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Abstract

On the promise of reducing human error and increasing road safety, the number

of autonomous vehicles (AVs) in the industry and on the roads is steadily rising.

However, this technology faces challenges in various scenarios, such as interactions

with AV drivers or in mixed traffic environments where AVs share the road with

conventional vehicles (CV), pedestrians, and bicyclists. In these situations, situation

awareness (i.e., the ability to perceive, comprehend, and predict the situation on the

road) is crucial to ensure road safety for all road users. To address this challenge, this

dissertation aims to design and evaluate explanations based on the theory of mind

to improve human-machine performance. The central hypothesis is that explanations

during human-machine interaction can provide the necessary information to resume

situation awareness, improving the joint performance of the human-machine team.

To achieve this objective, three fundamental questions were investigated: (1) how

should the AV assess the driver’s situation awareness to understand the need for ex-

planations, (2) how should the AV driver understand the state of mind of the AV

through explanations, and (3) how should the AV share information with CV drivers

through explanations. To tackle these questions, first, a machine learning model was

developed to predict the situation awareness of AV drivers in real-time using behav-

ioral, physiological, and self-reported data. A LightGBM (Light Gradient Boosting

Machine) model trained on the most critical predictors identified by SHAP (SHap-

ley Additive exPlanations) achieved promising performance. Next, an explanation

framework was proposed based on the situation awareness model and explainable AI.

The framework was tested in an online environment by evaluating participants’ sit-
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uational trust, cognitive workload, and explanation satisfaction. The results showed

that properly designed explanations based on the proposed framework assisted drivers

in unexpected situations, increased their trust in AVs, and improved their situation

awareness. Finally, external and internal HMI concepts were proposed to explore

the interaction between AVs and CVs in challenging situations and improve situation

awareness among CV drivers. The concepts were tested in a virtual reality environ-

ment using self-reported and physiological measurements. The findings revealed that

explanations were able to increase participants’ situation awareness and trust in AVs,

with the internal HMI perceived as the most effective.

Overall, this research aims to contribute new fundamental knowledge about how

to build situation awareness to improve human-machine performance by designing

and evaluating human-centered explanations, particularly in conditionally automated

driving. The research also seeks to enhance the relationship between humans and

technology in automated driving and other fields, such as manufacturing and medical

industries.
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Chapter 1 Introduction

This chapter establishes the foundation of the research and introduces the research

problem. Through reviewing the background information, this research is identified

as a situation awareness framework for communication between road users in mixed

automated and manual traffic environments, intended to propose a novel communi-

cation form that enhances the efficiency, interaction, and safety of autonomous and

conventional vehicles (CVs). Additionally, this chapter outlines the research objec-

tives, scope, and technical structure of the thesis.

1.1 Problem Statement

As autonomous vehicles (AVs) become more common on the roads, a mixed traf-

fic, where AVs share the road with other road users, is expected to become more

prevalent than the conventional traffic environment dominated by human-driven ve-

hicles. This transition of environment poses a number of challenges that need to

be addressed in order to support the mixed traffic, increase public understanding of

AV technology and ensure safe and efficient cooperation between road users. One of

the main challenges that AVs face in mixed traffic is communication (Bhavsar et al.,

2017), encompassing both intra-vehicle communication to facilitate cooperation be-

tween the AV and its human operator, and inter-vehicle communication to foster safe

and effective interaction with other road users, including CVs and vulnerable road

users (VRU), such as pedestrians and bicyclists. While increasing the automation
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level tries to enhance transportation safety, vehicles alone do not ensure complete

safety. Overall, safety of AVs is heavily reliant on the human-AV team performance.

Hence, it is crucial to enhance the communication in order to provide road users the

necessary information to make quick, informed decisions, enabling them to react to

any potentially dangerous situations as they arise. The decreased level of situation

awareness (SA) among road users in mixed traffic is a primary factor that neces-

sitates communication. This decrease negatively impacts their ability to perceive,

comprehend, and predict the situation on the road, leading to a range of critical is-

sues such as difficulties in establishing trust among road users, acceptance and use of

AV technologies, and the potential for serious and even fatal accidents (Choi and Ji ,

2015). Nevertheless, it is important to emphasize that road users (i.e., AV operator,

CV driver, VRUs, infrastructure ) in the mixed traffic environment differs with their

communication method, and have their specific requirements and needs.

1.1.1 Intra-vehicle Communication

Numerous studies have been carried out to understand how the level of automa-

tion impacts AV drivers, and emphasized that the advancement of automation level

in vehicles (Society of Automotive Engineers , 2018) shifts the responsibility of AV

drivers from control to monitoring or assisting, leading to a reduction in attention re-

sources allocated to driving and an increase in focus on non-driving tasks (De Winter

et al., 2014; Endsley , 2018; Frison et al., 2019b). This occurrence results in a notable

decline in AV drivers’ SA, which pushes them out of the control loop and impairs

their ability to assess the AV’s actions accurately. Although the AV’s promise to

provide safe transportation, effective communication between the AV and its driver

is crucial for exchanging information, including informing the driver about its inten-

tions, interpreting the perceived information about their surrounding and alerting of

any potential hazards, and maintaining “in-the-loop” SA level to safely and efficiently

2



operate the vehicle. By perceiving and comprehending the vehicle’s surroundings, the

AV driver can make informed decisions and take appropriate actions when interven-

tions are needed (Clark et al., 2017).

Several studies have attempted to address this problem by providing explanations

of AV behavior and highlighting the drivers’ need for information to be back in the

control loop with the AV (Koo et al., 2015, 2016; Petersen et al., 2019; Du et al.,

2021). However, there is currently no direct evidence to support the effectiveness

of such information in improving intra-vehicle communication, SA, and ultimately

human-AV team performance. Furthermore, there is currently a lack of standardized

models that can comprehensively evaluate the impact of proposed communication

methods while introducing a minimal level of cognitive workload.

1.1.2 Inter-vehicle Communication

During the transition period when AVs are not yet widespread, the interaction

between AVs and VRUs becomes more critical. AVs should be designed to coexist

with other road users and accommodate their limitations. Unlike CVs, AVs are

designed to analyze the behavior of CVs and predict their intentions to facilitate

smoother interactions. Using advanced sensors and algorithms, AVs can anticipate the

movements of road users and react accordingly in unexpected situations. However, in

ambiguous or dynamic intersections (i.e., four-way, intersections, T-junctions without

traffic lights and equal narrow passages) where the vehicles should negotiate the right-

of-way, CV drivers are facing difficulties to understand the AVs intentions which

negatively affects the traffic flow and human-drivers’ trust in AV. In such situations,

the AVs need to communicate with CV drivers via explicit signage and standardized

communication protocols to share the awareness and assist CV drivers understand

how to interact with AVs on the road. On the other hand, AV needs to safely

collaborate with multiple road users, including CV drivers and VRUs, which can lead

3



to conflicts between road users due to the emergence of complex behavioral processes.

Previous studies have shown that communications through eHMIs (Papakostopou-

los et al., 2021; Rettenmaier et al., 2020, 2019; Eisma et al., 2021), as well as auditory

signals and projections (Bai et al., 2021; Palmeiro et al., 2018; Rasouli and Tsotsos ,

2019; Colley and Rukzio, 2020) could lead to better human-AI team performance.

However, employment of these methods has been limited due to issues such as poor

visibility at a distance, AV driver’s engagement in NDRT and identifiability among

other road users. In contrast to AV-VRU communication, the current understand-

ing of AV-CV interactions is limited by the scarcity of investigations. The complex

nature of these interactions necessitates a deeper exploration of various factors, in-

cluding communication protocols, behavior prediction models, safety considerations,

and the implications of mixed traffic scenarios. As a result, communication between

AVs and CVs remains underexplored.

In human-AV interactions, improving AV transparency and transferring its knowl-

edge through communication can potentially facilitate shared awareness. However,

each road user employs a unidirectional communication method, leading to difficulties

in understanding each other’s mental models. Hence, I propose to build a situation

awareness framework for communicating among road users in mixed automated and

manual traffic environments, i.e., a communication method/structure for AVs appli-

cable to both AV and CV drivers so the AV can share the situation awareness in a

less cognitively demanding format for humans.

1.2 Research Objective

The primary objective of this dissertation is to build a communication framework

for AVs and other road users of the human-AV team that will 1) establish SA dy-

namically in real time between the AV and road users and 2) improve the SA of both

AV drivers and CV drivers in mixed traffic.
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In pursuit of this objective, the following research questions are formulated:

1) How to establish situation awareness? To narrow down this research question

in the context of mixed traffic, we broke it down into three sub-questions.

1) What are the common informational needs of different road users in a

human-AV in mixed traffic?

2) How should this information be presented to different road users in mixed

traffic?

3) When should this information be presented to different road users in mixed

traffic?

2) How to improve SA for AV drivers in mixed traffic?

3) How to improve SA for CV drivers in mixed traffic?

4) How to assess dynamic situation awareness in real-time?

Accordingly, the following research tasks are derived from the research questions:

1) Investigate the theoretical foundations of SA, theory-of-mind networks and ex-

plainable artificial intelligence (XAI), and build a framework for SA;

2) Examine the effect of communication with SA framework on AV drivers in

mixed traffic using self-reported measurements;

3) Examine the effect of communication with SA framework on CV drivers in

mixed traffic using self-reported and eye-tracking measurements;

4) Develop a computational model to predict drivers’ situational awareness in real-

time using physiological measurements.

5



1.3 Dissertation Outline

This dissertation comprises seven chapters, as shown in Fig. 1.1 that investigate

the effects of situation awareness on communication between AVs and other road

users, including their human drivers and CV drivers in mixed traffic scenarios.

Chapter 1 provides an overview of the research by discussing the general context,

significance of the research topic, and summarizing the objectives of the dissertation.

Chapter 2 presents a comprehensive review of prior research concerning the com-

munication challenges between AVs and road users. The chapter examines the pri-

mary factors causing issues in their coexistence, in particular SA, as well as the

existing methods of improving SA in mixed traffic.

Chapter 3 lays the groundwork for constructing the SA framework by addressing

the core challenges of human-AV communication. The chapter outlines a proposed

methodology to overcome these issues and facilitate cooperation between AV and

other road users in mixed traffic.

Chapter 4 presents the development of a real-time SA measurement model based

on physiological metrics such as eye-tracking, GSR and HR. The chapter outlines an

experiment that was conducted in desktop driving simulator to predict SA in real-time

and to identify the most significant factors that contribute to inferring SA.

Chapter 5 investigates communication between AV and its drivers using expla-

nations in conditional and highly automated driving using the developed situation

awareness framework. The study evaluates the effectiveness of the framework across

different levels of SA and information modalities, taking into account metrics such as

trust, cognitive workload, and explanations satisfaction.

Chapter 6 reports the investigation of communication between AV and CV drivers

using explanations based on the situation awareness framework in mixed traffic sce-

narios in a VR environment. In this research, the effectiveness of explanations is

evaluated across different HMI conditions based on SA, trust, cognitive workload,

6



and acceptance metrics.

Finally, Chapter 7 provides a summary of the research that has been accomplished

towards the stated research objectives, identifies areas for future work necessary to

complete the remaining research goals, and highlights the limitations of the research

that can be addressed in the future studies.

Figure 1.1: Research scope.
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Chapter 2 Literature Review

2.1 Situation awareness and the out-of-the-loop problem

As the level of automation in vehicles increases, such as in conditional and highly

AVs, i.e., SAE Levels 3 and 4 AVs (SAE , 2021), drivers’ responsibilities shift from

active operators to passive passengers for the majority of the time. Consequently,

drivers become increasingly disengaged from the control loop, which reduces their

SA since their attention is primarily diverted to NDRTs, resulting in less time spent

monitoring the road and compromising their performance when intervention is re-

quired (Frison et al., 2019a; Endsley , 2019). Although driver intervention may not

be necessary in most situations, improving drivers’ SA in unexpected driving scenar-

ios is crucial for enhancing their trust in and acceptance of AVs. Merat et al. (2019)

differentiated three kinds of loops in AV systems and described them as follows: 1)

A driver was in the control loop when he/she was both in the physical control and

monitoring the driving task, 2) a driver was on the control loop when the driver was

only monitoring the driving task, and 3) a driver was out of the control loop as long

as he/she was not monitoring the driving task. Thus, the out-of-the-loop problem

in AVs describes the situation when the driver is not actively monitoring the sys-

tem or the environment (Radlmayr et al., 2014). This issue is mostly due to driver’s

overtrust in AVs, since a certain level of “control” is needed to properly respond to

situational changes or to reduce uncertainty in automated driving, such as monitoring

8



and takeover control (Du et al., 2020a, 2019a, 2020b).

Merat et al. (2019) emphasized that a key aspect to be in the control loop was

the drivers’ attention and cognitive responses to the changes in the system and in the

dynamic environment, which was characterized by the driver’s SA. In other words,

when the driver is not in the control loop of the AV, the SA of system status and

the driving environment may be reduced (Sebok and Wickens , 2017; Zhou et al.,

2019a, 2021b). Even if the driver is on the control loop (i.e., not in physical control

of the vehicle, but monitoring the driving situation) (Merat et al., 2019), he/she

becomes a passive information processor, which would negatively affect the operator’s

understanding and comprehension (SA Level 2) of dynamic changes in the system even

though the driver is aware of low-level information (SA Level 1) (Endsley and Kiris ,

1995). This is further aggravated by the black-box decision-making process of the

AV and the monotonicity of automated driving, which lead to low vigilance and even

drowsiness (Zhou et al., 2020, 2021a). However, SAE Levels 3-4 AVs allow drivers to

conduct NDRTs without monitoring the driving task (Ayoub et al., 2019a). In order

to resolve such conflicts (i.e., conducting NDRTs in AVs vs. requiring a certain level

of SA in AVs), explanations are needed to help drivers resume their SA in time when

a certain level of “control” or understanding is needed to respond the situational

changes, especially during unexpected driving scenarios.

2.1.1 Measuring SA: From Subjective Assessments to Objective Mea-

sures

Accurately assessing SA in conditionally AVs is essential for understanding driver

behavior and developing effective safety interventions. Traditional SA measurement

methods primarily rely on subjective assessments. Situation Awareness Global As-

sessment Technique (SAGAT) is widely used method that involves freezing the driving

scenario and asking participants a series of questions about the current situation to as-
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sess their level of awareness (Endsley , 1995a). Situation Awareness Rating Technique

(SART) involves trained observers rating an individual’s SA based on their perfor-

mance in a simulated driving task, considering factors such as scanning behavior,

response times, and decision-making (Taylor , 2017). Situation Present Assessment

Method (SPAM) method combines subjective self-assessments via questionnaires with

objective performance measures, such as reaction times and driving errors, to provide

a more comprehensive evaluation of SA (Durso et al., 1998). While these subjective

measures offer valuable insights, they suffer from limitations such as susceptibility

to biases, reliance on memory and self-perception, and inability to capture the dy-

namic fluctuations of SA over time (Salmon et al., 2006). To overcome the limitations

of subjective measures, researchers have explored the use of objective and continu-

ous measures based on physiological and eye-tracking data. One such measure is

Electroencephalography (EEG), which measures brainwave activity to provide in-

sights into cognitive workload, attentional focus, and mental fatigue – all of which

are related to situation awareness (SA) (Fernandez Rojas et al., 2019; Yeo et al.,

2017). Another measure is Heart Rate Variability (HRV), where variations in heart

rate reflect changes in the autonomic nervous system, influenced by cognitive and

emotional states relevant to SA (Perello-March et al., 2021). The Galvanic Skin

Response (GSR) measure is also used, as it reflects changes in skin conductance asso-

ciated with arousal and emotional responses that can indicate changes in SA (Smith

et al., 2023). Additionally, by monitoring eye movements, researchers can analyze

eye-tracking metrics such as fixation duration, saccade patterns, and scan paths to

understand where drivers focus their visual attention and how efficiently they process

information (de Winter et al., 2019). Studies have demonstrated that these objec-

tive measures can provide more accurate and reliable assessments of SA compared to

subjective methods, particularly in dynamic and complex driving environments.
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2.1.2 Predicting SA: Towards a Multimodal and Individualized Approach

Recent research has explored the use of machine learning and context-aware mod-

els to predict SA in real-time. These models leverage various data sources, including

physiological measures, eye-tracking data, vehicle sensor data, and subjective rat-

ings, to estimate drivers’ level of awareness and predict potential lapses in attention.

One notable approach involves deep learning models, which can effectively predict

driver SA with high accuracy by analyzing physiological and behavioral data. For

instance, Li et al. (2022) proposed a deep learning model that achieved promising

results in predicting driver SA during conditionally automated driving scenarios. An-

other approach utilizes eye-tracking based models, as eye movements provide valuable

insights into drivers’ visual attention and information processing. Zhou et al. (2021b)

developed a machine learning model using eye-tracking data to predict SA levels in

real-time. Neuroimaging techniques, such as functional near-infrared spectroscopy

(fNIRS), allow for direct measurement of brain activity during driving tasks. Unni

et al. (2017) used fNIRS to identify distinct neural signatures associated with different

levels of SA. Additionally, context-aware models incorporate information about the

driving environment, traffic conditions, and driver behavior to provide more accurate

and personalized predictions of SA. Zheng et al. (2018) demonstrated the effective-

ness of incorporating contextual information in predicting driver SA. While these

advancements show promise, most existing research focuses on single modalities or

specific contexts. A more comprehensive approach is needed that integrates various

data sources and considers individual differences to develop robust and personalized

SA prediction models.
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2.2 Explanations for AV driver: Keeping the driver in the loop and main-

taining situational awareness

In human factors research, explanations about the AV’s behavior, system feed-

back and status, and driving scenarios were designed and provided to improve the

transparency of system decisions and driver trust. For instance, Wintersberger et

al. (2019) showed that augmented reality by coding traffic objects and future vehicle

actions increased automation transparency and improved user trust and acceptance.

Koo et al. (2015) designed three different types of information to explain AV behavior

about: 1) “how” the car was acting, 2) “why” the car was acting and 3) “how” +

“why” the car was acting. Authors investigated AV-driver interaction in a scenario

where the AV took control from the driver and suddenly braked to avoid collision

with an obstacle. They explained the AV behavior before the AV started acting, and

found that “how” + “why” information resulted in the safest AV-driver cooperation

, but also produced the greatest cognitive workload than other explanations, which

could lead to confusion and anxiety. The “how” only information led to worse driving

performance and unsafe cooperation since the drivers tried to take the control back

from the AV but did not understand why the AV behaved in that way. Mackay et al.’s

(2019) investigation into different amounts of feedback found that “more information

does not necessarily lead to more trust and may, in fact, negatively affect cognitive

load”. Taehyun et al. (2020) stated that type of explanation significantly affects trust

in AVs and suggested an explanation format based on the attribution theory (Weiner ,

1979). They found that perceived risk moderated the effect of explanations on trust,

i.e., attributional explanations led to the highest level of trust in low perceived risk

compared to no or simple explanations.

In addition, the timing of the explanations (i.e., before or after particular action)

also plays an important role in trust and acceptance in AVs. For example, Körber et

al. (2018b) provided explanations of the causes of takeover requests after the takeover
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transitions, which led to no decrease in trust or acceptance, but improved participants’

understanding of system behaviors. Koo et al. (2015) argued that explanations should

be provided ahead of an event which also was supported by Haspiel et al. (2018) and

Du et. al. (2019b) studies, who found that explanations provided before the AV’s

action promoted more trust than those provided afterward. Thus, it is recommended

that we should provide explanations before the vehicle takes action.

Other types of factors, such as forms, contents, and modalities of the explana-

tions also play important roles in explanations in AVs. Wang et al. (2020) explored

how information modality influenced driver’s performance and showed that both vi-

sual and auditory modalities had a significant influence, but on different aspects

of driver’s performance. In particular, visual information boosted performance ef-

ficiency and auditory information decreased reaction time. Seppelt and Lee (2019)

showed that continuous feedback helped drivers to be involved in the loop of system

performance and operations. Consistent with the multiple resource theory (Wickens ,

2008b), they found that the combined visual-auditory interface performed the best

regarding drivers’ confidence and trust.

2.3 Explanations for other road users: Communicating with human drivers

and pedestrians

The integration of AVs into existing roadways poses numerous challenges (Brown

et al., 2023), particularly when they need to share the road with CVs and vulnerable

road users, such as pedestrians and bicyclists. This coexistence goes beyond sim-

ply maneuvering within a physical environment; it necessitates that AVs interpret

and accurately respond to the complex social dynamics of human behaviors on the

road. Moreover, the growing prevalence of AVs necessitates exploring existing com-

munication conventions and modifying them to address these challenges.Vinkhuyzen

and Cefkin (2016) took an ethnographic approach to understand how AVs could be
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developed to be socially acceptable and highlighted that human drivers use a range

of subtle, non-verbal cues to negotiate traffic situations, which AVs would need to

replicate to be perceived as ”social actors” on the road. This aligns with Risto et al.’s

(2017) emphasis on vehicle movement gestures and underscores the need for AVs to

not just follow traffic rules, but to engage in socially understood behaviors. Youssef

et al. (2024) explored factors affecting driver decision-making in narrow passage in-

teractions and confirmed that besides traffic rules, drivers rely on a complex interplay

of factors, including visibility, vehicle size, and perceived intentions of other drivers,

to make yielding decisions. A recent study delved deeper into the cognitive processes

behind drivers’ overtaking decisions when encountering oncoming AVs. It found that

these decisions are shaped by factors such as perceived time-to-collision, the AV’s

behavior, and provides insights into how AVs could communicate their intentions to

influence CV drivers’ decisions Mohammad et al. (2024).

In certain situations, such as four-way intersections (Papakostopoulos et al., 2021)

and pedestrian crosswalks (Fuest et al., 2018), highway merging, bottleneck scenar-

ios, effective communication and cooperation between AVs and other road users be-

comes necessary to ensure safe and efficient traffic flow, and communication methods

that have clear in purely human-driven contexts may prove inadequate for this new

paradigm of mixed traffic. Miller et al. (2022) conducted a mixed traffic driving

simulator study to investigate how drivers’ expectations about AVs and CVs impact

their behavior and found that drivers who expected AVs to be more cautious and

rule-abiding tended to behave more aggressively towards them, while those who ex-

pected CVs to be more unpredictable drove more defensively around them. Zhang

et al. (2018) evaluated concepts for AV external communication systems, and sug-

gests that while explicit communication has its place, it should be designed to mimic

the simplicity and intuitiveness of the non-verbal cues that human drivers use. Sev-

eral studies addressed these issues by improving technical aspects of the AV system.
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Siebinga et al. (2023) propose that by integrating human communication and nego-

tiation strategies into AV systems, these vehicles can better predict and respond to

human drivers’ actions, thereby reducing the risk of accidents and conflicts. Isele et

al. (2018) addressed a key challenge in AV navigation where the AV’s sensors cannot

fully perceive the environment and developed a deep reinforcement learning approach

that allowed AVs to navigate such intersections safely by incorporating the inten-

tion of other drivers. However, Zgonnikov et al. (2024) argued that besides making

intelligent decisions in challenging situations, AVs should be able to negotiate their

right of way, and provided insights into the effectiveness of implicit communication by

AVs. They demonstrated that AVs could “push” human drivers into desired behav-

iors by adjusting their own speed and position, without explicit signals. In contrast,

other studies emphasized that cultural variability also poses a significant challenge

for the design of AV communication systems, especially for vehicles that will operate

in diverse international contexts (Zhang et al., 2018; Ehrhardt et al., 2024). Since

such communication is subject to varying interpretations across different cultures,

it becomes more complex to predict and generalize how they will be received and

understood, making it challenging to establish a standard for such indirect forms of

interaction. Aoki and Rajkumar (2018) investigated dynamic intersection scenarios

with possible collision risks and showed that using V2V communications and sen-

sor systems, AVs can effectively communicate with other road users and positively

impact traffic flow. Rettenmaier et al. (2020) examined communication strategies

between AVs and CVs in bottleneck situations where passage is restricted to a single

vehicle. Their findings suggest that direct visual displays outperform laser projec-

tions, particularly in terms of visibility at greater distances (Eisma et al., 2021).

In another investigation, using directional arrows significantly enhanced comprehen-

sibility, transferability, and simplicity, resulting in shorter passing times and fewer

crashes compared to other eHMI designs (Rettenmaier et al., 2019). Papakostopou-
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los et al. (2021) investigated how eHMIs affect drivers’ ability to infer AV motion

intentions and found that eHMIs accelerated CV drivers’ decision-making, improved

driving behavior, and reduced overall crossing times. Although limited studies have

explored HMIs in AV-CV communication, numerous studies demonstrate that eHMIs

enhance interactions between AVs and VRUs. However, the specific content of these

displays remains a subject for further investigation. Insights from Merat et al. (2018)

suggested a preference for signals that communicate intended vehicle actions (e.g.,

initiating movement, turning, stopping) rather than data regarding vehicle dynamics

(e.g., speed). Schieben et al. (2019) emphasized the importance of designing AV’s

intentions based on human needs and expectations, highlighting the need for AVs

to adapt to other road users’ behaviors. The design of eHMIs should also consider

factors such as trust, acceptance, and user experience. Eisma et al. (2021) found that

eHMIs using the receiver’s perspective (egocentric) were more effective in communi-

cating vehicle intent than those using an allocentric perspective. Conversely, Lee et

al. (2021) found that certain eHMI designs could lead to confusion and mistrust,

resulting in longer decision times and more errors. These findings underscore the

importance of carefully designing HMIs to ensure they effectively communicate AV

intentions without negatively impacting other road users’ behavior, and confirm that

HMIs may have a positive impact on CV driver’s behavior as well.
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Chapter 3 Building a Situation Awareness Framework

3.1 Introduction

Maintaining an appropriate level of SA is crucial for all road users in a mixed traffic

environment, not only about their surroundings but also about other road users’

knowledge and understanding. In human-AV teams, accurately predicting others’

intentions allows for faster and safer decision-making and effective cooperation that

can be achieved by building a team mental model (Cannon-Bowers et al., 1993). All

road users in such teams, i.e., AV, AV driver, CV driver and VRUs, share a common

goal of safe navigation. However, each type of road users has their own sub-goals that

require specific information to make decisions on how to proceed.

In the complex AI systems, such as AV, the decision-making process requires

collecting and analyzing large amounts of data, and in a dynamic environment where

AV needs to interact with various road users, such as mixed traffic, it is a challenge

to decide which information to share.

Level 1: which pertains to “what” the AI system did or is doing

Level 2: which concerns “why” the system behaves in a particular manner or the signif-

icance of Level 1 information for the system

Level 3: which relates to “what” the system will do or what would happen “if” some of

the inputs changed
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Chen et al. (2014) proposed SA-based Agent Transparency (SAT) framework for

dynamic environments that defines transparency requirements for AI systems by map-

ping SA levels as follows:

Level 1: system’s status, purpose and intentions to explain “what” is going on and what

is the trying to achieve

Level 2: reasons to explain “why” system is behaving in that way

Level 3: outcomes to explain “what” is the system’s predictions for the future state

Previous studies have primarily focused on the sub-goals and used these frame-

works to provide unidirectional explanations tailored to each user’s mental model.

For instance, in intra-vehicle communication, researchers aimed to efficiently facilitate

takeovers, and provided “how”, “why” and “what if” information about AV behavior

to make the system transparent for AV drivers and boost the SA to necessary level.

Similarly, in VRU-AV communication, researchers aimed to achieve efficient and fast

street crossings, and provided mainly “how” information in various perspectives and

formats, adjusted to the AV’s or VRU’s mental models.

In real-world scenarios, these varied explanations increase the complexity of AV

behavior and require more communication with each road user to ensure optimal

human-AV team performance. For instance, consider a scenario where an AV and a

CV are approaching an intersection and the AV detects a pedestrian with an intention

to cross the street. To coordinate the road users safely, the AV should yield to

the pedestrian while simultaneously communicating with: 1) its driver to explain

the reason for that behavior and prevent driver’s interaction, 2) CV driver to share

awareness about pedestrian and inform its intention, and 3) pedestrian to act as

planned. This is critical because without this information, the AV driver’s mental

model may lead them to takeover and continue driving, the CV driver’s mental model

may lead them to cross the intersection, and the pedestrian’s mental model may lead
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Figure 3.1: Situation awareness framework.

them to hesitate and negatively impact traffic flow, or cross blindly resulting in a

potentially dangerous situation. However, if the AV understands the other road

users’ mental model, it can adjust their behavior accordingly. To achieve proactive

communication and better team performance, it is essential to establish a shared

mental model among road users. This necessitates the development of a situational

awareness framework for AVs that can communicate in both directions (i.e, with AV

drivers and with other road users) using the same format.

3.2 Situation Awareness Framework

Drawing upon previous models and study results, we propose a framework for

building SA among human-AV teams in mixed traffic environments, as shown in Fig.

3.1. We defined the SA as the interface for AVs to share their awareness with other

road users regarding the current, next, and alternate states of the environment. To

ensure the effectiveness of the framework, we identified three key questions that must

be addressed:

1) What are the common informational needs of different road users in a human-

AV in mixed traffic?

2) How should this information be presented to different road users in mixed traf-
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fic?

3) When should this information be presented to different road users in mixed

traffic?

3.2.1 Generating explanations

To address the first question and fulfill the cognitive requirements of the SA model

(Endsley , 1995a), we propose a SA framework with three levels as follows:

1. Level 1: Critical element in the mixed traffic environment - This level involves

identifying a single critical object in the environment that has the highest im-

portance in triggering the decision-making process for all human-AV team mem-

bers. According to XAI framework principles (Sanneman and Shah, 2020), this

object can be the system classification output. However, we suggest using the

current state of the object instead of information about “what” the AV decided

to do. For instance, in the intersection scenario mentioned earlier, the pedes-

trian can be the critical object, and the classified action can be “moving.” It is

vital for the pedestrians to know that they are being detected, and for the AV

and CV to know of the pedestrian’s presence. Overall, level 1 can be referred to

as ”moving pedestrian” for the current state of the environment in this example.

2. Level 2: Intention of road users - While level 1 conveys what is detected, level 2

conveys the classified actions to other road users for coordinating the situation.

In the intersection scenario, for example, the AV can communicate with the

pedestrian about its intention to yield by signaling them to cross, and also

communicate with the CV driver by sharing the information that the pedestrian

is crossing. Level 2 can be described as “crossing pedestrian” for the next state

of the environment.

3. Level 3: Consequences - At this level, road users need to know the predicted

20



state of the environment if road users do not follow the shared plan. As the

alternate step of the environment, level 3 can be described by “high risk of

accident”.

With these three levels, the proposed framework establishes the explanatory con-

tent that an AV can employ for effective communication with different categories of

road users, (i.e., AV drivers, VRUs, and CV drivers). Additionally, the framework

broadens the role of AVs within the traffic ecosystem, elevating them from mere road

users into coordinators in challenging situations. However, it is crucial to deliver the

content in an appropriate format to avoid confusion and prevent an increase in mental

workload.

3.2.2 Delivering explanations

In human-machine interaction, selecting a communication interface that effectively

conveys explanation content in a comprehensible manner presents a significant chal-

lenge. Even if the content itself is sufficient to support SA, its presentation can nega-

tively impact overall performance by imposing additional cognitive load on recipients

and causing trust issues. Vicente and Rasmussen (1992) emphasized the importance

of designing the explanatory context according to the principles of ecological interface

design (EID). They highlighted that information visualizations based on individuals’

cognitive processing levels, as defined by the SKR taxonomy (Rasmussen, 1983), i.e.,

knowledge-based, skill-based, and rule-based processing, can enhance transparency

and lead to faster, more accurate responses, while appropriately calibrating trust in

the system. Knowledge-based visualizations are based on symbolic representations

(i.e., text language), necessitating analytical problem-solving resources and which

may vary depending on differences in individuals’ mental models. On the other hand,

rule-based visualizations (i.e., as sign language) and skill-based visualizations (i.e.,

sensory signal language) pertain to perception and action resources, enabling the
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conveyance of information without necessarily relying on individuals’ mental models.

This allows for parallel and effortless processing of information, facilitating rapid and

accurate reactions.

While all these processing levels are integral to the decision-making process, their

prioritization hinges upon the mission requirements they serve. Previous research

already showed the effectiveness of using the EID approach in AVs (Stanton et al.,

2021; Chen et al., 2019; Schewe and Vollrath, 2020) in cognitive load and cooperative

performance. However, in challenging human-AV interactions, communication with

road users can be time-critical and may demand immediate responses from both

ends. As this framework proposes multidirectional communication, it is essential to

communicate with road users also in a mutually exclusive way. Therefore, to address

the second question, we propose to display the explanations employing the SKR levels

following a specific priority order:

1. Rule-based explanation: This level places emphasis on explaining the current,

next, and alternate traffic states using universally recognized traffic signs. By

leveraging these signs and associated rules with them, reliable cue-action be-

havior can be coordinated, enabling road users to navigate in the environment

safely and efficiently with minimal cognitive load. For example, at Level 1,

the interface should present critical components such as crossing pedestrians,

malfunctioning traffic lights, and road accidents to describe the current situ-

ation in the environment. At Level 2, the interface should include signs that

enforce specific behaviors, and as the AV communicates in different directions,

the actions should always be presented from the perspective of the road user.

For instance, displaying signs like “stop”, “yield”, “go”, and “speed limit” can

explain the expected behavior for CVs, while using symbols like a “walking

person” or an “upraised hand” can convey the expected behavior for VRUs as

the next state of the traffic environment. Similarly, Level 3 explanations can
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utilize signs related to road accidents or traffic jams to depict alternate states

of the situation.

2. Knowledge-based explanation: In order to support the comprehension and han-

dling of unfamiliar rules, we suggest integrating a symbolic model of explana-

tions, such as natural language texts, within the explanation interface. These

textual explanations serve the purpose of assisting individuals in navigating

novel situations and facilitating the development of a shared mental model

among road users.

3. Skill-based explanation: To support faster and accurate information processing,

we suggest providing explanations in different modalities such as visual (i.e, text

or augmented reality) and audio (i.e, speech). Besides, allowing different modal-

ities we can accommodate individuals with different sensory abilities. For people

with visual impairments, audio information becomes crucial in understanding

and navigating the environment. Similarly, individuals with hearing impair-

ments can rely on visual explanations for comprehension. By communicating

through multiple modalities, we ensure accessibility and inclusivity for a wider

range of individuals.

3.2.3 Estimating necessity

Apart from determining which explanations to provide, it is equally important to

understand when to provide them. In mixed traffic, situations can change rapidly and

explanations that may be necessary at one moment may not be needed in another one

depending on SA of each road users and situation complexity. Providing explanations

to road users when they have adequate SA could potentially be bothersome and

elicit an adverse response, as drivers may disregard the explanations which can have

negative implications for the acceptance and safety of AVs. In other words, AVs
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should claim the driver’s attention only when it is necessary to enforce sufficient

levels of SA for safe driving. Consequently, it becomes crucial to consistently evaluate

drivers’ level of SA and adapt the strategies used for explanations accordingly.

On the other hand, by continuously tracking the driver’s state, we can validate the

impact of explanations and make system adjustments to achieve desired outcomes.

This approach also provides an opportunity to develop customized explanations in

the future, leading to improved overall performance. It is important to note that

cognitive skills vary among individuals, influenced by factors such as genetics, en-

vironment, education, and experiences. As a result, the level of detail required in

explanations may differ, ultimately affecting decision-making time. For instance, ex-

perienced drivers may achieve the desired SA level with only Level 1 explanation,

while providing them with all three levels would unnecessarily increase their cogni-

tive workload. In contrast, inexperienced drivers may need to receive the full set

of explanations to attain a sufficient SA level. Therefore, we propose to include a

component in the explanation system that can objectively assess driver’s SA in real

time. This assessment will help determine the threshold at which an explanation be-

comes necessary and will contribute to system improvement by identifying the most

important factors that characterize the driver’s SA.

3.3 Summary

Recognizing the limitations of existing XAI and models in AV that primarily fo-

cus on unidirectional communication, we propose a SA framework that introduces a

communication model for AV and enables effective intra- and inter-vehicle commu-

nication. Within this framework, we suggest a three-level structure for generating

explanations that align with the informational needs for sufficient SA, along with an

information delivery format for an effective cognitive control, and with a real-time

SA assessment module for explanation timing and depth. The subsequent chapters
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present applied examples of proposed SA framework in AV-driver and AV-CV driver

interaction contexts.
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Chapter 4 Towards Context-Aware Modeling of Situation Awareness in

Conditionally Automated Driving

4.1 Introduction

The rapid advancement of AV technologies holds the promise of transforming

transportation. Yet, as vehicles progress through the levels of automation set by the

SAE, they reach an intermediate phase known as conditionally automated driving –

SAE Level 3 (SAE , 2021). In this phase, drivers must be ready to retake control

in critical situations after receiving a takeover request (TOR) (Zhou et al., 2019b;

Ayoub et al., 2019b; Zhou et al., 2021b). Research consistently demonstrates that

delayed and ineffective driver response during takeovers, especially when distracted

by NDRTs, substantially harm driving safety (Du et al., 2019a, 2020b,a).

In conditionally automated vehicles, the maintenance of driver’s SA, i.e. the accu-

rate perception, comprehension, and projection of environmental elements (Endsley ,

1995a), is paramount. The criticality of SA in ensuring timely and effective driver

response during takeovers is well documented (Salmon et al., 2006). However, driver

engagement in NDRTs can lead to degradation of SA, leading to failures in takeovers

(Körber et al., 2018a; Endsley and Kiris , 1995).

Risk perception, closely interwoven with SA, influences a driver’s subjective as-

sessment of potential threats, directly affecting trust in automation, vigilance levels,

and takeover decisions (Hulse et al., 2018; Seppelt and Lee, 2019). However, the
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existing literature focuses predominantly on the behavioral ramifications of risk per-

ception and SA during manual driving, with less emphasis on their interplay within

the scope of conditional automation where driver disengagement factors are distinct

and heightened (Pop et al., 2015; Khastgir et al., 2017).

Given the transient dynamics of SA in the driving context, traditional SA measure-

ment methods, while robust, prove inadequate for capturing the continuous evolution

of SA, due to their intrusive nature and reliance on self-reports, such as freeze-probe

techniques (e.g., SAGAT) or observer rating scales (e.g., SART) (de Winter et al.,

2019; Durso et al., 1998). This knowledge gap highlights the need for developing

unobtrusive, real-time methodologies that utilize objective indicators, such as physi-

ological signals and eye-tracking data to assess SA.

Notably, advancements in machine learning offer promising avenues for the pre-

diction and real-time monitoring of SA in automated driving, with studies indicat-

ing potential correlations between driver’s SA levels and various physiological and

behavioral markers (Zhou et al., 2021b; Du et al., 2020c). Yet, research lacks a

comprehensive analytical framework capable of integrating multimodal datasets to

reliably predict SA, whilst considering individual differences and fluctuating driving

conditions (Perello-March et al., 2021; Smith et al., 2023).

To bridge these gaps, the present study leverages a multimodal dataset, encom-

passing physiological responses and eye-tracking metrics, augmented by individual

driver characteristics, to develop and validate a predictive model of SA tailored to

automated driving scenarios. Specifically, a driving simulator experiment was con-

ducted with 67 participants who experienced TOR events under varying risk percep-

tion and automation reliability conditions. Physiological data, i.e, GSR, HR, HRV

were recorded using wearable sensors. Additionally, participants’ eye movements were

tracked to extract metrics such as fixation numbers, fixation duration, and dispersion

across areas of interest like the center, left and right sides of road scene, NDRT dis-
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play and odometer. Self-reported SA ratings were collected every 30 seconds during

the drives as a ground truth.

Further, this study employs Light Gradient Boosting Machine (LightGBM) (Ke

et al., 2017) and SHapley Additive exPlanations (SHAP) (Lundberg et al., 2020; Lund-

berg and Lee, 2017a) to not only predict SA but also unpack the contribution of each

feature to the model’s decisions. In doing so, it endeavors to contribute to the design

of context-aware SA monitoring systems that enhance the safety and efficiency of

driver-AV symbiosis.

The contributions of this study are summarized as:

• Development of a non-intrusive LightGBM model that leverages multimodal

sensor data for real-time SA assessment in conditionally automated driving.

• Identification and analysis of key physiological and behavioral predictors for SA

using SHAP values.

• Exploration of the interplay between risk perception, driver characteristics, and

SA in the context of conditional automated driving.

• Demonstration of the practicality and effectiveness of applying machine learning

for SA prediction to foster improved driver-AV interaction.

4.2 Method

4.2.1 Participants

A total of 67 people (30 females: mean age = 28.3, SD = 11.5; and 37 males: mean

age = 25.9, SD = 12.3) participated in this study. Due to malfunction of physiological

sensors and the driving simulator, 23 participants were excluded, and data from the

remaining 44 participants were used for further analysis. All the participants had a

valid driver’s license with an average of 9.1 years of experience. Participants received
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Figure 4.1: Experiment setup.

$30 in compensation for about 75 min of participation. The study was approved by

the Institutional Review Board at the University of Michigan.

4.2.2 Apparatus and stimuli

This research utilized a desktop-based driving simulator by Realtime Technologies

Inc. (RTI, Michigan, USA) to gather experimental data. The simulator system

included an array of three LCD monitors, a Logitech G29 driving kit, one tablet for

engagement in non-driving related tasks (NDRTs), and one phone, positioned to the

participant’s right side, for recording SA assessments (see Fig. 4.1). The tablet and

phone were moved to the left side for left-handed participants upon request. For the

NDRT, a specially engineered Tetris game was developed using the PyGame library

within the Python programming environment. The game’s flow allowed participants

to engage with the game tiles upon NDRT initiation, it automatically paused when

TORs were triggered, enabling a seamless resumption from the previous state during

the next NDRT request.

The driving simulation system was set to emulate a vehicle with conditionally
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automated driving (SAE Level 3) capabilities (SAE , 2014). To engage in the auto-

mated drive mode, participants were instructed to press a red button positioned on

the steering wheel. Upon the engagement of this mode, participants received a con-

firmation, an audio “Automated mode engaged” prompt, and the mode indicator on

the odometer turned white. Then, the AV continued navigating a pre-defined route at

a steady speed of 35 mph. While experiencing automated driving, participants were

requested to start the NDRT (i.e., the Tetris game on a tablet) upon receiving the

“Please start the secondary task” audio prompt. When a TOR – a “Takeover” audio

request was initiated, participants were alerted to disengage the automated mode

and take manual control of the vehicle. If a participant was unable to resume vehicle

control within seven seconds, an “Emergency Stop” audio alarm was activated, and

the AV was triggered to stop immediately.

The self-reported SA assessment was conducted through a single-item question-

naire prompt (see Fig. 4.3) developed on the Qualtrics platform (Provo, UT), and ad-

ministered via a mobile phone. The simulation also recorded physiological responses.

To capture the details of visual attention, the Pupil Core eye-tracker headset with a

frequency of 200 Hz from Pupil Lab (MA, USA) was used, Concurrently, GSR and

HR (via photoplethysmography or PPG) were recorded at 128 Hz using the iMotions

platform with the Shimmer3 GSR+ Unit (Shimmer, MA, USA). To ensure precise

synchronization of time, the time delays for each piece of equipment, including the

iMotions, Pupil Core, driving simulator, and Tetris game, were recorded at the mo-

ment of the experiment’s initiation.

4.2.3 Experimental design

The study employed a 2x2 mixed design experiment where the between-subjects

factor was the risk condition (high-risk vs. low-risk), and the within-subjects factor

was the automation errors (error vs. no error). Participants were randomly as-
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signed to one of the risk conditions: 1) a high-risk condition, where participants

were presented with negative information about AV performance through videos

showcasing its malfunctions (high-risk video: https://www.youtube.com/watch?v=

RC9iK1lV77E&t=4s), coupled with an environment simulation of driving in foggy

weather; 2) a low-risk condition, which shared positive feedback on AV performance

via videos demonstrating AV’s ability to anticipate safety-critical hazards that may

be difficult for humans to detect (low-risk video: https://www.youtube.com/watch?

v=O4IUc0xXZqo), and featured sunny weather driving simulation. These conditions

were established using video examples derived from authentic environments.

Each participant experienced two drives with varying automation errors: 1) No

Error: The AV issued four accurate TORs without technical faults, 2) Error: Par-

ticipants experienced two accurate TORs (first and fourth) and two erroneous TORs

(second: false alarm, third: miss). Standard road scenarios were used to trigger

accurate TORs or simulate errors (e.g., pedestrians crossing, construction zones, ac-

cidents)(see Fig. 4.4). Previous research suggested both false alarms and misses can

decrease user trust (Ayoub et al., 2023). The sequence of drives was counterbalanced

across participants.

4.2.4 Experimental procedure

Fig. 4.2 provides an overview of the experiment procedure. At the onset of the

experiment, participants were briefed on the equipment and were provided with in-

structions regarding the tasks they would be performing. They were informed on the

capabilities and limitations of Level 3 AVs, with a specific focus on the necessity for

vigilance and readiness to take control whenever a TOR was issued. It was further

explained that there might be instances where the AV could fail to detect an obsta-

cle, termed as a “miss” condition, and situations where it might issue unnecessary

TORs, referred to as “false alarms”. Following the briefing, participants underwent
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the device setup process. This involved attaching GSR electrodes to the participants’

left palm and recording the baseline, fixing a PPG sensor to their left earlobe, and

calibrating the eye-tracking device. Once these devices were correctly configured,

participants completed an online survey to provide demographic information. Subse-

quently, they were presented with information specific to their assigned risk condition.

Next, participants were guided through a training session to familiarize themselves

with both the driving simulator’s functionality and the experimental protocol.

Figure 4.2: Experiment layout.

Finally, they proceeded to the actual driving sessions, each lasting approximately

15 minutes. During the drive, participants were asked to self-assess and report their

SA levels every 30 seconds on a 4-item scale ranging from 0 to 3, with the instruction

“Please indicate your situation awareness” (see Fig. 4.3). After each driving session,

participants were requested to complete surveys evaluating their trust (Holthausen

et al., 2020b), emotional responses (Jensen et al., 2020), and perceived risk (Zhang

et al., 2019) based on their recent driving experience using a 7-point Likert scale. The

total duration of the experiment was approximately 75 minutes. Note the results of

emotional responses were not reported in this paper as our focus here is SA.
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Figure 4.3: SA level assessment prompt.

Figure 4.4: Takeover events in urban areas (a) pedestrians crossing ahead (b) bus
sudden stop ahead (c) construction zone ahead (d) police vehicle on shoulder.

4.3 Predictive SA Model

4.3.1 Data Preprocessing

The study utilized a multimodal dataset comprised of physiological signals (GSR,

HR, HRV), eye-tracking data, self-reported SA assessments, and demographic infor-

mation. Each component of data was processed as follows:

GSR Processing: The GSR signal was decomposed into tonic and phasic compo-
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nents using the Neurokit2 package (Makowski et al., 2021). The phasic component,

known for its sensitivity to rapid changes, was used for analysis.

HRV Calculation: The HRV was calculated from collected IBI (inter-beat interval)

with Root Mean Square of Successive Differences (RMSSD) method (see Eq. 1):

RMSSD =

√√√√ N∑
i=1

(
RR intervali −RR intervali+1

)2
, (1)

where N is the number of heartbeats and the “RR interval” is the distance (in

milliseconds) between two consecutive successful heartbeats

Eye-Tracking Metrics: Relevant eye-tracking metrics were extracted, including

fixation numbers, fixation duration (in milliseconds), and dispersion (in degrees).

Fixation numbers were identified using the I-DT algorithm (Salvucci and Goldberg ,

2000) (maximum dispersion: 1 degree, maximum duration: 200ms).

Synchronization and Alignment: Data from all sources (iMotions, Pupil Core,

Qualtrics) were synchronized using timestamps across the recorded platform delays.

A 30-second sliding window was applied to calculate average GSR, HR, and eye-

tracking metrics within each window. Self-reported SA ratings and demographic

data were linked to the physiological and eye-tracking data based on timestamps as

shown in Fig. 4.5.

Integration: The final dataset integrated physiological, eye-tracking, and demo-

graphic data (age, gender, AV knowledge level), resulting in the 21 features outlined

in Table 4.1.

4.3.2 LightGBM model

This research aims to build a real-time predictive model for driver’s SA using a

multimodal dataset of physiological signals (i.e., GSR, HR, HRV), eye-tracking data,
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Figure 4.5: Data pre-processing and synchronization.

alongside self-reported assessments and demographic variables. After testing several

ML algorithms, the LightGBM framework proved to be the most effective and was

selected for this purpose.

LightGBM is widely used in handling large datasets and high-dimensional fea-

tures for regression tasks. It employs a leaf-wise growth strategy for decision trees,

which can lead to better accuracy with less computation when compared to depth-

wise growth strategies used by other algorithms. It is also well-suited for scenar-

ios where speed and memory usage are critical, such as AVs, without compromis-

ing on model performance. Moreover, LightGBM supports advanced techniques like

Gradient-based One-Side Sampling (GOSS) to reduce the memory usage and improve

the training speed, and Exclusive Feature Bundling (EFB) to reduce the number of

features and improve the efficiency of the model. Another advantage of LightGBM is

that it effectively handles categorical or ordinal features directly, e.g. AV knowledge

level in our dataset. During training, LightGBM considers these values as categorical

features and looks for the best splits based on the categorical nature of the data.

In this study, LightGBM regressor was employed to predict driver’s SA. First, the
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model’s performance was optimized using a grid search for hyperparameter tuning.

Based on the tuning results, the following values set for the model parameters: ’objec-

tive’: ’regression’, ’metric’: {’mae’, ’rmse’}, ’learning rate’: 0.05, ’min data in leaf’:

20, ’num leaves’: 50, ’early stopping rounds’: 100. Next, the model was trained and

validated using the dataset of 21 features and 1634 samples, and using a 10-fold cross-

validation methodology. As critical indicators of model’s performance, the root mean

square error (RMSE) and mean absolute error (MAE) were calculated as follows:

RMSE =

√∑N
i=1

(
yi − ŷi

)2
N

, (2)

MAE =

∑N
i=1 |yi − ŷi|

N
, (3)

Corr. =

∑N
i=1(ŷi − ¯̂y)(yi − ȳ)√∑N

i=1(ŷi − ¯̂y)2
∑N

i=1(yi − ȳ)2
, (4)

where N is the total number of the samples in the dataset, yi is the i-th value of

SA samples, ŷi is the i-th predicted SA, ȳ is the mean value of all the SA samples,

and ¯̂y is the mean value of all the predicted SA results.

4.3.3 SHAP Explainer

To reveal the contribution of each feature in the predictive model of SA, the

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017b) approach was

used. SHAP values provide a consistent and locally accurate method to attribute

the effect of each feature in a prediction task, based on the foundational principles

of Shapley values from cooperative game theory (Kuhn and Tucker , 1953). It en-

sures that each feature receives an importance weight by averaging over all possible

permutations of feature orderings while considering the interaction effects between

features. Moreover, SHAP model provides a detailed explanation for local/individual
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Table 4.1: Prediction Model Features. The asterisk (*) denotes the feature’s impor-
tance in the prediction model.

Features Unit Description

1. age * years Participant’s age
2. avKnowledge * - Participant’s knowledge level about AVs
3. gender * - Participant’s gender
4. mean gsr * µS Average galvanic skin response in phasic

phase
5. mean HR * bpm Average number of heartbeats
6. mean HRV * ms Average of the variation in the time in-

terval between heartbeats
7. number of fixations center * - Number of fixations on the center screen
8. number of fixations game * - Number of fixations on the game display
9. number of fixations left - Number of fixations on the left screen
10. number of fixations right - Number of fixations on the right screen
11. number of fixations odometer - Number of fixations on the odometer
12. mean dispersion center * degree Average distance between all gaze loca-

tions during a fixation on center screen
13. mean dispersion game * degree Average distance between all gaze loca-

tions during a fixation on game screen
14. mean dispersion left degree Average distance between all gaze loca-

tions during a fixation on left screen
15. mean dispersion right degree Average distance between all gaze loca-

tions during a fixation on right screen
16. mean dispersion odometer degree Average distance between all gaze lo-

cations during a fixation on odometer
screen

17. mean duration center * ms Average duration of fixations on the cen-
ter screen

18. mean duration game * ms Average duration of fixations on the game
screen

19. mean duration left ms Average duration of fixations on the left
screen

20. mean duration right ms Average duration of fixations on the right
screen

21. mean duration odometer ms Average duration of fixations on the
odometer screen

predictions, as well as aggregate SHAP values across multiple instances, offering a

broader view of feature importance and model behavior. As the SA prediction model

training process used a 10-fold cross-validation, the SHAP values were calculated ten

times, once for each fold. The final impact of each feature was then determined by

the average of these ten sets of SHAP values, providing a measure of the average
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contribution over the entire cross-validation process (Ayoub et al., 2023, 2021). The

model training procedure is shown in Fig. 4.6

Figure 4.6: Steps for training the SA prediction model.

4.4 Results

4.4.1 Model performance

The LightGBM model’s performance in predicting SA is presented in Table 4.2.

To analyze how individual features contribute to predictions, SHAP values were cal-

culated and visualized in a SHAP summary plot (Fig. 4.7). This reflects both the

importance and the effects of each feature. The y-axis positioning is determined by

the feature importance, ranging from the most to the least significant. The x-axis is

determined by the SHAP value where very point on the plot represents a feature’s

SHAP value for a given instance. The color scale, ranging from blue (low) to red

(high), indicates the magnitude and direction of a feature’s impact on the predicted

SA score, and the overlapping points, jittered in y-axis direction, describe the distri-

bution of the SHAP values per feature.

To further optimize the model’s performance, the model’s behavior was tested

by adding the features incrementally according to their SHAP importance rankings.

The impact of each addition on the model’s accuracy is illustrated in Fig. 4.8, which

shows the the variations in performance metrics (i.e., RMSE, MAE and Corr) with the
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Figure 4.7: SHAP summary plot. The x-axis shows the feature’s influence on SA.
The y-axis shows the importance ranking of the features.

inclusion of more predictors. It was observed that the LightGBM model resulted in

improved performance with a subset of top 12 features rather than the entire feature

set. Following this insight, the model was retrained with these 12 features where the

updated model’s had the best performance (see Table 4.2 under the ’Selected features’

row).

According to SHAP and model performance, the following features had the most

impact on the model and are listed in descending order: age, avKnowledge, mean gsr,
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mean HR, mean HRV, number of fixations game, number of fixations center, mean

dispersion game, gender, mean duration game, mean duration center, mean dispersion center.

However, the summary plot shows only the global view of how feature values influ-

enced predictions.

Figure 4.8: LightGBM model performance over the iteration of adding important
featured at the time.

Table 4.2: Performance of LightGBM regressor.

Sample size RMSE MAE Corr
All features 0.90 0.72 0.77
Selected Features 0.89 0.71 0.78

4.4.2 Feature Effect in Predicting SA

To explore the impact of an individual feature on the SA predictions made by the

model, for the top 12 features, the SHAP value was charted against feature’s actual

values. This relationship is shown in Fig. 4.9, where the feature values were seg-

mented into several groups according to their distribution (the physiological features

were limited up to 20 segments). This segmentation allowed the examination of the
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feature’s effect on SA. Spearman’s rank correlation coefficient for each feature was

calculated to understand the strength of the relationship.

Figure 4.9: The effect of important features on predicted SA value. The x-axis rep-
resents the value of the feature, and the y-axis represents the SHAP value associated
with that feature. Positive SHAP values indicate that the feature pushes the predic-
tion higher, while negative values indicate the opposite.

Age: The most important feature was age in Fig. 4.7 with a significant negative

correlation (ρ = −0.294, p < 0.001). A complex relationship with SA was observed.

Younger adults (18-38) showed minimal influence of age on SA. A strong negative

effect was found for middle-aged adults (39-62) (i.e., those in this age range had

significant lower predicted SA), while older adults (62+) displayed a positive effect.

However, the dataset’s skewed age distribution warrants caution in interpretation.

AV Knowledge: Participants with higher AV knowledge tended to have lower SA

predictions (ρ = −0.665, p < 0.001).
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Physiological Signals: GSR: The mean gsr was positively linked to SA (ρ =

0.463, p < 0.001), with higher values suggesting an increase in SA, though the relation-

ship was not strictly linear. Heart Rate: mean HR showed a positive relationship with

SA (ρ = 0.670, p < 0.001), indicating that elevated HR was associated with higher

levels of SA. HRV: Although the correlation was significant (ρ = 0.128, p < 0.001),

the effect size suggests a very weak association with no overall trend.

Eye-Tracking Metrics: Fixations (Game): A significant positive correlation was

found between the number of fixations game and SA (ρ = 0.724, p < 0.001), sug-

gesting that an increased frequency of fixations correlates with enhanced SA. Fix-

ations (Center): There was a notable pattern characterized by a a decrease in SA

with a lower frequency of fixations at the center(ρ = −0.302, p < 0.001). Disper-

sion (Game): The mean dispersion game seemed to be negatively correlated with SA

(ρ = −0.233, p < 0.001), indicating that greater distances between fixation points

on game surface were associated with lower levels of SA. Dispersion (Center): The

mean dispersion center (ρ = 0.310, p < 0.001) seemed to be positively correlated with

higher dispersion on center leading to increase of SA. Fixation durations: Mean du-

ration of fixations on both the game and center surfaces showed weaker correlations,

with less clear trends.

Gender: The data showed that female participants tend to have higher SA than

males (ρ = −0.670, p < 0.001).

4.4.3 SA, Trust and Perceived Risk Across Conditions

A mixed two-way analysis of variance (ANOVA) was used to analyze the effects

of risk perception and automation error on participants SA, trust, risk and physio-

logical responses. The ANOVA showed a significant main effect of automation error

(F (1, 56) = 5.313, p = 0.025, η2p = 0.087) and marginal main effect of risk condi-

tion (F (1, 56) = 3.438, p = 0.069, η2p = 0.058) on SA. Within the high-risk group,
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participants reported a significantly higher level of SA (p = 0.018) during the drive

with automation error compared to low-risk group. In terms of trust, a significant

main effect of automation error was found (F (1, 62) = 13.700, p < 0.001, η2p = 0.181).

For risk perception, although no significant differences were found between the two

conditions, it successfully elicit different levels of self-reported SA.

4.4.4 Objective Responses Across Conditions

The effect of risk and automation error was also investigated for physiological

features using a two-way mixed ANOVA (see Table 4.3).

There was a significant interaction effect on mean HR (F = 7.348, p = 0.012),

with a large effect size (η2p = 0.242). For mean duration center, there were signif-

icant main effects of both risk (F = 5.34, p = 0.03, η2p = 0.188) and automation

error (F = 9.077, p = 0.006, η2p = 0.283), as well as a significant interaction effect

(F = 5.089, p = 0.034, η2p = 0.181). The pairwise t-test showed that drive with au-

tomation errors resulted in longer fixation duration in the center compared to drive

where no error was experienced. Additionally, the high risk condition led to longer

center fixation duration than the low risk condition. Mean dispersion center showed

significant main effects of risk (F = 5.988, p = 0.022, η2p = 0.207) and automation

error (F = 4.657, p = 0.042, η2p = 0.168), where automation error increased dis-

persion in the center area, similarly, the high risk environment increased dispersion

compared to low risk. The automation error had significant main effect on num-

ber of fixations center (F = 10.786, p = 0.003, η2p = 0.319) where fixation number

was higher when AV had errors. For the number of fixations game automation error

showed significant main effect as well(F = 8.423, p = 0.008, η2p = 0.268) where par-

ticipants had more fixations on game display during the drives without automation

error. Risk significantly impacted on mean dispersion left (F = 5.516, p = 0.028, η2p =

0.193) and mean dispersion right (F = 4.41, p = 0.047, η2p = 0.161), with high risk
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leading to greater dispersion compared to low risk. Finally, automation error had

significant main effects on mean duration odometer (F = 4.698, p = 0.041, η2p = 0.17)

and mean dispersion odometer (F = 6.817, p = 0.016, η2p = 0.229), with higher dura-

tion and dispersion when automation had errors.

Figure 4.10: Main effects on features across tested conditions.

Table 4.3: Statistical results of physiological measures

Feature Effect F p-value Effect size

mean gsr

Risk 0.106 0.748 0.005

Automation Error 0.157 0.696 0.007

Interaction 0.002 0.969 0.000

mean HR

Risk 3.47 0.075 0.131

Automation Error 0.034 0.986 0.000

Interaction * 7.348 0.012 0.242

mean HRV

Risk 2.245 0.148 0.089
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Automation Error 0.04 0.843 0.002

Interaction 1.089 0.307 0.045

mean duration center

Risk * 5.34 0.03 0.188

Automation Error * 9.077 0.006 0.283

Interaction * 5.089 0.034 0.181

mean dispersion center

Risk * 5.988 0.022 0.207

Automation Error * 4.657 0.042 0.168

Interaction 3.653 0.069 0.137

# of fixations center

Risk 2.724 0.112 0.106

Automation Error * 10.786 0.003 0.319

Interaction 0.011 0.918 0.000

mean duration game

Risk 0.036 0.851 0.002

Automation Error 0.116 0.736 0.005

Interaction 0.844 0.368 0.035

mean dispersion game

Risk 0.509 0.483 0.022

Automation Error 0.297 0.591 0.013

Interaction 0.562 0.461 0.024

# of fixations game

Risk 0.64 0.432 0.027

Automation Error * 8.423 0.008 0.268

Interaction 0.118 0.734 0.005

mean duration left

Risk 3.806 0.063 0.142

Automation Error 0.144 0.708 0.006

Interaction 0.002 0.969 0.000

mean dispersion left

Risk * 5.516 0.028 0.193

Automation Error 1.52 0.230 0.062

Interaction 0.081 0.779 0.004

# of fixations left

Risk 3.346 0.08 0.127

Automation Error 2.794 0.108 0.108

Interaction 0.591 0.450 0.025

mean duration odometer

Risk 1.039 0.319 0.043

Automation Error * 4.698 0.041 0.170

Interaction 0.189 0.668 0.008

mean dispersion odometer

Risk 0.633 0.434 0.027

Automation Error * 6.817 0.016 0.229
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Interaction 0.002 0.964 0.000

# of fixations odometer

Risk 0.526 0.476 0.022

Automation Error 2.385 0.136 0.094

Interaction 0.254 0.619 0.011

mean duration right

Risk 3.872 0.061 0.144

Automation Error 1.821 0.190 0.073

Interaction 1.319 0.263 0.054

mean dispersion right

Risk * 4.41 0.047 0.161

Automation Error 0.898 0.353 0.038

Interaction 0.858 0.364 0.036

# of fixations right

Risk 2.844 0.105 0.11

Automation Error 0.35 0.56 0.015

Interaction 0.155 0.697 0.007

4.5 Discussion

4.5.1 Predicting SA with machine learning model

In our investigation, the LightGBM machine learning model has demonstrated

promising capabilities in estimating SA from a diverse array of signals. By incorpo-

rating a multimodal dataset—including physiological signals, eye tracking metrics,

and demographic information—the model was able to predict SA levels with RMSE

of 0.90, MAE of 0.72, and a correlation coefficient of 0.77 with self-reported SA mea-

sures.

To contextualize these results, we employed the SHAP framework to interpret the

predictive model. The SHAP summary plot not only illuminated the overarching

importance of each feature but also revealed the nature of their effects on SA predic-

tion. It is noteworthy that we identified certain features whose contribution appeared

marginal, potentially serving as noise that detracted from the model accuracy (Ay-
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oub et al., 2023). When considering a refined feature set with the top 12 variables as

indicated by their SHAP values, the model’s performance was marginally enhanced,

showing an RMSE of 0.89, an improved MAE of 0.71, and a correlation of 0.78.

Among the principal features influencing the model’s predictions were demo-

graphic aspects such as age, gender and experience with automated vehicles. This

seemed to be consistent with previous findings that demographic variables could re-

flect diverse cognitive abilities and and confidence levels in tasks, thereby impacting

SA in an automated context (Kintz et al., 2023; Li et al., 2018).

Physiological signals, including GSR, HR, and HRV, were also important. Mean gsr

was positively correlated to SA, possibly because a higher level of GSR was related to

a high level of arousal and alertness (Zhou et al., 2011, 2014), which further lead to a

higher level of arousal. Mean HR was also positively correlated with SA, which might

be a pertinent indicator of participants’ stress levels reacting to potential risks and

errors of the AVs, which was integral for the participants to pay more attention to

the driving situations (Perello-March et al., 2022). Previous studies also found that

a higher value of HRV was associated with better attentional maintenance and flex-

ibility, which might contributed to its positive correlation with SA (Siennicka et al.,

2019).

We found a positive correlation between the number of fixations on the game dis-

play and SA and a negative correlation between the number of fixations on the center

area (presumably the road ahead) and SA. Such findings are somewhat counterintu-

itive. Previous studies showed that increased visual attention towards the NDRTs

(i.e., game) suggested a lack of focus on the driving environment, potentially leading

to lower SA and typically more frequent fixations on the road were associated with

better SA (Zhou et al., 2021b; Liang et al., 2021a). However, such findings could be

influenced by other factors, such as the duration or timing of fixations, which may

provide more insights into the driver’s attentional allocation and comprehension of
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the driving situation.

The negative correlation between the dispersion of fixations on the game and SA

was consistent with the idea that excessive visual engagement with NDRT degraded

SA (Zhou et al., 2021b; Du et al., 2020a). Greater dispersion on the game surface may

indicate increased distraction and reduced focus on the driving environment, leading

to lower SA. The positive correlation between dispersion of fixations on the center

area and higher SA aligned with previous findings (Du et al., 2020a; Liang et al.,

2021b). A wider distribution of fixations on the road ahead and surrounding areas

can facilitate better perception and comprehension of the driving situation, thereby

enhancing SA.

Overall, the integration of machine learning techniques with multimodal datasets

presents a powerful approach to uncover the nuanced factors that influence SA in the

realm of automated driving. Through continual refinement of feature sets and com-

parison with extant research, we might not only be able to advance the predictability

of SA levels, but also understand the underlying cognitive and behavioral processes

involved.

4.5.2 Effects of risks and automation errors on SA

In this study, we manipulated participants’ risk perceptions through exposure to

risk-related content and varied the performance of the automated driving system and

the simulated driving environment. The results revealed that when participants were

exposed to high-risk content, their SA levels were higher. These findings are supported

by previous studies who demonstrated that (Li et al., 2019; Yahoodik and Yamani ,

2021) perceived risks and trust in an AV were affected by introductory information

and received training related to system reliability.

Notably, SA was significantly sensitive to automation performance and was higher

when the system experienced failures compared to error-free drives. This observation
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is consistent with studies indicating that automation errors and system limitations

can trigger compensatory behaviors and heightened alertness in drivers, leading to

improved SA during critical situations (Körber et al., 2018a; Schwarz et al., 2019)

The eye tracking responses supported this observation, as participants spent a

significant amount of time gazing at the road center when driving in risk conditions

(see Fig. 4.10 b) and experienced automation errors (see Fig. 4.10 c). Moreover,

the high risk condition resulted in notably increased dispersion on road center (see

Fig. 4.10 e) specifically in erroneous situations (see Fig. 4.10 f), as well as left and

right sides (see Fig. 4.10 i and l). This broader visual scanning pattern suggests that

individuals may explore the traffic environment more extensively and scan across a

wider range of locations when faced with higher perceived risks or system failures,

potentially in an attempt to gather more information and enhance their understanding

of the situation (Thill et al., 2014; de Winter et al., 2019).

Furthermore, the data from the eye tracker revealed that participants checked

the traffic around them more frequently in presence of automation error (see Fig.

4.10 g) and were less focused on the NDRT screen (see Fig. 4.10 h). This shift in

attentional allocation from the NDRT to the road scene during automation errors

is consistent with previous findings that drivers tend to prioritize monitoring the

driving environment over secondary tasks when faced with critical situations or system

limitations (Smith et al., 2023; Naujoks et al., 2014).

Finally, we observed that the participants demonstrated longer and more dispersed

gazing on the odometer when they experienced failures (see Fig. 4.10 j and k), which

was noted when participants noticed the hazard ahead before they received a response

from the AV. This behavior might indicate that they were trying to understand if the

automation was going to react to the potential hazard or checking if the automation

was turned off after they resumed control (Zeeb et al., 2015; Niu et al., 2022).

Overall, these findings contribute to our understanding of how risk perception and
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automation reliability influence drivers’ visual attention allocation, situation scanning

strategies, and cognitive processes related to SA in conditionally automated driving

scenarios. The results align with and extend the existing literature on the effects of

perceived risk, system limitations, and critical events on drivers’ vigilance, compen-

satory behaviors, and SA in human-automation interaction contexts.

4.5.3 Implications

We developed a context-aware model using machine learning to predict SA during

conditionally AVs could have significant implications for enhancing safety and user

experience. First, by combining diverse data sources like demographics, physiological

signals, and eye movements, the model can capture a more comprehensive under-

standing of the driver’s state and attentional focus. This holistic approach could

lead to more accurate predictions of SA levels during automated driving scenarios,

which could provide deeper insights into the driver’s cognitive processes and readi-

ness to take over control when needed (Du et al., 2019a). Moreover, incorporating

demographic factors like age, gender, and driving experience into the model allows

for personalized driver monitoring and tailored interventions (Avetisyan et al., 2023).

By accurately predicting SA levels, the model can inform the design of adaptive

in-vehicle systems and human-machine interfaces (HMIs) that provide context-aware

support and warnings to drivers (Pakdamanian et al., 2022). This could lead to

safer and smoother transitions between automated and manual driving modes. The

model’s predictions can also guide the development of personalized training programs

or adaptive automation strategies, helping drivers maintain an appropriate level of

SA and readiness during automated driving (Du et al., 2019a).

Overall, developing a context-aware ML model that leverages multimodal data

sources has the potential to significantly enhance SA prediction and support safer and

more user-friendly conditionally automated driving experiences. However, technical
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challenges, data availability, and ethical considerations must be carefully addressed

to realize the full benefits of this approach.

4.5.4 Limitations and Future Work

This study has several limitations that should be acknowledged. First, the ex-

perimental setup used a low-fidelity desktop driving simulator, which may not fully

replicate the realistic dynamics and risk perceptions of an on-road driving environ-

ment. Future studies should aim to conduct experiments in higher-fidelity simulated

or real-world settings to enhance the ecological validity of the findings.

Second, the takeover scenarios tested in this study covered a limited range of

risk levels. To gain a more comprehensive understanding of SA level, it is essential

to explore a broader spectrum of risky situations, including more critical and time-

sensitive takeover events.

Third, the study relied on a single self-reported item to measure SA, which may

not fully capture the multidimensional nature of this construct. Future research

should explore alternative methods for assessing situation awareness, such as objective

performance measures or more comprehensive self-report instruments, to establish a

more reliable ground truth.

Finally, integrating diverse data sources and developing robust ML models for SA

prediction can be technically challenging, requiring advanced data fusion techniques

and large, high-quality datasets for training and validation. The model’s performance

and reliability in real-world driving scenarios need to be thoroughly evaluated, as

factors like environmental conditions and unexpected events can influence SA and

driver behavior.
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4.6 Conclusions

This study presents research on developing a predictive model for assessing SA

in conditionally automated driving scenarios. An experiment with 67 participants

using a driving simulator was conducted. Participants experienced automated driv-

ing with TOR events, including some with automation errors (i.e., false alarms and

misses). Their physiological responses (GSR, HR, eye tracking) and self-reported SA

were recorded. The LightGBM machine learning model was used to predict SA levels

from the physiological and demographic data. The model achieved reasonable per-

formance (RMSE = 0.89,MAE = 0.71, Corr = 0.78) using a subset of the top 12

most important features resulted from SHAP explainer. The key findings were: 1)

age, AV knowledge, GSR, HR, and eye behavior on the center and NDRT screens

were the most influential predictors of SA, 2) higher risk perception led to larger fix-

ations durations and dispersions on center screen, 3) automation errors increased the

dispersions and fixations on center and NDRT screens, and 4) SA was higher during

automation error conditions for the high risk group compared to low risk.

These findings contribute to our understanding of the factors influencing SA in

conditionally automated driving scenarios, particularly considering the impact of risk

perception and automation errors. The developed predictive model demonstrates the

potential for using physiological, behavioral and demographic measures to monitor

and assess drivers’ SA in real-time, enabling intelligent vehicle systems to provide

timely interventions or explanations to enhance SA and promote safer human-AV

interactions.
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Chapter 5 The Impacts of Situation Awareness and Modality on

Explanations in the Context of Conditional and Highly Automated

Driving

5.1 Introduction

When drivers are out of the control loop, they will have a low level of SA, making

it difficult for them to comprehend AV’s behavior in unexpected situations. Moreover,

it limits their ability to successfully take over control in critical situations, leading to

accidents. For example, by analyzing Uber’s AV fatal accident in Arizona (Garcia,

2018), it was revealed that the driver failed to take over control of the AV because

she was engaged on her phone and was not aware of the pedestrian crossing the

road. Regardless of who was responsible for the accident, such cases overall had

negative impacts on trust in and public acceptance of AV. In particular, being unaware

of the situation, drivers tend to interpret the AV’s unexpected behavior as system

malfunction that leads to trust issues in AVs. Hence, when the automated mode is on,

the AVs should provide sufficient information to increase drivers’ SA level for proper

understanding of the situation and to ensure that the situation is under control.

Previous studies have addressed the SA and its associated issues in AVs (i.e.,

trust and takeover performance) through explanations, and provided important im-

plications for designing AV systems. However, these solutions did not systematically

assess how they improve drivers’ trust with a minimal level of cognitive workload.
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Therefore, it is necessary to theoretically frame explanations to support human-AV

interaction.

In this study, we hypothesize that explaining AV behavior using our SA frame-

work will fulfill drivers’ informational needs and promote different levels of situation

understanding with an optimal cognitive workload, resulting in improved human-AV

performance. We expected that our explanation framework would foster trust with

a relatively less increase in mental workload compared to the previous approaches

due to the mapping of explanations to information processing levels. In order to test

the hypothesis, we designed a three by two between-subjects experiment, where three

types of explanations were manipulated to three levels of SA with two modalities (vi-

sual, visual + auditory) across six scenarios. We examined the effects of explanations

in the form of three levels of SA on drivers’ situational trust, cognitive workload, and

explanation satisfaction.

5.2 Method

5.2.1 Participants

In total, 340 participants (151 females and 189 males; Age = 39.0 ± 11.4 years old)

in the United States participated in this study. All the participants were recruited

from Amazon Mechanical Turk (MTurk) with a valid US driver’s license. On average,

participants had 15 ± 11.8 years of driving experience and the driving frequency was

5 ± 1 days per week. They were randomly assigned to one of the seven conditions as

shown in Table 5.1, where L1, L2, and L3 conditions were mapped closely to three

SA levels proposed by Endsley. More detailed information about the experiment

conditions is described in the “Scenario Design” section. This study was approved by

the Institutional Review Board at the University of Michigan. Each participant was

compensated with $2 upon completion of the study. The average completion time of

the survey was about 26 minutes across the conditions.
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Table 5.1: Experimental design with Modality and SA level as independent variables.
The modality factor had two levels: 1) Visual, i.e., the explanation was given only
in text format, and 2) Visual + Audio, i.e., the explanation was given in text and
voice format simultaneously. The SA level factor had three levels: 1) SA L1, i.e.,
the explanation included only SA Level 1 information (i.e., perception), 2) SA L2,
i.e., the explanation included SA Level 1 + Level 2 information (i.e., perception and
comprehension), and 3) SA L3, i.e., the explanation included SA Level 1 + Level 2
+ Level 3 information (i.e., perception, comprehension, and projection). Table cells
represent the treated conditions in the experiment.

SA Level
Modality

Visual Visual + Audio
SA L1 Text SA L1 Text + audio SA L1
SA L2 Text SA L2 Text + audio SA L2
SA L3 Text SA L3 Text + audio SA L3

A control condition was included in the experiment where participants did not receive
any explanation.

5.2.2 Apparatus

The study was conducted using a survey developed in Qualtrics (Provo, UT) and

was published in MTurk. The survey was designed to evaluate the effects of SA and

explanation modality on participants’ situational trust, explanation satisfaction, and

mental workload in uncertain situations while driving an AV. The driving scenarios

were presented in videos created in the CarMaker autonomous driving simulation

environment (Karlsruhe, DE).

Table 5.2: Dependent variables

Measure Description Scale
Trust Measured at the end of each scenario STS-AD
Explanation Satisfac-
tion

Measured at the end of each scenario Explanation sat-
isfaction scale

Mental Workload Measured once participants watched
all the 6 scenarios

DALI
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5.2.3 Experimental Design

Independent variables. The experiment was a three (SA level: SA L1, SA

L2, and SA L3) by two (modality: visual, visual + auditory) between-subjects fac-

torial design with 6 scenarios. Alongside the 6 experimental conditions, a control

condition with no explanations was also tested. The independent variables were the

three levels of explanations mapped to three SA levels presented to the participants

according to Endsley’s SA model (Endsley , 1995a) and in two types of modalities,

i.e., visual and visual + auditory. During the experiment, the participants’ SA was

measured through the Situation Awareness Global Assessment Technique (SAGAT)

(Endsley , 1988). The SAGAT is a freeze-probe technique that requires pausing the

simulation and asking a series of questions to assess the participants’ awareness of

the current situation. For each scenario, three different questions were developed to

test the participants’ perception of surrounding objects, comprehension of the cur-

rent situation, and projection of the future state for that uncertain situation. All

the questions designed for the SAGAT technique were developed based on a previous

study (van den Beukel and van der Voort , 2017). Table 5.3 shows an example of

multiple-choice questions for the training scenario (see Table 5.4). Regardless of the

experiment conditions, for each scenario, three SA questions were included in the

survey corresponding to three levels of SA. The participants obtained one point if

they answered the question correctly. With three questions for each scenario, the

participants could get as many as 18 points, indicating perfect SA.

5.2.4 Dependent Measures

The dependent variables in this study were situational trust, mental workload,

and subjective satisfaction with explanations. Situational trust was measured by the

self-reported Situational Trust Scale for Automated Driving (STS-AD) (Holthausen

et al., 2020a). The model evaluates situational trust in six categories: trust, perfor-
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Table 5.3: Example questions for the training scenario to measure SA with a SAGAT
Questionnaire.

Level of SA Question Options

Perception The simulation just “froze”.
Which road user was in front
of the AV?

1) Bus, 2) Pedestrian, 3) Cyclist, 4) I don’t
know, 5) Other

Compre-
hension

What caused you to seek your
attention in this situation?

1) Pedestrian’s intention to cross the street,
2) Approaching heavy traffic, 3) Ap-
proaching closed road, 4) Faulty road
lanes, 5) I don’t know, 6) Other

Projection If the simulation resumes af-
ter this “freeze”, what situa-
tion would require your extra
attention or intervention?

1) Other road user’s violations, 2)
AV’s possibility to hit pedestrian, 3) Im-
peding the traffic by stopping at intersec-
tion, 4) I don’t know, 5) Other

* The underlined option indicates the correct answers.

mance, non-driving related task (NDRT), risk, judgment, and reaction, by asking the

following questions: 1) I trusted the automation in this situation, 2) I would have

performed better than the AV in this situation, 3) In this situation, the AV performed

well enough for me to engage in other activities, 4) The situation was risky, 5) The

AV made a safe judgment in this situation, and 6) The AV reacted appropriately to

the environment. All the six STS-AD scales were measured with a 7-point Likert

scale. Situational trust was measured right after the participant watched one video

that depicted a specific driving scenario. Thus, it was measured six times for six

scenarios.

To understand the subjective satisfaction of the given explanations, the explana-

tion satisfaction scale developed by Hoffman et al. (2018) was used. In this study, it

was presented to the participants with five items and was measured with a 7-point

Likert scale. The following items were included: This explanation of how the AV

behavior was 1) satisfying, 2) had sufficient details, 3) contained irrelevant details, 4)

was helpful, 5) let me judge when I should trust and not trust the AV. Explanation

satisfaction was also measured once right after the participant watched one specific
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Figure 5.1: Survey procedure.

driving scenario. Thus, it was measured six times for six scenarios.

The mental workload was measured using the driving activity load index (DALI)

(Pauzié, 2008), which is a revised version of the NASA-TLX and specifically adapted

to the driving tasks. DALI includes six factors: attention, visual, auditory, temporal,

interference, and stress. In order to reduce the time of taking the survey, the cognitive

workload was only measured once at the end of the survey using a 7-point Likert scale

when the participants watched all the six scenarios. In the control and text-only

scenarios, the auditory demand was removed.

5.2.5 Survey Design and Procedure

The survey consisted of four sections as illustrated in Figure 5.1. The first section

included a consent form. In the second section, the participants filled in a set of de-

mographic questions. The third section was a training session, where the participants

were given one simulation video example not used in the test session with three SA

questions. Since the SA questions were designed based on the SAGAT technique, the

freeze-probe technique was imitated for each scenario by dividing the simulation into

two parts representing before and after the freeze situations. The fourth test section

included six AV driving scenarios as shown in Table 5.4. The participants watched
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Figure 5.2: Presented explanations S2 in (a) control, (b) SA L1, (c) SA L2 and (d)
SA L3 conditions (see S3 L3: https://youtu.be/GNL2cMK5Lyk).

the first part of each simulation video and answered three questions about their SA

about the driving scenario (see Table 5.3). Then, they watched the second part of the

video where they could see what happened actually. After each scenario, the partici-

pants evaluated their situational trust in AVs using the STS-AD scale and rated the

given explanation(s) using the explanation satisfaction scale. After finishing all the

six scenarios, the participants were required to report their mental workload about

the explanations.

5.2.6 Scenario Design

Participants’ trust in AVs’ scenarios was investigated by manipulating their SA

using three SA levels (Endsley , 1995a) in different scenarios. All the situations were

extracted from real driving scenarios and from Wiegand et al.’s work (2020), where

they explored the necessity of the explanations in unexpected situations while driving

an AV. Seven scenarios were identified and simulation videos were created to visualize
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Table 5.4: Scenarios with description in this study

Name Scenario Description and Link

Training Reluctant to
turn right due
to a pedestrian

City: The AV stops before turning right, and a pedes-
trian stands on the other side of the street and moves
a little. There is no crosswalk. The AV slowly turns
with intermittent stopping. https://youtu.be/B3Zw7-
kZzoY

S1 Long wait at
the intersec-
tion to turn
left

Highway: The AV approaches an intersection with a
green traffic light. It stops behind the traffic light,
and then moves a bit. After about 10 seconds, the
AV finally turns left after an oncoming car passes.
https://youtu.be/PfpsxPfmePg

S2 The AV stops
and the pedes-
trian crosses

City: While driving, the AV stops abruptly. It
waits. After seconds, a pedestrian crosses the
street behind the bus. The AV continues driving.
https://youtu.be/i9nt3FvqbnM

S3 Unexpected
stop due to
an emergency
vehicle

City: The AV stops. In some distance, there is
a green traffic light. After a while, an emergency
vehicle passes with the siren on. The AV waits
for about 2 more seconds and continues driving.
https://youtu.be/XmSrxEYeySo

S4 Strong and
abrupt braking
to reach the
speed limit

City: The AV enters the city and brakes
abruptly and strongly to reach the speed limit.
https://youtu.be/b5jrT4Mx9bg

S5 Early lane
change due to
heavy traffic

Highway: The AV changes to the right lane far away
from the turn and it detects heavy traffic on the defined
route. https://youtu.be/0kQw498WK20

S6 The AV waits
for a long time
before merging

Highway: The AV slows down and stops. It needs
to merge with the highway and waits for its chance
with a safe distance while the AV’s intention in
merging lanes is not clear. Traffic is overloaded.
https://youtu.be/L8I8ULMcuYw

the situations (see Table 5.4). In each scenario, the corresponding information was

embedded into the video explaining the current situation before the AV started its

actions. In this work, explanation modality was also explored by adding voice-over to

simulations. In visual+auditory conditions, an auditory message with a synthesized

female voice was added to provide the same situational explanations simultaneously

with the visual explanations. Figure 5.2 illustrates the simulations for the S2 scenario
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(see Table 5.4) correspondingly for the control, SA L1, SA L2, and SA L3 conditions.

In the control condition, no explanation was given. The SA L1 condition provided

information explaining the perception of the current environment, including the sur-

rounding objects which influenced on the AV’s behavior. In the SA L2 condition,

additional information was used to explain how the AV understood the surrounding

environment. The SA L3 condition included all the information from SA L2 and

added extra information about how that might affect the AV’s behavior in the future.

5.2.7 Data Analysis

Statistical analysis was conducted using the R language in RStudio. A two-way

ANOVA was used to analyze the effects of the explanations on situational trust,

explanation satisfaction, and mental workload. The alpha was set at 0.05 for all the

statistical tests. Post-hoc analysis was conducted with Tukey’s HSD test.

5.3 Results

5.3.1 Manipulation Check

In this study, the effect of the provided information on SA was explored with the

control condition and three SA levels, where the participant’s SA was measured by

the number of correct responses throughout the experiment. A two-way ANOVA test

showed that there was a significant main effect of SA levels (F (3, 333) = 38.23, p =

.000, η2 = .253) and modalities (F (1, 333) = 4.26, p = .040, η2 = .009) (see Figure

5.3). There was no significant interaction effect between SA levels and modalities

(F (2, 333) = 0.28, p = .752). The post-hoc analysis showed that SA was signifi-

cantly higher in SA L1, L2, and L3 conditions compared to the control condition,

and significantly higher in the visual + auditory modality (p = .040) compared to

the visual-only modality. Figure 5.3 illustrates the mean SA scores across different

experimental conditions.
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Figure 5.3: Mean SA scores at different conditions and explanation modalities with
standard error, where ‘***’ indicates p < 0.001.

5.3.2 Situational Trust

The means of the STS-AD over all six scenarios were calculated and analyzed

with a two-way ANOVA. Results showed that the main effect of SA levels was sig-

nificant (F (2, 294) = 3.93, p = .020, η2 = .029) whereas the main effect of modalities

(F (1, 294) = .07, p = .789, η2 = .000) and the interaction effect (F (2, 294) = 1.31, p =

.272, η2 = .007) were not significant (see Figure 5.4). The post-hoc analysis showed

that STS-AD in SA L2 was significantly higher than in SA L1 (p = .036). Specifically,

STS-AD in Text SA L2 was significantly (p = .040) higher than that in Text + Voice

SA L1. And STS-AD was significantly higher (p = .047) in SA L2 than that in SA

L3. Specifically, STS-AD in Text SA L2 was marginally (p = .052) higher than that

in Text SA L3. Compared to the control condition, it was found that only SA L2 was

significantly higher (p = .011) mainly due to the visual-only modality (p = .026). As

for the visual + auditory modality, the difference was not significant (p = .131).
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Figure 5.4: Overall mean and standard error of situational trust measured by the SA
levels and modalities, where ‘*’ indicates p < 0.05.

5.3.3 Explanation Satisfaction

With regard to explanation satisfaction, the two-way ANOVA showed a signifi-

cant interaction effect (F (2, 294) = 4.53, p = .012, η2 = .030). The post-hoc analysis

showed that the participants were significantly more satisfied with the given expla-

nations in the SA L1 (p = .014) and SA L2 (p = .043) conditions compared to the

SA L3 condition when explanations were presented in the visual-only modality. Fur-

thermore, in the SA L3 condition, when a comparatively large amount of explanation

information was presented, a significant effect of explanation modality was found that

the visual + auditory condition resulted in a higher satisfaction score compared to

the visual-only (p = .009) condition (see Figure 5.5).

5.3.4 Mental Workload

The participants’ self-reported mental workload was analyzed using the mean

values of all the six DALI factors. As shown in Figure 5.6, we found a significant

main effect of SA levels (F (2, 294) = 3.70, p = .026, η2 = .024) that participants’
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Figure 5.5: Interaction effect of SA levels and modalities with standard error on
explanation satisfaction.

mental workload was significantly higher (p = .018) in the SA L2 condition than

that in the SA L1 condition and than that in the control condition (p = .009).

Specifically, we found that participants’ mental workload in the Text SA L2 condition

was significantly (p = .016) higher than that in the Text SA L1 condition and was

significantly (p = .012) higher than that in the control condition. Thus, the significant

differences were mainly caused by the visual-only modality.

5.4 Discussion

5.4.1 The Effects of SA

In this study, we investigated the effects of SA explanations and modalities on

situational trust, explanation satisfaction, and mental workload in AVs. First, our

results partially supported that SA levels positively affected participants’ situational

trust (see Figure 5.4) and SA L2 led to the highest level of situational trust. In

this sense, situational trust appeared to be sensitive to SA. In particular, the par-
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Figure 5.6: Overall mean and standard error of mental workload measured by the SA
level and modality, where ‘*’ indicates p < 0.05 and ‘**’ indicates p < 0.01.

ticipants’ trust was significantly higher in SA L2 compared to SA L1 and L3, where

the given information was either too little to foster the participants’ perception and

comprehension of the current situation or was redundant to notably improve trust

(Mackay et al., 2019). One possible reason might be the out-of-the-loop problem,

as Endsley et al. (1995) found that SA L2 was the most negatively affected level

by automation, where people’s understanding of the situation significantly decreased,

pushing them out of the control loop. When SA L2 explanations were provided to help

the participants understand the situations and bring them back to the control loop,

their situational trust was significantly improved. Besides, consistent with Endsley

(1995a), the participants might comprehend and project the future state at the same

stage in SA L2, which indicates that the participants might already receive informa-

tion that is supposed to receive in SA L3. For instance, in the scenario 2 (see Table

5.4) comparing the SA L2 explanation (i.e., L1: “Running pedestrian detected”, L2:

“Pedestrian has an intention to cross the street”), and SA L3 (i.e., L1, L2, and L3:

“90% risk of hitting a pedestrian”) explanations, the participants might project the

65



risk of accident at L2, hence the L3 explanation was not useful. Therefore, there

was also no significant difference between SA L2 and SA L3 in terms of cognitive

processing as shown in Figure 5.6.

With regard to the interaction effect of SA levels and modalities on explanation

satisfaction (see Figure 5.5), the participants were more satisfied with the text expla-

nations in SA L1 and L2 might be due to the machine-generated voice. As Tsimhoni,

Green and Lai, (2001) showed that natural speech led to a better comprehension of

the given information compared to synthesized speech. However, participants were

more satisfied with the combined visual and auditory explanations in SA L3. This

result was supported by the information processing theory (Wickens , 2008a) that it

was easy to comprehend a large amount of information when more than one sensory

resource (i.e., visual and auditory) was used while the participants might be annoyed

to have redundant explanations with less information.

For cognitive workload, we found that participants had a higher cognitive workload

in the SA L2 condition, especially the visual-only explanations, compared to the

control and SA L1 conditions. One possible reason might be that the participants

with explanations corresponding to SA L2 were actively interpreting the information

to understand the driving scenarios, which improved their situational trust (see Figure

5.4). However, regardless of the extra information, SA L1 and SA L3 had similar levels

of cognitive workload as the control group which might be due to the experiment

design.

5.4.2 Implications

We proposed to explain AV behavior based on the three levels of SA and XAI

theoretically to satisfy their informational needs in unexpected scenarios, and empiri-

cally explored its effects on human-AV interaction. Considering the AV as a black-box

AI system, the properly-designed explanations based on the SA framework helped to
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define which components in the system should be explained to meet drivers’ infor-

mational needs in order to understand AV’s behavior. While previous studies have

focused on “how”, “why” and “what” information for explanations empirically (Koo

et al., 2015, 2016; Du et al., 2021), this SA-based model focused more on XAI con-

cepts and reduced the complexity of the situations to understand how the AI system

came to that particular decision systematically.

During the interaction between the driver and the AV, it is important that the

AV provides explanations with different levels of SA for the driver to understand

its decision-making process. As pointed out by Sanneman and Shah (2020), the key

point is how to map such explanations into the needed three SA levels when designing

such a black-box AV system as an XAI system. At SA Level 1, we need to provide

explanations about what objects are perceived from the environment to explain the

effects of external factors on the decision-making process. At SA Level 2, we should

explain how the AV understands the situation by taking the perceived objects and

their actions into consideration. At SA Level 3, we might consider what actions would

the AV and other road users take in the near future. Our explanations attempted

to be designed based on the theory-based SA model to satisfy drivers’ informational

needs and benefit them by improving their trust with a minimal level of cognitive

workload.

5.4.3 Limitations and Future Work

This study also has limitations that can be examined in future studies. First, the

experiment was conducted in a low-fidelity setting on MTurk due to the COVID-19

pandemic. The SA was measured with the SAGAT technique (Endsley , 1995a) and we

found that participants’ SA was notably improved compared to the control condition.

However, we could not identify significant differences among the three SA levels based

on the provided explanations. One of the possible reasons might be that the data
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was collected on MTurk, where the scenarios were relatively short (30-45 seconds)

and the fidelity was relatively low in the experiment. This potentially reduced the

participants’ engagement level. Another reason might be the absence of non-driving

related tasks due to the difficulty in controlling participants when the experiment

was conducted on MTurk, which allowed the participants to continuously monitor

the ride. Nevertheless, the significant differences in SA between the control condi-

tions and others indicated the importance of simple explanations in improving SA.

Further investigations are needed to understand the effects of different explanations

on SA and subsequently on trust, mental workload, explanation satisfaction, and the

joint performance of the human-AV team in high-fidelity driving simulators. Second,

only self-reported measures were used to evaluate the trust and mental workload.

Additional measures, such as physiological measures (e.g., galvanic skin response (Du

et al., 2020a), eye-tracking (de Winter et al., 2019)) can be included in future studies.

Third, only a limited number of scenarios were tested in the experiment with low to

moderate risks. Future studies can explore more scenarios with different levels of

risk. Fourth, since the experiment was conducted as a between-subjects design, the

participants experienced only one of the SA levels, the results might be affected by

individual differences and the low-fidelity of the experiment setting.

5.5 Conclusion

In this study, we designed an SA-based explanation framework to help drivers un-

derstand the driving situations and map the AV’s behavior properly to the situation.

By exploring participants’ situational trust, cognitive workload, and explanation sat-

isfaction, we evaluated the effectiveness of the framework in three SA levels and two

modalities. Based on the results, it was partially supported that SA-based explana-

tions improved participants’ situational trust. Among three levels, SA L2 resulted in

higher situational trust and mental workload regardless of the explanation modality.
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However, modality preferences were changed from visual to visual and audio due to

the explanation amount in SA L3. Overall, the results confirmed that the properly-

designed explanations based on the SA-based framework helped orient drivers in the

unexpected situation and assess the AVs’ behavior accurately leading to higher trust

and acceptance of these vehicles.
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Chapter 6 Enhancing Situation Awareness for Conventional Vehicles in

Mixed Traffic Environment

6.1 Introduction

as AVs become more prevalent on the roads, they will coexist with conventional

vehicles (CVs) for the foreseeable future, creating mixed traffic environments (Juhlin,

1999). This coexistence presents unique challenges, particularly in terms of commu-

nication between AVs and other road users, such as CVs and vulnerable road users

(VRUs). In traditional vehicle interactions, human drivers or VRUs rely on a limited

set of explicit signals such as horns, headlight flashes, and eye contact or gestures as

well as implicit cues like vehicle speed change and trajectory (Miller et al., 2022; Diet-

rich et al., 2019a). These communication methods, while limited, are well-understood

by humans who can interpret and respond to them based on shared understanding

and driving experience. However, in AV-human interactions, these traditional meth-

ods become less effective or even obsolete. AVs lack the ability to make eye contact

or use gestures, and their movements may not convey the same implicit intentions as

those of human-driven vehicles (Papakostopoulos et al., 2021; Brown et al., 2023).

This lack of communication can lead to misunderstandings, confusion, and poten-

tially hazardous situations, especially in complex traffic scenarios like intersections or

merging lanes (Brown et al., 2023). In such situations, both vehicles influence and re-

spond to each other’s actions, requiring quick response based on communication and
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mutual understanding. CV drivers may exhibit complex and nuanced behaviors that

are not always rational or predictable, making it challenging for AVs to anticipate

and respond effectively to these interactions (Siebinga et al., 2023; Isele et al., 2018).

To ensure smooth traffic flow and minimize the risk of accidents, AVs need to be able

to engage in these interactions in a safe, efficient, and socially acceptable manner.

Therefore, there is a need for new, explicit communication methods that bridge the

gap between AVs and CVs, ensuring that human drivers can understand and antici-

pate AV behaviors as intuitively as they do with other human drivers (Schieben et al.,

2019).

To address communication challenges between AVs and CVs, researchers have

investigated vehicle-to-everything (V2X) communication systems, which enable real-

time exchange of vehicle-specific information (e.g., speed, position, and intended ma-

neuvers) and environmental data (e.g., road hazards and emergency vehicle locations)

(Kenney , 2011). These advanced systems extend the capabilities of traditional visual

cues, minimizing potential misinterpretations between human drivers and AVs. The

resulting shared awareness promotes a more predictable and orderly traffic environ-

ment, enhancing situational awareness for all road users (Shladover , 2018). However,

realizing these benefits hinges on the development of a standardized communication

framework, which must be accepted and implemented across diverse vehicle types

and manufacturers to ensure successful cooperation of AV and CV systems (Guanetti

et al., 2018). Another important communication strategy is to explicitly display the

intention on an external human-machine interface (eHMI). so that other road users

can understand AV’s intention easily. In both cases, the design of the communication

system must consider the human driver’s mental model and informational needs to

establish effective communication and avoid causing additional cognitive disturbance.

This aspect remains less investigated in the AV-CV context. In contrast, numerous

studies have explored these human factors in AV-VRU interactions through the devel-
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opment of eHMIs. By utilizing visual cues, such as LED displays, symbols, and laser

projections, as well as auditory signals like beeps and chimes, studies have shown that

eHMIs can significantly enhance traffic safety by explicitly conveying AV’s intentions

(Bai et al., 2021; Palmeiro et al., 2018; Rasouli and Tsotsos , 2019). Research has

demonstrated that in contrast to implicit cues derived from an AV’s trajectory or

speed changes (Fuest et al., 2018), eHMIs can reduce the time pedestrians take to

cross the street and improve the safety of their crossing decisions (Dietrich et al.,

2019b). Furthermore, eHMIs have been found to increase the perceived trustwor-

thiness and intuitiveness of AVs (Hensch et al., 2020). These findings highlight the

potential of eHMIs in enhancing traffic safety by reducing misunderstandings and

facilitating decision-making processes during human-AV interactions.

In this study, we aimed to address the communication need by investigating how

HMIs can facilitate effective communication between AVs and CVs in mixed traffic

environments, particularly in challenging traffic situations. We employed a within-

subjects experimental design in a VR environment. The independent variable was

the HMI design, which had three distinct levels. The first level served as a control

condition without any HMI implementation. The second level involved an external

HMI (eHMI) positioned on the front of the AV. The third level featured an internal

HMI (iHMI) integrated within the CV. To gain deeper insights into the HMI’s efficacy,

we introduced two patterns within the eHMI and iHMI conditions that were developed

using our SA framework. One signaling the AV’s intention to yield, and the other

indicating its priority right of way. Our assessments utilized both self-reported and

objective measures. We evaluated the effect of these design variations on drivers’

SA, trust in AV, acceptance of HMI deployments, and the cognitive workload during

interaction with the AV.

72



6.2 Method

6.2.1 Scenario

To investigate communication challenges in high-risk traffic situations, we selected

the ’Left Turn across Path from Opposite Directions at Signalized Junctions’ scenario

based on Najm et al.’s crash report (2007), which identified this scenario as a signif-

icant contributor to crashes, injuries, and fatalities. Although the right-of-way rules

in such scenarios are generally understood (straight traffic has priority over turning

traffic), the malfunctioning traffic lights introduce a critical uncertainty: how will the

AV, as a non-human road user with potentially unfamiliar behavior patterns, navigate

this situation (see Fig. 6.6). The scenario presents a unique opportunity to explore

the communication gap between AVs and CVs. Will the CV driver accurately antic-

ipate the AV’s actions, or will the lack of explicit communication lead to hesitation,

misinterpretation, or even collisions? By examining this scenario, we aim to uncover

the potential benefits and limitations of different communication strategies between

AVs and CVs in resolving such uncertainties and ensuring safe navigation in mixed

traffic environments.

6.2.2 Designing HMIs with a Human-centered Approach

In the first phase of this study, we employed a human-centered design process

(IDEO , 2015) to develop interfaces to facilitate communication between CVs and

AVs for a specific scenario in intersections. To empathize with CV drivers and un-

derstand their needs, we reviewed existing literature and had a class discussion (with

more than 30 master students in the human-centered design program in University

of Michigan-Dearborn) about the challenges faced by communications between CVs

and AVs. Based on our analysis, we identified three main challenges, including: 1)

conspicuousness - easy to see visually, 2) comprehensibility - easily understandable
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with minimal cognitive effort, and 3) identifiability - easy to recognize to whom it

was addressed.

Then, we had a brainstorm session to generate a wide range of possible ideas for

the ”left turn” scenario in an intersection (see Table 6.4) and followed the design prin-

ciples outlined in Rettenmaier et al.’s study (Rettenmaier et al., 2020) and Avetisyan

et al.’s SA framework (Avetisyan et al., 2022) for informational needs. Ultimately, we

narrowed down to eight design concepts (see Fig. 6.1) that included two versions for

the AV to 1) yield and 2) insist on the right of way, and were presented using different

visual formats, i.e., signs, texts, or a combination of both. Designs 1 to 4 included SA

level 1 (i.e., perception of the items in the environment, ) and level 2 (i.e., comprehen-

sion of the current situation) information, while designs 5 to 8 included additional SA

level 3 information (i.e., projection of future status of the environment). To facilitate

communication between CVs and AVs in the selected scenario, we broke down the

HMI message into three parts, which explained the traffic situation, a suggested way

of behaving, and improved trust. Firstly, we added a sign or text that described the

current issue, stating that the traffic lights were not functioning properly. Secondly,

we included right-of-way information that informed CV drivers how to proceed, in-

corporating well-known traffic signs and colors to enhance comprehension. Thirdly,

we attempted to provide extra information to increase the confidence of CV drivers.

To evaluate the interface designs, we conducted an online survey study with 32

participants who were introduced to the “left turn” scenario and asked to show their

level of agreement for the prototypes of the design concepts using a 7-point Likert

scale based on four statements: 1) The message is easy to understand, 2) The message

contains relevant details, 3) The message helps to respond quickly, and 4) The message

is preferred with text only. The final score was calculated as the average of these four

statements. The analysis of the online survey data revealed a significant difference

among the eight concepts (F (7, 8) = 10.05, p < 0.000). Notably, the second interface

74



Please YIELD

High collision risk

 Please GO

No collision risk

Traffic light malfunction

Please GOPlease YIELD

Traffic light malfunction

High collision risk

Traffic light malfunction

No collision risk

High collision risk

Traffic light malfunction

No collision risk

Traffic light malfunction

Traffic light malfunction

Please YIELD

Traffic light malfunction

High collision risk

Traffic light malfunction

Please GO

No collision risk

1

2

3

4

5

6

7

8

Figure 6.1: Interface design concepts for AV-CV communication. In all the concepts,
the first figure showed that traffic lights are malfunctioning and CV had to yield the
AV, while the second figure showed that CV had right of way.

design (see Fig. 6.1) received the highest rating of 5.28 and was chosen to be tested

in the second phase of the study, which involved using a driving simulator in a VR

environment.

6.2.3 Participants

This study was conducted in accordance with the ethical requirements of the Insti-

tutional Review Board at the University of Michigan (application number HUM00219554).

Consent forms were sent in advance, allowing thorough review before confirming par-

ticipation. In the design phase, 32 students participated in evaluating eight concepts.

These participants were recruited from a Human-centered Design Engineering course

focusing on user-centered design principles and advanced technologies, including au-

tonomous vehicles. Our recruitment process emphasized the voluntary nature of

participation and its independence from academic performance. All enrolled students

were eligible to participate, with no predetermined limit on participant numbers. As

an incentive, students were offered a minor grade bonus, equivalent to 1% of their

course score, for their participation.
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In the experimental phase, a total number of 50 participants took part in the

experiment. Due to the severe motion sickness and eye calibration failures, six par-

ticipants could not finish the experiment. Therefore, the data analysis was conducted

based on the remaining 44 participants (11 females and 33 males; Age = 24.4 ± 4.19

years old) who were university students located in the United States and possessed

a valid U.S. driver’s license. On average, participants had 5 ± 4.52 years of driving

experience and drove approximately 5 ± 1 days per week. Participants received com-

pensation of $20 in cash upon completion of the study. The average completion time

was 35 minutes for male participants and 41 minutes for female participants. Dur-

ing the experiment, participants were allowed to withdraw at any time and receive

$5 per 10 minutes. Participants experienced low levels of motion sickness after the

experiment( i.e. 1.66 for male and 1.70 for female participants).

6.2.4 Apparatus

The experiment was conducted in Virtual Reality driving simulator at the Univer-

sity of Michigan-Dearborn using a desktop computer with an Intel Xeon(R) W-2104

CPU processor running at 3.20GHz, 64.0 GB of RAM, and an NVIDIA GeForce RTX

3060 graphics card with 12 GB of memory. The operating system used was Windows

10. The experiment employed an HTC Vive Pro Eye headset (Taipei, Taiwan) in

combination with the Logitech G29 Driving Force (Lausanne, Switzerland). Four dif-

ferent drives (one for training and three for experimentation) were created using the

Unity game engine (San Francisco, CA). All self-reported data was collected using a

survey developed and administered through the Qualtrics (Seattle, WA) platform.

6.2.5 Experiment Design

In the second phase of this study, the final design concept was evaluated in the

VR driving simulator experiment.
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Figure 6.2: Experiment setup with VR driving simulator. Participant was wearing
HTC Vive headset and driving a CV using Logitech G29 steering wheel and pedals.
The screen shows the participant view in the VR environment.

Independent variables. In this study, a within-subjects design experiment

was conducted in which the independent variable was the communication interface

condition with three levels: control, eHMI, and iHMI. The control condition did not

have any explicit communication between the AV and the CV. In the eHMI condition,

the AV communicated with the CV through an external display attached to front of

the AV, which shared the current traffic situation and right-of-way information from

the egocentric perspective (the CV driver’s perspective). In the iHMI condition, the

AV communicated with the CV through an internal display that appeared on the

CV’s heads-up display and shared the same information as described for eHMI.

Dependent variables. The study collected both self-reported and objective

data (i.e., eye tracking and vehicle dynamics). Self-reported measures were used to

assess SA, trust in AV, interface acceptance. Situation awareness was assessed using
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a modified version of Situation Awareness Global Assessment Technique (SAGAT)

technique (Endsley , 1995b). To maintain participants’ engagement in VR and min-

imize motion sickness, we modified the original SAGAT method by conducting SA

evaluations post-trial instead of interrupting the trials. Following previous studies

(Avetisyan et al., 2022; van den Beukel and van der Voort , 2017), we developed SA

questions that aligned with SAGAT’s principles and includes all three levels of SA:

perception (Level 1), comprehension (Level 2), and projection (Level 3) (Endsley ,

1988). After each trial, the participants were asked to answer SA questions (see Ta-

ble 6.1) for two interactions separately, where they chose all the applicable answers

out of the 5 possible options. The final SA score was measured based on the number

of correct answers, with a score range of 0 to 3. To prevent negative impacts on

participants’ engagement in VR and to avoid causing additional motion sickness, the

SA was evaluated in the post-trial phase. Trust in AV was measured with Jayaraman

et al.’s (2019) version of Muir et al.’s (1987) trust scale with 7-point Likert scales. At

the end of each session, participants evaluated their trust in five dimensions: compe-

tence, predictability, dependability, responsibility, reliability over time and faith, by

answering question presented in Table 6.2. To understand the acceptance of the pro-

posed concepts as communication interfaces, Van der Laan et al.’s (1997) nine-item

acceptance measure was applied, where participants rated them in two dimensions:

1) perceived usefulness (i.e., useful, good, effective, assisting, and raising alertness),

which focused on the functional aspects of the concepts and how well it could assist

the participant in current situations, and 2) satisfaction (i.e., pleasant, nice, likable,

and desirable) which focused on the overall emotional responses and fulfillment of

expectations after experiencing the concepts. The measures were assessed by 7-point

rating scales (see Fig. 6.4) after each trial was completed. Furthermore, the partici-

pants’ simulation sickness was evaluated using the Simulator Sickness Questionnaire

(SSQ) (Kennedy et al., 1993) on a 7-point Likert scale.

78



To collect eye-tracking data from participants, the integrated eye tracker in the

HTC VIVE Pro Eye headset was used with a resolution of 1440 x 1600 pixels per eye,

and a 110-degree horizontal field of view. The eye tracker had a 120 Hz frequency

of gaze data output with an accuracy of 0.5-1.1 degrees. In total, 7 measures were

collected and used to analyze the pupil diameter and eye openness (see Table 6.3).

Previous studies showed that mean change in pupil diameter was a reliable measure

since it can eliminate the side factors, i.e. environment illumination, that could poten-

tially influence on pupil diameters (Palinko and Kun, 2012). Therefore, to investigate

how participants’ mental workload was influenced by the interface condition, mean

pupil diameter and eye openness changes were examined. Prior to the analysis, the

raw data went through four step of data processing. First, the invalid eye data rows

and outliers were removed. Next, the records of left and right eyes were combined by

their mean coordinate values. Third, the interaction moments were identified using

vehicle positions in the VR and the data was segmented to ten second before and after

the interaction with AV. Finally, the mean pupil diameter change and eye openness

change were calculated per interaction, and the average of two interactions was used

for further analysis.

Figure 6.3: Experiment procedure.
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Table 6.1: An example question for the iHMI condition to measure SA with a SAGAT
questionnaire (Endsley , 1995a)

Question

You and the incoming automated vehicle approached an intersection as shown
in the picture. Based on your understanding, what was the situation at the
intersection (pick all applicable)?
Options

1. The traffic lights are malfunctioning

2. The incoming automated vehicle will yield

3. The incoming automated vehicle has the right of way

4. The incoming automated vehicle would expect you to yield

5. The incoming automated vehicle violated traffic rules

Note: The underlined options indicate the correct answers.

6.2.6 Experiment Procedure and Data Collection

The experiment consisted of six sections. In the first section, participants com-

pleted the demographic section of the survey and received an introduction to the ex-

perimental process and tools. Following the introduction, the experimenter calibrated

the eye tracker, and the participants had a training session where they had an op-

portunity to familiarize themselves with the VR environment and driving equipment
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Table 6.2: The trust questionnaire (Jayaraman et al., 2019).

Dimension Question

Competence To what extent did the autonomous cars perform their function
properly i.e., recognizing you and reacting for you?

Predictability To what extent were you able to predict the behavior of the
autonomous cars from moment to moment?

Dependability To what extent can you count on the autonomous cars to do its
job?

Responsibility To what extent the autonomous cars seemed to be wary of their
surroundings?

Reliability over
time

To what extent do you think the autonomous car’s actions were
consistent through out the interaction?

Faith What degree of faith do you have that the autonomous cars will
be able to cope with all uncertain ties in the future?

Figure 6.4: The acceptance scale (Van Der Laan et al., 1997). The usefulness measure
was the average of useful, good, effective, assisting, and raising alertness items. The
satisfaction measure was the average of pleasant, nice, likable, and desirable items.

through a test drive (see Fig. 6.2). During this training session, participants experi-

enced interactions with AVs similar to the experimental scenarios and were introduced

to two interface concepts. Upon completion of the training session, participants were

given the choice to either continue or stop their participation in the experiment. Since

a within-subjects experimental design was employed, after the training sessions, par-
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Table 6.3: Eye tracking measures. Each measure was collected for the left and right
eye separately.

Measures Description

Timestamp The current time of data recording
Eye validity The bits explaining the validity of eye data
Eye openness The level of eye openness
Pupil diameter The diameter of pupil

ticipants experienced each of the three experiment sessions corresponding to three

conditions, i.e., eHMI, iHMI, and control conditions, in a randomized order. At the

beginning of each session, the participants received brief introduction about current

interface. During the drive, the eye tracking outputs and vehicle trajectory were

recorded. At the end of each session, the simulation was paused and the partici-

pants filled in the survey section required to measure the dependant variables (i.e.,

SA, trust, and acceptance) as showed in Fig. 6.3. At the end of the last session,

participants were asked to evaluate the 16 symptoms of simulation sickness listed on

the SSQ. Overall, the experiment took approximately 38 minutes to complete, with

15 minutes allotted for demographic information, instruction, and training, and ap-

proximately 5 minutes for each experimental session. The participants also had the

option to take a 5-minute break between each experiment condition.

6.2.7 Scenario Design in VR

In the VR setup, the scenario was implemented as follows: Each condition featured

two variations, with an AV situated at two different intersections. Instructed by the

integrated navigation system’s voice, the CV driver was directed to turn left (as shown

in Fig. 6.6). In one interaction, the AV yielded its right of way, while in the other

interaction, it insisted on the right of way. When the distance between the AV and

the CV reached the predefined distance, the AV displayed a message informing that

the traffic lights were not functioning, and the CV either had the right of way or had
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Table 6.4: Vehicles’ interaction scenario (Najm et al., 2007)

Scenario Factors Severity
A conventional vehicle (CV) is
making a left turn at an inter-
section in an urban area dur-
ing daylight hours, with clear
weather conditions and a posted
speed limit of 30 mph. Al-
though the intersection is signal-
ized, the traffic lights are cur-
rently malfunctioning. At the
same time, an autonomous vehi-
cle (AV) is approaching the in-
tersection from the opposite di-
rection and proceeding straight
through. The CV driver must
navigate the intersection by
crossing in front of the AV’s
path, due to the left turn (see
Figure 6.6).

Intersection,
low speed
road, vision is-
sues, situation
unawareness,
vulnerable
driver are over-
represented.

According to the crash
report, this scenario was
responsible for 190,000
crashes (3.19% of all
crashes). These crashes
involved a total of
389,000 vehicles (3.64%
of all vehicles) and
558,000 people (3.71%
of all people involved in
crashes). Of the people
involved, 1.24% suffered
high-level MAIS 3+
injuries (i.e., serious,
severe, critical, or fatal).

to yield to the AV.

In the eHMI condition, the messages were displayed on the front of the AVs as

shown in Fig. 6.5c and 6.5d, disappeared as the vehicles passed each other. In the

iHMI condition, the message was displayed on the CV’s windshield as shown in Fig.

6.5a and 6.5b. In the control scenario, the AV did not have a communication interface,

and the CV driver had to rely on their own understanding to navigate.

6.3 Results

As the experiment was conducted using a within-subjects experimental design,

a one-way repeated measures ANOVA was conducted to examine how the interface

conditions affected the dependent variables. For the post-hoc analysis, a Bonferroni

correction method was applied to determine significant differences between different

conditions. The statistical analyses were carried out using MATLAB and R pro-
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(a) (b)

(c) (d)

Figure 6.5: Experimental scenarios with (a) go and (b) yield messages in iHMI con-
dition, (c) and (d) in eHMI condition

gramming languages, with an alpha level of .05 set for all the tests. The effects of the

interface conditions on the dependent variables were assessed using η2, which mea-

sures the proportion of variance in the dependent variables that can be accounted

for.

6.3.1 Situation Awareness

SA was measured at two interactions for each interface condition and the mean

SA score was used in the analysis. The results of one-way repeated measures ANOVA

showed that there was a significant difference among three conditions (F (2, 131) =

13.64, p = .000, η2 = .132). As illustrated in Fig. 6.7, the post-hoc analysis indi-

cated that sharing the information through eHMI (p = .002) and iHMI (p = .000)

significantly increased the SA level of the driver in the CV compared to the control
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Figure 6.6: Conventional vehicle is turning left at non-signalized intersection and has
to cross the path of incoming autonomous vehicle. The scenario was tested in two
different AV behaviors at two different intersections. In one scenario, the AV yielded
to the CV, while in the other, the AV insisted on the right of way.

condition. The difference between iHMI and eMHI was not significant.

6.3.2 Trust

In order to understand the effects of three interface conditions on trust, the mean

of the five trust dimensions was analyzed. The results indicated that trust was signif-

icantly different among the tested conditions (F (2, 131) = 25.20, p = .000, η2 = .233).

Specifically, the trust level was significantly lower in the control condition than that

in the eHMI and iHMI conditions (p = .000) as shown in Fig. 6.8. Also, in the eHMI

condition the reported trust level was lower than iHMI, but the difference was not

statistically significant (p = .648).

6.3.3 Acceptance

Regarding the acceptance of designed interface concepts, the results showed that

participants’ ratings were significantly different across the tested conditions with re-

gard to usefulness (F (2, 131) = 80.84, p = .000, η2 = .535) and satisfaction (F (2, 131, ) =
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Figure 6.7: The effect of interface conditions on the SA level of the driver in the CV,
where ‘**’ indicates p < .01 and ‘***’ indicates p < .001. Note that the error bar
showed the standard deviation.

45.80, p = .000, η2 = .360) of the concepts. Pairwise comparisons indicated that

participants rated the interface as significantly useful compared to AVs without ex-

plicit communication interface. Additionally, the individual item comparisons in the

usefulness dimension showed that there was a significant difference in the interface

effectiveness where the iHMI condition was significantly higher compared to eHMI

condition (p = .015). As for satisfaction items, no significant difference was found

between eHMI and iHMI conditions (p = 1.000).

6.3.4 Pupil Diameter and Eye Openness

Due to the eye tracker’s technical issues, 6 participants data were partially missing

and were excluded from eye-tracking results. Therefore, eye-tracking measures were

analyzed based on data from 38 participants.

The results of one-way ANOVA performed on mean pupil diameter change showed

that there was a significant difference among three conditions (F (2, 113) = 6.69, p =

.002, η2 = .185). The post-hoc test showed that pupil diameter change in iHMI
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Figure 6.8: The effect of interface conditions on trust in AVs, where ‘***’ indicates
p < .001. Note that the error bar showed the standard deviation.

condition was significantly lower than that in control (p = .001) and eHMI (p = .042)

conditions (see Fig. 6.10). Regarding the mean eye openness change, the patterns

showed that in the control condition, participants tended to frequently squeeze their

eyes during the interaction compared to the eHMI and iHMI conditions (see Fig.

6.11), however, the results of ANOVA showed that this difference was not statistically

significant (F (2, 113) = 1.40, p = .253, η2 = .057).

Regarding the mean eye openness change, the patterns showed that in the control

condition participants tend to frequently squeeze their eyes during the interaction

compared to the eHMI and iHMI conditions (see Figure 6.11), however, the results

of ANOVA showed that this difference was statistically not significant (F (2, 59) =

1.40, p = .253, η2 = .057). The η2 for this study was .057, indicating a small effect

size.

6.3.5 CV Speed

The results of a one-way ANOVA conducted on the mean speed change revealed

a significant difference among the three conditions (F (2, 59) = 5.59, p = .006) when
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Figure 6.9: Perceived usefulness and satisfaction of HMIs, where ‘***’ indicates p <
.001. Note that the error bar showed the standard deviation.

the AV asserted its right of way. According to the post-hoc test, the iHMI condi-

tion showed a significant drop in the CV speed after displaying the“Yiel” message

compared to the eHMI condition (p = .005) and marginal drop compared to the

control (p = .096) conditions (see Fig. 6.12). However, in the intersection where

the AV yielded the right of way, the speed change was not statistically significant

(F (2, 59) = 1.32, p = .548). Comparing the average CV speed, the results showed

that in control condition participants’ speed was significantly lower than other con-

ditions regardless of the intersection (see Fig. 6.13). Specifically, at the intersection

where CV had the right of way to turn, the participants approached the intersec-

tion with significantly lower speed than in iHMI condition (p = .005). Similarly, at

the “Yield” intersection, their speed was significantly lower than that in the iHMI

(p = .027) and eHMI (p = .000) conditions.
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Figure 6.10: Mean pupil diameter change and standard deviation across different
interface conditions, where ‘*’ indicates p < .05,‘**’ indicates p < .01. Note that a
positive change indicated larger pupil diameter following the interaction between CV
drivers and AV, while a negative change indicated smaller pupil diameter.

6.4 Discussions

In this study, we developed and investigates the impact of HMIs as communication

method between CV and AVs in mixed traffic environments. Specifically, we tested

two distinct HMIs: external (eHMI) and internal (iHMI), in addition to a control

interface (i.e., without any form of HMI communication), and evaluated their impact

on CV drivers’ SA, trust, acceptance, and mental workload.

Our results demonstrated that both eHMI and iHMI significantly enhanced CV

drivers’ SA compared to the condition without any explicit communication (see Fig.

5.3). With the HMI conditions, participants exhibited an increased consciousness of

the traffic situation. In particular, they were able to promptly identify what was the

traffic issue at the moment and and determine who had the right of way based on the

shared information, enabling quicker responses in vehicle control. In contrast, dur-

ing the control condition, drivers tended to maintain a safe distance until they could

discern the AV’s intention from implicit cues, such as speed changes or continuous
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Figure 6.11: Mean eye openness change and standard deviation across different in-
terface conditions. Note that a positive change in eye openness indicated wider eyes
following the interaction between CV drivers and AV, while a negative change indi-
cated narrower eyes.

driving. Furthermore, participants drove at significantly slower speeds in the control

condition (see Fig.6.13), which could be attributed to the ambiguity of the situation.

This observation confirms the notion that HMIs have the potential to bridge the com-

munication gap between AVs and CVs, thereby reducing uncertainty and improving

traffic flow efficiency with more seamless interactions. These findings aligns with

previous work (e.g., (Papakostopoulos et al., 2021; Fuest et al., 2018; Dietrich et al.,

2019b)) that has demonstrated the benefits of explicit AV communication for VRUs.

However, our study extends these insights to CV drivers, confirming that explicit

communication is effective not only for VRUs but also for human drivers navigating

mixed traffic scenarios, specifically at uncontrolled intersections.

The observed difference in trust towards AVs with HMIs compared to no commu-

nication highlighted the importance of explicit interfaces in enhancing the perceived

reliability and dependability of AVs. Additionally, a notable behavioral difference was

observed among the conditions. In the control condition, participants were explicitly
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Figure 6.12: Mean speed change and standard error across different interface condi-
tions. The change was measured by calculating the average speed three seconds before
and after receiving the message. Note that a positive change in speed indicated the
CV had positive acceleration after onset of “Yield” message, while a negative change
positive braking after the message.

informed that the AVs would not communicate with them. As a result, they tended

to maintain a lower speed in comparison to the HMI conditions. Despite this, their

reaction to yield the AV was still delayed as they took more time to decelerate their

vehicles compared to the time required for the AVs to complete their intersection

crossing (see Fig. 6.13). As for the eHMI and iHMI conditions, the participants were

more inclined to confidently rely on the instructions in the iHMI condition, indicating

a greater level of trust in the AV and quicker reaction, than in the eHMI condition.

This finding resonates with previous work (e.g., (Hensch et al., 2020)) that has linked

HMIs to higher perceived trustworthiness and intuitiveness of AVs. Although there

was no significant differences between eHMI and iHMI, the results showed that iHMI

condition led to slightly higher trust and awareness in AVs. The superiority of iHMI

could be attributed to its location within the CV driver’s primary field of view, which

aligns with Endsley’s (1988) principles of designing for SA enhancement. By present-
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Figure 6.13: Mean speed and standard error across different interface conditions
measured in three second time period before and after onset of “Yield” message.

ing information directly on the windshield, iHMIs minimize the need for drivers to

divert their attention from the road. In contrast, eHMIs require drivers to shift their

focus, which could lead to momentary distractions. This finding suggests that the

location and modality of communication interfaces play an important role in their

effectiveness, a point that has been underexplored in the AV-CV communication lit-

erature.

The HMIs’ effectiveness was further supported by our eye-tracking data, which

showed a negative increase in mental workload in iHMI condition(see Fig. 6.10)

compared to the eHMI and control conditions. This finding aligns with the principles

of cognitive load theory (Sweller , 2011), which suggest that integrating information

into the driver’s natural visual field not only improves SA but also reduces the mental

effort required to process and act on the information, thereby freeing up mental

resources for the primary driving task. This is particularly important in mixed-traffic

environments where CV drivers must continuously manage their own vehicle, interpret

the intentions of AVs and other road users, and navigate following traffic rules.

With regard to acceptance, both the eHMI and iHMI conditions exhibited high

levels of acceptance, surpassing the control condition. However, the iHMI condition

was more preferable option, potentially due to the perceived ease of understanding
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the shared messages on the interface. Firstly, participants indicated that the iHMI

effectively captured their attention immediately, and the messages were easily visible.

In contrast, the eHMI required more attentiveness to notice the AV’s attempt to

communicate, and drivers had to apply additional effort to observe the interface from a

distance. This ease of perception with the iHMI translated into faster response times,

as evidenced by the more pronounced changes in vehicle speed when participants

received the “yield” message (see Fig.6.12). Secondly, the iHMI condition provided

clarity regarding the intended recipient of the message. Participants recognized that

the displayed actions (i.e., yield or go) were conveyed from the CV driver’s perspective,

unlike the eHMI condition where the intended recipient could be misinterpreted as

other road users. This finding is consistent with participants’ ratings and aligns with

previous studies (Eisma et al., 2021) on interface effectiveness, confirming that the

directness and message perspective in communication fostered a more intuitive and

responsive experience for drivers.

Overall, our findings offer valuable insights for the design of AV systems and the

management of future mixed-traffic environments. While V2X communication and

eHMIs have been the primary focus for enhancing AV-CV communication, our study

demonstrates that iHMIs could enhance SA, reduce cognitive load, and increase trust

and acceptance. , and supports the Schieben et al.’s (2019) call for designing AV

communications based on human needs and expectations.

6.4.1 Implications

Effective communication between vehicles is a vital aspect of developing collab-

orative driving in a mixed traffic environment. However, due to the complexity of

understanding the capabilities and intentions of AVs, it has become more challenging

for drivers in CVs to maintain the necessary level of SA, which is critical to ensure

transportation safety in mixed traffic. This study showed that both external and
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internal HMIs can significantly improve SA during AV-CV interactions at intersec-

tions. Sharing the traffic situation and the AV’s intention via appropriate designed

HMIs boosted human-drivers’ SA. Our findings suggest that internal HMIs (iHMIs)

may offer advantages over external HMIs (eHMIs). While the iHMI condition is

not currently implementable in existing vehicles, it serves as a valuable tool for un-

derstanding drivers’ cognitive and behavioral responses to AV-provided information.

The effectiveness of heads-up display based information visualization, in particular,

indicates a promising direction for future research and development. However, the

lack of standardized communication protocols remains a significant challenge, poten-

tially leading to confusion and misinterpretation of signals. The ambiguity in AV-CV

communication can raise concerns among road users about the reliability and safety

of autonomous systems, highlighting the importance of securing public approval and

confidence as AV technology advances. Encouragingly, our proposed HMI designs

increased trust in AVs compared to the control condition. Nevertheless, it is im-

portant to consider that extra information in ambiguous scenarios could potentially

add workload to driving tasks, emphasizing the need for balanced design in vehicle

communication systems to support real-time decision-making. Our human-centered

design approach provides a foundation for addressing these issues, but further research

is needed to explore the potential of iHMIs and develop standardized communication

protocols. This should encompass various design elements such as visual cues, audi-

tory signals, and optimal HMI placement. Ultimately, the practical implementation

of such systems will require collaboration among stakeholders (e.g., automotive manu-

facturers, technology developers, and policymakers) to establish protocols and ensure

equitable access, contributing to the safe integration of AVs into existing transporta-

tion infrastructure.
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6.4.2 Limitations

This research also has imitations that can be addressed in the future studies.

While we proposed several options for HMI designs, the visual accessibility issues

(e.g. color-blindness) was not considered. In future studies, the effectiveness of se-

lected interface needs to be validated and refined to accommodate a wider range of

users, including those with various visual impairments. As for the second part, first,

more objective measures(e.g., eye fixation on areas on interests ) should be collected

to better understand attention requirements of each design. Second, only one par-

ticular scenario was investigated to understand the effects of the proposed HMIs. In

future studies, more scenarios should be included to generalize the results for various

ambiguous traffic situations. Third, the study was limited by its focus on instruction-

based communication between a single AV and CV, which may not fully represent

complex real-world traffic scenarios. To address these limitations, future work should

explore alternative communication strategies, such as conveying AV intent in envi-

ronments with multiple road users including CVs and pedestrians. Additionally, we

plan to investigate the effectiveness of these strategies in various traffic conditions

and urban settings to develop more robust and versatile AV-to-human communica-

tion protocols. Forth, the study population mainly included students and was not

gender balanced. Future studies should include a more diverse sample to better un-

derstanding the effects of HMIs on CV-AV communications in mixed traffic.

6.5 Conclusions

In this research, we aimed to develop an HMI to communicate AV’s intention with

CV drivers, and investigate how such interfaces would influence CV drivers’ SA level

and boost their comfort and trust in a mixed traffic environment at intersections. We

designed eight different interface concepts and tested the highest-rated concept in two

interface conditions (i.e., internal and external HMI) with a control condition. The
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effectiveness of the HMIs was evaluated using SA, trust, acceptance, and cognitive

workload using participants’ eye-tracking measures in ambiguous situations where

the CV needed to make a left turn at an intersection with malfunctioning traffic

lights. We found that HMIs were assisting CV drivers in uncertain situations and

resulted in increase of SA level and trust. The iHMI was considered the most effective

communication method with AV and resulted in lowest change in drivers’ mental

workload.
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Chapter 7 Conclusion

7.1 Summary

The proposed research aims to address the communication problem of AVs with

other road users in mixed traffic by designing and evaluating explanations that will:

1) establish multdirectional SA dynamically in real time between the AV and road

users and 2) improve the SA of both AV drivers and CV drivers in mixed traffic. To

accomplish the research objectives, the dissertation was divided into four parts.

First, we investigated the human information needs required to fulfill the cog-

nitive requirements for understanding the environment, as well as the transparency

requirements of AVs to comprehend the behavior of intelligent systems. Drawing on

theoretical foundations, we constructed a three-level structure that formulates the

content of the explanations, addressing the ”what” aspect. Subsequently, we defined

principles on ”how” to deliver the explanations effectively, ensuring prompt and ac-

curate responses. Lastly, we incorporated a dynamic SA assessment component into

the framework, enabling objective tracking of SA changes and identifying the op-

timal timing for providing explanations. All in all, we developed a comprehensive

framework that facilitates SA to improve communication among road users in mixed

traffic.

Second, we developed a computational model using ensemble and deep learning

algorithms to predict the SA in real-time. The study findings helped to understand
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the main characteristics describing driver’s SA, as well as provided with a method to

track the dynamic changes in SA which can help to determine the threshold when

the explanation will be necessary.

Third, we conducted a study to examine explanations in AV-driver communica-

tion context during conditionally automated driving, utilizing the aforementioned SA

framework. The findings demonstrated that the proposed framework was able to alter

participants’ understanding of traffic situations and enhance their comprehension of

AVs. The increased SA contributed to a better understanding of the AV’s behavior in

specific scenarios, thereby influencing participants’ trust in and acceptance of auto-

mated vehicles. Furthermore, the results revealed that cognitive requirements varied

based on the amount of information presented.

Fourth, we validated the framework’s efficiency in an inter-vehicle communication

context. To achieve this, We conducted a VR study to enhance SA for CV drivers in

mixed traffic environment using HMIs developed by framework and human-centered

design principles. We proposed both external and internal HMI concepts to explore

the interaction between AVs and CVs in challenging situations, aiming to improve

the SA of CV drivers. The results, obtained through self-reported and physiological

measures, indicated that explanations successfully increased participants’ SA and

trust in AVs. Additionally, among the tested communication interfaces, the internal

HMI was perceived as the most effective and resulted in minimal changes in drivers’

mental workload.

7.2 Contribution

In response to the critical need for effective communication between AVs and other

road users in mixed traffic, this work focused on pioneering solutions to improve SA

for both AV and other road users in real-time.

This research contributes to our understanding of how to develop multidirectional
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SA for enhancing human-machine performance. By designing and evaluating human-

centered explanations tailored to individuals’ mental models, particularly in condi-

tionally automated driving scenarios, it paves the way for fostering a more harmo-

nious relationship between humans and technology in automated driving and other

domains, such as manufacturing and medical industries.

Furthermore, the research holds the potential to enhance road safety and traffic ef-

ficiency by facilitating effective communication between autonomous and conventional

vehicles in mixed traffic environments. It can accelerate the adoption of self-driving

technologies by increasing public understanding and trust in AVs. The development

of user-friendly HMIs can significantly improve the usability of in-car systems. More-

over, the proposed computational model has the potential to revolutionize real-time

monitoring and control systems in AV, providing a sophisticated framework for seam-

less integration of autonomous and human-driven vehicles.

This research provides valuable insights into developing and validating a robust

communication framework. The strategies employed for understanding human infor-

mation needs and delivering effective explanations can serve as a guiding principle

for leveraging theory-of-mind networks and explainable AI in AVs. Essentially, the

project lays the groundwork for building a comprehensive communication framework

that can bridge the gap between humans and intelligent systems.

7.3 Future work

Although the conducted investigation helped in enhancing the communication

between AV and other road users in mixed traffic, there are several limitation that

should be considered in the future. Firstly, to ensure the robustness of the findings,

it is recommended to replicate the conducted studies in high-fidelity or naturalistic

driving setups. This would provide a more realistic and comprehensive evaluation of

the proposed framework.
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Second, future studies should include additional physiological and behavioral mea-

sures to objectively assess the effectiveness of the proposed approach.

Third, in order to broaden the applicability of the findings, it is important to

test the framework in various scenarios encompassing different levels of risk and com-

plexity. This would allow for a more comprehensive assessment of the framework’s

performance across a diverse range of driving situations.

Finally, future studies should aim to include more diverse sample groups to en-

hance the generalizability of the results. By incorporating participants from a wider

range of backgrounds and demographics, researchers can obtain a more representative

understanding of the impact of the proposed framework.
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