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Abstract 

Metropolitan areas globally are increasingly adopting electric taxis (ET) to mitigate 

transportation-related emissions, leading to a significant impact on urban transportation networks 

(TN) and electricity power distribution networks (PDN). This evolution presents challenges, 

including higher electricity demand and altered demand profiles, which underscore the critical 

interdependence between these systems. To address these complexities, we propose a novel two-

stage stochastic programming planning model aimed at optimizing both the TN and PDN. This 

model strives to balance ET drivers' charging preferences, minimize infrastructure deployment and 

grid expansion costs, and ensure synchronized coordination between the TN and PDN. In 

transitioning to a more sustainable urban mobility paradigm, we also consider the advantages of 

incorporating an autonomous ET fleet to boost system efficiency. 

The application of stochastic optimization in this context, however, is often obstructed by 

distributional ambiguity - where crucial probability distributions are not well-defined or are 

unknown. To counteract this, our study introduces an innovative approach that leverages the 

Average Percentile Upper Bound (APUB) framework. APUB is designed to minimize a statistical 

upper bound for the expected value of uncertain objectives, thus providing a more robust 

foundation for decision-making under uncertainty. This method offers a statistically rigorous upper 

limit for the population mean while serving as a viable risk metric for the sample mean. By 

integrating APUB into our stochastic optimization model, we address distributional ambiguities 

inherent in the deployment of electric taxis and their charging stations, thereby enhancing the 

model's reliability, consistency, and comprehensibility. Our empirical investigations, using two-
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stage product mix and multi-product newsvendor benchmark problems, demonstrate the 

effectiveness of the APUB-enhanced optimization framework compared to traditional methods 

such as sample average approximation and distributionally robust optimization. This combined 

approach ensures that the transition to electric taxis not only addresses environmental concerns but 

also proceeds with a robust and economically feasible strategy for infrastructure development. 
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Chapter 1 Introduction 

As cities and policymakers focus more on sustainable transportation, the move towards 

electric taxi fleets is gaining momentum. This global shift to electric taxis (ETs) isn't just about 

modernizing transport-it's a crucial step towards cutting down greenhouse gas emissions and 

cleaning up urban air pollution. These efforts are key to achieving larger environmental goals and 

reducing the carbon footprint of the transport sector. As a result, cities around the world are 

increasingly incorporating electric vehicles into their public transit systems, aiming to create 

greener, more livable urban spaces. Despite the enthusiasm, the transition isn't without its hurdles. 

A major challenge is setting up the charging infrastructure needed to keep these taxis running. The 

effectiveness of electric taxis heavily relies on having an extensive, efficient, and seamlessly 

integrated network of charging stations ready to go. 

The development of electric vehicle (EV) charging infrastructure involves more than just 

installing hardware; it requires intricate decision-making shaped by the interactions between the 

transportation network (TN) and the power distribution network (PDN). Planning and optimizing 

charging stations are crucial, as they affect the operational efficiency of ETs and their convenience 

for users. Additionally, the variable dynamics of charging demand, shaped by travel patterns, taxi 

operation modes, and urban layouts, complicate the planning process. These complexities call for 

sophisticated approaches that can manage the unpredictable nature of charging needs and the 

detailed interdependencies between TN and PDN. 

In the broader realm of operations research and optimization, making decisions under 

uncertainty is a common challenge across various fields, including engineering and management. 
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Stochastic optimization offers a robust framework for dealing with this uncertainty by treating 

uncertain parameters as random variables. This method helps decision-makers prepare for multiple 

potential scenarios, enhancing the reliability and effectiveness of their decisions. However, 

applying stochastic optimization in real-world scenarios is often constrained by factors such as 

limited data, incomplete information, and complex system dynamics. These factors can lead to 

distributional ambiguity, where the exact probability distributions of random variables are 

unknown, further complicating decision-making. 

This dissertation introduces an innovative framework that merges advanced stochastic 

optimization techniques with practical aspects of charging station planning in urban settings. By 

adopting a two-stage stochastic programming model that reflects the dynamics between TN and 

PDN, this study aims to provide a comprehensive strategy for efficiently deploying ET charging 

infrastructure. It accounts for the uncertainties in charging demands and operational conditions, 

proposing a systematic approach to infrastructure planning that promotes the sustainable expansion 

of electric mobility. 

Moreover, this research explores methodological improvements in stochastic optimization 

to tackle distributional ambiguity, a prevalent issue in practical applications. Integrating statistical 

inference techniques into the optimization process enhances the framework's capability to handle 

uncertainty, thus improving the quality and outcomes of decision-making. This integration marks 

a significant advancement in optimization, offering a more robust and reliable tool for addressing 

the complex challenges of developing electric vehicle charging infrastructure. 

As electric taxis become a practical alternative to traditional fuel-based taxis, effective 

planning for charging stations is increasingly important. The adoption of ETs relies not just on the 

vehicles but also on the infrastructure that supports their operation. This dissertation contributes 
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to efforts aimed at enhancing urban transportation sustainability by offering a flexible and 

comprehensive framework for planning charging stations. Through detailed analysis and 

optimization, this work addresses the challenges posed by taxi fleet electrification, aiding a 

smoother transition to electric mobility and supporting broader environmental and urban quality 

goals. 
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Chapter 2 A Stochastic Charging Station Deployment Model for Electrified Taxi Fleets in 

Coupled Urban Transportation and Power Distribution Networks  

 

Nomenclature 

 

Sets 

  Set of the nodes in the TN which represent geographical zones. 

  Set of the nodes in the PDN. 

  Set of the edges in the PDN. 

+
  ( ) 0,1  where edge ( )0,1  connects the dummy node 0 and the substation at node 1 

and is used when increasing the capacity of the substation. 

  Set of the candidate locations for constructing public charging stations. 

+
   0  where node 0 in the TN is a dummy charging station. 

( )   Set of the nodes in the PDN which the candidates are connected with to get electrical 

power. 

Ω   Sample space of the random scenario in the second stage of the model. 

  Set of the constraints in the second stage under a scenario. 
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Parameters - TN 

jA   Fixed cost of constructing a charging station at location j  ($/Station) (
jA =  $163K  

for j  in uptown and $652jA K=  for j  in downtown). 

jC   Unit construction cost of the charging capacity at location j  where the capacity means 

the maximum number of the ETs accommodated to charge ( )$ / ET  ( $3,160jC =  for 

j  in uptown and for $12,640jC j=  is in downtown). 

( )iD    Charging demands in zone i  under scenario   (follow the patterns of charging 

demands in NYC). 

   Construction cost coefficient. 

 

Parameters - PDN 

mnG   Cost of adding one distribution line on edge ( ), ($ /m n  Line () $300 /mnG K=  Line for 

all ( ), )m n  

L   Unit cost of substation expansion ( )( )$ / $788 /kVA L kVA= . 

W   Real power needed to charge an ( )( )ET 7.7kW W kW= . 

K   Maximum number of the distribution lines allowed to add on each edge ( 2K = ). 

( )load

nP    Active power load at the PDN node n  under scenario ( )kW  (follow IEEE33). 

( )load

nQ    Reactive power load at the PDN node n  under scenario ( )kW  (follow 

IEEE33). 

max

mnP   Capacity of the PDN edge ( ),m n  for the active power flow ( )kW  (follow IEEE33). 

max

mnQ   Capacity of the PDN edge ( ),m n  for the reactive power flow (kvar) (follow IEEE33). 
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max min/V V   Upper/Lower bound of the voltage magnitude required for preserving good 

electric power quality ( ). .p u  ( max min/ 0.95 /1.05 . .V V p u= ). 

mnR   Resistance of a distribution line on the PDN edge ( )( ), Ωm n  (follow IEEE33). 

mnX   Reactance of a distribution line on the PDN edge ( )( ), Ωm n  (follow IEEE33). 

   Expansion cost coefficient. 

( )j   The node in the PDN with which station j  is connected to get electrical power. 

( )1 n −
  The station which is connected with node n  in the PDN to get electrical power. 

 

Parameters - Penalty and Preference 

T   Unit monetary value of a driver's satisfaction with charging ( $ /K  unit satisfaction) 

( $30 /T K=  unit satisfaction ) . 

0H   Penalty cost incurred when a driver cannot find any charging stations acceptable 

according to his or her preference ( )( )0$ / 1.5K ET H T= . 

1H   Penalty cost incurred when a driver's charging request is rejected because the charging 

capacity of his or her selected charging station has overflowed ( )( )1$ / 2K ET H T= . 

( )ijU    A driver's preference to drive from zone i  to station j  for charging the ET under 

scenario  . 

( )b    Coefficient indicating the sensitivity of an ET driver's preference to the travel time to a 

charging station. 

( )c    Coefficient representing the sensitivity of an ET driver's preference to the charging 

price. 
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( )minU    Threshold of the charging preference under scenario   below which a driver 

quits his or her charging need ( )( min 0.35U  =  during the daytime and 

( )min 0.25U  =  at night ) . 

ΔU   Level of centralized charging management and vehicular automation. 

 

Decision Variables - First Stage 

z   Vector consisting of  0,1jz   indicating if location j  is selected to construct a 

charging station. 

x   Vector consisting of 
jx  indicating charging capacity of station j . 

u   Vector consisting of 01u  indicating the amount of substation expansion and 

 0, ,mnu K   indicating the number of the distribution lines added onto the PDN 

edge ( ),m n  . 

 

Decision Variables - Second Stage 

js   Charging requests rejected at station j . 

ijy   Charging demands in zone i  assigned to station j . 

mnp   Active power flow through the PDN edge ( ),m n . 

mnq   Reactive power flow through the PDN edge ( ),m n . 

mV   Voltage magnitude at the PDN node m . 
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2.1 Introduction 

Electrification in the transportation industry has made rapid development Martinez et al. 

(2016). The fast-growing demand for decarbonizing travel motivates taxi and ride-hailing 

electrification in the last decade. All-electric taxi (ET) fleets have been deployed and started to 

provide services in Shenzhen and Taiyuan, two large cities in China, as a consequence of China's 

policies for promoting taxi electrification Li et al. (2020), Guan et al. (2020). Ohio, New York 

City, and Charlotte in the U.S. successively added electric vehicles to their taxi fleet NYC TAXI 

LIMOUSINE COMMISSION (2013), Hirschfeld (2019), Plautz (2018). The United State 

Administration's goal is also to accelerate the electrification of transportation The White House 

(2021) and the deployment of charging infrastructure House (2021). ETs are capable of 

significantly cutting down operational costs and highly potentially improving urban air quality 

when deployed intensively in populated areas; however, their driving range limitations and high 

reliance on power system infrastructure are found to be critical barriers to large-scale adoption 

Egbue and Long (2012), Hagman and Langbroek (2019) Moreover, considering that thousands of 

cabdrivers cruise metropolitan road networks looking and waiting for passengers under uncertainty 

and they rely on charging on road heavily Cai et al. (2014), taxi electrification should involve the 

grid upgrade and co-optimization of the transportation network (TN) and the power distribution 

network (PDN) Wei et al. (2019). Indeed, a large number of ETs could add an overload of stress 

onto an existing PDN. Once the charging demands of ETs overreach electricity delivery capacity, 

not only a lot of demands are missed but also long waiting lines for charging could aggravate 

traffic congestion. Unfortunately, the major power grids in the United States, deployed in the early 

1930s, are under pressure to meet the rising charging demands El-Hawary (2008), Nelles (1984). 
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Taxis empower a public transport chain with 24-hour/365-day availability, coupled with 

door-to-door customized service. Statistical evidence shows that in some cases (e.g., night, airport, 

people with disabilities, and sparsely populated rural areas), taxis are the unique or preferred public 

mobility service provider. Such flexibility makes the charging demands of the ET fleet vary 

spatially and temporally. Particularly, the charging demands are highly uncertain, on account of 

the random distribution of taxi supply and passenger needs. Obviously, an effective and efficient 

strategy for deploying public charging stations is essential to maintain the productivity and 

feasibility of taxi services after electrification. 

Over the last decades, the reliance on the TN and PDN has been discussed in the problem 

of electric vehicle charging station placement. The studies in Arias et al. (2017), de Quevedo et al. 

(2017), Wang et al. (2019) make joint decisions on allocating charging stations and upgrading 

PDN assets such as distribution lines, substations, and other distributed energy resources. Wang et 

al. (2018b) further takes into consideration the expansion of the TN described with traffic flows in 

an unconstrained traffic assignment mode. Recently, Deb et al. (2021), Ehsan and Yang (2019) 

propose stochastic programming models to consider operations in either the TN or the PDN under 

uncertainty. Such those studies are targeted at residential or commercial electrical vehicles with 

regular routes. Accordingly, transportation networks are modeled using origin-destination patterns. 

However, given ETs' distinct operational characteristics and dynamic charging needs, this method 

is not fit for predicting their routing and charging behavior. 

The involvement of ETs in charging station planning has caught the attention recently 

addressed TN, PDN, or ET charging behavior separately. Kaya et al. (2020) utilize GIS 

information, fuzzy analytic hierarchy process, and order preference by similarity to an ideal 

solution. Meng et al. (2020) optimize the social costs including travel costs, investment costs, and 
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waiting costs. Cilio and Babacan (2021) model a datadriven framework using an iterative 

clustering technique to determine the number of charging stations and a numerical optimization 

method to find their best locations. Zhang et al. (2019) cluster the k-means distributions of ETs 

and use the barycentric approach to select locations of charging stations. Furthermore, Clairand et 

al. (2022) describe deterministic requirements on both the TN and PDN. In addition, contrary to 

the emphasis on charging station siting, Sossan et al. (2020) compare the effects of human and 

self-driven electric vehicles charging on the PDN. They observe that autonomous vehicles can 

select the most suitable charging locations to reduce power congestion and consequently save 

nearly half of the charging time needed by humandriven vehicles. Bauer et al. (2021) exhibit that 

real-time information sharing is an alternative effective way to promote charging efficiency. 

The existing literature on charging station planning for ETs has predominantly focused on 

the aspects of TN, PDN, or ET charging behavior in isolation. In contrast, our study, conducted on 

behalf of city managers, explores the intricate interplay between TN and PDN in relation to ET 

drivers' charging behavior. We introduce a two-stage stochastic programming framework that 

integrates the long-term planning phase, involving the deployment of charging stations within the 

TN and the expansion of power distribution lines in the PDN, with the operational phase that 

accounts for the inherent uncertainty in ET charging services. In project planning, it is essential to 

account for the entire time horizon. The operational phase of our model can explore various 

scenarios occurring over the entire time span of the project. These scenarios represent different 

traffic patterns and power consumption conditions during specific time periods (including peak 

and non-peak hours, daytime and nighttime, weekdays and weekends), as well as seasonal 

variations (e.g., summer and winter). Our recommended solution is designed to optimize charging 

service performance across a wide range of operational conditions. To the best of our knowledge, 
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no existing literature addresses the interconnected TN and PDN while considering the stochastic 

nature of ET charging, especially in the context of varying operational conditions during different 

time periods. 

We also analyze the different effects of deploying human-driven and autonomous ET fleets 

in the charging station planning problem. Human drivers select charging stations according to their 

individual preferences. It is highly possible, in populated areas, that there are much more 

competitors than expected swarming into the same charging station on account of lower charging 

prices, shorter distances, etc. As a consequence, demands on the local electrical grid may spike 

without proper management. In comparison with human drivers, autonomous ETs are less selfish. 

Hence, fleet operators can easily maneuver and coordinate charging services for autonomous ETs 

to optimize the allocation of electric power. In the literature electric vehicle users' charging 

preferences are considered only in a few works: Wang et al. (2018a) considers reducing the 

excessive waiting time but still, there is a negative impact on the users' experience. User 

convenience is maximized as an objective in the charging selection process in research Wen et al. 

(2012), Malhotra et al. (2016), Xia et al. (2016), Chung et al. (2018). User convenience is 

quantified in Malhotra et al. (2016) with respect to remaining SOC, remaining time to charge, and 

charging rate. In Chung et al. (2018), a parameter is defined for user convenience where EVs need 

less electricity and are close to plug-off time should have higher charging priority. 

Our contributions are summarized as follows: 

Comprehensive coverage of scenarios: our modeling framework distinguishes between a 

long-term project planning phase and an operational phase. One notable advantage of our approach 

lies in the comprehensive coverage of scenarios throughout the project's entire duration. During 
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the operational phase, we explore a range of scenarios, each representing different traffic patterns 

and power consumption conditions occurring at specific times. 

Innovative use of a mixed probability distribution: what sets our work apart in the literature 

is our innovative use of a mixed probability distribution to capture the stochastic nature of these 

scenarios. Within this framework, the mixture weight denotes the relative importance assigned to 

each class of time period, as determined by subjective probabilities established in collaboration 

with project stakeholders. In each scenario, we leverage the steady-state probability distribution of 

random traffic and electric consumption conditions. 

Scenario-specific preference representation: we are the first to introduce a scenario specific 

preference representation, grounded in the theory of state-dependent utility, to elucidate how 

drivers' preferences and satisfaction are contingent upon circumstances varying across different 

time periods. 

Analysis human-driven and autonomous ET fleets: we model and analyze the different 

effects of deploying human-driven and autonomous ET fleets in the charging station planning 

problem. 

This chapter is organized as follows. In Section 2.2 we present the two-stage stochastic 

programming model. The first stage described in Section 2.2.1 considers a long-term planning 

strategy of constructing charging stations and expanding the PDN and the second stage in Section 

2.2.2 seeks an optimal policy to serve ET charging demands during a steady-state operating period. 

Section 2.2.3 reformulates the mixed-integer nonlinear model to a mixed-integer linear program. 

We conduct a numerical study in Section 2.3. Section 2.4 concludes this paper. 
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2.2 Mathematical Model 

We now discuss the two-stage stochastic programming model in Figure 2.1. In a longterm 

planning stage, we upgrade the PDN to increase its electrical load capacity and, on this basis, to 

determine the locations and sizes of charging stations for boosting electricity supply for charging 

demands. In a steady-state operating stage, we characterize ET drivers' preference-specific 

charging behavior, model the electricity delivery, and depict the inherent randomness of ET 

charging ascribed to the variations of charging demand and traffic condition in the TN and 

electricity consumption and price in the PDN. A node (called T-node) in the TN represents a 

geographical zone, while a node (called P-node) in the PDN is a "junction box" where two or more 

distribution lines meet. The locations of charging stations are selected among the candidate T-

nodes (denoted by ). All these candidates, if selected, can be connected to the PDN at 

corresponding P-nodes. Assume that there is a one-to-one correspondence, denoted by  , between 

the candidates and their connected P-nodes. Then, as described in the nomenclature, ( )j  is the 

P-node which T-node j  is connected with, ( )  is the set of all the P -nodes connected with 

candidates, and ( )1 n −
 is the T-node which is connected with P-node n . This joint relationship 

is used to model the second stage. 

2.2.1 The First Stage of the Model 

The first stage of the model is to balance the costs of expanding the PDN and constructing 

charging stations and ET drivers' dissatisfaction with charging. The cost of constructing charging 

stations is made up of the fixed setup cost ( )j j jA z  and the cost related to their charging 

capacities ( )j j jC x  as follows: 
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 ( ), ,j j j j

j j

A z C x 
 

 
= +  

 
 z x  (2.1) 

where  , called the construction cost coefficient, embodies economic considerations. A larger   

means a higher unit cost to construct a charging station. The reason of using   in the model is that 

the case study in Section 2.3 evaluates the impact of the 

 

Figure 2.1: Two-Stage Stochastic Programming Model 

 

expansion cost by varying  . To upgrade the PDN, we consider the costs of expanding its 

substation ( )01Lu  and adding new distribution lines 
( )( ), mn mnm n

G u


  adjusted by   as: 

 ( )
( )

01

,

,mn mn

m n

Lu G u 


 
= + 

 
 

u  (2.2) 

where   is the expansion cost coefficient indicating the unit cost of expanding the PDN. Similarly, 

  is used in the case study to test the impact of the expansion cost. The substation expansion 
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increases the flow capacity at the root node of the PDN, which receives power from a transmission 

network while adding extra distribution lines allows higher flow to pass corresponding edges in 

the PDN. 

The first-stage model is expressed as follows: 

 ( ) ( ) ( )
, .

, , , ,min   + +  z x u
z x u z x u  (2.3a) 

 s.t. ,j j j j jB z x M z   ,j  (2.3b) 

  0,1 ,jz   ,j  (2.3c) 

 0,jx   ,j  (2.3d) 

 01 0,u   (2.3e) 

  0,1, , .mnu K  (2.3f) 

In the objective (2.3a), ( )Π , , ,  z x u  measures the steady-state expectation (or called 

long-run average) of ET drivers' dissatisfaction with charging measured by a monetary value. The 

random scenario Ω  ( Ω  is a sample space) accounts for the uncertainties in charging demand, 

traffic time, electricity consumption, and electricity price in the operational stage introduced in 

2.2.2. In project planning, it is essential to account for the entire time horizon. In our model, Ω  

encompasses scenarios that cover specific classes of time period, including peak and non-peak 

hours, daytime and nighttime, weekdays and weekends, as well as seasonal variations, such as 

summer and winter. It's crucial to recognize that traffic patterns and power consumption conditions 

can vary significantly during these different classes of time period. The second stage of our model 

conducts a comprehensive evaluation of a potential solution of the first stage, taking into 

consideration a wide range of operational conditions across various scenarios. Accordingly, we 

employ a mixed probability distribution to account for the random nature of the scenario  , i.e. 
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t tF   , where the weight t  indicates the relative importance of the t -th class of time period, 

determined by project stakeholders, and tF  is the steady-state probability distribution of random 

traffic and electric consumption conditions in t . Notably, based on the steady-state distribution, 

( )Π , , ,  z x u  represents the long-run average of ET drivers' dissatisfaction. 

Constraint (2.3b) indicates that the charging capacity 0jx =  if the candidate j  is not 

selected and otherwise j j jB x M  . Here, 
jB  gives the smallest size of a charging station 

required to build at location j  and jM  is the largest possible charging demand over all scenarios 

at the second stage as 

( ) 
Ω

sup .j jM M





=  

The detailed explanation of ( )jM   is addressed when describing the second stage. 

Constraints (2.3c)-(2.3f) depict the denotations of the decision variables ,z x , and u  given in the 

nomenclature. 

 

2.2.2 The Second Stage of the Model 

The second-stage objective is to minimize the penalty for unmet charging needs and 

maximize ET drivers' satisfaction with charging under some conditions describing drivers' 

preference-specific charging behavior and distribution grid operation. There are two penalty costs 

denoted by ( )0h s  and ( )1h s . The former is incurred when some drivers are not willing to charge 

at any constructed stations because of long travel times to the stations or high charging prices at 

that moment, while the latter is ascribed to the demands beyond the charging capacities of the 
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stations. Denote by ( ),g y  the measure function of ET drivers' satisfaction under the random 

scenario  . 

The second-stage model is written as 

 ( )
( ) ( )

( ) ( ) ( )0 1
, , , ,

Π , , , min , ,h h g


 


= + −
s y z x u

z x u s s y  (2.4) 

where the set ( ), , ,z x u  consists of all the conditions on drivers' charging behavior and 

the distribution grid parameterized by the decisions made in the first stage. Without loss of 

generality, we limit our discussion to a certain scenario in the later statement. 

Assume that human drivers merely select charging stations that they prefer over the others 

and the charging preference is related to the charging price at a charging station and the travel time 

to there Yang [2018]. We characterize the preference as an exponential preference function of the 

charging price and travel time as follows: 

 ( ) ( ) ( ) ( ) ( )( )exp ,ij j ijU b c      = − −  (2.5) 

where ( )ijU   measures the preference value of an ET driver in zone i  selecting the station at 

location j . In economics and decision theory, exponential functions are commonly used to 

represent the preferences of individuals who exhibit constant absolute risk aversion (CARA). 

CARA means that the decision-maker's aversion to risk, which arises from uncertainty, is 

consistent across different preference levels. The charging price ( )j   and travel time ( )ij   

both varies in scenarios, as do the coefficients ( )b   and ( )c  . This scenario-specific preference 

representation, grounded in the theory of state-dependent utility Drèze and Rustichini [2004], 

elucidates how drivers' preference and satisfaction are contingent upon circumstances varying 

across different time periods. For instance, during the winter season, drivers may exhibit lower 

tolerance for extended travel times due to the reduced range of their electric vehicle battery. 
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Assume that drivers are reluctant to select the stations where the preference values of charging are 

lower than a given threshold ( )minU  . That is, drivers in zone i  do not select station at location 

j  if ( ) ( )min

ijU U  . We say that zone i  is covered if there exists at least j  such that 

( ) ( )min

ijU U   and otherwise uncovered. Suppose that the demands in uncovered zones are 

served at a dummy station with 0j =  with the incurred penalty 

 ( )0 0 0 ,h H s=s  (2.6) 

where 0s  counts all the demands served at the dummy station. 

Oppositely, drivers in covered zones select certain stations to charge. The preference values 

of these selections are converted to monetary value by a coefficient T  and counted into drivers' 

satisfaction with charging as 

 ( ) ( ), ,ij ij

i j

g TU y 
 

=y  (2.7) 

However, these drivers face two possible situations after selecting stations to charge. Some 

demands can be served, others may be rejected since the total demands toward some stations are 

beyond their charging capacities. For the rejected demands, we assign the second penalty as 

 ( )1 1 .j

j

h H s


=s  (2.8) 

We next describe the set ( ), , ,z x u  of the constraints. 

In the domain of electric vehicle charging models, a common practice involves the 

utilization of origin-destination (OD) patterns. However, it is important to note that these patterns 

are not directly applicable to ET fleets. Existing literature offers a variety of spatiotemporal 

analysis methods for forecasting taxi demand Yao et al. [2018], Rodrigues et al. [2019], Askari et 

al. [2020], Gangrade et al. [2022], typically entailing the division of a city into distinct zones to 
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predict time-dependent demand within each zone. In alignment with this convention, our approach 

assumes that ET charging demands are randomly generated at the nodes of a transportation 

network, which we consider as the central points of these zones in our paper. Our approach holds 

practical advantages as it allows us to leverage input data from existing spatiotemporal taxi 

forecast models for estimating ET charging demand. Moreover, it aligns well with our other 

assumption that ET charging demands exhibit temporal variation in specific scenarios. 

To address the assignment of ET charging demands at network nodes under random 

scenarios, we describe drivers' charging behavior in the TN as follows: 

 0 ,ij j j

i

y s x


 −   ,j +  (2.9) 

 ( )0 ,j j js M z   ,j +  (2.10) 

 ( ) ,ij i

j

y D 
+

=  ,i  (2.11) 

 ( ) ( ) ( ) , min

ij ij ij ikU y y max U U U   −  

 ( )( )1 , , , ,i kD z i j k + +− −     (2.12) 

 0,ijy   , ,i j +   (2.13) 

Constraints (2.9) and (2.10) state the relationship between the flow y  and unmet demand s . If 

location j  is not selected to construct a station in the first stage, 
js  and 

ijy  should equal to 0 for 

all i ; otherwise, constraint (2.9) requires that the demands served at each station should not 

exceed its charging capacity. Note that it is a dummy station at 0j =  and the demands in the zones 

uncovered by any stations flow to the dummy station. In the model we set 0 01, 0z x= = , and 

( ) ( )min

0 ,iU U i =  . In addition, 



 20 

( )
( )

( )
j

j i

i

M D


 


=   

where ( ) ( ) ( ) min:j iji U U  =    counts all the demands in the zones covered by the 

station at location j . In constraint (2.11) the demands in zone i  are assigned to different stations. 

Analogous to the user-choice assignment model in Yang [2018], constraint (2.12) describes how 

drivers select stations to charge. The user-choice assignment model requires that a driver should 

select a unique station to charge where the driver has the largest preference value. Differently, 

constraint (2.12) sets  Δ 0,1U   to quantify the extent where drivers allow for sacrificing their 

preferences, and our model can optimally assign charging demands to boost the systematic 

performance, i.e., the second-stage objective function in (2.4). We thus call ΔU  the level of 

centralized charging management and vehicular automation. For example, ΔU  should be zero or 

a very small number for myopic human drivers since they are not pleased to compromise their 

individual best choices for improving the systematic performance. When Δ 0U = , constraint (2.12) 

is the same as the user-choice assignment model. ETs at zone i  select the charging station j , i.e., 

ijy  is strictly positive, if and only if the ET's preference value ( )ijU   at station j  is larger than 

any other station ( )ikU  , including the dummy station ( )minU  . In contrast, autonomous ETs 

are less selfish, and correspondingly ΔU  is 1, for which the ETs may not select the station which 

they are most satisfied with. Subsequently, the distribution system operators in the PDN can easily 

maneuver and coordinate autonomous ETs' charging requests. 

In what follows we consider the distribution system operation constraints in the PDN. 

 1 1, ( ) ( )
:( , ) :( , )

( ) , ( ),load

mn nk n i n n
im m n k n k

p p P W y s n
 

 − −

+ +  

 
− = + −  

 
    (2.14) 
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load 

:( , ) :( , )

( ), \ ( ),mn nk n

m m n k n k

p p P n 
+ + 

− =    (2.15) 

 
load 

:( , ) :( , )

( ), ,mn nk n

m m n k n k

q q Q n
+ + 

− =    (2.16) 

 ( )2 2 2 2
,

1

mn mn mn mn
m n

mn

R p X q
V V m n

u

+
− = 

+
， ，  (2.17) 

 0 1 . .,V p u=  (2.18) 

 min max ,nV V V n  ，  (2.19) 

 ( ) ( )max0 1 ,mn mn mnp P u m n  + ， ，  (2.20) 

 max

01 01 010 ,p P u  +  (2.21) 

 ( ) ( )max0 1 ,mn mn mnq Q u m n  + ， ，  (2.22) 

 max

01 01 01.0 q Q u  +  (2.23) 

Constraints (2.14)-(2.16) formulate the active and reactive power flows to satisfy existing 

electricity load and ET charging demands. Only active charging power from ETs is considered 

with the assumption that most ETs are not equipped with smart inverters and do not participate in 

providing reactive power. Constraint (2.17) is the voltage drop equation with mnu  extra lines on 

the edge ( ),m n  Guo et al. [2019]. Constraint (2.18) sets the voltage at a transmission substation 

as 1 p.u., which means the voltage at the substation is fixed at the desired voltage level. Constraint 

(2.19) sets the upper and lower limit of node voltage, which is usually 1.05 p.u. and 0.95 p.u. 

according to ANSI standards to ensure power quality is delivered to customers. Constraints (2.20) 

and (2.22) are active and reactive power flow limits for all lines considering line expansion. 

Constraints (2.21) and (2.23) are power flow boundaries for the substation considering expansion. 
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This set ( ), , ,z x u , integrating the conditions described above, consists of all points 

( ),s y  satisfying conditions (2.9) - (2.23) for given , ,z x u , and  . 

 

2.2.3 Tractable Reformulation and Solution Method 

The aforementioned model aggregates the constraints related to the TN and PDN. Either 

of the two networks is a large-scale complex system. Moreover, the uncertainties on charging 

demand, traffic time, electricity consumption, and electricity price considered in the model greatly 

increase the size of the model. In this section, we discuss a solution approach to linearize the model 

and reduce redundant constraints. 

Linearization. The second-stage model (2.4) has the nonlinear constraint (2.17). To 

linearize this constraint, let the number of expansion lines 
1

K
k

mn mn

k

u ku
=

=  where {0,1}k

mnu  . If 

there are exact k  expansion lines added on edge ( ), 1k

mnmn u = ; otherwise, 0k

mnu = . It implies that 

1

1
K

k

mn

k

u
=

  for all ( ),m n  . Also, referring to Yang et al. [2017] Yang et al. [2018], we let 

2

m mv V=  and replace constraints (2.18) and (2.19) with 0 1 . .v p u=  and ( ) ( )
2 2

min max

nV v V   for 

n , respectively. Meanwhile, constraint (2.17) is reformulated as 

( ) ( )
1

2 2 , ( ., )
K

k

m n mn m n mn mn mn mn

k

v v ku v v R p X q m n
=

− + − = +   

Introducing a new decision variable ( )k k

mn mn m nr u v v= − , we obtain 
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( )

( )

( ) ( ) ( )

1

2
max

2
max

2 2 , ( , ) ,

0 , ( , ) ,

{1, , },

0 1 ( , ) ,

{1, , }.

K
k

m n mn mn mn mn mn

k

k k

mn mn

k k

m n mn mn

v v kr R p X q m n

r V u m n

k K

v v r V u m n

k K

=

− + = + 

  



 − −  − 





 

Constraint reduction. The size of the second-stage model (2.4) is mainly determined by 

the number of the constraints defined in (2.12), which is 
2

+ . We next discuss how to reduce 

the number of constraints. Constraint (2.12) is redundant if ( ) ( ) ( ) minmax Δ ,ij ikU U U U   − ; 

otherwise, it is equivalent to the inequality ( )( )1ij i ky D z − . Hence, we replace constraint (2.12) 

with 

 ( ) ( ) ( ) min1 max Δ ,ij ik ijU U U U y   −  

 ( )( )1 , , , ,i kD z i j k + + −     (2.24) 

where  1   is the indicator function. Constraint (2.24) for k + is redundant if station k  is not 

constructed ( )0kz =  or ( ) ( ) ( ) minmax Δ ,ij ikU U U U   − ; otherwise, drivers in zone i  

prefer station k  to station j  with ( ) ( )maxij ikU U  −  ( )minΔ ,U U   and thus 0ijy = . By 

this observation, we can further reformulate (2.24) as 

 ( ) ( ) ( )  minmax Δ ,ij ik ij

i j

U U U U y  
+ 

 −  

 ( ) ( ) .1 ,k i

i

z D k +



 −   (2.25) 

Reformulated Model. 
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Solution method. Considering that the first-stage (2.3) in the model is MILP and the 

second-stage is LP, the classical integer L-shaped method Laporte and Louveaux [1993] can be 

well applied. The iOptimize solver Huang [2016], embedded with the integer L-shaped method, is 

used in the numerical study of Section 2.3. 

If the sample space Ω  is uncountable or exceedingly large, we employ the Sample 

Average Approximation (SAA) method - a widely-used technique for addressing stochastic 

programming problems (see Shapiro et al. [2009] and references therein) to solve the model. SAA 

approximates the expected value ( )Π , , ,  z x u  using the sample mean of a smaller number of 

independent and identically distributed (i.i.d.) observations generated from the sample space Ω . 

Its asymptotic convergence ensures solution quality for the approximation. For a comprehensive 

understanding of SAA's asymptotic convergence and its convergence rate, we recommend 

referring to Shapiro et al. [2009] where these topics are elaborated in detail. 

In addition to SAA, we employ a warm start process to manage the computational 

complexity associated with a large number of random scenarios. This strategic approach involves 

solving the problem initially using a limited number of i.i.d. resampled scenarios. The key benefit 

lies in utilizing the optimal solution derived from this simplified scenario as the initial values for 

the full problem. This process proves particularly effective when dealing with stochastic MILP 

problems. By adhering to the SAA principle, the warm start process ensures the quality of the 

initial solution, even when based on a limited number of scenarios. Consequently, this approach 

significantly reduces computational costs. In Section 2.3 we numerically illustrate the 

effectiveness of the warm start process. 
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2.3 Numerical Analyses 

This case study evaluates the performance of the charging station planning model, tests the 

impact of the costs of expanding the PDN and constructing charging stations, and compares the 

effects of human-driven and autonomous ET fleet. We use the Sioux-Falls transportation network 

Baran and Wu [1989] in Figure 2.2a and the IEEE 33-bus test feeder Leblanc [1975] in Figure 

2.2b as the TN and PDN in the analyses of uncertainty and economic performance. Also, the 

Eastern Massachusetts (EMA) network Zhang et al. [2016] and IEEE 123-bus feeder DSA 

Subcommitte are involved in the computational analysis as the benchmark with a larger size. 

There are eleventh candidate sites among which our model optimally selects the locations 

of charging stations. All the candidates are marked with the large dots in Figure 2.2a and Table 

2.1 links them with the P-nodes in the PDN. The electrical supply for the charging station 

constructed at a selected candidate site needs to be provided by the PDN at the corresponding P-

node. Figure 2.2b marks these P-nodes in the PDN. 

Table 2.1: The mapping of the candidates in the TN and the connected P-nodes in the PDN  

TN T1 T4 T5 T10 T11 T13 T14 T15 T16 T20 

PDN P2 P26 P27 P21 P23 P11 P24 P25 P19 P18 

Table 2.2: Partition of the TN and PDN 

Districts Abbreviation TN Nodes Distribution Lines 

Eastern District ED (CBD) T7, T8, T9, (T10),(T16), T17, T18 P1-P22 

Western District WD (T11), T12, (T14), (T15) P1-P15 

Northern District ND (T1), T2, T3, (T4), T5, T6 P1-P33 

Southern District SD (T13), T19, (T20), T21, T22, T23, T24 P1-P18 

The T-nodes in the parentheses are the candidate locations. 
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We partition the TN into four districts as shown in Table 2.2: eastern district (ED), 

 

 (a) Sioux Falls transportation network (b) IEEE 33-node 

Figure 2.2: Test Networks 
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Table 2.3: Performance Indices 

Index Abbreviation Description Mathematical Expression 

Expected number 

of charged ETs 

Charged# 

The expected number of 

charged ETs over all scenarios 

( ) ( )* *

j i ij iy s  
   −   

Expected number 

of uncharged ETs 

Uncharged# 

The expected number of 

uncharged ETs over all 

scenarios 

( )*

j js 
    

Total charging 

capacity 

constructed 

CAP# 

The sum of the capacities of all 

the constructed charging 

stations 

j jx  

Monetary value of 

Satisfaction ( )$K  
SAT$ 

The monetary measure of 

drivers satisfaction of charging 
( )* * *Π , , , −

 
z x u  

Total construction 

cost ( )$K  
TN$ 

Fixed construction cost and 

capacity cost for charging 

stations 

( )* *, z x  

Total expansion 

cost ( )$K  
PDN$ 

The total expansion cost of 

transmission substation and 

distribution lines 

( )* u  

Optimal value 

( )$K  
OPT$ The optimal value of the model TN$ PDN$+  - SAT$ 

Total return on 

investment 

ROI 

The ratio of the monetary value 

of satisfaction over the total cost 

( )SAT$ / TN$ PDN$+  
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western district (WD), northern district (ND), and southern district (SD). The electrical substation 

at the root (P1) of the PDN is located in ND. In this study, ED is the central business district (CBD) 

with a large number of charging demands supported by the power distribution line P1-P22, and 

the other three districts are uptown areas supported by P1-P18, P1-P15, and P1-P33, respectively. 

Note that P1-P18 is the longest line carrying electrical power from the north to the south. We 

generate scenarios from a mixed probability distribution combining diverse operational conditions 

during peak and non-peak hours. Assume that, during either of peak and non-peak hours, the 

charging demands ( )( )iD  , active and reactive power usages ( ) ( )( )load? load?,n nP Q   are normally 

distributed random variables. At each time period, their means refer to the hourly patterns of the 

charging demands in NYC NYC TAXI LIMOUSINE COMMISSION [2013] and the power 

usages obtained by adjusting the IEEE 33-bus benchmark data according to the PJM's power load 

profiles in commercial and residential areas PJM [2022]. In Figure 2.2a and Figure 2.2b, the areas 

of the dotted circles visualizes the expected charging demands and the expected power usages. We 

convert the benchmark traffic flow data in the Sioux-Falls benchmark to arc travel times according 

to the speed-density model Greenshields et al. [1935] and further vary them during either peak or 

non-peak hours. The obtained deterministic times are assumed to be the means of normally 

distributed random travel times. This data generation approach allows us to take into consideration 

the traffic congestion during peak hours. 

2.3.1 Performance Indices 

In the test, we report the expected number of charged ETs, the expected number of 

uncharged ETs, the monetary value of satisfaction, the total construction cost, the total expansion 

cost, and the optimal value of the model, which are described in Table 2.3. Note that, in the table, 
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* *,z x , and *
u  are the optimal solution of the model in the first stage. ( )*

ijy   and ( )*

is   are the 

optimal solution of the model for the decision variables 
ijy  and is  in the second stage at scenario 

 . 

To investigate the interdependence between the TN and PDN, we also calculate the 

monetary value of satisfaction in each district in Table 2.2. For each scenario  , the satisfaction 

value at TN -node i  is given (referring to (2.6) - (2.8)) as 

 

*

* * *

0 0 1 *

( )
SAT ( ) ( ) ( ) ( ) ( ) .

( )

ij

i i ij ij j

j j kj

k

y
H y TU y H s

y


    

 



 
 

= − + −
 
 
 

 


 (2.26) 

In the above equation (2.26), the first item is the penalty incurred if T-Node i  is uncovered 

by any charging station, the second item is the preference value of the drivers' satisfaction with 

charging, and the last item is the penalty if some charging demands at T-Node i  are rejected to 

serve. In the last item, we assume that all the charging requests received by the charging station at 

T-Node j  have an equally likely chance to be rejected. Thus, the satisfaction value of a district is 

the expected value of the sum of ( )SATi   for all i  belonging to this district. On this basis, we 

define the decomposed ROI of a district for integrating the costs into the analysis. The decomposed 

ROI of a district is the ratio of the satisfaction value of this district over the total cost of 

construction and expansion (TN$ + PDN$). Note that the sum of the decomposed ROIs of the four 

districts is equal to the total ROI described in Table 2.3. 

2.3.2 Computational Analysis 

The computation analysis is conducted using the two groups of benchmark networks. The first 

group is the Sioux-Falls and IEEE 33-bus, with which the model has 74 binary variables and 11 

continuous variables in the first stage and 437 continuous variables in the second stage. The second 
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group tests the EMA and IEEE 123-bus which have 48 TN nodes and 20 charging station 

candidates. This case provides 256 binary variables and 21 continuous variables in the first stage 

and 1621 continuous variables in the second stage. The test runs with the 11th Gen Intel(R) 

Core(TM) i7-11700 processor and 32GB RAM. 

Table 2.4: Computational Analyses 

Detail Metric 2 6 18 54 108 432 

Sioux-Falls, IEEE 33-bus 

Performance Indices 

Time (sec.) 4 13 20 44 89 331 

SAT$ 9455 8727 8105 5747 5437 5406 

TN$ 5503 5653 5651 5477 5333 5583 

PDN$ 4897 5610 5590 5236 5193 5336 

OPT$ 945 2536 3136 4966 5089 5533 

Stage Variables 

Binary 74 

Continuous 11 (Stage 1), 437 (Stage 2) 

EMA, IEEE 123-bus 

Performance Indices 

Time (sec.) 86 434 1169 4256 13989 32954 

SAT$ -30426 -30484 -26876 -23125 -23034 -31368 

TN$ 10029 10015 9997 9801.6 9804 10172 

PDN$ 3823 4121 4118 4118 4119 4110 

OPT$ 44278 44621 40992 37044 36975 45651 

Stage Variables 

Binary 256 

Continuous 21 (Stage 1), 1621 (Stage 2) 
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Table 2.4 reports the running time, satisfaction value (SAT$), construction cost (TN$), 

expansion cost (PDN$), and optimal value (OPT$) for the varied numbers of random scenarios. 

Note that, in the warm start process, the optimal solution of an antecedent with a smaller number 

of scenarios is used as the initial value for its succedent with a larger number of scenarios. The 

running time that we report refers to the entire computation time of the warm start process. The 

results show that the case using the EMA and IEEE 123-bus has a much larger computational cost, 

and for each case, the running time increases linearly at the growth of scenarios. Besides, based 

on the SAA method, we observe the asymptotic convergence in the case using the SiouxFalls and 

IEEE 33-bus. The values of SAT$, TN$, PDN$, and OPT$ meet as the number of scenarios 

increases. However, the large-sized case requires more scenarios to converge than that given in 

Table 2.4. 

2.3.3 Charging Preference Analysis 

The preference function ( )ijU   in (2.5) characterizes drivers' charging behavior. In this 

study, we choose its parameters, ( ) 0.6b  =  and ( ) 0.024c  = , during both the peak or non-peak 

hours. The relationship ( ) ( )25b c = , which we establish according to taxi drivers' average 

hourly wage and current charging price in New York city Indeed [2023], NYC TAXI LIMOUSINE 

COMMISSION [2013], means that an increase of $1 per kWh  in the charging cost is equivalent 

to the monetary value of a driver's dissatisfaction incurred from an additional 25 -minute commute 

to a charging station. We conduct sensitivity analysis to test the marginal impact of ( )b   and 

( )c   on the optimal solution. It shows that the optimal solution is stable when ( )b   varies 

between 0.3 and 1.2. Increasing ( )c   substantially amplifies the influence of travel times on ET 

drivers' choices of charging stations, leading to a modification in the optimal decision-making 
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process for deploying charging stations. In contrast, decreasing ( )c   slightly does not affect the 

optimal solution. However, when ( )c   is reduced to 0.1, drivers become indifferent to travel 

distance. This, in turn, encourages a reduction in the number of charging stations and the 

construction of larger stations uptown. 

2.3.4 Economic Performance Analysis 

The three cases - Human-PDNcost, Human-TNcost, and Auto-Level - are designed to 

evaluate the roles of the TN and PDN as well as the benefit of utilizing autonomous ETs, compared 

to the baseline with 1 = =  and Δ 0U = . Recall that   and   scale the costs of constructing 

charging stations and expanding the PDN. Human-PDNcost evaluates the role of the PDN by 

analyzing the marginal effect of the expansion cost at varied  , while Human-TNcost tests the 

role of the TN by adjusting the construction cost coefficient  . Changing ΔU  from 0 (myopic 

human driver) to 1 (autonomous ET), Auto-Level interprets the benefit of centralized charging 

management and vehicular automation. 

2.3.4.1 Human-PDNcost 

Table 2.5: Performance in Human-PDNcost 

Expansion cost 

coefficient ( )  
Charged# Uncharged# CAP# SAT$ TN$ PDN$ OPT$ ROI 

0.5 365 40 668 6038 5484 2829 2275 0.72 

1 (Baseline) 355 50 639 5437 5334 5193 5089 0.52 

2 271 134 436 381 3935 4736 8290 0.04 

 

Table 2.6: Strategy in Human-PDNcost 
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Expansion 

cost 

coefficient

( )  

Station Location(Capacity) PDN Edge(#Added Lines) 

Substation 

Expansion(kV

A) 

0.5 

T1(32),T5(83),T11(107),T13

(62), 

T14(52),T15(148),T16(184) 

P1-P2(+2),P2-P3(+1),P2-

P19(+1),P3-P23(+2) 

P10-P11(+1),P23-

P24(+1),P24-P25(+2) 

3374 

1 (Baseline) 

T1(32),T5(84),T11(107),T13

(38), 

T14(52),T15(148),T16(178) 

P1-P2(+2),P2-P3(+1),P2-

P19(+1) 

 P3-P23(+2),P23-

P24(+1),P24-P25(+2) 

3163 

2 

T1(30),T5(80),T11(104), 

T14(47),T15(43),T16(98),T2

0(34) 

 

P1-P2(+1),P2-P3(+1),P3-

P23(+1) 

1863 

 

Table 2.5 displays the model's performance across different values of  . As   increases 

from 0.5 to 2 , notable changes occur. Specifically, there is a substantial decrease of 100 in 

Charged#, a reduction of 5657 in SAT$, and a decrease of 0.68 in ROI. Conversely, 

OPT$ increases by 6015. We also observe fluctuations in PDN$, while TN$ decreases. Notably, 

the proportion of PDN $  in the total consistently rises from 34.0%  ( )( )2829 / 2829 5484= +  to 

( )( )54.6% 4736 / 4736 3935= + . Figure 2.3a illustrates that the decomposed ROI of each district 
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decreases as   increases. Meanwhile, we find that ED and SD are sensitive to these changes. 

Particularly, when 2 = , SD even exhibits negative decomposed ROIs. In what follows we 

provide a detailed explanation of these observations, discussing the optimal solutions presented in 

Table 2.6. This table includes information on the locations and capacities of constructed charging 

stations, the number of added distribution lines, and the expansion of the substation. 

As   increases, the model is inclined to extremely reduce the extent of expanding the PDN. 

The capacity of the substation is reduced by 1300 and the number of distribution lines added is 

reduced by 7 as   increases from 0.5 to 2 . When 0.5,8 =  distribution lines are added onto P2-

P22, P2-P25 and P3-P18 to support ED, WD, and SD. When changing to the high expansion cost 

with 2 = , the distribution lines supporting ED  and SD are canceled. In addition, 4 of the 6 

distribution lines added for WD are removed. Subsequently, the charging capacity is reduced by 

46.7%  in ED, 36.8%  at in WD, 45.2%  in SD, and 4.3%  in ND. Since ED has a low electricity 

usage and is close to the substation (see Figure 2.2b), even if the expansion distribution line (P2-

P19) for ED is canceled, the original PDN is still able to support most charging demands. As a 

result, the decomposed ROI in ED remains positive. On the other hand, the capacity reductions in 

both SD and its neighbor WD greatly weaken the charging satisfaction in SD. Accordingly, the 

decomposed ROI in SD becomes negative. 

2.3.4.2 Human-TNcost 

We now explore the impact of construction costs by adjusting the parameter  . Table 2.7 

illustrates how varying   from 0.5 to 2 affects our model's performance. As   increases, we 

observe the following changes: Charged# decreases by 85, SAT$ decreases 
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(a) Human-PDNcost 

 
(b) Human-TNcost 

 
(c) Auto-Level 

Figure 2.3: Decomposed ROI 
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Table 2.7: Performance in Human-TNcost 

Construction cost 

coefficient ( )  
Charged# Uncharged# CAP# SAT$ TN$ PDN$ OPT$ ROI 

0.5 370 34 717 6323 2895 5720 2292 0.73 

1 (Baseline) 355 50 639 5437 5334 5193 5089 0.52 

2 285 120 487 581 4663 3687 7768 0.07 

Table 2.8: Strategy in Human-TNcost 

Construction 

cost 

coefficient 

( )  

TN Location(Capacity) PDN Edge(#Added Lines) 

Substation 

Expansion(kVA) 

0.5 

T1(32), T4(83), T11(108), 

T13(64), 

T14(54), T15(148), T16(207), 

T20(21) 

P1-P2(+2), P2-P3(+1), P2-

P19(+1), P3-P23(+2) 

P10-P11(+1), P23-

P24(+1), P24-P25(+2) 

3452 

1 (Baseline) 

T1(32), T5(84), T11(107), 

T13(38), 

T14(52), T15(148), T16(178) 

P1-P2(+2), P2-P3(+1), P2-

P19(+1) 

P3-P23(+2), P23-P24(+1), 

P24-P25(+2) 

3163 

2 

T1(22), T5(82), T11(97), 

T13(27), T14(44), T15(146) 

P1-P2(+1), P2-P3(+1), P3-

P23(+2) 

P23-P24(+1), P24-P25(+2) 

2014 
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by 5754,TN$  increases by 1768 , and PDN $  decreases by 2033 . Consequently, OPT $  

experiences a 5754 increase while ROI decreases by 0.66 . Figure 2.3b presents the effect of 

increasing   on the decomposed ROIs of the districts, with a notable impact on ED. Interestingly, 

this result is in contrast to the effect of adjusting   on Human-PDNcost. 

As   increases, the construction cost in ED (Central Business District) becomes 

significantly higher compared to other districts. This prompts the removal of charging station T16 

in ED, as shown in Table 2.8, resulting in a 100% reduction in charging capacity in ED. In contrast, 

WD experiences a 6.8%  reduction, SD a 68.2%  reduction, and ND a 4.4%  reduction in 

charging capacity. Clearly, ED is much more sensitive to changes in   compared to SD and other 

districts. 

2.3.4.3 Auto-Level 

In this analysis, we examine the impact of centralized charging management and vehicular 

automation, denoted as ΔU . We consider three levels: human driving ( )Δ 0U = , semi-

autonomous driving ( )Δ 0.2U = , and fully autonomous driving ( )Δ 1U = . As ΔU  increases from 

0 to 1 , as shown in Table 2.9, we observe the following changes: Charged# increases by 13, SAT 

$  increases by 710 , while TN$  decreases by 757 and 

 

Table 2.9: Performance in Auto-Level 

Level of vehicular 

automation ( )ΔU  
Charged# Uncharged# CAP# SAT$ TN$ PDN$ OPT$ ROI 

0 (Baseline) 355 50 639 5437 5334 5193 5089 0.52 

0.2 379 26 619 6766 5121 5155 3510 0.66 
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1 368 37 578 6147 4577 4655 3085 0.67 

 

Table 2.10: Strategy in Auto-Level 

Level of 

vehicular 

automation 

( )ΔU  

TN Location(Capacity) PDN Edge(#Added Lines) 

Substation 

Expansion(kVA) 

0 (Baseline) 

T1(32),T5(84),T11(107

),T13(38), 

T14(52),T15(148),T16(

178) 

P1-P2(+2),P2-P3(+1),P2-

P19(+1) 

P3-P23(+2),P23-

P24(+1),P24-P25(+2) 

3163 

0.2 

T1(32),T5(83),T11(142

),T13(37), 

T14(68),T15(95),T16(1

62) 

P1-P2(+2),P2-P3(+1),P2-

P19(+1), 

P3-P23(+2),P23-

P24(+1),P24-P25(+2) 

3496 

1 

T1(62),T5(84),T11(136

),T13(26), 

T14(76),T15(95),T16(9

8),T20(12) 

P1-P2(+2),P2-P3(+1), 

P3-P23(+2),P23-

P24(+1),P24-P25(+2) 

3243 

 

PDN $  by 538. Consequently, OPT $  decreases by 2004, but ROI increases by 0.15. Figure 2.3c 

further illustrates that the decomposed ROIs of all districts improve. This suggests that utilizing 

autonomous ETs enhances investment efficiency. 
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Table 2.10 reveals that as ΔU  increases from 0 to 0.2 , the charging capacity decreases by 

9.0%  in ED, 0.7%  in WD, 2.6%  in SD, and 0.8%  in ND. With a further increase to 1 , the 

charging capacity decreases by 44.9%  in ED, while increasing by 28.9%  in SD and 25.9%  in 

ND. 

The use of autonomous ETs allows for greater flexibility and efficiency in demand 

allocation to charging stations. Autonomous ETs in ED are more willing to travel longer distances 

to neighboring uptown districts for charging, enabling the reduction of charging station size in ED 

to lower costs. Additionally, a single charging station at T13  in SD , when Δ 0U =  or 0.2 , is split 

into two smaller stations at T13  and T20 when Δ 1U = . Smaller charging stations can lead to 

intense competition among myopic human drivers. Therefore, this strategy for Δ 1U =  is less 

suitable for smaller ΔU  values. 

 

Figure 2.4: Evaluation of Stochastic Programming 
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2.3.5 Uncertainty Analysis 

We now show the advantages of stochastic programming used in our model (called SP in 

short) to handle uncertainty. In the context of comparisons, we formulate a deterministic 

optimization model (called DP) replacing all random parameters ( ) ( ) ( ) ( )( ), , ,i n n ijD P Q U     

in the second stage of our model with their expected values. This experiment generates 108 

scenarios for model training to solve optimal charging station deployment strategies and 2700 

scenarios for testing to evaluate the economic performance of the strategies. The strategy 

recommended by SP costs TN$ 5334=  and PDN$ 5193= , in comparison with the lower costs of 

DP as TN $ 4703=  and PDN$ 4738=  (note that TN$  and PDN$ are fixed without regard to test 

scenarios). However, the higher investment yields a large improvement on the entire distribution 

of SAT$ (including the average and worst cases), shown in Figure 2.4 which are the box-plots of 

the results for all the test scenarios. Importantly, SP has a higher ROI than DP, which means that 

the investment according to the SP strategy is more valuable. 

 

2.4 Conclusions 

The success of taxi fleet electrification is highly reliant on adequate charging infrastructure 

that connects the TN and PDN. Heavily charging ET fleet on road challenges the existing TN and 

PDN. In this paper, we have addressed a public charging station planning problem involving the 

interdependence of the TN and PDN. Using two-stage stochastic programming techniques, we 

have presented the best planning strategy of upgrading the PDN and deploying charging stations 

and sought a long-run optimal policy to serve ET charging demands under the uncertainties in 

charging demand, traffic conditions, electricity consumption, as well as electricity price. 
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Distinct Marginal Effects of TN and PDN: our analysis has demonstrated that the TN 

and PDN have distinct marginal effects on the deployment of charging stations. This suggests that 

the capacity and structure of these networks can impact the placement and functioning of ET 

charging infrastructure. 

Economic Factors Considered: Two economic factors were considered in our 

experimental tests. One is the cost associated with expanding the PDN, which includes increasing 

the capacity of transmission substations and adding power distribution lines. The other factor is 

the expense related to deploying charging stations, which encompasses the costs of acquiring land 

in TN and setting up charging stations with their associated capacities. 

Conflicting Policies: These economic factors result in conflicting policies for where to 

construct charging stations and what their capacities should be. This implies that there are trade-

offs to be considered when making decisions about charging station deployment, as increasing one 

factor may come at the expense of the other. 

Impact on ET Drivers' Satisfaction: Regardless of the specific policies, an increase in 

either of these costs leads to a significant reduction in ET drivers' satisfaction with the charging 

process. This highlights the importance of cost management in the context of electric vehicle 

charging infrastructure. 

Advantages of an Autonomous ET Fleet: Our analysis suggests that utilizing an 

autonomous ET fleet has several advantages. First, it consistently results in a higher return on 

investment (ROI) compared to a human-driven ET fleet. Second, an autonomous ET fleet helps in 

reconciling the conflicting effects of the TN and PDN on charging station deployment. This 

implies that autonomous vehicles might be more adaptable and efficient in utilizing charging 

infrastructure. 
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In this paper, our primary focus lies in developing a robust first-stage solution capable of 

effectively managing performance across a spectrum of second-stage random scenarios occurring 

over different time periods. Given the plethora of uncertainty factors affecting both the TN and 

PDN, achieving accurate results demands a substantial volume of observations. The computational 

complexity of our model makes it challenging to dynamically reflect ET fleet responses to changes 

in the infrastructure. Incorporating a game-involved second stage into our model poses a 

formidable computational challenge, at times rendering it unsolvable within reasonable 

timeframes. This complexity arises from the intricate interactions and decision-making processes 

inherent in game scenarios, which introduce a level of uncertainty and combinatorial complexity 

that can overwhelm traditional optimization methods.
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Chapter 3 Managing Distributional Ambiguity in Stochastic Optimization through a 

Statistical Upper Bound Framework 

 

3.1 Introduction 

In both engineering and management, effective decision-making often hinges on the ability 

to navigate through uncertain parameters. Stochastic optimization offers a modeling framework 

representing the uncertain parameters as random variables, complete with their respective 

probabilistic information or distribution. Despite this theoretical foundation, real-world 

applications grapple with challenges such as limited data, incomplete information, and the inherent 

complexity of the systems being modeled. As a result, the exact estimation of probability 

distributions becomes a formidable task. This discrepancy between theoretical models and 

practical constraints introduces distributional ambiguity — a pervasive challenge in decision-

making scenarios. This creates a substantial hurdle known as the Optimizers' Curse [Smith and 

Winkler, 2006], where optimizing under the influence of this ambiguity may lead to suboptimal 

solutions. Addressing the Optimizers' Curse becomes imperative in ensuring the practical efficacy 

of decision-making processes in the face of real-world complexities. 

In this paper, we develop a novel approach that integrates statistical inference into 

stochastic optimization to address the challenges posed by distributional ambiguity. Within the 

field of statistical inference, frequentists tackle distributional ambiguity by considering sample 

uncertainty, leading to the concept of the sampling distribution of a point estimator. Utilizing 

repeated sampling, frequentist methods aim to comprehend the inherent variability in point 
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estimators. This approach facilitates the quantification of uncertainty surrounding an estimator's 

performance and provides a foundation for constructing upper confidence bounds within a 

frequentist framework. 

A general expectation minimization problem can be formulated as follows: 

 ( )min , ,
x

F x 


    (EM-M) 

where  is a decision region,   is a vector-valued random parameter associated with probability 

measure , and F  is a multivariate cost function. Suppose we lack knowledge of  but possess 

a random sample and its associated empirical distribution ˆ
N . With a sufficiently large sample 

size N , the Sample Average Approximation (SAA) model, 

 ( )ˆmin , ,
Nx

F x 


    (SAA-M) 

can serve a good estimate of EM-M. However, the estimation may exhibit significant bias when 

N  is small. This research aims to develop a ( )100 1 %−  upper confidence bound for the 

expectation ( ),F x     based on the empirical distribution ˆ
N . Denote by 

( ) ˆ, NF x     
∣  this upper confidence bound and generally describe our datadriven model 

as follows: 

 ( )min , .ˆ
N

x
F x 



    
∣  (UB-M) 

UB-M incorporates a confidence bound into stochastic optimization. This innovative method 

effectively addresses challenges stemming from distributional ambiguity by leveraging robust 

statistical techniques. 

In the existing literature, the recognition of distributional ambiguity highlights the 

necessity of deploying distributionally robust optimization (DRO) strategies (Rahimian and 
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Mehrotra (2019), Lin et al. (2022) and references therein). These strategies are crafted to guide 

decision-making processes that excel across a spectrum of plausible distributional assumptions, 

avoiding reliance on a single assumed distribution. Two predominant DRO approaches involve 

representing moment-based and discrepancybased ambiguity sets for the distributions. The 

moment-based approach characterizes uncertainty by imposing constraints on the moments (such 

as mean and variance) of the distribution (Calafiore and Ghaoui, 2006, Delage and Ye, 2010, 

Wiesemann et al., 2014). On the other hand, the discrepancy-based approach focuses on measuring 

the difference between the true distribution and a candidate distribution within the set. Examples 

of discrepancy-based ambiguity sets include those based on  -divergence (Read and Cressie, 

2012, Ben-Tal et al., 2013, Bayraksan and Love, 2015) and the Wasserstein metric (Mohajerin 

Esfahani and Kuhn, 2018, Blanchet and Murthy, 2019, Xie, 2020, Duque et al., 2022, Gao and 

Kleywegt, 2023). By embracing the inherent ambiguity associated with underlying probability 

distributions, DRO empowers decision-makers to formulate strategies that demonstrate resilience 

and effectiveness under diverse scenarios. Notably, the Wasserstein metric-based DRO has gained 

popularity in various fields due to its appealing properties, which include finite-sample guarantees 

and asymptotic consistency. 

In contrast to the conventional practice of defining an ambiguity set of distributions in 

DRO, we propose an alternative: minimizing a confidence upper bound for the expected value of 

a random objective function in stochastic optimization. This approach offers a unique perspective 

for gauging distributional ambiguity. Inspired by robust statistical methods, we utilize the concept 

of an upper confidence bound for the mean. This statistical technique, specifically designed to 

accommodate estimation errors, provides a range of values within which the true population mean 
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is likely to reside. By presenting this upper bound, we not only quantify uncertainty but also 

enhance the reliability of our statistical inferences. 

 

3.1.1 An Example in Charging Planning 

Example 3.1. We consider a day-ahead charging model for an electric vehicle (EV) fleet 

where the goal is to minimize the total expected cost of charging the fleet under uncertain 

electricity prices and demand. The optimization model is formulated as follows: 

 ( ) min , : , 0 ,p
x

cx Q x cx B x +     (3.1) 

where the cost function ( ),Q x   is given by 

 ( ) ( )( ) ( ) ( ) , : min : , 0 .
y

Q x s D x y W y W y cx B y   = − − + +    (3.2) 

Here, x  represents the amount of eletricity to buy now and y  is the amount to buy 

tomorrow, ( )D   signifies the demand for electricity, which is dependent on the random variable 

 , encapsulating the uncertainty in demand. The term ( )W   reflects the price of electricity that 

can vary with  . The penalty for unsatisfied demand is represented by s . The decision variables 

x  and y  denote the electricity purchased a day ahead and on the day of operation, respectively. 

Numerical Test. In our study, we set the unit price of buying electricity today as 1c = . 

We differentiate between two types of scenarios: regular days and worst-case days. On regular 

days, the distributions for charging demand ( )( )D   and price ( )( )W   are characterized as 

follows: 

 ( ) ( ) ( ) ( )5,15 , 0.5,1.5 ,D W    
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where ( ),a b  denotes the uniform distribution between a  and b . In the worst-case scenario, the 

mean values of these random variables are threefold compared to regular days, specifically: 

 ( ) ( ) ( ) ( )2 5,15 , 2 0.5,1.5 .D W      

The probabilities of encountering regular and worst-case days are also differentiated, with P  

(regular ) 0.7=  and P  (worst ) 0.3= . The total buget B  is set to 12 and the penalty 2.5s = . 

Figure 3.1 demonstrates that the SAA method tends to be overly optimistic, especially when only 

a small sample size is available. In contrast, our approach provides a more robust solution. 

 

3.1.2 Literature review of statistical confidence interval 

One-sided and two-sided confidence intervals, a well-explored domain in statistical theory, 

are renowned for their robust asymptotic correctness, accuracy, and consistency, directly linked to 

sample size. A confidence interval is deemed first-order accurate if its confidence level error is 

within the inverse of the square root of the sample size, and second-order accurate if within the 

inverse of the sample size Vaart [1998]. 

 

 (a) 10N =  (b) 30N =  (c) 70N =  

Figure 3.1: The optimal value of our model is 29.7 . We now compare the result for Out-of-sample 

performance (left axis, solid line, and shaded area) and the coverage probability (right axis, dashed 
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line) as a function of the nominal confidence level ( )1 −  in APUB-SP. The star symbol indicates 

the point where the mean of the out-of-sample performance attains its minimum. 

 

The inherent convergence with the sample size is a notable feature of those upper 

confidence bounds. Moreover, statistical upper bounds provide additional advantages rooted in 

their well-established theoretical foundations. The definitions and concepts underpinning those 

bounds have undergone thorough scrutiny and refinement in the field of statistics. This rigorous 

academic exploration has yielded a comprehensive and uniform framework, facilitating a nuanced 

understanding and practical application of those bounds. Consequently, incorporating a statistical 

upper bound into stochastic optimization offers not only robustness and reliability but also 

interpretation of our proposed optimization framework. 

The most classical frequentist asymptotic approach, which utilizes the sample mean, 

standard deviation, and normal approximation, has been extensively discussed (see Devore (2009) 

and references therein). This method is particularly favored in practice for sample sizes larger than 

30 , offering a straightforward yet effective means of estimating confidence intervals Hazra (2017). 

It hinges on the Central Limit Theorem (CLT), which posits that the distribution of a sample mean 

approximates a normal distribution as the sample size increases, regardless of the population's 

distribution. Efron's bootstrap confidence interval Efron (1981), another method for constructing 

statistical upper bounds, employs the ( )100 1 − -th percentile of the bootstrap distribution of a 

sample mean. Both these methods achieve first-order accuracy. Building upon these concepts, 

Efron (1987) developed bias-corrected and accelerated bootstrap confidence interval ( )aBC  

achieving a second-order accuracy. This approach fine-tunes the nominal confidence level as a 

function of the sample size. This advancement marks a significant step towards more precise 
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confidence interval estimation, especially in cases where first-order methods might not suffice due 

to smaller sample sizes or more complex data structures. In machine learning, the construction of 

upper confidence bounds often leverages concentration inequalities to ensure robustness against 

data variability. Hoeffding-type bounds (Auer et al., 2002) are popular for their simplicity and 

effectiveness in bounding the sum of bounded random variables, particularly useful in scenarios 

with limited prior knowledge about data distributions. Empirical Bernstein-type bounds (Mnih et 

al., 2008) offer improvements over Hoeffding's approach by incorporating sample variance, 

making them more adaptable to data with varying degrees of variability. This type of bound is 

particularly advantageous in dealing with heteroskedastic data, where the variance is not constant. 

The self-normalized bounds (Abbasi-yadkori et al., 2011), on the other hand, are designed to 

handle the challenges of auto-correlated data, common in time-series analysis. These bounds 

normalize the sum of random variables by their cumulative variance, offering a more dynamic 

approach to uncertainty quantification in sequential decision processes. While these bounds are 

grounded in robust statistical principles, they each have limitations: they may be nonconvex or not 

sufficiently data-driven, leading to challenges in optimization or an overly conservative nature. 

 

3.1.3 Contributions and Organization of this Paper 

The primary contributions of this paper are summarized as follows: 

We introduce the Average Percentile Upper Bound (APUB), a novel statistical construct 

that serves as an upper bound for population means and a risk metric for sample means. The robust 

statistical foundations of APUB are established through rigorous proofs of its asymptotic 

correctness and consistency, offering a reliable basis for its applications in data-driven decision-

making. 
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The innovative integration of APUB into stochastic optimization frameworks mitigates the 

ambiguity stemming from sparse data in probability distributions. The theoretical properties of 

APUB are adeptly applied to a new optimization framework, simultaneously ensuring model 

reliability and interpretability while reducing over-conservatism. This synergy narrows the gap 

between statistical upper bounds and stochastic optimization, fostering theoretical advancement 

and practical utility. 

The development of a bootstrap sampling approximation method is tailored for solving 

APUB-embedded optimization frameworks, particularly focusing on twostage linear stochastic 

optimization with random recourse. We present formal proofs of the method's stability and 

convergence, underscoring its effectiveness and applicability. 

The rest of this paper is organized as follows: Section 3.2 introduces the concept of APUB. 

Specifically, Section 3.2.1 formally defines APUB and explores its statistical implications, while 

Section 3.2.2 provides a thorough examination of the asymptotic properties of APUB, including 

the proofs of asymptotic correctness and consistency. Section 3.3 details the integration of APUB 

into stochastic optimization. Section 3.3.1 addresses the asymptotic correctness of our 

optimization framework, and Section 3.3.2 establishes its asymptotic consistency. Section 3.4 

develops a bootstrap sampling approximation approach to solve our optimization framework. We 

also show the convergence and stability of the approximation. Section 3.5 presents a 

comprehensive numerical analysis, applying the proposed framework across a variety of classical 

stochastic optimization scenarios. The paper concludes with Section 3.6, summarizing key 

findings and contributions. 
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3.2 Average Percentile Upper Bound 

We establish formal definitions for the key concepts employed in this paper. Consider an 

induced probability space ( )Ξ, ,B , where Ξ  is the support of a random vector, B  is the Borel 

 -algebra, and  is a probability measure. Let ( )1, , N    indicate an independent and 

identically distributed (i.i.d) random sample with a size of N  generated from ( )Ξ, ,B . The 

empirical distribution associated with the random sample is represented as 

 
1

,ˆ 1
:

n

N

N

nN


=

=   

where 
n

  is the Dirac delta function at n . As N  increases to infinity, we have a sample path 

( )1 2, ,   . Without loss of generality, we ignore the decision variable x  and focus our discussion 

on a measurable cost function :ΞF →  in this section. Denote by ( ): F  =    the 

population mean and by ( )2 2: ( )F   = −   the population variance. We assume   and   

to be finite in the late statement. Also let ( )ˆ
ˆ :

N
N F  =    be the sample mean and 

( )ˆ
ˆ ˆ:

N
N NS F   = −   be the sample variance. 

 

3.2.1 Concept of Average Percentile Upper Bound 

Using the bootstrap percentile method, Efron [1981] presents a ( )100 1 %−  bootstrap 

based upper confidence bound for   as 

 ( ) *

*: inf : Pr 1 .MU t t  =    −∣  (3.3) 
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where *  is a bootstrap distribution and *  is a bootstrap estimator of  . Equation (3.3) is 

explicitly represented as the limit of 

 ( ),

1 1

1 1
inf : 1 1 ,

M N

M m n

m n

U t F t
M N

  
= =

  
=    −   

  
   (3.4) 

where  1   is the indicator function and ( ),1 ,, ˆ,m m N N   , for 1, ,m M=  , are bootstrap 

samples. The following proposition depicts the limit of 
MU . 

Proposition 3.2. For a given ˆ
N , we let 

 ( )Efron

1

1
: inf : Pr 1 ,ˆ ˆ

N

N n N

n

t F t
N

   
=

     =    −   
   

∣  (3.5) 

where ( )1, , ˆ
N N   . Then, as Efron?, ˆ

M NM U   → →
 
∣  w.p. 1 (for   ). 

Proof. For a fixed ˆ
N , we briefly denote by ( )1: , , N = ζ  a random matrix whose probability 

measure is an N -fold Cartesian product ˆ ˆ
N N  . Thus :m =ζ  ( ),1 ,, ,m m N  , for 

1, ,m M=  , is a random sample from ˆ ˆ
N N  . Let ( ) ( )1

1
: N

n nG F
N

== ζ . It means that 

( ) ( )( )Ψ ˆ: Pr Nt G t= ∣ζ  is the cumulative probability distribution (cdf) of ( )G ζ  and 

( ) ( ) 1

1
Ψ : 1M

M m mt G t
M

==  ζ  is an empirical cdf associated with a random sample 

( ) ( )1 , , MG Gζ ζ . Thus, ( )ΨM t  uniformly converges to ( )Ψ t  w.p. 1 as M  goes to infinity. 

Therefore, any percentile of ( )ΨM t  converges to the counterpart of ( )Ψ t  w.p.1. It follows that 

MU  converges to Efron
ˆ

N

  
 
∣  w.p.1. 
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While Efron?
ˆ

N

  
 
∣ , the percentile-based upper bound, is satisfactory in many statistical 

analyses, it is non-convex and difficult to control/optimize for highly skewed distributions, which 

are regarded as inferior properties in the realm of optimization. Therefore, we extend Efron's upper 

bound by averaging over the values to the right of the ( )100 1 − -th percentile. 

Definition 3.3. The average percentile upper bound for   with a nominal confidence level 

( )1 −  is denoted as 

 APUB Efron
0

.ˆ ˆ1
:N N d


   


   =
   ∣ ∣  (APUB) 

We can interpret Efron's upper bound, alternatively in the realm of risk management and 

decision making, as an approximation of the Value at Risk (VaR) of ˆ
N  by substituting ˆ

N  for  

in the following VaR equation: 

( ) ( )
1

1
VaR inf : Pr 1 .ˆ

N

N n

n

t F t
N

   
=

   
=    −  

   
  

Analogously, APUB approximates the Conditional Value at Risk (CVaR) of ˆ
N , 

( ) ( )
0

1
CVaR VaR .ˆ ˆ

N N d


   


=   

APUB serves a dual purpose: as an upper bound for the population mean in statistics and as an 

approximate risk measure for the sample mean in risk assessment. As a risk measure, it primarily 

focuses on approximating the tail distribution of the potential estimation error of the population 

mean, which could result from an inadequacy of sample points. Furthermore, APUB complies with 

fundamental properties of a coherent risk measure, such as sub-additivity, homogeneity, convexity, 

translational invariance, and monotonicity. These characteristics make APUB a good candidate to 

be applied to stochastic optimization under distributional ambiguity, particularly in scenarios 
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requiring solvability, such as two-stage stochastic optimization with random recourse. Analogous 

to Theorem A. 2 [Rockafellar and Uryasev, 2000], the following proposition provides an 

alternative representation for APUB. 

Proposition 3.4. 

 ( ) ( )APUB

1 1

1 1
inf ,ˆ ˆ

N N

N n N n
t

n n

t F t d
N

   


= =

  
  = +  −   

  
 ∣  (3.6) 

where the bold integral symbol means an N -fold integral over the N -fold Cartesian product of 

ˆ
N . 

Remark 3.5. By Proposition 3.4, we have that APUB?
ˆ

N

  
 
∣  monotonically decreases in 

( 0,1   w.p.1. This implies that, for ( 0,1  , 

( ) ( )1

APUB APUB

1 1

1
, w.p.1.ˆ ˆ ˆ ˆ

N N

N N n N n N

n n

F d
N

     
= =

 
    =  =    

 
 ∣ ∣  

The quality of a statistical upper bound refers to the rate of its true coverage probability 

increasing beyond the nominal confidence level ( )1 −  as the sample size grows. Example 3.6 

illustrates the following two attractive asymptotic characteristics of APUB. A theoretical 

discussion is given in Section 3.2.2. 

1.Asymptotic Correctness (defined in Vaart [1998, Section 23.3]): A statistical upper bound 

ˆ
N

  
 
∣  for   is correct at level ( )1 −  up to   thorder if its coverage probability 

( ) ( ) ( )/2P ˆr 1N O N    −   − +
 
∣ ∣  

If the equality holds, one says that ˆ
N

  
 
∣  is   th-order accurate Hall [1986]. Efron's 

upper bound is first-order accurate and APUB is first-order correct. Notably, the terms 'asymptotic 
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correctness' and 'asymptotic accuracy' are different. Specifically, the asymptotic correctness 

implies that, when the sample size N  is sufficiently large, the nominal confidence level serves as 

a reliable lower bound for the coverage probability. 

2.Asymptotic consistency: APUB converges to the population mean w.p. 1 as the sample 

size increases to infinity. This attribute ensures that APUB is a consistent estimator for the 

population mean. 

Example 3.6. Let ( )Gamma 2,1   and ( )F  = . So the population mean 2 = . We 

compare APUB with Efron's upper bound and the standard large-sample upper bound given as 

ˆ /N Nz S N + , where z  denotes z  critical value. In order to estimate the probability density 

functions (pdf) of three upper bounds, we performed a Monte Carlo simulation with 0.05 =  

while allowing the sample sizes, N , to vary from 80 to 10,000 . 

As illustrated in Figure 3.2, the coverage probability is essentially the area to the right of 

the vertical dotted line at 2 =  in a pdf. Our results show that as N  increases, the coverage 

probabilities for both the large-sample and Efron's upper bounds get closer to ( )1 0.95− = . This 

demonstrates the asymptotic accuracy of these two types of bounds. However, this is in stark 

contrast to APUB which doesn't have asymptotic accuracy. In fact, as N  approaches infinity, the 

coverage probability of APUB can 
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 (a) Standard Upper Bound (b) Efron's Upper Bound 

 

(c) APUB 

Figure 3.2: The comparison between APUB, Efron's upper bound, and the standard large-sample 

upper bound. 
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grow beyond ( )1 − . Moreover, this growth rate is observed to be more rapid than the other two 

bounds, which brings attention to the unique nature of APUB. 

Furthermore, all three upper bounds exhibit asymptotic consistency. As N  increases, they 

all converge to 2 =  w.p.1. This essentially means they become more precise as more data is 

collected. By examining the pdf curves, it is apparent that they narrow and concentrate more 

intensely around  , which visually indicates this trend. 

 

3.2.2 Asymptotic Characteristics of APUB 

We now theoretically discuss the asymptotic correctness and consistency of APUB. The 

following proposition shows its asymptotic correctness. 

Proposition 3.7. Suppose that the skewness ( ) 3 3[ ] /F    −  . Then, for a fixed 

nominal confidence level APUB1 , ˆ
N

  −
 
∣  is 1st-order asymptotically correct, i.e., 

( ) ( ) ( )1/2

APUBPr 1ˆ
N O N   −   − +

 
∣ ∣  

Proof. Theorem A. 3  Efron, 1981] shows that ( ) ( )1/2

Efron? 1ˆ
N O N   −  = − +

 
∣ . By 

Definition 3.3, we know that APUB? Efron?
ˆ ˆ

N N

     
   
∣ ∣ . 

Proposition 3.7 establishes the asymptotic correctness of APUB, which guarantees that the 

nominal confidence level is a conservative boundary for the actual coverage probability. This 

attribute confirms that APUB is an effective upper-bound statistic, especially valuable for its 

robust response to distributional ambiguity encountered with limited sample data. Considering the 

uncertainty diminishes along with an increase in the sample size, we next show that APUB is a 

consistent estimator for the population mean. 
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Theorem 3.8. For any ( 0,1  , as N → , 

, . .1.ˆ
APUB N w p    →

 
∣  

To prove Theorem 3.8, we need the following lemma about the bootstrap law of large 

numbers. 

Lemma 3.9. Let ( )1, , ˆ
N N   . Then, as N → , 

( )
1

1
. .1.

N

n

n

F w p
N

 
=

→  

Proof. According to Theorem A. 4 [Athreya, 1983], if ,lim inf 0M N MN 



−

→   for some 0  , and 

( )| |F   −   for some 1   such that 1  , we have that, as ,M N → , 

( )
1

1
1w.p.1

M

m

m

F
M


=

→  

where ( )1, , ˆ
M N    

In our case, choose 1, 2 = = , and M N= . This ensures that ,lim infM N MN 



−

→ =  1 0 . 

The condition ( )| |Z   −   is satisfied due to finite variance. This completes the proof. 

Proof of Theorem 3.8. Let ( )1 2, ,    be a realization of the sample path and 
N

 be the 

empirical distribution associated with the first N  sample points. Denote by 

( ) ( )( )1 , ,N N N N    a random sample under 
N

. Denote a collection of realizations as 

 ( )
( )

( )( ) ( )

1

1 2

1

1
lim

: , , : .
1

lim ?w.p.1 for

N

n
N

n

N

n N
N

n

F
N

F
N





 

 

  

→
=

→
=

 
= 

 
=  
 =
  





S  (3.7) 
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It follows by the Strong Law of Large Number and Lemma 3.9 that ( ) 1 2Pr , ,    

} 1=∣S . 

We now fix ( )1 2, ,   S  along with its corresponding ( )1 2, , . Here, ( )1 2, ,    

and 
N

 are deterministic, while ( ) ( )( )1 , ,N N N   remains randomness. For clarity, denote 

( ) ( )( )
1

.ˆ
1

:
N

N N n N

n

F
N

 
=

=   

By Proposition 3.4, we have 

( )( )APUB CVaR .ˆ
N N N



   = ∣  

Then, to prove Theorem 3.8, it suffices to show 

 ( )( )limCVaR .ˆ
N N

N



 

→
=  (3.8) 

Sarykalin et al. [2008] provide an expression of CVaR as 

 ( )( ) ( )( ) ( ) ( )( )CVaR VaR 1 CVaR ,ˆ ˆ ˆ
N N N N N N        += + −  (3.9) 

where 

( )( ) ( ) ( ) ( )( )

( ) ( )( ) 

CVaR VaR ,

Pr VaR
.

ˆ ˆ ˆ ˆ

ˆ

1

ˆ

N N N N N N N N

N N N N

 





   

  




+  = 
 

 −
=

−

∣

 

Describe ( ) ( )( )aˆ R ˆVN N N N   as event N . By the definition of VaR, it is clear to see 

( )Pr N   for all N . The expression (3.9) implies that 

( )( ) ( )( ) ( )( )VaR CVaR CVaR .ˆ ˆ ˆ
N N N N N N   +   
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According to Theorem A. 5 [Vaart, 1998], we understand that convergence in distribution 

implies the convergence of the quantile function. Thus, we have 

( )( )limVaR ,ˆ
N N

N



 

→
=  

On the other hand, applying Theorem A. 6 [Mallows and Richter, 1969], we have 

( )( ) ( ) ( ) ( )

( )

( )

1/2

1/2

CVaR

1 Pr

Pr

1
,

ˆ ˆ ˆ ˆ
N N N N N N N N N

N

N

N

N

    








+      − = −
     

 −
   

 

− 
  

 

∣

 

where N  represents the standard deviation of ( )ˆ
N N . Since ( )ˆ

N N  converges to   w.p.1, 

we know that N  converges to 0. Therefore, we establish: 

( )( ) ( )
( )

( )( )

( )
( )

1

1

limCVaR lim

li

ˆ ˆ

m

1
lim

,

N N N N
N N

a

N
N

N

n
N

n

b

F

F
N


 





 







+

→ →

→

→
=

 =
 

 =
 

=

=


 

where (a) holds since ( ) ( )( )1 , ,N N N   are drawn i.i.d. from 
N

, and (b) holds due to the 

definition of S  (see (3.7)). Hence, we obtain (3.8) and complete the proof. 

 

3.3 Optimization with APUB 

In this section we apply APUB to stochastic optimization problems. In the context of 

optimization, let the cost function ( ), : ΞF x    be B -measurable for all x . Denote 
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the mean and standard deviation of ( ),F x   by ( )x  and ( )x  respectively. The UB-M 

framework using APUB is written as 

 
( )APUBmin .ˆ ˆ

N N
x

x  


 =
 

∣
 (APUB-M) 

By Remark 3.5, we know that ˆ
N

  decreases in ( 0,1   w.p. 1 and 1ˆ
N  is the optimal 

value of SAA-M. Let ˆ
N

  denote the set of optimal solutions to APUB-M. Also, denote by *  the 

optimal value of EM-M and by  the set of its optimal solutions. We now present some mild 

assumptions as follows. 

Assumption 3.10. There exists a compact set   such that: 

(A1)  ; 

(A2) ˆ
N

   w.p. 1 for sufficiently large N  and ( 0,1  . 

Assumption 3.10 is frequently encountered in the literature pertaining to the asymptotic 

analysis of the SAA method [Birge and Louveaux, 2011, Shapiro et al., 2021]. This assumption 

posits that it is adequate to confine the examination of decision properties to the compact set . 

For the purposes of the discussion in the remainder of Section 3.3, we proceed under the premise 

that the decision space is indeed , a simplification that does not limit the generality of our 

analysis. 

Assumption 3.11. There exists an open convex hull  containing  such that: 

(B1) ( ),F x   is convex on  for each Ξ  ; 

(B2) ( )x  and ( )x  are finite for all x . 

Building on the aforementioned assumptions, we can draw the following observations in 

Proposition 3.12. 
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Proposition 3.12. Suppose Assumption 3.11 holds. Then ( )x  is continuous on , and 

( )APUB
ˆ

Nx  
 

∣  is a continuous convex function on  w.p.1. 

Proof. Since ( ),F x   is convex on ( ), x  is also convex on . Hence, ( )x  is continuous. 

Under Assumption ( )3.11, ,F   is continuous and convex on . It is easy to see that, by 

Proposition 3.4, ( )APUB
ˆ

Nx  
 

∣  is continuous convex on . 

In Sections 3.3.1 and 3.3.2, we examine asymptotic characteristics of APUB-M, focusing 

on its data-driven nature which includes aspects such as reliability, consistency, and ease of 

interpretation. 

 

3.3.1 Asymptotic Correctness 

Mohajerin Esfahani and Kuhn [2018] introduce the concept of reliability for a certain 

optimal solution in DRO approaches. The reliability refers to the probability that the 

optimal value of a DRO model exceeds the expected cost of the system at the optimal solution in 

true scenarios. We extend this concept to the entire optimal solution set, which in our case is called 

the coverage probability of the general UB-M framework. Denote a probability function of a given 

subset S   as 

 ( ) ( )( ), : Pr max .
x S

S x   


=  ∣  (3.10) 

Let N



  and 
N

  be the optimal value and optimal solution set of UB-M, respectively. The 

coverage probability of UB-M is ( ),N N

   , which measures the chance that N



  can serve as an 
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upper bound of the actual performance of UB-M across all optimal solutions. In the following, we 

define the asymptotic correctness of UB-M. 

Definition 3.13. UB-M is   th order asymptotically correct if its coverage probability 

converges to the nominal confidence level with a rate up to ( )/2O N −
 as 

( ) ( ) ( )/2, 1 .N N O N
     − − +  

Defined on the entire optimal solution set, the concept of asymptotic correctness is stricter 

than the reliability concerning a certain optimal solution. If a UB-M framework is asymptotically 

correct, we have that, for any Nx  , 

 ( ) ( ) ( ) ( )/2, , 1 .N N Nx O N
        −  − +  

In the subsequent statement, we refer to  ( ),N x


   as the coverage probability of UBM 

concerning x , or simply the coverage probability at x . Thus, we can say that the asymptotic 

correctness of UB-M guarantees the asymptotic correctness at any optimal 

solution. Moreover, since ( )* x   for all 
Nx  , we obtain that 

( ) ( ) ( )* /2Pr 1 .N O N
    −  − +∣  

This implies that the nominal confidence level approximately represents the lower bound 

of the probability that N



  serves as an upper bound for * . The following theorem shows the 

asymptotic correctness of APUB-M. 

Theorem 3.14. Suppose that Assumptions 3.10 and 3.11 hold. Assume that the skewness 

of ( ),F x   is finite for each x . Then, APUB-M is 1 st-order asymptotically correct for 

( 0,1  , i.e., 
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( ) ( ) ( )1/2, 1 ,ˆ ˆ
N N O N    − − +  

Proof. We know that ˆ
N

   w.p. 1 under Assumption 3.10 and the objective function of APUB-

M, ( )APUB?
ˆ

Nx  
 

∣ , is continuous by Proposition 3.12. Hence, ˆ
N

  is compact for sufficiently 

large N  w.p.1. Also, we know ( )x  is continuous. By the extreme value theorem, there exists 

˜
ˆ

Nx   such that 

( ) max ( ).
Nx

x x 


=  

Since the skewness of ( ),F x   is finite, it follows by Proposition 3.7 that 

( )  

( ) ( )

˜ ˜

APUB

˜ ˜

APUB

1/2

, ,

Pr

1 .

ˆ ˆ ˆ

ˆ

N N N

N

x x

x x

O N

  



   

 

 −

   
=    

   

     
=      

     

 − +

∣

∣ ∣  

Remark 3.15. The attribute of asymptotic correctness lends APUB-M interpretability in the context 

of statistics. This means that the decision-maker can intuitively set the desired reliability level of 

APUB-M by selecting an appropriate nominal confidence level. Section 3.5 provides a numerical 

demonstration of how this model interpretability confers an advantage. 

 

3.3.2 Asymptotic Consistency 

In optimization, asymptotic consistency refers to the convergence of the optimal value and 

optimal solution set of APUB-M with their counterparts in EM-M w.p. 1 as the sample size 

increases. The following theorem exhibits the asymptotic consistency of APUB-M. 
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Theorem 3.16. Suppose Assumptions 3.10 and 3.11 hold. Then, for any given 𝛼 ∈ (0,1], 

as 𝑁 → ∞, 

*ˆ ,N

 →  and ( )
ˆ

, : supinf 0w.p.1.ˆ

N

N
z

y

y z








= − →  

Remark 3.17. Unlike DRO approaches that require additional parameter adjustments based on the 

sample size to achieve data-driven objectives, the sample size itself is the unique factor to 

determine the convergence of APUB-M. This characteristic offers a more consistent data-driven 

approach in practice. As ambiguity in distribution decreases with larger sample sizes, the influence 

of APUB consequently lessens. As a result, APUB-M avoids over-conservatism. 

To prove Theorem 3.16, we first prove the following lemma, which shows the uniform 

consistency of ( )APUB
ˆ

Nx  
 

∣  on . 

Lemma 3.18. Suppose Assumption 3.10 and 3.11 holds. Then, we have as N → , 

 ( ) ( )APUBsup 0, w.p.1.ˆ
N

x

x x  


  − →
 

∣  (3.11) 

Proof. Without loss of generality, let the open convex set 
d . We first construct a countable 

dense subset of  as : d=  , where 
d

 represents the set of d  dimensional rational 

numbers. Choose a sample path ( )1 2, ,    and hence ˆ
N  is the empirical distribution associated 

to the first N  sample points. For x , we denote an event as 

( ) ( ) ( ) 1 2 APUBΥ : , , : li ˆmx N
N

x x


   

→

 =  =
 

∣  

Since ( )x   and ( )x   under Assumption (B2), it follows by Theorem 3.8 that 

( )Pr Υ 1x =∣ , which implies that ( )Pr Υ 1x x =∣ . In other words, ( )APUB?
ˆ

Nx  
 

∣  

converges pointwisely to ( )x  on  w.p.1. Furthermore, by Proposition 3.12 and Theorem A. 7 
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[Rockafellar, 2015], we can conclude that ( )APUB?
ˆ

Nx  
 

∣  converges uniformly a certain 

continuous function   on  w.p.1. Since ( )x  and ( )x  coincidence on a dense subset of  

and they are both continuous on , we know that ( ) ( )x x =  for all x . This completes the 

proof. 

Proof of Theorem 3.18. 

i) Proof of the consistency of ˆ
N

 . Choose *x   and ˆˆ
N Nx  . It is easy to see that 

( ) ( )*

APUB APUB
ˆ ˆˆ

N N Nx x     
   

∣ ∣  

and 

( ) ( )* ˆ
Nx x   

Thus, we have 

 

( ) ( )

( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( ) 

( ) ( )

* *

APUB

* *

APUB APUB

* *

APUB APUB

APUB

max ,

m

ˆ

ax ,

sup

ˆˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ

N N N

N N N N

N N N N

N
x

x x

x x x x

x x x x

x x

 

 

 



   

   

   

 


 − = −
 

   = − −
   

    − −
  

  −
 

∣

∣ ∣

∣ ∣

∣

 

which converges to 0 w.p. 1 by Theorem 3.18. This completes the proof. 

ii) Proof of the consistency of ˆ
N

 . Let  as a collection of sample paths along which ˆ
N

   

for a sufficiently large N  and 
*ˆ

N

 → . By the above proof and Assumption (A2), we have 

( )Pr 1=∣ . We now choose ( )1 2, ,    . Thus ˆ
N


 is the optimal solution set of APUB-M 

using the first N  sample points. 
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Suppose by contradiction that ( ) 0ˆ ,N


 along the sample path ( )1 2, ,   . Then, 

there exists 0   such that for all M  , there exists some N M  for which ( ),ˆ
N

  . 

Specifically, there exists ˆˆ
N Nx   such that ˆinf ,y Nx y   . Because of the compactness of , 

we can find a subsequence ˆˆ
k kN Nx   such that ˆ

kNx   for all k , and 

lim ,inf , , for all .ˆ ˆ ˆ
kN N

k y
x x x y k




→ 
=    

It follows that x̂  and hence ( ) *x̂  . On the other hand, we have 

( ) ( ) ( ) ( ) ( ) ( )APUB APUB
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .

k k k kN N N N N Nx x x x x x         −  − + −
   

∣ ∣  

On the right hand of the above inequality, the first term converges to zero by Theorem 

3.18, and the second term converges to zero because of the continuity of ( )x . Thus, 

( ) ( )APUBlim .ˆˆ ˆ
kN N

k
x x


 

→

  =
 

∣  

The definition of  ensures that ( ) *

APUB
ˆ ˆˆ

kN N Nx     = →
 

∣ . It implies that ( )x̂ =  * . 

This is contradictory to the assertion that ( ) 0ˆ ,N


. 

 

3.4 Solution Method Based on Sampling Approximation 

By Proposition 3.4, we rewrite APUB-M as 

 
( )

( ) ( )
,

1 1

.ˆ 1 1
min , ˆ

N N

N n N n
x t

n n

t F x t d
N

  
 

= =

 
= +  − 

 
   (3.12) 
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Let ˆ
N

  be the optimal solution set of (3.12). We enumerate the all permutations of the 

sample points ( )1, N   with replacement, denoted by ( ),1 ,, ,m m N  , for 1, ,m M=   where 

NM N= . APUB-M can be represented as 

 
( )

( ),
,

1 1

.
1 1

min ,
M N

m n
x t

m n

t F x t
M N


 

= = +

 
+ − 

 
   (BP-APUB-M) 

The above model representation comprises 1NN +  random scenarios. Addressing its large-

scale nature becomes imperative. To tackle the complexity arising from the sheer number of 

scenarios, we can leverage the sampling approximation method. Achieving a satisfactory 

approximation, BP-APUB-M actually needs a significantly smaller number NM N  of random 

samples. Each sample, drawn from the empirical distribution ˆ
N , consists of N  sample points. 

The random samples are referred to as bootsrap samples, in terms of the nonparametric bootstrap 

percentile method. 

 

3.4.1 Asymptotic Convergence of BP-APUB-M 

This section is in reference to the asymptotic behavior of BP-APUB-M as the N  original 

sample points ( )1, , N   are fixed and the number M  of bootstrap samples increases. Theorem 

3.19 shows the convergence of BP-APUB-M, and Theorem 3.21 explores its stability. 

Theorem 3.19. Suppose that  is compact and ( ), nF x   is continuous convex on  for 

any orginal sample point , 1, ,n n N =  . Let ,N M

  and ,M N


 denote the optimal value and the 

solution set of BP APUB M− − , respectively. Then, for any ( 0,1  , as M → , 

( ) ( ), , , 0w.p.1 for .?ˆ ˆ M N N M N Nand     → →  
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To prove Theorem 3.19, we first give the following Lemma. 

Lemma 3.20. Let the assumptions of Theorem 3.19 hold. Denote 

 
 

( )
 

( )
1

1
, , ,, , ,

: sup ,   : inf ,
N

N

u l
xx

t F x and t F x
    

 
    

= =  

Then, ut  and lt  are finite. Let    
2

: , , : max ,l u u lt t B t t




+
= = , and ( )1, , N    ˆ

N  

be a generic bootstrap sample. Then, 

( )
( ) ( )

, 1

1 1
sup , w.p.1 for .

N

n
x t n

t F x t B
N

 
  = +

 
+ −  

 
  

Furthermore, for any ( 0,1 , BP APUB M  − −  is equivalent to 

 
( )

( ) ( ),
,

1 1

1 1
min , w.p.1 for ,

M N

m n
x t

m n

t F x t
M N

 
 

= = +

 
+ − 

 
   (3.13) 

which substitutes  for  in BP-APUB-M. 

Proof. Since ( ), nF x   is continuous on the compact set  for all , 1, ,n n N =  . It follows by the 

extreme value theorem that lt  and ut  are bounded. Then, we have that, for all ( ),x t   , 

( ) ( )  1 1

1 1 1 1 2
, , max ,N N

n n n n u lt F x t t F x t t t B
N N


 

  
= =

+

+ 
+  −  +  −  = 

 
 w.p.1. 

To prove the equivalence between BP-APUB-M and model (3.13), we only need to show 

that the optimal solution set of BP-APUB-M is contained in  . The key of the proof is to 

show that any optimal t -solution belongs to . It is clear that, for an arbitrary 0   and all 

x , 

( )
1

1
, : w.p.1.

N

n l l

n

F x t t t
N

 
=

  − =  

It follows that, for any x , 
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( ) ( ), ,

1 1 1 1

1 1 1 1
, , 0, w.p.1.

M N M N

l m n l m n

m n m n

t F x t t F x t
M N M N


  

  = = = =+ +

         
+ − − + − = −       

     






 

     

Since   is arbitrary, any optimal t -solution of BP-APUB-M should not be less than lt . 

On the other hand, a similar proof can show that any optimal t -solution of BP-APUBM 

should not be more than ut . 

Proof of Theorem 3.19. Under the assumption, it is easy to see that 

 ( )
1

1 1
,

N

n

n

t F x t
N


 = +

 
+ − 

 
  

is continuous on   w.p.1. By Lemma 3.20, we also know that for any ( ),x t   , 

 ( )
1

1 1
, w.p.1.

N

n

n

t F x t B
N

 
 = +

 
+ −   

 
  

BP-APUB-M satisfies the conditions required in Theorems A. 9 [Shapiro et al., 2021]. 

Subsequently, we have that as M → , 

 
( )

( ) ( ) ( ),
, 1 1 1

1 1 1
, , 0 ,w.p.1.?ˆ

M N N N

m n n N n
x t m n n

sup F x t F x t d
M N N

  
  = = = ++

 
− −  → 

  
     

Then, by Theorem A. 10 [Shapiro et al., 2021], we can complete the proof. 

Theorem 3.21. Let the assumptions of Theorem 3.19 hold. Let ( , ,,M N M Nx t 
 ) be an optimal 

solution of BP APUB M− − . Then, for any 0  , there exist 0 a  and 0 b  such that 

( ) ( )( ),Pr Π ,ˆ ˆ ˆ MN

APUB M N N N Nx e   

   −  −  
 

∣ ∣ ba  

for all 1M  . If ( ) ˆ ˆˆ ,N N Nx t  =  is a singleton, there exist ' 0 a  and ' 0 b  such that 

( ) ( ) ( )( )
'

'

, ,Pr , , Π ,ˆˆˆ MN

M N M N N N Nx t x t e    



−
−  ∣ ba  



 71 

for all 1M  . 

Proof. The proof of this theorem directly follows from Lemma 3.20 and Theorem A. 11 [Birge 

and Louveaux, 2011]. 

3.4.2 Practical Reformulation of BP-APUB-M 

Recall that ( )1, , N   is the original random sample associated with the empirical 

distribution ˆ
N . In the context of nonparametric bootstrap sampling, each point in a bootstrap 

sample is drawn from ( )1, , N   with replacement. We can count the number of times the 

specific original sample point n  appears in the m  th bootstrap sample ( ),1 ,, ,m m N  , which is 

denoted by 
,m nV . Note that 

,0 m nV N  . This observation implies that BP-APUB-M can be 

reformulated as 

 
( )

( ),
,

1 1

.
1 1

min ,
M N

m n n
x t

m n

t V F x t
M N


 

= = +

 
+ − 

 
   (3.14) 

As an illustrative application, we now demonstrate the utility of APUB within the context 

of a specific class of optimization problems known as two-stage linear stochastic optimization with 

random recourse. In this case, APUB-M is adapted to formulate the first stage as 

 ( )APUBmin ˆ, N
x

c x Q x   +   
∣  (3.15a) 

 s.t. ,Ax b=  (3.15b) 

 0.x   (3.15c) 

By letting ( ), , ,q h T W = , the second stage is represented as 

 ( ), min
y

Q x q y =  (3.16a) 

 s.t. ,Wy h Tx= −  (3.16b) 
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 0.y   (3.16c) 

Denote ( ) ( )APUB?
ˆ: , Nx c x Q x   = +   

∣  and ( ): { : , , 0}x x Ax b x =  = X . 

Furthermore, we equivalently write the first stage (3.15) as 

 ( )APUBmin , ,ˆ
N

x
c x Q x 



  +   
∣  (3.17) 

where the relatively complete recourse is satisfied, i.e., ( ), nQ x    for all xX  and 

1, ,n N=  . Relatively complete recourse is commonly a reasonable condition, especially given 

that a solution lacking feasible recourse action can generally be deemed ill-defined  ? . 

Let ( ), , ,n n n n nq h T W =  be the n th point of the original random sample associated with the 

empirical distribution ˆ
N . The bootstrap sampling approximation of the two-stage APUB-M 

(3.16)-(3.17) can be written as a linear program, 

 
, , ,

1

1
min

M

m
x y s t

m

c x t s
M =

+ +   (3.18a) 

 ,

1

1
s.t. ,

N

m m n n n

n

s t V q y
N =

 − +   1, , ,m M=   (3.18b) 

 ,n n n nW y h T x= −  1, , ,n N=   (3.18c) 

 ,Ax b=  (3.18d) 

 0, 0, 0x y s    (3.18e) 

In Sections 3.5.1 and 3.5.2, we test the performance of the two-stage APUB-M, comparing 

with SAA-M and DRO approaches. 
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3.5 Numerical Analyses 

We assess the efficacy of APUB-M through an extensive examination of classic problems 

in stochastic optimization, spanning both single-stage and two-stage scenarios. Section 3.5.1 

provides a comparative analysis between APUB-M and traditional DRO utilizing Wasserstein 

distance. This comparison involves evaluating their respective out-of-sample performances and 

coverage probabilities in addressing a two-stage benchmark problem with fixed recourse (Dantzig, 

2016). The comparative analysis reveals that, although APUB-M does not guarantee 100% 

coverage probability in situations characterized by a severe lack of data, it demonstrates a potential 

advantage by mitigating over-conservatism and achieving better average out-of-sample 

performance than the DRO approach. Furthermore, Section 3.5.2 extends the application scope of 

APUB-M to encompass problems featuring random recourse. It shows that the robustness and 

favorable performance of APUB-M are maintained. Traditional DRO methodologies encounter 

inherent limitations when confronted with the computational complexity resulting from random 

recourse. In Section 3.5.3, we subject APUB-M to rigorous testing using a multi-product 

newsvendor problem (Hanasusanto et al., 2015). APUB-M provides stable and high-quality 

solutions even when the sample size is small. Notably, Mohajerin Esfahani and Kuhn (2018) 

highlight that the Wasserstein distance based DRO fails to perform effectively in situations, like 

the newsvendor problem, where the random loss function exhibits a Lipschitz modulus concerning 

random scenarios, independent of decision variables. Across all investigated scenarios, the close 

correspondence between nominal confidence levels and actual coverage probabilities serves as a 

testament to the methodological reliability of APUB-M. 

 

3.5.1 A Two-Stage Product Mix Problem with Fixed Recourse 
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We adapt the benchmark two-stage product mix problem presented by Dantzig [2016] to 

our test case, which seeks to optimize the product mix of a furniture shop amid uncertain labor 

conditions. During the 'here-and-now' stage, the company commits to a long-term contract, 

promising to deliver a set quantity of furniture in each time period. This quantity can be adjusted 

due to strong market demand. Labor hours, which are crucial to production, are uncertain and 

variable, partly because of factors such as the COVID-19 pandemic. The production involves four 

distinct products and two workstations each constrained by the availability of labor hours. Each 

product requires varying amounts of labor across these workstations and contributes specific profit 

margins upon sale. Labor availability dictates production time, with more hours leading to reduced 

production time, a phenomenon attributed to skill diversity and improved efficiency. At this stage, 

the company's objective is to determine the most profitable product mix that meets contractual 

requirements while contending with the unpredictability of labor availability. 

In the subsequent 'wait-and-see' stage, the company must confront the actual labor hours 

available, which may deviate from earlier estimates. In instances where there is a shortfall in the 

labor hours anticipated by the production plan conceived in the "here-and-now' stage, the option 

exists to outsource additional labor hours for workstation. However, this supplemental workforce 

is not as efficient as the in-house labor. Thus, at this juncture, the firm's focus pivots to minimizing 

the expenses linked to acquiring these supplemental, less efficient labor hours, while still fulfilling 

the contractual furniture delivery commitments. The decision-making process in this stage is 

heavily dependent on actual labor availability and is geared toward economical adjustments to 

labor shortages. 

In practice, the company determines the production quantities outlined in the contract by 

analyzing historical labor hours. However, the unpredictability of absenteeism, exacerbated by the 
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COVID-19 pandemic, has led to a significant lack of reliable data. In response to this uncertainty, 

the company seeks to define a profit threshold that the expected profit from this contract is likely 

to meet or exceed, maintaining a confidence level of approximately ( )100 1 %− . We describe 

the profit threshold in form of APUB, which ensures the statistical reliability of the company's 

objective. On this basis, we represent this product mix problem as the two-stage APUB-M (3.15)-

(3.16). In the first stage, x  is the decision vector for the product mix and the negative value of c  

represents the per-unit profits of products. In the second stage, the decision vector y  signifies the 

outsourced labor hours assigned to workstations and associated with unit cost q  (the last two 

components with a cost of zero correspond to two slack variables), h  stands for the random labor 

hours available at workstations, T  includes the production times required for products, and the 

negative value of W  represents the efficiency rate of outsourced labor. The numerical parameters 

in our study are specified as follows: 

  1 2

1 1 1 1

2 2 2 2

0, 0, [ 12, 20, 18, 40]

[6,12,0,0] , 500 ,500 ,

4 9 7 10
0.9 0 1 04 4 4 4

,
0 0.9 0 1

3 1 3 6
4 4 4 4

A b c

q h

T W

 

   

   

= = = − − − −

= =

 
− − − −  − 

= =   
−  − − − −

  

 

where 

  1 2

12 5.76 1.92 2 0.16 0.047 3
, , ,

8 1.92 2.56 1 0.04 0.0410 10
 

          
 +          

          
 

has a mixed 2-dimensional normal distribution. In the two-stage APUB-M (3.15)(3.16), we 

generate a random sample with a size N  from the mixed normal distribution. 

3.5.1.1 Convergence of Bootstrap Sampling Approximation. 
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Figure 3.3: Convergence of the bootstrap sampling approximation. 

 

We now assess the convergence of the bootstrap sampling method applied to our model. 

Our evaluation encompasses 10 independent simulations, each producing N =  30 sample data 

points and resolving the subsequent approximation as defined in (3.18). Throughout these tests, 

we maintain a consistent nominal confidence level of ( )1 − =  0.8. Figure 3.3 illustrates the 

relationship between the number M  of bootstrap samples and the optimal values of our 

approximation problem, with M  reaching up to 2000. A discernible stabilization trend is evident 

in the data: as M  increases, variability in the optimal values conspicuously decreases. Notably, 

for 1000M  , the convergence of the approximation becomes evident as the fluctuation in the 

optimal values significantly lessens. This consistency bolsters our decision to adopt 2000M =  for 

all subsequent experiments in this section. 
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 (a) 30N = , APUB-M (d) 30N = , WassDRO 

    

 (b) 120N = , APUB-M (e) 120N = , WassDRO 

    

 (c) 480N = , APUB-M (f) 480N = , WassDRO 

Figure 3.4: Out-of-sample performance (left axis, solid line, and shaded area) and the coverage 

probability (right axis, dashed line) as a function of the nominal confidence level ( )1 −  in 

APUB-M and a function of  in WassDRO. The star symbol indicates the point where the mean 

of the out-of-sample performance attains its minimum. The minimum value of the mean is written 

next to the star symbol. 
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3.5.1.2 Comparative Analysis between APUB-M and DRO. 

We carry out a comparative analysis between APUB-M and the Wasserstein distance based 

DRO approach when applied to this two-stage product mix problem. Recall that, used in the two-

stage problem, APUB-M is formed as (3.15)-(3.16). Our aim is to evaluate their performance under 

various conditions and identify their respective strengths and limitations. 

All the tests are conducted using a Monte Carlo simulation of 1000 replications. In each 

replication, we generate a training sample set of size N , using which APUB-M provides an 

optimal solution ˆ
Nx . The out-of-sample performance, ( )ˆ

Nx , is evaluated using a unique large-

sized test sample set. The all replications provide the approximate probability distribution of 

( )ˆ
Nx . For 30,120N = , and 480, respectively, Figures 3.4a3.4c display the curve of the mean of 

( )ˆ
Nx  and the range from the 10 th to the 90 th percentile when varying ( )1 −  from 0 to 1 . 

Note that the leftmost case represents the out-of-sample performance of SAA-M, which is 

equivalently represented as APUB-M with ( )1 0− = . We also estimate the coverage probability 

of APUB-M concerning ˆ
Nx  as 

 ( ) ( )( ).ˆ ˆ ˆ, Prˆ
N N N Nx x      =  ∣  

Recall that the function   is defined in (3.10). By Theorem 3.14, we know the asymptotic 

correctness of APUB-M concerning ˆ
Nx , i.e., 

  ( ) ( ) ( )1/2, 1 .ˆ ˆ
N Nx O N    − − +  
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Figures 3.4a-3.4c draw the curve of  ( ),ˆ ˆ
N Nx    with respect to ( )1 − . Similarly, 

Figures 3.4?d 3.4f−  report the out-of-sample performance and the coverage probability of the 

Wasserstein distance based DRO (labelled WassDRO in the figures), when altering the radius  

of the ball in 1-Wasserstein distance metric. 

Comparing the out-of-sample performances and coverage probabilities of the two 

approaches in Figure 3.4, we have the following observations: 

Analysis of the minimum average costs (where negative values represent profits), as 

indicated by stars, and their associated 90th percentiles across varying sample size N , consistently 

showed that APUB-M achieves lower costs in comparison to WassDRO. Despite this, WassDRO 

demonstrates higher coverage probabilities when achieving its minimum average costs. This 

observation indicates a potential strategic compromise between minimizing the cost objective and 

improving the reliability of the solution. 

For small and medium sample sizes ( 30N =  an 120)N = , both APUB-M and WassDRO 

substantially outpace SAA-M. This advantage is evident from the notably lower and more focused 

cost distributions over a broad spectrum of nominal confidence levels and radii. Additionally, both 

APUB-M and WassDRO reveal improvements in coverage probability, lending further support to 

their robustness and operational efficacy. 

For medium and large sample sizes ( 120N =  an 480)N = , we observe an accurate 

alignment of nominal confidence level and actual coverage probabilities attests to the 

methodological soundness of APUB-M. This alignment not only acts as a validation of the fidelity 

of the method in asymptotic correctness but also highlights a significant methodological stride in 

the interpretability of intuitively chosen reliability levels. 
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In the large sample scenarios ( )480N = , while an increase in  within the WassDRO 

framework improves the coverage probability, the associated cost is concurrently magnified, 

especially when  is selected to be excessively large. This phenomenon suggests that an 

inappropriately chosen  can lead to significant over-conservatism. In contrast, APUB-M sustains 

the out-of-sample performance at a level analogous to SAA-M, while exhibiting a consistent 

increment in coverage probability. Such findings validate the stability of APUB-M, affirming that 

the asymptotic consistency of APUB-M is maintained irrespective of the chosen nominal 

confidence level. 

Lastly, it is noteworthy that, for both APUB-M and WassDRO, the critical ( )1 −  and  

points, corresponding to the minimum average costs, approach the leftmost point representing 

SAA-M as N  increases. This observation accentuates the benefits of SAA-M in a large sample 

scenario, where distributional ambiguity is reduced. 

Overall, APUB-M not only exemplifies robustness but also avoids the over-conservatism 

often seen in traditional DRO approaches. Crucially, the nominal confidence level ( )1 −  

functions as a faithful reflection of its statistical meaning, aligning with the company's preference 

for a specific confidence level amidst distributional ambiguity. This functionality bolsters the 

statistical interpretability of our method, providing clear, relevant insights even before model 

training commences. However, it is important to recognize that, in contrast to DRO, APUB-M 

does not invariably guarantee a 100%  coverage probability. This limitation is particularly evident 

in cases with too few data points, where even the worst-case scenarios in the sample may fail to 

encompass the most extreme eventualities, an issue that becomes pronounced in the face of severe 

sample scarcity. 
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3.5.2 A Two-Stage Product Mix Problem with Random Recourse 

We now extend our analysis to a two-stage stochastic optimization problem incorporating 

random recourse. To facilitate direct comparison, we modify the test problem outlined in Section 

3.5.1 to incorporate this element of randomness in the recourse measures. Accordingly, we define 

the random course as 

( )

( )

0.6 1.2 0 1 0

0 0.6 1.2 0 1
W

 −
=  

− 

，

，
 

where  represents a uniform distribution. In this product mix optimization, the random 

recourse refers to the treatment of externally sourced labor hours as stochastic variables in the 

second stage, reflecting the real-world variability in the labor market. 

We first observe the out-of-sample performance of SAA-M in both fixed and random 

recourse scenarios. The results, depicted in Figures 3.5a through 3.5b, reveal that the random 

recourse scenario exhibits a wider 10-90th percentile range and more than a 300-unit increase in 

the 90th percentile for both 30N =  and 120N = , as well as a 

higher mean, compared to the fixed recourse scenario (shown in Figures 3.4a through 3.4b). This 

indicates a heightened volatility in the random recourse case. 

Nevertheless, APUB-M maintains a consistent performance profile in the random recourse 

scenario, as demonstrated in Figure 3.5, similar to its behavior in fixed recourse settings. This 

supports the model's methodological flexibility. Specifically, Figure 3.5a shows that APUB-M is 

exceptionally resilient when dealing with limited data, effectively reducing the mean of the cost 

and enhancing solution stability. This underscores the robustness of APUB-M when a suitable 

nominal confidence level is chosen. Additionally, Figure 3.5b confirms the asymptotic correctness 

of APUB-M. In 
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 (a) 30N =  (b) 120N =  

 

(c) 480N =  

 

Figure 3.5: Out-of-sample performance (left axis, solid line, and shaded area) and the coverage 

probability (right axis, dashed line) as a function of the nominal confidence level ( )1 −  in 

APUB-M. The star symbol indicates the point where the mean of the out-of-sample performance 

attains its minimum. The minimum value of the mean is written next to the star symbol. 

 

other words, APUB-M consistently meets the actual coverage probability when varying nominal 

confidence levels, paralleling its fixed recourse performance. Moreover, Figure 3.5c suggests that 
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with a large sample size ( )480N = , APUB-M can avoid excessive conservatism irrespective of 

the nominal confidence level. 

On the other hand, in the random recourse scenario, using the same sample size, achieving 

the minimum average cost (signified by a star in Figure 3.5) requires a higher nominal confidence 

level to ensure greater robustness. Consequently, this minimum average cost is higher than that of 

the fixed recourse scenario. Additionally, the 10-90th percentile range is marginally broader across 

all nominal confidence levels, compared to the fixed recourse case. These findings indicate a 

necessity for setting a larger nominal confidence level in APUB-M to effectively manage the 

increased uncertainty introduced by random recourse. 

 

3.5.3 A Multi-Product Newsvendor Problem 

Consider a multi-product newsvendor problem, described in [Hanasusanto et al., 2015], 

with the following random cost function, 

( ), ( ) ( ) ,F x p x h x b x  + += + − + −  

where x  is the vector of order quantities for ten products,   represents random demand, 

p  is the unit profit ( 0p   in the cost function), h  and b  are overage and underage costs. 

 

3.5.3.1 Out-of-Sample Performance Analysis. 

This test compares two cases: Case I assumes that   follows a mixed normal distribution 

as 

( ) ( )1 1 2 2

1 1
Case I: ,Σ ,Σ ,

2 2
   +  
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and on this basis, Case II considers a biased noise added in the data generation as 

Case II: .   = +  

With the noise   included, Case II has a large variation and, as a result, its distributional 

ambiguity is more serious. The numerical values of all parameters are provided in Appendix B. 

Figures 3.6a to 3.6c depict the out-of-sample performances and coverage probabilities of 

APUB-M in Case I as the sample size N  varies from 30 to 120, while Figures 3.6d to 3.6f illustrate 

Case II. In both cases, APUB-M outperforms SAA-M in terms of lower average cost and a 

narrower range from the 10th to the 90th percentile. Additionally, Figures 3.6 showcase the 

asymptotic correctness and consistency of APUB-M, as observed in Sections 3.5.1 and 3.5.2. 

On the other hand, SAA-M exhibits more stable performance in Case I than in Case II. 

This suggests that Case I experiences less distributional ambiguity. We observe that APUB-M is 

adaptable to different levels of ambiguity. However, the model's performance is sensitive to the 

level of ambiguity. When 30N = , Case II demonstrates a much wider 10-90th percentile range 

and requires a larger nominal confidence level ( )1 −  to achieve the minimum average cost 

indicated by a star. Increasing N  weakens the impact of noise on distributional ambiguity. APUB-

M with a higher ( )1 −  exhibits 
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 (a) Case I, 30N =  (d) Case II, 30N =  

    

 (b) Case I, 60N =  (e) Case II, 60N =  

    

 (c) Case I, 120N =  (f) Case II, 120N =  

Figure 3.6: Out-of-sample performance (left axis, solid line, and shaded area) and the coverage 

probability (right axis, dashed line) as a function of the nominal confidence level ( )1 −  in 

APUB-M. The star symbol indicates the point where the mean of the out-of-sample performance 

attains its minimum. The minimum value of the mean is written next to the star symbol. 
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similar performance in both cases, particularly when 120N = . This observation underscores the 

capability of APUB-M to adjust to different uncertainty levels and the positive effect of increased 

sample sizes in lessening disparities caused by system noise. 

 

3.5.3.2 Optimal Solutions Analysis. 

   

 (a) 30N =  (b) 60N =  

 

(c) 120N =  

Figure 3.7: Optimal order quantities of the ten products. 
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We now compare the optimal solutions of Models SAA-M and APUB-M in Case I, as 

illustrated in Figures 3.7a through 3.7c, with N  varying from 30 to 120. These solutions dictate 

the recommended order quantities for the ten products. 

When 30N = , Figure 3.7a depicts significant fluctuations in the curves of the order quantities as 

( )1 −  increases, notably for product P2. The order quantity of product P2 decreases by 10.14%  

from SAA-M to APUB-M with ( )1 0.5− = . The increase in N  noticeably stabilizes the order 

quantities. Upon reaching 60N = , the relative difference in the order quantities of product P2 

reduces to 9.95%  between SAA-M and APUB-M with ( )1 0.5− = . With a larger 120N = , all 

curves become flattened. In this scenario, as depicted in Figure 3.6c, APUB-M and SAA-M appear 

to achieve comparable performance. It can be seen in Figure 3.7c that their recommended optimal 

solutions are also very close. 

SAA-M appears to be much more sensitive to N  than APUB-M. Let us quantify the 

difference between the two solutions using the 2-norm. When N  changes from 30 to 120 , the 

difference is 7.89 for SAA-M, 3.99 for APUB-M with ( )1 0.5− = , and 3.36 for APUB-M with 

( )1 0.95− = . This observation suggests that APUB-M can provide a high-quality optimal 

solution even with a small sample size. This capability underscores the ability of APUB-M to 

simulate scenarios typically requiring a larger volume of data. 

 

3.6 Conclusions 

In this work, we introduce APUB, a novel statistical upper bound that acts as a critical 

bridge between the realms of statistical upper bounds and stochastic optimization. APUB enriches 

the theoretical landscape and highlights practical implications for the interpretability and 
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application of stochastic optimization models. APUB serves as both an upper bound for the 

population mean, enhancing statistical analysis, and a coherent risk measure for the sample mean, 

focusing particularly on tail distribution errors due to insufficient sample sizes. By rigorously 

proving the statistical soundness of our approach, including its asymptotic correctness and 

consistency, we lay a solid foundation for integrating statistical methods into decision-making 

frameworks under distributional ambiguity. 

Furthermore, APUB-M that we innovatively develop integrates APUB into stochastic 

optimization. This integration makes the reliability of APUB-M transparent, by ensuring that the 

attribute of asymptotic correctness inherent in APUB is seamlessly transferred to APUB-M in the 

optimization context. Indeed, the coverage probability of APUB-M aligns with the concept of first-

order correctness at this predefined nominal confidence level. Also, we meticulously show the 

asymptotic consistency of APUB-M, ensuring that our approach remains the nature of data-driven 

statistical methods, thereby promising stability and unbiasedness of APUB-M, as the sample size 

increases, but avoiding over-conservatism. 

We employ a bootstrap sampling approximation method, BP-APUB-M, to manage the 

computational complexity, demonstrating that a significantly smaller number of bootstrap samples 

effectively maintains model integrity and reliability. This solution approach, underpinning the 

practical viability of APUB-M, confirms its applicability in real-world scenarios, particularly in 

two-stage linear stochastic optimization with random recourse. Moreover, our empirical studies 

across various stochastic optimization problems, including single-stage and two-stage models, 

underscore the robustness and practicality of APUB-M. The comparative analysis with traditional 

DRO methods, particularly in settings of fixed and random recourse, highlights the enhanced 

interpretability and reduced conservatism of APUB-M. These results not only validate our 
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theoretical findings but also showcase the broad applicability and effectiveness of our approach in 

real-world scenarios. 
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Appendix A Theorems Used in Our Proofs 

Theorem A. 1 (Glivenko-Cantelli Theorem). Suppose that 1 2, ,X X , are independent and have 

a common distribution function . Denote by N  the empirical cumulative distribution function 

Then, 

 ( ) ( )sup 0w.p.1.N
x

x x− →  

Proof. The proof is provided in (Billingsley, 2017, Theorem 20.6) 

Theorem A.2 (Theorem 1, Rockafellar and Uryasev (2000)). Let ( ),h x   be a random function 

where x  and   belongs to an arbitrary probability space with distribution Q. Let ( )q x  

denote the ( )100 1 − -percentile of ( ),h x   and 

 ( ) ( ) ( )
1

, [ , ]H x t t h x t d  


+= +  −  

where t . Then, for all x , we have 

 ( ) ( )
0

1
min ,
t

q x d H x t


 
 

=  

Theorem A.3 Efron's percentile upper bound is 1st-order accurate. 

Proof. Efron (1981, Section 4) first proposed this method. He considers this bound as 

the limit of bootstrap percentile when infinite bootstrap samples are taken. The formal proof can 

be found in Section 4.2 Shao and Tu (2012). 
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Theorem A.4 (Theorem 2, Athreya (1983)). Suppose lim inf 0MN −   for some 0   as 

,M N → , and ( )| |F   −   for some 1   such that 1  . Then, as ,M N → , we 

have 

 ( )( )
1

1
1?w.p.1?ˆ

M

m N

m

F
M


=

→  

Theorem A.5 (Lemma 21.2, Vaart (1998)). The quantile function of a cumulative distribution 

function  is the generalized inverse ( )1 : 0,1− →  given by 

 ( ) ( ) 1 inf :p x x p− =   

For any any sequence of cumulative distribution functions, N  converges to  in distribution if 

and only if 1

N

−  converges to 1−  in distribution. 

Theorem A.6 (Theorem 2.1, Mallows and Richter (1969)). Let   be a random variable,  be an 

event, and   be its standard deviation. Then we have: 

  
( )

( )

1/2

1 Pr

Pr
  
 −

−       
 

∣  

Theorem A.7 (Theorem 10.8 (Rockafellar, 2015)). Let  be an open convex set. Let ( )1 2, ,g g  

be a sequence of finite convex functions on . Suppose that the sequence converges pointwise on 

a dense subset   and the limit is finite. Then, the sequence ( )1 2, ,g g  converges uniformly 

to a continuous function on any compact subset inside . 

Theorem A.8 (Arzelà-Ascoli's Theorem). Consider a sequence of real-valued continuous 

functions  n n
f


 defined on a closed and bounded interval  ,a b  of the real line. If this sequence 
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is uniformly bounded and uniformly equicontinuous, then there exists a subsequence  
kn

k
f


 that 

converges uniformly. 

Proof. The proof is well-known and can be found in Section 10.1 by Royden and Fitzpatrick 

 1968 . 

Theorem A.9 (Theorem 7.53, Shapiro et al. (2021)). Let  be a nonempty compact subset of 
n

 

and suppose that (i) for any x  the function ( ),F   is continuous at x  for almost every Ξ  , 

(ii) ( ), ,F x x  , is dominated by an integrable function, and (iii) the sample is iid. Then, the 

expected function ( )f x  is finite valued and continuous on , and the sample mean ( )
ˆ

N
f x  

converges to ( )f x  w.p. 1 uniformly on . 

Theorem A.10 (Theorem 5.3, Shapiro et al. (2021)). Suppose that there exists a compact set 

n  such that (i) the set  of the optimal solutions of the true problem is nonempty and is 

contained in , (ii) the function ( )f x  is finite valued and continuous on , (iii) the sample 

average ( )
ˆ

N
f x  converges ( )f x  w.p.1, as N → , uniformly in x , and (iv) w.p. 1 for N  

large enough the set ˆ
N  is nonempty and contained in . Then, optimal values and solution set 

converges w.p.1 as N → . 

Theorem A.11 (Theorem 9.7, Birge and Louveaux (2011)). Consider a function h  : Ξ → . 

Denote 

 ( ) ( ),H x h x  =    

and 

 ( ) ( )
1

1
,

N

N i

i

H x h x
N


=

=   
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where ( )1, , N   are i.i.d. sample. Let *x  solve 

 ( )min
x

H x  

and *

Nx  solve 

 ( )min N
x

H x  

Suppose there exist 00, 0, :Ξa    →  such that 

( ) ( ),h x a    and 
( )

e
 

  
 

 

for all x  and for all 00    . Then, for any  , there are , a b  such that 

 ( ) ( )( )* *Pr
N

NH x H x e 

 −
−  

ba  

for all 0N  . If *x  is unique, then there are , c d  such that 

 ( )* *Pr
N

Nx x e 

 −
−  

dc  

for all 1N  . 
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Appendix B Data for the Newsvendor problem in Section 3.5.3 

 

2, 9, 5p h b= − = =  

1 [60.89,48.58,46.81,56.54,61.58,52.69,69.42,60.54,54.43,51.76] =  

2 [50.30,61.87,53.16,41.79,51.94,62.14,45.47,45.26,55.95,55.95] =  

1

9.27 2.84 0.07 1.19 0.48 1.40 2.87 4.06 1.40 1.96

2.84 5.90 2.83 0.21 2.27 2.40 0.89 4.22 3.43 2.78

0.07 2.83 5.48 0.30 0.90 3.54 4.51 2.45 2.91 4.95

1.19 0.21 0.30 7.99 1.02 1.27 0.15 1.55 1.69 0.36

0.48 2.27 0.90 1.

− − − −

− − −

− − − − − − −

− − − − − − −

− −
 =

02 9.48 0.08 3.69 2.71 0.69 0.34

1.40 2.40 3.54 1.27 0.08 6.94 1.26 2.73 0.01 5.19

2.87 0.89 4.51 0.15 3.69 1.26 12.05 0.16 0.16 2.44

4.06 4.22 2.45 1.55 2.71 2.73 0.16 9.16 0.77 1.94

1.40 3.43 2.91 1.69 0.69 0.01 0.

− − − −

− − − − − −

− − − − − − −

− − − − −

− − − − − 16 0.77 7.41 2.24

1.96 2.78 4.95 0.36 0.34 5.19 2.44 1.94 2.24 6.70

 
 
 
 
 
 
 
 
 
 
 
 
 −
 
 − − − − − 

 

2

6.32 2.99 0.06 0.73 0.33 1.36 1.55 2.51 1.19 1.75

2.99 9.57 4.09 0.19 2.44 3.60 0.74 4.02 4.49 3.83

0.06 4.09 7.06 0.25 0.86 4.74 3.35 2.08 3.40 6.08

0.73 0.19 0.25 4.37 0.64 1.11 0.07 0.86 1.29 0.29

0.33 2.44 0.86 0.

− − − −

− − −

− − − − − − −

− − − − − − −

− −
 =

64 6.74 0.08 2.04 1.71 0.60 0.31

1.36 3.60 4.74 1.11 0.08 9.65 0.98 2.41 0.01 6.62

1.55 0.74 3.35 0.07 2.04 0.98 5.17 0.08 0.10 1.72

2.51 4.02 2.08 0.86 1.71 2.41 0.08 5.12 0.59 1.57

1.19 4.49 3.40 1.29 0.60 0.01 0.1

− − − −

− − − − − −

− − − − − − −

− − − − −

− − − − − 0 0.59 7.83 2.49

1.75 3.83 6.08 0.29 0.31 6.62 1.72 1.57 2.49 7.83

 
 
 
 
 
 
 
 
 
 
 
 
 −
 
 − − − − − 
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( 5.37, 26.27)

(6.74,14.16)

(3.22,17.68)

( 7.48, 28.38)

( 4.89, 25.79)
~

( 0.21,16.11)

( 12.14,32.99)

( 7.74, 28.64)

(0.77, 20.13)

(2.13,18.77)



− 
 
 
 
 

− 
 −
 

− 
 −
 

− 
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