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Three-dimensional roof collapse analysis in circular tunnels in rock 
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A B S T R A C T   

Collapse of a roof in circular cross-section tunnels is analyzed. The kinematic approach of limit analysis is uti-
lized, with strength of the rock described by the Hoek-Brown failure criterion. The parametric form of the Hoek- 
Brown function is used to avoid introduction of an alternative explicit form of the shear strength criterion. Three 
measures of safety are considered: stability number, the factor of safety, and the support pressure needed to 
assure roof stability. The shape of the rock block in the failure mechanism consists of a right elliptic cone with a 
piece-wise linear generatrix and a prismatic section inserted between the two halves of the cone. The complexity 
of the cross-section of the block with the tunnel makes for an intricate integration of the rates of the dissipated 
work and the work of external forces. All three measures of safety are strongly dependent on the quality of rock 
described in the Geological Strength Index, whereas the dependence on the rock type captured in coefficient mi is 
less distinct. The length of the roof failure mechanism is subject to a constraint dependent on the spacing of the 
supporting ribs in the tunnel. All measures of safety (or stability) are distinctly dependent on the length 
constraint; the shorter the spacing between the ribs, the safer the tunnel against roof collapse. The 2D analysis 
yields the most conservative outcome.   

1. Introduction 

Construction and operation of tunnels are among the challenges in 
the development of transportation infrastructure. Collapse of the tunnel 
roof is among the more common types of failure, both during con-
struction and during service. While available two-dimensional (2D) 
analyses can provide conservative estimates of the roof safety,1–3 more 
accurate three-dimensional (3D) analyses pose a challenge, because of 
the complex geometry of the failure zone, exacerbated by the nonlinear 
pressure dependency of the rock shear strength. 

Among the first analyses of tunnel roof stability was that of Lipp-
mann,4 who applied limit analysis to a flat-ceiling tunnel in a rock with 
strength governed by the Mohr-Coulomb failure criterion. Since then, a 
number of analytical or numerical studies have been presented with 2D 
analyses for flat-ceiling or circular cross-section roofs.1–3,5–8 

Three-dimensional stability analyses of tunnel roofs are not as common, 
because of their complexity, especially for tunnels with non-flat ceiling. 

Tunnels in good quality rock typically have a continuous lining, but 
in variable rock or poor quality rock, periodic supports in the form of 
structural ribs may be installed. They may take the form of rolled steel 
sections or lattice girders combined with sprayed concrete. The presence 
of ribs will likely influence the potential failure mechanism by limiting 

its length to the rib spacing. Such collapse mechanisms will have a 3D 
geometry and will necessitate a 3D analysis. Consideration of such 
mechanisms in design is likely to have a beneficial effect on the eco-
nomics of tunnel construction. 

Most contemporary tunnel construction procedures involve tunnel 
boring machines (TBM), which open a circular cross-section cavity in the 
rock. A roof collapse is possible behind the TBM during its operation, 
thus some TBMs are equipped with a roof shield protecting the crew and 
the machine. Consideration of roof collapse during both the tunnel 
construction and service requires a 3D analysis of the roof’s stability. 
Attempts at the 3D analyses are scarce, and those available in the 
literature consider flat-ceiling tunnels. Yang and Huang9 extended 
Fraldi and Guarracino1 plane-strain variational solution for tunnels with 
rectangular cross-sections. Huang et al.10 presented a 3D axi-symmetric 
generalization of a 2D analytical solution for circular tunnels suggested 
earlier by Fraldi and Guarracino.7 This solution, however, is applicable 
to spherical cavities, and not to tunnels with circular cross-sections, 
because the cross-section of the cylindrical tunnel surface with a sur-
face of a right circular cone is not axisymmetric. Besides, the expectation 
that a 3D roof collapse of a long cavity (tunnel) should have 
axi-symmetric geometry is rather arbitrary. It might also be of interest 
that previous attempts focused on the shape of the block falling from the 
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roof of a cavity, whereas this paper focuses on quantitative safety 
assessment measures, with the block shape definition being an inter-
mediate step in the analysis. 

In order to account for a complex cross-section of the falling rock 
block and the cylindrical surface of the tunnel, a semi-analytical method 
was devised. At the cost of an elaborate integration scheme, the intricate 
geometry was accounted for. The kinematic approach of limit analysis 
for rocks governed by the modified Hoek-Brown strength criterion11 was 
used. It might be of interest that the analytical approaches used in earlier 
attempts1,9,10 all used an alternative form of the Hoek-Brown function 
with the shear strength being an explicit function of the normal stress. 
This is because the original form of the Hoek-Brown criterion is a 
function of the principal stresses, not convenient in variational limit 
analysis. To avoid this issue, a parametric form of the Hoek-Brown cri-
terion is used in the approach presented in this paper. 

The modified Hoek-Brown failure criterion for rocks is briefly 
reviewed in the next section, concluding with comments on applicability 
of limit analysis to rocks. The collapse mechanism is described, and the 
analysis is outlined as to how to calculate the three measures of safety 
(stability): the stability number, the factor of safety, and the minimum 
support pressure needed to render tunnels in weak rock stable. Nu-
merical results are presented in charts and tables. The authors are not 
aware of any earlier studies reporting the quantitative safety measures 
for three-dimensional roof collapse mechanisms in rock governed by the 
Hoek-Brown failure criterion, in tunnels with circular cross-sections. 

2. Hoek-Brown failure criterion for rocks 

Various failure criteria have been suggested to describe the strength 
of rocks, e.g., Paul,12 Bieniawski,13 Barton,14 and Hoek and Brown.15 

Among those, the Hoek-Brown failure criterion became preferred by 
engineers over the alternatives, because of its empirical nature and its 
direct link to the quality, type, and state of the rock. A serious of en-
hancements have been introduced into that criterion over the years, and 
they were summarized in a paper by Hoek and Marinos.16 

2.1. Generalized Hoek-Brown strength criterion 

The rock is considered isotropic, while the quality, the type of the 
rock, and its disturbance are considered through a relatively small 
number of parameters. The most recent version of this function11 is often 
referred to as the generalized Hoek-Brown criterion, and it takes the 
following form 

σ01¼ σ03 þ σci

�

mb
σ03
σci
þ s
�a

(1)  

with the dimensionless material parameters defined as 

mb¼mie

�

GSI� 100
28� 14D

�

(2)  
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1
2
þ

1
6
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@e� GSI
15 � e� 20
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s¼ e

�

GSI� 100
9� 3D

�

(4)  

where σ01 and σ03 are the major and minor effective principal stresses, σci 

is the uniaxial compressive strength of intact rock, and GSI is the 
Geological Strength Index (typically in a range from 5 to 100). Param-
eter mi depends on the rock type (typically in a range of 5–30), and D is 
the disturbance factor (in a range of 0–1). More detailed description of 
these properties and their estimates can be found elsewhere (Marinos 
and Hoek17 and Hoek et al.11). The strength criterion in Eq. (1) can be 

represented as the EFGE section of the failure surface in the 
Haigh-Westergaard space in Fig. 1(a), where σ01 � σ02 � σ03 (all effective 
stresses). The function in Eq. (1) is independent of intermediate prin-
cipal stress σ02; therefore, axis σ02 must be parallel to surface EFGE. 
Consequently, any plane from a pencil of planes through axis σ02 will 
form a straight-line cross-section with surface EFGE, parallel to axis σ02 

(for example, G0F0 ). 
Any point on surface EFGE represents a limit-state combination of 

stresses σ01; σ02 and σ03 : Transformed onto a τ; σn plane, such a stress 
state is represented by three stress circles, as illustrated by the dashed 
semi-circles in Fig. 1(b). Defining a triaxial isotropic tensile strength as 
σt, and setting all principal stresses to � σt, all three stress circles reduce 
to one point at E*. The isotropic tensile strength is uniquely defined by 
the strength criterion in Eq. (1); substituting σ01 ¼ σ03 ¼ � σt in Eq. (1), 
one obtains 

σt ¼
sσci

mb
(5)  

Isotropic tensile strength σt is not necessarily equal to the one- 
dimensional or biaxial tensile strength, although, typically, it does not 
differ much (for minimally disturbed rocks, D ¼ 0, the uniaxial tensile 
strength is smaller than σt, but the difference does not exceed 4%, and it 
is less than 1% for a large range of GSI and mi). 

Fig. 1. The Hoek-Brown failure criterion: (a) failure surface in Haigh- 
Westergaard space, and (b) strength envelope in τ; σn plane, with three stress 
circles mapping a point from the failure surface in σ01; σ

0

2; σ
0

3 space. 
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2.2. Parametric form of the Hoek-Brown strength criterion 

The Hoek-Brown criterion was developed as a function of the major 
and minor effective principal stresses. Some of the methods in 
geotechnical engineering and geomechanics call for a strength envelope 
expressed explicitly in terms of the traction components ðτ; σnÞ on the 
failure surface. For that reason, previous attempts at stability analysis of 
cavities and tunnels in rocks1,9 did not use the original Hoek-Brown 
criterion in Eq. (1), but rather its approximation τ ¼ fðσnÞ in the form 

τ¼Aσci

�
σn þ σt

σci

�B

(6)  

where A and B are the dimensionless parameters determined from the 
best fit into the H–B criterion in the range of interest. A function similar 
to that in Eq. (6) was suggested by Hoek and Brown as an alternative 
criterion form in their original paper.15 In this paper, we avoid using the 
approximate form in Eq. (6); instead, we utilize a parametric form of the 
criterion in Eq. (1). For this, rupture angle δ, shown in Fig. 1(b), is used 
as a parameter.18 Making use of the procedure in Balmer19 (see also 
Kumar20), the components of the traction vector on the failure surface 
can be expressed as 

σn ¼ σci

��
1

mb
þ

sinδ
mba

��
mbað1 � sinδÞ

2sinδ

�
1

1� a �
s

mb

�

(7)  

τ ¼ σci

�
cosδ

2

�
mbað1 � sinδÞ

2sinδ

� a
1� a
�

(8) 

The expressions in Eqs. (7) and (8) can now be used for varying 
parameter δ to find points on the strength envelope on plane τ; σn, 
identical to the envelope of all limit states expressed in terms of major 
and minor principal stresses σ01 and σ03 in Eq. (1). 

3. Problem statement and the method of solution 

3.1. Measures of roof safety 

Three measures of roof safety are considered in this paper, the first 
being the stability number, defined as 

N¼
�σci

γR

�

crit
(9)  

where σci is the compressive strength of the intact rock, γ is its unit 
weight, and R is the radius of the tunnel cross-section. Stability number 
N is a dimensionless combination of the rock properties and the tunnel 
size for which the loss of stability can occur (critical combination). The 
safety margin of the tunnel against roof instability is reflected in the 
difference between the dimensionless group σci/γR for an existing tun-
nel, referred to here also as the characteristic strength number, and its 
critical value N. Tunnels with a characteristic strength number larger 
than the stability number are safe against roof collapse, and the larger 
the difference, the larger the safety margin. 

The second measure of safety considered is the factor of safety, 
defined as a ratio of the shear strength of the rock, τ, to the reduced value 
of the shear strength, τd, which is needed for the tunnel roof to maintain 
limit equilibrium (demand on shear strength) 

F¼
τ
τd

(10) 

This definition of the factor of safety is not commonly used for rocks 
with strength defined by non-linear envelopes in the τ; σn plane, because 
of some analytical intricacies. The factor of safety so defined is, effec-
tively, a strength reduction factor, and it is demonstrated in this paper 
that this definition of the factor of safety can be used successfully for 
rocks with strength defined by the Hoek-Brown failure criterion. 

The third measure of safety considered is the critical supporting 

pressure, p (or its dimensionless form p/γR). This supporting pressure is 
an induced reaction of the tunnel lining to the potentially collapsing 
rock block, and it will be assumed in the analysis as a fictitious, uni-
formly distributed pressure on the inside of the tunnel, necessary to 
prevent roof collapse in tunnels deemed unstable (when characteristic 
strength number σci=γR is lower than the stability number in Eq. (9)). 

3.2. Problem description 

Roof stability in tunnels with a circular cross-section is considered. 
The tunnels considered are deep enough, so that the collapse mechanism 
does not propagate to the ground surface. This restriction can be easily 
removed as shown by Fraldi et al.,8 to make the method applicable to 
both deep and shallow tunnels. The strength of the rock is described by 
the Hoek-Brown failure criterion and the initial irreversible deformation 
is governed by the normality plastic flow rule. The tunnel lining is 
characterized by a ribbed structure, with a potential failure limited to 
sections between two neighboring ribs. 

When calculating the stability number or the factor of safety, a stress- 
free boundary condition will be defined on the interior surface of the 

Fig. 2. A schematic of 3D roof failure surfaces: (a) right elliptic cone block 
intersecting the circular cross-section tunnel, and (b) right elliptic cone with a 
prismatic insert. 
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tunnel. When calculating the supporting pressure, the boundary condi-
tion on the collapsing (or falling) block surface will be defined as uni-
form vertical velocity, and zero velocity elsewhere on the surface of the 
tunnel. The kinematic approach of limit analysis will be used, which 
does not require calculation of the true stress field, but it needs the 
construction of a collapse mechanism that will assure the best bound to 
the calculated safety measure. Collapse mechanisms considered are 
shown schematically in Fig. 2. The first of the two examples illustrates a 
block in the shape of a right elliptical cone with a piece-wise linear 
generatrix. During incipient failure, the block moves downward with 
uniform vertical velocity. The block in the second example includes a 
prismatic segment of length l inserted between two halves of the block in 
Fig. 2(a). Length L defines the maximum length of the collapse mecha-
nism determined by the spacing of the ribs in the tunnel. 

3.3. Kinematic approach of limit analysis 

A fundamental premise of Limit Analysis is plastic (ductile) behavior 
of the material. Therefore, application of Limit Analysis to rocks requires 
a comment, as rocks at low confining stresses exhibit brittle behavior. 
Chen21 argued that the assumption of rock ductility may be question-
able, but if the strain of geomaterial is small, and does not reach a brittle 
drop in stress on the stress-strain deformation curve, then the deform-
ability “may be sufficient to permit the consideration of limit theorems 
…” The support for this argument comes from classical experiments 
indicating some ductility in irreversible behavior prior to collapse of 
rock specimens.22 Therefore, applications of limit analysis to rocks and 
concrete can be found in the earlier subject literature.23–25 

Application of Limit Analysis theorems requires plastic deformation 
to be governed by a convex failure criterion and the normality plastic 
flow rule. The kinematic theorem states that the rate of work dissipation 
in any kinematically admissible collapse mechanism is not less than the 
work rate of the true external forces 

Z

V

σij _εpl
ij dV þ

Z

L

σijni½v�j dL �
Z

S

Tivi dSþ
Z

V

Xivi dV (11)  

V, S and L are the volume of the mechanism, its boundary surface and the 
area of the kinematic discontinuities (rupture surfaces), respectively. Ti 
is the boundary traction vector, σij is the stress tensor associated with 
admissible kinematics, and ni is the unit vector perpendicular to 
discontinuity surface L. Vector vi and _εpl

ij are the velocity vector in the 
mechanism and the associated tensor of plastic strain rate, respectively, 
and ½v�j denotes the velocity discontinuity vector. Xi is the vector of 
distributed forces, e.g., weight. The theorem in Eq. (11) allows one to 
calculate an upper bound to a load causing failure of a structure, or a 
bound to some other measure of stability. 

4. Analysis of 3D tunnel roof collapse 

4.1. Mechanism with piece-wise linear right elliptical cone block 

The first mechanism suggested is the one schematically illustrated in 
Fig. 2(a). The rock block in this mechanism is generated by a series of n 
right elliptical cones, each with a different inclination of the generatrix, 
and with the height defined by co-ordinate hj, as shown in Fig. 3 (j ¼ 1, 2 
… n). The failure surface separating this block from the stationary rock 
mass above is then determined by a series of n frustums of right elliptical 
cones. Consequently, the block has the shape of a right elliptical cone 
with a piece-wise linear generatrix. In general, an elliptical cone is 
described by the following equation (origin of the coordinate system in 
the center of the cone base) 

x2

a2þ
y2

b2¼
ðz � hÞ2

h2 (12)  

where a and b are the half-axes of the base in the x and y directions, 

Fig. 3. A mechanism with piece-wise linear right elliptic cone block: (a) horizontal cross-sections of the block, (b) vertical cross-section xOz, and (c) projection of the 
block contour on the longitudinal yOz plane. 
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respectively, and h is the cone height. For convenience, Eq. (12) can be 
transformed for the jth cone into a function of inclination angle αj of the 
generatrix defined as tan� 1 ðh=aÞ

x2 þ
y2

λ2 ¼

�
z � hj

�2

tan2αj
(13)  

where λ is ratio b/a, equal for all cones generating the rock block, Fig. 3. 
It can assume values either smaller or larger than one. When λ ¼ 1, Eq. 
(13) defines the right circular cone. Coordinate hj (Fig. 3(b)) describing 
the locus of the jth cone apex is 

hj ¼ xjtanαj þ zj (14)  

with zj being the coordinate of the base of the jth frustum. Ratio λ is not 
predetermined in the mechanism; rather, it will be found in an optimi-
zation effort to find the best bound to the stability measure sought. 

Associativity of the plastic flow rule used in limit analysis requires 
the vertical velocity of the block to be inclined at rupture angle δ (see 
Fig. 1(b)) to the rupture surface. For a right circular cone surface, this 
angle is equal to half of the cone apex angle and it is independent of the 
position on the cone (or frustum). For a right elliptic cone, however, this 
angle depends on the location on the cone described by angular coor-
dinate θ (Figs. 3(a) and 4). Because the failure surface in the mechanism 
consists of a series of frustums derived from a series of elliptic cones, 
each with different generatrix, the rupture angle on the failure surface is 
a function of angular coordinate θ, and it also will vary from frustum to 
frustum. Distribution of angle δ on the rupture surface needs to be 
known in order to calculate the rate of work dissipation during incipient 
failure. Angle δ at any point M on an elliptical cone failure surface can be 
calculated as a complementary angle to the angle between the vertical 
velocity vector and an inward vector perpendicular to the cone surface 
at point M. Making use of Eq. (A15) in the Appendix and Eq. (13), the 
rupture angle on frustum j of the mechanism can be written as a function 
of the locus defined by angular coordinate θ. 

δjðθÞ ¼
π
2
� cos� 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cosθ
cotαj

�2

þ

�
sinθ

λcotαj

�2

þ 1

s (15) 

For a right circular cone (λ ¼ 1), this equation reduces to 

δj ¼
π
2
� αj (16) 

In order to integrate the rate of work dissipation and the rate of 
external work, the contour of the cross-section of the circular tunnel and 
the right elliptic cone block needs to be determined. The circular tunnel 
cross-section is defined by 

x2þ z2 ¼ R2 (17)  

where R is the tunnel radius. The shape of the cross-section of the two 
surfaces follows directly from Eqs. (13) and (17) 

xðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � z2

p

yðzÞ ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cot2αj
�
z � hj

�2
� R2 þ z2

q (18) 

This contour forms a 3D curve, which complicates integration of both 
the rate of work dissipation and the rate of work of the rock weight. The 
rock block consists of n frustums, fully defined by n angles ηj and n angles 
αj (Fig. 3(b)). While the number of frustums n forming the block will be 
predetermined, specific angles ηj and αj will be independent variables in 
the optimization procedure to determine the best bound to the problem 
solution. The complex shape of the block requires a different integration 
procedure of work rates for frustums with vertical coordinate z < R, a 
transition frustum, which includes point C (Figs. 3 and 4), and frustums 
where z � R. The transition frustum is denoted with index j ¼ k, and 
integration procedures are different for 1 � j < k, j ¼ k, and k < j � n. 

Because the blocks shown in Fig. 2 move downward as rigid bodies, 
the entire effort of the rock is dissipated within a narrow material band 
separating the blocks from the stationary rock. In calculations, this band 
will be idealized as a surface, and will be referred to as a failure or 
rupture surface (or kinematic discontinuity), with the work dissipation 
rate described in the second term in Eq. (11). The rate of work dissi-
pation per unit area of the rupture surface can be written more specif-
ically as 

d ¼ vðτcosδ � σnsinδÞ (19)  

where σn and τ are determined in Eqs. (7) and (8), and δ is given in Eq. 
(15). 

Utilizing Eqs. (A3) through (A6) in the Appendix, infinitesimal area 
element dS of the rupture surface in Fig. 4 can be written as 

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ej Hj � G2
j

q

dθdz (20)  

where Ej, Gj, Hj are defined in the Appendix, Eqs. (A7)–(A9) and angular 
coordinate θ is shown in Fig. 4. Integrating Eq. (19) over surface S, and 
utilizing Eq. (15), the following expression was obtained for the total 
rate of dissipated work 

D ¼ 4v

(
Xk� 1

j¼1

Z zjþ1

zj

Z θmax
j ðzÞ

0
fjðz; θÞdθdz þ

Z R

zk

Z θmax
k ðzÞ

0
fkðz; θÞdθdz þ

Z zkþ1

R

Z π=2

0
fkðz; θÞdθdzþ

Xn

j¼kþ1

Z zjþ1

zj

Z π=2

0
fjðz; θÞdθdz

)

(21)  

where 

θmax
j ðzÞ ¼ tan� 1

�
yðzÞ
xðzÞ

�

¼ tan� 1

0

@λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cot2αj
�
hj � z

�2

R2 � z2 � 1

s 1

A; 1 � j � k

(22)  

and 

fjðz; θÞ ¼
�
τjðθÞcosδjðθÞ � σnjðθÞsinδjðθÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EjHj � G2
j

q

(23) 

Fig. 4. Right elliptic cone rupture surface and illustration of rupture angle δj, 
infinitesimal surface element dS, maximum integration angle θmax

j (Eq. (22)), 
and area Aj (Eq. (24)). 
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and σnj and τj are determined from Eqs. (7) and (8) with appropriate 
angle δj. For a given elliptical base frustum j, rupture angle δ is a function 
of angular coordinate θ, but not z; however, for given θ, angle δ does 
change from frustum to frustum. When z � R, θmax

j is equal to π/2, as the 
cross-section of the block becomes a full ellipse. 

The shaded areas of the horizontal cross-sections in Fig. 3(a) (and in 
Fig. 4) show portions intersecting the rock (not the tunnel space). Based 
on the geometrical relationships in Fig. 3, they can be calculated for z <
R (1 � j � k) as 

AjðzÞ ¼
λcot2αj

�
hj � z

�2

2

n
θmax

j ðzÞ�

tan� 1

"
ðλ � 1Þcotαj

�
hj � z

�
sin2θmax

j ðzÞ
ðλþ 1Þcotαj

�
hj � z

�
þ ðλ � 1Þcotαj

�
hj � z

�
cos2θmax

j ðzÞ

#)

�
xðzÞ yðzÞ

2

(24) 

This equation is based on Eq. (A11) in the Appendix. Infinitesimal 
volume element dV for calculating the work of the block weight is 

dV ¼ AjðzÞ dz (25) 

Using Eqs. (24) and (25) for z < R, and (A1) for z � R, the rate of work 
Wγ done by the rock weight was determined as 

Wγ ¼ γv

(

4
Xk� 1

j¼1

Z zjþ1

zj

AjðzÞdz

þ4
Z R

zk

AkðzÞdzþ
π
3

λcot2αk

h
ðhk � RÞ3 � ðhk � zkþ1Þ

3
i

þ
Xn

j¼kþ1

π
3

λcot2αj

h�
hj � zj

�3
�
�
hj � zjþ1

�3
io

(26) 

Stability number. The theorem in Eq. (11) can be written as a balance 
of work rates during incipient failure from which a lower bound to the 
stability number, Eq. (9), can be calculated 

D ¼ Wγ : (27)  

Upon substitution of Eqs. (21) and (26) into Eq. (27), the stability 
number can be evaluated. An explicit equation for stability number N is 
elaborate, and it was found more practical to use a computerized pro-
cedure to evaluate N. Computations and results are discussed later in the 
paper. 

Factor of safety. Evaluating safety factor F, as defined in Eq. (10), 
requires constructing a failure mechanism in the rock with the shear 
strength reduced by a factor equal to the factor of safety, as illustrated in 
Fig. 5. The reduced-strength Hoek-Brown criterion has the same general 
parametric form as that in Eqs. (7) and (8) 

σnd ¼ σn ¼ σci

��
1

mb
þ

sinδj

mba

��
mba

�
1 � sinδj

�

2sinδj

�
1

1� a �
s

mb

�

(28)  

τd ¼
τ
F
¼

σci

F

�
cosδj

2

�
mba

�
1 � sinδj

�

2 sinδj

�
a

1� a

�

(29)  

with the exception that the shear strength is now reduced by factor of 
safety F and the rupture angle δj in Eqs. (28) and (29) is replaced with 

δj ¼ tan� 1� Ftanδd j
�

(30) 

Angle δdj is calculated from Eq. (15) with α equal to αj for the jth 
frustum in the rock block. The rate of work dissipation during incipient 
failure is calculated from Eq. (21), with the exception that function fjðθÞ
needs to be replaced with fdjðθÞ

fdjðz; θÞ ¼
�

τjðθÞ
F

cosδdjðθÞ � σnjðθÞsinδdjðθÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EjHj � G2
j

q

(31)  

with Ej, Gj, and Hj defined in Eqs. (A7) through (A9). 
Substituting the respective terms into Eq. (27), an implicit equation 

with an unknown factor of safety results. Solution details will be pre-
sented in the penultimate section. 

Minimum supporting pressure. For tunnels with lining capable of 
resisting roof collapse, the reaction pressure of the lining needed to 
prevent collapse can be evaluated. This is done by amending the right- 
hand side of Eq. (27) with work rate Wp of the lining pressure resist-
ing anticipated collapse (see also the second last term in Eq. (11)). It is 
assumed that the resisting pressure p is distributed uniformly on the 
surface of the potentially falling block. Integrating the work rate of 
pressure p over the block surface with cross-section B1C in Fig. 3, the 
following expression results 

Wp ¼ � 4pv

8
><

>:

Xk� 1

j¼1

Z zjþ1

zj

λz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cot2αj
�
hj � z

�2

R2 � z2 � 1

s

dz

þ

Z R

zk

λz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cot2αkðhk � zÞ2

R2 � z2 � 1

s

dz

9
>=

>;
(32) 

Note that integration of this work rate takes place only over the 
frustums 1 through k, because the frustums kþ1 through n do not 
interface with the tunnel surface. This work rate is negative as it is the 
work of the tunnel lining reaction on the downward collapse velocity of 
the block. Including the expression in Eq. (32) on the right-hand side of 
Eq. (27), the lower bound to the dimensionless pressure p/γR needed to 
maintain stability was calculated (details in the penultimate section). 

Fig. 5. Hoek-Brown strength criterion τðσnÞ and the reduced strength envelope, 
τðσnÞ=F. 

D. Park and R.L. Michalowski                                                                                                                                                                                                               



International Journal of Rock Mechanics and Mining Sciences 128 (2020) 104275

7

4.2. Mechanism with right elliptical cone and prismatic insert 

The mechanism with a block consisting of a series of the right-elliptic 
frustums can be improved by inserting a prismatic portion between two 
halves of the potentially unstable block, Fig. 2(b). 2D stability analysis 
based on a prismatic mechanism was carried out earlier by Park and 
Michalowski2,3 for rocks with strength governed by the Mohr-Coulomb 
failure criterion with tension cut-off and for the Hoek-Brown criterion. 
The same procedure is followed in this paper; therefore, the mathe-
matical details of the analysis are not repeated here, but some general 
comments are offered below. 

Shown in Fig. 6 are the view of a symmetrical half of the combined 
block, the cross-section of its central portion, and the projection of the 
block on a vertical yOz plane. When combining the prismatic section 
with the elliptic cone sections, point B1 and all angles αj and ηj (and, 
consequently, all points Bj) need to match those on the central cross- 
section in the elliptic cone block in Fig. 3. The two halves of the ellip-
tical cone block now form the “caps” of the prismatic portion. In 
calculating the three measures of stability, the work rate terms for the 
internal (dissipated) work, work of the rock weight and the work of the 
resisting pressure from the tunnel lining were included in Eq. (27), in 
addition to the respective terms for the elliptical cone with the piece- 
wise linear generatrix. 

5. Results and discussion 

5.1. Optimization 

The analysis approach taken yields an upper bound to factor of safety 
F, and lower bounds to stability number N and required support pressure 
p/γR. The specific geometry of the falling block is not pre-determined in 
calculations. An optimization process is used to arrive at the geometry 
that yields the best bound to the required stability measure. The inde-
pendent variables in the optimization of the piece-wise linear right 
elliptical block mechanism are: n angles αj and n angles ηj, where n is the 
number of frustums in the block (the number of linear sections in the 
block generatrix, Fig. 3). In addition, ratio λ of the half-axes in the 
elliptical base of the conical surfaces is a variable (λ ¼ 1 for a circular 
base conical block). Calculations were performed in the Matlab envi-
ronment. In the process of optimization, all angles were varied with 
minimum increments of 0.01� (starting at 1�), and ratio λ was varied 
with a minimum step of 0.001. The process is subject to a constraint on 
the total length of the mechanism, given by ratio L/R (mechanism 

length/tunnel radius). The length limitation is governed by the spacing 
of the ribs in the tunnel. The process of optimization was carried out 
until the difference in the calculated measure of stability in the two 
consecutive loops was less than 10-6. The number of frustums in the 
block shape description was 15 (an improvement in the results due to an 
increase in the number of frustums beyond 15 was less than 0.1%). The 
length of the prismatic insert (if used) was not an independent variable. 
The length of the critical mechanism with a prismatic insert always 
reached the length constraint ratio L/R; the length of the insert was then 
calculated as a complementary length to the length of the elliptic cone 
portion of the mechanism. 

5.2. Results of calculations 

Stability numbers from analyses with four different mechanisms 

Fig. 6. Right elliptic cone failure block with a prismatic insert: (a) view of a symmetric half of the combined block, (b) cross-section through the insert, and (c) 
projection of the block contour on vertical plane yOz. 

Fig. 7. Stability number N ¼ ðσci=γRÞcrit as a function of mi, for roof failures in 
circular tunnels from four analyses with different collapse blocks (D ¼ 0, GSI 
¼ 100). 
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(block shapes) are shown in Fig. 7 as functions of rock type coefficient 
mi, for GSI ¼ 100 and a disturbance factor of 1. The constraint for the 
length of the mechanism is L/R ¼ 5 (except in the 2D analysis). The 
higher the stability number, the more conservative the assessment of 
safety. Not surprisingly, the most conservative is the 2D analysis, fol-
lowed by the mechanism with the elliptic base block with a prismatic 
insert. The latter mechanism reaches a length constraint of L/R ¼ 5 for 
every coefficient mi. The optimized mechanisms with either the right 
circular or the right elliptic block mechanism did not reach the length 
constraint, and length (L/R)crit for which the stability number was 
attained was part of the solution, marked as circular bullets on the chart. 
The elliptic cone block with the plane insert will be used to produce the 
computational data for the remaining charts and tables. A block without 
a plane insert is a special case of this mechanism, and only in rare cases, 
for very small constraint L/R, the critical mechanism included no insert. 

The impact of the 3D analysis on the stability number is illustrated in 
Fig. 8 for a length constraint of L/R ¼ 0.5. Even with this very stringent 
length constraint, the critical mechanisms contained a plane insert for 
most of the parametric range used. The plane strain analysis shows the 
results very much dependent on GSI but almost independent of coeffi-
cient mi describing the type of rock. The 3D analysis shows a more 
distinct dependence on the type of rock, but this dependence is coun-
terintuitive; the roof in the rock with lower mi appears to be more stable 
(lower N) than roofs in the rocks with higher mi. This trend changes, 
however, with an increase in the mechanism length constraint. With an 
increase in L/R, the curves for all coefficients mi come closer together, 
and the trend becomes opposite for 2D analysis (see insert in Fig. 8(a)). 
The plausible reason for this change in the trend can be deduced from 
Fig. 8(b), where the Hoek-Brown strength envelope is plotted for 
different coefficients mi. The rocks with low coefficient mi have generally 

Fig. 8. (a) Stability number as function of GSI (D ¼ 0) from 2D analysis and the right elliptic cone block with prismatic insert and constraint L/R ¼ 0.5, and (b) back- 
calculated stress range on the rupture surface from 2D and 3D analyses. 

Fig. 9. Stability number for circular tunnel roofs as a function of collapse block length ratio L/R: (a) the influence of coefficient mi, and (b) the influence of GSI.  
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lower shear strength in the compressive regime, but they have higher 
tensile strength and higher shear strength at low normal stresses than 
rocks with larger mi. The limit stress back-calculated from the analyses is 
indicated as filled bullets for the 2D analysis and open bullets for the 3D 
analysis. It appears that the stress in the 3D analysis spans the range 
where rocks with lower coefficient mi have higher shear strength than 
rocks with larger mi, causing the unexpected effect. The trend is reversed 
in the 2D analysis. Limit analysis is an approximate method, thus 
stresses back-calculated from the critical mechanism are not the true 
stresses, but they can be used to explain the trends in limit analysis 

solutions. 
The influence of the length constraint on the stability number is 

illustrated in Fig. 9(a). The stability number increases (the tunnel roof 
becomes less stable) with an increase in the mechanism length; this is 
consistent with expectations (the smaller the spacing of ribs in the 
tunnel, the more stable the roof). For rocks with GSI ¼ 50 and D ¼ 0, and 
mechanism length constraint L/R < 3, the increase in coefficient mi has a 
destabilizing effect, but for larger lengths, this trend is reversed. The 
dependence of the stability number on GSI is illustrated in Fig. 9(b) in 
the semi-log scale. Both Fig. 9(a) and (b) clearly indicate that con-
straining the length of the failure mechanism has an effect of increased 
safety (stabilizing effect). It was interesting to notice that critical 
mechanisms for most of the combination of the rock parameters and 
mechanism length constraint contained the plane insert. The open bul-
lets on the curves in the charts indicate points where for smaller 
constraint L/R, the optimized mechanism did not have a plane insert. 
For comparative purposes, selected numerical results are presented in 
Table 1. 

Calculated factors of safety are illustrated in Fig. 10 in semi-log scale, 
as functions of the characteristic strength number σci/γR. The graph 
includes F-functions for various GSI and mechanism length constraint L/ 

Table 1 
Stability numbers for roofs in circular tunnels from 3D analysis (D ¼ 0).  

L/R mi Geological Strength Index GSI 

20 40 60 80 100 

0.5 5 66.95 15.33 4.44 1.28 0.39 
15 83.37 19.79 5.77 1.73 0.51 
25 88.15 21.09 6.26 1.92 0.58 

0.6 5 74.26 17.49 4.87 1.47 0.46 
15 87.26 20.86 6.18 1.89 0.57 
25 91.22 21.88 6.56 2.04 0.63 

0.8 5 83.46 19.85 5.81 1.75 0.54 
15 92.23 22.15 6.67 2.09 0.65 
25 94.93 22.85 6.93 2.19 0.69 

1 5 88.65 21.26 6.36 1.97 0.61 
15 95.11 22.90 6.96 2.20 0.70 
25 97.09 23.42 7.14 2.28 0.73 

1.5 5 95.66 23.07 7.05 2.25 0.72 
15 98.84 23.90 7.33 2.36 0.76 
25 99.90 24.17 7.43 2.39 0.77 

2 5 99.04 23.97 7.39 2.39 0.78 
15 100.62 24.38 7.51 2.43 0.79 
25 101.28 24.54 7.56 2.45 0.80 

3 5 102.33 24.84 7.71 2.52 0.83 
15 102.38 24.85 7.69 2.50 0.82 
25 102.63 24.90 7.70 2.50 0.82 

5 5 104.78 25.53 7.97 2.63 0.87 
15 103.80 25.23 7.82 2.56 0.84 
25 103.67 25.18 7.81 2.54 0.84 

2D analysis 5 108.58 26.55 8.36 2.78 0.94 
15 105.94 25.79 8.04 2.64 0.88 
25 105.33 25.62 7.97 2.61 0.86  

Fig. 10. The factor of safety as a function of characteristic strength number σci=γR and collapse block length ratio L/R.  

Table 2 
Factors of safety for roofs in circular tunnel from 3D analysis (D ¼ 0).  

σci/γR GSI mi L/R 

0.5 0.6 0.8 1 2 2D analysis 

100 20 5 1.35 1.32 1.20 1.10 1.10 0.95 
15 1.11 1.08 1.04 1.02 0.99 0.97 
25 1.09 1.08 1.06 1.05 1.02 0.97 

40 5 5.97 4.56 3.32 2.99 2.69 2.16 
15 2.90 2.73 2.51 2.38 2.19 2.05 
25 2.74 2.61 2.44 2.36 2.21 2.03 

10 60 5 1.95 1.66 1.50 1.46 1.23 1.11 
15 1.40 1.34 1.27 1.23 1.16 1.12 
25 1.39 1.31 1.26 1.24 1.20 1.12 

80 5 5.48 4.76 4.14 3.66 2.98 2.26 
15 3.63 3.26 2.88 2.67 2.32 2.10 
25 3.06 2.93 2.70 2.54 2.31 2.06 

1 100 5 1.99 1.81 1.58 1.45 1.24 1.04 
15 1.49 1.41 1.31 1.24 1.14 1.07 
25 1.43 1.40 1.28 1.25 1.18 1.08  
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R (mi ¼ 15, D ¼ 0). If the characteristic strength number for a given 
tunnel is equal to the stability number, the factor of safety becomes 
equal to one. The balance of work rate in Eq. (27) leads to an implicit 
equation with respect to F, and an iterative process was used to arrive at 
the solution (Matlab built-in procedure was used for this purpose). As 
expected, the factor of safety increases with an increase of the rock 
characteristic strength number and with a decreasing length constraint 
L/R. Selected results are presented in Table 2. 

The outcome of calculations of the roof supporting pressure required 
to maintain equilibrium (prevent collapse) is shown in Fig. 11 in log-log 
scale, as a function of the characteristic strength number σci/γR. Sup-
porting pressure is needed always when the characteristic strength 
number is lower than the stability number. The lower the characteristic 
strength number, the larger the support pressure needed. For a given 
rock, the required support pressure increases with an increase of the 
mechanism length described by the length constraint L/R. As expected, 
the larger the GSI the lower the support pressure needed. The charts are 
given for mi ¼ 15, but the same trend is found for other types of rock. For 
comparative purposes, selected numerical results are presented in 
Table 3. 

To the best of the author’s knowledge, the results presented are the 

first of its kind for three-dimensional roof collapse mechanisms in tun-
nels with a circular cross-section. For that reason, the authors were 
unable to compare the outcome to other results. 

6. Conclusions 

Roof collapse is a common failure mode in tunnels. The kinematic 
approach of limit analysis was used in order to calculate three measures 
of safety: the stability number, the factor of safety, and the support 
pressure required to maintain stability. The rock strength is described by 
the Hoek-Brown failure criterion, and the rock block considered in the 
failure mechanism consists of a right elliptical cone with a piece-wise 
linear generatrix, and a prismatic section inserted between the two 
halves of the cone. Deep tunnels were considered, with the failure 
mechanism not propagating to the ground surface. An intersection of 
this rock block with the circular cross-section tunnels makes a complex 
shape and leads to an intricate integration of the rates of work dissipa-
tion and the work of external forces in the mechanism during incipient 
collapse. 

Because the original form of the Hoek-Brown criterion is a function 
of principal stresses, an alternative form of the criterion is often used in 

Fig. 11. Required supporting pressure (dimensionless) for tunnel with different length-to-radius ratios L/R as function of the characteristic strength number.  

Table 3 
Required roof supporting pressure (p/γR � 103) for circular tunnels from 3D analysis (D ¼ 0).  

σci/γR GSI mi L/R 

0.5 0.6 0.8 1 2 2D analysis 

10 20 5 90.35 107.54 143.47 174.87 269.95 485.32 
15 45.36 52.92 66.00 76.66 104.85 138.35 
25 32.42 37.18 44.87 50.55 64.04 78.62 

40 5 27.27 34.60 47.90 58.39 84.77 141.17 
15 15.94 18.74 23.10 26.12 33.18 40.98 
25 11.61 13.20 15.49 17.02 20.32 23.73 

1 60 5 109.67 128.71 188.62 233.17 445.18 904.84 
15 57.56 66.34 89.15 103.65 164.41 253.37 
25 42.26 49.32 61.88 72.31 101.52 140.33 

80 5 39.23 51.11 77.38 100.15 177.87 358.51 
15 24.77 30.26 40.21 48.16 70.28 98.34 
25 18.63 22.23 28.11 32.49 43.11 55.27 

0.1 100 5 198.09 252.67 351.89 460.32 926.52 2393 
15 100.42 123.87 162.44 200.85 370.38 704.11 
25 75.41 90.59 116.43 139.97 153.87 389.27  
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geomechanics analyses that call for an explicit dependence of the shear 
strength on the normal stress. This issue was circumvented in this paper 
by using a parametric form of the original Hoek-Brown function. 

Not surprisingly, the outcome of the analysis is strongly dependent 
on the quality of the rock, described by the Geologic Strength Index in 
the Hoek-Brown failure criterion. Dependence on the rock type repre-
sented by coefficient mi is less distinct, with a trend that is not neces-
sarily unique. A restriction on the length of the collapse mechanism 
(falling block) was introduced in the analysis to account for the presence 
of the strong ribs supporting the tunnel; the mechanism was restrained 
to the length between the neighboring ribs. All measures of safety 
strongly depend on the rib spacing; the safety of the tunnel against roof 
collapse increases with a decrease in the spacing between the ribs. 
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Appendix 

A.1. Right elliptic cone 

The right elliptic cone is described in Eq. (12). The volume of the elliptic cone is determined by 

V ¼
π
3

abh (A1) 

The lateral surface area of the right elliptic cone is calculated by introducing the form26 

x ¼ a
h � u

h
cosv; y ¼ b

h � u
h

sinv; z ¼ u (A2)  

where 0 � u � h and 0 � v < 2π. The lateral surface area of the right elliptic cone is obtained as 

S¼
Z 2π

0

Z h

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EH � G2
p

du dv (A3)  

where E, G, and H are defined as 

E ¼
h2 þ a2 cos2v þ b2 sin2v

h2 (A4)  

G ¼
�
a2 � b2

�
ðh � uÞ cosv sinv

h2 (A5)  

H ¼
ðh � uÞ2

�
a2 sin2vþ b2 cos2v

�

h2 (A6) 

Above coefficients now can be specified for the jth frustum of the mechanism as 

EjðθÞ ¼ 1þ cot2αj
�
cos2θ þ λ2 sin2θ

�
(A7)  

Gjðz; θÞ ¼
�
hj � z

�
cot2αj

�
1 � λ2�cosθsinθ (A8)  

Hjðz; θÞ ¼
�
hj � z

�2 cot2αj
�
sin2θ þ λ2cos2θ

�
(A9) 

Sector area A of an ellipse, Fig. A1, between two angles θ1 and θ2, is defined as 

A¼Fðθ2Þ � Fðθ1Þ (A10)  

where 

FðθÞ ¼
ab
2

�

θ � tan� 1
�

ðb � aÞsin2θ
ðbþ aÞ þ ðb � aÞcos2θ

��

(A11)  

A.2. Angle between a vertical and a plane tangent to an elliptic cone 

The direction of block velocity is given by the unit vector 

m!¼ð0; 0; � 1Þ (A12) 

A tangent plane to a right elliptic cone along a generatrix containing point M (xM;yM; zM) is (Fig. A1) 

D. Park and R.L. Michalowski                                                                                                                                                                                                               



International Journal of Rock Mechanics and Mining Sciences 128 (2020) 104275

12

2xM

a2 ðx � xMÞþ
2yM

b2 ðy � yMÞ �
2ðh � zMÞ

h2 ðz � zMÞ¼ 0 (A13) 

and a vector normal to that plane at point M is determined as 

n!¼
�

2xM

a2 ;
2yM

b2 ; �
2ðh � zMÞ

h2

�

or 

n!¼
�

xM ;
yM

λ2 ; �
h � zM

tan2α

�

(A14) 

Angle χ between vectors n! and m!, Fig. A1, is thus given by the following expression 

cosχ ¼ j n!� m!j
k n!kkm!k

¼

h� zM
tanα2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
M þ

�
yM
λ2

�2
þ

�

� h� zM
tan2α

�2
s

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

cosθ
cotα

�2
þ

�
sinθ

λcotα

�2

þ 1

s (A15) 

Consistent with the normality flow rule, rupture angle δ is the angle between the velocity of the block and the elliptic cone failure surface, and is the 
complementary angle to angle χ ðδ ¼ π=2 � χÞ.

Fig. A1. Angle χ between velocity direction m! and normal to the rupture surface n! at point MðxM ; yM; zMÞ.  
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