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Abstract 

The vast majority of local IPv6 networks continue to remain insecure and vulnerable to neighbor 

spoofing attacks, a fearsomely practical attack vector formally described many years ago. The 

Secure Neighbor Discovery (SEND) standard and its concomitant Cryptographically Generated 

Addressing (CGA) scheme were introduced, revised, and adopted by large standards bodies to 

codify practical mitigations. Considering their poor adoption, much research since their 

acceptance has continued to find new perspectives and proffer new ideas. The orthodox solutions 

for securing Neighbor Discovery traffic have historically struggled to successfully harmonize 

three core ideals: simplicity, flexibility, and privacy preservation. This research introduces an 

alternative to IPv6 address generation methods that secures the Neighbor Discovery address 

resolution process while remaining highly adaptable, indistinguishable, and privacy-focused. 

Applying a unique concoction of cryptographic key derivation functions, hash chaining, link-

layer address binding, and neighbor consensus on the parameters of address generation, local 

address ownership is verifiable without the need for techniques that have hindered the adoption 

of the canonical specifications. Voucher-Based Addressing and end-to-end Neighbor Discovery 

Sessions are presented as synergistic, low-configuration, low-cost, and high-impact 

specifications for securing local networks against neighbor spoofing attacks. 
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Chapter 1 Introduction 

Questionable ownership or authentication of addresses at the link layer of the Open 

Systems Interconnect (OSI) reference model [1] is a problem with solutions both sought and 

offered by many research efforts. Lacking proof of ownership and identity at this foundational 

layer affects the integrity, confidentiality, and overall trust of protocols at higher layers of the 

network stack. The formation of IEEE 802 Medium Access Control (MAC) addresses–by far the 

most commonly used link-layer address specification–originally planned that each identifier 

should uniquely distinguish network interfaces at a global scope. Each address was to be “burned 

in” and unchangeable for each interface. As the conception of MAC addresses became more 

removed, progressive technologies permitted burned-in addresses to be arbitrarily modified by 

operating system software and set directly by end users. 

Randomized and Changing MAC addresses (RCM) is a more recent MAC address 

assignment methodology supported by some software vendors to preserve device privacy by 

wholly and intentionally abandoning any assumptions of MAC address stability and consistency 

[2]. This is outlined well by the ongoing efforts of the MADINAS IETF Working Group to 

catalog the implications of RCM at a broad scope [3]. By introducing regular rotations of device 

MAC addresses and terminating any notions of global address uniqueness, validating device 

ownership of a purported address now known to be temporary is elevated to an even greater 

importance. The same importance applies for on-the-fly MAC address modifications by 

operating systems. All authentication constructs underpinned by MAC address stability must 
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therefore be reshaped and reconsidered due to this decoupling of interface identities from their 

link-layer identifiers. 

To embrace this evolving climate, higher-level network protocols riding on an insecure 

link layer should opt to utilize some other verification means that can ensure fellow 

correspondents on the same link layer have not swapped or been impersonated. Attackers 

changing or intercepting data without authorization by spoofing link-layer identifiers presents a 

key and fundamental problem in Neighbor Discovery Protocol (NDP) for IPv6 networking 

implementations. Cryptographically Generated Addresses (CGAs) [4] have long stood as the 

solution that could guarantee authentication for an NDP that is by default insecure. These 

constructs leverage asymmetric cryptography and digital signatures to validate and affirm that an 

originator of a packet (i.e., the address owner) retains active knowledge of a secret cryptographic 

key. Proving knowledge of such a key authenticates a peer and voids any requirement of 

asserting link-layer address ownership. Asserting such signatures and proofs of identity with the 

CGA scheme is done during the NDP Address Resolution (NDAR) process, as augmented by the 

later Secure Neighbor Discovery (SEND) [5], a suite of augmentations to NDP aiming to protect 

the protocol from common attack vectors. 

The SEND and CGA specifications were also formulated to address concerns of other 

NDP weaknesses, many of which the updated NDP protocol specification is self-aware of. One 

relevant and focal weakness of NDP is the potential for malicious redirection attacks, whereby a 

malevolent neighbor can insert itself into the path of traffic between two on-link neighbors by 

intercepting and falsifying NDAR responses and in some cases by successfully spoofing link-

layer identifiers. The category of attack vectors exploited by NDP redirections is labeled “on-

path” attacks (historically: Man In The Middle, or MITM, attacks). On-path attacks are a critical 
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concern for network administrators because confidentiality, integrity, and availability may all be 

compromised by interception of traffic at the local scope, where the least amount of network 

traffic is likely to be encrypted or otherwise secured. 

The capability to mitigate issues of link-layer address ownership and on-path attacks with 

SEND and CGAs has been well known for some time now, but these mitigations have never 

received widespread adoption, or even implementation, in practice [6]. The real reasons are 

ambiguous and unclear but are ostensibly associated with some combination of (1) insufficient 

awareness of the standards, (2) the sophistication of implementation, and (3) protocol 

inflexibility and disparate inefficiencies. Considering the arcaneness and obscurity of IPv6 

outside of academia, networking enthusiast communities, or IETF circles, SEND and CGA reach 

another level of pinpointed knowledge that is not dampened whatsoever by their complexity and 

lack of adaptability with baseline NDP implementations. Furthermore, existing uses of SEND 

and CGA already represent wildly varying effects on networking performance across different 

systems [7], in implementations which have no sufficient backing or validation [8]. 

Keeping in mind the mistakes of the past and the paths already paved, a solution should 

be proposed for NDP that provides protection against on-path attackers while also remaining 

viable, flexible, and efficient for all adopting devices. Such a solution necessitates balancing 

three key aspects in its conception: privacy, flexibility, and simplicity. This research presents two 

new synergistic yet fully decoupled standards to fulfill this need: Neighbor Discovery Session 

Options (NDSOs) and Voucher-Based Addressing (VBA; also, Voucher-Based Addresses, 

VBAs). The adoption and transition to one proposed standard does not imply or require the 

implementation of the other, but is somewhat like SEND and CGA: their synergies are well 

defined in cases where they might be deployed together, as intended by their designs. Both 
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standards seek to create low-complexity, high-impact, optional protocol addenda to secure NDP 

via alternative authentication techniques; each aiming to resolve a different problem while 

maintaining a focus on user privacy. NDSOs validate and substantiate proof of identity at the 

link layer, while VBAs prevent subversive on-path attacks at the network layer. 

Unlike much security research of the past, this work does not intend to recycle the 

applications of asymmetric cryptography or central registration authorities to NDP. A key 

purpose of this research is to theorize and produce alternative choices to the widely accepted 

SEND and CGA standards–rather than augment, replace, or survey them–to foster new 

perspectives or to renew interest in solving these longstanding IPv6 security issues in local 

networks. Starting with Chapter 2, this work provides more background about the problem it 

attempts to solve and collates some other research which has been done to solve relevant NDP 

issues. Conceptual overviews for VBAs and NDSOs are given in Chapters 3 and 4 respectively. 

Relevant benchmarks and other experimental, implementation-based results are then described in 

Chapter 5, with a subsequent discussion of some of the miscellaneous practicalities and 

observations of the outcomes of this research in Chapter 6. Chapter 7 then concludes the work by 

outlining some potential future research and summarizing the implications of this research’s core 

ideas. 
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Chapter 2 Background & Related Works  

2.1 The Broad Scope of Neighbor Discovery 

The Neighbor Discovery Protocol (NDP) for Internet Protocol version 6 (IPv6) was first 

introduced in 1996 [9], revised in 1998 [10], and published in its current version in 2007 [11]. It 

is a protocol extension of ICMPv6 [12] used by neighboring nodes on a local area network to 

discover each other’s presence, to detect routers, to self-determine addresses, to resolve each 

other’s link-layer addresses, and to maintain details about the reachability of–and paths to–

known, active neighbors. Introduced with it were many of the distinct, familiar terms and 

constructs often associated with IPv6 networks: nodes, hosts, interfaces, various caches, various 

built-in protocol options, et cetera. NDP is still ubiquitous in present day networks, providing 

what is the primary focus of this research: NDP Address Resolution (NDAR), the IPv6 analog of 

the IPv4 Address Resolution Protocol (ARP). NDAR is the essential functionality of resolving 

peer IP addresses to their corresponding on-link link-layer addresses (Section 7.2 of [11]), 

allowing link-layer frames to be forwarded directly to the appropriate destination on-link. 

Myriad functional requirements of all IPv6 networks are satisfied by Neighbor 

Discovery; it is an extensible and all-encompassing protocol gluing together link-layer traffic 

with network-layer addressing. Firstly, the NDAR process is accomplished through the use of 

Neighbor Solicitation (NS) and Neighbor Advertisement (NA) packets with various attached 

options. Next, once the NDAR process is completed and nodes have learned each other’s 

resolved link-layer addresses for the two communicating IP addresses, cache entries are updated 

and maintained at each node. These stored bindings are ephemeral and must be regularly updated 
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by a process known as Neighbor Unreachability Detection (or NUD). This process occurs by 

means of either of two signals: any transaction occurring at upper-layer protocols which 

indicates forward connection progress (such as incrementing TCP sequence numbers), or a 

renewed exchange of NS and NA packets if no other higher-layer protocols are active between 

the two hosts. 

With a focus on the node-to-node scope, each node must be able to self-assign its own 

address(es) before beginning to discover its neighbors and other local network terrain. Ideally, 

this process of self-assignment should occur independently of others on the local network, only 

checking to verify whether a chosen network-layer address is already being used. Stateless 

Address Autoconfiguration (SLAAC) is specified by RFC 4862 [13] to achieve this goal using 

NDP, requiring initializing nodes to automatically create their own link-local scope addresses 

[14] and check their uniqueness on the link with Duplicate Address Detection (DAD) [13]. 

Though there is an IPv6 analog to the more centralized Dynamic Host Configuration Protocol 

(DHCP), SLAAC is a mechanism unique to IPv6 (and thus Neighbor Discovery) environments 

and is often the preferred method of address assignment due to its independence from other 

communications. 

Finally, NDP allows local nodes to discover routes to external networks and to learn a set 

of all active subnet prefixes on the link. Router Advertisement (RA) packets are either broadcast 

at an interval predetermined by the link routers, or directly in response to Router Solicitation 

(RS) packets from neighbors. Once traffic begins to flow to external networks, routers can also 

use Redirect messages to alert senders of a more suitable first-hop path to their particular 

destination address. RA messages might also carry prefix information that can allow listening 

nodes operating with SLAAC to self-assign more unicast addresses within these subnet prefixes, 
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and subsequently ensure the uniqueness of new addresses by use of the DAD process. 

Importantly, unicast addresses acquired by prefix delegation are typically globally routable in 

scope, while nodes themselves are free to use SLAAC and DAD to auto-configure link-local 

addresses as they see fit. 

 

2.2 Security Concerns of Neighbor Discovery 

Like many early and formative internet protocols, security unfortunately became an 

afterthought in the design of NDP: presumably sacrificed based on the need for protocol 

optimizations that matched the performance of more limited hardware constraints of the era. 

Therefore, the widespread adoption of NDP occurred before its threat models were formally 

cataloged in RFC 3756 [15] and before the specification of Secure Neighbor Discovery (SEND) 

in RFC 3971 [16] with its complementary Cryptographically Generated Addresses in RFC 3972 

[17]. Arkko et al. in 2002 [5] first detailed the various vulnerabilities of Neighbor Discovery: 

Neighbor spoofing, Router Advertisement spoofing, bogus prefix denial-of-service attacks, DAD 

attacks, and falsely advertised configurations. Many of these remain trivial to execute in 

normative networks as shown by Anbar et al. as recently as 2016 [18], almost a decade after the 

final revision of the NDP specification. These problems linger in modern IPv6 deployments, 

which unfortunately do not receive measurable security attention and considerations as compared 

to their IPv4 counterparts. 

Among its list of insecurities, NDP harbors a dangerous capability for a traffic redirection 

Man in The Middle (MITM) attack (also known as an ‘on-path’ attack), whereby a malicious 

neighbor can intercept traffic destined for another neighbor by falsifying NA or NS packet 

options. By successfully advertising a spoofed link-layer address binding with a victim IP 
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address, the attacker redirects frames from neighbors to itself, allowing it to inspect and capture 

private packet data on the forwarding path before forwarding it to its original target. This initial 

spoof and redirection is sometimes termed “cache poisoning” to express that each misled 

neighbor falsely caches the binding (i.e., association) between a neighbor IP address and a 

malicious link-layer address, rather than the genuine target’s link-layer address. If the attacker 

successfully spoofs the link-layer bindings for both target IP addresses in a local exchange, then 

it can insert itself on-path between the two communicating neighbors and transparently observe 

passing network traffic. Any upper-layer protocol without encryption then becomes susceptible 

to this attack, having atrocious privacy and security implications at the local network scope, 

where traffic is likely to be unencrypted the most often. 

Mohamed Sid Ahmed et al. [19] helpfully categorize ND spoofing attacks into routing-

based and non-routing-based attack vectors. Most routing-based on-path attacks also occur when 

an attacker successfully spoofs Router Advertisements, directing neighbors to forward packets 

through itself or through a bogus prefix. In this event, the attacker transparently arbitrates traffic 

between the victim and the legitimate network gateway in order to harvest unencrypted traffic, 

meta information, or inject its own malicious data into the traffic stream. The same attack can 

occur through the easy use of spoofed NDP Redirect messages, expressing the malicious node to 

be a ‘better first-hop path’ to external networks than the legitimate local network gateway. In 

both scenarios, the threat actor can dangerously observe and interact with all packets in-transit 

to–and often from–external networks. 

In their analysis of Neighbor Discovery security and attacks, Najjar et al. [6] specify a 

few non-routing-based tactics used between nodes to forcefully expose the NDAR process to 

redirection attacks. NS or NA flooding attacks seek to exhaust the system resources of a victim 
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node with bogus messages, causing it to dump previous or stale cache entries to make room for 

incoming cache data. This can cause the previous cache entry for a target IP address to be pruned 

from the victim’s cache, thus opening the capability for the attacker to insert a new poisoned 

entry. A similar attack is possible by forcing a timeout of the Neighbor Unreachability Detection 

process, therefore triggering the NDAR process to repeat and expose the cache of the victim to a 

spoofed address binding. While many traditional attacks behave opportunistically in this manner, 

there also exist other simpler cache poisoning tactics that merely set an Override option on 

unsolicited Neighbor Advertisements or advertise false link-layer address options in Neighbor 

Solicitations. 

The ‘classic’ neighbor redirection attack targets two nodes who have established existing 

and Reachable-state cache entries between them. In its simplest form, it overhears an Address 

Resolution transaction and follows the completed exchange with an overriding advertisement 

packet to the target of the redirection. RFC 4861 [11] makes a note about nodes receiving 

unsolicited Neighbor Advertisements: “The Override flag MAY be set to either zero or one. In 

either case, neighboring nodes will immediately change the state of their Neighbor Cache entries 

for the Target Address to STALE, prompting them to verify the path for reachability. If the 

Override flag is set to one, neighboring nodes will install the new link-layer address in their 

caches. Otherwise, they will ignore the new link-layer address, choosing instead to probe the 

cached address.” Such a mechanism is put in place to allow the target of a Neighbor Discovery 

proxy to assert its own link-layer address as being reachable on-link directly, rather than letting 

traffic slowly meander to it through the proxy indirectly. Due to this tradeoff made by the NDP 

protocol specification, this advertised override forces the target node to update the link-layer 

address binding for the victim to the spoofed address. 
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Figure 1. A classic Neighbor Discovery traffic redirection (on-path) attack. After the normal 

Address Resolution process is completed in steps 1 and 2, the listening malicious Node C sends a 

spoofed Neighbor Advertisement in step 3 to override the Link-Layer Address value in Node A’s 

Neighbor Cache. Node A now unknowingly harbors a “poisoned” cache entry. 

 

 

In Figure 1, Node A is the solicitor who asks for the link-layer to IP address binding from 

the address fe80::b in step 1. Since Node A does not know the target’s link-layer address yet (and 

thus where to forward frames), a solicited-node multicast group is used instead which utilizes the 

last 24 bits of the target IP address. Any node can be subscribed to the solicited-node multicast 

group without authorization, so in the Figure both Node B (the legitimate target) and Node C 

(the listening threat actor) receive the multicast NS packet. Notice that Node A in step 1 also 

includes an “SLLAO” NDP option with its NS in order to let receivers know the reverse path on 

the link-layer to find fe80::a (i.e., the MAC address 11-22-33-44-55-aa). In step 2, Node B 

receives the NS and pre-caches the link-layer binding from the SLLAO and responds with its 

legitimate MAC address in a unicast advertisement packet to Node A at fe80::a. After some brief 
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delay, Node C sends a spoofed unicast Override NA in step 3 with its own link-layer address 

(11-22-33-44-55-cc) as the reported binding for fe80::b. Node A is being poisoned: it 

subsequently updates its Neighbor Cache for fe80::b to the spoofed link-layer address because of 

the Override, for which there is no authentication requirement. Packets destined for fe80::b will 

now be sent to Node C, who can read and interact with the data before forwarding it down the 

path to Node B where it will be received without knowledge that Node C had any interaction 

with it. 

A less well-known and much more powerful cache poisoning attack opportunity exists in 

the optimizations for Neighbor Solicitations. The Source Link-Layer Address Option (SLLAO) 

stub can be included with NS messages to indicate the intended link-layer address binding of the 

IP source address on the NS packet, so receiving nodes will not be required to reverse-probe the 

sender’s IP address for a link-layer address binding during NDAR transactions. The NDP 

specification in RFC 4861 [11] reads: “If the [NS] is being sent to a solicited-node multicast 

address, the sender MUST include its link-layer address (if it has one) as a Source Link-Layer 

Address option. Otherwise, the sender SHOULD include its link-layer address (if it has one) as a 

Source Link-Layer Address option. Including the source link-layer address in a multicast [NS] is 

required to give the target an address to which it can send the [NA].” This optimization to NDP 

allows NDAR transactions to occur much faster but weakens the protocol due to its blind trust of 

senders and subsequent automatic caching. Since NS packets are generally the first contact in an 

NDP transaction, there is no straightforward way to recognize and mitigate this ‘eager’ attack 

unless the NS occurs for an IP address that already has a binding within a target’s Neighbor 

Cache. 
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Figure 2. A more subversive approach to preemptively poisoning a neighbor’s Neighbor Cache, 

without needing to wait for an NDAR transaction. Nodes receiving SLLAO stubs on Neighbor 

Solicitation packets are dictated by the NDP specification to accept them at face value for the 

sake of protocol optimization. So, Node A receiving the SLLAO can immediately respond with 

unicast messages to the apparent ‘correct’ link-layer address without needing reverse address 

resolution. 

 

 

Figure 2 demonstrates the simplicity and potency of an Eager Neighbor Redirection 

attack: only two steps are required, and the poisoning can begin from the very start of an 

apparently legitimate and innocuous NDP transaction. In step 1, malicious Node C creates a 

solicited-node multicast Neighbor Solicitation. The target address of Address Resolution is not 

important, but the attacker will need to aim the NS at the multicast group for which it knows the 

target node (Node A) is a member, while trying to avoid sending the NS to the victim (Node B). 

By random chance, this will almost always be the case for a 24-bit address suffix used to derive a 

solicited-node multicast address anyway. When Node A receives the NS packet, it will 

preemptively cache the link-layer address found in the SLLAO and bind it to the IP Source 

Address of the packet; so Node A creates the entry [fe80::b → 11-22-33-44-55-cc]. In step 2, 

Node A happily advertises itself through a unicast NA message as fe80::a with its legitimate 

MAC address 11-22-33-44-55-aa, as part of an expected and normal NDAR response. Node C is 

now free to receive data frames originally intended for Node B, transparently forwarding them, 
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blocking them, or modifying them in-transit. It is also important to note that this attack can be 

effective in NDP augmentations requiring a Nonce field to be attached to NS/NA packets, 

because this eager poisoning can dishonestly forge any Nonce value by virtue of being the 

NDAR initiator (i.e., solicitor). 

There exists a glaring commonality between all these various attack surfaces presenting 

an opportunity for on-path attacks with neighbor redirection: caching. Regardless of how the 

cached value is updated or exposed to poisoning, the simplicity of the attack relies solely on 

making a ‘bad’ update to the target’s Neighbor Cache entries. Attacks successfully poisoning a 

target’s Neighbor Cache often then only need to maintain the malicious entries through the 

normative NUD process. This observation reveals that by merely guarding the cache at the target 

node, through some form of sender validation or challenge-response authentication, attacks 

resulting in false updates to (or creations of) Neighbor Cache entries can be mitigated altogether. 

Much of the recent research regarding the Neighbor Redirection spoofing attack technique does 

not seem to place its aim at this common target. 

 

2.3 SEND & CGAs: Promises & Problems 

Secure Neighbor Discovery (SEND) was introduced by Arkko et. al in [5] as a 

conceptual security framework for ordinary NDP. It achieves much of its proposed security 

measures through the employment of Cryptographically Generated Addressing, a complementary 

idea that binds IPv6 addresses to public key values to assert an identity and to authenticate host-

originating ND packets. After their inception, SEND and CGA were later formalized into two 

RFCs (RFC 3971 [16] and RFC 3972 [17], respectively) that are widely recognized as de facto, 

canonical solutions to the security pitfalls of the original Neighbor Discovery Protocol. SEND 
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and CGA have promised to deliver secure solutions to spoofing attacks, denial of service 

concerns, and abuses of the router discovery process; but, in the almost two decades since their 

formalization, have failed to come to fruition. 

One of the original CGA works by Aura in [4] introduces CGAs as a means by which 

asymmetric keys can be associated with known IPv6 address values, using the spacious and 

typical 64-bit interface identifier afforded to most IPv6 addresses. Public keys are used as well-

known, public identifiers that are associated with IP addresses via cryptographic hashing, and 

their corresponding private keys are used to create digital signatures by the node owning the 

address in order to assert its proof of address ownership. A CGA is constructed by generating a 

public-private keypair, appending it to the end of a selected 128-bit Modifier, 64-bit Subnet 

Prefix, and 8-bit Collision Count value, and hashing it. A 3-bit “Sec” parameter embedded in the 

resultant IP address dictates how costly the generation of the CGA must be. Based on the 

difficulty set by Sec, a certain hash must be generated from the four aforementioned parameters 

as a necessary proof of work. This expense was instituted in order to prevent brute-force 

enumeration attacks seeking to discover a matching hash value from a different public-private 

keypair. One key aspect of CGAs is the explicitly stated lack of a requirement for Public Key 

Infrastructure in order for the addresses to properly generate, communicate, and verify between 

neighbors. 

CGAs have seen both great criticisms and great praise as the accepted solution of the 

Internet Engineering Task Force (IETF) for IPv6 address ownership. Many proposals have 

sought to improve their efficacy over time by various means: the creation of CGA++ by [20], 

privacy extensions and denial-of-service mitigations by [21], and revisions of the hashing and 

asymmetric cryptography being used by [22]. CGAs are generally not private, despite having a 
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pseudo-random structure. Alsadeh, Rafiee, and Christoph in [21] note that the preferred long-

term use of CGAs in a network–due to their excessive costs to generate with proof-of-work 

techniques–results in privacy violations whereby users can be tracked online. Additionally, the 

CGA specification has no mention or recommendation of regular address rotations likely because 

of their cost in the first place. CGAs are also not simplistic: the original proof-of-work algorithm 

based on the Sec value scales at a factor of 216, making CGAs quickly expensive to produce and 

thus infeasible for embedded or mobile devices. In their research [22], Shah and Parvez surveyed 

the average time taken to compute CGAs and found the performance to be intolerable unless the 

default RSA algorithm was swapped with ECC instead. 

Secure Neighbor Discovery leverages CGA to achieve its two primary goals of proof of 

address ownership and validation of the router discovery process, with an auxiliary goal of 

denial-of-service protection where feasible. The same private key used to authenticate a CGA is 

used in a new RSA Signature option with a concomitant CGA option to sign multiple different 

types of NDP messages and prove their validity. The Timestamp and Nonce options are 

introduced to the protocol as well to prove message freshness, mitigate replay attacks, and assert 

a challenge-response pattern for NS/NA exchanges. Router validation is also possible through 

both the use of Public Key Infrastructure and two new SEND-introduced ICMP message types 

carrying certification path information to hosts. SEND is the accepted mitigation for a significant 

portion of the security shortcomings of plain NDP because it incorporates a layer-independent 

approach to achieve its goals. By tying an asymmetric keypair to a network-layer address and not 

incorporating any link-layer information into addresses, SEND relies only on itself and any 

necessary certification paths that are required to validate routers as appropriate authorities. The 

SEND specification [16] is self-aware of its susceptibility to some of the same issues that exist in 
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the original NDP, chiefly denial of service attacks, but also those which are the result of an 

insecure link layer.  

Both CGA and SEND, despite their benefits and criticisms alike, ultimately have not seen 

widespread adoption in the vast majority of IPv6 local networks. While SEND has a capability 

for differentiating Secured from Unsecured neighbors, in an effort of flexibility for adopting 

networks, finding neighbors bothered to properly implement the specification is cumbersome 

because of SEND’s lack of mature support. Part of the issue with the protocols has been their 

requisite setup requirements and their overhead for network administrators. Public Key 

Infrastructure has proven daunting and undesirable, and most implementations of the two 

specifications are not mature or supported enough to provide a measurable security benefit. 

Furthermore, SEND performance is classically inefficient and ill-suited for the majority of IPv6 

local networks that have no need for its heavy armor, and to many the cost is not worth the added 

protection. 

Najjar et al. outline the five primary causes for the lack of SEND adoption in [6] as issues 

with compatibility, complexity, arcaneness (or lack of awareness), cost, and limited supporting 

implementations. Though SEND and CGA provide formidable and proven protection against 

Neighbor Discovery attacks–most importantly Neighbor Redirection threats–it is a solution 

which is intended to be comprehensive and thus is quite complex and disruptive. Privacy matters 

notwithstanding, SEND and CGA lack simplicity in their approach; understandably so for a 

specification so ambitious as to simultaneously solve most of NDP’s security concerns.  

 



17 

 

2.4 Leveraging Monitoring & Infrastructure 

Considering the complexities introduced by SEND and CGA, many network operators 

have chosen instead to use network monitoring tools that can proactively notify them of changes 

in link-layer address bindings for either all or a particular subset of network IP addresses. 

Monitoring is implemented as a more reactive technique to a problem which would ideally be 

solved proactively. Many proposed specifications to mitigate the multitude of NDP security 

issues also incorporate active changes in the infrastructure of local networks on which NDP is 

running. This is not inherently bad, so long as the benefit outweighs the cost and the involvement 

from administrators is also a low-cost addition. 

Monitoring of link-layer to IP address bindings is not a new concept with the advent of 

NDP: a popular monitoring tool named “arpwatch” [23] existed well before the conception of 

Neighbor Discovery, and it is still widely used in enterprises today. The well-known NDPmon, a 

portmanteau of “NDP” and “monitor”, mirrors the functionality of arpwatch and extends its 

functionality into NDP for IPv6, to provide a way for administrators to know when link-layer 

bindings suddenly change. As an intriguing evolution, NDPmon was further developed upon by 

a sophisticated, machine-learning-based anomaly detection system in [24]. As mentioned above, 

the reactive nature of these systems is simultaneously their greatest advantage and disadvantage: 

event-driven solutions allow for real-time identification of threats, but usually also require real-

time intervention to stop. Real-time threat identification systems are also more subjective and 

heuristic, having consequently many more false-positives. Generally, if an administrator is 

interested in preventing on-path attacks in their local IPv6 network(s), but they are perturbed by 

the mere thought of adding any static Neighbor Cache mappings, then it is a certain possibility 

that a monitoring solution such as NDPmon will be employed. 
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The use of configured or ‘smart’, NDP-aware infrastructure has also played a key role in 

advancing toward generally practical NDP security. For example, the Stateless Address 

Autoconfiguration (SLAAC) Attack Detection (SADetection) mechanism in [25] uses a 

centralized server infrastructure to reliably detect mischief in SLAAC processes on the local 

network. In perhaps the best use of infrastructure to bind together link-layer addresses and IPv6 

addresses for interdependent validation, the SEND-SAVI framework in [26] has provided a way 

for trust chains to be established in binding link-layer addresses with IP addresses and a way to 

validate them using forwarding infrastructure. This research led to the subsequent, similar work 

by the IETF in RFCs 7219 [27] and 7039 [28]. Infrastructure-based solutions tend to be more 

practical since there is no reliance on node operating systems to maintain compatibility with new 

or updated NDP security mechanisms that may or may not be expected by capable neighbors. 

 

2.5 Preserving User Privacy 

Since NDP introduced SLAAC in RFC 4862 [13], the consented methodology used to 

auto-generate addresses has led to privacy concerns about user tracking, activity coordination 

across multiple sites, and targeted exploits based on known link-layer identifiers. Alongside the 

evolution of NDP security mechanisms, war has continued to rage about the best way to use 

SLAAC to self-assign interface IP addresses while preserving user privacy at each endpoint. 

Privacy is of course a more relevant concern for IPv6 than IPv4 due to the globally-routable 

nature of most IPv6 unicast addresses, rather than the masking performed by Network Address 

Translation in IPv4. The original IPv6 address generation mechanism named “EUI-64” formerly 

required interface identifiers to be derived from an extension of their 48-bit link-layer addresses 

(i.e., MAC addresses). This was subsequently deprecated for its obvious privacy concerns of 
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directly divulging the interface’s link-layer address. RFC 8981 [29] discusses the generation of 

both stable and temporary privacy-focused SLAAC addresses. It slightly augments the 

generation process of opaque interface identifiers from RFC 7217 [30] and provides insight 

about more recent address generation methodologies. 

Cryptographically Generated Addresses are subjected to privacy concerns because the 

cost associated with address generation (based on the Sec parameter of the address) are 

prohibitively expensive for regular address rotation intervals which would deter tracking. This 

ailment follows closely behind most security techniques seeking to utilize the IPv6 interface 

identifier address space (typically 64 bits) along with some kind of public-key cryptography or 

hash of a public key value. Even algorithms as widespread as semantically opaque interface 

identifiers, as specified in RFC 7217 [30], are shown to be prone to breaches of user privacy 

once the internal state of the generation algorithm is known. Ullrich and Weippl successfully 

attack this form of SLAAC address self-assignment in [31], showing that even a chain of 

temporary addresses generated by these original privacy extensions form a side channel that 

allows attackers to synchronize to the generator’s state and predict upcoming addresses. 

There is also controversy about binding link-layer addresses into temporary IPv6 

addresses for an interface, a la EUI-64. RFC 7721 [32] and RFC 8064 [33] express deep 

concerns about using link-layer identifiers in the address generation process, citing network 

activity correlation, location tracking, address scanning, and targeted exploitation as problematic 

byproducts. Likewise, Groat et al. discuss in [34] the privacy implications of using the link-layer 

address, or some deterministic value derived from it and not sufficiently randomized, in IPv6 

stateless address generation. Nowadays, as mentioned, this process has indeed been sufficiently 

randomized by specification of RFC 8981 [29], superseding semantically opaque interface 
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identifiers to include ephemeral or pseudo-random values as components for address generation. 

Any SLAAC-related generation algorithm which can introduce some pseudo-random input from 

a random entropy source during the address generation process should produce addresses with 

sufficient randomization that prevents tracking and correlation of user activities. 

 

2.6 Link-Layer Address Ownership 

The security of any data dispatched or received at a layer above the link-layer becomes 

susceptible to interception if the link layer itself is not properly secured. Even Section 9 of the 

SEND specification [16] makes it very clear that regardless of the security protections afforded 

by SEND and CGA, there are certain issues that are inherent to an insecure link layer. Kiravuo et 

al. in [35] demonstrate a variety of link-layer vulnerabilities related to Ethernet, including MAC 

address spoofing, Man in The Middle (MITM) attacks with IPv4’s ARP, replay attacks, and 

more. In a MAC spoofing attack, the threat actor sends frames through a switch with a spoofed 

source MAC address, causing the switch to direct response packets to the switchport through 

which the threat actor is communicating. This is less useful if the spoofed node is still online, 

however, as its own sending of legitimate frames will cause the forwarding table in the switch to 

revert to forwarding frames through the proper switchport. And if this process continues to 

happen back and forth in a flip-flop scenario, the legitimate node will be denied service because 

the switch will not reliably forward any information. 

To solve this problem, most solutions will subsequently need to rely on some security 

mechanism at the link layer to certify or authenticate packets as coming from the correct 

switchport. Alternatively, nodes can attempt to enforce authentication by means of some 

knowledge known beyond the networking stack, such as a public-private keypair. While NDP 
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can enforce this requisite proof of knowledge (through a digital signature or some other means), 

it cannot enforce it for every packet or frame; thus, the verification only occurs during NDP 

transactions, such as when Neighbor Advertisements are being received. Due to this 

asynchronous nature of the protocol, it would be nearly impossible without link-layer security 

mechanisms to enforce that a frame does or does not originate from the original neighbor who 

owned the link-layer address. 

 

2.7 Recent NDP Security Research 

Well beyond the years of Secure Neighbor Discovery, researchers continue to strive for 

an ideal NDP: much research is conducted year after year into denial-of-service protections, 

protocol extensions, and, chiefly, the prevention of spoofing threats. It is important to create a 

so-called ‘measuring stick’ whereby the effectiveness of these recent endeavors can be reviewed, 

by evaluating how the goal of Neighbor Redirection attack prevention is achieved while 

simultaneously preserving the privacy, simplicity, and flexibility of the proposal. These three 

properties are significant considerations for the widespread success and adoption of a proposed 

protocol or NDP amendment. Such protocols and proposals to measure will include neither the 

canonical SEND and CGA specifications, nor Neighbor Discovery monitoring applications, 

because those have already been discussed and it is concluded that they do not satisfy these three 

ideals. 

The Source Address Validation Improvement (SAVI) framework specified in [28] is an 

effective mitigation for neighbor discovery spoofing strategies in local networks. It learns and 

enforces known bindings between source IP addresses and source link-layer addresses, along 

with identifying the switchport used to communicate the traffic. But SAVI has been criticized for 
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its complexity and time-consuming implementation in networks of any large scale, along with its 

high false-positive rate for misreported address bindings. If deployed across the infrastructure 

incorrectly, there are difficulties with state synchronization as well because of how SAVI forms 

its associations. Additionally, SAVI is often not compatible with multihomed interfaces having 

multiple IP addresses across multiple subnets at the same time. As robust as the SAVI solution 

is, it cannot be considered to satisfy all three ideals of the measuring stick because it is neither 

simplistic nor flexible. 

Praptodiyono et al. introduce the Trust-ND mechanism in [36] as another method 

specifically designed to abate the Neighbor Redirection attack vector by employing a 32-bit NDP 

Trust Option which includes a mixture of integrity checking and a soft-security technique of 

social trust between independent neighbors. This method was later improved upon and made 

more robust by Hasbullah et al. in [37], mitigating possible attack vectors and granularity issues 

relating to the Trust Option’s Timestamp value. The most interesting aspect of this work is its 

independence from any centralized infrastructure; instead opting to rely on what neighbors might 

already know about each other, direct message authentication details, and calculation of a 

trustworthiness score, and then making NDP determinations from that information. 

Decentralization and node-independent trust makes Trust-ND very flexible for 

deployment in mixed networks, where some nodes may not recognize or acknowledge the newly 

introduced Trust Option. It is also quite simplistic due to both its introduction of only one NDP 

option and its usage of an integrity hash and social trust scoring. However, Trust-ND fails the 

privacy requirement of the baseline measurement being used in this evaluation, because the trust 

score and knowledge of the source node’s past activity relies partially on what the receiver 

(trustor) knows about the sender (trustee), identified by a packet hash. This means that for Trust-
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ND to continually work by calculating high-scoring trust between nodes, both nodes will need to 

remain at fixed IP addresses and link-layer identifiers, since these are the identifiers used by 

Trust-ND to identify a trustee. If hosts cannot change their addresses freely, then they will be 

subject to tracking and activity correlation; thus, Trust-ND does not satisfy the ideals of this 

research. 

Finally, NDPsec was introduced by Al-Ani et al. in [38] to augment Secure Neighbor 

Discovery practices and guarantee improved performance, amongst a litany of other proposed 

SEND improvements (algorithm changes, new options, etc.). While this is ultimately a 

discussion atop the existing SEND and CGA evaluation in this paper, it is worth mentioning due 

to its significance in the wider body of literature about NDP security. Many of these proposals 

still fail the measurement against privacy preservation, flexibility, and simplicity in one way or 

another thanks to their associations with SEND and CGA. However, they all offer a drastically 

improved baseline by which SEND and CGA can be evaluated in the modern day. Other 

analyses of these proposals and how they affect the efficacy of SEND and CGA–as well as 

analyses for SEND and CGA themselves–can be found in [22], [39], [40], [41], and [42]. 

Recent endeavors striving to secure NDP capture an exceptional amount of time, effort, 

and ingenuity to close what security researchers rightfully understand as a very important gap in 

the posture of local IPv6 networks. Of any solution already proposed, one particular 

methodology might make for a more suitable candidate than another depending on the context of 

the local network which is being secured. That is why this work does not desire to express that 

these related proposals are by any means inadequate ways to solve the issue; rather, it is left to 

administrators to determine which solution is best suited for their own use-cases. Instead, this 

research proposes an alternative to securing NDP against malicious traffic redirection attacks and 
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link-local address spoofing with NDP. It identifies what should be considered three crucial 

aspects for the adoption of any amendment to the NDP: simplicity, flexibility, and privacy 

preservation. Voucher-Based Addressing and Neighbor Discovery Sessions are thus introduced 

as further possible candidates to mitigate the Neighbor Redirection attack vector. 
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Chapter 3 Voucher-Based Addressing 

NDP Address Resolution establishes a process for discovering the link-layer identifier 

(LLID) of a neighbor's IP address. But this process faithfully relies on some nebulous neighbor 

owning the target IP responding with its own LLID and not, e.g., a malicious node responding 

with a redirected LLID. If the target IP address is already being correlated with an LLID to 

which frames are forwarded, it is then sensible to tightly bind the two identifiers together: IP 

addresses should be provably derived from an underlying LLID. For the sake of individual IP 

address privacy, this binding needs to be computed in a manner that permits temporary and 

stable identifiers to coexist and in a manner that will not suffer the privacy concerns of the past.  

Voucher-Based Addressing offers local IPv6 networks (1) a common procedure for 

binding LLIDs to IP addresses, (2) rotatable and private IP address generation, and (3) 

prevention of subversive on-path attacks. Address bindings use mutual key derivation functions 

to map public input components to deterministic output IP addresses. These bindings can be 

subsequently verified, using the same function, by neighboring nodes who seek to assert a 

target's address ‘ownership’ before initiating communications at higher levels of the network 

stack. All verifications are decentralized and do not require public-key infrastructure; only 

shared consensus on a distributed, pseudo-random value used to seed the address generation 

procedure. Despite its determinism, the address generation process creates rotatable IP addresses 

which appear statistically random to off-link devices, who are by design unaware of all input 

parameters associated with the addresses.  
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The concept of VBA is a cross-application of cryptographic key-stretching techniques to 

LLID bindings and neighbor consensus for generating random IPv6 addresses. The result is a 

high-impact, low-complexity, optional feature for the NDAR process, with minimal changes to 

NDP options, formats, or behaviors. It is proposed as an alternative SLAAC address assignment 

and verification methodology in contrast to SEND, CGAs, and opaque interface identifiers (from 

RFC 7217 [30]) in traditional local networks. 

 

3.1 Terminology 

A glossary of terms and acronyms related to Voucher-Based Addressing is necessary to 

index, organize, and comprehend the many different aspects of the proposal. To acquire more 

prerequisite context, please see Section 2.1 of RFC 4861 [11] for definitions of the following 

terms: neighbor, node, interface, link, address, router, host, on-link, off-link, IP, ICMP, packet, 

and target. 

● ND (sometimes NDP): Neighbor Discovery (Protocol). 

● SEND: Secure Neighbor Discovery. 

● CGA: Cryptographically Generated Address. 

● NDAR: The Neighbor Discovery Address Resolution process; see Section 7.2 of the 

NDP specification (RFC 4861). 

● NC: Neighbor Cache, as specified in Section 5.1 of RFC 4861. 

● RS, RA, NS, and NA: Respectively: Router Solicitation, Router Advertisement, 

Neighbor Solicitation, and Neighbor Advertisement. A collection of abbreviations for 

ICMP packet types defined by NDP in RFC 4861. 

● NUD: Neighbor Unreachability Detection (Section 7.3 of RFC 4861). 
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● LLID: A shorthand representation for the terms "Link Layer Address" or "Link Layer 

Identifier". Both terms are synonymous and describe any individual link-layer identifier 

for a network interface. 

● IID: Interface Identifier. The unique identifier of an interface on a network. See Section 

2.5.1 of RFC 4291 [14]. 

● SLLAO: Source Link-Layer Address Option. An ND option indicating the LLID of the 

packet sender or NDAR initiator. 

● TLLAO: Target Link-Layer Address Option. An ND option indicating the LLID of the 

NDAR target. 

● DAD: Duplicate Address Detection from the SLAAC specification (RFC 4862 [13]). 

● SLAAC: Stateless Address Autoconfiguration. 

● PKI: Public Key Infrastructure. A system that manages asymmetric keypairs and digital 

certificates to verify user identities and to secure network communications 

authoritatively. Often used in reference to some larger specification such as X.509 PKI. 

● VBA: Could mean one of two things depending on context: 

○ Voucher-Based Addressing (such as "the VBA-enabled subnet" or "VBA 

mandates this"). 

○ Voucher-Based Address (such as "a VBA" or "using VBAs"). An IPv6 address 

generated by a mixture of Link Voucher details, network interface details, and 

subnet details. The term "VBA" might be used in lieu of "IP address", but an IP 

address may also be a VBA. There is no special value contained within an IP 

address to indicate that it is a VBA. 
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● LV: ND Link Voucher option. A data payload intended to be distributed by a responsible 

node on-link. Details are statefully maintained on neighbors and are used in both 

generating and verifying VBAs. This term is also used synonymously with vouchers 

themselves as they are stored at each node per interface. 

● VS: ND Voucher Summary option. Used to hint to receivers which LV identifier and 

IEM is being used by the sending node. 

● LOVMA: Local On-link Voucher Multicast Address. A multicast channel used by VBA-

enabled nodes to get non-essential information from the current Voucher Bearer or from 

other VBA-enabled neighbors. 

● VB: Voucher Bearer. The on-link node that is solely responsible for dissemination of the 

LV and authorized by any potential link guarding to transmit Router Advertisements or 

Redirects with an LV attached. 

● VSR: Voucher Status Report. A type of data payload sent by VBA-enabled nodes to the 

LOVMA. It shares information about the node's VBA preferences and is mainly used in 

optimizations as an optional protocol feature. 

● VCI: Voucher Capability Indication. A type of LOVMA data payload sent by candidate 

VBs wishing to indicate their candidacy as a future VB for the link. 

● VHA: Voucher Handoff Advertisement. A type of data payload sent by the current VB to 

the LOVMA, signing off on an election process for a new LV. 

● IEM: Interface Enforcement Mode. An interface-level, mutable operating mode which 

controls interface VBA generation and verification behaviors. 
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● Binding: Used primarily to describe a coupling between two types of addresses on 

different layers of the OSI reference model. In the case of VBA, it is usually used in 

reference to link-layer identifiers as bound to network-layer identifiers. 

● LL2IP: Used to shorten the phrase "link-layer-address-to-IP" when discussing the 

binding of the link layer to the network layer.  

● KDF: Key Derivation Function, as defined in Section 3 of RFC 8018 [43]. 

● Salt: An extra random value used in computing a hash which makes it impossible for 

attackers to precompute output values. See Section 4.1 of RFC 8018 for more 

information. 

● IC: Iterations Count, also synonymous with the term “L value”. For the sake of clarity, 

this term is often not abbreviated. It is defined as an integer value describing the number 

of times a key derivation function is iterated to produce a final output value. See Section 

4.2 of RFC 8018 for more information. 

● Hextet: A 16-bit aggregation; data that is 16 bits in size. 

● RA-Guard: Router Advertisement Guard, as specified in RFC 6105 [44]. 

 

3.2 Threat Model 

In the projected threat model for the local network, threat actors are only interested in 

stealthy on-path attacks resulting from neighbor spoofing exploitation. Modeled threat actors are 

not concerned with network disruptions or denial of service attacks; they would prefer to remain 

quiet and unseen. For the most part, the success of an on-path attack arbitrating and examining 

unicast messages is dependent upon the threat actor remaining undiscovered on the path between 

two victim nodes in the first place. This model assumes that no two LLIDs within the target 
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broadcast domain can be the same value or be spoofed in the network without obvious 

disruptions to network activity. It also simultaneously assumes an insecure link layer on which 

malicious nodes can impersonate other neighbors if those victims are somehow disconnected 

from the link. 

For external networks, the threat model includes risks to the privacy of an interface 

communicating off-link. Nodes can be remotely tracked, targeted, and even exploited through 

their unique, global unicast addresses if they are not sufficiently rotated. If an address generation 

mechanism incorporates link-layer information and does not obscure it in some way, then attacks 

can be launched against addresses based on what might be revealed from link-layer information. 

Lastly, address assignment schemes which do not encourage or permit regular primary address 

rotations are subjected to these threats and can be a valuable attack vector for targeting victims. 

 

3.3 Design Goals & Protocol Overview 

VBA boasts a trinity of privacy, simplicity, and flexibility. It successfully creates a set of 

rotatable interface network addresses bound to a single link-layer address, which cannot be 

discovered or tracked by reversing or correlating any of the generated network addresses. These 

addresses appear to external hosts to be randomly generated and disjunct. By design, only 

neighboring nodes communicating Neighbor Discovery packets can know of all parameters used 

as inputs to the deterministically generated address; knowledge that also acts as a requirement to 

perform address verification. This same neighbor is aware of a Link Voucher Neighbor 

Discovery option attached to Router Advertisements, providing shared address generation 

parameters. The Link Voucher is distributed by a responsible, preordained neighbor on-link and 

it guarantees a mutual agreement between all link neighbors for VBA generation. 
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A selectable one-way key derivation function is used to dynamically stretch computation 

of a hash using a combination of locally known inputs, some of which reside within the agreed 

upon Link Voucher. The key derivation function is employed to slow the brute-force 

computation of hash prefixes that might cause a collision or be utilized maliciously. The property 

of voucher distribution ensures that two neighbors must use equivalent and mutual Link Voucher 

information when generating and verifying neighbor addresses. Failure to verify a neighbor 

begets failure to communicate with that neighbor, since its link-layer address will not be entered 

into the NDP cache of the verifying node. 

VBA summarily seeks to maximize its aversion to labyrinthine intricacies succumbed to 

by other seldom-adopted NDP security proposals, while creating many opt-in opportunities for 

optimization at the same time. This is a careful balance to strike in specification complexity. It 

achieves this balance by chiefly minimizing the use of public-key cryptography, infrastructure 

changes, and centralized registration authorities, to offer the best alternative for securing NDAR 

transactions that is more adaptable and flexible. Simultaneously, unlike other protocols, VBA 

amends normative Neighbor Discovery processes as little as possible by modifying address 

generation, adding new NDP Option types, and inserting a small verification shim as a required 

pre-cache determination of neighbor legitimacy. The reward is opt-in neighbor LL2IP binding 

verification, the flexibility to choose interface participation granularly, and the safe derivation of 

one or more randomized (yet deterministic) interface addresses. 
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3.3.1 Link-Layer Address Binding  

Consider how and why a malicious party might engage in a MAC spoofing attack as 

presented in Section 3.B of [35]. When two nodes share the same link-layer identifier in a 

switched network, frames will unreliably be forwarded to one of the two parties based on who 

most recently communicated through the switch. This flip-flopping of frame delivery causes a 

confusion of higher-level protocol stacks and will most likely result in a denial-of-service attack 

on the legitimate node. Therefore, the impersonator can gain little advantage by spoofing a 

neighbor’s link-layer address when both nodes are online, and the principle of MAC address 

uniqueness per broadcast domain can be established. 

During the NDAR process, the goal is to associate a target IP address with its underlying 

link-layer address to which frames can be forwarded and switched. When such link-layer 

identifiers become inputs to higher-layer abstractions, such as IP addresses in the case of VBA, 

then there are ‘bindings’ of the identifiers with the resultant upper-layer components. These 

bindings are especially useful if one-to-one, irreversible, deterministic input-output pairs are 

created as a result, e.g. by incorporating them into hash function inputs. Since VBA generation 

depends on both these bindings and the principle of MAC address uniqueness at the scope of 

each local link, VBA verifications are considered valid proofs of MAC address ownership so 

long as the originally communicating neighbor remains on-link. 

VBA verification is run at specific times during NDAR transactions by verifying 

neighbors, independently mirroring the VBA generation process. The process of verification is 

parameterized by (1) various inputs which identify the target node during NDAR (the IP and 

MAC addresses from NDP packets), and (2) inputs which lie beyond the control of the target 

node. Such 'outside' information is found within the Link Voucher details agreed upon by all 
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neighbors. Due to the utilization of LL2IP bindings in both generating and verifying VBAs, it is 

impossible to report an association of an IP address to an LLID that cannot be bound to it. This 

means the NDAR process becomes safe from issues of impersonation. A node wishing to contact 

a neighbor's IP address can no longer be first subversively redirected to a different receiver at a 

lower level of the network stack. 

 

3.3.2 Key Derivation Functions & Address Privacy 

Binding an LLID to a higher-layer address using a simple embedding scheme should 

suffice if the goals of VBA only included validating address ownership. For example, modified 

EUI-64 interface identifiers are formed by a long-established address derivation methodology 

which uses the LLID of an underlying interface. This would sufficiently create a binding, but it 

would not be private because the LLID of the network interface is exposed in the resultant 

address and becomes trackable (even in the case that RCM is used). A design goal of VBA is to 

also establish a privacy-focused address generation procedure which will obscure the node's 

LLID while permitting on-the-fly address rotations. EUI-64 is by design a fixed and rudimentary 

address derivation methodology which does not permit such flexibility. 

For this requirement, VBAs employ more sophisticated hashing during the address 

generation process to create a pseudo-random output address. A hash-based address does not 

allow outside trackers to know the LLID of the node. Using hashing and key derivation 

techniques ensures that any LLID of an arbitrary length can be reliably bound to an irreversible 

address suffix that is fixed at 64 bits in length. Furthermore, simply hashing an LLID will only 

create a one-to-one binding, but many formalized IP address generation schemes already offer 

ways to derive many privacy-focused addresses from a single input LLID (e.g., Section 5 and 
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Appendix A.3 of RFC 7217 [30]). These addresses are intentionally obfuscated and preserve the 

privacy of the node unless reversing parties are aware of all input parameters used by the 

deterministic address generation function. VBA strikes a careful balance of (1) keeping off-link 

nodes unaware of local Link Voucher information used in address composition, and (2) ensuring 

on-link nodes are aware of all parameters used to generate any neighbor VBA. Off-link nodes 

cannot derive an external target’s bound LLID value because they cannot receive NDP messages 

from the target’s broadcast domain, nor can they determine the binding from any patterns of the 

address itself. VBAs will always appear random as a consequence of utilizing the outputs of 

deterministic hash functions. 

To gain a further advantage, VBA elevates the use of simple hashing to the use of key 

derivation functions (KDFs), which easily enable a set of one-to-many LL2IP bindings and 

enforce a minimum address computation time. KDFs accept input iteration counts specifying 

how many times the pseudo-random function or underlying hash function must be iterated before 

producing a final result. When used with VBA, they are computed with various inputs that 

specifically identify the target node’s details, and a small fragment of the resulting value is 

planted into the generated VBA. Iteration counts (ICs) can then be embedded into resultant IP 

addresses adjacent to KDF hash results, such that the following three components are an inherent 

value exchanged in any NDAR transaction: (1) the target's reported LLID and IP address (i.e., 

VBA) in NDP fields; (2) a portion of the KDF's hash output (embedded within the VBA); and 

(3) the IC value that was supplied when computing the KDF hash (also embedded within the 

VBA). 

Interfaces using the VBA generation procedure therefore enforce that all three 

aforementioned items are bound together and conveyed to neighbors, alongside on-link voucher 
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details, to produce the same output VBA during verification. Each increment or decrement of the 

embedded IC value produces an entirely new, seemingly random address with no correlation to 

the previous one produced by the adjacent IC. Nodes falsifying any of the bound values used by 

the legitimate VBA owner will be rejected by verifying neighbors when resolving and verifying 

LL2IP bindings during NDAR processes. 

 

3.4 Address Generation 

VBAs are indistinguishable from ordinary unicast IPv6 addresses because there is no 

reserved sequence of bytes, or so-called ‘magic number’, embedded within them to classify them 

as such. They are composed of three key components in order from most-significant to least-

significant byte: the 64-bit subnet prefix, a 16-bit Z value indicating the encoded iterations (L) 

value used to compute the address, and a 48-bit hash-derived address suffix (H). If the subnet is 

less than 64 bits in length, then the remaining gap between the end of the subnet prefix and the 

beginning of Z is always populated with pseudo-random noise by the generating host. VBAs, 

alongside many other already-established IPv6 protocols, are not compatible with networks 

whose subnet prefixes exceed 64 bits in length. A VBA contains only a partial conveyance of the 

information required for neighbors to reconstruct and therefore verify the address. Figure 3 

provides a simple visual representation of how an IPv6 address is partitioned. 
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Figure 3. The overall structure of a Voucher-Based Address. The left half of the address is not a 

result of the address generation procedure and merely consists of the subnet (padded if 

necessary). 

 

 

Addresses are generated using inputs from various sources: the shared Link Voucher 

details, local network interface details, and an arbitrarily chosen iterations count value L. If any 

of these components are missing, then the generation process will fail and fall back to some 

alternative method, while adjusting the current IEM to something more lenient. Figure 4 shows 

the step-by-step process used to generate VBAs on each interface for one or more available on-

link prefixes at the same time. In the image, the large cog from step 4 indicates the primary 

function driving the process; this is the ‘well known procedure’ for VBA generation at each 

compatible and VBA-enabled network endpoint. 
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Figure 4. The Voucher-Based Address generation procedure is used to generate all initial 

interface addresses from the interface on Host A. Host B is a Voucher Bearer authorized by local 

policy to delegate Link Voucher information to on-link neighbors. 

 

 

The Interface ID (IID) for all VBAs, also called the Suffix, embeds two important details 

for verification. A 16-bit Z value is calculated as a bitwise complement of the XOR of the 16-bit 

L value (the Iterations Count used in the KDF function K) and the first hextet of the Link 

Voucher seed value. The Z value is used to ensure the same input iterations count value, L, will 
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be unique across different Link Voucher seeds and provide enhanced address privacy. This is 

especially necessary if the node locally advertises a well-known or Preferred Iterations Count 

value. The L value is a significant member of the generated VBA: this parameter controls how 

many times the KDF function specified by the LV is iterated to produce the resulting hash value 

from which H is derived. Increasing this value increases both the work required to verify the 

VBA and the work necessary to discover potential collisions with H. H is the other value 

embedded in the VBA which consists of 48 bits acquired from computing the resulting KDF 

function with L iterations. The first 8 bytes of the resultant KDF hash are used in formulating the 

H portion of the VBA, where its first hextet (bytes 1 and 2) is replaced with the Z value as shown 

in Figure 4. 

 

The address generation algorithm is detailed procedurally as follows: 

1. A node connects to a network and discovers VBA compatibility from Link Voucher 

details obtained upon router solicitation. 

2. The local L value is chosen based on (1) node preference, (2) intended VBA difficulty, or 

(3) random selection. The LV details contain instructions for KDF parameters and 

algorithm selection, as well as the 128-bit voucher seed value to use. 

3. The KDF salt is created as a variable-length concatenation of a few different inputs, in 

the order specified by the list below. The adjective 'raw' dictates specifically binary 

values, not hexadecimal string notations of said values. 

a. The raw LLID of the network interface on which VBAs are being generated, in 

network byte order. Since the salt value has a varying length, this is not required 

to be an IEEE 802 MAC address. It must only represent the LLID to which the 
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VBA(s) is to be bound and which will be provided to verifying nodes during 

NDAR transactions. 

b. The string "vba". 

c. The raw Prefix (subnet prefix) value, in network byte order. This must match the 

prefix that will be prepended to the final VBA given during the NDAR processes. 

4. The final address Suffix is computed: 

a. The first 16 bits are the bitwise complement of an XOR between the node-

selected iterations count L and the first hextet of the LV seed. 

b. The least significant 48 bits are 6 sequential bytes from the computed KDF hash 

H, skipping its first hextet (two bytes). 

 

3.5 Address Verification 

When enabled and enforced by a receiving interface’s IEM, the VBA verification process 

uses the information embedded within the IP address that is provided during an NDAR exchange 

and mirrors the generation of the address locally. Figure 5 illustrates this process. 
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Figure 5. For VBA verification, the entire address generation process is repeated at the verifier 

using various values known about the neighbor, the Link Voucher, and the current NDAR 

transaction. 

 

 

If the reconstructed address of the target node does not match the address reported in the 

NDAR transaction, then the VBA is invalid and communication with the node is denied 

according to the verifier’s IEM setting. The Link Voucher (‘LV’ in the Figure) is always 

retrieved from the state preserved on the verifying interface, and never from an external source 

that is not the current link Voucher Bearer. If the verification procedure fails due to an LV 

mismatch between nodes A and B, then there is most likely either (1) a synchronization problem, 

(2) malicious activity, or (3) an issue with multiple varying LVs being distributed 

simultaneously. 
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During Moment (1) from the Figure, Node A can choose to attach a Source Link-Layer 

Address Option (SLLAO) to its solicitation, which will cause Node B to verify its binding with 

the IP Sender Address from the NS packet. The Z’ function returns the L value embedded in 

Node B's address. This function is the opposite of Z from the address generation process: it uses 

an input address to determine L rather than using an input L to determine an encoded hextet. 

Despite the different inputs, the naming alludes to the opposite purposes for each function. 

Z(L, LV) = ~(L ^ LV.seed[0..1]) 

Z'(B, LV) = ~(B[8..9] ^ LV.seed[0..1]) 

 

3.6 Interface Enforcement Modes 

Each interface participating in the VBA paradigm–i.e., having any awareness of VBAs 

whatsoever–must always have the option to set a single local Interface Enforcement Mode (IEM) 

which determines its handling of NDP traffic in relation to VBA. IEMs allow granular, per-

interface flexibility to adjust the behaviors of each interface in real-time. They are specifically 

designed to be changeable at-will, at any time and for any reason. A small diagram representing 

the IEM state machine would simply show all states as being transitionable to one another. The 

IEMs, in order of increasing strictness, are specified as such: 

● Address Awareness Disabled (AAD): The interface must disable any generation or 

verification of network addresses. It must completely withdraw from any activity related 

to VBA, with the exception that it can still maintain a listen-only awareness of the current 

Link Voucher state. 
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● Address Generation Only (AGO): The interface address generation process is followed 

during SLAAC, but the address verification shim must be disabled and be ignored for all 

NDAR transactions. 

● Address Generation and Verification with Levels (AGVL): Address generation and 

validation is performed, but any failure to validate a neighbor must not be strictly 

enforced. Instead, purported LL2IP bindings which fail to validate are tagged in the 

Neighbor Cache as “Unsecured” entries, and those which successfully verify are tagged 

as “Secured”. Secured responses are strongly preferred over Unsecured ones, which 

permits successfully verifying nodes to receive connection priority without denying 

communicating with neighbors that do not successfully verify. This tagging and 

preference for Secure communication is directly borrowed from the SEND specification 

in Section 8 of RFC 3971 [16]. 

● Address Generation and Verification (AGV): The strictest mode, enforcing all VBA rules 

without mercy. Any NDAR process not passing the verification shim–i.e., an invalid 

reported binding–must be dropped immediately. 

 

3.7 Behavioral Neighbor Discovery Changes 

VBA does little to modify the NDP in an incompatible way for existing systems, instead 

opting to change the behavior and decision-making of the ND-compatible software stack based 

on the current IEM. Figure 6 expresses the application of these changes in a practical scenario, 

where both hosts are required to engage their VBA verification processes between certain NDAR 

events. In summary, VBA requires modifications to the following NDP behaviors on VBA-

enabled interfaces: 



43 

 

● Since LLIDs are bound to IPs and VBA collisions are highly unlikely, new LLIDs on 

neighbors have an impossibly low chance of organically producing the same VBA as one 

already cached by verifiers. Such an unlikelihood implies that any Neighbor 

Advertisement (NA) packets including a known, cached Target Address that is not in the 

INCOMPLETE state should be ignored if an included Target Link Layer Address Option 

(TLLAO) attempts to update the record to a different LLID, or if it attempts to change the 

Neighbor Cache (NC) entry to a different state. This acts as a protocol optimization and 

denial of service protection which prevents malicious nodes from attempting to 

continually imbalance the processing bandwidth of a target. 

● The value of an LLID within a Neighbor Solicitation (NS) packet should likewise never 

update for the same IP Source Address when the current LV has not changed. This is 

because it is a statistical improbability for any known VBA to have been organically 

formed from a different LLID when the LV has not changed. Therefore, NS packets with 

an SLLAO attached must not update the state or values of any current NC entry having 

the IP Source Address value from the NS. 

● Any supposed urgent updates about underlying details for a known VBA are 

unnecessary. The Override flag in received NAs should not be able to freely update the 

underlying LLID of a current NC entry. Overrides should also generally not be able to 

affect the state of any NC entry. However, some devices might wish to support a laxer 

AGVL IEM which allows compatibility with static unicast addresses on-link. In the case 

where the IEM is set to AGVL, the Override flag in NAs should not be ignored, in order 

to let static addresses immediately notify neighbors of a change in their interface LLIDs. 
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This is an insecure practice and is not recommended unless used explicitly for static 

addresses. 

 

 
Figure 6. VBA processes do not modify the typical Neighbor Discovery process or exchange. 

Instead, software local to each interface will act to verify received IP addresses during NDAR 

based on the interface’s selected Enforcement Mode. 

 

3.7.1 The Address Verification Shim 

VBA verification is a 'shim' software process–a small functionality that is added as a step 

between two existing procedures–prescreening incoming requests to insert or update cached 
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bindings between IP addresses and LLIDs, according to the normative ND process. If the 

verification shim rejects a binding from entering the NC, or some update of the NC from 

occurring, then the verifying node will be denied from properly forwarding data frames to the 

requesting node. This is because a cache entry in the REACHABLE state does not exist and will 

not be created. Prefiltering in such a manner immediately dismantles any neighbor’s opportunity 

to forge NDAR packets or to redirect traffic maliciously. 

Employing the verification shim results in repeated KDF computations that could impact 

performance significantly for low-power nodes or other embedded systems, so the shim must be 

optimized and called as seldom as possible. As such, VBA verification should only be performed 

when updating or creating an NC entry through NDAR exchanges. For the sake of optimization, 

Neighbor Unreachability Detection exchanges must not use the verification shim when none of 

the NDAR parameters–i.e., the IP address or the LLID–are being changed. Incoming NDAR 

packets failing VBA verification must be immediately ignored, and NC entries must not be 

created or updated as a result of their receipt. Nodes likewise must not respond to any packets 

failing the verification process. There are a few situations when NDAR packets cannot be 

optimized and must explicitly pass through the VBA verification shim for approval: 

● An NS, RS, or RA packet is received with an SLLAO attached and an NC entry for the IP 

Source Address is not already present. 

● An NA or Redirect packet is received for a Target Address whose NC entry is in the 

INCOMPLETE state. 

● An NA packet is received and the Override flag is set, and the receiving interface is using 

the AGVL IEM. 
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● An NA or Redirect packet is received on a node supporting Gratuitous ND and the Target 

Address does not already have an NC entry present on the receiver. 

 

The above list is perhaps not all-inclusive and does not consider other ND extensions 

which may allow certain ND packets to modify NC entries. Except for forward progress 

indications through NUD, NDAR packets of any type seeking to update any active NC entry 

(whether state or values), or to create a new entry, must be pipelined through the VBA 

verification shim process first, depending on the current IEM. 

 

3.7.2 Neighbor Unreachability Detection 

The current NDP specification defines Reachability Confirmations which serve to 

regularly update NC values when one of two types of hints indicates connections with already-

cached neighbors are making "forward progress" (Section 7.3.1 of RFC 4861). Forward progress 

signals that an established connection with a neighbor is still ongoing and that a neighbor is still 

considered REACHABLE in the NC. Nodes engage in the NUD process to keep their NC entries 

in their ideal REACHABLE states as a protocol optimization, as it is costly to continually 

rediscover active neighbors. 

VBAs capitalize on this behavior by foregoing address verification requirements when 

NS/NA transactions only serve to express forward progress. This means any forward progress 

showing no changes in the expressed LLID and IP address of a current NC entry must allow the 

record to be refreshed as REACHABLE without requiring expensive use of the VBA verification 

shim. Any forward progress indicating that a change has somehow occurred in the LLID for a 
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cached IP address must be ignored and must not update the cache unless it is reverified by the 

verification shim process. 

 

3.7.3 Link Voucher Updates 

Any expiration or rotation of a current LV used to verify VBAs must cause the non-static 

entries in the NC to be immediately cleared. A change in the LV could occur for any number of 

reasons, but the swap indicates that the current LV is no longer in active use and therefore any 

addresses which were previously cached during its reign must be dropped. VBA 

implementations might wish to categorize or label NC entries by their LV ID value used during 

their shim verification as an optimization. Labeling cache entries by their temporal voucher ID 

permits other NC entries to remain despite the LV rotation, such as those entries originating from 

a new LV after a voucher handoff occurs. 

When a new LV is accepted and cached, whether by handoff or due to the absence of a 

current LV, any current NC entries–especially heuristically determined busy or recent ones–may 

have their LLIDs pre-computed into the resulting VBAs, which use the parameters specified by 

the new LV. This occurs as an optimization even if no NDAR transactions have been required 

for those neighbors yet. The process necessitates that the pre-computing party is aware of the 

neighbor's optional Preferred Iterations Count value, specified at an earlier time via the LOVMA 

channel. When VBAs generated from new voucher details can be pre-computed without waiting 

for a transition to complete, then most neighbors can immediately continue or resume secure 

communications without any potential delays incurred by re-querying their VBA verification 

shim processes. It is left to the discretion of each VBA implementation to apply this optimization 
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where desired. Additionally, static mappings defined in the NC must always be preserved 

regardless of LV expirations, since LV activity has no bearing on static cache entries. 

 

3.7.4 Gratuitous Neighbor Discovery 

Gratuitous ND, defined in RFC 9131 [45], allows routers to preemptively create STALE 

NC entries from received NAs, to expedite the exchange of local neighbor LLID bindings. VBAs 

should support this option, since routers preemptively verifying any neighbor's address bindings 

will allow the neighbor to communicate off-link much faster than if the router first required a 

full, on-demand NDAR process including VBA verification. Implementations of VBA should be 

considerate of how Gratuitous ND might interact with certain IEMs requiring VBA verification. 

For example, if a flurry of NA packets is received in an ostensible attack, the router might 

quickly find itself with too much queued work and could start dropping packets under load. 

Implementations might therefore wish to toggle enablement of this feature reactively based on 

the router's evaluated system load. 

 

3.7.5 Duplicate Address Detection 

When generating a VBA, the node follows the normative means of Duplicate Address 

Detection (DAD) specified by the SLAAC RFC (in section 5.4 of RFC 4862 [13]). The DAD 

procedure ideally follows any other applicable DAD optimizations that might already be present 

or known by the node (e.g., RFC 4429 [46], RFC 7527 [47], etc.). Upon detecting any duplicate 

address, nodes using VBA must select a different L value during VBA generation to assign 

themselves a different, non-conflicting address. Regenerating a series of new VBAs can quickly 

become computationally expensive based on the amount of address collisions detected by DAD, 
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and this can be abused by malicious denial of service attacks. To counter this weakness, VBA 

implementations should employ one of two optimization options based on the initially selected L 

value during VBA generation: 

L > 4 

Cache the 4 leading KDF computations (L-4 through L-1) during address generation. 

L <= 4 

Cache the KDF computation result at the L value only. 

 

Implementations should always prefer the option where the L value is greater than four, 

because L-4 through L-1 comprise intermediate KDF outputs that are already required in order to 

calculate the hash at the final L value. Conversely, any L value at or under four will cache the 

generated KDF hash only at L and then increment the input L by one for each DAD collision, up 

to four times. Figure 7 demonstrates this process in more detail. 
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Figure 7. The DAD optimization process for VBA is shown. When L is greater than four, the 

array N consists of any precomputed and preserved Key Derivation Function outputs that are 

already intermediate values leading up to the computation of the KDF at L iterations. Otherwise, 

N is an array of a single element and computing the next L+1 value is trivial at a low iteration 

count. 

 

In the Figure, Moment (1) shows Node A engaged in DAD using the address suffix 

generated by the KDF with the iterations count set at L. After the collision is detected in Moment 
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(2), Moment (3) shows the new VBA being immediately tried using the cached hash value N1 

with L-1 iterations as the input IC. N1 is chosen without needing to recompute the KDF hash. 

The DAD process is then successful and there are no longer any duplicate addresses, so the node 

assigns itself the generated VBA. To further cement this important optimization procedure, a 

written example process follows. 

1. A new network node has received LV details; it specifies using PBKDF2 as the KDF. 

2. The node arbitrarily selects 0xFF04 as its link-local-scope L value. 

3. The node will iterate the PBKDF2 function through 0xFEFF. 

4. The PBKDF2 cipher output for 0xFF00 (or L-4) iterations will be cached. 

5. The node will do the same for the next three iterations counts 0xFF01, 0xFF02, and 

0xFF03. 

6. It will compute the final PBKDF2 round at 0xFF04 iterations and will use the result to 

generate a valid link-local VBA according to the address generation procedure. 

7. When following the normative DAD procedure, a collision is detected for the VBA. 

8. The node then immediately falls back to the KDF hash result from the L-1 value at 

0xFF03 to generate the next possible link-local VBA. 

9. This new VBA is completely different and does not register a DAD collision, so the 

interface can successfully use the generated VBA. 

10. The optimization has successfully removed the need to recompute the PBKDF2 

algorithm up to a newly assigned L value, saving time in the VBA-enabled SLAAC and 

DAD processes. 
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If all 5 attempted IC values result in DAD collisions, then the node should give up and 

use some other implementation-specific course of action to contact an administrator or log a 

system management error. Genuine and benign DAD collisions are a dangerous prospect for 

VBA. Address collisions imply that a separate LLID with an equal L value, voucher seed, and 

KDF parameterization has generated a KDF hash collision in a rare occurrence (at least within 

the first 8 bytes), exposing the possibility for node impersonation. Some implementations might 

attempt to use trusted mechanisms to detect such VBA collisions. This might be done by means 

of intermediate device monitoring, such as switching hardware and other network infrastructure, 

with action(s) taken appropriately based on its detection. 

Nodes encountering a duplicate address will by necessity require a different L value to 

regenerate their current VBA. If the node uses and advertises a Preferred Iterations Count value, 

then it is highly recommended that the node sends a gratuitous VSR update to the LOVMA 

channel with the new preferred value. Any further protections to mitigate denial of service 

attacks abusing the DAD mechanism are beyond the scope of this research. Since VBAs do not 

modify the actual DAD process, any predefined DAD denial of service protections can likely 

apply similarly when using VBAs. 

 

3.8 Link Vouchers 

The Link Voucher is an optional attachment to Router Advertisement and Redirect 

messages which dictates the parameters used by neighbors to generate their VBAs. By agreeing 

on these shared, distributed parameters during address generation, neighbors are able to verify 

each other’s addresses independently by partially using the same information. Establishing a 

link-local baseline for VBA generation parameters also enhances the privacy of generated IP 
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addresses, because external nodes will not be aware of all inputs utilized in the generation of a 

final interface address (or set thereof). Link Vouchers work as the namesake of VBA: they are 

vouchers upon which all subsequently compatible unicast IP addresses generated in the SLAAC 

process are based upon. 

 

3.8.1 Acquisition 

Interfaces connecting to the link for the first time are required by VBA to accept and 

cache the first valid LV received from any neighbor. If the interface intends to supervise the 

delegation and creation of the LV as a Voucher Bearer, it follows a process of attempting to 

discover a currently established LV. If an existing LV is not detected in sufficient time, then it 

will create and transmit its own. LV options can be discovered by issuing an ordinary Router 

Solicitation packet according to normative ND processes. Interfaces receiving multiple valid LVs 

simultaneously will opt to use the LV with the most recent Timestamp value (that is, the 

Timestamp value closest to the local system time of the receiving device). 

If an active LV expires–meaning no updated LV has been received within the number of 

seconds specified in the Expiration field of the most recent LV–then the interface will again 

revert to accepting the first received LV or becoming a VB. This decision is based solely upon 

the dynamic decision-making of the underlying VBA implementation. The same Expiration time 

for an LV can also elapse for an interface while it is disconnected from the link. If such an 

expiration occurs, then that interface must again follow the same LV acquisition process. 

Because LV distribution to interfaces requires automatic Trust on First Use (TOFU) [48], 

it is essential for more adversarial networks to implement some form of protection against rogue 

LVs at a lower or intermediate level. In the cases where these protective mechanisms are not 
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available or sufficient, administrators might choose to set LV information on each node 

manually, in which case all other acquisition processes are overridden. Administrators in this 

situation should also choose to employ some form of intrusion detection to better mitigate rogue 

LVs from appearing and affecting the entire LAN. 

 

3.8.2 Managing Transitions 

The node responsible for the LV can at any time issue a handoff of that responsibility to 

another node by using Voucher Handoff Advertisements (VHA) on the LOVMA channel. 

During the period of transition between the previous LV and the new one, VBA-conscious 

interfaces subscribed to the optional LOVMA channel will receive VHA multicast packets 

specifying the new LV. These LOVMA-connected interfaces are strongly recommended to allow 

both LVs to be cached, so that VBAs generated using either LV are immediately valid. The same 

interfaces are also strongly recommended to begin VBA generation with the new LV parameters 

to be active in parallel with existing VBAs from the previous LV. Such a recommendation is in 

anticipation of the new LV becoming fully active once the previous LV finally expires. 
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Figure 8. The Link Voucher transition process occurs in a window of overlap where both the 

previous LV and the new LV are considered valid for verifying neighbor VBAs.  

 

 

If another VHA appears indicating a third LV is being appointed for election, receivers 

will ignore that VHA until one of the two LVs from the original VHA has expired. This prevents 

VHA flooding which flags several active LVs on the same link as being valid, causing an 

'address storm' that drains available resources from link nodes. Once the LV transition window 

ends, the number of valid LVs must return from two to one. The transition window ends when 

the original responsible node fails to refresh its LV within its LV-specified Expiration time, thus 
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purposefully letting its LV time out. An expiration event usually indicates a final transfer of 

responsibility for the LV. 

For interfaces that do not subscribe to or regard optional LOVMA channel VHA 

datagrams, the LV transition process becomes more akin to a hard handoff. Due to LV 

acquisition requirements, these interfaces will not trust the new LV until the previous LV has 

fully expired, at which time any provided LV becomes acceptable. For this reason, any VBAs 

preemptively generated with the upcoming LV will not be successfully verified by neighbors 

who are unaware of the LV transition, until the transition window has ended, and the new LV 

becomes the primary voucher on all nodes. All implementations are therefore strongly 

recommended to listen for and parse VHAs in order to secure the handoff process, preventing 

rogue VBs from timing their own malicious LV injections during a hard handoff. 

When a handoff is completed, the LV for the interface has changed. Any time the stored 

32-bit identifier of the active LV changes to another, the interface's Neighbor Cache must be 

cleared and all VBAs, whether generated or verified, must be derived from the parameters of the 

newly active LV only. This is true even in the case of a hard handoff. The transition window 

provides an opportunity for optimization: if neighbors are aware of the upcoming LV, then they 

might opt to preemptively generate their new VBAs in anticipation of the completed LV 

transition. Implementations might also choose to utilize this transition window for pre-caching 

the computed addresses of cached neighbors who advertise their own Preferred Iterations Count 

values specified in LOVMA channel VSR packets. 

Finally, if the current node responsible for the LV either disconnects from the network or 

lets its LV expire without an election process, then the network becomes open again according to 

the LV acquisition process. When this occurs, other nodes are permitted to fill the LV vacuum 
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with their own. If none of the other nodes assume responsibility while the primary VB is away or 

not transmitting updated LVs, all VBA-enabled interfaces retain the most recently stored, valid 

LV for the purposes of VBA generation and verification until a new one becomes available. 

When any new LV becomes available, the LV acquisition process subsequently applies because 

the previous LV has expired and not been renewed. 

 

3.8.3 Option Structure 

 

Figure 9. The binary structure of the Link Voucher NDP option; only considered valid by 

receivers when attached to Router Advertisement and Redirect packets. 

 

 

Figure 9 shows the structure of the Link Voucher NDP option and all its descriptive field names. 

Each field is completed, either statically or by the Voucher Bearer, as such: 
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Type 

The unique NDP Option Type identifier for Link Vouchers is 63. 

Length 

The total length of the LV from the Type through its end, inclusive, in units of 8 octets. 

Expiration 

A 16-bit big-endian value storing the amount of time in seconds that the Link Voucher 

should be considered legitimate when an update has not been received from the VB. This 

value is recommended to be set between 3,600 (1 hour) and 43,200 (12 hours) seconds. 

Setting the value any lower or higher results in issues with over-rotations and under-

rotations, respectively; two situations which can easily cause denial of service attacks 

when abused. 

Reserved 

Reserved for future use. This field is initialized to 0 by senders and ignored by receivers. 

Timestamp 

A 64-bit value representing the local system time of the sender at the moment the LV 

option is constructed in system memory. 

VoucherID 

A pseudo-random 32-bit value which uniquely identifies an ongoing Link Voucher 

instance. For the sake of optimization and connectivity, this must not change between 

distributions of the same unique LV. 
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Seed 

A 128-bit pseudo-random value used as an input in VBA generation on-link. This value 

is required to be the same for each distribution of an LV identified by a VoucherID. It 

cannot be equal across different VoucherID values. 

Algorithm Type 

A Type-Length-Value field specifying exactly which type of key derivation function to 

use in VBA generation and its corresponding baseline difficulty. 

ECDSA PublicKey & Signature 

A variable-length field containing a DER-encoded ECDSA [49] public key of type 

SubjectPublicKeyInfo according to Section 2 of RFC 5480 [50]. The public key structure 

is followed immediately by an adjacent DER-encoded ECDSA signature, derived using 

the private key corresponding to PublicKey. The ECDSA signature is computed over a 

series of sequential octets, constructed in the following order: 

1. The 16-bit Expiration value. 

2. The 64-bit Timestamp value. 

3. The 32-bit VoucherID value. 

4. The 128-bit Seed value. 

5. The variable-length contents of the Algorithm Type value, including its Type and 

Length values.  

The algorithm used in signature computation is ecdsa-with-SHA256, as defined in 

Section 3.2 of RFC 5758 [51]. The signature must be a DER-encoded ASN.1 structure of 

the type ECDSA-Sig-Value (Section 2.2.3 of RFC 3279 [52]). The final field appears as 

the two adjacent DER structures from Figure 10. 
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Padding 

Any extra padding set on the datagram to round its total length to an even 8-octet 

boundary. This field is always set to 0 and is ignored by receivers. 

 

 

Figure 10. The adjacent DER structure definitions for encoding the ECDSA PublicKey and 

Signature values of a Link Voucher. 

 

 

3.8.4 Processing Rules 

Voucher Bearers will always respond to Router Solicitation packets with a valid LV if 

they are the designated and authorized VB deemed to issue LVs on that link. This is true 

regardless of whether the VB is using a Redirect or Router Advertisement packet to distribute the 

voucher. Sending nodes wishing to distribute an LV must first check the link for an already-

active LV. This entails following a process of router discovery, then only assuming LV 

responsibility if no LV is already present; it is performed like so: 

1. Send a Router Solicitation to the All Routers multicast group at FF02::2. 

2. Wait for a response containing an LV for at least two seconds before sending another RS. 

3. Repeat this process two more times. 

a. If an LV is received from an RA or Redirect response, accept and use the 

parameters of the received LV, as long as its fields are valid. This condition 



61 

 

dictates that the sender must not send its own LV, nor should it propagate any 

instances of received LV options. 

b. If no LV is received after the three total attempts, and… 

i. … the sender is not a router: the sender's LV may be distributed on the 

local link as an option attached to an appropriate Redirect packet. 

ii. … the sender is a router: the sender may attach its LV to an appropriate 

RA packet. 

 

Senders of LVs must always maintain stateful information about their own LVs, so 

reliable and consistent vouchers can be sent on-demand. The rotation of stable LV information–

the ID, voucher seed value, or algorithm details–are signaled in advance using the LOVMA 

channel, which will initiate a LV transition window to the new VBA generation parameters. 

Expiration values must be set to an appropriate value, and senders may adjust this value at-will 

without requiring a handoff by simply updating it in a subsequent LV transmission. Timestamp 

values must always be set to the precise local system time as a big-endian 64-bit value. The 

sender's LV must always be unique and cannot consist of forwarded or duplicated copies of other 

LVs. Additionally, the voucher's seed value cannot be preserved between different LV ID values 

or between LV handoffs; it should consistently be a randomly assigned value when first 

associated with an LV ID value. 

For receivers, an LV option appearing with any packet except Router Advertisements or 

Redirects is always ignored and never processed. Nodes set to the AAD IEM should still regard 

and cache LVs according to the voucher acquisition rules, in case the interface changes its IEM 

at a later time. Nodes with static LV details assigned on their interface(s) should fully ignore 
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received LVs. Nodes acting as authorized VBs are required to disregard any received LV options 

on the links for which they are already the active, responsible VB. Receiving nodes must 

statefully maintain and update all LV information per interface, if and only if the received LV is 

successfully verified according to field rules, its cryptographic signature, and its expiration 

settings. The most recent, valid, and unexpired version of the LV is what is always cached and 

preferred on the receiving interface. A received LV that does not contain a valid signature, 

timestamp, or expiration is required to be ignored. 

Nodes acquiring a new LV for the first time become locked to that LV and its public key 

through an automatic Trust on First Use mechanism, where the public key remains trusted until it 

provides some instruction to transfer that trust to another party (or until LV expiration). Nodes 

therefore must not accept LVs which contain any other public key details, or signature fields 

which do not originate from the saved public key value of the current LV. This period of trust in 

the public key remains in effect until the cached LV expires or until another LV is elected in a 

handoff process. 

Received LVs which contain different VBA generation parameters (voucher ID, seed 

value, algorithm settings) must be ignored and cannot update any previously cached LV entries, 

even if the signature field is valid. Likewise, any difference in the public key value should cause 

the LV to be ignored, regardless of the LV's other contents or origin. LVs with invalid timestamp 

fields must also be ignored. Timestamps are considered invalid if the value falls outside the 

range [CURRENT_TIMESTAMP - Expiration] to [CURRENT_TIMESTAMP + Expiration], 

where CURRENT_TIMESTAMP is the precise 64-bit, local system time measured by the 

receiving node. In cases where the precise system time is measured in sub-second intervals like 

microseconds, the unit of 'seconds' in the Expiration time still applies and must be converted 
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properly for accurate arithmetic with CURRENT_TIMESTAMP. This timestamping process 

ensures LV validity remains flexible even with minor clock drifting across nodes on the local 

network. 

Finally for LV receivers: voucher handoff processes allow two LVs to be considered 

valid and cached simultaneously. When a receiver is subscribed to the LOVMA channel and 

detects a VHA electing a new LV, it should ignore further LV updates from the previous LV 

public key or ID association(s). This will ensure on the client side that the previous LV follows 

through with its commitment to self-expire after its most recent issuance, according to the rules 

of voucher transitions. 

 

3.8.5 Algorithm Selection 

Section 5 of RFC 8018 [43] specifies the definition of a Key Derivation Function: “A key 

derivation function produces a derived key from a base key and other parameters. In a password-

based key derivation function, the base key is a password, and the other parameters are a salt 

value and an iteration count…” There are three default key derivation algorithms that are to be 

included with all basic implementations of VBA. Future versions or extensions might wish to 

add and formalize new KDF algorithms and their corresponding Type identifiers. Any Algorithm 

Type option not specified in this section or in future addenda to VBA must be ignored by 

receivers of LVs. 

An Algorithm Type choice is formatted as a Type-Length-Value (TLV) object, where 

Type is a numeric identifier uniquely representing a chosen KDF, Length is the width of the total 

Algorithm Type stub in units of 4 octets, and Value is a compact, binary data format that is zero-
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padded to the nearest 32-bit (4-octet) boundary. Receivers will always ignore padding and 

senders will always initialize padded areas to zero. 

 

 

Figure 11. The basic structure of a TLV field that is used in the Algorithm Type field of a Link 

Voucher, where the Type and Length fields are a maximum width of 16 bits. The angle brackets 

to the sides of the Value field indicate a variable length field. 

 

 

The list of the three default KDF Algorithm Type choices is given below: 

PBKDF2_SHA256 

The Password-Based Key Derivation Function (PBKDF2) is defined in Section 5.2 of 

RFC 8018 [43]. It is a CPU-bound KDF, use of which might result in significant 

computation speed disparities between embedded systems and high-performance 

hardware. It is included primarily for portability, universality, and ease of 

implementation. VBA explicitly uses PBKDF2 with SHA-256 as its pseudo-random 

function; therefore, implementations using this Type identifier are required to use SHA-

256 as the underlying PBKDF2 pseudo-random function. 

Type → 1 

Length → Always 2 
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Value: 

ITERATIONS_FACTOR 

A 16-bit integer representing the multiplier of an input KDF iterations count, 

specified in big-endian format. This value is required to be greater than zero, 

and receivers of zero values will simply assume ‘1’ instead. This linear 

scaling factor can be used by an LV to amplify the baseline cost of computing 

the PBKDF2 KDF across the link. 

Padding 

16 bits (2 octets) of padding initialized to zero and ignored by receivers. 

 

Argon2d 

The Argon2 algorithm is specified in Section 3 of RFC 9106 [53]. It is a Memory-bound 

KDF providing significantly less disparate address computation speeds across varying 

hardware than CPU-bound algorithms like PBKDF2. VBA explicitly opts to use Argon2d 

instead of Argon2i or Argon2id because the generation of VBAs does not require any 

resistance to side-channel attacks. The in-memory data used by the KDF computation is 

not treated as a confidential item or as a priority. Implementations of VBA should always 

prefer to employ this Algorithm Type over others in LVs when there is no specific reason 

to opt for another Type, provided all participating network devices have Argon2d 

support. 

The iterations count value is used as the t input value for Argon2d computations. The 

Argon2 t parameter indicates the number of passes and is used to increase the algorithm's 
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running time regardless of MemorySize. To give the LV parameters in the Value field 

more weight, t is reduced from the KDF’s input L value as follows: 

t := (L >> 8) + 1 

The Argon2 parameters for Secret Value K and Associated Data X are neither used nor 

distributed by the LV for any reason, and the Tag Length T for Argon2d is set statically 

to a fixed value of 32. These predefined values assure the Argon2 computation will scale 

according to a specific projection as the input L value increases. 

Type → 10 

Length → Always 2 

Value 

Parallelism 

An 8-bit integer which determines how many degrees of parallelism (i.e., 

lanes) are allowed to run during KDF computation. A value of zero is not 

acceptable and will instead default to one by receivers. 

MemorySize 

A 24-bit integer representing the number of kibibytes (KiB) used as space for 

the KDF computation. This value should be carefully controlled and, if 

possible, should take into consideration the computing resources across the 

link on which the LV will be distributed. This value is required to be a 

minimum of 8 * Parallelism and cannot be set to zero. Receivers would need 

to adjust the minimum MemorySize value accordingly if the value specified in 
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the LV does not meet the minimum threshold, according to the requirement, 

for the actual degree of Parallelism being used. 

 

Scrypt 

The Scrypt KDF algorithm is specified in Section 6 of RFC 7914 [54]. It is a Memory-

bound KDF that, similar to Argon2, provides less disparate address computation 

durations across varying hardware than CPU-bound KDF techniques. The iterations 

count L value is used in part for both the N and r inputs for Scrypt computations. The 

Scrypt N parameter indicates the resource cost of running the computation and is required 

to be a power of 2. The r Scrypt parameter indicates the desired block size. Actual values 

are computed through the following conversion: 

r (Parallelism) := MAX{ 16, (L & 0xFF00) >> 4 } << SCALING_FACTOR 

N (Cost) := MAX{ 2, 1 << (L & 0x00FF) } << SCALING_FACTOR  

The Scrypt parameter dkLen (derived key length) is set to a fixed value of 32 and cannot 

differ between implementations. The parallelization parameter p is always set to one and 

also must not differ between implementations. 

Type → 20 

Length → Always 2 

Value 

SCALING_FACTOR 
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An 8-bit integer setting the difficulty scaling of the Scrypt algorithm. This 

value must only be 0 through 5 inclusive. Receivers must always limit the 

maximum SCALING_FACTOR to 5 regardless of whether the received value 

exceeds 5. 

Padding 

24 bits (3 octets) of padding initialized to zero and ignored by receivers. 

 

3.9 Voucher Summaries 

A Voucher Summary (VS) packet is intended to be an optimization feature of VBA that 

implementations do not need to recognize or acknowledge. It indicates to receivers of NDP 

traffic a current LV VoucherID value held in the cache of the sending node when generating the 

VBA attached to the ND packets. It also tells neighbors which IEM is being used by the sending 

node’s originating interface. This optional optimization is helpful for receivers to preemptively 

determine whether a reported VBA binding will be able to validate, based on whether the given 

VoucherID identifies the same present, known, unexpired LV in the receiver’s Neighbor Cache. 

 

3.9.1 Option Structure 

 

Figure 12. The binary structure of a Voucher Summary ND option. This small stub can provide 

significant optimizations in busy VBA-enabled LANs. 
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Figure 12 shows the structure of the Voucher Summary NDP option and its field names. Each 

field is defined by the sender as such: 

Type 

The unique NDP Option Type identifier for Voucher Summaries is 64. 

Length 

Always set to 1. The total length of the VS from the Type through its end, inclusive, in 

units of 8 octets. 

IEM 

A 3-bit identifier representing the current Interface Enforcement Mode of the sending 

interface. Table 1 provides the IEM value-to-identifier mappings to convert the 3 bits into 

a valid IEM. 

Reserved 

A 13-bit field reserved for future extensions. This is set to zero and ignored by receivers. 

VoucherID 

The 32-bit Voucher ID of a valid LV retained on the sending interface, used to seed the 

generation of the VBA from which NDP traffic is being sent. 
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Value IEM 

0 AAD 

1 AGO 

2 AGV 

3 AGVL 

4 Reserved 

5 Reserved 

6 Reserved 

 

Table 1. Interface Enforcement Modes are mapped from a simple set of 3-bit values. Reserved 

mappings indicate possible future extensions to the set of valid IEMs used with VBA. 

 

 

3.9.2 Processing Rules 

Senders are advised to include this option with all Neighbor Solicitations or Neighbor 

Advertisements. When a valid LV is not currently available on the sending interface, senders are 

required to set the IEM to AAD (0) and initialize the VoucherID to 0, because no VBA can 

currently exist on the interface if no LV is retained. The IEM value should be accurately set to 

the active IEM of the sending interface and the 32-bit VoucherID field is equal to the cached LV 

Voucher ID field stored for the sending interface’s source VBA. 

The VS option is not required and should never become required at any future time. Any 

ND packets not including it will be processed as they normally would by the receiver's IEM and 

other normative ND processes. The same is true for VS options which are ignored due to 

incorrect formatting, or some other validation determination made by receiving VBA 

implementations. If the receiver's IEM is set to AAD, then the VS option is always ignored by 
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receivers. Processing of valid VS options is affected by which particular ND packet types they 

are attached to: 

Neighbor Solicitations 

The receiving interface will disregard the NS if there is a non-zero VoucherID present 

and it does not match the Voucher ID of any active LV Voucher ID on the receiving 

interface. To 'disregard' means to not respond to the NS and to do no further ND 

processing based on the received packet. If the receiver is aware of an in-progress LV 

handoff on the link, then both the active LV Voucher ID and the upcoming LV Voucher 

ID must be considered valid. 

Neighbor Advertisements 

Processing VS options attached to NA packets affects VBA verification procedures on 

the receiving interface based on the sender's IEM. Receivers are required to first inspect 

the IEM field to acquire the active mode of the sending interface. If the IEM indicates an 

AAD mode at the sender, then VBA is completely disabled at the sender and the received 

NDP traffic does not originate from a VBA-generated IP address. Thus, when the sender 

is using the AAD IEM, the receiver should behave according to their own IEM at their 

receiving interface: 

● AAD: VBA is not enabled, so the VS option is ignored by the receiver anyways. 

● AGO: The VS option should be ignored since VBA verification is not being 

performed on the receiving interface. 

● AGV: The packet should be dropped immediately because the sender’s IP address 

is not a VBA. 
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● AGVL: The Neighbor Cache entry should be immediately flagged as Unsecured, 

and the VBA verification process should be skipped. 

If the sender's IEM is not set to AAD and the sender's VoucherID field matches an active 

LV Voucher ID on the receiver's interface, then processing of the ND packet proceeds to 

the VBA verification shim as applicable per the receiver's IEM. Again, if the receiver is 

aware of an in-progress voucher transition on the link, then either the current LV 

Voucher ID or the upcoming LV Voucher ID are considered valid. 

Any other ND packet types 

The receiver will entirely ignore the attached VS option. 

 

3.10 Voucher Bearers 

The Voucher Bearer (VB) is the on-link node responsible for the current, active, 

majority-accepted Link Voucher. While any node can be a VB, it is highly recommended that 

link routers maintain this role–in particular the default gateway of the link–so that proper 

protections can be configured by network administrators to protect the link from rogue LVs and 

malicious RA messages. 

 

3.10.1 Appointments 

Any willing node can be elected to serve as the link VB, whether by manual 

configuration or by a process of election and appointment from the current VB on the LOVMA 

channel. Current link VBs wishing to transfer LV responsibility to another candidate VB must 

use the LOVMA channel and issue handoffs per the defined election process. Nodes must not be 
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forced into VB responsibilities without first offering their capability either through their own 

NDP LV option attachments or through valid and fresh LOVMA channel VCI packets. 

If the current VB is not a router or responsible for routing subnet traffic, then it is 

required to distribute the LV via a Redirect packet with an LV option attached, instead of using 

an RA packet with the LV option attached. The Redirect packet is expected to conform to the 

constraints of normative Redirect parameters and processes (Section 8 of RFC 4861 [11]). VBs 

might wish at any time to let their own LVs expire, even if they do not opt to elect another VB or 

if there are no other VB candidates available on the LOVMA channel. VBs should not let their 

own LVs expire without first appointing a responsible successor node, because they are 

responsible for maintaining link harmony and agreement between interface VBA 

implementations. If there is no successor node, then the most recent LV will remain current in 

the network until another node assumes VB responsibility, according to the LV expiration and 

acquisition process, even if the VB responsible for that LV is not issuing any more 

advertisements. 

 

3.10.2 Router Advertisement Guarding 

Fake or malicious LVs can be problematic for nodes that do not yet have the state of a 

valid LV stored for their interface(s). When first joining a local network, the connecting 

interface–assuming it is using SLAAC–searches for a default router to use as a gateway to 

external networks, seeks prefixes, and enables VBA generation on the interface if an LV is 

received. Undesired or ‘bogus’ Router Advertisement and Redirect packets are a known problem 

in local IPv6 networks with no active mitigations or protections, causing the potential failure and 

hijacking of neighbor traffic. Securing RA-Guard on infrastructure slightly complicates the 
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proposed simplicity of VBA, but since RA-Guard has no direct interaction with the VBA 

software implementations themselves, it is a transparent and fully decoupled change that an 

administrator can maintain separately. An excerpt from the RA-Guard specification in RFC 6105 

[44] is noted that explicitly mentions compatibility with SEND: 

“RFC 6105 describes a solution framework for the rogue-RA problem (RFC 6104 [55]) 

where network segments are designed around a single L2-switching device or a set of L2-

switching devices capable of identifying invalid RAs and blocking them. The solutions 

developed within this framework can span the spectrum from basic (where the port of the 

L2 device is statically instructed to forward or not to forward RAs received from the 

connected device) to advanced (where a criterion is used by the L2 device to dynamically 

validate or invalidate a received RA, this criterion can even be based on SEND 

mechanisms).” 

 

Due to its inherent flexibility according to this quote, the RA-Guard system should 

ideally be augmented and deployed with VBA awareness, capable of tracking the state of LVs 

and LOVMA channel VB elections. This will allow an intermediate network device such as a 

switch–or fleet thereof–to only require an active RA-Guard Learning Mode for a short initial 

period and then to subsequently ‘follow’ the correct LV around, similar to what other network 

nodes are already instructed to do. The difference with RA-Guard in this scenario is to restrict 

the forwarding of frames containing encapsulated RA or Redirect packets when and where 

appropriate, based on what the system already understands about the state of LVs on the 

network. One notable exception to this, however, is that an RA-Guard implementation might 

drop its protections if and only if the most recent and legitimate LV has expired (i.e., timed out) 
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without a successor VB, because some responsible VB needs to be able to supersede an expired 

LV. 

In the case where the elected VB is not a link router nor is responsible for routing traffic, 

and Redirect packets are being used with the LV option, a Redirect-aware flavor of RA-Guard is 

strongly recommended to also expect these in its learning processes. Use of RA-Guard is 

primarily suggested for networks with a revolving door of endpoints, such as public networks, or 

networks which need to fortify and guarantee their security posture using key infrastructure 

devices. Appointments or elections of new VBs should be considered with caution because the 

lack of Public Key Infrastructure certification or authority introduces a problem with bogus 

claims of initial identity. The exact deployment of RA-Guard is beyond the scope of this 

research, but it is strongly recommended where possible in order to ensure VBAs faithfully serve 

their purpose to protect nodes from malicious Neighbor Redirection attacks during the NDAR 

process. 

 

3.11 The LOVMA Channel 

The Local On-link Voucher Multicast Address (LOVMA) channel is defined for the 

explicit purpose of sharing non-essential, independent, VBA-related details between 

participating nodes. All nodes with VBA awareness, regardless of their IEM settings, are 

strongly recommended to join this group, though participating (including subscribing to the 

multicast group) is entirely optional. Nodes are not required nor expected in any case to make 

practical use of any LOVMA channel traffic. However, appointed link VBs are always required 

to join the LOVMA channel. 
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This multicast group is conveyed over the IP address FF02::ABBA. A helpful mnemonic 

to remember this address is to think of ABBA as the closest possible hexadecimal rendition of 

the words "a VBA". The designated UDP port on which all LOVMA channel data is sent and 

received is 2196, with no exceptions. Senders of LOVMA channel data are strongly 

recommended to send from a link-local VBA bound to the interface being used to communicate 

on the LOVMA channel, unless they are using the AAD IEM (in which case the sending address 

can be any link-local IP). 

 

3.11.1 Constraints 

When utilizing the LOVMA channel for any purpose, experimental or deployed, 

implementations are required to regard these constraints: 

● LOVMA traffic is always considered unidirectional. Nodes should not send unicast 

responses in reply to any received multicast traffic. This recommended constraint chiefly 

acts to prevent asymmetric traffic volumes from creating traffic amplification denial of 

service attacks through an abuse of the LOVMA channel. 

● All LOVMA channel datagrams are required to be User Datagram Protocol (UDP) 

(defined in RFC 768 [56]) packets only. 

● VBA-enabled nodes must not assume that any other VBA-enabled nodes on the local 

network are subscribed to the LOVMA multicast group or receiving any of its related 

datagrams. However, nodes may safely assume the presence of their active link VB on 

the LOVMA channel. 

● Subscribing nodes cannot offer any trust of LOVMA channel packets, unless some 

datagram verification procedure is explicitly declared in the specification of the unique 
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UDP packet structure (e.g., by using packet signatures or some other cryptographic 

mechanism). 

 

3.11.2 Commonalities of LOVMA Datagrams 

This section outlines and formalizes some commonalities between UDP datagrams which 

should be expected to appear on LOVMA channel at any time. All packets traversing the 

multicast group must use a Type-Length-Value (TLV) format, as shown in Figure 13. Type is an 

8-bit integer identifying the datagram type, Length is an 8-bit integer specifying the length of the 

packet–including the Type and Length fields–in units of 4 octets, and Value is the following 

object to be expected and parsed by receivers. The Type or Length fields cannot be set to 0, and 

any received UDP datagrams that are received as such will be ignored by receivers. 

 

 

Figure 13. The Type-Length-Value structure specific to LOVMA channel UDP packets. The 

Value field is always a variable-length field, but it must always round up in size to the nearest 4-

octet boundary. All packets traversing the LOVMA group will have this base structure in 

common. 

 

 

 

3.11.3 Voucher Status Reports 

A node might opt to occasionally send Voucher Status Reports (VSRs) to the LOVMA 

channel to gratuitously let other nodes know of its presence as a VBA-supporting interface, in 
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addition to information about its VBA-related state. Sending interfaces are required to add their 

sending interface’s LLID onto VSR packets, allowing receivers to easily identify the sending 

interface by LLID. This is as opposed to using the IP Source Address of the datagram to 

associate the sender with one of its potentially many assigned IP addresses. Receivers are not 

required in any manner to parse any of the fields presented in VSRs. Receivers may also confirm 

the IP Source Address and LLID by running the VBA verification procedure to confirm the 

validity of the resulting binding, but it is not necessary and therefore not recommended due to its 

potential costs. 

 

 

Figure 14. The binary structure and field names of the VSR UDP packet for the LOVMA 

channel. 

 

 

Figure 14 shows the structure and field names of the VSR packet. Its fields are as follows: 

Type 

VSRs are always identified by an ID of 1. 

Length 

The variable length of the datagram in its totality, in units of 4 octets. 
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IEM 

A 3-bit value identifying the IEM of the sending interface. See Table 1 for a mapping of 

all possible IEM values to use in this field. This value is required to be set to the AAD 

IEM if the sending interface does not have a currently cached, active, valid LV. 

Reserved 

Space reserved for future use. This field is set to zero and ignored by receivers. 

VoucherID 

The ID of the cached, active, valid LV that is stored on the sending interface. Senders are 

required to initialize this field to zero if no LV is present or if their sending interface is 

operating in the AAD IEM. 

Preferred Iterations Count 

Senders can use this field to indicate a preferred IC value used consistently when 

generating VBAs for each on-link prefix at the sending interface. For optimization 

purposes, receivers can associate this field with the provided LLID field’s value to 

preemptively calculate new VBAs for the sender when the active LV changes. 

LLID Length 

The length in bytes of the LLID field. Stored as a big-endian value. 

LLID 

A variable-length field containing the sending interface's LLID. 

Padding 

Any extra padding set on the datagram to round its total length to an even 4-octet 

boundary. This field is set to zero and ignored by receivers. 
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3.11.4 Voucher Capability Indications 

A node might wish to notify the LOVMA channel about its potential candidacy as a link 

Voucher Bearer by sending a VCI datagram. The VCI is an informational packet required to be 

dispatched in order to be considered for election by the current VB. Receivers are typically 

intended to be the current VB, but any node can make use of VCI details upon receipt. Nodes 

must not consider VCI packets as valid LVs in any way, however. 

The current VB may maintain a state of unexpired VCI packets, especially when it 

intends to elect a new node responsible for the LV in an automated process. Current VBs are not 

permitted to elect a new VB without first receiving a VCI datagram from the candidate 

indicating its readiness to be elected. Sending nodes also must not assume that the issuance of a 

VCI packet is guaranteed to lead to their eventual election as a link VB; the decision is 

ultimately rendered by the current VB. Such election by the current VB must be indicated by 

receipt of a signed VHA datagram from the LOVMA channel, whose signature verifies with a 

corresponding public key matches that of the current, active LV. 

 

 

Figure 15. The binary structure and field names of the VCI UDP packet for the LOVMA 

channel. 
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Figure 15 shows the structure and field names of the VCI packet. Its fields are as follows: 

Type 

VCIs are always identified by an ID of 2. 

Length 

The variable length of the datagram in its totality, in units of 4 octets. 

Reserved 

Space reserved for future use. This field is set to zero and ignored by receivers. 

Link Voucher Contents 

The entirety of the ND Link Voucher option to be attached to future RAs or Redirects, 

including its ND option Type and Length values. The validation of this field follows the 

same instructions outlined by the processing rules for LV options. Receivers must not 

expect the Signature or PublicKey of the LV option to be the same as that of the current 

LV, because this packet type is only announcing a node's candidacy for future election, 

and it is not attempting to declare a new LV as a VB. Receivers must also ignore the 

entire VCI if validation of the embedded LV fails for any reason, including invalid 

cryptographic signatures, inappropriate field values, etc. 

 

3.11.5 Voucher Handoff Advertisements 

The current VB may at any time elect a new VB using the VHA datagram on the 

LOVMA channel. This handoff initiation notifies subscribing VBA-enabled nodes of a tentative 

change in the current VB and implies that a different public key will be used to sign the new LV. 

The VHA datagram can also be used to change typically immutable LV fields for the same 

sending VB, such as when updating the algorithm parameters. If the cryptographic signature on 
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the VHA is valid according to the current VB’s known public key value, listening nodes will 

accept the start of the handoff process (i.e., voucher transition window). Thus, both VoucherID 

fields (from the current, active LV and the upcoming LV) become temporarily valid for the link. 

If the Signature field is not verifiable using the current LV's public key, then receivers must 

ignore the VHA packet. If there is no current LV and a VHA is received, then it must also be 

ignored. 

The voucher transition window duration is based on the Expiration field from the current 

VB's LV at the time the VHA is received by neighbors. Exceedingly long Expiration fields entail 

exceedingly long voucher transition windows, and there is no limit to the duration of a handoff 

maneuver. The VHA retransmission frequency is variable but is recommended to follow the 

same cadence as the node's previous RA or Redirect issuances. VBs initiating a voucher 

transition are required to send at least one VHA notification every 5 seconds for a minimum of 3 

minutes, or the length of the current LV Expiration field, whichever is shorter. If the Expiration 

field value is high, then nodes handing off VB responsibility can choose to stop transmitting 

VHAs after this minimum threshold has elapsed. 

Candidate nodes considered for VB election are required to be gathered (1) from 

manually configured parameters on the VB device or (2) from a pool of senders of recent, 

unexpired VCI notifications on the LOVMA channel. When the elected node observes the VHA 

packet granting it VB responsibility, it must begin sending gratuitous RAs or Redirects to the 

link for which it is now a responsible VB. The new VB becomes responsible for sending an RA 

to the local link following each receipt of a valid, unexpired VHA from the previous VB. This 

creates an echo effect where the repeated issuances of the VHA can immediately make neighbors 

aware of the LV to which they are transitioning. After 2 minutes has elapsed from the time of 
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VB election, the new VB must consider the LV parameters (including the public key value) of 

the previous VB as invalid, and therefore will not trigger any more RAs driven by receipt of 

VHAs from the previous VB. 

VHAs are also required to be used for indicating a change in active LV details using the 

Refresh bit. This indicates that the handoff consists of a transition between LV parameters from 

the same VB rather than a change of responsible VBs, so no varying public key information is 

accepted when the Refresh bit is set. Using the VHA for this purpose affords neighbors enough 

time to fully transition addresses between varying LV parameters, just like in an ordinary 

election. For example, if a current VB wishes to change the baseline difficulty setting for the on-

link KDF function, it must use the VHA to transition the current LV state into the new one using 

this process on the LOVMA channel. Such a process is required because changing KDF settings 

will alter the validity and composition of all VBAs on the link. 

 

 

Figure 16. The binary structure and field names of the VHA UDP packet for the LOVMA 

channel. 
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Figure 16 shows the structure and field names of the VHA packet. Its fields are as follows: 

Type 

VHAs are always identified by an ID of 3. 

Length 

The variable length of the datagram in its totality, in units of 4 octets. 

R (Refresh) 

A single bit that, when set, indicates the voucher transition is only an LV refresh and does 

not represent a change of the link VB to a different node. This field should be used to 

establish new LV parameters from the same VB, such as changing the current seed value. 

Reserved 

Space reserved for future use. This field is set to zero and is ignored by receivers. 

Timestamp 

The current precise, local system time encoded as a 64-bit value. Timestamps must be 

considered invalid if the value falls outside the range given by 

[CURRENT_TIMESTAMP - 120] to [CURRENT_TIMESTAMP + 120], where 

CURRENT_TIMESTAMP is the precise 64-bit system time measured by the receiving 

node and 120 is in units of seconds. If the CURRENT_TIMESTAMP is measured in sub-

second units like microseconds, then the 120 value is required to be converted to a 

proportionate value. This requirement ensures timestamp validity remains flexible despite 

the possibility of minor clock-drifting across the local network. 

Signer VoucherID 

The VoucherID of the active LV which is signaling the handoff to the Upcoming 

VoucherID. Nodes recognizing this VoucherID for their active LV are required upon 
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receiving this VHA datagram to disregard any further advertised LVs–valid or not–with 

this VoucherID. A receiver must also ignore this packet if the Signer VoucherID does not 

identify any active LV held in the cache for its receiving interface. 

Upcoming VoucherID 

The VoucherID of the upcoming LV which will be assuming active status on the network 

after the voucher transition window fully elapses. 

ECDSA Signature 

A variable-length field containing a DER-encoded ECDSA [49] signature, derived using 

the private key corresponding to the public key of the LV identified by the Signer 

VoucherID. The signature is computed over a series of sequential octets, constructed in 

the following order: 

● The 1-bit Refresh field as a 1-byte integer, where a value of ‘1’ equates to the bit 

being set and ‘0’ equates to the bit being unset. 

● The 64-bit Timestamp field. 

● The 32-bit Signer VoucherID field. 

● The 32-bit Upcoming VoucherID field.  

The algorithm used in signature computation is ecdsa-with-SHA256, as defined in 

Section 3.2 of RFC 5758 [51]. This field is required to be a DER-encoded ASN.1 

structure of the type ECDSA-Sig-Value (see Section 2.2.3 of RFC 3279 [52]). The 

implied public key value used to verify the signature must be equal to the public key of 

the active LV on the receiving interface. If the current LV’s public key cannot validate 

the Signature field, then the VHA must be considered fraudulent and be subsequently 

ignored. 
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Padding 

Any padding necessary to round the packet size up to the nearest 32-bit (4-octet) 

boundary. This field is always set to zero and is ignored by receivers. 

 

3.12 Optimizations 

This section briefly summarizes the different optimizations built into the 

conceptualization of Voucher-Based Addressing. Optimizations are crucial because any addition 

or modification to a protocol like NDP that is so thoroughly ubiquitous can have grave or 

reaching consequences for adoption if its costs are too high. VBA should include every 

mechanism possible to ensure its performance is commensurate with its simplicity.  

● Avoiding Repeat Verifications. Neighbor Discovery NUD features are used to avoid 

continuous reverification of active neighbors between unique Link Voucher instances. 

Neighbors do not need to be reverified when there has been no change to their pre-

verified bindings from a prior NDAR exchange. 

● Duplicate Address Detection. The SLAAC DAD process is optimized to reduce the 

burden of regenerating alternative VBAs from scratch when collisions are detected. 

● The LOVMA Channel & Preemption. The LOVMA multicast group affords various 

VBA optimizations: it enables the use of gratuitous handoffs for neighbors to detect 

upcoming LV changes; it allows hosts to note their Preferred Iteration Count values for 

upcoming VBA generations, new link prefixes, and LV transitions; and lastly, it permits 

nodes to become candidates for VB election when the current VB will no longer maintain 

responsibility for the LV. 
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● Key Derivation Function Selections. The various options for KDF algorithms and their 

parameters permit issuers of LVs the flexibility to dictate a baseline difficulty setting for 

VBA generation and verification on the local network. From this baseline, which 

implementations might choose either from default settings or from other details gathered 

about the link, nodes are permitted to scale the computational difficulties of each VBA 

they generate based on their locally selected IC values for each generated VBA. 

● Voucher Summary Options. Voucher Summary options allow nodes to exchange 

identifying information about the LVs used to construct or verify the target address 

related to the current NDAR exchange. Doing so saves wasted computation time if the 

two hosts disagree on the ID or parameters of the active–possibly upcoming–LV. 

Behavior with this option is subject to the active IEMs of the two communicating 

interfaces during this exchange. 

 

3.13 Transition Considerations 

It is unrealistic to assume that VBA would be deployed simultaneously across all nodes 

in even tiny local subnets, because not every active node will receive compatibility at the same 

time. There will almost certainly be network devices present which have no support for VBA. It 

is also certain that–like IPv6 itself–some hardware vendors and software developers will never 

implement compatibility with VBA or provide necessary operable support. Therefore, VBA 

comes predefined with an ability to operate in an intermediate environment where its full support 

is lacking. The three factors driving this ability are (1) Interface Enforcement Mode options for 

each participating interface, (2) localized changes to NDP occurring mostly in the software logic 

and not to the protocol itself, and (3) simplistic processes that do not require complex 
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interactions between neighbors. This capability grants VBA significantly more opportunities for 

adoption than other protocols like SEND that seek to modify NDP and impose mandatory 

infrastructure. 

 

3.13.1 Dual-Stack Communications 

A pure IPv6 local network using the AGV IEM across its nodes will simply not be able to 

communicate bidirectionally with node(s) lacking VBA support. For example, bidirectional 

traffic between a non-VBA node with dynamic addresses and an AGV IEM network gateway 

will be dropped due to the gateway's binding verification requirement. In the case of dual-stack 

local networks, IPv4 traffic can be used as an insecure (i.e., spoof-able) failsafe protocol when 

connecting nodes are explicitly aware of a route in both protocol stacks, such as between a host 

and a gateway router. The Happy Eyeballs algorithm from RFC 8305 [57] specifies a connection 

methodology that simultaneously attempts IPv4 and IPv6 connections, preferring IPv6 

communication where possible. For local networks using AGV mode, the IPv6 network will 

appear unavailable and broken to non-supporting node(s): thus, they might desirably fall back to 

using available IPv4 connections instead. This strategy will permit a degree of communication 

with non-VBA nodes wherever IPv4 traffic is allowed. 

 

3.13.2 Adjusting IEMs 

Local IEMs can be adjusted on nodes communicating directly with non-VBA neighbors 

to better accommodate their lack of verifiable bindings. For example, a VBA-enabled node 

corresponding with a neighbor running an antiquated networking stack might opt to use the 

AGVL IEM. Doing so would allow the VBA node to strongly prefer Secured devices for the rest 
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of the network, such as the default gateway, while still accepting Unsecured NDAR traffic that 

does not contain any Secured responses. In the case of a subnet router in a mixed network–that 

is, a local network consisting of devices with mixed VBA support–using the AGVL IEM can 

again prove very advantageous for the sake of accommodation. Assuming most nodes use VBA 

and a few cannot, only those few nodes remain at risk of Neighbor Redirection attacks. 

 

 

Figure 17. A mixed local network is shown where a single valid Link Voucher is delegated to 

VBA-capable neighbors. Neighbors without VBA capabilities are shown in blue, VBA-aware 

neighbors are shown in red, orange, yellow, and green for the IEMs AAD, AGO, AGVL, and 

AGV respectively. Different links are shown between some hosts to indicate their connectivity 

and security within this transitioning network. 
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3.14 Security Considerations 

Since VBA is an inherently security- and privacy-focused amendment to the way 

Neighbor Discovery functions, careful consideration of each security issue is merited. This 

subsection will briefly discuss a few key points which deserve attention, but it is not all-inclusive 

of the possible issues that VBA could encounter in practice. 

 

3.14.1 Collision Resistance 

VBA generation only preserves 48 bits from a resultant hash output from a key derivation 

function. While a collision is highly unlikely, nodes process SLAAC self-assignment as they do 

with the normative DAD process. Even if a collision is improbable, its possibility requires that a 

reaction to it inevitably occurring must be defined. Potential hash collisions expose a weakness 

of VBA because LL2IP binding is done through a deterministic hashing process and nothing 

else; in other words, there is no other mechanism used for certifying the resultant IP addresses. 

Thus, any other spoof-able LLID on the same link, in combination with a fixed iterations count, 

producing the same 48-bit H portion of the VBA suffix will result in an equally valid VBA 

according to the verification procedure. 

The employment of cryptographic KDFs drastically reduces the capacity for attackers to 

discover address collisions and to use them for malicious purposes (like on-path attacks). This 

brute-force resistance is a consequence of each KDF intentionally requiring more time than 

traditional hashing to compute. Section 3 of RFC 8018 [43] defines a KDF in the exact manner 

this specification intends to apply it:  

“Another approach to password-based cryptography is to construct key derivation 

techniques that are relatively expensive, thereby increasing the cost of exhaustive search. 
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One way to do this is to include an iteration count in the key derivation technique, 

indicating how many times to iterate some underlying function by which keys are 

derived.” 

 

Therefore, KDFs are applied to VBAs for the added purpose of slowing collision 

discoveries. This same tradeoff of requiring more time for address computation in order to 

protect against brute-force enumeration is a strategy also recommended for use in password 

storage systems to protect user secrets [58]. To prevent any possible time-memory tradeoff 

attacks, the LV is distributed between nodes to ensure that input parameters generating VBAs are 

always generously salted by a 128-bit pseudo-random value, as well as the subnet prefix, so they 

can never be pared down to a simple dictionary attack. Additionally, leaving LV parameters to 

some external controlling factor allows a maximization of the space used for the KDF hash 

within the resultant VBA. 

The seed value dictated by the active LV is also intended to rotate occasionally to prevent 

long-term attacks. An attacker searching for inputs producing a colliding address is therefore 

subjected to the misery of enumerating many different link-layer addresses in order to generate a 

suitable IP address that matches the target's 48-bit hash suffix. This spoofed IP address must also 

embed the same iterations count as its target because it needs to be an equivalent IP address, thus 

reducing the attack surface even further. If the target IP address contains a high iterations-count 

value, then the duration of the collision searching process will be compounded even further. All 

the while, these collision-producing inputs must be obtained before the rotation of the current 

LV, which will reset the hypothetical attacker's marathon entirely. 
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LVs also allow the specification of shared KDF algorithms and baseline address 

generation difficulties on-link, permitting a dynamic adjustment of the base computation time 

required to derive and verify all local VBAs. For example, adjusting computation time to be 

approximately 20 milliseconds per address for the least powerful node, and an estimated 1 

millisecond for the fastest, produces a negligible delay in processing legitimate ND messages. 

Simultaneously, this hypothetical time taken to compute each VBA hamstrings any node, 

regardless of computing power, from being able to compute collisions expeditiously. So, 

responsiveness is prioritized for legitimate nodes while also protecting their claimed address 

ownership. Continuing the above example, hypothetical 1-millisecond VBA generation times for 

the most powerful nodes still equates to attempting only 1,000 spoofed LLIDs per second (or 

3,600,000 LLIDs per hour). If the LLID in this case were an IEEE 802 MAC address, a set of 3.6 

million attempted MAC addresses is equivalent to only about a millionth of a percent of the total 

address space (set to 248 when not accounting for reserved MAC address ranges). 

 

3.14.2 Computational Fairness 

The selection of an appropriate key derivation function and its associated baseline 

parameters is essential to properly scale the difficulty of discovering hash collisions on the local 

network. The choice of KDF is also essential for determining the fairness of cost in computing 

the generated address. A network having widely varying computing power across nodes will 

cause widely disparate VBA computation times when using CPU-bound KDFs instead of using 

memory-bound KDFs for address calculations [59]. Even when using memory-bound KDFs like 

Argon2d, the proper delegation of baseline algorithm parameters in the LV should always tend 

toward being more forgiving for systems with fewer computing resources. The balance of low 
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computation latencies with high security might be difficult to determine, but implementations 

might attempt to discover and apply defaults that achieve this goal as universally as possible. 

 

3.14.3 Hijacking or Desynchronizing Link Vouchers 

Theft of the VB role can be achieved by a few different means based on the level of 

security employed in the local network. Without RA-Guard, false VBs are free to limitlessly 

advertise their own rogue LVs to other nodes. For nodes already on the network with an 

acquired, active LV, this is only a problem if VHA packets in the LOVMA channel are not being 

used to initiate voucher transitions and the current LV expires. For nodes joining the network for 

the first time, there is a timing opportunity for an abuse of automatic Trust on First Use: 

illegitimate VBs can ‘capture’ unsuspecting joiners of the network by racing to be the first 

provider of a ‘valid’ LV. 

If the legitimate VB goes offline, has large gaps between LV transitions, or is not able to 

transmit any updated LVs to the network, the current LV can time out. When an LV expires, the 

process of VBA LV acquisition requires nodes to accept any incoming LV as providing further 

direction and consensus for link neighbors. If a malicious node uses other denial of service 

techniques to force the current VB offline for long enough, then the malicious node can force an 

expiration of the current LV and gain control of it on the entire local network. Another much less 

feasible attack might involve a theft of the cryptographic private key associated with the current 

LV. Any compromise of the LV key will result in directly impersonable LVs or VHAs which 

would remain unquestioned by any VBA-enabled neighbors. 

Relatively short expiration windows for LVs should remain disallowed for LVs because 

of (1) possible time synchronization issues between neighbors, (2) 'address storm' prevention, 
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and (3) compensation or grace for sluggish VBs that somehow cannot send LVs to the link fast 

enough before a timeout event. Most relevant to this section are items 2 and 3. The possibility of 

an 'address storm' is prevented by relying on this mechanism: malicious VBs cannot over-rotate 

the current LV and completely exhaust link nodes, who will be very busy trying to keep up with 

VBA generation and verification processes. And compensating for a slow VB with longer 

expiration windows requires malicious nodes to force the legitimate VB off the link for longer to 

mutiny it as the link VB. 

Hijacking, tampering with, or otherwise desynchronizing the LV can be used for either 

malicious denial of service attacks or to set the difficulty of VBA computation to a very low 

threshold. There are a few different ways this process could be abused to take advantage of gaps 

in the protocol: 

● Denial of service attacks could result from setting LV parameters to an excessive 

difficulty. By asking local nodes to verify and generate VBAs according to absurd KDF 

settings–even for lower iteration counts chosen on each node–outrageous amounts of 

computing power could be wasted or withheld from being applied elsewhere. This could 

potentially consume enough resources on a neighbor to disconnect it from the network 

entirely. 

● Consider a situation where GroupA represents hosts aware of legitimate LVA and GroupB 

represents hosts aware of malicious LVB. Having multiple LVs active on the same link 

will inevitably lead to different logical subnetworks, where GroupA hosts are generating 

and verifying VBAs according to a completely different LV than GroupB. Depending on 

per-interface IEMs, hosts from one group will be completely barred from communicating 

with hosts in another. 
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● A malicious VB could transmit an LV dictating use of a KDF algorithm with very 

minimal requirements. For example, using PBKDF2_SHA256 with an 

ITERATIONS_FACTOR of 1. Targeting hosts with low IC values would of course be 

most efficient for discovering a valid and spoofed LLID that produces an address 

collision. Undermining the entire subnet by controlling and loosening the baseline 

difficulty of VBA generation affords the attacker a greater advantage by greatly reducing 

the computation costs of on-path attacks. 

 

All the concerns of abuse from this section allude to the importance of guarding the local 

link from rogue LV options in the first place. Though on-path attacks are still less feasible with 

VBA enabled–regardless of LV control–the risks assessed above remain and are not outweighed. 

An enhanced RA-Guard with awareness of VBA is recommended in this situation to protect the 

network from adversaries attempting to hijack the LV. Other solutions for (1) denial of service 

attacks disconnecting the current VB from the network, and for (2) the deployment of accurate 

and VBA-aware intrusion detection systems, are beyond the scope of this research. 

 

3.14.4 Regarding Denial of Service 

The goal of VBA is primarily to counter on-path attacks in local networks while 

maintaining simplicity, flexibility, and privacy. Mitigation of Neighbor Discovery denial of 

service attacks is therefore an auxiliary goal that could be achieved by applying other protocols 

and related research. Placing the burden of solving all these problems onto VBA could reduce its 

flexibility and practicality by forcing it to apply many different mitigation strategies at the same 

time, rather than leaving them as optional add-ons for a protocol which is already simplistic and 
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low-cost by design. However, denial-of-service attacks are still a serious concern when 

employing VBA; even more so because it is an additional layer on top of the default protocol 

which already has weaknesses. When a denial-of-service topic is presented in this section 

without a solution, it is strongly implied that the implementation of VBA should find or layer 

another way to mitigate the problem–or at least maintain an awareness of the weakness during 

development. 

Neighbor Solicitation Flooding 

Section 4.3.2 of RFC 3756 [15] outlines an attack targeting last-hop routers that 

inundates a network with traffic destined to on-link hosts which do not exist. VBAs do 

not suffer from this attack vector or from any situation involving the repeated creation of 

Neighbor Solicitation packets, as there is no extra cost incurred in creating them. 

When a VBA-enabled node is receiving a flood of NS packets rather than sending them, 

particularly if the NS packets contain spoofed SLLAOs, then the node may be forced to 

compute a large volume of VBA verifications in a short interval. This could easily lead to 

resource exhaustion if the receiving interface's LV parameters specify more difficult 

baseline KDF settings. A malicious node may also initiate a series of connections from 

bogus IP addresses that demand return traffic at higher layers of the network stack, such 

as TCP SYN floods. This would necessitate that the target of the attack engages in an 

NDAR transaction to determine the LLIDs of the supposed initiating IP addresses, if the 

LLIDs were not provided in NS SLLAOs. If the bogus initiating IP addresses use high IC 

values, then the influx in the volume of verification work could quickly exhaust resources 

on the target. 
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Neighbor Advertisement Flooding 

Neighbor Advertisement floods, either with (1) randomized target addresses and 

TLLAOs or (2) randomized TLLAOs for a known target address, will not affect VBA 

networks or the VBA verification process for enforcing interfaces. VBA Neighbor 

Caching behavior for NAs does not by default permit the presence of an Override flag to 

affect an NC entry, nor do NAs affect cache entries which have matured beyond the 

INCOMPLETE state. A more effective attack vector is listed in the previous section (for 

solicitations). Falsified incoming connections could bait a target node into sending many 

NS packets, each of which an attacker could reply to with a bogus, high-iteration VBA to 

verify through the shim process. 

Over-rotation of Link Vouchers 

Large local networks might have thousands of devices on the same logical link using 

NDP to resolve each other’s LLIDs from IP addresses. When a network is of this size and 

the LV is handed off to another VB through the election process, optimizations for nodes 

with fewer resources could get excessively costly when attempting to pre-generate 

anticipated VBAs according to the new LV parameters. To reduce this burden, 

implementations can choose to either limit their optimizations at a certain cache size or 

pre-generate VBAs only for the most recently contacted, high-traffic neighbors on the 

link. 
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3.14.5 Static & Anycast Addressing 

Networks requiring a mix of ephemeral addresses in parallel with static, stable, long-term 

addresses will encounter difficulties deploying and maintaining VBAs if bindings are not 

statically entered into node neighbor caches. Preserving the state of an LV long-term will not be 

a feasible strategy to maintain stable addresses, as long-term LVs could lend themselves to the 

malicious discovery of address collisions. Assigning long-term addresses to hosts on a VBA-

enabled network can be accomplished using a few approaches: 

● Use the AGVL IEM on either all interfaces within the local network, or on interfaces 

known to interact with the target static address(es) directly. The AGVL IEM will permit 

per-implementation behaviors to strongly prefer Secured results of NDAR exchanges 

over Unsecured ones. This option will remove any guarantees of address ownership or 

on-path attack prevention from the static address(es), because a static address failing the 

VBA verification process will be tagged in the Neighbor Cache as an Unsecured entry, at 

the same level of preference and security as other addresses which failed to verify. 

Additionally, it is not necessary to set AGVL on the interfaces with static addresses 

(unless such interfaces also interact with other on-link, non-VBA static addresses), 

because IEM affects neighbor verifications and does not impose restrictions on statically-

assigned local interface addresses. 

● If local nodes simply do not interact with the static addresses, then the only affected 

parties are the node(s) with the static assignments and the subnet gateway, which will 

ostensibly route traffic to and from the static address(es). Most RAs will specify a link-

local address as the subnet gateway: if this is the case within the subnet, then only router-

to-host traffic will fail VBA verification. This is because the router needs to be aware of 
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the LLID corresponding to the static IP address to forward frames, but the node 

forwarding to the router can always safely verify the router's binding with its link-local 

VBA. Therefore, a static entry in the NC of the router should correlate LLID(s) to the 

static IP address(es) on each node. Doing this for each long-term static IP address will 

mitigate any potential on-path attacks for both neighbors in the NDAR exchange, while 

still ensuring all other NDAR transactions verify according to VBA requirements and the 

levels of strictness configured on each network interface. 

● Simply use manual NC entries across the whole subnet wherever interactions with the 

static IP addresses may be required. The use of manual NC entries may alleviate the 

requirement for VBAs at all, depending on how and where the related static IP addresses 

are set in the first place as well as their amount and importance in the network. This 

approach assumes the LLID of each interface carrying one or more static IP addresses is 

also stable and unchanging over time. 

 

Anycast addresses are allocated from the unicast address space and are thus 

indistinguishable to nodes establishing connections to them. NDAR exchanges with these targets 

may therefore respond with varying LLIDs and cause VBA verification to be unreliable. For this 

reason, it is not recommended to utilize anycast addresses created for on-link prefixes within 

VBA-enabled networks, because the ownership of the address cannot be bound to a particular 

LLID. The IPv6 Addressing Architecture specification (RFC 4291 [14]) outlines a Required 

Anycast Address in Section 2.6.1. VBA-enabled links should maintain compatibility with this 

requirement by disabling verification for on-link subnet anycast addresses. For example, a host 

using SLAAC to generate an address in the subnet 2001:db8:700::/64 will disable VBA 
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expectations and verifications for the address 2001:db8:700::. Because VBA protections must be 

disabled for this target host, implementations should highly consider avoiding use of the subnet 

Required Anycast Address altogether wherever possible. 

 

3.14.6 Unsolicited Traffic from Neighbors 

VBA disables automatic caching of neighbor address bindings without first following its 

own address verification processes. Considering this constraint, it is possible for a sending node 

NA to have verified the VBA for some neighbor NB without the reverse being true, if NA had not 

provided an SLLAO during the initial NDAR exchange. NA can send packets to an application or 

service on NB without requiring any response traffic in return. Nodes receiving unsolicited 

packets from neighbors, for which no response is required or demanded by the sender–as is the 

case for many UDP application services–do not need to verify the sender’s address binding. The 

receiving node may choose to verify the neighbor’s IP address if enforced by a VBA 

implementation, but it is not required. VBA is specifically designed for the prevention of on-path 

attacks and therefore is not concerned with policing incoming traffic that does not require an 

NDAR exchange. 
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Chapter 4 Neighbor Discovery Sessions 

Voucher-Based Addressing is vulnerable to identity impersonation attacks where an 

active LL2IP binding can be hijacked by malicious hosts without needing to search for an 

address collision. This attack is accomplished by denying connectivity to a target node that owns 

a desirable LLID, then assuming its LLID in its absence. Methods used to deny connectivity 

before impersonation could include any denial-of-service technique to which the local network, 

or the target node itself, are vulnerable to. Once the target node is offline, the malicious node can 

then assume its LLID and intercept all frames destined for it without needing to perform a classic 

NDAR redirection attack. This can occur even in VBA networks because the advertised LL2IP 

binding from the malicious node is considered legitimate. 

Networks using SEND can also experience impersonation attacks, but only in the short-

term because SEND relies on CGAs to enforce knowledge of a private cryptographic key in ND 

transactions. The SEND specification itself declares this a known problem in Section 9.1 of RFC 

3971 [16]. When a new request for ND arrives, such as during the NUD process, impersonating 

nodes will not be able to sign responses nor generate a valid RSA Signature option because they 

do not know the original private key. These concerns have more gravity for techniques akin to 

VBA than SEND for this very reason: VBA does not demand proof of knowledge of some 

private value that is publicly verifiable. 

To enforce a knowledge requirement that can validate identity without using public-key 

cryptography, ND Session Options (NDSOs) are used to exchange session details via Zero-

Knowledge Proof (ZKP) techniques. These options do not interfere with any VBA verification 
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processes, and act to further bolster confidence in neighbor verification over a long-term session. 

ZKP allows a node to express knowledge of a particular password without exposing the 

password itself; in the case of ND sessions, using a clever hashing construct known as Reverse 

Hash Chain Revealing (RHCR). A session also allows a neighbor to transition communications 

to another LLID for the same target IP address while still preserving its proof of identity with 

ZKP. To summarize, NDSOs reassure two communicating neighbors of one another’s persistent 

identity beyond purported values embedded in network traffic; potential threat actors attempting 

on-path attacks will not be able to provide continual ZKP in any circumstance. This is the 

primary motivation for introducing Neighbor Discovery Sessions. 

 

4.1 Terminology 

A glossary of terms and acronyms related to Neighbor Discovery sessions is necessary to 

index, organize, and comprehend the many different aspects of the research. Terms from the 

Voucher-Based Addressing Terminology subsection in Chapter 3 may also be used throughout 

this chapter. 

● ICM: Interface Configuration Mode. One of four different ND Session operating modes 

specifying the behavior of an interface when sending or receiving ND packets. 

● ZKP: Zero Knowledge Proof. An authentication methodology that relies on the holder(s) 

of the password to prove they have knowledge of it, without revealing the password 

itself. 

● RP: Root Password. Used to form the RH of a Hash Chain for use in RHCR ZKP. Its 

value must be pseudo-random each time it is generated and can be discarded after 

creating the RH. 
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● HC: Hash Chain. A cryptographic primitive consisting of a Root Hash that is iterated and 

salted a fixed number of times to create a Final Hash. The Final Hash represents the 

ultimate 'link' in the full chain of intermediate hashes from the Root Hash. 

● RHCR: Reverse Hash Chain Revealing. A piece-by-piece, backward revelation of 

components comprising a hash chain. Used by ZKP in maintaining ongoing ND Sessions 

and proving sender identity. 

● RH: Root Hash. The very first hash in a HC which is derived from a throwaway pseudo-

random initial value. This hash represents the 'password' of the chain and is often used in 

this specification to establish the next HC for a session when revealed. 

● FH: Final Hash. The last and publicly known hash in a HC which is given to external 

parties to store for ZKP validation. This value is never used as a proof of knowledge of 

the Root Hash and is only used for RHCR verifications. 

● SN: Session Node. Either one of the two participants engaged in an ND session. When 

pluralized, this describes both participating nodes in the end-to-end session. 

● SI: Session Interface. The node being discussed or observed in a session; the perspective 

or node acting as a point of reference. 

● SP: Session Peer. The opposite link node that is participating in or establishing an ND 

session, relative to the perspective node (the Session Interface). 

● SRC: Session Reachability Confirmation. Simplified ND Reachability Confirmations 

(see Section 7 of RFC 4861 [11]) consisting of unicast-only NDAR transaction packets 

with valid, authenticated NDSOs attached to them. These are used to propagate a session 

and reset the SETs or SITs on SPs receiving them. 
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● SIT: Session Invalidation Timer. A 1-minute timer that initializes upon receipt of an 

invalid NDSO with an existing SessionID, a New-flagged NDSO whose ND packet 

contains an IP address matching a current NC entry, or a new session initiation. After this 

timer elapses, the identified ND session will forcibly expire unless some form of Session 

Reachability Confirmation is received. Persistent sessions will neither use nor enable the 

SIT for any reason. 

● SET: Session Expiration Timer. A timer whose duration in minutes is set by an 

initialized session’s Expiration value upon the initiation and confirmation of a new 

session. When this timer elapses, the ND session it is linked to is invalidated and 

destroyed. SRCs will always refresh the duration of this timer. 

 

4.2 Design Overview 

Voucher-Based Addressing can enable neighbors to verify each other’s identities using 

both link-layer address binding and the principle of MAC address uniqueness on-link. The latter 

principle, however, is only applicable to on-link nodes who are still active and who have not 

been impersonated. If a node disappears, is somehow intercepted, or goes off-link for any reason, 

then its MAC address becomes again available for the taking. An opportunity like this is an 

alluring prospect for impersonators which are motivated to intercept traffic that might not be 

encrypted at higher layers of the network stack. Put another way: a valid VBA is meaningless if 

the owner of the MAC address is malicious and somehow intercepts frames (including NDP 

transactions) before they reach the genuine on-link target. With an insecure link layer, some 

method of authenticating neighbors with one another must be implemented. 
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Neighbor Discovery Sessions are carried and communicated as an abstraction on top of 

existing NDP traffic, tasked only with ensuring that the Session Peer (the communicating 

neighbor) still knows the current password for the given NDP channel. Such an ongoing 

assertion for proof of knowledge is practical for NDP because its stored Neighbor Cache entries 

are always temporal; that is, they are bound to a fixed time before they must be refreshed, lest 

they enter a stale state. Trust on First Use (TOFU) is a concept used in other technologies like 

PGP [48], finding a practical application in ND sessions; albeit in a more automatic fashion 

where the ‘first use’ is trusted automatically. 

When a Peer provides either an initiation of a session or an acknowledgement of session 

initiation, it will always give the initial ZKP parameters used to validate the subsequent ZKP 

tokens provided during the session. Once the Hash Chain used by ZKP has no more tokens to 

offer, the Root Password for the peer’s Hash Chain is rotated to another value by revealing the 

current Root Hash. Such usage of chained, one-time proofs of knowledge ensures that each 

revelation of a new ZKP token provides a way for a neighboring node to continually validate its 

identity to its neighbors. This authentication mechanism is the driving idea behind any use of ND 

sessions. 

 

4.2.1 Core Objectives 

ND Sessions aim to satisfy a few core goals for Neighbor Discovery: 

● Identification. Any session established with a peer at the NDP level is guaranteed to be 

continually legitimate through its duration, extended and prolonged by renewing the 

session regularly, with the use of Zero Knowledge Proofs. 



106 

 

● Performance. A fixed reliance on SHA-256 and very simple concatenate-and-iterate 

movements lend themselves to drastically improved session performance on participating 

systems with minimal resources. SHA-256 is perhaps one of the most ubiquitous hashing 

algorithms, while also being significantly collision-resistant (see Section 4 of [60] for 

more details). 

● Simplicity. Avoiding reliance on public-key cryptography or Public-Key Infrastructure is 

a primary goal of establishing sessions, since performance degradations or extra 

complexities demanded by these tools have in the past resulted in slow or nonexistent 

adoptions. 

● Privacy. Sessions are end-to-end and do not rely on a centralized infrastructure to 

communicate some kind of registration information or other details. The use of RHCR 

always ensures the privacy and protection of session Root Password values, while also 

rendering any packet replay attacks infeasible. 

● Flexibility. Nodes have the flexibility to determine their own participation in per-

interface, per-connection sessions through the use of various Interface Configuration 

Modes, similar in structure and utility to the IEMs used by VBA. 

 

4.3 Impersonation Protection & Authentication Model 

Sessions are authenticated with ZKP by revealing a series of subsequent, one-time hashes 

in a reverse order from a revolving Root Password (ultimately, a Root Hash); all mentions of a 

‘hash’ with ND sessions imply the use of the SHA-256 algorithm unless otherwise explicitly 

specified. The requirement of ZKP prevents potential adversaries from both (1) acquiring and 

using the Root Hash, and (2) inserting themselves into the middle of any ND session that is 
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already ongoing. Requiring a new ZKP token attached to each NDP packet demands that each 

participating node must retain knowledge of their current Hash Chain RHs in order to derive the 

next token, automatically barring nodes unaware of the RH from hijacking the session. 

The RH is unique on each Session Node (SN) at a per-session granularity, meaning there 

are two ZKP processes mirroring each other at each SN for any established session. The recipient 

of an unseen ZKP token from a Session Peer (SP) must always have sufficient knowledge from a 

preexisting session with that target node in order to validate the received proof. Performing 

validation requires the mixture of node-specific parameters (i.e., the interface link-layer address 

and IP address) which the SP cannot easily change–or rather which, given any change during 

communication, will invalidate subsequent proofs. In the authentication model, SNs are free to 

establish a new session from their new LLID or they can transition the current session to it. The 

latter option is more preferable as it preserves and extends an authentication which is already 

established.  

The Root Password chosen by the session initiator seeds a new session. It is formed into 

an initial Root Hash (RH) which is then iteratively salted with other parameters by concatenation 

and hashed again, up to an arbitrary CounterMax times, to form a Hash Chain (HC). The final 

hash at CounterMax iterations beyond the RH is termed the Final Hash (FH) and the length of 

the HC is given by CounterMax. The length of the HC is sent with the FH, an expiration value, 

and a 32-bit session ID value to the peer, who can then use those details, combined with the 

sender’s claimed link-layer address and IP address, to authenticate any subsequently received 

ZKP tokens. Once a session has been initiated by the sender, the recipient of the initiation will 

repeat the same process with a completely different RP seed unknown to its peer, after accepting 

and acknowledging the initiation of the session. In this model, each SN maintains constant 
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awareness of its own HC and its peer’s HC, as well as the most recent ZKP token revelation for 

each. 

 

4.3.1 Reverse Hash Chain Revealing 

ND sessions utilize a two-way mechanism for their chains known as Reverse Hash Chain 

Revealing (RHCR), first rudimentarily conceptualized by Lamport in 1981 [61] and applied to 

IPv6 addressing by Nikander [62]. As previously mentioned, the Final Hash is the terminal and 

public token reached after CounterMax iterations from the Root Hash have been computed. 

Thanks to the unidirectionality of hashing, revealing any intermediate hash ‘further back’ in an 

HC constitutes proof of knowledge of a secret value (i.e., Root Hash) without revealing the 

secret itself, because the intermediate hash must have been computed somewhere along the 

iterations sequence between the RH and the FH. 

By sending an intermediate hash (or ZKP token) to a peer along with a Counter value, 

indicating the number of additional iterations on the token required to reach the FH, the peer can 

validate the proof. Once a value at Counter has been revealed, any submitted value less than or 

equal to Counter no longer constitutes a valid ZKP and will be rejected if received by the peer. 

Figure 18 details the functions used to compute each part of a whole per-session Hash Chain on 

each Session Node.  
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Figure 18. Each Session Node maintains its own internal Hash Chain state, constructed with a 

simple hash-and-iterate procedure. Once this Hash Chain is prepared, the node is ready to begin 

providing Zero Knowledge Proofs to the Session Peer. 

 

 

To more explicitly explain the HC formation procedure given in Figure 18, an 

understanding of why revelation occurs backward from the public Final Hash Hc is required. 

Awareness of the Root Hash H0 enables computation of any subsequent token Hn where {0 ≤ n ≤ 

c}. Receivers who capture some intermediate hash Hx where {0 ≤ x ≤ c} are only able to derive 

Hy where {x ≤ y ≤ c}. Therefore, any newly received token Hz, where {z < x}, demonstrates 

knowledge that cannot be known by anyone except those with knowledge of hashes preceding 

Hx; such proof is a valid assertion for knowledge of the RH and thus proves the sender’s identity. 

Because tokens are derived from one-way hashing, any revelation of Hy implies the receiver’s x 

becomes equal to y, shifting lower the required z value for ZKP from the sender. 
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The stored state of each HC, whether local or for the SP, must include information about 

the most recently used Counter value, to track the incoming Counter value for which received 

ZKP tokens may be considered valid. When a node wishes to provide a ZKP token to its peer, it 

will increment the local HC’s Counter value by 1 and send the result of the RH iterated 

[CounterMax - Counter] times. When a HC has no more tokens to reveal except its RH–or when 

the chain has been depleted down to around 10% of the remaining tokens–the Session Node 

should simultaneously (in the same NDSO) reveal the RH to the peer and establish a new FH to 

use, with the same CounterMax value. 

Using this process, revelation of the RH is equivalent to exposing the password the SN 

was using for ZKPs with its peer. This is why it is sufficient and requisite information used to 

establish the next HC in the session. Its revelation is, as suggested, also sufficiently randomized 

and not predictable in practice, to prevent eavesdroppers from predicting and intercepting it. 

Session Nodes should never reveal their Root Hashes back-to-back or in any predictable manner, 

lest interception become more feasible. Figure 19 provides a clearer visualization of the RHCR 

process. 
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Figure 19. A visual representation of the Reverse Hash Chain Revealing concept used in ND 

sessions. In state S0, the intermediate hash (i.e., ZKP token) at Hc-2 is revealed to the Session 

Peer. The peer validates this token by running the Hn+1 function 2 times to get Hc. The next state 

S1 shows how the previous ZKP token is now no longer a valid proof, and Hc-3 further back in 

the Hash Chain must be revealed to continue session authentication. This ZKP authentication 

occurs from both Session Node perspectives with each dispatched NDSO. 
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4.4 Interface Configuration Modes 

A set of four Interface Configuration Modes (ICMs) is defined for ND sessions, similar 

in function to the IEMs of VBA, but operating completely independently of them. Having a few 

operating modes to choose from will help to foster adoption of NDSOs, especially in mixed 

networks where not all nodes recognize NDSOs. Interfaces will operate in any one of four modes 

affecting ND session behaviors, chosen for the interface by the implementation's discretion or by 

manual configuration: 

● Ignore mode. Nodes will not initiate new sessions and will ignore all received NDSOs. 

● Gregarious mode. SIs will always attempt session initiation when a session with the 

target NDAR transaction IP address (i.e., the SP) is not already ongoing. SIs will neither 

expect nor require SPs to reciprocate with any acknowledgements or to initiate sessions. 

NDSOs are considered only optional addenda to ND traffic, but when a session is 

established with a peer they become required for communication with that SP until the 

session is terminated. 

● Gracious mode. SIs will attempt session initiation when no session with the SP is already 

active. Receivers in this mode will ignore all ND packets which do not contain NDSOs. 

The Persistent flag within NDSOs will always be ignored. 

● Strict mode. SIs will attempt session initiation when no session with the SP is already 

active. Receivers in this mode will ignore ND packets which do not contain NDSOs. The 

Persistent flag within NDSOs is enforced when set on any initiation NDSO. 

 

The recommended default ICM for most networks is the Gracious mode, which prevents 

sessions from locking peers out of communication from one another, either by malice or by 
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forgetfulness of the SP, by enabling the Session Initiation Timer for all sessions. The Strict mode 

is more security-focused because SITs can be disabled entirely by setting the Persistent flag in 

session initiations, thus allowing sessions to be prolonged indefinitely by receiving valid Session 

Reachability Confirmations. ND session compatibility and features can be disabled on interfaces 

at any time and for any reason, but doing so will likely disrupt all current sessions that the SN is 

actively participating in. This might create communication problems across the network due to 

dropped or misaligned sessions, so it is done with great caution. 

 

4.5 Packet Structure 

The Neighbor Discovery Session Option is an addendum to ordinary NDP traffic, carried 

through the extensible Options format described in the NDP specification. Information in NDSO 

stubs act as a type of overlay embedded into NDP traffic to carry session details. 
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Figure 20. The binary structure of the Neighbor Discovery Session Option. This option should be 

sent with each NDP packet with neighbors who already have pre-existing sessions active. 

 

 

Figure 20 shows the structure of the NDSO. Its fields are defined as follows: 

Type 

The NDP Option Type identifying NDSOs is always 65. 

Length 

Always set to 18; it is the total length of the NDSO from the Type through its end, 

inclusive, in units of 8 octets (64 bits). 
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P (Persistent) 

When the NDSO is initiating a new session, this flag indicates that the exchange is 

intended to establish a long-term, ongoing ND session that cannot be invalidated except 

by expirations. As this is a high-fidelity setting, SNs must trust one another not to lose 

critical session details or state for any reason. Because the initiated session cannot be 

invalidated with the SIT (except the initial SIT), its full Expiration timer is required to 

elapse without SRCs, which presents a dangerous opportunity for malicious session 

lockout. Nodes will not honor this Persistent flag unless they are explicitly using the 

Strict ICM. 

N (New) 

A flag which indicates that the NDSO intends to establish a new session for 

authenticating NDP communication between two nodes. The ND SLLAO is required to 

be included in the outer ND packet as an additional option when this flag is set. If no 

SLLAO is attached to the ND message, then receivers must ignore the NDSO. 

A (Acknowledgement) 

A flag which indicates that the NDSO is responding directly to a previous NDSO having 

its New flag set, to acknowledge the successful formation of a new session. The ND 

TLLAO is required to be included in the outer ND packet as an additional option when 

this flag is set. If no TLLAO is attached to the ND message, then receivers must ignore 

the NDSO. 

Version 

A 5-bit version identifier that could be used in future protocol versions to dynamically 

change the structure of the option. This field is required to be set to a value of 1, but 
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future additions to the structure of NDSOs might increment the static version number 

based on forthcoming features or other modifications. This is helpful if, for example, 

SHA-256 were no longer a viable hashing algorithm to use for ZKP. 

Reserved 

Space reserved for future use. This field is set to zero and is ignored by receivers. 

Expiration 

Dictates the amount of time taken in minutes for the ND session to expire when no 

session activity occurs or SRCs are received. The ‘expiration' of a session means both 

storage of related session state and associated NC entries are immediately destroyed. This 

value is required to be greater than or equal to 1. 

SessionID 

A pseudo-random 32-bit identifier used to track and pinpoint an ongoing session between 

two nodes. This value cannot change while a session instance is kept active, lest NDSOs 

be lost or invalidated at the receiver. 

CounterMax 

A big-endian value expressing the number of times a secret Root Hash H0 is iterated with 

the function H(x) to produce the Final Hash Hc, where c is equal to CounterMax. This 

value should never be a value greater than 10,000 and should always be greater than or 

equal to 500. 

Counter 

A big-endian value less than or equal to CounterMax, expressing the number of iterations 

with the function H(x) over the CurrentHash value which are required to form the 

FinalHash value. If this field is set to CounterMax, then the CurrentHash is required to be 
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equal to the Session Interface’s current Root Hash, and the NewHash field is required to 

be set to the new FinalHash value of a newly-formed Hash Chain on the SI, with the 

same CounterMax length. 

FinalHash 

The full SHA-256 Final Hash value from the SI’s current Hash Chain. This value will not 

change per SessionID, unless the previous NDSO provided a non-null NewHash value 

and a valid Root Hash in the CurrentHash field. 

CurrentHash 

The full SHA-256 ZKP token which, when iterated Counter times with the function H(x), 

will produce the FinalHash value. 

PeerHash 

The currently known FinalHash value of the Session Peer. This field indicates to the peer 

which HC the SI is currently expecting ZKP tokens for. It is helpful for possibly 

desynchronized sessions where the SP must know which intermediate hash to provide 

based on the Counter value sent in the previous NDSO. This field is initialized to a null 

value (0) when the NDSO indicates session initiation–i.e., when the New flag is set. 

NewHash 

When the CurrentHash value equals the Root Hash of the SI’s current Hash Chain and 

Counter is equal to CounterMax, this field is set to an upcoming Final Hash to use in the 

SI’s next HC, which is required to inherit the current CounterMax value. Otherwise, this 

value should always remain a null value and be ignored by receivers. 
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4.6 Packet Processing Rules 

4.6.1 Senders 

Senders must not append NDSOs to NDP traffic if there is not an active session with the 

target of the ND packet, and the sender does not intend to initiate a new session. If the sender 

wishes to initiate a new session, it must set the New flag and initialize both the PeerHash and 

NewHash fields to a null value (0). When initiating a new session, it is the sender's responsibility 

to determine the new session's properties: the SessionID, the CounterMax value, session 

persistence, the Version, and the Expiration value. If the sender is acknowledging receipt of a 

session initiation request and the session initiation is accepted, then the sender must reflect and 

use some of the properties chosen by the initiator (the SessionID, Version, and Persistence 

values) in its acknowledgement NDSO. The acknowledgement NDSO must also by its 

functionality set the Acknowledge flag to express its intent to acknowledge and agree to the two-

way session establishment Acknowledgements must also include the value of the initiator’s 

FinalHash in the PeerHash field, so the initiator can confirm that the recipient has received the 

correct Hash Chain details. 

The CounterMax value is not recommended to match the value set by the initiator. Right 

before sending the NDSO, senders must ensure that the current Counter value of the HCSI (the 

Hash Chain of the Session Interface) has been moved to its next value and that the generated 

ZKP token at that updated value is inserted into the CurrentHash field. The Counter value must 

always be a value greater than the previously sent NDSO Counter value for this SessionID from 

the perspective of the sender’s HCSI. If the sender’s NDSO intends to expose a Root Hash in 

order to move to a new HCSI, then the CurrentHash will be set to the HCSI Root Hash, and the 
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Counter field will be equal to the CounterMax value for the HCSI. In this same packet, the 

NextHash field will consist of a non-null value indicating the FinalHash of the upcoming HCSI. 

When the NDSO does not indicate a change of the RH for the HCSI, then the NewHash 

field is always required to be a null value (0). If the NDSO represents a session initiation request, 

then the PeerHash field is required to be set to a null value (0). Importantly, senders should never 

reveal the Root Hash of the current HCSI if there is any doubt of connectivity with the genuine 

SP. Revelation of the HCSI RH must be done selectively and judiciously to protect the session 

from malicious hijacking. 

 

4.6.2 Receivers 

Option processing rules for receivers consists of a tangled web of instructions that adhere 

to the many functional rules and constraints established for ND sessions. This section attempts to 

capture all related rules for receivers, but at the risk of redundancy does not bother to state what 

may seem obvious based on what has already been presented. Any detail withheld implies that 

implementations or future research should be equipped to reasonably decide the correct course of 

action based on the purpose of ND sessions. A formal, future specification of ND sessions will 

include many more explicit and technical rules which do not distract from the primary objectives 

of securing link-layer address ownership and device identification. 

Nodes receiving invalid NDSOs are required to reply with an ICMP Destination 

Unreachable packet having a Code value of 5 (of type Source Address Failed Ingress/Egress 

Policy) per RFC 4443 [12]. If the receiving node does not know the LLID of the NDSO sender, 

and if no SLLAO or TLLAO was attached to the incoming ND packet, then the ICMP 

Destination Unreachable message is not required. This is because the receiving node would not 
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know where to forward the packet or frames. The ICMP reply is intended to signal to senders 

that their most recent NDSO was in some way invalid and not accepted, so that the sender can 

take immediate and appropriate action in response. 

NDSOs are required to be received only via unicast ND traffic. The exception to this rule 

is the initial multicast Neighbor Solicitation that resolves a target’s IP address to its LLID while 

initiating a new session. NDSOs attached to other multicast ND messages, or on ND packets 

other than NSs or NAs, must be silently discarded and must not invoke an ICMP Destination 

Unreachable response from the receiver. Receivers must expect NDSOs to conform to the ND 

session rules and option structures for the indicated Version value of the session. If there is any 

discrepancy in the structure of the received NDSO compared to what is indicated by its Version, 

then it must be ignored and discarded. 

Any received NDSOs that are not initiations (as marked by the New flag) are required to 

be discarded if there is no active session with the sending source IP address. Active sessions can 

be found by searching local session state storage for the purported SessionID value given in a 

received NDSO. If the received NDSO does not match the Persistent, Expiration, Version, or 

CounterMax fields of the SP’s active session details–or it contains a Counter value less than or 

equal to some Counter value already received for the known HCSP–then it must be considered 

invalid. If the local ICM specifies that sessions may be formed, then any incoming NDSOs 

appearing to come from an IP Source Address that is already associated with an LLID in the 

local NC, or which attempt to affect the local NC for that IP address, should be given special 

attention. If a session is already correlated to the NC entry and the current ICM is not permissive, 

then incoming ND packets from that IP Source Address without NDSOs must be ignored. If a 

session is not pinned to the NC entry, then it is left to the local ICM to determine the next course 
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of action for handling the NDSOs. The New and Acknowledgement flags must not be set if the 

NDSO is not an initiation or an acknowledgement of an initiation, respectively.  

 

4.7 Modifications to Neighbor Discovery Behavior 

The introduction of the NDSO option proposes only a few modifications to the behavior 

of Neighbor Discovery: it simply adds a new option and inserts itself into key points within the 

ND process (similar to VBA). More specifically, the NDAR and NUD processes are targeted as 

crucial areas of session enforcement based on the ICM of the SI. Any ND packet seeking to 

modify the NC of a neighbor is required to follow session establishment and maintenance 

procedures per the current ICMs of the sending and receiving interfaces. If the active ICM 

dictates that a session must be active, then senders are required to provide the correct ZKP 

authentication to change the known LLID, the known target IP address, or any other session 

information. 

Multicast ND messages will never include an attached NDSO, except initiation NDSO 

messages which can be sent with a Neighbor Solicitation packet to a solicited-node multicast 

address. Implementations for NDSOs can choose to ignore this optional capability, restricting 

NDSOs to unicast-only traffic by only delaying session initiation until the NUD (unicast NDAR) 

process begins, shortly after SNs exchange their SLLAO and TLLAO details. The NUD process 

is required to ignore normative Reachability Confirmations coming from upper-layer protocol 

‘hints’ if the current receiving ICM is not in the Ignore mode and a session is already ongoing 

with the neighbor. For example, TCP transmissions with an SP are no longer sufficient to keep 

the state of the NC entry at the SP in a REACHABLE state for the active session. Nodes instead 

use unicast NDAR messages, also known as Session Reachability Confirmations, to proactively 
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avoid having any STALE cache entries; acting as if the NC entry already were in the STALE 

state to begin with. 

NC entries will never be purged if unexpired, valid sessions are still stored and associated 

with them, unless the SP indicates a change in the LLID or the IP address being secured. This 

allows session persistence features to ‘remember’ the parameters associated with NDAR 

transaction instances in the long-term; because part of ZKP token generation and HC formation 

relies on NC entry details to form the salt value used in the hashing function H(x). Additionally, 

if a session is invalidated, expired, or otherwise destroyed, then the associated NC entry is 

always immediately purged regardless of each SN’s active ICM. 

 

4.8 Session State & Lifecycles 

Every ND session maintains a lifecycle: from initiation and acknowledgement, through 

maintenance with SRCs and rotating Hash Chains, to eventual session expiration or invalidation. 

All sessions are initiated, and all sessions will eventually end. Throughout their lifecycle, as 

more and more Session Reachability Confirmations are processed, Hash Chains will begin to run 

low on ZKP tokens; at which point each Session Node will arbitrarily choose to rotate to the next 

Hash Chain. The process of swapping Hash Chains can happen indefinitely and safely as long as 

each Session Node does not create any predictable pattern for the revelations of their Root Hash 

values. Finally, the end of sessions always comes by means of invalidation or expiration: the 

former occurring when incoming invalid NDSOs trigger the SIT and it elapses, and the latter 

occurring when no SRCs have been received for the session within the expiration window. 
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4.8.1 Preserving Session State 

It is essential to always preserve the state of ND sessions and to keep the information as 

recent as possible. While the responsiveness of a node in caching or updating received session 

details is not of critical importance, it is instrumental in preventing any possibility of replay 

attacks against SNs. Because session durations may extend up to hours at a time without any 

activity (if persistent or not invalidated by an SIT), SNs are required to use persistent, non-

volatile storage to preserve session details. To preserve session details means persistently 

preserving the state of any associated NC entries is also required, regardless of the time elapsed 

since the last Session Reachability Confirmation was received. 

If a node is powered down or otherwise loses data in its non-volatile storage, then it must 

not lose session information. Depending on the activity of the link and the volume of active 

sessions, these details might update at a rapid pace. Therefore, implementations may choose to 

keep in-flight session details in a volatile memory pool and regularly shadow it in batches to 

non-volatile, persistent storage. All techniques for maintaining persistent session storage 

information are left to independent implementations to handle. 

 

4.8.2 Initiations 

When a node initiates a session, it should indicate its intent by setting the New flag on an 

NDSO to append to any NS or NA packet, along with the appropriate LLID-providing option 

(SLLAO or TLLAO). If the receiver of the NDSO is not already engaged in some session 

identified by the NDSO’s SessionID field or by the initiator’s IP Source Address, then it can 

choose to respond with an NDSO including its own HC details, with the Acknowledgement flag 

set. If a non-persistent session already exists based on the information provided by the initiator, 
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then the NDSO must instead be considered an attempt to trigger the SIT (depending on the 

current ICM of the receiving interface). If both NDSOs are valid and no session had existed 

prior, a successful two-way handshake has been completed to establish a new one. To discover 

in-progress sessions, nodes can search information in their local session storage with the 

following process: 

● Check the SessionID field of the incoming NDSO. If it matches a known identifier that is 

stored locally with associated NC details, then the NDSO can never be considered as an 

initiation. 

● Examine the IP Source Address of the NDSO, if and only if the incoming packet is not a 

multicast Neighbor Solicitation. If this IP address appears in the local NC and has an 

existing LLID associated with it, then there may or may not already be an associated 

session with the sender. An examination of the local session state storage should be able 

to provide more information per the implementation. 

 

Any deviation from this process, including strange behavior or spurious NDSOs not first 

using the New flag to indicate initiation must be considered invalid by receivers. Sessions must 

not be considered as started or active without first being initiated or acknowledged by the SP. 

Once a new session is formed, both SNs, regardless of the ICM on each interface, will set and 

start a 1-minute SIT that must not be canceled or stopped unless a valid Session Reachability 

Confirmation is received from the SP. This process prevents rogue or bogus sessions from being 

initiated and then kept around for the entirety of the indicated Expiration time for the fake 

session. Thus, a flurry of fake sessions will not linger because they will never receive positive 

confirmation that the SP actually exists and is responsive on-link. The first valid SRC to be 
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received from the SP will always cancel the initial SIT and enable the full Session Expiration 

Timer with a duration specified by the SP’s Expiration selection. Each subsequent, valid SRC 

from the SP must restart the SET at its full duration, allowing the session to be prolonged 

indefinitely if desired. In non-persistent sessions, the 1-minute SIT can be triggered again at any 

time by receipt of an invalid NDSO message. 

 

4.8.3 Shifting Link-Layer & IP Addresses 

There are times when the LLID or IP address of a sending node will change. Certain 

node-specific parameters–like the node’s communicating IP address(es) and LLID–are 

components of the salt value that is reconstructed by SPs when validating ZKP tokens. Moving 

to an entirely new HC on the SI is the only option available to keep a session alive and carry it 

across the transition between an IP address or an LLID. This same requirement to transition 

away from the current Hash Chain also necessarily applies to requests that change the sending 

HC's CounterMax value or its Expiration value. Nodes wishing to update salt-affecting values 

for their HCs (the session expiration, the session’s ID, the current CounterMax, the SI’s LLID, 

and/or the SI's IP address engaged in the session) must reveal their current HC’s RH and 

transition to a new HC FH in the same message. This is in order to move to a new Hash Chain 

that is constructed from the updated salt value. 

Session Peers will be capable of smoothly detecting the transition between Hash Chains 

and adjust accordingly, since exposing an RH is a high-priority action. To repeat, the process of 

notifying the SP of this change involves (1) exposing the RH while simultaneously (2) 

expressing which FinalHash comes next for the upcoming HC to be originated from the SI and 
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validated by the SP. Armed with this safe transition capability, most sessions are flexible enough 

to transition uninterrupted between any change of Session Node details. 

 

4.8.4 Session Maintenance 

Session Reachability Confirmations are very similar to Neighbor Reachability 

Confirmations as defined in Section 7.3.1 of RFC 4861 [11], except an SRC does not include the 

‘hints’ given from upper-layer protocols in its definition. SRCs consist solely of valid NDSOs 

that are attached to unicast NS or NA packets exchanged as a result of the normative NDP NUD 

process. Certain session-related timers rely on SRCs to provide consistently recent confirmations 

that an NC entry is still owned by the original peer participating in the session. 

Any received SRC usually allows extension of the session by either restarting or 

altogether clearing the related timer(s). During the maintenance of a session, SRCs for non-

persistent sessions must be frequently sought by SNs to prevent any coupled NC entries from 

entering a STALE state. In persistent sessions, a STALE state is not avoided for NC entries, but 

their association to their sessions lingers until the SET elapses (if at all). The proactive behavior 

of SRCs simultaneously provides reachability confirmation while prolonging an active session, 

persistent or not, by restarting all relevant timers on a rolling basis. 

 

4.8.5 Timers, Failures, & Invalidations 

Each session is pre-equipped with a pair of timers that simultaneously control different 

protections and optimizations. The Session Invalidation Timer and the Session Expiration Timer 

control session invalidation and expiration, respectively. The timers will destroy the session at 

the SI interface if either one of them elapses. They are refreshed and triggered by key actions 
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based on the various optimizations and protections. Figure 21 demonstrates the placement and 

duration of each timer for persistent and non-persistent sessions, with different triggers that 

might cancel or refresh each timer. 

 

 

Figure 21. ND sessions use the SIT and SET timers to prevent malicious session flooding, 

session lockouts, and undying sessions. Being freed from these potential issues is a careful 

balance between session rigidity, security (with persistent sessions), and flexibility in case a 

session is locked out (with non-persistent sessions). 

 

 

4.9 Example Session 

This section will briefly produce a contrived example of a legitimate NDSO exchange 

and session establishment between two neighbors, demonstrating how sessions are intended to 
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function and how they might be attacked. Node A (Na) is the soliciting node initiating the session 

(the SI) while Node B (Nb) is the receiving and acknowledging Session Node (the SP). Neither 

of these two nodes have preexisting knowledge of the link-layer address of the other, so they 

must be resolved using the normative NDAR process. 

● Na (SI) has the IP address 2001:db8::12bc:8090/64 with an interface LLID of 3B-55-0C-

00-12-33. 

● Nb (SP) has the IP address 2001:db8::aaaa:bbbb/64 with an interface LLID of BC-71-A3-

89-CC-60. 

● Both Session Node interfaces are operating in the Gracious ICM. 

 

Na must now perform NDAR for the IP address of Nb to forward link-layer frames to the correct 

address, per normative NDP processes. Since both interfaces are using the Gracious ICM, no ND 

messages will be accepted without requisite NDSOs that properly validate. 

1. Na receives an instruction to connect with Nb, so it must resolve the LLID of Nb's IP 

address at 2001:db8::aaaa:bbbb/64 (an on-link address that does not require routing to 

reach). If this target IP address were on a separate subnet, the session would instead have 

been established between Na and the appropriate router used to reach Nb. 

2. Using a pseudo-random seed value, its own sending interface LLID, and source IP 

address, Na generates the HCSI with an arbitrary CounterMax of 5,000. The FH and the 

H4,999 CurrentHash is calculated and the Counter of the HCSI is incremented to 1, to 

match the CurrentHash step at H[CounterMax - Counter]. The Expiration value is also set to 45 

minutes, specifying the peer should expire the session after that time if no SRCs are 

received. The session is not labeled as Persistent, but the New flag is set. 
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3. Na sends a solicited-multicast Neighbor Solicitation to ff02::1:ffaa:bbbb, including the 

initiating NDSO with current parameters from HCSI, a non-Persistent Expiration value of 

30 minutes, and a pseudo-random SessionID value. The NS also includes the SLLAO 

option giving the sending interface’s LLID of 3B-55-0C-00-12-33 as required. 

4. Nb receives the multicast NS. Before entering the LLID and IP Source Address from the 

sender into its NC, Nb searches for a valid NDSO according to its active Gracious ICM. If 

one is found, it examines the SessionID to determine which session this might be relevant 

to. Since no session yet exists by the received identifier because it is new, Nb checks its 

NC to determine if a cache entry for the IP Source Address already exists. If a cached 

entry does exist, a 1-minute SIT for that NC entry's session begins because the incoming 

packet is a re-initiation of a session. If a cached entry does not exist, Nb begins 

calculating and storing the details of HCSP. 

○ Since the incoming NDSO packet claims the Counter is 1, Nb must use the 

function H(x) to iterate the input CurrentHash with the appropriate salt value only 

1 time (per Counter) to get the value of FinalHash. Once that computation is 

completed and verified, Nb creates a new NC entry per the ND specification. The 

SIT of 1 minute begins on Nb for the SessionID and the SET at the Expiration 

value (45) given by Na, in minutes, also begins on the node for the session. The 

SessionID is then locally correlated to the new NC entry. 

5. Nb then forms its own HCSI as in Step 2. It opts to use a CounterMax of 8,000 and a first 

Counter value of 1. 
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6. Nb sends a unicast Neighbor Advertisement with the Acknowledgement flag set on the 

attached NDSO, using its own HCSI and session details. This NA also includes the 

required TLLAO option to indicate the advertised LLID of BC-71-A3-89-CC-60. 

7. Na receives the unicast NA and follows a similar session lookup process as in Step 4. 

Parsing is almost immediate because the SessionID is already a known and shared value 

between the two nodes from the initiation NDSO sent earlier by Na. Na validates the 

incoming Acknowledgement NDSO and stores the SP's HC information in its HCSP. The 

SessionID is then locally correlated to the new NC entry from the received NA. The 1-

minute SIT begins on Na for the SessionID. The SET of 30 minutes, per the SP’s 

instructions, also begins on the same node for the SessionID. 

8. The first set of qualifying NUD messages exchanged between the two SNs with NDSOs 

attached act as initial SRCs, so the SIT timers are canceled upon their receipt and the 

expiration timers are each reset to the specified Expiration times set by each SP. These 

expiration timers (SETs) are refreshed at each node every time a valid, verified NUD 

packet with an NDSO (i.e., an SRC) is received. 

 

The established session will then enter a stable maintenance phase after this initial 

‘handshaking’ process, where NUD packets with NDSOs attached will continue to refresh the 

SITs and SETs for each SN in the exchange. If an SI's LLID changes (or it attempts to force a 

new one), its own HCSI Root Hash must be revealed to the SP. The current HCSI at the SI must 

simultaneously move to a new Hash Chain built with this new LLID, in order to update the 

associated Neighbor Cache entry at the SP accordingly. 
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This example session represents an overlay atop the normal NDAR process, but 

theoretically this process of session initiation can occur during any point of Neighbor Discovery 

depending on each SN’s ICM setting. Initiation may even occur in the middle of NUD 

transactions that have been ongoing for quite some time. In such cases, as long as the LLID 

option of whichever type is present with the NDSO, then the session can be formed and 

maintained the same as any other time in the ND process. 

 

4.9.1 Attempting to Subvert the Session 

In this section, key steps from the example exchange above are explored for exploitation 

by a malicious neighbor, labeled Nm. This hypothetical malicious node has no particular goal and 

simply seeks disruption of the target session by any means necessary. 

● Between steps 2 and 3, Nm can immediately respond to the NS from Na with both an 

invalid NDSO and its own LLID in the TLLAO. This is an attempt at a classic traffic 

redirection (i.e., on-path) attack and is also an attempted hijacking of the session’s 

acknowledgement. It is ultimately a race condition: if Nb receives the NS multicast and 

intends to respond, then Nm must reply as quickly as possible to lock in and redirect the 

session. Solving the issue of redirection attacks upon session initiation, as an abuse of 

Trust on First Use, is beyond the specific scope of what ND sessions aim to solve. It is 

better left to solutions which perform some form of LLID binding or verification, where 

nodes cannot falsify or redirect an LLID for a local IP address. That is the exact purpose 

of Voucher-Based Addressing. 

● Once the session enters its 'maintenance' phase, Nm could somehow intercept a ZKP 

intermediate hash from one of the two SNs (through some extrapolated means). Even so, 
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providing this ZKP to the SP–as long as it is not the RH of the SI's HC–does not permit 

changing any NC entry options at the SP because the computed Final Hash uses the 

known LLID and target IP address of the cache entry from the SI. However, if the 

intercepted ZKP is the RH of the SI’s Hash Chain, then the session can be hijacked 

entirely. 

Knowledge of the RH allows the SI to change the LLID of the NC entry on the SP. This 

is precisely why (1) NDSOs are almost entirely unicast-only options and (2) revealing the 

RH of an HC is intended to be randomized beyond a certain Counter threshold–to make 

RH ZKP revelation harder to predict. This is an unfortunate vulnerability intrinsic to 

NDSOs but is largely infeasible to exploit due to the amount of impersonation effort (or 

luck) required to obtain a valid RH at the right time. If Nm is constantly arbitrating the SN 

connections at the link layer, then there are likely greater concerns about the security of 

the link that go beyond single-node impersonation attacks. 

● In any phase of the process, Nm could try to blast either SN with New sessions matching 

the IP address of its peer. Non-persistent sessions, such as what is provided in the 

example, will begin a 1-minute SIT that can only be canceled by legitimate SRCs. As 

long as both Na and Nb remain responsive, this is not a problem because legitimate 

NDSOs and SRCs will always cancel the respective timers that invalidate sessions. But if 

either node is away or off-link during these short timers, then the session could be 

invalidated after one of them elapses. 

The solution to repeated attempts of Nm triggering the SIT is to enforce the Persistent flag 

for the session during initiation. This would require both SNs (Na and Nb) to switch to 



133 

 

using the Strict ICM, which would allow session persistence to be toggled during 

initiation. When the SIT is removed, the SNs maintain high fidelity in one another to 

remember all session details. They will never use SITs to preemptively invalidate their 

session before the entirety of their SETs elapses. Implementations for sessions can permit 

their own on-the-fly changes to active ICMs which might allow SNs to 'upgrade' ongoing 

sessions to persistent ones by some SN agreement, but specific details of doing so are left 

to each implementation and are beyond the scope of this research. 

 

4.10 Transition Considerations 

Transitioning to network-wide use of ND sessions is fairly simple regardless of the 

deployment environment. It is a matter of properly adjusting the configuration of each interface 

on-link to accommodate the capabilities of neighbors. The majority of nodes are suggested to 

start in the Ignore ICM when they are not ready to parse any NDSOs. Nodes should never be in 

the Strict or Gracious ICM while being a member of a transitioning network, because 

encountering a neighbor without support for NDSOs will make NDAR transactions fail 

consistently. 

As more nodes become capable of managing sessions, the Gregarious ICM should be 

gradually introduced to have ‘pockets’ of successful sessions. Once those are proven to function 

properly, clusters of devices with Strict or Gracious ICMs configured could work without issue. 

Ultimately, a successful transition to using enforced sessions on a local network is accomplished 

by gradually sweeping all nodes from the Ignore ICM through to the Strict or Gracious ICMs, as 

the projected deployment situation and network infrastructure permit. 
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4.11 Security Considerations 

Just as with VBA, the introduction of ND sessions is an inherently security-conscious and 

privacy-focused amendment to the way Neighbor Discovery functions. Therefore, careful 

consideration of each security issue is merited. This subsection will briefly discuss a few key 

points which deserve explicit attention, but it is not all-inclusive of possible issues that sessions 

might encounter in practice. 

 

4.11.1 Address Bindings & Lockouts 

Sessions use an automatic Trust on First Use authentication, necessarily granting trust to 

the first legitimate respondent in a newly-initiated session. Once the session has started and the 

first Session Reachability Confirmation is received, the session can be extended indefinitely as 

long as both Session Nodes remain online and responsive to one another. Session authentication 

HCs on both sides each rely on the known LLID and target IP address of their SP to form the FH 

from some starting intermediate hash within the HC of the SP, since the salt value in the HC 

includes the SP's LLID and IP address. There is nothing native to NDSOs which prevents 

illegitimate LL2IP bindings from being reported through NDAR-driven on-path attacks. If these 

attacks are performed successfully despite a session overlay, attackers could subsequently 'lock 

out' any genuine respondents who truly own the solicited (or advertised) IP addresses, thus 

indefinitely denying their ability to form a genuine session with the peer. 

Other solutions exist to provide some proof of address ownership in one way or another 

(e.g., Voucher-Based Addressing and Cryptographically Generated Addresses), and those 

specifications are designed to resolve this falsification issue in the first place. But the focus of 

this subsection seeks instead to emphasize the importance of recovering from a session lockout 
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when there is no LL2IP binding verification in place during NDAR transactions. Once malicious 

nodes have been removed from the link, the legitimate neighbors who own the impersonated IP 

addresses must have the ability to recover communications with the original peers whom they 

were soliciting (or accepting session initiations from). The Session Invalidation Timer for non-

persistent sessions is a 1-minute timer that can be used to invalidate a session that otherwise 

might have spanned until its full expiration time (via the Session Expiration Timer). Removing 

lockouts for persistent sessions by design requires manual intervention from a user or system 

administrator.  

When malicious nodes are removed from the link and proper Neighbor Cache 

associations are restored where required, the victims of impersonation only need to reattempt 

establishment of their sessions by re-initiating new ones. If a preexisting, non-persistent session 

is found that is already correlated to the initiator’s purported LLID and IP Source Address, then 

the session will be invalidated by the SIT after one minute elapses without the target SP 

receiving any SRCs. Since the impersonators are no longer active, there will be no nodes 

available to respond with valid NDSOs providing SRC, and the SIT is guaranteed to fully elapse. 

The SP will subsequently be freed to reestablish a session with the legitimate neighbor node.  

Reconnecting neighbor nodes might find themselves unable to reattach to a session which 

was in-progress, as indicated by receiving ICMP Destination Unreachable message in response 

to their session-in-progress NDSOs. When this happens, the reconnecting nodes should 

immediately attach NDSOs with the New flag set onto a new Neighbor Solicitation packet, in 

addition to the required SLLAO attachment. This solicitation will eventually invalidate the 

session if it is not marked as persistent. Before this occurs, the node will wait one minute for the 

SIT to elapse. After waiting, the node will either continue the initiated session or try another 
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initiation NDSO. If this option is again met with an ICMP Destination Unreachable response, 

then the sender should keep trying to invalidate whatever session lockout exists, and the sender 

can utilize other means in parallel to alert appropriate system administrators about its total failure 

to connect. 

 

4.11.2 Session State Pruning 

To mitigate attacks seeking to exhaust session tracking capabilities at a victim node, 

implementations should determine how to manage a flood of incoming sessions. If the resources 

on a Session Node are becoming more constrained and approaching their limit, then to preserve 

system resources it is suggested that the least active sessions should be pruned. While session 

flooding may be a rare event, it is an important security feature to consider for network devices 

having fewer resources at their disposal. ‘Pruning' in this case means deleting session details 

which have expired or have not been recently active within some arbitrary window of time, to 

make space for higher priority or newly-initiated sessions that might have more activity.  

The Session Reachability Confirmation feature of ND sessions affords protections against 

this problem when massive influxes of sessions are malicious. Sessions use a 1-minute initial 

Session Invalidation Timer regardless of session persistence settings, cleared only when at least 

one SRC from the peer is successfully received. Implementations might wish to use their own 

algorithms and heuristic analyses of active sessions in order to determine which of them are 

considered the 'least active' targets for pruning. Sessions should not be pruned if there is no valid 

reason to do so because clearing any session details without a dire reason will defeat their 

protections easily. It will allow malicious parties to use floods on-demand in order to 'override' 
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or completely dump legitimate sessions and temporarily lock out legitimate nodes from each 

other. 

 

4.11.3 Regarding Denial of Service 

The goal of Neighbor Discovery Sessions is to validate persistent peer identities at a very 

low-layer, local protocol while maintaining simplicity, flexibility, and privacy. Mitigation of 

NDP denial of service attacks thus becomes an auxiliary goal, beyond the scope of this research, 

that might be achieved by applying other protocols and related research. Again, just as with 

VBA, placing the burden of solving all of these problems onto ND sessions could readily reduce 

their practicality. It will force them to apply multiple simultaneous mitigation strategies as part 

of the core protocol specification, rather than leaving the mitigations as optional and decoupled 

add-ons. However, denial-of-service attacks indeed remain a serious concern when practically 

applying sessions because it is an additional overlay atop a default protocol which already has its 

own weaknesses. When a denial-of-service topic is presented in this section without a solution, it 

is strongly implied that resources beyond this research should be applied to better mitigate the 

problem. 

Bogus Session Option Replies & Hijacking 

A series of bogus NDSOs cannot invalidate a session if the legitimate SNs are both still 

online and are receiving link traffic normally. This is because the 1-minute initial SIT 

will always be canceled upon receiving any valid SRC indication from the SP. Persistent 

sessions are always immune to this attack. Additionally, NDSOs with the correct 

SessionID are difficult to spoof or determine without traffic interception because NDSOs 
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only appear in unicast packets beyond an initial Neighbor Solicitation multicast. 

However, falsifying a target IP address in an SLLAO or TLLAO stub is an easier way to 

bypass the requirement for knowing the current SessionID. 

Flip-flopping Session Expiration Timers from invalid received NDSOs might become a 

problem on some systems where sessions are not persistent and ICMs are not strict 

enough. Where such concerns might apply, some kind of network intrusion detection 

system capable of determining floods of bogus NDSOs from neighbors is likely the best 

option. The system could be tasked with either reacting to the threat(s) directly or 

notifying an administrator who can resolve the issue–the choice is left to the 

implementation and use-case. 

Malicious neighbors knowing the SessionID to target with bogus NDSOs might be able 

to simultaneously (1) start an SIT on an SP with which it wants to communicate or 

intercept packets from, and (2) somehow disconnect the other SP from the link through 

exploitation until the 1-minute SIT elapses. Once the disconnected peer reconnects, it will 

be denied communication with the SP and ‘locked out’, because the malicious host has 

hijacked the session. Once again: either session persistence or some other form of 

network monitoring and denial-of-service protection is required in this instance to 

guarantee that the malicious node cannot forcibly disconnect neighbors from the link. 

Resource Exhaustion 

Storing additional state information about sessions could be considerably costly on some 

devices if NDSOs are abused to generate and store many fake sessions. Session State 

Pruning attempts to mitigate this security concern by ensuring that resources from unused 
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or bogus session initiations are returned expediently and intelligently without affecting 

legitimate, recently active sessions. 

Resource exhaustion only becomes a true concern when session-capable nodes are active 

and very communicative on a large logical link with many other legitimate, session-

capable nodes connected. Even with thousands of true neighbors on the same link, 

however, the increase in overhead from sessions–compared to what is already stored 

from NDAR transactions–is negligible. The only extra data points being tracked are 

session properties, small SI HC structures, small SP HC parameters, and the Neighbor 

Cache information with its association to sessions. Because management of system 

resources in varying situations resides far outside the scope of this paper, it is best left to 

implementations and operating systems to determine the best course of action for 

resolving resource constraints brought about by very busy shared links where ND 

sessions are actively processed. 

ICMP Destination Unreachable Flooding 

Attackers might try to send a high volume of forged ND packets to many neighbors in 

parallel with bogus, nonsense NDSOs. By using an attack target's forged IP Source 

Address, the ICMP Destination Unreachable messages will be maliciously reflected to 

the victim by the recipients of the bogus NDSO. The goal of this would be to elicit a 

massive volume of ICMP responses aimed at the target in a classic volumetric 

(asymmetric distributed) denial of service attack. 

This attack is not feasible because the volume of forged ND messages is symmetric to the 

volume of ICMP responses sent by nodes. It is only sensible if the attacker does not wish 
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to send their own traffic flooding directly to the target when the link bandwidth does not 

support a direct flood, or if they have been otherwise administratively denied from 

communicating with the target directly. In fact, the ICMP Destination Unreachable 

responses might not even be sent if the forged packets (1) do not contain SLLAOs or 

TLLAOs, (2) there is no session already in place between the forged ND packet recipient 

and the active target’s IP address, or (3) either the IP Source Address field or the LLID in 

the options is not correct. 
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Chapter 5 Prototyping & Results 

5.1 VBA Generation Performance 

An average laptop was used to generate a set of VBAs for each VBA Algorithm Type 

option and to evaluate the time taken by each KDF algorithm for each input iterations count. The 

testing hardware is not important because all results are relative to one another; that is, since all 

tests are performed on the same device, their relationships will manifest the same as they would 

across other hardware. With the partial VBA generation implementation presented in Appendix 

1, it is possible to create applications which can spawn VBAs on-the-fly based on any set of 

dynamic or precompiled parameters. Appendix 3 lists the output of a hash generation program 

using the code found in Appendix 1, giving a more concrete depiction of how more concrete 

VBA inputs and outputs might interact. 

Using the minimal Key Derivation Function costs for each default algorithm, Figure22 

shows a mostly linear trajectory for the results of each test. As expected, an increase in the input 

iterations count value is linearly associated with the time taken to compute the VBA. Deviations 

in the graph are spurious events generated by an active CPU on the testing device switching 

between various scheduled tasks through the underlying operating system. Even though the 

results of the graph are not aggregate statistics–because extracting an averaged set of data has 

proven challenging–the relationships between the data and their interdependencies demonstrate 

how VBA might perform in practice. 

Argon2 key derivation is highly preferred as the default Algorithm Type for VBA Link 

Vouchers, because, as per the data, its minimal baseline settings allow for a memory-bound KDF 
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to require relatively little time to compute addresses. This allows link Voucher Bearers to have a 

suitable origin to start from when determining the desired level of baseline computational 

difficulty of VBA generation on the local network. Both PBKDF2 and Scrypt share a similar 

baseline relationship with the iterations count used: about every 20-25 thousand additional 

required iterations results in 5 more milliseconds of computation time during address generation 

and verification. These two KDFs intentionally follow a similar progression with their minimal 

difficulties because PBKDF2 is a CPU-bound KDF while Scrypt is a memory-bound KDF. 

Keeping these two minimal baselines close will allow implementations to choose from a 

similar baseline difficulty for each type (memory-bound or CPU-bound), and to make their 

further determinations from that pattern. It should be noted that the Scrypt KDF’s linearity 

slightly tapers into a gentle curve at higher iterations count values. The reason for this fall-off is 

unclear but it does little to affect projections of baseline computation time for each VBA based 

on minimal KDF settings. 
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Figure 22. The three default key derivation functions are employed and benchmarked in VBA 

generation procedures with their minimum possible baseline difficulty settings. Each increase in 

the iteration count for each KDF expectedly shows mostly linear increases in address generation 

times. All outliers and deviations from the observable linear pattern are due to spurious slowness 

of the local processor on which these tests were run. 

 

 

Next, the same laptop was used to evaluate the individual relationships between iteration 

counts at an arbitrarily high difficulty for each Key Derivation Function. Results from each 

Figure below should not be used to compare one algorithm to another, as each algorithm’s ‘high’ 

difficulty setting was chosen independently from the others. Instead, the results should serve to 

show how much time a considerably high cost for each algorithm might require during 
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generation and verification processes, even on an average laptop, in relation to the individual, 

node-selected iterations count values used. 

The input iterations count selected during each VBA generation can widely change the 

aggregate cost of securing an address on the network, whether advantageous or not. As a 

reminder, selecting the iterations count is in the control of the VBA generating node. Neighbors 

who wish to ensure the legitimacy of a received LL2IP binding will be expending the same, 

symmetric amount of time and energy to verify the binding. 
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Figure 23. A high difficulty setting with the PBKDF2_SHA256 algorithm shows a mostly linear 

relationship between baseline time required to generate a VBA and the input iterations count. 

Data gathered is not an averaged composite of multiple runs. As the iterations count increases, 

variations in baseline computation time increase. 
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Figure 24. A high difficulty setting with the Argon2 KDF shows a mostly linear relationship 

between baseline time required to generate a VBA and the input iterations count. Data gathered 

is not an averaged composite of multiple runs. As the iterations count increases, variations in 

baseline computation time increase. The scale of the Time axis is smaller than the other KDFs. 
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Figure 25. A high difficulty setting with the Scrypt KDF shows a mostly linear relationship 

between baseline time required to generate a VBA and the input iterations count. Data gathered 

is not an averaged composite of multiple runs. As the iterations count increases, variations in 

baseline computation time increases and the linearity of the graph gently curves downwards. 
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5.2 Discovering VBA Collisions 

The problem of hash collision discovery in VBA is of paramount importance for the 

security of the proposal. According to Figure 26, the Birthday Paradox [63] suggests that in a 

pool of random 48-bit hash values, the probability of a hash collision reaches 50% around 1.976 

x 107 (or just under 20 million hashes). Even though the output length of a SHA-256 hash is 256 

bits (per its namesake), 48 bits are used in the calculation because only a portion of the generated 

hash must match to create a VBA collision. 

Assuming a 1-millisecond hash generation cost because of some hypothetical LV 

baseline difficulty settings, and a low iterations-count selection by a target node: a minimum of 

about 19,760 seconds of computation time would be required to have a 50% chance of 

discovering a collision by testing random MAC addresses not equal to the target’s MAC address. 

However, notably, the difficulty of collision discovery is greatly increased, if it is possible at all 

for the target redirection address, because there is a fixed input space from which collision-

generating LLID values can be selected. 

Collision detection is at the mercy of both the baseline security settings on-link and the 

iterations count chosen by the genuine VBA holder. Even a relatively meager 20-millisecond 

generation and verification time for a VBA imparts both a negligible added delay for processing 

legitimate NDP exchanges and a significant (i.e., 20-fold) delay for collision mining nodes. This 

small difference in computation time is worthwhile for legitimate nodes to enforce on their 

neighbors to increase VBA security. 
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Figure 26. The chance of discovering a hash suffix exactly matching the 48-bit H value within a 

given VBA suffix is given by the Birthday Paradox formula. Almost 20 million different hashes 

must be generated to have a 50% chance of a hash collision with an existing VBA. 
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Chapter 6 Discussion 

6.1 Synergistically Integrating Both Protocols 

VBA processes dictate the validation of LL2IP bindings based on IEM, typically 

requiring that NDAR transactions always return the correct LLIDs for specified target IPs. 

Without VBA, nodes are free to express any NDAR transaction LLIDs and IPs (leading to traffic 

redirection attacks). Without ND sessions, there is no guarantee of identity beyond claiming and 

responding from a particular link-layer address. ND Session Options may be integrated 

harmoniously with VBAs, but they are not a requirement and will in practice add some degree of 

extra complication to NDAR exchanges. 

Any extra complications introduced by these proposals are minimized for the sake of 

simplicity. The state-heavy nature of hash chaining with sessions is again considered a trade-off 

for allowing NDAR transactions to be fully guaranteed end-to-end. This is instead of requiring 

the deployment of more complex implementations or other capable network middleware and 

infrastructure. If ND Session Options are deployed in parallel with VBA, implementations will 

always verify or enforce the VBA before checking any session state information or options. If a 

reported VBA LL2IP binding does not verify through a receiver’s shim, its failure should not 

affect any sessions, active or not. Figure 27 presents the benefits of deploying both VBA and ND 

sessions together on the same local network. 
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Figure 27. A few scenarios are detailed which demonstrate why integrating ND sessions and 

VBA together in the same IPv6 local network will serve to protect neighbors from falsification 

and impersonation attacks. Where the shortcomings of one proposal exist, another can assist. 
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6.2 Precomputing VBA Address Collisions 

In networks without any RA Guard capabilities, malicious nodes have a chance to usurp 

the VB and to introduce their own abusive vouchers. Denial of service notwithstanding, 

malicious VBs are not able to further any goals aimed at ND Redirection attacks without 

infeasible time-memory tradeoffs. Control over the key derivation algorithm parameters and the 

voucher seed affords the opportunity to minimize the baseline difficulty of computing a hash 

collision, but only to an extent where the correct collision-producing link-layer identifiers must 

yet be discovered for neighbors with dynamic addresses. 

Consider a legitimate network using the Argon2d key derivation algorithm with a 

pseudo-random voucher seed, which is then successfully hijacked by a malicious neighbor. 

Using a known and static seed, the attacker can pre-compute a set of rainbow tables for all 

possible link-layer address bindings with a specific set of low-difficulty, computationally trivial 

Argon2d parameters. Selection of an iterations-count is determined at each network node and is 

not controllable by the attacker. Therefore, indexing a set of predetermined results would require 

a repository of knowledge containing derivations from all possible link-layer identifiers (48 bits 

for MAC addresses), multiplied by the possible iteration values (a 16-bit value) for each 

generated network address. 

 248 by 216 = 264 = 18,446,744,073,709,552,000 hashes 

 

In the case specific to MAC addresses as link-layer identifiers: if each result stored only 

the necessary 48 bits extracted from the derived key, then storage requirements per hash lookup 

in the rainbow table would total: 
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MAC Address (48 bits) 

  + Iterations Count (16 bits) 

  + Hash Result Slice (48 bits) 

 = 112 bits or 14 bytes 

 

For 264 rainbow table entries at 14 bytes each, 258,254,417,031,933,722,624 bytes, or 

about 224 EiB (exbibytes), of storage space would be required. 224 EiB is roughly equivalent to 

2 million 128-TiB enterprise-grade storage arrays in sequence: an incomprehensible amount of 

data. If each hash were to require only 1 microsecond to compute, 8183.589 millennia of 

computation time would be required to calculate all possible values, longer than any conceivable 

amount of time on a human scale. 

For more perspective, in an evenly distributed workload, 100,000 nodes would need to 

operate at full throttle for almost 82 years to generate all the desired information. Finally, this 

data would need to be readily cross-referenceable because finding a collision necessitates using a 

different input link-layer address than the one used by the legitimate node, by principle of link-

layer address uniqueness on-link. All of these preemptive calculations assume the subnet prefix 

is also statically precomputed with the typical link-local scope value of FE80::/64. Any change 

of the subnet prefix value requires an entirely new set of data at 224 EiB in size. 

While pre-calculation is not an issue in a practical sense, it is theoretically possible to 

generate these tables, even to a partial degree, to pre-compute some of the work required. 

Likewise, it is not inconceivable to be able to have them readily available in an indexed database 

at some arbitrary future time. Of course, such a future time must necessarily represent a 

fundamental difference from the technologies available at the time of this research. In the best 
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interest of future-proofing the work of Voucher-Based Addressing, and to evade the absurdity of 

these considerations altogether, all deployments should strongly consider using Router 

Advertisement Guarding per [44] to assist in preventing these attacks. Guarding against rogue 

Voucher Bearers disallows all illegitimate voucher hijacking and abates these concerns 

altogether, because the voucher seed will not be fixed. 

 

6.3 Recognized Gaps & Issues 

Voucher-Based Addressing is a straightforward address derivation methodology that 

produces outwardly random addresses from key components only known to neighbors. Thanks to 

the certainty of MAC address uniqueness on any functional local network, VBA builds atop a 

strong foundation for preventing subversive traffic redirection attacks where neighbors attempt 

to spoof other neighboring link-layer addresses. This same principle applies to the necessary 

local uniqueness of any link-layer addressing scheme. VBA can also function as specified in 

environments with a pool of static address assignments, using flexible IEMs and/or static 

Neighbor Cache entries to remain viable. However, the certainty of VBA security rests upon two 

important concepts that should be explored in more detail: trust on first use and active-node 

impersonation protection. 

Trust on first use mechanisms, as applied to both ND sessions and VBA, are a 

considerably weak form of trust. This is especially true since the rendition employed by this 

research does not require any user interaction or configuration to establish the initial trust (i.e., 

the traditional manner by which TOFU is generally applied). Neither VBA nor ND sessions can 

be considered a fully trusted solution to the problem without some form of centralization and 

authority delegation, such as the SEND/CGA utilization of digital certificates, which this work 
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has sought to evade. This research consciously introduces two newly proposed NDP 

amendments with a recognized tradeoff of ‘soft security’, for the sake of increased simplicity and 

immediate, transparent practicality. 

Another concern is inactive node impersonation, where nodes who go offline for one 

reason or another are directly impersonated. VBA is susceptible to this problem at any time 

because link-layer address impersonation on an insecure link layer defeats any effectiveness of 

validating LL2IP bindings during address resolution. ND sessions seek to mitigate this issue by 

requiring ZKP in the process of using RHCR, but between a receiving node’s REACHABLE and 

STALE cache states for its peer, anything can theoretically assume the link-layer address of the 

peer and still be considered valid. 

One suggested but prohibitively costly fix for this is to enforce an extremely regular 

interval for Session Reachability Confirmations; almost to the point that any new data exchanges 

with session peers should always verify SRCs within ten seconds of one another. Increasing the 

rate at which NDSOs must be provided back and forth between Session Nodes does increase the 

randomness (but also the frequency) of the Root Hash revelation in RHCR. Again, it is not 

without its costs to increase the rate at which hash chain details must be formed and rotated. This 

is unfortunately an inherent problem with the methodology used by VBA and ND sessions; it 

should be further examined or improved in future research endeavors. 

 

6.4 Examining the Threat Model 

The introduction of VBA satisfies the concerns listed in the original threat model from 

Section III. VBA relies on the principle of LLID uniqueness on the same broadcast domain, and 

thus threat actors cannot subversively spoof another node’s legitimate LLID without introducing 
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obvious network disruptions. Since all deterministic VBA generations depend upon the node’s 

supposed LLID given during NDAR transactions, two nodes who cannot share the same LLID 

will never be successfully verified by neighbors for the same IP address. Whether or not the link 

layer is secure, VBAs are still necessary to validate bindings between IP and link-layer address 

components during address resolution. 

Threats due to insecure link layers resulting in direct impersonation of neighbors are 

addressed by the employment of Neighbor Discovery Sessions. Though a secure link layer is not 

necessary for VBA to function, threat actors interested in stealthily intercepting packets and data 

can still take advantage of insecure link layers. Sessions mitigate this problem after each 

successive reachability confirmation is required and received, by ensuring the corresponding 

node must persist its known identity (i.e., ZKP information) between reports of NDAR 

transaction details. 

Threats from external, off-link nodes are mitigated by VBA because IP addresses are the 

result of hashing algorithms, which generally produce pseudo-random outputs. External nodes 

will not be aware of the voucher details incorporated into the final address: the stored state 

required for address generation consists of local-only information, so the threat is abated. VBAs 

can also be rotated to an entirely new, valid address by changing the work factor value (i.e., 

iterations count) embedded within the address, even if no other parameters or voucher 

information has changed. 

 

6.5 Simplicity, Privacy, & Flexibility 

The introduction of VBA and ND sessions aims to produce a protocol amendment that is 

specifically tailored to solve the NDP Neighbor Redirection security vulnerability. As the 
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original goals of this research stated, this effort seeks to ensure the resulting solution maintains 

three core ideals: simplicity, privacy, and flexibility. In this brief section, the work of this 

research will be fairly evaluated using the same ‘measuring stick’ instantiated in Chapter 2, in 

order to determine the adoption potential of VBA and NDSO. A justification is fairly provided to 

explain why simplicity, privacy, and flexibility are indeed goals achieved by the introduction of 

these two independent protocols. 

 Simplicity is the key to drawing audience attention to a protocol or idea; complexity can 

be understandably intimidating. Solutions of the past which have found themselves too complex 

or difficult to implement have been buried by the sands of time and relegated to a lifecycle filled 

with only academic citations and no concrete manifestations. Voucher-Based Addressing is a 

simple scheme because it does not require huge, mandatory impacts to Neighbor Discovery that 

cause disruptions in the network or at the neighbor-to-neighbor level. With a mixture of Interface 

Enforcement Mode selections, a broadcasted Link Voucher, and already-present details about a 

node, addresses can be generated and verified using a procedure that is easy to follow and 

implement. 

The address verification shim process is a small snippet of software that carries the entire 

weight of VBA, modifiable with one simple per-interface setting (the IEM). The simplicity of 

ND sessions is arguable, however. While a subjective evaluation might indicate that Reverse 

Hash Chain Revealing is a convoluted and needless concept, it is in fact easy to implement and 

maintain once sessions have been initialized successfully. This is thanks to the independence that 

each hash chain preserves from one another on each side of an ongoing session. Sessions 

measurably achieve simplicity because they are low-impact overlays on top of ordinary NDP 
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traffic, only necessary based on the dictation of the Session Node Interface Configuration Modes 

involved during end-to-end NDP exchanges. 

Privacy is important to establish properly and consciously in proposals that determine the 

unicast generation of interface IP addresses, whether local or global scope. It is also an 

unfortunate afterthought of many proposals and research which would otherwise provide 

excellent protection. VBA manifests privacy in its ability to generate outwardly pseudo-random 

addresses to nodes off-link, while still providing enough information to direct neighbors to 

reconstruct and validate the address locally during NDAR transactions. VBAs have no flags or 

other magic values which indicate that they are VBAs, adding to their obscurity. 

The VBAs assigned to a local interface stem from a one-to-many pairing of the interface 

LLID to its assigned output address(es) coupled with a set of node-selected iterations counts. 

This means a node is free at any time, even if the Link Voucher has not rotated, to choose a new 

interface identifier which shares no correlation to another chosen iterations count, defeating 

address tracking concerns. VBAs originating from the same input parameters with varying 

iterations counts cannot be used to determine the internal state of the VBA algorithm (and thus 

the details of the interface’s link-layer address or current Link Voucher), because a hashing 

algorithm generates most of the final address suffix. Perhaps less prone to privacy violations, ND 

sessions are by nature private because NDSOs exist primarily in unicast messages to neighbors 

on-link. The NDSO messages themselves provide no identifying information about a sending 

node that cannot otherwise be known by already being a local neighbor. 

Finally, flexibility is a paramount concern for researchers seeking adoption of their 

proposals. Any specification that mandates an immediate, wholesale, strict adherence to itself is 

bound to fail. Networks are built to be dynamic, independent, and transitionable between various 
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protocols and specifications, and any particular node may be at its own stage in deployment of a 

software or specification, especially if the item is end-to-end. Any proposal which severs that 

transition capability will never see adoption because forced compatibility cannot be considered 

‘compatibility’ in the first place. 

VBA and ND sessions both employ IEMs and ICMs to this purpose, respectively. The 

various interface modes allow an operating neighbor to decide which policies to enforce based 

on local settings or autoconfiguration alone, enabling per-interface choices about what 

specifications to adhere to. These same interface modes are defined on a sliding scale of 

strictness, where more lax solutions behave as though the proposal (VBA or ND sessions) is 

disabled and more strict solutions have no tolerance for neighbors that do not adhere to its 

requirements. 
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Chapter 7 Conclusion 

7.1 Future Work 

The addition of Voucher-Based Addressing and Neighbor Discovery Sessions to the 

standardized form of NDP constitutes two decoupled, complementary solutions to only one of 

the many problems NDP faces. As Chapter 2 has reviewed, NDP is subject to an array of 

exploitable weaknesses from two major categories: spoofing and flooding [6]. Some more 

specific issues falling into these categories include RA/RS flooding attacks, rogue routers, 

NA/NS flooding, illegal or spoofed redirections, RA spoofing, and neighbor spoofing. The 

application of VBA aims to mitigate neighbor spoofing, which is arguably one of the more 

threatening vulnerabilities of NDP that requires an end-to-end solution. This is because neighbor 

caching occurs at each network endpoint rather than being a more distributed process like the 

seeding of Router Advertisements. ND sessions simply fortify the protections against neighbor 

spoofing provided by VBA. 

The introduction of these two synergistic works in this research concocts an optional 

amendment to Neighbor Discovery that is intentionally trivial and simple to implement. In a 

single introductory specification, however, there is no terse way to iterate all possibilities for the 

deployment contexts of the two solutions, whether applied together or separately. Future works 

should aim to evaluate a few key areas of both VBA and ND sessions: how they affect current 

security in networks using non-standard protocols (e.g., not using MAC addresses at the link 

layer), how their specifications can be extended to include various other situations and 

integration with alternative security mechanisms, and how they might overall not be sufficient 
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for their intended purposes. An analysis of how VBA and ND sessions might apply to the 

context of current NDP security concerns is also warranted. These topics could represent 

baseline research questions that might extend into the discovery of a better means by which the 

goals of this work may be accomplished. The subsections below will serve to initialize this 

conversation. 

 

7.1.1 Voucher-Based Addressing 

Deployments using DHCP 

VBAs are designed primarily for SLAAC-based environments and thus no research or 

work has been done to examine their integration with DHCP servers. Future work might 

wish to add features into DHCP servers that support VBAs, using something like DHCP 

Snooping to ensure that only legitimate servers are delegating addresses to neighbors. 

Because of its centrality and responsibility, a DHCP server would also function well as 

the link VB if no link router has support available for VBA. 

One notable change of generating VBAs on the server-side is that the ability for client 

nodes to self-determine an IC value dynamically is no longer available. Allowing nodes 

to choose their own ICs affords them the ability (1) to randomize the value according to 

their own implementations and (2) to preserve a Preferred Iterations Count. In some 

future research, DHCP client options might be amended to allow a client to request a 

certain 'security level' or IC dynamically. Such an option could also present an 

opportunity to exchange other information about client preferences or other important 

VBA details. 
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Neighbor Discovery Proxies 

RFC 4389 [64] specifies a Neighbor Discovery Proxy as a network-layer device or 

software used to provide a presence for nodes who have gone off-link or have always 

been residents off-link. This is supposed to stand in lieu of a classic link-layer bridge. 

Due to link-layer binding, VBA does not support ND proxying in its design unless the 

proxy is also able to spoof the LLIDs of all the target nodes. These spoofed LLIDs would 

need to appear on the interface attached to the link on which it must receive and answer 

ND packets. One solution to enabling ND proxy while keeping the rest of the network 

secure might be to apply the same strategy used for static addressing and create manual 

cache entries. Another solution might be to enable the AVGL IEM on the nodes which 

are required to transact with the proxy. Support for ND proxies is not very well defined 

by this specification, as it conflicts with one of its primary goals. Future experimentation 

may wish to uncover ways by which this could be non-disruptively integrated into VBA-

enabled networks. 

Certifying Link Vouchers 

Link Vouchers are susceptible to impersonation despite the use of asymmetric 

cryptography in signing their details. Once a node acquires an LV and reads the public 

key details of its newly-active voucher, it becomes 'locked' to this key until some 

expiration or transition event occurs later. Subsequently, the node will not accept LVs 

from senders who are not employing the same key information in their option signatures, 

unless the current LV expires or a VHA is issued. However, the initial exchange between 

a VB and a neighbor is still vulnerable, because any malicious node on-link could craft a 
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public key for its own LV and advertise it, if the node is not first blocked by 

infrastructure-based solutions like RA-Guard. 

Section 6 of RFC 3971 [16] dictates the use of Public Key Infrastructure to ensure 

communication is genuine between hosts and routers, and that each router is authorized to 

provide router information. Trust anchors are used to determine whether a certificate 

presented by a router validates its role in SEND. If the router presents a certificate that is 

trusted by the anchor, then on-link hosts sharing the same trust anchor must consider it as 

legitimate. The same validation of certification paths can also be used to verify ND RSA 

Signature options between on-link hosts. Establishing certification paths that validate 

SEND traffic is done through the use of two new ICMP messages presented by the SEND 

specification: 

● Certification Path Solicitation (ICMP type 148). Solicits routers with a set of trust 

anchors and expects an advertisement including certificates authorized by one or 

more of the trust anchors. 

● Certification Path Advertisement (ICMP type 149). Routers use these to respond 

to valid solicitations indicating the need for one or more certificate(s) from a set 

of specified Trust Anchor options. 

Future additions to this research may invoke these ICMP options to integrate with public-

key signatures appearing on LVs. This might include amendments to the ND LV option 

that would extend the field by some extra length in order to convey trust anchor or 

certification path information. Similar amendments might simply consider adding 
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certification path information to LVs and letting each neighbor use their own certificate 

stores to validate them. 

While VBA vehemently seeks to dodge the complexities introduced by certificates and 

trust anchors, this supporting infrastructure might be crucial for first-contact trust 

assurance wherever RA-Guard or similar mechanisms cannot be used to protect the link 

from malicious VBs. This is likely a much more performant use of certification paths 

than SEND, simply because the trust of a public key only needs to be verified one time at 

each receiver when an initial LV, or LV handoff packet, is received and stored. Such an 

amendment to LV options is beyond the scope of this work. 

It is instead suggested as future work to design an optional certification path amendment 

for VBA, to make them a more secure, isolated, and end-to-end solution. This is opposed 

to only relying on automatic Trust on First Use mechanisms. Adding these certification 

paths will draw VBA closer into the territory of more canonical solutions which already 

exist for ND security issues. Again, care should be taken to keep them optional to 

preserve the principles of flexibility and simplicity. 

 

7.1.2 Neighbor Discovery Sessions 

The concept of Neighbor Discovery sessions is a novel suggestion that permits cheap 

proof of knowledge authentication to be applied at a level considerably lower than the transport 

layer. However, as discussed prior, it comes with many risks that might not outweigh its reward, 

especially considering a similar assurance is alternatively provided by CGAs and RSA Signature 

NDP options. Future research may wish to explore various means to secure the transitions used 
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between each Session Node’s Hash Chains. The direct revelation of Root Hashes is risky 

business that puts the integrity of an established session at risk every time it is revealed, since 

doing so is essentially done ‘in the clear’. 

Future research may also wish to explore how Trust on First Use could be a more one-

shot transactional experience between two nodes that establishes some baseline for future 

communication. For example, rather than using Reverse Hash Chain Revealing or Zero-

Knowledge Proofs at all, some form of symmetric key exchange might happen during the initial 

communication between two neighbors. Since Trust on First Use is already accepting the first 

communication with a neighbor as ‘secure’ enough to instantiate a new session without further 

initial proof, the same level of security will apply to the first communication establishing a 

known symmetric key. Doing so will prevent the need for irregularly revealing a risky 

‘password’ (i.e., Root Hash) when the current token chain is sufficiently depleted, to move to a 

new set of renewed credentials. However, using a symmetric key could come with risks of mid-

session key compromise or session staleness if the key is not regularly rotated somehow. An 

additional concern is how to recover from session lockouts if each Session Node were to use a 

symmetric key value. Again, future research might explore the implications of forming such a 

strategy over choosing to use ZKP at all. 

 

7.2 Towards Robust NDP Security Solutions 

The security weaknesses faced by Neighbor Discovery should be a much more pressing 

concern to security research and practical, security-conscious network administrators alike. Since 

the typical architecture and model of any computer network rests upon a layering concept, 

implying there are fundamental network layers which increase in abstraction as the layers 
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increase, the existence of trivially exploitable vulnerabilities at a lower layer diminishes the 

security of layers atop it. NDP exists somewhere near the baseline link-layer abstraction to 

provide a sort of glue between link-layer discovery mechanisms and the Internet Protocol 

network ‘above’ it. Thus, at such a low level, few mitigations can guarantee any security in more 

abstract, higher layers such as application- and transport-stack protocols; risk is always present 

and lurking. 

Transport Layer Security (TLS) and other Secure Socket Layer (SSL) technologies 

relying on digital certificates and certificate authorities with trust anchors can provide adequate 

protection against sniffing of higher-layer packets. The same can be said for any type of end-to-

end encryption model guaranteeing confidentiality, but not all traffic is guaranteed to be securely 

encrypted. Any degree of falsification at the link-layer or the network layer can wreak havoc on 

the fidelity of communication when a malicious threat actor is transparently snooping through 

unencrypted packets and modifying them. While the attack surface at the link-local scope is 

decreasing over time as encrypted communications become more commonplace, there is still a 

significant amount of cleartext data exchange occurring in local networks. And if a neighbor 

cannot be trusted, who else can be but oneself? 

If the non-confidentiality of communication in local networks was not enough risk, there 

is also the separate risk of protocol abuse leading to denial-of-service attacks. Through various 

means and prepackaged techniques, a threat actor can exploit either native Neighbor Discovery 

or SEND systems with ease to lay waste to local networks from a single controlled node. Not 

only can these attacks cause neighbors to shut down from an overwhelmed processor or to 

disconnect from the network due to flooding: they are sometimes the direct cause of Neighbor 

Redirection attacks in the first place. 
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There is no tangible velocity towards the adoption of a robust security solution that can 

provide any degree of surety beyond native NDP in local IPv6 networks. It seems as though 

these security weaknesses have long been covered and patched over with a cocktail of willful 

ignorance and idle hands. SEND and CGA have proven over the course of decades to be 

undesirable and too complicated or esoteric for most practical applications, in a realm such as 

IPv6 that is already fearsomely alien to laymen. Network monitoring solutions require consistent 

involvement and interference by administrators who ultimately ‘just want it to work’ so they can 

have peace of mind. Other proposals to fix NDP weaknesses have either remained in obscurity, 

are too complex, or fail to focus specifically on their practicalities and acknowledge their own 

shortcomings. 

The real fix to these weaknesses is to create and subsequently adopt robust NDP security 

solutions which provide a trinity of attributes: simplicity, privacy, and flexibility. A solution 

lacking one or more of these three properties will not be preserved in the long-term without 

painstaking effort, as time has already proven. Voucher-Based Addressing and Neighbor 

Discovery Sessions seek to establish themselves as two proposals which highlight these 

attributes and individually target their specific goals, rather than trying to remediate all complex 

issues of the protocol at once. Until each specific solution provided by future researchers can 

provide these three facets as headline items, the security of NDP will be left in its current hellish 

limbo. 

 

7.3 Final Thoughts 

Voucher-Based Addresses bind input link-layer addresses to sets of private, deterministic 

output addresses that can be reconstructed by verifying neighbors on the local link to confirm a 



168 

 

reported binding in NDP transactions. Address generation and verification is constrained to some 

initial conditions by a Link Voucher, in addition to a window of computation time by usage of 

key derivation functions, based on parameters agreed upon by peers. This consensus on VBA 

generation parameters acts as an enforceable handshake between neighbors during the NDP 

Address Resolution process. This process is not actively falsifiable without introducing obvious 

network disruptions, thus preventing malevolent attackers on the local network from 

subversively intercepting or modifying traffic between neighbors. 

Likewise, Neighbor Discovery Sessions introduce an element of identity verification to 

NDP transactions by enforcing an end-to-end session overlay between two nodes. They were 

conceived to prevent the ‘killed node’ issue–noted as a glaring weakness of VBA–and they do so 

by employing a Reverse Hash Chain Revealing authentication mechanism to provide neighbors 

with on-demand Zero-Knowledge Proofs. The requirement for implementing sessions mandates 

more caching overhead to accommodate session states, slightly more NDP traffic in the form of 

NUD NS or NA messages, and a single new NDP Option with an uncomplicated structure, 

enforceable by neighbors according to their Interface Configuration Modes. 

Voucher-Based Addressing and Neighbor Discovery Sessions each describe simple, 

unique, transparent, privacy-conscious, and flexible standards for use in Neighbor Discovery 

Protocol transactions. This proposal is best suited for a deployment which cohesively integrates 

and enables both technologies on capable devices, according to the transition guidelines and 

implementation samples provided. Both items clearly express the problems they are appointed to 

solve along with their use cases, and thus may be applied individually on a case-by-case basis. 

Though the solutions presented in this research maintain a high level of abstraction and do not 

beget very much concrete and practical evidence of their practicalities, there is a pressing need 
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for a low-configuration, low-complexity technology to fill the security void left by the absence 

of SEND and CGA adoption in the modern enterprise. 

The intent of this research within the wider internet community is not to declare an 

ultimate solution to the security and privacy issues faced by NDP–though it may perhaps be a 

suitable baseline–but rather it is to draw attention to a longstanding security issue and to spur 

thought for future research to build upon. Future developments based upon these concepts and 

frameworks might continue to focus on how they could be refined or better implemented, which 

vulnerabilities they introduce, any gaps in their theory or practice, and how the cross-application 

of each technique could be applied otherwise. 

There are yet-unfulfilled plans for decoupled implementations of VBAs and NDSOs in a 

public fork of the Linux kernel. This stands in addition to tentative concrete and technical 

specifications which will be submitted to the IETF as Internet Drafts for Experimental RFC 

candidacy. This is a process which will elevate this research to the attention of other field experts 

directly involved in the development and maintenance of IPv6 and its adjacent protocols. Other 

researchers are encouraged to critique, reconstruct, or review this work and to explore other more 

modern approaches to securing the NDP Address Resolution process from on-path attackers. 

Finally, research should continue to apply alternative approaches to link-layer address resolution 

and not settle for existing, stale solutions; making full use especially of the generous amount of 

space IPv6 addresses grant for embedding helpful authentication details. 

To conclude, the broad goal of this research is to define an alternative to SEND and 

CGAs which can work synergistically to solve the address ownership problem in local IPv6 

networks. It pragmatically harmonizes three important attributes: privacy, flexibility, and 

simplicity. This work has set out to molt the NDP security paradigm that has continued to 
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depend upon sophisticated Public Key Infrastructure, limiting infrastructure-only protocols, 

unwieldy asymmetric cryptography, and centralized address registration authorities. This 

research has therefore defined a decentralized and empirical approach that mostly evades the 

aforementioned tar pits and creates a new perspective on NDP security problems with tangible 

solutions. Lastly, VBAs and NDSOs measurably solve problems of address ownership in the vast 

majority of conceivable IPv6 deployment scenarios, in a way that is privacy-focused, wholly 

transparent to end users, and not at all disruptive to incompatible neighbors. 
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Appendix 1. Sample Implementation for VBA Generation & Verification 

This sample implementation of VBA generation and verification can be used as a 

reference to better understand the mechanisms used to service and validate addresses. Note that, 

despite this implementation’s use and assertion of a ‘mac_address’ array of bytes, VBAs are not 

strictly coupled to using MAC addresses as bindings from the link layer (Section 3.2.4). As long 

as both hosts in the NDP exchange are using the same link-layer addressing schema, or have 

communicated such information prior to the verification process, verification will not fail due to 

any form of confusion in computation. MAC addresses are chosen for this figure due to their 

ubiquity, but any length salt is theoretically allowable provided the entirety of the link-layer 

address from the parsed NDAR transaction is placed into the beginning of the aggregate ‘salt’ 

array of bytes. 

 

uint64_t compute_address_hash_suffix(uint8_t *voucher_seed, 

                                  uint8_t *mac_address, 

                                  uint16_t iterations, 

                                  VbaAlgorithm algorithm) { 

 /* 

  * Initialize a storage buffer for the resulting hash. 

  *   All hashes requested for generation by VBAs will be 32 bytes in length, 

  *   despite the algorithm only using the leading 64 bits. 

  */ 

 size_t res_buffer_size = 32; 

 uint8_t res_buffer[32] = {0}; 

 

 /* 

  * The 'password' is always the 128-bit voucher seed. The salt is a combination 

  *   of a LLADDR (MAC in this case) + 'vba' + the 64-bit subnet prefix (or 

  *   left-most 64 bits of the unicast address that will be built). 

  *   This example application uses "fe80::" for the subnet prefix. 

  *   All values are big-endian (network byte order). 

  */ 

 uint8_t salt[VOUCHER_SALT_LENGTH] = { 

         /* MAC (6 bytes) */ 

         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

         /* Static 'vba' (3 bytes) */ 

         'v','b', 'a', 

         /* Subnet prefix (8 bytes */ 

         0xFE, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

 }; 
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 memcpy(&salt[0], &mac_address[0], 6); 

 /* memcpy(&salt[9], &subnet_prefix[0], 8); */ 

 

 /* 

  * Many of the 'fixed' values below are actually disseminated from 

  *   voucher details, such as the Argon2 Memory cost and parallelism degree. 

  * 

  * This sample, per results in experimental data, tries to use values which 

  *   result in somewhat consistent computation times across varying levels 

  *   of computing power. 

  */ 

 switch (algorithm) { 

     case PBKDF2: 

         PKCS5_PBKDF2_HMAC((const char *) voucher_seed, 

                           VOUCHER_SEED_LENGTH, 

                           salt, 

                           VOUCHER_SALT_LENGTH, 

                           iterations * PBKDF2_ITERATIONS_FACTOR, 

                           EVP_sha256(), 

                           res_buffer_size, 

                           res_buffer); 

         break; 

     case ARGON2: 

         argon2d_hash_raw((iterations >> 8) + 1, 

                          ARGON_MEMORY_SIZE,   /* LV parameter; N */ 

                          ARGON_PARALLELISM,   /* LV parameter; p */ 

                          voucher_seed, 

                          VOUCHER_SEED_LENGTH, 

                          salt, 

                          VOUCHER_SALT_LENGTH, 

                          res_buffer, 

                          res_buffer_size); 

         break; 

     case SCRYPT: 

         /* https://www.tarsnap.com/scrypt.html */ 

         libscrypt_scrypt(voucher_seed, 

                          VOUCHER_SEED_LENGTH, 

                          salt, 

                          VOUCHER_SALT_LENGTH, 

                          MAX(1 << (iterations & 0x00FF), 2) 

                             << SCRYPT_SCALING_FACTOR,   /* N */ 

                          MAX((iterations & 0xFF00) >> 4, 16) 

                              << SCRYPT_SCALING_FACTOR,   /* r */ 

                          1,   /* p */ 

                          res_buffer, 

                          res_buffer_size); 

         break; 

     default: 

         fprintf(stderr, "Unknown algorithm type.\n"); 

         return -1; 

 } 

 

 /* Always use the first 8 bytes (64 bits) of the resulting hash. */ 

 uint64_t hash_H = *((uint64_t *) &res_buffer[0]); 

 

 /* Get the first two bytes of the current Link Voucher seed. */ 

 uint16_t first_seed_hextet = (voucher_seed[0] << 8) | voucher_seed[1]; 

 printf("FH: %04x /// IC: %04x\n", first_seed_hextet, iterations); 

     

 /* Compute the 'Z' value and overwrite the first hextet of hash 'H'. */ 

 return 

           ((uint64_t)(~(iterations ^ first_seed_hextet)) << 48) 

               | (0x0000FFFFFFFFFFFF & hash_H); 

} 

 

/* A method used to verify a VBA. */ 

bool verify_address_suffix(uint64_t suffix, 

                           link_voucher_t *lv, 

                           uint8_t *mac_address 

                           uint8_t *subnet_prefix) 

{ 
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    /* First extract the 'L' value from 'Z' in the input SUFFIX. */ 

    uint16_t first_seed_hextet = (lv->seed[0] << 8) | lv->seed[1]; 

    uint16_t iterations = 

        (uint16_t)((~(suffix ^ first_seed_hextet) >> 48) & 0xFFFF); 

 

    /* Now independently compute SUFFIX like the generator does. */ 

    uint64_t computed_suffix = compute_address_suffix(lv, 

                                                      mac_address, 

                                                      subnet_prefix, 

                                                      iterations); 

 

    /* If the independent calculation yields the same suffix as the 

        input, then the binding for this LV is legitimate. */ 

    return computed_suffix == suffix; 

} 
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Appendix 2. Sample Implementation for VBA Collision Detection 

A sample implementation for attempting to find VBA collisions is given in this section. 

The “pthread” library is used to generate up to any precompiled number of threads to operate 

simultaneously, attempting to discover collisions with one of two different methods: random and 

ordered. As its name suggests, the random method blindly selects a random sequence of 48 bits 

to input into the VBA generation algorithm. Conversely, the ordered method assigns blocks of 

MAC addresses to attempt for each thread, with no MAC address overlap, thus allowing the 

entire 48-bit space to be slowly and simultaneously walked by the program. 

The data structure of type worker_ctx_t holds all necessary context to be passed to child 

threads upon instantiation. Based on the operation type, some fields of the context object may 

not be used. Any thread discovering a collision-generating input MAC address will set the 

reference to the match_found_sync_bool in the main thread of the program to a True value, 

indicating that some worker thread has successfully mined and produced a collision-generating 

MAC address. 

 

/* Thread context data passed to each started thread. */ 

typedef struct _worker_ctx { 

 pthread_t thread_handle; 

 unsigned int id; 

 uint64_t starting_mac; 

 uint64_t ending_mac; 

 uint8_t* voucher_seed; 

 uint64_t legitimate_suffix; 

 uint16_t iterations; 

 VbaAlgorithm algorithm; 

 bool* match_found_sync_bool; 

} worker_ctx_t; 

 

 

/* 

 * This is it. Attack the protocol and see how long it takes to find a collision. 

 *   Since iteration counts are fixed into a node's address, that value must 
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 *   remain static throughout the duration of the test. 

 * 

 * Therefore, if a node chooses a high iteration count, it is prohibitively costly 

 *   for attackers to determine a 48-bit collision in any reasonable time. 

 * 

 * Optimizations to this cannot come from time-memory tradeoffs, but can possibly 

 *   come from restricting the input set of MAC addresses to those allowed for 

 *   normal network nodes (e.g., skipping link-layer Multicast and Broadcast MACs). 

 * 

 * For the sake of attack completeness, invalid MAC ranges will be SKIPPED when 

 *   attempting to find a collision through the "Ordered" methodology. 

 *   See: https://www.rfc-editor.org/rfc/rfc7042#section-2   

 */ 

static inline void 

_find_collisions(VbaAlgorithm algorithm) 

{ 

    bool is_random_match = false; 

    bool is_ordered_match = false; 

 

    for (int i = 0, j = 0; i < FIXED_ITERS_COUNT; ++i, j += 2) { 

     uint16_t iterations = _fixed_iter[i]; 

 

     printf("For '0x%04x' (%d) iterations.\n", iterations, iterations); 

 

     uint64_t legitimate_hash = 

         compute_address_hash_suffix(_stable_voucher_seed, 

                                     _stable_mac_address, 

                                     iterations, 

                                     algorithm); 

 

     uint64_t legitimate_suffix = build_address_suffix(iterations, 

                                                       legitimate_hash, 

                                                       _stable_first_seed_hextet); 

 

     printf("\tGot address: "); 

     print_lladdr_from_suffix(legitimate_suffix); 

 

     printf("\n\tNow searching for a collision...\n\t\tRandom... \n"); 

 

     for (unsigned int x = 0; x < THREAD_COUNT; ++x) { 

         worker_ctx_t thread_ctx = { 

                 {0}, 

                 x + 1, 

                 0, 

                 0, 

                 &_stable_voucher_seed[0], 

                 legitimate_suffix, 

                 iterations, 

                 algorithm, 

                 &is_random_match 

         }; 

         memcpy(&_thread_contexts[x], &thread_ctx, sizeof(worker_ctx_t)); 

 

         pthread_create(&(_thread_contexts[x].thread_handle), 

                        NULL, 

                        _thread_routine_collision_random, 

                        &_thread_contexts[x]); 

     } 

     for (int x = 0; x < THREAD_COUNT; ++x) 

         pthread_join(_thread_contexts[x].thread_handle, NULL); 

 

     if (is_random_match) 

         printf("\n\n=== A RANDOM MAC ADDRESS FOUND A COLLISION! ===\n\n"); 

 

     /* ================================= */ 

     printf("\n\t\tOrdered... \n"); 

 

     for (unsigned int x = 0; x < THREAD_COUNT; ++x) { 

         worker_ctx_t thread_ctx = { 

                 {0}, 

                 x + 1, 
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                 x * MACS_PER_THREAD, 

                 ((x + 1) * MACS_PER_THREAD) - 1, 

                 &_stable_voucher_seed[0], 

                 legitimate_suffix, 

                 iterations, 

                 algorithm, 

                 &is_ordered_match 

         }; 

         memcpy(&_thread_contexts[x], &thread_ctx, sizeof(worker_ctx_t)); 

 

         pthread_create(&(_thread_contexts[x].thread_handle), 

                        NULL, 

                        _thread_routine_collision_ordered, 

                        &_thread_contexts[x]); 

     } 

     for (int x = 0; x < THREAD_COUNT; ++x) 

         pthread_join(_thread_contexts[x].thread_handle, NULL); 

 

     if (is_ordered_match) 

         printf("\n\n=== AN ORDERED MAC ADDRESS FOUND A COLLISION! ===\n\n"); 

 

     printf("\n\n"); 

 } 

} 
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Appendix 3. Sample Outputs from VBA Generation 

Sample implementation code was run from Appendix 1 to run various bench tests 

through experimentation with Voucher-Based Addressing. This appendix outputs some select 

snippets of raw logging information from the compiled and optimized runtime, showing how 

addresses are generated based on their various inputs. Cross-sections of the final VBA can be 

analyzed to reveal a few key ideas from the work in this research. 

The Z value of each address prefix can be easily reversed to find the input Z value by 

following the Z’ function mentioned in Chapter 4. The changing seed shows how the input L 

value is masked to a more privacy-focused value despite the iterations-count values being the 

same across the three different algorithms. Each generated address is significantly different from 

adjacent addresses using almost the exact same inputs, as a testament to VBA’s promised 

privacy and randomness. Lastly, input MAC addresses and final VBA prefix details can be 

inserted into each KDF algorithm (with the iterations count at each step) to calculate and prove 

the VBA generation process by hand. 

 

Algorithm #1 iterations '0x0100' (actual [x256]: 65536) ...  

Result: 0x3657223f6626464f 

    MAC Address: 11-22-33-44-55-66  Seed: 0xc8a87936a71bdca82bce74c9c2c54648 

    Final IPv6 Addr (lladdr): fe80::3657:223f:6626:464f 

    Duration:         16616 us   (    16.616000 ms) 

 

Algorithm #1 iterations '0x0200' (actual [x256]: 131072) 

Result: 0x3557e4070700f192 

    MAC Address: 11-22-33-44-55-66  Seed: 0xc8a87936a71bdca82bce74c9c2c54648 

    Final IPv6 Addr (lladdr): fe80::3557:e407:0700:f192 

    Duration:         29192 us   (    29.192000 ms) 

 

Algorithm #1 iterations '0x0300' (actual [x256]: 196608) ... 

Result: 0x3457aa0fad5b66cd 

    MAC Address: 11-22-33-44-55-66  Seed: 0xc8a87936a71bdca82bce74c9c2c54648 

    Final IPv6 Addr (lladdr): fe80::3457:aa0f:ad5b:66cd  

    Duration:         63230 us   (    63.230000 ms) 
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. . . . . 

 

Algorithm #1 iterations '0xfd00' (actual [x256]: 16580608) ... 

Result: 0xca57c836e7269b60 

    MAC Address: 11-22-33-44-55-66  Seed: 0xc8a87936a71bdca82bce74c9c2c54648 

    Final IPv6 Addr (lladdr): fe80::ca57:c836:e726:9b60  

    Duration:       4873968 us   (  4873.968000 ms) 

 

Algorithm #1 iterations '0xfe00' (actual [x256]: 16646144) ... 

Result: 0xc957218fc8d92d00 

    MAC Address: 11-22-33-44-55-66  Seed: 0xc8a87936a71bdca82bce74c9c2c54648 

    Final IPv6 Addr (lladdr): fe80::c957:218f:c8d9:2d00  

    Duration:       4742346 us   (  4742.346000 ms) 

 

Algorithm #1 iterations '0xff00' (actual [x256]: 16711680) ... 

Result: 0xc85780b7de0a9fd3 

    MAC Address: 11-22-33-44-55-66  Seed: 0xc8a87936a71bdca82bce74c9c2c54648 

    Final IPv6 Addr (lladdr): fe80::c857:80b7:de0a:9fd3  

    Duration:       4680291 us   (  4680.291000 ms) 

 

/////////////////////////////////////////// 

 

Algorithm #2 iterations '0x0100' (actual: 256) ... 

Result: 0x675f436c9960b49f 

    MAC Address: 11-22-33-44-55-66  Seed: 0x99a03c53d49ec845e0a0e113788c517a 

    Final IPv6 Addr (lladdr): fe80::675f:436c:9960:b49f  

    Duration:         29723 us   (    29.723000 ms) 

 

Algorithm #2 iterations '0x0200' (actual: 512) ... 

Result: 0x645f15d18526c18c 

    MAC Address: 11-22-33-44-55-66  Seed: 0x99a03c53d49ec845e0a0e113788c517a 

    Final IPv6 Addr (lladdr): fe80::645f:15d1:8526:c18c  

    Duration:         43377 us   (    43.377000 ms) 

 

Algorithm #2 iterations '0x0300' (actual: 768) ... 

Result: 0x655fc3b3f959a15a 

    MAC Address: 11-22-33-44-55-66  Seed: 0x99a03c53d49ec845e0a0e113788c517a 

    Final IPv6 Addr (lladdr): fe80::655f:c3b3:f959:a15a  

    Duration:         58880 us   (    58.880000 ms) 

 

. . . . . 

 

Algorithm #2 iterations '0xfd00' (actual: 64768) ...  

Result: 0x9b5fb16138b25099 

    MAC Address: 11-22-33-44-55-66  Seed: 0x99a03c53d49ec845e0a0e113788c517a 

    Final IPv6 Addr (lladdr): fe80::9b5f:b161:38b2:5099  

    Duration:       1137549 us   (  1137.549000 ms) 

 

Algorithm #2 iterations '0xfe00' (actual: 65024) ...  

Result: 0x985f70cd7f4aac5c 

    MAC Address: 11-22-33-44-55-66  Seed: 0x99a03c53d49ec845e0a0e113788c517a 

    Final IPv6 Addr (lladdr): fe80::985f:70cd:7f4a:ac5c  

    Duration:       1197668 us   (  1197.668000 ms) 

 

Algorithm #2 iterations '0xff00' (actual: 65280) ...  

Result: 0x995fba07c7bac059 

    MAC Address: 11-22-33-44-55-66  Seed: 0x99a03c53d49ec845e0a0e113788c517a 

    Final IPv6 Addr (lladdr): fe80::995f:ba07:c7ba:c059 

    Duration:       1172262 us   (  1172.262000 ms) 

 

/////////////////////////////////////////// 

 

Algorithm #3 iterations '0x0100' (actual: 256) ... 

Result: 0xe858206d745e95f6 

    MAC Address: 11-22-33-44-55-66  Seed: 0x16a78a4fc33f152504ef7f1a26077f65 

    Final IPv6 Addr (lladdr): fe80::e858:206d:745e:95f6  

    Duration:          8530 us   (     8.530000 ms) 

 

Algorithm #3 iterations '0x0200' (actual: 512) ... 

Result: 0xeb58c77fb102b5dd 
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    MAC Address: 11-22-33-44-55-66  Seed: 0x16a78a4fc33f152504ef7f1a26077f65 

    Final IPv6 Addr (lladdr): fe80::eb58:c77f:b102:b5dd  

    Duration:         17814 us   (    17.814000 ms) 

 

Algorithm #3 iterations '0x0300' (actual: 768) ... 

Result: 0xea58582fa5d0b1e5 

    MAC Address: 11-22-33-44-55-66  Seed: 0x16a78a4fc33f152504ef7f1a26077f65 

    Final IPv6 Addr (lladdr): fe80::ea58:582f:a5d0:b1e5  

    Duration:         27097 us   (    27.097000 ms) 

 

. . . . . 

 

Algorithm #3 iterations '0xfd00' (actual: 64768) ... 

Result: 0x1458137871909b3c 

    MAC Address: 11-22-33-44-55-66  Seed: 0x16a78a4fc33f152504ef7f1a26077f65 

    Final IPv6 Addr (lladdr): fe80::1458:1378:7190:9b3c  

    Duration:       2521439 us   (  2521.439000 ms) 

 

Algorithm #3 iterations '0xfe00' (actual: 65024) ... 

Result: 0x1758496315177377 

    MAC Address: 11-22-33-44-55-66  Seed: 0x16a78a4fc33f152504ef7f1a26077f65 

    Final IPv6 Addr (lladdr): fe80::1758:4963:1517:7377  

    Duration:       2677193 us   (  2677.193000 ms) 

 

Algorithm #3 iterations '0xff00' (actual: 65280) ... 

Result: 0x1658ae0dbe516501 

    MAC Address: 11-22-33-44-55-66  Seed: 0x16a78a4fc33f152504ef7f1a26077f65 

    Final IPv6 Addr (lladdr): fe80::1658:ae0d:be51:6501  

    Duration:       2601904 us   (  2601.904000 ms) 
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