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ABSTRACT

A flow with combined effects of magnetohydrodynamics (MHD) and thermal convec-

tion is called magnetoconvection. Its presence drastically affects the nature of flows of electrically

conducting fluids such as liquid metals and plasmas. This dissertation investigates magnetocon-

vection in systems with walls of finite electrical conductivity, a critical aspect in various advanced

technologies. The study focuses on understanding the interaction between thermal convection and

magnetic fields in electrically conducting fluids, such as liquid metals, within confined spaces.

The research aims to provide insights into the flow dynamics and heat transfer characteristics,

with particular attention to the effects of wall electrical conductivity.

Performing such numerical investigation required a robust and accurate numerical scheme

and solver. Thus, using a well tested second order finite difference scheme, a new solver was de-

veloped. It is based on the Tensor-product-Thomas (TPT) method. This solver is able to approach

and efficiently handle the boundary conditions associated with walls of finite electrical conductiv-

ity without iterative processes. The accuracy of the method is verified through comparisons with

established results for both electrically conducting and insulating walls. This validation ensures

the reliability of the numerical simulations conducted in subsequent chapters.

Having a verified and robust numerical solver, a parametric study of the effects of wall

electrical conductivity on magnetoconvection is conducted. Different configurations are explored,

including cases, where all walls have the same electrical conductivity, and the cases with only

specific walls being electrically conductive. The results reveal significant changes in the flow

field and heat transfer patterns, underscoring the necessity of considering wall conductivity in

magnetoconvection studies.

Additionally, the dynamics of an isolated thermal plume affected by strong magnetic

xii



fields is studied. This study is conducted for two different plume generation configurations. One

configuration results from a point heat source and the other from a line heat source (e.g. thin

wire). In the first configuration, the effect of the magnetic field direction is also studied. The re-

sults showed that the direction of the magnetic field has a strong effect on the development of the

flow. A transverse magnetic field results in a transient, oscillating plume, in which the transient

behaviors will decrease by increasing magnetic field intensity. However, a vertical magnetic field

results in a completely different behavior.

The plume generated by the hot wire also shows the transient, oscillating behavior when

a transverse magnetic field is applied to the domain. Velocity and temperature time signals at a

series of points were recorded. This data is intended to be used for future experiments, as prelim-

inary experimental results showed a significant difference in the damping caused by the magnetic

field.

This research contributes to the understanding of magnetoconvection in systems with fi-

nite wall conductivity, offering valuable insights into the effect of wall conductivity on the evolu-

tion of the internal magnetoconvection flows.
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CHAPTER 1

Introduction

Magnetoconvection is the convection motion of electrically conducting fluids, e.g. plasma

or liquid metals, in the presence of a magnetic field. It is a complex process, where the fluid’s

movement is influenced by both thermal convection, and by magnetic field. In such systems, the

interaction between the fluid’s thermal properties, its electrical conductivity, and the external

magnetic field leads to a unique pattern of flow and heat transfer. This phenomenon is significant

in flows found in nature and advanced technologies [1].

The dynamics of planetary cores and stellar convective shells are examples of the magne-

toconvection flows found in nature in geophysical and astrophysical systems [2]. Technological

flows in which magnetoconvection plays an important role can be seen in manufacturing of high-

quality steels [3], liquid metal batteries [4, 5] and growth of semiconductor crystals [6]. Another

technological example is liquid-metal breeding blankets used in future tokamak fusion reactors

[7, 8]. These blankets will be tested in the International Thermonuclear Experimental Reactor

(ITER).

In a tokamak fusion reactor, as shown in figure 1.1, the plasma, which is the site of the fu-

sion reaction, is confined within a toroidal chamber. An intense toroidal magnetic field maintains

the trajectories of charged particles within a torus. The field intensity can reach 5 to 10 T or even

higher. The blanket system, a key part of a fusion reactor, surrounds the plasma and helps shield

the rest of the reactor and its outer parts from heat and powerful neutrons created during fusion.

It serves as a heat exchanger diverting the energy into an external electric power-generation cir-

cuit. It is also used to make tritium by reacting with neutrons emitted from the plasma [9]. A dis-
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Figure 1.1: The ITER design and blanket modules on the left and right, respectively (www.iter.org).

tinctive feature of this blanket system is that the convection and magnetic field effects are both

exceptionally strong.

Different concepts are proposed for designing these blankets: separately-cooled liquid-

metal blanket e.g. helium-cooled lead-lithium (HCLL), self-cooled lead-lithium (SCLL), dual

coolant lead-lithium (DCLL) and others [7, 8, 10, 11]. The liquid metal flow in separately-cooled

and dual cooled blanket concepts has velocities in the order of 0.1 − 1 <</B and 10 2</B, re-

spectively [7]. Buoyancy effects is sufficient to drive the flow within separately-cooled blankets,

however in DCLL blankets, the flow is driven by pumps, and convection is added to the pumping-

caused circulation. Such low velocities are beneficial to reduce pressure drop in the liquid metal

flow and therefore making such designs more feasible for reactors. Magnetoconvection flow of

liquid metals inside those blankets in the presence of the magnetic field experiences a transforma-

tion that affects the flow field and thus the heat transfer.

This research is particularly relevant to the separately-cooled liquid-metal blanket con-

cepts. In these blankets, compartments containing a liquid metal (e.g. a lead-lithium alloy) is in

contact with flow of a separate coolant (for example, in HCLL blankets). The lead captures neu-

trons and other radiations from the plasma and returns their energy in the form of thermal agita-

tion. The lithium undergoes a nuclear reaction with the neutrons from the plasma, regenerating
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tritium, the fuel for thermonuclear fusion. The alloy is then extracted from the blanket at a low

flow rate to allow for tritium extraction in an appropriate facility. The heat absorbed by the liquid

metal in these compartments is then transferred to the coolant. This will cause a natural convec-

tion flow, which is then influenced by the external magnetic field.

Due to presence of the magnetic field, an induced current pattern forms inside the electri-

cally conducting liquid metal, which then results in an additional force called Lorentz force to be

exerted on the flow. Interaction between Lorentz force and buoyancy force have significant im-

pacts on the flow field. The consequences of these interactions include suppression of turbulence

velocity fluctuations, development of a thin MHD boundary layer, and reducing the gradients of

flow variables along the magnetic field which results in an anisotropic state or in extreme cases a

quasi two-dimensional behavior.

This work consists of three parts, all of which involve magnetoconvection. In the first

part, a new numerical scheme is introduced and validated for its accuracy in simulating magne-

toconvection in a box in strong magnetic fields. Then this scheme is used to perform a parametric

study of the effect of wall electrical conductivity on the magnetoconvection, in a long vertical

box. Finally, in the last part, an isolated plume, which is common in convection flows, is studied

in two different configurations. The general goal of this work is to form a better understanding of

magnetoconvection of liquid metal in strong magnetic fields.

As it is shown later in chapter 5, the electrical conductivity of the walls can play a major

role in the distribution of the electric currents in the flow field. Changed current loops in general

means changed pattern and strength of currents flowing inside the domain. This leads to different

pattern and strength of Lorentz forces –the force applied to the flow field as a result of interaction

between the magnetic field and electrical current– thus changing the flow [12]. With electrically

insulating walls, all current paths are forced to close in the flow domain. On the other hand, intro-

ducing electrical conductivity to the walls, allows some of current paths close in the wall rather

than in the flow field.

A parameter which is used to describe electrical conductivity of the wall with respect to
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the that of the flow is the wall conductance ratio �F (which is defined later in chapter 2). Usu-

ally high values of electrical conductivity for the liquid metals mean low values of the wall con-

ductance ratio, even when the walls are actually made of electrical conducting material. Low

values of wall conductance ratio directed previous numerical researches to mainly focus on the

domains with electrically insulating walls. However, several theoretical [13, 14] and numerical

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24] studies of magnetoconvection were done without consid-

ering such assumption and predicted profound, and sometimes counter-intuitive, changes in flow

structure even at a very small conductance ratio. Findings of the research presented in this dis-

sertation supports such finding. It is later shown in this work that introducing electrical conduc-

tivity to the walls can change the flow field drastically and thus approximating the walls with low

electrical conductivity with electrically insulating walls, is not accurate. As a result, it is of great

importance to study and understand the effect of the wall electric conductivity on megnetocon-

vection in order to validate such simplifications.

Studying effects of the electrical conductivity of the walls requires solving the Maxwell

equations in the walls as well as in the liquid flow. This can be achieved by extending numerical

domain to the walls and solve discretized equations governing flow of electrical current as well

as conserving electric charges in the interface between liquid and solid wall. Another way to con-

duct such simulations when the wall thickness (gF) is much smaller compared to the flow typical

length scale (!) (gF � !) is to use the so called thin-wall boundary condition. This assumption

is explained further in chapter 2.

One of the consequences of using the thin-wall boundary condition is introduction of a

non-conventional boundary condition on the electric potential at the interface of liquid and solid

walls, which is now considered to be the boundary of the numerical domain. Traditionally, this

boundary condition used to be solved iteratively, which is computationally expensive. This mo-

tivated the development of a new numerical method in collaboration with colleagues at the TU-

Ilmenau. This method, which is described in chapters 3 and 4 allows us to solve the boundary

condition directly without the need of iterations, which results in much faster simulations. Af-
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ter verifying the method for its accuracy in both electrically conducting and insulating walls, it is

used to conduct a study of the effect of different configurations and values of the wall electrical

conductivity on magnetoconvection flow in a tall box driven by a temperature difference between

vertical walls.

Another interesting and not well studied phenomenon, is the internal magnetohydrody-

namics (MHD) flow of liquid metal driven by a thermal plume. Plumes are common in convec-

tion flows. Their dynamics is drastically changed by the magnetic field. Here an isolated, arti-

ficially created plume in a box is studied the final part of this dissertation. It is divided into two

separate studies. In the first one, the plume is generated by a point heat source located at the bot-

tom quarter of a cubic box. In the second, the plume is generated by a vertical line heat source in

an elongated box.

The rest of this dissertation is structured as follows. Physical model, governing equations,

boundary conditions in non-dimensional form and the approximations used in developing such

equations along with non-dimensional parameters governing the system are discussed in chapter

2. Chapter 3 explains the numerical scheme, which is used to descritize the equations in both the

time and space domains and the setup of the numerical solver. Chapter 4 presents the Tensor-

product-Thomas (TPT) numerical method developed and explained in [25] to solve electrical

boundary conditions at walls with finite electrical conductivity, and the verification results of the

developed method. The Direct Numerical Simulation (DNS) results for a long vertical box with

different configurations of electrical conducting walls are presented and discussed in chapter 5.

Finally, the results of the study on how liquid-metal thermal plumes behave are presented in chap-

ter 6.

In the end, the concluding remarks of the research and ideas for future work are presented

in chapter 7.
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CHAPTER 2

Physical Model

2.1 General Equations

Flow of a Newtonian, viscous, electrically conducting, non-magnetizable, single-phase

fluid (liquid metal) with constant physical properties contained in a box is considered. A constant

uniform external magnetic field with strength of �0 is imposed on the flow domain. The flow in-

cludes heat transfer and natural convection effects. Such system is governed by the equations of

conservation of mass, momentum and energy, along with Maxwell equations governing electric

and magnetic fields.

The conservation equations for an incompressible fluid are:

∇ · u = 0, (2.1)
mu

mC
+ (u ·∇) u = −1

d
∇? + a∇2u + F , (2.2)

d�?

(
m)

mC
+ u ·∇)

)
= ^∇2) +&, (2.3)

where u, % , and ) are the fields of velocity, pressure, and temperature, d and a are the density

and kinematic viscosity of the fluid, respectively, and F is the body force acting on fluid, which

in this case, consists of buoyancy and Lorentz forces. The heat capacity and heat conductivity of

the flow are 2? and ^, respectively, and & represents the internal volumetric heating source.
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The Maxwell’s equations are:

∇ ·E =
d4

n0
(The Gauss’s Law), (2.4)

∇ ·B = 0, (2.5)

∇ ×E = −mB
mC

(The Faraday’s Law), (2.6)

∇ ×B = `0

(
J + n0

mE

mC

)
(The Ampére-Maxwell equation), (2.7)

where E, B and J are the electric field, magnetic field and electric current density, respectively.

d4 is the charge density, n0 is the electric constant (also called the permittivity of free space),

and `0 is the magnetic constant (also called the permeability of free space). Equation (2.5) is the

solenoidal nature of magnetic field.

In addition to Maxwell’s equations, we have:

∇ · J = −md4
mC
, (2.8)

J = f (E + u × b) (The Ohm’s Law), (2.9)

FL = @ (E + u × b) (The Lorentz force), (2.10)

where f is electric conductivity and @ is the electric charge. Equation (2.8) shows the charge

conservation.

In the MHD applications, the Maxwell’s equations (2.4) - (2.7) can be significantly sim-

plified. In an electrically conducting fluid, charge density d4 is extremely small and plays no sig-

nificant role. It is assumed that any positive and negative charges are equilibrated on the time

scale related to the speed of light, i.e., practically immediately in comparison to the typical time

scale of the flow. Thus, the Gauss’s law may be dropped and the charge conservation equation

may be reduced to the simplified statement The electric portion of Lorentz force @E is small by

comparison with the Lorentz force. The displacement currents are negligible by comparison with

the current density in conducting fluids. Therefore, the Ampére-Maxwell equation reduces to the
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differential form of Ampére’s law. Detailed derivations can be found in many textbooks, such as

[1, 26].

Considering the mentioned simplifications, the following equations can be derived:

∇ · J = 0, (2.11)

∇ ·B = 0, (2.12)

∇ ×B = `0J , (2.13)

∇ ×E = −mB
mC
, (2.14)

J = f (E + u ×B) , (2.15)

F! = J ×B. (2.16)

2.2 Approximations

In conducting numerical and theoretical studies of magnetoconvection flows of liquid

metal in the technical settings, usually three approximations are made [11]. These approxima-

tions result in less complex governing equations. The first approximation is Boussinesq approx-

imation, which neglects the variation of the physical properties of the liquid with temperature,

except for density, for which a linear relation between density and temperature is assumed. The

only term that contains this relationship is the buoyancy force term in the momentum equation.

The validity of this approximation is investigated by analysing the change in physical

properties of the material by temperature. For example, considering mercury and a base tem-

perature of 293, an increase in temperature by 30 results in relatively low change in all of the

properties except for kinematic viscosity and thermal conductivity, for which the changes are less

than 5%. For the studies of chapters 4 and 5, the maximum temperature difference in the flow

domain is less than 5 , which further enhances the Boussinesq approximation validity. Regard-

ing the study of thermal plume described in chapter 6, the validity of Boussinesq approximation

needs further attention due to higher temperatures in the domain.
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The second approximation is the quasi-static (induction-less) approximation [1, 26, 27].

To explain this approximation further, consider a case with constant imposed magnetic fieldB0.

In this case, the electric currents induced in the flow generate induced perturbations in the mag-

netic field b. As a result, the total magnetic fieldB will be the sum of the imposedB0 and in-

duced b magnetic fieldsB = B0 + b. Using the quasi-static approximation, the induced pertur-

bations in the magnetic field can be neglected, which implies a one-way interaction between mag-

netic field and fluid motion. This approximation requires that magnetic Reynolds number ('4<)

and magnetic Prandtl number (%A<) to be both small:

'4< = f`0*! � 1, %A< = '4</'4 = f`0a � 1, (2.17)

where `0, f and a are respectively magnetic permeability of vacuum, and electrical conductivity

and kinematic viscosity of fluid. It is known that liquid metal flows in technical and laboratory

settings typically satisfy the conditions. For example for mercury (Hg) %A< = 0.14 × 10−6, for

gallium (Ga) %A< = 1.3 × 10−6 and for PbLi %A< = 0.21 × 10−6 [28]. Regarding small values

of '4<, since the model remains accurate up to '4< ∼ 0.1, flows with Reynolds number '4 up

to 105 satisfy this condition. Experimental and numerical studies verify this approximation [11].

Detailed derivation and applicability of this approximation is discussed in [1].

The last approximation ignores the heat generation caused by Joule and viscous dis-

sipation and drops the corresponding terms in energy equation. This approximation is justi-

fied by the very high electrical conductivity of the liquid, very low values of Eckert number

�2 ≡ *2
(
2?Δ)

)−1, and/or by high applied thermal load. The Eckert number is the ratio of the

advective mass transfer to the heat dissipation potential, and it demonstrates the influence of self-

heating of a fluid as a result of dissipation effects. The thermoelectric Thomson, Peltier, and See-

beck effects can also be neglected with exception of the applications characterized by extreme

temperature gradients.
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2.3 Non-dimensional Governing Equations

Using said approximations, the non-dimensional equations are:

∇ · u = 0, (2.18)

mu

mC
+ (u ·∇) u = −∇? +

√
%A

'0

(
∇2u + �02j × e�

)
− )e6, (2.19)

m)

mC
+ u ·∇) =

√
1

'0%A

(
∇2) + @

)
, (2.20)

j = −∇q + u × e�, (2.21)

∇2q =∇ · (u × e�) (2.22)

In these equations, u, ?, ) , @, j and q are respectively dimensionless fields of velocity, pressure,

temperature, volumetric heat generation, electric current density and electric potential. e6 and e�

are the unit vectors in the direction of gravity and magnetic field respectively. The equations are

non-dimensionalized using the typical domain size !, strength of the imposed magnetic field �0

and the free-fall velocity* ≡
√
6VΔ)! (here V and 6 are the thermal expansion coefficient and

the acceleration of gravity respectively). Electric potential and electric current density are scaled

using the combinations*�0! and f*�0. Typical time scale is !/*. Typical temperature scales

to be defined shortly.

If the flow is driven by a temperature difference between the walls and there is no vol-

umetric heat generation (Cases discussed in chapters 4 and 5) temperature difference between

these walls Δ) = )ℎ>C − )2>;3 is used in the process of deriving the dimensionless equations. On

the other hand for the case of thermal plume explained in chapter 6, the volumetric average of to-

tal heat generation, is used to define a characteristic temperature difference Δ) = @C>C!2 (+–:)−1,

in which @C>C is total volumetric heat generation rate, +– is the total volume of the domain, and :

is the heat conductivity of the liquid. This temperature difference is equivalent to the temperature

difference which results in a pure conduction heat transfer across the domain equal to the heat

generated by the source.
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Typical scales used for the flows in upcoming chapters are as follows:

! ≡



!I (Distance between hot and cold walls) Cases in chapter 4

!G (Distance between hot and cold walls) Cases in chapter 5

3 (Heating sphere diameter) Case 1 in chapter 6

!G/2 (Half distance between side walls) Case 2 in chapter 6

(2.23)

* ≡
√
6VΔ)! (2.24)

C ≡ !/* (2.25)

Δ) ≡


)ℎ>C − )2>;3 (difference between walls) Chapters 4 and 5

@C>C!
2 (+–:)−1 Chapter 6

(2.26)

? ≡ d*2 (2.27)

q ≡ *�0! (2.28)

9 ≡ f*�0 (2.29)

In these equations, !,*, C, Δ) , ?, q and 9 are typical scales for length, velocity, time, tempera-

ture, pressure, electric potential and electric current density. �0 is the magnitude of the imposed

magnetic field.

The non-dimensional parameters are the Reynolds, Prandtl, Rayleigh, Grashof and Hart-
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mann numbers which are defined as follows:

'4 ≡ *!
a

(2.30a)

Pr ≡ a
U

(2.30b)

Ra ≡ 6VΔ)!
3

aU
(2.30c)

Gr ≡ 6VΔ)!
3

a2
(2.30d)

Ha ≡ �!
√
f

da
(2.30e)

where U and d are respectively thermal diffusivity and mass density. Using the velocity scale

(2.24), the Reynolds number can be written as:

'4 ≡ *!
a
≡

√
'0

%A
≡
√
�A (2.31)

The boundary conditions for velocity at all walls are no-slip boundary condition (u = 0).

The temperature boundary condition for each wall can be either constant temperature ) = 2>=BC.

or zero heat flux (i.e. thermally insulating wall) m)/m= = 0. The thermal boundary conditions

used for each study will be further explained in the corresponding chapters.

The last set of boundary conditions is related to the electric potential. One of the goals

of this work is to understand the effect of finite electric conductivity of walls on magnetoconvec-

tion flow, when walls are considered to be thin so we can use the approximate thin-wall boundary

condition. As a result of thin walls assumption, the distribution of the electric potential across the

walls can be ignored. This approximation enables us to use a boundary condition for electric po-

tential at the boundary between fluid and walls instead of solving the elliptic equation for electric

potential in both fluid domain and walls. This so-called thin-wall boundary condition, which was

initially proposed in [29], is defined as follows:

mq

m=

����
F0;;

= �F∇2⊥q
��
F0;;

(2.32)
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where:

�F =
fFgF

f!
(2.33)

is the wall conductance ratio, the ratio between the total electric conductance of wall and the liq-

uid. In these equations, fF is the electric conductivity of the wall, = is the outward-facing normal

to the boundary and ∇2⊥ is the two-dimensional Laplacian in the plane of the boundary.

The physical meaning of (2.32) is that the normal component of electric current carries

electrical charges into the thin wall and while the electrical charge is conserved, it redistributes

tangentially in the wall. Different values of �F result in different electric boundary conditions at

walls, with limits of �F = 0 and �F = ∞ corresponding to perfect electrically insulating and

conducting cases. However because f is high for liquid metals, and it typically results in �F to

be small, a perfectly electrically conducting wall is rarely relevant.

It is important to discuss the more complex situation when �F → 0 in more detail. This

limit is often used to justify the idealization of a perfectly insulating wall. A more careful anal-

ysis reveals the special role of the MHD boundary layers, through which the electric currents

induced in the fluid are predominantly closing. A non-negligible fraction of the currents is redi-

rected into the wall if the wall’s electric conductance is not much smaller than the conductance

of the adjacent boundary layer, rather than of the entire flow domain assumed in the definition

(2.33). The redirection means a reduction of the cumulative resistance to the flowing electric cur-

rents, which is expected to result in non-negligible increase of the magnitude of the currents and,

thus, change of the Lorentz force.

Two types of MHD boundary layers are identifiable in a rectangular flow domain with an

imposed magnetic field parallel to one set of walls. Thin (of the thickness X�0 ∼ Ha−1!) Hart-

mann boundary layers form near the walls perpendicular to the magnetic field. Sidewall boundary

layers of thickness X(F ∼ Ha−1/2! develop at the walls parallel to the field. The logic leading to

the definition (2.33) is, strictly speaking, not valid here, because the wall is not necessarily much

thinner than the MHD boundary layer. As a qualitative estimate, however, we can use the ratio
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between the conductances of the wall and the adjacent layer:

��0F ≡
fFgF

fX�0
= �FHa Hartmann layer (2.34)

�(FF ≡
fFgF

fX(F
= �FHa1/2 Sidewall layer (2.35)

A significant effect of the wall conductivity on the flow is expected when at least one of these

coefficients is not small. The situation is especially acute for the Hartmann walls. Considering

that Ha ∼ 104 is typical for blanket applications, even very small conductivity of the Hartmann

wall may significantly affect the flow.
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CHAPTER 3

Method

3.1 Discretization approach

The equations (2.18) - (2.22) are solved numerically using the finite difference method de-

scribed in [30] and [31] and further extended in [25] to support direct solution of problems with

thin wall boundary conditions (2.32). The spatial discretization scheme is of the second order

and nearly fully conservative, conserving mass, momentum, internal energy and electric charge

exactly, and the kinetic energy with a dissipative 3rd-order error. The time discretization is semi-

implicit and based on the Adams–Bashforth/backward-differentiation method of the second order.

For the cases discussed in chapters 4 and 5, all terms are treated explicitly except for the diffusive

term in (2.20). Implicit treatment of the diffusive term in (2.20) alleviates the severe limitation

on the time step imposed on fully explicit schemes by small Pr. For the thermal plume cases dis-

cussed in chapter 6, the time discretization is also implicit for the viscous terms. Using the pro-

jection method for pressure and incompressibility at every time step, either three or six elliptic

equations – velocity components, temperature, pressure and electric potential – are solved using

the Tensor-product-Thomas (TPT) method.

In the TPT method, eigenvalue decomposition of the discretized equations is done in two

directions and in the third direction a tridiagonal matrix is solved using the Thomas algorithm.

An explanation of the TPT method applied to a conventional elliptic problem can be found in

[32]. The unconventional boundary condition for the thin-walls impacts the separability of the

governing equation. To solve that, the discretized boundary condition normal to directions of the
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eigenvalue decomposition and their corresponding coefficients in the matrix is changed so that

the discretized equation remains separable and in the third direction the eigenvalue transforma-

tion is applied. A more detailed description of the discretized equation and the matrix compo-

nents calculation can be found in chapter 4.

3.2 Computational grid

The computational grids for which the final results are reported, are chosen based on the

grid-sensitivity study done for each problem. The distribution of the grid points in the spacial do-

main is controlled by the number of grid points, and using two different methods of point cluster-

ing. Points are either positioned with equal distance from each other (uniform grid) or based on

the coordinate transformations which are used to generate clustered grid points. One of the chal-

lenges to the computational grid, is the need to resolve the velocity and thermal boundary layers.

In magnetoconvection, resolving the Hartmann layer is especially difficult due to the fact that the

width of this layer is estimated as X�0 ∼ 1/Ha. In the flows in a strong magnetic field, Hartmann

layer can be extremely thin. As a result the two following grid clustering method were used.

The first one is a linear combination of uniform grid and Chebyshev transform and the

second one is the tanh transformation. Assuming the walls are at G8 = ±!8/2, transformations are

defined as follows:

G8 =
!8

2

[
W sin

(c
2
b

)
+ (1 − W)b

]
, (3.1)

G8 =
!8

2
tanh(�b)
tanh(�) , (3.2)

where −1 ≤ b ≤ 1 is the transformed coordinate, in which the grid is uniform. W is the constant

determining the mixture of the uniform and Chebyshev-Gauss-Lobatto grids (the typical value is

W = 0.96), and � is the constant determining the degree of tanh grid clustering, typically taken in

the range between 2 and 3.5.
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The coordinate transformation used in each direction can be different, and is chosen based

on the flow regime inside the box. In all of the computational grids, Hartmann layer is resolved

by not less than 3 grid points. It is worth mentioning that the developed solver is capable of solv-

ing any computational grid with arbitrary grid points.

The time steps ΔC are chosen to be not bigger than 50% of the value which causes the so-

lution to become numerically unstable.

3.3 Simulation procedure

Simulations were started from initial conditions which consists of random velocity fluc-

tuations with uniform distribution and a linear temperature profile representing pure conduction

profile between walls with constant temperature in cases with temperature difference between

walls (chapters 4 and 5) or a uniform temperature distribution for the case of volumetric heating

(chapter 6). For simulations of thermal plume with non-zero magnetic field (�0 ≠ 0), the result

of the case with no magnetic field (�0 = 0) was used as initial condition.

The simulations are conducted for a duration long enough to capture any development in

the flow, which can also happens after the flow appears to be in a fully-developed state. In order

to observe the evolution of the flow and identify fully-developed flow, values of the Nusselt num-

ber Nu(C) –the ratio of total heat transfer rate over pure conductive heat transfer rate–, the mean

kinetic energy � (C) and the total outward heat flux from the walls @C>C,>DC (C) were used. These

values are calculated using:

Nu = 〈Nu(C)〉C =
〈
1
+–

∫
+

(
D<)
√
RaPr − m)

m<

)
3+–

〉
C=

, (3.3)

� = 〈� (C)〉C =
〈
1
+–

∫
+

(
D2G + D2H + D2I

)
3+–

〉
C=

, (3.4)

@C>C,>DC =
〈
@C>C,>DC (C)

〉
C
=

〈∫
�

(
m)

m=

)
3�

〉
C=

=

〈∫
+

(
∇2)

)
3+

〉
C=

. (3.5)

where, < is the direction parallel to temperature gradient and 〈·〉C , indicates time average over
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the last C= non-dimensional time units. The value of C= is calculated based on the time signals

recorded from the flow field, to assure that it captures enough of transient fluctuations of the flow.

The time signals were recorded with a frequency not lower than 100 samples per time

unit. The flow considered to be in a fully-developed state when Nu(C), � (C), or @C>C,>DC are fluctu-

ating around a steady mean. Nu(C), � (C) are also used as a mean to compare different flows with

each other and study the effect of wall electrical conductivity on the flow. Numerical integrals

in (3.3) - (3.5) are computed using the trapezoidal method.
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CHAPTER 4

Tensor-Product-Thomas Solver and Verification

This chapter is based on the results published in [25]. In the first step toward conducting

numerical studies of magnetohydrodynamics (MHD) flow with walls of finite electrical conduc-

tivity efficiently, a new solver was developed based on the Tensor-product-Thomas (TPT) method.

This method is a modification of the classical tensor-product technique [33] of solution of separa-

ble elliptic equations in simple domains. A description of the method and a discussion of its ef-

ficiency can be found in [25, 32], while examples of its use in high-Ra hydrodynamics and mag-

netohydrodynamics are available in, e.g., [34, 35]. Therefore, only a brief discussion is provided

here.

Eigenvalue decompositions of the discretization matrices of the one-dimensional differ-

ential operators in two directions are computed. The feature separating the TPT method from the

classical tensor-product method is that the eigenvalue decomposition is not applied to the third

direction typically chosen as the direction with the largest grid size. The equation resulting from

this transformation has a tridiagonal matrix. The tridiagonal matrix equations are solved by the

simple Thomas (double-sweep) algorithm (see, e.g., [36]).

The Dirichlet and periodic conditions are implemented by modifying the discretization

matrix and the right-hand side so that these conditions are satisfied at the boundary points. For

the Neumann and Robin conditions, the modification requires introduction of ghost points located

outside the fluid domain. The equation and the boundary conditions discretized at the boundary

using the ghost-point value are combined to exclude this value and obtain a two-point formula.

The formula is used to modify the discretization matrices for the eigenvalue expansions and the
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tridiagonal matrix of the Thomas algorithm.

To demonstrate this procedure, consider the following Poisson equation for electric poten-

tial in a three-dimensional domain:

m2q

mG2
+ m

2q

mH2
+ m

2q

mI2
= A, (4.1)

where A is the right-hand side of (2.22). The second derivatives are discretized using second-

order over an arbitrarily stretched (non-uniform) orthogonal three-dimensional grid. For example,

the second derivative in G-direction at 8−th point can be written as [37, 38]:

m2q

mG2

����
8

≈ X2q

XG2

����
8

≡ 2 (G8 − G8−1)q8+1 − (G8+1 − G8−1)q8 + (G8+1 − G8)q8−1(G8+1 − G8−1) (G8+1 − G8) (G8 − G8−1)
, (4.2)

where q8 = q(G8).

Equation (4.1) discretized using (4.2) results in:

X2q

XG2
+ X

2q

XH2
+ X

2q

XI2
= A. (4.3)

Now consider the Neumann boundary condition applied at the boundary G = G1.

mq

mG

����
G1

= 61. (4.4)

In order to solve for this boundary, ghost point G0 is introduced such that G1 − G0 = G2 − G1 = ℎ1.

Discretizing (4.4) by a central difference of the second order, the following is obtained:

q2 − q0
2ℎ

= 61, (4.5)

Dividing (4.5) by ℎ1 and rearranging the equation results in:

q0

ℎ21
=
q2

ℎ21
− 261
ℎ1
. (4.6)
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Now, expanding the first term in (4.3) using (4.2) at 8 = 1 results in:

q2

ℎ21
− 2q1
ℎ21
+ q0
ℎ21
+

(
X2q

XH2
+ X

2q

XI2

)
G1

= A1. (4.7)

Combining (4.6) and (4.7) leads to:

2q2
ℎ21
− 2q1
ℎ21
+

(
X2q

XH2
+ X

2q

XI2

)
G1

= A1 +
261
ℎ1
, (4.8)

which is realized by modifying the coefficient of the discretization matrix and the right-hand side

vector.

A similar approach is used to implement the thin-wall condition (2.32). Unlike previ-

ously used approaches, such as that of [39], it is realizable via modification of matrix elements

and does not require outer iterations. Considering thin-wall boundary condition at the boundary

G = G1, equation (2.32) can be written as:

mq

mG

����
G1

= �F∇2HIq
��
G1
. (4.9)

Discretizing this equation using the ghost point G0 introduced similar to the example for Neumann

boundary condition, the following is obtained:

q2 − q0
2ℎ

= �F

(
X2q

XH2
+ X

2q

XI2

)
G1

, (4.10)

Dividing by ℎ1 and rearranging the equation, results in:

q0

ℎ21
=
q2

ℎ21
− 2�F

ℎ1

(
X2q

XH2
+ X

2q

XI2

)
G1

(4.11)

Substituting (4.11) in (4.7), leads to:

2q2
ℎ21
− 2q1
ℎ21
+

(
1 − 2�F

ℎ1

) (
X2q

XH2
+ X

2q

XI2

)
G1

= A1. (4.12)
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Since two different approaches is used in the TPT method, equation (4.12), is written in two dif-

ferent forms. If the boundary is normal to the direction associated with Thomas-algorithm, equa-

tion (4.12) is used to modify the elements of discretization matrix and right-hand side vector. If

the boundary is normal to one of the directions which eigenvalue decomposition is used, due to

requirement of separability, the following form is used:

2q2
ℎ21

ℎ1
ℎ1 − 2�F

− 2q1
ℎ21

ℎ1
ℎ1 − 2�F

+
(
X2q

XH2
+ X

2q

XI2

)
G1

= A1
ℎ1

ℎ1 − 2�F
. (4.13)

This form of the thin-wall boundary condition can be implemented in the TPT method.

Although, these two approaches are not identical due to discretization and round-off errors, the

difference is expected to be negligible on sufficiently fine grids. A detailed explanation of the

mathematical approach and the implementation of this method can be found in [25].

4.1 Validation

Figure 4.1: Principal flow configurations used for verification tests. Natural convection in a box.
Flow geometry and temperature and velocity distributions found at Gr = 3× 107, Ha = 570, aspect
ratio � = 7.5, and electrically insulating walls (see table 4.1 and text) are shown. Arrows indicate
the orientation of the applied magnetic fieldB, and the gravity force g (convection).
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After the implementation and development of the solver, a series of numerical simula-

tions were conducted to ensure the accuracy of the method. Two flow configurations of a hori-

zontally driven natural convection flow in a rectangular box (see figure 4.1) are considered. Their

main parameters are listed in table 4.1. In both configurations, liquid metal is contained within a

cuboid box of dimensions !G × !H × !I. The gravity force is in the negative H-direction. The mag-

netic field is uniform and directed along the horizontal G-axis. The vertical walls perpendicular

to the horizontal I-coordinate are maintained at constant temperatures (a hot wall with ) = 0.5

and a cold wall with ) = −0.5). The other walls are thermally insulated. The imposed magnetic

field and temperature gradient are, thus, both horizontal and perpendicular to each other. In these

cases, the typical length scale of the problem is !I – horizontal size of the box along the tempera-

ture gradient.

The validation Case 1 reproduces the experiment [16, 40]. The configuration is listed as

one of the benchmark problems of numerical modeling of liquid-metal MHD flows in [41]. Flow

of mercury in a tall box with !H = 7.5 and !G = !I = 1 is studied. All walls are perfectly elec-

trically insulated. For the verification tests we select flows with Gr = 3 × 107 (the Rayleigh

number Ra = PrGr = 7.5 × 105) and varying strength of the magnetic field corresponding to

0 ≤ Ha ≤ 796. Reynolds number (2.31) for this case is approximately '4 =
√
�A ≈ 5500, which

results in magnetic Reynolds number of '4< ≈ 8 × 10−4 for mercury.

The Case 2 corresponds to the system studied in numerical simulations [18]. Flow of a

lithium-lead alloy in a cubic box at Gr = 3.15 × 106 (Ra ≈ 105) and Ha = 100 is computed.

In this case, we test the model’s ability to reproduce the effect of finite electrical conductivity of

walls in thermal convection flows by varying �F, with the same values applied at all walls, in the

range between 0 and 50. A flow without electromagnetic effects is calculated for comparison.

In both cases and at every combination of parameters, a grid sensitivity study was carried

out to determine the size of the grid and the parameters of clustering sufficient for accuracy. In

each simulation of the Case 1, the Hartmann layer was resolved by 4 to 5 grid points except for

the three highest high Hartmann numbers, where it was resolved by 3 grid points. For the Case 2,
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Case 1 Case 2
!G 1 1
!H 7.5 1
!I 1 1
Gr 3 × 107 3.115 × 106
Pr 0.025 0.0321
�F 0 0 − 50
Ha 0, 85 162, 240 325 − 796 100
#G 64 128 96 64
#H 480 480 720 64
#I 64 64 96 64
x W = 0.96 W = 0.96 � = 3.0 � = 2.5
y W = 0 W = 0 W = 0 � = 2.5
z W = 0.96 W = 0.96 W = 0.96 � = 2.5

Table 4.1: Non-dimensional geometry and flow parameters for thermal convection cases. The last
three lines show the types and parameters of grid clustering in each direction: blended Chebyshev
and uniform grids (3.1) with the weight W, hyperbolic tangent (3.2) with the clustering coefficient
�, and a purely uniform grid W = 0.

in all of the simulations, the Hartmann layer was resolved using not less than 5 grid points. The

Nusselt number (3.3), and mean kinetic energy (3.4) were used for grid-to-grid comparison. For

this study the number of non-dimensional time units which the time averaging is done (C=) is 100

for unsteady flow regimes except for the case with Ha = 0, in which time-averaging was done

over 50 non-dimensional time units. A grid was deemed sufficient for accurate simulations if fur-

ther increase of its size by 50% in each direction or a significant modification of the clustering

scheme did not change the first two digits of Nu and � . Table 4.1 lists the parameters defining the

grid with sufficient accuracy. The list of the grids used for the grid sensitivity study is reported in

table 4.2. Results of the grid sensitivity study for case 1 is reported in table 4.3.

The results of simulations of Case 1 are presented in figures 4.2 and 4.3, and table 4.4.

We see the anticipated strong effect of the magnetic field on the flow. As Ha increases, velocity

and temperature fields become quasi-two-dimensional. Small-scale turbulent fluctuations are sup-

pressed. Time-averaged total kinetic energy starts to decrease with a sharp change at Ha = 162,

then after Ha = 240 starts to increase with a peak at Ha = 400 followed by a decrease at higher

Ha (see figure 4.2a and table 4.4).
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Grid # #G #H #I
Clustering

G H I

1 32 480 64 � = 3.5 W = 0 W = 0.96
2 64 480 64 W = 0 W = 0 W = 0
3 64 480 64 W = 0 W = 0 W = 0.96
4 64 480 64 W = 0.96 W = 0 W = 0.96
5 64 480 64 � = 2.0 W = 0 W = 0.96
6 64 480 64 � = 3.0 W = 0 W = 0.96
7 64 480 64 � = 3.5 W = 0 W = 0.96
8 96 480 64 W = 0 W = 0 W = 0.96
9 128 480 64 W = 0.96 W = 0 W = 0.96
10 96 720 64 W = 0 W = 0 W = 0
11 96 720 64 � = 3.0 W = 0 W = 0.96
12 32 32 32 � = 2.5 � = 2.5 � = 2.5
13 48 48 48 � = 2.5 � = 2.5 � = 2.5
14 64 64 64 � = 2.5 � = 2.5 � = 2.5

Table 4.2: Different grid parameters used for grid sensitivity study. The last three columns show
the types and parameters of grid clustering in each direction: blended Chebyshev and uniform grids
(3.1) with the weight W, hyperbolic tangent (3.2) with the clustering coefficient �, and a purely
uniform grid W = 0. Grids 1 - 12 used for the case 1 and grids 12-14 used for case 2
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Figure 4.2: Thermal convection flow in a tall box (Case 1). Volume- and time-averaged kinetic
energy (3.4) and Nusselt number (3.3) are shown as functions of Ha in (0) and (1), respectively.
Experimental data [16] are shown for comparison.
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�0 Grid #D (3.3) � × 10 (3.4) �0 Grid #D (3.3) � × 10 (3.4)
0 2 3.73 4.74 400 4 4.352 2.34
0 3 3.76 4.97 400 6 3.587 3.45
0 4 3.80 5.16 400 9 3.588 3.46
0 5 3.77 5.11 400 11 4.286 2.43
0 8 3.81 5.10 487 4 3.333 2.98
0 10 3.80 5.14 487 6 3.436 3.11
85 4 3.69 4.96 487 9 3.389 3.10
85 5 3.69 4.96 487 11 3.437 3.10
85 9 3.69 4.92 570 4 3.197 2.59
162 1 5.15 2.57 570 6 3.264 2.74
162 4 5.15 2.55 570 9 3.241 2.73
162 5 5.15 2.56 570 11 3.262 2.75
162 6 5.17 2.56 650 4 3.083 2.29
162 7 5.15 2.57 650 6 3.15 2.46
162 9 5.15 2.55 650 9 3.145 2.43
240 4 4.95 2.34 650 11 3.151 2.48
240 6 4.56 3.03 735 4 3.001 2.09
240 9 4.95 2.40 735 6 3.06 2.23
240 11 4.973 2.40 735 9 3.05 2.20
325 4 4.447 2.66 735 11 3.063 2.25
325 6 4.487 2.73 796 4 2.94 1.95
325 9 4.472 2.78 796 6 3.01 2.10
325 11 4.435 2.78 796 9 3.002 2.10

796 11 3.013 2.12

Table 4.3: Results of the performed grid study for case 1.

Ha Nu � × 10 Ha Nu � × 10
0 3.80 5.16 487 3.44 3.08
85 3.69 4.96 570 3.26 2.75
162 5.15 2.55 650 3.15 2.48
240 4.95 2.39 735 3.06 2.25
325 4.44 2.78 796 3.01 2.12
400 4.29/3.59 2.43/3.46

Table 4.4: Thermal convection flow in a tall box (Case 1). Values of the volume- and time-averaged
Nusselt number (3.3) and kinetic energy (3.4) computed at various Ha are shown (see figure 4.2
for a graphical illustration).
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Figure 4.3: Thermal convection flow in a tall box (Case 1). Fully developed flows at various values
of Ha are shown. Top row: Isosurfaces of temperature field ) . Bottom row: Distributions of
temperature ) and velocity vectors (DI, DH) in the midplane perpendicular to the magnetic field.
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The magnitude of heat transfer measured by the dimensionless Nu also changes substan-

tially with Ha. We see in figure 4.2b and table 4.4 a slight drop as Ha changes from 0 to 85 fol-

lowed by rapid increase with the strongest heat transfer increased at Ha = 162, and gradual decay

at higher Ha. In a wide range of strong magnetic fields, at 162 ≤ Ha ≤ 400, the Nusselt number

is higher than in the turbulent flow at zero magnetic field.

The magnetic field also affects the time fluctuations of the Nusselt number Nu(C) and

mean kinetic energy � (C). Irregular fluctuations with high amplitude typical for a turbulent flow

are found at Ha = 0. Their amplitude decreases as Ha grows. At Ha ≥ 650 the fluctuations be-

come sinusoidal, and at Ha = 798 the fluctuations disappear demonstrating a steady state of the

flow.

Considering the flow structure in figure 4.3, we see that, with the exception of the tur-

bulent flow at Ha = 0, the structure is dominated by large-scale quasi-two-dimensional ed-

dies with small eddies between them and in the box corners. The number of such eddies grad-

ually decreases with Ha, so that only one major eddy occupying almost the entire box remains

at Ha ≥ 487. It must be stressed that figures 4.2, 4.3 and table 4.4 present fully developed flow

states achieved in the course of long flow evolution involving, in some cases, transitions between

states with different numbers of large eddies and markedly different values of Nu and � . The evo-

lution is assumed completed when no such transitions occur for at least 150 time units.

Peculiar results are obtained at Ha = 400. Here, simulations conducted for as much as

600 time units do not allow us to identify an ultimate flow regime. One of the two distinct states,

with one or two major eddies (see figure 4.4), appear depending on the grid and initial conditions.

Once realized, the state persists for the remaining duration of the simulation run, not less than

200 time units.

The results obtained in our simulations are in good qualitative agreement with the experi-

mental results of [16, 40]. Existence of quasi-two-dimensional flow regimes dominated by a few

large eddies was found in the simulations and indirectly suggested by the experimental data. The

variation of Nu with Ha obtained in our computations is consistent with the experiments (see fig-
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Figure 4.4: Thermal convection flow in a tall box (Case 1). Flow states realizable Gr = 3 × 107,
Ha = 400 are shown. (0) The state with Nu = 3.59 and � = 3.46 × 10−1. The vectors are drawn
every 8 points. (1) The state with Nu = 4.29 and � = 2.43× 10−1. The vectors are drawn every 12
points.

ure 4.2b).

The peculiar behavior with two realizable states of the flow at Ha = 400 was also found in

[16, 40]. In the experiment, measurements were done both in the direction of increasing magnetic

field intensity as well as decreasing magnetic field intensity. Those measurements show a notable

difference, which suggests that the flow in this �0 range is quite sensitive. In the numerical sim-

ulations performed in [40], large uncertainty of measured Nu (much larger than at other values of

Ha) was found at Ha (ranging between 200 and 300) close to the experiments. The simulations

produced two states of the system similar to the states in figure 4.4 and the possibility of a hys-

teretic transition between them. Transient response of another numerical simulation of the same

problem [42], shows the same behavior as well. A more in depth study of this transient behavior

would require calculation of the flow evolution over periods of time orders of magnitude longer

than the periods covered in this study, which is infeasible in the framework of a fine-resolution

numerical model.
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�F Current Study [18]
No MHD 3.331 3.267

0 3.245 3.286
0.01 3.046 3.092
0.1 2.277 2.334
1 1.527 1.567

50 (∞) 1.390 1.403

Table 4.5: Results of simulations of thermal convection in a cubic box (Case 2). Values of Nu
computed at various values of�F are shown. Results of simulations [18] are shown for comparison.

At the same time, there is a significant quantitative difference between the predictions of

our numerical model and the experimental data of [16, 40]. One can see in figure 4.2b that the

computed values of Nu are about 30-40% higher than in the experiments. A similar disagreement

was consistently observed between the experiments and the numerical simulations in [40, 41]. As

discussed in [11], the discrepancy is common in liquid-metal flows with heat transfer and thermal

convection. High thermal conductivity of liquid metals makes it impossible to experimentally

reproduce the idealized boundary conditions of constant wall temperature used in simulations.

A plausible explanation confirmed by our preliminary solutions of the conjugate heat transfer

problem is that in the experiment the temperature perturbations penetrate the walls thus causing

reduction of the heat transfer rate. In standard Rayleigh-Bénard convection in closed cylindrical

cells at aspect ratio 1, moderate effects of the conjugate heat transfer on the Nusselt number were

reported recently [43]. Here, such effects might be even further amplified by the slender geome-

try.

The results obtained for the case 2 are presented in figure 4.5 and table 4.5. All flows ex-

cept one at Ha = 0 are steady-state. The strong influence of the wall electric conductivity on the

flow is evident. Growth of �F results in suppression of velocity, reduction of Nu and, generally,

smaller role played by thermal convection. At the same time, even at �F = 50, which approaches

the limit of an electrically perfectly conducting wall, the convection-generated flow is significant,

and the temperature distribution is markedly distinct from that of a pure conduction state.

The results are in good qualitative and quantitative agreement with those of numerical
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Figure 4.5: Thermal convection flow in a cubic box (Case 2). Simulations results for fully developed
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simulations [18]. The temperature and velocity distributions in figure 4.5 are similar to those in

[18]. The difference in computed values of Nu does not exceed 3.5% (see table 4.5). The quality

of the agreement is somewhat surprising, since the simulations of [18] are performed in a way

quite different from ours: on a grid of #G × NH × #I = 24 × 90 × 90 finite-volume cells. The

low resolution and a uniform grid was used in the magnetic field direction because the Hartmann

boundary layers at G = ±!G/2 were not numerically resolved, but modeled. The good agreement

with our results can be partially attributed to relatively low values of Ra and Ha, but also con-

sidered as a cross-verification of the two approaches and corresponding methods of numerical

simulation.

It is worth mentioning other verification and validation tests demonstrating situations with

uniform and non-uniform magnetic fields, duct and isothermal flows were conducted by our col-

leagues at the TU-Ilmenau in Germany (Dr. Krasnov). The results of those tests can be seen in

[25].

4.2 Concluding remarks

A new approach to solution of elliptic problems arising in simulations of liquid-metal

MHD flows is presented. The central element of the approach is the TPT method based on tensor-

product expansion in two directions and the Thomas algorithm solution in the third direction. Its

main novelties are that (i) the TPT method is combined with the conservative discretization of

proven accuracy and efficiency [30] and (ii) the method is extended to permit solution of electric

potential problems in domains with thin walls of finite electric conductivity.

Extensive verification and validation tests have demonstrated accuracy of the method in

applications to flows of various types: steady-state and unsteady, and with walls of various elec-

tric conductivities. The conservative discretization, ability to handle arbitrarily non-uniform

grids, and use of efficient tools of numerical algebra make the approach especially effective in

simulations of flows with pronounced boundary layer behavior, in particular liquid-metal MHD
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flows at high Hartmann and Stuart numbers.
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CHAPTER 5

Effect of Walls of Finite Electrical Conductivity

This chapter is based on the results published in [44]. Using the solver verified and tested

in the previous chapter, an investigation of the effect of the wall conductivity and the configura-

tion of conductive walls based on the case 1 in chapter 4 was carried out. The case 1 is selected

for two reasons; availability of experimental data [16, 40] and relevance of the geometry to the

concept of separately cooled liquid metal blankets for future nuclear fusion reactors [7, 13]. The

configuration was proposed as a benchmark for numerical models of magnetoconvection flows

[41]. It must be stressed that the flow studied in our work does not correspond to any specific

blanket design.

The effect of wall conductivity on the flow is determined not just by the value of the wall

material’s conductivity but by the ratio between the total conductances of the wall and the fluid

(wall conductance ratio (2.33)). As discussed earlier high electrical conductivity of liquid met-

als as well as small thickness of walls leads to low values of this ratio, even when the walls are

made of well-conducting materials. This consideration has directed many previous studies to the

idealized model in which walls are assumed to be perfectly electrically insulating.

This study aims to investigate the effect of wall conductance ratio on the properties of

magnetoconvection flow within a specific geometry - a tall cuboid enclosure subjected to heat-

ing and cooling at opposite vertical sides in the presence of an external transverse magnetic field

parallel to the heated/cooled walls (see Fig. 5.1). This is an example of a system, in which the

three major direction – those of gravity, temperature gradient and magnetic field – are perpendic-

ular to each other. The configuration was studied before using linearized two-dimensional model
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Property !G × !H × !I Ra Pr Ha
Value 1 × 1 × 7.5 7.5 × 105 0.025 0 − 796

Table 5.1: Non-dimensional geometry and parameters of the studied flow, (see text for a detailed
discussion and definition of Ra, Pr, and Ha in (2.30)).

[13, 14], experiment [16, 40], and numerical simulations [16, 40, 45, 46]. Unique features of the

flow, such as thin quasi-two-dimensional jets near the hot and cold walls, were found.

The only previous attempt of analysis of this system based on high-resolution numerical

simulations was [45]. The authors used OpenFOAM to study the effect of wall conductivity (with

all walls having the same wall conductance ratio) and the direction of magnetic field at Ra = 105.

The study was limited to one low value of the Hartmann number Ha = 100, thus missing the most

interesting features observed at moderate and high Ha.

Two different configurations of electrical conducting walls are considered. In the first, all

the walls have finite electric conductivity with the same conductance ratio. In the second, only

walls with constant temperatures are considered to have finite electric conductivity with the same

conductance ratio, while other walls are perfectly electrically insulating (�F = 0). Four different

wall conductance ratios are considered, �F = 0.01, 0.1, 1 and 50. The value of 50 is chosen as a

representative of cases with almost perfectly electrically conducting walls.

The flow domain is similar to the domain introduced in the chapter 4, except that in this

study the directions of (G, H, I) axes is changed. The dimensions of the box and physical proper-

ties of the flow are listed in table 4.1. An illustration of the flow domain is given in figure 5.1. In

this problem, the typical length scale is ! = !G .

Considering the results of the grid-sensitivity study explained in chapter 4, a similar grid

setup regardless of the wall electrical conductance value is used. In the flows with �F > 0, the

boundary layers are not the only available current paths, so accurate numerical resolution of them

becomes an even less stringent requirement. Based on this argument, the grid parameters shown

in Table 5.2 are used in the simulations irrespective of the value of the wall conductance ratio �F.

Due to strong suppression of velocity gradients parallel to magnetic field direction at high Ha, the
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(a) (b) (c)

Figure 5.1: Schematic of the flow domain. (a), Geometry - a cuboid box with two side walls
maintained at constant temperatures: red (hot wall) and blue (cold wall). The other four walls
are perfectly thermally insulating. The directions of the applied magnetic field B and the gravity
acceleration g are indicated. (b), Lines, along which velocity, temperature, and induced current
profiles are recorded in simulations. Each line passes through the point (G, H, I) = (−0.47, 0, 0)
and is parallel to the G, H or I direction. (c) Cross-section planes, in which velocity, temperature,
and induced current distributions are recorded in simulations. Each surface contains the point
(G, H, I) = (0, 0, 0) and has a normal parallel to the G, H or I direction.

Ha 0, 85 162, 240 325 − 796
#G 64 64 96
#H 64 128 96
#I 480 480 720
x W = 0.96 W = 0.96 W = 0.96
y W = 0.96 W = 0.96 � = 3.0
z W = 0 W = 0 W = 0
ΔC 1 × 10−3 5 × 10−4 1.6 × 10−4

Table 5.2: Computational grid parameters. The last three lines show the types and parameters of
grid clustering in each direction: blended Chebyshev and uniform grids (3.1) with the weight W,
hyperbolic tangent (3.2) with the clustering coefficient �, and a purely uniform grid W = 0.
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C0=ℎ grid transformation method (3.2) is used in y-direction (parallel to magnetic field) for cases

with Ha ≥ 325, which allows for more grid points within the Hartmann boundary layers, while

keeps the number of grid points manageable.

In this study each simulation runs for either 200 or 400 non-dimensional time units based

on the volume averaged signals recorded over time which are explained later in text. All of the

results presented in this section are for the fully-developed flow. The flow is considered to be in a

fully developed state when Nu(C) (3.3) and � (C) (3.4) are fluctuating around a steady mean. Visu-

alizations of the velocity and temperature distributions were also used to confirm that the number,

location, and general shape of large-scale circulation eddies dominating the flow structure remain

unchanged during this period. The length of the runs assures that a long (never less than 100 non-

dimensional time units) evolution of a fully developed flow is calculated. Time-averaged flow

properties, such as the mean values of the Nusselt number and kinetic energy are computed dur-

ing the last 100 time units of this period. As illustrated by the curves of computed Nu(C) and � (C)

presented below, this duration is sufficient to minimize the effect of individual velocity fluctua-

tions on the evaluation of time-averaged properties.

It is worth noting, while no systematic analysis of the effect of the initial conditions was

carried out, tests were conducted for the flow with Ha = 650 and all walls electrically conducting.

First, the evolution of the flow with �F = 50 was computed starting from the initial conditions

in the form of the two previously computed fully developed flow fields: one with Ha = 0 and

one with Ha = 650 and �F = 0. In the second test, the flows with �F = 0.1 and �F = 1 were

computed starting from the fully developed flow at Ha = 0 as an initial condition. It was found

in both tests that the change of the initial state did not affect the final fully developed state of the

flow.

Since two different sets of boundary conditions are considered, the results are discussed

separately. First the results for the configuration in which all walls have the same electrically con-

ductance ratio �F is discussed. After that the results for the case in which only hot and cold walls

are considered to be electrically conducting and have the same electrical conductance ratio �F
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are presented. Hereafter these setups are called configurations A and B, respectively. Due to the

fact that the results of the simulations in which all of the walls are electrically insulating is re-

peated in both sections, those results are only discussed in the beginning of the section 5.1, and

this discussion is omitted in section 5.2.

5.1 Configuration A: all walls have the same electric conduc-

tivity

Figure 5.2 shows the time evolution Nu and � during the entire simulations for two typ-

ical cases, one with moderately high Ha = 325 and the other with high Ha = 650. The results

obtained for the pure convection flow at Ha = 0 are included for comparison. As it is mentioned

earlier, each simulation is conducted over either 200 or 400 time units. Simulations first run for

200 time units and, if random fluctuations are observed such that it justifies the need for further

simulations, simulation is continued for another 200 time units, totalling to 400 non-dimensional

time units. As it is shown in the figure 5.2, calculating the time averaged values over the last 100

time units, seems sufficient.

The time averaged values Nu and � obtained for the configuration A for all the explored

values of Ha and �F are reported in tables 5.3 and 5.4 and shown in Fig. 5.3. The discussion

will also use the distributions of the time-averaged flow fields within the flow domain shown in

Figs. 5.4-5.9.

5.1.1 All walls are perfectly electrically insulating

We start with a brief discussion of the behavior in the case of electrically insulating walls,

the results for which are obtained in chapter 4. At first, we see in tables 5.3 and 5.4 and figure

5.3 that increasing magnetic field causes a slight decrease in heat transfer followed by a jump to

higher values of Nu at Ha = 162 and then a monotonic decrease. The mean kinetic energy �

also decreases as magnetic field intensity increases, up to Ha = 162. At higher values of Ha, the

38



0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Ha = 0

C
w
 = 0

C
w
 = 0.01

C
w
 = 0.10

C
w
 = 1.00

C
w
 = 50.0

1

1.05

1.1

(a)

time

Nu
(C)

0 50 100 150 200 250 300 350 400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ha = 0

C
w
 = 0

C
w
 = 0.01

C
w
 = 0.10

C
w
 = 1.00

C
w
 = 50.0

0

0.005

(b)

time

�
(C)

Figure 5.2: (a) Nu(C) and (b) � (C) (see (3.3) and (3.4)) for Ha = 325 (dashed line) and Ha = 650
(solid line) for the configuration A of the wall conductivity conditions. Black solid line represents
the case Ha = 0. In this and all the following figures, the results are obtained for Ra = 7.5 × 105
and Pr = 0.025.

kinetic energy remains high indicating that the magnetic field does not prevent strong large scale

circulation in the flow with �F = 0.

�F
0 0.01 0.1 1 50

Ha

0 3.80
85 3.69 3.63 3.36 2.59 2.28
162 5.15 3.62 2.54 1.55 1.37
240 4.95 3.15 1.86 1.22 1.14
325 4.47 2.80 1.46 1.09 1.05
400 4.35 2.46 1.28 1.05 1.03
487 3.43 2.11 1.17 1.02 1.01
570 3.26 1.85 1.11 1.01 1.01
650 3.15 1.67 1.07 1.02 1.00
735 3.06 1.52 1.04 1.01 1.00
796 3.01 1.45 1.04 1.00 1.00

Table 5.3: Time averaged values of Nu (3.3) computed for the configuration A (all walls have
the same conductance ratio �F). Values marked with an overline indicate cases in which Nu(C)
fluctuates significantly in a fully developed flow. In other cases, the signal is steady-state after an
initial transient.
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�F
0 0.01 0.1 1 50

Ha

0 5.16 × 10−1
85 4.96 × 10−1 4.38 × 10−1 3.13 × 10−1 1.62 × 10−1 1.16 × 10−1
162 2.55 × 10−1 3.33 × 10−1 1.48 × 10−1 3.00 × 10−2 1.60 × 10−2

240 2.39 × 10−1 2.53 × 10−1 5.68 × 10−2 7.32 × 10−3 3.79 × 10−3

325 2.78 × 10−1 1.70 × 10−1 2.15 × 10−2 2.38 × 10−3 1.21 × 10−3

400 2.43 × 10−1 1.14 × 10−1 1.05 × 10−2 1.10 × 10−3 5.57 × 10−4

487 3.08 × 10−1 7.30 × 10−2 5.28 × 10−3 5.26 × 10−4 2.66 × 10−4

570 2.75 × 10−1 4.81 × 10−2 3.02 × 10−3 2.93 × 10−4 1.48 × 10−4

650 2.48 × 10−1 3.28 × 10−2 1.89 × 10−3 1.80 × 10−4 9.08 × 10−5

735 2.25 × 10−1 2.24 × 10−2 1.22 × 10−3 1.14 × 10−4 5.76 × 10−5
796 2.12 × 10−1 1.74 × 10−2 9.16 × 10−4 8.52 × 10−5 4.21 × 10−5

Table 5.4: Time averaged values of � (3.4) computed for the configuration A (all walls have
the same conductance ratio �F). Values marked with an overline indicate cases in which � (C)
fluctuates significantly in a fully developed flow. In other cases, the signal is steady-state after an
initial transient.

The observed variation of Nu and � with Ha may appear to contradict to the known abil-

ity of an imposed magnetic field to suppress fluctuations of velocity. A monotonic decrease of

both Nu and � may appear more natural. An explanation of the effect is based on the role played

by large-scale circulation in the flow field and heat transfer. As demonstrated in Figs. 5.4, 5.5, 5.6

and 5.7, the flow is dominated by planar jets, an ascending one near the hot wall and a descending

one near the cold wall. This is expected behavior for a natural convective flow in a box with hot

and cold walls on the side. As these jets, ascend and descend near the walls, they form large scale

eddies in the G-I-plane.

The large-scale circulation may consist of just one eddy, with secondary smaller eddies

in the corners (see Fig. 5.4b), or several large eddies. The number of these structures exist in the

flow impacts the effectiveness of heat transfer as well as kinetic energy of the flow. The presence

of multiple eddies increases the heat transfer rate via two mechanisms. One is the direct trans-

port of heat by horizontal streams separating the eddies. The second is that eddies not extend-

ing through the entire height of the box disrupt the thermal boundary layers and remove hot fluid

40



0 200 400 600 800
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Experiment

C
w
 = 0

C
w
 = 0.01

C
w
 = 0.10

C
w
 = 1.00

C
w
 = 50.0

(a)

�0

#
D

0 200 400 600 800

0

0.1

0.2

0.3

0.4

0.5
C

w
 = 0

C
w
 = 0.01

C
w
 = 0.10

C
w
 = 1.00

C
w
 = 50.0

(b)

�0

�
Figure 5.3: Time averaged values of Nu and � for configuration A (all walls have the same
conductance ratio �F). Data for the case of all walls electrically insulating and the experimental
data [16] (available only for Nu) are shown for comparison.
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Figure 5.4: Time-averaged distributions of ) and a projection of the velocity on the vertical
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plane cross-section G = 0 parallel to the magnetic field direction (see Fig. 5.1c) for configuration A.
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from the hot wall and cold fluid from the cold wall early, effectively reducing the average thick-

ness of the boundary layer and, thus, its thermal resistance. Another effect of the formation of

multiple eddies is that it limits the range, where the vertical jets near the walls can accelerate,

thus resulting in lower jet velocity and lower mean kinetic energy.

It will be shown later that if the number of circulations remains constant, the maximum

speed of jets near the wall in addition to the jet width can determine how high the heat transfer

rate will be. In the absence of the magnetic field, as it is shown in figures 5.4.a and 5.12.a, only

one big circulation forms in the mean flow which fills the entire flow domain. Introducing mag-

netic field to the domain cause changes in the resulting flow both directly and indirectly.

The direct effect of an imposed magnetic field on the flow is, typically, two-fold. Firstly,

the flow becomes anisotropic and, at high Ha, quasi-two-dimensional (see Fig. 5.7a). Another

effect is the suppression of velocity fluctuations leading to stabilization of the near-wall jets and

large-scale circulation eddies. Indirectly, the imposed magnetic field also affects the pattern of the

large-scale circulation, which explains the change of values of Nu and � visible in Tables 5.3, 5.4
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Figure 5.6: Time-averaged distributions of vertical velocity DI on the horizontal mid-plane cross-
section I = 0 (see Fig. 5.1c) for configuration A. Results for the flows with �0 = 0 (a), �0 = 85,
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and Fig. 5.3. Magnetic field suppresses turbulent fluctuations and makes the flow Q2D. However,

large scale Q2D vortices are not suppressed. They are also stabilized so, they can be strong even

at Ha � 1. The change of the pattern is presented in figure 4.3 and further illustrated by the

vertical profiles of velocity and temperature in Figs. 5.8a and 5.9a. The mean flow has one large-

scale circulation vortex at Ha = 0 and Ha = 85. Three circulation vortices appear at Ha = 162,

which causes strong increase of Nu and drop of � . Two circulation vortices are found at Ha =

325. Circulation patterns with just one large eddy and gradually decreasing strength of the mean

flow are found at Ha ≥ 487.

As demonstrated in chapter 4 and [25] the flow regime when Ha = 400 is sensitive to

computational grid. In this study only the finer grid as reported in table 5.2 is considered and val-

ues related to this computational grid is reported in tables 5.3 and 5.4 and figure 5.3. As a result

of this decision, such behavior is not observed. The flow also shows a transient behavior in a way

that large circulations can form and merge as the flow develops. The same situation applies to the

results reported in the section 5.2.

Increasing the intensity of magnetic field, regardless of wall electrical conductivity, re-

sults in a more restricted flow, the jet velocities decreases, as demonstrated in figure 5.7, and as a

result of that, the heat transfer rate and Nu decreases. Another outcome of lower jet velocities is

that the flow does not separate from the wall and thus results in disappearance of small vortices

that appear at the corners of the box.

5.1.2 All walls are electrically conducting

Upon introducing electrical conductivity of the walls, flow and its fluctuations are dras-

tically suppressed. The suppression of the flow, as it can be seen in the vertical velocity profiles

shown in figures 5.7 and 5.8, is amplified by increasing the electrical conductivity of the walls.

As for the non-time-averaged flow and the flow fluctuations around the mean, it is observed that

introducing wall conductivity even for the lowest value �F = 0.01 removes all flow fluctuations as

the Ha goes beyond 400. For the lower values of Ha, except Ha = 85, there is a value of �F, such
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Figure 5.7: Timed-averaged profiles of vertical velocity along the lines H = 0, I = 0 (left) and
G = −0.47, I = 0 (right) shown in Fig. 5.1b. Results obtained for �F = 0 (a) and the configuration
A with �F = 0.01 (b) and �F = 0.1 (c) are shown for various Ha.
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Figure 5.9: Timed-averaged profiles of temperature along the lines H = 0, I = 0 (left) and G = −0.47,
H = 0 (right) shown in Fig. 5.1b. Results obtained for �F = 0 (a) and the configuration A with
�F = 0.01 (b) and �F = 0.1 (c) are shown for various Ha.
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that a higher value of wall electrical conductivity has a same effect. For the case with Ha = 85, it

is observed that increasing wall conductivity lowers the amplitude of fluctuations. The cases that

demonstrate no flow fluctuations, reach to their steady state within the first 50 time units, but in

order to rule out any further development of the flow, the simulations continued to reach 200 time

units.

Looking at the time averaged flow, for all values of Ha number if �F > 0, only one large

scale vortex is formed in the domain (see Fig. 5.4 and Fig. 5.8 for an illustration). Since the jump

in heat transfer rate observed when all the walls are electrically insulated is mainly due to for-

mation of more than one large scale vortices, a same jump in Nu is not seen for the cases with

�F > 0. Both Nu and � decrease monotonically with increasing Ha or �F. At �F ≥ 0.1 and

large Ha, � ∼ 10−5 − 10−3 and Nu is close to the pure conduction value 1.0 (see Tables 5.3

and 5.4 and Fig. 5.3). This effect is further illustrated by the velocity and temperature profiles

in Figs. 5.7-5.9. We see in Figs. 5.7 and 5.8 that velocity of near-wall jets decreases as either Ha

or �F increases. The effect is considerably higher at higher values of Ha. For example, compar-

ing the results for when �F = 0 and �F = 0.01, the maximum jet velocity for Ha = 85 experience

less than 10% speed reduction, however for the Ha = 487 and Ha = 796, the reduction in speed is

about 50% and 70% respectively. Weakened convective heat transfer results in temperature distri-

butions approaching pure conduction distributions with exception of the regions near the top and

bottom walls, where a horizontal flow persists (see Figs. 5.4 and 5.9).

The apparent inconsistency between the profile of vertical velocity in the case of Ha =

325 and �F = 0 and the other profiles (see Figs. 5.7a and 5.15a) is a result of a peculiar flow

regime at these parameters. One can see in the first column of Table 5.7 and Figs. 5.8a and 5.16a

that in this case the flow consists of two major eddies of the same circulation (upward flow near

the hot wall). A similar flow is shown in Fig. 5.12e for the case with Ha = 400 and �F = 1.0.

Such a flow structure means that there must be a smaller reversed circulation eddy sandwiched

between the two large eddies. Since the velocity profiles in Figs. 5.7a and 5.15a are drawn along

the line in the middle of domain (see Fig. 5.1b), the vertical velocity profiles corresponding to the
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smaller eddy and, therefore, having the opposite direction is captured.

It should be noted that in this comparison, it is important to make sure the number large

vortices are the same, otherwise the jets will not have the same space to develop and it will result

in different jet velocities. It is important to mention, that the maximum vertical velocities found

from 5.7 , do not represent the maximum jet velocities for each case, as it is measured in the mid-

dle of the box, and it can be seen 5.7 and 5.8 that the location of the maximum jet velocity can

vary in both y and z directions.

One apparent exception from the just described transformation is the case of the flows

with �F = 0.01 and Ha increasing from 85 to 162. Fig. 5.8b shows increase of the maximum ver-

tical velocity in the core of the jet. Analysis of three-dimensional velocity distributions, however,

demonstrates the accompanying decrease of the jet’s width (see Fig. 5.7b), so the values of Nu are

nearly the same at Ha = 85 and 162, and � is substantially smaller at Ha = 162 (see Tables 5.3

and 5.4).

An important observation can be made based on the velocity distributions shown in

Figs. 5.5 and 5.6 and the velocity profiles in the right-hand side columns of Fig. 5.7b,c. The as-

sumption of quasi-two-dimensionality often used in the analysis of high-HaMHD flows is gen-

erally inaccurate for the flows considered here. One sees in Fig. 5.7c, that even in the case with

the highest Ha = 796 the velocity variation in the core flow along the magnetic field line (the H-

direction) is non-negligible. Similar behavior is demonstrated by the profiles of the mean velocity

at all �F > 0. The curvature is higher at moderately high values of Ha, such as Ha = 400 or 325

(see Fig. 5.7). The phenomenon can be attributed to the shape of the zones of strong flow in the

upward and downward jets. The horizontal cross-section has the much larger H-dimension in the

direction of the magnetic field than the G-dimension. In that sense, the jet flow is similar to flows

within narrow ducts with magnetic fields in the transverse direction parallel to the longer side.

Quasi-two-dimensionality is not achieved in such flows even at high Ha (see, e.g., Ref. [47] for an

illustration).

On the other hand temperature profiles along Y axis does not show such behavior, and
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in most cases especially for high Ha and high �F temperature variations outside the Hartmann

boundary layer are very small. Such behavior is expected due to the nature of temperature bound-

ary condition and low flow velocities which results in a temperature profile similar to fully con-

duction temperature distribution. Such behavior stresses the need to measure velocity distribu-

tions in addition to temperature along the magnetic field direction as well as other directions.

Looking at the vertical velocity profiles along with the temperature profiles, it can be seen

that, in cases with lower jet velocities which do not separate from the walls, as jets ascend and

their temperature increases, their temperature reaches the temperature of the fully conductive

temperature profile (0.47 for the plots in figure 5.9), they rise with a constant speed, until they

reach to area near box ceiling, where they have no more room to travel and start to decelerate.
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Figure 5.11: Time averaged values of Nu and � for configuration B (only hot and cold walls are
electrically conducting). Data for the case of all walls electrically insulating and the experimental
data [16] (available only for Nu) are shown for comparison.

5.2 Configuration B: only hot and cold walls are electrically

conducting

In experimental setups like those mentioned in [40], the walls responsible for heating and

cooling are usually made from copper. This allows the walls to be kept at a constant temperature,

while provide adequate heating and cooling. Although in the setup mentioned in [40], the cop-

per walls are coated with an extremely thin layer of epoxy, to make them electrically insulating,

it is a reasonable to study the effect of the electrical wall conductivity of these two walls on the

evolution and behavior of the flow. Considering these walls to be electrically conducting while

other walls are electrically insulating, results in an entirely different flow than what is observed in

section 5.1.

Fig. 5.10 shows time signals Nu(C) (3.3) and � (C) (3.4) during the entire simulations for

flows at moderately high and high values of Ha. It can be seen that unlike the flows with all walls

electrically conducting, the fluctuations are only mildly affected by the magnetic field. The flows

remain time-dependent at all 0 ≤ �F ≤ 50 and all, but the largest value of Ha. At a given value
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of Ha the amplitude of the fluctuations is not significantly affected by �F. This is illustrated for

Ha = 325 and 650 in Fig. 5.10, and is true for all the explored values of Ha.

�F
0 0.01 0.1 1 50

Ha

0 3.80
85 3.69 3.68 3.74 3.83 4.80
162 5.15 5.13 5.14 5.13 5.14
240 4.95 4.96 4.56 4.38 4.53
325 4.47 4.38 4.34 4.33 4.36
400 4.35 3.62 4.21 4.34 4.08
487 3.43 3.43 3.39 3.41 3.38
570 3.26 3.25 3.23 3.21 3.22
650 3.15 3.14 3.11 3.10 3.10
735 3.06 3.05 3.03 3.02 3.02
796 3.01 3.00 2.98 2.97 2.97

Table 5.5: Time averaged values of Nu (3.3) computed for the configuration B (hot and cold walls
have the same conductance ratio �F). Values marked with an overline indicate cases in which
Nu(C) fluctuates significantly in a fully developed flow. The signal at Ha = 796 is steady-state after
an initial transient.

Time averaged results are presented in tables 5.5 and 5.6 and figures 5.11 - 5.17. Tables

5.5 and 5.6 show time-averaged values of Nu and � respectively for the configuration B. These

values are presented in figure 5.11 as well. In contrary to the observations for the configura-

tion A, wall conductivity does not affect the flow drastically, however it still causes changes in

the flow field, specially in the low to moderately high Hartmann numbers, in which the flow is

sensitive to changes. The values of Nu are follows the same trend as the case with electrically

insulating walls. It increases to a maximum value in moderate Hartmann numbers and then de-

crease monotonically by increasing magnetic field intensity. The values of mean kinetic energy �

have almost the same value as in the case with no wall conductivity, which is explained in section

5.1.1. For some values of Hartmann number, there can be seen a difference between the values of

both Nu and � caused by change in the wall conductance ratio. These changes can be explained

by the change in the number of vortices of the large-scale circulation. Table 5.7 shows the num-

ber of large vortices that is observed for different values of Ha and �F. In counting these circula-
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�F
0 0.01 0.1 1 50

Ha

0 5.16 × 10−1
85 4.96 × 10−1 4.88 × 10−1 5.03 × 10−1 5.08 × 10−1 3.49 × 10−1
162 2.55 × 10−1 2.59 × 10−1 2.60 × 10−1 2.60 × 10−1 2.58 × 10−1
240 2.39 × 10−1 2.37 × 10−1 3.02 × 10−1 2.88 × 10−1 3.03 × 10−1
325 2.78 × 10−1 2.72 × 10−1 2.65 × 10−1 2.66 × 10−1 2.61 × 10−1
400 2.43 × 10−1 3.22 × 10−1 2.37 × 10−1 2.43 × 10−1 2.44 × 10−1
487 3.08 × 10−1 3.03 × 10−1 2.97 × 10−1 2.92 × 10−1 2.95 × 10−1
570 2.75 × 10−1 2.71 × 10−1 2.67 × 10−1 2.66 × 10−1 2.66 × 10−1
650 2.48 × 10−1 2.45 × 10−1 2.42 × 10−1 2.41 × 10−1 2.41 × 10−1
735 2.25 × 10−1 2.22 × 10−1 2.18 × 10−1 2.17 × 10−1 2.17 × 10−1
796 2.12 × 10−1 2.10 × 10−1 2.07 × 10−1 2.06 × 10−1 2.06 × 10−1

Table 5.6: Time averaged values of � (3.4) computed for the configuration B (hot and cold walls
have the same conductance ratio �F). Values marked with an overline indicate cases in which
Nu(C) fluctuates significantly in a fully developed flow. The signal at Ha = 796 is steady-state after
an initial transient.

�F

0 0.01 0.1 1 50

Ha

0 turbulent (1)
85 1 1 1 1 2
162 3 3 3 3 3
240 3 3 2 2 2
325 2 2 2 2 2
400 2 1 2 2 2
487 1 1 1 1 1
570 1 1 1 1 1
650 1 1 1 1 1
735 1 1 1 1 1
796 1 1 1 1 1

Table 5.7: The number of major eddies in the large-scale circulation for the flows of configuration
B.
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Figure 5.12: Time-averaged distributions of ) and a projection of the velocity on the vertical
mid-plane cross-section H = 0 perpendicular to the magnetic field direction (see Fig. 5.1c) for
configuration B. Results for the flows with �0 = 0 (a), �0 = 162, �F = 0.01 (b), �0 = 162,
�F = 1.0 (c), �0 = 400, �F = 0.01 (d), �0 = 400, �F = 1.0 (e), �0 = 796, �F = 0.01 (f) and
�0 = 796, �F = 1.0 (g) are shown.

tions, the small circulation that may appear in the corners as well as circulations that appear due

the change in velocity direction between large cells are not considered.

It is also observed that changing wall conductivity can affect the amplitude of the fluctua-

tions of the Nu and � by changing the flow structure. The amplitude of such fluctuation has a di-

rect relationship with the number of large vortices that form in the flow field. Since an increase in

the number of circulations, results in smaller structures in the flow domain, as well as formation

of smaller vortices in between those large structure, and small structures tend to be more unsta-

ble, such behavior is expected.

Contrary to what is seen in the configuration A, the effect of electrical conductance of the

wall is not substantial, however, it is still causing changes in the flow structure, especially in the

moderate Hartman numbers, where the flow seems to be more sensitive to disturbance in the flow.

Going past moderate Hartmann numbers, the effect of electrical wall conductivity on the volume

averaged properties, e.g. Nu and � , becomes negligible.

The structure of the mean flow in the case of configuration B is illustrated by the mid-
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Figure 5.13: Time-averaged distributions of ) and a projection of the velocity on the vertical mid-
plane cross-section G = 0 parallel to the magnetic field direction (see Fig. 5.1c) for configuration
B. Results for the flows with �0 = 0 (a), �0 = 162, �F = 0.01 (b), �0 = 162, �F = 1.0 (c),
�0 = 400, �F = 0.01 (d), �0 = 400, �F = 1.0 (e), �0 = 796, �F = 0.01 (f) and �0 = 796,
�F = 1.0 (g) are shown.

plane distributions in Figs. 5.12, 5.13 and 5.14 and profiles of velocity and temperature in

Figs. 5.15-5.17. We see that the effect of the Lorentz force on the flow structure is, in general,

much weaker than in the case of configuration A. The width and maximum velocity of near-wall

jets are practically unaffected by �F in the entire range 0 ≤ �F ≤ 50 (only a slight decrease of

jet velocity can identified). The effect of Ha at a given �F is noticeable, but much weaker than for

flows with all walls conducting (cf. Figs. 5.15, 5.16 and 5.7, 5.8). Strong jets and large-scale cir-

culation are observed even at the largest �F = 50, Ha = 796. Convective heat transfer associated

with the strong circulation leads to mean temperature distributions varying only slightly with �F

and Ha and remaining far different from the pure conduction profiles (see Fig. 5.17).

This is behavior can be explained by looking at the current paths in the flow field. Most of

current paths are going through Hartmann layer. Introducing wall conductivity results in some of

these current paths go through constant temperature walls. In these locations, because the veloc-

ities are small, the electrical potential and thus electrical current density are small as well. This

results, in small Lorentz force and thus small changes in the flow. However, by increasing the
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Figure 5.14: Time-averaged distributions of vertical velocity DI on the horizontal mid-plane cross-
section I = 0 (see Fig. 5.1c) for configuration B. Results for the flows with �0 = 0 (a), �0 = 162,
�F = 0.01 (b), �0 = 162, �F = 1.0 (c), �0 = 400, �F = 0.01 (d), �0 = 400, �F = 1.0 (e) and
�0 = 796, �F = 0.01 (f) are shown.
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Figure 5.15: Timed-averaged profiles of vertical velocity along the lines H = 0, I = 0 (left) and
G = −0.47, I = 0 (right) shown in Fig. 5.1b. Results obtained for �F = 0 (a) and the configuration
B with �F = 0.01 (b) and �F = 0.1 (c) are shown for various Ha.
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Figure 5.16: Timed-averaged profiles of vertical velocity along the line G = −0.47, H = 0 shown in
Fig. 5.1b. Results obtained for �F = 0 (a) and the configuration B with �F = 0.01 (b) �F = 0.1
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Figure 5.17: Timed-averaged profiles of temperature along the lines H = 0, I = 0 (left) and
G = −0.47, H = 0 (right) shown in Fig. 5.1b. Results obtained for �F = 0 (a) and the configuration
B with �F = 0.01 (b) and �F = 0.1 (c) are shown for various Ha.
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electrical conductivity of the flow, the portion of current paths going into the walls, increases and

thus, the Lorentz force increases. This can explain slightly smaller values of Nu and � as wall

conductance ratio increases.

The profiles of DI in the right column of Fig. 5.15 illustrate that the flow approaches a

quasi-two-dimensional state at high Ha. Curvature of the core flow profile is still visible, which,

as before, can be attributed to large horizontal aspect ratio of the jet, but is much lower than in the

case of configuration A. Increasing �F results in a lower curvature and a more uniform vertical

velocity profile in the core flow. The temperature distributions are nearly two-dimensional at high

Ha. This indicates that a two-dimensional approximation can be used for the flow. This means

that the Q2D approximation in domains similar to what described in this section can be accurate,

and its accuracy increases as the electrical wall conductivity in wall at constant temperature in-

creases.

Figure 5.17, shows time-averaged temperature profiles in X and Z directions along the

lines shown in 5.1.c for select Ha numbers. As it can be seen the effect of wall conductivity on

the temperature profiles is negligible, except for low to moderately high Ha, which are the flows

that are more sensitive than higher flow at higher Ha. The temperature profile at Ha = 325 seems

to be different than that of flows at other Ha due to the fact that this flow has two large scale vor-

tices, which results in a reverse vortex between those two. This can also be seen in the vertical-

velocity profile shown in figure 5.15.

5.3 Concluding remarks

A parametric study of the effect of electric conductivity of the walls on magnetoconvec-

tion in a tall box with vertical hot and cold walls is carried out. Two configurations of electric

boundary conditions are explored. In configuration A, all walls of the box have the same finite

electric conductance ratio �F. In configuration B, only the hot and cold sidewalls are electrically

conducting, with the same values of �F. The other two sidewalls and the top and bottom walls
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Figure 5.18: (a) Timed-averaged profiles of 9G = �I along the line G = −0.47, I = 0 parallel to
the magnetic field (see Fig. 5.1b). Results obtained at �0 = 650 and three wall configurations:
�F = 0, configuration A with �F = 0.1, and configuration B with �F = 0.1 are shown. The two
zoom-ins show the distributions within the Hartmann layer at the wall H = −0.5 and in the core flow.
(b-d) Time-averaged distributions of the current paths (gray streamlines), the magnitude of 9G = �I
(color), and the vertical velocity EI (blue iso-lines) in the horizontal mid-plane cross-section I = 0
(see Fig. 5.1c). Results for the flows at �0 = 650 with �F = 0 (b), configuration A with �F = 0.1
(c) and configuration B with �F = 0.1 (d) are shown.
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are electrically insulating. Numerical simulations are completed at Pr = 0.025, Ra = 7.5 × 105,

0 ≤ Ha ≤ 796, 0 ≤ �F ≤ 50. The new results obtained for flows with conducting walls are

compared with those for insulating walls and with the experimental data of [40]. The focus of the

analysis is on the effect of the magnetic field and wall conductivity on the structure of the mean

flow and the integral properties, such as the Nusselt number Nu and the volume-averaged kinetic

energy � .

The convection heat transfer is previously considered to be the result of turbulence on

the flow field. This conclusion is mainly based on the studies done on normal (non-MHD) flows.

However, results of this study show that at sufficiently high Ha, although the turbulent fluctua-

tions are suppressed, heat transfer can still remains effective. This is a result of stabilization of

large structures, i.e, large scale vortices, which are responsible for transferring heat by keeping

the flow in motion.

The main finding of the study is the significant impact of the configuration of wall con-

ductivities on the MHD transformation of the flow. When all walls are electrically conducting

(configuration A), the transformation can be described as a straightforward suppression. Increas-

ing the strength of the magnetic field leads to the damping of velocity fluctuations, reduction in

the strength and simplification of the shape of large-scale circulation, and a decrease in Nu and

� . The effect is stronger at higher �F. At �F ≥ 0.1 and high Ha, the heat transfer is reduced to

nearly pure conduction.

The effect of the magnetic field on the flow is entirely different when only the sidewalls

parallel to the magnetic field are electrically conducting (configuration B). The suppression of

the flow is much weaker. The flow retains strong large-scale circulation and high values of Nu

and � in the entire range 0 ≤ Ha ≤ 796. Velocity fluctuations persist in fully developed flows,

except in the case of the highest considered value Ha = 796. Interestingly, the variation of the

electric conductivity of the hot and cold walls in the range between perfect insulation �F = 0 and

nearly perfect conduction �F = 50 does not have a significant impact on flow properties. The few

exceptions are examples of a subtle effect, where a change in �F alters the number of loops in the
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large-scale circulation.

To explain the profound difference between the MHD responses of the two wall config-

urations, we consider the typical time-averaged distributions of induced electric currents and

Lorentz forces. The focus is on the vertical component �I of the force, which directly affects

near-wall jets. This component has the same value as the component 9G of the current. The flows

at �0 = 650 are considered for three sets of wall conductivities: �F = 0; �F = 0.1 in configura-

tion A; and �F = 0.1 in configuration B.

In Fig. 5.18a, profiles of time-averaged 9G are shown along the line G = −0.47, I = 0,

parallel to the magnetic field and located within the upward jet near the hot wall. The fields of

time-averaged 9G , vertical velocity EI, and current paths in the horizontal mid-plane cross-section

I = 0 are depicted for each of the three aforementioned cases in Figs. 5.18b-d.

The explanation illustrated by Fig. 5.18 is based on the effect of the conductivity of the

Hartmann walls at H = ±0.5 on the distribution of the induced electric currents. We have already

discussed this effect, based on general physical arguments, in chapter 1. If the walls are electri-

cally insulating (as in the case of �F = 0 and in configuration B with �F = 0.1), the current

loops close within the thin Hartmann boundary layers (see the insert at H = −0.5 in Fig. 5.18a

and Figs. 5.18b,d) implying strong currents and significant electric resistance to them. The cu-

mulative result is the increase of the total electric resistance of the fluid domain to the induced

electric currents. This does not occur or is weakened in the case of configuration A, when the

walls at H = ±0.5 are electrically conducting, so the current loops may also close through them

(see Fig. 5.18c).

We observe in Fig. 5.18 that wall conductivity does not have a significant effect on the

pattern of induced currents in the core flow, including the zones of the upward and downward

jets. However, it does significantly modify the current strength. The insert in Fig. 5.18a and the

distributions of 9G in Figs. 5.18b-d show that the magnitude of 9G and, consequently, �I in the

jet’s area is approximately twice as large in the case of configuration A compared to �F = 0 or

configuration B. Since the component �I opposes the jet’s vertical velocity, the damping of the
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jets by the Lorentz force is significantly stronger in the case of configuration A, i.e., when the

walls perpendicular to the magnetic field are electrically conducting.

The just provided explanation is consistent with the effect of the wall conductivity of the

integral flow properties detected in our simulations. The explanation implies a profound change

of the flow and its integral characteristics when the value of ��0F = �FHa is not small. For the

configuration A, this includes all our cases with non-zero �F, since the smallest ��0F found at

�F=0.01 and Ha = 85 is 0.85. The profound effect is visible for all the simulations with non-zero

�F in figure 5.3. The Hartmann walls remain insulating for all the simulations of the configura-

tion B. Accordingly, the variations of Nu and � with �F are small in figure 5.11.

Two other conclusions can be drawn from the results presented in this study. One con-

cerns the applicability of the two-dimensional approximation, generally possible for high-Ha

MHD flows, in which velocity and temperature distributions are nearly uniform in the direction

of the magnetic field within the core flow, to magnetoconvection. It has been long understood that

applicability of the approximation requires that the imposed temperature gradient is perpendicu-

lar to the magnetic field [11]. Our results show that the accuracy of the approximation can be low

even when this requirement is met. We see in Figs. 5.8 and 5.16 that vertical velocity DI varies

significantly in the field direction in the core flow even at the highest Ha considered here.

Another comment concerns the disagreement between the data of the experiment [16]

proposed as a benchmark for MHD numerical models [41] and our computational data (see

Figs. 5.3a and 5.11a). A similar disagreement was observed in Ref. [16] and attributed in

Ref. [41] to either imperfection of the experiment or insufficient accuracy of the numerical model

in Ref. [16]. The fact that a similar disagreement is found in our simulations on a much finer grid

allows us to exclude the latter possibility. The data in Fig. 5.11a also show that the disagreement

cannot be caused by imperfect electric insulation of the hot and cold walls in the experiment. The

most plausible remaining explanation appears to be the difficulty of maintaining the condition of

constant uniform temperature of hot and cold walls in the experimental setup.
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CHAPTER 6

Dynamics of A Thermal Plume Affected by A
Magnetic Field

This study aims to understand how thermal plumes form, develop and behave in a liq-

uid metal in the presence of an imposed strong magnetic field. Thermal plumes can exist in con-

text of natural convection flows [48]. They are convective motion originated from localized heat

sources, where hot fluid penetrates into a colder region above [49, 50]. The heat source causes an

increase in the temperature of the fluid near it, which results in increasing buoyancy of the fluid.

This lead to the development of a primary fluid pattern which evolves finally to a well known

thermal plume [51].

Thermal plumes behavior under the influence of magnetic field is different from that of

thermal plumes seen in normal (non-MHD) flows. They are elongated in the direction of the

magnetic field, and, as they develop, they, based on the direction of the magnetic field, may be-

come unstable and oscillate perpendicular to direction of the magnetic field [52, 53]. Previous

studies of bubble-driven liquid metal plume in an enclosure revealed that the behavior of the

plume depends on the direction of the applied magnetic field. A vertically applied magnetic field

observed to results in a straight uniform damping of the mean flow [52]. However, transverse ap-

plied magnetic field is shown to lead to a completely different flow regime. It creates a transient

structure which is oscillating with predominant frequencies [53].

It is important to mention that the Rayleigh-Bénard Convection in liquid metals has been

subject of many studies [17, 54, 55, 56, 57, 58, 59]. One of the main mechanism of such convec-
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tion flow is the formation of thermal plumes, which as it is previously stated, is the main mecha-

nism of heat transfer. Unlike the previous researches done on the plumes in liquid metal flows or

non-MHD plumes, in this work, artificially created isolated thermal plume is studied. To the best

knowledge of author, this is the first analysis of an isolated MHD thermal plume.

The study was conducted with two different setups. In the first setup, an isolated plume

was generated from a point heat source in the lower half of a cubic box with walls located far

from heat source. The motivation for setup is to understand how a plume behaves when it has

large enough space to grow. In the other setup, the artificial isolated plume is created using a thin

wire located in the middle of an elongated vertical box. This setup is used to provide numerical

simulations for possibility of comparison with future experiments.

In both of these cases the boundary temperatures are considered to be constant, and have

the same non-dimensional value ) = 0. A uniform temperature distribution of ) = 0 is used

to initialize the flow. The heat generation term @ in (2.20) is chosen such that the volumetric av-

erage of the heat generation rate is +–−1
(∫
@3+–

)
= 1. In order to identify if the flow reaches its

fully-developed state, the total heat out-flux from the walls per unit volume 〈@>DC〉 = @C>C,>DC/+– is

calculated and recorded with time, and the flow is considered to be in fully-developed state when

this value is unity or it fluctuates around a constant mean.

6.1 Heat generation from point heat source

In this setup, the formation and behavior of an isolated thermal plume is studied. The flow

domain is a cubic box with a point heat source located in the lower quarter of the box. Since in

the numerical simulations, a point heat source result in numerical challenges, due to extreme gra-

dients around the point, heat source is considered to be a sphere with diameter 3. In the spherical

heat generation region, three different heat generation functions @, were tested. A uniform func-

tion, in which all grid points inside the heating region has a same numerical value, hereon called

Top-hat function. A cosine distribution to enhance the numerical properties by easing the transi-
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Figure 6.1: Two-dimension illustration of different heat generation functions.

tion between the inside and outside of heat generation region and avoiding high gradients at the

sphere boundary. And last one, is a Gaussian-like function, to increase the heat generation in the

middle of the sphere, thus make it more similar to a point heat source. These functions are:

@(G, H, I) =



21 Top-hat (uniform) function

22 cos(cA) + 1 cos function

23 exp(−32A2) Gaussian-like function

, (6.1)

A (G, H, I) =
√
(G − G0)2 + (H − H0)2 + (I − I0)2 , (6.2)

where, A is the distance between the point (G, H, I) and the center of heating sphere (G0, H0, I0).

Values 21, 22 and 23 chosen in a way to enforce volume average total heat generation to be unity.

For points with A > 3/2 the value for @ is zero @ = 0. For comparison, a two-dimension illustra-

tion of these functions are shown in figure 6.1.

In order to prevent imposed boundary limitation on the plume, the flow domain is taken to
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Property !G × !H × !I Ra Pr Ha
Value 10 × 10 × 10 104 0.025 0, 50, 100, 200, 400

Table 6.1: Non-dimensional geometry and parameters of the studied flow, (see text for a detailed
discussion and definition of Ra, Pr, and Ha in (2.30)).

Figure 6.2: Three-dimensional illustration of the setup used to study isolated plume in a cubic box.
The location of the heating sphere is shown in the box. The direction of the gravity is shown by the
blue vector. The direction of imposed magnetic field is shown by black vectors.

be much bigger than the heat generation sphere !G = 10 � 3. The center of the heating zone is

located at (G0, H0, I0) = (0, 0,−2.5). All surrounding walls have constant temperature ) |1=3 = 0

and are electrically insulating �F = 0. Two different directions of magnetic field are considered;

transverse and vertical magnetic fields. It will be shown later, that these two result in completely

different flow regimes. Table 6.1 lists the non-dimensional parameters for this setup. Figure 6.2

illustrates the flow domain as well as directions of magnetic field and gravity considered in this

problem.

Five different numerical grids were used for this study. They are listed in table 6.2. Since

our study showed that plume can start to oscillate and the location and the amplitude of these os-

cillations were not known, all the grids are uniform in all three directions. Another reason to use
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Grid # #G #H #I
Clustering

G H I

1 64 64 64 W = 0 W = 0 W = 0
2 128 128 128 W = 0 W = 0 W = 0
3 256 256 256 W = 0 W = 0 W = 0
4 384 384 384 W = 0 W = 0 W = 0
5 512 512 512 W = 0 W = 0 W = 0

Table 6.2: Different grid parameters used for grid sensitivity study of the plume generated by a
point heat source. The last three columns show the types and parameters of grid clustering in each
direction: blended Chebyshev and uniform grids (3.1) with the weight W, hyperbolic tangent (3.2)
with the clustering coefficient �, and a purely uniform grid W = 0.

uniform grid was due to the fact that the numerical solver used for this study, will use cos trans-

form rather than eigenvalue decomposition for unifor grids, which results in much faster simula-

tions. The grid sensitivity study was done in different parts.

First using top-hat distribution for @ (6.1), the non-MHD �0 = 0 flow was simulated us-

ing all five different grids for 100 non-dimensional time units. All of these simulations started

from the same initial condition of uniform temperature distribution ) = 0, and random veloc-

ity with amplitude of 10−3. The time signals of the volume averaged outward heat flux 〈@>DC〉,

temperature )0E6 and kinetic energy �0E6 is shown in figure 6.3. It can be seen that the grid #1

(# = 64) cannot produce acceptable results. Other than that, other numerical grids appears to

have acceptable results. However, looking at temperature distribution in the flow field, grid #2

(# = 128) produces regions with negative temperature which is physically incorrect. A further

investigation showed that these negative temperatures are located exactly under the heat generat-

ing sphere, which was caused by high gradients resulting from top-hat @ function.

As a result of this observation, two other heat generation distribution was tested. In or-

der to understand the differences between these heat generation functions another set of simula-

tions was performed. In these simulations, non-MHD flow �0 = 0 was solved using grids #2

(# = 128) and #3 (# = 256). The initial condition used for these analysis –except the top-hat

simulation– was the result of the numerical study of the case with �0 = 0 and grid #5 (# = 512)

after 100 non-dimensional time units. The results are shown in figure 6.4. Based on these results

69



0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

1.6

1.8
N = 64

N = 128

N = 256

N = 384

N = 512

(a)

time

〈 @
>
D
C
〉

0 20 40 60 80 100

0.2

0

0.2

0.4

0.6

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
N = 64

N = 128

N = 256

N = 384

N = 512

(b)

time

)
0
E
6

�
0
E
6

Figure 6.3: Time signals of 〈@>DC〉 (a) and )0E6 and �0E6 (b) �0 = 0 and top-hat heat generation
function for different grids. In figure (b) the)0E6 and �0E6 are shown using a solid line and a dashed
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it was decided to perform the study using the Gaussian-like heat generation function.

In these simulation, also two different ways of calculating outward heat flux was used.

One is calculating using the surface integral on all boundaries
(∫
�

(
m)
m=

)
3�

)
and the other was

using the volume integral of Laplacian of the temperature
(∫
+

(
∇2)

)
3+

)
. The difference between

these two values is due to the numerical resolution of the grid. This was verified using numerical

simulations over a much smaller domain !G = 2.

Considering the results obtained from these simulations, the rest of the cases was sim-

ulated using Gaussian-like heat generation function and the solver calculated outward heat flux

using
(∫
+

(
∇2)

)
3+

)
. A new procedure was used to perform the grid studies for the cases with

�0 > 0. Using the result of �0 = 0 and # = 512 as initial condition, the simulations were

performed for different values of �0 and both the vertical and transverse magnetic field. These

simulation were initially performed for 100 non-dimensional units on the grid #2 (# = 128).

Then using the result from grid #2 simulations as initial condition, numerical studies were con-

tinued on grids #2 and #3 for another 100 non-dimensional time units. Lastly, using the result of

grid #3 as initial condition for grid #4 (# = 384), simulation continued for either 50 or 100 non-

dimensional time unites for all three grids. The decision to continue simulations further than 50
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Figure 6.4: Time signals of 〈@>DC〉 (top row), )0E6 and �0E6 (middle row) and DI and ) at (G, H, I) =
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time units were based on the development of time signals.

In what follows results of grid study are shown using time signals of volume averaged out-

ward heat flux, volume averaged temperature and volume averaged kinetic energy. These results

are discussed in two parts. First, the results of the flow with horizontal imposed magnetic field,

and next results of the case with vertical imposed magnetic field.

6.1.1 Horizontal magnetic field

Figures 6.5 and 6.6 shows the time signals for volume averaged outward heat flux and

volume averaged temperature and kinetic energy respectively. They show the numerical grid #2 is

not producing sufficient results. On the other hand, the grids #3 and #4 shows a good agreement

in both the volume averaged outward heat flux and temperature, except for the case with �0 = 50.

Based on the result of this grid study, two-dimensional contours of vertical velocity is

shown through box mid-planes in figures 6.7, 6.8 and 6.9. Figure 6.9 also includes in-plane ve-

locity vectors. For the case of non-MHD flow (�0 = 0), the plume and fluid flow around the

plume is turbulent. One of the most prominent features of buoyant plumes is the phenomenon

of puffing [60, 61], which is the periodic shedding of large vortical structures from the plume

flows due to the buoyant flow instability. This puffing or periodic oscillatory behavior is the most

prominent feature of buoyant plumes in the transitional regime [62]. This phenomenon can be

observed in this state of the flow.

It is also important to point out that the volume averaged outward heat flux is expected to

have an average value of unity, which is not the case in the time signals shown. This relates to the

fact the the grid resolution used to perform the numerical study is not sufficient to capture gradi-

ents accurately. However, as the �0 increases and the fluctuation in the flow domain decreases

the error of the outward heat flux decreases.

Introducing magnetic field, as expected, results in suppression of the gradients along the

magnetic field, as well as suppression of turbulent structures. when there is no magnetic field,

the flow has positive vertical velocity in the bottom, then reaches to top of the box, gets colder
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Figure 6.5: Time signals of 〈@>DC〉 for �0 = 0 (a), �0 = 50 (b), �0 = 100 (c), and �0 = 200 (d).
These results are for Gaussian-like heat generation and 〈@>DC〉 is calculated using volume integral
of ∇2) .
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Figure 6.6: Time signals of )0E6 and �0E6 for �0 = 0 (a), �0 = 50 (b), �0 = 100 (c), and
�0 = 200 (d). These results are for Gaussian-like heat generation and 〈@>DC〉 is calculated using
volume integral of ∇2) . )0E6 and �0E6 are shown using a solid line and a dashed line, respectively.
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and descend near the side walls of the box. However, when there is a horizontal magnetic field,

the flow regime is completely different. The plume will be elongated in direction of the magnetic

field which results in a combination of downward and upward flow near the Hartmann walls –

walls perpendicular to the magnetic field. The main downward motion of the flow in these cases

is happening at the other two side walls –parallel to the magnetic field.

Another important observation phenomenon is that at moderate magnetic field intensities

�0 ≤ 200, the plume has oscillating behavior. Amplitude and frequency of such oscillations in-

crease from �0 = 50 to �0 = 100, subsequently decrease at �0 = 200 and eventually disappear

at �0 = 400. This behavior can also be seen in the figures 6.5 and 6.6.

There are several issues with the numerical simulation of this problem. First, since the di-

ameter of the heat generation zone is much smaller than the box dimensions, there is a high tem-

perature gradient near the center of heat generation zone. In addition to that, introducing mag-

netic field, and the fact that the walls are electrically insulating, results in formation of the Hart-

mann boundary layers at Hartmann walls. The thickness of these boundary layers decrease as the

intensity of the magnetic field increases. As a result higher resolution grid is required to be able

to resolve those boundaries accurately.

6.1.2 Vertical magnetic field

Applying vertical magnetic field will result in a completely different flow formation. The

first observation is all the fluctuation are suppressed. This may be in contrary to the time signals

shown in figure 6.10, but those fluctuations are only seen in grid #2, which is a lower resolution

grid. This behavior is believed to be a result of numerical artifacts rather then the physics of the

problem.

Looking at vertical velocity contours, it can be seen that by increasing the intensity of the

magnetic field, the plume becomes weaker which is an expected behavior of the MHD flows. On

the other hand the instabilities seen at moderate �0 in the previous case is not seen here. The

plume has no oscillating behavior.
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Figure 6.7: Two-dimensional vertical velocity DI contours at vertical mid-planes for �0 = 0 (a),
�0 = 50 (b) and �0 = 100 (c) with horizontal imposed magnetic field
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Figure 6.8: Two-dimensional vertical velocity DI contours at vertical mid-planes for �0 = 200 (a)
and �0 = 400 (b) and �0 = 100 with horizontal imposed magnetic field
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Figure 6.9: Two-dimensional vertical velocity DI contours at the horizontal mid-plane for �0 = 50
(a), �0 = 100 (b), �0 = 200 (c) and �0 = 400 (d) with horizontal imposed magnetic field.
In-plane velocity vectors are also shown.
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Figure 6.10: Time signals of 〈@>DC〉 for �0 = 0 (a), �0 = 50 (b), �0 = 100 (c), and �0 = 200 (d)
when magnetic field is applied vertically. These results are for Gaussian-like heat generation and
〈@>DC〉 is calculated using volume integral of ∇2) .
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Figure 6.11: Two-dimensional vertical velocity DI contours at one of the vertical mid-planes for
�0 = 50 (a), �0 = 100 (b), �0 = 200 (c) and �0 = 400 (d) with horizontal imposed magnetic
field. In-plane velocity vectors are also shown.
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Figure 6.12: Two-dimensional vertical velocity DI contours at the horizontal mid-plane for�0 = 50
(a),�0 = 100 (b),�0 = 200 (c) and�0 = 400 (d)with horizontal imposedmagnetic field. In-plane
velocity vectors are also shown.
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(a)

(b)

(c)

Figure 6.13: The setup for the study of the thermal plume generated by heat flux from a thin wire.
The picture (a) demonstrates a 3D representation of the domain. The heated wire is shown in
red. The blue and green cross-sections, show the location of the planes in which data gathering
is performed. The picture (b) shows the exact location of the data probing points. In the experi-
ment, data is gathered at the locations marked by a blue "X". The circle around them represents
the uncertainty in the location of measurement. In the numerical setup time signal of temperature
and vertical velocity is recorded at both orange and blue "X" locations. Picture (c) illustrates the
values of volumetric heat generation @ at any given horizontal slice.

6.2 Heat generation by thin wire

The setup for this part is inspired by an ongoing experiment, done by our colleagues at the

Joint Institute of High Temperatures in Russia, which consists of an elongated vertical box with

a square base containing mercury. The aspect ratio of the box is 1:1:12.32, with a square base of

56<< × 55<<. There is a thin wire located in the middle of the box and is stretched from bottom

to the top. Electric current passes through the wire and the generated heat is transferred to the

liquid metal. There is an external transverse uniform magnetic field applied to the box. All walls

are electrically insulating. An illustration of this setup is shown in figure 6.13.

In this setup, in addition to recording the values representing the total state of the flow,
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Property !G × !H × !I Ra Pr Ha
Value 2 × 2 × 24.64 8 × 105 0.024 300, 600

Table 6.3: Non-dimensional geometry and parameters of the plume generated by a thin wire, (see
text for a detailed discussion and definition of Ra, Pr, and Ha in (2.30)).

temperature and velocity components are also recorded at points shown in figure 6.13. Table 6.3

list the non-dimensional parameters used to study this problem. Calculated Ra and Ha numbers

correspond to total heat generation of 250, and magnetic field intensity of 0.818) , respectively.

In the numerical setup, since the wire diameter is much smaller than the typical length

scale of the flow, its presence is neglected. The volumetric heat generation function at a hori-

zontal cross section is shown in figure 6.13. Our preliminary results showed the formation of the

plume starts by an increase in the temperature of the liquid metal, and subsequently an upward

motion of liquid near the wire. Due to the presence of the magnetic field the plume, the gradient

of the velocity parallel to the direction of magnetic field is small, on the other hand temperature

distribution is elongated in direction perpendicular to the magnetic field. Figure 6.14 illustrates

the vertical velocity and temperature fields in a horizontal plane.

To perform this study, due the problems mentioned in the section 6.1, the numerical grid

is chosen to be uniform in all three directions. The grids used are listed in table 6.4. Using the

grids #1 and #2, preliminary study of the problem was done. The results showed that the intro-

ducing magnetic field at �0 = 300 will result in the oscillating plume similar to the case of point

heat source. Increasing the magnetic field intensity to �0 = 600 resulted in a complete suppres-

sion of fluctuations and a steady state flow. This, behavior however was not expected from the

experimental results. To study the effect of surrounding disturbance, a random noise was added to

the flow of �0 = 600 at every time step, which resulted in some fluctuations at the beginning but

the magnetic field effects managed to dampen the amplitude of those fluctuations as well.
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Grid # #G #H #I
Clustering

G H I

1 64 64 64 W = 0 W = 0 W = 0
2 96 96 96 W = 0 W = 0 W = 0
3 128 128 128 W = 0 W = 0 W = 0

Table 6.4: Different grid parameters used for grid sensitivity study of artificially generated plume
by hot wire. The last three columns show the types and parameters of grid clustering in each
direction: blended Chebyshev and uniform grids (3.1) with the weight W, hyperbolic tangent (3.2)
with the clustering coefficient �, and a purely uniform grid W = 0.

(a) (b)

Figure 6.14: Vertical velocity (a) and temperature (b) fields in a horizontal cross section for the
case with inward heat flux generation by a thin wire at Ra = 8 × 105 and Ha = 300.
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CHAPTER 7

Conclusion and Future Work

This dissertation presents a comprehensive study of magnetoconvection in systems with

walls of finite electrical conductivity. The research focuses on understanding the intricate interac-

tion between thermal convection and magnetic fields in electrically conducting fluids, such as liq-

uid metals, within confined spaces. The primary contributions of this study are the development

and validation of a robust numerical solver, a detailed parametric study on the effects of wall elec-

trical conductivity, and an investigation into the dynamics of thermal plumes in strong magnetic

fields.

7.1 Tensor-Product-Thomas Solver and Verification

A robust numerical solver based on a second-order finite difference scheme and the

Tensor-product-Thomas (TPT) method was developed. This solver efficiently handles the bound-

ary conditions associated with walls of finite electrical conductivity without iterative processes.

The accuracy of the solver was validated through comparisons with established results for both

electrically conducting and insulating walls, ensuring the reliability of the numerical simulations

conducted in subsequent chapters.
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7.2 Effect of Walls of Finite Electrical Conductivity

A detailed parametric study was conducted to investigate the effects of wall electrical con-

ductivity on magnetoconvection. Various configurations were explored, including cases where

all walls have the same electrical conductivity and scenarios with only specific walls being elec-

trically conductive. The results revealed significant changes in the flow field and heat transfer

patterns, underscoring the importance of considering wall conductivity in magnetoconvection

studies.

Future exploration of other parameters such as '0, can provide a deeper understanding

of the internal magnetoconvection flows under bounded by electrically conducting walls. An-

other avenue to explore further in this problem is studying the effect of magnetic field direction as

well as initial condition on the development of the flow, especially flow with low to moderate �0,

which shown to be sensitive to such changes.

7.3 Dynamics of A Thermal Plume Affected by A Magnetic

Field

The dynamics of thermal plumes affected by magnetic fields were studied for two differ-

ent plume generation configurations: a point heat source and a line heat source (e.g., thin wire).

The study examined the effect of the magnetic field direction on the development of the flow. Re-

sults showed that a transverse magnetic field induces transient, oscillating plumes, with the tran-

sient behaviors decreasing as the magnetic field intensity increases. In contrast, a vertical mag-

netic field resulted in a completely different behavior. The study of artificially generated plume

using a hot wire under the influence of a transverse impose magnetic field, confirmed the obser-

vation of the study of the plume generated by a point heat source. Both started with an oscillation

and as intensity of the magnetic field increased the suppression of the flow became stronger until

the flow is completely steady state.
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Building on the findings of this study, several avenues for future research are identified.

Extended studies on the dynamics of thermal plumes in different configurations and with varying

magnetic field strengths are necessary. In addition to changing the parameters, a grid clustering

method should be developed to increase the accuracy of numerical studies. It is worth mentioning

adaptive mesh refinement methods can be used to increase accuracy of the grid at high gradient

areas, however implementing such methods using the current solver was not feasible. The pre-

sented results are extremely helpful in identifying the regions that can benefit from grid cluster-

ing. Lastly, the effect of the wall conductivity on these plumes can be studied.
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