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ABSTRACT

A flow with combined effects of magnetohydrodynamics (MHD) and thermal convec-
tion is called magnetoconvection. Its presence drastically affects the nature of flows of electrically
conducting fluids such as liquid metals and plasmas. This dissertation investigates magnetocon-
vection in systems with walls of finite electrical conductivity, a critical aspect in various advanced
technologies. The study focuses on understanding the interaction between thermal convection and
magnetic fields in electrically conducting fluids, such as liquid metals, within confined spaces.
The research aims to provide insights into the flow dynamics and heat transfer characteristics,
with particular attention to the effects of wall electrical conductivity.

Performing such numerical investigation required a robust and accurate numerical scheme
and solver. Thus, using a well tested second order finite difference scheme, a new solver was de-
veloped. It is based on the Tensor-product-Thomas (TPT) method. This solver is able to approach
and efficiently handle the boundary conditions associated with walls of finite electrical conductiv-
ity without iterative processes. The accuracy of the method is verified through comparisons with
established results for both electrically conducting and insulating walls. This validation ensures
the reliability of the numerical simulations conducted in subsequent chapters.

Having a verified and robust numerical solver, a parametric study of the effects of wall
electrical conductivity on magnetoconvection is conducted. Different configurations are explored,
including cases, where all walls have the same electrical conductivity, and the cases with only
specific walls being electrically conductive. The results reveal significant changes in the flow
field and heat transfer patterns, underscoring the necessity of considering wall conductivity in
magnetoconvection studies.

Additionally, the dynamics of an isolated thermal plume affected by strong magnetic

Xil



fields is studied. This study is conducted for two different plume generation configurations. One
configuration results from a point heat source and the other from a line heat source (e.g. thin
wire). In the first configuration, the effect of the magnetic field direction is also studied. The re-
sults showed that the direction of the magnetic field has a strong effect on the development of the
flow. A transverse magnetic field results in a transient, oscillating plume, in which the transient
behaviors will decrease by increasing magnetic field intensity. However, a vertical magnetic field
results in a completely different behavior.

The plume generated by the hot wire also shows the transient, oscillating behavior when
a transverse magnetic field is applied to the domain. Velocity and temperature time signals at a
series of points were recorded. This data is intended to be used for future experiments, as prelim-
inary experimental results showed a significant difference in the damping caused by the magnetic
field.

This research contributes to the understanding of magnetoconvection in systems with fi-
nite wall conductivity, offering valuable insights into the effect of wall conductivity on the evolu-

tion of the internal magnetoconvection flows.
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CHAPTER 1

Introduction

Magnetoconvection is the convection motion of electrically conducting fluids, e.g. plasma
or liquid metals, in the presence of a magnetic field. It is a complex process, where the fluid’s
movement is influenced by both thermal convection, and by magnetic field. In such systems, the
interaction between the fluid’s thermal properties, its electrical conductivity, and the external
magnetic field leads to a unique pattern of flow and heat transfer. This phenomenon is significant
in flows found in nature and advanced technologies [1].

The dynamics of planetary cores and stellar convective shells are examples of the magne-
toconvection flows found in nature in geophysical and astrophysical systems [2]. Technological
flows in which magnetoconvection plays an important role can be seen in manufacturing of high-
quality steels [3], liquid metal batteries [4, 5] and growth of semiconductor crystals [6]. Another
technological example is liquid-metal breeding blankets used in future tokamak fusion reactors
[7, 8]. These blankets will be tested in the International Thermonuclear Experimental Reactor
(ITER).

In a tokamak fusion reactor, as shown in figure 1.1, the plasma, which is the site of the fu-
sion reaction, is confined within a toroidal chamber. An intense toroidal magnetic field maintains
the trajectories of charged particles within a torus. The field intensity can reach 5 to 10 T or even
higher. The blanket system, a key part of a fusion reactor, surrounds the plasma and helps shield
the rest of the reactor and its outer parts from heat and powerful neutrons created during fusion.
It serves as a heat exchanger diverting the energy into an external electric power-generation cir-

cuit. It is also used to make tritium by reacting with neutrons emitted from the plasma [9]. A dis-

1
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Figure 1.1: The ITER design and blanket modules on the left and right, respectively (www.iter.org).

tinctive feature of this blanket system is that the convection and magnetic field effects are both
exceptionally strong.

Different concepts are proposed for designing these blankets: separately-cooled liquid-
metal blanket e.g. helium-cooled lead-lithium (HCLL), self-cooled lead-lithium (SCLL), dual
coolant lead-lithium (DCLL) and others [7, 8, 10, 11]. The liquid metal flow in separately-cooled
and dual cooled blanket concepts has velocities in the order of 0.1 — 1 mm/s and 10 cm/s, re-
spectively [7]. Buoyancy effects is sufficient to drive the flow within separately-cooled blankets,
however in DCLL blankets, the flow is driven by pumps, and convection is added to the pumping-
caused circulation. Such low velocities are beneficial to reduce pressure drop in the liquid metal
flow and therefore making such designs more feasible for reactors. Magnetoconvection flow of
liquid metals inside those blankets in the presence of the magnetic field experiences a transforma-
tion that affects the flow field and thus the heat transfer.

This research is particularly relevant to the separately-cooled liquid-metal blanket con-
cepts. In these blankets, compartments containing a liquid metal (e.g. a lead-lithium alloy) is in
contact with flow of a separate coolant (for example, in HCLL blankets). The lead captures neu-
trons and other radiations from the plasma and returns their energy in the form of thermal agita-

tion. The lithium undergoes a nuclear reaction with the neutrons from the plasma, regenerating



tritium, the fuel for thermonuclear fusion. The alloy is then extracted from the blanket at a low
flow rate to allow for tritium extraction in an appropriate facility. The heat absorbed by the liquid
metal in these compartments is then transferred to the coolant. This will cause a natural convec-
tion flow, which is then influenced by the external magnetic field.

Due to presence of the magnetic field, an induced current pattern forms inside the electri-
cally conducting liquid metal, which then results in an additional force called Lorentz force to be
exerted on the flow. Interaction between Lorentz force and buoyancy force have significant im-
pacts on the flow field. The consequences of these interactions include suppression of turbulence
velocity fluctuations, development of a thin MHD boundary layer, and reducing the gradients of
flow variables along the magnetic field which results in an anisotropic state or in extreme cases a
quasi two-dimensional behavior.

This work consists of three parts, all of which involve magnetoconvection. In the first
part, a new numerical scheme is introduced and validated for its accuracy in simulating magne-
toconvection in a box in strong magnetic fields. Then this scheme is used to perform a parametric
study of the effect of wall electrical conductivity on the magnetoconvection, in a long vertical
box. Finally, in the last part, an isolated plume, which is common in convection flows, is studied
in two different configurations. The general goal of this work is to form a better understanding of
magnetoconvection of liquid metal in strong magnetic fields.

As it is shown later in chapter 5, the electrical conductivity of the walls can play a major
role in the distribution of the electric currents in the flow field. Changed current loops in general
means changed pattern and strength of currents flowing inside the domain. This leads to different
pattern and strength of Lorentz forces —the force applied to the flow field as a result of interaction
between the magnetic field and electrical current— thus changing the flow [12]. With electrically
insulating walls, all current paths are forced to close in the flow domain. On the other hand, intro-
ducing electrical conductivity to the walls, allows some of current paths close in the wall rather
than in the flow field.

A parameter which is used to describe electrical conductivity of the wall with respect to



the that of the flow is the wall conductance ratio C,, (which is defined later in chapter 2). Usu-
ally high values of electrical conductivity for the liquid metals mean low values of the wall con-
ductance ratio, even when the walls are actually made of electrical conducting material. Low
values of wall conductance ratio directed previous numerical researches to mainly focus on the
domains with electrically insulating walls. However, several theoretical [13, 14] and numerical
[15,16, 17,18, 19, 20, 21, 22, 23, 24] studies of magnetoconvection were done without consid-
ering such assumption and predicted profound, and sometimes counter-intuitive, changes in flow
structure even at a very small conductance ratio. Findings of the research presented in this dis-
sertation supports such finding. It is later shown in this work that introducing electrical conduc-
tivity to the walls can change the flow field drastically and thus approximating the walls with low
electrical conductivity with electrically insulating walls, is not accurate. As a result, it is of great
importance to study and understand the effect of the wall electric conductivity on megnetocon-
vection in order to validate such simplifications.

Studying effects of the electrical conductivity of the walls requires solving the Maxwell
equations in the walls as well as in the liquid flow. This can be achieved by extending numerical
domain to the walls and solve discretized equations governing flow of electrical current as well
as conserving electric charges in the interface between liquid and solid wall. Another way to con-
duct such simulations when the wall thickness (7,,) is much smaller compared to the flow typical
length scale (L) (1, < L) is to use the so called thin-wall boundary condition. This assumption
is explained further in chapter 2.

One of the consequences of using the thin-wall boundary condition is introduction of a
non-conventional boundary condition on the electric potential at the interface of liquid and solid
walls, which is now considered to be the boundary of the numerical domain. Traditionally, this
boundary condition used to be solved iteratively, which is computationally expensive. This mo-
tivated the development of a new numerical method in collaboration with colleagues at the TU-
Ilmenau. This method, which is described in chapters 3 and 4 allows us to solve the boundary

condition directly without the need of iterations, which results in much faster simulations. Af-



ter verifying the method for its accuracy in both electrically conducting and insulating walls, it is
used to conduct a study of the effect of different configurations and values of the wall electrical
conductivity on magnetoconvection flow in a tall box driven by a temperature difference between
vertical walls.

Another interesting and not well studied phenomenon, is the internal magnetohydrody-
namics (MHD) flow of liquid metal driven by a thermal plume. Plumes are common in convec-
tion flows. Their dynamics is drastically changed by the magnetic field. Here an isolated, arti-
ficially created plume in a box is studied the final part of this dissertation. It is divided into two
separate studies. In the first one, the plume is generated by a point heat source located at the bot-
tom quarter of a cubic box. In the second, the plume is generated by a vertical line heat source in
an elongated box.

The rest of this dissertation is structured as follows. Physical model, governing equations,
boundary conditions in non-dimensional form and the approximations used in developing such
equations along with non-dimensional parameters governing the system are discussed in chapter
2. Chapter 3 explains the numerical scheme, which is used to descritize the equations in both the
time and space domains and the setup of the numerical solver. Chapter 4 presents the Tensor-
product-Thomas (TPT) numerical method developed and explained in [25] to solve electrical
boundary conditions at walls with finite electrical conductivity, and the verification results of the
developed method. The Direct Numerical Simulation (DNS) results for a long vertical box with
different configurations of electrical conducting walls are presented and discussed in chapter 5.
Finally, the results of the study on how liquid-metal thermal plumes behave are presented in chap-
ter 6.

In the end, the concluding remarks of the research and ideas for future work are presented

in chapter 7.



CHAPTER 2

Physical Model

2.1 General Equations

Flow of a Newtonian, viscous, electrically conducting, non-magnetizable, single-phase
fluid (liquid metal) with constant physical properties contained in a box is considered. A constant
uniform external magnetic field with strength of B is imposed on the flow domain. The flow in-
cludes heat transfer and natural convection effects. Such system is governed by the equations of
conservation of mass, momentum and energy, along with Maxwell equations governing electric
and magnetic fields.

The conservation equations for an incompressible fluid are:

V.u:(), (21)
ou 1 2
_+(u-V)’u,:——Vp+VV’U,+F, (22)
ot 0
pCp (‘2—{ +u- VT) =kV’T +Q, (2.3)

where u, P, and T are the fields of velocity, pressure, and temperature, p and v are the density
and kinematic viscosity of the fluid, respectively, and F' is the body force acting on fluid, which
in this case, consists of buoyancy and Lorentz forces. The heat capacity and heat conductivity of

the flow are ¢, and «, respectively, and Q represents the internal volumetric heating source.



The Maxwell’s equations are:

V-FE = Pe (The Gauss’s Law), 2.4)
€0
V-B=0, (2.5)
0B
VX FE = 3 (The Faraday’s Law), (2.6)
OF ) )
VXB=uy|J+ GOE (The Ampére-Maxwell equation), 2.7)

where E, B and J are the electric field, magnetic field and electric current density, respectively.
Pe 1s the charge density, € is the electric constant (also called the permittivity of free space),
and o is the magnetic constant (also called the permeability of free space). Equation (2.5) is the
solenoidal nature of magnetic field.

In addition to Maxwell’s equations, we have:

dpe
V.-J=- , 2.8
Py (2.8)
J=0(FE+uxb) (The Ohm’s Law), (2.9
Fr, =q(E+uxb) (The Lorentz force), (2.10)

where o is electric conductivity and ¢ is the electric charge. Equation (2.8) shows the charge
conservation.

In the MHD applications, the Maxwell’s equations (2.4) - (2.7) can be significantly sim-
plified. In an electrically conducting fluid, charge density p, is extremely small and plays no sig-
nificant role. It is assumed that any positive and negative charges are equilibrated on the time
scale related to the speed of light, i.e., practically immediately in comparison to the typical time
scale of the flow. Thus, the Gauss’s law may be dropped and the charge conservation equation
may be reduced to the simplified statement The electric portion of Lorentz force g E is small by
comparison with the Lorentz force. The displacement currents are negligible by comparison with

the current density in conducting fluids. Therefore, the Ampére-Maxwell equation reduces to the



differential form of Ampére’s law. Detailed derivations can be found in many textbooks, such as
[1, 26].

Considering the mentioned simplifications, the following equations can be derived:

V.J=0, (2.11)
V-B=0, (2.12)
VX B = uyJ, (2.13)
VXE = —‘Z—Jf, (2.14)
J=0(E+uxB), (2.15)
F,=JxB. (2.16)

2.2 Approximations

In conducting numerical and theoretical studies of magnetoconvection flows of liquid
metal in the technical settings, usually three approximations are made [11]. These approxima-
tions result in less complex governing equations. The first approximation is Boussinesq approx-
imation, which neglects the variation of the physical properties of the liquid with temperature,
except for density, for which a linear relation between density and temperature is assumed. The
only term that contains this relationship is the buoyancy force term in the momentum equation.

The validity of this approximation is investigated by analysing the change in physical
properties of the material by temperature. For example, considering mercury and a base tem-
perature of 293, an increase in temperature by 30K results in relatively low change in all of the
properties except for kinematic viscosity and thermal conductivity, for which the changes are less
than 5%. For the studies of chapters 4 and 5, the maximum temperature difference in the flow
domain is less than 5K, which further enhances the Boussinesq approximation validity. Regard-
ing the study of thermal plume described in chapter 6, the validity of Boussinesq approximation

needs further attention due to higher temperatures in the domain.



The second approximation is the quasi-static (induction-less) approximation [1, 26, 27].
To explain this approximation further, consider a case with constant imposed magnetic field By.
In this case, the electric currents induced in the flow generate induced perturbations in the mag-
netic field b. As a result, the total magnetic field B will be the sum of the imposed By and in-
duced b magnetic fields B = By + b. Using the quasi-static approximation, the induced pertur-
bations in the magnetic field can be neglected, which implies a one-way interaction between mag-
netic field and fluid motion. This approximation requires that magnetic Reynolds number (Re,;,)

and magnetic Prandtl number (Pr,,) to be both small:
Re,, =ocu)UL < 1, Pr,, = Re,,/Re = oupv < 1, 2.17)

where o, o and v are respectively magnetic permeability of vacuum, and electrical conductivity
and kinematic viscosity of fluid. It is known that liquid metal flows in technical and laboratory
settings typically satisfy the conditions. For example for mercury (Hg) Pr,, = 0.14 x 107, for
gallium (Ga) Pr,, = 1.3 x 107® and for PbLi Pr,, = 0.21 x 107® [28]. Regarding small values
of Re,,, since the model remains accurate up to Re,, ~ 0.1, flows with Reynolds number Re up
to 10 satisfy this condition. Experimental and numerical studies verify this approximation [11].
Detailed derivation and applicability of this approximation is discussed in [1].

The last approximation ignores the heat generation caused by Joule and viscous dis-
sipation and drops the corresponding terms in energy equation. This approximation is justi-
fied by the very high electrical conductivity of the liquid, very low values of Eckert number
Ec = U?(c,AT )_1, and/or by high applied thermal load. The Eckert number is the ratio of the
advective mass transfer to the heat dissipation potential, and it demonstrates the influence of self-
heating of a fluid as a result of dissipation effects. The thermoelectric Thomson, Peltier, and See-
beck effects can also be neglected with exception of the applications characterized by extreme

temperature gradients.



2.3

Non-dimensional Governing Equations

Using said approximations, the non-dimensional equations are:

V- -u=0,

0 | P
a—?+(u~V)u:—Vp+ R—;(V2u+Ha2j><e3)—Teg,

oT [ 1 5
° ) — \vi
ot tu- VI RaPr ( T+q),

j=-V¢+uxep,

V2¢:V'(UX€B)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

In these equations, u, p, T, q, 7 and ¢ are respectively dimensionless fields of velocity, pressure,

temperature, volumetric heat generation, electric current density and electric potential. e, and ep

are the unit vectors in the direction of gravity and magnetic field respectively. The equations are

non-dimensionalized using the typical domain size L, strength of the imposed magnetic field By

and the free-fall velocity U = +/gBATL (here § and g are the thermal expansion coefficient and

the acceleration of gravity respectively). Electric potential and electric current density are scaled

using the combinations UByL and oU By. Typical time scale is L/U. Typical temperature scales

to be defined shortly.

If the flow is driven by a temperature difference between the walls and there is no vol-

umetric heat generation (Cases discussed in chapters 4 and 5) temperature difference between

these walls AT = Tjo; — T014 18 used in the process of deriving the dimensionless equations. On

the other hand for the case of thermal plume explained in chapter 6, the volumetric average of to-

tal heat generation, is used to define a characteristic temperature difference AT = qm,L2 (Vk)_l,

in which g, is total volumetric heat generation rate, ¥ is the total volume of the domain, and &

is the heat conductivity of the liquid. This temperature difference is equivalent to the temperature

difference which results in a pure conduction heat transfer across the domain equal to the heat

generated by the source.
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Typical scales used for the flows in upcoming chapters are as follows:

L, (Distance between hot and cold walls) Cases in chapter 4
L L, (Distance between hot and cold walls) Cases in chapter 5
) d (Heating sphere diameter) Case 1 in chapter 6
L, /2 (Half distance between side walls) Case 2 in chapter 6
U= +gBATL
t=L/U
AT Thor — Te14 (difference between walls) Chapters 4 and 5
l GrorL* (Vk)™! Chapter 6
p = pU?
¢ =UByL
j=oUBy

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
(2.28)

(2.29)

In these equations, L, U, t, AT, p, ¢ and j are typical scales for length, velocity, time, tempera-

ture, pressure, electric potential and electric current density. By is the magnitude of the imposed

magnetic field.

The non-dimensional parameters are the Reynolds, Prandtl, Rayleigh, Grashof and Hart-

11



mann numbers which are defined as follows:

UL
Re = 2= (2.30a)
4
pr=2 (2.30b)
(04
3
Ra = SPATL” (2.30¢)
404
ATL?
Gr=5P . (2.30d)
)4
Ha=BL. < (2.30¢)
oV

where @ and p are respectively thermal diffusivity and mass density. Using the velocity scale

(2.24), the Reynolds number can be written as:

UL [R
Re= == = |~2 =\Gr 2.31)
v Pr

The boundary conditions for velocity at all walls are no-slip boundary condition (v = 0).
The temperature boundary condition for each wall can be either constant temperature 7 = const.
or zero heat flux (i.e. thermally insulating wall) 07 /dn = 0. The thermal boundary conditions
used for each study will be further explained in the corresponding chapters.

The last set of boundary conditions is related to the electric potential. One of the goals
of this work is to understand the effect of finite electric conductivity of walls on magnetoconvec-
tion flow, when walls are considered to be thin so we can use the approximate thin-wall boundary
condition. As a result of thin walls assumption, the distribution of the electric potential across the
walls can be ignored. This approximation enables us to use a boundary condition for electric po-
tential at the boundary between fluid and walls instead of solving the elliptic equation for electric
potential in both fluid domain and walls. This so-called thin-wall boundary condition, which was
initially proposed in [29], is defined as follows:

¢

o | =GVl

(2.32)

wall
wall
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where:
Ow Ty

C, =
oL

(2.33)

is the wall conductance ratio, the ratio between the total electric conductance of wall and the lig-
uid. In these equations, o, is the electric conductivity of the wall, n is the outward-facing normal
to the boundary and V2 is the two-dimensional Laplacian in the plane of the boundary.

The physical meaning of (2.32) is that the normal component of electric current carries
electrical charges into the thin wall and while the electrical charge is conserved, it redistributes
tangentially in the wall. Different values of C,, result in different electric boundary conditions at
walls, with limits of C,, = 0 and C,, = oo corresponding to perfect electrically insulating and
conducting cases. However because o is high for liquid metals, and it typically results in C,, to
be small, a perfectly electrically conducting wall is rarely relevant.

It is important to discuss the more complex situation when C,, — 0 in more detail. This
limit is often used to justify the idealization of a perfectly insulating wall. A more careful anal-
ysis reveals the special role of the MHD boundary layers, through which the electric currents
induced in the fluid are predominantly closing. A non-negligible fraction of the currents is redi-
rected into the wall if the wall’s electric conductance is not much smaller than the conductance
of the adjacent boundary layer, rather than of the entire flow domain assumed in the definition
(2.33). The redirection means a reduction of the cumulative resistance to the flowing electric cur-
rents, which is expected to result in non-negligible increase of the magnitude of the currents and,
thus, change of the Lorentz force.

Two types of MHD boundary layers are identifiable in a rectangular flow domain with an
imposed magnetic field parallel to one set of walls. Thin (of the thickness 6y, ~ Ha™'L) Hart-
mann boundary layers form near the walls perpendicular to the magnetic field. Sidewall boundary
layers of thickness 8s,, ~ Ha~'/>L develop at the walls parallel to the field. The logic leading to
the definition (2.33) is, strictly speaking, not valid here, because the wall is not necessarily much

thinner than the MHD boundary layer. As a qualitative estimate, however, we can use the ratio
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between the conductances of the wall and the adjacent layer:

cha = Twlw _ CyHa  Hartmann layer (2.34)
0-5Ha
Sw— Iwlw _ 1/2 .
G, = = CyHa Sidewall layer (2.35)
0'55W

A significant effect of the wall conductivity on the flow is expected when at least one of these
coeflicients is not small. The situation is especially acute for the Hartmann walls. Considering
that Ha ~ 10* is typical for blanket applications, even very small conductivity of the Hartmann

wall may significantly affect the flow.
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CHAPTER 3

Method

3.1 Discretization approach

The equations (2.18) - (2.22) are solved numerically using the finite difference method de-
scribed in [30] and [31] and further extended in [25] to support direct solution of problems with
thin wall boundary conditions (2.32). The spatial discretization scheme is of the second order
and nearly fully conservative, conserving mass, momentum, internal energy and electric charge
exactly, and the kinetic energy with a dissipative 3rd-order error. The time discretization is semi-
implicit and based on the Adams—Bashforth/backward-differentiation method of the second order.
For the cases discussed in chapters 4 and 5, all terms are treated explicitly except for the diffusive
term in (2.20). Implicit treatment of the diffusive term in (2.20) alleviates the severe limitation
on the time step imposed on fully explicit schemes by small Pr. For the thermal plume cases dis-
cussed in chapter 6, the time discretization is also implicit for the viscous terms. Using the pro-
jection method for pressure and incompressibility at every time step, either three or six elliptic
equations — velocity components, temperature, pressure and electric potential — are solved using
the Tensor-product-Thomas (TPT) method.

In the TPT method, eigenvalue decomposition of the discretized equations is done in two
directions and in the third direction a tridiagonal matrix is solved using the Thomas algorithm.
An explanation of the TPT method applied to a conventional elliptic problem can be found in
[32]. The unconventional boundary condition for the thin-walls impacts the separability of the

governing equation. To solve that, the discretized boundary condition normal to directions of the
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eigenvalue decomposition and their corresponding coefficients in the matrix is changed so that
the discretized equation remains separable and in the third direction the eigenvalue transforma-
tion is applied. A more detailed description of the discretized equation and the matrix compo-

nents calculation can be found in chapter 4.

3.2 Computational grid

The computational grids for which the final results are reported, are chosen based on the
grid-sensitivity study done for each problem. The distribution of the grid points in the spacial do-
main is controlled by the number of grid points, and using two different methods of point cluster-
ing. Points are either positioned with equal distance from each other (uniform grid) or based on
the coordinate transformations which are used to generate clustered grid points. One of the chal-
lenges to the computational grid, is the need to resolve the velocity and thermal boundary layers.
In magnetoconvection, resolving the Hartmann layer is especially difficult due to the fact that the
width of this layer is estimated as 6y, ~ 1/Ha. In the flows in a strong magnetic field, Hartmann
layer can be extremely thin. As a result the two following grid clustering method were used.

The first one is a linear combination of uniform grid and Chebyshev transform and the
second one is the tanh transformation. Assuming the walls are at x; = +L;/2, transformations are

defined as follows:

Lif .

x = Zysin(3€)+ (1=, G.)
L; tanh(A¢)

A 2 tanh(A)’ G:2)

where —1 < ¢ < 1 is the transformed coordinate, in which the grid is uniform. vy is the constant
determining the mixture of the uniform and Chebyshev-Gauss-Lobatto grids (the typical value is
v = 0.96), and A is the constant determining the degree of tanh grid clustering, typically taken in

the range between 2 and 3.5.

16



The coordinate transformation used in each direction can be different, and is chosen based
on the flow regime inside the box. In all of the computational grids, Hartmann layer is resolved
by not less than 3 grid points. It is worth mentioning that the developed solver is capable of solv-
ing any computational grid with arbitrary grid points.

The time steps At are chosen to be not bigger than 50% of the value which causes the so-

lution to become numerically unstable.

3.3 Simulation procedure

Simulations were started from initial conditions which consists of random velocity fluc-
tuations with uniform distribution and a linear temperature profile representing pure conduction
profile between walls with constant temperature in cases with temperature difference between
walls (chapters 4 and 5) or a uniform temperature distribution for the case of volumetric heating
(chapter 6). For simulations of thermal plume with non-zero magnetic field (Ha # 0), the result
of the case with no magnetic field (Ha = 0) was used as initial condition.

The simulations are conducted for a duration long enough to capture any development in
the flow, which can also happens after the flow appears to be in a fully-developed state. In order
to observe the evolution of the flow and identify fully-developed flow, values of the Nusselt num-
ber Nu(t) —the ratio of total heat transfer rate over pure conductive heat transfer rate—, the mean
kinetic energy E () and the total outward heat flux from the walls g, ous () Were used. These

values are calculated using:

Nu = (Nu(r)),:<é/(umTVRaP —S—Z;) dV> , (3.3)
% th

E = (E(t))t:<%/(u§+u§+ug)dv> , (3.4)
1% tn

Qrotour = <Ch0t,out(t)>t = <[4 (Z—:) dA> = <[/ (VZT) dV> . 3.5)

n

where, m is the direction parallel to temperature gradient and (-),, indicates time average over
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the last ¢, non-dimensional time units. The value of ¢, is calculated based on the time signals
recorded from the flow field, to assure that it captures enough of transient fluctuations of the flow.
The time signals were recorded with a frequency not lower than 100 samples per time
unit. The flow considered to be in a fully-developed state when Nu(t), E(t), Or q;or.0ur are fluctu-
ating around a steady mean. Nu(t), E(t) are also used as a mean to compare different flows with
each other and study the effect of wall electrical conductivity on the flow. Numerical integrals

in (3.3) - (3.5) are computed using the trapezoidal method.
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CHAPTER 4

Tensor-Product-Thomas Solver and Verification

This chapter is based on the results published in [25]. In the first step toward conducting
numerical studies of magnetohydrodynamics (MHD) flow with walls of finite electrical conduc-
tivity efficiently, a new solver was developed based on the Tensor-product-Thomas (TPT) method.
This method is a modification of the classical tensor-product technique [33] of solution of separa-
ble elliptic equations in simple domains. A description of the method and a discussion of its ef-
ficiency can be found in [25, 32], while examples of its use in high-Ra hydrodynamics and mag-
netohydrodynamics are available in, e.g., [34, 35]. Therefore, only a brief discussion is provided
here.

Eigenvalue decompositions of the discretization matrices of the one-dimensional differ-
ential operators in two directions are computed. The feature separating the TPT method from the
classical tensor-product method is that the eigenvalue decomposition is not applied to the third
direction typically chosen as the direction with the largest grid size. The equation resulting from
this transformation has a tridiagonal matrix. The tridiagonal matrix equations are solved by the
simple Thomas (double-sweep) algorithm (see, e.g., [36]).

The Dirichlet and periodic conditions are implemented by modifying the discretization
matrix and the right-hand side so that these conditions are satisfied at the boundary points. For
the Neumann and Robin conditions, the modification requires introduction of ghost points located
outside the fluid domain. The equation and the boundary conditions discretized at the boundary
using the ghost-point value are combined to exclude this value and obtain a two-point formula.

The formula is used to modify the discretization matrices for the eigenvalue expansions and the
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tridiagonal matrix of the Thomas algorithm.
To demonstrate this procedure, consider the following Poisson equation for electric poten-

tial in a three-dimensional domain:

2 2 2
0¢,0¢,.99_ 4.1)

+ + =
ox2  0y? 072

b

where r is the right-hand side of (2.22). The second derivatives are discretized using second-

order over an arbitrarily stretched (non-uniform) orthogonal three-dimensional grid. For example,

the second derivative in x-direction at i—th point can be written as [37, 38]:

~ (52¢ A = xis) @i — (i1 — X)) @i + (Xi1 — X)) Pzt
=2 (xis1 — xi—1) (Xie1 — x;) (x; — xi_1) , 4.2)

. ox?

¢
0x?

i

where ¢; = ¢(x;).
Equation (4.1) discretized using (4.2) results in:

529 6%¢  6°
¢ + ¢ ¢ =r (4.3)
ox2  o6yr 672
Now consider the Neumann boundary condition applied at the boundary x = x.
0
¢ =gl. (4.4)
dx |y,

In order to solve for this boundary, ghost point xq is introduced such that x; — xo = xo — x| = hy.

Discretizing (4.4) by a central difference of the second order, the following is obtained:

$2 — ¢o
=g, 4.5
o 81 (4.5)
Dividing (4.5) by h; and rearranging the equation results in:
2
fo_2_Z81 (4.6)

) :
hs bt
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Now, expanding the first term in (4.3) using (4.2) at i = 1 results in:

2 52¢p &2
ﬂ;_%+¢_§+(_‘§+_‘§) =r. 4.7)
non ok \oyr 627,

Combining (4.6) and (4.7) leads to:

21
h’

=r+

25 2
2¢2 _2¢1 (5 ¢ 9 ¢) (4.8)

h% h% oy? 672
which is realized by modifying the coefficient of the discretization matrix and the right-hand side
vector.

A similar approach is used to implement the thin-wall condition (2.32). Unlike previ-
ously used approaches, such as that of [39], it is realizable via modification of matrix elements
and does not require outer iterations. Considering thin-wall boundary condition at the boundary

X = X1, equation (2.32) can be written as:

ap| 2
¥ T vaZ¢|xl . (4.9)

Discretizing this equation using the ghost point xg introduced similar to the example for Neumann

boundary condition, the following is obtained:

$2 — o ¢ ¢
=Cy|—S+—] , 4.10
2h " (5y2 622 ), (10
Dividing by h; and rearranging the equation, results in:
2C, (6%¢ &°
fo_%_ ( - ‘f) @.11)
hl hl hy \é6y 0z X1
Substituting (4.11) in (4.7), leads to:
2¢5 2 2Cy\ (6% &
ﬂ_ﬂ_k 1 - ¢+ ¢ =r. (412)
WK o) \6y> = 622,
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Since two different approaches is used in the TPT method, equation (4.12), is written in two dif-
ferent forms. If the boundary is normal to the direction associated with Thomas-algorithm, equa-
tion (4.12) is used to modify the elements of discretization matrix and right-hand side vector. If
the boundary is normal to one of the directions which eigenvalue decomposition is used, due to

requirement of separability, the following form is used:

200 b 21k +(62¢ 5*¢ hy (4.13)

+ =r—.
h% hy =2C,, h% hy —2C,, \6y* 672 )x rlhl -2Cy,
1
This form of the thin-wall boundary condition can be implemented in the TPT method.
Although, these two approaches are not identical due to discretization and round-off errors, the
difference is expected to be negligible on sufficiently fine grids. A detailed explanation of the

mathematical approach and the implementation of this method can be found in [25].

4.1 Validation

Hot ’ Cold
side-wall ¥ side-wall
3 N
) )
oy -
W@ g

Figure 4.1: Principal flow configurations used for verification tests. Natural convection in a box.
Flow geometry and temperature and velocity distributions found at Gr = 3 x 107, Ha = 570, aspect
ratio A = 7.5, and electrically insulating walls (see table 4.1 and text) are shown. Arrows indicate
the orientation of the applied magnetic field B, and the gravity force g (convection).
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After the implementation and development of the solver, a series of numerical simula-
tions were conducted to ensure the accuracy of the method. Two flow configurations of a hori-
zontally driven natural convection flow in a rectangular box (see figure 4.1) are considered. Their
main parameters are listed in table 4.1. In both configurations, liquid metal is contained within a
cuboid box of dimensions L, X Ly X L. The gravity force is in the negative y-direction. The mag-
netic field is uniform and directed along the horizontal x-axis. The vertical walls perpendicular
to the horizontal z-coordinate are maintained at constant temperatures (a hot wall with 7 = 0.5
and a cold wall with T = —0.5). The other walls are thermally insulated. The imposed magnetic
field and temperature gradient are, thus, both horizontal and perpendicular to each other. In these
cases, the typical length scale of the problem is L, — horizontal size of the box along the tempera-
ture gradient.

The validation Case 1 reproduces the experiment [16, 40]. The configuration is listed as
one of the benchmark problems of numerical modeling of liquid-metal MHD flows in [41]. Flow
of mercury in a tall box with Ly, = 7.5 and L, = L, = 1is studied. All walls are perfectly elec-
trically insulated. For the verification tests we select flows with Gr = 3 x 10 (the Rayleigh
number Ra = PrGr = 7.5 x 10°) and varying strength of the magnetic field corresponding to
0 < Ha < 796. Reynolds number (2.31) for this case is approximately Re = VGr ~ 5500, which
results in magnetic Reynolds number of Re,, ~ 8 x 10™* for mercury.

The Case 2 corresponds to the system studied in numerical simulations [18]. Flow of a
lithium-lead alloy in a cubic box at Gr = 3.15 x 10% (Ra ~ 10°) and Ha = 100 is computed.
In this case, we test the model’s ability to reproduce the effect of finite electrical conductivity of
walls in thermal convection flows by varying C,,, with the same values applied at all walls, in the
range between 0 and 50. A flow without electromagnetic effects is calculated for comparison.

In both cases and at every combination of parameters, a grid sensitivity study was carried
out to determine the size of the grid and the parameters of clustering sufficient for accuracy. In
each simulation of the Case 1, the Hartmann layer was resolved by 4 to 5 grid points except for

the three highest high Hartmann numbers, where it was resolved by 3 grid points. For the Case 2,
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Case 1 Case 2

L, 1 1
L, 7.5 1

L, 1 1

Gr 3 x 107 3.115 x 10°
Pr 0.025 0.0321
C, 0 0-50
Ha| 0,85 162,240 325-796 100

N, 64 128 96 64

N, 480 480 720 64

N, 64 64 96 64

X |y=09 =096 A=3.0 A=25

y vy=0 vy=0 vy=0 A=25

z |y=09 y=096 vy=0.96 A=25

Table 4.1: Non-dimensional geometry and flow parameters for thermal convection cases. The last
three lines show the types and parameters of grid clustering in each direction: blended Chebyshev
and uniform grids (3.1) with the weight y, hyperbolic tangent (3.2) with the clustering coefficient
A, and a purely uniform grid y = 0.

in all of the simulations, the Hartmann layer was resolved using not less than 5 grid points. The
Nusselt number (3.3), and mean kinetic energy (3.4) were used for grid-to-grid comparison. For
this study the number of non-dimensional time units which the time averaging is done (z,) is 100
for unsteady flow regimes except for the case with Ha = 0, in which time-averaging was done
over 50 non-dimensional time units. A grid was deemed sufficient for accurate simulations if fur-
ther increase of its size by 50% in each direction or a significant modification of the clustering
scheme did not change the first two digits of Nu and E. Table 4.1 lists the parameters defining the
grid with sufficient accuracy. The list of the grids used for the grid sensitivity study is reported in
table 4.2. Results of the grid sensitivity study for case 1 is reported in table 4.3.

The results of simulations of Case 1 are presented in figures 4.2 and 4.3, and table 4.4.
We see the anticipated strong effect of the magnetic field on the flow. As Ha increases, velocity
and temperature fields become quasi-two-dimensional. Small-scale turbulent fluctuations are sup-
pressed. Time-averaged total kinetic energy starts to decrease with a sharp change at Ha = 162,
then after Ha = 240 starts to increase with a peak at Ha = 400 followed by a decrease at higher

Ha (see figure 4.2a and table 4.4).
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Clustering

Grid# N, N, N, S -

1 32 480 64 A=35 y=0 y=096
2 64 480 64 y=0 =0 y:O
3 64 480 64 y=0 y=0 5=096
4 64 480 64 =096 y=0 =096
5 64 480 64 A=20 y=0 y=0.96
6 64 480 64 A=30 y=0 y=096
7 64 480 64 A=35 y=0 y=096
8 96 480 64 yzo y=0 y=096
9 128 480 64 y=096 y=0 =096
10 9 720 64 y=0 y=0 y=0
11 96 720 64 A 30 y=0 y=096
12 32 32 32 A=25 A=25 A=25
13 48 48 48 A=25 A=25 A=25
14 64 64 64 A=25 A=25 A=25

Table 4.2: Different grid parameters used for grid sensitivity study. The last three columns show
the types and parameters of grid clustering in each direction: blended Chebyshev and uniform grids
(3.1) with the weight vy, hyperbolic tangent (3.2) with the clustering coefficient A, and a purely
uniform grid y = 0. Grids 1 - 12 used for the case 1 and grids 12-14 used for case 2

0.6 ————1—

——=—— Current study ]

T B
0 200

200"
Ha

L1
600

61— .
5.5 ——— Experiment [53] 3
—=—— Current study ]

L L L 1 L L L 1 L L L 1 L
0 200 400 600
Ha

Figure 4.2: Thermal convection flow in a tall box (Case 1). Volume- and time-averaged kinetic
energy (3.4) and Nusselt number (3.3) are shown as functions of Ha in (a) and (b), respectively.
Experimental data [16] are shown for comparison.
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Ha Grid Nu@33) Ex1034)| Ha Grid Nu(3.3) Ex10(3.4)
0 2 3.73 4.74 400 4 4.352 2.34
0 3 3.76 4.97 400 6 3.587 3.45
0 4 3.80 5.16 400 9 3.588 3.46
0 5 3.77 5.11 400 11 4.286 243
0 8 3.81 5.10 487 4 3.333 2.98
0 10 3.80 5.14 487 6 3.436 3.11
85 4 3.69 4.96 487 9 3.389 3.10
85 5 3.69 4.96 487 11 3.437 3.10
85 9 3.69 4.92 570 4 3.197 2.59

162 1 5.15 2.57 570 6 3.264 2.74
162 4 5.15 2.55 570 9 3.241 2.73
162 5 5.15 2.56 570 11 3.262 2.75
162 6 5.17 2.56 650 4 3.083 229
162 7 5.15 2.57 650 6 3.15 2.46
162 9 5.15 2.55 650 9 3.145 243

240 4 4.95 2.34 650 11 3.151 248

240 6 4.56 3.03 735 4 3.001 2.09

240 9 4.95 2.40 735 6 3.06 2.23

240 11 4.973 2.40 735 9 3.05 2.20

325 4 4.447 2.66 735 11 3.063 2.25

325 6 4.487 2.73 796 4 2.94 1.95

325 9 4.472 2.78 796 6 3.01 2.10

325 11 4.435 2.78 796 9 3.002 2.10

796 11 3.013 2.12

Table 4.3: Results of the performed grid study for case 1.

Ha | Nu E x10 Ha | Nu E x 10
0 3.80 5.16 487 | 3.44 3.08
85 | 3.69 4.96 570 | 3.26 2.75
162 | 5.15 2.55 650 | 3.15 2.48
240 | 4.95 2.39 735 | 3.06 2.25
325 | 4.44 2.78 796 | 3.01 2.12
400 | 4.29/3.59 2.43/3.46

Table 4.4: Thermal convection flow in a tall box (Case 1). Values of the volume- and time-averaged
Nusselt number (3.3) and kinetic energy (3.4) computed at various Ha are shown (see figure 4.2
for a graphical illustration).
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Figure 4.3: Thermal convection flow in a tall box (Case 1). Fully developed flows at various values
of Ha are shown. Top row: Isosurfaces of temperature field 7. Bottom row: Distributions of

temperature 7" and velocity vectors (u;, uy) in the midplane perpendicular to the magnetic field.
The vectors are drawn every 8 points for Ha = 0 and 162 and every 12 points for others.
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The magnitude of heat transfer measured by the dimensionless Nu also changes substan-
tially with Ha. We see in figure 4.2b and table 4.4 a slight drop as Ha changes from 0 to 85 fol-
lowed by rapid increase with the strongest heat transfer increased at Ha = 162, and gradual decay
at higher Ha. In a wide range of strong magnetic fields, at 162 < Ha < 400, the Nusselt number
is higher than in the turbulent flow at zero magnetic field.

The magnetic field also affects the time fluctuations of the Nusselt number Nu(z) and
mean kinetic energy E (¢). Irregular fluctuations with high amplitude typical for a turbulent flow
are found at Ha = 0. Their amplitude decreases as Ha grows. At Ha > 650 the fluctuations be-
come sinusoidal, and at Ha = 798 the fluctuations disappear demonstrating a steady state of the
flow.

Considering the flow structure in figure 4.3, we see that, with the exception of the tur-
bulent flow at Ha = 0, the structure is dominated by large-scale quasi-two-dimensional ed-
dies with small eddies between them and in the box corners. The number of such eddies grad-
ually decreases with Ha, so that only one major eddy occupying almost the entire box remains
at Ha > 487. It must be stressed that figures 4.2, 4.3 and table 4.4 present fully developed flow
states achieved in the course of long flow evolution involving, in some cases, transitions between
states with different numbers of large eddies and markedly different values of Nu and E. The evo-
lution is assumed completed when no such transitions occur for at least 150 time units.

Peculiar results are obtained at Ha = 400. Here, simulations conducted for as much as
600 time units do not allow us to identify an ultimate flow regime. One of the two distinct states,
with one or two major eddies (see figure 4.4), appear depending on the grid and initial conditions.
Once realized, the state persists for the remaining duration of the simulation run, not less than
200 time units.

The results obtained in our simulations are in good qualitative agreement with the experi-
mental results of [16, 40]. Existence of quasi-two-dimensional flow regimes dominated by a few
large eddies was found in the simulations and indirectly suggested by the experimental data. The

variation of Nu with Ha obtained in our computations is consistent with the experiments (see fig-
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Figure 4.4: Thermal convection flow in a tall box (Case 1). Flow states realizable Gr = 3 X 107,
Ha = 400 are shown. (a) The state with Nu = 3.59 and E = 3.46 x 10~!. The vectors are drawn
every 8 points. (b) The state with Nu = 4.29 and E = 2.43 x 10~!. The vectors are drawn every 12
points.

ure 4.2b).

The peculiar behavior with two realizable states of the flow at Ha = 400 was also found in
[16, 40]. In the experiment, measurements were done both in the direction of increasing magnetic
field intensity as well as decreasing magnetic field intensity. Those measurements show a notable
difference, which suggests that the flow in this Ha range is quite sensitive. In the numerical sim-
ulations performed in [40], large uncertainty of measured Nu (much larger than at other values of
Ha) was found at Ha (ranging between 200 and 300) close to the experiments. The simulations
produced two states of the system similar to the states in figure 4.4 and the possibility of a hys-
teretic transition between them. Transient response of another numerical simulation of the same
problem [42], shows the same behavior as well. A more in depth study of this transient behavior
would require calculation of the flow evolution over periods of time orders of magnitude longer
than the periods covered in this study, which is infeasible in the framework of a fine-resolution

numerical model.
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Cy Current Study  [18]
No MHD 3.331 3.267
0 3.245 3.286
0.01 3.046 3.092
0.1 2.277 2.334

1 1.527 1.567

50 (o0) 1.390 1.403

Table 4.5: Results of simulations of thermal convection in a cubic box (Case 2). Values of Nu
computed at various values of C,, are shown. Results of simulations [18] are shown for comparison.

At the same time, there is a significant quantitative difference between the predictions of
our numerical model and the experimental data of [16, 40]. One can see in figure 4.2b that the
computed values of Nu are about 30-40% higher than in the experiments. A similar disagreement
was consistently observed between the experiments and the numerical simulations in [40, 41]. As
discussed in [11], the discrepancy is common in liquid-metal flows with heat transfer and thermal
convection. High thermal conductivity of liquid metals makes it impossible to experimentally
reproduce the idealized boundary conditions of constant wall temperature used in simulations.

A plausible explanation confirmed by our preliminary solutions of the conjugate heat transfer
problem is that in the experiment the temperature perturbations penetrate the walls thus causing
reduction of the heat transfer rate. In standard Rayleigh-Bénard convection in closed cylindrical
cells at aspect ratio 1, moderate effects of the conjugate heat transfer on the Nusselt number were
reported recently [43]. Here, such effects might be even further amplified by the slender geome-
try.

The results obtained for the case 2 are presented in figure 4.5 and table 4.5. All flows ex-
cept one at Ha = 0 are steady-state. The strong influence of the wall electric conductivity on the
flow is evident. Growth of C), results in suppression of velocity, reduction of Nu and, generally,
smaller role played by thermal convection. At the same time, even at C,, = 50, which approaches
the limit of an electrically perfectly conducting wall, the convection-generated flow is significant,
and the temperature distribution is markedly distinct from that of a pure conduction state.

The results are in good qualitative and quantitative agreement with those of numerical
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Figure 4.5: Thermal convection flow in a cubic box (Case 2). Simulations results for fully developed
flows at Ra = 10°, Ha = 100 and various values of C,, are shown. Top two rows: distributions
of temperature and velocity vectors in the mid-plane x = 0 perpendicular to the magnetic field.
The vectors are drawn every 4 points. Bottom row: profiles of u, and T along the central line
perpendicular to the magnetic field x = 0, y = 0. The non-MHD case Ha = 0 is shown for
comparison.
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simulations [18]. The temperature and velocity distributions in figure 4.5 are similar to those in
[18]. The difference in computed values of Nu does not exceed 3.5% (see table 4.5). The quality
of the agreement is somewhat surprising, since the simulations of [18] are performed in a way
quite different from ours: on a grid of Ny X Ny X N, = 24 x 90 X 90 finite-volume cells. The
low resolution and a uniform grid was used in the magnetic field direction because the Hartmann
boundary layers at x = +L, /2 were not numerically resolved, but modeled. The good agreement
with our results can be partially attributed to relatively low values of Ra and Ha, but also con-
sidered as a cross-verification of the two approaches and corresponding methods of numerical
simulation.

It is worth mentioning other verification and validation tests demonstrating situations with
uniform and non-uniform magnetic fields, duct and isothermal flows were conducted by our col-
leagues at the TU-Ilmenau in Germany (Dr. Krasnov). The results of those tests can be seen in

[25].

4.2 Concluding remarks

A new approach to solution of elliptic problems arising in simulations of liquid-metal
MHD flows is presented. The central element of the approach is the TPT method based on tensor-
product expansion in two directions and the Thomas algorithm solution in the third direction. Its
main novelties are that (i) the TPT method is combined with the conservative discretization of
proven accuracy and efficiency [30] and (ii) the method is extended to permit solution of electric
potential problems in domains with thin walls of finite electric conductivity.

Extensive verification and validation tests have demonstrated accuracy of the method in
applications to flows of various types: steady-state and unsteady, and with walls of various elec-
tric conductivities. The conservative discretization, ability to handle arbitrarily non-uniform
grids, and use of efficient tools of numerical algebra make the approach especially effective in

simulations of flows with pronounced boundary layer behavior, in particular liquid-metal MHD
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flows at high Hartmann and Stuart numbers.
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CHAPTER 5

Effect of Walls of Finite Electrical Conductivity

This chapter is based on the results published in [44]. Using the solver verified and tested
in the previous chapter, an investigation of the effect of the wall conductivity and the configura-
tion of conductive walls based on the case 1 in chapter 4 was carried out. The case 1 is selected
for two reasons; availability of experimental data [16, 40] and relevance of the geometry to the
concept of separately cooled liquid metal blankets for future nuclear fusion reactors [7, 13]. The
configuration was proposed as a benchmark for numerical models of magnetoconvection flows
[41]. It must be stressed that the flow studied in our work does not correspond to any specific
blanket design.

The effect of wall conductivity on the flow is determined not just by the value of the wall
material’s conductivity but by the ratio between the total conductances of the wall and the fluid
(wall conductance ratio (2.33)). As discussed earlier high electrical conductivity of liquid met-
als as well as small thickness of walls leads to low values of this ratio, even when the walls are
made of well-conducting materials. This consideration has directed many previous studies to the
idealized model in which walls are assumed to be perfectly electrically insulating.

This study aims to investigate the effect of wall conductance ratio on the properties of
magnetoconvection flow within a specific geometry - a tall cuboid enclosure subjected to heat-
ing and cooling at opposite vertical sides in the presence of an external transverse magnetic field
parallel to the heated/cooled walls (see Fig. 5.1). This is an example of a system, in which the
three major direction — those of gravity, temperature gradient and magnetic field — are perpendic-

ular to each other. The configuration was studied before using linearized two-dimensional model
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Property | Ly xLyXL.| Ra | Pr | Ha
Value | 1x1x75 [7.5x10°[0.025|0-796

Table 5.1: Non-dimensional geometry and parameters of the studied flow, (see text for a detailed
discussion and definition of Ra, Pr, and Ha in (2.30)).

[13, 14], experiment [16, 40], and numerical simulations [16, 40, 45, 46]. Unique features of the
flow, such as thin quasi-two-dimensional jets near the hot and cold walls, were found.

The only previous attempt of analysis of this system based on high-resolution numerical
simulations was [45]. The authors used OpenFOAM to study the effect of wall conductivity (with
all walls having the same wall conductance ratio) and the direction of magnetic field at Ra = 10°.
The study was limited to one low value of the Hartmann number Ha = 100, thus missing the most
interesting features observed at moderate and high Ha.

Two different configurations of electrical conducting walls are considered. In the first, all
the walls have finite electric conductivity with the same conductance ratio. In the second, only
walls with constant temperatures are considered to have finite electric conductivity with the same
conductance ratio, while other walls are perfectly electrically insulating (C,, = 0). Four different
wall conductance ratios are considered, C,, = 0.01,0.1, 1 and 50. The value of 50 is chosen as a
representative of cases with almost perfectly electrically conducting walls.

The flow domain is similar to the domain introduced in the chapter 4, except that in this
study the directions of (x, y, z) axes is changed. The dimensions of the box and physical proper-
ties of the flow are listed in table 4.1. An illustration of the flow domain is given in figure 5.1. In
this problem, the typical length scale is L = L,.

Considering the results of the grid-sensitivity study explained in chapter 4, a similar grid
setup regardless of the wall electrical conductance value is used. In the flows with C,, > 0, the
boundary layers are not the only available current paths, so accurate numerical resolution of them
becomes an even less stringent requirement. Based on this argument, the grid parameters shown
in Table 5.2 are used in the simulations irrespective of the value of the wall conductance ratio C,, .

Due to strong suppression of velocity gradients parallel to magnetic field direction at high Ha, the
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Figure 5.1: Schematic of the flow domain. (a), Geometry - a cuboid box with two side walls
maintained at constant temperatures: red (hot wall) and blue (cold wall). The other four walls
are perfectly thermally insulating. The directions of the applied magnetic field B and the gravity
acceleration g are indicated. (b), Lines, along which velocity, temperature, and induced current
profiles are recorded in simulations. Each line passes through the point (x, y,z) = (-0.47,0,0)
and is parallel to the x, y or z direction. (c) Cross-section planes, in which velocity, temperature,
and induced current distributions are recorded in simulations. Each surface contains the point
(x,y,2) = (0,0,0) and has a normal parallel to the x, y or z direction.

02 05

0, 85 162,240 325 -796
64 64 96
64 128 96
480 480 720

y=096 y=096 y=0.96
y=096 y=096 A=3.0
vy=0 y=0 vy=0
1x107° 5x107% 1.6x107*

DN < xg\ggg

Table 5.2: Computational grid parameters. The last three lines show the types and parameters of
grid clustering in each direction: blended Chebyshev and uniform grids (3.1) with the weight vy,
hyperbolic tangent (3.2) with the clustering coeflicient A, and a purely uniform grid y = 0.
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tanh grid transformation method (3.2) is used in y-direction (parallel to magnetic field) for cases
with Ha > 325, which allows for more grid points within the Hartmann boundary layers, while
keeps the number of grid points manageable.

In this study each simulation runs for either 200 or 400 non-dimensional time units based
on the volume averaged signals recorded over time which are explained later in text. All of the
results presented in this section are for the fully-developed flow. The flow is considered to be in a
fully developed state when Nu(¢) (3.3) and E (¢) (3.4) are fluctuating around a steady mean. Visu-
alizations of the velocity and temperature distributions were also used to confirm that the number,
location, and general shape of large-scale circulation eddies dominating the flow structure remain
unchanged during this period. The length of the runs assures that a long (never less than 100 non-
dimensional time units) evolution of a fully developed flow is calculated. Time-averaged flow
properties, such as the mean values of the Nusselt number and kinetic energy are computed dur-
ing the last 100 time units of this period. As illustrated by the curves of computed Nu(t) and E(r)
presented below, this duration is sufficient to minimize the effect of individual velocity fluctua-
tions on the evaluation of time-averaged properties.

It is worth noting, while no systematic analysis of the effect of the initial conditions was
carried out, tests were conducted for the flow with Ha = 650 and all walls electrically conducting.
First, the evolution of the flow with C,, = 50 was computed starting from the initial conditions
in the form of the two previously computed fully developed flow fields: one with Ha = 0 and
one with Ha = 650 and C,, = 0. In the second test, the flows with C,, = 0.1 and C,, = 1 were
computed starting from the fully developed flow at Ha = 0 as an initial condition. It was found
in both tests that the change of the initial state did not affect the final fully developed state of the
flow.

Since