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Dynamic distributed decision-making for resilient
resource reallocation in disrupted manufacturing

systems
Mingjie Bi, Ilya Kovalenko, Dawn M. Tilbury, Kira Barton

Abstract—The COVID-19 pandemic brings many unexpected
disruptions, such as frequently shifting markets and limited
human workforce, to manufacturers. To stay competitive, flex-
ible and real-time manufacturing decision-making strategies
are needed to deal with such highly dynamic manufacturing
environments. One essential problem is dynamic resource alloca-
tion to complete production tasks, especially when a resource
disruption (e.g. machine breakdown) occurs. Though multi-
agent methods have been proposed to solve the problem in a
flexible and agile manner, the agent internal decision-making
process and resource uncertainties have rarely been studied. This
work introduces a model-based resource agent (RA) architecture
that enables effective agent coordination and dynamic agent
decision-making. Based on the RA architecture, a rescheduling
strategy that incorporates risk assessment via a clustering agent
coordination strategy is also proposed. A simulation-based case
study is implemented to demonstrate dynamic rescheduling using
the proposed multi-agent framework. The results show that
the proposed method reduces the computational efforts while
losing some throughput optimality compared to the centralized
method. Furthermore, the case study illustrates that incorporat-
ing risk assessment into rescheduling decision-making improves
the throughput.

Index Terms—Multi-agent systems, smart manufacturing, ro-
bust scheduling, dynamic decision-making, risk assessment

I. INTRODUCTION

Due to COVID-19, manufacturing enterprises have faced
unprecedented challenges, including emerging large-volume
demands for everyday items, new medical device production
requirements, and limited human workforce. Thus, the need to
deal with dynamic manufacturing environments that include
frequently shifting product demands, the customization of
products, or unexpected disruptions (e.g. machine breakdowns)
has been highlighted by the pandemic [1], [2]. To stay com-
petitive, manufacturing enterprises must develop flexible and
real-time decision-making strategies to adapt to this dynamic
environment [3]. One research area that focuses on dynamic
decision-making is the effective allocation of limited resources
through a flexible response to unexpected disruptions using
control and coordination of components on the shop floor.
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Fig. 1. An example of multi-agent manufacturing system

Currently, most manufacturing systems apply centralized
decision-making strategies, such as mathematical program-
ming [4] and reinforcement learning [5]–[9], to generate
optimal resource allocation plans based on specific objectives
(e.g., cost and throughput). However, since a centralized
decision-making process includes the consideration of the
entire system through a global view, it generally requires sig-
nificant computational efforts to calculate. Therefore, systems
with centralized strategies often lack the ability to respond
dynamically and quickly to unexpected disruptions [10]. To
improve the flexibility and agility of these systems, distributed
decision-making strategies, where multiple system entities
interact collaboratively to make decisions, have been proposed
in several studies [10]–[12].

One type of distributed strategy that has been proposed to
enable dynamic decision-making is multi-agent control [10],
[13]. A multi-agent system consists of various autonomous
agents performing coordination and decision-making [14]. In
the manufacturing domain, product agents (PAs) and resource
agents (RAs) have been described in most existing multi-agent
architectures [15]. A PA is responsible for fulfilling production
requirements for its associated physical part through inter-
actions with other agents, while an RA provides high-level
control for its associated resource in the physical layer [16].
Through the coordination and decision-making of PAs and
RAs, flexibility and responsiveness in manufacturing systems
can be improved [10].

The initial consideration of a dynamic response within
the resource reallocation problem has been studied in the
authors’ previous work [13]. This previous work proposed a
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dynamic resource reallocation strategy based on RA capability
clustering to improve the reallocation performance. However,
this approach did not consider resiliency or robustness, which
refers to the ability to recover system performance under
different environmental conditions such as uncertainties [17].
In many systems, the quality and execution of a rescheduling
solution lie in the resiliency and robustness of the new
schedule. Thus, to ensure a dynamic and resilient response,
the decision-making process must incorporate uncertainty and
potential risk factors into the optimization. Furthermore, to en-
able effective communication and enhanced decision-making,
an RA should understand its own objectives and the complex
manufacturing environment. However, most existing multi-
agent frameworks do not incorporate this information into the
RA architecture nor do they consider uncertainties and risks
within the rescheduling problem [18]–[21].

To address these limitations, this work builds on the agent
model and rescheduling strategy proposed in [13]. The con-
tributions of this paper over the previous work include: (1)
the extension and generalization of an RA architecture that
includes a Knowledge Base, a Communication Manager, and
a Decision Manager, (2) the development of a risk assessment
approach and a dynamic and resilient resource reallocation
strategy, and (3) an evaluation of manufacturing system per-
formance when implementing the proposed approach within a
simulated manufacturing facility.

The rest of the paper is organized as follows. Background
regarding the decision-making for rescheduling is discussed
in Section II. Section III describes the agents and resource al-
location problem formulation. The RA architecture, including
the Knowledge Base, Communication Manager, and Decision
Manager, is presented in Section IV. Section V describes the
resource reallocation process via RA coordination. In Sec-
tion VI, a simulation case study with the proposed architecture
is provided, and conclusions are in Section VII.

II. BACKGROUND

The scheduling and rescheduling problems have been
widely studied via centralized decision-making, such as math-
ematical programming [22], [23] and reinforcement learn-
ing [5]–[9]. However, centralized decision-making with all the
information of the factory might be inefficient to quickly re-
spond to the dynamic manufacturing environments. Therefore,
multi-agent architectures with distributed decision-making
have been introduced in manufacturing systems to improve
flexibility and agility [10]–[12].

Some existing multi-agent architectures consist of agents
who are responsible for making scheduling decisions after col-
lecting information from PAs and RAs. The contact agent in-
troduced by [24] and the rescheduling agent developed by [25]
receive resource disruption information from the disrupted RA
and then start the rescheduling process with knowledge of
the entire system. However, these types of agents essentially
provide centralized decision-making for scheduling, which has
limitations in quickly responding to dynamic environments.
Therefore, this section focuses on the distributed decision-
making process via agent coordination to solve a rescheduling
problem.

In existing multi-agent architectures, it is commonly stated
that RAs are the class of agents that identify resource dis-
ruptions by continuously collecting data from their associated
resources, while the decision-making process for rescheduling
could be triggered by a PA or an RA. In the studies [15],
[20], [26], PA is used to trigger the rescheduling process and
determine a new schedule. Once the disrupted RA informs the
PA of a need for rescheduling, the PA sends a rescheduling
request and triggers the PA-RA coordination to generate a
new resource allocation schedule based on the remaining tasks
and resource capacities. In [15], the RAs receiving the PA’s
request will propagate the request to other RAs if they cannot
satisfy the requirements. However, these methods do not try to
preserve the initial schedule, thus they have a high probability
of causing deviations between the new and initial schedule. In
the rescheduling problem, the deviation between the new and
initial schedule is defined as scheduling robustness [27]. Thus,
the methods from [15], [20], [24] have limited scheduling
robustness.

To address the limitation, determining modifications to the
initial schedule should be considered. Therefore, for resource
disruptions, RA coordination can be applied by using the local
view of the RAs. [28] introduces a reconfiguration agent as
a mediator for RA coordination to respond to the reconfig-
uration and communication requests from different RAs. For
direct RA coordination, some collaborative mechanisms are
provided to enable a disrupted RA to request all of the other
RAs [21] or all RAs of the same type [29] to make reallocation
decisions. However, it is not necessary for the disrupted RA
to communicate with all RAs since some RAs do not have the
required capabilities to perform the affected operations of the
disrupted RA. Therefore, these methods create a significant
communication load that will limit the agility of the system
in response to a disruption. To reduce agent communication,
clustering approaches have been used to provide a structured
coordination process. In [30], an RA cluster is defined as
a set of RAs that collaborate to complete a sub-task. [31]
defines an RA cluster based on both physical constraints
and resource proximity. However, for a rescheduling problem,
fixed coordination rules and considering only nearby resources
might cause resource overload or for no alternative resource to
be found, which reduces throughput and resource utilization.

To cope with the problem, the disrupted RA needs to
dynamically determine the agents it coordinates with (i.e.
RA cluster) instead of following a pre-defined rule-based
coordination strategy since the rescheduling scenarios are
highly variable. The environment information, such as other
agent attributes, and coordination behavior should be designed
and included in the RAs’ knowledge base. The existing stud-
ies [19], [24], [28], [29], focus on how an RA makes decisions
to respond to other agents’ requests through their proposed
modularized RA architectures. [32] introduces a reinforcement
learning approach to enable agents to learn the environment
to solve the scheduling problem. However, these methods do
not cover how the agents can dynamically determine their
coordination behaviors for the rescheduling problem.

Uncertainties and risks in the manufacturing system have
also been studied for the scheduling/rescheduling problem
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TABLE I
NOMENCLATURE FOR THE RA ARCHITECTURE

Production schedule
S Function that maps agents to the product and resource schedule
s Function that maps each agent to a sequence of events in the schedule of the agent
Ag Function that maps events to particular agents
Ts Function that maps event sequence to the start and end times of each event
Agents
X Set of states of a product
E Set of events representing operations that change product state
Tr State transition function representing how events drive state changes
xi = (xℓ

i , x
c
i ) State of a product that describes its location and physical composition

T Cost function for performing events
At Function that maps events to resource attributes
Pq Set of production requirements for scheduled events
Cℓ Function that maps events to clustering RAs
Rescheduling process
RAd The disrupted RA
Ed Sequence of affected events in the resource schedule of RAd

sd Sequence of events that need to be replaced
xprior State before the event sequence that should be replaced (sd) in the initial product schedule
xpost State after the event sequence that should be replaced (sd) in the initial product schedule
snew Sequence of events that can replace the event sequence sd
H Function that calculates earliest available time for a resource to perform an event
R Function that calculate risk of a new event sequence

recently. These risk assessment methods focus on robust
scheduling, which refers to deriving schedules that are resilient
to disruptions [27]. In [17], [33], [34], risk scenarios are
incorporated into the Petri Net model or automata of the
entire system and are considered when the system generates
a production schedule. [35] provides an algorithm for robust
scheduling considering uncertain processing times. [36] in-
troduces a conceptual structure that enables risk assessment
in production scheduling. These studies primarily focus on
risk assessment in the process of generating an initial sched-
ule and obtaining a resilient schedule in the presence of
disruptions. However, there are disruptions that will require
the development of a new schedule in order to meet the
process throughput. Therefore, incorporating risk assessment
into the rescheduling process is an important need. However,
the current studies use centralized methods to cope with risks
for the rescheduling problem [37], [38], while none of the
existing distributed rescheduling methods incorporate risks in
their decision-making process.

In summary, for the rescheduling problem, existing multi-
agent decision-making methods do not currently satisfy these
following needs defined to achieve agile and robust reschedul-
ing: (1) minimization of changes to the original production
schedule, (2) dynamic and distributed decision-making via
agent coordination, and (3) incorporation of metrics that
quantify risks into distributed rescheduling decision-making.

III. PROBLEM FORMULATION

In this section, formal definitions of the multi-agent ar-
chitecture and components within a production schedule are
provided. A resource reallocation problem in the form of a
rescheduling task is also formulated.

A. Definitions
Manufacturing system – resources that are connected by

material and information flow with a control architecture to

produce finished goods [12].
Resources – the entities, such as humans or equipment,

that perform operations (e.g., production, maintenance, and
transportation) in a manufacturing system.

Central knowledge base – contains all the information
relevant to the manufacturing system, such as product re-
quirements, resource capabilities, etc. It is initialized by the
manufacturer.

Production goal – an objective to transform raw materials
into finished products to meet customer demands through
certain resource operations.

Production schedule – a plan that specifies resources to
perform operations on parts at certain times to achieve the
production goal. A detailed definition is stated in Section III-C.

B. Agent formulation

In this work, product agents (PAs) and resource agents
(RAs) are used to describe the multi-agent manufacturing
system and outline the rescheduling problem.

1) Product agent: A PA is responsible for fulfilling the
desired production requirements of its associated physical
product. [16] introduced a model-based PA architecture that
enables PAs to make intelligent decisions to guide products
and track the production progression through the manufac-
turing system. Each PA stores the status of its associated
product as a discrete state in the set X = {x0, x1, ..., xf},
where x0 is the initial state and xf is the final state of the
product in the manufacturing system. Each state is comprised
of two elements, xi = (xℓ

i , x
c
i ), where xℓ

i and xc
i denote

the product’s location and physical composition, respectively.
Note that precedence constraints may exist in the physical
composition states xc

i while usually not in the location states
xℓ
i . For instance, a PA state can be represented as: xi = ( “at

machine1”, “with a milled pocket”).
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2) Resource agent: An RA provides high-level control for
a physical resource to perform operations on products. In this
work, RAs are grouped into two RA classes: transportation and
transformation RAs, based on the operations they can perform
on the products. The resource operations are modeled as a set
of discrete events, denoted by E = {e0, e1, ..., en}. An event
for a transportation RA results in a state change in the location
of a product, while an event for a transformation RA results
in a change in the physical composition. More information
regarding the resource agent is discussed in Section IV.

C. Production schedule

From Section III-A, the production schedule for the manu-
facturing system is a collection of schedules for all p products
(or equivalently all r resources) in the manufacturing system.
The production schedule for a PA or an RA contains different
information. The set of all PAs and RAs in the system is
denoted by A = {PA0, ..., PAp, RA0, ..., RAr}, where p is
the number of PAs and r is the number of RAs in the system.
The production schedule for each agent is calculated by a
function:

S : A→ (s,Ag, Ts), where
s : A → e0, ..., ea : is a function that maps agents to the

sequence of events scheduled to be performed either on that
product or by that resource

Ag : s × A → A : is a function that represents the
relationship that describes the events, the RAs that perform
the events, and the PAs on which the events are performed

Ts : s(A) → (R+,R+) : is a function that maps events
to start and end times

For a given resource, the event sequence s(RAj) represents
the events that RAj will perform, and Ag provides the PA
on which the events are performed. Ts(s(RAj)) provides the
start and end times for each event in the resource schedule.
It is assumed that a resource cannot perform multiple events
at the same time, thus there should be no intersections (and
generally should exist time gaps) between event time periods
for a given resource. Therefore, one might define an idle time
interval between the end time of one event and the start time of
the next event. The set of idle time intervals, denoted by I =
{[t0, t1], [t2, t3], ...}, can be calculated for each (re)scheduling
purpose. The production goal will be achieved if the specified
resources follow their designated schedules for each product
in the system.

For a specific product, the event sequence s(PAi) defines
the PA state transitions from the initial state, x0, to the final
state, xf , as stated in Section III-B. To represent how an event
represents a change in the state of a PAi, a state transition
function is defined as Tr : X × E → X . The PA states and
event sequence, s(PAi), satisfy the transition relationship:

xf = Tr(x0, s(PAi)). (1)

Based on the transition relationship, the start and end times in
Ts(s(PAi)) indicate the time periods during which the product
is associated with a specific state. Since the product state is
always defined, the times provided in Ts(s(PAi)) will not
contain any time gaps, hence, the end time of one event (or

Fig. 2. Discrete event system representation of the problem formulation. Each
affected event edi from the affected resource is associated with a specific
PA (PAdi ), where the PA schedule denotes the index as q. eq cannot be
performed on the product and thus the state transition for PAdi from xprior

to xpost cannot be achieved. The reallocation problem is to find a new event
sequence snew that can recover this transition.

state) equals the start time of the next event (or state). Note
that an event type (e.g. milling a pocket) can occur multiple
times in s(PAi), but at varying occurrence times and with
different RAs. The function Ag identifies the specific RA that
is associated with a particular event being applied to PAi.
Note that every event in the schedule of a given product is also
an event for the associated resource and vice versa. However,
the indices of the specific event are not the same within the
product and resource schedules.

D. Problem statement

Resource allocation can be formulated as a production
scheduling problem [11]. When unexpected resource dis-
ruptions (e.g. breakdowns) occur in dynamic manufacturing
systems, the initial production schedule cannot be executed
as originally planned [18]. Therefore, the products that are
impacted by this disruption may be rescheduled through the
reallocation of resources [4].

This rescheduling problem is outlined as: given a man-
ufacturing system (r resources) with a production goal (p
products to produce) and feasible initial production schedule
(S), assuming a single resource breaks down (RAd), find a
new feasible and resilient production schedule on-the-fly that
minimizes changes to the initial schedule S and optimizes
user-defined objectives. To formulate the problem, the follow-
ing assumptions are provided:
A.1 The initial production schedule is predetermined and will

achieve the production goal if followed.
A.2 Unexpected resource disruptions are detectable by the

associated RAs and result in the specific resources be-
coming unavailable for a certain amount of time.

A.3 The manufacturing system contains resource redundancy
and is operating with available capacity.

A.4 The rescheduling time can be neglected compared to
operation time.

A.1 ensures that the manufacturing goal can be met if the
rescheduling process follows the production requirements in
the initial schedule. A.2 guarantees that a disruption will be
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Algorithm 1 Identify the shortest event sequence that needs
to be replaced
Input: edi

, RAd, s, Ag
Output: sd

// Identify the index of edi in its associated product
schedule

1: PAdi
← Ag(edi

, RAd)
2: j ← 0 and ej ∈ s(PAk)
3: while ej ̸= edi

or Ag(ej , PAk) ̸= RAd do
4: j ← j + 1
5: q ← j
6: end while

// Find the event sequence that needs to be replaced
7: Add eq to sd

// For the events ej before eq in s(PAk)
8: j ← q − 1
9: while xℓ

j+1 = xℓ
d and j ≥ 0 do

10: Add ej to the first position of sd
11: j ← j − 1
12: end while

// For the events ej after eq in s(PAk)
13: j ← q + 1
14: while xℓ

j+1 = xℓ
d and j ≤ f − 1 do

15: Add ej to the last position of sd
16: j ← j + 1
17: end while
18: return sd

identified by a resource if it occurs and also designates how a
resource will be impacted by the disruption. A.3 is necessary
to enable agent coordination and part rerouting. A.4 simplifies
the rescheduling problem by assuming there are no changes in
the manufacturing system during the decision-making process.

Once a resource disruption occurs, the associated RA is able
to identify the disruption (A.2) and determine the events that
the resource can no longer perform, denoted by Ed, which is
a sub-sequence1 of the original event sequence for resource
RAd: Ed ⊆seq s(RAd). All of the events in Ed need to be
re-assigned to alternative resources, which requires resource
redundancy and available capacity (A.3).

As shown in Fig. 2, each event edi ∈ Ed belongs to
the schedule of its associated PA, denoted by PAdi =
Ag(edi

, RAd). Since RAd cannot perform edi
, PAdi

cannot
achieve its production goal (i.e., state transitions in Eqn. 1).
The sequential events associated with edi

in a given product
schedule may become unnecessary (e.g., transportation events
to/from the broken machine). We define sd as the shortest
sequence that contains edi and should be replaced by a new
event sequence snew in the production schedule. To identify
the sequence sd, the index of edi

for the specific product,
PAdi

, is denoted by q (i.e. edi
= eq). Algorithm 1 determines

sd by checking whether the associated states of the sequential
events are related to RAd. In this way, sd is guaranteed as the
shortest sequence that contains edi

and needs to be replaced.

1For simplicity, the symbol ⊆seq is used to represent the sub-sequence
relationship in this work.

Once sd is identified, two states xprior and xpost are defined
as the states before and after sd in the product schedule of
PAdi

, where Tr(xprior, sd) = xpost.
Therefore, for each affected event edi and its associated

product PAdi , the rescheduling process aims to search for a
new sub-sequence of events (snew) that includes the events
that need to be replaced, sd:

Tr(xprior, snew) = xpost (2)

Note that the affected event edi being performed by an
alternative RA should be an element of snew and the new
sequence should satisfy the production requirements.

Through Algorithm 1 and Eqn. 2, the rescheduling problem
is formulated in a way that minimizes the changes to the
initial schedule. Therefore, instead of resolving a system
model to generate a fully new optimal schedule (e.g., job shop
schedule, which is NP-hard), we focus on modifying the initial
schedule by locally searching for an alternative resource to
replace the broken resource to recover the performance and
thus minimize the impact to the initial schedule. It requires
less computational effort than re-generating the total schedule
while it loses some optimality. In this case, the problem in
this work is polynomial-time solvable since the worst case is
to evaluate all the resources in the system for each event that
needs to be replaced. This process takes O(r×

∑
edi∈Ed

|sdi
|)

computations, where r is the number of RAs in the system.
A centralized method can be applied to provide an optimal
schedule based on the performance objective (e.g., through-
put); however, this approach requires significant computation
efforts to achieve centralized optimization, making it less agile
in many disruption scenarios. In this work, we propose an RA
communication strategy with capability heuristics to avoid the
need to communicate and optimize across all of the resources,
thus reducing computational efforts. We then incorporate risk
assessment into the rescheduling decision-making problem to
investigate how the consideration of risk improves throughput.

IV. RESOURCE AGENT ARCHITECTURE

The proposed RA architecture consists of three components:
a Decision Manager, a Communication Manager, and a Knowl-
edge Base. A detailed design of the proposed RA architecture,
including specific components and component-to-component
information exchange, is shown in Fig 3. Note that this section
describes the RA architecture from the perspective of a single
RA, denoted by RAj , in a multi-agent manufacturing system.

A. Decision manager

The Decision Manager is responsible for the deliberation
and reasoning process of an RA. Different decisions, such
as product scheduling [16], RA response [19], etc., have
been introduced in the literature. The Decision Manager in
this paper makes decisions about data analysis, scheduling
management, communication, and risk assessment.

Data analyzer – a component that collects and analyzes
data from the physical resource through sensors. The data
analyzer may contain different data-driven models to abstract
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Fig. 3. The internal resource agent architecture, including Knowledge Base, Communication Manager, and Decision Manager. The communication between
each component for the rescheduling problem is also displayed. Note that the modules with dash border are from existing studies [13], [39]

information that can be used by the agents from the raw data
obtained from various sensors.

Risk assessor – a component that provides enhanced de-
liberation and reasoning processes to the RA by evaluating
the risk of decision candidates. The risk assessor may contain
different function models to analyze the risk of any decision
based on the current status of the agent and the responses
received from other agents.

Decision maker – a component that makes decisions re-
garding the execution of the current schedule and responds to
requests from other agents based on the current status of the
RA.

B. Communication manager
The Communication Manager of an RA provides the in-

terface between the RA and other agents for exchanging
information. While the communication component has been
mentioned in [16], [24], [29], these methods do not specify
the different types of communication between the RAs. The
Communication Manager in this paper includes a request
manager and a response manager.

Request Manager – a component that sends requests from
the decision manager to other agents and passes requests
received from other agents to the decision maker.

Response Manager – a component that sends the response
from the decision manager to other agents and passes re-
sponses received from other agents to the decision maker.

C. Knowledge base
The belief-desire-intention (BDI) architecture has been

widely used to provide a modular framework to design in-

telligent agents [40]. Following the BDI design, the model
of an RA in the authors’ previous work is contained in the
beliefs segment of the architecture within this work. In this
work, we reformulate the structure and content of the belief
section of the RAs as the desires and intentions are developed
and integrated into the Knowledge Base. As shown in Fig. 3,
several aspects of the Knowledge Base are initialized before
the manufacturing system begins operating. We assume this
initialization is completed by the manufacturers based on the
customer order, physical layer, and initial production schedule.

1) Intentions and Desires:
a) Intentions: Represent the plan an agent has committed

to execute. In this paper, the intentions of an RA are repre-
sented by the resource schedule S(RAj) = (s,Ag, Ts), as
defined in Section III-C.

b) Desires: Represent the goal and requirements for an
agent. As shown in Fig. 3, the desire of an RA is to execute
the resource schedule S(RAj) without violating requirements
for production and safety.

In this paper, function Pq : E × PA → Requirements
maps each scheduled event for a given product agent to its
specific production requirements (e.g. precision). The produc-
tion requirements that RAj must satisfy based on the products
that will engage with the given RA are represented as a set
{Pq(ei, Ag(ei, RAj)) : ei ∈ s(RAj)}. These requirements are
then split into hard and soft requirements. Hard requirements
must be followed while soft requirements can be negotiated
to meet the demand with the introduction of a penalty. For
example, a hard requirement might be the size constraint of
a product that can be assigned to a resource such that the
product will fit within the workspace of the resource. A soft



IEEE JOURNAL TEMPLATE 7

requirement could include the bound on the energy cost for a
given event that may need to be violated in order to meet the
product due date [41].

The intentions and desires are related to the resource sched-
ule, thus they are assigned to RAj once the initial production
schedule of the manufacturing system is determined, and will
be updated as the resource schedule changes.

2) Beliefs: Building from the architecture used in previous
work [13], the beliefs of an agent are comprised of the
state, capability, and environment models. These models are
dynamically updated (i.e., extended, shrunk, and revised) as
the resource and its environments change.

a) State model: Describes how an RA monitors the status
of the associated physical resource. [42] introduced a finite
state machine (FSM) framework to model the status of a
manufacturing resource using several states and transitions.
Similarly, the RA state model in this paper is defined as an
FSM that includes Idle, Up, and Down states as well as the
transitions between these states.

Transitions between RA states are triggered by the decision
maker of the RA. As shown in Fig. 3, the sensor data in the
physical layer is collected by the data analyzer, which utilizes
this data to identify the current status of the physical resource.
Though this paper does not focus on data-driven analysis,
related work has been done to achieve state and anomaly
identification [39]. Having obtained the analysis results, the
decision maker checks the current state model and decides
whether an update to the state model is needed (e.g. trigger
the transition to Down if the resource is broken).

b) Capability model: Provides a detailed description of
the operations that a resource can perform on parts. As defined
in Section III-B, RAs are grouped into two RA classes:
transformation RAs and transportation RAs. The resource
operations can be modeled as discrete events that drive state
changes in the parts. Therefore, an FSM can be used to model
the capabilities of an RA [15], [43]:

Mc = (X,E, Tr, T, At):
X = {x0, ..., xn} : a set of states that can be achieved on
products utilizing the resource
E = {e0, ..., em} : a set of events representing operations
that change product states
Tr : X × E → X : a state transition function
T : E → R+ : amount of time associated with an event
At(E,RAj) : a function that maps events and specific
RAs to the physical resource attributes associated with
each event (e.g. payload limitations)

In the capabilities model, the state set X contains all
changeable states for the products associated with the given
resource. E and Tr follow the definition provided in Sec-
tion III-B. The transition function Tr is inherited from the
PAs. T represents the nominal cost (denoted as operation time)
for each event to occur assuming the cost for the same event
is identical for different products. At provides the resource
attributes for each event. Note that multiple RAs in the same
class could have the same events, but the attributes might be
different. The characteristics of the attributes are described by
parameters, such as the speed limitation, payload, and part
dimensionality.

As shown in Fig. 3, the capability model is initialized based
on the physical manufacturing system. Similar to the state
model, as the data analyzer receives information constantly
from the resource in the physical layer, the decision maker
updates the capability model if there are any changes to the
resource. The changes could be manual, such as tool replace-
ment/removal, or spontaneous, such as machine breakdown.

c) Environment model: The RA’s knowledge of other
RAs in the system is captured in the environment model. The
relationships to these agents are modeled as mapping functions
that map events or states to different sets of RAs, namely
clustering, sequential, and collaborative RAs.
Clustering RAs: The clustering RAs for RAj are the set of
RAs that can perform the same events as RAj for a given
subset of events Es in RAj’s capability model. Each event in
the given event subset ei ∈ Es corresponds to a unique cluster.
The relationship between each event ei and the associated
clustering RAs is modeled as a cluster mapping function,
which is defined as Cℓ : Es ×RA→ 2RA, where

Cℓ(ei, RAj) = {RAk | ei ∈ ERAk
, RAk ̸= RAj} (3)

2RA denotes the power sets of the RAs in the manufacturing
system. ERAk

represents the event set in the capability model
of RAk. Therefore, the set of Cℓ(ei, RAj) maps represents
the clustering RAs for the given event subset Es for RAj .
As shown in Fig. 3, clustering RAs are not formed during the
initialization. When clustering RAs are needed, RAj retrieves
the capabilities of other RAs from the centralized knowledge
base and checks the constraints in Eqn. 3 to form the cluster
map. Alternatively, RAj can also request the capability infor-
mation from the RAs within the manufacturing system to form
the clusters dynamically.
Sequential RAs: The sequential RAs of RAj depend on the
resource schedule and associated product schedules. Every
event in RAj’s schedule ei ∈ s(RAj) corresponds to a specific
product agent PAk = Ag(ei, RAj). In the product schedule
of PAk, the RAs that perform the events directly before and
after ei are sequential RAs of RAj for this specific event. Each
event ei ∈ s(RAj) corresponds to a unique set of sequential
RAs. To identify the sequential RAs, the index of event ei in
the product schedule of PAk is denoted as q, which can be
found following the same process in Algorithm 1. Note that q
is bounded by 0 ≤ q ≤ f − 1 since the event sequence in the
product schedule of PAk is defined as s(PAk) = e0...ef−1.
Therefore, if ei is the first or last event in the product schedule
of PAk, there is only one sequential RA for this event ei.
Otherwise, there are two sequential RAs. RAj stores the
information about the sequential RAs in a map that relates
the scheduled event to specific RAs: s(RAj)→ 2RA. The set
of the sequential RAs depending on the index q defined above:

{Ag(eq+1, PAk)}, if q = 0

{Ag(eq−1, PAk)}, if q = f − 1

{Ag(eq±1, PAk)}, if 0 < q < f − 1

(4)

The sets of Sq(ei) represent the sequential RAs for the
scheduled events of RAj . The set of sequential RAs is formed
in RAj’s Knowledge Base based on the initial production
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schedule.As the system runs, the schedule of agents might
need to change to adapt to disruptions, thus the sequential
RAs should be updated as the schedule changes.
Collaborative RAs: To represent the collaboration between
RAs, [15] introduced neighboring RAs, which have shared
states in the capability model. In this work, collaborative RAs
of RAj are defined as the set of RAs that contain the same
location states in their capability model. Each location state
xℓ
i in RAj’s capability model corresponds to a unique set of

collaborative RAs. This relationship is modeled as a mapping:
X × RA → 2RA. Therefore, for RAj , its collaborative RAs
in terms of xℓ

i is described as:

{RAk | xℓ
i ∈ XRAk

, RAk ̸= RAj} (5)

where XRAk
is the state set in the capability model of RAk.

Note that a transportation RA can have both transportation
and transformation collaborative RAs, while a transformation
RA can only have transportation collaborative RAs. The set of
collaborative RAs is formed in RAj’s Knowledge Base as the
RA and its capability model are initialized, following the state
relationship discussed above. This set of collaborative RAs is
updated as the capability model changes. For example, if a
mobile robot can no longer reach a machine at xℓ, the states
related to xℓ will be removed from its capability model, as
well as the collaborative RAs related to xℓ.

V. RESOURCE AGENT COORDINATION FOR RESCHEDULING

In this section, the proposed rescheduling strategy via RA
coordination is described. The coordination is guided by the
agent environment models instead of following pre-defined
rules. These models can be easily updated and scaled for
different systems, thus the agent coordination behaviors are
flexible and adaptable. An overview of the rescheduling pro-
cess is shown in Fig. 4. In the agent coordination process, the
constraints of the schedule are checked when agents determine
their responses, and the new event sequence is augmented by
propagating requests until the state transition is satisfied. New
aspects based on the authors’ previous work [13] include: (1)
identification and sorting of the affected events based on prior-
ity, (2) requirements relaxation in the cluster formation, and (3)
risk assessment of the new schedules based on uncertainties.

A. Rescheduling request

When a resource breaks down, the associated RA, denoted
by RAd, must identify the breakdown, determine events that
are affected by the breakdown, and create bid requests to start
the rescheduling process.

1) Identify disruption and affected events: A resource agent
collects data continuously from the associated physical re-
source through sensors attached to this resource. The data is
passed into the data analyzer within the Decision Manager of
the RA. By feeding the data to the models in the data analyzer,
the data analyzer identifies the current status of the physical
resource and sends this information to the decision maker. The
decision maker then updates the knowledge base of the RA.
When a resource is broken, the RA identifies the disruption
and updates the state model to indicate a Down state.

Fig. 4. Coordination behaviors of resource agents for rescheduling process

After identifying the breakdown, the decision maker re-
quests information about the resource schedule S(RAd) and
production requirements Pq from the Knowledge Base. The
decision maker will then determine the sequence of events,
denoted as Ed, that need to be rescheduled. Ed = ed0

ed1
...edd

is a priority event sequence, where each event corresponds to
a priority value, which is calculated based on the original start
time and the priority/importance of the associated product. An
example priority mapping function could include a weighted
sum of the inverse of the original start time and due date. For
this example function, the order of the affected events in the
sequence Ed will increase as the start times and/or due dates
of a given product are extended.

To realize dynamic rescheduling on the fly, the proposed
method reschedules the affected events in a sequential manner
following the order provided in Ed. For each affected event in
Ed, RAd runs Algorithm 1 to identify xprior and xpost. For
simplicity, the following description focuses on the reschedul-
ing process for a single affected event edi

. This process will
be repeated for each additional event within Ed.

2) Broadcast rescheduling request: After identifying and
sorting the affected events, the scheduling manager of RAd

sends a rescheduling request to the request manager. A broad-
cast technique is used for RAs to communicate informa-
tion [14]. For each edi

, the request manager can dynamically
identify the cluster RAs associated with edi via the envi-
ronment model and broadcasts the rescheduling bid request
Req = (edi

, Pq, xprior, xpost). Pq is the function that maps
edi

to the production requirements. xprior and xpost define
the states that denote where a transition must be rebuilt, as
defined in Eqn. 2.

As mentioned in Section III-D, the sequential events of edi
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may become unnecessary or transition to a different sequential
event depending on the RA used to replace the affected event.
In the case of a change to the sequential events, the request
manager of RAd sends the event edi

to the sequential RAs in
Sq(ed) and requests them to remove the sequential events for
edi

from their schedule.

B. Resource agent coordination

1) Cluster search: Based on the resource capabilities, only
the clustering RAs of RAd with respect to edi have access
to the broadcast request. These RAs access the rescheduling
request and their request managers send the request to their
decision maker. Through this clustering scheme, the agent
coordination is more effective since RAd requests the agents
that can perform edi

instead of requesting all the other RAs or
only nearby RAs. The decision maker requests the capability
model from the Knowledge Base and conducts the following
match-making steps:

• Check whether the RA still contains the affected event
edi

in its capability model
• Determine whether the RA’s associated resource attributes

can satisfy the production requirements Pq(edi
)

As defined in Eqn. 3, the first step ensures that a specific
RA should be considered as a clustering RA of RAd, while
the second check determines whether the resource can suc-
cessfully meet the production requirements (e.g. meet the
hard and soft constraints). The hard requirements must be
satisfied, while the soft requirements can be negotiated (e.g.
relaxed) within a tolerance range with penalties. A smaller,
more focused clustering RA set is generated by the second
match-making step:

P̃q(edi , Ag(edi , RAd)) ⊆ At(edi , Cℓ(edi , RAd)) (6)

where At(edi
, Cℓ(edi

, RAd)) represents the set of resource
attributes of edi

in the capability models of the clustering
RAs. P̃q defines the production requirements with relaxed soft
requirements. As such, the RAs that satisfy Eqn. 6 form a new
cluster for RAd with respect to the affected event edi :

C̃ℓ(edi
, RAd) = {RAc | RAc ∈ Cℓ(edi

, RAd),

P̃q(edi , Ag(edi , RAd)) ⊆ At(edi , RAc)}
(7)

The RAs in the cluster C̃ℓ(edi
, RAd) represent the subset

of RAs that can perform edi
and satisfy the production

requirements of edi
.

2) Schedule generation: Once the cluster C̃ℓ(edi
, RAd) is

formed, each RA in the cluster follows the same process
to generate a new schedule. For simplicity, the following
description focuses on one RAc in the cluster C̃ℓ(edi , RAd).
As mentioned in Eqn. 2, a new event sequence, snew, needs
to be formed to achieve the transitions from xprior to xpost

in terms of location and physical composition. However, as
defined in Section IV-C, an event can only achieve either
a location or physical composition transition. Therefore, the
clustering RAs must verify whether the event edi satisfies the
production needs given in Eqn. 2 or if other events will be
needed.

Fig. 5. The Gantt charts that show the schedule of a clustering RA to illustrate
how the function H allows one event shift

The RAs are grouped into two classes in Section III-B. If
RAd is a transportation RA, then edi

must be an event that
drives a location change of the product and does not change
the physical composition (i.e. xc

prior = xc
post). In this case,

Eqn. 2 is rewritten as:

Tr(xprior, edi
) = xpost, with xc

prior = xc
post (8)

For location events, a single clustering RA can generally
replace RAd without the need for further RA coordination
to form a feasible new schedule. In this example, the new
schedule snew only contains edi

.
However, in the case where RAd is a transformation RA,

the sequential events associated with edi that provide location
transitions must be reassigned. Therefore, simply replacing
RAd with a clustering RA that performs edi

will not fulfill
the required transitions in Eqn. 2 and other events must be
included in snew. Using Eqn. 3, the clustering RA can only
drive a change in the physical composition by performing
event edi :

Tr(xc
prior, edi

) = xc
post (9)

To truly replace RAd, the transformation clustering RA will
require help from transportation RAs to move the product into
and out of its location, denoted by xℓ

RAc
. Thus, transportation

events that drive location changes from xℓ
prior to xℓ

RAc
and

xℓ
RAc

to xℓ
post need to be found. As shown in Fig. 4, the

clustering RA sends requests to its collaborative RAs. These
collaborative RAs check their capability models and search
for transportation events that will satisfy the location change
requirements.

If the event does not exist, a propagation method can be
used [15] to find more transportation events to drive the
location change from xℓ

prior to xℓ
RAc

or xℓ
RAc

to xℓ
post. These

events should be appended to snew to form the final schedule.
Once the event sequence snew is determined, the timing

to perform these events needs to be determined. In previous
work [13], new events were assigned to the corresponding
RA without changing the existing schedule, which led to
a large delay in the product cycle time. In this paper, a
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function H is defined to calculate the earliest available time
to start an event e based on the idle time I of the resource
and the requested start time of e, denoted by t. Therefore,
the function H serves as a heuristic that minimizes the
completion time of the new event. To simplify the time
propagation, the transportation is handled by adding a time
interval δ between any two operations in a machine schedule.
To minimize the effect on other events and products, only one
scheduled operation is allowed to be shifted when adding e
to a clustering RA. This constraint determines the latest time
tmax1 = t3− δ− (t2− t1)− δ−T (e) event e can be assigned
to the current idle time interval, as shown in the upper Gantt
chart in Fig. 5. Note that tmax1 = ∞ if t1, t2 or t3 does
not exist. If the requested time t is larger than tmax1, event e
cannot be scheduled before the event in (t1, t2). If this occurs,
the clustering RA will check the next idle time interval to
evaluate if tmax2 = t5− δ− (t4− t3)− δ−T (e) will provide
sufficient time to assign event e to this next idle time interval,
see lower Gantt chart in Fig. 5. Note that tmax2 = ∞ if t5
does not exist. Function H is defined as follows:

H(I, t, δ, e) =


t0 + δ, t ≤ t0 + δ ≤ tmax1

t, t0 + δ < t ≤ tmax1,

t2 + δ, max{t, t0 + δ} > tmax1

and t2 + δ ≤ tmax2

(10)

where the resource idle time set, I = {[t0, t1], [t2, t3], ...},
is obtained from the Ts(s(RAj)) in the resource schedule, as
mentioned in Sec. III-C. Note that function H can be expanded
if more than one scheduled operation is allowed to be shifted.

For each new event sequence snew = e1e2...es, the post
event should always start after the prior event ends:

ts,i + T (ei) ≤ ts,j , 1 ≤ i < j ≤ s (11)

where ts,i and T (ei) represent the start time and time cost (e.g.
cycle time) of event ei, respectively. The start time of a later
event ts,i+1 is obtained from function H with the requested
start time of ts,i+T (ei). Note that in the time interval [ts,i+
T (ei), ts,j ], a part remains with the current RA that performs
ei until the RA that performs the next event ej is available.
The combination of the clustering and collaborative RAs form
a set of new event sequences, denoted by snew, to replace sd
in order to achieve the transition from xprior to xpost.

C. Schedule risk assessment and decision-making

1) Risk assessment: When RAs send a response to form a
new schedule, the information in the response may contain un-
certainties. In this work, we define uncertainty as information
about a resource attribute or state that may be stochastic or
probabilistic rather than deterministic. These uncertainties can
be modeled by utilizing the manufacturing data. For example,
a Gaussian distribution may be used to model uncertainty
in machine operation time [35]. Uncertainties introduce a
potentially costly effect during the decision-making process
for the rescheduling problem. We define the effects associated
with variations in the rescheduling process, such as cycle time
delay and schedule deviation, as risks in this paper.

To consider risks in the decision-making process, all new
schedules should incorporate a risk assessment process based
on the set of resources chosen to replace the affected event
sequence sd. There are two key risks considered in this work:

• R1: the risk of a new event in RAj causing operational
delays for the other products associated with this resource

• R2: the risk of an added event in RAj increasing the
probability of breakdown

The quantification of the two risks is discussed below through
an example. Note that the definition and quantification of risks,
uncertainties, and how they are related may vary according to
how a different resource may evaluate the risks.

a) Risk of an added event causing operation delays for
other products scheduled with RAj: Although event start and
end times are provided in a new schedule (see Section V-B2),
the actual times of these events may be shifted slightly due to
uncertainties in the operation times of the events. Note that the
operations before the added event are assumed to have been
completed. As shown in Fig. 5, if the added event (red block
with dash outline) takes longer to finish, the next event (blue
block) for this resource could be impacted, which may also
affect the following event (green block). Therefore, this risk
evaluates the likelihood that a posterior event will be affected.

As defined in Section V-B2, without considering uncertain-
ties, tmax1 and tmax2 represent the latest start times for which
an event can be added into the sequence without affecting a
posterior event for a given resource. The start time of the added
event, H(I, t, δ, e), is obtained from Eqn. 10. If H(I, t, δ, e)
is close to tmax1 or tmax2, the risk of causing a delay for
the following event is high. To evaluate this risk, the time
deviation, denoted by ∆t, between the start time and tmax1

or tmax2 is calculated:

∆t =


tmax1 −H(I, t, δ, e), H(I, t, δ, e) = t0 + δ

or H(I, t, δ, e) = t

tmax2 −H(I, t, δ, e), H(I, t, δ, e) = t2 + δ

(12)

If we assume a Gaussian or uniform distribution for the cycle
times of different events, then tmax1, tmax2, and thus ∆t are
all random variables with known distributions.

Note that ∆t is non-negative, where a larger ∆t provides
better tolerance to operation time uncertainty, which translates
to a lower risk for causing delay. If there are no posterior
events, then tmax1 and tmax2 = ∞, hence ∆t = ∞, and the
risk is zero. If ∆t = 0, then the new event is scheduled to
start at tmax1 or tmax2. Given the uncertainty in cycle times,
this indicates a high risk decision. In a new event sequence,
snew = e0e1...es, each event is added to the schedule of the
specified resource. We define the risk for a given resource
RAj in the new schedule as follows:

Q(RAj) = 1− E
(

∆t

tmax

)
(13)

where E represents the expected value, and tmax = tmax1 or
tmax2 depending on the conditions in Eqn. 12. Note that as the
difference between the maximum threshold and true start time
increases, the risk goes down. Equation 13 limits the value
of Q(RAj) to lie between 0 and 1. This type of risk can be
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calculated for each event within the new schedule snew. The
total value for Risk 1 associated with this schedule is defined
as the maximum value among the resources that perform the
new schedule:

R1 = max{Q(RAj)}j∈[0,s] (14)

b) Risk of an added event in RAj increasing the proba-
bility of breakdown: If a resource in the new schedule breaks
down, it will lead to more rescheduling requirements for the
products that have uncompleted scheduled operations by this
resource. Therefore, risk 2 is evaluated by determining the
probability of breakdown if the resources in the new schedule
are assigned new events to perform. This risk is based on
the assumption that every resource has a historical mean time
between failure (MTBF), and that the addition of a new event
will introduce more wear and tear to the resource and move
the resource closer to the MTBF.

We define the probability of resource breakdown as a
function that maps RAs to a value between 0 and 1: Pr :
RA→ [0, 1]. This probability is given as:

Pr(RAj) =
oc
on

(15)

where oc is the number of operations that the resource has
performed since the last maintenance event, and on represents
the nominal number of operations that the resource generally
performs between breakdowns.

In a new event sequence, snew = e0e1...es, the breakdown
of any resource in the new schedule makes the new schedule
unsuccessful. Therefore, Risk 2 is defined as the maximum
probability of breakdown of a resource in the new schedule:

R2 = max{Pr(RAj)}j∈[0,s] (16)

Note that as the probability of resource breakdown increases,
the risk goes up. The risk value is between 0 and 1 since it is
a probability calculated by Eqn. 15.

Since a system might apply different importance levels to
the different risks, the overall risk assessment value that will
be incorporated into the decision-making process is a weighted
sum of the risks (R1 and R2 in this work)

∑k
i=1 wiRi(snew),

where wi is the weight factor for Ri.
2) Decision-making:

a) Determine the new schedule: Once the risk assess-
ment is completed, RAd is responsible for choosing a new
schedule from the set of possible event sequences Snew.
Note that every event sequence in Snew satisfies all the
constraints to achieve the production goal due to the proposed
problem formulation and agent coordination. Therefore, the
new schedule selection problem is reduced to obtain the new
schedule that optimizes the rescheduling objectives defined
by the manufacturer. This type of optimization can be easily
solved by some classical algorithms, such as bubble sort and
divide-and-conquer. Note that this optimization provides the
optimal new schedule from the candidate solution set Snew.
However, the global optimal solution may not be in the
candidate set Snew since all the candidate new schedules are
formed by agent local decision-making. An example is given
in Eqn. 17:

s∗new = argmin
snew∈Snew

J (snew) (17)

where s∗new ∈ Snew is the event sequence that provides mini-
mal objective. The multi-objective function J is a sum of the
cost, penalty and risk for one event sequence snew = e1e2...es,
as shown in Eqn. 18:

J (snew) =
s∑

i=1

αC(ei)+

s∑
i=1

βipi+W

k∑
i=1

wiRi(snew) (18)

where C(ei) = [C1(ei) C2(ei) · · · Cn(ei)]
T captures a

nominal cost function for event ei based on n metrics and
α = [α1α2 · · ·αn] describes the corresponding weights. The
pre-defined cost metrics could include operation time, finish
time, energy cost, resolution, etc. If there are soft constraints
that must be negotiated, pi denotes the penalty for performing
ei and βi is the corresponding weight. The risks associated
with the given sequence are evaluated in

∑k
i=1 wiRi(snew)

for a given sequence. Parameter W is used to scale the risk
based on the scale of the cost and penalty and what value the
decision maker places on the assessment of risk. Note that in
Eqn. 18, the objectives, penalties, and risks are defined by the
manufacturers and the weight parameters depend on how the
manufacturers desire to balance the objectives, penalties, and
risks. Future work will investigate the sensitivity of Eqn. 18 to
changes in these values and identify a method for optimizing
under various conditions.

As shown in Fig. 4, the affected resource, RAd, informs the
RAs that will be associated with the new event sequence, s∗new,
through a Communication Manager. The new RAs receive
the notification and pass the information to their Knowledge
Bases to update their resource schedules and provide high-
level control for their associated physical resources to perform
the events.

b) No schedule found: The result of the rescheduling
problem depends on resource redundancy and available ca-
pacity, which are the assumptions we made in Section III-D.
In practice, manufacturing resources are limited in a factory,
therefore, the existence of a feasible new schedule is not
guaranteed. Therefore, in the proposed method, if no schedule
is found within the required constraints (e.g., no redundant
resources available), the RAd will request the central con-
troller of the manufacturing system or human manager to make
further decisions or relax additional constraints. As mentioned
in Sec. III-D, the centralized method evaluates all of the
resources in the system for each event that needs to be replaced
during the rescheduling process. Therefore, the centralized
method forms the candidate solution set Snew by considering
all the combinations of resources in the system and then solves
the following optimization:

min
snew∈Snew

J (snew) (19a)

s.t. Tr(xprior, snew) = xpost (19b)
ts,i + T (ei) ≤ ts,j , 1 ≤ i < j ≤ s, ei ∈ snew,

(19c)

where these objectives and constraints are the same as those
considered by the distributed method.
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Fig. 6. A screenshot of the facility layout from the RepastS environment.
The annotations indicate the capability of each resource.

VI. CASE STUDY

To evaluate the feasibility and performance of the proposed
framework, the proposed RA architecture and rescheduling
strategy are implemented in a simulated manufacturing system.
In this section, the set-up of the simulated manufacturing
system and the results of the case study are provided.

A. Case study set-up

In this study, we use a Repast Symphony (RepastS) plat-
form [44] to model a multi-agent system and simulate the
behavior of the agents due to its flexibility and scalability
properties. The simulated manufacturing system represents a
modified version of the Intel Mini-Fab [45], a semiconductor
manufacturing facility. The simulated system contains two
infinite-sized buffers, Entry and Exit, and 20 machines that
are connected via a network of 6 mobile robots, as shown
in Fig. 6. The annotations represent the capabilities of the
machines and mobile robots. There are 6 different processes
(P1-P6) that the machines can perform, where the operation
costs in ticks (RepastS unit of time) range from 110-200.
For example, the annotation for a machine indicates which
processes it can perform and whether the workstation space is
large or small. The annotation for a mobile robot represents
which cells and buffers it can reach when moving the products.

Two types of products, labeled S (small) and L (large), are
introduced into the system, where each type of product has
the following process requirements:

• S-product: P1 → P2 → P3 → P6
• L-product: P1 → P3 → P4 → P5
Machines labeled L can operate both L-products and S-

products, while machines labeled S can only operate on S-
products. Products enter the system from the Entry buffer and
leave the system through the Exit buffer after completing the
desired processes.

B. Case study and results

In this simulated manufacturing system, 50 L-products and
50 S-products are fed alternatively into the system with a
pre-generated initial production schedule. Products enter the
facility every 30 ticks starting at tick 10. To provide an
opportunity for a rescheduling event to occur, the initial
production schedule is designed with 50% resource utilization.
Uncertainty in machine operation time and the probability of
machine breakdown are added to all machines in the simulated
system. The system starts operations with the probability
of machine breakdown ranging from 3.3% to 10%. If a
machine undergoes a breakdown, a rescheduling process will
be triggered. The mean time to repair ranges from 1000-1500
ticks for a broken machine. Note that if the breakdown occurs
when the machine is processing a product, the product will be
damaged and cannot be recovered. The rescheduling decision-
making considers the completion time of snew as the objective
C, and this case study does not have soft constraints, thus
α = 1 and pi = 0. We conduct two case studies to evaluate
the performance of the proposed distributed method.

1) Centralized versus distributed: The first case study aims
to evaluate the performance trade-offs between the centralized
method and the proposed distributed method in terms of
optimal cycle time and computational efforts. We run two
simulation scenarios where the system uses centralized and
distributed methods respectively as the rescheduling decision-
making strategy. Note that risks are not included in this
case study since it does not affect these trade-offs. For each
scenario, we run 5 trials to evaluate their performance with
the following metrics:

• Cycle time
• Number of agent communications
• Running time of the decision-making implementation

The number of communications in the centralized method
includes the request for rescheduling, the requests to and re-
sponses from all the RAs in the system to collect information,
and the notifications to the agents whose production schedules
need to change. Therefore, each rescheduling process requires
r ×

∑
edi∈Ed

|sdi
| communications, where r is the number

of RAs in the system. In the distributed method, the number
of communication includes all agent requests, responses, and
inform messages, as defined in Section IV. The communication
only occurs within local clustering RAs and their collaborative
RAs (i.e., a subset of all the RAs in the system), thus the
distributed method requires less communication, as showcased
in Table II.

Figure 7 shows the product cycle time in different scenarios.
The centralized method re-optimizes the whole system to
generate a new schedule with a shorter cycle time than the
distributed method. However, as shown in the first part of
Table II, the centralized method requires more communication
and larger computational efforts to reschedule the system. In
practice, more communication potentially leads to a larger
information delay, thus the centralized method lacks the ability
to respond to disruptions dynamically and quickly. Further-
more, the computational efforts of the centralized method
increase as the size and complexity of the set-up increase
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Fig. 7. Average cycle time and standard deviation for every 10 products for
5 trials in different scenarios

in scale. In this case, the distributed method can provide
advantages by using local communication to reduce the com-
munication and computation time.

2) With risk assessment versus without risk assessment:
To further investigate how the introduction of risk assess-
ment affects the rescheduling decision-making and the system
performance, we run 5 trials where the system uses the
distributed method with the incorporation of risk assessment
into the rescheduling decision-making process. As discussed
in Section V, the overall risk associated with a new schedule is
calculated as the weighted sum of two risk factors, w1 ∗R1+
w2 ∗ R2. In this case study, we simulated a scenario where
the manufacturer cares more about machine breakdowns, thus
we selected w1 = 0.2 and w2 = 0.8. Note that different risks
and weights can be defined and chosen, while the performance
under different parameters can be investigated in future work.
The weighting gain, W , for the total risk value has been
selected to assign value to the introduction of risk and scaled
to ensure comparable unit values. Note that for this example,
the mobile robots are assumed to be reliable and are not
considered within the risk assessment at this time.

Besides cycle time, we introduce the following metrics to
evaluate the system performance with risk assessment:

• Number of damaged products
• Number of broken machines
• Number of rescheduled processes
• Peak and average risk values of the new schedule

The results are shown in the second part of Table II,
which indicates that system performance with and without risk
assessment varies across the different trials. With risk assess-
ment, the average number of damaged products is 3.8 versus an
average number of 7 without risk assessment. When combined
with the results from the number of machine breakdowns (5.8
versus 9.6), these results illustrate how the consideration of
risk results in a rescheduling strategy that selects a less risky
schedule that reduces the potential for machine breakdowns
and damaged products. Note that breakdowns may occur while
the machines are not processing, thus the number of broken
machines is larger than the number of damaged products.

To investigate how the rescheduling strategy impacts the
potential for machine breakdown and the trigger of a new
rescheduling task, the number of rescheduled processes is also
presented in Table. II. On average, when risk assessment is
included, the rescheduling process is triggered 16.2 times,
while it is triggered 28.8 times when risk assessment is
ignored. Peak and average risk values provide a measure of
the associated risks inherent in the two strategies. Note that
when risk is included in the cost function, the decision-making
strategy results in a selection process that chooses the event
sequences with lower risks (0.27 versus 0.28 peak and 0.22
versus 0.25 average risk values).

To show how the assessment of risk affects the completion
of products within the simulated facility, the mean values and
the standard deviations of the average cycle time for every
10 products for the 5 trials are shown in Fig. 7. As Fig. 7
shows, the first 40 products have nearly identical cycle times.
Although these products might be in the system during a
later breakdown event, the risk of machine breakdown and
a rescheduling event is low during this initial period.

Interestingly, the impact of risk assessment really becomes
apparent during the 61-70 part completion set. At this point in
the simulation, the risk for machine breakdown is increasing
as machine usage time gets closer to the MTBF for a given
resource. Once R2 begins to increase, the decision to select
the less risky event sequence results in fewer machine break-
downs, less rescheduling, and a lower average cycle time. This
trend continues, with considerable variability beginning to be
introduced into the cycle times as illustrated in Fig. 7.

Overall, the consideration of risk into the event sequence
decision results in fewer damaged products and broken ma-
chines, a reduction in the number of triggered rescheduling
processes, and an improvement in the system throughput as
compared to the decision strategy that does not consider risk.
These results showcased that incorporating risk assessment
affects the agent decision-making in the rescheduling process.
Our results indicate that the introduction of the risk assessment
value resulted in a smaller number of broken machines and
damaged products, as well as a reduction in cycle time
variability.

C. Insights from the case study

The case study has showcased the feasibility and perfor-
mance of the proposed multi-agent framework, specifically
demonstrating how risk assessment affects agent decision-
making. However, there are other aspects that may affect
the framework performance, which will be investigated in
future work. Firstly, the framework can be easily adapted to
different case study setups. As the set-up scales down, the set
of candidate solutions might shrink. Thus, there might be no
big difference between centralized and distributed methods in
terms of needed communications. Besides, the risk assessment
may not affect decision-making significantly since the choices
are limited. On the other hand, as the size and complexity of
the set-up increase in scale, both the size and the variety of the
candidate solutions might grow. Therefore, the risk assessment
can make a big difference in the selection of the new schedule.
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TABLE II
EVALUATION OF PERFORMANCE METRICS FOR DIFFERENT TRIALS

Metrics Scenarios Values in 5 trials Average Percentage
Centralized versus distributed

# of agent communication Centralized 1430 1155 1650 1100 1320 1331 N/A
Distributed 1053 858 1248 780 1014 991 N/A

Total running time (sec) of
rescheduling processes

Centralized 10.1 18.7 16.4 8.8 9.4 12.7 N/A
Distributed 0.22 0.18 0.34 0.49 0.33 0.31 N/A
With risk assessment versus without risk assessment

# of damaged products W/ risk assessment 3 5 3 3 5 3.8 3.8%
W/o risk assessment 9 7 8 6 5 7.0 7.0%

# of broken machines W/ risk assessment 6 7 4 5 7 5.8 29%
W/o risk assessment 11 10 10 8 9 9.6 48%

# of rescheduled processes W/ risk assessment 17 20 7 14 23 16.2 4.05%
W/o risk assessment 32 25 35 21 31 28.8 7.20%

Peak risk values W/ risk assessment 0.26 0.26 0.27 0.26 0.27 0.27 N/A
W/o risk assessment 0.27 0.29 0.28 0.29 0.29 0.28 N/A

Average risk values W/ risk assessment 0.23 0.22 0.21 0.22 0.22 0.22 N/A
W/o risk assessment 0.25 0.26 0.24 0.24 0.25 0.25 N/A

Based on the objectives, risks, and parameters used in the
simulation, this case study simulated a scenario where the
manufacturer cares about cycle time and machine breakdown.
The results indicate that the proposed method reduced the
production cycle time and machine breakdowns, which show-
cased the feasibility and performance of the proposed method.
Therefore, different objectives, risks, parameters, and metrics
can be used in the proposed method, while it inevitably might
change the results toward a better or worse direction. An
enhanced understanding of the sensitivity of the parameters
design, such as identifying the set of conditions under which
the algorithm always outperforms other algorithms, is left for
future work.

In addition, other metrics, such as makespan and machine
utilization rate can also be analyzed based on the provided
results. The cycle time in Fig. 7 can reflect the makespan
since the entry time of a specific product in each trial is
identical. Therefore, without risk assessment, the makespan
of the schedule is larger. Note that the large makespan occurs
in the case where the system produced fewer products. As
a result, the machine utilization rate when the rescheduling
does not consider risks is lower than the scenario when the
risk assessment is incorporated.

From the managerial perspective, manufacturers can use
this work to model and monitor their factory floor as the
agents store the physical information and keep it updated.
Furthermore, this framework can be used as a decision support
system since the agent decision-making ability can provide
manufacturers with several solutions to respond to disruption
depending on different objectives and parameters defined by
the manufacturers.

VII. CONCLUSION

Various multi-agent frameworks have been proposed to
solve the dynamic rescheduling problem in manufacturing
systems, where a resource agent (RA) is an important com-
ponent in the existing multi-agent frameworks. In this pa-
per, a model-based RA architecture that enables effective
agent coordination and dynamic decision-making is designed.

The proposed RA architecture contains a Knowledge Base,
Decision Manager, and Communication Manager. Based on
this architecture, this paper developed a rescheduling strategy
that incorporates risk assessment via RA coordination in the
presence of resource breakdown. The proposed work can be
used to create manufacturing resource models that enable
dynamic and resilient rescheduling for manufacturing systems.
Implementation of the proposed framework in a simulation-
based case study has been done to evaluate the effectiveness
of the proposed architecture. In particular, the case study
demonstrates that the proposed agent-based distributed method
reduces the communications and computational efforts that
are needed for rescheduling while losing some optimality in
throughput compared to the centralized method. Additionally,
the case study illustrates the improvement in throughput when
risk is considered within the rescheduling problem. Future
work may explore the advantages of a combined centralized
and distributed framework to reduce the rescheduling effort.
In addition, learning algorithms may be used to incorporate
historical information into the agent knowledge and risk as-
sessment.
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