seed is used to generate random latent
image representations, and the text prompt condition is transformed into text embeddings
via a certain encoder (in this example, CLIP’s text encoder). Then the U-Net iteratively
denoises the random latent image representations to output a noise residual, which is used
to compute a denoised latent image representation via a scheduler algorithm. The denoising
process is repeated by N times to step-by-step retrieve better latent image representations.
Finally, the latent image representation is decoded by the decoder part of the variational
auto-encoder (VAE). As discussed earlier, the U-Net, which performs the main denoising
task, consists of a number of self-attention and cross-attention blocks [9, 10]. In the cross-
attention module, condition embeddings (e.g., prompt text embeddings) serve as the key
and value to inject the condition concerning the query features from the previous layer.
Meanwhile, in the self-attention module, features with spatial dimensions generated from
the previous layer will serve as key, query, and value by themselves [9].

The abilities of these conditional DMs enable many useful visual content-creation tasks.
Image styliztion task is a common case of image translation, leveraging DM with image
condition (img2img DM '9). Instead of starting the diffusion process from the random latent
image, it leverages a input reference image as the initial latent by adding noise upon the
latent of the reference image. The noise added is controlled by a strength value (0-1), to
adjust the level of influence of the initial image. Style learning task leverages the models’
ability to learn the features of a customized visual style and use that style in the generation
of new images (further discussed in Chapter 3). Other than the previously mentioned DM
backbones, these tasks are also enabled by recent development of DM architectures, includ-
ing fast inference architecture like latent consistency model [12] (LCM) enabling real-time

image generation with a few step inference, and various DM style learning methods (further

"https://huggingface.co/stabilityai/stable-diffusion-2-depth
8https://huggingface.co/blog/stable_diffusion
Onttps://huggingface.co/docs/diffusers/v0.27.2/en/api/pipelines/stable_diffusion/
img2img#diffusers.StableDiffusionImg2ImgPipeline

https://huggingface.co/stabilityai/stable-diffusion-2-depth
https://huggingface.co/blog/stable_diffusion
https://huggingface.co/docs/diffusers/v0.27.2/en/api/pipelines/stable_diffusion/img2img%23%23diffusers.StableDiffusionImg2ImgPipeline
https://huggingface.co/docs/diffusers/v0.27.2/en/api/pipelines/stable_diffusion/img2img%23%23diffusers.StableDiffusionImg2ImgPipeline

repeat N
scheduler steps

Latent Seed
Gaussian noise ~N(0,1)

\J

512x512

User Prompt
“An astronout riding a horse”

ResBlock
Self-Attention
Cross-Attention

ResBlock
Self-Attention
Cross-Attention

ResBlock
Self-Attention
Cross-Attention

ResBlock
Self-Attention
04 Cross-Attention

®e, ResBlock
Self-Attention
®e Cross-Attention

outputinago

Figure 1.2: Latent Diffusion Model architecture °

condition
embeddings

discussed in Chapter 3).

CHAPTER 2

GenP5

In this chapter, we introduce GenP5, a novel p5.js library enabling generative procedural art
creation with flexibly stylizing canvas content and conveniently condition art creation with
pre-determined patterns. This enables artists to make full use of both the programmability
of code and the stylization ability of DMs.

2.1 Related Work

2.1.1 Assisting the Creation of Generative Procedural Art with

Generative Al

Our work GenP5 is one of the approaches using generative Al (specifically, we leverage DMs)
to assist the creation of generative procedural art.

Relevant to our works, Liu el. al. [11] used music audio as an input condition, deploy-
ing a large language model like GPT4 and a DM like stable diffusion to generate music
visualizations. SpellBurst [2] is an authoring tool leveraging large language models to fa-
cilitate users to create generative procedural art and explore various possibilities. Various
artists, including Takafumi Oyama !, Roope Rainisto 2, and Brian Jordan * used image or
video generation models as post-processing step for procedural art to achieve various effects.
Artists and technologists including Dae In Chung and Brian Jordan have been integrating
generative Al into programming stages of procedural art to create novel design experiences,
like programming with conversational text and audio instructions °.

Integrating DMs into a creative coding environment is still an under-explored area. Recent
fast-inference DM approaches like Latent Consistency Model (LCM) [12] enabled real-time

https://wuw.takafm.me/

Zhttps://twitter.com/rainisto
Shttps://twitter.com/bcjordan
‘https://twitter.com/cdaein/status/1756161096778682728
Shttps://twitter.com/cdaein/status/1759306141152985182

https://www.takafm.me/
https://twitter.com/rainisto
https://twitter.com/bcjordan
https://twitter.com/cdaein/status/1756161096778682728
https://twitter.com/cdaein/status/1759306141152985182

canvas stylization applications which are further extended to procedural art environments,
by calling DM APIs explicitly or implicitly to send canvas images and retrieve stylized re-
sults. For example, Dae In Chung created a plugin for Ssam.js ¢ creative coding helper, using
Replicate Node.js API to generate SD image from HTML5 Canvas drawing. Meanwhile, it
is still not possible to conveniently manipulate any canvas contents for stylization with DMs
independently, and integrating DMs functionalities seamlessly into creative coding environ-
ments to enable an experience of “Use DM by code”. This motivates the creation of our
GenP5 library.

2.1.2 Assisting the Creation of Generative Procedural Art with

Conditions

Much research has focused on extending the current generative art programming environment
for more powerful design assistance and more broad applications. Some work focuses on using
input conditions to guide the generated art results. Barile et.al. [3] explored a way of using
generative programming to generate animated drawings, with a target input image as a
condition. Based on it, Wu [19] used input images as conditions, by designing a system that
can detect the saliency map of the input image and then apply it to render and generate an
animation consisting of various strokes.

Integrating generative art programming into downstream application tasks can also be a
meaningful exploration. Subbaraman and Peek [15] built p5.fab from the creative coding
environment p5.js, which provides an interface to control digital fabrication machines from
material exploration, fine-tuned control, and workflow iteration. These works further proved
that generative art based on algorithmic programming can not only be useful for media and
design applications but also applicable in more technical areas like fabrication and materials.

Inspired by all these works, we would like to explore how to condition procedural art
with modular and encapsulated functionalities integrated into a pb.js library, to enhance
the convenience of creating procedural art with various conditions and improve the whole
creative coding experience. This motivates us to extend the GenP5 library with functions

to condition canvas contents.

2.2 Method

Our proposed method, GenP5, is a customized JavaScript library that adds to the p5.js core

functionality.

Shttps://github.com/cdaein/vite-plugin-ssam-replicate

https://github.com/cdaein/vite-plugin-ssam-replicate

2.2.1 Stylizing Canvas Contents

The first part of GenP5 is the functionalities to stylize canvas contents in real-time.

Overview With the GenP5 framework shown in 2.1. we first introduce some concepts.
original canvas refer to the p5 canvas that is created by default in any p5.js project. Stylize
buffer is the new off-screen graphics created that allow contents drawn there to be separated
from the original canvas. Specifically, the contents drawn on these buffers will be stylized
with DMs later. Nonstylize buffer is also the new off-screen graphics created independently,
but the contents drawn on these buffers will not be stylized with DMs later. Normally drawn
p5.js contents will be shown as rendered p5 animations of all the frames. However, to turn
them into processable entities for DMs, we need to capture frame images at a certain capture
rate. Original frame images are those images captured from different stylize buffers, with
frame index as sequence numbers. They will be processed by DMs and result in stylized
frame images as a one-to-one correspondence. Finally, all the original frame images from
original canvas and all the stylized frame images in different stylize buffers who share the
same frame index will be overlayed sequentially to create a single final frame image at this
frame index. Notice that a background-removal algorithm will be applied to all the stylize
buffers before they are overlayed. Moreover, For the p5 content animations in the nonstylize
buffer, instead of turning the frames into frame images, we directly store each frame as p5
objects since they do not need to be stylized. In the final step, for all the final frame images
and stored frames from nonstylize buffer, if they share the same frame index, they will be
overlayed sequentially, to create final frames composing a final animation in a new final

canvas.

UI components When users use GenP5 library to create p5b.js projects, there will also be
UI components generated automatically when initiating GenP5 instance. As shown in 2.2,
main p5 container contains the original canvas. Original frame image container
contains the original frame images captured from stylize buffers. There will be N containers
when there are N stylized buffers. The images will be displayed sequentially by frame index.
Stylized frame image container contains the stylized frame images. Similarly, there will
be N containers when there are N stylized buffers. An original frame image will result in a
stylized frame image of the same frame index. The images will be displayed continuously by
frame indexr. Final frame image container contains the final frame images. There will
only be one final image container. Final frame images at index T will not be created until
all the stylized frame images at index T from different buffers are ready. The images will be

displayed continuously by frame index. Final canvas container contains the final canvas

Original Canvas Stylize Buffer 1 Stylize Buffer N NonStylize Buffer

P5.contant animations P5 content animations

sample by c{pture int}rval l I I l l l
original original original
frame @ 1 2 frame |0 7 2 frame Q 7 2
imagess imagess imagess
‘ \ ‘ Diffusion Model ‘ I [
stylized stylized
frame |8 1 2 frame @ 1 2
images | images |
final
frame a 1 2 0 9/ 2 stored frames
images I |
Y 7 2

l 1 | Final Canvas
final

content
animations

Figure 2.1: GenP5 method overview. numbers indicate frame index

and a button. When the button is clicked, a final animation will be displayed by combining
stored frames of nonstylize buffer and final frame images. The speed of the animation is

determined by the framerate.

Core Functionalities Specifically, users will directly interact with the following main
functionalities shown in 2.1:
The following sketch.js code snippet illustrates a simple project using GenP5 library for

content stylization.

let genP5;

var storedframes = [];
let captureinterval = 5;
let finalframerate = 30;

//initiate more variables

function setup() {
genP5 = new GenP5(canvas_size, canvas_bgcolor);

//initiate genP5 object with canvas size and background color

[bufferl, buffer2] = genP5.createstylizebuffers(2);

//create 2 buffers to draw stylized contents

[buffer3] = genP5.createnonstylizebuffers(1l);

10

c L original
¢
g ‘ _frame
J) images
- .
container

.

Frame: 41 | Strength: 0.45 | Prompt: an abstract circle made Frame: 6 | Strength: 0.60 | Prompt: an abstr

Frame: 41 | Strength: 0.5 | Prompt: abstract sea waves

15"’ \ stylized

> frame

"‘(images
container

Frame: 13 | Strength: 0.45 | Prompt: an abstract circle made Frame: 2 | Strength: 0.60 | Prompt: an abstract total solar

Frame: 12 | Strength: 0.55 | Prompt: abstract sea waves

',A' \ cad
i’ \ “
[&
1 |
Y
L of
S=_r
Frame: 18
[Surseqience |

final canvas

final frame .
container

images container

Figure 2.2: Ul elements that will be dynamically created when GenPb5 library is used. The
above example shows two different project examples achieving different effects by applying
different prompts on similar p5 contents. In this example, nothing is drawn on the main
canvas other than the background color. 2 stylize buffers are created each containing a ring-
shape animation. 1 nonstylize buffer is created containing bubble effect filters.

11

Function Name Parameters Return Value Introduction

create_stylizebuffers buffernumber array of buffer objects | Create stylize buffers
(number)

create_nonstylizebuffers buffernumber array of buffer objects | Create nonstylize buffers
(number)

clear_stylizebuffercontent | buffer none Unlike buffer.clear(), this func-
(p5.Graphics) tion clears everything on the

buffer except the background
color.

stylize_buffers stylizebufferlist none Continuously capture the origi-
(array), nal frame images from different
promptlist (array), stylize buffers and the original
strengthlist (array), canvas, get stylizes frame images
captureinterval and finally creates final frame
(number), images for all the frames.
canvas (canvas)

setup_finalcanvas finalframerate none Create a final canvas view with a
(number), button.
storedframes When clicked, render the fi-
(array) nal animation composed of final

frame images and stored frames
from nonstylize buffer. The
speed of the animation is deter-
mined by finalframerate

Table 2.1: GenP5 main function descriptions and details.

//create 1 buffer to draw not stylized contents

genP5.setupfinalcanvas (finalframerate,

storedframes)

//create final canvas frame view + button to render final animation

function draw() {

genP5.clearstylizebuffercontent (bufferl) //clear contents for next

frame

//draw contents in bufferl

genP5.clearstylizebuffercontent (buffer2) //clear contents for next

frame

//draw contents in buffer?2

buffer3.clear() //clear contents for next frame

//draw contents in buffer3

storedframes.push(buffer3.get ());

because it is not stylized buffer

12

// Store everyframe of buffer3

promptlist =['prompt for bufferl', 'prompt for buffer2']
strengthlist = [strengthl, strength2]

genP5.stylize_buffers ([bufferl, buffer2], promptlist, strengthlist
, 5, canvas);
//stylize bufferl, buffer2

Listing 2.1: example

Usage and implementation detail GenP5 uses DM by creating a web socket connection
between p5.js project and a server.js in a node.js project. Server.js takes in images and

", The server contains queueing, checking,

stylizes images by calling LCM API from fal.ai
and regenerating logic to make sure the stylized frame image of every frame index is returned
to pb.js project sequentially.

In summary, to use GenP5 for procedural art creation, the user only needs to start
server.js either remotely or locally, place library code in the same folder of the p5.js project
and declare the library in the HTML file. There are no other things to be changed other than
calling the above main function in sketch.js, without any requirements for devices. Here is

an outline of the workspace structure:

e (remote or local node.js project folder)

server.js

e (p5.js project folder)
genpblib.js,
index.html,

sketch.js

2.2.2 Conditioning Canvas Contents

The second part of GenP5 is the functionalities to condition the art creation with predeter-
mined patterns (e.g., color, shape). These predetermined patterns are provided by external

images.

Core Functionalities Specifically, users will directly interact with the following main

functionalities shown in 2.2

"https://fal.ai/

13

https://fal.ai/

Function Name Parameters Return Value Introduction
get_NSampledColors imagepath(str), sampled colors sample colors from an im-
numcolors(int) (arrary, promise resolve) age
load_ContourMap imagepath(str) call back function load the contour map of
an input black-white im-
age
find_NearestContour positionx(number), nearest contour position Given input coordinate
postiony(number), (vector) and a search range, re-
searchrange(number) turn the nearest coordi-
nate that is on the contour
map.
Sample_ContourPoints numpoints(number) sampled points(arrary) sample points from the
contour
Check_IfOnContour positionx(number), True/False Check if a coordinate is on
positiony (number) the contour

Table 2.2: GenP5 main function descriptions and details, cont.

Usage and implementation detail We provide 4 simple examples of procedural art
projects using the above functions for conditioning in 2.3. Similarly, users need to place
GenP5 library code, and pre-determined image in the same folder of the p5.js project and
declare the library in the HTML file. There are no other things to be changed other than
calling the above functions in sketch.js, and there are no requirements for devices. Since

these functions do not rely on DMs, they don’t need the node.js server.

e (p5.js project folder)
inputimage.png,
genpblib.js,
index.html,

sketch.js

The following code snippet illustrates how to use GenP5 conditioning functions to create
a simple project (line ITin 2.3), by controlling the color, initiated location, and movement of
art elements. It creates a moving and growing particle system by conditioning the initiation
of particles to be on the pre-determined contours and conditioning the movement of particles
to be within the contours. The color of the particles is randomly selected from a color palette
from the condition of the input color image:
//initialization

let particles = [];

3 maincanvassize = 400

1 let sampledColors = []

14

©ep'o

° o9

G)OOQ-O.
© (OXO

e) simple animation using
getNSampledColors(), sampleContourPoints()

gy
."L"
f

o/

I

g) input contour image h) simple animation using
getNSampledColors(), sampleContourPoints()

i) input color image j) input contour image k) simple animation using
getNSampledColors(), findNearestContour()

Figure 2.3: 4 simple examples of procedural art project using GenP5 functions for condi-
tioning. The input contour maps are inverted. Input color image source: Restaurant de la
Machine & Bougival - Maurice de Vlaminck (row I), View of Collioure - Henri Matisse (row
[I-11T), The Starry Night - Vincent van Gogh(row IV)

o

¢ function setup () {

7 //initialize GenP5

8 genP5 = new GenP5(maincanvassize, '#FFFCFD');

9 // get the sampled colors from image

10 genP5.getNSampledColors('./colorimage.png', 16).then((colors) => {
11 sampledColors = colors;

12 //load contour map from image

15

genP5.loadContourMap('./contourimage.png', setParticles);
}) .catch((error) => {
console.error("Failed to load or sample colors:", error);

B

function draw() {

if (frameCount % 10 == 0) {
addParticlesBatch (1000); // Adjust the number of particles per

batch as needed
}
clear ()
for (let p of particles) {

p.-move () ;

p.update () ;

p.display) ;

function setParticles () {
particles = [];
let sampledPoints = genP5.sampleContourPoints(6); // sample particles on
contour
for (let point of sampledPoints) {

particles.push(new Particle(point.x, point.y));

function addParticlesBatch(numParticles) {
let sampledPoints = genP5.sampleContourPoints (numParticles); // grow
particles on contour
for (let point of sampledPoints) {
let color = random(sampledColors); // Select a random color

particles.push(new Particle(point.x, point.y, color));

class Particle {
constructor(x, y) {
this.posX = x;
this.posY = y;

16

62

63

64

65

66

68

69

70

71

88

89

90

91

// Random base size for each particle

this.size = random(1l, 8);

// Random speed factors
this.xSpeedFactor = random(-5, 5);
random (-5, 5);

this.ySpeedFactor

// Select a random color from a predefined set and add random alpha
for transparency

this.color = random(sampledColors);

this.alpha = random (30, 150); // Adjusted for better visibility of
the blur effect

this.c = color(this.color);

this.c.setAlpha(this.alpha);

move () {
this.posX += random(-this.xSpeedFactor, this.xSpeedFactor);
this.posY += random(-this.ySpeedFactor, this.ySpeedFactor);

//restrict the movement of particles in the contour
// Check if the new position is on the contour; if not, re-generate
the position
let onContour = genP5.checkIfOnContour (this.posX, this.posY);
while (!onContour) {
this.posX = random(width);
this.posY = random(height);
onContour = genP5.checkIfOnContour (this.posX, this.posY);

}
update () {
// keep particles on canvas
if (this.posX < 0) this.posX = maincanvassize;
if (this.posX > maincanvassize) this.posX = 0;
if (this.posY < 0) this.posY = maincanvassize;
if (this.posY > maincanvassize) this.posY = 0;
}

display () {

// Set the stroke weight to the particle's size for the blurriness

17

100

101

102

effect
strokeWeight (this.size);

// Use the particle's color including its alpha for transparency

stroke (this.c);

// Draw the particle
point (this.posX, this.posY);

3
h ¥

Listing 2.2: example

As shown in the code snippet, getNSampledColors() and loadContourMap() need to
be used in line with the asynchronous nature of JavaScript. This ensures the contour map
and color palette are loaded properly before other functions.

It is worth notifying that using real images for conditioning is not the ideal way to make
use of GenP5 conditioning functions. GenP5 conditioning functions are designed to
leverage input patterns pre-generated by DMs, to enable turning randomness in

generative models to manipulatable conditions in p5.js.

2.3 Evaluation

Since there are no similar existing methods comparable to GenP5, we conduct the evaluations
using Cognitive Dimensions of Notations (CDs) [4]. We score each dimension as high, low,
mid, and standard (indicating the same level as any other p5.js or programming libraries,
the level is acceptable as long as the user has proper knowledge of p5.js programming).

Low Viscosity: Resistance to Change. The library is not viscous, and the changes in
content code don’t require changes in GenP5 function calls. The changes can be easily made
by adjusting function parameters or adding/deleting function calls.

Mid Visibility: Ability to View Components Fasily. The library has simple Ul components
with little/no labels and captions.

Standard Premature Commitment: Constraints on the Order of Doing Things. Like any
other p5.js library, initiating instances, including package code, and a certain sequence of
executing is necessary.

Low Hidden Dependencies: Important Links between Entities Are Not Visible. There are
certain dependencies in functionalities, but they are explicit in code information.

High Role-Ezxpressiveness: The Purpose of an Entity Is Readily Inferred. The library

18

follows the cognitive habit of users as it has the same structure as any other p5.js library.
The purpose of different functions is well elaborated with function names and documentation.

Mid Error-Proneness: The Notation Invites Mistakes and the System Gives Little Protec-
tion. The library functions have simple and explicit usage, but there might be user mistakes
with no clear system feedback.

Standard Abstraction: Types and Awvailability of Abstraction Mechanisms. The library
functions have the same abstraction level as other p5.js libraries.

Low Secondary Notation: Extra Information in Means Other Than Formal Syntaz. The
library functions don’t require users to record extra information like comments.

High Closeness of Mapping: Closeness of Representation to Domain. The purpose of
different functions is well elaborated with function names and documentation, whereas the
closeness of functions and behavior is standard in programming libraries.

High Consistency: Similar Semantics Are Expressed in Similar Syntactic Forms. The
library has high consistency, as a feature of programming languages.

Low Diffuseness: Verbosity of Language. The function calls have low diffuseness, as a
feature of programming languages. For Ul components, the label texts are reduced to the
minimum.

Standard Hard Mental Operations: High Demand on Cognitive Resources. The function
calls have a standard level of hardness as programming languages. For Ul components, the
icons and texts are easy to understand without cognitive burden.

Standard Provisionality: Degree of Commitment to Actions or Marks. The library has a
standard level of provisionality as any other programming library.

High Progressive Evaluation: Work-to-Date Can Be Checked at Any Time. The library
has a high progressive evaluation as any other programming library.

In summary, the evaluations by CDs indicate that GenP5 has fair usability in most
of the dimensions, meanwhile it requires improvements in Visibility and Error-Proneness.
To improve on these limitations, in future work, we hope to increase Visibility and Error
Proneness with more detailed Ul labels and error messages to help better explain the problem

and guide users to find the solution.

2.4 Conclusion

In conclusion, to explore the flexible manipulation of procedural art contents with DMs
within the creative coding environment, we proposed GenPb5, a novel p5.js library enabling
generative procedural art creation with flexibly stylizing canvas content and conveniently

conditioned art creation with pre-determined patterns. We also provided detailed documen-

19

tation and library usage examples, and evaluations based on CDs to show the usability of

the library.

2.5 Limitations and Future Work

Due to the time limit, there are certain limitations in GenP5 that we leave to future work.

Firstly, we hope to conduct qualitative analysis and user evaluations through real user
studies to test the usability of the tool.

Secondly, current GenP5 only supports overlaying non-stylized contents before and after
stylized contents. We would like to further enable a more flexible order of stylized /non-
stylized contents.

Thirdly, current approaches of retrieving processed images from DM are restricted by API
calls and network traffic, we hope to further reduce latency by optimizing our workflow and
enabling local execution of DM.

Lastly, we provide simple principles of conditioning the p5 content with function calls,
but in practice, more complex functions for conditioning would be required (e.g., non-binary
masks, sample color range, generating skeleton of images other than contours), as well as
logics to use DM to retrieve pre-generated images to use as input patterns. We leave these

to future development.

20

CHAPTER 3

P52Style

In this chapter, we introduce P52Style, an extended library built upon p5.gui ! (a library
enabling gui panels for p5 variable adjustment) allowing flexible adjustment of art content

and usage of DM for style learning tasks.

3.1 Background

3.1.1 What is Style?

The style of visual content always has a vague definition, with various expectations in dif-
ferent tasks. AesPA-Net [8] concluded that ”The unique pattern repeatability in each image
defines its own style”, indicating that not only the element but also the repeatability of the
local patterns is essential to representing style. Inspired by this, and given this thesis’s main
focus of generative procedural art which is mostly composed of computational art units (e.g.,

particles, shapes), we propose our decomposition of style in this work, which contains:

e Style unit set: it is created by keeping dividing a style reference image into unit pieces

and merging similar unit pieces until getting a set that:

1) Each unit in the set is different in either rough shape, texture, or dominant color. We
don’t consider small color differences (e.g., same dominant color containing different
color degrees or small noise of other colors) or layout direction as a standard to differ
style units (e.g., same stroke with different direction in Fig. 3.1 ?(I) are considered the

same unit; units with noised color in Fig. 3.1(IV) are not further divided).

https://bitcraftlab.github.io/p5.gui/
2Style reference image sources:
Ihttps://openprocessing.org/sketch/2174599
II:https://openprocessing.org/sketch/1983166
ITI:https://openprocessing.org/sketch/2169008
IV:https://medium. com/red-buffer/johnson-et-al-style-transfer-in-tensorflow-2-0-57cfcba8af36
V:https://github.com/LouieYang/stroke-controllable-fast-style-transfer

21

https://bitcraftlab.github.io/p5.gui/
https://openprocessing.org/sketch/2174599
https://openprocessing.org/sketch/1983166
https://openprocessing.org/sketch/2169008
https://medium.com/red-buffer/johnson-et-al-style-transfer-in-tensorflow-2-0-57cfcba8af36
https://github.com/LouieYang/stroke-controllable-fast-style-transfer

2) Each unit in the set is no longer dividable. This means if we further divide a style
unit, the resulting style units all have the same rough shape, texture, and dominant
color. As demonstrated in Fig. 3.2, set A contains over-divided units with the same
shape, texture, and dominant color (stroke, line drawing, blue), and set B doesn’t

contain the smallest set which can be further divided.

For an image composed of segmentable pieces (e.g., Fig. 3.1 (II-IV)), we divide the
image by simply segmenting it. For an image composed of complex elements like
vague/continuous transition of color or numerous strokes (e.g., Fig. 3.1 (I)) or realistic

photo (e.g., Fig. 3.1 (V)), we divide the image by square patches.

Note that when a potential divide breaks a unit that is repeated in the image for more
than N,, ® times, we do not further divide that unit and keep it as a single style unit
(e.g., in V in Fig. 3.1, the stamens and petals can be further divided apart according
to previous definition, but kept as one unit because they appear in reference image lots

of times).

given shape S, dominant color C, texture T, for a style image with N style units, style

unit set = {Ul, Ug, U3, ...UN}, UZ = (CZ, SZ,E)

e The composition method of style units. There are various possibilities of composition
methods, containing both structural (e.g., far apart, fit, overlay) and functional (e.g.,
neat overlay, messy overlay) information. This can be interpreted as the mixing method

and composition of strokes in traditional painting.

e Four-dimensional freedom {F,, Fs, Foomp, F1} € [0,1):

1) The freedom of the color and shape variability of style units beyond reference image.
This can be interpreted as the color scheme and shape feature of strokes in traditional
painting.

L
N

When there is only 1 color in the unit set, F;=0, meaning zero freedom in color

Given the number of colors in the unit set N., color freedom F, =1 —

variability. When there are a large number of different colors in the unit set, F, — 1,
1 means maximum freedom in color variability.

L
N,®

When there is only 1 shape in the unit set, F,=0, meaning zero freedom in shape

Given the number of shapes in the unit set N,, shape freedom F; =1 —

variability. (e.g., in Fig. 3.3, zero freedom in shape variability when there is only 1

shape in the style unit set (circle and rectangle respectively)). When there are a large

3a big number, like 20

22

number of different shapes in the unit set, F; — 1, 1 means maximum freedom in

shape variability.

2) The freedom of style unit composition method F,,,. This controls the freedom
of how the style units are composed. Based on the intuition that the more pattern

repetitive an image is, the more fixed the style unit composition method is, we define

Feomp = ﬁ, where ogy1e is the pattern repeatability measurement in
style
AesPA-Net [8].

3) The freedom of content leak degree. This will only be taken into account when the
style reference image has concrete objects (e.g., houses, flowers, stars). Freedom of
content leak degree is how much we tolerate the new images to contain objects inside

the style reference image and not specified in the prompt.

Given the area of concrete objects in style reference image A,, the number

of concrete objects in the image N,, and the total area of style reference

image A;, freedom of content leak degree F, = ~ - ﬁ—‘t’ + (1 -7 - 1011‘}\,0. v is

hyperparameter that is usually 0.4.

Note that due to the complexity of visual elements, the precise numbers of freedoms are
usually hard to calculate, meanwhile, approximate values are good indications of the char-
acteristics of the styles (high or low freedom).

Fig 3.1 shows a simple illustration of the components of our style definition. It is worth
noticing that given the complexity of images, it is usually impossible to visualize the
actual style units and composition methods by limited images, especially if we only
sample from the style reference image. For example, example II] of Fig 3.1 contains style
composition method of “Fit neat to each other”, and The illustrations for the composition
method is only one of the infinite ways the units can fit to each other. Although we proposed
general definitions of style components, given the complexity of visual contents, each style
component can be task-specific. Instead of acting as the rule for defining each style, our
proposed style components are more a way of evaluating and comparing how different images

represent specific styles given the specific task and comparing the features of different styles.

3.1.2 Style Learning Task

One of the many popular themes for visual computing is teaching the model to learn a
customized style. Since style is often a vague concept [17], there are many different focuses
and expectations of style learning. In this work, we define style learning task by specifying

the following scenario and expectation:

23

Style Component 1 Style Component 2 Style Component 3: Freedoms
unit unit

content new image

style reference image | unit set ‘ composition shape color composition leak using the style

method

Low Low Mid N

Low High Low N

High High Mid N

High High Mid Low

Low Low Low High

Figure 3.1: Example images and their style components. New images are generated by Visual
Style Prompting. N indicates no consideration for content leak for the reference image.

24

style reference image candidate style unit set

|4
set A @ §

finite smallest set
black background + parallel, radial,

messy mixed colorful line scribbles

setB =.."- """" \/ \/

black background + smooth lines of
color white, blue, red,

set C . . - x x

black background + blue line of
angle1, angle2, angle3,......angleN

Figure 3.2: Example correct (B) and incorrect (A, C) style unit sets. Reference image source:
Inner Demons by Che-Yu Wu

Paul Signac, Femmes au Puits, 1892, . . .
) & S . L) Piet Mondrian Composition A, 1923
showing a detail with constituent colors. Musée d'Orsay, Paris

Figure 3.3: Two famous art examples with zero freedom of shape variability.

25

e There are limited style reference images

e The reference image might be semantically and visually far from what we want to
model to inference, or contain a complex combination of style units (like examples in
Fig. 3.1)

e The model is capable of generating any new content precisely with similar style units,

composition methods, and the same levels of freedom as the style reference image.

3.1.3 Style Learning Task using DMs

Style Learning Tasks using DM (DM) have been widely explored in recent years. The naive
approach would be simply using the textual description of the style in the prompt, but this
yields two main problems: 1)It is hard to precisely describe a style in natural language, espe-
cially when the style is abstract; 2) The model would not be able to represent customized style
which the model didn’t see in the training stage. Many works have addressed the problem in
various ways. Few-shot tuning-based approach (DreamBooth variants [14]) fine-tune the
DMs with reference images in a few-shot manner with strategies to maintain object precision
and content diversity, which can be applied to learn not only objects but also styles. How-
ever, this approach is not style-specific and sometimes yields content-leaking problems [9].
Textual Inverstion-based approach(Textual Inversion (TI) [6] variants) use off-the-shelf
DMs, learning extra text embeddings to represent styles. Specifically, DreamStyler [1] lever-
ages multi-stage TI and Context-Aware Text Prompt to enhance the representation capacity
and alleviate the content leaking problem. However, our experiments still show that these ap-
proaches sometimes have limited performance when the semantic gap between the reference
image and the target image is large. Lastly, Cross-attention-based approach(IP-Adapter
variants [20] and InstantStyle [17]) manipulates cross-attention layers of DM and inject im-
age features, enabling great generalization ability of DMs with image reference. However,
these approaches are often better for image manipulation (e.g., augmentation, variation)
and creative visual blending rather than generating new content with a huge semantic gap.
Also, all the above methods require certain levels of training (upon large image datasets or
style-specific case-by-case) aside from inference.

To solve the limitations on style learning of previous methods, as a self-attention-based
train-free approach, Visual Style Prompting [9] focuses on self-attention of DMs, created
a training-free method by swapping the self-attention of the target image inference guided
by the inference of a reference image after inversion (illustrated in Fig. 3.4). Visual Style

Prompting showed amazing performance on the previous-defined style learning problem,

26

U-Net Self-Attention
> Cross-Attention A7
> Self-Attention MatMul

Reference

1
ResBlock
T
Cross-Attention
Self-Attention
ResBlock
MatMul
Cross-Attention \
Self-Attention \
ResBlock Q K, Vi
> Cross-Attention \ [Conv | [Conv | [Conv |
Self-Attention ¢
ResBlock
_ \
> CSrOISfSX’Atten}lon Original Reference
| Self-Attention | ! <7
ResBlock \ FeaFres Features
X T steps Reference
L Prompt Noise

(“Moose™)

Figure 3.4: Overview of swapping self-attention in visual style prompting, image from original
paper [9].

which we find especially useful in the case of generative procedural art style learning,

where the style is always abstract.

3.1.4 Generative Procedural Art Style Learning

We target facilitating the process of generative procedural art style learning task, where
the artist generates new images with the style of existing procedural art as examples. As
discussed in the previous section, the key to the style learning task is to teach the model the
essence of a style with limited reference images (e.g., the reference image might be far from
what we want to model to paint or contain a complex combination of style units). This is
especially true for generative procedural art, where the reference images from the rendered
creative coding are often abstract, and different image variations for one specific art are often
similar. Thus, to learn to paint with the style of procedural art, the reference images from
the rendered canvas have limited variety and are often semantically far from what we want to
paint. Artists and creative communities have widely explored procedural art style learning.
One inspiring example is the Parametric Swimming * created by Takafumi Oyama °, where
the artist explored the connection between abstract art and real-life images by injecting the

style of abstract art into real-world photos. However, since style learning methods require

‘https://www.takafm.me/project/parametricswimming
Shttps://www.takafm.me/

27

https://www.takafm.me/project/parametricswimming
https://www.takafm.me/

reference images as conditions, current approache<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>