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“But to return to the main thing, that prompt and delayed. Now what are
the orders of magnitude of these things? Well, if you take a look at a neutron
resonance of a few volts, electron volts, the lifetime is of the order of [...] 10 to
the minus 15 seconds. On the other hand, the structure [of fluctuations in the
total cross section] is of the order of a few MeV or more. Now that gives you a
lifetime, or a time constant if you wish, of the order of 10 to the minus 22, 10 to
the minus 23 seconds. So you have an enormous range between 10 to the minus
15 and 10 to theminus 23. And the question is, isn’t there something in between?
So of course, again, instead of asking the question directly or trying to answer
it directly, we looked at some phenomena. You know, without experimentalists
we’d be all dead.”

— Herman Feshbach1

1Addressing an audience at the Massachusetts Institute of Technology in a lecture titled: “The Optical
Model” [54].
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Abstract

A key ingredient for modeling nuclear reactions of all kinds is the optical potential, an

effective interaction between nucleons and nuclei. Formally, it results from a reduction of

the many-body quantum mechanics of the A-body nucleus to a single-nucleon scattering

state interacting with an A-1 body core, and can be constructed microscopically using

realistic nucleon-nucleon forces. However, the workhorses in nuclear reaction modeling

and nuclear data evaluation are phenomenological optical potentials, fit primarily to elastic

scattering cross sections on 𝛽-stable isotopes. Extrapolating to unstable, neutron rich,

isotopes — as in the case for nuclear fission, or the astrophysical r-process — presents a

source of un-quantified uncertainty.

In this work, we take steps to push the boundary of our quantitative modeling of

nuclear reactions away from the valley of𝛽-stability and into the fission fragment region. We

perform the first uncertainty quantification and comparison of opticalmodels in observables

relating to the de-excitation of fission fragments, using a phenomenological potential

constrained by decades of scattering data, and a microscopic potential built from chiral

forces consistent with quantum chromodynamics. We find large uncertainties, especially

for neutron-fragment correlated observables, and discuss future calibrations of fission

model parameters. Next, we discuss the relationship between nuclear matter and the

optical model. We explore the implications of the isovector dependence of the optical

potential on the symmetry energy of nuclear matter, a fundamental quantity governing

phenomena from the scale of nuclei to neutron stars. We show that scattering observables

on 𝛽-stable nuclides are poor constraints of the symmetry energy, relative to a theoretical

approach.

Finally, to make future Bayesian calibration of optical potentials to new constraints, like

those from fission, more computationally tractable, we develop and demonstrate a novel,

xiii



projective model order reduction scheme, Active Subspace Quilting, an extension of the

Reduced Basis Method to nonlinear manifolds. We demonstrate a 3 order of magnitude

speedup with negligible loss of accuracy.
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Chapter 1

Introduction &Motivation

Nuclear physics connects phenomena at length scales from the subatomic to the astrophys-

ical, and governs the core of all the matter we interact with every day. Understanding how

free nucleons interact with nuclei is an important window into this field, which is founda-

tional to science, society and security. Our current understanding of nuclear reactions is

limited by the tractability of the many-body quantum problem in finite systems. Current

ab-initio methods are limited to light ions for exact dynamics including continuum degrees

of freedom [126]. For reactions involving larger isotopes, the typical approach is to use an

effective nucleon-nucleus interaction, arising from the formal reduction of the many-body

degrees of freedom to an effective single-particle problem, for which exact dynamics are

tractable. This effective interaction, the optical model potential (OMP), has been studied

for at least 7 decades [81].

The ubiquity of the effective nucleon-nucleus interaction as an ingredient in reaction

theory motivates the quest for an accurate nucleon-nucleus OMP that describes target

isotopes across the nuclear chart (a global OMP). Particular effort is beingmade to construct

such a global model that is predictive out to the drip lines, that simultaneously describes

bound states and the continuum, and is consistent with the theoretical underpinnings of

the strong force. This will likely be a core activity of the nuclear reaction theory community

1



in the coming decades [75].

Nuclei are bound by the strong nuclear force, which arises from quantum chromo-

dynamics (QCD). QCD is an asymptotically free theory at high energy. As the universe

cooled, the quark and gluon degrees of freedom condensed into complex, color-neutral

baryonic structures which have a self-interaction mediated by residual color polarization;

akin to a Van-der-Waals force between electrically neutral polarized atoms or molecules.

Further cooling leads to the further condensation of these nucleons into a dizzying diversity

of structures produced across the nuclear chart: the atomic nuclei. Understanding how

nucleons self-organize into such diverse and complex structures, and how this behavior

arises from the symmetries of the underlying high-energy degrees of freedom, is a founda-

tional goal of nuclear physics, and the subject of chiral effective field theory (𝜒-EFT) [114].

Recently, a global microscopic optical potential, the Whitehead-Lim-Holt (WLH) potential,

has been constructed from the effective nucleon self-interaction in nuclear matter using

chiral forces consistent with QCD [178].

On the other hand, the workhorses in nuclear reaction theory are phenomenological

global OMPs. These models are parameterized in a variety of functional forms, and their

parameters are calibrated to elastic scattering experiments on stable targets, which yield

differential elastic scattering cross sections and analyzing powers at a variety of beam

energies, as well as angle integrated elastic and total cross sections. In applications, such as

those surveyed in section 1.1, these models are often then extrapolated away from stability,

for which experimental data are unreliable or non-existent. Is this extrapolation justified?

Global phenomenologicalOMPs such asKoning-Delaroche (KD) [95] provideworkhorse

models for the nucleon-nucleus interactions that are key ingredients in reaction phe-

nomenology. This is exemplified in Fig. 1.1, which compares the isotopes to which KD was

calibrated, to the fission product yield (FPY) in the spontaneous fission of 252Cf. Modeling

the de-excitation of fragments produced in nuclear fission is an important example of an

application requiring predictive OMPs away from stability, and is examined in this work.

2



However, the extrapolation away from the isotopic and energy regions for which these

models are fit introduces uncertainty that is unquantifiable using only experimental data

from the valley of 𝛽-stability. A recent advance in phenomenological global optical po-

tentials was the construction of an updated, uncertainty-quantified, version of the KD

potential using Bayesian statistics, the Koning-Delaroche uncertainty quantified (KDUQ)

potential [139, 140].

Confronting the KDUQ and WLH potentials to a broad range of orthogonal experimen-

tal and theoretical constraints relating to nuclei away from stability is thus a useful activity;

the phenomenological model well reproduces its corpus of training data, but requires

extrapolation that microscopic approaches do not. The microscopic approach is consistent

with the underlying symmetries of QCD, but requires its own theoretical approximations,

the limits of applicability of which have yet to be charted.

Addressing the fundamental questions in nuclear physics, and the applications subse-

quently surveyed, requires an understanding of nuclear reaction phenomenology away

from stability [75, 145]. The advent of the rare isotope beam era has begun to widen the

experimentally accessible region of the isotopic chart, with significant increases still to

come [19]. Few-body reaction theory provides an important framework to study these

phenomena, and is underpinned by assumptions about the nucleon-nucleus interaction;

the optical potential. Corresponding experimental efforts which study exotic nuclei or

astrophysically relevant nuclei using transfer and breakup reactions [125, 104], single-

particle spectra and quenching in knockout reactions [6], nuclear fission to understand far

from equilibrium many-body nuclear dynamics [155], characterizing reactions involving

the production and decay of compound nuclei due to their ubiquity; all of these require an

OMP for interpretation.

3
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Figure 1.1: Chart of isotopes in the fission fragment region, where the isotopes used to
constrain the commonly used Koning-Delaroche phenomenological neutron-nucleus global
optical potential [95] (red squares) are compared to 252Cf (𝑠𝑓) pre-emission fragment yield
distributions (or FPY), as generated by CGMF [160]. Also included for demonstration is
the approximate location of the neutron dripline, ascertained by the location at which the
neutron removal threshold, as calculated using the semi-emprical mass formula, crosses 0;
𝑆𝑁(𝑁, 𝑍) = 𝐸𝐵(𝑁, 𝑍) − 𝐸𝐵(𝑁 − 1, 𝑍) < 0.
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1.1 Survey of applications of optical potentials for

neutron-rich isotopes

Observed elemental abundances of metal-poor stars, and measured meteoric and solar

system isotopic abundances, display a variety of peaks corresponding to different mech-

anisms of nucleogenesis in the universe. The locations of peaks and associated isotopic

abundances paint a picture in which roughly half the elements heavier than iron had their

genesis in an astrophysical rapid-neutron capture process (the r-process), which flowed far

from the valley of stability and through neutron-rich nuclei. The conditions required for

such reactions are extreme neutron densities; ∼ 1020cm−3 [104]. The gravitational wave

observation of neutron star merge GW170817 by the LIGO/VIRGO collaboration in 2017,

and the observation over subsequent days and weeks of the 𝛾-ray (”kilonova”) afterglow

resulting from the 𝛽-decay of unstable neutron-rich nuclei, unambiguously confirmed

neutron star mergers as r-process sites [1, 4]. However, they may not be the only ones; core-

collapse supernovae and other compact object mergers have been postulated as r-process

sites, amongst many others [136]. Other interesting candidates include the tidal disruption

of white-dwarf stars in the gravitational field of intermediate mass black holes [3, 147].

Fig. 1.2 summarizes current knowledge of the nucleogenesis of the periodic table.

Unraveling the mysteries of the origin of the atomic nuclei requires modeling the cata-

clysmic astrophysical events required to produce the sufficient conditions for the r-process.

Simulations of the gravitational and electromagnetic signals of these events provide clues

about where to point telescopes to make interesting observations. This task requires as

a model input the masses, 𝛽-decay half lives and delayed emission probabilities, and

thermally-averaged radiative neutron capture (𝑛, 𝛾) cross sections, for the roughly 5000

neutron-rich isotopes throughout the reaction network. The results are highly sensitive to

the neutron capture cross section, especially in the “cold” r-process in which thermal equi-

librium in neutron capture and photodisintegration is never achieved [104]. The r-process

5



H
1

He
2

Li
3

Be
4

B
5

C
6

N
7

O
8

F
9

Ne
10

Na
11

Mg
12

Al
13

Si
14

P
15

S
16

Cl
17

Ar
18

K
19

Ca
20

Sc
21

Ti
22

V
23

Cr
24

Mn
25

Fe
26

Co
27

Ni
28

Cu
29

Zn
30

Ga
31

Ge
32

As
33

Se
34

Br
35

Kr
36

Rb
37

Sr
38

Y
39

Zr
40

Nb
41

Mo
42

Tc
43

Ru
44

Rh
45

Pd
46

Ag
47

Cd
48

In
49

Sn
50

Sb
51

Te
52

I
53

Xe
54

Cs
55

Ba
56

La
57

Ce
58

Pr
59

Nd
60

Pm
61

Sm
62

Eu
63

Gd
64

Tb
65

Dy
66

Ho
67

Er
68

Tm
69

Yb
70

Lu
71

Hf
72

Ta
73

W
74

Re
75

Os
76

Ir
77

Pt
78

Au
79

Hg
80

Tl
81

Pb
82

Bi
83

Po
84

At
85

Rn
86

Fr
87

Ra
88

Ac
89

Th
90

Pa
91

U
92

Np
93

Pu
94

Am
95

Cm
96

Bk
97

Cf
98

Es
99

Fm
100

Md
101

No
102

Lr
103

Big
Bang
fusion

Cosmic
ray
fission

Dying
low-mass
stars

Merging
neutron
stars

Exploding
massive
stars

Exploding
white
dwarfs

Human synthesis
No stable isotopes

Figure 1.2: A periodic table colored by mechanism of nucleosynthesis, reprinted from [35]

is the mechanism expected to have produced the actinides, and when the flow reaches

these heavy elements, “fission recycling” can occur, where fission products repopulate

the intermediate mass neutron-rich nuclei in the reaction network; thus another model

input becomes the distribution of fission products. Few of these properties can be directly

measured due to the 𝛽-instability of the relevant neutron-rich target isotopes, in particular,

evaluation of the (𝑛, 𝛾) cross sections and fission product yields often rely on phenomeno-

logical global optical potentials, extrapolated far from the 𝛽-stable and spherical isotopes

to which they are calibrated [104].

Outside of the big scientific questions relating to nucleogenesis, the optical potential

is an important ingredient for the treatment of any reactions involving compound nuclei,

many of which have implications on technology, society and security. Constraining their

extrapolation away from stability will improve the description of the prompt de-excitation

of neutron-rich fission fragments, and the yields of long-lived fission products. Fission

event generators are required for simulation of any system in which event-by-event corre-

lations amongst fission products are relevant, which includes nuclear non-proliferation
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scenarios such as portal monitoring and standoff measurements [146]. Accurate fission

event generators are also important for the interpretation of experimental fission observ-

ables relating to open questions about the scission process [180, 155, 63, 116, 117], and for

evaluation of prompt fission neutron spectrum (PFNS) and other fission quantities for

actinides [165, 25]. Monte Carlo Hauser-Feshbach (MCHF) codes, such as CGMF used in

this work, are commonly employed in these efforts, as fission produces multiple correlated

signatures [112, 113, 160].

Optical potentials are relied upon as a tool in the evaluation of nucleon-nucleus cross

sections, especially where experimental data is lacking. Improving accuracy of evaluated

cross sections for nuclei in the fission fragment region is important for applications in

energy, national security and medicine [146]. Particular scenarios include modeling the

fuel depletion in nuclear fission power reactors, perturbations to or diversions from spent

nuclear fuel in containment, nuclear forensics scenarios, active interrogation of special

nuclear material, as well as medical diagnostics, imaging and treatment using radiation

[75].

1.2 Uncertainty quantification and model order reduction

While the optical potential is an important component of much of nuclear reaction theory

and is upstream of nuclear data relevant to many applications, it is also one of the greatest

sources of uncertainty in reaction analysis [75, 139]. The development of uncertainty-

quantified OMPs, with special focus on neutron-rich isotopes, has been the subject of a

recent corresponding theoretical effort. Simultaneously, there has been a focus on ap-

plying rigorous uncertainty quantification using Bayesian statistics to the calibration of

phenomenological optical potentials [139, 31, 108, 94, 110, 30, 157]. It is becoming clear

that the resulting uncertainties on derived observables due to the optical model can be sub-

stantial, and Bayesian analysis allows for a more accurate characterization, and systematic
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reduction, of them.

It has long been known that the OMP is multi-modal, exhibiting ambiguities where

multiple parameter values produce identical observables [81]. Thus, statistical analyses

of phenomenological models should consider model parameter spaces holistically, se-

quentially introducing new and orthogonal data as constraints until the multi-modality is

eliminated. An illustrative example discussed by Hodgson [81] is the discrete ambiguity

in the depth of the real part of the optical potential: multiple regularly spaced values

(e.g. ∼ 50, 100, 150 … MeV) all reproduce scattering observables. However, the depth of

∼ 50 MeV corresponds to shell model binding energies, and thus the larger depth modes

can be rejected as unphysical. It is thus with the holistic incorporation of quantities which

treated as urelated — in this case, both binding energies and cross sections — that the

model becomes both predictive and unique; a necessary condition if one has any hope of

extrapolation. It is also by this same process that those quantities, which are unrelated in

their measurement, become related in their description by a single, unique, and unified

model.

These Bayesian studies often require the calculation of observables at hundreds of

thousands or even millions of samples in parameter space, thus nuclear physicists have

in recent years turned to the well-established field of model order reduction to construct

computationally efficient emulators [121]. In particular, the reduced basismethod (RBM), a

type of projective model order reduction (PMOR) has emerged as a valuable tool in nuclear

reaction theory [64, 20]. These methods have the potential to be transformative, allowing

for uncertainty quantification that would otherwise require high-performance computing

centers to be performed on personal computers. By the same token, the combinations of

emulators and high-performance computing has the potential to allow access problems

that would otherwise be intractable.
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1.3 Outline of dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 develops the mathematical formalism of the OMP, the effective nucleon-

nucleus interaction, beginning with the many-body nuclear Hamiltonian. The ap-

proach taken is most closely related to the Feshbach-Fano partitioning, but its relation

to nuclear matter and many-body propagator theoretical approaches is discussed.

Particular attention is paid to the construction of the two models under consideration

in this work: KDUQ and WLH. By considering the distribution of complex-energy

eigenvalues of the many-body nuclear Hamiltonian as a distribution, the statistical

approach to the compound nucleus (CN) is developed and connected to the OMP.

• Chapter 3 discusses the role of this picture of the CN in the de-excitation of fission

fragments. Next it presents the methodology and results of the first uncertainty-

quantification of fission observables due to both a phenomenological and a micro-

scopic optical potential, making detailed comparison to experiment. We find sig-

nificant uncertainties, especially in neutron-fragment correlated observables. The

prospect of directly constraining optical potentials with fission observables is dis-

cussed.

• Chapter 4 reviews the relation between the optical potential and the symmetry energy

of nuclear matter and its density slope. It discusses the implications of this relation on

the optical potentials considered in this work, and compares to results from terrestrial

experiments and astrophysical observations. We find that scattering observables

on 𝛽-stable isotopes are poor constraints of the symmetry energy, and recommend

future phenomenological global optical potentials include bound state information.

• Chapter 5 discusses the need for computationally efficient surrogate models to make

possible the model calibration proposed in the previous chapters, and in the applica-
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tion of Bayesian statistics to nuclear reaction phenomenology at large. The formal-

ism for the RBM is developed, the software Reduced Order Scattering Emulator

(ROSE) is presented, and results are demonstrated for Bayesian calibration of a local

optical potential, showing speedups of 2 to 3 orders of magnitude with negligible loss

of accuracy. Then, the novel active subspace quilting (ASQ) method is developed

and demonstrated, extending the RBM to global optical potentials.

• Chapter 6 summarizes the results of the different pieces of this work, reconnects them

to the broader scientific and societal context, and discusses the path forward.
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Chapter 2

Theoretical Formalism

In this chapter we introduce the many-body Hamiltonian, in the framework of the target-

state expansion, to formulate an infinite multi-channel problem. Using the optical reduction

wewill exactly reduce this to an effective problem on an arbitrary, finite subset of ourHilbert

space: the ℙ-space. We will understand this reduction in terms of the Feshbach projection-

operator formalism, or Feshbach-Fano partitioning [56, 55], although this reduction has

been performed in other contexts by reducing a many-body Green’s function, using tools

developed in the context of the Landau quasi-particle theory [76, 44, 42, 115, 90], and the

formalisms are equivalent in scattering [115, 42, 90]. This technique can also be understood

in terms of a similarity transformation on the many-body Hamiltonian that softens the

hard-core component of the nucleon-nucleon interaction [158].

We will then derive the Hauser-Feshbach branching ratios by making statistical assump-

tions about the distribution of eigenvalues of the complimentary ℚ-space Hamiltonian,

which will allow us to factorize the amplitudes for process involving a compound nu-

cleus into transmission coefficients between incoming and outgoing channels. This will

determine the governing equations for the de-excitation process.

Finally, we will discuss practical aspects of calculating optical potentials, and examine

the two optical potentials used in this work: Whitehead-Lim-Holt (WLH) and Koning-
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Delaroche uncertainty quantified (KDUQ).

2.1 The optical reduction

Consider the many-body Hamiltonian for an 𝐴 + 1-body nucleus, in the center of mass

frame:

H𝐴+1 =
𝐴+1
∑

𝑖
𝑇𝑖 +

𝐴+1
∑
𝑖𝑗

𝑉𝑖𝑗 +
𝐴+1
∑
𝑖𝑗𝑘

𝑉𝑖𝑗𝑘 +… (2.1)

where 𝑇𝑖 =
̵ℎ2𝑘2

𝑖
2𝜇𝑖

is the center-of-mass frame kinetic energy of nucleon 𝑖. Here, we see that

nucleons in a many-body system feel two, three, and, generally, 𝑁-body forces, where the

sums are over pairs of nucleons in the first force term, and over all sets of three nucleons in

the second, etc. In particular, 3-body forces are expected to play a more prominent role

in neutron-rich nuclei [78]. However, the inclusion of 3-body forces in the formalism is

trivial1 and is neglected going forward.

We can factor the 𝐴+1-body Hamiltonian into a core 𝐴-body Hamiltonian, and a single-

particle Hamiltonian. The latter contains kinetic energy, as well as the sum of interactions

of all 𝐴 nucleons in the core with our single nucleon:

H𝐴+1 = H𝐴 + 𝑇𝐴+1 +
𝐴

∑
𝑖

𝑉𝑖,𝐴+1. (2.2)

We refer to the last term in Eq. 2.2 as the final state interaction when nucleon 𝐴 + 1 is

in a scattering state. We have a complete and orthonormal set of 𝐴 + 1 body states and

corresponding energies, and likewise for the 𝐴-body states:
1In practical ab-initio calculations of microscopic optical potentials, realistic 3-body forces may, in fact, be

a great complication. For our purposes, however, the inclusion of 3-body forces amounts to a change in the
coupling potential 𝑉𝑗′𝑙′,𝑗𝑙

𝑛′𝑛 of Eq. 2.11, but does not impact the concept of the optical reduction that constructs
the effective nucleon-nucleus force from it.
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H𝐴+1 ∣Ψ𝐴+1
𝑚 ⟩ = 𝐸𝑚 ∣Ψ𝐴+1

𝑚 ⟩ (2.3)

H𝐴 ∣Ψ𝐴
𝑛 ⟩ = 𝐸𝑛 ∣Ψ𝐴

𝑛 ⟩ . (2.4)

We decompose the asymptotic Hilbert spaces acted upon by these Hamiltonians into

channels. At negative energies we have a discrete spectrum of bound states of the 𝐴 + 1

system, and at positive energies we have a dense spectrum of product states consisting of

an excited residual core and a single particle in scattering state

∣𝑛𝑘𝑗𝑙⟩ ≡ ∣Ψ𝐴
𝑛 ⟩⊗ ∣𝑘𝑗𝑙⟩ , (2.5)

where

∣𝑘𝑗𝑙⟩ ≡ ∣𝑘⟩∑
𝑚
Y𝑚

𝑗𝑙 (2.6)

= ∣𝑘⟩ ∑
𝑚𝑠𝑚𝑙

𝑖𝑙 ⟨𝑙𝑠𝑚𝑙𝑚𝑠∣𝑗𝑚⟩𝑌𝑚𝑙
𝑙 𝜒𝑚𝑠

𝑠 (2.7)

is the state of nucleon 𝐴 + 1, with asymptotic kinetic energy 𝐸 = ℎ̵2𝑘2/2𝜇, with 𝜇 being

the reduced mass of the system. Here, 𝑙, 𝑠 = 1/2 and 𝑗 respectively label the orbital, spin

and total angular momentum quantum numbers, with 𝑚𝑙, 𝑚𝑠 and 𝑚 their respective

projections. 𝜒𝑚𝑠
𝑠 is the spin wavefunction, 𝑌𝑚

𝑙 are the orbital wavefunctions, e.g., the

spherical harmonics, and Y𝑚𝑙
𝑙 are the corresponding spin-orbital angular wavefunctions.

For a thorough discussion of this partial wave expansion, see Section A.1.

The neutron-removal threshold is 𝑆𝐴+1
𝑁 = 𝐸𝐴+1

0 − 𝐸𝐴
0 , where 𝑛 = 0 refers to the ground

state of the respective system. The Fermi energy for neutrons in the 𝐴-body system lies at

𝜖𝐹 ≡ −𝑆𝐴+1
𝑁 (for neutrons in particle states, neutron holes have a slightly different Fermi

energy, and all their energies lie below it, rather than above it). Thus, we have a discrete
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spectrum of excited states of the 𝐴-body system for −𝑆𝐴+1
𝑁 < 𝐸 < 0, and a dense spectrum

for 𝐸 > 0 corresponding to continuum states. A similar analysis holds for protons.

We have an infinite number of such channels, each described by one of these excited

states of the residual core. We label them by 𝑛. For compactness, we will use this labeling

for both discrete and continuum states, and use the summation symbol ∑ to indicate a

sum over discrete states, and an integral over the continuum. The positive energy 𝑆𝐴
𝑁 is the

threshold for removal of a second neutron, and so on.

It is important to remember that, while we have orthonormality for the eigenstates of

H𝐴/𝐴+1, the states ∣𝑛𝑘𝑗𝑙⟩ are not necessarily normalized or orthogonal to any ∣Ψ𝐴+1
𝑛 ⟩. In

fact, the normalization of such an overlap ⟨Ψ𝐴+1
𝑚 ∣0𝑘𝑗𝑙⟩ is referred to as a spectroscopic factor;

it is the projection of the ground (𝑛 = 0) 𝐴-body state with a single nucleon in scattering

state ∣𝑘𝑗𝑙⟩ onto the excited state ∣Ψ𝐴+1
𝑚 ⟩. In a non-interacting system, these are all unity. It is

the presence of correlations that causes a fragmentation of the single-nucleon energies (or,

equivalently, a mixing of single-nucleon states), placing nucleons above the Fermi-energy

and corresponding holes below it.

Of course, energy, parity and total angular momentum are symmetries of the center-

of-mass (COM)-frame Hamiltonian, so we have a triangular sum rule for total angular

momenta given an initial 𝐴 + 1 nucleus in some state 𝑚:

∣𝐼𝑛 − 𝑗∣ < 𝐼𝑚 < 𝐼𝑛 + 𝑗, (2.8)

as well as conservation of energy,

𝐸𝑚 = 𝐸 + 𝐸𝑛. (2.9)

We use the target-state expansion; projecting (H𝐴+1 − 𝐸) = 0, using the 𝐴 + 1-body Hamil-

tonian as written in Eq. 2.2, onto the target states, Eq. 2.5, yielding the coupled-channels

equation:
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⟨𝑛′𝑘′𝑗′𝑙′∣
⎛

⎝
−

ℎ̵2

2𝜇
𝑑2

𝑑𝑟2 +∑
𝑛′

𝑉𝑗′𝑙′,𝑗𝑙
𝑛′𝑛 − (𝐸 − 𝐸𝐴

𝑛 )
⎞

⎠
∣𝑛𝑘𝑙𝑗⟩ = 0. (2.10)

Here, we have defined the channel coupling potential as resulting from the target-state

expansion of the final state interaction:

𝑉𝑗′𝑙′,𝑗𝑙
𝑛′𝑛 = ∑

𝑚′,𝑚
⟨Ψ𝐴

𝑛′ ⊗ Y𝑚′

𝑗′𝑙′

RRRRRRRRRRR

𝐴
∑

𝑖
𝑉𝑖,𝐴+1

RRRRRRRRRRR

Y𝑚
𝑗𝑙 ⊗ Ψ𝐴

𝑛 ⟩ . (2.11)

This is an infinite2 system of coupled single-body equations, which can be solved

by truncation, provided a suitable model for the nucleon and transition densities for

the relevant excited states, and 2-body nucleon forces 𝑉𝑖𝑗. The amplitude for a given

transition is provided by the asymptotic values of the wavefunctions in the coordinate

basis, lim𝑟→∞ ⟨𝑟∣𝑛𝑘𝑗𝑙⟩.

Rather than truncating, we will exactly account for propagation of states not explicitly

included in the expansion using the Feshbach-Fano partitioning [181], which we will

formulate explicitly in terms of the Green’s functions, following [162]. We begin by par-

titioning the 𝐴-body Hilbert ℍ𝐴 space into compliments; ℍ𝐴 = ℙ ⊕ ℚ, using respective

idempotent projection operators P ∶ℍ𝐴 → ℙ and Q ∶ℍ𝐴 → ℚ:

P ≡ ∑
𝑛∈ℙ
∣Ψ𝐴

𝑛 ⟩ ⟨Ψ𝐴
𝑛 ∣

Q ≡ ∑
𝑚∈ℚ

∣Ψ𝐴
𝑚⟩ ⟨Ψ𝐴

𝑚∣ ,
(2.12)

which have the properties
2This is uncountably infinite, in fact, if continuum 𝐴-body states are included
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P +Q = 𝟙

P2 = P

Q2 = Q

QP = PQ = 0.

(2.13)

We will then formally solve the system for states in ℙ using the propagator for channels

in the ℚ-space. We have:

H𝐴+1 = 𝑇𝐴+1

+P† ⎛

⎝
H𝐴 +

𝐴
∑

𝑖
𝑉𝑖,𝐴+1

⎞

⎠
P

+Q† ⎛

⎝
H𝐴 +

𝐴
∑

𝑖
𝑉𝑖,𝐴+1

⎞

⎠
P

+P† ⎛

⎝
H𝐴 +

𝐴
∑

𝑖
𝑉𝑖,𝐴+1

⎞

⎠
Q

+Q† ⎛

⎝
H𝐴 +

𝐴
∑

𝑖
𝑉𝑖,𝐴+1

⎞

⎠
Q

≡ HPP +HPQ +HQP +HQQ,

(2.14)

where the last equality defines the symbols Λ†HΩ = HΛΩ. 𝑇𝐴+1 operates outside the

𝐴-body Hilbert space, and commutes with P and Q; however, we will absorb it into HPP

for convenience. We further define partition Green’s functions such that:

lim
𝜂→+0

𝐺P(𝐸) (𝐸 −𝐻PP + 𝑖𝜂)−1 ≡ P

lim
𝜂→+0

𝐺Q(𝐸) (𝐸 −𝐻QQ + 𝑖𝜂)−1 ≡ Q.
(2.15)

From here on out, we will drop the limit in our notation, and implicitly assume the

limit of 𝜂 is being taken to 0 from above. The identity

𝐴−1 = 𝐵−1 + 𝐵−1(𝐵 −𝐴)𝐴−1 (2.16)
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can be used to generate a Dyson equation for the full 𝐴-body propagator 𝐴−1 = 𝐺 ≡

(𝐸 −H𝐴 + 𝑖𝜂)−1 in terms of the partition Green’s functions.

𝐺 = (𝐺P +𝐺Q) + (𝐺P +𝐺Q)(HPQ +HQP)𝐺. (2.17)

Multiplying from the left by P or Q, we have the coupled equations

P𝐺 = 𝐺P +𝐺PHPQ𝐺

Q𝐺 = 𝐺Q +𝐺QHQP𝐺,
(2.18)

either of which we can formally solve by substitution. Choosing the former yields

P𝐺 = 𝐺P +𝐺PHPQ (𝐺Q +𝐺QHQP𝐺) . (2.19)

Multiplying from the left by (𝐸 −HPP + 𝑖𝜂) and consolidating terms of 𝐺, we have

(𝐸 −HPP −HPQ𝐺QHQP + 𝑖𝜂)P𝐺 = P +HPQ𝐺Q. (2.20)

Finally, we multiply from the right by HP ,

(𝐸 −HPP −HPQ𝐺QHQP + 𝑖𝜂)P𝐺HP = HPP +HPQ𝐺QHQP , (2.21)

and, rearranging, we are left with

P𝐺HP = 𝐺𝑜𝑚𝐻𝑜𝑚 (2.22)

where we have defined the optically reduced Green’s function,

𝐺𝑜𝑚 ≡ (𝐸 −𝐻𝑜𝑚 + 𝑖𝜂)−1 , (2.23)
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as well as the optically reduced Hamiltonian,

𝐻𝑜𝑚 ≡ HPP +HPQ𝐺QHQP . (2.24)

The significance of this quantity is stated in Eq. 2.22; we have derived a Hamiltonian

which produces the same Dyson equation as that of the full Hamiltonian projected onto ℙ.

Explicitly evaluating H𝑜𝑚 in terms of Eq. 2.2, we have

H𝑜𝑚 = HPP +𝑉𝑑𝑝𝑝, (2.25)

where we have defined the dynamic polarization potential, which includes virtual effects from

states in the ℚ-space. For any state ∣𝛼⟩ ∈ ℙ, we find, by inserting a complete set of 𝐴-body

states

⟨𝛼 ∣𝑉𝑑𝑝𝑝(𝐸) ∣𝛼′⟩ ≡ ∑
𝛽∈ℚ

⟨𝛼 ∣𝑉𝑗′𝑙′,𝑗𝑙
𝑚′𝑚 ∣𝛽⟩ ⟨𝛽 ∣𝑉

𝑗′𝑙′,𝑗𝑙
𝑚′𝑚 ∣𝛼′⟩

𝐸 − 𝐸𝐴
𝛽 + 𝑖𝜂

, (2.26)

where ∣𝛼⟩ and ∣𝛽⟩ are shorthand for some state on the appropriate space, e.g. ∣𝑛𝑘𝑗𝑙⟩. Clearly

this is energy dependent, and examination of Eq. 2.11 reveals it is also non-local. Using the

identity

1
𝑧 ± 𝑖𝜂

= P
1
𝑧

± 𝑖𝜋𝛿(𝑧), (2.27)

(where P here denotes the principal part, not to be confused with the projection operator

onto ℙ) we find that the imaginary part of the dynamic polarization potential gives the

strength, as a function of energy, of the final state interaction to couple states on the ℙ-space

to the ℚ-space:

⟨𝛼 ∣ℑ𝔪 𝑉𝑑𝑝𝑝(𝐸) ∣𝛼⟩ = ∑
𝛽∈ℚ
∣⟨𝛼 ∣𝑉𝑗′𝑙′,𝑗𝑙

𝑚′𝑚 ∣𝛽⟩∣
2

𝛿(𝐸 − 𝐸𝐴
𝛽 ). (2.28)
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This is called the strength function when ∣𝛼⟩ is on the elastic channel. It is the defect of

H𝑜𝑚 from Hermiticity, and encapsulates the non-unitary time evolution of the ℙ-states

corresponding to loss of flux to ℚ. It can be shown that, for ∣𝛼⟩ that are stationary scattering

state solutions to (H𝑜𝑚 − 𝐸) = 0, the strength function is proportional to 1 − ∣S𝛼𝛼∣
2, the

unitary deficit to the S-matrix in the 𝛼 channel. We define this quantity as the transmission

coefficient 𝕋𝛼:

𝕋𝛼 ≡ 1 − ∣𝑆𝛼𝛼∣
2 (2.29)

Thus we have a complex, non-local and energy dependent interaction inH𝑜𝑚. Similarly, for

any states ∣𝛼⟩ , ∣𝛼′⟩ ∈ ℙ, we have

⟨𝛼 ∣HPP ∣𝛼′⟩ = 𝑇𝐴+1 + 𝐸𝐴
𝛼 + ⟨𝛼 ∣𝑉

𝑗′𝑙′,𝑗𝑙
𝑚′𝑚 ∣𝛼

′⟩

≡ 𝑇𝐴+1 + 𝐸𝐴
𝛼 +𝑉PP

(2.30)

The last term is just the mean force exerted on nucleon 𝐴 + 1 by all nucleons in the

𝐴-body state labeled by 𝛼; we have used it as the definition of 𝑉PP . If ∣𝛼⟩ refers to the

ground state, this would be considered the mean-field contribution to the optical model

potential. We define the optical model potential

𝑉𝑜𝑚 = 𝑉PP +𝑉𝑑𝑝𝑝 (2.31)

such that

⟨𝛼 ∣H𝑜𝑚 ∣𝛼′⟩ ≡ 𝑇𝐴+1 + 𝐸𝐴
𝛼 + ⟨𝛼 ∣𝑉𝑜𝑚 ∣𝛼′⟩ . (2.32)

The corresponding steady-state Schrödinger-like equation generated byEq. 2.32; (H𝑜𝑚 − 𝐸) =

0, has stationary scattering states as solutions for 𝐸 > 0. It is formally solved by 𝐺𝑜𝑚 (see

Eq. 2.23), which generates a Dyson equation for scattering amplitudes in terms of the free
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propagator, which we define:

𝐺(0)(𝐸) ≡ [𝐸 −H0 + 𝑖𝜂]−1 . (2.33)

Here H0 ≡ H𝑜𝑚 − 𝑉𝑜𝑚. The resulting Dyson equation, which is the result of the same

identity from Eq. 2.16, is:

𝐺𝑜𝑚 = 𝐺(0) +𝐺(0)𝑉𝑜𝑚 𝐺𝑜𝑚, (2.34)

or, in terms of the T -matrix:

𝐺𝑜𝑚 = 𝐺(0) +𝐺(0) T 𝐺(0). (2.35)

Here, we have used the definition of the T -matrix:

T ≡ 𝑉𝑜𝑚 +𝑉𝑜𝑚 𝐺𝑜𝑚 𝑉𝑜𝑚. (2.36)

Combining these two we find the Lippmann-Schwinger equation, which generates the

Born series for scattering amplitudes:

T = 𝑉𝑜𝑚 +𝑉𝑜𝑚 𝐺(0)T . (2.37)

It is important to note that the single-nucleon scattering states generated by Eq. 2.37,

are really states on ℙ; unnormalized product states of an 𝐴-body core state and a single-

nucleon scattering state. However, the optically-reduced propagator produces the exact

sameDyson equation as that produced by the projectedmany-body Green’s functionP†𝐺P ;

this is the statement of the optical reduction.

A few final notes are warranted. It can further be shown that 𝑉𝑜𝑚 should satisfy a

dispersion relation [55, 57] which connects the real and imaginary parts over all energies.

This has been shown to be related to causality when the formalism is extended to include
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both particle and hole states [115]. Optical model potential (OMP) analyses making use

of this are referred to as dispersive optical model (DOM) analyses. While they are not

considered in this work, they have been used effectively to construct local3 OMPs that

formally connect bound and continuum energy scales [43, 141, 5, 41].

It is useful to consider the alternative Green’s function development of the optical

potential, e.g. as in [12, 115, 90, 44], as it develops how to construct the relevant many-

body states perturbatively using particle-hole excitations on top of the mean field, and

formally connects the self-energy to the optical potential in the perturbative expansion

of the single-nucleon propagator. This requires extending for formalism to include hole

states below the Fermi energy. Capuzzi and Mahoux have pointed out that the Feshbach

formalism followed here reproduces the same asymptotic scattering states [27, 28].

2.2 Connecting to scattering quantities

If one were to solve Eq. 2.10 for states in ℙ, or, equivalently, solve (𝐻𝑜𝑚 − 𝐸) = 0 using an

exact form for 𝑉𝑜𝑚, in coordinate space, one would typically use a partial wave expansion,

and the result would be the set of partial-wave states {𝜓𝑗𝑙
𝑛(𝑟) ≡ ⟨𝑟∣𝑛𝑘𝑗𝑙⟩}𝑛∈ℙ. These are

stationary 1-body scattering states, and their asymptotic behavior determines amplitudes

and subsequent cross sections. This asymptotic analysis can be performed in the coordinate

basis using a double Fourier-Bessel transform [44], or in the time-dependent formalism

in terms of the Møller operators [162]. In the latter case one explicitly sees that the time-

evolution on the ℙ-space is non-unitary, and that this imaginary component of 𝑉𝑜𝑚 results

in a non-unitary S-matrix. We understand the loss of flux from the ℙ-space through the

transmission coefficients defined in Eq. 2.29.

We will take the time-dependent approach, first defining the S-matrix as a product of

isometric operators — the Møller operators — mapping from asymptotic scattering states
3That is to say, isotopically local within the chart of isotopes. DOM analysis requires the use of an optical

potential that is non-local in coordinate space.
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to the actual scattering orbits, following [162]:

⟨𝛼∣S ∣𝛼′⟩ ≡ ⟨𝛼∣Ω†
−
Ω+∣𝛼′⟩ . (2.38)

The Møller operators are in turn defined

Ω± ≡ lim
𝑡→∓∞

𝑒𝑖H0𝑡𝑒−𝑖H𝑡. (2.39)

We are concerned with H ≡ H𝑜𝑚, H0 ≡ H𝑜𝑚 − 𝑉𝑜𝑚. That is, our full Hamiltonian is the

optical Hamiltonian, and the ”free” Hamiltonian corresponds to that of nucleon 𝐴 + 1 not

interacting at all with the residual core, as is the case asymptotically. We can write

⟨𝛼∣S ∣𝛼′⟩ = lim
𝑡→∞
⟨𝛼∣ [𝑒𝑖H0𝑡𝑒−2𝑖H𝑡𝑒𝑖H0𝑡] ∣𝛼′⟩ . (2.40)

We can generate an integral equation in terms of asymptotic states by writing the

derivative of the quantity in brackets [… ] as

𝑑
𝑑𝑡
[… ] = −𝑖 (𝑒𝑖H0𝑡𝑉𝑜𝑚𝑒−2𝑖H𝑡𝑒𝑖H0𝑡 + 𝑒𝑖H0𝑡𝑒−2𝑖H𝑡𝑉𝑜𝑚𝑒𝑖H0𝑡) . (2.41)

We now write the S-matrix as the time integral of this quantity:

⟨𝛼∣S ∣𝛼′⟩ = ⟨𝛼∣𝛼′⟩ − 𝑖 lim
𝜖→+0∫

∞

0
𝑑𝑡𝑒−𝜖𝑡 ⟨𝛼∣ 𝑑

𝑑𝑡
S ∣𝛼′⟩

= ⟨𝛼∣𝛼′⟩ − 𝑖 lim
𝜖→+0∫

∞

0
𝑑𝑡𝑒−𝜖𝑡 ⟨𝛼∣ (𝑒𝑖H0𝑡𝑉𝑜𝑚𝑒−2𝑖H𝑡𝑒𝑖H0𝑡 + 𝑒𝑖H0𝑡𝑒−2𝑖H𝑡𝑉𝑜𝑚𝑒𝑖H0𝑡) ∣𝛼′⟩ .

(2.42)

We have introduced the damping factor 𝜖, which is justified if the original integral is

absolutely convergent. This requirement is intimately related to the requirement that the

interaction potential be localized in space, e.g., approaches 0 sufficiently rapidly as 𝑟 → ∞

[162]. However, if this is not the case, one can always reformulate H0 to subtract out the
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long-range component, which requires treatment of the asymptotic scattering states as

under the influence of that long-range force. This is how Coulomb potentials are treated.

When ∣𝛼⟩ = ∣𝑛𝑘𝑗𝑙⟩, e.g. 𝛼 describes a stationary scattering state in channel 𝑛, we have

⟨𝑛𝑘𝑗𝑙∣S ∣𝑘′𝑗′𝑙′𝑛′⟩ = 𝛿(𝑘 − 𝑘′)𝛿𝑙𝑙′𝛿𝑗𝑗′𝛿𝑛𝑛′

−𝑖 lim
𝜖→+0∫

∞

0
𝑑𝑡 ⟨𝑛𝑘𝑗𝑙 ∣𝑉𝑜𝑚𝑒𝑖Δ−2H𝑡−𝜖 + 𝑒𝑖Δ−2H𝑡−𝜖𝑉𝑜𝑚 ∣𝑛′𝑘′𝑗′𝑙′⟩ ,

(2.43)

where Δ ≡ 𝐸𝑘′ + 𝐸𝑘. We can evaluate this integral in terms of the optical Green’s function,

yielding

⟨𝑛𝑘𝑗𝑙∣S ∣𝑛′𝑘′𝑗′𝑙′⟩ = 𝛿(𝑘 − 𝑘′)𝛿𝑙𝑙′𝛿𝑗𝑗′𝛿𝑛𝑛′

+
1
2

lim
𝜖→+0

⟨𝑛𝑘𝑗𝑙 ∣𝑉𝑜𝑚𝐺𝑜𝑚(Δ/2 + 𝑖𝜖) +𝐺𝑜𝑚(Δ/2 + 𝑖𝜖)𝑉𝑜𝑚 ∣𝑛′𝑘′𝑗′𝑙′⟩ .
(2.44)

Using the Lippmann-Schwinger equation (Eq. 2.37), we can write the S-matrix in terms

of the T -matrix:

⟨𝑛𝑘𝑗𝑙∣S ∣𝑛′𝑘′𝑗′𝑙′⟩ = 𝛿(𝑘 − 𝑘′)𝛿𝑙𝑙′𝛿𝑗𝑗′

+
1
2

lim
𝜖→+0

[
1

𝐸𝑘′ − 𝐸𝑘 + 𝑖𝜖
−

1
𝐸𝑘′ − 𝐸𝑘 − 𝑖𝜖

] ⟨𝑛𝑘𝑗𝑙 ∣T𝑜𝑚(Δ/2 + 𝑖𝜖) ∣𝑛′𝑘′𝑗′𝑙′⟩
(2.45)

= 𝛿(𝑘 − 𝑘′)𝛿𝑙𝑙′𝛿𝑗𝑗′𝛿𝑛𝑛′ − 2𝜋𝑖𝛿(𝐸𝑘′ − 𝐸𝑘) ⟨𝑛𝑘𝑗𝑙 ∣T𝑜𝑚(𝐸𝑘) ∣𝑛′𝑘′𝑗′𝑙′⟩ . (2.46)

We have used the definition of 𝛿(𝑧) to achieve this final result, which is our expected relation

between the on-shell T and S matrices. We see that, indeed, the scattering observables are

entirely determined by the value of either S(𝐸) or T (𝐸) at 𝐸 = ̵ℎ2𝑘2

2𝜇 .

The asymptotic analysis in the time-independent formalism is equivalent [162]. It is

worthwhile performing as well, as, when performed in the momentum basis, it readily

yields the differential scattering, as well as total and reaction cross sections. As mentioned,
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the transformation to the coordinate frame using a double Fourier-Bessel transform pro-

vides a partial wave expansion in orbital angular momentum quantum numbers 𝑙, which

is a convenient calculational framework for cross sections in terms of partial wave matrix

elements, e.g. S𝑛𝑗𝑙,𝑛′𝑗′𝑙′(𝐸).

The result of such an analysis gives, for incident particles in the elastic channel ∣0𝑘𝑗𝑙⟩,

the asymptotic form of 𝑢𝑛𝑗𝑙(𝑟)/𝑟 ≡ 𝜓𝑗𝑙
𝑛(𝑟) as 𝑟 → ∞:

𝑢𝑛𝑗′𝑙′(𝑟)→ 𝑖
2
⎛

⎝
𝛿𝑙𝑙′𝛿𝑗𝑗′𝛿𝑛0𝐻−𝑙 (𝜂, 𝑘𝑟) − S𝑛𝑗′𝑙′,0𝑗𝑙(𝐸𝑘)

√
𝑘
𝑘′ 𝐻+𝑙 (𝜂, 𝑘′𝑟)

⎞

⎠
, (2.47)

where 𝐻±
𝑙 (𝜂, 𝑧) are the outgoing and incoming Coulomb-Hankel functions, which span the

solutions to the free Schrödinger equation, e.g. in which 𝑉𝑜𝑚 = 0, and 𝜂 is the Sommerfeld

parameter, which is 0 for neutral particles (see Section A.1).

One may define the partial wave scattering amplitude for a plane wave 𝐤

𝑓(𝑛′𝐤′ ← 𝑛𝐤) ≡ −(2𝜋)2𝜇 ⟨𝑛′𝐤′ ∣T𝑜𝑚(𝐸𝑘) ∣𝑛𝐤⟩ , (2.48)

such that the differential cross sections are formed by the contraction of the scattering

amplitude matrix by the outgoing and incoming state vectors denoted, respectively, by 𝜉𝑛′

and 𝜉𝑛:

𝑑𝜎
𝑑Ω
(𝑛′𝐤′ ← 𝐤𝑛) = ∣𝜉𝑛′ 𝑓(𝑛′𝐤′ ← 𝑛𝐤) 𝜉𝑛∣

2 . (2.49)

The elastic cross section refers to 𝑛 = 𝑛′ = 0. The total elastic cross section is the

integration of this quantity over solid angle Ω = (𝜃, 𝜙). Here, 𝜃 = 𝐤 ⋅ 𝐤′, and 𝜙 is the polar

angle. The optical theorem, a result of unitarity, gives it as a function of the forward

amplitude [162]:

ℑ𝔪𝑓(𝑛𝐤 ← 𝑛𝐤) = ℎ̵𝑘
4𝜋

𝜎𝑛𝑛(𝐤). (2.50)
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Section A.1 provides these quantities, as well as the reaction cross section in terms of a

partial wave expansion in orbital angular momentum, appropriate for a spin-1/2 nucleon

incident on a spin-zero target.

2.3 Connecting to the compound nucleus

So far, we’ve been concerned with the on-shell properties of the propagators, and the

resulting scattering matrices, which completely determines the scattering amplitudes and

cross sections. Now, we turn our attention to the spectrum of eigenvalues of HQQ on the

complex plane, and, subsequently, the analytic properties of the resulting off-shell poles

in the corresponding scattering matrices. Specifically, we take inspiration from random

matrix theory in treating this spectrum as a distribution, which we will use to establish the

connection between H𝑜𝑚 and the statistical de-excitation of the compound nucleus.

The S-matrix is a meromorphic function in the complex energy plane; analytic every-

where except for a set of poles corresponding to eigenvalues 𝑧, (HQQ − 𝑧) = 0, as well as a

branch cut along the positive real axis, running through branch points at each threshold

for emission of another particle; 0, 𝑆𝐴
𝑛 , 𝑆𝐴−1

𝑛 , … on our energy scale [162]. It can be shown

that the set of poles on the so-called physical energy sheet, with ℑ𝔪𝑘 > 0, correspond to

spatially localized bound states. We call the poles on the unphysical sheet, with ℑ𝔪𝑘 < 0,

resonances. When they are located close to the positive real axis, they may contribute to

features in energy dependent cross-sections.

Near a pole on the unphysical sheet at complex energy 𝐸 = 𝐸𝑅 − 𝑖Γ, the most general

form for the S-matrix can be written (absorbing the momentum ratios into S)[162]:

S𝛼𝛼′ = S𝑏𝑔 − 𝑖 𝛾𝛼′𝛾𝛼
𝐸 − 𝐸𝑅 + 𝑖Γ

, (2.51)

where S𝑏𝑔 is the background contribution. This gives rise to the multi-level Breit-Wigner

parameterization, an expansion of the S-matrix in terms of these poles:
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S𝛼′𝛼 = 𝑒𝑖𝜙𝛼′
⎡
⎢
⎢
⎢
⎢
⎣

𝟙 − 𝑖 ∑
𝛽

Γ𝛼𝛽Γ𝛼′𝛽

𝐸𝛽 − 𝐸 − 1
2Γ𝛽𝛽

⎤
⎥
⎥
⎥
⎥
⎦

𝑒𝑖𝜙𝛼. (2.52)

Here, the matrices Γ𝛼𝛽 determine the widths and couplings of each resonance, and

𝜙 are the hard-sphere phase shifts (see Section A.1). This is a widely used formula for

parametrizing resolvable resonances, and is related to the phenomenological R-matrix [40,

163].

In practice, measurements are taken with a wave packet with some energy width Δ𝐸,

not a plane wave. In the case Δ𝐸 ≫ Γ, rather than seeing an energy-dependent scattering

feature, one sees the time-dependent process of the formation and decay of a virtual state

with lifetime ℎ̵/Γ. This suggests the introduction of the energy-averaged optical potential:

𝑉𝑜𝑚(𝐸)← 𝑉𝑜𝑚(𝐸 + 𝑖Δ𝐸). (2.53)

This offset above the real line has the effect of, within the resolution of the experiment,

making all resonances in the ℚ-space — which live below the real line — broad and

overlapping. In practice, the Δ𝐸 should be chosen so that the ℙ-space corresponds to

states with lifetime 𝜏 ≪ ℎ̵/Δ𝐸, and vice-versa for the ℚ-space. Thus, the offset Δ𝐸, and it’s

resulting Hilbert-space partitioning, delimits between direct, short-lived reactions in ℙ, and

long-lived compound nucleus (CN) states in the ℚ-space. The common choice of ℙ-space

corresponding to only the elastic channel is tantamount to a treatment of all non-elastic

reactions as compound nucleus (CN) states, and smoothing over even experimentally

resolvable resonances with a large Δ𝐸.

For the treatment of CN phenomena with an OMP, we are thus considering the case of

the average behavior of many overlapping resonances. It is thus useful to consider the dis-

tribution of these resonances in the complex plane as a statistical distribution. In particular,

one considers the matrices Γ as random matrices, resulting from the asymptotic overlaps of

eigenvectors of the random matrix HQQ, which has 𝐸𝛼 as eigenvalues. Specifically, these
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matrices belong to the Gaussian orthogonal ensemble (GOE) [167, 80]. We will briefly

review the schematics of this theory, and how it leads to, along with unitary on the entire

Hilbert space; ℙ ⊕ ℚ, the factorization of the formation and decay amplitudes4 for the CN,

i.e., the Hauser-Feshbach formalism.

The energy averaging leads to an alternate definition of the S-matrix, with a smoothly

varying direct contribution and rapidly varying CN contribution:

S𝛼𝛽 = ⟨S𝛼𝛽⟩ + ̂S𝛼𝛽. (2.54)

Here ⟨𝑓⟩ refers to the average of a quantity 𝑓 over an energy region, and ̂𝑓 refers to the

standard deviation of the fluctuations. By unitarity of the S-matrix, we can write

𝛿𝛼𝛽 =∑
𝛾
S𝛼𝛾S

∗

𝛽𝛾

= ⟨∑
𝛾
S𝛼𝛾S

∗

𝛽𝛾⟩ +∑
𝜈
⟨S𝛼𝜈⟩ ⟨S𝛽𝜈⟩ .

(2.55)

The first term in Eq. 2.55 is the fluctuating CN contribution, and the second is direct,

allowing us to write the generalized, or Satchler, transmission coefficient as

𝑇𝛼𝛽 ≡ ⟨∑
𝛾
S𝛼𝛾S𝛽𝛾⟩

= 𝛿𝛼𝛽 −∑
𝛾
⟨S𝛼𝛾⟩ ⟨S𝛽𝛾⟩ .

(2.56)

We have used unitarity to relate the first and second moments of the S-matrix, and defined

𝑇𝛼𝛽; a real number between 0 and 1, which determines the probability that, if a transition

from channels 𝛼 to 𝛽 is observed, it proceeds through an intermediate CN. By comparison

to Eq. 2.29, we see that the previously defined transmission coefficients are simply the

diagonal elements of this matrix
4This factorization is a formal statement of the Bohr compound nucleus theory - in which the excitation

energy is equilibrated over many degrees of freedom and the CN becomes “memoryless”.
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𝕋𝛼 = 𝑇𝛼𝛼. (2.57)

The cross section for such a transition reads:

𝜎rxn
𝛼 =

𝜋𝑔𝛼

𝑘2
𝛼
(1 − ∣𝑆𝛼𝛼∣

2
) (2.58)

=
𝜋𝑔𝛼

𝑘2
𝛼

𝕋𝛼. (2.59)

We now derive the branching ratios for the decay of the CN in terms of the transmission

coefficients. Consider the microscopic requirement of detailed balance for a cross section

for a channel transition 𝜎𝛼𝛽 and its time-reversed process:

𝑘2
𝛼

𝑔𝛼
𝜎𝛼𝛽 =

𝑘2
𝛽

𝑔𝛽
𝜎𝛽𝛼. (2.60)

Here, 𝑔𝛽 refers to spin-statistical factors for a channel 𝛽. We have used the fact that,

neglecting width-fluctuation corrections, one can factorize a CN cross section into the

reaction cross section through the entrance channel 𝜎rxn
𝛼 and the branching ratio to decay

through exit channel 𝛽, Γ𝛽/Γ:

𝜎𝛼𝛽 = 𝜎rxn
𝛼

Γ𝛽

Γ

= 𝑇𝛼
𝜋𝑔𝛼

𝑘2
𝛼

Γ𝛽

Γ
.

(2.61)

Here, we have used the definition of the reaction cross section as in Eq. 2.58. By

combining Eq. 2.60 with Eq. 2.59, we immediately find

𝕋𝛼Γ𝛽

Γ
=

𝕋𝛽Γ𝛼

Γ
, (2.62)

We have shown that transmission coefficients and branching ratios are identical up to
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normalization, and we can immediately write the branching ratios for decay into a given

channel in terms of these transmission coefficients:

𝑝(𝛽) =
Γ𝛽

Γ

=
𝑇𝛽

∑𝜈 𝑇𝜈
,

(2.63)

where the sum in the denominator runs over all open channels that respect the symmetries

of the system. Eq. 2.63 can also include photon emission in full competition with neutrons,

with T𝛽 also representing the photon transmission coefficient, e.g. as calculated according

to giant resonance parameters. For the case of neutron evaporation, the probability of a

given initial CN decaying through a given channel 𝛽 is the fractional width given in Eq.

2.63.

We have the formula for the probability for the compound nucleus to de-excite through a

decay channel, corresponding to neutron emission with energy 𝐸 in COM-frame, consisting

of an excited residual core with energy 𝐸𝐴
𝑛 , such that 𝐸𝐴

𝑛 = 𝐸𝐴+1
𝑚 − 𝐸 − 𝑆𝐴+1

𝑛 . Where we do

not have information on individual discrete levels, we turn the sum in Eq. 2.63, which

is over channels 𝑛 with definite COM-frame energy 𝐸𝑛, into an integral with measure

𝑑𝐸′
𝑛 = 𝜌(𝐸0 − 𝐸𝑛 − 𝑆𝑛, 𝑛)𝑑𝐸′, which defines the level density 𝜌(𝐸, 𝛼). This leads us to the

fractional width for neutron evaporation:

𝑝(𝐸, 𝑗, 𝐼𝑛, 𝜋𝑛) =
𝕋𝐼𝑛𝜋𝑛

𝑗𝑙 (𝐸) 𝜌𝐼𝑛𝜋𝑛
𝑗𝑙 (𝐸𝐴+1

𝑚 − 𝐸𝐴
𝑛 − 𝑆𝐴+1

𝑛 )

∑𝑗′𝐼′𝜋′ ∫ 𝑑𝐸′
𝑛 𝕋𝐼′𝜋′

𝑗′𝑙′ (𝐸′) 𝜌𝐼′𝜋′
𝑗′𝑙′ (𝐸

𝐴+1
𝑚 − 𝐸𝐴

𝑛 − 𝑆𝐴+1
𝑛 )

. (2.64)

Eq. 2.64 is the central result of the Hauser-Feshbach theory, and is used to model the

emission of neutrons from an excited CN. Here, the superscript 𝐼𝜋 implies the limitation

to states 𝑗𝑙 in the subscript that satisfy the triangle relation Eq. 2.8, and conserve parity.

Resolved discrete excited states of the residual core may be included by keeping them in a

discrete sum. In practice, the continuum is discretized into uncoupled bins.

One can use Eq. 2.64 to model the decay chain of compound nuclei. Decay by nucleon
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emission requires as ingredients only the level density of the residual core, and the OMP

which describes the effective interaction between the residual core and the emitted nucleon.

Generalized optical potentials between clusters of nucleons (e.g. between a nucleus and an

𝛼-particle), straightforwardly extend this framework to include emission of clusters. As

mentioned, photon emission may also be included by extending the definition of 𝕋𝐼𝜋
𝑗𝑙 (𝐸)

using photon strength functions.

In this way, given an initial nucleus with well-determined excitation energy, spin and

parity, one can compute the probability to decay via a specific mode, to a residual nucleus

with another excitation energy, spin and parity, and an emitted species of radiation. In

fact, the probability in Eq. 2.64 defines a Markov process, in which the current state of the

system (e.g. 𝐴, 𝑍, 𝐸, 𝐽, 𝜋) solely determines its probability of evolving to the next state. By

sampling from this probability, one can generate an ensemble of histories, each specifying

a trajectory of de-excitation, beginning with an initial excited nucleus, and ending in a

stable (or long-lived) state. From many such histories, one can reconstruct experimental

observables relating to the emitted radiation, including full correlations between energy,

angle, multiplicity and species, as well as with the remaining stable or long-lived nuclei

that are produced. This is called the Monte Carlo Hauser-Feshbach (MCHF) formalism,

and we discuss it in more detail in the context of our study of fission in Chapter 3. First,

however, we provide the necessary discussion of how, in practice, to calculate and use the

optical potential, paying attention to, how, in particular, the optical potentials studied in

this work were determined.

2.4 Calculating the optical potential

We have now developed the formal theory of the optical potential, and connected it to

direct and compound reaction observables. In this section we elucidate how to practically

make use of the optical potential, describing the two optical potentials used in this work:
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KDUQ [139] and WLH [178]. We pay particular attention to the respective approximations

they require, and the common functional form they take. We first describe the common

features of both potentials in the context of our developed formalism.

To calculate the optical potential exactly, one would need the same information as to

calculate the (non-truncated) matrix of coupling potentials 𝑉𝑗′𝑙′,𝑗𝑙
𝑛′𝑛 , that is to say, each of

the infinite number of 𝐴-body states ∣Ψ𝐴
𝑛 ⟩, as well as realistic nucleon-nucleon forces. In

practice, 𝑉𝑜𝑚 is often parameterized phenomenologically. It can in principle be calculated

microscopically using one of a variety of ab-initio many-body schemes, however the reach

of these is currently limited to light nuclei. Alternatively, one can access the entire nuclear

chart by applying many-body schemes in nuclear matter, and folding to nuclear density

distributions in finite nuclei, as in the WLH potential or the semi-microscopic Jeukenne-

Lejeune-Mahaux-Bruyéres (JLMB) potential [178, 9].

For practical reasons, often an approximate local optical potential is used. Perey and

Buck developed the idea of the local equivalent potential, which produces the same asymp-

totic wavefunctions outside the range of the potential, and therefore the same scattering

matrices, as the non-local potential, at the cost of gaining additional energy dependence

[137]. This is discussed in detail from a nuclear matter perspective in [90]. Accordingly,

one can write the non-local 𝑉𝑜𝑚(𝐤, 𝐸), which is on-shell when 𝐸 = 𝐸𝑘 = ℎ̵2𝑘2/2𝜇 by taking

a Fourier transform from coordinate space 𝑉𝑜𝑚(𝐫 − 𝐫′, 𝐸). Then, the ratio of the effective

mass 𝑚⋆ to the actual nucleon mass 𝑚 is defined as

𝑚𝑘
𝑚
= (1 + 𝑚

𝑘
[

𝜕
𝜕𝑘

ℜ𝔢𝑉𝑜𝑚(𝑘, 𝐸)]
𝐸=𝐸𝑘

)

−1
(2.65)

𝑚𝐸
𝑚
= 1 − [ 𝜕

𝜕𝐸
ℜ𝔢𝑉𝑜𝑚(𝑘, 𝐸)]

𝐸=𝐸𝑘

(2.66)

𝑚⋆

𝑚
≡ 1 − 𝑘

𝑚
𝑑𝑘

𝑑𝐸𝑘
=

𝑚𝑘
𝑚

𝑚𝐸
𝑚

(2.67)

This effective mass ratio occurs due to the dressing of the bare nucleon mass with its
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effective self-interaction, 𝑉𝑜𝑚. It is empirically ∼ 0.7 in nuclear matter [90]. 𝑚𝑘 describes the

contribution due to the non-locality, while 𝑚𝐸 describes the contribution due to dynamic

coupling to the ℚ-space. Nuclear matter studies have been effective in informing the energy

dependence for phenomenological optical potentials. We return to this in Chapter 4.

A downside to using a local optical potential is that the interior part of the wavefunction

for a non-local and local-equivalent potential will not necessarily be the same, which

impacts distorted-wave Born approximation and coupled-channels calculations that use

local potentials. This extra energy dependence also prevents the use of the dispersion

relation connecting states above and below the Fermi-energy [53].

Another common approximation is to take the ℙ-space as simply the elastic channel, in

which the residual 𝐴-body core is in its ground state ∣𝜓𝐴
0 ⟩. This corresponds to the entrance

channel for a typical scattering experiment. In fact, when excited states are added to ℙ,

𝑉𝑜𝑚 is sometimes then referred to as the generalized optical potential [57]. Both optical

potentials studied in this thesis take the ℙ-space as the elastic channel: ℙ ≡ {∣Ψ𝐴
0 ⟩}. Both

potentials studied in this thesis attempt to construct this exact form of 𝑉𝑜𝑚 through very

different approaches.

Both OMPs studied in this work are local in coordinate space. The radial part of the

Schrödinger-like scattering equation (H𝑜𝑚 − 𝐸) = 0, with a local potential optical potential,

acts on the (reduced) wavefunctions 1
𝑟 𝑢𝑗𝑙(𝑟) ≡ 𝜓𝑗𝑙

0 (𝑟) ≡ ⟨𝑟∣0𝑘𝑗𝑙⟩. It is written as

(−
𝑑2

𝑑𝑟2+
𝑙(𝑙 + 1)

𝑟2 +
2𝜂𝑘
𝑟
+

2𝜇
ℎ̵2 𝑉𝑜𝑚(𝑟; 𝝎) − 𝑘2)𝑢𝑗𝑙(𝑟) = 0. (2.68)

For a charged system, the Coulomb interaction potential is characterized by the Som-

merfeld parameter, which is defined 𝜂 ≡ 𝑍1𝑍2𝑒2𝜇/ℎ̵2𝑘, with charges 𝑍1 and 𝑍2 for the

projectile and target. For neutral projectiles, 𝜂 = 0. The optical potential 𝑉𝑜𝑚(𝑟; 𝝎) is a

function of a set of parameters 𝝎.

Both optical potentials include real and complex volume, surface, and spin-orbit terms,

each with strength, 𝑉, radius, 𝑅, and diffuseness, 𝑎:
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𝑉(𝑟; 𝝎, 𝑗𝑙) =−𝑉𝑣 𝑓(𝑟, 𝑅𝑣, 𝑎𝑣)

−𝑖𝑊𝑣 𝑓(𝑟, 𝑅𝑤, 𝑎𝑤)

− 𝑖4𝑎𝑑𝑊𝑑
𝑑
𝑑𝑟

𝑓(𝑟, 𝑅𝑑, 𝑎𝑑)

+ 2 𝐥 ⋅ 𝐬 (𝑉𝑠𝑜 + 𝑖𝑊𝑠𝑜) (
ℎ̵

𝑚𝜋𝑐
)

2 1
𝑟

𝑑
𝑑𝑟

𝑓(𝑅𝑠𝑜, 𝑎𝑠𝑜). (2.69)

The Woods-Saxon function is defined as

𝑓(𝑟, 𝑅, 𝑎) ≡ [1 + exp(𝑟 −𝑅
𝑎
)]
−1

. (2.70)

For the spin-orbit part, we considering spin-zero targets with spin-1/2 projectiles. The

coupling can then only take the values:

2𝑙 ⋅ 𝑠 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

𝑙 if 𝑗 = 𝑙 + 1
2

−(𝑙 + 1) if 𝑗 = 𝑙 − 1
2

. (2.71)

The scale factor associated with the spin-orbit term uses the pion mass 𝑚𝜋 such that

(
̵ℎ

𝑚𝜋𝑐)
2

≈ 2 fm2 [163]. In general, for the global optical potentials, a set of sub-parameters

determine the functional dependence of the depths, radii, and diffuseness of each term as

a function of the energy, 𝐴 and 𝑍.

This is an extremely common form used and refined by optical potential practitioners,

and has been able to produce very good agreement with experiment [81]. Both optical

potentials studied in this work use the same general form, each employing some physically-

motivated functional form for the depth, radii and diffusenesses of each term in Eq. 2.69 as

a function of 𝐴, 𝑍, and 𝐸. Each global OMP is thus exactly specified by the set of parameters

that determine the functional dependence of each term’s depth, radius and diffuseness as a

function of 𝐴, 𝑍 and 𝐸. In this work, we deal with uncertainty-quantified optical potentials,
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which are instead equipped with a multivariate distribution of those parameters.

Of particular importance are the parameters that determine how the 𝑉𝑜𝑚 changes away

from stability. Depth terms that can be separated into isoscalar and isovector components

are said to take the Lane form [101, 102]. This form arises from simple considerations. Ef-

fective nucleon-nucleon forces contain terms which are dependent on the isospin projection

of the two nucleons, 𝐭1 ⋅𝐭2. This is true phenomenologically, for forces fit to nucleon-nucleon

scattering and bound states of 2𝐻 (e.g. [182]). In the case of the chiral forces, such as those

which determine the WLH potential, they arise naturally from exchange of mesons, the

effective force carriers for low-energy quantum chromodynamics (QCD) [114].

By averaging the isospin-projection terms in the 2-body nucleon forces 𝑉𝑖𝑗 over the

nucleons in the target, as in Eqs. 2.26 and 2.30, one finds both the static and dynamic optical

potential depths have terms which are dependent on the target-projectile isospin projection,

𝐓 ⋅ 𝐭. Accordingly, we adopt a form for each depth term that is broken into isoscalar and

isovector terms, respectively, 𝑉0 and 𝑉1, which are independent of 𝑁 and 𝑍 independently,

but not necessarily to 𝐴:

𝑉 = 𝑉0 + (𝐓 ⋅ 𝐭)𝑉1. (2.72)

This form leads us to

𝑉𝑛/𝑝 = 𝑉0 ± 𝛿
4

𝑉1, (2.73)

where 𝛿 = 𝑁−𝑍
𝑁+𝑍 , and the appropriate Clebsch-Gordan coefficients have been used. Here, the

+(−) signs are for neutrons(protons). This formalism naturally accounts for isospin mixing

in nucleon-nucleus reactions, as is observed in quasi-elastic (𝑝, 𝑛) reactions to isobaric

analogue states.

In practice, it is difficult to determine a useful form that is truly Lane-consistent, pri-

marily due to the breaking of isospin symmetry by the Coulomb interaction. Both optical
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potentials studied in this work use a weaker form in which 𝑉𝑛/𝑝 ≠ 𝑉0 ± 𝛿
4𝑉1. Instead, global

neutron and proton optical potentials are fit with some parameters remaining consistent

and others separate. The Lane form typically used is then is still as in Eq. 2.72, where

𝑉0 and 𝑉1 depend only on mass and energy, and now 𝑉0 and 𝑉1 may not be the same

for neutrons and protons. Phenomenologically, 𝑉1 should be negative, reflecting the fact

that neutrons are less bound in neutron-rich systems than in proton-rich systems (and

vice-versa for protons), and should decrease monotonically with energy [95].

The 𝛿 dependent depth terms 𝑉1 are expected to be generally energy dependent, follow-

ing the same considerations as the full optical reduction, Section 2.1. In phenomenological

models they are only constrained by stable isotopes corresponding to a rather narrow range

of 𝛿. In particular, the imaginary surface component of the optical potential is peaked at

low energies, reflecting that low-energy neutrons are preferentially absorbed, and emit-

ted, from the fringe regions of the nucleus, where nucleon density, and, therefore, Pauli

blocking effects, are diminished relative to the interior [124]. Understanding the isovector

dependence of this low-energy imaginary surface strength is essential for understanding

low-energy compound-nuclear processes involving isotopes away from 𝛽-stability, such as

in fission or the r-process.

In fact, it has been shown that the isovector components of OMPs are poorly constrained

in the low energy (100s of keV) region, with strength functions suggesting a suppression

of neutron-capture strength in the neutron-rich region, and simulations predicting a strong

sensitivity of r-process reaction rates to the isovector dependence, especially for drip-line

nuclei [71]. Moreover, the symmetry energy of nuclear matter, as well as its first-order

density dependence about saturation density, is contained in the energy dependence and

isovector component of the single-nucleon self-energy [183]. It is clear that understanding

how optical potentials change away from stability is tantamount to providing stricter

constraints, phenomenologically or microscopically, on the isovector dependence of the

various depth parameters contained in Eq. 2.69.
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Finally, we turn our attention to the two optical potentials we study in this work, paying

specific attention to how they determine their isovector dependence.

2.4.1 KDUQ

The phenomenological OMP tested in this thesis was KDUQ [139], fit to differential elastic

scattering cross sections and analyzing powers, proton reaction cross sections, and neutron

total cross sections. This is an uncertainty-quantified version of the workhorse phenomeno-

logical OMP Koning-Delaroche [95], which updates the original potential using robust

outlier rejection and Bayesian calibration. The original potential is valid for 1 keV up to

200 MeV, for (near-) spherical nuclides in the mass range 24 ≤ 𝐴 ≤ 209. The default

parameterization of Koning-Delaroche, as provided in [95], is the default OMP in CGMF.

The set of parameters and functional forms for each terms depth, radius, and diffuseness

are listed in [95]. An approximate Lane-consistency is achieved by forcing certain isovector

depth parameters to be consistent between the neutron and proton potentials.

We now review the Bayesian framework used in calibrating KDUQ. The Bayesian

calibration of the optical potential Eq. 2.69 refers to finding the conditional probability for

a set of parameters, 𝝎, given a set of physical observations, 𝑦. The statistical model relating

the observations and the optical potential (OP) is of the form

𝑦 = OP(𝝎) + 𝜺, (2.74)

where OP(𝝎) represents the set of observables — differential and angle-integrated cross

sections, analyzing powers — that were calculated from the optical model. 𝜺 ∼ N(𝟎, 𝚺) is

the residual error, which was assume follows a multivariate Gaussian distribution with

mean 𝟎 and covariance matrix 𝚺.

The Bayesian calibration refers to the identification of the conditional probability density

𝑝(𝝎∣𝑦), referred to as the posterior of 𝝎. Given 𝑝(𝝎), the prior of 𝝎, the posterior is found
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via applying Bayes’ theorem, i.e.,

𝑝(𝝎∣𝑦) = 𝑝(𝑦∣𝝎)𝑝(𝝎)
𝑝(𝑦)

∝ 𝑝(𝑦∣𝝎)𝑝(𝝎), (2.75)

The conditional probability density 𝑝(𝑦∣𝝎) is called the likelihood function, which provides

a metric for comparing OP(𝝎)with the physical observations 𝑦. In a typical case, with a

single observable, the likelihood is constructed as

𝑝(𝑦∣𝝎) ∝ ∣𝚺∣−
1
2 exp{−1

2
(𝑦 −OP(𝝎))T𝚺−1(𝑦 −OP(𝝎))} . (2.76)

Once the posterior is specified, one can build the predictive posterior distribution of new

unobserved data 𝑦pred, given the already observed data, by marginalizing over the model

parameters 𝝎:

𝑝(𝑦pred∣𝑦) = ∫ 𝑝(𝑦pred∣𝝎)𝑝(𝝎∣𝑦)d𝝎. (2.77)

This predictive posterior folds together the uncertainty on our model parameters coming

from the posterior 𝑝(𝝎∣𝑦) Eq. 2.75, with the expected intrinsic error of new gathered data

for a given model parameter 𝑝(𝑦pred∣𝝎).

Markov chain Monte Carlo (MCMC) [62], e.g., the Metropolis-Hastings algorithm,

is commonly used to sample from Eq. 2.75. In each iteration, the likelihood function in

Eq. 2.76 is evaluated at a different value of 𝝎. This is tantamount to numerically solving

Eq. 5.3 for each partial wave until convergence, and then reconstructing a given observable

as in Section A.1. In the case of KDUQ, the affine invariant Goodman-Weare sampling

algorithm was used [67].

In the case of fitting an OMP to a large corpus of experimental observables, as with

KDUQ, one has choices in how to weight different observables, or different experiments, in

the likelihood. In [139], two different strategies are taken, denoted the “democratic” and
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the “federal”. In the democratic ansatz, the data covariance in the likelihood function is

assumed to be diagonal, the experimentally reported uncertainties for each data point are

augmented with an unreported uncertainty (estimated in an observable-by-observable

basis) and the covariance is scaled by 𝑘/𝑁, 𝑘 being the number of model parameters (46),

and 𝑁 being the total number of data points. In the federal ansatz, the data covariance is

modified so that data points of observable 𝑖 are scaled separately by the number of data

points belonging to that observable, e.g., by 𝑘/𝑁𝑖. Thus, each observable has equal influence

in the likelihood, and each data point has equal influence within its observable. In [139],

the two ansatze produced similar calibrated models, and the federal ansatz is used in this

work.

2.4.2 WLH

The other optical potential examined in this thesis is the microscopic WLH potential,

which was developed in a nuclear matter folding approach [178]. First, in asymmetric

nuclear matter, at a variety of densities and asymmetry parameters 𝛿, the single-nucleon

self-energy was calculated self-consistently to 2nd order in many-body perturbation theory

(MBPT). The advantage of this approach is there is no restriction to the line of stability:

the self-energy was calculated for a much wider range of asymmetries than is possible in

phenomenological models like KDUQ. Additionally, the self-energy was calculated using

nucleon-nucleon forces from chiral effective field theory (𝜒-EFT), therefore maintaining

consistency with QCD. In particular, chiral nuclear forces were employed at next-to-next-

to-leading order (N2LO) and N3LO in the chiral expansion. Different choices for the cutoff

of the regulator function that suppresses high momentum states were employed.

To apply these nuclear matter self-energies to finite nuclei, they are then folded to

nuclear density distributions using the improved local density approximation (I-LDA)

to produce optical potentials. The nucleon densities are calculated in mean-field theory

with Skyrme effective interactions [106]. The underlying theoretical uncertainty was
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approximated by the spread in resulting parameters from five different choices of chiral

interaction. The WLH spin-orbit term was developed using a density-matrix expansion at

the Hartree-Fock level [85].

The targets considered spanned 1800 nuclei, ranging in mass from 12 < 𝐴 < 242, inclu-

sive of light and medium-mass bound isotopes out to the neutron drip line. The energy

considered was 𝐸 ∈ [0, 200]MeV.

For target nuclei with small proton-neutron asymmetry, the WLH isospin-dependence

follows the Lane form with first-order 𝛿 dependence, however, for nuclei with larger

isospin asymmetries, the WLH potential contains terms with no parallel in KDUQ, which

are proportional to the square of the isospin asymmetry, and strongest at low energy.

Understanding the phenomenological implications of these higher order terms is especially

interesting for neutron-rich nuclei.
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Chapter 3

Uncertainty Quantification of Fission

Observables

It is the goal of the work presented in this chapter to determine, to what degree, measure-

ments of the prompt emissions provide constraints on the nucleon-nucleus interaction

between the residual fragments and their neutron progeny. We investigate this dependence

for the first time by propagating two uncertainty-quantified opticalmodel potential (OMP)s

through Monte Carlo Hauser-Feshbach (MCHF) fission fragment de-excitation with the

CGMF code, and constructing credible distributions for a variety of fission observables. These

distributions represent the uncertainty of a given fission observable, due to the parametric

uncertainty in an OMP.

To begin, we briefly review the theory of nuclear fission and the subsequent fragment

de-excitation. We discuss the modeling of the de-excitation in the Monte Carlo Hauser-

Feshbach (MCHF) formalism introduced in Chapter 2, and clarify the role played by the

OMP. We describe the current corpus of experimental fission observables, and how to

extract those observables from a MCHF calculation.

Next, we state the methodology used for quantifying the uncertainty in these observ-
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ables due to the OMP in the MCHF code CGMF in this work. Finally, we show the results of

this uncertainty quantification, using theKoning-Delaroche uncertainty quantified (KDUQ)

and Whitehead-Lim-Holt (WLH) potentials, comparing to a variety of experiments and

discussing the results.

3.1 Nuclear fission and the optical potential

Nuclear fission has been a subject of study since its discovery by Lise Meitner and Otto

Frisch in the experimental results of Otto Hahn in 1938. The phenomenon, in which a

fissile nuclide - typically an actinide - deforms into an unstable configuration which splits

into (typically) two fragments, produces a variety of correlated observables, and spans

many orders of magnitude in time.

Historically, efforts to calibrate phenomenological optical potential parameters have

relied on elastic scattering experiments. The corpora of experimental data typically in-

clude include neutron and proton differential elastic scattering cross sections, 𝑑𝜎/𝑑Ω, and

total and reaction cross sections, 𝜎𝑡 and 𝜎𝑟𝑥𝑛, respectively. Current work has focused on

propagating OMP uncertainties into specific non-elastic reaction channels, such as transfer,

charge-exchange and knockout reactions, with the goal of eventually including non-elastic

measurements as OMP constraints in the form of Bayesian posteriors for model calibration

[179, 77].

In this chapter, we examine the efficacy of expanding this corpus to include compound

nucleus (CN) observables in which unstable nuclei are produced, directly into the calibra-

tion posterior. Specifically, we focus on observables from fission. This has several potential

advantages:

1. measurements of fission fragments and their prompt emissions provide experimental

access to unstable nuclei, thereby testing the extrapolations of global OMPs from

stability,
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2. the energy scale of prompt neutron emissions is typically closer to astrophysically

relevant energies than direct reactions in beam-line experiments,

3. and there already exists a large library of historical experimental data for fission-

fragment decay spectroscopy, including multi-species correlations

It is also worth noting that CN processes already contaminate elastic scattering mea-

surements at low incident nucleon energy, where compound-elastic processes dominate

the cross sections. In one way or another, all phenomenological OMPs that extend to

low energies must address this in the calibration. Due to computational limitations, the

approximation may be adopted to pre-calculate the CN-elastic cross section with a Hauser-

Feshbach (HF) treatment, using a single set of OMP parameters from the prior; that is,

the CN-elastic component is typically not adjusted with the calibration [139]. Further,

the presence of resolved resonances complicates the energy averaging in practice, making

statistical assumptions invalid.

Directly incorporating CN observables, including fission, potentially provides new

constraints for phenomenological OMPs at low-energy, that may be under constrained

currently. The sensitivity of CN reaction formalisms to model inputs has been tested in the

past; for example, for mass-yield models [89, 107], and non-statistical properties [91] in

fission, and for level densities in fusion [169].

It is a computationally demanding task to simultaneously quantify uncertainty and

correlations between all model inputs for every CN observable of interest. The piecemeal

efforts so far have indicated strong sensitivity to level densities, and cases where results

disagree significantly with experiment [169]. This indicates the potential efficacy of opti-

mizingmodel inputs— level densities, OMPs, strength functions, etc. — to CN observables.

Indeed,level densities have previously been extracted from neutron evaporation spectra,

[173, 143]. It has been suggested that uncertainties in CN observables due to the OMP may

be larger than for level densities in some cases; particularly at low energy [139]. Therefore,

we take the first steps here to quantify this uncertainty in fission.
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Due to the interesting, still not fully understood, physical phenomena associated with

fission, and the importance of the reaction to society, it has been subject to extensive

measurement and modeling (For an exhaustive review see [159, 151] and references

therein). There is, in particular, a rich history of experiments investigating the properties

and correlations between the prompt emissions in fission going back at least six decades

[150, 116, 132, 180, 82, 60, 24]. Measured observables include the energy and multiplicity of

neutrons and photons, and the correlations between them and the fragments themselves.

The observables we consider in this work in particular are the prompt neutrons emitted

from the fragments as the de-excite. These signals are correlated with the excitation energy

and angular momentum of the fragments following scission as well as the branching

ratios for de-excitation. In particular, experiments that measure these neutron fragment

correlations [68, 69, 24, 21] require finesse. These experiments are able to approximately

reconstruct the center-of-mass frame neutron spectrum by measuring the fragment mass

and energy in an Frisch-grid ion chamber in correlations with neutron energies measured

by the time-of-flight method in scintillator detectors.

The pre-emission fragment states cannot be directly measured, and the effect of the

dependence on the de-excitation model on the reconstructions of the pre-fragment state

must be well understood to use experiments to probe open questions about excitation

energy and angular momentum sharing in fission [180]. Specifically, it has been observed

that OMP predictions of the angular momentum removed by emitted neutron goes against

the commonly held belief that fission neutrons are roughly isotropic in the center-of-mass

(COM) frame [155].

The fragments produced in fission are neutron-rich and highly excited; born into a

state dependent on the conserved quantities (mass, charge, angular momentum, excitation

energy, etc.) of the pre-scission CN, its deformation at the saddle point, and the dynamics

of scission. It then equilibrates its excess deformation energy into excitation energy, and

typically de-excites by promptly emitting neutrons until reaching the neutron removal
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threshold. Below the threshold, if still excitation energy dominated, they emit statistical 𝛾-

rays. Finally, near the Yrast line, they become angular-momentum dominated by the strong

coupling to discrete rotational states. They then emit discrete 𝛾-rays corresponding to the

remaining transitions to a stable or long-lived state. Typically, this state is still unstable to

𝛽-decay, and further delayed neutron and 𝛾-emission are required before a stable state is

reached.

In the MCHF formalism, as discussed in Chapter 2, the optical potential represents

the effective interaction between the removed nucleon and the excited residual core. The

truncation of the ℙ-space of the OMP to the elastic channel represents one of the most

dramatic approximations in modeling many nuclear reactions, including neutron emission

from fission fragments. Fission fragments are not generally spherical in their ground

state, and even those that are, are expected to have low-lying collective vibrational or

rotational/vibrational states. In particular, even-even nuclei with 𝐴 < 150 tend to be more

spherical with a spectrum well described by vibrational states, while heavier nuclei are

more likely to be deformed in the ground state and exhibit rotational structure [16]. These

low-lying states couple to the ground-state and each other, but, importantly, also couple to

the ℚ-space, acting as doorway states to more complicated compound configurations.

These low-lying collective states can be measured in stable even-even nuclei, and cali-

brating a phenomenological generalized optical potential using collectivemodels for excited

states in the ℙ-space well describes scattering data [161]. However, for odd-𝐴 nuclei the

competition between vibrational and single particle states makes measurement and model-

ing of low-lying collective states more difficult; moreover, many fission fragments aren’t

stable enough for measurements anyway.

Promising work has connected microscopic models of collective excited states (e.g.

the quasi-particle random phase approximation (QRPA)) to scattering using a folding

model, e.g. [50], but this method has not yet realized a global model that is able to make

predictions in experimentally inaccessible regions of the nuclear chart. Due to the current
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lack of such a global model, what is typically done is to approximate fission fragments as

spherical with negligible coupling to low-lying states, as in a single-channel OMP. Thus,

we relegate the collective excited states to the ℚ-space, where they are treated on average

as virtual contributions.

3.2 Uncertainty propagation

CGMF [160] is a MCHF code which generates initial configurations for the fission fragments

in mass, charge, kinetic energy, excitation energy, spin, and parity, and then samples their

de-excitation trajectories by emission of neutrons and 𝛾-rays. It is capable of neutron

induced fission on various actinides over incident energies ranging from thermal to 20MeV,

as well as spontaneous fission of relevant isotopes.

CGMF samples the initial post-scission fragment masses using a three-Gaussian model

with linearl and exponential terms in the energy dependence of both the first and second

moments. The energy dependence is tuned to experimental data. The fragment charges

are then sampled conditional on the masses using the Wahl systematics [172], and the

total kinetic energy (TKE) of the fragments are sampled from empirical distributions when

possible, and a Gaussian using a mass-dependent mean and standard deviation tuned to

available data otherwise. The total excitation energy (TXE) is then available by energy

balance; TXE = Qf − TKE, where 𝑄𝑓 is the energy liberated in the fission, depending on the

binding energies of the pair of fission fragments created. The partitioning of the excitation

energy is done in the Fermi-gas model, in which the temperature ratio of the light to heavy

fragment is allowed to be mass dependent, and tuned to prompt neutron properties. The

fragment spins are uncorrelated, and chosen from Gaussians centered on the number of

geometric levels 𝐽(𝐽 + 1), with width tuned to prompt photon properties. Parity states are

assumed to be equiprobable.

Once the post-scission states of the twofission fragments for a history have been sampled,
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they are then de-excited in the MCHF formalism, where the decay of the CN is treated

as a Markov process, governed by Eq. 2.64, with neutron and photon emission in full

competition. The MCHF algorithm, given the conserved quantum numbers of the fully-

accelerated post-scission fragment, samples from Eq. 2.64, emitting neutrons and photons

until a state is reached that is stable against prompt emissions. The observables are then

re-constructed event-by-event.

The nuclear level density ismodeled using the Kawano-Chiba-Koura (KCK) systematics,

which extends the Gilbert-Cameron model to include an energy dependent level density

parameter, and defines the procedure for assigning spin and parity to discrete levels for

which it is unknown [92]. This assumption is another potentially large contributor of

uncertainty, as level densities are plagued by the same issue as OMPs of extrapolating away

from stability, where data is available, but this is not considered here.

It is important to note that certain model inputs (e.g. nuclear temperatures used for

excitation energy sharing) in CGMF have been tuned to experimental observables, espe-

cially mean neutron multiplicities. This tuning was performed using the default Koning-

Delaroche (KD) OMP parameterization, so correlations between these parameters and

OMP parameters may be responsible for canceling errors in both. This point will be

emphasized in the interpretation of the results.

The fission reactions under consideration were 252Cf (𝑠𝑓) and 235U (𝑛th, 𝑓). For each of

these cases, the uncertainty propagation was done by brute force, with 300 samples from

the posterior predictive distributions of each OMP. In this case of WLH, these samples

were generated by assuming a multi-variate normal distribution and sampling from the co-

variance provided in [178]. It should be noted that, although the posterior distributions for

WLH are expected to be well approximated by a multi-variate normal, this approximation

may lead to a slightly higher proportion of samples drawn from the tails of the distribution.

For the case of KDUQ, these samples were taken from the supplemental material of [139],

using the federal posterior formulation. For each OMP sample, an ensemble of one million
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Monte Carlo histories were generated, from which first and second moments of aggregate

observables were re-constructed to compare to experiment.

Some experimental comparisons required kinematic correction for COM-frame prompt

fission neutron spectrum (PFNS). In particular, as described in [68], only neutrons with

lab-frame energy larger than the pre-emission kinetic energy per nucleon of the emitting

fragment were measured. For comparison to this experiment, these cuts were applied

event-by-event to the generated histories. A similar cut to compare to data from [21] was

determined to have a negligible effect when applied to CGMF histories, andwas subsequently

ignored. Additionally, mass reconstruction in the relevant experiments has an uncertainty

with a standard deviation of roughly 2-4 mass units.

The spread of the mean in each observable over all parameter samples reflects the sum

of two uncertainties: the intrinsic parametric uncertainty of each OMP, and the inherent

uncertainty due to the limited number of Monte Carlo histories per parameter sample.

These uncertainties are assumed to be uncorrelated, so that the total uncertainty 𝜎𝑡 across

the ensemble of OMP samples was taken as the quadrature sum of the MCHF uncertainty

and the parametric uncertainty of the OMP; so that the latter was estimated as:

𝜎𝑜𝑚𝑝 =
√

𝜎2
𝑡 − 𝜎2

𝑚𝑐. (3.1)

For a given ensemble of histories corresponding to OMP parameter sample 𝑖, a Monte

Carlo uncertainty 𝜎 𝑖
𝑚𝑐 was calculated for each observable. For observables that correspond

to the mean of a distribution over events (e.g. average prompt neutron multiplicity ̄𝜈), 𝜎 𝑖
𝑚𝑐

corresponded to the standard error in the mean (SEM), and was estimated directly from

the second moment of the distribution of the observable over all histories in the ensemble,

by applying the Central Limit Theorem (CLT):

𝜎 𝑖
𝑚𝑐 =

¿
Á
Á
ÁÀ

1
𝑁

∑
𝑛
(𝑘𝑖

𝑛)2 −
1

𝑁2 (∑
𝑛

𝑘𝑖
𝑛)

2
, (3.2)
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where 𝑘𝑖
𝑛 represents the score for the observable of interest in the 𝑛th (out of 𝑁) histories

of the 𝑖th sample.

Observables corresponding to distributions (e.g. PFNS), were constructed by his-

togramming over ensemble histories, in which case the mean of an observable in a bin

corresponded to the probability density of 𝑘𝑖
𝑛 falling into that bin in a given history. For 𝑚

times out of 𝑁 histories in a bin in phase space with width Δ𝑥, the mean is 𝑚/(𝑁Δ𝑥). In

this case, 𝜎 𝑖
𝑚𝑐 was estimated in each histogram bin according to a Binomial distribution:

𝜎 𝑖
𝑚𝑐 =

1
𝑁Δ𝑋

√

1 − 𝑚
𝑁

. (3.3)

In either case, 𝜎𝑚𝑐 for the observable was then estimated by averaging 𝜎 𝑖
𝑚𝑐 over all ensem-

bles.

The propagation of uncertainties through CGMF was a significant computational task.

Calculating fission observables for a single parameter sample (consisting of one million

CGMF histories) required roughly 30 cpu-hours on the Great Lakes cluster at the University

ofMichigan, using Intel(R) Xeon(R)Gold 6140 CPUs. The 300 samples required to generate

a posterior predictive distribution of observables corresponding to a single potential and

fissioning system therefore each required roughly 9300 cpu-hours, or just over 1 cpu-year,

and each produced over 300 Gb of history files on disk, after compression.

Within a given ensemble, histories were ran in parallel using the Message Passing

Interface (MPI) implementation in the python module MPI for Python (mpi4py) [59, 38].

A modified version of CGMF was used with Python bindings, and all software used to run

CGMF and analyze results is open-source and available online under the name omp-uq. The

technology and dependency stack is also open source, and, insofar as possible, managed

automatically by CMake and git submodules, to maximize ease of installation and cross-

platform compatibility. The stack includes, as a dependency to the aforementioned fork of

CGMF, an open-source code for uncertainty-quantification in few-body reaction calculations

by the authors called Optical model ScatterIng & ReactIon Software (OSIRIS) [14].
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OSIRIS accepts as input a set of global optical potential parameters, including for KDUQ

andWLH, (e.g. in a json file according to the format used by the TOMFOOL code [139] which

was used to calculate KDUQ), and calculates potential values and scattering amplitudes.

Insofar as was possible, all components in the software stack created by the authors employ

unit and regression testing using pytest [97] and Catch2 [86].

3.3 Results

Figure 3.1 displays histograms of ̄𝜈, the mean prompt neutron multiplicities per fission

event (inclusive of both fragments). In each of these cases, the Monte Carlo uncertainty in

each ensemble was negligible compared to the parametric uncertainty of each OMP, and are

therefore not shown. For comparison are a variety of experimental results and evaluations

of ̄𝜈. Interestingly, each OMP disagreed with each other to statistical significance, with

KDUQ generally being the closest to experiment. WLH universally predicted too large of

multiplicities.

This can be interpreted from an energy budget perspective, as shown below (see

Fig. 3.2 for example), the WLH optical potential produces softer spectra. For a given initial

excitation energy, less energy removed per neutron implies a larger multiplicity.

In all other figures, the shaded regions represent a credible interval of two standard de-

viations for each OMP, with the colored regions representing the portion of the uncertainty

attributable to the OMP parameters, and the grey region due to the Monte-Carlo treatment.

Thus, the total shaded regions in the figures represent 𝜎𝑡, the grey portions 𝜎𝑚𝑐, and the

colored portions 𝜎𝑜𝑚𝑝. For observables for which the MCHF treatment didn’t converge,

due to limited number of histories probing the relevant phase space region, 𝜎𝑜𝑚𝑝 could not

be resolved. For most observables, the grey bands are negligible, indicating reasonable

estimation of the actual OMP parameter uncertainty.

Figures 3.2 and 3.3 display the lab-frame PFNS for 252Cf (𝑠𝑓) and 235U (𝑛th, 𝑓) compared
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Figure 3.1: Distribution of average prompt neutron multiplicities produced by the
uncertainty-quantified OMPs. (a) Prompt neutron multiplicity in 252Cf (𝑠𝑓), compared to
evaluations from Croft et al., [37], and ENDF/B-VIII.0 [22], as well as experimental results
from [149, 171, 51, 170, 153, 52]. (b) Prompt neutron multiplicity in 235U (𝑛th, 𝑓), compared
to the ENDF/B-VIII.0 evaluation [22], as well as experimental results and other evaluations
[74, 60, 83, 17, 29, 93].
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Figure 3.2: PFNS in the lab frame for 252Cf (𝑠𝑓) as a ratio to a Maxwellian at 𝑘𝑇 = 1.32 MeV,
compared to experimental results from [118, 127, 100, 96, 176, 32, 34, 154].

to a variety of measurements, all as ratios to a Maxwellian. Clearly, both models predict

spectra that are too soft as compared to measurements, WLH especially so. From an energy

budget standpoint, this helps explain the results for average neutronmultiplicity. In the fast

portion of the spectrum, the 1-10 MeV region, sensitivities to OMP parameter uncertainty

is well-resolved and significant, especially for 235U (𝑛th, 𝑓).

Figure 3.4 displays the mean single-mass prompt neutron multiplicity for individual

fragments as a function of fragmentmass, compared to a variety of measurements. Formost

mass numbers, this observable is not strongly sensitive to the OMP, with the exceptions of

the highly asymmetric region for both fissioning isotopes, and the highly symmetric region

for 235U.

Figure 3.5 displays the mean single-mass prompt neutron multiplicity as a function of

the TKE of both fragments, compared to a variety of measurements. For both fissioning

isotopes, this observables is fairly insensitive to both models, except for in the low TKE

highly symmetric fission region. This region corresponds to highly deformed fragments
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Figure 3.3: PFNS in the lab frame for 235U (𝑛th, 𝑓), as a ratio to a Maxwellian at 𝑘𝑇 = 1.32
MeV, compared to experimental results from [176, 99, 184, 127, 154].

post-scission, and, therefore, excitation energy dominated systems during de-excitation.

Both models reproduce experiment well, especially the most recent measurement [68]. The

insensitivity of mean neutron multiplicity conditional on fragment mass and TKE indicates

the utility of these observables for inclusion as constraints of the global optimization of

model inputs unrelated to the OMP, especially those related to scission.

Figure 3.6 displays the mean neutron energy as a function of fragment mass. Of course,

both models predict spectra that are too soft, however this is not the case uniformly across

mass number; the mass dependent behavior of each OMP is different. Interestingly, in the

symmetric fission region, the sensitivity of the mean neutron energy was pronounced for
235U, but not for 252Cf. In fact, in the respective symmetric fission regions, both models

strongly disagree to experiment for 252Cf, but agree fairly well (despite large uncertainties)

for 235U, with WLH agreeing best. Both models exhibit poor agreement, for both fissioning

isotopes, in the mass region 125 < 𝐴 < 135, which produces fragments near the 132Sn

double shell closure. This indicates a potentially rich mass region to investigate with future
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Figure 3.4: Average neutron multiplicity from fragments of a given mass number for (a)
252Cf (𝑠𝑓) compared to experimental results from [185, 24, 21, 45, 68, 51], and (b) 235U
(𝑛th, 𝑓) compared to experimental results from [8, 130]
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Figure 3.5: Average neutron multiplicity as a function of TKE of the fragments for (a)
252Cf (𝑠𝑓) compared to experimental results from [68, 185, 21, 24], and (b) 235U (𝑛th, 𝑓)
compared to experimental results from [69, 130, 18]
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Göök et al., 2014

Budtz-Jorgensen et al., 1988

(a) 252Cf (𝑠𝑓)

80 100 120 140 160

A [u]

0.0

0.5

1.0

1.5

2.0

2.5

〈E
cm
|A
〉[

M
eV

]

KDUQ

WLH

Nishio et al., 1998

Batenkov et al., 2004
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Figure 3.6: Average neutron energy in the COM frame emitted from fragments of a given
mass number for (a) 252Cf (𝑠𝑓), compared to experimental results from [21, 68, 24], and
(b) 235U (𝑛th, 𝑓) [130, 8, 69].

fission arm spectrometer experiments, for several reasons: 1) nuclides close to the shell

closure are approximately spherical, so there is more validity in applying a spherical optical

potential to them as opposed to other fission fragment isotopes; 2) the disagreement with

experiment is largest here, but this is unexplained by the OMP uncertainties 3) the two

OMPs disagree with each other in this region.

Figure 3.7 displays the mean neutron energy emitted from individual fragments as a

function of the TKE of both fragments The shape of the mean neutron energy dependence

of both models as a function of TKE is essentially the same, just shifted by ∼ 100keV. It

is worth noting the disagreement obtained with experiment, further investigation should

clarify this issue.

The mas dependence is explored further in Figs. 3.8 and 3.9, where single-fragment

COM-frame PFNS are compared to [68], for a few selected mass number pairs. The

mean and shape disagreement between the OMPs and experiment demonstrate the poten-

tial for fragment-neutron correlated time-of-flight measurements to constrain the mass-
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dependence of OMPs away from stability. Particularly interesting is the peaked structure

around ∼ 1MeV predicted by WLH, uniformly across fragment masses and fissioning

isotopes.

On the experimental side, these spectra indicate a strong deviation from Maxwellian

behavior for some fragments with some experiments having more than 5 times the number

of neutrons in the ∼ 10MeV bin than the models predict, albeit with large uncertainties.

This feature has been investigated before [91], but the systematic mass-by-mass calibration

of model inputs to neutron spectra has yet to be done. Unfortunately, the large experimental

uncertainties for most mass numbers does make this a challenge.

The highly asymmetric mass regions for both isotopes are potentially useful as con-

straints for the OMPs, as they are sensitive while being in regions that are well covered by

experiment, with only moderate uncertainties and disagreements between experiments.

We would not recommend fitting any non-OMP model inputs to any observables relating

to neutron energy, without also considering the OMP amongst the free parameters, as the

sensitivity is universally non-negligible.

Figures 3.10 and 3.11 display the mean single-fragment multiplicity conditional upon

mass number and TKE of the fragment pair for a few selectedmass number pairs. Again we

see high sensitivity in the low TKE symmetric region. The experimental data is reproduced

well for the most part, with the exception of systematic over/under-estimation for fragment

pairs; e.g. 𝐴 ∼ 104, 131 in 235U. Both models are essentially identical for these observables.

Figures 3.13, and 3.12 displays the mean neutron energy conditional upon fragment

mass and TKE. While this observable could in principle be extracted from most of the other

similar experiments; e.g. [68, 69, 24], it is only reported by Bowman et al. [21], and only

for 252Cf. As this is the most sensitive observable to the optical model, we recommend

further experimental study in this direction. In both experiments, the overall shape as a

function of TKE was roughly the same for both models.

Although the experimental data points are sparse, the agreement is reasonable with
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Figure 3.7: Average neutron energy in the COM frame, as a function of the TKE of the
fragment pair, for (a) 252Cf (𝑠𝑓) compared to experimental results from [21, 24], and (b).
235U (𝑛th, 𝑓)

the exception of 𝐴 = 131, in which it is off by up to an MeV in the region of TKE ∼ 200. This

is well outside of the parametric model uncertainty, and could potential provide a useful

constraint for calibration.

3.4 Discussion

We have shown that neutron-fragment correlated fission observables are sensitive to the

form and parameterization of the OMP. In particular, neutron energy spectra are sensitive

to OMP form and parameters, especially as a function of TKE. Neutron multiplicities are

slightly sensitive due to energy budget considerations, but this is a second order effect

and not relevant given the size of experimental uncertainties. On the other hand, neutron

energy spectra, when differentiated on mass and TKE, show significant sensitivities in

observable regions that converged in theMCHF treatment. The low TKE region is especially

sensitive, although it is difficult to access experimentally.
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Figure 3.9: PFNS ratio to a Maxwellian with 𝑘𝑇 = 1.1 MeV, and conditional on fragment
mass, for 235Cf (𝑛𝑡ℎ, 𝑓) compared to experimental data from [69, 130].
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Figure 3.10: Single-fragment neutron multiplicity as a function of the TKE of both frag-
ments, and conditional on fragment mass, for 252Cf (𝑠𝑓) compared to experimental data
from [68, 24].
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Figure 3.11: Single-fragment neutron multiplicity as a function of the TKE of both frag-
ments, and conditional on fragment mass, for 235U (𝑛𝑡ℎ, 𝑓) compared to experimental data
from [68].
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Figure 3.12: AverageCOM-frame neutron energy as a function of the TKE of both fragments,
and conditional on fragment mass, for 252Cf (𝑠𝑓) compared to experimental data from [21].
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Figure 3.13: AverageCOM-frame neutron energy as a function of the TKE of both fragments,
and conditional on fragment mass, for 235U (𝑛𝑡ℎ, 𝑓).
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Of particular interest is the energy spectra of neutrons emitted in the mass region near

the 132Sn shell closure. The strong disagreement between experiment and theory cannot

be explained purely by the uncertainty in the OMP priors, and, furthermore, the OMP

forms disagree with each other in this region to statistical significance. Further study of

fission fragment initial conditions, informed by experiment microscopic time-dependent

or adiabatic mean-field calculations of scission, may shed light on the role of excitation

energy sharing in this region, but the role of the OMPs cannot be ruled out. Additionally,

the parameterization of level densities may need to be revisited. Future work should

investigate the sensitivity of these fission observables to level density parameters, as well

as fission-fragment initial conditions.

Throughout the observables, significant differences were observed between OMP forms.

The WLH potential in particular predicted much softer spectra than the phenomenological

potential. WLH produced reasonable spectra for light fragments, but was significantly

softer than experiment for heavy. This points to potential issues with the nuclear matter

folding approach at low energy, due to finite size effects and long-range correlations. This

has been pointed out in relation to the JLMB semi-microscopic potential as well [71]. In

general, the imaginary strength of microscopic OMPs developed in folding approaches is

smaller than that in corresponding phenomenological potentials, likely due to missing con-

figurations that describe, or act as doorway states to, collective excitations which contribute

to CN states. For example, at second order in many-body perturbation theory, 3-particle–2-

hole states are neglected. Specifically for the WLH potential, the total imaginary part of

the potential is less surface peaked than in phenomenological potentials [84].

Especially in the case of fission fragments, we expect low-lying collective excitations to

arise in the form of rotational and vibrational modes. Explicitly including these couplings

in the form of a coupled-channels OMP would, in principle, provide a better description,

but this has not been done in the case of fission due to computational constraints and lack of

information about excited states in neutron-rich nuclei. However, as described in Chapter 2,
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the HF approach only requires that the branching ratios, not transmission coefficients, to

the ground state well describe those to excited states, which alleviates part of this issue.

Future work will explore the possibility of describing deformed fragments by including

coupling to low-lying collective excitations. As this is not likely to be computationally

tractable within MCHF, emulators capable of significant speed up to the calculation of

transmission coefficients are being explored and developed [20, 64, 121]. Additionally,

leveraging microscopic descriptions of excited states is worth exploring if they provide

predictions different from collectivemodels, or remove poorly constrained input parameters

(such as quadrupole deformations of fission fragment ground states) from the calibration.

This effort is directed towards including fission observables as constraints for OMP

parameters. As discussed, there are a wide variety of other fissioning isotopes that can

be studied, with a large quantity of associated experimental data. In particular, precision

fragment-neutron correlated experiments, using time-of-flight fission arm spectrometers,

are beginning operation, and promise the most precise fission-fragment measurements to

date [120]. Performing these measurements in correlation with prompt neutrons would

likely provide the most precise and detailed data, against which to compare fission models,

to date. The ability to leverage emulators to do rapid uncertainty quantification of MCHF

models for fission – and other CN processes – would open up the door for adding new

constrains to OMPs away from stability.

Future work optimizing model inputs to MCHF fission event generators should be

guided by this work to include neutron-fragment correlatedmultiplicities (i.e. ̄𝜈 conditional

on 𝐴 and/or TKE). Furthermore, measurements of mass-dependent neutron energy spectra

provide a (admittedly model-dependent) measurement of fragment temperatures [24].

Using these as Bayesian priors in such a calibration, or incorporating them as a constraint

in the likelihood function, should be investigated.
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Chapter 4

The Optical Potential and the Nuclear

Symmetry Energy

In this chapter, we attempt to approximately reconstruct, or unfold, the strength of the

nuclear matter optical potential at saturation density, from theWhitehead-Lim-Holt (WLH)

and Koning-Delaroche uncertainty quantified (KDUQ) optical potentials, which are formu-

lated for finite nuclei. Then, by applying the Hugenholtz–Van Hove theorem, we can relate

this single-particle effective potential to the nuclear matter Equation-of-State (EOS). In

particular, we can relate the symmetry energy of the EOS to the isovector part of the optical

potentials. Similar analysis done in the past ([183]) has indicated that phenomenological

optical potentials are roughly consistent with reconstructions of the symmetry energy at

saturation density from terrestrial experiments and astrophysical observations. Here, we

revisit this analysis using the uncertainty-quantified optical potentials WLH and KDUQ,

and show that this consistency is still true within parametric uncertainty of both models.

Interestingly, we find a very large variance in predicted symmetry energy quantities from

KDUQ, indicating a fundamental limitation of scattering observables to constrain the sym-

metry energy. We discuss future improvements that can be made, and discuss correlations
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between these nuclear matter EOS quantities and fission observables.

4.1 Formalism

Xu et al., [183] derived in 2010 the relationship between symmetry energy and its density

slope, and the optical potential using the Hugenholtz–Van Hove theorem [87]. The value

of its density slope around saturation density 𝐿(𝜌0) is an important model input in the

determination of many quantities relating to heavy and unstable nuclei, including the

size of the neutron skin in heavy nuclei [166], and the location of the neutron drip line

[135], as well relating to neutron stars, including the core-crust transition density and

gravitational binding energy [49, 128]. We perform a similar analysis for KDUQ and

WLH, and compare to evaluated global averages, extracted by Li et al., from terrestrial

experiments, including atomic masses and neutron skins of Sn isotopes, nuclear masses

within the finite-range droplet model (FRDM), Pygmy dipole resonances, and dipole

polarizability, and astrophysical observations, including neutron star crust oscillation and

r-mode instability [105].

Global neutron and proton optical potentials with depth terms which can be written as

𝑉𝑛/𝑝(𝜌, 𝑘) = 𝑉0(𝜌, 𝑘)± 𝛿𝑉1(𝜌, 𝑘), (4.1)

where

𝛿 ≡ 𝜌𝑁 − 𝜌𝑍
𝜌𝑁 + 𝜌𝑧

, (4.2)

are said to be Lane-consistent. We have defined 𝜌𝑁/𝑍 as the neutron/proton density, 𝛿 is

the degree of asymmetry. 𝑉0 and 𝑉1 are, respectively, the isoscalar and isovector terms.

Lane consistency in an optical potential is simply a statement that the potential depends

on the projection of the projectile nucleon isospin on the isospin of the target. We have
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included the density 𝜌 as an argument in 𝑉0/1, as the self-energy is density dependent.

Because nuclei exist at the saturation density, the optical potential only provides constraints

at 𝜌 = 𝜌0. Otherwise, it is the same as defined in Chapter 2, with 𝐸 = 𝐸𝑘 =
̵ℎ2𝑘2

2𝑚 .

In the context of Fermi-liquid theory, the Hugenholtz-Van Hove theorem relates the

Fermi energy to the energy density and the pressure of a system at zero temperature. By

considering the optical potential as the mass operator in nuclear matter, [115], one can

derive the relationship of symmetry energy and its density slope in nuclear matter, to the

isovector component of the optical potential. We only consider the volume term, as the

surface and spin-orbit terms don’t exist in nuclear matter. The expressions derived in [183]

read:

𝐸𝑠𝑦𝑚(𝜌) =
1
3

ℎ̵2𝑘2
𝐹

2𝑚⋆ +
1
2

𝑉1(𝜌, 𝑘𝑓), (4.3)

and

𝐿(𝜌) = 2
3

ℎ̵2𝑘2
𝐹

2𝑚⋆ +
3
2

𝑉1(𝜌, 𝑘𝑓) + 𝑘𝐹
𝜕𝑉1(𝜌, 𝑘)

𝜕𝑘

RRRRRRRRRRR𝑘=𝑘𝐹

, (4.4)

where the Fermi momentum 𝑘𝐹 = (
3𝜋2𝜌

2 )
1/3

≈ 1.36 fm−1. The effective mass splitting in

nuclear matter is the difference in the effective mass ratio 𝑚⋆/𝑚 between neutrons and

protons. In terms of the isovector potential:

𝑚⋆
𝑛 −𝑚⋆

𝑝

𝑚
= −2𝛿 𝑚

ℎ̵2𝑘2
𝐹

𝜕𝑉1(𝜌, 𝑘)
𝜕𝑘

RRRRRRRRRRR𝑘𝐹

/[1 + 2(𝑚
⋆

𝑚
− 1)] . (4.5)

We extract these quantities fromKDUQandWLH, using the empirical values for nuclear

matter of 𝜖𝐹 = 16 MeV and 𝑚⋆/𝑚 = 0.7 [90]. Fig. 4.1 displays the uncertainty-quantified

energy dependence of the isovector energy in the two potentials. Interestingly, the nuclear

matter approach, WLH, and the phenomenological approach based on scattering, KDUQ,

agree to within uncertainty above ∼ 25MeV, well into the scattering continuum, but they
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disagree for bound states above the Fermi energy, and the disagreement becomes worse at

more bound energies below 𝜖𝐹. This potentially indicates that the lack of constraints from

bound states, especially deeply bound states below the Fermi energy, in KDUQ, cause it to

become inconsistent with nuclear matter calculations using chiral forces. Also interesting

is the divergence of the uncertainty in the isovector term at high energies. Evidently, this is

a difficult quantity to constrain when limited to the valley of stability.

Also of note is the improved agreement of the default Koning-Delaroche (KD) isovector

potential with WLH. In fact, below the Fermi energy, the default KD parameterization is

outside the KDUQ uncertainty band. This could potentially be due to the extra analytical

constraints for Lane consistency used in KD not present in KDUQ (see [95] Eq. 20).

This constraint takes the form of an analytical function of energy 𝑔(𝐸) chosen to enforce

Lane-consistency between neutron and proton real volume depths like so:

𝑉𝑛 = (𝑉0 − 𝛿𝑉1)𝑔(𝐸)

𝑉𝑝 = (𝑉0 + 𝛿𝑉1)𝑔(𝐸).
(4.6)

The result of this approach to formulating the functional forms forKD is that an approximate

Lane consistency is achieved, as the dominant contributions to the isovector part of the

real depth term are held the same for potentials for both incident neutrons and protons,

and it is only small energy and mass-dependent corrections that break this symmetry. For

WLH, far fewer parameters are held consistent between the neutron and proton potentials,

so that poorer Lane consistency is achieved.

In general, Coulomb corrections break the simple form of Lane consistency given here.

More generally applicable are the full coupled Lane equations, see e.g. the appendix of

[101]. To best avoid ambiguities relating to the electromagnetic effects, in the following

analysiswe construct the isovector depth𝑉1 using the respective potential forms for neutron

projectiles. Alternative formulations (e.g. using the isovector part of the proton depths,

or subtracting the full neutron and proton depths) require Coulomb corrections, and are
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not explored here. Additionally, the isovector depth is mass-dependent in KD, so we take

𝐴 = 208 to represent an experimentally well-constrained isotopic chain with a large enough

mass for the interior of the nucleus to effectively represent nuclear matter.

In the case of a folding potential like WLH, in the local density approximation, the

depth term reflects the strength of the nuclear matter potential at the density corresponding

to the interior of the nucleus (saturation density), as the Woods-Saxon form factor is equal

to 1 at 𝑟 = 0. In principal, the same could be said for phenomenological potentials like

KD, however, there is no underlying density-dependent nuclear matter potential used

to construct them. A more detailed analysis would apply some unfolding procedure to

reconstruct such a density-dependent nuclear matter potential from that for a finite nucleus.

To the knowledge of the authors, this hasn’t yet been attempted in the literature. Instead,

we take the reasonable approximation that the potential strength in the interior of a large

nucleus is similar to the self-energy in nuclear matter, justifying the application of the

Hugenholtz–Van Hove theorem.

In the following results, we propagate the same parameter samples as in the previous

chapter for fission into Eqs. 4.3, 4.4, and 4.5. Namely, we use the federal form of KDUQ,

and the same samples generated from a multivariate normal approximation as before for

WLH.

4.2 Results & discussion

Figs 4.2 and 4.3 display, respectively, themass splitting and the relation between 𝐸𝑠𝑦𝑚 and its

density derivative 𝐿(𝜌), extracted from a distribution of 300 parameter samples from each

of the posteriors ofWLH and KDUQ, with the default KD values indicated. For comparison

are the global evaluations of [105]. These paint the, perhaps predictable, picture that the

nuclear matter approach of WLH better reproduces nuclear matter properties than does

the phenomenological KDUQ. In any case, it is encouraging that the chiral forces reproduce
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Figure 4.1: The isovector component of the real volume term in WLH and KDUQ as a
function of energy. The Fermi energy, 𝜖𝐹, where the symmetry energy and its density slope
are extracted, is marked. Compare to Fig. 1 of [183]. Uncertainty bands of 1 and 2 standard
deviations are shown, with the mean marked as a solid line.

well these important quantities, as originally pointed out by Whitehead et al. [177].

Moreover, this is an indication that the value of the isovector depth at the Fermi energy in

WLH (and its momentum slope about it), are more accurate to terrestrial and astrophysical

experiments than is KDUQ. Evidently, because KDUQ is only constrained by scattering

with 𝐸 > 0, it does not reproduce symmetry behavior at the Fermi energy that is consistent

with nuclear matter. Combined with the fact that scattering data clearly has limits on how

much it can constrain 𝑉1 (see the large uncertainties in Fig. 4.1), there is a clear conclusion

to be drawn: future work constructing global optical potentials should include constraints

from bound states, especially from hole states below the Fermi energy. Furthermore, they

should be constructed in such a way to be consistent with these important nuclear matter
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71



10 20 30 40

Esym(ρ0) [MeV]

20

40

60

80

L
(ρ

0
)

[M
eV

]

exp. global avg.
Li & Han, 2013

KDUQ

WLH

Koning-Delaroche

Figure 4.3: The symmetry energy of nuclear matter plotted against its density slope ex-
tracted from WLH and KDUQ, as compared to a global average of terrestrial experiments
and astrophysical observations from [105], as well as the global average from phenomeno-
logical optical model potential (OMP)s [183].

72



20 30 40 50 60 70

L(ρ0) [MeV]

3.72

3.74

3.76

3.78

3.80

3.82

3.84

3.86
ν̄

[M
eV

]

Croft, 2020

ENDF/B-VIII.0

Li & Han, 2013

KDUQ

WLH
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quantities.

Fig. 4.4 displays the distribution of predictions of the symmetry energy compared to that

of ̄𝜈 in 252Cf(𝑠𝑓). This is a concrete example of the application of orthogonal experimental

constraints discussed in Section 1.2, as neither of these quantities have been used to constrain

an optical potential. It turns out that, for KDUQ, these two quantities are not correlated,

while for WLH they are. This indicates broadly that the simultaneous application of fission

observables and nuclear matter quantities could be useful for constraining an optical

potential using WLH as a microscopic prior. The fact that two quantities that should

constrain the extrapolation of KDUQ away from 𝛽-stability to the neutron-rich region are

not correlated perhaps points to limitations of fitting only to scattering observables.
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Chapter 5

Projective Model Order Reduction for

Global Optical Potentials

In this chapter, we develop the formalism for and demonstrate a new emulator based

on projective model order reduction (PMOR) for two-body scattering. Using a Galerkin

formulation, we derive reduced basis method (RBM) (see Refs. [20, 47, 142, 79] and

references therein). We demonstrate that the reduced basis method (RBM), equipped with

the empirical interpolation method [7, 73], allows for the construction of computationally

efficient surrogate models for scattering, even with non-affine interaction terms. In the

optical potential defined in Eq 2.69, the non-affine parameters are the radius and diffuseness

of each term, as well as the energy dependence of the system.

We introduce the associated software, called the Reduced Order Scattering Emulator

(ROSE) [133], that is an integrated part of the publicly available BAND software suite[15].

The performance of the emulator is explored and assessed by calibrating a realistic local

optical potential by constraining elastic cross sections. These results have also been re-

ported in [134]. These techniques are explained pedagogically with code examples online

[66]. We also introduce the software package just-in-time R-matrix (JITR), which is
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called within Reduced Order Scattering Emulator (ROSE) as a high-fidelity solver of the

scattering equations [13].

Next, we discuss the unsuitability of a single RBM-based emulator to perform accu-

rately for a global optical potential across a large swath of the nuclear chart, and across

a large energy range. To ameliorate this issue, we develop the active subspace quilting

(ASQ) method, which stitches together multiple RBM models as local tangent spaces using

techniques similar to the Active Subspace Method of Constantine et al. [36]. We develop a

novel, computationally efficient method for discovering the active subspace for an RBM

emulator, and outline an iterative procedure to discover the optimal decomposition of the

parameter space into local tangent neighborhoods. We demonstrate the effectiveness of

this technique for emulating a global optical potential trained on 46 isotopes and multiple

of orders of magnitude of energy. We further discuss potential avenues for improving this

method into the first production quality tool for projective model order reduction (PMOR)

of parametric systems on non-linear manifolds in the context of nuclear physics.

Applications of this method include Bayesian calibration of global optical potentials,

and speeding upMonte Carlo Hauser-Feshbach (MCHF) calculations as in CGMF. Emulators

have potential to bring physicist closer to theirmodel, being able to iterate onmodel creation

rather than spending time running expensive simulations. A good example of this is the

Bayesian Mass Explorer [65]. A successful emulator of a global optical potential could

be a useful tool for a similar proposed Bayesian Reaction Explorer, in which users could

compare experimental data to models of their choice at the click of a button on a website,

rather than through a lengthy calculation.

Before we move into the discussion of the PMOR techniques developed in this work,

we briefly comment on the modification of the Bayesian framework discussed in Chapter 2

required when using an emulator, with it’s own associated error, in model calibration.

Once the emulator is built, the posterior likelihood, Eq. 2.75, is modified to account for the

emulator’s approximate nature, which is characterized by some prediction mean 𝝁(𝝎) and
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covariance 𝚺Emu(𝝎). The new, approximate, posterior assumes independence of emulator

and observation error:

𝑝(𝝎∣𝑦) ∝ ∣𝚺 +𝚺Emu(𝝎)∣−
1
2

exp{ − 1
2
(𝑦 − 𝝁(𝝎))T(𝚺 +𝚺Emu(𝝎))

−1
(𝑦 − 𝝁(𝝎))}𝑝(𝝎), (5.1)

A developer of a model using emulators must then be careful to understand well the

associated error, and incorporate it into the calibration. We demonstrate this practice in

this chapter.

5.1 The reduced basis method (RBM)

We would like to emulate the parametric system, Eq. 2.68. For the local optical potential

considered here, 𝝎 is the list of ten parameters:

𝝎 = {𝑉𝑣, 𝑊𝑣, 𝑅𝑣, 𝑎𝑣, 𝑊𝑑, 𝑅𝑑, 𝑎𝑑, 𝑉𝑠𝑜, 𝑅𝑠𝑜, 𝑎𝑠𝑜}, (5.2)

that characterize the strength, radius, and diffuseness of real and imaginary volume,

imaginary surface, and real spin-orbit Woods-Saxon terms in Eq. 2.69. These parameters

define a space, and at each point in space, there is a solution to Eq. 2.68. The core idea

behind the success of the RBM is that, although the Hilbert space is of large or infinite

dimension, as a function of 𝝎, the solutions live in a low-dimensional, smooth manifold.

It is convenient to rescale Eq. 2.68 by the change of variables 𝑠 ≡ 𝑘𝑟. With this rescaling

we define a parametric operator 𝐹𝜶 on the Hilbert space:

𝐹𝜶[𝑢(𝑠)] = (−
𝑑2

𝑑𝑠2 +
𝑙(𝑙 + 1)

𝑠2 +
2𝜂
𝑠
+𝑈(𝑠; 𝜶) − 1)𝑢(𝑠; 𝜶) = 0, (5.3)
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where the re-scaled nuclear potential

𝑈(𝑠; 𝜶) = 𝑉(𝑠/𝑘, 𝝎)2𝜇/ℎ̵2𝑘2 (5.4)

now effectively depends on the energy. 𝜶 will represent all of the quantities we wish to

emulate across. For neutrons, we emulate across energies and the potential parameters:

𝜶 ≡ {𝝎, 𝐸}, (5.5)

The solutions to Eq. 5.3 can be numerically computed by various methods. We refer to

the conventional ways of computing the solution as “high-fidelity solvers” throughout the

rest of the manuscript. These include:

• Methods that integrate 𝑑2𝑢/𝑑𝑠2 in a discretized coordinate basis (𝑟 or 𝑠), imposing

initial conditions at 𝑠 → 0; these include the Numerov [131] and Runge-Kutta [98,

148] methods.

• Calculable R-matrix methods, which expand 𝐹𝜶1 in a convenient pre-selected basis of

functions and impose asymptotic boundary conditions at the channelmatching radius

𝑠 = 𝑎 (see Appendix A.1) [103, 40]. For scattering problems, a basis of Lagrange-

Legendre functions is typically employed due to their compact support [11].

We use the implementation of Runge-Kutta in scipy.integrate.solve_ivp, as well as

the calculable R-matrix method on a Lagrange mesh (see [40, 39, 11, 10]), implemented in

the novel software package JITR, to generate the results in this chapter [168, 46].

High-fidelity solvers often have control parameters that can be used to tune the precision

of the solution obtained, providing a trade-off between accuracy and speed; in the case

of the adaptive-step Runge-Kutta implementation in scipy, these are the relative and
1Really, a modified version of 𝐹𝜶 that, due to the introduction of the Bloch operator, restores Hermitian

symmetry over 𝑠 ∈ [0, 𝑎].
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absolute error tolerances in 𝑢(𝑠) used to determine the step Δ𝑠. The solver propagates an

initial condition of the function and its derivative {𝑢(𝑠0), 𝑢′(𝑠0)} up to a maximum value

𝑠max = 𝑘𝑟max, such that the short range potential vanishes 𝑈(𝑠) ≈ 0 for 𝑠 ≥ 𝑠max. The starting

value 𝑠0 > 0 is chosen such that 𝑢(𝑠) is well approximated by its power behavior for 𝑠 ≤ 𝑠0.

In the case of the calculable R-matrix method, it is the truncation of the set of functions that

defines the basis. Unless otherwise specified, we use an absolute and relative tolerance of

10−9 in solve_ivp, and a basis size of 50 in JITR.

If we restrict the scaled scattering equation 5.3 to a channel radius 𝑎 ≡ 𝑘𝑟max, the exact

solution 𝑢 exists in an infinite-dimensional Hilbert space2 H. 𝑢 exists within a manifold of

H parametrized by all the variables 𝜶.

The reduced basis method reduces the dimension of this system by exploiting two

linear subspaces of H, one to restrict the input of 𝐹𝜶 (where 𝑢 resides), and the other to

restrict its output [20], through a Galerkin projection [144]3. By working in these subspaces

of smaller dimension 𝑛𝑢, computational efficiency can be significantly increased.

We approximate 𝑢(𝑠) by expanding in the reduced basis, which we will seek a suitable

representation of:

𝑢(𝑠; 𝜶) ≈ ̂𝑢(𝑠; 𝜶) = 𝑢0(𝑠) +
𝑛𝑢

∑
𝑘=1

𝑎𝑘(𝜶)𝑢𝑘(𝑠). (5.6)

Each channel (𝑗𝑙) will have a different reduced basis, built using the same procedure. We

forgo (𝑗𝑙) indices for the remainder of this chapter.

The term 𝑢0(𝑠) is an optional basis element without an assigned coefficient that helps

enforce the initial conditions. Such a term is crucial to create a non-homogeneous system of

equations for the coefficients 𝐚, and avoid obtaining the trivial solution ̂𝑢 = 0. An alternative

method is to use the Bloch operator, as in calculable R-matrix methods, which also has the
2If we instead consider the entire interval 𝑠 ∈ [0, ∞) then the scattering solutions 𝑢(𝑠) do not have compact

support, and are instead said to exist in a rigged Hilbert space.
3Formally, this can be seen as a restriction of the weak formulation of the equations to a subspace of the

Hilbert space [121].
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advantage of restoring Hermitian symmetry on the Hilbert space of scattering equations

within the channel radius [40]. Although the latter is not explored in this work, it is a

worthwhile future direction of investigation. We select 𝑢0(𝑠) as a free solution to Eq. 5.3;

the Coulomb function 𝐹𝑙(𝜂, 𝑠) (see Appendix A.1).

The reduced basis can be thought of as a compression of the training set. We do this

compression using the principal component analysis (PCA)4. The PCA defines a coordinate

transformation onto a set of bases which are sequentially ordered by their variance across

the training set, referred to as principal components. This can be written as as a matrix

decomposition; the singular value decomposition:

𝐀 = 𝐔

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱

𝑠𝑖

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐕𝑇 (5.7)

Here, 𝐀 is 𝑁 ×N matrix of observations, 𝑁 being the number of observations and N

is the dimension of each observation. These correspond to, respectively, the size of the

training set, and the number of elements representing each wavefunction (e.g. in a mesh

over the radial coordinate). The principal components are then the columns of 𝐔. The

fraction of explained variance of each principal component in a PCA decomposition is

𝜎2
explained

𝜎2 =
𝑠2
𝑖

∑𝑖 𝑠2
𝑖
, (5.8)

where 𝑠𝑖 are the singular values. These are monotonically decreasing. We choose as our

reduced basis the principal components of the difference between the free solution and

each element in the “training” set, which is composed of 𝑁 “snapshots” 𝑢(𝑠; 𝝎𝑚). Each

snapshot is a high-fidelity solutions to Eq. 5.3, each at a different point in parameter space:
4The PCA is related to the singular value decomposition algorithm [23], AKA the proper orthogonal

decomposition [142].
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{𝑢𝑘}
𝑛𝑢
𝑘=1 = PCA[{𝑢(𝑠, 𝜶𝑚) − 𝑢0(𝑠)}𝑁𝑚=1]. (5.9)

The PCA captures the 𝑛𝑢 directions in which the variance is largest in the training set,

corresponding to the variation —caused by the potential— around the “free” solution

𝑢0(𝑠) . In practice, 𝑛𝑢 can be chosen to preserve some fraction of the explained variance of

the training data set using Eq. 5.8.

Once the reduced basis has been constructed, we construct a system of equations for the

coefficients 𝐚 by selecting the second subspace of H expanded by “projecting” (or “test”)

functions 𝜓𝑗 with 𝑗 ∈ [1, 𝑛𝑢]. The output of the operator 𝐹𝜶 is restricted to this subspace,

and satisfying Eq. 5.3 (in this subspace) is done by requiring that the projection of the

residual 𝐹𝜶[ ̂𝑢] onto each of the 𝜓𝑗, for 𝑗 ∈ [1, 𝑛𝑢], is zero:

⟨𝜓𝑗∣𝐹𝜶[ ̂𝑢]⟩ = ⟨𝜓𝑗∣𝐹𝜶∣𝑢0⟩ +
𝑛𝑢

∑
𝑘=1

𝑎𝑘⟨𝜓𝑗∣𝐹𝜶∣𝑢𝑘⟩ = 0. (5.10)

Here we have used that the operator Eq. 5.3 is linear: 𝐹𝜶[ ̂𝑢] = 𝐹𝜶 ̂𝑢. We select

𝜓𝑗(𝑠) = 𝑢†
𝑗 (𝑠) (5.11)

for the projecting functions, a choice that connects the Galerkin-method approach with

scattering emulators based on the Kohn-Variational-Principle [61, 48, 20]. With this choice,

a double complex conjugate will cancel in the bras.

In the matrix form, Eq. 5.10 is written:

𝐌(𝜶)𝐚 = 𝐜(𝜶), (5.12)

where,
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𝑀𝑗𝑘 = ⟨𝜓𝑗∣𝐹𝜶∣𝑢𝑘⟩ = ∫ 𝜓†
𝑗 (𝑠)𝐹𝜶𝑢𝑘(𝑠)𝑑𝑠,

𝑐𝑗 = −⟨𝜓𝑗∣𝐹𝜶∣𝑢0⟩ = −∫ 𝜓†
𝑗 (𝑠)𝐹𝜶𝑢0(𝑠)𝑑𝑠.

(5.13)

These integrals are computed only once in what is called the offline, or training, stage

of the emulator. The online stage consists of then using the trained emulator to swiftly give

an approximate solution for a new value of the parameters by solving the 𝑛𝑢-dimensional

linear system in Eqs. 5.12 [142, 79]. Every computation in the online stage is in the 𝑛𝑢

dimensional reduced basis, while the high-fidelity solutions and integrals evaluated offline

involve a fine coordinate mesh. For the sake of comparison, we will consider a fine mesh of

size N , which characterizes the time complexity of any operation in the high fidelity space.

Having 𝑛𝑢 ≪ N is the key to achieving a computational speedup.

A demonstration of the principal components for the 27Al(𝑝, 𝑝) at 28 MeV test problem

are displayed in Fig. 5.1a. This test problem trained an emulator to 27Al(𝑝, 𝑝) at 28 MeV.

Training points were determined by Latin hypercube sampling using a training range of

±50% around the default Koning-Delaroche (KD) parameters [95]. It is worth noting that

the three principal components displayed explain ∼99% of the variance on the training set.

5.2 The empirical interpolation method (EIM)

Computing the integrals Eqs. 5.13 for a general unspecified value of the parameters – so

that they can be used online – can be done only if the operator 𝐹𝜶 is affine in those quantities.

This is the case for the multiplicative depth parameters for each term in Eq. 2.69, since

they factorize from each term into a function that depends on 𝑟 (or 𝑠). This is not the case,

however, for the radius 𝑅, or diffuseness 𝑎 for any of the terms, or for the energy for the

scaled potential 𝑈(𝑠; 𝜶) in Eq. 5.3. We can recover an affine dependence on 𝑈(𝑠; 𝜶) through

the empirical interpolation method (EIM) [7, 73, 142, 79].

When Eq. 5.3 is projected on a grid, 𝑢(𝑠) is represented as a vector of size N while the
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(a) The reduced basis elements 𝑢𝑘(𝑠). Only the first three basis elements are shown, and they are
colored and labeled by the fraction of explained variance.
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(b) The empirical interpolation method (EIM) basis elements, 𝑈𝑖(𝑠). Only the first three basis
elements are shown, and they are colored and labeled by the fraction of explained variance. Also
shown as x’s are the match points chosen by the MAXVOL algorithm (see text for details).

Figure 5.1: Demonstration of RBM and EIM principal components for the 𝑠1/2 partial wave
at a randomly sampled test point in the 27Al(𝑝, 𝑝) at 28 MeV test problem.
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potential 𝑈(𝑠; 𝜶) is represented as a matrix of size N 2 (diagonal, in the case of local optical

potentials). In the same spirit as Eq. 5.6, we seek a reduced dimensional representation of

𝑈(𝑠; 𝜶) by constructing an approximation through the sum of 𝑛𝐸𝐼𝑀 ≪ N 2 terms:

𝑈(𝑠, 𝜶) ≈ �̂�(𝑠, 𝜶) =
𝑛𝐸𝐼𝑀

∑
𝑖=1

𝑏𝑖(𝜶)𝑈𝑖(𝑠). (5.14)

The 𝑠 dependence is now only carried by the basis 𝑢𝑖(𝑠); the coefficients 𝐛 ≡ {𝑏𝑖(𝜶)} are

functions only of 𝜶. This is an affine decomposition of a generally non-affine parametric

operator.

The basis expansion 𝑢𝑖(𝑠) is computed once during the offline stage. Explicitly, we cal-

culate 𝑁𝑈 ≥ 𝑛𝐸𝐼𝑀 potentials 𝑈(𝑠; 𝜶) for 𝑁𝑈 values of the parameters 𝜶, perform a principal

component analysis, and retain the 𝑛𝐸𝐼𝑀 most important components (again chosen to

explain some fraction of the variance of the training set):

{𝑈𝑖(𝑠)}𝑛𝐸𝐼𝑀
𝑖=1 = PCA[{𝑈(𝑠, 𝜶𝑚)}

𝑁𝑈
𝑚=1]. (5.15)

The reduced basis in Eq. 5.15 is computed once offline, but the coefficients 𝐛(𝜶)must

be determined for every new value of the parameters. The EIM is a prescription for

determining these coefficient for a given 𝜶: by forcing �̂�(𝑠, 𝜶) to interpolate 𝑈(𝑠, 𝜶), making

the approximation Eq. 5.14 exact at exactly 𝑛𝐸𝐼𝑀 locations 𝑠𝑗:

𝑈(𝑠𝑗, 𝜶) −
𝑛𝐸𝐼𝑀

∑
𝑖=1

𝑏𝑖(𝜶)𝑈𝑖(𝑠𝑗) = 0, for 𝑗 ∈ [1, 𝑛𝐸𝐼𝑀]. (5.16)

To select the locations 𝑠𝑗 on which to do the interpolation, we follow the MAXVOL

algorithm [70]:

{𝑠𝑗}
𝑛𝐸𝐼𝑀
𝑗=1 =MAXVOL[{𝑈𝑖(𝑠)}𝑛𝐸𝐼𝑀

𝑖=1 ] (5.17)

to obtain a “D-optimal” design [123, 129, 122]; in this case, finding the square sub-matrix
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of maximum determinant. In general, this is an NP-hard problem [175], however a local

optimum can be efficiently identified using the MAXVOL. In practice, this is sufficient

to recover a desirable interpolation accuracy. We construct a matrix of size N × 𝑛𝐸𝐼𝑀 in

which the columns are the 𝑛𝐸𝐼𝑀 basis 𝑢(𝑠) and the rows are the fine grid over 𝑠, of size N ,

containing all possible candidates 𝑠𝑗. The algorithm seeks to choose the 𝑛𝐸𝐼𝑀 locations 𝑠𝑗

that maximize the determinant of the following reduced 𝑛𝐸𝐼𝑀 × 𝑛𝐸𝐼𝑀 matrix:

𝐔EIM =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑈1(𝑠1) 𝑈2(𝑠1) ... 𝑈𝑛𝐸𝐼𝑀(𝑠1)

𝑈1(𝑠2) 𝑈2(𝑠2) ... 𝑈𝑛𝐸𝐼𝑀(𝑠2)

⋮ ⋮ ⋮ ⋮

𝑈1(𝑠𝑛𝐸𝐼𝑀) 𝑈2(𝑠𝑛𝐸𝐼𝑀) ... 𝑈𝑛𝐸𝐼𝑀(𝑠𝑛𝐸𝐼𝑀)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦𝑛𝐸𝐼𝑀×𝑛𝐸𝐼𝑀

(5.18)

The algorithm is started by first selecting 𝑛𝐸𝐼𝑀 locations 𝑠𝑗 at random over the grid and

then iteratively swapping them for other locations in a greedy fashion by comparing their

expansion coefficients [70].

A set of bases of the EIM are shown in Fig. 5.1b for the 27Al(𝑝, 𝑝) at 28MeV test problem.

In this case, 𝑁𝑈 was 1000, and the number of terms kept in the decomposition for online

use was 20. It is worth noting that the three principal components displayed explain over

99% of the variance on the training set. Also displayed are the matching points chosen by

MAXVOL. The horizontal axis only goes to 𝑠 ≈ 4𝜋; MAXVOL chooses points corresponding

to the regions in which the training set has it’s most variance.

Once the matching locations 𝑠𝑗 have been chosen, for a given 𝜶 the 𝑛𝐸𝐼𝑀 × 𝑛𝐸𝐼𝑀 linear

system Eq. 5.16 can be solved for the coefficients 𝐛(𝜶). In practice, the inverse of the

𝑛𝐸𝐼𝑀 × 𝑛𝐸𝐼𝑀 matrix formed by 𝐔EIM
𝑗𝑖 ≡ 𝑈𝑖(𝑠𝑗) is pre-computed in the offline stage since

it is independent of 𝜶. In the online stage the exact potential can be evaluated at the

interpolation points 𝑐EIM𝑗 (𝜶) = 𝑈(𝑠𝑗, 𝜶), and the coefficients determined by a simple matrix-

vector multiplication:
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𝐛(𝜶) = (𝐔EIM)
−1 𝐜EIM(𝜶). (5.19)

This determines a realization of the approximate affine decomposition in Eq. 5.14

for a given 𝜶. An approximate operator 𝐹𝜶 can then be constructed by substituting the

approximation Eq. 5.14 in Eq. 5.3:

𝐹𝜶 ≈ 𝐹𝜶 = 𝐹(0) +
𝑛𝐸𝐼𝑀

∑
𝑖=1

𝑏𝑖(𝜶)𝐹(𝑖), (5.20)

where 𝐹(0) represents the part of the original operator that is independent of the parameters,

and 𝐹(𝑖) = 𝑈𝑖(𝑠) are the 𝑛𝐸𝐼𝑀 identified principal components of variations in the part of

the operator that depends on the parameters Eq. 5.15. An approximate version of Eq. 5.12

can then be constructed by the projections ⟨𝜓𝑗∣𝐹𝜶[ ̂𝑢]⟩ :

�̂�(𝐛)𝐚 = 𝐜(𝐛), (5.21)

where now the approximate matrix �̂� and approximate vector 𝐜 consist of the sum of the

projections of the 𝑛𝐸𝐼𝑀 + 1 operators in Eq. 5.20 with the test functions 𝜓𝑗 on the reduced

basis 𝑈𝑘, and with the 𝑢0 term, respectively:

�̂�(𝐛) = �̂�(0) +
𝑛𝐸𝐼𝑀

∑
𝑖=1

𝑏𝑖(𝜶)�̂�(𝑖),

𝐜(𝐛) = 𝐜(0) +
𝑛𝐸𝐼𝑀

∑
𝑖=1

𝑏𝑖(𝜶)𝐜(𝑖).
(5.22)

Both quantities are now affine in the coefficients 𝐛, and are constructed as:

�̂�(𝑖)
𝑗𝑘 = ⟨𝜓𝑗∣𝐹(𝑖)∣𝑢𝑘⟩ = ∫ 𝜓†

𝑗 (𝑠)𝐹(𝑖)𝑢𝑘(𝑠)𝑑𝑠,

𝐜(𝑖)𝑗 = −⟨𝜓𝑗∣𝐹(𝑖)∣𝑢0⟩ = −∫ 𝜓†
𝑗 (𝑠)𝐹(𝑖)𝑢0(𝑠)𝑑𝑠.

(5.23)

for 𝑖 ∈ [0, 𝑛𝑢]. All such projections are calculated in the offline stage of the emulator.

In the online stage, when the emulator is deployed and evaluated for a new parameter
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𝜶, the coefficients in Eq. 5.19 are computed and the approximate matrix and vector are built

by summing the pre-computed matrix terms in Eqs. 5.22. Finally, the approximate system

of equations 5.21 are solved for the coefficients 𝐚 of the reduced basis expansion Eq. 5.6.

None of these operations on the online stage scale with the original high dimension size N .

Fig. 5.2 demonstrates the effectiveness of the EIM decomposition for the 27Al test problem.
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Figure 5.2: Exact coordinate space optical potentials versus empirical interpolation method
(EIM) emulated for the 27Al(𝑝, 𝑝) at 28 MeV test problem at randomly sampled test points.
20 terms were used in the EIM decomposition, compressed from 1000 training points.

5.3 Results for a local optical potential

We present in this section demonstrations of the effectiveness of the RBM at emulating a

high-fidelity solver for problems involving local optical potentials in a limited region of 𝜶-

space. Fig. 5.3 amounts to a spot-check, demonstrating the emulation of the wavefunction

and phase-shifts at a randomly chosen point in 𝜶-space for the previously described 27Al

test problem. Agreement is nearly exact, phase shift relative error magnitudes are generally

below 1 × 10−4

Also displayed in Fig. 5.4 are the emulated differential cross sections and analyzing pow-

ers for the 27Al test problem, as compared to the high-fidelity solver. Excellent agreement
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is obtained.
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(a) Emulated versus Runge-Kutta wavefunctions at an arbitrary, randomly sampled test parameter
not on the training set for 27Al(𝑝, 𝑝) at 28 MeV test problem. Excellent accuracy is achieved. The
left panels contain the real part of the wavefunctions, while the imaginary parts are on the right.
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(b) Emulated versus Runge-Kutta phase shifts for an arbitrary, randomly sampled test parameter
not on the training set for 27Al(𝑝, 𝑝) at 28 MeV test problem. Again, excellent accuracy is achieved;
the lines are on top of each other. The magnitude of the relative error is displayed in the lower
panels. The left panels contain the real part of the phase shifts, while the imaginary parts are on
the right.

Figure 5.3: Spot-check at a random test point for the 27Al(𝑝, 𝑝) at 28 MeV test problem. 20
EIM terms were used, paired with a 15-dimensional RBM space.
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(a) Emulated versus high-fidelity differential scattering cross sections at a set of randomly generated
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(b) Emulated versus high-fidelity analyzing powers at a set of randomly generated test points.

Figure 5.4: Emulator performance for scattering observables in the 27Al(𝑝, 𝑝) at 28 MeV
test problem.
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The next test problem was 40Ca(𝑛, 𝑛) at 14.1 MeV. Again, the training space was

constructed by using Latin hypercube sampling within bounds taken as ±50% around the

default KD local optical model potential (OMP) parameters. In this case, we conducted a

systematic hyper-parameter exploration to determine the optimal basis sizes, 𝑛𝑢 and 𝑛𝐸𝐼𝑀.

Fig. 5.5 displays the results of this computational accuracy vs. time (CAT) analysis, in which

multiple RBM configurations are constructed, and compared to a series of Runge-Kutta

solvers with varying tolerances. Relative error in differential cross sections on a randomly

selected test set is the accuracy metric, where a Runge-Kutta solver with the extremely

tight relative and absolute tolerances of 1 × 10−11 is chosen as the “ground truth”. The clear

conclusion is that the RBM categorically outperforms the Runge-Kutta method, achieving

roughly two order of magnitude speedups for the same accuracy.

As the number of wave-function basis 𝑛𝑢 and the number of interaction basis 𝑛𝐸𝐼𝑀

increase, the ROSE calculations become exponentially more accurate. For comparison,

FRESCO [164], a widely-used production solver requires ∼ 30 milliseconds per calculation

using standard settings. JITR has a similar performance; both are outperformed by the

RBM.

Having tested ROSE’s performance, we set up the following calibration task as a demon-

stration, using the same 40Ca(𝑛, 𝑛) test problem. We perform a Bayesian calibration to an

experimental differential cross section [119], using the default KD parameters as a prior.

To accelerate the calibration, based on the performance shown in Fig. 5.5, we select the

emulator built with (𝑛𝑢, 𝑛𝐸𝐼𝑀) = (15, 15), since it offers in the worst case an error of 0.1%,

which is roughly two orders of magnitudes smaller than the experimental error of ∼10%,

while still able to perform at ∼ 100 samples per second.

To be conservative we set the overall emulator error to 1% across all angles, independent

of the value of the parameters, to allow for the emulator performing poorly when the

Markov-chain Monte Carlo (MCMC) samples outside of our near the boundaries of the

training space.
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Figure 5.5: The computational accuracy vs. time (CAT) plot for different reduced basis
method (RBM) and empirical interpolation method (EIM) configurations for the test
problem of optical model differential cross section of 40Ca(𝑛, 𝑛) at 14.1 MeV. The vertical
axis is the median relative error (across all angles) for each test sample, and compared to
Runge-Kuttawith absolute and relative tolerances of 1×10−11 The horizontal axis represents
a configurations mean time to sample. An 2 order of magnitude speedup was achieved
while maintaining sub per-mille error.

We choose an independent Gaussian prior distribution for each parameter with mean

𝜔pr
𝑘 and standard deviation 0.25𝜔pr

𝑘 , which leads to an overall prior
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∏
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−
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𝑘 )
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𝑘 )

2

⎫⎪⎪
⎬
⎪⎪⎭

. (5.24)

The calibration of the optical potential parameters was carried out with surmise, a

Python package—part of the BAND framework [15]—that interfaces Bayesian emulation

and calibration [138]. We employ the Metropolis-Hastings algorithm available in surmise

to sample from the posterior distribution [62].
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Figure 5.6: Cornerplot [58] for the calibration of the optical model differential cross section
of 40Ca(𝑛, 𝑛) at 14.1 MeV, calibrated to experimental data from [119]. This plot shows
mono- and bivariate marginals of posterior probability distributions, Eq. 5.1. The black
histograms represent the posterior Eq. 2.75, approximated by 800,000 samples visited by 5
MCMC walkers; the blue filled contours represent the Gaussian prior Eq. 5.24. The red
lines show the values of the true parameters 𝝎𝑡 obtained from [26]. All units of depth
terms are in MeV; all radii and diffuseness are in fm.

A total of 40 chains, of 20,000 MCMC samples each, were obtained in just over an hour

of wall time on 8 cores of an 3.0 GHz Intel Xeon Gold 6154 processor. Each walker had a

burn-in period of 𝑛burn = 500 samples, and started randomly within a small region around

the prior center to avoid known multi-modal posteriors of the optical potential [81].

Figure 5.6 shows the results of the posterior sampling for neutrons. As has been

identified in previous studies, e.g. [109], some parameters are strongly correlated - such
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Figure 5.7: Predictive posterior distribution for the differential cross section of 40Ca(𝑛, 𝑛)
at 14.1 MeV in the laboratory frame, calibrated to experimental data from [119]. The
calculation used 800,000 random parameters obtained during the MCMC sampling. The
95% credible interval is calculated using Eq. 2.77 by taking into account the error structure
of the data.

as the real volume 𝑉𝑣 and real radius 𝑅𝑣, and they display posteriors that are sharply

peaked in comparison to the original prior distribution. Meanwhile, the posterior of

other parameters, such as the imaginary volume strength 𝑊𝑣, remains close to their prior

distribution, not learning much from this specific cross section data at the selected energy.

Most of the parameters’ true values (red lines) are covered by posterior distribution, with

𝑊𝑑, 𝑅𝑑, and 𝑎𝑠𝑜 being covered just barely by the tails of the distributions. Further Bayesian

studies, powered by emulators such as ROSE, on how much the optical parameters can be

constrained by data could be particularly relevant for the new rare isotope beams era [75].

Finally, in Fig. 5.7 we show the predictive posterior distribution, calculated through
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Eq. 2.77, for 40Ca(𝑛, 𝑛). These cross sections were calculated through 800,000 random

samples from the visited parameters on the respective posteriors. The 95% credible interval

covers the data well, with all red data points covered and a couple of them almost outside

the band, indicating a reasonable credibility estimate.

5.4 The active subspace quilting (ASQ)

For the global OMPs, the parameter picture changes slightly. The parameter space we

would like to emulate across, 𝜶, could become, for example:

𝜶 = {𝐸, 𝜇, 𝑉𝑣, 𝑅𝑣, 𝑎𝑣, 𝑊𝑣, 𝑅𝑤, 𝑎𝑤, 𝑊𝑑, 𝑅𝑑, 𝑎𝑑, 𝑉𝑠𝑜, 𝑊𝑠𝑜, 𝑅𝑠𝑜, 𝑎𝑠𝑜}, (5.25)

.

Each global potential may be different; e.g. Whitehead-Lim-Holt (WLH) uses the same

radii and diffuseness for the real and imaginary volume terms. The actual parameters that

one would calibrate over are different for each potential as well. Typically they are between

roughly 10 − 40 parameters, and a given potential is simply a mapping 𝑂, determined by

the functional form of the model:

𝜶 = 𝑂(𝐴, 𝑍, 𝐸, 𝝎). (5.26)

Thus at each point in the (12-dimensional in the above example) 𝝎-space, we have a

map from 𝐴, 𝑍, 𝐸 into 𝜶-space, which becomes much bigger than in the local example, even

for only a single instance of 𝝎 if one wants to emulate across the nuclear chart and over a

large energy range.

The RBM method described above works well for problems in which 𝜶 varies within a

small region about some value, e.g. ̄𝜶. This is because the manifold on which the solutions
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trace as a function of 𝜶 is, in the neighborhood of ̄𝜶, well described by the span of {𝑢𝑖(𝑠)}𝑛𝑢
𝑖=1.

In other words, it is locally linear in the neighborhood of ̄𝜶, with local dimension 𝑛𝑢. What

happens when one tries to leave the neighborhood?

Outside the neighborhood, the actual manifold may flow into a region with a non-

negligible component that is orthogonal to {𝑢𝑖(𝑠)}𝑛𝑢
𝑖=1, and, therefore, the method will fail.

Thus, even if the parametric operator 𝐹𝜶 is linear at a given point in 𝝎-space, the manifold

may be sufficiently non-linear over a large region of space that the method fails. This has

been pointed out in the case of both a simple toy model and with a many-body problem

of several fermionic particles confined in a harmonic trap [152]. This is also the case for

global optical potentials, when one desires to construct an RBM to emulate across the

nuclear chart, or over a wide range of energies. One could simply increase the number of

dimensions of the RBM, but, to describe a sufficiently large manifold, this quickly defeats

the purpose of constructing a surrogate model at all.

The fields of information geometry and manifold learning are concerned with dimen-

sionality reduction for nonlinear manifolds [156, 88]. Perhaps the simplest approach is

the local PCA, in which the parameter space is discretized into voxels, and a PCA is done

on samples drawn from each voxel. As long as the manifold is smooth, as the voxels get

smaller, this clearly learns the linear tangent space in each voxel. This, of course, suffers

the curse of dimensionality. More sophisticated methods, like local linear embedding and

local tangent space alignment, propose meshless methods that stitch these local tangent

spaces together [33, 174, 186]. These methods are suitable for dimensionality reduction

of a non-linear dataset, but make no prescription for projective model order reduction;

e.g. given a test point in parameter space, finding a local tangent space, and projecting

an operator onto it. Work is being done to construct such a local technique, [2], but these

methods use a voxel decomposition, and do not extend to very large parameter spaces as

in a global OMP.

The active subspace quilting (ASQ) described here is a novel method designed to be
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useful in such a situation. The intuitive idea is to randomly select a subset of of the training

set as tangent points. For each tangent point, one then constructs an RBM emulator, exactly

as described above, using only training points from the local neighborhood (e.g. 𝑘 nearest

neighbors) around the tangent point. For a given test point, one then finds the RBM

belonging to its closest tangent point, and uses it to emulate the solution. All of this can be

done efficiently using a KD-tree; in this work we use scipy.spatial.KDtree [168].

The algorithm for constructing the quilt from a training set is contained in Alg. 1. By

choosing a small fraction of variance that must be explained by the preserved principal

components, theASQmethod learns the local dimensionality of the full non-linearmanifold

in each tangent patch. By choosing a number of tangent points 𝑛𝑡 and a neighborhood size

𝑘 such that 𝑛𝑡 × 𝑘 > 𝑁, the number of training points, some overlap is guaranteed between

the set of training data used to construct the bases for adjacent patches, which should

provide some degree of smoothness from patch to patch.

Algorithm 1 Make the patches of the quilt
Given the training set composed of 𝑁 points {𝜶𝑖}, and their associated high-fidelity
solutions {𝑢(𝑠, 𝜶𝑖)}, a neighborhood size 𝑘, a subset of the training set defining the set of
tangent points, 𝕋 ⊂ {𝜶𝑖}, and some desired fraction of explained variance:

for all 𝜶𝑖 ∈ 𝕋 do
𝕋𝑖 ≡ {𝜶𝑗}𝑘𝑗=1 ←findNearestNeighbors(𝜶𝑖, 𝑘) ▷ find the 𝑖𝑡ℎ training neighborhood

ℕ𝑖 ≡ {𝑢𝑚}
𝑛𝑢
𝑚=1 = PCA[{𝑢(𝑠, 𝜶𝑗) − 𝑢0(𝑠)}𝑗∈𝕋𝑖]

𝔼𝑖 ≡ {𝑈𝑚(𝑠)}𝑛𝐸𝐼𝑀
𝑚=1 = PCA[{𝑈(𝑠, 𝜶𝑗)}𝑗∈𝕋𝑖]

end for

Here, we have implicitly assumed that 𝑛𝑢 and 𝑛𝐸𝐼𝑀 are chosen for each tangent point to

reproduce the expected variance fraction in {𝜶𝑗}𝑘𝑗=1. 𝕋𝑖 defines the 𝑖𝑡ℎ training neighborhood;

the set of 𝑘 points closest to the 𝑖𝑡ℎ tangent point. The result is the set of of neighborhood

basesℕ𝑖, and neighborhoodEIMbases, 𝔼𝑖, at each tangent point 𝑖. This completes the offline

stage. In the online stage, given a test point 𝜶𝑘, one simply uses findNearestNeighbors

to find nearest tangent point; e.g. arg min [∣𝜶𝑘 − 𝜶𝑖∣2]
𝑁
𝑖=0, and then the emulation proceeds
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exactly as described in the previous sections.

However, there is no guarantee that the nearest tangent space will actually embed the

test point, or that the nearest neighbors to the tangent point on the training space will

form a suitably low-dimensional linear tangent space at all. This is addressed by defining

the nearest neighbor to be that, not on the parameter space, but the active subspace. The

active subspace, introduced by Constantine et al., is the span of the largest 𝐿 principal

components of the gradient of some scalar function of 𝜶 [36]. We adapt this idea here to

come up with a new distance metric, rather than ∣𝜶𝑘 − 𝜶𝑖∣2, that better approximates the

geodesic distance on the full manifold.

We choose as our scalar response of interest, the functional

F𝜶 [𝑢(𝑠; 𝜶)] ≡ ⟨𝜓𝑗∣𝐹𝜶[𝑢(𝑠; 𝜶)]⟩ . (5.27)

We define the gradient of F in 𝜶-space as a Gateaux derivative. Along some unit direction

̂𝜶:

(∇𝜶 ⋅ ̂𝜶) F𝜶 [𝑢(𝑠, 𝜶)] = lim
𝛿→0

F𝜶 [𝑢(𝑠, 𝜶 + 𝛿 ̂𝜶)] −F𝜶 [𝑢(𝑠, 𝜶)]
𝛿

. (5.28)

Because F𝜶 is identically 0 when it takes as input 𝑢(𝑠, 𝜶), the second term in the numerator

disappears. Defining 𝜶′ = 𝜶 + 𝛿 ̂𝜶, the numerator reduces like so:

F𝜶 [𝑢(𝑠; 𝜶′)] = ⟨𝑢†(𝑠; 𝜶′) ∣ (−
𝑑2

𝑑𝑠2 +
𝑙(𝑙 + 1)

𝑠2 +
2𝜂
𝑠
+𝑈(𝑠; 𝜶) − 1) ∣𝑢(𝑠; 𝜶′)⟩

= ⟨𝑢†(𝑠; 𝜶′) ∣𝑈(𝑠; 𝜶) −𝑈(𝑠; 𝜶′) ∣𝑢(𝑠; 𝜶′)⟩

. (5.29)

For 𝛿 finite, this is a simple forward difference formula for two nearby points 𝜶 and

𝜶′, in terms of the matrix element of the difference in the interaction at those two points.

Alg. 2 is the method used to approximately discover the active subspace. In practice,

the entire sparse matrix (∇𝜶 ⋅ 𝜶𝑗 − 𝜶𝑖F)𝑖𝑗 is never stored, it is only needed one block at a
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time. The output is the approximate gradient, (∇𝜶F)𝑖, and the maximum finite difference,

(∇𝜶 ⋅ 𝜶𝑗 − 𝜶𝑖F)𝑖,max at each training point.

Algorithm 2 Discover the active subspace
Given the training set 𝑁 points 𝕋 ≡ {𝜶𝑖}, their associated high-fidelity solutions {𝑢(𝑠, 𝜶𝑖)},
and a neighborhood size 𝑘:

for all 𝜶𝑖 ∈ 𝕋 do
𝕋𝑖 ≡ {𝜶𝑗}𝑘𝑗=1 ←findNearestNeighbors(𝜶𝑖, 𝑘)

for all 𝜶𝑗 ∈ 𝕋𝑖 do
(∇𝜶 ⋅ 𝜶𝑗 − 𝜶𝑖F)𝑖𝑗 ← ⟨𝑢

†(𝑠; 𝜶𝑗) ∣𝑈(𝑠; 𝜶𝑖) −𝑈(𝑠; 𝜶𝑗) ∣𝑢(𝑠; 𝜶𝑗)⟩ /∣𝜶𝑗 − 𝜶𝑖∣

𝜶⋆ ← arg max [(∇𝜶 ⋅ 𝜶𝑗 − 𝜶𝑖F)𝑖𝑗]
𝑘

𝑗=0

(∇𝜶 ⋅ 𝜶𝑗 − 𝜶𝑖F)𝑖,max ←max [(∇𝜶 ⋅ 𝜶𝑗 − 𝜶𝑖F)𝑖𝑗]
𝑘

𝑗=0
(∇𝜶F)𝑖 ← 𝜶⋆ − 𝜶𝑖

end for

end for

The singular value decomposition of the 𝑁 × 𝑚 matrix (∇𝜶F)𝑖, 𝑚 being the number of

dimensions of the parameter space, is:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣
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⎥
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⎥
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⎥
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𝐕𝑇 (5.30)

where 𝑠𝑖 are the singular values.

We define the 𝑚 × 𝑚 transformation matrix:

𝚲 ≡ 𝐔

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋱

𝑠𝑖

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.31)

𝚲 defines a transformation in coordinate space: a rotation unto the principal directions
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of the gradient of F , and a stretching by the singular value of each principal component,

corresponding to the variance in the gradient F along that principal component. 𝚲 defines

a new distance metric, the active subspace distance:

∣𝜶𝑖 − 𝜶𝑗∣
2
𝐴𝑆 ≡ (𝜶𝑖 − 𝜶𝑗)

𝑇𝚲𝑇𝚲(𝜶𝑖 − 𝜶𝑗). (5.32)

By implementing findNearestNeighbors using the active subspace distance, one then

finds the closest tangent point to a given test point on the active subspace, rather than the

parameter space. This tangent point will be that with the most similar response F , and,

therefore, the most suitable RBM with which to emulate solutions.

5.5 Results for a global optical potential

An active subspace quilting (ASQ) was constructed for the Koning-Delaroche uncertainty

quantified (KDUQ) potential for neutrons incident on 46 stable or near-stable isotopes

in the atomic number region of the fission fragments, from energies of 100keV to 10MeV.

1000 training points were used, with 200 tangent points amongst them. The neighborhood

size was chosen to be 𝑘 = 50. The fraction of explained variance was chosen to be 1.0 × 10−9 ,

which resulted in 𝑛𝑢 and 𝑛𝐸𝐼𝑀 to range between 10-20 in each patch. The tangent points

were sampled by according to the (∇𝜶 ⋅ 𝜶𝑗 − 𝜶𝑖F)𝑖,max so that tangent patches are biased

towards regions of high variation on the full manifold. In practice, rather than constructing

a separate quilt for each partial wave, the same quilt structure is used, with a set of RBM

emulators at each patch, one for each partial wave.

The parameter space was centered and scaled before the active subspace discovery.

Because multiple orders of magnitude of energy are covered, sampling was performed in

log(𝐸)-space. Fig. 5.8 displays the explained variance of each principal component of the

discovered active subspace, as well as the first few columns of 𝚲. The first component is

fairly aligned in the direction of the scattering energy; from the figure, the active subspace
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distance between two points nearby in energy will be ∼ 15 × the actual distance in the

(centered and scaled parameter space).

Differential and total cross sections for 137Ba(𝑛, 𝑛) over the energy range were emulated

and compared to high-fidelity solutions as a test problem for the ASQ. The results are

displayed in Figs. 5.9 and 5.10. Of the 200 tangent points in the training space, the test

problem over the whole energy range only used six. This emphasizes the sheer volume in

parameter space global OMPs cover as compared to local ones, and the degree of difficulty

in emulating across such large spaces. Still, with only six tangent patches, reasonable

agreement is obtained to the high fidelity solutions. Typically, a speedup of at least two

orders of magnitude was achieved relative to the high-fidelity solver. This indicates the

online computational expense of the ASQ is essentially same as a single RBM; the nearest-

neighbor lookup adds negligible overhead. Of course, the ASQ requires much more time

to train; roughly 40 minutes on commodity hardware for this test case.

This encapsulates the formulation, construction and demonstration of a novel PMOR

technique for non-linear parameter spaces and large manifolds. It is underpinned by the

use of the active subspace metric to determine the similarity in the local linear span of the

manifold between two points. This method is shown to be effective in emulating a global

optical potential across a large parameter space. However, and perhaps predictably, it does

not always compare favorably in accuracy to the single RBM for a local potential. Still, this

represents a significant step towards emulating global optical potentials, and in general

parametric system with non-linear latent manifolds.

In tests, the ASQ displayed sensitivity to the location of tangents. While the biased

sampling towards regions of high variability in F significantly ameliorates this issue, when

the number of tangent points is ∼ 100, a single random choice of tangent points from

the training space introduces a degree of noise to the accuracy. Increasing the number

of tangent points past a few hundred can become memory constrained on commodity

hardware, depending on the neighborhood size, 𝑛𝑢, and 𝑛𝐸𝐼𝑀. Iterative methods where
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Figure 5.8: The discovery of the active subspace

100



0 π
6

π
3

π
2

2π
3

5π
6

π

θ [radians]

100

101

102

103

d
σ
d
Ω

[m
b

/S
r]

RBM

Runge-Kutta
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multiple random samplings could be explores, but this could add significant training

cost. Alternatively, exploring the use of a greedy algorithm, similar to MAXVOL, to

choose tangent points, is worth exploring. Finally, this method introduces further hyper-

parameters in the neighborhood size, 𝑘 and number of tangent points. Exploring the

sensitivity to these, or, better yet, determining systematics for choosing them, is a reasonable

next step.

Future work will incorporate these emulators into an Monte Carlo Hauser-Feshbach

(MCHF) code. This has the potential to significantly alleviate the computational burden of

modeling compound nucleus (CN) de-excitation, making calibration of OMP parameters

to fission observables tractable.
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Chapter 6

Conclusions and a Path Forward

In Chapters 3 and 4 in this work we have compiled a new corpus of experimental data, one

unfamiliar to optical potentials, including observables from nuclear fission, and neutron

stars. We explore the use of these data sets as constraints and consistency checks in the

context of two modern, uncertainty-quantified potentials; one phenomenological and

constrained by a large corpus of tradition optical model potential (OMP) observables

(differential elastic and angle-integrated total and reaction cross sections), the other from a

microscopic nuclear-matter approach, and constructed from chiral forces consistent with

quantum chromodynamics.

In Chapter 3, We showed that fission observables, especially those correlating neutron

energies with fragment mass and/or energy, are strongly sensitive to the optical potential

parameters, an encouraging result for the prospect of using them as constraints. However,

this optimism should be tempered with the following considerations: 1) Monte Carlo

Hauser-Feshbach (MCHF) simulations of fission fragment de-excitation are strongly sensi-

tive to multiple model inputs, especially those relating to the initial fission fragment state

following scission but before prompt emission (e.g. excitation energy sharing), and 2)

the computational cost of performing the uncertainty quantification was significant, and

scaling up to a full calibration using the current version of CGMF would be intractable.
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In Chapter 4, we have confronted the two uncertainty-quantified optical potentials

considered in this work with experimental constraints on their symmetry dependence.

We find that the phenomenological model generally disagrees with them, to statistical

significance. This points to the limitations of scattering observables in the valley of stability

at constraining isospin dependence. Moving forward, we recommend the use of judiciously

chosen constraints, or at least consistency checks, from measurements of the nuclear matter

symmetry energy. The analytic constraints for (approximate) Lane-consistency, like those

used in the original Koning-Delaroche parameterization (see [95] Eq. 20), clearly improve

agreement with the microscopic nuclear matter approach, and work should be done to

incorporate constraints like this into future Bayesian calibration.

The prospect of introducing new observables into such calibrations, especially the

fission observables from Chapter 3, strongly motivate the need for effective surrogate

models, in particular for fission fragment de-excitation. The nuclear physics field has

recently embraced model order reduction, in particular projective techniques which are

constrained by the underlying physics of the system being emulated. In Chapter 5, we

present our work applying the reduced basis method (RBM) to develop a fast emulator

for local optical potentials. Then, we take the first step to extend this technique to global

optical potentials using the novel active subspace quilting (ASQ) method.

This work elucidates several potentially fruitful directions of future exploration. In

Chapter 3, we have also identified in specific neutron-fragment correlated observables that

are not strongly sensitive to the optical potential, that we recommend including in ongoing

work globally optimizing model inputs relating to fission fragment initial conditions in

CGMF [111]. Any calibration of an OMP will have to carefully select observables to carefully

manage correlation with other model inputs. We also call for a renewed experimental effort

to measure fission fragnment-neutron correlations using a fission arm spectrometer, for

enhanced mass, charge and energy resolution.

Further exploration of enforcing consistency with nuclear matter symmetry energy
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measurements presented in Chapter 4 in a Bayesian approach are warranted. One strat-

egy is to sample the real volume isovector potential parameters from the experimentally

constrained region(s) displayed in Fig. 4.3 [105], or even include them as constraints in

the likelihood function. More advanced approaches could apply a nuclear matter “un-

folding“ to phenomenological potentials for finite nuclei, using microscopic nuclear density

distributions.

Further, the need for incorporating constraints from bound states, especially below the

Fermi energy, is emphasized. Additionally, analytic constraints provided by the dispersion

relation, which is a consequence of time-ordering the particle-hole excitations that make

up the optical potential ℚ-space, have been demonstrated for local optical potentials.

Extending this to cover the nuclear chart in an uncertainty-quantified fully non-local

potential that connects bound and scattering states is the recommended path forward.

Finally, the work presented in Chapter 5 just scratches the surface of applications for fast

and accuate emulators for nuclear reactions. Work is underway to extend this approach

to reactions other than elastic scattering. Specifically, future work will incorporate this

into a Hauser-Feshbach calculation of compound nuclear observables. This technique also

has the potential to provide significant speedups for general applications of Monte-Carlo

Hauser-Feshbach codes.

The constraints and consistency checks for optical potentials proopsed here are espe-

cially important in the context of the multi-modality of the OMP. The construction of a

unique and unambiguous optical potential constrained by many orthogonal quantities,

including both scattering observables and bound states, provides a sturdier vessel on which

to venture beyond the valley of stability.
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Acronyms

Acronym Description Page List

𝜒-EFT chiral effective field theory 2, 38
mpi4py MPI for Python 48

ASQ active subspace quilting vii, xii, 10,
75, 93, 94,
98, 99, 101,
102, 105,
107

CAT computational accuracy vs. time xi, 89, 90
CLT Central Limit Theorem 47
CN compound nucleus 9, 26–29,

41–43, 46,
63, 64, 103,
107

COM center-of-mass ix, x, 14, 29,
43, 47, 54,
56, 61, 62,
107

DOM dispersive optical model 21, 107

EIM empirical interpolation method vii, x, xi,
81–83, 86,
87, 90, 95

EOS Equation-of-State 65, 66, 107

FPY fission product yield viii, 2, 4

HF Hauser-Feshbach 42, 64

I-LDA improved local density approximation 38

KCK Kawano-Chiba-Koura 46
KD Koning-Delaroche 2, 3, 46, 68,

69, 81, 89
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Acronym Description Page List

KDUQ Koning-Delaroche uncertainty quantified vi, x, 3,
9, 11, 31,
36–39, 41,
46, 49,
65–73, 98

MBPT many-body perturbation theory 38
MCHF Monte Carlo Hauser-Feshbach 7, 30, 40,

41, 44–47,
49, 56, 64,
75, 103, 104

MCMC Markov-chain Monte Carlo 89
MPI Message Passing Interface 48, 107

OMP optical model potential viii, x, 1–3,
7–9, 21,
26, 30, 32,
33, 35–37,
40–47,
49–52,
54–56, 63,
64, 72, 89,
93, 94, 99,
103–107

PCA principal component analysis 79, 80, 107
PFNS prompt fission neutron spectrum viii, ix, 7,

47–49, 51,
52, 54, 57,
58

PMOR projective model order reduction 8, 74, 75, 99

QCD quantum chromodynamics 2, 3, 34, 38
QRPA quasi-particle random phase approximation 44

RBM reduced basis method vii, x, xi, 8,
10, 74–76,
82, 86,
87, 89, 90,
93–95, 98,
99, 105, 107

SEM standard error in the mean 47
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Acronym Description Page List

TKE total kinetic energy ix, x, 45,
51–56,
59–62, 64

TXE total excitation energy 45

WLH Whitehead-Lim-Holt vi, x, 2, 3,
9, 11, 31, 34,
38, 39, 41,
46, 49, 51,
52, 55, 63,
65–73, 93

Software
ROSE

A Python software package to which the authors contributed using the Reduced Basis
Method to emulate few-body nuclear reactions for uncertainty-quantification [134].
10, 74, 75, 89

CGMF

A C++ and Python software package from Los Alamos National Laboratory for mod-
eling nuclear fission using the Monte Carlo Hauser-Feshbach framework [160]. A
modified version by the authors was used in this work.. viii, 4, 7, 36, 40, 41, 45–48, 75,
104, 105

JITR

A Python software package by the authors that uses just-in-time (JIT) compilation to
calculate reaction observables using the calculabe R-matrix method on a Lagrange-
Legendre mesh with high performance [13] . 74, 77, 78, 89

omp-uq

A Python framework by the authors for driving the uncertainty propagation of optical
potentials into fission observables described in this work . 48

OSIRIS

A Python package by the authors for uncertainty-quantification of few-body reaction
observables [14] . 48, 49
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A.1 Details of single-particle scattering

Typical optical potentials that take only the elastic channel as the ℙ-space further assume

that the relevant target ground state is spherical, with angular momentum and parity 0+.

As this describes the optical potentials used in this work, we will describe the relevant

results for the scattering of a spin-1/2 nucleon on such a system here. We will primarily

adapt our description from the texts [162, 44]. A more general description of scattering

which includes arbitrary target angular momenta, deformed ground state which couple

to bands of excited states, etc., is given in various places in the literature, including, for

example [161, 164, 163].

We begin with the Dyson equation in operator form as given in Eq. 2.34, as well as

the version involving the T -matrix, Eq. 2.35. Our goal will be to perform a partial wave

expansion, obtaining useful and well-known formulae for the scattering observables —

cross sections, analyzing powers, etc. — in terms of the partial-wave matrix elements of

the scattering amplitude Eq. 2.48 (or, equivalently, in terms of S or T ).

To do so, we use the definition of the spherical harmonics to expand the plane wave

spin state ∣𝐤𝑠𝑚𝑠⟩ = ∣𝐤 1
2 𝑚𝑠⟩:

∣𝐤 1
2 𝑚𝑠⟩ =∑

𝑙𝑚𝑙

⟨𝑘𝑙𝑚𝑙𝑚𝑠∣k 1
2 𝑚𝑠⟩ ∣𝑘𝑙𝑚𝑙𝑚𝑠⟩

=∑
𝑙𝑚𝑙

𝑌𝑚𝑙 ∗
𝑙 (𝜃, 𝜙) ∣𝑘𝑙𝑚𝑙𝑚𝑠⟩ ,

(1)

where (𝜃, 𝜙) are the azimuthal and polar angle in the direction of the plane wave state 𝐤.

Because of the presence of spin-orbit coupling in the optical potential, Eq. 2.69, the

interaction 𝑉𝑜𝑚, and, therefore the scattering matrices, will not be diagonal in the un-

coupled angular momentum basis ∣𝑘𝑙𝑚𝑙𝑚𝑠⟩. We will instead transform to a basis to total

angular momentum (which is used throughout Chapter 2), with states of the operator
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𝐉 ≡ 𝐋 + 𝐒, (2)

which does commute with 𝑉𝑜𝑚:

∣𝑘𝑙 1
2 𝑗𝑚⟩ = ∑

𝑚𝑙𝑚𝑠

⟨𝑙𝑚𝑙 1
2 𝑚𝑠∣𝑗𝑚⟩ ∣𝑘𝑙𝑚𝑙 1

2 𝑚𝑠⟩ . (3)

The unitary matrix defining this transformation has as elements the Clebsch-Gordan

coefficients ⟨𝑙𝑚𝑙 1
2 𝑚𝑠∣𝑗𝑚⟩.

In this basis, we have a free propagator diagonal in ∣𝑘𝑗𝑙𝑠𝑚𝑗⟩:

𝐺(0)
𝑗𝑙 1

2 𝑚
(𝑘, 𝑘′; 𝐸) = 𝛿(𝑘 − 𝑘′)

𝑘2
1

𝐸 − 𝐸𝑘 + 𝑖𝜂
, (4)

with 𝐸𝑘 = ℎ̵2𝑘2/2𝜇, as usual. In the presence of the Coulomb-term, our definition of the

free Hamiltonian H(0) ≡ H𝑜𝑚 −𝑉𝑜𝑚 differs by the long-range Coulomb interaction, and

determines a different free propagator. This is treated in standard texts on scattering theory,

e.g. [162, 72]. We will proceed with the derivation for neutral particles, and state the

modifications required for protons at the end. Furthermore, we will assume the interaction

is rotationally invariant, such that every operator will be diagonal in 𝑚. Accordingly, we

now drop the 1
2 𝑚 for notational compactness. The resulting Dyson equation is diagonal in

the total angular momentum:

𝐺𝑗𝑙(𝑘, 𝑘′; 𝐸) = 𝐺(0)𝑗𝑙 (𝑘, 𝑘′; 𝐸) + 1
𝐸 − 𝐸𝑘 + 𝑖𝜂 ∫

∞

0
𝑑𝑞𝑞2 ⟨𝑘∣𝑉𝑗𝑙

𝑜𝑚(𝐸)∣𝑞⟩𝐺𝑗𝑙(𝑘, 𝑘′; 𝐸)

= 𝐺(0)𝑗𝑙 (𝑘, 𝑘′; 𝐸) + ⟨𝑘∣T 𝑗𝑙(𝐸)∣𝑘′⟩

(𝐸 − 𝐸𝑘 + 𝑖𝜂)(𝐸 − 𝐸𝑘′ + 𝑖𝜂)
.

(5)

We can write this in the radial coordinate space using a double Fourier-Bessel transform:

𝐺𝑗𝑙(𝑟, 𝑟′; 𝐸) = 2
𝜋 ∫

∞

0 ∫

∞

0
𝑑𝑘𝑑𝑘′ 𝑘2𝑘′2 𝑗𝑙(𝑘𝑟)𝐺𝑗𝑙(𝑘, 𝑘′, 𝐸)𝑗𝑙(𝑘′𝑟′), (6)

where 𝑗𝑙(𝑠) are the spherical Bessel functions of the first kind. The result is

126



𝐺𝑗𝑙(𝑟, 𝑟′; 𝐸) = 𝐺(0)𝑗𝑙 (𝑟, 𝑟
′; 𝐸) + ∫

∞

0 ∫

∞

0
𝑑𝑟1𝑑𝑟2 𝑟2

1𝑟2
2𝐺(0)𝑗𝑙 (𝑟, 𝑟1; 𝐸) ⟨𝑟1∣𝑉

𝑗𝑙
𝑜𝑚(𝐸)∣𝑟2⟩𝐺𝑗𝑙(𝑟2, 𝑟′; 𝐸)

= 𝐺(0)𝑗𝑙 (𝑟, 𝑟
′; 𝐸) + ∫

∞

0
𝑑𝑟1 𝑟2

1𝐺(0)𝑗𝑙 (𝑟, 𝑟1; 𝐸) ⟨𝑟1∣𝑉
𝑗𝑙
𝑜𝑚(𝐸)∣𝑟1⟩𝐺𝑗𝑙(𝑟1, 𝑟′; 𝐸).

(7)

The last equality is true only if the optical potential is local in coordinate-space; e.g.

⟨𝑟1∣𝑉
𝑗𝑙
𝑜𝑚(𝐸)∣𝑟2⟩ = 𝛿(𝑟1 − 𝑟2)𝑉

𝑗𝑙
𝑜𝑚(𝑟1; 𝐸) (8)

but this is not a necessary assumption for the following. A set of contour integrations,

each taking place in the upper or lower complex-𝑘 half-plane, yields a form for the free

propagator in coordinate-space:

𝐺(0)𝑗𝑙 (𝑟, 𝑟
′; 𝐸) = −𝑖𝑘2𝜇

ℎ̵2 𝑗𝑙(𝑘𝑟<)ℎ+𝑙 (𝑘𝑟>), (9)

where ℎ+𝑙 is the outgoing spherical Hankel function, and 𝑟
>(<)

refers to the greater(lesser)

of {𝑟, 𝑟′}. In terms of the T -matrix, the propagator is

𝐺𝑗𝑙(𝑟, 𝑟′; 𝐸) = 𝐺(0)𝑗𝑙 (𝑟, 𝑟
′, 𝐸) + ∫

∞

0 ∫

∞

0
𝑑𝑟1𝑑𝑟2 𝑟2

1𝑟2
2 𝐺(0)𝑗𝑙 (𝑟, 𝑟1; 𝐸) ⟨𝑟1∣T

𝑗𝑙(𝐸)∣𝑟2⟩𝐺
(0)
𝑗𝑙 (𝑟2, 𝑟′; 𝐸).

(10)

We would like to determine the behavior of the propagator far away from the short-

range influence of 𝑉𝑜𝑚; e.g. as 𝑟′ → ∞, and to decompose this behavior into the propagation

of an incoming and outgoing wave. The result is

𝐺𝑗𝑙(𝑟, 𝑟′; 𝐸)→ −𝑖 𝜇
ℎ̵2 ℎ+𝑙 (𝑘𝑟′)(ℎ−𝑙 (𝑘𝑟) + [1 − 2𝜋𝑖𝜇𝑘

ℎ̵2 ⟨𝑘 ∣T
𝑗𝑙(𝐸𝑘) ∣ 𝑘⟩]ℎ+𝑙 (𝑘𝑟))

= −𝑖 𝜇
ℎ̵2 ℎ+𝑙 (𝑘𝑟′) (ℎ−𝑙 (𝑘𝑟) + S 𝑗𝑙(𝐸𝑘)ℎ+𝑙 (𝑘𝑟)) .

(11)

This is a statement that the ratio of the incoming and outgoing asymptotic wavefunctions
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is exactly the on-shell S-matrix, which has the expected relation to the T -matrix. This has

equivalent meaning to what we derived in the time-dependent formalism in Section 2.2,

except for that now, we have broken the scattering matrices into individual partial waves,

which provides a useful calulational framework for observables. To account for charged

projectiles, we simply replace the Bessel and Hankel functions, 𝑗𝑙(𝑘𝑟), and ℎ±(𝑘𝑟), with the

Coulomb-wave and Coulomb-Hankel functions 𝐹𝑙(𝜂, 𝑘𝑟), 𝐻±
𝑙 (𝜂, 𝑘𝑟).

We define the scattering phase shift 𝛿𝑗𝑙(𝐸) for a partial wave:

S 𝑗𝑙(𝐸) = 𝑒2𝑖𝛿𝑗𝑙(𝐸), (12)

which is complex when S is not unitary. We now recall our definition of the scattering

amplitude, which, in this case, forms a 2 × 2 matrix in spin-space:

𝑓𝑚′
𝑠,𝑚𝑠(𝜃, 𝜙) = 4𝜇𝜋2

ℎ̵2 ⟨𝐤′𝑚′
𝑠 ∣T (𝐸𝑘) ∣𝐤𝑚𝑠⟩ . (13)

To break this into partial waves so that it can be related to the partial-wave matrix

elements, we write the scattering amplitude in the customary form:

𝑓𝑚′
𝑠,𝑚𝑠(𝜃, 𝜙) = 𝛿𝑚′

𝑠,𝑚𝑠F(𝜃) + [𝝈 ⋅ �̂�]𝑚′
𝑠,𝑚𝑠
G(𝜃), (14)

where 𝜎𝑖 are the Pauli-matrices, and �̂� points in the direction of 𝐤′ × 𝐤′. This leads to the

following definitions of F and G in terms of the S-matrix elements [162]:

F(𝜃) = 1
2𝑖𝑘

∞
∑

𝑙
[(𝑙 + 1)(𝑆𝑙+1

2 ,𝑙 − 1) + 𝑙(𝑆𝑙−1
2 ,𝑙 − 1)]𝑃𝑙(cos𝜃), (15)

and

G(𝜃) = 1
2𝑖𝑘

∞
∑

𝑙
(𝑆𝑙+1

2 ,𝑙 − 𝑆𝑙−1
2 ,𝑙)𝑃1

𝑙 (cos𝜃), (16)

where 𝑃𝑙(𝑧), 𝑃𝑚
𝑙 (𝑧) are, respectively, the Legendre polynomials, and the associated Legen-
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dre polynomials.

We cannot have a negative total angular momentum; S 𝑗0 is only non-zero for 𝑗 = 1/2. In

the case that we have a charged projectile, we must modify the spin-preserving amplitude

F :

F(𝜃)← 1
2𝑖𝑘

∞
∑

𝑙
𝑒2𝑖𝜎𝑙 [(𝑙 + 1)(𝑆𝑙+1

2 ,𝑙 − 1) + 𝑙(𝑆𝑙−1
2 ,𝑙 − 1)]𝑃𝑙(cos𝜃)

−
𝜂

2𝑘 sin2 𝜃/2
exp2𝑖(𝜎0 − 𝜂 ln sin𝜃/2),

(17)

where 𝜂 = 𝑍1𝑍2𝑒2𝜇/ℎ̵2𝑘 is the Sommerfield parameter, 𝜎𝑙 is the Coulomb phase shift:

𝜎𝑙 = argΓ (𝑙 + 1 + 𝑖𝜂) , (18)

and Γ is the gamma function.

We then have unpolarized differential elastic scattering cross section:

𝑑𝜎
𝑑Ω
= ∣F(𝜃)∣2 + ∣G(𝜃)∣2 . (19)

The analyzing powers are:

𝐴𝑦 =
2ℜ𝔢 [F∗(𝜃)G(𝜃)]
∣F(𝜃)∣2 + ∣G(𝜃)∣2

. (20)

The angle-integrated elastic cross section results from the optical theorem and the orthogo-

nality of the Legendre polynomials, it is:

𝜎𝑒𝑙 =
𝜋
𝑘2

1
2𝑙 + 1

∞
∑
𝑙=0
∣(𝑙 + 1)(𝑆𝑙+1

2 ,𝑙 − 1) + 𝑙(𝑆𝑙−1
2 ,𝑙 − 1)∣

2

+
𝜋
𝑘2

1
2𝑙 + 1

∞
∑
𝑙=0
∣𝑙(𝑙 + 1)(𝑆𝑙+1

2 ,𝑙 − 𝑆𝑙−1
2 ,𝑙)∣

2
. (21)
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The total cross section is

𝜎𝑡 =
2𝜋
𝑘2

∞
∑

𝑙
(𝑙 + 1)(1 −ℜ𝔢S 𝑙+1

2 ,𝑙) + 𝑙(1 −ℜ𝔢S 𝑙−1
2 ,𝑙), (22)

so that, by unitary, we have the reaction cross section for transitions to the ℚ-space:

𝜎𝑟𝑥𝑛 =
𝜋
𝑘2

∞
∑

𝑙
(𝑙 + 1)(1 − ∣S 𝑙+1

2 ,𝑙∣
2
) + 𝑙(1 − ∣S 𝑙−1

2 ,𝑙∣
2
)

=
𝜋
𝑘2

∞
∑

𝑙
(𝑙 + 1)𝕋𝑙+1

2 ,𝑙 + 𝑙𝕋𝑙−1
2 ,𝑙,

(23)

using the definition of the transmission coefficients, 𝕋𝑗𝑙.

In practice, one calculates these S-matrix elements by numerically evaluating the log-

arithmic derivative of the channel wavefunction at some matching radius 𝑟 = 𝑎, outside

the range of 𝑉𝑜𝑚, in which the wavefunctions approach their asymptotic behavior. These

logarithmic derivatives are called the channel R-matrix elements 𝑅𝑗𝑙(𝐸); one can write the

S-matrix as a unitary transformation of this R-matrix [40]:

S 𝑗𝑙 = 𝑒2𝑖𝜙𝑙
1 − 𝐿∗𝑙 𝑅𝑗𝑙(𝐸)
1 − 𝐿𝑙𝑅𝑗𝑙(𝐸)

, (24)

where 𝐿𝑙 is a function of the asymptotic wavefunctions at the channel radius:

𝐿𝑙 =
𝑘𝑎

𝐹𝑙(𝑘𝑎)2 +𝐺𝑙(𝑘𝑎)2
[𝐹𝑙(𝑘𝑎)𝐹′

𝑘(𝑘𝑎) +𝐺𝑙(𝑘𝑎)𝐺′
𝑙(𝑘𝑎) + 𝑖] , (25)

where 𝐺𝑙(𝑘𝑎) is the Coulomb-wavefunction of the second kind1 and 𝜙𝑙 is the hard-sphere

phase shift:

𝜙𝑙 = − tan−1 (𝐹𝑙(𝑘𝑎)/𝐺𝑙(𝑘𝑎)). (26)

1The Coulomb wavefunctions of the first and second kind, 𝐹𝑙(𝜂, 𝑧) and 𝐺𝑙(𝜂, 𝑧), reduce to 𝑧𝑗𝑙(𝑧) and
𝑧𝜂𝑙(𝑧), the spherical Bessel functions of the first and second kinds, when the Sommerfield parameter 𝜂 = 0,
e.g., for neutral projectiles.
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