
Dynamic Resource Allocation Using Multi-Agent
Control for Manufacturing Systems ?

Mingjie Bi ∗ Ilya Kovalenko ∗∗ Dawn M. Tilbury ∗∗∗ Kira Barton ∗∗∗

∗Robotics Institute, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: mingjieb@umich.edu)

∗∗Department of Mechanical Engineering, University of Michigan, Ann
Arbor, MI 48109 USA (e-mail: ikoval@umich.edu)

∗∗∗Department of Mechanical Engineering and Robotics Institute, University
of Michigan, Ann Arbor, MI 48109 USA (e-mail: {tilbury,

bartonkl}@umich.edu)

Abstract: The COVID-19 pandemic brings highly dynamic effects to manufacturing environments, such
as frequently shifting markets and unexpected disruptions. Such dynamic environments increase the
demand for flexible and real-time manufacturing decision-making strategies. One essential problem is
dynamic resource allocation to complete production tasks, especially when a resource disruption (e.g.
machine breakdown) occurs. Multi-agent frameworks have been proposed to improve the flexibility and
responsiveness of manufacturing systems in a distributed decision-making manner. This work introduces
a clustering method based on resource agent (RA) capabilities and an RA coordination strategy that
enables dynamic resource reallocation when the manufacturing system is subject to resource disruptions.

Keywords: Flexible manufacturing systems, agents, resource allocation, coordination, discrete-event
dynamic systems

1. INTRODUCTION

The COVID-19 pandemic highlighted the dynamic charac-
teristics of the manufacturing environment, such as a fre-
quently shifting market, product customization requirements,
and unexpected disruptions (e.g. machine breakdowns) (Kumar
et al., 2020). Therefore, the demand for flexible and real-time
decision-making strategies was particularly magnified during
the COVID-19 pandemic (Li et al., 2020). Manufacturing enter-
prises need to make prompt and feasible decisions regarding the
effective allocation of limited resources and flexibly respond to
unexpected disruptions (Cardin et al., 2017).

In current manufacturing systems, centralized decision-making
strategies have been widely used to provide optimized re-
source allocation decisions based on specific objectives (e.g.
throughput) but often require significant computational time to
calculate (Leitão, 2009). As such, these centralized strategies
often lack the ability to dynamically respond to unexpected
disruptions in a timely manner (Leitão, 2009). To improve the
flexibility and responsiveness of manufacturing systems, dis-
tributed strategies, where multiple system entities interact col-
laboratively to make decisions, have been proposed in several
works (Cardin et al., 2017; Leitão, 2009).

Recently, multi-agent control strategies have been proposed
to address distributed and intelligent manufacturing decision-
making (Leitão, 2009). Two agents that are used in most exist-
ing architectures include a product agent (PA) and a resource
agent (RA). PAs and RAs are responsible for controlling an
associated physical part and resource, respectively (Kovalenko
et al., 2017, 2019a,b). In a multi-agent architecture, PAs and
RAs coordinate for resource allocation and flexible response to
? This work was funded in part by NSF 1544678

Fig. 1. A diagram of a multi-agent manufacturing system

disruptions (Zhang and Wong, 2017; Wong et al., 2006). An
overview of the multi-agent control strategy is shown in Fig. 1.

This work focuses on reallocating resources dynamically to
complete the manufacturing tasks affected by a resource dis-
ruption. An RA is assumed to identify this disruption by con-
tinuously collecting data from its associated resource. Some
existing multi-agent architectures address this problem through
either PA-RA or RA-RA coordination. In several works (Ko-
valenko et al., 2019a,b; Wong et al., 2006; Lepuschitz et al.,
2011), the disrupted RA informs the PAs and triggers the PA-
RA coordination to generate a new resource allocation schedule
based on the remaining tasks and resource capacity without
preserving the initial schedule. Therefore, these methods have a
high probability of causing deviations from the initial schedule,
limiting the scheduling robustness (Vieira et al., 2003).

For RA coordination methods, Farid and Ribeiro (2015) in-
troduce a reconfiguration agent (RCA) as a mediator for RA
coordination. Rodrigues et al. (2018) provide a collaborative
mechanism to enable a disrupted RA to request all of the other



RAs to make allocation decisions. However, both of the two
methods above create a significant communication load that
will limit the agility of the system in response to a disruption. To
reduce agent communication, clustering approaches have been
used to provide a structured coordination process. In Maturana
et al. (1999), an RA cluster is defined as a set of dissimilar RAs
that collaborate to complete a sub-task. Barata and Camarinha-
Matos (2003) define an RA cluster based on resource proximity.
However, considering only nearby resources might cause re-
source overload, reducing throughput and resource utilization.

To address the problems identified above, this paper provides
the following contributions: (1) the extension of an RA knowl-
edge base to enable capability clustering, (2) the development
of a capabilities-based clustering scheme for multi-agent manu-
facturing systems in dynamic environments, and (3) the demon-
stration of this framework through a simulation study.

The rest of the paper is organized as follows. Section 2 de-
scribes the resource allocation problem and agent formulation.
Section 3 presents the RA knowledge base. Section 4 describes
resource reallocation via RA coordination. A case study is pro-
vided in Section 5, and conclusions are stated in Section 6.

2. PROBLEM OVERVIEW AND AGENT FORMULATION

In this section, a resource allocation problem in the form of a
rescheduling task is described and formulated.

2.1 Problem Overview

Resource allocation can be formulated as a production schedul-
ing problem (Shen et al., 2006), which refers to the process of
specifying resources to perform operations on the parts with
constraints. However, unexpected resource disruptions (e.g.
breakdown) often occur in dynamic manufacturing systems,
leading the initial production schedule to not be executed com-
pletely (Zhang and Wong, 2017). Therefore, rescheduling, the
process of reallocating resources for the parts affected by the
disruption (Abumaizar and Svestka, 1997), becomes necessary.

The method proposed in this paper focuses on resource alloca-
tion for affected operations through agent-based rescheduling
when a resource disruption occurs. To formulate the problem,
the following assumptions are provided:

A.1 The initial production schedule for each part is determined
before the manufacturing system starts.

A.2 Production demand will be met if the resources follow the
initial production schedule.

A.3 Resource disruptions occur unexpectedly and are de-
tectable by the associated RAs.

A.4 A resource disruption results in the specific resource be-
coming unavailable for a certain amount of time.

A.5 The manufacturing system contains resource redundancy
and is operating with available capacity.

A1 and A2 ensure that an initial schedule has been set and if
followed, will ensure that the demand is met. A3 guarantees
that a disruption will be identified by a resource. A4 designates
how a resource will be impacted by a disruption. Finally, A5 is
necessary to enable agent coordination and part rerouting.

2.2 Agent and Problem Formulation

Product Agent A PA is responsible for controlling an associ-
ated physical part to fulfill the desired production requirements.

Thus, the PA needs to track the production progression of the
associated part through the manufacturing system. In this work,
the PA stores the status of the part at any given instance as
a discrete state in the set X = {x0,x1, ...,x f }. Each state is
comprised of two elements, xi = (xl

i ,x
c
i ), where xl

i represents the
part’s location and xc

i denotes the part’s physical composition.
For example, a PA state can be denoted as: x = (xl : “at milling
machine1”, xc : “with a milled pocket”). Note that x f is the
final state of the part in the manufacturing system. xc

f should
meet the customer specifications, and xl

f represents the location
where the final physical composition task is performed, or in
some cases, where a material handling buffer is located.

Resource Agent An RA provides high-level control for a
physical resource to perform operations on a part. In this
work, RAs are grouped into two RA classes: transportation
and transformation RAs, in which the RA’s operations (i.e.
events) drive a state change in either the location or physical
composition. For a transportation RA, the events, denoted by
E l = {el

0,e
l
1, ...,e

l
m}, represent changes in the location of a part.

Similarly, the events of a transformation RA are denoted by
Ec = {ec

0,e
c
1, ...,e

c
n}, representing changes in the physical com-

position of a part. Each event represents a transition between
two states, which is discussed in detail in section 3.2. Note that
RAs in the same RA class can have the same events (e.g., two
milling machines with similar capabilities).

Production Schedule A production schedule for one part
specifies a sequence of resource operations (i.e., events) that
leads to part state transitions from the initial state, x0, to the final
state, x f . The entire production schedule for the manufacturing
system is composed of the production schedules for every part.
A production schedule for one part is defined as:
Ps = (sx,se,Agp,Tp), where

sx =< x0, ...,x f >: a sequence of states describing how the
part states change as the part moves through the system
se =< e0, ...,e f−1 >: the scheduled sequence of events that
trigger the state transitions
Agp : se→ RA : the event-agent associate function
Tp : se→ (R+,R+) : a function that maps events to start
and end times, which indicates the resource working time

The functions Tp and Agp map each event in se to its occurring
time and to the RA that performs the event, respectively. Note
that an event type (e.g. milling a pocket) might occur multiple
times in se, but at varying occurrence times and with different
RAs. The sequences sx and se satisfy the transition relationship:

xi+1 = Tr(xi,ei), for 0≤ i≤ f −1 (1)
where Tr is a state transition function. Due to the transition
relation, the start and end times in Tp indicate the times when
the part is associated with a specific state.

Problem Formulation From A1, the initial production sched-
ule specifies the resource operations for each part. Each RA
stores its scheduled events as a sequence Sc =< es0...esk >.
Each event esi ∈ Sc corresponds to a specific part on which the
RA will perform the event. The start and end times of event esi
are identified in the production schedule Ps of the corresponding
PA. Once a resource disruption occurs, the associated RA is
able to identify the disruption (A3). Due to this disruption, the
associated RA cannot perform a sub-sequence of scheduled
events (A4), denoted by Ed =< ed0ed1...edl >⊆ Sc. All the
events in Ed need to be assigned to alternative resources, which
requires resource redundancy and available capacity (A5).



Fig. 2. An example of an RA state model

For each event that needs rescheduling, ed ∈ Ed , the reschedul-
ing may introduce changes to its sequential events (scheduled
before and after ed) within the PA’s initial production schedule,
Ps. As such, the rescheduling process aims to search for a new
sequence of events (snew) that achieves the necessary transitions
to successfully complete the manufacturing transitions:

Tr(xprior,snew) = xpost (2)
where xprior and xpost refer to the states before and after the
affected event sequence in Ps. Note that the new sequence aims
to satisfy, as best it can, the production requirements.

In the manufacturing environment, RAs that have the same
capabilities as the disrupted RA may be able to provide poten-
tial solutions for the rescheduling problem (A.5). Therefore, a
detailed RA architecture needs to be designed to describe RA
capabilities and manage the rescheduling requirements. The
requirements for the disrupted RA are as follows: R1) Detect
the resource disruption; R2) Identify and coordinate a cluster
of RAs that contain the same capabilities as the disrupted RA
for a given event; R3) Determine alternative RAs to perform the
affected events based on certain metrics.

R1 requires the use of a state model to detect the status of an
RA at any given time. For R2, a detailed capabilities model
needs to be developed to identify RAs that have the same
capabilities for a given event type. To coordinate with these
RAs, a clustering method will be used to provide a more
structured coordination process. R3 is satisfied by solving an
optimization problem. To address all of these requirements, this
paper proposes a capabilities-based clustering approach and a
rescheduling strategy via RA coordination.

3. RESOURCE AGENT KNOWLEDGE BASE

In this section, the RA knowledge base, composing of state
model, capabilities model, and environment model, is provided.

3.1 RA State Model

To capture the resource disruption, the RA state model is
developed to describe the states and transitions of a resource.
The event-driven transitions allow one to model the resource as
a finite state machine (FSM), which has been previously used
in Qamsane et al. (2019). Similarly, the RA state model in this
paper is defined as an FSM with the states Idle, Up, and Down.
Transitions occur between these three states and also inside the
Up and Down states, as shown in Fig. 2.

3.2 RA Capabilities Model

The capabilities model describes the operations that the re-
source can perform on the part to change its location or physical
composition. Based on the state and event description in Sec-
tion 2.2, the FSM can be used to represent the RA resource
capabilities (Kovalenko et al., 2019a; Balta et al., 2021).

(a) (b)

Fig. 3. Examples of capabilities model for (a) mobile robot
agent (b) machine agent, where At represents the resource
attributes, Rm represents the task requirements, and e rep-
resents the event that the RAs can perform

Transformation RA The capabilities model for a transforma-
tion RA in this paper is defined as:
CM = (xl ,Xc,Ec,Tr,T,At ,Ta,Sc,Rm):

xl : a description of the transformation resource’s location
Xc = {xc

0, ...,x
c
n} : a set of states representing all of the physi-

cal compositions that can be achieved on a part
Ec = {ec

0, ...,e
c
m} : a set of events representing actions that

change the physical composition of a part
Tr : Xc×Ec→ Xc : a state transition function
T : Ec→ R+ : the cost it takes for the event to occur
At : Ec → Ca : a function that maps events to the physical
resource attributes of each event (e.g. payload limitations)

Ta : Ec→ It : a set of available times for each event
Sc =< ec

s0...e
c
sk >: a sequence of scheduled events

Rm : Sc → Rt : a function that maps scheduled events to the
task requirements for each scheduled event (e.g. precision)

Transportation RA The capabilities model of a transportation
RA is similar to transformation RA with the following changes:

X l = {xl
0, ...,x

l
n} : a set of states representing locations that

can be reached by a part utilizing the resource
E l = {el

0, ...,e
l
m} : a set of events representing actions that

change the location of a part.

In the capabilities model, the state sets, X l and Xc, represent the
locations and physical compositions that are associated with a
transportation or transformation RA, respectively. Event sets,
E l and Ec, represent the operations that the resource can per-
form on a part. The transition function, Tr, encodes how the
events lead to state transitions. T represents the nominal cost
(denoted as operation time) for each event to occur. At provides
the resource attributes for each event. Note that multiple RAs
in the same class could have the same events, but the attributes
might be different. The characteristics of the attributes are de-
scribed by parameters, such as the limitation of speed, payload,
and part dimensionality. Sc is a dynamic sequence of events that
has been scheduled to be performed in a predefined time hori-
zon. Each scheduled event is associated with a part. Rm maps
each scheduled event to task requirements, such as the part’s
weight and size, acceptable resolution, etc. Ta : Ec→ It provides
a set of time intervals when the resource is available for each
event. It = {(t0, t1), ...,(t2p, t2p+1)}, with t0 < t1 < ... < t2p+1,
where p is determined based on the current scheduled events Sc
and their time costs. Thus, event e can be scheduled between t0
and t1, between t2 and t3, etc. The proposed capabilities model
is initialized based on the physical manufacturing system. As
an RA receives information constantly from the resources on



Fig. 4. Example of an environment model for a machine agent

the shop floor and other agents in the system, the capabilities
model will be updated if the capabilities and schedules of the
resource change. The elements X l ,Xc,E l ,Ec,T and At describe
resource intrinsic capabilities. These elements are updated as
the physical resource capabilities change. The changes could
be manual, such as tool replace/removal, or automatic, such
as machine breakdown. The elements Ta, Sc and Rm represent
the current schedule status of the resource. These elements are
dynamically updated as other agents request to change, add, or
remove resource schedules.

Two examples of capabilities models CM for a mobile robot
agent and a machining agent are provided in Fig. 3. In this sce-
nario, the mobile robot has capabilities to move parts between
an entry and two machines. The machine M1 can mill a pocket
and a hole on a part.

3.3 RA Environment Model

The environment model contains several mapping functions
that map events or states to three sets of RAs, namely clustering,
sequential, and collaborative RAs.

Clustering RAs In this work, a clustering method based on
the capabilities of the RAs is proposed. RA clusters are formed
when rescheduling is needed, i.e. when an RA identifies a
resource disruption. The disrupted RA, termed RAd , cannot
perform the affected events, denoted by Ed , which need to be
reallocated to other RAs. Note that Ed ⊆ Sc should be scheduled
events. The RAd broadcasts a rescheduling request for each
event edi ∈ Ed and its associated task requirements. The request
can be accessed by RAs in the same class as RAd (e.g. transfor-
mation RAs). RAs that can satisfy the event and task require-
ments in a specified time horizon will respond to the broadcast
from RAd . Importantly, each affected event will correspond to
a unique cluster of RAs. RAd stores the relationship between
each affected event edi ∈ Ed and the associated cluster of RAs
in a cluster map. The cluster map is defined as Cl : Ed → 2RAp

for transportation RAs; Cl : Ed→ 2RAm
for transformation RAs.

2RAp
and 2RAm

denote the power sets of the transportation and
transformation RAs in the manufacturing system, respectively.
All of the RAs in this map, RAclst = {Cl(ed) : ed ∈ Ed}, are
clustered RAs for a given set of affected events. A detailed
cluster formulation process is described in Section 4.1.

Sequential RAs In a part’s production schedule Ts, the event
sequence se corresponds to a sequence of RAs that perform
events sequentially on the part. Therefore, replacing the dis-
rupted RA cannot guarantee that the new schedule is exe-

Fig. 5. The coordination of RAs for rescheduling process

cutable. For the example shown in Fig. 4, if Machine1 breaks
down, Robot1 should not move the part to Machine1. Hence, to
generate a feasible schedule, the RAd should have knowledge
of its sequential RAs. A sequential RA is an RA that performs
the event before or after ed in the event sequence se of the
part’s production schedule Ts. Therefore, each scheduled event
corresponds to one or two sequential RAs. An RA stores the
information about the sequential RAs in a map that relates
the affected event to specific RAs: Sq : Ec → RA2, where RA2

denotes a set containing one or two sequential RAs.

Collaborative RAs To represent the collaboration between
RAs, Kovalenko et al. (2019a) introduced collaborative RAs,
which have shared states Xs in the capabilities model. For the
example shown in Fig. 4, Machine1 and Robot1 share the state
xl

m1. Therefore, each shared state xs ∈ Xs corresponds to a set
of RAs that contain the same state xs. Each RA stores the
relationship between a shared state xs ∈ Xs and the associated
set of RAs in a collaborative map. The map is defined as
Ng : Xs→ 2RA, where RA is the set of all the collaborative RAs.

Since the clustering and sequential RAs are defined according
to the affected event set Ed , the RAd’s knowledge of clustering
and sequential RAs will be added to or removed from the RAd’s
environment model when an event needs to be rescheduled
or the rescheduling process for an event is completed. The
collaborative RAs are defined based on the shared states Xs in
an RA’s capabilities model. Therefore, the collaborative RAs
are initialized with the capabilities model and will remain static
unless the capabilities model changes.

4. RESCHEDULING PROCESS

This section describes the development and utilization of a dy-
namic RA cluster to enable rescheduling via RA coordination.

An overview of the rescheduling process via RA coordination
is shown in Fig. 5. The goal of the rescheduling process is to
find alternative resources to perform the affected events of the
disrupted RA. The proposed method reschedules the affected
events one by one in the order of their scheduled start time in the
initial schedule. Therefore, the rescheduling decision-making is
realized on the fly in a dynamic manner. Since each affected
event follows the same rescheduling steps; for simplicity, the
following description focuses on one affected event ed .



4.1 Cluster search

Once a disrupted RA (RAd) identifies the resource disruption,
the RA state goes to Down, and the process of forming a cluster
is initiated. In this phase, RAd searches for the RAs that have
the capabilities to perform the affected event ed . A broadcast
technique is used for RAs to communicate information (Azuma
et al., 2012). RAd broadcasts the rescheduling request, Rq =
(ed ,Rt), where Rt denotes the task requirements of ed .

Based on the resource capabilities, only the RAs in the same
class with RAd , i.e. transportation (RAp) or transformation RAs
(RAm), have access to the broadcast request. To replace RAd and
perform ed , an RA needs to satisfy the following requirements:
1) the RA must contain the affected event ed in their capabilities
model; 2) the RA must have the physical resource attributes that
can satisfy the task requirements Rt :

∃ enew ∈ Ecl , s.t. enew = ed , Rt ⊆ At(enew) (3)
where Ecl and At(enew) represents the set of events and the
resource attributes of enew in the capabilities model of the RA.

As such, the RAs that satisfy Eqn. 3 form a cluster for RAd with
respect to the affected event ed :

Cl(ed) = {RAp/m | ed ∈ Ecl , Rt ⊆ At(enew)} (4)

The RAs in the cluster Cl(ed) are the RAs that can perform
ed while satisfying the task requirements of ed . These RAs
in Cl(ed) will respond to RAd with their resource attributes
At(enew) and available times Ta(enew) for the event enew.

4.2 Schedule generation

Once the cluster Cl(ed) is formed, each RA in the cluster fol-
lows the same steps to generate new schedules. For simplicity,
the following description focuses on one RA (RAcl) in the
cluster Cl(ed). As mentioned in Eqn. 2, a new event sequence,
snew, needs to achieve the transitions from xprior to xpost :

Tr((xl
prior,x

c
prior),snew) = (xl

post ,x
c
post) (5)

The event, enew, belongs to snew. However, since enew can
only achieve either location or physical composition transitions,
RAcl needs to check whether enew satisfies Eqn. 5.

In the case that RAd is a transportation RA, the affected event
ed only achieves part location transition. ed does not change the
physical composition of the part (i.e. xc

prior = xc
post ) Therefore,

the transition for physical composition is not required in the
rescheduling process. In this case, the Eqn. 5 is rewritten as:

Tr(xl
prior,enew) = xl

post , xc
prior = xc

post (6)
Therefore, replacing ed by enew can achieve the required tran-
sition. In this scenario, RAcl can replace RAd by itself, and no
further coordination is needed to form a feasible new schedule.

However, in the case that RAd is a transformation RA, RAd will
instruct sequential RAs to not perform the events of moving
the part into and out of RAd . In this case, simply replacing
ed by enew cannot fulfill the required transitions in Eqn. 5.
To find other events needed to form snew, the states xprior =

(xl
prior,x

c
prior) and xpost = (xl

post ,x
c
post) are identified as follows:

• xl
prior: the location before the part is moved to RAd

• xc
prior: the physical composition before RAd performs ed

• xl
post : the location after the part is moved out RAd

• xc
post : the physical composition after RAd performs ed

By Eqn. 3, the RAcl can only achieve the required physical
composition changes by performing event enew:

Tr(xc
prior,enew) = xc

post (7)
To form a feasible new schedule, the location changes from
xl

prior to xl
cl and xl

cl to xl
post , where xl

cl denotes the location of
RAcl , need to be found. Therefore, RAcl sends request to its
collaborative RAs, Ng(xl

cl), to check their capabilities:

∃ RAng1,RAng2 ∈ Ng(xl
cl), eng1 ∈ Eng1, eng2 ∈ Eng2

s.t. Tr(xl
prior,eng1) = xl

cl , Tr(xl
cl ,eng2) = xl

post
(8)

where Eng represents the event set in the RA’s capabilities
model. RAng1 performs eng1 to deliver the part to RAcl , and
RAng2 performs eng2 to take the part out of RAcl .

Therefore, different combinations of RAcl and RAng form sev-
eral new schedules, denoted by Snew = {snew1, ...,snewq}, to
replace RAd in performing the event ed . For each schedule
snew =< en1en2...ens >, the post event should always occur after
the prior event ends:

ts,i +T (eni)≤ ts, j, 1≤ i < j ≤ s (9)
where ts,i and T (eni) represent the start time and time cost
of event eni, respectively. Note that in the time interval [ts,i +
T (eni), ts, j], the part remains with the RA that performs eni until
the RA that performs en j is available.

4.3 Decision-making Process

New schedules found The RAd will choose a new sched-
ule from Snew = {snew1, ...,snewq} based on the cost. The cost
of a new schedule snew is evaluated by n performance met-
rics M = {m1,m2, ...,mn} and corresponding weights, α =
[α1α2 · · ·αn]. The metrics could be operation time, finish time,
energy cost, resolution, etc., which are pre-defined. For every
performance metric, there is a nominal cost function C(e) =
[C1(e) C2(e) · · · Cn(e)]T , which maps the nominal cost to per-
form event e without violating task requirements. The total cost
of a new schedule snew =< en1en2...ens > is calculated as:

K(se) =
s

∑
i=1

αC(eni) (10)

where a new schedule that replaces RAd is determined by
solving the minimization problem:

s∗new = argmin
snew∈Snew

K(snew) (11)

where s∗new is the event sequence minimizing the costs in Snew.

As shown in Fig. 5, the RAd informs the RAs associated with
the events in s∗new. These RAs update their schedule information
in the capabilities model and provide high-level control for their
associated physical resource to perform the events.

No schedules found If no schedule is found within the re-
quired constraints, the RAd will request the central controller of
the manufacturing system to complete the rescheduling.

5. CASE STUDY

In this section, the set-up of the system used for the case study
is described and the results are provided.

5.1 Case Study Set-up

The Repast Symphony (RepastS) platform (Macal and North,
2006) can be used to model and simulate a multi-agent system.



Fig. 6. The set-up for the case study

Table 1. Tick costs for machine processes

Process P1 P2 P3 P4 P5 P6
Tick Cost 150 120 110 100 170 200

In this work, the set-up for the case study is a modified version
of previous work (Kovalenko et al., 2019b). The simulated
system contains 20 machines that are connected via a network
of 6 mobile robots. The capabilities of the machines and mobile
robots are labeled near the icons in Fig. 6. For example, the
labels for machine 1 indicate it can perform the processes P1
and P3 and its workstation space is large. For mobile robot R1,
its labels indicate that it can move parts between any machines
located in Cell 1, 2, 4, 5 and the Entry buffer. The time costs
in ticks (RepastS unit of time) for the machine processes are
shown in Table. 1. The mobile robots take 18-29 ticks to move
the parts between different locations.

Two types of parts are fed into the system, with each has the
following process requirements: 1) S-part: P1 → P2 → P3 →
P6, and 2) L-part: P1 → P3 → P4 → P5, respectively. The
machines with label L can operate both L-parts and S-parts,
while the machines with label S can only operate S-parts. Parts
enter the system from the Entry buffer and leave the system
through the Exit buffer after completing the desired processes.

5.2 Case Study and Results

In this case study, 50 L-parts and 50 S-parts are fed into the
system alternatively and the simulation is stopped at tick 7000.
Designed to simulate a rescheduling scenario, machine 1 breaks
down at tick 500, remaining off-line for 3000 ticks.

The simulation included the following scenarios: S1) No ma-
chine breakdown; S2) No rescheduling to react to machine
breakdown; S3) Rescheduling based on a proximity cluster; S4)
Rescheduling based on a capabilities cluster.

The system performance under the different scenarios is evalu-
ated using the following metrics:

• Throughput: the number of the completed parts within a
specified period of time
• Resource utilization: the working time of each machine

within a specified period of time

Figures 7 and 8 show the throughput for the two different types
of parts. S.1 represents the optimal throughput of both part
types if there are no disruptions in the system. The vertical line
is added to check the throughput at the end time of S1.

Fig. 7. The throughput of the L-parts

Fig. 8. The throughput of the S-parts

The breakdown heavily impacts the throughput of the L-parts in
the system. As shown in Fig. 7, S2 leads to the worst throughput
with the completed part rate - of 70% compared to S1. At the
tick when S1 ends, both proximity (S3) and capability clusters
(S4) achieve production recovery by applying a rescheduling
process with the completed part rate - of 72% and 80%, re-
spectively. However, if time permits, both S3 and S4 are able to
complete all the parts with increasing time of 30.7% and 13.2%,
respectively. The results show that the proposed rescheduling
method with capability cluster provides better throughput re-
covery. By defining the RA capability cluster, the disrupted RA
can directly coordinate with RAs that have the same capabilities
without the physical distance limitation of the proximity clus-
tering method. In this case, more machines are used to replace
the broken machine, reducing the waiting time of the parts.

Figure 8 shows the effect that the breakdown had on S-parts in
the system. Only 7 S-parts are affected by this disruption. In this
case, generating new schedules for the affected parts increases
the occupancy of other resources, which lead to the time delay
in the parts entering the system. Therefore, the rescheduling
methods cannot compensate to improve the production rate.
However, if time permits, both S3 and S4 are able to complete
49 parts with increasing time of 17.8% and 12.7%, respectively.

Figure 9 visualizes how the different methods made decisions
regarding resource utilization in the case study. In this figure,
the total processing times of the machines in Cells 1 and 4 are
shown. By using the proximity cluster (S3), only the machines
in Cell 1 were identified as a replacement for the broken ma-
chine. By using the capability clustering (S4), the operations of
the broken machine were redistributed to machines in both Cell
1 and 4. This result shows that applying capabilities-based clus-
ters provides a more balanced approach during reconfiguration.



Fig. 9. The working times of the machines in Cell 1 and Cell 4

The case study presented above showcases the feasibility and
performance of the proposed rescheduling strategy via co-
ordination using clustered RAs based on their capabilities.
Though there is no production optimality preserved, the pro-
posed method achieves a better recovery of the production
in the occurrence of a resource disruption. The rescheduling
performance is affected by the severity of the disruption.

6. CONCLUSION

A multi-agent control strategy has been proposed to solve
dynamic rescheduling problems in manufacturing systems. In
this work, the design of an extended RA knowledge base and a
rescheduling strategy via RA coordination are presented. The
proposed RA knowledge base contains the belief models of
the RA state, capabilities, and environments. Based on this
model, a capabilities-based clustering scheme is developed to
enable dynamic rescheduling via RA coordination to adapt to
a resource disruption. The feasibility and performance of the
proposed rescheduling strategy are showcased in a simulation
study, where the proposed strategy provides better recovery of
throughput and more balanced resource utilization. Future work
will include analyzing the effects of resource redundancy and
available capacity on the performance of the proposed strategy,
as well as exploring the system conditions when switching to a
centralized method can reduce the rescheduling effort.

REFERENCES

Abumaizar, R.J. and Svestka, J. (1997). Rescheduling job
shops under random disruptions. International Journal of
Production Research, 35(7), 2065–2082.

Azuma, S., Tanaka, Y., and Sugie, T. (2012). Multi-agent
consensus under communication-broadcast mixed environ-
ment. In 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC), 94–99. doi:10.1109/CDC.2012.6426830.

Balta, E.C., Kovalenko, I., Spiegel, I.A., Tilbury, D.M., and
Barton, K. (2021). Model predictive control of priced timed
automata encoded with first-order logic. IEEE Transactions
on Control Systems Technology.

Barata, J. and Camarinha-Matos, L.M. (2003). Coalitions of
manufacturing components for shop floor agility the cobasa
architecture. Int. J. Netw. Virtual Organ., 2(1), 50–77.

Cardin, O., Trentesaux, D., Thomas, A., Castagna, P., Berger,
T., and Bril El-Haouzi, H. (2017). Coupling predictive
scheduling and reactive control in manufacturing hybrid con-
trol architectures: state of the art and future challenges. Jour-
nal of Intelligent Manufacturing, 28(7), 1503–1517.

Farid, A.M. and Ribeiro, L. (2015). An Axiomatic Design of
a Multiagent Reconfigurable Mechatronic System Architec-
ture. IEEE Transactions on Industrial Informatics, 11(5),
1142–1155. doi:10.1109/TII.2015.2470528.

Kovalenko, I., Barton, K., and Tilbury, D. (2017). Design and
Implementation of an Intelligent Product Agent Architecture
in Manufacturing Systems. 9(3), 10–16.

Kovalenko, I., Ryashentseva, D., Vogel-Heuser, B., Tilbury, D.,
and Barton, K. (2019a). Dynamic Resource Task Negotiation
to Enable Product Agent Exploration in Multi-Agent Manu-
facturing Systems. IEEE Robotics and Automation Letters,
4(3), 2854–2861. doi:10.1109/LRA.2019.2921947.

Kovalenko, I., Tilbury, D., and Barton, K. (2019b). The model-
based product agent: A control oriented architecture for
intelligent products in multi-agent manufacturing systems.
Control Engineering Practice, 86, 105–117.

Kumar, A., Luthra, S., Mangla, S.K., and Kazançoğlu, Y.
(2020). Covid-19 impact on sustainable production and oper-
ations management. Sustainable Operations and Computers,
1, 1–7.

Leitão, P. (2009). Agent-based distributed manufacturing con-
trol: A state-of-the-art survey. Engineering Applications of
Artificial Intelligence, 22(7), 979 – 991.

Lepuschitz, W., Zoitl, A., Vallée, M., and Merdan, M. (2011).
Toward Self-Reconfiguration of Manufacturing Systems Us-
ing Automation Agents. 41(1), 52–69.

Li, X., Wang, B., Liu, C., Freiheit, T., and Epureanu, B.I.
(2020). Intelligent manufacturing systems in COVID-19
pandemic and beyond: Framework and impact assessment.
Chinese Journal of Mechanical Engineering, 33(1), 1–5.

Macal, C.M. and North, M.J. (2006). Introduction to agent-
based modeling and simulation. In Proceedings of the MCS
LANS Informal Seminar.

Maturana, F., Shen, W., and Norrie, D. (1999). Metamorph: An
adaptive agent-based architecture for intelligent manufactur-
ing. International Journal of Production Research, 37(10),
2159–2173.

Qamsane, Y., Balta, E.C., Moyne, J., Tilbury, D., and Barton,
K. (2019). Dynamic rerouting of cyber-physical production
systems in response to disruptions based on SDC framework.
In 2019 American Control Conference (ACC), 3650–3657.

Rodrigues, N., Oliveira, E., and Leitão, P. (2018). Decentral-
ized and on-the-fly agent-based service reconfiguration in
manufacturing systems. Computers in Industry, 101(October
2017), 81–90. doi:10.1016/j.compind.2018.06.003.

Shen, W., Wang, L., and Hao, Q. (2006). Agent-based dis-
tributed manufacturing process planning and scheduling: a
state-of-the-art survey. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 36(4),
563–577.

Vieira, G.E., Herrmann, J.W., and Lin, E. (2003). Rescheduling
manufacturing systems: a framework of strategies, policies,
and methods. Journal of scheduling, 6(1), 39–62.

Wong, T.N., Leung, C.W., Mak, K.L., and Fung, R.Y.K.
(2006). Integrated process planning and schedul-
ing/rescheduling—an agent-based approach. International
Journal of Production Research, 44(18-19), 3627–3655.

Zhang, S. and Wong, T.N. (2017). Flexible job-shop
scheduling/rescheduling in dynamic environment: a hybrid
MAS/ACO approach. International Journal of Production
Research, 55(11), 3173–3196.


