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A B S T R A C T   

Automation and robotics are anticipated to play a crucial role in addressing challenges confronting the con
struction industry, such as low productivity, workforce shortages, and physically demanding labor. However, a 
critical challenge in construction robotics has been the development of robust adaptive control to deal with 
uncertainties inherent in construction, such as material imperfections, multi-robot calibration, and fabrication 
inaccuracies. To address this challenge, we present a feedback-driven framework consisting of two comple
mentary adaptive fabrication methods, pose-based and topology-based, incorporating perception, reasoning, and 
acting to handle uncertainties in multi-robot timber construction. We evaluate our framework through building- 
scale experiments, quantifying their deviations from their as-planned digital models. Our results indicate that our 
pose-based method significantly decreased deviations compared to a benchmark when applied to nail-laminated 
timber panels, and our topology-based method enabled robust multi-robot construction of a timber frame wall. 
Altogether, this research contributes to flexible, accurate, and robust construction employing multi-robot 
systems.   

1. Introduction 

The construction industry has been facing many challenges, 
including low productivity and stagnant productivity gains over time 
compared to other industries such as manufacturing [1–3], and a sig
nificant construction workforce shortage (e.g., more than half a million 
workers in the United States in 2023 [4]). Moreover, construction jobs 
frequently require physically demanding tasks such as lifting heavy 
objects, which have been associated with severe negative impacts on 
construction workers’ health and safety, including work-related injuries 
and musculoskeletal diseases, among others [5–9]. Construction auto
mation has been proposed as a viable solution to address these chal
lenges [2,9–11]. Within this context, the introduction of industrial 
robotic arms for construction with discrete elements has been investi
gated in research, such as robotic brickwork [12–15], robotic timber 
construction [16–19], and robotic fabrication of spatial metal structures 
[20,21]. 

For decades, robotic arms have been employed in manufacturing 
industries, such as automotive. However, it can be argued that a critical 
difference between construction and manufacturing industries is the 
inherent flexibility required to perform non- or quasi-repetitive [9] 

routines. For instance, in the automotive industry, multiple robotic arms 
are usually integrated into manufacturing workcells to perform repeti
tive tasks such as picking and placing metal components and performing 
spot welding repeatedly [22]. Therefore, to achieve consistent and 
reproducible quality, the robotic processes are well-calibrated (usually 
taught), optimized, and pre-programmed to perform repetitive tasks 
with consistent quality and avoid interruptions such as those due to 
parts collision [22]. However, in construction, most buildings and 
structures are one-offs, which could make repeatability and consistent 
quality (e.g., tight tolerances) challenging. 

There are also other aspects of construction work, such as the rela
tively large dimensions of building components and structures 
compared to manufacturing products, as well as the complexity of 
building assembly due to its inherently spatial and evolving nature, 
which could make the implementation of single-robot systems chal
lenging. Generally, multi-robot systems have several advantages over 
single-robot systems that could potentially address these construction 
work challenges, which include [23–26]:  

• The cooperation to complete complex tasks that would not be 
feasible by a single robot. 
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• More effective scaling compared to single-robot systems; the robots 
in multi-robot systems can collectively cover a larger working en
velope and handle larger workpieces.  

• Greater flexibility and adaptability to a broader range of tasks.  
• More efficient task completion through parallel processing and 

simultaneous task space coverage.  
• Cost-effectiveness of implementing multiple modular robots rather 

than developing a single-robot system capable of handling complex 
tasks.  

• Greater robustness and reliability by implementing redundancy. 

However, multi-robot calibration, especially in unstructured envi
ronments such as construction sites, could present a significant chal
lenge to achieving process robustness and consistent quality due to any 
slight discrepancies in their pose estimation. More specifically, adaptive 
pose correction is typically performed in reference to a fixed world 
frame, and in the case of a stationary single robot, this world frame is 
conventionally placed at the robot root, making localization trivial. In 
the case of multi-robot systems, each robot has its own localization of 
the world frame. If that localization is not precisely calibrated or coor
dinated through an extensive sensor system, the robots will fail to pre
cisely match each other’s task space. Precise calibration and wide- 
coverage sensor systems are not easily feasible for construction, mak
ing the common world frame challenging to define, especially in a dy
namic environment prone to sensor perturbations. This challenge is 
compounded when dealing with uncertainties inherent in construction 
work, such as material imperfections and fabrication inaccuracies, dis
cussed in the following paragraph. 

This research specifically considers construction with discrete ele
ments, reflecting the nature of numerous construction processes that 
involve the assembly of distinct components, such as brickwork, ma
sonry, timber framing, and steel framing. Within this context, we focus 
on timber framing with dimensional lumber as the case study con
struction system due to its widespread use in single-family housing in 
the United States [27] and its potential for developing low-carbon 
construction practices [28]. A key characteristic of lumber is the un
certainties inherent in this natural material [18,29]. First, the cross- 
sections of lumber pieces can deviate from nominal values by several 
millimeters depending on the manufacturing quality, wood type, and 
grade of the lumber. Second, lumber elements can shrink and expand 
due to the variability of their moisture content and the different envi
ronmental conditions and temperatures they are exposed to. Third, 
timber framing typically utilizes members with a minimum length of 
approximately 2.4 m (8 ft), which are often not straight and usually 
demonstrate considerable twists and bows. We refer to these charac
teristics as material imperfections. 

Besides material imperfections, there are also other uncertainties 
inherent in robotic construction, such as cut length and angle deviations 
after lumber elements are processed using computer numerical control 
(CNC) machines (e.g., a CNC saw) and their pose inaccuracies (i.e., 
position and orientation) within a subassembly1 due to robotic system 
calibrations [18,29]. We refer to these uncertainties as fabrication 
inaccuracies. If not accounted for systematically, material imperfections 
and fabrication inaccuracies accumulate during the robotic construction 
of building subassemblies and could result in a considerable deviation 
between the as-built structure and the as-planned model, leading to 
parts collision and robot failure when robotic trajectories are derived 
from the as-planned digital model without considering these deviations 
[10,11,29]. 

To address the discussed challenges, we present a feedback-driven 
framework consisting of two complementary adaptive methods for 
cooperative multi-robot timber construction to accommodate for 
perceived uncertainties due to material imperfections and fabrication 
inaccuracies. Our proposed adaptive methods incorporate robotic 
perception, reasoning, and acting to handle uncertainties inherent in 
multi-robot construction work. We evaluate our framework through 
building-scale construction experiments, quantifying their deviations 
from their as-planned digital models. While the case-study construction 
system for the research presented in this paper is timber framing, our 
methods could be adapted and applied to multi-robot construction 
processes with other discrete elements, such as bricks and light steel 
frames, among others. 

1.1. Related work 

This section reviews related work, including cooperative multi-robot 
fabrication, adaptive robotic fabrication, and adaptive robotic fabrica
tion for timber construction. 

Multi-robot fabrication methods for construction work have been 
actively researched in recent years. Prado et al. developed a cooperative 
process employing two six-axis industrial robotic arms, enabling the 
fabrication of geometrically complex modular fiber composite building 
components with differentiated fiber layouts [31]. This project show
cased how employing multi-robot systems can enhance the filament 
winding process by eliminating the requirement for cores or mandrels, 
which would not have been feasible employing only one robotic arm due 
to the intricacies involved in the core-less winding process [31]. Build
ing on this work, another research project utilized two six-axis industrial 
robotic arms and a custom-made unmanned aerial vehicle (UAV) to 
scale up the fabrication setup and process, enabling the manufacturing 
of a 12-m long fiber composite structure [32,33]. This project demon
strated the potential of a multi-robot system for constructing a contin
uous long-span fiber composite structure without the necessity of 
dividing the structure into modular components due to the working 
envelope constraint of individual robotic arms [32,33]. 

Multi-robot systems have also been investigated for the scaffold-free 
cooperative assembly of building-scale structures made of discrete ele
ments, such as spatial metal structures [20,21], timber frame modules 
[18,34], and masonry vaults [35,36]. These projects demonstrated the 
potential of cooperative multi-robot fabrication techniques to perform 
assembly tasks that cannot be achieved by a single robotic arm, such as 
addressing the critical necessity to stabilize the in-progress structure 
during construction with robotic supports and eliminating the need for 
temporary supports or scaffolding. Conventionally, temporary supports 
or scaffolding are used to hold the structure during construction, which 
are removed once the structure becomes self-supporting. This routine 
extends the construction timeline and increases costs by adding extra 
steps, including installing the supports, securing the structure to these 
supports, and their subsequent removal after completion of the structure 
[18]. In a multi-robot system, one or more robots could be used to 
replace scaffolding by supporting the in-progress structure in strategic 
locations and stabilizing it during construction while another robot as
sembles the subsequent element. 

While several recent projects [37–41] have investigated nonstandard 
robotic timber construction, open-loop multi-robot automated timber 
framing with dimensional lumber has proved challenging due to the 
material imperfections and fabrication inaccuracies discussed in Section 
1, coupled with the tight assembly tolerances required for structural 
integrity [18,29]. Several research projects explored design and fabri
cation methods to address this challenge, which we review in the 
following paragraphs. 

As discussed, one of the uncertainties is the pose inaccuracy of the 
robotic arms’ end effectors, especially when working on building-scale 
subassemblies, which could result in a significant deviation between 
the as-built structure and the as-planned model, potentially causing part 

1 Merriam-Webster defines a subassembly as “an assembled unit designed to be 
incorporated with other units in a finished product” [30]. Building on this defini
tion, we define a subassembly as a pre-assembled component made of discrete 
parts, which will be incorporated with other subassemblies on site to form a 
building or a structure. 
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imprecision or unforeseen collisions. To minimize the positioning error 
of end effectors in large-scale multi-robot setups for digital construction, 
researchers developed a system providing static and dynamic end 
effector pose correction through external pose tracking [42]. Their 
developed system fuses measurements from an Indoor Global Posi
tioning System (iGPS) with an Inertial Measurement Unit (IMU), which 
can reduce average static positioning error down to 0.10 mm [42]. 
However, this system has limited application outside of a defined 
workspace and might not scale well to building-scale construction. Such 
a system would require significant capital investment for the numerous 
sensors necessary to cover a large area, as well as extensive calibration, 
which may be infeasible in a dynamic construction site. Moreover, this 
system alone is insufficient for addressing material imperfections and 
fabrication inaccuracies inherent in construction. For instance, this 
system was used in the cooperative multi-robot spatial assembly of 
timber frame modules for the DFAB HOUSE [43]. While this system was 
effective for end effector pose correction, the success of the cooperative 
assembly process relied on human interventions to handle deviations 
resulting from material imperfections and fabrication inaccuracies 
[18,34]. 

Several research projects explored methods to address material im
perfections and fabrication inaccuracies. Gandia et al. explored a 
computational design method to simulate tolerance propagation and 
minimize potential as-built deviations as part of the assembly sequence 
planning using a limited dataset of the measured fabrication tolerances 
of twenty-two cut timber element samples [29]. While the authors 
concluded that this method was useful for estimating the assembly tol
erances of two case studies relying on the measured tolerance database 
of a specific fabrication setup and process, they stated that it would 
require a much more extensive database to develop predictive models to 
map the reality of the fabrication processes accurately [29]. Further
more, since this method still works in a feedforward control and an 
open-loop manner, there are still other fabrication inaccuracies that are 
not accounted for, such as process forces (e.g., fastening forces) applied 
to the in-progress structure resulting in unforeseen deviations between 
the as-built and the as-planned, multi-robot calibrations errors, and 
deflections of large-scale robotic systems due to temperature variability 
and other influencing factors (e.g., payload compensation). 

It has be argued that robotic fabrication cannot be effectively 
implemented in a pure feedforward control and an open-loop manner, 
and adaptive feedback-driven control methods are required to effec
tively handle material and fabrication uncertainties as well as the con
struction environment uncertainties [44]. Therefore, a robotic 
fabrication system must perceive the in-progress as-built structure and 
its deviations from the as-planned model to adapt its plan accordingly 
[44]. More specifically, computer vision technologies such as two- 
dimensional (2D) or three-dimensional (3D) laser scanning and/or 
force/torque sensing form a basis for robotic perception to acquire in
formation from the robot’s environment, which then informs how the 
robot reasons with its surroundings to adapt its plan to perform its next 
action in a feedback loop. This approach has been investigated and 
successfully demonstrated in several research projects, such as cooper
ative robotic hot-wire foam cutting [45,46], robotic incremental sheet 
metal forming [47], robotic stone carving [48], robotic wood carving 
[49], mobile robotic brickwork [15,44], and mobile robotic wire mesh 
cutting, placing, and welding to fabricate a doubly-curved reinforced 
concrete wall [44,50]. 

Looking specifically into adaptive fabrication in robotic timber 
construction, Helm et al. presented a method to handle material im
perfections and fabrication inaccuracies inherent in the single robot 
assembly of timber structures made from short timber elements [51]. 
Within their fabrication process, the in-progress subassembly is roboti
cally measured, and accordingly, the pose of the subsequent timber 
element (that is being assembled), as well as the robot trajectory for 
placing that element within the subassembly, are updated to reduce 
positioning errors [51,52]. The authors conclude that the required 

tolerance was achieved by using this method for fabricating a multi- 
layered truss system made from short timber elements [51]. However, 
this research includes several limitations, such as working with a single 
robotic arm and not multi-robot systems and cooperative processes, and 
working with short timber elements that usually do not exhibit the same 
twists and bows associated with full-height lumber. Furthermore, 
neither the mathematical formalization of the adaptive process and its 
parameters nor the quantification of the resulting tolerances employing 
this adaptive process was presented and discussed. 

Our recent research [53] established a conceptual framework and 
discussed the preliminary workflow and results, enabling an adaptive 
method for multi-robot calibration and coordination by eliminating the 
reliance on a common world frame and instead directly performing 
adaptive pose correction relative to the as-built structure. In the pro
posed method, localization occurs in a much smaller region in the ro
bot’s task space and is specific to the constraints of the next task, 
providing a potential framework for multiple robots to cooperate pre
cisely, given an accurate digital model of the structure. 

The following section provides a detailed description of the novelty 
and contributions of this research, advancing our work previously 
summarized in Ruan et al. [53]. 

1.2. Contributions 

In this paper, we provide a comprehensive framework that includes 
detailed mathematical formalization and process characterization to 
address the discussed challenges in multi-robot timber construction. The 
main novelty of this research is the application of adaptive control 
techniques to multi-robot construction, which, as discussed, typically 
embody greater levels of uncertainty than manufacturing, where these 
methods are widely used. More specifically, we employ direct iterative 
learning control (ILC) [54,55]. Our methods parameterize the control 
inputs and outputs specifically for assembly processes and multi-robot 
systems, building off of ILC as a departure from standard feedback 
control. By integrating ILC into our fabrication process, we are able to 
eliminate reliance on extensive and expensive sensor systems (such as 
iGPS) for multi-robot calibration and increase the robustness of the 
construction process by handling both material imperfections and 
fabrication inaccuracies. 

The main contributions of this research are summarized below, 
which are intended to address the limitations discussed in Section 1.1: 

• Implementation of a multi-robot system enabling adaptive con
struction of building-scale timber subassemblies. 

• Development of a bi-directional digital design-to-fabrication work
flow for the feedback-driven framework between an as-built subas
sembly and its as-planned model. 

• Formalization and implementation of the framework’s two comple
mentary adaptive fabrication methods, pose-based and topology- 
based, for multi-robot timber construction.  

• Experimental evaluation of our developed framework through the 
analysis of fabrication deviations in building-scale physical 
experiments. 

1.3. Nomenclature 

In our equations, we use bold lowercase and bold uppercase letters to 
denote vectors and matrices, respectively. A hat symbol ^ indicates an 
estimated variable, a star ⋆ indicates a desired value taken from the as- 
planned digital model, and a prime symbol ′ indicates an updated vari
able. 

2. Methods 

The conceptual foundation of our research hinges on developing and 
implementing a multi-robot timber fabrication system combined with a 
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bi-directional digital design-to-fabrication workflow enabling adaptive 
construction. Building on this conceptual foundation, the methods sec
tion is structured to detail four main areas: the multi-robot timber 
fabrication setup and process (Section 2.1), the digital design-to- 
fabrication workflow (Section 2.2), and two adaptive fabrication 
methods, pose-based (Section 2.3) and topology-based (Section 2.4). 
Our multi-robot system employs industrial robots equipped with 
specialized tools to process and assemble timber elements, while the 
digital workflow facilitates seamless information exchange between the 
digital model, the as-built conditions, and the physical fabrication pro
cess. Two adaptive methods are introduced to dynamically update the 
fabrication parameters, ensuring accuracy, efficiency, and robustness. 

2.1. Multi-robot timber fabrication setup and process 

Building on our previous research on multi-robot timber assembly 
[18,28,34,56], we developed a comprehensive fabrication setup (Fig. 1) 
to undertake this research. One of the main objectives for this setup was 
to enable adaptive just-in-time fabrication of bespoke building sub
assemblies (e.g., floor-height timber frame walls), and, accordingly, we 
developed the necessary end effectors and additional tools discussed in 
this section. 

Our fabrication setup comprises two six-axis industrial robotic arms 
with a payload of 120 kg and a reach of 2700 mm,2 mounted on parallel 
linear tracks. Each robotic arm has access to an automatic tool-changing 
station, which enables seamless end effector swapping. In our experi
ments, each robotic arm utilizes a custom pneumatically controlled 
gripper end effector to grasp lumber elements with varying profile di
mensions (e.g., nominal 2× 4 or 4× 6). Additionally, we used a 2D laser 
profiler3 for all scanning operations (e.g., scanning the as-built subas
sembly), and the robotic arms swapped out their grippers with this laser 
profiler whenever necessary during the fabrication process. 

We also designed, engineered, and built a three-axis CNC saw (Fig. 2) 
and mounted it between the two tracks to be accessible by both robots. 
The saw has a blade with a radius of 300 mm and a kerf of 6.25 mm. The 
saw blade can rotate − 180 to +180 degrees and tilt between 0 and 45 
degrees, enabling perpendicular cuts as well as a wide range of miter and 

compound miter cuts. 
We located a raised assembly platform between the two tracks to 

easily clamp a timber element to this platform, secure the subassembly 
during fabrication, and have the possibility of inserting screws or nails 
from the bottom face of the structure if needed. The cooperative as
sembly envelope of this setup (located on the assembly stand) is 
approximately 5 m in length, 1.8 m in width, and 3 m in height. 

Building on our previous research [18,28,34,56], we implemented a 
prototypical just-in-time multi-robot timber assembly process. This 
process starts with the human operator loading a stock piece of 

Fig. 1. Multi-robot timber fabrication setup.  
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Fig. 2. Exploded axonometric of our custom-built three-axis CNC saw.  

2 KUKA KR 120 R2700 [57]  
3 LMI Technologies Gocator 2350 [58] 
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dimensional lumber (e.g., a standard 2× 4 board) along the center of the 
saw table, with one end roughly aligned with the edge of the table. The 
active robotic arm then grasps the timber element, which also aligns the 
stock with the axis of the gripper, locating the stock to a known axis. To 
perform the first cut, the robotic arm moves the stock into position based 
on the specified element length and holds the stock in place, while the 
saw performs the first cut based on the specified cut angles. Subse
quently, the robotic arm repeats these steps for the second cut and its 
respective cut parameters. The grasping frame of the desired timber 
element is computed to avoid potential collisions between the gripper 
and the saw blade while minimizing the discarded offcut volume 
resulting from the first cut and maximizing the remaining material 
resulting from the second cut for future use. After the cutting process is 
completed, the robotic arm carries the cut timber element onto the as
sembly platform and inserts it into its final pose within the subassembly. 
The human operator then either clamps the element to the assembly 
platform or fastens the element to previously placed elements with 
screws before the robotic arm releases the element and retracts. Sub
sequently, the in-progress as-built subassembly is scanned by either of 
the robotic arms (depending on the fabrication steps), and the digital 
model is then updated based on the as-built conditions. The robotic 
trajectory for the following element and the other robotic arm is adapted 
accordingly, and the timber assembly process repeats until the subas
sembly is complete. We will discuss the bi-directional digital design-to- 
fabrication workflow enabling this multi-robot fabrication process in the 
following section and the detailed perception and adaptation methods in 
Sections 2.3 and 2.4. 

2.2. Bi-directional digital design-to-fabrication workflow 

Building on our previous research [28], we developed a digital 
design-to-fabrication workflow (Fig. 3) that enables a bi-directional in
formation flow between the as-planned digital model and the as-built 
subassembly. This workflow forms the basis of our feedback-driven 
framework, facilitating the integration of robotic simulation, control, 
and fabrication into the digital design environment and enabling a 
seamless transfer of digital information from the dynamically updated 
computational model to the robotic fabrication process. 

This digital workflow is implemented using IronPython [59] within 
the computer-aided design (CAD) software program Rhinoceros 3D [60] 
and its plug-in, Grasshopper 3D [61]. Rhinoceros 3D and Grasshopper 
3D provide interaction with the digital 3D model of the structure and the 
main graphical user interface (GUI) for this digital workflow. We 
employed a custom computational design tool, Super Matter Tools 
(SMT) [62], to simulate industrial robotic processes within Rhinoceros 

3D and generate manufacturing instructions. We also integrated a pro
grammable logic controller (PLC, Beckhoff TwinCAT [63]) into our 
setup for the coordination between different processes and the control of 
external machines (e.g., the CNC saw), as well as the collection and 
transfer of sensor data acquired from the laser profiler during the as
sembly process. 

As shown in Fig. 3, the bi-directional digital design-to-fabrication 
workflow is implemented as a loop, including a forward and a back
ward process. The forward process of the workflow derives the necessary 
poses and cut parameters from the digital model of each timber element, 
which our control algorithm can interpret for trajectory planning, saw 
configuration (e.g., setting the angles of the saw blade), and gripper 
states (e.g., grasp or release). The planned trajectory, saw configuration, 
and gripper states are then automatically post-processed into KUKA 
Robot Language (KRL) [64] code to be executed by the robotic arms and 
the CNC saw. 

The backward workflow process facilitates the necessary feedback 
into the as-planned digital model based on perceived as-built conditions 
and enables adaptive correction of the as-planned model for future 
fabrication steps. We investigated and tested two adaptive methods for 
our framework: pose-based and topology-based adaptive fabrication. 
Sections 2.3 and 2.4 will discuss the specific system formalization, 
perception, control algorithm, and adaptive correction for these two 
methods. 

2.3. Pose-based adaptive fabrication 

This section formalizes an adaptive fabrication method for mini
mizing deviations between the as-planned digital model and the as-built 
subassembly by tracking element poses. In Section 2.3.1, we first 
formalize the fabrication process outlined in Section 2.1 into a state- 
space representation, which sets the foundation for both adaptive 
methods. We then expand on how a robot perceives a pose by scanning 
the element extents and reconstructing the element geometry in Section 
2.3.2. Next, Section 2.3.3 outlines a direct ILC algorithm to minimize the 
tracking error between the reference and perceived poses, which itera
tively self-corrects for any fabrication inaccuracies in the robotic setup. 
Finally, Section 2.3.4 details the method for adaptively updating an el
ement’s reference pose based on the current as-built conditions, 
enabling multi-robot coordination with a common localization refer
ence. The overall control process is visualized in Fig. 4. 

2.3.1. System formalization 
A rigid body pose p ∈ ℝ6 in 3D space is comprised of a translation (x, 

y, and z coordinates) and a rotation (roll φ, pitch θ, and yaw ψ Euler 

Fig. 3. Overview of the bi-directional digital design-to-fabrication workflow and process. (This diagram does not include the initial calibration element 0, as 
described in Section 2.3.3). 
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angles), relative to the world coordinate system: 

p = [x y z φ θ ψ]⊤ (1) 

The discrete fabrication process can be defined as follows: 
{

x(n) = Au(n) + w(n)
y(n) = Bx(n) + v(n) (2)  

where n = 1,2,…,N is the element index. x, u, and y ∈ ℝ6, are our 
primary system components, denoting the true as-built pose (which is 
inherently unknowable), input target pose, and perceived output pose, 
respectively. w and v ∈ ℝ6 refer to noise terms: process noise and 
measurement noise, respectively. A and B ∈ ℝ6×6 are the uncertain 
system matrices of the fabrication process. 

Because we are working exclusively with position and orientation 
parameters, we chose to express all pose vectors as homogeneous 
transformation matrices, which have the benefit of simplifying trans
formation operations. A pose p can be converted to a homogeneous 
transformation matrix P ∈ ℝ4×4 using an intrinsic rotation about the 
axes z, y, x, in that order, composed of a rotation matrix PR ∈ ℝ3×3 and 
translation vector Pt ∈ ℝ3: 

P =

[
PR Pt
0 1

]

(3) 

We can then convert our fabrication process from Eq. (2) into a 
system of transformations: 

{
X(n) = T1(n)U(n)
Y(n) = T2(n)X(n) (4)  

where X, U, and Y ∈ ℝ4×4 are the transformation matrices of x, u, and y, 
respectively, T1 and T2 ∈ ℝ4×4 are transformation matrices that have 
combined the uncertainties in A and w, and B and v, respectively. T1 
represents the deviation during the fabrication of an element (which can 
include gripper calibration errors, the element shifting during fastening, 
etc.), while T2 represents the error in the perception process (i.e., errors 
in the laser profiler calibration and measurement noise). In the following 
sections, we describe how we perceive the output pose Y(n) and use that 
to update the input pose U(n + 1) for the next element. 

2.3.2. Pose perception 
Each element in the as-built subassembly has a corresponding as- 

planned digital model of that element with a desired pose X⋆(n). We 
use the following perception process to determine its perceived pose 
Y(n), which then informs the ILC and adaptive pose processes. First, a 
scan path is computed using the desired pose to estimate where the 
element is located, which assumes that the fabricated element has not 
deviated beyond the width of the scanning field of view (FOV). This scan 
path consists of multiple profiles spaced along the axes of the element 
(visualized in Fig. 5), which captures the element’s extents. In our ex
periments, we scanned 5 profiles evenly spaced along the length of the 
element and 3 profiles along each cut end, for a total of 11 profiles. 
While, in theory, only two profiles are required to extract each edge, the 

Fig. 4. Overview of the pose-based adaptive fabrication method, including the developed ILC and adaptive pose correction processes. The control symbol denoted by 
Π represents matrix multiplication, with inverted inputs indicated by ×− 1. 

Fig. 5. Element pose perception process, with scanning of the element extents (left) and processing of the resulting point cloud to reconstruct the element geom
etry (right). 
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additional profiles build robustness against certain material de
formations common to timber, such as knot holes and wanes. The 
resulting point cloud is manually filtered to remove background objects, 
after which we extract the edges of the scanned element and reconstruct 
its geometry as a right parallelogrammic prism with a known element 
height. The position of the perceived pose Y(n) is located at the centroid 
of this prism, while the x-axis is aligned with the major axis (i.e., along 
the element length) and the z-axis is perpendicular to the scanned face. 

2.3.3. Iterative learning control calibration 
After perceiving an element pose Y(n), we utilize ILC to update the 

input pose U(n). In ILC, the tracking error e(n) is defined as the differ
ence between a reference target pose yr(n) and the perceived output pose 
y(n), while the primary objective of ILC is to minimize this tracking error 
over successive iterations [65]: 

e(n) ≡ yr(n) − y(n)
lim
n→∞

e(n) = 0 (5) 

Similar to our fabrication process, we can represent the tracking 
error using a series of homogeneous transformations: 

Yr(n) = E(n)Y(n)
lim
n→∞

E(n) = I (6)  

where I is the identity matrix. We can simplify Eqs. (4) and (6) as 
follows: 

T = T2T1
lim
n→∞

U(n) = T− 1(n)Yr(n) (7)  

where T is the combined transformation matrix between the input pose 
U and perceived pose Y. Note that homogeneous transform matrices are 
non-singular and, therefore, invertible. Section 2.3.4 details an extended 
method for deriving the reference target pose Yr(n) in relation to the as- 
built subassembly, improving the adaptive fabrication method for multi- 
robot systems. The remaining variable we need to resolve before we can 
compute U(n), then, is T(n). Before beginning fabrication, we initialize 
T(0) by fabricating a sacrificial element (i.e., an element that is fabri
cated then discarded) with U(0) = Yr(0): 

T(0) = Y(0)U− 1(0) (8) 

For each subsequent element, we first compute an estimate T̂(n) by 
evaluating the fabrication process’s memory and taking the average of 
the previous transformation matrices {T(0) ,T(1) ,…,T(n − 1) }. To 
compute an average, each transformation matrix T(k) with k = 0, 1,…,

n − 1 is broken down into its rotation matrix TR(k) and translation 
vector Tt(k). Taking the average of the translation vectors, denoted as 
T̂t(n), is straightforward. However, the rotation matrices cannot be 
directly averaged element-wise since that may result in an invalid 
rotation. Instead, we use singular value decomposition (SVD) to 
compute the average rotation matrix, which ensures that the resulting 
rotation matrix is still valid [66]: 

∑n− 1

k=0
TR(k) = U ΣV

⊤ (9)  

T̂R(n) = UV
⊤ (10) 

The components of T̂(n), T̂R(n) and T̂t(n), can then be reassembled 
into a homogeneous transformation matrix following Eq. (3), and we 
rewrite Eq. (7) using our estimation of T(n) to determine U(n): 

U(n) = T̂ − 1(n)Yr(n) (11) 

Finally, the element is fabricated, and the actual value of T(n) is 
computed in Eq. (12) using the measured output Y(n), and stored in 
memory to compute the next element’s input U(n + 1) using Eq. (11): 

T(n) = Y(n)U− 1(n) (12)  

2.3.4. Adaptive pose correction 
The above ILC process is normally sufficient to minimize deviations 

in a single-robot fabrication process. However, the remaining elements 
would be misaligned if the as-built subassembly were to be perturbed 
(e.g., accidentally shifted while fastening). Moreover, in the case of a 
multi-robot system, the accuracy of each robot’s localization to the 
world frame can vary. Our ILC process improves pose accuracy relative 
to the robot root frame and, therefore, does not directly address coor
dination between multiple robots. To remedy this, we devise an adaptive 
pose correction process where multiple robots reference a common 
object for localization, namely the as-built subassembly. For each robot, 
there exists a global transformation G ∈ ℝ4×4 that localizes the 
perceived output to the world frame, which minimizes the deviation 
between the as-built subassembly and as-planned digital model: 

argmin
G

∑N

n=1
Y(n) − GX⋆(n) (13)  

where N is the total number of elements, and X⋆ is the as-planned pose, 
taken from the digital model. We can estimate G for each element after 
the first by evaluating the deviation of the previous element from the as- 
planned digital model: 

Ĝ(n) =
{

I for n = 1
Y(n − 1)X⋆− 1(n − 1) for n ≥ 2 (14) 

This global transformation allows us to derive an updated reference 
target for each step of the ILC outlined in the previous section, localizing 
each robot to the as-built subassembly and remedying any inaccuracies 
in the calibration of the robot’s root frame relative to the world frame: 

Yr(n) = Ĝ(n)X⋆(n) (15)  

2.4. Topology-based adaptive fabrication 

In this section, we formalize an adaptive fabrication method for 
minimizing deviations at the joints between elements using the topology 
of the as-planned digital model. Here, we refer to topology as the rela
tionship between elements within a subassembly and how elements 
must be fastened together to form a structural connection. This approach 
acknowledges that ensuring a proper connection with current as-built 
elements is more important than its absolute pose for many elements 
in an assembly task. For example, in a timber wall frame, a stud should 
be flush with the surface of the wall, and its ends should be cut flat 
against the top and bottom plates. The stud’s pose has a small degree of 
freedom within these constraints. We first formalize the cut parameters 
for an element in Section 2.4.1. Section 2.4.2 describes how we scan a 
patch of the as-built structure, namely the contact surfaces where the 
element must interface. Finally, we update the element’s combined state 
(pose and cut parameters) to fit the scanned contact surfaces in Section 
2.4.3. The overall control process is visualized in Fig. 6. 

2.4.1. Cut parameter formalization 
Each cut for element n has parameters q(n, i), where i is the cut index 

and i = 1,2 for a timber element with a cut on either end. For simplicity 
of expressing the equations in this section, we refer to qi ≡ q(n, i), which 
can be defined as: 

qi = [ di αi βi ]
⊤ (16)  

where i is the cut index, d is the distance from the element pose to the 
center of the cut face along the central axis, and α and β are, respectively, 
the input rotation and tilt angles of the saw used to make this cut (see 
Fig. 2). Similar to our formalization of the pose-based adaptive fabri
cation method (Section 2.3), we use homogeneous transformation 
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matrices to simplify the transformation operations. Given the cut pa
rameters q⋆

i from the as-planned digital model, we compute a rotation 
matrix Q⋆

R,i ∈ ℝ3×3 based on the desired pose X⋆ of the element: 

Q⋆
R,i = Γ⋆

i X⋆
R (17)  

where: 

Γ⋆
i =

⎡

⎢
⎢
⎣

sinβ⋆
i cosβ⋆

i 0
sinα⋆

i cosβ⋆
i − sinα⋆

i sinβ⋆
i cosα⋆

i

cosα⋆
i cosβ⋆

i − cosα⋆
i sinβ⋆

i − sinα⋆
i

⎤

⎥
⎥
⎦

We can locate the as-planned endpoint Q⋆
t,i of the cut surface (see Fig. 7) 

by offsetting the as-planned element pose along its x-axis by the cut 
distance d⋆

i : 

Q⋆
t,i = X⋆

R

⎡

⎢
⎢
⎣

μ(i)d⋆
i

0
0

⎤

⎥
⎥
⎦+X⋆

t (18)  

with μ(i) indicating the offset direction based on the cut index i: 

μ(i) =
{

1 for i = 1
− 1 for i = 2 

By combining the rotation matrix Q⋆
R,i and endpoint position Q⋆

t,i 

using Eq. (3), we obtain a transformation matrix for the desired cut 
frame Q⋆

i . The topology-based adaptive fabrication process aims to 

adapt this cut frame to match the scanned contact patch (with a slight 
tolerance offset), as described in Section 2.4.2. Once we obtain an 
updated cut frame Q’i and pose X′, as explained in Section 2.4.3, we can 
extract the cut parameters for input into the fabrication process as 
follows: 

Γ’
i = Q’

R,iX
’
R
− 1

d’
i =‖ Q’

t,i − X’
t ‖

α’
i = cos− 1

(
Γ’

i2,3

)

β’
i = cos− 1

(
Γ’

i1,2

)

(19)  

where Γ′
ij,k 

is the element in the j-th row and k-th column of the matrix Γ’i 

and ‖ ⋅ ‖ is the Euclidean norm. 

2.4.2. Patch perception 
We first identify each element’s contact points in the subassembly 

based on the topology of the as-planned digital model. In the most 
common case, an element will have two areas of contact, each requiring 
a cut to form a butt joint at either end. We extract the geometry of this 
contact patch from the as-planned digital model and generate a scan 
path consisting of three profiles perpendicular to the length of the 
connecting element (see Fig. 7). We manually filter the scan to remove 
background objects, after which we compute a best-fit plane Fi for the 
contact patch corresponding to cut i using linear least squares [67], 
which has its normal directed outwards from the connecting element 
surface (i.e., the dot product between FN,i and positive z-axis of the 

Fig. 7. Element contact patch perception process, with locating the as-planned contact patches (left), scanning of the current as-built subassembly (middle), and 
processing of the resulting point cloud to extract the updated cut parameters (right). 

Fig. 6. Overview of the topology-based adaptive fabrication method.  

A. Adel et al.                                                                                                                                                                                                                                     



Automation in Construction 164 (2024) 105444

9

scanner is negative). We also extract the line segments ℓ1,i and ℓ2,i that 
define the edges of this patch, where the endpoints of each line segment 
ℓj,i are aj,i and bj,i ∈ ℝ3 and co-planar on Fi. From these edges, we can 
locate the central axis ℓ0,i projected onto the contact patch, which is 
formed from the midpoints of lines a1,ia2,i and b1,ib2,i. 

2.4.3. Adaptive state correction 
From the as-planned digital model, we obtain the element pose X⋆ 

and cut parameters q⋆
i for each cut i = 1,2. As described in Section 2.4.1, 

we convert these cut parameters to transformation matrices Q⋆
i . To 

update these parameters and align the element with the scanned as-built 
contact patch, we first orthogonally project the cut endpoint to the 
central axis of the contact patch: 

Q′
t,i =

viv⊺
i

v⊺
i vi

(
Q⋆

t,i − a0,i

)
+ a0,i +Δi (20)  

with vi = b0,i − a0,i and Δi = FR,i[0 0 δ]T an additional tolerance offset 
along the contact surface normal to ensure proper fit during element 
insertion. 

We have determined δ = 1 mm as a suitable value to avoid collision 
during element insertion through previous experimentation. To 
compute the updated rotation matrix Q′

R,i for the cut parameters, we can 
use the central axis vector vi and the normal of the contact patch FN,i: 

Q′
R,i =

[
Q′

R,x,i Q′
R,y,i Q′

R,z,i

]
(21)  

where: 

Q’
R,y,i =

vi

‖ vi ‖

Q’
R,z,i = − μ(i)FN,i

Q’
R,x,i = Q’

R,y,i × Q’
R,z,i  

and μ(i) is a sign function based on the cut index as used in Eq. (18). The 
final updated cut plane Q′

i can be constructed as a homogeneous trans
formation matrix similar to Eq. (3) using Q′

R,i and Q′
t,i for each cut. 

With both cut planes defined, we can update the element pose X′ as: 

X’
t =

(
Q’

t,1 + Q’
t,2

)/
2

X’
R = GS

( [
X’

R,x X’
R,y X’

R,z
]) (22)  

where: 

X’
R,x = Q’

t,1 − Q’
t,2

X’
R,y = X⋆

R,y

X’
R,z = X’

R,x × X’
R,y  

and GS(⋅) is the Gram-Schmidt process [68] applied to the columns of 
the matrix to orthonormalize the rotation axes. In this formulation, we 
align the x-axis of the updated pose X′ with the new central element axis 
connecting the two cut planes Q′

i, and the y-axis is close to the as- 
planned element y-axis X⋆

R,y. 

We obtain the updated cut parameters α′
i, β′

i, and d′
i from the cut 

planes Q′
i and element pose X′ following Eq. (19). Finally, for the pose 

input U(n), we retrieve the last calculated value of T̂ from memory, 
computed from previous iterations of the pose-based adaptive fabrica
tion method (Section 2.3): 

U = T̂ − 1X′ (23) 

Note that because the topology-based adaptive fabrication process 
does not scan the entire element to measure the perceived output pose Y, 
we are unable to complete the ILC steps outlined in Section 2.3.3, and 

thus the self-calibration is assumed from previous elements where the 
ILC process was used. The perceived output pose was not measured due 
to technical challenges in generating collision-free scan paths over the 
element extents when maneuvering in confined spaces, such as during 
the assembly of spatial elements. However, this can be addressed in 
future work with more advanced perception techniques and additional 
learning methods. 

3. Experiments 

3.1. Experimental setup 

We conducted two sets of case-study prototyping experiments to 
evaluate the developed framework and adaptive methods discussed in 
the previous sections. The first set of experiments utilizes the pose-based 
adaptive fabrication method outlined in Section 2.3 in a simple timber 
stacking assembly, focused on minimizing deviations in the pose of each 
element. The second case study is a spatial timber wall frame assembly 
task utilizing the topology-based adaptive fabrication method outlined 
in Section 2.4, focusing on minimizing deviations at the element 
connections. 

In the first experiment, the robotic setup described in Section 2.1 was 
tasked to fabricate a flat, 1-m-wide nail-laminated timber (NLT) panel 
by perpendicularly cutting, stacking, and fastening 10 elements cut from 
standard 2 × 4 dimensional lumber, alternating between both robots. In 
applying the pose-based adaptive fabrication method, we tested two 
scenarios: (1) neither robot adapts (base case used for benchmarking, 
Fig. 8), and (2) both robots utilizing the pose-based adaptive fabrication 
method (Fig. 9). While this assembly task is relatively simple, the 
experiment demonstrates the inherent additional deviations that can 

Fig. 8. The benchmark experimental scenario with both robots alternating to 
assemble an NLT panel without adaptation. 

Fig. 9. The adaptive experimental scenario, with both robots alternating to 
assemble an NLT panel using the developed pose-based adaptive fabrica
tion method. 
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occur in a multi-robot assembly system due to discrepancies of their 
world frames, and how we can correct for them within a restricted 
number of degrees of freedom (planar translation and rotation). 

In the second experiment, the robotic setup was tasked to fabricate a 
full-scale spatial timber wall module (Figs. 10 and 11). The module 
consists of 13 elements connected via butt joints and measures 2.05 m 
long by 2.32 m tall. This experiment demonstrates the potential and 

necessity of multiple robots during fabrication to stabilize the in- 
progress subassembly during each step [18,34]. In this type of assem
bly, it is common for the floor and top plate to have some material 
deformation, causing parts collision when inserting the studs without 
adaptation during robotic fabrication and interrupting the fabrication 
process. In this experiment, we utilized the developed topology-based 
adaptive fabrication method to ensure the assemblability of the wall 

Fig. 10. The second experiment with both robots cooperatively assembling a full-scale timber wall frame utilizing the topology-based adaptive fabrication method, 
showing the fabrication steps (top) and the finished module (bottom). 
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module. 
After the completion of each subassembly in both experiments, we 

scan the as-built structure using the laser profiler end effector to collect a 
high-resolution point cloud, which is used in the following section to 
analyze the surface deviation from the as-planned digital model. The 
profile resolution of the laser profiler is 0.150 mm, and the depth res
olution is 0.019 mm, with a linearity of ±0.01% of the measurement 
range. To scan the structure, we complete multiple passes of the laser 
profiler in overlapping bands. The laser profiler has a limited width for 
scanning (365 mm far field of view); therefore, multiple passes are 
required to cover the extent of the surface. These partial scans are then 
stitched together using the recorded pose of the laser at each scan. 

3.2. Data analysis 

This section reviews the methods used to analyze the data collected 
from the experiments. In the NLT panel experiment, we evaluate the ILC 
process of Section 2.3.3 by analyzing the tracking error described in 
Section 3.2.1. For both experiments, we evaluate their respective 
adaptive methods, pose-based adaptive fabrication (Section 2.3) for the 
NLT panel experiment and topology-based adaptive fabrication (Section 
2.4 for the wall module experiment, by measuring the deviation between 
the scanned point cloud of the as-built subassembly and the as-planned 
digital model, as described below in Section 3.2.2. We can identify how 
accurately the adaptive fabrication methods matched the as-planned 
digital model by evaluating the point cloud deviation despite material 
imperfections and fabrication inaccuracies. 

3.2.1. Tracking error 
During the fabrication of the first experiment, the reference pose yr 

and perceived output pose y are recorded for each element. We can 
subtract the two to calculate the tracking error in Eq. (5). Due to the 
design of the subassembly and constraints of the fabrication setup, 
however, the degrees of freedom for adaptation are limited, causing 
some tracking errors along certain dimensions to be inevitable. More 
specifically, we constrain the tracking error analysis to 2D because the z 
height and roll and pitch rotations are all subject to material variation in 
the stacking assembly of the NLT panel and cannot be adapted for in the 
current fabrication process (e.g., we cannot plane the element to reduce 
its thickness or flatten its surface). We, therefore, focus primarily on 
analyzing the positional tracking error along the x and y axes, measured 
as the Euclidean distance in the xy plane, and the yaw rotational 
tracking error θ, measured as an absolute value. 

3.2.2. Point cloud deviation 
For both experiments, we scan the complete as-built subassemblies 

as described at the end of Section 3.1, and analyze the point clouds to 

identify deviations from the as-planned digital models. Due to the po
sition of the subassemblies on the assembly platform and the robot’s 
kinematic constraints, we could not scan both sides to form a complete 
point cloud. However, a single side is sufficient to measure deviations. 

The scanned point clouds are first filtered manually to remove 
background objects. We then approximate the global transformation G 
of Eq. (13) that best fits the as-planned digital model to the scanned 
point cloud over the entire structure through an iterative closest points 
(ICP) algorithm [69]. This algorithm requires a point cloud of the 
reference model - we convert the as-planned digital boundary repre
sentation (BREP) model to a mesh and utilize MeshLab’s Poisson-disk 
sampling to generate a well-distributed point cloud over the surface 
[70,71]. We apply the output transformation from the ICP to the mesh 
model and measure the closest distance from each point in the scanned 
point cloud to the mesh model. The closest distance can be computed by 
first indexing the mesh vertices into a K-D tree [72] using SciPy [73,74], 
querying the closest vertex on the mesh to each point in the point cloud, 
then calculating the minimum distance to each triangle associated with 
that vertex [75,76]. 

4. Results and discussion 

4.1. NLT panel experiment 

Table 1 lists the translational and rotational tracking errors for each 
timber element of the NLT panels for the benchmark and adaptive sce
narios in the first experiment, which are computed using the method 
described in Section 3.2.1. This table also summarizes the average and 
standard deviation of the translational and rotational tracking errors for 
each scenario. Surface deviations between the as-built subassembly and 
the as-planned digital model for each scenario are visualized as a heat 
map and plotted in a histogram with bin size 0.1 mm in Fig. 12 using the 
methods detailed in Section 3.2.2. The average surface deviation of the 
benchmark scenario is 1.42 mm, with a median of 1.12 mm and a 
standard deviation of 1.16 mm. The average surface deviation of the 
adaptive scenario is 0.73 mm, with a median of 0.67 mm and a standard 
deviation of 0.58 mm. 

While this particular experimental structure could be completed with 
a single robot, we wanted to utilize this simple assembly task to 
demonstrate the difference between single- and multi-robot assembly. If 
we isolate the odd- and even-numbered elements in the benchmark 
scenario, we can track the individual performance variance of the North 
and South robots, respectively (Fig. 1). For translational deviation, the 
North robot had a standard deviation of 0.22 mm, and the South robot 
0.39 mm. For rotational deviation, the North robot had a standard de
viation of 0.013◦, and the South robot 0.034◦. Comparing these values to 

Fig. 11. Contact patch scanning of the as-built subassembly in the topology- 
based adaptive fabrication method. 

Table 1 
NLT panel experiment tracking error.   

Distance1 (mm) Rotation2 (◦) 

n Bench. Adapt. Bench. Adapt. 

1 0.4487 0.2595 0.3509 0.3508 
2 2.5809 0.2317 0.0912 0.0911 
3 0.1041 0.4119 0.3367 0.0526 
4 2.2754 1.0836 0.1368 0.0807 
5 0.1805 0.3855 0.3368 0.0351 
6 1.9811 0.4314 0.1298 0.0351 
7 0.7214 0.2859 0.3719 0.0965 
8 1.5424 0.1844 0.1158 0.0281 
9 0.4354 0.6550 0.3473 0.0806 
10 2.5502 0.0819 0.1929 0.0982 
Avg. 1.2820 0.4011 0.2410 0.0949 
Stdev. 1.0091 0.2872 0.1167 0.0939  

1 Euclidean distance in the xy plane. 
2 Absolute value of the yaw rotation ψ about the z axis.  
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the combined standard deviations (Table 1) highlights the additional 
fabrication inaccuracies that can occur when utilizing multiple robots 
and why adaptive methods are required beyond individual robot pose 
correction. Many construction tasks, such as the following timber wall 
module experiment, cannot be completed by a single robot, as 
mentioned in Sections 1 and 1.1, so addressing these deviations becomes 
critical. 

As shown in Table 1, our developed pose-based adaptive fabrication 
method demonstrated a significant improvement in reducing trans
lational and rotational deviations compared to the benchmark scenario 
with no adaptation. The average translational deviation showed a 
marked improvement from 1.28 mm to 0.40 mm, and the rotational 
deviation decreased from an average of 0.24◦ to 0.09◦. However, we also 
observed that this adaptive method could result in progressive de
viations of the as-built elements from the as-planned digital model as the 
assembly process progresses (Table 1). This is likely because the ILC 
process improves over time with more data, and any perceived pose 
errors in the first few elements have a greater impact on the adaptive 
method. This could be mitigated by utilizing a larger initial dataset (e.g., 
a sample dataset produced from previous fabrication tasks). Another 
reason could be the potentially inaccurate measurement of the perceived 
as-built pose due to the sparse profile scanning method (Section 2.3.2), 
which could be prone to uncertainties due to larger material imperfec
tions such as lumber twists and bows. In future research, we could 
alleviate this by extracting the as-built pose from a higher-resolution 
point cloud, increasing the robustness of the pose perception; howev
er, this would increase the computational complexity of the overall 
system. 

4.2. Wall module experiment 

We evaluated the point cloud deviation between the final as-built 
wall module and the as-planned digital model using the methods 
detailed in Section 3.2.2. There were two input point clouds for the ICP 
algorithm: the filtered scanned point cloud and the sampled model point 
cloud, which contained around 1.8 million and 1.5 million points, 
respectively. The deviations are visualized as a heat map and plotted in a 
histogram (Fig. 13) with a bin size of 0.2 mm. The average deviation is 
2.43 mm, with a median of 2.06 mm and a standard deviation of 1.97 
mm. 

The results of the wall module experiment demonstrate the potential 
for our feedback-driven framework to address accumulative tolerances 
inherent to construction, resulting from manufacturing inaccuracies and 
material imperfections over the assembly process. Accumulative toler
ance is one of the main reasons for parts collision during robotic fabri
cation and would have resulted in a failed wall module. However, since 
we applied our developed adaptive topology-based correction in each 
step of the assembly process, the robotic process could adapt the fabri
cation steps according to the perceived deviation of the as-built subas
sembly and successfully fabricate the wall module without parts 
collision. 

While our topology-based adaptive method proved effective for 
successfully fabricating the wall module, demonstrating the robustness 
of the assembly process against fabrication inaccuracies, we observed 
that the deviation in the top plate of the wall increases towards the right, 
as illustrated in Fig. 13. This is likely due to the over-compensating effect 
of shortening the elements. The wall module was built from left to right, 
and fastening each successive stud pulled the top element slightly lower, 

Fig. 12. Deviation from each point in the scanned point cloud of the as-built subassembly to the as-planned digital model, visualized in a histogram (top) and a heat 
map (bottom) for the benchmark scenario with no adaptation (a) and with both robots utilizing the pose-based adaptive fabrication method (b). A portion of the point 
cloud is missing from the bottom element in both scenarios due to occlusion from the clamping mechanism. 
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creating a lever and tilting it down slightly. This downward tilt could 
cause the next element to be slightly shorter and exacerbate the down
ward pull when fastened. One approach to address this issue and in
crease the precision of the topology-based adaptive method would be to 
revise the assembly sequence and assemble the wall’s two edge studs, 
followed by the top plate of the wall, and then assemble the infill studs 
[18,34]. This assembly sequence decreases the potential for deviations 
due to the overhang, but increases the complexity of the robot trajec
tories required to insert stud elements without collision. Another 
approach would be to modify the assembly trajectory path such that 
studs are inserted at an angle and rotated into place, correcting for any 
deviations in the top plate by pushing it back upwards. To achieve such a 
process, more advanced motion planning and task allocation would be 
required, alongside force/torque sensing, which is left as a future point 
of research. 

4.3. Overall discussion 

We see an opportunity for employing the pose-based adaptive 

method to fabricate elements where their pose relative to the world is 
critical, such as the bottom and top plates of a wall, since they might be 
interfacing with other components of a building or structure and require 
a tight tolerance. On the other hand, we see the potential of the 
topology-based adaptive method for fabricating timber elements that fill 
out the assembly where the tight fit between elements is critical (e.g., for 
structural performance). As part of future research, the two adaptive 
fabrication methods can be integrated, combining the precision afforded 
by the pose-based adaptive method with the robustness of the topology- 
based adaptive method. We envision that our developed feedback- 
driven framework can minimize the effect of material imperfections 
and fabrication inaccuracies in a completely autonomous multi-robot 
fabrication setup. 

5. Conclusion 

We presented a framework consisting of two feedback-driven adap
tive methods, pose-based and topology-based, for cooperative multi- 
robot timber construction to effectively handle perceived uncertainties 
due to material imperfections and fabrication inaccuracies. Our pro
posed framework relies on using the as-built subassembly as a locali
zation target for self-calibration and fabrication adjustment, avoiding 
issues of calibrating to a common-world coordinate system using 
external measurement equipment. In particular, our developed pose- 
based adaptive fabrication method proved effective in decreasing de
viations of the as-built NLT panel from its as-planned digital model for a 
cooperative assembly task performed by two robots. Furthermore, our 
topology-based adaptive method enabled the successful completion of a 
wall module, which was fabricated cooperatively by two robots. 
Although the case study of our research was timber framing, our 
methods could be extended and utilized in multi-robot construction 
processes involving other discrete elements such as bricks and light steel 
frames. Therefore, this research contributes to the body of knowledge 
required to facilitate flexible and accurate cooperative multi-robot 
construction at the building scale. The following section presents the 
limitations of this research and potential avenues for further 
investigation. 

5.1. Limitations and future work 

While we focused our studies on a two-robot system, the research 
could be easily extended to multi-robot systems, and our developed 
feedback-driven framework could be applied to any number of robots. 
This extension will require further investigation by developing an as
sembly setup that includes more than two robotic arms and conducting 
prototyping experiments to evaluate the methods empirically. Further
more, the research could be extended to on-site construction. However, 
besides material imperfections and manufacturing inaccuracies, un
certainties inherent in unstructured construction sites should also be 
integrated into the adaptive methods. 

Addressing these construction site uncertainties will require more 
sophisticated perception techniques. The pose perception process in this 
research still included manual processing steps due to setup limitations 
and can be made more robust with filtering and segmentation computer 
vision methods. Further development of the perception process also 
allows for the potential to utilize machine learning to not only automate 
pose perception but also optimize fabrication steps based on available 
stock, environmental conditions, and design intent. 

Fabrication speed is also another consideration for future research; 
our experiments operated the robots at a fairly slow speed (maximum 
0.25 m/s Cartesian speed) in consideration of safety, and speed was not 
critical to our research scope. However, increasing the robot speed and 
evaluating the fabrication process’ productivity will be crucial for in
dustry adoption, and will likely introduce additional research questions 
regarding real-time motion planning and tool development. 

Moreover, we focused our research only on lumber studs and 

Fig. 13. Deviation from the scanned point cloud of the as-built wall module to 
the best-fit transformation of the as-planned digital model. 
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assumed negligible deformations during the robotic assembly process. 
Future research could investigate multi-material timber subassemblies 
and extend the adaptive methods to handle materials, such as plywood 
sheathings, that could exhibit considerable deformation. This extension 
will enable the assembly of fully prefabricated wall, floor, and ceiling 
subassemblies. We see an opportunity to investigate multi-modal 
perception coupling vision and force/torque sensors and robot 
learning to develop real-time adaptive robotic manipulation and as
sembly of deformable building materials. 
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