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ABSTRACT

Automated road vehicles, commonly known as autonomous vehicles (AV) is a revolutionary

step for next generation mobility services on public roads. The primary mission of AV is to

improve safety and convenience in road transportation by deploying automated technology

for the vehicle-driving tasks. Such automated technology comprises of various sensors, soft-

ware, and hardware to receive vehicle’s mission, perceive the surrounding road environment,

localize the vehicle’s position, plan the route, make decision on driving maneuvers and finally

performing the driving actions. Teleoperated driving (ToD) for road vehicles, also known as

remotely operated road vehicles (RORV) has originated to handle the corner case of AV with

a driver-in-loop from a remote operating station. For such a system, the teleoperator can

remotely control the steering, acceleration, and braking action of the vehicle. To perform

these tasks, teleoperated vehicles require interaction with the operating environment using

perception sensors, localization sensors and cellular communication. Though AV and ToD

are considered promising technologies to reshape the mobility landscape for public roads,

they also transform the road vehicles from physical systems to cyber-physical systems and

introduce new categories of challenges. Cyber-physical threats of AV and ToD is one of

the critical areas as it can compromise safety and operational capability of future mobility.

Therefore, research on methods for security analysis specific to AV and ToD is necessary.

This dissertation conducts the research focusing on this area by analyzing threat models,

attack model and detection model by following systems theory approach, knowledge of the

context and physical system and machine learning (ML) algorithm.

• First, threat modeling of AV perception system is created using two approaches. First

approach follows the standard 21434, jointly developed by International Organization

for Standardization (ISO) and Society of Automotive Engineers (SAE). The second

approach follows the method of systems theoretic process analysis for security known

as STPA-Sec. Next, a comparative study is done between the output of aforementioned

ISO/SAE 21434 and STPA-Sec based threat models. In the final step, an integrated

approach is proposed for object-focused impact rating and feasibility analysis of arti-

ficial intelligence (AI) based perception system for AV.

• Second, a threat model for ToD is created with the attack-tree based approach. Based

x



on high-risk attacks, an attack model with false data injection on steering control

command is created.

• Third, to detect such attack Physics-based Context-aware Anomaly Detection System

(PCADS) is proposed and presented with results.

The outcome of this research highlights the importance of developing a cyber-physical secu-

rity framework for teleoperated AVs. Moreover, with thorough analysis of the experimental

results, this dissertation recommends potential future steps to assist in fostering research

direction for cyber-physical security of such systems.
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CHAPTER 1

Introduction

In recent years, rapid advancement in the tech sector has reshaped our daily life with au-

tomated and internet-of-things (IoT) devices. This triggered a paradigm shift in the auto

industry to impart intelligence to cars and integrate them with the smart ecosystems of

modern society. Roadmap for Automotive Technology Advancement by Center for Automo-

tive Research projects partial deployment of connectivity and automation by 2025 and its

worldwide adoption by 2040 [1]. This vision has presented automotive engineers with some

unfamiliar problems to solve, among which cyberattack and its impact on safety is a critical

one. Studies show that in recent years cyberattacks on cars have grown significantly [2].

Governments across the globe have responded to this situation with strict regulations for

automotive original equipment manufacturers (OEM) regarding cybersecurity. As per a 2019

survey of global automotive manufacturers and suppliers (published by SAE International),

84% of respondents believed cybersecurity practices are lagging in the auto industry and 60%

of the respondents indicated that insufficient knowledge on secure coding practices makes

the software vulnerable [3].

One of the revolutionary steps in smart mobility is autonomous vehicle. Autonomous ve-

hicles has the goal of providing a safe and convenient riding experience while keeping the

human-driving task minimal to none [4]. Therefore, these intelligent vehicles are equipped

with sophisticated perception sensors (e.g., cameras and radars), high-performance comput-

ers, artificial intelligence (AI)-driven algorithms, and connectivity with other IoT devices.

ToD originated from autonomous vehicle technology is a driving system where remote opera-

tor controls the steering, acceleration, and braking action of the vehicle remotely [5]. In case

of cyberattacks, malicious actors may inject false data in communication channels to ma-

nipulate the teledriver’s driving command to cause harm. Hence, protection of teledriver’s

command is necessary. However, as per National Institute of Standards and Technology

(NIST) cybersecurity framework [6] protection alone is not enough and detection of the

attack is necessary. This makes teleoperated AVs a special kind of cyber-physical system

(CPS) that is moving at speed in highly interactive and dynamic environments (e.g., public
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roads). Thus, these systems are potential target for cyber attackers to weaponize, compro-

mising safety and mobility on the road. Currently cybersecurity practices in automotive

are primarily based on information technology (IT) driven approach. However, research on

cyber-physical security of teleoperated autonomous vehicles is in its early stage and needs to

be investigates in detail. Researchers from other CPS areas have shown systems approach

of threat modeling for CPS techniques. Also, research in other CPS demonstrates that the

mitigation of threat can go beyond traditional cyber-security approach to boost defense-

in-depth [7, 8]. One of the potential approaches is understanding the behavior of physical

system and using the information to improve the security of CPS. This dissertation conducts

a research to asses cyber-physical threats, attacks and mitigation techniques of teleoperated

autonomous driving using the knowledge about the application and system.

1.1 Problem Definition

The problem definition for this dissertation originates from the following questions:

Q.1. What is considered as a threat for teleoperated autonomous driving?

Q.2. What is the risk when such a threat occurs?

Q.3. How cyber-physical attacks can cause such threats?

Q.4. What can be done to mitigate such threats?

In search for the answers, a thorough literature review was conducted in the relevant areas

involving these questions and the following gaps were identified as problem definition:

• Current cyber-security standard and practices for automotive cyber security

is primarily driven by ISO/SAE 21434 standard which provides the threat

analysis and risk assessment (TARA) guideline for electrical and electronic

(E/E) systems within road vehicles. However, autonomous driving and ToD

systems have more complex and dynamic cyber-physical interactions than

conventional road vehicles in their operating environment.

• Following an unsuitable method may provide incorrect metrics of cyber-

assurance and cause safety hazards or disruption of mobility services in re-

ality. Hence, it is critical to analyze the effectiveness of these threat models

for AV cyber-physical attacks with a holistic approach.

• Further, for teleoperated vehicles there are no human driver physically

present inside the vehicle to monitor and control the car in case of a cy-

berattack. Hence, defense-in-depth principle of cyber-security is crucial for

2



safety. As per NIST security framework, detection is an important step

for security architecture. UN R155 compliance requires securing vehicles by

design and reporting security incidents specially for vehicle fleets.

• Currently, cyberattack detection methods in automotive cybersecurity pri-

marily focus on traditional cybersecurity approach and anomaly detection

which monitors on network behavior of vehicle communication and lim-

ited consideration of the physical behavior of the vehicle. Hence, exploring

anomaly detection technique using the knowledge of ToD system’s applica-

tion and physical behavior is necessary to improve cyber-physical security

and safety of such system.

1.2 Purpose and Significance of the Study

Although cyber-attacks are common in the software and IT industries [9] and there are

many instances of severe business and financial loss, they are relatively new in the automo-

tive domain. One of the early demonstrations of an automotive cyber attack was in 2015 by

security researchers Charlie Miller and Chris Valasek who remotely hacked a conventional

car driving at 70 miles per hour [10]. But unlike conventional cars, AVs are highly dependent

on perception sensors, localization sensors, AI-based algorithms, and vehicle-to-everything

(V2X) communication for driving capability without a driver [11, 12]. All of these areas

affect the attack surface, software vulnerabilities, and the severity of the impact. In [13],

researchers were successful in manipulating Tesla’s autopilot system by using split-second

light projections on roads. Sensor jamming, blinding, spoofing, distributed denial-of-service

(DDoS) attacks, manipulation of communication devices, and adversarial ML techniques on

AI-driven algorithms are some of these attack methods demonstrated by researchers in this

area [14, 15, 16, 17, 18, 19]. These types of cyber-physical attacks are specifically targeted,

posing potential threats to AVs and objects in ODD. As AVs are still in the early stages of

delivering base functionality and real-life testing, cyber-physical threats to AVs are slowly

emerging. But with more AVs on the road in the future, threats will also be increased.

Hence, it is critical to have a robust threat modeling framework to identify the evolving

cyber-physical threats for AV-specific designs and applications.

Teleoperated driver monitors, controls or provides guidance to the driving function from a

remote operating station [20, 5]. Typically, the perception information is sent by the vehicle

to operating station via cloud and fog infrastructure using wireless or cellular network. Sim-

ilarly, control commands coming from operating station are sent to the vehicle. This poses

3



a potential exposure of perception data and control commands outside vehicle boundary

which makes the ToD systems vulnerable against cyber-attacks. Attackers can target ToD

system with denial-of-service (DoS) attacks, false data injection attacks, man-in-the-middle

attacks and other attack methods similar to the attacks detected in various cyber-physical

system [21, 22]. A malicious control of ToD may result in vehicle crash, disruption in teleop-

eration service, legal consequences and financial loss. Hence, a robust cyber-security strategy

to prevent, detect and mitigate such attacks are critical for a safe ToD.

1.3 Research Hypothesis

The guiding philosophy for this dissertation is to view ToD as a cyber-physical system and

understand what are the cyber-physical challenges of such system? If and how an attacker

can exploit the cyber-physical challenges of this system to cause harm. Are there existing

methods to address this problem? Is there any gap that can be solved using the application

and system specific knowledge of the system. There are three main hypothesis for this

dissertation:

• Security should not be an after-thought for teleoperated autonomous driving

system. As this system is emerging to improve road safety, mobility services

security research must happen in parallel as one of the key contributor of

security-by-design principle.

• Cyber-physical threats of ToD need to be viewed from a holistic approach

that encompasses the cyber-physical interaction of the system with other

actors in its operating domain.

• Defense-in-depth strategy for teleoperated autonomous driving should not be

restricted to cyber-security domain. Application and system specific knowl-

edge should be utilized for designing security strategy of such system.

1.4 Limitations

Throughout there were some limitations.

• AI/ML algorithms for AV perception in literature either focus on normal,

abnormal or adversarial scenarios. Performance of an AI/ML algorithm with

all three types of scenarios are not available. This brought some limitations
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to compare risk assessment with AI robustness factor for all three scenarios

together.

• AVs are still emerging, hence crash data from road accidents is very limited

with respect to a variety of object types. For object-focused impact assess-

ment a simulation of AV test data with various types of objects and crash is

missing in research.

• As ToD system for public roads is in its early stage of evaluation, literature

survey for such system specifically from security aspect is very limited.

• A set of good data and corresponding attack dataset with various type of

false data injection in ToD command is not available in research.

1.5 Research Methodology and Procedure

This study began with literature review of the evolution of automotive systems and mobility

for public roads and the future road-map. Further, the following areas are reviewed in detail:

• Road vehicle fundamentals.

• Road vehicle safety.

• Autonomous driving.

• ToD.

• Cybersecurity practices in automotive.

• ML algorithms.

• Cyber-physical challenges of AV and ToD.

• Anomaly detection in CPS.

After the extensive literature review, the problem statement for this dissertation is defined.

The problem definition is provided in section 1.1. In general, this dissertation aims to

investigate the methods to identify cyber-physical threats of AV and ToD on public roads

and to provide a security framework that extends to vehicle’s physical domain. An overview

of the research methodology followed for this work is presented in Fig. 1.1. The general

framework for the research methodology is inspired by red team/ blue team approach in

cybersecurity and cybersecurity framework of NIST [6]. The research methodology and

contributions of this dissertation are described in three primary steps, as follows:
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Figure 1.1: Research Methodology

• Threat modeling: As per NIST cybersecurity framework, identifying threats is the

most critical step to develop a secure system. As shown in Fig. 1.1, threat modeling

falls under the scope of blue team. For threat modeling of AV perception system

cyber-physical threats are analyzed with ISO/SAE 21434 [23] approach and STAP-

Sec [24] method. Based on the comparative analysis, an integrated TARA approach is

proposed. The proposed method enhances the threat analysis with an object-centric

approach in the AV operational domain and embed AI robustness factor for a holistic

risk assessment of AI algorithms against normal, abnormal and adversarial scenarios

for AV perception system. The application of the proposed method is presented in

section 5. The second threat modeling is conducted for ToD system on public road

with an attack-centric approach. For this purpose, the ToD system is primarily divided

in three target areas: 1) vehicle, 2) IoT infrastructure, and 3) operator station. Attack

types are referenced from literature review and MITRE ATT&CK matrices [25].

• Attack creation: As shown in Fig. 1.1, Attack creation is one of the key focus of red

team in common cybersecurity practices. Attack model is created based on the result

from attack-centric threat analysis of ToD in previous step. The attack model targets

the ToD maneuver when turning at a traffic intersection. The attack is formulated as

exploitation of the window of opportunity to inject false data on steering wheel control

input from teleoperated driver. The attack dataset is created by injecting noise on
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driving dataset from real vehicle. A detailed description of attack creation is provided

in section 3.2.1 and attack dataset is described in section 5.2.3.1.

• Attack detection: Detection of the cyberattack is a crucial task for a cyber-defense

mechanism. When security protection mechanism fails, detection of the attack aids

in taking mitigation action and incident analysis. Blue team is responsible for this

task. The proposed detection method in this dissertation is aimed at predicting an

anomaly in driving maneuver based on the context of ToD and physical information of

the teleoperated vehicle. This method is proposed, after detailed review of automotive

IDS, potential applications and security methods of ToD, anomaly detection techniques

in other CPS, ML algorithms, vehicle motion fundamentals and vehicle architecture.

For this work, the detection method is experimented with the attack created in previous

step with a specific application of ToD. This case study focuses on the last-mile delivery

(LMD) vehicle making left turn, right turn or u-turn at a traffic intersection. The

method described in section 4 and experimental results are presented in section 5.

The research work presented in this dissertation is organized in six chapters as described

below:

• Chapter 1 is an introductory chapter which provides a general overview, problem defini-

tion, purpose of this study, research hypothesis, limitations, and research methodologies

followed in this dissertation.

• Chapter 2 provides a literature review on evolution of road vehicles and mobility from

physical system to CPS with emerging technologies including SDV, AV, and teleoper-

ated road vehicles, evolving cyber-physical challenges of such systems, cyber-defense

of other CPS, automotive cybersecurity, vehicle motion and safety, anomaly detection

in IDS, and ML algorithms.

• Chapter 3 presents TARA of AV perception system, threat modeling of ToD system

and attack model of false data injection on ToD input.

• Chapter 4 proposes a context-aware and physics-based anomaly detection method

against the FDI attack on steering wheel angle during left, right or u-turn turning

maneuver of teleoperated vehicle.

• Chapter 5 is focused on case study, experiments and results with the threat modeling

techniques, attack creation and detection method described in Chapter 3 and Chapter

4.
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• Chapter 6 summarizes the work done in this research in the view of cyber-physical

security framework for teleoperated autonomous vehicles, underscores the main con-

tributions and discusses the potential areas of future work.
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CHAPTER 2

Literature Survey

This chapter is on the literature survey for this dissertation. It starts with section 2.1 to

introduce the evolution of road vehicles and mobility solutions in today’s world. In Sec-

tion 2.2, underlying working principle of vehicle motion, vehicle powertrain and vehicle E/E

architecture for modern road vehicles are reviewed. Section 2.3 highlights the impact of road

vehicle crash and importance of road safety. In section 2.4 and 2.5, the state-of-art concept

of autonomous driving and ToD are reviewed in detail. This covers purpose, taxonomy, and

operational domain of such systems. Section 2.6 reviews cybersecurity practices in Automo-

tive. As ML approach is heavily used in AV and other IoT applications, section 2.7 attempts

to capture some of the fundamental concept and background of ML. Section 2.8, highlights

the cyber-physical challenges of AV and ToD. The last section 2.9 discusses the approach of

anomaly detection for cyber-physical system.

2.1 Evolution of Road Vehicles and Mobility Solutions

Motor vehicles for roads have a more than a century of enriched history of inventions and

innovations. The journey started at the end of 1800 with gasoline powered combustion en-

gine to provide enough power to propel a vehicle. During the first few decades of 1900,

primary inventions contributed mostly towards mechanical design and electrical features to

improve engine efficiency and build a feasible modern automobile for public roads. Some of

the notable enhancements include electric ignition, steering wheel, headlamp, and windshield

wiper. During the third industrial revolution, advent of digital electronics and computers

transformed the automobiles to automotive. This started with improving the performance,

emission and safety of cars with sensors, actuators and electronic control units (ECU). How-

ever, in the past few decades cars have been upgraded with comfort, convenience and driver

assistance technology. Currently as part of fourth industrial revolution automotive is going

through a revolutionary transformation to integrate with a smart society ecosystem. Con-
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nectivity, electrification, vehicle autonomy, and shared mobility are the four main areas of

innovation for this transformation [26, 27] which are expected to capture the majority of

global auto markets by 2035 [28]. Moreover, future vehicles are expected to support ad-

vanced IoT concepts including software define vehicle (SDV), digital twin which is realistic

virtual models of physical vehicle with bidirectional communication with the components

of the vehicle and evolving service model of shared mobility such as mobility-as-a-service

(MaaS) [29, 30, 31, 32]. Connectivity for vehicle is categorized in three areas which are info-

tainment, telematics and vehicle connectivity to environment. Infotainment provides direct

interaction of vehicle features and entertainment system with drivers and passengers. Vehicle

telematics exchange the vehicle data with back-end and cloud system for vehicle prognosis

and better experience of vehicle users. Vehicle connectivity to environment(V2X) may in-

clude vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-infrastructure (V2I),

vehicle-to-grid (V2G) and may extend to some other types. V2X is one of the promising tech-

nologies of cooperative intelligent transport systems(C-ITS). Vehicle electrification aims to

reduce the dependency on fossil fuels for vehicle powertrain and reduce tailpipe emissions by

introducing battery as energy storage system (ESS) and electric motor to deliver the power

and torque for propulsion. For hybrid electric vehicle (HEV) and plug-in HEV (PHEV) elec-

trification components are added to drive-train in series or parallel to engine, whereas for

battery electric vehicle (BEV) engine is completely replaced with electric drive-train. Vehicle

autonomy has the primary responsibility of improving vehicle safety and mobility efficiency

by removing the need for a human driver, resulting human errors in driving. In the journey

towards full autonomy in road-vehicles, numerous innovations and cutting-edge technologies

have emerged. Vehicle teleoperation is one of such technologies that originated to provide

emergency assistance to AVs in an unusual or difficult driving scenarios [5, 33]. However, this

technology is also being targeted for teleoperated taxis and teleoperated delivery services.

In US NIST vehicle teleoperation forum and in Europe 5G blueprint project are leading the

research in this area [34, 35]. Several start-up companies including Zoox, Ottopia, Faction,

DriveU.auto have started testing their prototype of teleoperated vehicles for mobility ser-

vices for some specific use cases [36, 37, 38, 39]. Shared mobility is not a specific vehicular

technology like connectivity, electrification and autonomy. Shared mobility in automotive

can be viewed as a service or business model that enables mobility-on-demand including car

sharing, ride sharing and flexible goods delivery by commercial delivery vehicles.
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2.2 Road Vehicle Fundamentals

The primary purpose of road vehicles is transportation. Hence, it is important to under-

stand the basic principles of automotive systems and components that enable driving. For

this reason, vehicle motion, vehicle powertrain and in-vehicle electrical and communication

architectures are reviewed in this section.

2.2.1 Vehicle Motion

Vehicle kinematics and vehicle dynamics are two fundamental concepts to understand the

motion of a vehicle and the cause of it. Kinematics information includes position, velocity

and acceleration of a vehicle in an inertial coordinate frame whereas vehicle dynamics is the

motion of a vehicle as a rigid body with respect to a fixed global coordinate frame when [40].

In simple terms, vehicle dynamics can be viewed as the motion of a vehicle depending on

its physical characteristics when driving actions (steering, braking, and acceleration) are

applied to it [41]. Vehicle dynamics provides a more realistic insight of vehicle motion as

compared to simple kinematics equation. For many years, modeling of vehicle dynamics

is being studied by research community, starting from classical models of tire model and

finite degree of freedom model (DOF) to modern approaches of trajectory or path planning

model for AV in recent years [42]. These models have helped to improve safety, comfort and

efficiency for cars over the past few decades. One of the widely used vehicle models used

in both kinematics modeling and vehicle dynamics modeling is known as bicycle model [43].

In this approach a four wheeled car is represented as two wheeled model by combining the

two front wheels and two rear wheels respectively at the center of each wheel axis. However,

with the growth of electric vehicles and drive motor architecture in the wheel, four-wheel

vehicle models are also getting attention from automotive researchers to properly model the

non-linearity in drive-motor at wheel [44, 45].

2.2.1.1 Basic Equations of Motion

Translational motion: A vehicle motion can be described in multiple ways. One way is to

consider the whole car as a single body which moves from point to A to point B. This is

known as translational motion and can be expressed by the equation:

v = u+ at (2.1)

where, u is initial velocity, v is final velocity, a is acceleration and t time of travel.
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If, s is the travel distance, the equation can be expressed as:

s = ut+
1

2
at2 (2.2)

Further, assuming the M as the mass of the vehicle, required force to move the

vehicle to distance s,

F = M · a (2.3)

Rotational motion: Vehicle motion happens when wheels of the vehicle rotate, this rota-

tional motion can be expressed as relationship between torque provide at wheel, moment of

Inertia and angular acceleration of the wheel:

T = I · α (2.4)

I is derived from the radius of wheel and mass.

In actual driving scenario, vehicle motion involves more complexity than the simple equa-

tions of force and torque mentioned above. Road load, steering angle, tire slip, vehicle degree

of freedom (DOF) are some of the critical factors for vehicle dynamics while the car is mov-

ing. These areas are covered in the sections below. Another important part is to understand

the power flow from the energy source to the wheel via gear and transmission. For this

research, teleoperated drivetrain is explained with HV battery, electric motor.

2.2.1.2 Vehicle Coordinate System

Vehicle’s position from start to destination can be viewed as a moving object in XY plan,

however while moving there is also vertical component of the motion. In automotive engi-

neering, there are two conventions followed for depicting a vehicle’s movement in a coordinate

system: 1) SAE convention [46] and 2) ISO convention [47]. In Fig. 2.1, both conventions

are shown. Vehicles movement around each of the 3 coordinates shown in the diagram

contribute to overall vehicle dynamics. Study of vehicle dynamics is important to achieve

vehicle stability during its motion. In the next section DOF for vehicle is discussed followed

by vehicle dynamics and its mathematical representation.

2.2.1.3 Vehicle Degree of Freedom

In the study of vehicle dynamics, DOF is used to denote the number of independent motions.

DOF is widely used in mathematical modeling of the vehicle dynamics and stability for

various driving conditions. Depending on the objective of the analysis DOF can be a two
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Figure 2.1: Vehicle Motion with 6-DOF

DOF model or it can be an 18-DOF model [42]. A commonly used 2-DOF model in vehicle

stability research focuses on vehicle’s linear displacement along the lateral axis and rotational

movement along the vertical axis (yaw). 3-DOF model adds includes the movement along the

longitudinal direction. A 3-DOF gets extended to a 6-DOF model by considering the linear

and rotational movement along the 3-axis to the model. In Fig. 2.1, pictorial representation

of a 6-DOF for SAE and ISO vehicle coordinate system is provided. The higher dynamics

model such as 7, 14, 18 augments the analysis by considering the forces on tire and suspension

of the vehicle. In Table 2.1, few examples are given for use of DOF for vehicle dynamics

and control.

Table 2.1: DOF with Example Usecase

Degree of Freedom Example of Analysis Type
2 DOF Steering controller design [48]
3 DOF Vehicle maneuver, trajectory planning [49, 50]
6 DOF Aerodynamic and Vehicle Handling Crosswind Simulation [51]
8 DOF Active suspension system [52]

2.2.1.4 Longitudinal Dynamics

Longitudinal vehicle dynamics is the result of various longitudinal forces acting on the vehicle

when it is moving [53]. This is represented in Fig. 2.2. When a vehicle moves there is road

load (Froadload) due to aerodynamic drag (F aero), rolling friction at tires (Froll). If it is going

uphill, then a component of gravitational force (Fg) also adds to the road load. To move the

vehicle, applied force at the tire needs to be larger than road load. Acceleration (a) of the
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vehicle depends on this applied force and vehicle mass. However, the maximum force that

can be applied to the tire depends on the coefficient of friction between the tire and road

surface. Consideration of this factor is very critical to get the traction without wheel slip

(s).

Figure 2.2: Longitudinal Force on Vehicle

Longitudinal force acting on the vehicle can be represented by the following equations:

Froadload = Froll + Faero + Fg (2.5)

Note: Fg = mg sin θ, where g is gravitational constant and θ is inclination angle of the

slope.

Ftires − F roadload = ma (2.6)

where, Ftires is combined force for all tires, m is mass of the vehicle.

Ftraction × η = Ftires (2.7)

where, η is coefficient of friction between tire and road surface.

Note: During braking, vehicle is decelerated by using the friction force between tire

and road surface. In conventional vehicle, most of the mechanical energy during braking

gets converted into heat and partially sound. Material of the tire, brake pads influence
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Figure 2.3: Vehicle Yaw Rate and Angular Velocity [55]

the braking performance. In modern vehicles, brake controllers are designed to optimize

the braking action depending on criticality to allow maneuver control and provide rider’s

comfort. For electric vehicle, regenerative braking is used to recover some of the electrical

energy from the mechanical energy.

2.2.1.5 Lateral Dynamics

During lane change, turning or maneuvering a vehicle, lateral force is applied to the vehicle.

Vehicle response to this force impacts the stability of the vehicle. When the vehicle steers

there is a change in vehicle yaw. It should be noted, there are various vehicle models to study

lateral and yaw motion of a vehicle. Bicycle model is a widely used simplified representation

of a car to study lateral vehicle dynamics. In this model, front wheels are assumed in the

middle of the front axle and rear wheels are assumed in the middle of rear axle, like a bicycle.

In this subsection, vehicle lateral dynamics is explained with a bicycle model for cornering

scenario at four different speed level: 1) very low, 2) low, 3) medium and 4) high speed [54].

As shown in Fig. 2.3, if the vehicle has a velocity V and the angular velocity during the

turn is ω, based on the radius of curvature R, then yaw rate (r) can be expressed as followed:

V = Rω (2.8)

r = V/R (2.9)

r = ω (2.10)

For an extremely low speed scenario, front tires and rear wheel angle is very close, hence

assuming slip angle is negligible and considering distance between the two axle is l, the
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Figure 2.4: Vehicle Lateral Motion as Bicycle Model [55]

steering angle can be approximated as:

δ =
l

R
(2.11)

.

In 2.4, a bicycle model is shown for vehicle’s lateral motion in a low-speed scenario. In

this diagram, distance between the two axle is l, distance of front axle and rear axle from

the center of vehicle’s center of gravity are a, b respectively. is front wheel average turn

angle, α is wheel side-slip angle and β slip angle of the vehicle. From this diagram it can be

derived:

αR + δ =
l

R
+ αF (2.12)

R and F in subscripts denote Rear and Front.
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or,

δ =
l

R
+ αF − αR (2.13)

The lateral force lateral force on front tires (FYF) and rear tires (FYR) depend on the

wheel side slip angle and cornering stiffness of the tire. This is given by:

FYF = CFαF (2.14)

FYR = CRαR (2.15)

Further, lateral force on front tires (FYF) and rear tires (FYR) can be derived from cen-

tripetal force F which can be written as:

F =
mV 2

R
(2.16)

Considering the distance of front wheelbase and rear wheelbase from center of gravity

lateral forces can be written as:

FYF =
mV 2

R
× b

l
(2.17)

FYR =
mV 2

R
× a

l
(2.18)

2.2.1.6 Vertical Dynamics

Vertical dynamics refers to vehicles motion in vertical direction. The vehicle responds to the

forces applied to the vehicle due to acceleration, braking and irregularities of road surface [53].

This results in pitch and heave movement along the vertical axis [56]. For conventional road

vehicles, vertical dynamics is an important study for the suspension system of a vehicle

which dampens these movements to protect the components of vehicle and provide a stable,

comfortable ride. A passive suspension system is a conventional method that uses springs

and dampers to provide the intended functionality, whereas an active suspension system

uses controllers and actuators to dynamically change the chassis height for each wheel [56].

However, with the advent of AV and EV, study of vertical dynamics is extended to emerging

topics including accurate target estimation, vehicle motion control, suspension control with

BEV architectures [57, 58, 59].
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2.2.2 Vehicle Powertrain

Vehicle powertrain involves the study of the process and components for generating, dis-

tributing, and delivering power to drive the vehicle. In case of internal combustion engine

(ICE) vehicle, power is generated by engine and delivered to wheel via transmission, drive-

shaft, differential and axle. For, EVs power comes from the high voltage (HV) battery to

electric motor via power electronics components and the motor provides the torque to trans-

mission to deliver at wheel. For HEVs, various series and parallel architectures have evolved

over last three decades to optimize the power flow from engine and motor using automotive

control unit [60]. As this research focus on future vehicle, battery electric vehicle (BEV)

architecture is shown in Fig. 2.5. As it can be noted from the diagram, for powertrain two

primary components are HV battery as ESS and the electric traction motor which tranfer

the electrical energy as mechanical energy to vehicle wheels. HV batteries for BEVs need to

satisfy various requirements amongst which ability to deliver power for traction motor and

energy density are the primary ones as they determine the acceleration time and range of

the vehicle [61, 62]. Some of the other major criteria that are used to evaluate EV batteries

are battery chemistry, efficiency, weight, size, pack architecture and thermal hazard. Basic

mathematical equation for battery power is given by equation 2.19.

P = V × I (2.19)

where, P available from the battery,

V is voltage across positive and negative terminal of the battery and I is current

flow.

In this context, range indicates the distance the vehicle can go with the total energy capacity

of HV battery for EV [63]. This is typically calculated in Kilowatt hours (kWh) which can

be derived from power over time. For the electric traction motor in BEV, the fundamental

torque equation can be expressed as equation [64]:

T − Tl =
d

dt
(Jωm) = J

dωm

dt
+ ωm

dJ

dt
(2.20)

It should be noted that, for BEVs some energy can be recovered during braking by using

the motor as generator. This method is known as regenerative braking [65].
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2.2.3 Vehicle E/E and N/W Architecture

Features offered by modern vehicles comprise of many functional areas including vehicle

control, body and security, comfort, convenience, infotainment, active safety, passive safety

and driver assistance. Vehicle E/E and network (N/W) architecture drives the engineering

design and development of electrical components, hardware, software and communication

methods between them to deliver these features. Over the years vehicle E/E and N/W ar-

chitectures have evolved to satisfy the requirement for a safer, reliable and enhanced vehicle

features. This includes real-time sensing and actuation, efficient use of energy, faster data

processing, optimal use of computation power, functionally safe design and reliable commu-

nication [66, 67]. In Fig 2.5, a conceptual diagram of vehicle architecture is shown. Lower

part of the diagram is shown for powertrain and top part is shown for E/E architecture.

E/E architecture consists of various electronic control units (ECU) that are connected in a

vehicle network topology to exchange information with each other. ECUs were introduced

in vehicle architecture for precise control of fuel injection in engine to get optimized perfor-

mance [68]. Later ECUs became widely used in other real time applications in automotive

including fuel efficiency, minimize emissions, safety, body domain. Initially ECUs were built

with micro-controllers, limited embedded resources, however to reduce the number control

units and electrical wiring domain controller approach was introduced which combined the

ECUs under few domains known as power train, body, chassis and infotainment [69]. To

exchange the information across the ECUs, automotive engineers and researchers have de-

veloped several in-vehicle network protocols over past two decades [70]. One of the earliest

and dominant protocol is known as control area network (CAN) which was introduced by

SAE to ensure the reliable and real-time communication between automotive ECUs. Later

this protocol was revised and standardized as ISO 11898. Original CAN protocol was limited

to 1 Mbps and 11 bytes data per frame which was sufficient for the intended applications.

However, to support higher data exchange in today’s vehicles CAN with flexible data-rate

(CAN-FD) which can support up to 5 Mbps speed and 64 bytes of data per frame [71, 72, 69].

Another protocol known as FLexRay was developed to support fault tolerant with higher

data rate primarily for steer-by-wire application. FlexRay has maximum data rate or 10

Mbps and its use is not limited steer-by-wire only [69]. For low speed communication be-

tween ECU to smart sensors and actuators local interconnect network (LIN) protocol is

commonly used which can support maximum speed of 19.2 kpbs with low power consump-

tion [69]. In addition to this, there are other application specific protocols in automotive.

For example, infotainment application does not have a hard real-time requirement for data

exchange, rather data bandwidth is more important. To support this type of application,

Media Oriented Systems Transport (MOST) is a common practice which can support up to
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150 Mpbs data tranfer speed [69]. Automotive audio bus (A2B) is another example which

is used for audio data exchange in automotive with 50 Mpbs of maximum speed [73]. Other

than in-vehicle communication protocol, modern vehicles also use wireless protocols for var-

ious applications. One of the widely used wireless communication by passenger cars are

remote keyless system (RKS) which enables unlocking, locking and starting car with keyfob.

In the USA and Japan, RKS use 315MHz and in the Europe 433.92MHz and 868MHz band

are used for remote entry operation from a distance of 10 meter to 100 meter and relies on

LF band from 120 kHz to 130 kHz to start the vehicle remotely [74, 75]. More advanced

keyless entry and keyless start commonly termed as passive entry and passive start use UHF

band and can function from 1 meter to 2 meter distance without any manual activation on

the keyfob [74]. However, the E/E and software architecture of conventional automotive

cannot support the future landscape of automotive transforming from conventional vehicle

to CAV [67]. This has necessitated the automotive industry to redesign the automotive E/E,

n/w topology and software architecture. With significant advancement of high-tech industry

in past decade, automotive companies are integrating high-power compute device, system on

chip (SoC), larger memory and high-bandwidth communication channels for next generation

architecture [76, 77, 78]. Traditional Automotive software architectures were primarily dom-

inated by monolithic architecture and majority of the software architecture is guided by the

AUTOSAR standard. However, to address the growing complexity of automotive features,

future automotive design is embracing software-defined-vehicle (SDV) where features and ca-

pability of the vehicle is controlled by software. Hence, software design paradigm has shifted

to distributed and service-oriented architecture to manage the dynamic demand of compu-

tation, power and faster deployment of new features [79]. To support the increasing volume

of data exchange in vehicle network, specially for ADAS and AV applications, automotive

ethernet technology is considered as a potential solution. Automotive ethernet can provide

a maximum speed of 100 Gbps of data transfer rate to exchange perception data between

sensors and high-performance compute devices that runs the AI/ML algorithms [80]. For

high-speed image transmission, Low-voltage differential signaling (LVDS) bus is widely used

for vehicle autonomy. [81] Some of the advantages of LVDS include low power consumption,

no protocol overhead and high tolerance against interference. AVs also use global position

system (GPS) technology to locate the position of the car and navigate through the route.

For this purpose, GPS tracker in the vehicle communicates with Global Navigation Satellite

Systems (GNSS) [82]. A pivotal design consideration for newer architectures in automo-

tive is vehicle connectivity. Over-the-air (OTA) software upgrade, traffic management, fleet

management, infrastructure assisted driving, shared mobility and vehicle prognosis are some

of important connected features targeted for initial deployment [83, 84]. A modern car is
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already capable of connecting with phones and other portable electronic devices (PED) us-

ing Wi-Fi, which use communication protocol defined by IEEE 802.11 and bluetooth that

follows IEEE 802.15.1 standard [85, 86]. However, unlike previous architectures, connected

vehicles need to extend the communication outside the vehicle to support these features.

Further, communication technology for V2X communication needs to support high-speed,

high bandwidth and reliable communication with growing demand of connected features for

passenger vehicles and commercial vehicles on public roads. Two primary protocols which

were designed for V2X communications in last decade. In US, Dedicated Short-Range Com-

munications (DSRC) protocol and in Europe Intelligent Transportation System (ITS)-G5

protocol were developed based on 5.9 GHz band [87]. Both of these protocol use the IEEE

802.11p standard for physical (PHY) and medium access (MAC) layers of vehicular wireless

communication stack. However, DSRC and (ITS)-G5 were developed for short range com-

munication and not suitable for V2X communication longer than than 1 km. In recent years,

3GPP Long-term Evolution (LTE) has developed Cellular V2-X (C-V2X) standard based on

mobile cellular connectivity. The goal of this standard is to meet the connectivity demand of

larger density of vehicles and other users on the road with low latency, high speed. C-V2X

uses 4G LTE or 5G for cellular communication [88].

Figure 2.5: Electric Vehicle Architecture
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2.3 Road Safety and Vehicle Crash

Road safety in modern transportation involves various measures to avoid motor vehicle

crashes, road accidents and minimize potential physical injuries due to an accident. From

a holistic view, road fatalities also disrupts public health, socio-economic balance and GDP

of a nation [89, 90, 91]. Hence, WHO, PAHO, UN bodies and other global forums are

actively taking initiatives to raise awareness, create legislation and collaborate with vehicle

safety regulatory bodies of various countries including NHTSA, METI, KMVSS, CMVSS,

CCC and UNECE WP.29 to develop the capability for improved road safety around the

world [92, 93, 94]. Road safety annual report from IRTAD indicates that road crashes in

motorways, urban road and rural road cause even death [95]. Even with emergency assist

and advanced driver assist features in many of road vehicles, every year almost 2 million

people are impacted physically due to road traffic accidents [94]. For example, as shown in

Fig. 2.6 from US National Safety Council data, though the death rates caused by vehicle

crash has decreased over the past few decades but total number of deaths has an an upward

trend specially in recent years [96]. Data also shows that these fatalities impact occupants

inside the car and other road users outside the vehicle. Further, fatalities to people outside

the vehicle specifically pedestrians have increased in the rural and urban roads in recent

years [90, 97]. For statistical analysis, road collisions can be grouped by in various ways.

Some of the common methods are based on driving scenario (e.g., lane departure, turn in

intersection), direction or point of the impact (e.g., head-on, angled, sideswipe, rear end)

and parties involved (e.g., two vehicle, vehicle-pedestrian, vehicle-animal) [98]. Based on US

NSC data 2020, angled collision and head on collision are the top two reasons for deaths and

fatal crash in US [99]. In Fig. 2.7, analysis of damaged pattern and severity of impact for

passenger cars presented from [98] by Kurebwa et. al. In this figure, the diagram on the left

shows that authors divided the vehicle surface in 12 zones similar to a clock. On the right

side authors have presented the frequency distribution by direction of force in these 12 zones

for the crash dataset used in their study. It can be noted that front and front-corner zones

have higher occurrence of impact as compare to other zones.

2.4 Autonomous Vehicle: Purpose, Taxonomy, Opera-

tional Domain and Driving System

One of the strong motivations for AVs is to improve road safety by reducing accidents

caused by human drivers, however reduced congestion, efficient fleet management, improved

fuel economy and reduction in harmful vehicle emissions are some of the other benefits ex-
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Figure 2.6: NSC Motor-vehicle Fatality Trends [96]

Figure 2.7: Vehicle Crash Point Direction of Force [98]
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pected from AVs when complemented with connectivity [4]. In 2014, SAE published the

J3016 standard that classifies six levels of ADS, which was updated significantly in collab-

oration with the ISO in 2021 [100]. This standard is accepted by regulatory bodies like

UNECE WP.29/GRVA [101], NHTSA, US DOT [102], and California DMV [103] as well as

by the key players of AV standardization like ISO/PAS 21448-SOTIF [104], ISO 34501 [105],

ISO 34502 [106], ISO 34503 [107], UL4600 [108], IAMTS, and ASAM [109] to create other

standards, laws and guidelines for AVs. It is stated that the driving system is described

by the word “automation.” However, several complex terms such as “Automation System,”

“Automated Driving,” and “Driving Automation” are used in SAE J3016 and presented

differently such as “Automated Driving System” (NHTSA, 2016) and “Autonomous Driving

System” [110]. Therefore, before developing the research process, this study intends to define

“autonomy” and “automation.” The dictionary definition of “automation” is “made to be

written by a machine or computer in order to reduce the work done by humans” (Cambridge

Dictionary). “Automated systems” in vehicles cannot yet drive reliably and safely in all

traffic scenarios and situations that occur on the road, and the driver does not need to mon-

itor the system and driving environment but the driving ability of the automated systems.

It states that when this is limited or when the system fails, the driver should take control

of the vehicle [111, 112]. “Autonomy” is defined as “having the power to be independent

and make decisions for yourself” (Cambridge Dictionary). In other words, an AI-based AV

has the ability to recognize the surrounding environment and drive itself without human

intervention [110, 113]. To simplify, an automated system cannot drive safely and steadily

in all traffic scenarios and situations on the road. For example, when the road is blocked,

it is difficult for an automated car to return to the normal driving state without driver in-

tervention to search for another route. However, an AV can drive itself using AI technology

without human input in all traffic scenarios and situations.

Operational Domain(ODD): At a high level, the first three levels (L0, L1, and L2) of

J3016 are excerpted as “Driver Support Systems,” while L3, L4, and L5 are exercised for

actual ADS [114]. It is important to note that these automation levels do not classify the

automation level of the whole vehicle but rather define the level of automation of a feature

when it is engaged [114]. For example, a vehicle capable of traffic jam chauffeur as an L3 ADS

feature will have a specific operational design domain (ODD) and relevant dynamic driving

task (DDT) to perform the feature, whereas exiting from the highway can still be manually

operated by a human driver without involving DAS. In Table 2.5, we have summarized six

levels of driving automation along with the applicability and scope of the associated key

terminologies used in J3016 to define them, e.g., ODD, DDT, DDT fallback, minimal risk

condition (MRC) and a few more. As per our interpretation of J3016, ODD is arguably the
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most critical parameter, as other parameters are highly dependent on it. We also note that

the definition of ODD in J3016 is very high level and does not give enough clarity on how

ODD can be parameterized. To address this limitation, European standards have created

a taxonomy document, PAS 1883 [115], which classifies ODD parameters into three main

categories, (1) scenery, (2) environmental conditions, and (3) dynamic element, but this

standard does not provide boundary conditions for each automated level. SAE has recently

started an initiative to create J3259 for ODD taxonomy and definition, but this standard is

not available for use yet. In our study, we have analyzed the ODD from a perception and

connectivity perspective.

Automated Driving System (ADS): As shown in Fig. 2.8, for perception coverage in

L0, only frontal coverage is required, but in L1 and L2, coverage in the rear and four corners

is required as well. Perception coverage for L3 should be augmented with a surround-view

in the nearby zone of the vehicle, and for L4 and L5, the surround-view coverage needs to

be extended like a human driver. Connectivity is recommended starting from L4 to commu-

nicate with V2X, and for L5, the connectivity range needs to be extended to communicate

with V2X from remote areas. For DDT, in L3 and above, the expectation is to have com-

plete and continuous DDT by the system, whereas in L1 and L2, it is limited to a sustained

basis. DDT fallback and MRC are significant distinguishing factors between L3 and the

levels above L3, as the driver is responsible for DDT fallback and MRC for L3 features, and

MRC is not mandatory. In contrast, the system must handle the DDT fallback for L4 and

L5.

Architecture Requirement: The primary objective of vehicle automation is to improve

safety by eliminating or at least significantly reducing the accidents caused by human error.

Hence, ADS must perform better than a human driver. J3016 divides the act of driving

into three main categories, (1) strategic (trip planning), (2) tactical (motion planning), and

(3) operational, which can be lateral (steering) and/or longitudinal (acceleration/decelera-

tion) control. Tactical and operational efforts and object and event detection and response

(OEDR) are sub-tasks of DDT in DASs, determined by feature and associated automation

level. A typical automated architecture includes five main building blocks: perception, lo-

calization, sensor fusion, planning, and control subsystems. This architecture is composed of

various components such as camera, radar, lidar, and ultrasonic sensors for perception; IMU

and GPS sensors for localization; high-bandwidth in-vehicle communication, V2X connec-

tivity, and a sophisticated AI/ML algorithm for sensor processing; and sensor fusion, scene

creation, motion planning, a combination of real-time and high-computing energy-efficient

processor, memory with more bandwidth and bus width and ample data storage. Further-

more, depending on the scope of ODD and DDT, these components may need to follow a
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higher category of specific standards such as ISO 26262 (functional safety) and ISO/PAS

21448 (safety of the intended functionality) to ensure safety-driven design. This means that

a highly automated driving (L4) feature in which DAS is expected to operate independently

in complex driving scenarios will require more capable and reliable hardware (sensors, pro-

cessor, memory), V2X connectivity, faster as well as broader communication bandwidth, and

a significant increase in lines of code and data storage as compared to conditional automation

(L3) where the human driver can act as a complementary driver in complex driving condi-

tion. A typical safety-critical system like AV should also be capable of responding to failures

in fail-operational, fail-safe, and fail-secure ways, which may need redundancy in some of the

critical hardware and software. In Table 2.5, a plausible comparison is captured for some of

the systems requirements based on our understanding of variations in driving automation

tasks at each level, technology trends, and observations from some of the key players in the

industry. For example, DDT sensors for perception in L3 will be more numerous than in L1

and L2 to cover the surrounding view in addition to frontal, rear, and corner coverage. In L4

and L5, the surround-view sensors need a more extended range to cover the area like a human

driver. Further, redundant perception and localization sensors and computing devices will

be required for DDT in L4 and L5 to replace the human driver as a complementary driver

and fallback element. The enormous amount of data generated from the sensors augmented

by connectivity increases the demand for communication bandwidth and data storage in L3

and above, at least five times more than in L1 and L2. For computation needs, software

lines of code and processor throughput can increase at a very high rate from each level to the

next one, increasing the memory requirement 10 to 20 times more in L3 and above. Also,

energy utilization and heat management should be done efficiently to maintain the optimal

performance from this high-computing hardware. Some of the data reported from L3 test

vehicles showed that 13 to 20 percent of the total energy consumed during the drive cycle

was used by the computing devices in the car. If this trend is observed more persistently,

we expect this power requirement to go beyond 40% or even 50% considering the complete

DDT fallback responsibility in L4 and L5, as it may require double or triple redundancy in

computing and control devices.

2.5 ToD Concept for Smart Mobility

Teleoperation technology enables the ability to operate a device from a remote location by

utilizing digital platform and high speed data transmission ability of modern telecommu-

nication. Many applications including remote surgery, precision manufacturing, hazardous

industrial machinery have extended this ability to operate machines by integrating teleop-
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Figure 2.8: Comparison Between SAE Automation Levels [116]

eration with advanced robotics in their ecosystem. Teleoperation is also used in deep ocean

exploration, managing radioactive debris and controlling unmanned aerial vehicle (UAV) for

military and surveillance. ToD of road vehicles have emerged in recent years to enhance

the capability of connected and autonomous vehicles as an assistance in situations where

automated driving system (ADS) is incapable to take driving decision [117, 33, 5]. In 2020,

National Policy Agency in Japan released road use demonstration of autonomous vehicle

that covers testing remotely-controlled ADS [118]. In 2021, German government published a

regulation which authorized a technical supervisor to steer and drive the vehicle from outside

the vehicle within vicinity [119] . In US, for state of California a remote operator is allowed

to command ADS to execute minimal risk condition where as Arizona state allows directing

vehicle remotely for its movement [120]. In UK, as per Code of practice automated vehicle

trialling, safety operators located remotely are allowed to override the autonomous vehicle if

required [121]. However, interpretation of these regulatory codes varies in terms monitoring,
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guidance vs direct control. In recent years, several vehicle manufacturers and mobility service

providers across the globe along with their industry partners are working together to develop

solutions for vehicle teleoperation from concept to deployment [5]. In Europe, 5gblueprint

project was initiated in 2020 to design and validate 5G based technical architecture for con-

nected and automated mobility. Though primary focus of this project is on cross-border

teleoperated transport, however outcome of this project will be used as a foundation for 5G

based teleoperated transport solutions across pan-European region [122]. Same year, NIST

in US conducted a virtual conference for vehicle teleoperation forum which discussed roles of

teleoperation in automated driving, key challenges in vehicle teleoperation, plausible benefit

from technologies inclduing AI, 5G, cloud computing and areas of teleoperation for standard-

ization. In the following year, formation of teleoperation consortium in US was announced

to facilitate the communication, collaboration and consensus between academia, industry

partners and government organizations involved in teleoperation ecosystem [123]. In De-

cember 2021, 5G-Blueprint project organized a forum with active participation from NIST

and Teleoperation Consortium which discussed various topics including taxonomy, safety,

ODD, vehicle interface and passenger interaction of vehicle teleoperation [124]. During this

consortium, Vehicle teleoperation technology was viewed as a primary solution to improve

the safety and performance of autonomous driving on the public road. In transportation and

logistics industry, the last leg of the shipping is LMD. Planning and managing a cost-efficient

LMD with high fidelity is a challenging task. For this reason, vehicle teleoperation is getting

strong attention for improving the operational flexibility and cost efficiency of the LMD of

goods [125, 126, 127, 128]. In many countries vehicle teleoepration is being evaluated as an

potential solution to provide mobility service for elderly and disabled persons [129, 130].

As per Teleoperation Consortium, remote driving or assisting ability to a piloted or self

driving car is ToD [134]. NIST view teleoperation as a crucial part of AV ecosystem and also

can serve transporation services including teleoperated taxis and teleoperated delivery [135].

5G-blueprint project defines vehicle teleoperation as a technology that enables remote op-

erator to passively control autonomous and semi-autonomous vehicles and when required

allows full control of the vehicle [136]. In Fig. 2.9, a simplified diagram of dataflow involved

in ToD is shown. As illustrated in this diagram, a basic teleoperated vehicle requires sensors

to collect the data required for ToD. Such data primarily include perception data from the

vehicle’s current operating environment, information about the vehicle’s location. Both per-

ception and localization information are then transmitted to operator terminal using wireless

communication. At operator terminal, the received information is process and transformed

to create a remote digital perception of the vehicle for the human operator at terminal. Based

on this digital perception, the human operator takes the action at the terminal which can
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Figure 2.9: Vehicle Teleoperation High-level Concept

be guidance or control of the vehicle. Operator’s action is then transmitted back to vehicle

using the wireless communication. On the vehicle side these action is received as operator’s

command to determine the control logic of vehicle motion actuators. Based on the current

solutions from various partners in automotive industry, ToD can be of three types: a) direct

control, b) indirect control and c) teleguidance / teleassist. Example of these three types are

shown in in Fig. 2.10. As shown in this figure, in case of direct ToD most of the driving tasks

including planning, decision and vehicle control are performed by the remote operator. For

an indirect control of ToD, the remote operator can provide guidance by providing or select-

ing a trajectory or way-points. With these waypoints as inputs to trained AI/ML models

for trajectory and motion planning the driving control actions are deduced. Teleguidance is

a type also caonsidered a shared control type of ToD, where the decision and control of the

is shared between ADS and the remote driver [137, 120].

2.5.1 Driving Context

In previous section, vehicle motion and powertrain are discussed from physical perspective,

however various other factors can influence driving behavior. For example, traffic situation

can vary based on the road condition, weather, location, and time of the day [138]. Teleoper-

ated vehicle might be in a time critical mission. What is teleoperated driver’s next intended
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(a) Direct ToD: Human is driving remotely based on digital
perception [131]

(b) Indirect ToD: AI recommends plausible paths for teleop-
erators to choose form [132]

(c) Telegudiance for ToD: Human is providing waypoints [133]

Figure 2.10: Vehicle Teleoperation Types

30



maneuvers. Also, there can be variation in driving style depending on the driver. These

types of contextual and human factors influence the driving pattern [139]. In Fig. 2.11, a

conceptual diagram is presented to illustrate the relation between driving context (DC) and

driver’s command to vehicle. The flow is shown with three blocks, on the left block the

factors defining the driving context are shown. Driver’s intended maneuver to drive straight,

left turn, right turn and u-turn can be dependent several factors. Firstly, the route from

source to destination determines in which location the road structures, traffic signs and traf-

fic signals require the driver to go straight and make turns. Next, depending on time of the

day traffic density impacts the driving pattern. Further, weather can impact the driver’s

visibility, road surface and hence the driving behavior. Also, dynamic alert such as road

congestion, detours, behaviors of other actors such as cars, motorcyclists and pedestrians

require the driver to make some run-time decision. Combination of all these factors together

determine driver’s intended maneuver. Based on the intended maneuver, driver controls the

steering, accelerator pedal or brake pedal of the vehicle which is shown on the right most

block.

Figure 2.11: Driving Context Concept

2.6 Cybersecurity Practices in Automotive

Although cyberattacks are common in the software and IT industries [9] and there are many

instances of severe business and financial loss, they are relatively new in the automotive do-

main. One of the early demonstrations of an publicized automotive cyber attack was in 2015

by security researchers Charlie Miller and Chris Valasek who remotely hacked a conventional

car driving at 70 miles per hour [10]. In 2016, vulnerabilities were reported in remote keyless

entry (RKE) for Volkswagen (VW) vehicles which was a potential attack opportunity to

unlock VW vehicles [140]. In same year, Keen Security Lab demonstrated remote hijacking

into brake system of a Tesla Model S vehicle which initiated major upgrade in Tesla vehicle

with security mechanism [141]. With increased connectivity for cars and other IoT devices,

31



OTA programming for ECUs, need for charging in electric vehicle and heavy use of sensors

and AI algorithms in ADAS and AV features the potential attack vectors have also increased.

In [142], Sayed et. al have demonstrated impact on power grid via attack on electric vehicle.

Hasrouny et al has provided a comprehensive analysis of GPS spoofing for connected vehicle

in HASROUNY20177. Potential attacks on Wi-Fi, bluetooth, DSRC and cellular for V2X

connectivity are shown by researchers in [143, 144, 145, 146, 147]. Recent momentum in

automotive cyber security was driven by UN announcement of Reg 155 and 156 in 2020

to mandate automotive cybersecurity for vehicle type approval by 2024 and release of ISO

21434 in 2021 as guideline for automotive cybersecurity policies, framework and culture. In

US, Auto-ISAC, NIST Automotive Cybersecurity Community of Interest (COI) and NHTSA

vehicle cybsecurity research group are popular communities to share best practices of auto-

motive cybersecurity across industry partners, researchers and government agencies. A wide

range of critical topics including security in product development process, technical recom-

mendation, serviceability, after market responsibility, information sharing, incident logging

and reporting are discussed in these communities and and published as a report [148]. In this

section the literature review for automotive cybersecurity practices is presented for threat

identification, protection techniques, test methods and detection systems.

Threat Identification: Threat models for the previous generation of the automotive in-

dustry are targeted for automotive E/E architecture, which are either adapted from IT and

software industry (e.g., Spoofing, Tampering, Repudiation, Information disclosure, Denial

of service, Elevation of privilege (STRIDE) [149], confidentiality, integrity, and availability

(CIA) [150] threat, vulnerability and risk assessment (TVRA) [151], E-safety vehicle intru-

sion protected applications (EVITA) [152], and healing vulnerabilities to enhance software

security and safety (HEAVENS) [153] or heavily influenced by safety analysis models such

as fault tree analysis, Hazard Analysis and Risk Assessment (e.g., security-aware hazard

analysis and risk assessment (SAHARA)) [154]. In 2021, the ISO/SAE 21434 standard was

published for Road Vehicles—Cybersecurity Engineering, which included EVITA, HEAV-

ENS, and TVRA in recommendations for automotive threat modeling. In Fig. 2.17, steps

of a threat modeling from ISO/SAE21434 standard are shown based on clause 9 (Concept)

and clause 15 (TARA methods) of the standard [23] and short descriptions for each of these

steps are provided in Table 2.2. It can be noted that protecting assets is the primary focus of

this approach. Hence, the risk is determined based on impact scenarios and attack analysis

on the assets.

Protection Techniques: Automotive cyber-protection in its current scope, primarily in-

volves protecting the hardware and software in ECUs, communication devices and the data

being exchanged inside and outside the vehicle boundary. In addition to cybersecurity prin-
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Table 2.2: Expected Results of the ISO/SAE 21434 TARA Approach Based on Different
Steps

ISO/SAE 21434 TARA Steps Expected outcomes

Item definition Item of interest, its operation environment and
their interaction in context of cyber-security are

defined.

Asset identification Damage scenarios and assets with cyber-security
properties that leads to potential damage if

compromised are identified.

Impact rating Impact on safety, financial, operational and
privacy (S, F, O, P) of road users is assessed for

damage scenarios.

Threat scenario identification Targeted asset and cause of compromises are
identified.

Attack path analysis For each threat scenario, associated attack paths
are identified.

Attack feasibility rating Each attack path is ranked as very low or low or
medium or high in terms of the effort to

accomplish the attack.

Risk value determination Risk value is determined for each threat scenario
based on the related impact and associated

attack feasibility.

Risk treatment decision Risk values are assessed to determine if the risk
should be avoided/reduced/shared/retained or all

of them.

ciple for confidentiality, integrity and availability, also known as CIA, operational and safety

aspect of the cars important consideration for vehicle cybersecurity [155]. The main pillar

of the protection strategy is cryptographic methods. The cryptographic strategies: hashing

algorithms, symmetric key encryption, asymmetric key encryption in combination with cryp-

tographic accelerators, hardware trust anchor and chain of trust infrastructure [156, 157].

In [156], Sharma et al. has summarized parametric details of various cryptography tech-

niques. Hashing a cryptography technique is typically used for data integrity and less com-

putational and memory requirement than encryption methods. Symmetric encryption is use

for confidentiality of the data and use the same key for encryption and decryption. The

Advanced Encryption Standard (AES) algorithm with key length of 128 bits and 256 bits
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are widely used for symmetric key encryption. Asymmetric key algorithms use a public

and private key pair to encrypt the data with one and decrypt the data with another. As

two different keys are involved in asymmetric method, it is considered more secure than

symmetric one. However, asymmetric key cryptography requires more computational power

and execution time than symmetric key cryptography. For example, one of the widely used

asymmetric algorithms today were described by RivestShamirAdleman in 1977, known as

RSA algorithm use larger key size of 1048 bits. In recent years, elliptical curve based cryp-

tography (ECC) which is a newer asymmetric cryptography technique with key size of 160

bits has been offered as more efficient alternative of RSA. Other than cryptography methods

hardware ports, networks and critical memory are also protected by implementing access

control and firewalls techniques. In [158], El-Rewini et al. discussed cyber challenges of

in-vehicle and V2X communication protocols and various approaches of countermeasures

proposed by other researchers. To protect in-vehicle communication, a symmetric key en-

cryption method was proposed by Nowdehi et. al in 2017 which was adapted for secure

on-board communication (SecOC) component by AUTOSAR standard in its basic software

stack (BSW) stack [159]. As automotive ethernet is becoming a popular choice for in-

vehicle communication to meet the demand of large amount of data transfer, AUTOSAR

standard has adapted the IEEE 802.1AE standard for ethernet with media Access Control

Security (MACsec), internet protocol security (IPSec) for securing in-vehicle communication

over ethernet [160]. For V2X communication various organizational bodies including NIST,

IEEE, SAE and ETSI provides standards and guidelines to secure the communication over

bluetooth, Wi-Fi, DSRC and cellular [161, 162, 146, 163]. As 5G cellular based communi-

cation is considered as a strong solution to support future demand of V2X communication,

in [164], Chen at al. has capture a detailed review and discussion on 5G security for intra-

vehicular communication. Also, ETSI ITS and IEEE 1609.2 standards recommend public

key infrastructure (PKI) based cryptography approaches for V2X communication related to

safety applications [165, 166]. Further, these standards recommend the ECC based digital

signature algorithm (ECDSA) for authentication method to have a low computation cost

and communication delay [167]. However, evaluation of PKI based solution for a secured

V2X approach are still limited to testbed and simulation under limited operating condition.

Real-world model and experimental assessment of V2X application for mission-critical are

still an open area for research.

IDS and VSOC: Several automotive communities and researchers have considered auto-

motive specific intrusion detection system (IDS) as a fundamental solution for vehicle cyber

incidents detection and reporting which has the potential to be extended to intrusion detec-

tion and prevention system (IDPS) [168, 169, 170]. AUTOSAR (AUTomotive Open System
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ARchitecture) organization has released a specification in 2020 for vehicle intrusion detec-

tion system that provides a standardize interface to report on-board security events for a

vehicle ECU and network environment [171]. Fundamentally IDS methods in cyber space

are of three types signature-based, behavior-based and anomaly-based [172, 173]. Other IDS

methods are inspired by these basic methods or a combination of them. In automotive, IDS

are typically software components deployed in the network, host or as a distributed system.

These types of IDS in mainly focus on network parameters such as data identifier, frequency,

interval, frame and entropy, bus voltage for vehicle network protocols such CAN, automotive

Ethernet [174, 175, 176] and lack in utilizing the application specific knowledge. Other than

IDS, anomaly detection is also used in other application of automotive. Sensor anomaly

detection [177, 178], vehicle traffic anomaly detection [179, 180], in-vehicle monitoring for

autonomous vehicle [181] are few of the examples. With the transformation of automotive

to connected cars and requirement of monitoring and logging security incident for automo-

tive cybersecurity type approval by UN regulation R155 and R156, automotive industry has

realized the need of vehicle security operations center (VSOC), a concept adapted from IT

security operations center and tailored to protect the CAV from emerging threats [182]. The

VSOC architecture can be viewed as a combination of four components, sensors to collect

data from vehicle and traffic infrastructure, a log management component to process, nor-

malize and prioritize these data, a correlation engine for analyzing the events using the cyber

attack information detected by anomalies and alert information from Information and com-

munication technology (ICT) devices, and a response system to take action when security

incidents are detected [183]. At current stage several industry partners of automotive have

proposed VSOC solution however it is still at very early stage of supporting full-scale of

V2X [184, 185, 186].

2.7 ML Review

ML is considered a subbranch of artificial intelligence (AI). In recent years, several market

research groups published reports that show the global market of ML is growing rapidly in

many applications including automotive, transportation and security [187, 188]. In 1956 by

John McCarthy, who was an MIT computer scientist coined the term “Artificial Intelligence”

at a workshop at Dartmouth College [189]. In general, AI involves advanced computing tech-

niques that aims to mimic various cognitive functions like human. In 1959, the term ML was

first coined by Arthur Samuel, an eminent researcher of AI from IBM [189]. Unlike other

knowledge-based or rule-based and symbolic approaches of AI methods, the focus of ML is to

replace the explicit programming with automatic learning ability of the computer from the
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provided dataset [190]. The recent serge in ML research and application can be attributed

to two primary factors. One of them is the ability to create and store large datasets digitally.

The other important enabler is the availability of affordable high-computing device to pro-

cess these large datasets. Such dataset are typically created for specific applications such as

forecasting, recognition, recommender, and language processing [191]. At a high-level, ML

algorithms are categorized as supervised, unsupervised, semi-supervised and reinforcement

learning based on the learning method [189]. For supervised learning methods, dataset is

prepared with various pairs of inputs (or features) and the outputs (or labels) for the target

system. These training pairs are then provided to the ML algorithm to produce a trained

model that can predict the output for new inputs. Supervised learning methods are fur-

ther divided into classification and regression methods to solve two different categories of

problems. Classification method predicts the output from labeled discrete classes. Spam

classification from email, image classification to detect cancerous cell, object detection on

roads for AV are some examples of classifiers [191, 192]. On the other hand, regression

methods predict the output as continuous value from the input. Weather prediction, finan-

cial forecasting, and drug response modeling are few examples prediction using regression

methods [191]. Unsupervised learning methods do not have any directly associated response

variables for the given set of features, rather the goal is to explore if there are some patterns

and have an insight of the system from the given dataset [193]. Semi-supervised learning

method is a hybrid approach where model is typically trained with a small set of labeled

data and large set of unlabeled data. Semi-supervised learning method is applications like

image and speech analysis, fraud detection in banking and insurance claims [191]. Rein-

forcement learning method use the concept of software agent and environment [191]. The

software agent observes the state of environment and determines the reward or penalty

when it executes an action. Using these inputs, the reinforcement learning algorithm up-

dates the policy for the next action. Reinforcement learning is considered a powerful AI

tool to automate and optimize efficiency of operation in many applications such as supply

chain logistics, manufacturing, and autonomous driving. The working principles of these

four types of ML methods are founded with mathematics and statistics. However, a dif-

ferent approach known as artificial neural network (ANN) introduced a paradigm shift in

ML. Instead of using only computational methods, ANN uses the concept of connectionism

inspired by the neurons in human brain for cognitive ability [194]. Foundation of ANN can

be traced back to perceptron, a model proposed in 1950s and 1960s with very few layers for

simple pattern classification and regression tasks. Early ANN models were not effective to

capture nonlinear relationships from features and could not solve real-world problems with

complex data. The modern era of ANN started during 1980s and 1990s, when multilayer
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perceptron (MLP) and the backpropagation algorithm boosted the ANN with ability to de-

duce linear and nonlinear relations. As depicted in Fig. 2.12, ANN structure consists of an

input layer, an output layer and one or multiple hidden layers with node(s). The nodes in

Figure 2.12: ANN Generic Architecture [191]

input layer represent features (inputs) and have connections to target nodes in hidden layer.

Each connection is assigned with a value known as weight to indicate the importance of the

feature to the target node. Each target node is configured with a bias to add adaptability

and it combines all the weighted inputs and the bias as an input to activation function. The

value of the activation function determines the node is considered active or dormant in the

network. This process repeats for each hidden layers and finally ends at output layer with

predictions. This is called forward propagation. In Fig. 2.13, four most common activation

functions used in ANN are shown. It can be noted, that linear function is typically used for

Figure 2.13: Common Activation Function in ANN [195]

simple linear regression model whereas sigmoid, tanh and ReLU introduce non-linearity to

neural network [196, 197]. However, there are some key differences between them. Sigmoid
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function normalize the output between 0 and 1, tanh function normalize the output between

-1 and 1. Both of these functions have saturation problem when output reaches to minimum

and maximum value which cause the gradient to vanish and adversely effect the learning

process. ReLu function has no saturation for any positive value and computationally more

efficient than sigmoid and tanh. It should be noted that the activation function for output

layer depends on the type of prediction is expected from the trained model. The other signif-

icant milestone in ANN is back propagation techniques such as calculating loss and gradient

descent enabled ANN to evaluate the accuracy of the result and improve the predictions for

future epochs. The backpropagation technique also paved the path for deep neural network

(DNN) and deep learning (DL) method which are used to learn from high-dimensional data.

In early 1990s, Yann LeCun suggested a new architecture named LeNet-5 which applied

convolutional layer and achieved 99% accuracy for a well-known computer vision problem

called MNIST digit classification to classify handwritten digits from 0 to 9 [198]. This mo-

tivated the scientific community to propose several convolutional neural networks (CNN)

to address more challenging visual recognition problem from real world. AlexNet, RCNN,

VGG are some of important CNN models that are used to address various computer vision

problem including semantic segmentation and object detection for AVs [199, 200, 201]. As

shown in Fig. 2.14, input layer, convolution layer, pooling layer and fully connected layer

and output layer are basic components of a generic CNN architecture [191]. The input layer

Figure 2.14: CNN Generic Architecture [191]

receives the raw input such as an image and then convolution layer(s) applies kernel (or

filters) sliding over the input image to create feature maps for the entire image. Pooling

layer typically applies average pooling or max pooling method to reduce the size of the im-

age for faster and memory efficient computation while ensuring important features of the

image are maintained. Output of pooling layer is passed to fully connected layer in vector

format where a linear transformation is added with a weighted matrix followed by a non-

linear transformation using the activation function. In the output layer, a logistic functions

like sigmoid or softmax is applied to obtain the probability distribution score of output clas-
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sification [197, 199]. While CNN architectures primarily focus on spatial structure of the

data, another variant of neural network called, recurrent neural network (RNN) was created

to learn from sequential data [202]. In 1980s RNN became useful architecture for speech

recognition, natural language processing, financial forecasting. However, when RNN-based

models get trained to learn long-range dependencies in a sequence with gradient descent

optimization method, the gradient can become significantly small and not effective. This

is known as “vanishing gradient” problem. In 1997, Hochreiter and Schmidhuber invented

a special type of RNN known as long short-term memory (or LSTM) that solved the van-

ishing gradient problem of RNN [203]. To overcome limitations of RNN, the LSTM model

introduced a special memory unit to learn long-term dependencies in sequential data. LSTM

also features forward and backward direction during training. In Fig. 2.15, an architecture

for a typical vanilla LSTM block is presented. As shown in this diagram, a LSTM unit

Figure 2.15: LSTM Vanilla Architecture [203]

consists of a cell, an input gate, a forget gate and an output gate. The cell in LSTM was

introduced to store the values over time intervals. The forget gate takes the input xt at

current iteration and hidden states from the previous iteration yt−1 sometimes represented

by ht−1 to determine which information from previous cell state ct−1 to retain or discard. To

achieve this, a sigmoid function is applied as forget gate activation function on xt and yt−1

with a weight matrix and bias. The output f t is a vector with values between 0 and 1 which

is then multiplied with ct−1. The input gate has two main functions, input gate activation

and candidate memory cell creation. At input gate the input xt and yt−1 are passed to

a sigmoid function where an input gate weight matrix and input gate bias are applied to

produce modulated input it. For candidate memory cell c̄t creation, an activation function

(typically hyperbolic tangent function, tanh) is applied on xt and yt−1 with a candidate cell

state specific weight matrix and bias. The final new cell state ct is created by combining

the dot product of it and c̄t with the dot product f t and ct−1. The output gate of LSTM

block decides which hidden states to provide as output. Output gate also applies a sigmoid

function with output gate specific weight matrix and bias on xt and yt−1 and produce values

between 0 and 1 ot. Finally, the new hidden states yt is derived by the dot-product of ot and
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modulated cell state ct with tanh activation function. Since 2007, LSTM became popular as

it demonstrated higher performance than other RNNs for various application with complex

sequential data including speech recognition, machine translation, language modeling, stock

pricing and weather forecasting. For real world application generally LSTM layer needs to

be combined with an input layer at the beginning, an output layer at the end and variant of

other layers such as activation layers, normalization layers, dropout layers, fully connected

layers [204, 199, 205]. It should be noted, that DL techniques are still evolving in research

and there are new models being proposed and evaluated by AI and ML community [206].

• Naive Bayes: Use Bay’s theorem to calculate the probability of each class for a given

value of feature. It assumes each feature is independent from each other.

• Decision Tree: This is a top-down approach which starts with the root at top and use

the concept of entropy and information gain or Gini impurity index at each decision

node to split out into smaller subsets of data and feature to form sub-nodes and

branches. The final prediction or classification is made at terminal nodes, also known

as leaf nodes.

• SVM: SVM starts by mapping the input data into high-dimensional feature space to

make datapoints separable. The transformation function is known as kernel and can be

liner or non-linear depending on the dataset. After applying kernel, boundary is defined

by the support vectors for the datapoints. While training, SVM tries to maximize the

distance (or margin) between decision boundary and the nearest support vectors to

have a generalized decision boundary (or hyperplane).

• KNN: KNN use Euclidean distance function to create new datapoints based on simi-

larity measures. A simple majority vote of k nearest neighbors of each point classifies

the data.

2.8 Cyber-physical Challenges of AV and ToD

In Fig. 2.16, a report published by Upstream in 2021 is presented which breaks down the

top attack vectors for automotive applications from 2010 to 2020 [2]. It can be noted from

this figure that attack vectors for modern vehicles has a dense attack surface that stretches

beyond the attacks on the in-vehicle network and ECUs. The attack surface extends to com-

munication between vehicle to cloud, keyfob, blue and wi-fi connection to personal portable

devices such as phone, laptop, connected vehicle software applications and various sensors in

and around the vehicle. Cyber-physical attacks are special types of security breach that im-

40



Figure 2.16: Automotive Attack Vectors 2010-2020 [2]

pacts beyond traditional cyber space domain IT environment [207].These types of attack can

target any components of a cyber-physical system which typically consists of operating inter-

face, compute environment, network and the physical processes to sense and actuate. Unlike

conventional cars, AVs are highly dependent on perception sensors, localization sensors,

AI-based algorithms, and vehicle-to-everything (V2X) communication for driving capability

without a driver [11, 12]. All of these areas affect the attack surface, software vulnerabilities,

and the severity of the impact. In [13], researchers were successful in manipulating Tesla’s

autopilot system by using split-second light projections on roads. Sensor jamming, blind-

ing, spoofing, distributed denial-of-service (DDoS) attacks, manipulation of communication

devices, and adversarial ML techniques on AI-driven algorithms are some of these attack

methods demonstrated by researchers in this area [14, 15, 16, 17, 18, 19]. These kinds of

cyber-physical attacks are specifically targeted, posing potential threats to AVs and objects

in ODD. As AVs are still in the early stages of delivering base functionality and real-life

testing, cyber-physical threats to AVs are slowly emerging. However, with more AVs, on the

road in the future, threats will also increase and can compromise safety of passenger and

other road users, cause damage to property, disrupt mobility service and destroy the trust

on AVs.

AV Perception: A typical architecture of an ADS includes perception to detect and rec-
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ognize traffic signs, objects, and other road users in its ODD, localization to determine its

position in an environment, planning to handle the mission, trajectory, and motion, and de-

cision making to take an intelligent, safe, and optimal decision in complicated and dynamic

driving scenarios [208, 209, 210]. In the AV perception domain, there are primarily four

sensor technologies that are included camera, radar, Lidar, and ultrasonic [211]. For many

years, radar, camera, and ultrasonic sensors have been used in automobiles for advanced

driver assistance system (ADAS) while Lidar has gained recent attention from the AV com-

munity because of its 3D mapping capability of the scene. Several studies on the advantages

and disadvantages of these sensors show that radar is a good choice for distance and velocity

measurement of moving objects even in adverse weather conditions, but it has poor static

object detection and cannot classify the objects. Also, ultrasonic sensors detect only the ob-

jects within a short range and cannot classify the objects [212]. For optics-based sensors, the

camera captures the image with the necessary visual details to classify and recognize them,

but the accuracy of distance and speed measurement is challenging [212]. Lidar is suitable

for 3D mapping of the scene and can detect lanes by measuring intensity variation, but the

classification process via Lidar is poor in comparison with that of a camera. Also, Lidar

cannot interpret the detailed visual information from traffic signs [212, 213]. Both Lidar and

the camera’s performances are limited by the weather conditions, visibility, occlusion, and

reflectivity of objects. It can be represented that multi-modal sensor technology may be a

realistic solution for an AV application, keeping the camera as a primary sensor for classifi-

cation and recognition by advanced ML algorithms that traffic sign recognition (TSR) can

be another algorithm for recognizing the traffic signs [214, 213, 215]. Table 2.3 summarizes

some of the recent research in vision-based perception with advanced ML algorithms for an

AV application. With significant advancements in computation power, neural network-based

ML algorithms are showing promising results to address the challenges of vision-based AV

perception to detect objects, pedestrians, lanes, traffic lights, and traffic signs on and around

drivable roads.

An advanced deep learning system, incorporating a faster region-based CNN (R-CNN),

has been created in [216] to detect and classify on-road obstacles. To ensure its efficiency

in AVs driving on highways, it was tested to deliver at least 10 frames/second with VGA

resolution images. The operation of the system was unaffected by the form and viewpoint of

the objects, as well as variations in illumination and environmental circumstances. In con-

trast to classifier-based methods, YOLO considers object detection as a prediction problem

and trains on a loss function that correlates directly to detection performance with the over-

all model trained. Compared to other detection approaches (e.g., deformable parts model

(DPM) and R-CNN), scholars in [217] demonstrated better performance when extrapolating
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Table 2.3: A Literature Survey on ML Algorithms for an AV Perception System

Author AV
perception

type

ML
algorithm

Contributions

Prabhakar et
al. [216]

Obstacle
detection and
classification

Region-based
convolutional
neural network

(R-CNN)

A deep learning system using a faster R-CNN trained
with PASCAL VOC image dataset is developed for
the detection and classification of on-road obstacles
(e.g., vehicles, pedestrians, and animals). At least 10
frames per second for a VGA resolution image frame
using a Titan X GPU demonstrated the suitability of

the system for highway driving of AVs. The
detection and classification results on images from

KITTI and iRoads, and also Indian roads showed the
performance of the system invariant to object’s shape

and view, and different lighting and climatic
conditions.

Redmon et
al. [217]

Object
detection

YOLO YOLO can be trained directly on full images. Unlike
classifier-based approaches, YOLO frames object

detection as a regression problem and is trained on a
loss function that directly corresponds to detection
performance, and the entire model is trained jointly.
It outperforms other detection methods, including
DPM and R-CNN, when generalizing from natural

images to other domains (e.g., artwork).

Li et al. [218] Structural
Prediction and
Lane Detection
in Traffic Scene

CNN, RNN A multi-task deep CNN is developed to detect the
presence of the object and geometric attributes
(location and orientation) simultaneously with

respect to the region of interest (ROI). In the second
approach, an RNN is used its internal status memory

to infer the presence/absence of a lane over a
sequence of image areas.

Ruturaj et
al. [219]

Traffic Light
Detection and
Recognition

Faster R-CNN
Inception-V2
model via
transfer
learning

A DNN-based model for reliable detection and
recognition of traffic lights in realtime was proposed.

Wang et
al. [220]

Pedestrian
detection

Repulsion loss
with Fast
R-CNN

A robust detection for pedestrians in a populated
area outperformed all the state-of-the-art methods on

both CityPerson and Caltech benchmarks.

Lin et al. [221] TSR CNN Since the nature of TSR is the collection and image
processing to capture deep visual features from

images, a CNN is used to extract important frames
from images. Convolutional layers capture features,
and then these are utilized for training an SVM

classifier.
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from realistic images to other contexts. To concurrently identify the presence of objects and

their geometric properties, a multi-task deep CNN was developed in [218]. Then, the authors

used the recurrent neural network (RNN) algorithm for inferring the presence or absence of

a lane over a set of image regions. Additionally, a model using deep neural networks (DNNs)

was proposed for accurate, real-time traffic light recognition and detection. To do this, a

CNN was utilized to extract important frames from images, and the resulting system out-

performed state-of-the-art algorithms on a variety of benchmarks for pedestrians detection

in densely populated areas. In another study, support vector machine (SVM) classifiers were

trained using feature acquisition performed by convolutional layers [219, 220, 221]. However,

these AI-based algorithms do not guarantee the desired levels of performance and safety

in all scenarios [222, 223]. These limitations can produce undesired outcomes when new

abnormal or adversarial scenarios occur in run-time during autonomous driving [224].

The scholars employed the German Traffic Sign Recognition Benchmarks (GTSRB)

dataset to train their prediction method on a subset of 43 classes; this strategy involved

an integrated implementation of an artificial neural network (ANN) and histograms of ori-

ented gradients (HOG) and achieved an accuracy of 80% [225]. Min et al. [226] suggested

using an LW-RefineNet to divide the scene and acquire the details concerning the spatial

positioning at the pixel level. After that, the constraint model was developed to define the

search regions. Experiments have demonstrated that this strategy reduces the likelihood of

incorrectly detecting small traffic signs. Nevertheless, it has limitations in situations where

detection is inefficient on both sides of the roadway or in other situations (e.g., intersections).

Zhan et al. [227] introduced multi-headed self-attention YOLOv3 (MSA-YOLOv3), which is

using mix up visual enhancements and incorporated a multi-scale spatial pyramid pooling

component to acquire deeper features, and address the challenges of high-precision real-time

classification of road signs in naturalistic environments.

Cyber-physical attack on AV perception: As explained in the previous section, an AV

perception system has cyber-physical properties. Comprising these cyber-physical properties

can cause potential hazards to automated driving. These attacks can be divided into two

categories. First, attacks are purely physical and relatively simple to change the objects

and traffic signs in ODD. Latter, those that are artificially created adversarial attacks where

the targets are perception sensors and AI-based algorithms for AV perception systems and

usually look normal to human eyes. This section investigates the challenges that AVs have

while interacting with traffic signs and other objects (e.g., pedestrians, vehicles, and ani-

mals) on the road that are subjected to adversarial activities. These adversarial attacks may

be generated, then put in any landscape, and then applied to image classifiers afterward.

They cause the classification process to ignore the other items in the scene and merely re-
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port the category that they are trying to identify. These intrusive activities might not seem

like a problem for people to deal with under normal circumstances; nevertheless, this is a

potentially catastrophic obstacle for AVs. The challenge of effectively creating an accurate

TSR system is complicated since the system must be trained to detect traffic signs that

are partially obstructed by objects, in bad conditions resulting in insufficient maintenance,

and barely visible in severe weather circumstances. There is a variety of factors that can

contribute to anomalies, including the climate, environment, visibility, and location [228].

Research in this area shows digital/pixel perturbation on traffic signs,point-wise perturba-

tion on object classification algorithm, poster-printing attack with I-FGSM, C&W, Deepfool,

JSMA [229, 230] attackers can exploit the vulnerabilities in AV algorithms to attack the

system.

Threat Modeling for CPS: Other industries (e.g., mining, power grid, shipping, and avia-

tion) have studied a system-theoretic approach of threat modeling for analyzing the security

of CPSs [231, 232, 233, 234]. This approach focuses on the mission of the control system or

process and functional model instead of being focused on assets. It guides to analyze the

system and technical interactions as well as, non-technical interactions (e.g., human, social)

rather than being focused on component failure merely. However, these methods were not

designed for AV-specific TARA. In [235], Chattopadhyay et al. have argued that the current

AV security is poorly understood and presented security by framework design to analyze the

security of AVs as a CPS with a systems engineering approach. Also, the authors have con-

ducted a few experiments to fail AV’s missions. They were performed by manipulating tire

pressure and sensor data, creating a software update attack on the infotainment system to

maliciously update the weight and labels of the object detection algorithm, and introducing

a DoS attack for AVs. In [236], Khatun et al. presented a scenario-based threat modeling

and assessment for over-the-air updates for an AV. For risk assessment metrics specific to

AVs, Li et al. studied various methods and classified them into time-based, kinematics-based,

statistics-based, potential-based, and unexpected driving behavior-based metrics [237]. Some

researchers have analyzed automotive security threats as a physical system. In [238], Guo et

al. have shown a physics-driven approach to map DoS, replay, and deception attacks to

model the predictive control-based system that optimizes the instantaneous driving velocity

and torque allocation to reduce energy consumption. One of the new approaches to evaluate

the security of complex CPSs is STPA-Sec. Unlike conventional threat models that origi-

nated from the IT domain, the STPA-Sec process is a system theory-based approach. It is

an extension of STPA that is tailored to include security analysis.

Cyberphysical Challenges of ToD for road vehicles: Connected services offered in

modern vehicles typically include cabin pre-heating, vehicle locator, mileage report, battery
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Figure 2.17: TARA Steps of ISO/SAE 21434 Standard

heath status monitoring and some other functions. In general, these services do not control

the driving in real-time. Unlike these services, ToD for road vehicles depends on V2I connec-

tivity to remotely control the motion of a vehicle. Porting the driving task from in-vehicle,

closed environment to external world using wi-fi or cellular network makes the driving service

and experience heavily dependent on quality of service (QoS) of the communication channel.

Further, QoS of such network is susceptible to various challenges including electromagnetic

disturbance, latency and jitters in communication network, channel availability. As of today,

a standard for QoS of communication channel required for safe and comfortable ToD on pub-

lic road is not established yet. However, in [239], authors have conducted some experiments

to provide an initial requirement of an up-link of 3 MBit/s, a down-link of 0.25 MBit/s,

network latency of 250 ms, and a jitter less than 150 ms while performing DDT for safe

ToD operation. To mitigate such challenges unmanned vehicles for military applications use

military grade communication. For an example, military UAVs are operated using ultra-high

frequency military-grade air-to-ground communications and direct data links and satellites

are used for modulation schemes for different ranges [240]. However, using such technologies

is not feasible for ToD of road vehicles. This is due to the number of vehicles on public roads

expected to use connected services at a particular time are significantly higher as compare

to military applications [125]. It can be noted that in case of military ground vehicle, the

mission typically involves some type of tactical mission [241] where as for teleoperated road

vehicles, the mission is to provide safe and convenient transportation [5]. Unlike a remotely

operated military vehicles in a battle zone, ODD for road vehicles involves public roads with

civilians and public property. Though information on cyberattack on military vehicle is

not available publicly, a recent article published in October, 2013 from University of South

Australia claims that an algorithm has been developed by Australian researchers that can

intercept a man-in-the-middle (MitM) cyberattack on an unmanned military robot [242].

ToD communication is a type of V2X communication an in section 2.6 it was reviewed that
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real-world model and experiments are not studied in detailed for security of mission-critical

application with V2X connectivity. Hence, security aspect of V2X for ToD application to be

rigorously studied. It should be noted that for ToD, vehicle control command is transmit-

ted outside vehicle’s physical space. Hence, an asymmetric key cryptography approach may

be preferred over symmetric key cryptography. Further, asymmetric cryptography methods

including PKI-based approach need to be evaluated for computation and communication

overhead in a real-world model of connected car ecosystem.

2.9 Anomaly Detection in CPS

In science, anomaly is described when there is a difference between actual observation and

expected outcome developed based on the original scientific idea [243]. In statistics and data

mining field, outliers in the data set are considered as anomaly. Presently AD is used in

various industries including information theory, finance, manufacturing, health monitoring

and medical device, fraud detection, IoT security and many others. For physical systems,

detecting anomalies in AV senors, aerial systems, smart grids and intelligent traffic systems

are examples of some important applications. AD for IDS was introduced in 1980s to detect

security violations by recognizing abnormal patterns in system logs [244]. In Table 2.4 recent

research work on cyber-physical attack detection with AD are reviewed. It can be noted from

Table X, that current AD techniques for automotive IDS primarily focus on finding anomalies

based on a data-driven analysis of network and less consideration on physical behavior of

the vehicle. However Table 2.4 shows that, research on other CPS systems found that for

detecting cyber-physical attacks, hybrid approaches by combining data-driven model and

physics-based model have some benefits.
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Table 2.4: A Literature Survey on Anomaly Detection in CPS

Author Method Application Contributions
Rahul et al. [245] Physics Guided

ML Techniques
cyber-physical

systems in general
1.classified the hybrid models into

physics-based preprocessing,
physics-based network architectures,

physics-based regularization, and
miscellaneous categories based on the
way the Model-based is brought into

the hybrid architecture.
2. proposed five metrics for all-round
performance evaluation of a hybrid

CPS model.
Cody et al. [246] Hybrid physics

model-based
data-driven
framework

Smart grid real-
time monitoring

1. Presented hybrid framework with
physics-based and data-driven ECD

algorithm.
2. Tested the result on IEEE 118-bus

system which shows 6.75%
improvement from physic-based

solution.
Faris et al. [247] Statistical

Learning and
Kinematic Model

Adaptive cruise
control for

autonomous vehicle

1. Propose Generalized Extreme
Studentized Deviate with Sliding

Chunks (GESD-SC) approach, which
is applied at each vehicle in the
platoon to detect anomalies in

real-time based on the vehicle’s own
speeding decisions.

Jie et al. [248] Spatio-temporal
correlation based
long short-term

memory (LSTM)
method

Unmanned Aerial
Vehicle

Proposed a STC-LSTM and shown
this method can accurately locate the

anomalies of UAV flight data and
provide high-precision recovery

prediction values.
Bin et al. [249] Physics-based

Neural Networks
Power System Several paradigms of PINN (e.g., PI

loss function, PI initialization, PI
design of architecture, and hybrid

physics-DL models) are summarized
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Table 2.5: Parametric Variations of SAE J3016 Automation Level

SAE J3016 Automation Level
Parameters Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Automation None Driver-assistance Partial Conditional High Full

ODD
perception

Frontal
coverage

Coverage in front,
rear and four corners
of the vehicle

Same as L1

Increase in corner
coverage from L1, L2
Nearby surround
view coverage

Increase in
surround view
like human driver
is recommended

Similar to L4

ODD
connectivity

Not
required

Not
required

Not
required

Not
required

Connectivity is
recommended to
communicate with
V2X

Increase in
connectivity from
L4 to connect
from remote areas

DDT scope of
DAS

None

Longitudinal
or lateral control
at a time
(sustained basis)

Longitudinal and
lateral control
at the same time
(sustained basis)

Complete DDT
(OEDR+ tactical+
operational)

Complete DDT
(OEDR+ tactical+
operational)

Complete DDT
(OEDR+tactical+
operational)

DDT fallback Driver Driver Driver Driver DAS DAS
Monitor DDT
performance
system failure

N/A Driver Driver Driver DAS DAS

Monitor DAS
performance

N/A Driver Driver DAS DAS DAS

Minimal risk
condition

N/A N/A N/A
Not mandatory,
user decides
final action

must must

Failure
mitigation

N/A N/A N/A Recommended Recommended Recommended

Misuse or
abuse

N/A
No significant
evidence

Important Important N/A N/A

Response to
user request

N/A N/A N/A

Relinquish DDT
upon request by
DDT fallback-ready
user

ADS may delay
relinquishing DDT
for performance or
hazard prevention

ADS may delay
relinquishing DDT
for performance or
hazard prevention

Standards
regulations

ISO 26262
UNECE-
WP.29

ISO 26262
ISO/ SAE 21434
UNECE WP.29

ISO 26262
ISO/ SAE 21434
UNECE WP.29

ISO 26262
ISO/ SAE 21434
ISO/PAS 21448
UN Reg 157
UNECE WP.29

ISO 26262
ISO/ SAE 21434
ISO/PAS 21448
UN Reg 157
UNECE WP.29

ISO 26262
ISO/ SAE 21434
ISO/PAS 21448
UN Reg 157
UNECE WP.29

Functional
system
architecture

Distributed
[250]

Domain-centric
[250]

Domain-centric
[250]

Domain-centric
[250]

Centralized
[250]

Centralized
[250]

DDT
sensors (#)

Radar (1)
[251],[252],[253]

RADAR (1-3)
SONAR (1-12)
Camera (1-2)
IMU (1)
[251],[252],[253],
[254]

RADAR (3-5)
SONAR (up to 17)
Camera (2-6)
IMU (1)
GNSS/GPS (1)
[251],[252],[253],
[254]

RADAR (8)
SONAR (up to 12)
Camera (6-20)
Lidar (1-5)
IMU (¿1)
GNSS/GPS (¿1)
[251],[252],[253],
[254],[82]

RADAR (8)
SONAR (up to 12)
Camera (6-20)
Lidar (1-5)
IMU (¿1)
GNSS/GPS (¿1)
[251],[252],[253],
[254],[82]

RADAR (8)
SONAR (up to 12)
Camera (6-20)
Lidar (1-5)
IMU (¿1)
GNSS/GPS (¿1)
[251],[252],[253],
[254],[82]

Connector
bandwidth

1 MB
[80]

1 GB
[80]

1 GB
[80]

6 GB - 12 GB
[80]

6 GB - 12 GB
[80]

6 GB - 12 GB
[80]

Data generation
(per day)

N/A
0.3 TB
[77]

0.3 TB
[77]

5 TB - 32 TB
[82],[77],[76]

5 TB - 32 TB
[82],[77],[76]

5 TB - 32 TB
[82],[77],[76]

Data storage
technology

SLC NAND
e.MMC
UFS
[78]

SLC NAND
e.MMC
UFS
[78]

SLC NAND
e.MMC
UFS
[78]

e.MMC
UFS
Embedded SSD
[78]

e.MMC
UFS
Embedded SSD
[78]

e.MMC
UFS
Embedded SSD
[78],[255]

Vehicle to cloud
data (per hour)

N/A 10 GB
25 GB
[256]

300 GB 400 GB
500 GB
[256]

AI processor
throughput
(Trillion
operations
per second)

N/A 1
2
[257]

24
[257]

320
[257]

4000+
[257]

RAM
bandwidth

500 MB/s
[258]

60 GB/s
[258]

60 GB/s
[258]

512 - 1024 GB/s
[258]

512 - 1024 GB/s
[258]

1024 GB/s
[258]

Lines of code
10 million
[259]

100 millions
[259]

100 million
[259]

300 - 500 million
[259]

300 - 500 million
[259]

300 - 500 million
[259]

AI compute
energy
(% total energy
consumed in car)

N/A
1-4%
[260]

1-4%
[260]

13%-20%
[261] [262]

40% 40%-50%
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CHAPTER 3

Threat Modeling of Automated and

Teleoperated Vehicles

In previous chapter 2, current practices in automotive cybersecurity are discussed in sec-

tion 2.6 which highlights the importance of threat identification in automotive cybersecurity

framework. A threat modeling, also referred to as TARA model, is generally viewed as

the starting point for designing a cyber-secure system. Further, in section 2.8, emerging

cyber-physical challenges in automotive because of various elements of AV and teleoperated

technology including sensor, AI/ML algorithms, cyber-physical interaction, and connectiv-

ity are discussed in detail. Due to lack of AV and ToD specific threat analysis available in

research, threat analysis that specifically focus on AV and ToD system are performed as part

of this dissertation. This threat modeling work is presented in this chapter in two parts.

In section 3.1 a thorough analysis of threats to AV perception system is conducted which

resulted in proposing a novel threat modeling approach for such system. In section 3.2, the

threat modeling of ToD system for road vehicle is performed. The result from ToD threat

analysis is an important step that motivated this research to propose a novel anomaly detec-

tion approach for ToD system that uses context awareness and knowledge of vehicle physical

parameters. This anomaly detection method is presented in chapter 4 and experiments with

a LMD case study with this method is discussed in chapter 5.

3.1 Threat Modeling for AV Perception System

In 2021, ISO/SAE 21434 standard was published that provides a threat analysis and risk

assessment (TARA) guideline for E/E systems within road vehicles. Most of these threat

modeling approaches have the foundation of IT-based threat models with some modifications

relevant to E/E systems. However, an ADS has a different kind of operating environment

and requires a stricter real-time response to changes in that environment than devices in an
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IT environment. Moreover, ADS requires more cyber-physical interactions with the environ-

ment, higher software complexity, and real-time decision-making abilities than a conventional

vehicle. Following an inappropriate method may provide incorrect metrics of cyber-assurance

and cause safety hazards or disruption of mobility services in reality. Hence, it is critical to

analyze the effectiveness of these threat models for AV cyber-physical attacks with a holistic

approach.

3.1.1 Assumptions and Scope

• This study is focused on the camera as an AV perception sensor.

• Perception algorithms are assumed to be AI-based, and the main focus is on

the theoretical framework, mathematical model with a preliminary example

for an AV perception system.

• TARA model is for object classification functionally of an AV perception

system.

• The values shown in impact rating, attack feasibility rating, and risk mit-

igation factor are used as examples to demonstrate a comparison between

TARA and integrated threat modeling approaches. In some cases, these

values are based on preliminary guidance from ISO/SAE 21434 [23] and in

other cases, they are merely a suggestion and may vary depending on vari-

ous factors (e.g., the applications, organizational needs, and cyber-security

goals).

3.1.2 Problem Formulation

Safe autonomous driving requires appropriate real-time detection and classification of the

objects in ODD. Hence, the OC algorithm is chosen for this comparative analysis of threat

models for AV perception systems.Based on a detailed literature study, two threat modeling

methods were down-selected to evaluate their effectiveness for AV perception systems. The

first method is the ISO/SAE 21434 standard, which is used in vehicle cybersecurity. The

second method is STPA-Sec, which focuses on missions and system interactions, both internal

and external. As the AV perception environment is highly dynamic, these properties of

STPA-Sec make it a potential choice for this study. Hence, the problem is formulated:

• With object classification functionally of AV perception system and its im-

pact on cyber-physical interaction of AV in its ODD.
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Figure 3.1: A Detailed Representation of ISO/SAE 21434 TARA Steps Considering the
Work Products

• Next, the logical architecture of typical ADS is adapted for service-oriented

architecture and AUTOSAR.

• A comparative study is performed between traditional threat modeling ap-

proaches using ISO/SAE 21434 guidelines and systems theory-based STPA-

Sec for ML applications.

3.1.3 ISO/SAE 21434 Approach

The guidelines provided in the example of ISO/SAE 21434 - Annex H is used for this case

study. Fig. 3.1 shows the specific methods used in various steps of the ISO/SAE 21434

approach.

3.1.3.1 Item Definition

Item boundary: OC is an important subsystem of a vision-based object detection/recog-

nition system for automated driving functions. In Fig. 3.2, a conceptual block diagram is
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Figure 3.2: An OC Concept Level Block Diagram with Different Objects

shown for OC process as a part of ADS and examples of scenes with off-nominal situations.

Item functions: The purpose of an OC subsystem is to classify the objects that are

detected on and near a drivable road by the cameras mounted in an AV. The input of

the OC system is image data after image processing. Object detection and bounding box

estimation tasks are performed on the image captured by the vehicle’s camera. The output

of the OC system can provide useful information about the objects in an ROI to assist the

driver in L1/L2 SAE levels and to plan and monitor the vehicle motion in L3, L4, and L5

SAE levels.

Preliminary architecture: Preliminary architecture is the same block diagram that is

mentioned in the Item boundary.

3.1.3.2 Asset Identification

Prerequisite: Item definition.

Work product: Damage scenarios, and assets with cyber-security properties. Method:

• Based on the item definition of an OC system, assets that are exploitable in a cyber-

physical domain and damages due to attacks on these assets are identified in Table 3.1.
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Table 3.1: An OC Asset Identification along with Damage Scenarios due to Attacks
Considering the CIA Characteristics

Asset
CIA Property

Damage Scenarios
C I A

A.1: Camera Vision. - x x D.1: Physical injury to occupants as well as other road users

(e.g., pedestrians, workers, occupants in another vehicle).

D.2: Public/personal property damage.

D.3: Traffic rule violation (e.g., school bus and emergency vehicle

misclassification, object misclassification at a 4-way STOP sign or

pedestrian crossing, vehicles in a controlled/restricted zone).

D.4: Traffic issue (e.g., AV platooning diversion/congestion).

D.5: Compromised OC IP and performance.

D.6: Sensitive images (e.g., images captured in restricted access zone,

or personally identifiable information (PII) principal) may become

publicly available to the criminals.

A.2: Raw image captured by the camera. x x x

A.3: Image sent by the camera (communica-
tion).

x x x

A.4: H/W which is running image processing
and OC.

x x x

A.5: Image processing algorithm/code. x x x

A.6: Interface b/w image processing and OC
code.

- x x

A.7: OC code. - x x

• Assets are classified with basic cyber-security properties, including the CIA.

3.1.3.3 Impact Rating

Prerequisite: Damage scenarios.

Work product: Impact ratings along with impact categories.

Method:

• In Table 3.2, damage scenarios identified in the previous steps, (D.1 to D.6) are clas-

sified into safety, financial, operational, and privacy. The impact of damage is rated

following the guidelines in ISO 21434, Annex F.

• As per this guideline, ratings are divided into four categories, including severe, major,

moderate, and negligible.

• If one damage can cause multiple impacts, only the impact category with the root

cause is considered.

3.1.3.4 Threat Scenario Identification

Prerequisite: Item definition, damage scenarios, and assets with cyber-security properties.

Work product: Threat scenarios.

Method:

• In Table 3.3, threat scenarios (T.x) are identified for the assets, A.1 to A.7, that were

identified in earlier steps.
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Table 3.2: OC Impact Categories and Rating Levels with Consequences for Different
Scenarios

Damage
Scenarios

Impact Rating

Impact
Category

Rating Relevant Guide Criteria (ISO
21434)

D.1 Safety Severe Life-threatening injuries (survival
uncertain), fatal injuries (Note: S3 as per

ISO 26262).

D.2 Finance Major The financial damage leads to substantial
consequences which the affected road

user will be able to overcome.

D.3 Finance Moderate The financial damage leads to
inconvenient consequences which the
affected road user will be able to
overcome with limited resources.

D.4 Operation Severe The operational damage leads to the loss
or impairment of a core vehicle function.

D.5 Finance Major The financial damage leads to substantial
consequences which the affected road

user will be able to overcome.

D.6 Privacy Moderate The privacy damage leads to
inconvenient consequences for the road

user. The information regarding the road
user is:

• Sensitive but difficult to link to PII
principle,

• Not sensitive but easy to link to the
PII principle.
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• These threats are identified using the STRIDE method.

• None of the assets in the scope have repudiation or elevation of privilege-related appli-

cations. Hence, these two threat classes are not shown in the table.

3.1.3.5 Attack Path Analysis

Prerequisite: Threat scenarios.

Work product: Attack paths.

Method:

• In this step, attack paths for each threat (T.1 to T.23) are identified.

• Attack paths could be via physical or remote attacks on physical elements, hardware,

and software in this analysis.

• In Table 3.4, a few examples from work on attack path analysis are shown along with

the attack feasibility rating assessed in the next step.

3.1.3.6 Attack Feasibility Rating

Prerequisite: Attack paths.

Work product: Attack feasibility ratings.

Method:

• Attack feasibility rating is performed following attack potential-based approaches as

per the guideline in ISO 21434, Annex G [23] in this analysis.

• Attack potential relies on five core factors, including elapsed time (ET), specialist

expertise (SE), knowledge of the item or component (KoIC), window of opportunity

(WoO), and equipment (Eq).

• The value for each of these factors is assigned for the attack paths of each threat.

• These values correspond to the various levels for the corresponding factor based on

ISO 21434, Annex G.

• The levels are determined based on the understanding of attack path feasibility from

the perspective of these factors. For example, putting a tape on a traffic sign or

putting an object of interest can be done quickly in one day (ET) by a layman (SE)

with publicly available knowledge (KoIC) and unlimited opportunity (WoO) without
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Table 3.3: OC Threat Scenarios Identified by Different Classes of Attacks Including
Spoofing, Tampering, Information Disclosure, and DoS

Damage scenarios Attack class
Threat scenarios for each Asset

A.1 A.2 A.3 A.4 A.5 A.6 A.7

D.1

Spoofing T.2 T.4 T.8 T.12 T.16 T.18 T.21

Tampering T.1 T.5 T.9 T.13 T.17 T.19 T.22

Information Disclosure - - - - - - -

DoS T.3 T.6 T.10 T.14 - T.20 T.23

D.2

Spoofing T.2 T.4 T.8 T.12 T.16 T.18 T.21

Tampering T.1 T.5 T.9 T.13 T.17 T.19 T.22

Information Disclosure - - - - - - -

DoS T.3 T.6 T.10 T.14 - T.20 T.23

D.3

Spoofing T.2 T.4 T.8 T.12 T.16 T.18 T.21

Tampering T.1 T.5 T.9 T.13 T.17 T.19 T.22

Information Disclosure - - - - - - -

DoS T.3 T.6 T.10 T.14 - T.20 T.23

D.4

Spoofing T.2 T.4 T.8 T.12 T.16 T.18 T.21

Tampering T.1 T.5 T.9 T.13 T.17 T.19 T.22

Information Disclosure - - - - - - -

DoS T.3 T.6 T.10 T.14 - T.20 T.23

D.5

Spoofing T.2 T.4 T.8 T.12 T.16 T.18 T.21

Tampering T.1 T.5 T.9 T.13 T.17 T.19 T.22

Information Disclosure - - - - - - -

DoS T.3 T.6 T.10 T.14 - T.20 T.23

D.6

Spoofing - T.4 T.8 T.12 T.16 T.18 T.21

Tampering T.1 T.5 T.9 T.13 T.17 T.19 T.22

Information Disclosure - T.7 T.11 T.15 - - -

DoS T.3 T.6 T.10 T.14 - T.20 T.23
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Table 3.4: Attack Feasibility Rating Considering the Parameters Defined in Accordance
with ISO/IEC 18045 Standard

Threat
ID#

Attack path

Attack Feasibility Assessment Aggregated Attack Feasibility Rating

ET SE KoIC WoO Eq Value AFR
Max of the

individual AF
for each threat

Numeric value
for Feasibility

T.1

1. Physical access
(Sticker on Lens),

0 0 0 4 0 4 High High 2

2. Remote Auto-
Control Attack.

1 6 0 4 4 15 High High 2

T.2 Remote Lens flare/
Ghost effect attack

17 6 0 4 7 34 Medium Medium 1.5

T.22

1. Physical access
to in-vehicle n/w

or ECU,

4 6 3 10 4 27 Very-low Medium 1.5

2. Malware attack 4 6 3 1 4 18 Medium Medium 1.5

any special equipment (Eq). For instance, a malware attack on OC code may take

approximately a month (ET = 4) for an expert (SE = 6), to gain some restricted

knowledge (KoIC = 3). An easy opportunity considering can be carried out remotely

(WoO = 1) and a computer with good programming ability connected to the internet

(Eq = 4).

• An attack feasibility rating for each attack path is generated by adding values of these

core factors for a particular attack path, and based on the range of the final value, it

is classified into one of these four classes: High = 0 – 13, Medium = 14 – 19, Low =

20 – 24, Very low ≥ 25.

• Finally, an aggregated attack feasibility rating associated with each threat scenario is

calculated by choosing the maximum ratings of the attack feasibility, corresponding to

attack paths, e.g., if one attack path is Medium and another attack path is High for

the same threat scenario, then the aggregated feasibility rating is High.

3.1.3.7 Risk Value Determination

Prerequisites: Threat scenarios, impact ratings, and attack feasibility ratings.

Work product: Risk values.

Method:
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Table 3.5: A Risk Value Determination for Different Attacks on Camera Vision

Threat ID AAFR Impact Rating Risk Value

D.1:S D.2:F D.3:F D.4:O D.5:F D.6:P D.1:S D.2:F D.3:F D.4:O D.5:F D.6:P

T.1 2 2 1.5 1 2 1.5 1 5 4 3 5 4 3

T.2 1.5 2 1.5 1 2 1.5 0 4 3.25 2.5 4 3.25 1

T.22 1.5 2 1 1.5 2 1.5 1 4 2.5 3.25 4 3.25 2.5

• Risk values are calculated for each threat scenario corresponding to each damage sce-

nario impacted by the threat, using equation (3.1) [263]. In order to accurately deter-

mine the risk level, a comprehensive risk assessment must be conducted by taking into

account the impact level of potential damage scenarios and the attack feasibility level

of possible attack paths. This ensures that a precise evaluation can be made regarding

the feasibility of each threat that may occur [264].

R = 1 + I × F (3.1)

where

- R = Risk value,

- I = Impact rating: Negligible = 0, Moderate = 1, Major = 1.5, Severe = 2,

- F = aggregated attack feasibility rating:

Very Low = 0, Low = 1, Medium = 1.5, High = 2.

• As per ISO 21434, if a threat scenario corresponds to more than one damage scenario

and/or an associated damage scenario has impacts in more than one impact category,

a separate risk value can be determined for each of those impact ratings.

• The risk value of threat scenarios is between 1 and 5, where a value of 1 represents the

minimal risk.

In Table 3.5, some of the threats with the analyzed risk values are shown.

3.1.3.8 Risk Treatment Decision

Prerequisite: Item definition, threat scenarios, risk values.

Work product: Risk treatment decisions.

Method: Following threats have 3-5 risk values in most of the impact categories.

• T.1 Camera Vision Tampering,

• T.2 Camera Vision Spoofing,
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• T.22 Camera Vision DoS.

A robust AI/ML framework can be considered to improve the accuracy of camera-based

OC, resulting a reduction of risk of the threats T.1, T.2, and T.3 as an example of a risk

treatment option.

3.1.4 STPA-SEC Approach

This section captures the threat modeling and risk analysis on an OC algorithm with an

STPA-Sec approach. Fig. 3.3 shows the steps of STPA-Sec used in this case study. Steps

with dark red fonts indicate the customization of an STPA-Sec specific to this case study.

The rest of this section shows the analysis with an example from each step shown in this

diagram.

Figure 3.3: A STPA-Sec TARA for an AV Perception System Regarding the Loss, Hazards,
and CFs

3.1.4.1 Cyber-physical System/Subsystem of AV

The first step for an STPA-Sec analysis is to elicit the goals and methods of the system. In

Table 3.6, an OC subsystem for an AV perception system is defined by the guide words from

an STPA-Sec method.
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Table 3.6: An OC System Description with a STPA-Sec Format for an AV Perception
System

A system to do (What =
Purpose)

By means of (How =
Method)

In order to contribute to
(Why = Goal)

An OC subsystem classifies
the object detected around
AV

by using camera and AI-
based algorithms

for AV to drive following the
traffic rules.

Table 3.7: Different OC Unacceptable Losses Identified for the Mission (Example)

Level Losses

L-1 Loss of life or injury.

L-2 Damage of the vehicle.

L-3 Damage of public property.

L-4 Legal consequence.

L-5 Reduction in vehicle sell.

L-6 Negative impact on investment.

L-7 Loss of intellectual property.

L-8 Loss of intellectual property.

3.1.4.2 Identify Unaaceptable Losses

In this step, unacceptable losses for the problem or missions are identified and shown in

Table 3.7.

3.1.4.3 Identify System Hazards

After identifying unacceptable losses for an AV system, the possible hazards relevant to OC

algorithm are mapped that may lead to a loss.

3.1.4.4 Model Functional Control Structure

An STPA-Sec analysis does not require a physical control structure of the system, instead,

a model of functional control structure is used to analyze unsecured control action. As

the automotive software design is shifting from monolithic architecture to service-oriented

architecture (SOA) [265], this step is tailored to model OC in SOA environment with AU-
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Table 3.8: Sample OC Hazards Description with Relevant Losses (Example)

Hazard
No.

Hazard Description Related Loss

H-1 An AV does not stop or maneuver
appropriately when an object is in its

path.

L-1, L-2, L-3, L-4, L-5, L-6, L-8

H-2 An AV reacts to an object in its path
that either does not exist or is

insignificant.

L-1, L-2, L-3, L-4, L-5, L-6, L-8

H-3 A design/implementation detail is
exposed to the outside world.

L-5, L-6, L-7

TOSAR [266]. This is done to align with the significant demand for advanced computation,

re-usability, and ease of scalability of software and hardware components in connected and

automated vehicles. In Fig. 3.4, an example of a concept-level architecture of vehicle auton-

omy in SOA is provided where the elements are grouped into three categories:

• Feature Elements (FE): Features that help to accomplish various scenarios of ADS

(e.g., highway autopilot, city driving, pedestrian protection).

• Service Elements (SEL): Software units designed to perform a specific task that can be

used by software units via a service interface-based contract; image processing, object

detection, motion planning, and lateral control are some of the services in this model.

• Resource Elements (RE): These elements are mainly sensors, actuators, communication

buses, memory, and computation nodes to capture environmental and system inputs,

process and execute algorithms, and actuate controls accordingly.

Finally, a category called CPS elements is added to capture the cyber-physical interaction

of an AV in its operating environment to complete the functional model for an STPA-Sec

analysis. Furthermore, plausible services and interactions with an automated driving feature

and resources for object detection/classification are identified in this diagram. Square heads

indicate the publisher (for services) or the source for physical elements, and the circular end

is the subscriber (for services) or sink (for physical elements). As an OC process is the target

subsystem for the TARA analysis in this case study, the elements of interest for OC service

are highlighted with the red boundary and red arrow. This concept-level model is used to

identify unsecure elements in subsequent steps.
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Figure 3.4: A Sample Vehicle Autonomy SOA Architecture

3.1.4.5 Identify Unsecure Elements

To Identify unsecure Elements, the STPA format of guide words is adapted in this step, but

the actual guide words are created based on the CIA principle of security engineering as

shown in Table 3.9.

3.1.4.6 Causal Factor

As per STPA-Sec, this step is followed to generate the CFs for unsecured control. In an

SOA framework, systems behavior is the result of service interactions between elements. For

this purpose, a specific set of guide words are created in this paper to classify the associated

causes of the unsecure elements in the SOA framework. In Table 3.10, these guide words are

listed to identify the “what” is the cause and “how” it can happen. In Table 3.11, examples

are captured with possible CFs (“what” and “how”) for the unsecure element identified in

the previous step.
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Table 3.9: An Identification of Unsecure Element Guide Words Based on the CIA
Characteristic

Confidentiality Integrity Availability

Element
Accessible to

inappropriate element
causes hazards (USecC)

Providing Incorrect
Content causes hazards

(USecIC)

Providing at Incorrect
Timing causes hazards

(USecIT)

Not availability
causes hazards (USecA)

SE10: OC

USecC-1
(Providing OC

to unsubsribed services)
Causes: H-3

USecIC-1
(Incorrectly classified

object)
Causes: H-1, H-2

USecIT-1
(Delayed) Causes: H-1

USecIT-2
(Early) Causes: H-2

USecA-1
(Not availability of

OC service)
Causes: H-1

RE4: Camera -

USecIC-2
(Corrupted raw data

provided)
Causes: H-1, H-2

USecIT-3 (Delayed)
Causes: H-1
USecIT-4

(Providing early can
be missed by consumer)

Causes: H-1, H-2

USecA-2
(Not having Camera

raw data transmission)
Causes: H-1

CPE1: Objects
in ODD

-

USecIC-3
(Object’s incorrect visual

property)
Causes: H-1, H-2

-

USecA-3
(Object visual property

cannot be
perceived/disappeared)

Causes: H-1

Table 3.10: A Chart for CF Identification Guide Words

“What” can cause

unsecure interaction

high-level classification of

“How” can it happens

- Feature application

- Feature interface
- Algorithm/Logic vulnerability (LV)

- I/O vulnerability (I/OV)

- O/S vulnerability (OV)

- Memory vulnerability (MV)

- Process vulnerability (PV)

- Database vulnerability (DV)

- Network vulnerability (NV)

- Cyber-physical vulnerability (CPV)

- Human vulnerability (HV)

- Service interface

- Service logic/data

- Service repository

- Optical

- Temperature

- Electromagnetic

- Mechatronics

- Temporal

- Off-board communication

- On-board communication

- Power and energy
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Table 3.11: An Identification of CFs Based on What-How (WH) Method (Examples)

Unsecure Elements CF

What can cause it How can it occur

USecA-1

CF1: Blocked Service Interface NV, OV, PV

CF2: Not executed service logic/algorithm OV, PV

CF3: Corrupted service registry MV, DV

CF4: Unsuccessful service find OV, PV

CF5: Failure to perform service call OV, PV

USecC-1

CF6: Spoofed service interface NV, PV

CF7: Easy access to program location service logic/algorithm MV, PV

CF8: Altered service registry MV, DV

CF9: Spoofed service find NV, OV, PV

CF10: Aliasing service call NV, OV, PV

USecIC-1

CF11: Corrupted service interface NV, OV, PV

CF12: Manipulated service logic/algorithm LV

CF13: Manipulated service data DV, MV

CF14: Altered service registry DV, MV

CF15: Spoofed service find NV, OV, PV

CF16: Aliasing service call NV, OV, PV

USecIT-1

CF17: Busy service interface NV, OV, PV

CF18: Delayed execution of service logic/algorithm OV, PV

CF19: Delayed service call OV, PV

USecIT-2
CF20: Old transaction data in service interface MV, PV

CF21: Replay transaction in service interface NV, PV

USecIC-3

CF22: Physical damage to the object CPV

CF23: Physical damage to camera lens CPV

CF24: Altering visual appearance (e.g., tape, paint, mask) CPV, LV

CF25: Artificial projection on object CPV

CF26: Projection on camera lens CPV

CF27: Adversarial AI-based image CPV, LV
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3.1.4.7 Mitigation and Control

In this step, STPA-Sec mitigation and control strategies are provided to eliminate or avoid

the cause of an unsecured control action (e.g., firewall) to handle NV, an access control for

MV, an encrypted message for DV, and a robust algorithm for LV. In this paper, the primary

focus is on a TARA method, hence, detailed risk mitigation strategies are not captured here.

3.1.5 Comparison Between Two Threat Models

Comparing both of the threat models for an CO algorithm, it is observed that STPA-Sec

can provide some advantages with its system-based approach over the asset-centric approach

in the ISO/SAE 21434. On the other hand, the attack feasibility rating and risk determi-

nation of the ISO/SAE 21434 are more appropriate to transfer the analysis to a traditional

cybersecurity framework. Hence, the advantages of STPA-Sec can be mentioned as follows:

• STPA-Sec captures malicious cyber-physical interactions in an AV percep-

tion environment, such as objects in the road and other road users, as well as

distributed service interactions between various elements inside the system.

Nevertheless, ISO/SAE 21434 is intended for E/E assets with cyber-security

properties in a road vehicle and not for CPE in an operating environment.

• AVs are expected to deliver certain missions, hence, STPA-Sec is advan-

tageous by utilizing a functional model rather than an asset that helps to

capture the critical paths for delivering the missions/goals.

• AVs are dynamic systems on the road with complex and computation-

intensive software. Hence, optimizing run-time energy, latency, and com-

puting hardware resources is critical. Associating the threats to CFs of

unsecured actions/services instead of whole assets, adds more granularity

which allows using the cyber-defense and protection resources, optimally.

The advantages of ISO/SAE 21434 approach can be considered as follows:

• STPA-Sec does not have an in-built risk assessment method, whereas a risk

assessment in the ISO/SAE 21434 standard helps to determine the risk value

of OC process based on the impact and attack feasibility of a threat.

• STPA-Sec does not provide a software-centric perspective of the CFs for

the threats, but using STRIDE as recommended in the ISO/SAE 21434,

guidelines help to identify the threats of an OC algorithm from a software

oriented approach.
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• ISO/SAE 21434 provides a practical approach to assess the attack feasibility

based on ET, SE, KoIC, WoO and Eq which is applicable to OC processes

for an AV perception system.

3.1.6 Proposed Method: An Integrated Approach of Threat Anal-

ysis for AV

From the case study illustrated in the problem statement section, it is observed that STPA-

Sec approach provides a relevant approach to identify and analyze threats for AV perception

systems and ISO/SAE 21434 provides benefits of an automotive specific risk analysis frame-

work. But individually, they lack in providing a complete framework for AV perception

systems. Moreover, none of them specifically provide a comprehensive framework to address

the threats on AI algorithms in AV perception systems and evaluate the risk based on various

object types in an AV ODD. This section presents an integrated TARA framework and the

associated mathematical model to address this gap.

The proposed novel approach covers the following:

• An integrated threat modeling framework that combines system-centric and

asset-centric approaches to analyze the threats of perception from system

interaction with the environment and from attacks on the hardware and

software components.

• A mathematical model where the AI robustness factor is incorporated as

an additional attack potential factor for attack feasibility assessment, along

with other factors from ISO/IEC 18045.

• Object-centric risk evaluation model where impacts are rated for depending

on the types of objects and corresponding unacceptable losses in AV ODD.

3.1.7 Framework

As AVs are real-time CPSs with a complex interaction with the environment and subsys-

tems within the AV system, it is critical to find out the unsecured interaction that can result

in hazards and unaccepted losses. The risk assessment should consider the differences be-

tween the object types in ODD and the impact. Thus, the resources to defend and protect

from attacks, can be focused on relevant interactions rather than any asset. Also, threat

modeling limited by the focus on assets may miss the vulnerable system interactions. An

AV perception system is heavily integrated with the environment with various sensors and
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driven by complex software and AI-driven algorithms on high-performing computing hard-

ware from the design and implementation perspective. Hence, the threat modeling for an

AV perception system requires mapping the CFs to appropriate attack classes with some

well-established threat modeling approaches in the software industry (e.g., STRIDE). Also,

it covers various adversarial attacks on AI algorithms and cyber-physical attacks. This helps

to present the threat and risk analysis of an AV perception system in a known format to

cyber-security engineers and take advantage of a holistic cyber-security mechanism evolved

in various industries. Based on the observations from the threat modeling in this study, an

integrated approach is proposed to address the needs mentioned above:

• Figure 7 shows an integrated approach to TARA adapted from STPA-Sec

and the ISO/SAE 21434 standard. This approach starts by analyzing an

AV perception system as a CPS and utilizes STRIDE to transform the CFs

of unsecured control actions in the AV perception system into an attack

class. This helps to perform the rest of the threat and risk analysis in a

cyber-security domain by utilizing the attack analysis method from ISO/SAE

21434.

• As the AV perception system is implemented using ML algorithms and other

complex software components, algorithm robustness factor (RF) is added as

one of the parameters, along with other factors presented in the ISO/SAE

21434 standard to assess the attack feasibility and include the knowledge of

CPE in the ODD, and KoIC is replaced with KT.

• For an AI algorithm-specific RF, a cumulative performance of the AI algo-

rithm with typical scenarios abnormal scenarios, and against various adver-

sarial attacks (e.g., perturbation attack, poisoning attack, and model inver-

sion) is proposed while conventional software elements (e.g., O/S, network,

and memory) can utilize common vulnerability scoring system (CVSS) rank-

ing system.

• The impact of an attack is expressed in terms including severity, occurrence,

duration, and the cost of recovery from the losses caused by the attack. For

OC-related loss in the AV perception system, these parameters are proposed

based on various types of objects (e.g., humans, bicyclists, and vehicles in

the ODD of an AV.

• Finally, the risk value determination is proposed by augmenting the

ISO/SAE 21434 risk formula with the updated formula for impact as per
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the previous bullet and risk mitigation factors to contain the controllability

and detectability of an unsecured control action/attack for the risk evalua-

tion.

3.1.8 Mathematical Model

As per ISO/SAE 21434 recommendation, attack potential relies on five core factors, including

elapsed time (ET), specialist expertise (SE), knowledge of the item or component (KoIC),

window of opportunity (WoO), and equipment (Eq) following the attack potential values as

per ISO/IEC 18045 standard for an automotive sector. However there is no recommendation

to address the robustness of the AI algorithm and the influence of the object type in AV

ODD. In this section, a novel mathematical model is presented in equation (3.2) for assessing

the risk value in the context of AI vulnerability analysis, specifically for USecX (RUSecX).

This model, distinct from previous approaches, incorporates a mitigation factor (MUSecX)

that accounts for the controllability (CUSecX) and detectability (DUSecX) of attacks, assigning

values from 0 to 2 to various levels of these parameters, as illustrated in equation (3.2) [267,

268]. The model’s innovation lies in its consideration of the mitigation factor, a critical

aspect often overlooked in prior research. This factor plays a pivotal role in gauging the

extent to which attacks can be detected and managed, thereby linking the concepts of attack

types, their controllability and detectability, and overall risk assessment in a comprehensive

framework.

RUSecX =
1 + IUSecX × FUSecX

1 +MUSecX

MUSecX = CUSecX +DUSecX

(3.2)

This approach also prioritizes various road elements (e.g., humans, animals, and vehicles)

based on factors such as their damage severity (SL,USecX), presence rating (OH,USecX), average

recovery time (TL,USecX), and financial loss (ΓL,USecX). Additionally, the impact rating

(IUSecX) ranges from 0 to 3 (low to severe levels, respectively), encompassing the overall

impact of cyberattacks, which can vary across environmental, financial, and operational

safety aspects, defined as equation (3.3):

IUSecX = SL,USecX ×OH,USecX + TL,USecX + ΓL,USecX (3.3)

This method highlights the heightened risk and necessity for effective risk management

strategies. The approach categorizes risk levels into four intuitive groups, aiding in easier

interpretation and application in risk assessments, in which low, moderate, high, and severe

69



impact ratings can be assigned. The framework, based on the sum of attack potential values,

establishes a link between these values and the attack feasibility rating (FUSecX), as outlined

in equation (3.4) and depicted in Fig. 5.1.

Figure 3.5: Evaluation of Attack Potential in Compliance with ISO/IEC 18045 Parameters

The attack potential values, determined by parameters in equation (3.5), range from 0 to

18 and are categorized into three groups (i.e., 0-6, 7-12, and 13-18) for better comprehension

of attack feasibility.

FUSecX = max(F ηi
USecX) (3.4)∑

Vηi = V SE
ηi

+ V KoIC
ηi

+ V Eq
ηi

+ V ET
ηi

+ V WoO
ηi

+ V RF
ηi

for i = 1, 2, 3, ..., n.
(3.5)

equation (3.5) delineates the correlation among attack potential parameters, highlighting

that basic attack paths (utilizing standard tools, unskilled attackers, and public information)

have higher possibility of success due to their simplicity. The complexity and feasibility of an

attack path inversely correlate with the required attack potential degree. The novel index,

V RF
ηi

measures the resilience of ML algorithms (i.e., object classification) against typical,

abnormal, and adversarial scenarios. This index effectively assesses the performance of AVs

under attacks, regarding different objects, reflecting the AVs’ environmental dependence.

3.2 Threat Model and Attack Model for ToD

In chapter 2, it was reviewed that ToD of road vehicles on public roads is an emerging tech-

nology for future mobility solutions with LMD, corss-border transport and elderly mobility
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Table 3.12: Functions and Dataflows for Various ToD

Data flow Function

Vehicle To
Operating
Station

Operating Station to vehicle
Sens-
ing

Percep-
tion

Local-
ization

Plan-
ning

Deci-
sion

Control
Actu-
ation

Direct control Sensor data
Control command via steering,

brake, acceleration pedal
operation by remote operator.

Vehi-
cle

OPS OPS OPS OPS

Hi
level:OPS

Lo
level:OPS

Vehicle

Shared control

Object list or
a

representation
of

the free space

Desired control command via
steering, brake, acceleration pedal

operation by remote operator.

Vehi-
cle

Vehicle Vehicle OPS
Vehicle
and OPS

Hi
level:Vehicle/

OPS
Lo

level:Vehicle

Vehicle

In-
di-
rect
Con-
trol

Trajectory
guidance

Sensor data Control command as trajectory
Vehi-
cle

Vehicle/
OPS

Vehicle/
OPS

OPS OPS

Hi
level:OPS

Lo
level:Vehicle

Vehicle

Waypoint
guidance

Sensor data discrete waypoints
Vehi-
cle

Vehicle/
OPS

Vehicle/
OPS

OPS OPS Vehicle Vehicle

Interactive
path

planning

Object list
and a grid

map
Optimized path

Vehi-
cle

Vehicle Vehicle
Vehicle
and OPS

OPS Vehicle Vehicle

Perception
Modifica-

tion

Object list
and a grid

map
Bounding box

Vehi-
cle

Vehicle
and OPS

Vehicle Vehicle Vehicle Vehicle Vehicle

service as two of the potential applications. ToD involves monitoring, controlling or provid-

ing guidance to the driving function of a vehicle from a remote operating station. Further,

the high-level concept of ToD system and communication flow were illustrated in section 2.5.

According to this review, for a typical ToD system, the perception information sent by the

vehicle to the operating station via cloud and fog infrastructure using wireless or cellular

network. Similarly, control commands from the operating station are sent to the vehicle.

This makes the teleoperated vehicle a cyber-physical system and poses a potential exposure

of perception data and control commands outside vehicle boundaries. This means various

digital devices at operator station, cloud infrastructure, vehicle sensors, in-vehicle network

and the ECUs are also part of potential attack surface. An attacker can target communi-

cation channels and other components of vehicle ToD system. Hence, threat modeling for

teleoperated vehicles with its potential use case on public roads is crucial. Further, deeper

analysis with teleoperated vehicle system models and attack models is necessary to under-

stand real world feasibility of such threats. However, as per current literature survey threat

analysis in this area has not been explored in depth. For this dissertation, an attack-tree

based threat modeling for a ToD followed by an attack model for LMD are performed, this

work is presented in this section.

Given the extensive and dispersed attack surface of vehicle tele-operation, an attack-tree

based method is employed for the threat analysis.In this study, TARA of the ToD system is

carried out with following steps. The first step involves identifying the components of a ToD

system. From the literature review discussed in section 2.5, ToD functions can be distributed

in three categories of components (e.g., operator station, IoT infrastructure and vehicle) as

categorized in Table 3.12. An operator station must include human operator, operator

terminal, server and local communication network. It might also have artificial intelligence
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Figure 3.6: An Attack Tree for a ToD Event

(AI) assistance to the terminal. An IoT infrastructure can be divided into three primary

sub-components including cellular network, cloud and edge. From the ToD perspective,

the vehicle needs to have sensing devices for perception, localization, inertia and vehicle

diagnostics. A vehicle also requires an in-vehicle communication network to communicate

between multiple ECUs and modem to communicate using cellular channels. For vehicle

motion, it needs the drive-train, controller and actuators. In the second step, all of these

components are organized in a tree structure as shown in Fig. 3.6. According to this tree,

ToD operation is the root and operator station functions, IoT infrastructure functions and

vehicle functions are added as its children or leaf nodes. The components involved to deliver

each of these three functions are further listed as the third layer of leaf nodes. For example,

the server and other equipment at the terminals are example of leaf nodes of operator station

functions. Cellular network, edge computing device and back-end cloud are are components

to deliver IoT infrastructure functions. Vehicle function require sensor, actuator, computing

device, controller, modem, in-vehicle network, energy providing components. In the third

step, this tree is analyzed with with potential attacks on ToD system. According to this

attack tree, if attacker’s goal is to maliciously take control of ToD, the layer 3 nodes of the

tree (components) can be exploited as attack surface to compromise the target functions at

layer 2 which are leaf nodes of the root node. Further, to exploit the attack surface attackers

can use several attack types which make the fourth layer of the tree. For an example, as

marked with red rectangles in Fig. 3.6, “data injection attacks” on cellular network can

alter the intended communication between the operator station and vehicle, which can cause

unintended driving maneuver for the teleoperated vehicle. Though a comprehensive database
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of attacks on ToD is not available, the attacks on AV and other IoT devices were reviewed

in detail. Such attacks are then analyzed for ToD context as shown in Table 3.13 to derive

the list of attack types. As per this attack tree analysis, 14 types of attacks are identified

for a malicious ToD. Further, in can be argued that operator station and vehicle which can

enforce certain level of physical security to bolster cybersecurity solution. However, ToD for

road vehicles use publicly available wireless or cellular networks for V2X connectivity which

increase the attack feasibility.

Table 3.13: Potential Attack Types for ToD System

Attack Type
Vehicle IoT Infrastructure Operator Stattion

Vehicle

Sensor

Vehicle

Processing

Unit

Vehicle

N/W

Vehicle

Tx/Rx

Vehicle

Actuator

Cellular

N/W
Edge Cloud Server

Local

N/W

Equipment

at Terminal

Human

Operator
AI

Data Injection Attacks x x x x x x

Denial of Service Attacks

(DOS and DDoS)
x x x x x x x x x

DNS Tunneling x x x x x x

Eavesdropping Attacks x x x x x x x x

Malware x x x x x x

Man-in-the-middle Attacks x x x x x x x x

Password Attack x x x x x

Phising

Privilege Escalation Attack x x x x

Sensor Spoofing/

jamming/ blinding
x

Replay Attacks x x x x x x x x x

Side-Channel Attacks x x x x x x x

Zero-day Attacks x x x x x x x x x x x

Adversarial Attacks x

Note: This table is created based on the literature review of [269, 270, 271, 272, 273, 25, 274, 275, 276, 277, 278, 13, 14, 15, 16, 17, 18, 19]

In the 4th step, most promising applications of ToD is analyzed for an impact on safety,

finance and legality due to malicious ToD, as illustrated in Fig. 3.7. This analysis is car-

ried out with a subjective approach considering that malicious ToD can disrupt lateral and

longitudinal motions, and suspension control of tele-operated vehicle. Such incidents can

interrupt ToD service and even jeopardize the safety of passengers and other road users.

In [279, 280, 281, 282], researchers have discussed various consequences of disrupting cross

border transportation, LMD and mobility services. According to these papers, disruption

of these applications have major adverse effects on road safety and regional economy. As

these are the potential applications for ToD, it can be argued that a malicious ToD event

can inflict serious harm to these applications. Finally, in the 5th step of the TARA, a risk is

assessed based on the likelihood of attacks causing a malicious ToD and the impact on the

ToD application. At present, ToD for public roads is still a developing technology. However,
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Figure 3.7: A Teleoperated Vehicle Attack Likelihood vs Impact

when ToD is implemented on public roads, attack surface and the number of impacted users

will expand. As a result, the risk will also escalate, which is demonstrated as a high risk in

Fig. 3.7.

3.2.1 Attack Model for LMD

According to the attack tree analysis, an attacker can cause malicious ToD event by com-

promising the IoT infrastructure. In this section, firstly, an attack model is developed for

one of the potential use-case of ToD event on public roads, known as LMD. Secondly, an

attack formulation is implemented for an FDI attack on steering wheel angle command form

tele-operator. The LMD represents the concluding stage in a business-to-customer (B2C)

delivery process where the package is transported to the recipient, either directly to their

home or to a designated pickup location [283]. The FDI attack scenario of the teleoperated

LMD vehicle can be illustrated with Fig. 3.8. As shown in this diagram, sensors on the

vehicle collect the data around the vehicle and send it to the operator terminal using a cel-

lular/wireless communication. A human operator makes the driving decision based on the

digital perception at the terminal and sends the driving command to the vehicle using the

cellular channel. When vehicle receives the driving control command, the control system,

drive-train and the actuators deliver the desired driving actions. This diagram also shows

the FDI attack targeted to the vehicle steering control command to manipulate the driving

maneuver. As LMD typically involves city and urban locations, a delivery vehicle may need

to make turn at an intersection while following its route. However, an attack on steering
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Figure 3.8: An FDI Attack on Communication Between Remote Operator and the Vehicle

command can execute an undesired driving action and trajectory causing an accident that

is depicted in Fig. 3.9. According to this diagram, the normal trajectories for vehicle A is

shown with green arrows but the vehicle follows the path shown in red arrows under a cyber-

attack. This malicious behavior can be a potential cause of frontal or angled collision with

other stationary and moving road users. Based on US NSC data 2020, angled collision and

head on collision are the top two reasons for deaths and fatal crashes in the U.S. [99]. The

analysis of damaged pattern and severity of impact for passenger cars presented by Kurebwa

et. al shows that the probability of damage and severity is significantly higher at the front

and front corner zones as compared to other point of impact on a vehicle [98]. Hence, an FDI

attack on steering command from tele-operator is selected for case study of the attack model.

An attack model designed for this study is presented in Fig. 3.10. As depicted, driver inputs

for steering wheel angle, accelerator pedal and brake pedal determines the motion control

logic of tele-operated vehicle. Furthermore, motion control signals determine the vehicle

heading angle and vehicle dynamics. Therefore, it can be derived that an FDI attack on

driver input for steering wheel angle will impact the vehicle heading angle and dynamics.

In order to create this attack, an attack formula is developed for the FDI on steering wheel

angle. For this purpose, ISO/SAE 21434 is reviewed for recommended core factors to assess

the attack feasibility. The attack generation and formulation can be yielded from Fig. 3.11

and equation (3.6):

α̂ = fatk(α, ϵ, ω̄) (3.6)

Where, fatk is the attack generation function, α̂ is the false data injected steering wheel

angle command, α is the original steering wheel angle command, ϵ is the injected fault, ω̄ is

the window of opportunity which is fw(∂, ρ). Also, ∂ and ρ show the duration of the fault

injected and the point of injection, respectively. According to equation (3.6), an FDI steering

wheel angle is a result of original steering wheel angle signal injected noise with a specific

window of opportunity (WoO). From an attacker perspective, it is crucial to inject the false
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Figure 3.9: A Traffic Light Intersection Attack Scenario

Figure 3.10: A System Model for the Vehicle’s Steering Angle Under Attacks

data at appropriate WoO to create a desired adverse effect. Hence, WoO is created by

choosing the point of noise injection to the signal and duration of the noise. This is further

illustrated in Fig. 3.11 with examples. As shown in Example 1, the point of injection in this

case is when the original steering wheel angle starts to change for the desired turn whereas

the point of injection starts ahead of such maneuver in Example 2. Also, the duration of

the attack is relatively for a small duration as compared to Example 2.
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Figure 3.11: An FDI in the Steering Wheel Angle
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CHAPTER 4

Anomaly Detection for Teleoperated LMD

In section 3.2 of chapter 3, an attack tree based TARA was presented for ToD road vehi-

cles on public road. As per this TARA, ToD system has large attack surface and there are

various types of potential attacks that can cause the threat of a malicious ToD. The TARA

also shows the threat of malicious ToD has risk with high impact for potential ToD appli-

cations including LMD of goods from depot to home or business. In this chapter, first the

current limitation of automotive cybersecurity strategy to protect against malicious ToD is

highlighted. Next, a novel method is proposed to detect such malicious ToD by analyzing

the context of ToD application and physical parameter of the vehicle under ToD. It can be

noted, the anomaly detection method proposed in this dissertation is based LMD applica-

tion as described in assumptions and scope below. However, in future this concept can be

extended to other application of ToD or road vehicles.

4.1 Problem Statement

The problem statement of detecting malicious ToD in this chapter is described as follows:

• With evolving cyber threats relying on traditional cybersecurity methods (e.g., cryp-

tography, root of trust, chain of trust, access control) cannot guarantee protection from

all potential attacks.

• Moreover, teleoperated vehicles are a specific type of cyber-physical system with dy-

namic operating environment. Hence, defense-in-depth principle for teleoperated vehi-

cles must be explored beyond traditional cybersecurity solutions.

• UN R155 compliance requires securing vehicles by design and reporting security inci-

dents specially for vehicle fleets. As LMD is a potential use case of ToD, this application

falls under the same requirements.
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Figure 4.1: Cyber-physical Anomaly Detection of ToD at High-level

• Further, in teleoperated vehicles there is no human driver physically present to monitor

and control in case of a cyberattack. Hence, anomaly detection is crucial for incident

reporting and road safety.

• Current anomaly detection techniques in automotive primarily focus on in-vehicle net-

work behavior and limited consideration of physical behavior.

However, research on other CPS systems found that for detecting cyber-physical attacks,

hybrid approaches by combining data-driven model and physics-based model have some

benefits. Driving behavior of a teleoperated vehicle can depend on various dynamic factors.

Road condition, weather, location, and time of the day, priority of the business or mission

can be classified as context of the ToD. Based on this knowledge, teleoperated driver’s next

intended maneuvers at a particular location can be predicted. However, the actual driving

maneuver and trajectory during a turn depends on the driver inputs, design of vehicle-

propulsion and vehicle-dynamics. In this work, PCADS for teleoperated LMD vehicle is

proposed when steering wheel angle command from teleoperated driver is injected with false

data during maneuvering at left turn, right and U-turn. The proposed method requires the

knowledge of driving context of the delivery and time series pattern of vehicle’s physical

parameters during the above mentioned maneuvers. High-level concept of cyber-physical

anomaly detection based on vehicle physical parameter is illustrated in Fig. 4.1.

A single motor based electric vehicle (EV) architecture is shown as an example. Depending

on the EV architecture including the number and type of traction motors, ESS and vehicle’s

mechanical design value of vehicle physical parameters can vary during the vehicle maneuver.

Roll, pitch, yaw, wheel angle, battery current, motor torque are some of the parameters which
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(a) SAE Vehicle Coordinate System (b) Roll, Pitch and Yaw during LT

(c) Roll, Pitch and Yaw during RT (d) Roll, Pitch and Yaw during UT

Figure 4.2: Example of Vehicle Physical Parameter Variation with Left Turn (LT), Right
Turn (RT), U Turn (UT)

realize the difference. For an example as shown in Fig. 4.2, time series value of roll, pitch and

yaw measured by vehicle IMU sensor for the same vehicle configuration is different for left

turn, right turn and u-turn maneuvers. For known vehicle configuration, PCADS method

monitors these vehicle parameters to detect anomaly in trajectory during left turn, right

turn and u-turn. The detailed of the method is discussed in section 4.2 methodology.

4.1.1 Assumption and Scope

The assumption and scope of the anomaly detection methodology proposed in this chapter

are as follows:

• This work is focused on a specific use case of ToD which is LMD.

• The primary goal of this method is to detect the anomalies for cyber incident analysis.

Altering the driving action autonomously based on this detection is not in scope of
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this work.

• For driving context, solving vehicle routing plan (VRP) to find optimal route for fleet

of vehicles is not in scope and it is assumed the VRP is accurate and robust to address

real-time traffic density, road condition, weather, service time, vehicle maintenance

schedule.

• Dynamic alert generation is out of scope, in this work it is simulated as a binary flag.

• For physical parameter learning, left turn, right turn and U-turn maneuvers are con-

sidered.

• Experimental results are based on the dataset mentioned in the experiment section.

• Proposed method assumes vehicle configuration and vehicle physical parameter value

for left turn, right turn and U-turn maneuvers of the target vehicle is known to anomaly

detection system.

4.2 Methodology

In this section, a PCADS method is proposed to detect the anomaly during left turn, right

turn and U-turn of LMD vehicles. The scope of this method is focused on the FDI attack

on steering wheel angle in this paper. In order to detect the anomalies, the PCADS method

requires the knowledge of DCs for the delivery vehicle and time-series patterns of vehicle’s

physical parameters during the left, right and U-turn maneuvers. The general framework of

the proposed method is represented in Fig. 4.3. As depicted in this diagram, this proposed

method has two stages of AD process including

• Context-aware anomaly detection (PCADS-CA).

• Physics-based anomaly detection (PCADS-PB).

At a high-level view, the PCADS-CA method uses two inputs to compare and detect anoma-

lies. One input is intended the maneuver at each intersection which is concluded from DCs

and the second input is the actual driving command received from tele-operated driver at

each intersection. On the other hand, the PCADS-PB method monitors the pattern of the

vehicle’s physical parameter time-series values during a specific turn and compares it with

the learned patterns for the same type of turns for any deviation. In the next section,

PCADS-CA and PCADS-PB models are presented with detail of detection methodology,

algorithm and mathematical modeling.
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Figure 4.3: An LMD ToD Anomaly Detection Framework

4.2.1 Stage 1: PCADS-Context-aware Anomaly Detection

Driving behavior of a tele-operated vehicle can depend on various dynamic factors. Road

conditions, weather, location, and time of the day and the priority of the business or mission

can be classified as DCs of a ToD event. Hence, the next intended maneuvers (IMs) of a

tele-operated driver at a particular location can be predicted. However, the actual driving

maneuver during a turn depends on the driver inputs, design of the vehicle’s propulsion and

dynamics. These factors are the foundation of the PCADS-CA method. This is computation-

ally expressed with Eqs. (4.1), (4.2), and (4.3). As per these set of equations, tele-operated

driver’s input, DI , correlates to the IM DM and DM correlates to the DC, DC . Based on this

relevancy, PCADS-CA methods presented in algorithm 1, 2, and 3. Algorithm 1 detects the

wrong turn at intersections, algorithm 2 detects the vehicle at intersection turning outside

the expected time window and the intention of algorithm 2 is to reduce the false positive

(FP) for known dynamic alerts.

DC = f1(m, γ, t, ω, τ, l, ε) (4.1)

Where,

m = Mission (e.g., emergency vehicle, LMD, cross border transport, ride share).

γ = Road conditions (e.g., wet, dry, ice/snow, construction).

t = Traffic congestion (i.e., light, moderate, heavy).

ω = Weather conditions (i.e., clear, rain, fog, snow).
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Algorithm 1: An anomalous maneuver detection at intersection – incorrect ma-
neuver
Data: m,R,G, l, t,DI , V
Result: A′

C

if m is TRUE for V then
V (R,G)← m(R,G);
initialize DILat

, DILong
, DIMnvr

for V;

end
while R ̸= 0 do

find Geo-code for all G;
create data store E for V with: DELat

, DELong
, DEMnvr

;

end
while V ̸= 0 do

DILat
, DILong

, DIMnvr
← lLat, lLong, DI ;

find DILat
, DILong

= DELat
, DELong

;

if DIMnvr
atDILat

, DILong
̸=DEMnvr

atDELat
, DELong

then

set A′
C = TRUE in E;

end

end

τ = Current time.

l = Location of the vehicle.

ε = Dynamic factors (e.g., other road users and objects in the path, road blocks).

R = Planned route of the target vehicle for LMD (e.g., map data for depot, drop-off

locations, directions, time window).

G = A list of all intersections for region of interest with geo-coding (i.e., latitude and

longitude).

[DM ∈ {st, lt, rt, ut}] = f2(DC) (4.2)

Where,

st = Go straight, lt = Make left turn, rt = Make right turn, ut = Make U-turn.

[DI ∈ {Cmdstr, Cmdaccl, CmdBrk}] = f3(DM) (4.3)

Where,

Cmdstr = A steering command from ToD.

Cmdaccl = An acceleration control command from ToD.

CmdBrk = A brake control command from ToD.

Ĥ denotes the vehicle health.

A′
C denotes the anomaly based on DCs.
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Algorithm 2: An anomalous maneuver detection at intersection - incorrect time
window
Data: m,R,G, l, , t,DI , V
Result: A′

C

while V ̸= 0 do
DILat

, DILong
, DIMnvr

← lLat, lLong, DI ;

find DILat
, DILong

= DELat
, DELong

;

if DIMnvr
atDILat

, DILong
, ̸=DEMnvr

atDELat
, DELong

, DETime
then

set A′
C = TRUE in E;

end

end

Algorithm 3: An anomalous maneuver detection at intersection – filtering dynamic
alert

Data: m,R,G, l, , ϵ, t,DI , V, Ĥ
Result: A′

C

while V ̸= 0 do
DILat

, DILong
, DIMnvr

← lLat, lLong, DI ;

find DILat
, DILong

= DELat
, DELong

;

if DIMnvr
atDILat

, DILong
, tao ̸=DEMnvr

atDELat
, DELong

, DETime
then

if ϵ = NULL & Ĥ = OK then
set A′

C = TRUE in E;
end

end

end
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4.2.2 Stage 2: PCADS-Physics-based Anomaly Detection

The vehicle motion in tele-operated vehicles can be divided into two categories including

cyber and physical elements. A driving maneuver command for steering, braking and accel-

eration received by vehicle falls under the cyber elements. On the other hand, a transfer of

power from energy source to wheel, vehicle motion and dynamics is a part of physical ele-

ments. The working principle of these physical elements is the core of PCADS-PB method.

The proposed framework of PCADS-PB model is outlined in Fig. 4.4. As illustrated in this

Figure 4.4: A Vehicle Physics-based Anomaly Detection Framework

diagram, the detection mechanism is divided into two domains including the vehicle physics

domain and learning and prediction domain. When PCADS-PB algorithm receives the ToD

input, it first enters the vehicle physics domain. Steering wheel angle, accelerator pedal and

brake pedal are provided to the vehicle model and the output of vehicle’s model is passed

on to the learning and prediction domain. In this domain, an ML algorithm is used to learn

the correlation between output of vehicle physics domain to left turn, right turn and U-turn

maneuvers. With an appropriate learning, the proposed method is intended to predict the

anomaly in a time-series sequence of the vehicle physical parameters for the corresponding

turning maneuver. LSTM algorithm is a type of RNN architectures that has proven to be

very efficient to learn from complex sequential data to solve ML tasks [284, 285]. Thus, this

algorithm has chosen as a base model for the learning and prediction domain. It should be

noted that, vehicle’s models should be configured with power-train and vehicle dynamics of

the target vehicle. For this research, drive-train is modeled as a full-electric vehicle; hence,

the selected parameter for drive-train is from ESS and traction motor. In the following sec-

tion, the mathematical model for each component of the PCADS-PB method is described

in detail.

4.2.2.1 Proposed Mathematical Modeling

The proposed framework for the PCADS-PB process can be illustrated in Fig. 4.4.
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Inputs As can be seen, the first step is the time-series ToD inputs including the

acceleration-pedal-position (APP), steering-wheel-angle (SW), and the brake-pedal-status

(BP) which can be defined as Eqs. (4.4) - (4.6):

Acceleration-pedal-position (APP)→ {APPt−N , ..., APPt} (4.4)

Steering-wheel-angle (SW)→ {SWt−N , ..., SWt} (4.5)

Brake-pedal-status (BP)→ {BPt−N , ..., BPt} (4.6)

Where N is the number of time steps, and t is the current time. Also, APP can be changed

from 0 to 100% based on the discrete values, SW has an interval between−450 to 450 degrees,
and BP is a binary (i.e., 0 or 1) input. Ultimately, the general input can be mentioned in

equation (4.7):

Inputs = {APPt−N , SWt−N ,BPt−N , . . . ,APPt, SWt,BPt} (4.7)

Vehicle Model & Configuration The vehicle’s model and its configuration can influence

how these inputs are translated into the motion and can be described as follows:

• Drivetrain Configuration: D with D ∈ {S,D,Q} for single, dual, and quad motor

configurations, respectively.

• Steering System: Assuming a kinematic model for simplicity.

• Tire Specification: Fixed for this model.

Drivetrain Dynamics: The drivetrain configuration influences the torque distribution

to the wheels. For simplicity, we will consider a linear model where the APP linearly maps

to torque output, modulated by the drivetrain configuration.

Toutput = f trq(APPt, D) (4.8)

Where Toutput is the torque output and f trq() is a function that depends on APP and the

drivetrain configuration D.

Steering Dynamics: SWt can be directly related to the vehicle’s turning radius or

steering angle at the wheels through the kinematic steering model.

θsteer = g(SW t) (4.9)
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Where θsteer is the effective steering angle at the wheels, and g(.) represents a function

mapping the SW to the wheel steering angle, considering factors such as steering ratio.

Braking Dynamics: The braking dynamics can be modeled as a binary effect on the

vehicle’s deceleration, considering BP.

adecelaration = h(BP t) (4.10)

Where adecelaration is the deceleration due to braking, and h(.) is a function that maps the

BP to deceleration force. This could be a simple binary model or a more complex one

incorporating brake system dynamics.

• Integration Into the Vehicle Motion: The overall vehicle motion can then be determined

by integrating these inputs and configurations into the equations of motion, considering

both longitudinal and lateral dynamics. This involves solving differential equations that

describe how the vehicle’s velocity, position, and orientation change over time based

on the inputs and configurations.

d(Vehicle State)

dt
= Ψ(Toutput, θsteer, adeceleration,

Vehicle Configuration)

(4.11)

Where Ψ(.) shows the system of differential equations of vehicle dynamics.

Model Parameters Integrating the output of the “Vehicle Model and Configuration” with

the “Vehicle Physical Parameters” requires a detailed mathematical model that encompasses

ESS, motor characteristics, and vehicle dynamics (VD). This model will bridge the inputs

related to vehicle control (i.e., APP, SW, BP) and the physical responses of the vehicle,

taking into account the complexity added by different motor configurations. A summary of

inputs along with the vehicle physical parameters are as follows:

• Accelerator Pedal Position (APPt)

• Steering Wheel Angle (SWt)

• Brake Pedal Status (BPt)

• Drivetrain Configuration (D)

• ESS Parameters: Current (A), and power (W)

• Motor (M) Parameters: Torque (Nm), and Speed (rad/s)
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• Vehicle Dynamic (VD) Parameters: Wheel Angle (WA), Roll (R), Pitch (PT), Yaw,

and Acceleration in x, y, a directions (ax, ay, az)

ESS Dynamics: The ESS’s dynamics can be modeled based on the power required by

the motors:

Pbattery =
Nm∑
n=1

(TM × ωM) (4.12)

Where NM is the number of motors (1 for single, 2 for dual, and 4 for quad), TMi is the

torque output of motor i, and ωMi is the rotational speed of motor i. The battery current

Ibattery can be calculated by dividing Pbattery by the battery voltage Vbattery.

Motor Dynamics: Motor torque and speed are functions of the accelerator pedal posi-

tion and the vehicle’s current state. For each motor configuration:

TMi = fTorque(APPt, D) (4.13)

ωMi = fSpeed(Vvehicle, D) (4.14)

Vehicle Dynamics: Vehicle dynamics incorporate the effects of steering, braking, and

acceleration inputs on the vehicle’s orientation and position:

• WA is directly influenced by SWt.

• R, PT, Yaw dynamics can be derived from the vehicle’s motion, considering gravita-

tional forces, lateral forces during turns, and acceleration/deceleration.

• Acceleration (ax, ay, az) is influenced by the forces generated by the motors (for-

ward/backward), lateral forces (during turning), and vertical forces (from road sur-

face).

VD = ΨV D(Toutput, θsteer, adeceleration,ESS,

Motor Dynamics)
(4.15)

LSTM Framework The parameters from the previous step can be defined as follows:

• V Dt = [WAt, Rt, PTt, Y awt, ax,t, ay,t, az,t].

• Traction Motor: Mt = [TM , ωM ] multiplied by the number of motors based on the

configuration.

• ESS: Et = [Ibatter, Pbattery].
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Hence, we can find the xt = [Et,Mt, V Dt]. We will maintain the LSTM cell equations

but elaborate on the input vector:

1. Input Gate: it = σ(Wxi · xt +Whi · ht−1 + bi)

2. Forget Gate: ft = σ(Wxf · xt +Whf · ht−1 + bf )

3. Cell State: gt = tanh(Wxg · xt +Whg · ht−1 + bg), & ct = ft · ct−1 + it · gt

4. Output Gate: ot = σ(Wxo · xt +Who · ht−1 + bo), & ht = ot · tanh(ct)

As described, a monitoring of vehicle physical parameters over time during turning ma-

neuver is considered as a sequence to the class relation. While performing the classification

process for a given set of time-series sequential data, the LSTM model calculates the proba-

bility scores corresponding to each class. In this case, the class indicates the left turn, right

turn and U-turn. The PCADS-PB model assesses the probability score assigned to each of

turns for a given set of vehicle physical parameters in sequence, as shown in Algorithm 4.

If the probability score does not satisfy the criteria for the known expected turn, then an

Algorithm 4: The physics-based anomaly detection Score

Data: TurnExpected, logP (TurnAll)
Result: A′

P

if logP (TurnExpected) < logP (TurnOther) then
A′

P is TRUE;
end

anomaly is reported. A discussion of the experimental results will be presented in the next

section.
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CHAPTER 5

Experiments and Result

In chapter 5, experimental set up, steps and results conducted for this research are discussed.

There are two main sections in this chapter. In the first part, case study and results proposed

integrated TARA approach for AV perception is presented. This includes the impact rating

calculation with a object-focused risk evaluation utilizing real traffic crash data and usability

of proposed AI robustness factor for holistic evaluation AI based perception system for AV

during normal, abnormal and adversarial scenarios. In the second part, false data injection

(FDI) to steering wheel angle for ToD and proposed PCADS method for anomaly detection

for LMD application are presented.

5.1 Case Study: Integrated Approach of Threat Anal-

ysis for AV

A case study with the proposed method of integrated approach of threat analysis for AV

is presented in this section. Impact rating with this framework is demonstrated with real

data from traffic crashes where the most important objects are impacted. Also, the effect of

the robustness of the detection algorithm on attack feasibility assessment is illustrated with

some AI/ML-based state-of-the-art detection algorithms used in AVs.

5.1.0.1 Impact Rating for Different Objects from Traffic Crash Data

This section presents the real traffic crash data along with the calculations for impact rat-

ings for different objects. Table 5.1 demonstrates the different parameters in impact rating

(IUSecX) considering humans, bicyclists & motorcyclists, animals, and vehicles involved in

car crashes. The real data was extracted from the Michigan Traffic Crash Facts (MTCF)

and National Safety Council – Injury Facts [286, 287] for crashes in December 2022 in Michi-

gan State. This data is categorized based on four groups, including fatal injury, suspected

serious injury, suspected minor & possible injury, and no injury, to calculate the parameters
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Table 5.1: Impact Rating Parameters for Different Objects on the Road Based on Real
Traffic Crash Data

Objects
Severity

(SL,USecX)

Occurrence

(OH,USecX)

Recovery time (months)

(TL,USecX)

Financial loss (M$)

(ΓL,USecX)

Human

(i.e., Pedestrian)

1.298 0.0253 4.65 259.9

Bicyclist &

Motorcyclist
0.788 0.00663 2.15 25.3

Animal 0.0208 0.753 0.044 22.9

Vehicle 0.191 0.2147 0.48 204.8

involved in equation (3.3). The severity levels are considered severe (3), high (2), moderate

(1), and low (0), respectively, for different objects involved in crashes. The first parameter,

severity, can be calculated for the pedestrians involved in crashes based on different levels of

injuries as follows:

Severity =(
Severe× Fatal Injury

Total Crash Count
+ High× Suspected Serious Injury

Total Crash Count

+Moderate× Suspected Minor & Possible Injury

Total Crash Count
+ Low× No Injury

Total Crash Count

)
= 3× 23

198
+ 2× 37

198
+ 1× 114

198
+ 0× 24

198
= 1.298

Similarly, other severity values can be found for different objects on the road. Occurrence can be

found according to the total crash count (i.e., 198) for pedestrians divided by the total crash count

(i.e., 198 + 52 + 5907 + 1683 = 7840) for all objects (e.g., 198
7840 = 0.0253) to show the presence of

objects according to the traffic crashes on the road. This is the same procedure to find other Occur-

rence values for different objects. Assume a range of recovery times within each category including

fatal (9 − 12 months), serious (6 − 9 months), minor/possible (1 − 3 months), and no injury (0).

The average recovery time for each category using the midpoint can be found. A sample calcula-

tion of the average recovery time (months) for pedestrians can be 23×10.5+37×7.5+114×2+24×0
198 = 4.65

months, and a similar process can be carried out for bicyclists and motorcyclists, animals, and

vehicle items. Regarding the average costs per injury category, it is necessary to define the average

costs for each injury category. These can vary significantly depending on factors (e.g., location,

healthcare costs, legal settlements, and lost wages). Some rough estimates can be mentioned as

follows:
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• Fatal Injury: $10, 000, 000 (assuming high cost of life, medical expenses, and lost wages)

• Suspected Serious Injury: $500, 000 (assuming moderate cost of medical treatment and lost

wages)

• Suspected Minor Injury & Possible Injury: $100, 000 (assuming lower cost of medical treat-

ment)

• No Injury: $0 (assuming no immediate financial loss)

An example of the financial loss calculations based on the pedestrian object can be represented

as follows:

• Fatal Injury: 23 pedestrians × $10, 000, 000/pedestrian = $230, 000, 000

• Suspected Serious Injury: 37 pedestrians × $500, 000/pedestrian = $18, 500, 000

• Suspected Minor Injury & Possible Injury: 114 pedestrians × $100, 000/pedestrian =

$11, 400, 000

• No Injury: 24 pedestrians × $0/pedestrian = $0

Total Estimated Cost: $230, 000, 000 + $18, 500, 000 + $11, 400, 000 + $0 = $259, 900, 000

According to Table 5.1, human object category demonstrates the highest impact rating among

objects, according to real traffic crash data. IUSecX index can be advantageous in terms of different

parameters including damage severity, presence of different objects on the road, average recovery

time after damage occurrence, and financial loss. According to real crash data in Michigan State,

a thorough analysis of different objects considering indexes can be carried out. For instance, even

though the occurrence index (OH,USecX) for animals is significantly higher than other objects, this

object category has lower average values for severity, recovery time, and the loss. Also, different level

of injuries considered which the most vulnerabilities have been obtained to humans and vehicles,

respectively.

5.1.1 Attack Feasibility Assessment with AI Robustness Factor

The section details three case studies that utilize a modified formula incorporating an AI robustness

factor to assess attack feasibility. Currently, in the absence of a standardized robustness metric,

the prevailing practice is to gauge AI’s resilience based on conventional performance metrics amidst

defensive scenarios. ROC curve, accuracy, precision, recall, and F1-score are some of the common

metrics that are used for evaluating AI performance. In this paper, the performance metrics

provided by the authors are translated to RF factor as per Fig. 5.1 along with other parameters.

For the first two cases, it is assumed that performance of the perception algorithm is good in normal

and abnormal scenarios to highlight the effect on RF and attack feasibility due to adversarial
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attacks. First example is for speed limit sign detection with same defense model for multiple

attacks and the second one is for object detection under the same attack with multiple defense

methods [229, 230]. These case studies are shown with attack type, defense method, attack potential

and attack feasibility values in Table 5.2. The third case is presented to show the comparison of

attack feasibility ratings when the defense method is completely missing for AI perception algorithm

under adversarial attack and performance is poor for abnormal scenarios. This example is crafted

based on the performance of traffic cone detection in abnormal scenarios [288] and then assumed

perception will be poor under adversarial attack. In Fig. 5.2, a comprehensive risk assessment

approach with an AI robustness factor from our proposed integrated TARA method is presented.

Figure 5.1: Evaluation of Attack Potential in Compliance with ISO/IEC 18045 Parameters

Figure 5.2: A Comprehensive Risk Assessment Based on the AI Robustness Factor for AV
Perception Datasets

In this approach, potential AI/ML models for AV perceptions systems can be evaluated against

normal, abnormal and adversarial dataset. For each model AI RF can be assigned based on Fig. 5.1

and provided to risk assessment formula according to equation 3.2.
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Table 5.2: Attack Feasibility Calculations for Different AI Algorithms’ Robustness for Per-
ception Systems

# Attack feasibility assessment Attack feasibility

VET VSE VKoIC VWoO VEq VRF
∑

V

1. 4 3 3 0 4 3 17 Low

2. 1 3 3 0 0 2 9 Moderate

3. 1 3 3 0 0 1 8 High

Case 1 - Attack: poster-printing attack I-FGSM, C&W, Deepfool, JSMA.

Defense method: SVD-based optimal approximation with 5G.

Performance: accuracy score (80%–90%). hence determined as good performance.

Case 2 - Attack: a patch on the back of a truck placed in front of the camera.

Defense method: FPDA, Z-mask, HyperNeuron.

Performance: 0.5–0.6 AUROC. hence determined as poor performance.

Case 3 - Performance for the abnormal scenario is 65.8%.

Assumption 1: For Cases 1 and 2, performance is good in normal and abnormal scenarios.

Assumption 2: For Case 3, performance is good in normal but there is no defense against

adversarial scenarios.

As per our analysis, a decrease in AI RF enables lower values of SE, ET, and Eq for a successful

attack. As a result, the attack feasibility is high when AI RF is low. When this is combined with

abnormal scenarios, as shown in Case 3, the cumulative attack feasibility also increases. It can be

interpreted as a higher risk according to equation 3.2.In Fig. 5.3, an AI/ML model performance for

normal, abnormal and adversarial scenarios based on different case studies from Table 5.2 is shown

as a bar chart for a comparative view.

A prediction value near to 0 represents model performance is not evaluated or shown poor

performance and 1 and 2 values represent moderate and good performance, respectively. It can be

noted that these models have not shown the comprehensive good results against normal, abnormal

and adversarial scenarios as shown in an hypothetical example of ideal robust AI/ML model on the

right side of the chart.
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Figure 5.3: A Comparative Example of an AI Robustness Factor Evaluation Considering
Case Studies from Table II for Normal, Abnormal, and Adversarial Scenarios

5.2 Case Study: PCADS for Detecting FDI Attacks

on Steering Command in LMD Application

In this section, the experimental set up to evaluate the proposed anomaly detection method,

PCADS is presented. Experimental steps are broadly divided into two parts. In first part,

experiments focus is on context-ware anomaly detection of PCADS. For this, a teleoperated vehicle

delivery scenario is created using open source route planner and then original route plan for the

delivery is manipulated with false data to create attack. It should be noted for this experiment it

is assumed the delivery vehicles follows the planned route and the estimated time window at each

location. The original route plan and manipulated route plan is used as input to context-aware

anomaly detection subsystem. In the second part, the focus is on physics-based anomaly detection

in trajectory of the teleoperated vehicle during the left turn, right turn and u-turn. For this

experiemnt, a real dataset known as D2CAV (by Behrad et al.) [289] was selected as good data

and attack data is created by injecting false data using the attack formulation described in

section 3.2.1. Original data and attack data are used to evaluate proposed physics-based anomaly

detection.

5.2.1 Original Dataset for Driving Maneuver

A real dataset known as D2CAV (by Behrad et al.) was selected as Good Data. This data

is collected with Ford vehicle during left turn, right turn and U-turn. Dataset contains time

series value of steering wheel angle, accelerator position and brake pedal status at sample rate of

100 ms. Minimum 65 observations for each type of turn are selected as good dataset for this research.
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5.2.2 Context-aware Anomaly Detection

The experiment steps for context-aware part of PCADS is as follows:

• creation of example data for teleoperated delivery route with turns at multiple intersection.

• manipulating intended turn action to create mismatch in turning maneuver from the original

route.

• manipulating the time of the intended turn at a particular location.

• adding a dummy dynamic alert signal.

• applying context-aware anomaly detection algorithm 1, 2 and 3, to above created original

data and false data.

First, an original route plan for a delivery vehicle is created with web-based route planning

service from MyRouteOnline [290]. This provides the IM at each intersection along the delivery

route derived from DCs. This corresponds to IM and DC processes in Fig. 4.3. Secondly, the ToD

input is created by altering the original route which includes the expected turn at certain intersec-

tion along the route and the modification of the expected time window of the turn. Additionally,

an input is added to indicate if there is any dynamic alert on a particular intersection. In the

final step, IM from step 1 and altered ToD input and dynamic alert from step 2 are passed to

the PCADS-PB algorithm proposed in Section 4. This algorithm is written in MATLAB script-

ing language and executed with MATLAB version 2023a in Microsoft Windows 10 environment.

The plots are generated using plotPosition, ploteroute and geoplayer functions in MATLAB. For

hardware, a computer with a 12th Gen Intel(R) Core(TM) i7-12850HX, 2100 Mhz, 16 Core(s), 24

Logical Processor(s) and 64 GB RAM. Results from the above experiments are presented in three

steps as with Fig. 5.4 , 5.5 and 5.6. In Fig. 5.4, the focus is to detect the anomaly in driving

action at a particular location (intersection). In this figure, the snapshot of original route plan

for the teleoperated delivery vehicle is provided in a table on the left side and the map is shown

on the right side. The table captures the geocodes from start to stop with intersection and the

expected ToD action from original route plan. On the map the expected route and ToD action is

marked as solid blue line. The red line on the map represents when the driving action at certain

intersection was altered to simulate an attack. The second experiment is to detect the anomaly in

ToD action with respect to the time-window and this is shown in Fig. 5.5. In addition to geocode

information the ETA and actual arrival times are also shown in the tabular part of this figure. On

the map the blue dots mean the actual ToD action at those intersections met the expected action

and time-window. However, the the red dots mean the ToD action at those intersections happened

outside the expected time-window. The third part of the experiment is shown in Fig. 5.6 which
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Figure 5.4: Context-aware Anomaly Detection - Incorrect Turn

shows that the proposed algorithm can filter out if a dynamic alert notification is provided by an

in-vehicle or external alert system. According to this figure, the table shows the DC including

the original intended maneuvering action for intersections along the selected delivery route. The

right most column shows the dynamic alert for an intersection. The map shows the results of com-

bined PCADS-CA detection. According to this diagram, the blue line indicates the original route

and blue dots denotes the intersection along the route. The red dots indicate that PCADS-CA

method’s detected anomalies in an actual maneuver from the intended action. However, the results

also notify about the dynamic alerts at intersections along the route with yellow dots. Generally,

the results illustrate that the PCADS-CA model can detect the first stage of anomalies based on

the DC. Further, it also provides notification dynamic alerts to reduce FPs due to some obstruction

or emergency has been received by the vehicle. It can be noted that robustness of this method re-

quires the delivery vehicle routing plan to be efficient and vehicle has the ability to receive real-time

update of dynamic situations.

5.2.3 Physics-based Anomaly Detection

This section elaborates the experiment and results with physics-based AD stage of the PCADS

model. The flow of the experiments is described as follows, 1) data selection and generation, 2)

training the model with data without injected noise and 3) anomaly detection when noise is injected.

MATLAB classification learner application and deep learning toolbox in MATLAB 2023a version

are used for training and testing of the ML models for PCADS-PB experiments. Each of these

three steps is discussed with the results below.
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Figure 5.5: Context-aware Anomaly Detection - Incorrect Time

Figure 5.6: Context-aware Anomaly Detection - Filtering Dynamic Alert
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5.2.3.1 Data Selection and Generation

An dataset to experiment with PCADS-PB model is generated based on the real dataset known

as “D2CAV.” The dataset contains of 75 left turn, 78 right turn, 62 U-turn scenarios. As per the

scope of this paper, steering wheel angle, accelerator pedal and brake pedal signals are extracted

from this dataset. The signals are recorded every 100 ms. This dataset is used as a good ToD input

dataset. In the next step, 31 observations are randomly selected from the left turn, right turn and

U-turn scenarios and a FDI attack dataset is created by injecting noise to the steering wheel angle

in these 31 observations. The noise is injected using the attack formula, shown in equation (3.6) and

is implemented using MATLAB. As illustrated in Fig. 5.7, an attack dataset consists two points of

injection in the steering wheel angle command and the duration of the injected noise is 2 seconds.

The points of injection are close to the beginning of turns and around the mid-point of turning.

These two datasets are termed as P1 noise real data, and P2 noise real data. In the final step, a

virtual vehicle model is used to generate dataset for vehicle physical parameters. The virtual vehicle

model is selected as an electric drive train with six degrees of freedoms. Vehicle physical parameters

are selected from three subsystems including ESS, traction motor and vehicle dynamics. Virtual

vehicle model is configured and simulated using virtual vehicle composer application in MATLAB

MATLAB/SIMULINK software. One dataset of the vehicle physical parameters is created with

the good ToD input dataset and two datasets are created for the attack dataset with P1 and P2

noise injection, these are named as P1 noise virtual vehicle data, and P2 noise virtual vehicle data.

5.2.3.2 Model Training and Testing with Real Data

In section 4.2.2 it was discussed that the proposed PCADS-PB formulates the anomaly detection

problem in trajectory patterns during turning maneuvers as a sequence to a classification problem.

However, before detecting the anomaly in turning maneuver, the model needs to be trained with

the known normal observations of right turn, left turn and u-turn. The dataset with steering wheel

angle, accelerator pedal, brake pedal, vehicle speed and heading angle for aforementioned maneuvers

from the real data are used to train the ML models in this experiment. Moreover, for a sequence

to classification training approach, it is important to compare and select the appropriate region of

the sequence in each observation. For this reason, the first set of experiments for PCADS-PB is

conducted with two set of sequences from the original real dataset described in the section 5.2.3.1.

The first set of sequence is chosen as the entire sequence of 40 seconds for each observation and the

other set of the training sequence is a shorter duration where the actual turning maneuver happens.

The performance of testing with these two set of sequences for real data are presented in Tables 5.3

and 5.4.

Table 5.3 represents the result from first set which is the entire 40 seconds of sequence and

Table 5.4 represents the sequence narrowed down to the duration of the maneuvers. The left most

column in both of tables show the ML algorithms used for training. Based on the literature review

in section 2.7, for this classification problem, three types of ML algorithms are chosen. First one is
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Figure 5.7: An Example of Attack on Steering Wheel Command by Noise Injection

a tree based classifier which is a popular method of classification in tradition ML. The second set of

algorithms are neural network (NN) based architecture of various depth and the third one is LSTM

which is DL based approach widely popular for sequence to classification problem. The columns,

“Accuracy,” “Precision,” “Recall,” and “F1-score” represent the commonly used ML metric that

to evaluate ML performance. The values in these columns correspond to the type of maneuver

mentioned in the column “Class”.These values range from 0 to 1, where a higher value represents
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Table 5.3: A Comparison of ML Algorithms for Good Dataset with Entire Sequence

Classifier Type Class Accuracy Precision Recall F1-score

Tree

Left Turn 0.85 0.78 0.83 0.80

Right Turn 0.94 0.92 0.92 0.92

U-Turn 0.89 0.84 0.77 0.81

Narrow
NN

Left Turn 0.80 0.73 0.68 0.70

Right Turn 0.89 0.83 0.88 0.86

U-Turn 0.86 0.76 0.76 0.76

Medium
NN

Left Turn 0.87 0.88 0.75 0.81

Right Turn 0.92 0.84 0.97 0.90

U-Turn 0.91 0.85 0.82 0.84

Wide
NN

Left Turn 0.87 0.86 0.75 0.80

Right Turn 0.91 0.82 0.97 0.89

U-Turn 0.93 0.91 0.84 0.87

Bi-layered
NN

Left Turn 0.81 0.74 0.69 0.72

Right Turn 0.89 0.82 0.88 0.85

U-Turn 0.88 0.80 0.79 0.80

Tri-layered
NN

Left Turn 0.82 0.75 0.72 0.73

Right Turn 0.87 0.83 0.82 0.83

U-Turn 0.86 0.74 0.79 0.77

LSTM

Left Turn 0.99 0.99 0.99 0.99

Right Turn 0.95 0.99 0.89 0.94

U-Turn 0.95 0.83 0.99 0.91

better ML performance. It should be noted that accuracy for ML classification problem provides

the measure of correctness of the model. It is calculated as total number of true positives (TP)

and true negatives (TN) divided by total number of observations. The precision is a measurement

of positive predictions, and it is calculated as TP predictions divided by the total of TP and false

positive (FP) predictions. The recall focus on the quality of negative predictions and it is calculated

as TP divided by the sum of TP and false negatives (FN). F1 Score is a popular metric to have a

comprehensive evaluation of classification models. F1-score helps to interpret ML performance to
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Table 5.4: A Comparison of ML Algorithms for Good Dataset with Sequence Focused at
Maneuvering Duration

Classifier Type Class Accuracy Precision Recall F1-score

Tree

Left Turn 0.97 1.00 0.91 0.95

Right Turn 1.00 1.00 1.00 1.00

U-Turn 0.97 0.91 1.00 0.95

Narrow

NN

Left Turn 0.94 0.85 1.00 0.92

Right Turn 0.97 1.00 0.90 0.95

U-Turn 0.97 1.00 0.90 0.95

Medium

NN

Left Turn 0.97 0.92 1.00 0.96

Right Turn 1.00 1.00 1.00 1.00

U-Turn 0.97 1.00 0.90 0.95

Wide

NN

Left Turn 0.94 0.85 1.00 0.92

Right Turn 0.97 1.00 0.90 0.95

U-Turn 0.97 1.00 0.90 0.95

Bi-layered

NN

Left Turn 0.97 1.00 0.91 0.95

Right Turn 1.00 1.00 1.00 1.00

U-Turn 0.94 0.90 0.90 0.90

Tri-layered

NN

Left Turn 0.94 0.85 1.00 0.92

Right Turn 0.97 1.00 0.90 0.95

U-Turn 0.97 1.00 0.90 0.95

LSTM

Left Turn 1.00 1.00 1.00 1.00

Right Turn 1.00 1.00 1.00 1.00

U-Turn 1.00 1.00 1.00 1.00

have a balance between high precision and high recall. By comparing the metric values between

Tables 5.3 and 5.4, it can be derived that for the known normal observations of left-turn, right and

u-turn from the real dataset the performance is better when ML model is trained with the sequence

focused on the duration rather than the entire duration of the observation. Also, it can argued that

a narrower sequence can reduce the model computation load. Based on this comparative analysis

the model corresponding to Table 5.4 is used for further experiments in this research. The next set
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of experiments focus on the anomaly detection with this trained model when noise injected in real

data.

5.2.3.3 Anomaly Detection in Real Data with Noise

This section presents the experiments and result for anomaly detection in real data with PCADS-

PB approach. While reviewing the ML approaches in section 2.7, it was discussed that softmax

function is commonly used in the output layer of NN for classification problem with multi-class in

the dataset. The softamx function assigns decimal probabilities to each class in a multi-class during

prediction. The output of softmax function was used in section 4.2.2 while defining the anomaly

detection framework, mathematical model and algorithm for PCADS-PB. Therefore, as a first step

the probability density score (the output of softmax function) were analyzed for observations with

true and false predictions. important to elaborate the concept NN architecture reviewed with a

perspective of this experiment. An example of this analysis is presented in Table 5.5. It might be

Table 5.5: Example of Prediction Probability Score with Softmax Function

Left Turn Right Turn U-Turn Prediction Test Status

0.05 0.92 0.03 ‘RT’ ‘RT’ TRUE

0.86 0.08 0.07 ‘LT’ ‘LT’ TRUE

0.05 0.03 0.91 ‘UT’ ‘UT’ TRUE

0.10 0.85 0.04 ‘RT’ ‘UT’ FALSE

0.05 0.93 0.02 ‘RT’ ‘UT’ FALSE

0.94 0.01 0.05 ‘LT’ ‘RT’ FALSE

noted that the probability score ranges from 0 to 1. As shown in Table 5.5, the highest probability

score observed my an ML classifier for a particular class reported as a predicted class. When the

predicted class matches the true class provided in a test sample, the prediction is TRUE (shown

with a green color) while the prediction is FALSE, when the probability score of the true class is

not the highest one (shown with a red color). This observation supports the hypothesis proposed

in Algorithm 4.

As next step, the ML models trained as part of Table 5.4 are tested with the two noise injected

datasets termed as “P1,” and “P2” in section 5.2.3.1. The results are presented in Table 5.6.

According to this table, for noise injected datasets “P1 noise real data,” and “P2 noise real data”

tree-based method could detect 1 out of 31 FDI samples for each datasets. LSTM based approach

could detect 10 anomaly for “P1 noise real data,” and 7 anomalies for “P2 noise real data.” The

neural network based approach detected approximately 20 anomalies out of 31 FDI for “P1,” and

“P2” point of noise injection combined.
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Table 5.6: Anomaly Detection in Real Data with Noise

Classifier

Type

P1 noise real data P2 noise real data

No. of

FDI Tested

No. of

Anomaly

Detected

No. of

FDI Tested

No. of

Anomaly

Detected

Tree 31 1 31 1

Narrow NN 31 21 31 20

Medium NN 31 21 31 20

Wide NN 31 21 31 20

Bilayered NN 31 18 31 21

Trilayered NN 31 20 31 21

LSTM 31 10 31 7

It may noted, that the model used for anomaly detection in this part of the experiment is

directly from the real dataset which contains steering wheel angle, accelerator pedal, brake pedal

signals, vehicle speed and heading angle. Vehicle physical parameter for vehicle dynamics such as

yaw, roll, pitch and parameters for traction motor and energy storage are not part of real dataset.

Therefore, the next part of the experiment is conducted with the virtual vehicle dataset generated

with the inputs from real dataset as described in section 5.2.3.1.

5.2.3.4 Experiment with Virtual Vehicle Data

In this part of the experiment, the proposed PCADS-PB approach is applied on the virtual vehicle

dataset. As described in the data generation part before, the input from real dataset was used

as input to a virtual vehicle created in MATLAB/Simulink environment. This virtual vehicle

is configured as BEV with a single traction motor. From the simulation of this virtual vehicle

with inputs from real dataset the vehicle physical parameters for vehicle dynamics, traction motor

and HV battery are recorded to create the good dataset for virtual vehicle. Further, similar to

experiment with real data, this virtual vehicle dataset is used to train the ML algorithms focusing

on the sequence around the maneuver labeled for each observation. The same set of ML algorithms

used in training with real data are chosen to train the models with virtual vehicle data. For ease

of comparison, the result of with testis presented in Table 5.7 in a similar format of Table 5.4

for real data. From a comparative analysis of Table 5.7 and Table 5.4, it may be noted that the

overall performance to predict the correct maneuver from the vehicle physical parameters of virtual

vehicle good dataset is in the higher range and similar to performance of models trained with
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real data. Therefore, as a next step these trained models with virtual vehicle dataset are used

for anomaly detection experiment with virtual dataset. It is important to mention the “P1 noise

Table 5.7: A Comparison of ML Algorithms for Virtual Vehicle Good Dataset with Sequence
Focused at Maneuvering Duration

Classifier Type Class Accuracy Precision Recall F1-score

Tree

Left Turn 0.94 0.91 0.91 0.91

Right Turn 1.00 1.00 1.00 1.00

U-Turn 0.97 1.00 0.91 0.95

Narrow

NN

Left Turn 0.90 0.90 0.82 0.86

Right Turn 0.97 1.00 0.90 0.95

U-Turn 0.94 0.83 1.00 0.91

Medium

NN

Left Turn 0.94 0.91 0.91 0.91

Right Turn 1.00 1.00 1.00 1.00

U-Turn 0.94 0.90 0.90 0.90

Wide

NN

Left Turn 0.90 0.83 0.91 0.87

Right Turn 0.97 1.00 0.90 0.95

U-Turn 0.94 0.90 0.90 0.90

Bi-layered

NN

Left Turn 0.94 0.91 0.91 0.91

Right Turn 1.00 1.00 1.00 1.00

U-Turn 0.94 0.90 0.90 0.90

Tri-layered

NN

Left Turn 0.94 0.91 0.91 0.91

Right Turn 1.00 1.00 1.00 1.00

U-Turn 0.94 0.90 0.90 0.90

LSTM

Left Turn 1.00 1.00 1.00 1.00

Right Turn 1.00 1.00 1.00 1.00

U-Turn 1.00 1.00 1.00 1.00
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virtual vehicle data,” and “P2 noise virtual vehicle data” datasets are generated by simulating the

same set of sequence of inputs in “P1 noise real data,” and “P2 noise real data” respectively. The

anomaly detection results for virtual vehicle “P1,” and “P2” noise data are presented in Table 5.8.

According to this table, the tree based classifier could detect 2 out of 31 FDI in virtual vehicle

dataset for “P1,” and “P2” noise. Narrow NN and wide NN could detect 13 and 19 samples as

anomaly for “P1” noise where as medium NN detected only 1. For “P2” noise injection narrow NN

identify 21 of 31 as anomaly which is more than detected by medium and wide NN with 16 and

13 respectively. Between bi-layered and tri-layered NN, for “P1” noise tri-layered NN performed

better than bi-layered NN with 16 and 4 respectively however, for “P2” noise bi-layered detected 21

anomaly which is better than tri-layered with 13 detection. For this particular experiment LSTM

could detect all of the anomalies.

Table 5.8: Anomaly Detection in Virtual Vehicle Data with Noise

Classifier

Type

P1 noise virtual vehicle data P2 noise virtual vehicle data

No. of

FDI Tested

No. of

Anomaly

Detected

No. of

FDI Tested

No. of

Anomaly

Detected

Tree 31 2 31 2

Narrow NN 31 13 31 21

Medium NN 31 1 31 16

Wide NN 31 19 31 13

Bilayered NN 31 4 31 21

Trilayered NN 31 16 31 13

LSTM 31 31 31 31

5.2.3.5 Discussion

The observations from the above experiments conducted for the proposed PCADS-PB anomaly

detection method can be summarized as follows. The result from the first experiment highlights

the importance of selecting the appropriate training sequences from each observations of the original

real dataset to correctly train the model. Result from training and testing of ML model, suggest

that the performance of the selected ML algorithms are better when the training is focused on

the sequence around the specific maneuver labeled for that observation instead of training the

entire sequence. The second experiment was to evaluate the performance of anomaly detection
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with these trained model when noise is injected real dataset. The result of this experiment show

that none of the selected algorithms could detect all of the FDI as anomaly. The tree based

classifier has the worst performance amongst all. NN based classifiers performed the best with

approximately 65% the anomaly detected in average. LSTM was able to detect around 30% of

the anomaly. This result suggested the need of a dataset with features that capture the other

important information including vehicle dynamics. As the real dataset did not have the parameter

for comprehensive information on vehicle dynamics and no information for propulsion, the third

experiment was conducted with virtual dataset. This virtual dataset was created by simulating

a BEV virtual vehicle model with the driver inputs for steering wheel angle, acceleration and

brake pedal from real dataset. Result from model trained with this virtual dataset with more

features relevant to vehicle dynamics show that LSTM performed better than the other selected

ML approaches to detect anomaly for “P1 noise virtual vehicle data,” and “P2 noise virtual vehicle

data,” the two types of noise dataset created for this experiment. These preliminary results and

observations made during the experiments suggest that the proposed PCADS-PB has the potential

to contribute in further research in the area of anomaly detection for ToD application. It may be

noted that the aim of proposed PCADS method is to detect inconsistencies in ToD in correlation

to vehicle energy flow, vehicle propulsion, and vehicle dynamics. However, the case study in this

dissertation is focused on anomaly detection during turning maneuver, hence vehicle dynamics

related parameters are relevant features. For extended scope of PCADS, feature analysis of ESS

and traction motor is an important step. As future work this dissertation recommend experiments

with various training sequence, feature analysis of relevant vehicle physical parameter according to

the vehicle configurations for ToD applications, various point of noise injections and comparative

analysis with other anomaly detection methods.
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CHAPTER 6

Conclusions and Future Work

Recommendation

Autonomous driving is one of the key enablers for transforming mobility solutions into safe, secure,

and convenient modes. Current state-of-the-art technology for automated driving has limitations

in real life scenarios scenarios, hence ToD has emerged as human-in-the-loop solution. Both au-

tonomous driving and teleorpated driving poses cyber-physical threats that increase concerns for

the safety and security of the riders, other road users, and in some cases, the protection of public

property.

With many actors and their dynamic interactions in the AV’s operating environment cyber-

physical threats for AVs are not limited to IT cyber-threats. Conventional threat modeling ap-

proaches are intended for E/E components of the vehicle and are not focused on AV missions and

cyber-physical interactions in AV ODD that heavily affect the performance of an AI-based algo-

rithm for ADS. In this work, recent research on the AV security topic is reviewed. The findings

from the literature reviews are presented in three categories. First, a common practice in auto-

motive threat modeling (ISO/SAE 21434) is summarized, along with its limitations and recent

progress in an AV-specific security approach from other researchers. Next, the advantages and

limitations of an AI algorithm for a vision-based AV perception systems are discussed. Lastly, the

latest research in cyber-physical attacks on the vision system is reviewed. To address the need

for AV perception-specific threat modeling, this paper proposes an integrated approach that uni-

fies the mission-centric threat analysis method for CPSs considering ISO/SAE 21434 standard.

First, a comparative TARA on OC process from the AV perception system is performed with an

asset-centric approach and STPA-Sec, which focuses on the interaction and mission of the system.

Accordingly, the authors have introduced a transformation step between causal scenarios for unse-

cured interaction of STPA-Sec and attack class using the STRIDE model. The proposed method

can identify threats of AV missions abstracted from platform-level core security resources, as well

as the threats to core components of the platform.

In Fig. 6.1, a snapshot of the threat analysis is shown. It can be noted that the proposed

method has identified threats in cyber-physical and system interactions, which are critical and
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Figure 6.1: Key Observations from Results with Proposed Threat Analysis

tightly coupled with AV missions. This allows a security-by-design approach to be followed by the

concept level of AV feature design. On the other hand, this analysis has also identified threats to

core elements that require dedicated resources. With this ability to identify threats to AV missions

abstracted from platform-level core security resources, the security-as-a-service (SAAS) strategy

can be decided dynamically based on mission priority and the criticality of AV on demand, as can

be observed in Fig. 6.2. On the left side, (a) shows two missions, including M1 for a highway

driving scenario and M2 for a city driving scenario, with different needs and types of cyber-physical

and system interactions. Depending on the current mission during AV driving, security resources

(S1, S2, and S3) are repurposed to secure interactions I4, I5 from I1, I3 for efficient utilization of

security resources when AV switched from M1 to M2. At the bottom, (b) shows security S4 to S8

are dedicated to secure core elements that need the resources all the time.

The TARA model presented here incorporates the effect of objects on the road and the robustness
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Figure 6.2: An Illustration of Resource Consumption for AV Security

of AV perception algorithms. A case study with humans, cyclists, animals, and vehicles from traffic

crash data demonstrates that the proposed model embeds object-level granularity while evaluating

the risk of every perception system under an attack. This case study shows that an assessment

of attack feasibility augmented with an AI robust factor captures the holistic performance of the

perception algorithm under normal, abnormal, and adversarial scenarios with attack and defense

methods. We believe that both of these enhancements are useful tools to assess the risk of the

AV perception system and evaluate potential solutions to mitigate the threat. As future scope,

object-focused impact rating model needs to be with traffic data for various scenarios and other

combinations of attack and defense methods. Secondly, the enhancement of risk assessment with

AI RF factor needs to be evaluated with a exhaustive list of AI/ML models for AV scenarios.

ToD (ToD) system for public road is in its early stage of evaluation, limited research is available

for cyber-physical threats of ToD. Threat modeling in this work shows the risk of ToD is high for
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FDI attack on driving control signal from teleoperator to teleoperated vehicle. Also, FDI dataset

for ToD driving control signal is not available. Hence, in this research an attack formulation is

developed by introducing noise with various window of opportunity. To detect such attack Physics-

based Context-aware Anomaly Detection System (PCADS) is presented. Based on the observation

and analysis from this research, addressing the following gaps is necessary for future research in to

develop a cyber-physical security framework for ToD:

• An exhaustive dataset for false data injection on ToD control is necessary for robust evaluation

of anomaly detection method against such attacks.

• Attack formulation shown in this work needs to be extended to various combination of noise,

point of injection and duration of attack.

• For anomaly detection the experimental results show that successful detection of anomaly

with proposed Physics-based Context-aware Anomaly Detection System (PCADS) depends

on the combination of multiple factors including selection of the training sequence, availability

and quality of vehicle physical parameter dataset for the specific application, point of noise

injection. Therefore, rigorous experiment with such variations is recommended for further

evaluation of the performance.

• Proposed PCADS method is formulated based on sequence to classification problem. How-

ever, other approach of anomaly detection with the knowledge of physical system needs to

be explored and compared with this approach.

• In this research attack creation and anomaly detection is focused on false data injection

attack, however as shown in attack tree analysis in section 3.2, ToD has potential threats

from other types of attack vectors. Hence, further research with other attack types and

mitigation methods is critical for safe and reliable operation of ToD.
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APPENDIX

MATLAB Scripts

%% PCADS -CA plot positions and route

geoplayer(data.latitude (1),data.longitude (1),zoomLevel);

plotPosition(player ,data.latitude(i),data.longitude(i));

plotRoute(player ,data.latitude ,data.longitude);

%% PCADS -PB train and test data separation

index_train = randsample (1: height(Dataset_T), 180);

index_test =

[3,10,18,26,31,40,57,58,59,67,68,80,85,93,98,102,110,

121 ,127 ,139 ,150 ,157 ,166 ,176 ,184 ,198 ,201 ,205 ,208 ,211 ,212];

T_Train = T(index_train ,:);

T_Test = T(index_test ,:);

%% PCADS -PB noise injection

T_Noise_P1_Test = T_Test;

T_Noise_P1_Test (: ,141:160) = T_Noise_P1_Test (: ,141:160) .*

randn (1,20);

T_Noise_P2_Test = T_Test;

T_Noise_P2_Test (: ,161:180) = T_Noise_P2_Test (: ,161:180) .*

randn (1,20);

%% PCADS -PB LSTM model training

layers = [ ...

sequenceInputLayer(inputSize)

%selfAttentionLayer (10 ,200)

bilstmLayer(numHiddenUnits1 ,OutputMode ="last")

batchNormalizationLayer

leakyReluLayer

fullyConnectedLayer(numClasses)

softmaxLayer

classificationLayer]
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options = trainingOptions ("adam", ...

ExecutionEnvironment ="cpu", ...

GradientThreshold =1, ...

MaxEpochs =10, ...

MiniBatchSize=miniBatchSize , ...

SequenceLength =" longest", ...

Shuffle =" never", ...

Verbose=1, ...

ValidationData ={ XValidation ,YValidation}, ...

ValidationFrequency =30, ...

Plots="training -progress ");

[net ,info] = trainNetwork(XTrain ,YTrain ,layers ,options);

%% PCADS -PB LSTM model normal scenario test

[YPred ,Scores] = classify(net ,XTest , ...

MiniBatchSize=miniBatchSize , ...

SequenceLength =" longest ")

%% LSTM attack scenario test

index_lstm_test = index_test;

XTest_lstm = obs_data_new(index_lstm_test);

YTest_lstm = obs_class(index_lstm_test);

YTest_lstm_noise_P1 = YTest_lstm;

YTest_lstm_noise_P2 = YTest_lstm;

XTest_lstm_noise_P1 = XTest_lstm;

for i_randn =1:31

XTest_lstm_noise_P1{i_randn }(2 ,40:59) = XTest_lstm{

i_randn }(2 ,40:59)*randn (20);

end

XTest_lstm_noise_P2 = XTest_lstm;

for i_randn =1:31

XTest_lstm_noise_P2{i_randn }(2 ,60:79) = XTest_lstm{

i_randn }(2 ,60:79)*randn (20);

end

[YPred_lstm_noise_P2 ,Scores] = classify(net ,

XTest_lstm_noise_P2 , ...

MiniBatchSize=miniBatchSize , ...

SequenceLength =" longest ")
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overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques
and electronic control units. Energy Conversion and Management, 52(2):1305–1313, 2011.

[61] Sergio Manzetti and Florin Mariasiu. Electric vehicle battery technologies: From present
state to future systems. Renewable and Sustainable Energy Reviews, 51:1004–1012, 2015.

[62] Wei Liu, Tobias Placke, and K.T. Chau. Overview of batteries and battery management for
electric vehicles. Energy Reports, 8:4058–4084, 2022.

[63] Ahmad Faraz, A. Ambikapathy, Saravanan Thangavel, K. Logavani, and G. Arun Prasad.
Battery Electric Vehicles (BEVs), pages 137–160. Springer Singapore, Singapore, 2021.

[64] Gopal K. Dubey. Fundamentals of electrical drives. 1994.

[65] Ahmed T. Hamada and Mehmet F. Orhan. An overview of regenerative braking systems.
Journal of Energy Storage, 52:105033, 2022.

[66] Shugang Jiang. Vehicle e/e architecture and its adaptation to new technical trends. Technical
report, SAE Technical Paper, 2019.

[67] Hadi Askaripoor, Morteza Hashemi Farzaneh, and Alois Knoll. E/e architecture synthesis:
Challenges and technologies. Electronics, 11(4), 2022.

[68] Glen J Drellishak. An overview of automotive electronics, 1977. In IEEE 1977 Region Six
Conference Record, 1977., pages 41–48. IEEE, 1977.

[69] Dingwang Wang and Subramaniam Ganesan. Automotive domain controller. In 2020 Inter-
national Conference on Computing and Information Technology (ICCIT-1441), pages 1–5,
2020.

[70] Weiying Zeng, Mohammed A. S. Khalid, and Sazzadur Chowdhury. In-vehicle networks out-
look: Achievements and challenges. IEEE Communications Surveys Tutorials, 18(3):1552–
1571, 2016.

[71] Andrea Reindl, Daniel Wetzel, Norbert Balbierer, Meier Hans, Michael Niemetz, and Sangy-
oung Park. Comparative analysis of can, can fd and ethernet for networked control systems.
10 2021.

[72] Siddhartha .V, Naveen Kalappa, and Sitaram Yaji. Comparison of can, lin, flex ray and most
in-vehicle bus protocols. 04 2019.

[73] Nicholas Rocchi, Andrea Toscani, Giovanni Chiorboli, Daniel Pinardi, Marco Binelli, and An-
gelo Farina. Transducer arrays over a2b networks in industrial and automotive applications:
Clock propagation measurements. IEEE Access, 9:118232–118241, 2021.

118
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