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Abstract 

Why are certain compounds synthesizable while others are not? This question represents a 

fundamental inquiry in the field of solid-state chemistry. It also serves as a central focus within 

the realm of computational materials prediction, aligning closely with the objectives of the 

Materials Genome Initiative. This dissertation primarily focuses on the prediction of material 

synthesis with a dual-pronged approach. Firstly, it extensively explores material stability by 

constructing high-dimensional phase diagrams driven by fundamental thermodynamics. This 

process aims to generate phase diagrams for complex experimental synthesis conditions, and offers 

a comprehensive visual thermodynamic representation of material stability. Additionally, this 

dissertation delves into targeted material synthesis, utilizing high dimensional phase diagram to 

enhance target material stability or design efficient synthesis recipes. These approaches accelerate 

the realization of theoretically predicted materials and guides the process of high-throughput 

robotic experimental synthesis, ultimately advancing our understanding and capabilities in 

materials synthesis. 

Phase diagrams are crucial tools for materials scientists, indicating the equilibrium phases 

under specific thermodynamic conditions. While most phase diagrams are two-dimensional, with 

axes typically representing temperature-pressure or temperature-composition, the complexity of 

modern materials demands consideration of additional thermodynamic factors, such as elastic, 

surface, electromagnetic, or electrochemical work. This expansion necessitates phase diagrams in 

higher dimensions (≥3). In our pursuit of constructing high-dimensional phase diagrams with any 

thermodynamic variable on its axes, we explore the duality between extensive and intensive 



 xvii 

conjugate variables in equilibrium and non-equilibrium thermodynamics. This duality takes 

various forms, including distinctions between closed and open boundary conditions, relationships 

between Internal Energy and its Legendre transformations, and the point-line duality in convex 

hulls versus half-space intersections. Specifically, we derive the duality relationships for chemical 

work involving extensive composition variables (N) and intensive chemical potentials (μ). 

Designing thermodynamic conditions to enhance or diminish the stability of a target material 

is a crucial task in materials engineering. For instance, during materials synthesis, the objective is often 

to increase the stability of a target phase relative to its precursors or competing byproduct phases. To 

facilitate this, we introduced a generalized Clausius-Clapeyron relation, guiding the identification of 

optimal directions on a high-dimensional phase diagram for stabilizing or destabilizing a target phase. 

Using this approach, we analyze the acid stability of manganese oxide catalysts through a 4-

dimensional Pourbaix diagram with axes representing pH, redox potential, nanoparticle size, and 

aqueous potassium ion concentration. Additional discussions on Pourbaix diagrams with varying 

natural variables and in different solvents like aqueous solutions, supercritical ammonia and ethanol 

contribute to the broadening of Pourbaix diagram applications. 

Efficient synthesis is essential for realizing predicted materials and producing complex ones. 

However, solid-state synthesis of multicomponent oxides often encounters challenges from undesired 

by-product phases, which can stall reactions kinetics. Here, we present a thermodynamic strategy to 

navigate high-dimensional phase diagrams, seeking precursors that avoid low-energy competing by-

products and maximize reaction energy for rapid kinetics. Validating this strategy using a robotic 

inorganic materials synthesis laboratory, we find our predicted precursors often yield purer target 

materials than traditional ones. Robotic labs offer a data-driven platform for experimental synthesis 

science, guiding both human and robotic chemists. 
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Chapter 1 Materials Synthesis Guided by Thermodynamics Phase Diagrams 

1.1 Challenges on bringing computational materials to life 

The Materials Genome Initiative (MGI), initiated by the U.S. government in 2011, seeks 

to expedite the discovery, design, and deployment of new materials. Over the past few years, MGI 

has catalyzed transformation and innovation in materials research. Through the integration of high-

throughput experimental techniques, advanced computational methods, and machine learning, 

researchers can rapidly screen and design materials to meet various application needs. The 

initiative not only accelerates the materials development cycle but also reduces costs and enhances 

material performance. Furthermore, MGI has fostered the development of materials data sharing 

and standardization. By establishing open data platforms and shared resources, researchers can 

more easily access and disseminate material information, accelerating global collaboration and 

innovation. 

However, realizing the vision of MGI still faces challenges, including issues related to data 

quality and standardization, integration between theory and experiment, and interdisciplinary team 

collaboration. One of the significant challenges facing the MGI revolves around the abundance of 

computational materials data stored in databases, contrasted with the difficulty of experimentally 

synthesizing these materials, even when their structure and composition information are known. 

Despite advances in computational modeling and simulation techniques, which have led to the 

generation of vast amounts of data predicting the properties and behavior of materials, translating 

these predictions into real-world applications remains a formidable obstacle. 
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To effectively realize computational materials, it's crucial to understand the process of 

material formation from both thermodynamic and kinetic perspectives. This understanding 

provides insights into the stability, phase transitions, and reaction pathways of materials, which 

are essential for guiding experimental synthesis. Thermodynamics governs the stability of 

materials under various conditions, providing fundamental insights into the energetics of material 

phases and reactions. By applying thermodynamic principles, such as free energy minimization, 

researchers can predict the equilibrium phases of materials and identify stable configurations.1,2,3 

These predictions serve as a valuable starting point for experimental synthesis, guiding the 

selection of precursor materials and reaction conditions. Moreover, kinetics plays a vital role in 

phase transformations, nucleation, and growth processes,4 which is crucial for controlling the 

morphology, structure, and properties of synthesized materials. 

1.2 Mysteries of synthesis science in chemically complex materials 

Chemically complex materials refer to materials composed of multiple different elements 

or molecules, exhibiting complex structures and properties. These materials often possess multiple 

functionalities or performances, and therefore find widespread applications in fields such as high-

performance batteries, 5  superconductors, 6  biomedical products, 7  etc. For example, chemically 

complex materials such as LiFePO4, demonstrate excellent electrochemical performance, enabling 

high energy density, long cycle life, and good safety for modern battery technology. In high-

temperature superconductors, copper oxides, such as YBa2Cu3O7, 8 and iron-based chemically 

complex materials, such as LaFeAsO, 9  exhibit superconductivity at low temperatures, with 

extremely low resistance and excellent electrical current transport properties. In medical ceramic 

products, chemically complex materials are commonly used in the fabrication of artificial joints 

and dental restorative materials, such as hydroxyapatite (Ca10(PO4)6(OH)2).10 
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Despite the remarkable capabilities exhibited by chemical complex materials, their 

synthesis continues to present significant challenges. These challenges arise from the necessity for 

precise control over the composition of chemical elements, the diversity of chemical reactions, and 

the lack of efficient synthesis methods. For example, traditional synthesis recipes of chemical 

complex materials typically entail the mixing multiple precursors together, where each precursor 

usually contributes to only one element. However, this process can frequently form low-energy 

intermediate phases, which consumes most of the reaction free energy. Consequently, the synthesis 

process becomes trapped in kinetic byproducts, hindering the formation of the final target product.  

Synthesis science remains poorly understood, prompting researchers to rely on machine 

learning techniques and high-throughput experimentation for assistance. Machine learning has 

made significant strides in predicting materials properties,11 optimizing synthesis parameters,12 

accelerating the discovery of novel materials, 13  and identifying novel synthesis routes. 14 

Meanwhile, high-throughput robotic experimentation drives autonomous processes for materials 

design, 15  automated characterization, 16  and the creation of a single-source clean database. 17 

However, while machine learning approaches leverage large datasets to uncover insights, they 

often fall short of deepening our understanding of fundamental materials science. In addition, 

before we better grasp the complexities of materials formation, high-throughput robotic labs 

primarily facilitate the trial-and-error process and consume large number of resources. Without a 

comprehensive understanding of the underlying mechanisms governing synthesis, rapid 

experimentation only provides a superficial understanding of the intricate processes involved.   

Machine learning could further enhance its effectiveness in guiding materials synthesis by 

incorporating more robust, physically informed features. These features, rooted in fundamental 

thermodynamics, offer a deeper understanding of the underlying principles governing materials 
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formation. In this dissertation, examples can be chemical potential stability window, relative 

stability, inverse hull energy, etc. Similarly, high throughput experimentation could contribute to 

advancing science by swiftly validating hypotheses proposed from thermodynamic and kinetic 

principles. By rapidly testing a multitude of experimental conditions, high throughput 

experimentation can efficiently explore the validity of hypotheses regarding materials synthesis 

processes. 

Unraveling the mysteries of synthesis necessitates a generalized approach that integrates 

advanced computational methods with thorough theoretical thermodynamic and kinetics 

understanding, enabling researchers to delve into the complicated processes underlying materials 

formation at a fundamental level. 

1.3 Lack of user-specified phase diagram resources 

 There are various synthesis methods available today, including solid-state synthesis, sol-

gel method, hydrothermal synthesis, chemical vapor deposition, electrochemical synthesis, and 

more. Regardless of the method chosen, researchers typically begin by consulting phase diagrams. 

This is because phase diagrams offer valuable insights into the thermodynamic stability of 

materials under specific experimental conditions. By consulting phase diagrams, researchers can 

identify the conditions where a material exists in a stable state or undergoes phase transitions. 

Since this information is crucial for determining the appropriate synthesis conditions required to 

fabricate the desired material, phase diagrams serve as invaluable tools for researchers in planning 

and executing synthesis experiments effectively. 

Between 1873 and 1876, Josiah Willard Gibbs wrote three seminal papers that established 

the geometric foundations of equilibrium phase diagrams.1,2,3 Today, many tens of thousands of 

phase diagrams have been constructed and catalogued. However, despite the enormous number of 
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phase diagrams now available, the variety of phase diagrams has remained relatively limited. 

Generally, four main types of phase diagrams are utilized: 1) Temperature–Pressure; 2) 

Temperature–Composition; 3) Ellingham (T, μO2); 18  and 4) Pourbaix diagrams (pH, Redox 

potential E).19 All four of these phase diagrams are derived from the Gibbs free energy, which has 

natural variables of temperature, pressure and composition. This thermodynamic potential is 

applicable to what Gibbs called ‘simple systems’—defined to be macroscopically homogeneous, 

isotropic, uncharged and chemically inert; uninfluenced by gravity, electricity, distortion of the 

solid masses, or capillary tensions.  

However, modern materials are decidedly non-simple. Today, we are becoming 

increasingly aware of how other forms of thermodynamic work—such as surface, 20,21,22 elastic, 

23,24,25  electromagnetic, 26,27 electrochemical work, 19 etc.—influence phase stability under the 

complex chemical environments of modern materials devices.28 Each additional form of work will 

increase the dimensionality of the free energy, by:   

...i i ijkl ijkl
i

dU TdS PdV dN dA dQ d d dµ γ φ σ ε= − + + + + + ⋅ + ⋅ +∑
uur ur uur uur

E P B M  

This indicates that the relevant thermodynamic potential and phase diagram for these materials 

inherently exist in high-dimensional spaces. As phase diagrams are commonly two-dimensional 

today, we generally examine lower-dimensional slices of these multi-dimensional phase diagrams, 

resulting in a loss of crucial thermodynamic information. This can lead to erroneous interpretations, 

where certain observed metastable phases are incorrectly labeled as 'non-equilibrium' states. These 

phases might represent the lowest free-energy state within a higher-dimensional equilibrium phase 

diagram. Even if non-equilibrium phases are indeed present, a high-dimensional depiction of their 

free energies will offer a more comprehensive understanding of their kinetic origins. 
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The time has come to lift ourselves out of the Flatland of 2D phase diagrams.  Urgently 

needed is a new theoretical framework that makes high-dimensional thermodynamics more 

accessible—both computationally and conceptually. 

1.4 Exploratory and Targeted synthesis prediction with high dimensional phase diagrams 

To tackle the challenges faced above, in this dissertation thesis, we lay a geometric foundation 

to construct, interpret, and navigate generalized high-dimensional phase diagrams—which can be in 

any dimension, with any intensive or extensive thermodynamic variables on the axes. Although this 

dissertation study is certainly not the first to construct phase diagrams with various forms of work on 

the axes, 29 – 34  our emphasis here is to unify the geometric underpinnings of high-dimensional 

thermodynamics, which from our perspective, does not have a comprehensive and detailed framework 

in the literature yet.  

Gibbs’ arguments on the convex nature of equilibrium thermodynamics only applies to phase 

diagrams with extensive variables as axes. Here, in Chapter 2, we discuss how the Legendre 

transformation connects to the concept of Point-Line duality from projective geometry, which enables 

the computation of phase diagrams with all-intensive axes or mixed intensive/extensive axes. Using 

composition (N) and chemical potential (μ) as example conjugate variables, we examine the dualities 

between closed and open thermodynamic boundary conditions, their corresponding thermodynamic 

potentials, and the resulting phase diagrams with axes of mixed intensive/extensive variables. 35 

When one seeks to ascertain the stability of a specific target material, it is more convenient to 

establish open boundary conditions around the target, allowing for extensive exchange of variable 

quantities with an external reservoir. This results in stability regions for single target materials in our 

intensive variable phase diagrams, like Chapter 2 did. However, there are instances where the focus 

shifts towards determining the stability difference between a target material and an undesired phase 

impurity at the phase boundary. In Chapter 3, efforts are directed towards transforming the undesired 
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phase into the target material, or destabilizing the phase impurity to enhance the stability of the target. 

If high-dimensional phase diagrams serve as maps, then we require a 'compass' to guide us in the 

direction that either enhances or reduces the stability of specific phases. To develop this compass, we 

derive a generalized high-dimensional Clausius-Clapeyron relation. This relation simultaneously 

identifies the full set of experimental parameters that either stabilize or destabilize a particular phase 

of interest.36 

In addition to considering single target phases and phase boundaries, our phase diagram 

framework works for various synthesis methods, with a particular focus on solid-state synthesis and 

solvothermal synthesis. This dissertation marks the first instance of incorporating particle size, ion 

concentration, and metal element doping into Pourbaix diagrams for aqueous solutions. Furthermore, 

it presents the first phase diagram aimed at guiding inorganic material synthesis in nonaqueous solvents, 

such as supercritical ammonia, and organic solvents like ethanol. We also explore the evolution of 

Pourbaix diagram development and discuss its increasing efficacy over time, culminating in our ability 

to manipulate solvent environments using computational methods with ease. 

In my view, high-dimensional phase diagrams with various variables represent exploratory 

synthesis, delving into a vast array of material stability across uncharted high-dimensional parameter 

spaces. However, when it comes to synthesizing a specific target material, additional information is 

required. This includes knowledge of the optimal reactions to employ and how to prevent the formation 

of phase impurities during experiments. This approach is known as targeted synthesis. In Chapter IV, 

we propose a thermodynamic strategy for navigating the high-dimensional compositional phase 

diagram to pinpoint optimal reaction pathways.37 This involves identifying precursor compositions that 

avoid kinetically competitive byproducts while maximizing the thermodynamic driving force for rapid 

reaction kinetics. To test our synthesis principles, we collaborate with a high-throughput robotic 

automated inorganic materials synthesis laboratory, which offers increased efficiency, reproducibility, 

accuracy, scalability and versatility.
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Chapter 2 The Duality Between Convex Hulls and Chemical Potential Diagrams 

2.1 Duality in thermodynamics 

Duality is a profound and powerful concept in mathematical physics. As described by 

Michael Atiyah,1 duality gives two different points of view of looking at the same object. For 

example, a periodic function can be decomposed into a Fourier series—an infinite sum of sines 

and cosines; or be represented by its dual the Fourier spectrum—a vector of coefficients for each 

sine or cosine term. In solid-state physics, Gibbs used duality to invent the concept of the 

‘reciprocal lattice’,2,3 which is dual to the real-space crystalline lattice—a foundational principle 

in X-ray diffraction, Bloch wavefunctions, and Ewald summations. A dual representation does not 

produce any essentially new information, rather, it offers a new perspective to analyze and interpret 

a physical scenario.  

In thermodynamics, there is a duality in how one can ascribe boundary conditions to a 

thermodynamic system. For a system containing two or more phases coexisting in equilibrium, we 

can either frame closed boundary conditions around this heterogeneous mixture of equilibrium 

phases; or if we are interested in the stability of only a single target phase, we could alternatively 

frame open boundary conditions around only that material, where extensive quantities (heat, 

volume, mass, etc.) are exchangeable with an external reservoir with applied intensive conditions 

(temperature, pressure, chemical potential, etc.). With closed boundary conditions, the relevant 

phase diagram has the corresponding extensive variable on the axis; whereas for open boundary 

conditions the relevant phase diagram would have an intensive variable axis. To construct the 
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relevant thermodynamic potential for a phase diagram with natural intensive variables, one uses 

the Legendre transformation, Φi = U – ΣiXiYi, to change the natural variable of a thermodynamic 

potential from extensive in U(Xi) to a new potential with the conjugate intensive natural variable, 

Φ(Yi).   

Gibbs’ physical arguments for heterogeneous equilibrium correspond to the lower convex 

hulls on the Internal Energy surface, U(S,Xi) of the various possible phases.4 However, due to 

Gibbs’ stability criterion that ∂2U/∂Xi2 > 0, convex hulls can only calculate heterogeneous 

equilibrium on thermodynamic axes of extensive variables. In many experimental contexts, the 

control variables are intensive, like temperature or pressure, which motivates the use of Legendre 

transformations from U(S,V,N) to the Gibbs free energy G(T,P,N) = U – (-PV) – TS. In our ambition 

to construct generalized high-dimensional phase diagrams with any intensive or extensive 

thermodynamic variable on the axis, here we discuss the physical interpretation, geometric 

principles, and computational approaches needed to examine the duality between closed and open 

thermodynamic systems.  

In particular, this work5 focuses on the duality between closed and open chemical systems, 

where the extensive variable N is mass and the conjugate intensive variable μ is chemical potential. 

Although chemical potential diagrams have been previously made in the literature,6- 15 we believe 

they are underutilized, which we attribute to a lack of literature that describes how to meaningfully 

interpret chemical potential diagrams. First, we derive how the duality between convex hulls and 

half-space intersections offer a computational foundation to connect composition phase diagrams 

to chemical potential diagrams. We then explore how chemical potential diagrams offer a pathway 

to connect equilibrium thermodynamics to non-equilibrium materials kinetics––as the equations 
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of diffusion, nucleation, growth, and dissolution, all have terms for chemical potential in their 

constituent equations.  

Finally, we will discuss the limitations of phase diagrams with either all composition axes 

or all chemical potential axes—as there are many physical scenarios where a system is closed in 

some elements while being open to others. We advocate for the construction of mixed composition-

chemical potential phase diagrams, with chemical potential axes for the volatile species and 

composition axes for the closed species.  We examine three case studies of mixed intensive-

extensive phase diagrams to interpret the synthesis, operational stability, and growth of: 1) the 

oxynitride TaON, 2) the lithium-ion battery cathode material LiMn2O4, and 3) oxidation of the 

medium-entropy alloy CrCoNiOx. To construct these mixed composition-chemical potential 

diagrams, we combine thermodynamic calculations from both convex hull and half-space 

intersection algorithms, and discuss the geometry of phase coexistence regions in these mixed 

diagrams.  

More generally, our approach to duality here serves as a general blueprint to Legendre 

transform the U(S,Xi) convex hull to any high-dimensional phase diagram, either with axes of all 

intensive variables (such as elastic stress, electric field, magnetic field, surface area to volume ratio, 

and others), or some mixture of intensive and extensive variables.  

2.2 The duality between open and closed thermodynamic systems 

It is not meaningful to construct or interpret phase diagrams before establishing the 

boundary conditions for the thermodynamic system being analyzed. For a material that can 

undergo chemical reactions, there are two ways to frame boundary conditions, as illustrated in 

Figure 2.1. When using the Gibbs free energy, which has a natural extensive variable of 

composition, one frames a closed thermodynamic system where the total composition within a 
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reactor is fixed. Inside these closed boundary conditions, an initial non-equilibrium set of reactants 

will evolve to a final equilibrium phase or a heterogeneous mixture of phases, depending on the 

ratio of elements in the total reaction vessel. For thermodynamic systems with many phases and 

chemical species, the resulting network of stoichiometrically-balanced chemical reactions can 

become very complicated to navigate.16,17  

 

Figure 2.1: The duality between closed and open thermodynamic systems; shown in (a, b) with corresponding free 
energy surfaces (c,d), solved with convex hulls on extensive axes, or half-space intersections on intensive axes.  

From a materials engineering perspective, our interest may instead only be with regard to 

a single target phase––for example, to predict optimal synthesis conditions, or to evaluate 

operational stability in complex chemical environments. In such cases, we may not need to (or 

care to) fully characterize all the possible reactions within a closed chemical system. Instead, we 

could frame the thermodynamic boundaries around only the material-of-interest, which we treat 

as open to an external chemical reservoir that has a propensity to deposit mass onto, or dissolve 

mass away from, our material-of-interest. The thermodynamic propensity to flux mass onto or 

away from the target material is given by the chemical potential difference between the reservoir 

and the material.  
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Considering a heterogeneous system in Figure 2.2, suppose now that Fe is in a very large 

but closed box filled with humid air—this air might now react with iron to spontaneously form 

rust and other iron (hydro) oxides. We can analyze it as a total closed system with fixed Fe and O 

composition, where O will exchange between air and iron. A closed heterogeneous system will 

evolve to equilibrium by maximizing entropy. ΔS is maximized when all intensive variables 

throughout a heterogeneous system are equalized. For example, in our Fe+air system, the 

temperatures will be the same at equilibrium, TFe = Tair. Importantly, also, μO,solid = μO,air. Likewise, 

the vapor pressure of Fe means a very small amount of Fe will evaporate into the air, such that μFe, 

solid = μFe, air.  

 

Figure 2.2: Schematic figure shows Fe solid in a closed box with humid air. O and Fe particles exchange at the 
interface of solid and humid air. At equilibrium, the chemical potential of O and Fe in air and solid should be the same. 
The dash lines around solid Fe indicate the open boundary condition. The solid lines around black box indicate closed 
boundary condition. 

From the perspective of a material, it does not know the ‘large’ boundary condition of the 

closed system. It can only experience what is being applied at its local boundaries. In other words, 

while we can certainly analyze the thermodynamic equilibrium of a closed box, we can also draw 

an new open boundary condition around the solid Fe, and analyze as it is being acted upon by an 

external reservoir of air. In both cases, whether it is a closed two-phase system or a material being 

acted upon by an open external reservoir, the equilibrium condition is the same – the intensive 

variables will equilibrate at the interface.  
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Because there is no oxygen in Fe, there is a large driving force for oxygen to be 

incorporated and for Fe to transform into Fe-oxides. Fe can do work on the air by removing oxygen 

atoms from the air and incorporating them into its lattice. The amount of reversible work that Fe 

does on air is associated with a change in chemical energy; this change is the chemical potential μ 

= ∂G/∂N, which refers to the work required to add/remove a particle of given species.  

Our choice of boundary conditions determines when we should use convex hull (extensive 

natural variable phase diagram) or chemical potential diagram (intensive natural variable phase 

diagram). It is inconvenient to analyze open systems using a closed-system phase diagram – the 

convex hull. For example, assuming a dope process of phosphorus airflow passing above a silicon 

sheet, how to control the airflow to dope the silicon into a specific phase? For silicon it has open 

boundary condition, and its surface changes due to applied phosphorus outside (Figure 2.3). At 

equilibrium, chemical potential of the airflow should be equal to that of phosphorus in silicon. So, 

a more convenient natural variable is chemical potential. The convex hull does not work here, 

since it does not provide much guidance on how to prepare the phosphorus flow-gas conditions. 

Instead, with a chemical potential diagram, airflow concentration can be directly obtained from 

the chemical potential of desired phase, where μp = μpo + RTln[P].  

 

Figure 2.3: Schematic Si doping process. 

A few more examples where a thermodynamic system might better be described with open 

instead of closed boundary conditions include the following: In gas-phase deposition, such as 
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chemical vapor deposition or molecular beam epitaxy, one does not usually control the 

composition of the volatile species; one controls partial pressure, temperature, and flow-rate, 

which is better described by chemical potential.18,19 During precipitation or dissolution from an 

aqueous electrochemical solution, one usually cares about the material being formed or dissolved, 

rather than all the various chemical reactions that are possible in H2O.20,21 In heterogeneous solid-

state systems, such as the [cathode | electrolyte | anode] system of an all-solid-state battery, one 

could examine heterogeneous equilibrium in the convex hull isopleth connecting the cathode and 

anode;20 or equivalently one could consider the chemical potential differences at the interfaces 

between the various electrodes in the battery.22 Likewise, one can make similar arguments during 

solid-state synthesis, as one can examine reactions with composition fixed natural variables,15 or 

equivalently one could examine the chemical potential differences at the interfaces between 

reactants and products.13  

 The decision to either model chemical reactions in a closed heterogeneous system, or a 

collection of subsystems open to each other via chemical exchange, is an arbitrary decision for a 

human scientist. Nature will evolve the chemical system all the same—but for our conceptual 

benefit, we should choose our boundary conditions based on whatever considerations are 

convenient or important to us. To anthropomorphize the target material, it does not ‘know’ the 

composition of the reaction vessel—it will simply undergo reactions with the chemical reservoir 

at its physical interfaces. These reactions proceed until the chemical potentials inside the material 

are equivalent to the chemical potentials with the reservoir at its interface, such that equilibrium is 

reached. 
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2.3 The duality between convex hulls and half-space intersections 

Chemical potential diagrams have previously been calculated, most notably by Yokokawa6, 

and have been applied to study solid-oxide fuel cells,7 hydrogen storage materials,8 surface 

adsorption,9,10,11 defects,11,13 and materials synthesis.13,15 In our overarching ambition to calculate 

high-dimensional phase diagrams, it is important to use computational phase diagram approaches 

that are scalable to many dimensions. A detail introduction of convex hull phase diagrams is in 

Chapter 2.3.1. Published algorithms for computing chemical potential diagrams, from our 

perspective, rely on inelegant approaches, often involving for loops or inefficient optimization 

approaches, and do not scale well to high-component chemical spaces. In addition, published 

chemical potential diagrams only depict equilibrium situations, while here we derive chemical 

potential diagrams that can represent non-equilibrium scenarios like crystal growth and dissolution. 

Our derivation of the chemical potential diagram below is inspired by the discussions in 

Callen23, Zia24, and Yokokawa6, but it is derived in a way specifically to leverage the duality 

between convex hulls and half-space intersections, which are computational optimization 

algorithms that readily scale to higher dimensions. First, we will connect the Legendre 

transformation to Point-Line Duality. Then we will use Point-Line Duality to connect convex hulls 

to half-space intersections. From our perspective, these ideas appear in the literature in scattered 

form, which our goal here is to unify under one physical, mathematical and computational 

perspective. For the sake of completeness, we present a full derivation in the Chapter 2.3.2 – 2.3.4. 

A brief summary of the derivation follows:  

 For phase diagrams with extensive variables, the equilibrium state is solved by convex 

hulls, and each state of a phase is given by a vertex on the convex hull. We then leverage a concept 

from projective geometry named Point-Line Duality. Briefly summarized: for a line of the form y 
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= ax – b, it is usually customary to treat x and y as the axes, and a and b as parameters for the line. 

However, since a and b provide all the information needed to define this line, we could 

equivalently represent this line as a point (a,b) in a–b space. Symmetrically, one can swap a,b and 

x,y to arrive at a similar relationship between lines in a–b space and points in x–y space. If the line 

is provided as an inequality, y ≤ ax – b, one can show that the lower convex hull for a collection 

of points is equivalent to the lower half-space intersection for its dual representation of lines. 

 In mathematics, the Legendre transformation is a method to relate a convex function to 

its envelope of tangent lines. Because the tangent line to a U(Xi) surface, ∂U/∂Xi, gives the intensive 

variable Yi; the Legendre transformation is a natural implementation of Point-Line duality. For a 

natural intensive variable of chemical potential, the Legendre transformation can be used to 

construct a new thermodynamic grand potential, ϕ = G – μN. For composition axes, it is customary 

to transform the number of mols, N, to mol fraction, x, by the affine relationship Σixi = 1, where xi 

= Ni / ΣiNi. This changes the intensive variable μ from the slope ∂G/∂N, to the intercept rule 

(derivation in Chapter 2.3.4.2), where μi = G – (1–xi)·[dG/dxi]. Graphically, μi can be solved by a 

tangent line of the convex hull, extended to the vertical G axis at the elemental end-point 

compositions, as later illustrated in Figure 2.8a. Hence, the chemical potential denoted as μ in this 

context represents the relative chemical potential to a standard reference state. In some published 

papers, it is expressed as Δμ(μ-μo).  

 The 𝜙𝜙(μ) space is dual to the G(x) space. Each phase, which was a vertex in G(x) space, 

becomes a line in the dual 𝜙𝜙(μ) space. More generally, in higher dimensions, each phase becomes 

a hyperplane by the equation 𝜙𝜙 = G – Σμixi, which corresponds directly to y = Σiaixi – b. The 

equilibrium state in G(x) was solved using a bounding lower-convex hull of vertices, which in dual 
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𝜙𝜙( μ) space, corresponds to a bounding upper half-space intersection of hyperplanes. A 

mathematical proof of this duality is provided in Chapter 2.3.3. 

 Phase diagrams are constructed by projecting the lowest free-energy phases onto the 

thermodynamic axes, thus eliminating the energy axis. For example, a T–P phase diagram is 

constructed by projecting the half space intersection of G = H + PV – TS onto the T and P axes. 

Likewise, a composition phase diagram is a projection of the G(x) convex hull onto the 

composition axes; and a chemical potential diagram is a projection of the lower half-space 

envelope of 𝜙𝜙 surfaces onto chemical potential axes (Figure 2.8b). The stability region of a phase 

on a chemical potential diagram shows chemical potential values where its grand potential is lower 

than that of any other phase.  

Table 2.1: Dual representation of physical aspects in closed system (the convex hull) and open system (chemical 
potential diagram). 

Physical Aspects Dual Representation 
System Boundary Condition Closed to mass transfer Open to mass transfer 

Thermodynamic 
Aspects 

Thermodynamic 
Potential Gibbs potential Grand potential 

Euler form G = U + pV – TS  Φ = G – μN 
Differential Form dG = –SdT + vdP + μdN dΦ = –SdT + vdP – Ndμ 
Natural Variables T, P, N T, P, μ 
Heterogeneous 
Equilibrium Coexistence region Phase boundary 

Metastability Energy above the hull Growth 
Instability Decomposition energy Dissolution 

Geometric aspects 
Phase Point Hyperplane 
Equilibrium state Convex Hull Half-space intersection 

 

In this work, we will present chemical potential diagrams for a variety of systems. All the 

thermochemical data for these diagrams are from the Materials Project database25, which is a database 

of high-throughput DFT-calculated enthalpies of ordered crystalline phases. As is common in the 

computational materials science community, we assume that vibrational entropy is negligible in solids, 
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so that we can approximate Gsolid = ESolid,DFT
26. The Materials Project only contains ordered crystalline 

phases, so we do not consider the solid-solution phases, although they are certainly relevant in real 

materials. Finally, DFT has known errors in formation energy27 , 28 , but the Materials Project has 

implemented a series of energetic corrections29,30,31 which we adopt here without further scrutiny. For 

a thorough analysis of the actual chemical systems presented here, it would be appropriate to 

recalculate the thermochemical data without these assumptions—however this work primarily 

emphasizes the formalism, geometry and interpretation of chemical potential diagrams, so we use the 

unaltered Materials Project data for our visualizations.  

2.3.1 The convex hull – free energy and composition phase diagram 

Convex hull algorithms are commonly used in computational thermodynamics to calculate 

chemical equilibrium in materials systems. However, few literatures systematically introduce, 

explain, and interpret the convex hull phase diagrams. We begin our discussion with the 

thermodynamic origins of the convex hull, and why it leads to conditions of chemical equilibrium.  

Gibbs establishes the stability condition of materials from two physical arguments, which 

leads to both the Gibbs free energy curves of single-phase compounds and heterogeneous mixtures 

of compounds to be convex. First, a single-phase compound can only stable against compositional 

self-separation if its formation energy is lower than that for any other linear combination of 

compositions of that phase. This results in its internal energy surface, G, being convex in the 

composition variable—such that ∂2G/∂2N > 0. Because each pure-phase G(N) surface is convex, 

at intermediate compositions between phases, a mixture of heterogeneous phases can also have 

lower total Gibbs free energy than any single homogeneous phase. This state of heterogeneous 

equilibrium is given by the tangent envelope that connects the bottom of G(N) curves.  
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In Figure 2.4, we illustrate this convex hull for a binary system, A–B, with a vertical axis 

of absolute Gibbs free energy G, which is the sum of material internal chemical potential μ and 

quantity of a component N: G = Σ μiNi. The absolute Gibbs free energy, G, is extensive with respect 

to the quantity of each component, NA and NB. Each phase in A-B space is shown in Figure 2.4 by 

a red arrow, and the equilibrium state would be solved by the convex envelope that wraps beneath 

the red arrows.  

However, chemical equilibrium is usually analyzed not using absolute Gibbs free energies, 

but rather, by normalizing the Gibbs free energy to a per atom or per molar basis (G̅). In Figure 

2.4a, this can be represented by a change of basis from a G-NA-NB space to a G-xB-Ntotal space, 

where xB=NB/Ntotal. Graphically, this operation is done by slicing the absolute convex hull along 

the xB = 1 – xA. Mathematically, this results in the convex hull becoming an affine hull, meaning 

that composition sums to one, Σxi = 1. For a n component system, this can be expressed as: 

 

1 1

n n
i

i i i
i itotal total

NGG x
N N

µ µ
= =

= = =∑ ∑  (1) 

Because chemical equilibrium does not depend on Ntotal, the stability of compounds is 

usually analyzed in G̅-xB space, where G is normalized to Ntotal and xA is removed, as shown in 

Figure 2.4b. Note that this reduces the dimensionality of the thermodynamic space by one.  

In the ab initio materials design community, the free-energy of substances is usually 

modeled as stoichiometric line-compounds (linearization assumption); in other words, for pure 

composition materials with no off-stoichiometry. In reality, the Gibbs free energy surfaces of a 

phase are convex, and has a curvature of ∂2G̅/∂x2 = ∂μ/∂x, where chemical potential μ represents 

how much chemical work to add or remove an atom the further one gets away from a 

stoichiometric compound. This ∂2G̅/∂N2 term can be considered as chemical capacitance, or the 

capacity of a compound to store chemical work (as additional atoms); analogous to how ∂2G̅/∂T2 
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is the heat capacity and is the capacity of a compound to store heat. For the simplicity of expression, 

in the following discussion, we will use G as G̅ - normalized Gibbs free energy per atom. 

 

Figure 2.4: (a) A binary A-B system in G-NA-NB space. Each red arrow represents the absolute Gibbs free energy 
of a stable compound, which changes as NA and NB change. (b) The binary A-B system in G̅-xB space, where G is 
normalized to per atom. 

For example, NaCl, which is an ionic solid, would have a very high chemical capacitance  

∂2G̅/∂x2, as any off-stoichiometry like Na0.51Cl0.49 would have very high electrostatic energy 

arising from ionic repulsion. On the other hand, a miscible metallic alloy like Au-Ag can easily 

become off-stoichiometric without a significant energetic penalty, and would therefore have a low 

chemical capacitance. For real materials, the chemical capacitance of any phase is non-zero, as 

shown by parabolas in Figure 2.4b. However, in density function theory (DFT) calculations we 

often assume ∂2G̅/∂x2 is infinite, which leads to a non-differentiable convex hull. One can calculate 

the chemical capacitance of real compounds by evaluating the energy of off-stoichiometric 

compositions, for example by Special Quasi-Random Structures (SQS) or lattice-based alloy 

cluster expansions.  

The convex hull in G̅-x space represents the equilibrium states, and materials with energy 

above the convex hull represent metastable phases. For example, in Figure 2.4b, only when a 

compound falls onto the convex hull, its free energy is not above linear combination between any 

two materials at the given composition – meaning that the compound is a thermodynamic stable 



 23 

phase. In contrast, the compound AB3 is metastable with respect to decomposing to AB2+B; The 

‘energy above the hull’ is a thermodynamic measurement of metastability. In a data-driven 

evaluation of the thermodynamic scale of metastability, we previously showed that for inorganic 

crystalline materials, 90% of known metastable materials are within 70 meV/atom of the hull. This 

metastability threshold depends on chemistry—where strongly bonding solid-state materials 

(nitrides, oxides) tend to have higher metastable thresholds than softly-bonding materials 

(tellurides, iodides); and on composition—where compounds metastable against phase-separation 

tend to access higher thermodynamic metastability thresholds than polymorphic compounds. 

Importantly, not all materials with a low energy above the hull are necessarily synthesizable, 

although the specific synthesizability criteria for metastable materials is not precisely understood 

today.  

2.3.2 The Legendre Transformation and Point-Line Duality 

There is a duality between a convex curve and its envelope of tangent planes. In projective 

geometry, this duality is called Point-Line Duality, where the convex curve is referred to as the 

‘primal’ surface, and the envelope of tangent planes is the ‘dual’ surface. This dual surface encodes 

the inclination of the tangent planes for the Internal Energy surface—in other words, it redefines 

the conjugate intensive variable as the natural variable. This process is performed by the Legendre 

transformation, which defines a new thermodynamic potential Φ, by a change in natural variable 

from an extensive variable X to intensive variable Y. The general expression can be written as: Φ 

= U – XY, where Y = ∂U/∂X. For example, the Helmholtz potential, F(T,V) = U – TS, replaces the 

extensive variable S with its intensive conjugate T, and the Gibbs potential, G(T,P) = U + PV – TS, 

further replaces volume with pressure.  
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In Figure 2.5, we illustrate a transformation of the Internal Energy U(S) to the Helmholtz 

free energy F(T). If a thermodynamic system is in contact with an external temperature reservoir, 

then when the system reaches equilibrium with the external reservoir, U should be minimized 

under a constraint where the externally applied temperature is some T1. This is shown as a tangent 

line with slope as ∂U/∂S = T1, as illustrated by the red line in Figure 2.5a. A new thermodynamic 

condition is then defined through Legendre transformation,
11 1 1( ) ( / )= − ∂ ∂ TF T U U S S .  

 

Figure 2.5: Schemtic relationship between (a) U and S, (b) F and T, at fixed volume for homogenous phases. [S, U] 
and [T, F] are dual spaces and the two blue curves are duality of each other. 

On Figure 2.5a, F(T1) corresponds to the point at S = 0. In other words, F(T1) is the y-

intercept of the tangent line to U(S) at the point where ∂U/∂S = T1. More generally speaking, F(T) 

= U– (∂U/∂S)S = U – TS, which encodes the information of U(S), but without a dependence on S. 

The natural variable of F is now T, and the differential form is dF = –SdT.  

If we traverse all points on the U(S) curve with different values of T = ∂U/∂S, we can trace 

out the F(T) curve which is shown in Figure 2.5b. Based on the stability criterion for homogenous 

phases, U is convex up with respect to extensive variables, so ∂2U/∂S2 > 0. Because ∂2U/∂S2 = T/cv, 

where cv is the heat capacity at constant volume, this stability criterion implies that heat capacity 

for a self-stable phase must be positive. If we trace F with respect to T, we notice the curve is 
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concave, ∂2F/∂T2 < 0. This negative curvature in F(T) is also a consequence of the positive heat 

capacity of materials.  

Point-Line Duality leverages the duality between a line y = ax – b in primal [x, y] space, to 

a point (a, b) in dual [a, b] space. In thermodynamics, from Figure 2.5, we can reformulate the 

tangent line to U(S) as: y = ax – b  U = TS + F. Here, the correspondence is U ≡  y, T ≡  a, S ≡  

x, and F ≡  –b; meaning that [U, S] and [-F, T] are dual spaces. Since -F and F show one-to-one 

correspondence, we can also say that [U, S] and [F, T] spaces are dual with each other. In Figure 

2.5, for each line on the U(S) curve, we can draw its dual point in [F, T] space, shown by the green 

and red lines in [U, S] space and points in [F, T] space. In this sense, the blue convex U(S) curve 

is dual to its corresponding concave F(T) curve. 

Table 2.2: Table of the Point-Line duality between primal [x, y] space and dual [a, b] space. 

 Primal Dual 

2 dimensional [x, y] [a, b] 

N-dimensional [x1, x2, …, xn-1, y] [a1, …, an-1, b] 

 Point Hyperplane 

2 dimensional (x, y) b = xa – y 

N-dimensional (x1, x2, …, xn-1, y) 
1

1

d
i ii

b x a y−

=
= −∑  

In higher dimensions d > 2, the corresponding notion is Point-Hyperplane duality, where 

a hyperplane is defined as a d–1 dimensional subspace which splits a space into two half-spaces. 

The hyperplane can be defined in the primal [x, y] space as 1

1

d
i ii

y a x b−

=
= −∑ , while the 

corresponding point in the dual [a, b] space is (a1, …, an-1, b). The above discussion is generalized 

in Table 2.2, which gives the corresponding relationships between points and lines in different 

dual spaces. In thermodynamics, we should treat the primal space in its multidimensional form of 
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U(S, X1,…,Xi), with the energy scalar U as the y-axis, and the various extensive variables as 

corresponding to the xi terms.  

2.3.3 Mathematical derivation of duality 

From a materials thermodynamics standpoint, Point-Line Duality holds particular 

significance as it is related to the duality between G-x convex hulls and their corresponding half-

space intersections, which are Φ-μ chemical potential diagrams. As a definition of half-space 

intersection: a line in a plane separates the plane into two sections, each of which is called a half-

plane; in higher dimensions, the notion is half-space. Half-space intersections forms an inner 

envelope. Here, we provide a mathematical derivation of this duality relationship, and show its 

relevance to thermodynamic phase diagrams, which proves the duality between the composition 

vs. chemical potential phase diagrams.  

Consider a set of points, P, in primal space. As shown in Figure 2.6, a point p ∈ P is a 

vertex of a lower convex hull, ℒℋ(𝑃𝑃), if and only if there is a non-vertical line l passing through 

p such that all other points of P lie above l. Correspondingly, in dual space, represented by an 

asterisk, the line segment p*∈P* is a part of the lower envelope (ℒℰ(𝑃𝑃*) half-space hyperplanes), 

if and only if there is a point l* on the line p* such that l* lies below all other lines of P*.  

These arguments generalize to N-dimensional spaces, where for a N-dimensional point p∈P 

to be a vertex of an N-dimensional lower convex hull, there must be a non-vertical hyperplane l, 

passing through p such that all other points of P lie above l. The dual statement is that for a 

hyperplane p*∈P* to be a part of a lower envelope, there is a point l* on the plane p*, such that l* 

lies below all other lines of P*. In projective geometry, [x, y] and [a, b] are dual to one another, 
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but in thermodynamics [U, S] and [-F, T] are dual to one another, meaning that the lower envelope 

from projective geometry becomes an upper envelope when applied to thermodynamics.  

 

Figure 2.6: The duality between a lower convex hull and a lower envelope. Colors of points in the primal space 
correspond to their lines in the dual space.  

Similarly, in this study, a set of points in the convex hull G-x primal space, are represented 

by a set of hyperplanes in the chemical potential diagram 𝜙𝜙 -μ space, forming the half-space 

intersections. In the same way that F(T) is a Legendre transformation of U(S), and therefore is its 

dual, we can perform a similar Legendre transformation from G(x) to the grand potential, 𝜙𝜙(μ). At 

constant temperature and pressure, this can be defined as: 

( ) ( )1 2 1 2, , , ... , , , ...LT
n nG T P x x x T Pφ µ µ µ→  

1 1
φ µ

= =

∂
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∂∑ ∑
n n
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For each phase, which is given by a vertex in G-x1-x2 space, its corresponding Grand free 

energy is given by 𝜙𝜙 = G −∑ 𝜇𝜇𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 . Taking a binary Mn-O system as an example, this Grand 

free energy is written as 𝜙𝜙 =  𝐺𝐺 −  𝜇𝜇Mn𝑥𝑥Mn − 𝜇𝜇O𝑥𝑥O. Although the binary convex hull can be fully 

represented with either xMn or xO, as xMn = 1 – xO, for a duality analysis we can include the 
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redundant x2 information. Therefore, a point in [xMn, xO, G̅] space corresponds to a 2-D hyperplane 

in [μMn, μO, 𝜙𝜙� ] space. 

Based on the way 𝜙𝜙� is defined¸ a phase p on the Mn-O convex hull can be represented by 

the plane equation p* as 𝜙𝜙�= G̅p – μMnxMnp - μOxOp, where xOp, xMnp, G̅p represents composition of 

oxygen, manganese, and Gibbs formation free energy per atom of Mn3O4. Then, because e* is a 

point on the plane p*, we have 𝜙𝜙�*= G̅p – μMn*xMnp - μO*xOp. In Figure 2.7 left, for a plane Mn3O4 

p*∈P* to be a part of a lower envelope in [μMn, μO, 𝜙𝜙�] space, there is a point e*= (μMn*, μO*,𝜙𝜙�*) on 

the plane p*, such that e* lies below all other planes of P*. In other words, for any plane j*∈{i | 

i∈P*, i≠p*}, where j* is 𝜙𝜙�= G̅j – μMnxMnj - μOxOj, 𝜙𝜙�* should be no greater than the corresponding 

𝜙𝜙�j value at μMn*, μO* on the plane j*. Mathematically, this means at μMn*, μO*:  

* jφ φ≤  

Therefore, if equation above is true, there exists a point e* on the plane p* such that the e* is below 

any other plane j*. This means p* is on the lower half-space intersection envelope.  

For a point e*= (μMn*, μO*,𝜙𝜙�*) on plane p* in [μMn, μO, 𝜙𝜙�] space, its dual plane e in [xMn, 

xO, G̅] space is G̅ = 𝜙𝜙�* + μMn*xMn + μO*xO, as shown as the light blue triangle in Figure 2.7 right. 

Every points on this plane has same chemical potentials. Then the dual of p* is p= (xMnp, xOp, G̅p), 

which is material Mn3O4. If p is a vertex on the convex hull, there is a plane e passing through p, 

and below all other vertices from P (all other materials). This means for any point j∈{i | i∈P, i≠p}, 

where j = (xMnj, xOj, G̅ j), G̅ j should be greater than the corresponding G̅e value on the plane e at 

xMnj, xOj, as shown as the red point on the convex hull of left figure. Mathematically, this means at 

xMnj, xOj: 

e jG G≤  

Since G̅e =𝜙𝜙�* + μMn*xMnj + μO*xOj, we can substitute G̅e and rearrange the inequality as: 
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* * *j j j
Mn Mn O OG x xφ µ µ≤ − −  

Here, the right-hand side is 𝜙𝜙�j at μMn*, μO*. So, the inequality is equal at μMn*, μO* to 

* jφ φ≤  

If equation above is true, then there is a plane e passing through p and below all other points, 

which means p is a vertex on the convex hull. Eq. 1 and Eq. 2 are as same as each other, which 

proves that a convex hull in [xMn, xO, G̅] space and the chemical potential diagram [μMn, μO, 𝜙𝜙�] 

space is dual to one another. 

 

Figure 2.7: Left) Mathematical description of half-space intersection in chemical potential diagram. Right) 
Mathematical description of convex hull in formation energy and composition phase diagram. 
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2.3.4 Computation of chemical potential diagrams 

2.3.4.1 Linearization assumption 

In Figure 2.5, we illustrated the duality between a convex envelope of tangent lines to U(S) 

and a concave set of points to F(T) for a single phase. To construct a phase diagram, one calculates 

phase transitions between multiple phases. In the computational DFT community, we often 

calculate the phase transition boundary between multiple phases as if single phases have infinite 

curvature in the extensive variables, as shown in Figure 2.5b. For example, if you are calculating 

temperature-dependent phase transitions using G(T), for each single phase, we linearize G(T), 

where G = H – TS, by treating S as a constant. This linearization assumes a zero curvature for 

∂2G/∂T2 = Cp/T; in other words, we are assuming that the heat capacity is zero. Then, each phase 

is a vertical line in G(S) space, because S is a constant and G is affected by T. A vertical line means 

the second derivative of thermodynamic potential with respect to S is infinite. 

Note that linearizing the thermodynamic potential in intensive variables means that 

conjugate extensive variables are assumed constant, and the second derivative with respect to 

intensive variables of a phase is zero. The reflection of this linearization in the conjugated 

extensive variables is that the second derivatives with respect to them are infinite.  

When calculating chemical potential diagrams, we can also linearize 𝜙𝜙(𝜇𝜇), where 𝜙𝜙  = G 

– μx, such that x is a constant. Therefore, the second derivative of 𝜙𝜙 with respect to μ is zero. 

Chemically speaking, a constant x means that we are considering only stoichiometric phases—no 

off-stoichiometry for a phase is favorable due to a very large energy increase. This linearization 

assumption also corresponds to the nature of solid-state DFT calculations, since DFT calculations 

are typically performed on stoichiometric compounds, and it can be laborious to evaluate the 

energy at off-stoichiometric, disordered compositions.  
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Linearization produces good approximations of phase boundaries in thermodynamics, and 

makes calculations faster, while still retaining interpretability. If we truly need to calculate a 

solution phase, we can include a series of vertices to represent a continuous G(x) curve in the 

composition axis. Most importantly, linearization also enables the use of computational codes that 

calculate the half-space intersection. We will discuss this in the following sections. 

2.3.4.2 Computation of chemical potential diagrams through the Intercept Rule 

Here, we briefly derive the Intercept Rule in a 2-component system. The affine constraint 

in a binary space is xA = 1 – xB. This constraint eliminates a degree-of-freedom, and therefore, a 

dimension from the chemical space; from G-NA-NB to G̅-xB. Here, G̅ = μAxA + μBxB, so that dG̅ = 

μAdxA + μBdxB. By substituting the affine relationship of the convex hull where dxA =  – dxB, we 

can derive: G̅ = μA + (μB – μA) xB, dG̅ = (μB – μA) dxB. By substituting (μB – μA) with dG̅/dxB, we can 

get the chemical potential of A or B as: μB = G(xB) +  (1–xB)[∂G(xB)/dxB], and μA = G(xB) – 

(xB)[∂G(xB)/dxB]. Geometrically speaking, this places μA and μB directly on the G̅-intercepts of the 

tangent plane to the convex hull where the xB is either 0 and 1, respectively. The chemical potential 

then has the same magnitude and units of the formation energy. In other words, the intercept of 

the tangent line for a phase with the G̅-axis provides the chemical potential of each specie in the 

material at equilibrium.  

Additionally, the intercept rule serves as way to demonstrate the duality between the 

convex hulls and chemical potential diagrams. However, calculation of intercepts require the 

computation of gradients or normal vectors of phase coexistence regions (tangent planes). This 

process is computationally expensive when the chemical potential diagram involves more than two 

components. An alternative, more efficient approach is to calculate the half-space intersection of 

the convex hull, as it offers greater ease of scalability to higher dimensions.  
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2.3.4.3 Computation of chemical potential diagrams through half-space intersection 

Phase diagram with all chemical potential axes 

Half-space intersections offer an easy and scalable approach to construct chemical potential 

diagrams. First, we define the grand potential for each phase using 𝜙𝜙 = G – Σμixi, then we construct 

a half-space intersection. The implementation python codes and tutorial examples are in Github 

link: https://github.com/dd-debug/chemical_potential_diagram_and_convex_hull_and_pourbaix_diagram 

We utilize the HalfspaceIntersection class from scipy to get the dual of points from each 

single phase from the convex hull. To use the HalfspaceIntersection, we need to prepare the 

coefficients in a form of Ax + B ≤ 0, where A and B are each a coefficients matrix, and x is variables 

matrix. Matrix below shows the corresponding matrix form in our study. Each single phase 

corresponds to one row of A and B coefficient matrix, formed by composition xi and formation 

energy G. Each row defines a hyperplane in the 𝜙𝜙 -μi space. This is why the Linearization 

assumption is necessary, because it ensures each single phase has stoichiometric composition to 

fulfill the input requirements of HalfspaceIntersection class.  

Therefore, each phase is a flat hyperplane in 𝜙𝜙-μ space. All these hyperplanes then form a 

half-space intersection – which produces a lower inner envelope, which produces whatever phase 

has the lowest free energy 𝜙𝜙 at a specific set of applied chemical potentials. 
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HalfspaceIntersection constructs a fully enclosed polytope, and so we also need border 

hyperplanes and an internal point to define the region to enclose by half-space intersection. Border 

https://github.com/dd-debug/chemical_potential_diagram_and_convex_hull_and_pourbaix_diagram
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hyperplanes are constructed based on the boundary limits of the chemical potential as we choose, 

which ensures that the half-space is enclosed. Then, the half-space intersection can be calculated. 

Next, using the intersection attribute from the HalfspaceIntersection class, we obtain the domain 

information of single-phase and phase-coexistence regions, and chemical potential diagrams are 

ready to plot.  

Equilibrium envelope 

The chemical potential diagrams generated in this study include scenarios of both 

equilibrium and non-equilibrium conditions. To the best of our knowledge, this is the first time 

that this complete chemical potential diagram is reported, which also shows the growth and 

dissolution chemical potential ranges of each phase. Existing chemical potential diagrams in the 

literature are exclusively confined to equilibrium conditions, constituting a specific subset of the 

complete chemical potential diagram, where 𝜙𝜙  = [G]internal – [Σiμixi]external = 0, signifying the 

equivalence of external applied chemical potential to the internal chemical potential at equilibrium. 

We called this equilibrium version of chemical potential diagram as the equilibrium envelope.  

Following the same procedure, we can also use halfspaceintersection Class to construct the 

equilibrium envelope, by removing 𝜙𝜙 variable and its coefficient, because 𝜙𝜙 = 0. This can be 

expressed as:  
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2.4 Equilibrium and non-equilibrium regions on a chemical potential diagram 

When analyzing the stability of a material under open boundary conditions, one should 

distinguish in the mind between the internal intensive variable of a substance, Yi, versus the external 

intensive variable of the reservoir Yexternal. If the Yinternal ≠ Yexternal, then the conjugate extensive quantity 

X will flow through the boundary until Yinternal = Yexternal, after which entropy will be maximized and 

equilibrium is reached. For example, if 50°C water is exposed to an external temperature reservoir of 

10°C, heat will flow out of water into the reservoir, and the entropy of water will be reduced 

correspondingly. Water has a continuous span of entropies in this temperature range, so it can change 

its internal extensive entropic state to equilibrate with an external intensive temperature reservoir. 

Likewise, for chemical work, to equilibrate the internal chemical potential of a material with 

the external chemical potential of the reservoir, mass can be transferred across the boundaries. At 

equilibrium, the externally applied chemical potential reservoir will be exactly equal to the internal 

chemical potential of a material; μmaterial = μreservoir, such that there is no driving force to transfer mass 

to or from the reservoir. For a non-equilibrium situation, if external chemical potentials are different 

than the internal chemical potentials of a material, mass will have a propensity to flux from high μ to 

low μ; where a material will grow if μreservoir > μmaterial, or it will dissolve or corrode if μreservoir < μmaterial. 

Because growth and dissolution are fundamental aspects of materials kinetics, chemical potential 

diagrams offer a direct link between non-equilibrium thermodynamics and kinetics of transport.  

The internal chemical potential of the material derives from the energies of its quantum-

chemical and electrostatic bonds—which determines its scalar formation energy. Figure 2.8a 

visualizes the formation energies of phases from the Mn-O system with its interpretation for 

equilibrium and non-equilibrium scenarios from the perspective of a convex hull. The corresponding 

chemical potentials can be interpreted from the intercept rule—where μMn or μO are the intercept of the 

tangent lines of the convex hull with the vertical energy axis at the elemental end-point compositions.  
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The equilibrium chemical potential window of the single phase Mn3O4 is bound between the 

cotangent lines of Mn2O3/Mn3O4 and Mn3O4/MnO, where these cotangent lines indicate the chemical 

potentials where Mn3O4 can coexist in equilibrium with Mn2O3 or Mn3O4. Figure 2.8b shows the 

corresponding chemical potential windows of each MnxOy phase, indicated by the vertical line 

segments at a given composition. Because phases on the convex hull are points, the Legendre 

transformation of these phases form the grand potential surfaces, whose half-space intersection is 

shown Figure 2.8d. The condition where the externally applied chemical potentials are equal to the 

internal chemical potential of a material can be written as:  

𝜙𝜙 = [G]internal – [Σiμixi]external = 0. 

Therefore, the conditions of equilibrium on a chemical potential diagram correspond to a slice 

of grand potential surfaces where 𝜙𝜙� = 0, accentuated by the darker lines on Figure 2.8 d. We call this 

the equilibrium envelope of the chemical potential diagram. All regions in chemical potential diagrams 

display the external chemical potential applied by the reservoir, but darker lines additionally represent 

the situation where internal chemical potential of each material on the convex hull is equal to the 

external chemical potential from the reservoir. The lines formed by the equilibrium envelope (𝜙𝜙 = 0) 

are consistent with the vertical segments formed by intercept rule as illustrated in Figure 2.8b. 
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Figure 2.8: Duality between convex hulls and chemical potential diagrams in the binary Mn-O system. (a) Tangent 
lines to the convex hull, and their intercepts with the energy axes, show the elemental chemical potential window for 
Mn3O4. (b) Chemical potential windows for μMn and μO various MnOx phases indicated by vertical segments. (c) Grand 
potential hyperplanes for the Mn-O chemical potential diagram. The equilibrium envelope is emphasized by a dark 
line at ϕ = 0 (d) Dissolution and growth regimes on the chemical potential diagram and (e) their dual relationship with 
the convex hull. (f) Ternary chemical potential diagram, with the growth and dissolution regimes for LiMn2O4 and 
LiMnO2 illustrated as extending in and out of the stability regions on the equilibrium envelope.   
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The equilibrium envelope further separates a chemical potential diagram into non-equilibrium 

regions of growth and dissolution. For example suppose Mn3O4 is placed in contact with an external 

chemical reservoir where the boundary conditions are (μMn, μO)external = (–2, –1), indicated by the red 

label A in Figure 2.8d. These chemical potentials are higher than the internal μMn and μO in Mn3O4, so 

Mn and O will flux from the external chemical reservoir onto Mn3O4, leading to crystal growth. On 

the convex hull in Figure 2.8e, the dual representation to this point on the chemical potential diagram 

corresponds to the line A* on the convex hull. Likewise, if Mn3O4 is exposed to low (μMn, μO)external = 

(–3, –3), shown as point B in Figure 2.8d and the line B* in Figure 2.8e, Mn and O will flux out of 

Mn3O4 into the reservoir, leading to dissolution of Mn3O4. The precise chemical or structural nature of 

the external chemical reservoirs are irrelevant, only their μMn and μO chemical potentials matters.  

The chemical potential diagram can also show conditions for solid-solid phase transformation 

from a metastable solid to an equilibrium phase. If a different MnOx phase, for example Mn2O3, were 

exposed to an external chemical potential such as point A or B, which is in the non-equilibrium region 

corresponding to Mn3O4, there would first be a thermodynamic driving force for phase transformation 

from Mn2O3 to Mn3O4, followed by subsequent growth or dissolution of Mn3O4. In the convex hull of 

Figure 2.8e, the phase transformation that originates from Mn3O4 has the largest energy drop from line 

A* compared to all other MnOx phases. Nucleation and diffusion kinetics aside, the bulk driving force 

preferences the transformation and further growth of Mn3O4. Additionally, because Mn3O4 has the 

shallowest energy drop to B*, any other MnOx composition exposed to this external chemical reservoir 

can first reduce its free energy by transforming to Mn3O4, and then dissolving mass out to the reservoir.  

Additionally, chemical potential diagrams can be employed to illustrate solid-state reactions. 

In Figure 2.8e, the green dashed line, denoted as C*, represents the reaction between MnO2 and MnO. 

By Point-Line duality, this corresponds to point C in the chemical potential diagram (Figure 2.8d), 

which is the intersect between the extension of the equilibrium envelope lines for MnO2 and MnO. The 

reaction driving force is the distance from point C to the Mn3O4 equilibrium envelope along the  
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μO: μMn = 1 direction. This reaction energy on the chemical potential diagram is equal to the distance 

between C* and Mn3O4 on the convex hull.  

Our geometric interpretation of the binary convex hull and chemical potential diagram can be 

readily extended to higher component systems. Figure 2.8f illustrates a ternary μLi-μMn-μO chemical 

potential diagram. The chemical potential diagram exists in 3 dimensions, since one can vary all three 

chemical potentials independently for non-equilibrium scenarios. However, the equilibrium envelope 

is still a 2-dimensional manifold, due to the special constraint that 𝜙𝜙� = [G]internal – [Σixiμi]external = 0. 

Nonetheless, one can see that the non-equilibrium regions similarly extend into and out of the 

equilibrium manifold, for example as highlighted for LiMn2O4 (yellow) and LiMnO2 (red). All other 

arguments of growth and dissolution can be applied to this ternary chemical potential diagram.  

2.5 Mixed Composition-Chemical Potential Diagrams 

There are many physical situations where a chemical system is open to some elements, but 

are closed in others. For example, in the stability of metal oxynitrides, oxygen and nitrogen can be 

volatile, whereas the metal(s) usually are not. In such cases, pure chemical potential diagrams or 

pure compositional phase diagrams may not be the most useful. Here we advocate for the 

construction of mixed composition and chemical potential phase diagrams, interpreting three 

representative case studies for oxynitride stability, lithium-ion cathode stability, and oxidation of 

multicomponent alloys.  

Although mixed composition-chemical potential diagrams can be interpreted from the 

geometry of the intercept rule, they are not straightforward to calculate, as they require using 

convex hulls in the composition axes, and then half-space intersections for the chemical potential 

axes. We present a method where equilibrium is calculated both with convex hulls and half-space 

intersections, then the coordinates of each phase are mixed-and-matched depending on if the 
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desired axis is composition or chemical potential. Details of this computational implementation 

are discussed in Chapter 2.5.4.  

 
Figure 2.9: a) Ternary xTa-xN-xO convex hull. Blue triangle represents tangent plane to the TaON vertex, whose 
intercepts with the energy axis provides the corresponding elemental chemical potentials. b) Mixed xTa-μO-μN phase 
diagram. c) The chemical potential of a diatomic gas like O2 or N2, as a function of temperature and partial pressure. 
Iso-μ lines are marked from -9 to 0.5 eV/atom. d) μO-μN projection of the mixed xTa-μO-μN diagram. e) Gas conditions 
for N2 and O2 where TaON is stable, marked with yellow star. f) Lines on the μO-μN projected diagram corresponding 
to gases at various partial pressures, where we fixed logPN2 = 5, and then show isolines corresponding to μO and μN at 
various logPO2 and temperature.  
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2.5.1 Synthesis of metal oxynitrides 

Oxynitrides are a class of mixed-anion materials with applications for semiconductors and 

optoelectronics, 32  water-reduction photocatalysts, 33  electrocatalytic nitrogen reduction, 34  hard 

coating, 35  energy storage, 36 , 37  etc. Introducing additional anions with different sizes, 

electronegativities, and charges can effectively modulate the physical properties of oxide-based 

compounds38,39. However, oxynitrides are difficult to synthesize, and if synthesized, do not always 

retain operational stability (for example during catalysis in harsh electrochemical environments). 

Here, we examine the boundary conditions and relevant phase diagram in evaluating the stability 

of tantalum oxynitride, TaON.  

It is not straightforward to experimentally control the oxygen and nitrogen composition in 

a reaction vessel, as oxygen and nitrogen are gases at standard state and at elevated temperatures. 

For this reason, it is not very convenient to examine oxynitride stability on phase diagrams with 

oxygen and nitrogen composition axes. If we are only concerned about the stability of the 

oxynitride, we can instead frame our thermodynamic system around just the oxynitride itself, with 

boundary conditions open to oxygen and nitrogen transfer, while closed in the non-volatile metal 

species. The corresponding phase diagram should therefore be a mixed xmetal-μO-μN diagram.  

In Figure 2.9a, we illustrate the geometric connection between an all-extensive xmetal-xO-

xN convex hull with its mixed xmetal-μO-μN phase diagram. For a target TaON phase, the blue triangle 

indicates the tangent plane to the TaON vertex. The intercept of this tangent plane with the energy 

axes at the pure elemental compositions corresponds to the elemental chemical potentials. Tilting 

this tangent plane about the TaON vertex maps out μO and μN chemical potentials where TaON is 

a stable equilibrium phase. This tangent plane tilting process is similar to retrieving the temperature 

and pressure of a phase on the Maxwell U-S-V surface, except that on the Maxwell surface the 
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slope of the tangent plane ∂U/∂X directly gives the intensive variable Y, whereas in affine 

composition axes (where x1 = 1 – x2 – x3), the conjugate intensive chemical potential variable is 

given by the intercept rule.  

The xTa-μO-μN phase diagram is shown in Figure 2.9b, where single-phase regions 

correspond to horizontal polygons with black borders parallel to the μO and μN axis. 2-phase 

coexistence regions are formed by the vertical rectangles connecting two single-phase polygons 

parallel to the xTa direction, The 3-phase coexistence regions are given by the vertical red lines that 

connect two 2-phase coexistence regions. The xTa axis shows how changing μO and μN can control 

the Ta molar fraction. However, this 3-dimensional diagram can also be projected onto just the μO-

μN axes, as in Figure 2.9d.   

The chemical potential of a gaseous phase is given by μgas = μ0 + RTln[Pgas] – TSgas, where 

μ0 is the standard state chemical potential, Pgas is the partial pressure, and Sgas is its entropy. N2(g) 

and O2(g) are the equilibrium elemental phases at standard state, so for both oxygen and nitrogen, 

μ0 = 0 at 298K and P = 1 atm. The dependence of μgas on temperature and partial pressure is 

schematized in Figure 2.9c, which provides an experimental reference guide that can be used 

together with the xmetal-μO-μN. The combination of Figures 2.9b, c, d provides theoretical utility 

similar to the Ellingham diagram, however the Ellingham diagram cannot examine materials 

stability with two independent volatile gaseous species, whereas the chemical potential diagram 

construction can.   

Although TaON is on the Ta-O-N convex hull, and is therefore a thermodynamically stable 

phase, its stability window is very narrow in the μO-μN diagram, meaning that the conditions to 

stabilize TaON may need to be very precise. In particular, μN should be much greater than μO for 

TaON to be stable. In Figure 2.9f, we place a yellow star in the TaON stability window at (μO, μN) 
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= (-4 eV, -0.9 eV). By referencing the diagram in Figure 2.9e, we can determine the O2 and N2 gas 

conditions that correspond to this TaON stability point.  

For an oxynitride exposed O2(g) and N2(g), the temperatures of the two gases will be the 

same—however, their relative partial pressures can be varied independently. On Figure 2.9e, we 

should search for a temperature (a vertical line) that intersects iso-μ lines of -0.9 eV for N2, and -

4 eV for O2. One such condition is at 1000K, with logPN2 = 5 and logPO2 = -10. In Figure 2.9f, 

we use a series of dotted lines to represent different temperatures and different logPO2, with each 

line having a fixed logPN2 = 5. For most conditions, these lines fall in Ta2O5 region, showing that 

TaON is unstable with respect to Ta2O5 under most conditions in air. However, for the line logPO2 

= -10, we can intersect the TaON region at 1000K.  

Although we conducted our stability analyses with respect to O2 and N2 gas, we can use 

other nitrogen or oxygen precursors to shift the μN and μO chemical potentials. For example, to 

overcome the triple bond in the N2 molecule, nitrides are usually much more readily synthesized 

with activated nitrogen precursors, such as ammonia where the half reaction μN  = μNH3 – 3/2 μH2  

yields μN = 0.4 eV at standard state; and plasma-cracked atomic nitrogen has been benchmarked 

to μN  = 1 eV/N.40,41 These chemical potentials are equivalent to N2(g) partial pressures of 1016 atm 

and 1040 atm, respectively. A low oxygen chemical potential can also be obtained by reducing 

agents, for example, reduction with carbon monoxide yields an equilibrium chemical potential of 

μO = μCO2 - μCO = –2.6 eV/atom at STP, equivalent to an O2(g) partial pressure of 10-104 atm 

(assuming the reaction is not kinetically-limited).  Similar analyses can be done to obtain the 

effective chemical potential of chemical species in various other states, including solvated aqueous 

ions, or atoms in other solids.  
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The xTa-μO-μN chemical potential diagram can also yield other insights that cannot be 

readily obtained from a compositional phase diagram. Figure 2.9d show that to reduce Ta2O5 to 

metallic Ta, μO needs to be below -4.6 eV, which are also conditions generally needed to synthesize 

pure tantalum nitrides. The phase boundary between the various tantalum nitrides TaNx and the 

Ta2O5 also indicates conditions for the stability of the pure tantalum nitrides in air. 

2.5.2 Stability of the Li-ion cathode material LiMn2O4 

LiMn2O4 is a candidate cathode material for rechargeable Li-ion batteries, in particular 

because Mn is not a critical element like cobalt-based battery electrodes.42,43 LiMn2O4 has a spinel 

crystal structure with diffusion channels that enable fast diffusion of Li+, even at relatively low 

concentration of Li+ . 44 , 45  However, during the synthesis and electrochemical operation of 

LiMn2O4, many competing ternary LixMnyOz phases can form, such as Li4Mn5O12 and LiMnO2, 

as well as the solid-solution phases that can form between these ternary phases and MnO2, Mn3O4. 

(Figure 2.10a,b). The complexity of the available phases and structural transformations, especially 

between layered rocksalt structures and the spinel structures, can result in undesired phases in the 

form of impurities during synthesis, as well as irreversible decomposition pathways during 

electrochemical cycling and operation.  

Under various synthesis or operation contexts, all 3 elements Li, Mn and O can be volatile 

in LiMn2O4. The oxygen chemical potential can be controlled by an oxidizing or reducing 

environment during synthesis, and likewise thermal decomposition by metal reduction and oxygen 

evolution also depends on μO46 During battery charging and discharging, Li is cycled in and out of 

LiMn2O4 through the electrolyte,22 where μLi = μLi,metalo – e𝜑𝜑,20 where 𝜑𝜑 is the electric potential, 

and μLi,metalo = 0 because μ is referenced to the chemical potential to elemental Li. Because the 

electrolyte is adjacent to LiMn2O4, the electrolyte can exchange Li, Mn or O with LiMn2O4. In 
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particular, one major issue hampering the widespread adoption of manganese-based cathodes is 

dissolution of the redox-active Mn ion in organic electrolytes, where Mn diffuses through the 

electrolyte to form an undesirable solid-electrolyte interface (SEI) at the anode, which erodes 

overall battery capacity.47  

Although all three elements can be exchanged through an open boundary condition, it can 

be confusing to analyze LiMn2O4 stability on a full μLi-μMn-μO chemical potential diagram, since it 

becomes difficult to isolate the work of the reservoir on the individual volatile species. It may be 

better to close the system to two components, and examine the role of the reservoir chemical 

potential on just the third component. From Figure 2.10a through Figure 2.10d, we illustrate how 

to interpret an xLi-xMn-μO diagram from the Li-Mn-O ternary convex hull. Each slice in Figure 

2.10a, b is an isopleth between oxygen and a fixed LixMn1-x ratio. The Li:Mn isopleth with a 1:2 

ratio (purple), corresponding to LiMn2O4, intersects both pure phases as well as 2-phase tie lines. 

By viewing the convex hull along this isoplethal slice in Figure 2.10c, we can use the intercept of 

tangent lines against the μO axis to illustrate the different phase transition and phase-coexistence 

regions. By repeating this process for all LixMn1-x ratios, we can construct the full xLi-xMn-μO 

diagram in Figure 2.10d. The right-side axis of Figure 2.10c shares the same color correspondence 

with the stability and coexistence regions in Figure 2.10d. 
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Figure 2.10: a) Ternary xLi-xMn-xO convex hull. Inset shows DFT calculated-phases with ordered compositions, where 
Li9Mn20O40 phase represents delithiated LixMnO2, the lithium-rich modification of LiMn2O4 is represented by 
Li11Mn13O32, and the Li9Mn14O32 phase represents a tie-line between MnO2-Li4Mn5O12. Isopleths between O2 to 
LixMn1-x are shown, with a purple highlight for a ratio of Li:Mn = 1:2. b) Ternary convex hull with energy axis, with 
isoplethal slices shown. c) Intercept rule construction of stability regions and phase coexistence along the μO axis. d) 
mixed xLi-xMn-μO phase diagram, e) mixed xMn-xO-μLi phase diagram, f) mixed xLi-xO-μMn phase diagram. For the phase 
coexistence in x1-x2-μ3 diagram, single phases are vertical lines, 2-phase coexistence regions are rectangles that 
connects two single phases, and 3-phase coexistence regions are horizontal red lines that connects the ends of three 
single phases. 
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From the xLi-xMn-μO in Figure 2.10d, we can examine reactions involving LiMn2O4 with 

O2 gas, for example during synthesis or thermal decomposition. The μO for O2 gas can be 

referenced to different temperatures and partial pressures using the earlier diagram from Figure 

2.10c. The μO stability window for LiMn2O4 is between [-1.5, -0.6] eV/atom; corresponding to 

temperature range around 600 – 900K, for PO2 ranges from [0.21, 1] atm, corresponding to ambient 

atmosphere. This stability condition is in line with the reported solid-state synthesis temperatures 

of LiMn2O4, which range from 700 – 1000K48,49, as well as the thermal decomposition temperature 

of LiMn2O4 at 1100K.50 Additionally, compared to layered structure electrodes, such as LiMnO2, 

higher μO is beneficial for the stability of LiMn2O4, which matches the experimental fact that the 

Mn3+/Mn4+ redox in LiMn2O4 requires a larger amount of oxygen redox to achieve high capacity, 

compared to Mn2+/Mn4+ in LiMnO251. 

To analyze lithiation process of LiMn2O4 for a given Mn:O ratio, we can utilize the xO-xMn-

μLi axis. As shown in Figure 2.10e, when we raise the voltage (thereby decreasing μLi) to charge 

LiMn2O4, it undergoes oxidation and transforms into MnO2. We note that on the equilibrium phase 

diagram, the MnO2 phase corresponds to the ground-state β (pyrolusite) phase, whereas for the 

real LiMn2O4 system, topotactic delithiation results in metastable λ-MnO2, which maintains the 

spinel framework. On the other hand, reducing the electrostatic potential (increasing μLi) can result 

in phase separation to Li2MnO3 + Mn3O4. The μLi window between -3.7 and -2.8 eV/atom 

corresponds to the phase transitions between MnO2 and LiMn2O4, as well as the transition from 

LiMn2O4 to LiMnO2.  

For electrolyte stability, Mn dissolution from LiMn2O4 will occur if the μMn is lower in the 

electrolyte than the lower-limit μMn stability window in LiMn2O4. For example, dissolution of Mn 

occurs if the applied μMn in the electrolyte is below -4.1 eV, which as shown in Figure 2.10f, can 
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induce multiple phase transformations to Li4Mn5O12, Li9Mn20O40, Li9Mn14O32. To design an 

organic electrolyte that is resistant to Mn-dissolution, one needs to identify an organic electrolyte 

where the Mn-ion solvation energy overlaps the stability window of LiMn2O4 in the μMn axis. To 

perform this analysis, one can construct the corresponding chemical potential diagram of the 

electrolyte from a convex hull using the same tangent line principles discussed here. 

2.5.3 Oxidation of compositionally-complex alloys 

Compositionally-complex alloys (CCAs) have near equimolar concentrations of multiple 

metal species, and in special cases form single-phase solid-solution high-entropy alloys (HEAs) 

and medium-entropy alloys (MEAs), which may have valuable properties for high-temperature 

materials for spacecraft and satellites, 52  corrosion-resistance for seawater treatment 

equipment, 53 , 54  superior electron transport for electronic device, etc. 55 , 56 , 57  However, 

discontinuous oxide granules or oxide layers can form when these alloys are exposed to O2 

atmospheres and high temperature. Although experimental measurements of the surface oxide 

phases formed in HEAs and MEAs are becoming more numerous,58,59 thermodynamic modeling 

remains sparse. 60 This may be due to the complexity of the possible binary, ternary, and quaternary 

oxides that compete to form during HEA/MEA oxidation.  

To analyze the oxidation behaviors of multi-component alloys, we take CrCoNiOx as a 

representative example. The chemical potential of oxygen in an HEAs depends on many factors, 

such as penetration depth of oxygen as it diffuses in, as well as the μO applied by the temperature 

and partial pressure of O2 gas at the surface. The appropriate boundary conditions for this system 

are closed in the metal species, but with open exchange of volatile oxygen species. The relevant 

phase diagram is therefore closed with metal composition axes xCr-xCo-xNi, and open with a μO axis. 
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For the sake of visualization, we examine a here 3-metal MEA, however, the underlying geometric 

arguments and analyses are readily extendable to higher-component alloys.   

Typically, phase diagrams for 4-component systems are viewed in barycentric coordinates 

using a 3D Gibbs tetrahedron to represent the quaternary convex hull, with 4 composition variables 

but no energy axis (Figure 2.11a). The energy axis can be recovered by constructing pseudo-

ternary convex hulls by taking compounds as terminal points of the convex hull, and plotting the 

formation energy of phases relative to the terminal compounds, as illustrated in Figure 2.11b.  

Each phase in the quaternary convex hull is a vertex, which we assign a color corresponding 

to the metal composition. We assign red, green, and blue to Co, Cr, and Ni, respectively. The color 

of binary through quaternary phases are then determined by their barycentric Co:Cr:Ni molar ratio. 

We use color saturation to correspond to the lowest critical oxygen chemical potential in which the 

phase is thermodynamically preferred to form, where white indicates pure O2 gas.   

Figure 2.11c, d shows two xCr-xCo-xNi-μO phase diagrams at high and low μO ranges—split 

up to more clearly visualize the phase coexistence regions. By comparing the critical oxygen 

chemical potentials, we can extract the tendency of various metal constituents to oxidize; for 

example, Cr will oxidize at μO = -4 eV to form a protective Cr2O3 scale, which is before Ni and Co 

which both oxidize around μO = -2.5 eV. Experimentally, the oxidation of equimolar CrCoNi is 

shown to form only a Cr2O3 layer55,56,58, as anticipated by these diagrams. Additionally, a mixed 

spinel (Co,Ni)Cr2O4 is experimentally observed55,56,58,61, which in our phase diagram on Figure 

2.11c may correspond to a solid-solution that would form along the tie line between CoNi2O4 and 

CrNiO4.  
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Figure 2.11: a) Quaternary xCo-xCr-xNi-xO convex hull. Each single phase is assigned a color based on metal 
composition of Cr:Co:Ni ratio, and a transparency based on the lowest critical μO for a given phase. Two triangular 
ternary isopleths are shown in gray colorscale, connecting CoO2-CrNiO4-CrO2, and Cr2O3-NiO-CoO. b) Psuedo-
ternary convex hulls with a recovered formation energy axis, with energies referenced to the terminal compound 
phases. c). Mixed xCr-xCo-xNi-μO phase diagram, where c) μO in [-2.0, 0.0] eV/atom, and d) μO in [-4.5, -2.0] eV/atom. 

In Figure 2.11c, d, each single phase is a vertical line, a 2-phase coexistence region is 

vertical rectangle plane bounded by two single phase lines, a 3-phase coexistence region is a 

triangular prism formed by three single phase lines, and finally a 4-phase coexistence region is a 

horizontal triangle connected by two 3-phase coexistence triangular prisms. Although 2-phase 

coexistence regions and 4-phase coexistence regions are both 2-D manifolds, they have different 

physical interpretations because there is no degree of freedom for changing μO in 4-phase 
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coexistence, leading to a horizontal 2D region, whereas we can change μO in 2-phase coexistence, 

leading to a vertical 2D region. 

2.5.4 Computation of mixed composition/chemical potential diagrams 

We now describe the computational construction of mixed composition and chemical 

potential diagrams. The implementation Python codes and tutorial examples are in Github link: 

https://github.com/dd-debug/chemical_potential_diagram_and_convex_hull_and_pourbaix_diagram 

Our approach here involves the extraction of extensive variables xi information from the convex 

hull, followed by the acquisition of intensive variables μi from chemical potential diagrams. Note 

that all the compositional data of both single-phase and phase coexistence regions are embedded 

in the Pymatgen convex hull phase diagram analysis package. Furthermore, the computation of 

chemical potential information can be achieved through our half-space intersection (Chapter 2.3.4) 

method.  

Our discussion focuses on the equilibrium states of materials, with chemical potential 

information derived from the equilibrium envelope (outlined in Chapter 2.3.4.3) from the 

chemical potential diagram. Using a ternary system as an example, in compositional space (x1-x2-

x3), each single phase is represented as a point, a 2-phase coexistence is symbolized by a tie line 

connecting the two single phases, and a 3-phase coexistence is a triangular region defined by three 

single phases as terminal points. In contrast, when considering a ternary system in chemical 

potential space (μ1-μ2-μ3), each single phase is characterized as a 2D polygon, and a 2-phase 

coexistence region is a linear segment shared by two single phases. In this scenario, a 3-phase 

coexistence region simplifies to a point, as no degree of freedom exists for chemical potential 

https://github.com/dd-debug/chemical_potential_diagram_and_convex_hull_and_pourbaix_diagram
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alterations at such a juncture. This point corresponds to the intercepts of a tangent plane over a 3-

phase coexistence triangle on the convex hull. 

2.5.4.1 μ1-μ2-x3 phase diagram (xTa-μO- μN) 

Within the μ1-μ2-x3 phase diagram, the dimensionality of a single phase depends on the 

projection of the equilibrium envelope onto the μ1 and μ2 axes. Each material is inherently 

represented as a 2-D polygon within the μ1-μ2-μ3 space, which implies that its projection onto any 

two μ1 and μ2 axes generally results in 2-D polygons. However, when we project a 2-D polygon 

from the 3-D (μ1-μ2-μ3) space onto a 2-D (μ1-μ2) plane, the information related to μ3 is disregarded. 

The dimensionality of this projection hinges on the orientation of the plane in the 3-D space. For 

instance, as illustrated in Figure 2.9c, if we had phases without Ta, they would be lines when 

projected to μO and μN (here we manually remove all NxOy gas phases); whilst phases with Ta are 

2-D polygons. Further discussion regarding this projection methodology is in Chapter 3.62 

A 2-phase region is a 1D line in both a ternary convex hull and ternary chemical potential 

diagram, so it is 2D rectangle in μ1-μ2-x3 diagram that has one principal axis in the μ1-μ2 plane, and 

one principal axis in the x3 direction. A 3-phase coexistence has a fixed chemical potential μ1, so 

it is a vertical line parallel to the x3 direction. To identify 2-phase or 3-phase regions, we 

systematically examine every combination of two / three single phases to see if they shared a 

common line / vertex. Finally, 2-phase regions are plotted as vertical plane, and 3-phase regions 

are plotted as vertical red lines, as shown in Figure 2.9b.  

2.5.4.2 μ1-x2x3 phase diagram (μLi-xMnxO) 

Because of the affine constraint, the molar ratio between Element 2 and Element 3 can be 

represented with a single variable, which we refer to as x2x3. This means that a μ1-x2x3 phase 

diagram is in fact a 2D phase diagram. A single phase on the equilibrium envelope of a μ1-μ2-μ3 
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diagram is given by a 2-D polygon, meaning it has a single value of x2x3; and a linear μ1 range for 

the single phase, defined by calculating its maximum and minimum values along the μ1 axis. As a 

result, a single phase is depicted as a 1-D line parallel to the μ1 axis, in Figure 2.10d, e, f. 

A 2-phase region appears as a line in both the ternary convex hull and the three-component 

equilibrium envelope. This implies that a 2-phase region in μ1-x2x3 diagram is a 2D rectangle. 

During the calculation of the equilibrium envelope, the HalfspaceIntersection class returns facets 

in the form of interconnected triangles, collectively forming two-dimensional polygons 

corresponding to individual phases. Co-planar triangles may need to be merged in order to produce 

non-simplicial polygons. The identification of the boundary lines for each phase can be achieved 

by counting the number of appearances for each boundary line.  Specifically, the true boundary 

lines associated with a single phase occur only once, whereas interior edges formed from two co-

planar triangles are counted twice, since they share two adjacent triangles.  

To find the μ1 range of 2-phase regions, we systematically examine every combination of 

two single phases to see if they share common boundary lines. If they do, it represents the two 

phases can coexist. This process yields the μ1 span for each 2-phase coexistence region, which can 

be combined with the calculation of the two-phase coexistence regions for x2x3 from a convex hull 

to generate a 2D rectangle. 

Since a 3-phase region is characterized by a single point, with fixed chemical potential 

values, its dimensionality depends on the projection of a 3-phase triangle from convex hull to x2x3 

space, resulting in a 1D line that is parallel to the x2x3 axis. Similar to the approach used for 2-

phase regions within equilibrium envelope, we systematically examine every combination of three 

single phases to see if they shared a common vertex. If they do, it signifies a 3-phase coexistence 
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region. By finding its μ1 value and calculating the molar ratio x2x3 range of the three coexisting 

phases, a horizontal 3-phase line could be constructed, as horizontal red line in Figure 2.10d, e, f. 

2.5.4.3 μ1-x2-x3-x4 phase diagram (μO-xNi-xCr-xCo) 

Quaternary systems follow a similar pattern as ternary systems. In convex hulls, a 4-phase 

coexistence region is a 3D tetrahedron. Unlike the convex hull, the equilibrium envelope does not 

use barycentric coordinates, necessitating a discussion on the visualization of higher dimensional 

polytopes. Intuitively, the μ1-x2-x3-x4 diagram can be envisioned as a compilation of various ternary 

Gibbs compositional triangles x2-x3-x4 at different μ values. In the μ-axis, single phase regions are 

vertical lines since they have fixed composition and linear range on μ1 axis. By determining the 

maximum and minimum values of μ1 for each phase, we can visualize single phases. All the single, 

2-phase, and 3-phase coexistence regions within a ternary composition phase diagram are 

preserved. The interesting coexistence phenomena in a μ1-x2-x3-x4 then arise at the boundaries 

between ternary phase diagram slices, as discussed below.  

For a 2-phase region, the chemical potential can change along μ1. So, a 2-phase region can 

be a vertical rectangle connecting two single phase vertical lines (here vertical refers to parallel to 

the μ axis). 2-phase coexistence can also represent the crossover point between two pure phases in 

the vertical axis, for example, the point between Co and CoO.  

Given that the exhaustive combination of every two single phases in a 4-component system 

can be computationally demanding, we adopt an efficient approach. Initially, we identify the 

distinct μ1 ranges shared by different sets of entries. Subsequently, we extend the compound phase 

diagram along the μ1 direction, generating triangular prisms for each specific μ1 range. Finally, 

these triangular prisms are interconnected to form a comprehensive representation. This method 
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leverages the GrandPotentialPhaseDiagram class from pymatgen to construct the compound 

phase diagram. 

In the case of a 3-phase region, besides one degree of freedom offered by chemical 

potentials, the 3-phase triangle within the convex hull can be transformed into a x2x3x4 Gibbs 

triangle. In this scenario, the overall dimensionality is 3-D. To be more specific, the 3-phase region 

takes the form of a triangular prism, with the Gibbs triangle extending along the μ1 direction. A 4-

phase region assumes the shape of a Gibbs x2x3x4 triangle. This is because the chemical potentials 

are fixed (resulting in 0-D), while the composition is allowed to vary within the x2x3x4 triangle.  

 

2.5.5 Dimensionality of Coexistence Regions in Mixed Diagrams 

The essential geometric object corresponding to phase coexistence is the simplicial 

polytope, which is an N-dimensional analogue of a triangle. The counting relations between the 

vertices, edges, and facets of a simplicial polytope are given by the Dehn-Somerville relations, 

which takes a similar form to Pascal’s triangle. For example, a 4-phase coexistence tetrahedron is 

a 3-dimensional simplex, which has 4C1 = 4 vertices (single phases), 4C2 = 6 edges (2-phase 

coexistence), 4C3 = 4 triangles (3-phase) and 4C4 = 1 tetrahedron (4-phase). Even when one 

performs a Legendre transformation, the fundamental underlying geometric structure of the U(S,X) 

simplex, as well as its coexistence regions, are preserved.  
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Figure 2.12: A 3D simplicial polytope (a tetrahedron) with extensive natural variables is smushed via a Legendre 
transformation to a fixed intensive variable of μ4

*. All simplicial facets from the tetrahedron, and thereby its phase 
coexistence information, remains preserved following the Legendre transformation.  

On a four-phase coexistence tetrahedron, all vertices share the same chemical potentials μ1 

through μ4. On composition axes, the coordinates for each vertex can be written as (x1, x2, x3, x4), 

where 1, 2, 3, 4 correspond to different elements, and x4 = 1 – x1 – x2 – x3 by the affine constraint. 

Upon a Legendre transformation from x4 to μ4, the x4 coordinates all change to the same μ4, which 

effectively smushes all the vertices, edges and facets from the tetrahedron onto a single μ4* value, 

as illustrated in Figure 2.12. Each xi coordinate then changes to xi′ by the new affine constraint, x3′ 

= 1 – x1′ – x2′.  

Importantly, all the 2-phase edges, 3-phase triangles, and the 4-phase tetrahedron are 

preserved after the Legendre transformation. The Legendre transformation does not generate any 

new phase coexistence information, nor does it lose any information. It simply provides a different 

perspective, but for the same equilibrium of heterogeneous substances. On mixed phase diagrams 

the phase coexistence regions no longer appear like simplicial polytopes, but are in fact down-

projections of the high-dimensional simplices from the U(S,Xi) space where they originated. These 

the geometric considerations of phase coexistence are the same with any other intensive variable 

as well, for example on a traditional ternary composition phase diagram (x1, x2, x3, T), or replacing 

μ4 with pressure, magnetic field, area-to-volume ratio, etc.  
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2.5.5.1 A generalized phase rule for mixed μ-x diagrams 

Here we detail a generalized phase rule for the dimensionality of phase coexistence regions 

in mixed μ-x phase diagrams. In a system with N components, these regions possess N – C 

dimensions in chemical potential space and C – 1 dimensions in convex hull space, based on Point-

line duality. When all elements of the C-phase span all composition axis, the dimensionality 

remains N – C, if the number of μ-axes (Nμ) used for visualization is more than N – C. For instance, 

a 2-phase region in a quaternary system within μ1-μ2-μ3 space is 2-D. However, if Nμ is smaller 

than N – C, the dimensionality of the C-phase coexistence regions is reduced to Nμ. 

 

Similarly, if the number of composition axis we want to visualize (Nx) is smaller than the 

dimension number of C-phase coexistence region (C – 1), for the visualization of composition axis, 

the C-phases coexistence polytope dimensions are Nx. 

 

Finally, we add the dimensions for μ and composition together. 

 

For example, for 1-phase region for quaternary system in μ1-μ2-x3x4 phase diagram, for μ, 

dimension to be visualized is min (4–1, 2) D, which is 2D; for compositions, dimension to be 

visualized is min (2–1, 2–1), which is 1D. Therefore, the total dimension is 3D. We also offer other 

quaternary system dimensionality of phase coexistence regions in Table 2.3. 

N: elements number  
Nμ: the number of μ axis to be visualized 
N – C: dimensionality of a C-phase coexistence region in μ space. 

For μ, dimensionality of a C-phase coexistence region to be visualized is: min (N-C, Nμ) 

Nx: the number of x axis to be visualized 
C-1: dimension of a C-phases coexistence region in compositions space 
For x, dimensionality of a C-phase coexistence region to be visualized is: min (C-1, Nx-1) 

Finally, the dimensionality of a C-phase coexistence polytope for a N-component system 
in a μ∙Nμ-x∙Nx diagram is: min (N–C, Nμ) + min (C–1, Nx–1) 
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Table 2.3: Table of dimensionality of phase coexistence regions in quaternary μ-x phase diagrams. 

 1-phase 2-phase 3-phase 4-phase 

μ1-μ2-μ3-μ4 3-D polytope 2-D plane 1-D line 0-D point 

x1-x2-x3-x4 0-D point 1-D line 2-D triangle 3-D tetrahedron 

μ1-x2x3x4 1-D line 2-D vertical rectangle 3-D triangular prism 2-D triangle 

μ1-μ2-μ3-x4 2-D polygons for phases w/o 
x4; Others: 3-D polytopes 

2-D rectangle for  
2-phase w/o x4; 

3-D prism for others; 

1-D line for 3-phase w/o 
x4; 2-D rectangle for others 1-D line 

μ1-μ2-x3x4 1-D lines for phases w/o x3 & 
x4; Others: 2-D polygons 

If x4 is covered in 
2-phase: 3-D 

polytope 

If x4 is covered in 3-phase: 
2-D polygon 1-D line 

 

2.6 Outlook 

Duality gives two different points of view of looking at the same object. As summarized in 

the table below, there is a duality in thermodynamics between open and closed systems; which 

corresponds to a duality between the Internal Energy potential and its Legendre transformation; 

which corresponds to a duality in computation between a convex hull and its half-space 

intersection. Our implementation of these duality concepts for chemical work are geometrically 

identical to the duality relationships between the Maxwell U(S,V) surface and the G(T,P) free 

energy surfaces which we are commonly familiar with today. Our primary contribution here was 

to extend these concepts from the G(T,P,x) space to the grand potential ϕ(T,P,μ) space. The 

dualities in macroscopic boundary conditions for classical thermodynamics can further be linked 

to dualities at the atomistic scale, in the statistical mechanics description between an NVT 

canonical ensemble and the μVT grand canonical ensemble.   

Table 2.4: Table of duality in thermodynamics. 

Duality in Thermodynamics 

Thermodynamic  
System 

Closed equilibrium mixture  
of heterogeneous substances 

Subsystem of single material  
open to an external reservoir 
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Thermodynamic  
Potential 

Internal Energy U(Xi) with  
extensive natural variables 

Legendre transformation to Φ(Yi) 
with natural intensive variable 

Computational 
Thermodynamics Convex hull of vertices Half-space intersection of 

hyperplanes 
 

Our motivation for this work was to address the underutilization of chemical potential diagrams 

in the existing materials thermodynamics literature. Although computational tools for chemical 

potential diagrams have existed for over two decades, we believe that the bottleneck to their widespread 

proliferation is not their computation, but rather, is the physical understanding and interpretation of 

these diagrams. In particular, chemical potential diagrams offer a unique connection to the kinetics of 

diffusion, nucleation and growth, which has broad and obvious value in materials science and 

engineering. Therefore, the essential intellectual task in deploying chemical potential diagrams (or any 

phase diagram for that matter) is connecting a physical scenario to its boundary conditions and 

corresponding thermodynamic potential, and then from the available thermochemical data to the 

computation of a final phase diagram.  

In framing open boundary conditions to analyze the stability of a material-of-interest with 

respect to an open reservoir, the next question becomes, how can one control the relative stability of a 

target material, when there may be numerous forms of available work? In Chapter 3, we derive a 

generalized Clausius-Clapeyron relation to examine the gradients of phase boundaries on high-

dimensional phase diagrams, providing a pathway to control the relative stability of specific phases. 
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Chapter 3 Generalized Clausius Clapeyron Equations and Pourbaix Diagrams 

3.1 Represent relative stability at phase boundary 

A primary goal in materials thermodynamics is to construct phase diagrams with accurate 

and precise phase boundaries for all known phases in a chemical system. However, the 

‘thermodynamic assessments’ required to construct accurate phase diagrams1,2,3,4 can be very 

time-consuming. This process involves compiling all calorimetric and DFT-computed 

thermochemical data, constructing free-energy models for the solids, solid-solutions and liquid 

phases, then critically evaluating the resulting phase diagrams against experimentally-observed 

phase boundaries, while adhering to Gibbs Phase Rule and other thermodynamic considerations 

of phase coexistence.5 Because thermodynamic assessments can be such a laborious process, 

phase diagrams do not exist in many materials engineering contexts, despite their obvious 

importance and utility.  

It would be valuable to develop a simpler and more agile framework to explore the stability 

conditions of materials. We propose that in many materials engineering situations, it may not 

actually be necessary to map out the full phase diagram. Instead, it may be enough to just 

characterize the stability of a desired target phase relative to its competing phases. For example, 

perhaps we aim to synthesize a target phase α, but experimentally we observe that α transforms to 

an undesired β phase, or that formation of α is blocked by the undesired nucleation of γ, etc. The 

salient question then becomes: How do we modify our experimental conditions to promote the 

stability of α, while destabilizing all other competing phases? In other words, how do I engineer 
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the relative stability between a desired target phase versus an experimentally-obtained undesired 

phase?  

High-dimensional phase diagrams become increasingly difficult to navigate when there are 

multiple operative forms of thermodynamic work being considered. To engineer stability in multi-

parameter thermodynamic space, materials scientists have often turned to statistical approaches, 

such as Design of Experiments (DoE), Bayesian optimization with Gaussian processes, or other 

recent AI approaches in sequential learning.6,7,8,9,10,11 These sequential learning algorithms are 

usually physics-agnostic, however, their efficiency and efficacy can be greatly improved by 

augmenting them with stronger thermodynamic priors on how to engineer relative stability.12  

When considering relative stability, the most important feature of a thermodynamic phase 

diagram is the gradient of the phase boundary between the target phase and its competing phase(s). 

This is formulated in the Clausius-Clapeyron relation, which on a 2D temperature-pressure 

diagram is derived from dGα = dGβ; such that–SαdT +VαdP = –SβdT + VβdP; resulting in dP/dT = 

ΔS /ΔV. As shown in Figure 3.1, isothermally pressurizing a fluid usually enhances the relative 

stability of the solid—as dP/dT > 0, and ΔSSL > 0 while usually ΔVSL > 0. However, 

isothermally pressurizing H2O preferences the stability of water over ice, as ΔVIW < 0, as water 

is denser than ice.  

Figure 3.1: The gradient of a phase 
boundary determines the relative 
stability between two or more phases 
under changing thermodynamic 
conditions. Left shows an example 
where the solid is denser than liquid; 
whereas Right shows then liquid is 
denser than solid (like H2O). 
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 Beyond temperature and pressure considerations, a generalized Clausius-Clapeyron 

relation can be derived from a thermodynamic potential dZ = –X1dY1 – X2dY2, where Y1 and Y2 are 

intensive thermodynamic variables, which yields the equation dY1/dY2 = – ΔX2/ΔX1. Generalized 

Clausius-Clapeyron relations have been used to determine dT/dH for magnetic materials,13 dF/dT 

for shape-memory alloys, 14  and even d(pH)/dσ for martensitic actuators in viruses. 15  The 

derivative form of the Clausius-Clapeyron equation also serves as a starting point to more 

complicated thermodynamic relations—for example by combining with Maxwell’s relations or 

Bridgman’s relations16 to derive new thermodynamic partial derivatives for a variety of materials 

engineering applications.  

 Unfortunately, the derivative form of the Clausius-Clapeyron equation dY1/dY2 is not 

readily generalizable to higher-dimensional phase diagrams, as the phase-coexistence regions 

become higher-dimensional than a 1D line. For example, on a 4-dimensional phase diagram, one 

can have phase boundaries that are 0-, 1-, 2-, or 3-dimensional; corresponding to 5-, 4-, 3-, or 2-

phase coexistence, respectively. For higher dimensional phase boundaries, it is not meaningful to 

write derivative-like expressions for gradients between three or more variables (such as 

dT/dP/dH/…/etc.); nor is it straightforward to arrive at such a ratio starting from dGα = dGβ = dGγ 

= … etc.  

Here, we derive a vector representation of the Clausius-Clapeyron relation, which is readily 

generalizable to high-dimensional phase boundaries. We develop two representations of this 

relation: 1) a parametric representation for “bottom-up” construction of high-dimensional phase 

boundaries, where the phase boundaries are constructed from known or measured extensive 

variables of the competing phases; and 2) a Cartesian representation for “top-down” half-space 

intersections of high-dimensional free energy surfaces. Note that Clausius-Clapeyron analyses 
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only work on phase diagrams with all-intensive variables, which can be generally derived using 

the duality approach discussed in Part II of this three-part series. Because we are concerned with 

only the stability of a single target phase, phase diagrams with intensive natural variables are ideal 

to engineer relative stability while avoiding the complexities of heterogeneous equilibrium.  

First, we demonstrate the bottom-up approach to the high-dimensional Clausius-Clapeyron 

relation by calculating the 2D phase boundary on a 3D temperature-pressure-magnetic field (T-P-

H) phase diagram between BCC and FCC iron, using their known entropies, molar volumes, and 

magnetic moments. A major advantage of the Clausius-Clapeyron equation is that it does not 

require free energies, it only needs the extensive quantities of the two phases, which can often be 

easier to obtain than the temperature- and pressure-dependent Gibbs free energies of each phase. 

By knowing the high-dimensional gradient of the phase boundary, along with a single multi-phase 

coexistence point, the entire phase boundary can be constructed parametrically.   

Next, we demonstrate the ‘top-down’ approach by calculating, visualizing, and interpreting 

a full 4D phase diagram. Specifically, we build a 4D Pourbaix diagram to examine the acid stability 

of manganese oxides, which have applications as earth-abundant oxygen evolution catalysts.17,18 

We extend the traditional pH and E axes in two additional dimensions to further account for 

nanoparticle size (1/R) and impurity ion concentration (μK+). We focus our discussion on how to 

leverage the generalized Clausius-Clapeyron relation to navigate non-intuitive aspects of high-

dimensional phase diagrams, from which we can derive meaningful insights to engineer relative 

materials stability. 

3.2 Vector representation of the Clausius-Clapeyron Relation 

We begin by rederiving the classic 2D Clausius-Clapeyron relation from a vector 

representation. On a T-P phase diagram, the Gibbs free-energy surface of a phase is G = H’ + PV 
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– TS; where H′ is the standard-state formation enthalpy of a phase, and P′ = P – 1 atm (since P = 

1 atm at standard state). This can be rewritten in Cartesian form such that ax + by + cz – d = 0 has 

a 1-to-1 mapping to the expression ST – VP′ + G – H′ = 0. In our goal of calculating gradients, we 

treat S and V as constant at a given T and P, which linearizes the free-energy plane in the vicinity 

of a given phase coexistence point. 

On the T–P–G axes, the normal vector of the free-energy plane can be expressed as 

, ,1−i iS V where i represents the phase.  Figure 3.2 illustrates an example of the ice/water phase 

boundary at 273K and 2.16 MPa, with a table showing their corresponding entropies and molar 

volumes.19 Between two phases, α and β, the normal vectors of their free-energy planes are nα and 

nβ, and their cross product nα × nβ produces the differential vector for the phase coexistence line in 

T–P–G space:  

1 , ,
1

α α β α β α α β α β

β β

− = − − −
−

T P G
S V V V S S V S S V
S V

 

where , , and T P G are unit vectors in the temperature, pressure and Gibbs free energy direction 

with their appropriate corresponding units. The parametric form of the 1D phase-coexistence line, 

L, in G(T,P) space can therefore be expressed as:  

0 0 0, , , , α β α β λ= + ∆ ∆ −CoexistenceL T P G V S V S S V  

where λ is the parameter, 0 0 0, ,T P G  is an initial condition point. This form also produces an 

expression for dG = VαSβ – SαVβ along the coexistence line, which does not appear in the traditional 

Clausius-Clapeyron relation.  

By projecting this vector onto the T–P axes (in other words, eliminating the G term) and 

expressing this coexistence line in a parametric differential form, we recover the classical 
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Clausius-Clapeyron relation, dT/dP = ΔV/ΔS, rewritten in differential vector form as 

,
, ,

T P
dT dP V S dλ= ∆ ∆  where λ is the parameter. Importantly, to preserve the units of the T, P and 

G axes, λ must have units of [Temperature / Volume], which ensures for example that dT and λΔV 

both have units of temperature. More generally, the parameter λ has units of [Energy / ([X1][X2])], 

where [X1] and [X2] are the units of the conjugate extensive variables X1 and X2.  

 

 
Figure 3.2: Vector representation of Clausius-
Clapeyron relation for the ice-water coexistence 
boundary. The coexistence vector is given by the 
cross product of the normal vectors to each free-
energy plane in G(T,P) space.  
Table 3.1: Molar entropies and volumes between 
water and ice at a given T0, P0 condition. 

 

To construct a phase diagram, one generally requires the free-energies of all phases in a 

chemical system. However, obtaining free-energies may not always be possible or convenient. In 

a ‘bottom-up’ approach to the Clausius-Clapeyron relation, one can parametrically construct the 

entire phase boundary with just the extensive variables for all competing phases, plus one point of 

coexistence to anchor the phase boundary. The gradient of a phase boundary can be linearized by 

assuming the extensive variables are constant—this will apply for small perturbations in intensive 

conditions, but for curved phase boundaries one should recalculate the ΔX at other coexistence 

points.  

 T0 P0 

Condition 273 K 2.16 MPa 

 S (J/mol/K) V (cm3/mol) 

Water -2.558 17.19 

Ice -23.55 19.39 

ΔXWater-Ice 20.99 -2.2 
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3.2.1 3D phase diagram of temperature-pressure-magnetic field  

On a high-dimensional phase diagram with all intensive axes, phase boundaries can be up 

to k-dimensional for any integer k < d, where d is the dimensionality of the phase diagram. This  

k-dimensional phase boundary represents phase coexistence between (d – k) phases, and can be 

spanned by a linear combination of k one-dimensional Clausius-Clapeyron vectors, built from any 

two intensive variables. Here we offer an example of Vector representation of Clausius-Clapeyron 

relationships. 

Consider the allotropic phase transformation between BCC and FCC iron. In addition to 

the temperature and pressure driven phases transformations between these two phases, BCC iron 

also has a higher magnetic moment than FCC Fe (2.2 μB vs 1.5 μB), so their phase boundary should 

also vary with the applied magnetic field. The thermodynamic potential for a single-component 

material with temperature, pressure, and magnetic field as natural variables is dZ = –SdT + VdP – 

MdH. This is a 4-dimensional free-energy space (1 energy axis and 3 work axes). By Generalized 

Gibbs’ Phase Rule20, F = W – P + 1. With 3 thermodynamic axes (W = 3) and two-phase 

coexistence (P = 2), the phase boundary between BCC and FCC iron has 2 intensive degrees-of-

freedom (F = 2), meaning it is a 2-dimensional surface on the 3D T-P-H phase diagram. 
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Figure 3.3: Clausius-Clapeyron relation on 3D phase diagram of temperature-pressure-magnetic field, showing a 2D 
phase boundary between ferromagnetic α-Fe (BCC) and paramagnetic γ-Fe (FCC). The gradient of this 2D phase 
boundary is constructed parametrically, taken from the linear combination of 2D Clausius-Clapeyron relations 
between H-T, T-P, or H-P axes. Blue is α-Fe (BCC) and red is γ-Fe (FCC).  

Table 3.2: Molar entropies, volumes, and magnetic moments between BCC and FCC iron at a given T0, P0, H0 
condition.21,22 

 T0 P0 H0 
Condition 1183 K 1 atm 0.45 μT 
 S (J/mol/K) V (cm3/mol) M (μB) 
α-Fe (BCC) 27.28 7.37 2.2  
γ-Fe (FCC) 27.97 7.30 1.5 
ΔXFCC-BCC 0.69 -0.07 -0.7 

 

Figure 3.3 illustrates the 2D phase boundary between FCC and BCC iron on the 3D T-P-

H phase diagram. There are three possible 1D vectors for the 2D Clausius-Clapeyron relation:  

0 , ,
, , , ,

=
= ∆ ∆ −

dH T P H
dT dP dZ V S V S S V dα β α β λ  

0 , ,
, , , ,

=
= −∆ ∆ −

dP T P H
dT dH dZ M S S M M S dα β α β µ  

0 , ,
, , , ,

=
= −∆ −∆ −

dT T P H
dP dH dZ M V M V M V dα β β α ν  
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Where the units of the parameters are λ ≡ [Temperature / Volume], μ ≡ [Temperature / 

Magnetic Moment], and ν ≡ [Energy / Volume / Magnetic Moment]. The 2-dimensional boundary 

between BCC and FCC Fe can be spanned by a linear combination of any two of these 1D vectors 

within this 4D space, such that the plane is expressed P = P0 + αv1 + βv2, where α and β are 

arbitrary parametric terms. As shown in the T-P-H phase diagram, only 2 of 3 possible Clausius-

Clapeyron vectors are needed to span the 2D phase boundary. In higher dimensions, the number 

of required 1D vectors diminishes combinatorically.   

3.3 Cartesian representation of Clausius-Clapeyron relationships 

Thus far we have described a parametric vector approach to building high-dimensional 

phase boundaries, which are spanned by linear combinations of 1-dimensional Clausius-Clapeyron 

vectors. In this approach, we need as many 1D vectors as there are dimensions of the phase 

boundary. This approach is most applicable in experimental contexts with limited materials 

properties or phase equilibria data, or when rigorous free-energy descriptions of the relevant 

phases are unavailable. However, in the era of high-throughput computational materials science, 

the free energy surfaces of phases can be calculated computationally. The opportunity arises then 

to leverage these free energies to better understand phase equilibria in complex thermodynamic 

environments.  

To this end, we next present an alternative “top-down” approach to analyze high-

dimensional phase boundaries, which assumes the availability of free-energy data. This approach, 

which arrives at mathematically-equivalent descriptions of the phase boundary compared to the 

vector approach, identifies high-dimensional phase boundaries by calculating the half-space 

intersections of high-dimensional free-energy hyperplanes. 
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In an N-dimensional thermodynamic space (including the energy axis), the free-energy, Z, 

of a single phase can be represented in Cartesian form by  

,
0i ii d

X Y Z− =∑  

In this case, a k-dimensional phase boundary can be calculated from the intersection of (N–k) 

hyperplanes from the N-dimensional thermodynamic space. For example, in a three-dimensional 

G(T,P) space, the free-energy planes are two-dimensional, and a two-phase coexistence 1D line is 

given by the intersection of 2 hyperplanes. A three-phase coexistence 0D point is given by the 

intersection of 3 hyperplanes. This argument extends to higher-dimensions; e.g. two-phase 

coexistence is given by the intersection of two 4D hyperplanes, which results in a 3-dimensional 

phase boundary.  

One can express these intersections by equating the hyperplane equations, for example, on 

a 4D phase diagram, three-phase coexistence between the phases α, β, γ is given on a 2D phase 

boundary, which can be written as Zα = Zβ = Zγ:  

, , ,i i i i i ii i i
X Y X Y X Yα β γ= =∑ ∑ ∑  

One major benefit of this Cartesian representation is that the Clausius-Clapeyron 

relationship for two-phase coexistence becomes simple to compute in high dimensions. In 

parametric form, a k-dimensional phase boundary needs to be spanned by k one-dimensional 

vectors, meaning for two-phase coexistence one needs (d–1) individual 1D Clausius-Clapeyron 

vectors. However, if one has the free-energy surfaces, one can directly compute any Clausius-

Clapeyron derivative simply by calculating dY1/dY2 = – ΔX2/ΔX1, where the extensive variables X 

are parameters in the Cartesian free-energy expression.  

The Cartesian representation of the generalized Clausius-Clapeyron relationship helps 

determine how one natural variable will change in relation to others in situations of multi-phase 
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coexistence and in higher dimensions. In Chapter 3.4 – 3.6, we demonstrate the coexistence of 1 

to 5 phases within the pH-E-1/R-μK 4D Pourbaix diagram. All calculations are conducted using 

this Cartesian form. One of the key advantages of employing the Clausius-Clapeyron equation in 

this form is our ability to precisely calculate the dynamic relationships between different natural 

variables. By utilizing the materials' formation energies and extensive molar quantities, we are 

equipped to compute changes in an intensive natural variable relative to others under varying 

conditions at different number of phase coexistence. Here we offer some examples. 

3.3.1 Single phase 

As discussed in Chapter II, each single phase is characterized through a Legendre 

transformation, which is resolved by the intersection of half-spaces. We present the Pourbaix 

potential (Ψ) for each single phase, in relation to the four natural variables: pH, electrode potential 

(E), inverse temperature (1/R), and the chemical potential of potassium (μK). Within the pH-E-1/R-

μK space, each phase is represented as a four-dimensional (4D) polytope: 

2

1 ( ) ln(10)(2 ) H (2 ) ( )bulk O H O O H O H K K
m

AG N RT N N p N N Q E N
N V

µ γηρ µ Ψ = − − − − − + + − 
 

 

3.3.2 2-phase coexistence 

A 2-phase coexistence region in a 3D space is a 2D surface shared by two 3D polytopes, 

as shown in the chemical potential diagram of Figure 3.4. Similarly, a 2-phase coexistence region 

in a 4D space is a 3D interface shared by two 4D polytopes. Just as we are accustomed to presenting 

the equation of a 2D plane (ax + by + cz + d = 0) within a 3D space (defined by the coordinates x, 

y, and z), we can represent a 3D 2-phase coexistence region within a 4D space through a linear 

combination of the four natural variables:  
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H 1/
1[ ] H [ ] [ ] [ ] [ ] 0

Kp K E RX p X X E X C
Rα β µ α β α β α β α βµ− − − − −⋅ + ⋅ + ⋅ + ⋅ + =                                Eq. 3.1 

where [XpH]α-β, [XμK]α-β, [XE]α-β, [X1/R]α-β, [C]α-β represent coefficient vectors – the conjugated 

variables of the four natural variables and a constant, their physical form is represented in Table 

3.6. This approach simplifies the complex task of delineating phase coexistence in higher-

dimensional spaces, making it more accessible for analysis and interpretation. 

Thus, a vector of coefficients [XpH]α-β, [XμK]α-β, [XE]α-β, [X1/R]α-β, [C]α-β] can represent a 3D  

2-phase coexistence in the 4D pH-E-1/R-μK space. Their values can be calculated by employing 

the condition Ψα = Ψβ at the α-β phase coexistence. Consequently, the partial derivative between 

any two natural variables can be expressed as the ratio of the negative reciprocal of the 

corresponding two coefficients, such as H/ H [ ] / [ ]
KK pp X Xα β µ α βµ − −∂ ∂ = − . 

 

Figure 3.4: Chemical potential diagram of BaMnN2, Mn2N and MnN. The red dashed line represents the 3-phase 
coexistence region. The shared planes by two single phases are the 2-phase coexistence regions. 
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3.3.3 3-phase coexistence 

For a ternary system in a 3D space, a 3-phase coexistence region is 1D, as shown as the 

red dashed line in Figure 3.4. Mathematically, a 2D 2-phase coexistence plane in this 3D space is 

A∙μBa + B∙μMn + C∙μN + D = 0. We can use the Eq.3.2 and Eq.3.3 to represent the phase coexistence 

between BaMnN2 + Mn2N and MnN + Mn2N, respectively. 

[XμBa]1∙μBa + [XμMn]1∙μMn + [XμN]1∙μN + [C]1 = 0                                                                    Eq. 3.2 

[XμBa]2∙μBa + [XμMn]2∙μMn + [XμN]2 ∙μN + [C]2 = 0                                                                    Eq. 3.3 

A 1D 3-phase coexistence line, is the intersection of two 2D 2-phase coexistence planes. 

So, the BaMnN2 + Mn2N + MnN 3-phase coexistence line must simultaneously satisfy Eq.3.2 and 

Eq.3.3 simultaneously. Here, any variable can be eliminated by forming a linear combination of 

Eq.3.2 and Eq.3.3. For instance, by multiplying Eq.3.3 by -[XμN]1/[XμN]2 and adding it to Eq.3.2, 

we establish a linear relationship between μBa and μMn. Therefore, a line in a 3D space indicates 

that any two among the three natural variables share a linear relationship. 

Similar statements are also valid for the 4D pH-E-1/R-μK space. Just like a 3-phase 

coexistence region in a 3D space is a 1D line; a 3-phase coexistence region in a 4D space is a 2D 

plane – the intersection of two 3D 2-phase coexistence polytopes (Eq.3.4 and Eq.3.5). 

H 1 1 1 1/ 1 1
1[ ] H [ ] [ ] [ ] [ ] 0

Kp K E RX p X X E X C
Rµ µ⋅ + ⋅ + ⋅ + ⋅ + =                                                     Eq. 3.4 

H 2 2 2 1/ 2 2
1[ ] H [ ] [ ] [ ] [ ] 0

Kp K E RX p X X E X C
Rµ µ⋅ + ⋅ + ⋅ + ⋅ + =                                                   Eq. 3.5 

Again, any variable can be eliminated by linear combination of Eq.3.4 and 

Eq.3.5.Therefore, a 2D plane in a 4D space means any three among four natural variables has a 

linear relationship, which can be expressed by: 



 75 

H 1 1 1 1

H 2 2 1/ 2 2

H 3 1/ 3 3 3

1/ 4 4 4 4

[ ] H [ ] [ ] [ ] 0

1[ ] H [ ] [ ] [ ] 0

1[ ] H [ ] [ ] [ ] 0

1[ ] [ ] [ ] [ ] 0

K

K

K

p K E

p K R

p R E

R K E

X p X X E C

X p X X CR
X p X X E CR
X X X E CR

µ

µ

µ

µ

µ

µ

⋅ + ⋅ + ⋅ + =

⋅ + ⋅ + ⋅ + =

⋅ + ⋅ + ⋅ + =

⋅ + ⋅ + ⋅ + =

                                                                 Eq. 3.6 

Eq. 3.6 gives us four sets of coefficient vectors, where an example for Mn2++α-

K0.11MnO1.94+δ-K0.21MnO1.87 3-phase coexistence is shown in Table 3.3. From a Clausius-

Clapeyron perspective, the four sets of coefficients can help us determine the change of an 

intensive variable as the change of another intensive variable under different fixed conditions. For 

example, under a fixed redox potential E, the relationship of pH and μK is 

H 1 1/ H [ ] / [ ]
KK E pp X X µµ∂ ∂ = −  by Eq 6.1. And if particle radius R is assumed fixed, 

H 2 2/ H [ ] / [ ]
KK R pp X X µµ∂ ∂ = −  by Eq 6.2. And if R and E are both fixed, based on Eq 6.3 and 

6.4 pH and μK are fixed too. This means there are only two degrees of freedom for a 3-phase 

coexistence in a 4D phase diagram. 

Table 3.3: Coefficient vectors of 3-phase coexistence among Mn2+, α-K0.11MnO1.94 and δ-K0.21MnO1.87. 

 A B C D F 

Mn2+ + 
α-K0.11MnO1.94 + 
δ-K0.21MnO1.87 

0 0.058 -0.040 0.506 0.297 

-0.120 0 -1.023 1.209 1.099 

0.005 0.060 0 0.478 0.265 

0.086 0.099 0.669 0 -0.280 

3.3.4 4-phase and 5-phase coexistence 

Similarly, a 4-phase (α, β, γ, δ) coexistence region is the intersection of three 3D 2-phase 

(α-β, β-γ, γ-δ) coexistence regions, which is a line. So, any two variables can be eliminated by 

linear combination of three 2-phase equations (Eq.3.1). Therefore, a 1D line in a 4D space means 

any two among four natural variables has a linear relationship. This requires 2C4=6 equations to 
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represent this line. But we only need two vertices to represent this 4-phase coexistence line by 

using parametric for. 

For a 5-phase coexistence region, it is a 0D point. Any three variables can be eliminated 

by linear combination of four 2-phase equations (Eq.3.1). It means any natural variables has a 

fixed value (the coefficients of other variables are 0). 

3.4 Clausius-Clapeyron Analysis of a 4D Pourbaix Diagram 

We conclude this work with a Clausius-Clapeyron analysis of a full 4-dimensional phase 

diagram. Our goal is to illustrate how the simultaneous consideration of multiple thermodynamic 

variables enables a more comprehensive approach to materials design and engineering. Although 

a 4D phase diagram stretches our imagination, it is still conceptually accessible by imagining the 

fourth dimension as time. While examining this 4D diagram, we will develop tools and intuition 

to mathematically conduct dimensional analogy to even higher-dimensional phase diagrams.  

In particular, here we analyze the stability of manganese oxides under acidic conditions, 

with a goal to increase the stability of a solid manganese oxide relative to its dissolved Mn2+ 

aqueous ion. Energy storage and transformation technologies require new catalysts23,24 for the 

oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) 25,26, ideally without using 

expensive noble metal catalysts like platinum27,28,29. One candidate system is manganese oxide-

based catalysts, however manganese oxides are generally not stable in acid electrochemical 

environments, where they easily decompose during changes in redox potential during cyclic 

voltammetry.30,31,32  

There is a great diversity of manganese-based oxide materials, with various polymorphs 

and manganese oxidation states.33,34,35 This raises the question of whether or not there exists a 

candidate manganese oxide phase that has good stability in acidic solutions. As illustrated on a 
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Pourbaix diagram, the relative stabilities of different manganese oxides vary as a function of 

aqueous pH and E. Furthermore, different surface energies between manganese oxide phases can 

drive nanoscale crossovers in polymorph stability,33,36,37 and intercalation of impurity ions from 

solution such as K+, Na+, Ca2+, etc, can also affect the bulk stability of various polymorphs.33  

To capture all of these effects simultaneously, we construct here a four-dimensional 

Pourbaix diagram for the Mn-H2O system with axes of pH, redox potential, nanoparticle size, and 

[K+] impurity ion concentration. The composition- and size-dependent Pourbaix potential for each 

phase can be written as:  

2

1 ( ) ln(10)(2 ) H (2 ) ( )bulk O H O O H O H K K
m

AG N RT N N p N N Q E N
N V

µ γηρ µ Ψ = − − − − − + + − 
 

 

The derivation of this potential is provided in our previous works.36,37 Here, Ψ is the Pourbaix 

potential, with respect to pH; redox potential, E; surface area to volume ratio, A/V; chemical 

potential of potassium, μK, under a constraint of water-oxygen equilibrium. N, is the number of 

atoms of a certain element; Q, is the number of charges; 𝜌𝜌, is volume density; 𝜂𝜂, is shape factor; 

μH2O, is water energy; μK, is surface energy. The number of Mn atoms are conserved in the phase 

transformations between Mn-based oxides with different compositions, thus Ψ is normalized by 

the number of Mn atoms, Nm. The molar Gibbs free energy of a phase, Gbulk, is its chemical 

potential, μi = μio + RTln[ai], where μio is given by the standard-state Gibbs formation free-energy, 

ΔGfo, and the activity ideally scales with the natural log of the metal ion concentration in solution. 

 In our analysis, we consider the phases: Mn2+, MnO4-, Mn3O4, α-Mn2O3, α-MnOOH, γ-

MnOOH, α-K0.11MnO1.94, δ-K0.21MnO1.87, γ-MnO2 and β-MnO2. The thermochemical data for 

these phases, including surface energies and K+-intercalated energies, were calculated in our 

previous publications from DFT using the SCAN metaGGA functional. 38 , 39 , 40  Our 

thermochemical data used here is tabulated in the Table 3.4. 
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Table 3.4: Bulk Formation Energies, Surface Energies, Shape factors, Volume/Metal of K-Mn-O-H Phases 

Phase Formation energy Surface energy Shape factor Volume/metal 

Unit eV/ formula J/m2 -- Å3/Mn 

R-MnO2 -4.783 1.33 3.53 29.7 

α-K0.0625MnO2 -5.03 1.19 5.35 33.8 

α-K0.11MnO1.94 -5.6 1.19 5.35 33.8 

α-K0.125MnO2 -5.364 1.19 5.35 33.8 

α-K0.166MnO2 -5.52 1.19 5.35 33.8 

α-K0.25MnO2 -5.764 1.19 5.35 33.8 

α-Mn2O3 -9.132 1.19 5.35 33.8 

α-MnO2 -4.767 1.19 5.35 33.8 

α-MnOOH -5.763 1.19 5.35 33.8 

β-MnO2 -4.837 1.54 3.85 27.5 

β-MnOOH -5.629 1.54 3.85 27.5 

δ-K0.21MnO1.87 -6.02 0.14 9.79 44.4 

δ-K0.33MnO2 -5.988 0.14 9.79 44.4 

δ-K0.5MnO2 -6.469 0.14 9.79 44.4 

δ-K0.75MnO2 -6.894 0.14 9.79 44.4 

δ-MnO2 -4.558 0.14 9.79 44.4 

γ-MnOOH -5.964 0.84 6.09 33.5 

γ-MnO2 -4.787 0.84 6.09 33.5 

Mn 0 -- -- -- 

MnO -3.762 -- -- -- 

Mn2O3 -9.132 -- -- -- 

Mn3O4 -13.346 1.43 5.44 26.2 

Mn(OH)2 -6.198 0.47 5.69 43.5 

KMnO2 -7.313 -- -- -- 

Mn2+ (aq) -2.363 -- -- -- 

MnO4
- (aq) -4.634 -- -- -- 

K+ (aq) -2.926 -- -- -- 

Mn3+ (aq) -0.85 -- -- -- 

MnO4
2- (aq) -5.222 -- -- -- 
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Mn(OH)3
- (aq) -7.714 -- -- -- 

MnOH+ (aq) -4.198 -- -- -- 

HMnO2
- (aq) -5.243 -- -- -- 

 

Because we are investigating the acid stability of solid manganese oxides, the relevant 

phase boundary is between each solid manganese oxide phase and its dissolved state, the Mn2+(aq) 

ion. From a Clausius-Clapeyron perspective, we aim to increase the relative stability of the solid 

manganese oxide, meaning we need to determine how varying these 4 thermodynamic variables 

will shift the phase boundary of a manganese oxide solid into and towards the Mn2+(aq) region, 

thereby enlarging the stability region of the solid. The relative stability analysis is then to find 

conditions where the Clausius-Clapeyron relation dpH/dY < 0; such that a change in Y shifts the 

phase boundary between Mn2+(aq) vs. MnOx(solid) to lower pH values, indicating increased acid 

stability. 

3.4.1 Phase Coexistence on a High-Dimensional Phase Diagram 

 All the variables in the size-dependent Pourbaix potential are intensive, meaning that phase 

stability regions are all 4-dimensional stability polytopes—in other words, single-phase regions all 

have four intensive degrees of freedom. Phase coexistence boundaries all have F = 5 – P degrees 

of freedom, where F is the dimensionality of the phase boundary and P is the number of coexisting 

phases, as summarized in Table 3.5. Some non-intuitive aspects of high-dimensional geometry 

emerge—for example, it is possible for three 4D single-phase regions to coexist on a 2D phase 

boundary; also, the phase boundary between two phases is 3-dimensional. These facts are difficult 

to visualize in our three-dimensional universe, but they are direct consequences of generalized 

Gibbs’ phase rule.  
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Table 3.5: Formulas of Coexisting Phases and their Dimensionality of Phase Boundary. 

P-phase 
coexistence 

Dimensionality of 
Phase Boundary Coexisting Phases 

5 0 (vertex) β-MnO2, α-K0.11MnO1.94, δ-K0.21MnO1.87, Mn2+, α-MnOOH 
4 1 (line) β-MnO2, α-K0.11MnO1.94, δ-K0.21MnO1.87, Mn2+ 
3 2 (polygon) α-K0.11MnO1.94, δ-K0.21MnO1.87, Mn2+ 
2 3 (polytope) δ-K0.21MnO1.87, Mn2+ 
1 4 (polytope) δ-K0.21MnO1.87 
 

To facilitate the visualization of these 4D phase stability regions and their corresponding 

phase boundaries, here we introduce the concepts of slice and projection, illustrated in Figure 3.5, 

which are two different approaches to dimensionality reduction for 2D or 3D visualization. To 

make a slice, an intensive variable is set to a constant value and the rest of the thermodynamic 

potential is evaluated. Slices essentially remove one dimension from the phase diagram. The other 

dimensionality reduction method is projection, which shows a ‘shadow’ of the phase on the 

thermodynamic axes, constructed by projecting all the vertices of the stability region onto the axes, 

and taking the geometric convex hull of the vertices. One limitation of the projection approach is 

that when projecting multiple phases, the ‘shadows’ of various phases can overlap. However, the 

advantage of the projection is that it reveals all the possible thermodynamic conditions a phase can 

exist; whereas one would typically have to construct slices sequentially over a thermodynamic axis 

to survey all the possible stability conditions of a phase. Once the domain of stability for a desired 

phase is determined from a projection approach, one can further apply slices to study materials 

stability to construct interpretable phase diagrams. 
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Figure 3.5: Phase stability region of Mn3O4 in 1/R, E, pH space. The plane bounded by red lines is a slice when E is 
fixed at 0.2V. The plane bounded by blue lines is a projection to pH -E space. 

 

3.4.2 4D Pourbaix Diagram with pH, redox potential E, particle size 1/R, and impurity 

concentration μK 

Figure 3.6 shows several different perspectives of our 4-dimensional Pourbaix diagram. 

Because we want to improve the acid stability of manganese oxides, we focus our diagrams on the 

solid manganese oxide phases that border the Mn2+(aq) ion, which is the undesired dissolution 

product of solid manganese oxides in acid. Figure 3.6a shows the traditional 2D Pourbaix diagram 

for the Mn-H2O system, which visualizes the bulk equilibrium phases under a given E and pH. 

The bulk equilibrium phase β-MnO2 is only stable at low pH in a small range of high redox 

potentials.  

For catalysts, it is often valuable to maximize the surface area to volume ratio. This 

provides the greatest amount of active catalytic area for a given mass of catalytic material. Not 

only does a high surface area to volume ratio promote the functional performance of a catalyst, a 
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variety of metastable manganese oxide phases can be stabilized at high surface-area-to-volume 

ratios—as demonstrated in previous experimental investigations41,42,43,44, as well as our previous 

computational studies.36 These metastable manganese oxides phases have lower surface energy 

than the bulk equilibrium phases, so at the nanoscale where surface-area-to-volume ratio is large, 

these bulk metastable phases can in fact become the nanoscale equilibrium phase. 

In our previous work, we visualized nanoscale Pourbaix diagrams36 using 2D slices of the 

(1/R) axis at fixed E or fixed pH. In this work, Figure 3.6b shows the full 3D nanoscale Pourbaix 

diagram, along with the competing nanoscale crossovers in polymorph stability. Size-stabilized 

bulk metastable manganese oxides include α-MnOOH, γ-MnOOH, δ-MnO2 and R-MnO2. 

However, adding surface energy contributions to the free energy of a material always 

reduces its acid stability. This is because surface energy is always positive, meaning that a high 

(1/R) increases the free-energy of a solid; whereas the free energy of the Mn2+(aq) ion does not 

change with (1/R). From a Clausius-Clapeyron formulation, this is written as 

H ( )
(1/ ) ln(10)(2 )O H

p
R RT N N

γηρ∂ ∆
=

∂ ∆ −
 

Because γsolid > 0 and γMn2+(aq) = 0, the phase boundary as a function of acid stability always 

destabilizes the solid phase.  

As defined by the Pourbaix potential, each single phase is a 4D polytope in the pH-E-1/R-

μK space. Within this framework, a 2-phase coexistence region, designated as α and β phase, is 

characterized by the condition Ψα = Ψβ, or equivalently, ΔΨα–β = 0. Table 3.6 shows for each 

intensive variable the difference in their conjugate extensive variables; for example, for pH this 

term would be Δ[-RTln(10)(2NO-NH)]. From these coefficients, one can directly calculate the 

partial derivatives between any two natural variables, offering quantitative insight into how to 
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affect relative stability. An in-depth discussion on how to represent coexistence from 2 to 5 phases 

using the Cartesian form of the Clausius-Clapeyron relations is presented in Chapter 3.3.2. 

 

 

Figure 3.6: Projections and slices of a high dimensional Pourbaix diagram in pH-E-μK-1/R space of K-Mn-O-H system 
into lower dimensions. (a) Traditional Pourbaix diagram with E and pH as axis. (b) A slice of α-K0.11MnO1.94, δ-
K0.21MnO1.87, β-MnO2, Mn2+ when fixing E = 0.2 V. (c) A projection of δ-K0.21MnO1.87, δ-MnO2, Mn2+ in pH-E-μK 
space. (d) A slice of α-K0.11MnO1.94, δ-K0.21MnO1.87, β-MnO2, Mn2+ when fixing E = 1.2V. 2-phase coexistence regions 
are bounded by bold black lines. 
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Table 3.6: Coefficient vectors of 2-phase coexistence among Mn2+ and β-MnO2, α-K0.11MnO1.94, δ-K0.21MnO1.87, α-
MnOOH 

Intensive 
variable pH μK E 1/R - 

Conjugated 
extensive 
quantity 

∆[-RTln(10) 
(2NO-NH)] -∆NK ∆[-(2NO-NH+Q)] ∆(γηρ) ∆(Gbulk-

NOμH2O) 

Units eV/Mn  eV/Katom/Mn eV/V/Mn eV ̇ nm/Mn  eV/Mn  

β-MnO2 
+ Mn2+ 0.105 0 0.886 -0.451 -1.090 

α-K0.11MnO1.94 
+ Mn2+ 0.099 0.047 0.809 -0.578 -0.659 

δ-K0.21MnO1.87 
+ Mn2+ 0.122 0.116 0.963 -0.210 -0.520 

α-MnOOH 
+ Mn2+ 0.125 0 0.707 -0.696 -1.139 

 

On the other hand, when increasing the aqueous [K+] concentration in the system—which 

increases μK by μK = μ0K + RTln([K+])—the phases cryptomelane, α-K0.11MnO1.94, and birnessite 

δ-K0.21MnO1.87 appear on the phase diagram, with a much larger stability region relative to 

pyrolusite β-MnO2. This can be rationalized by the open crystal structures of α-MnO2 and δ-MnO2 

phases, as α-MnO2 Hollandite has 2×2 tunnel structures where intercalation of large K+ ions is 

energetically favorable, and similarly the δ-MnO2 phase is a layered phase that also readily uptakes 

K+. Intercalation of K+ ions therefore stabilizes and lowers the bulk free energy of α- and δ- MnO2, 

enlarging their stability windows. From a Clausius-Clapeyron formulation, this is written as 

( )
ln(10)(2 )

K

K O H

NpH
RT N Nµ

∆∂
= −

∂ ∆ −
  

The relative stability regions are visualized in the pH-E-μK space in Figure 3.6c. Notably, δ-

K0.21MnO1.87 is stable within a relatively large redox potential window at low pH.  

As an aside; if we were performing experiments to solve for the Clausius-Clapeyron 

relations, even if our ultimate goal were to understand the derivatives dpH/dY, we do not strictly 
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need to do this measurement. As discussed previously, by choosing 3 of the 6 possible ratios: 

dpH/dE, dpH/d(1/R), dpH/dμK, dE/d(1/R), dE/dμK, or d(1/R)/dμK—so long as all 4 variables are 

included—we can solve for the other three ratios.  

3.4.3 Engineering relative stability in four dimensions 

 With the full four-dimensional Clausius-Clapeyron relation from Table 3.6, we can make 

holistic assessments on how to engineer relative materials stability along four thermodynamic axes 

dimensions. From the perspective of an acid-stable manganese oxide catalyst, there are two 

primary considerations: First, the material should be the equilibrium phase under operation 

conditions, which can be affected by all four variables E, pH, 1/R and μK. The second design 

consideration is from the perspective of acid-stability, where the phase boundary between the solid 

compound and Mn2+ should have a dpH/dY as negative as possible, for all considered intensive 

variables.  

 From these considerations, and from the manganese oxides in our dataset, the best acid-

stable manganese oxide phase should be birnessite δ-KxMnO2. Of all the possible manganese oxide 

phases, δ-MnO2 has the lowest surface energy due to its easily exfoliable 2D layered structure. 

This low surface energy means that the acid stability of δ-MnO2 is least affected when increasing 

the surface area to volume ratio, for example by making low-dimensional nanoscale catalysts. 

From a functional perspective, catalysts rely on high surface area to volume ratios to maximize 

catalytic area, and δ-MnO2 solubility increases the least at the nanoscale, compared to the other 

candidate MnOx phases.   

 Moreover, under a high aqueous concentration of K+ ions, both α-MnO2 and δ-MnO2 can 

favorably intercalate K+ and reduce their bulk free-energies, which further increases their acid 

stability. Although dpH/dμK+ is higher for α-MnO2 than δ-MnO2, α-MnO2 is only stable in a 
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narrow [K+] concentration, whereas at higher [K+] concentrations δ-MnO2 is the stable phase. 

Therefore, it is more robust to simply use a high excess concentration of [K+] to stabilize the δ-

MnO2 polymorph, which increases the reliability and operational stability of this functional 

compound.  

3.4.4 Three-, Four- and Five-Phase Coexistence 

 Gibbs’ prediction of the triple-point on the temperature-pressure phase diagram; where 

solid, liquid and gas all coexist simultaneously; played a historical role in the adoption and 

establishment of chemical thermodynamics45,46. On higher-dimensional phase diagrams, three-

phase coexistence is not only common, but an even greater number of possible coexisting phases 

is possible.  

Designing conditions for multi-phase coexistence is promising in various functional 

devices. For example, photoelectrochemical water splitting47, solid-state lithium-ion batteries48, 

core-shell nanoparticle architectures49 all rely on composite materials with hierarchical structures 

where there are multiple phases interacting with one another. Finding thermodynamic conditions 

for multiphase heterogeneous equilibrium can establish the long-term operational stability of such 

devices, which may otherwise degrade by undesired chemical reactions. In technologies that rely 

on phase transitions, such as multiferroric switching materials for transducers and information 

storage, finding a high-dimensional phase coexistence point may enable switching between more 

than two-states,50 which could result in exciting new materials functionality.51  

To illustrate 3- and 4-phase coexistence, we begin by analyzing Figure 3.6d as a 

representative 3D phase diagram. Here, with a fixed redox potential, Gibbs’ Phase Rule is 

effectively the same as a diagram with just 3 intensive axes. In this case, two-phase coexistence is 

represented by 2D planes. The intersection of two planes (say, α+β and β+γ) produces a three-
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phase coexistence line (α + β + γ). The intersection of two three-phase coexistence lines then leads 

to a 4-phase coexistence point.  

However, Figure 3.6d is not a 3D phase diagram, but rather, is a 3D slice of a 4D phase 

diagram at a fixed redox potential. When we vary the value of the redox potential slice, the 4-phase 

coexistence point moves in the pH, 1/R and μK directions; this represents a 1D line on the 4D phase 

diagram. An animation of the 4D phase diagram is provided in Supplementary Movie 1, where we 

use time to illustrate the fourth dimension. There is one special point in 4D space, where the 4D 

line terminates in conjunction with another 4D coexistence line. At this specific vertex, there is 5-

phase coexistence. We can in fact visualize this special point by finding the precise redox potential 

where this 5-phase coexistence happens, which is at E = 0.513 V, which is the condition illustrated 

in Figure 4d. Therefore, the visualized 4D phase coexistence point on Figure 3.6d is in fact also a 

5-phase coexistence point.  

In Table 3.7, we provide explicit conditions for this 3-, 4- and 5-phase coexistence. These 

conditions are represented as vertices in 4D space. The 2-dimensional 3-phase coexistence 

boundary is fully defined by 3 vertices; and is spanned by any two of the 1D vectors that connect 

these 3 vertices. Similarly, the 1-dimensional 4-phase coexistence line is given by 2 vertices, and 

the 5-phase coexistence point is simply provided by its coordinates in 4D space.  
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Table 3.7: Three vertices of 3-phase coexistence among α-K0.11MnO1.94, δ-K0.21MnO1.87 and Mn2+. Two vertices of 4-
phase coexistence among β-MnO2, α-K0.11MnO1.94, δ-K0.21MnO1.87 and Mn2+. One vertex of 5-phase coexistence 
among β-MnO2, α-K0.11MnO1.94,δ-K0.21MnO1.87, Mn2+ and γ-MnOOH. 

 pH 𝝁𝝁K E 1/R 

Three-phase coexistence 
Mn2+ +α-K0.11MnO1.94 + 

δ-K0.21MnO1.87 

0 4.353 -1.120 0 

6.801 -4.906 0.323 0 

7.368 -6.763 0.513 0.211 

Four-phase coexistence 
β-MnO2 + α-K0.11MnO1.94 + 

δ-K0.21MnO1.87 + Mn2+ 

-1.394 -6.170 1.513 0.234 

6.680 -6.732 0.553 0.222 

Five-phase coexistence 
β-MnO2 + α-K0.11MnO1.94 + δ-K0.21MnO1.87 + Mn2+ + α-MnOOH 7.368 -6.763 0.513 0.211 

 

3.5 Evolution of Pourbaix diagrams 

In this study, we employ a 4D Pourbaix diagram to analyze the relative stability utilizing 

Generalized Clausius-Clapeyron equations. Here, we will comprehensively explore Pourbaix 

diagrams, encompassing their four increasingly sophisticated derivations, with the final one being 

proposed for the first time in this dissertation. The Pourbaix diagram, named after Marcel Pourbaix, 

is a significant type of phase diagram illustrating the thermodynamic stability of different chemical 

species in an aqueous solution as a function of pH and redox potential E. Pourbaix diagrams find 

common applications in electrochemistry and corrosion science, aiding in predicting the stability 

of solid and ion phases in electrochemical aqueous environments. Essentially, they offer valuable 

insights into the electrochemical behavior of materials, facilitating understanding of their corrosion 

resistance, precipitation, and redox reactions.  
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3.5.1 Pourbaix diagrams from the Nernst equation 

The genesis of Pourbaix diagrams can be attributed to the pioneering work of Marcel 

Pourbaix during the 1960s.52,53 He laid the groundwork by employing the Nernst equation as a 

foundational principle. When a solid phase, R, is introduced into an electrochemical environment 

within an aqueous solution under controlled pH and redox potential E conditions, interactions at 

the interface between the solid phase and the surrounding solution occur. These interactions can 

initiate redox reactions, resulting in the generation of hydrogen ions and electrons and 

transformation of the solid phase R to product P. This process can be expressed as: 

+ -
2H O H e→rR+ w pP+h +n  

The Nernst equation serves as a powerful tool for relating each redox reaction, expressing 

the redox potential E as the sum of the standard potential E0 and the logarithmic term of the reaction 

quotient, as shown in Eq. 3.5.1. The standard potential E0 is determined from the reaction energy 

ΔG0, the number of free electrons 𝑛𝑛, and Faraday’s constant 𝐹𝐹, while the activity of products (ap) 

and reactants (aR) can be chosen based on the experimental setting.  
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                                                                      Eq. 3.5.1 

Therefore, the first two terms ΔG0/nF, 
( )0.0591log
( )

p
p

r
R

a
n a

in the Eq. 3.5.1 become constants, 

thereby transforming each redox reaction into a linear function between the redox potential 𝐸𝐸 and 

pH. Consequently, by identifying all relevant redox reactions for a given system, a Pourbaix 

diagram can be constructed. In a Pourbaix diagram, each line represents a distinct redox reaction, 

while the surrounding regions by lines represent the shared phase among corresponding reactions.  
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Figure 3.7: Fe2O3 stability region in a Pourbaix diagram constructed by the Nernst equation. Each colored line 
represents a redox reaction involving Fe2O3 either as a reactant or a product. 

Figure 3.7 illustrates an example where we demonstrate the stability region of Fe2O3 by 

analyzing all feasible redox reactions involving Fe2O3 as either a reactant or a product. The reaction 

energies are sourced from Marcel Pourbaix's paper, with all ion activities assumed to be 1M. By 

extending this analysis to encompass all solid and ion phases within the Fe-O-H system, a 

comprehensive Fe-O-H Pourbaix diagram can be constructed.  

This method presents a fundamental approach to constructing a Pourbaix diagram by 

leveraging various redox reactions within a system. This marks the first instance where scientists 

had the opportunity to observe a Pourbaix diagram, allowing for a thorough exploration of the 

material behavior under varying conditions of pH and E. However, its utilization is accompanied 

by certain disadvantages. 

A notable drawback arises from the potential for an extensive number of redox reactions 

occurring in the system, particularly when dealing with multiple phases. For instance, Verink et al. 

incorporated only 3 solid phases in the development of the iron system's Pourbaix diagram, yet 
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encountered 28 redox reactions. Even with a limited number of phases, the number of possible 

redox reactions can be considerable, posing a significant challenge. When accounting for a larger 

number of phases, enumerating all stoichiometric redox reactions between reactants and products 

(NC2 reactions) becomes laborious and time-consuming, particularly when scaling up to 

multicomponent systems. This complexity not only increases computational demands but also 

hampers the interpretation of the resulting diagram. 

Furthermore, as shown by Figure 3.7, while not all redox reaction lines contribute to the 

final stability region of a specific phase, accurately identifying the relevant stability conditions 

requires a meticulous analysis of each redox reaction concerning the phase of interest. This manual 

identification process can be cumbersome and inefficient, relying heavily on visual inspection. 

In summary, while the Nernst equation method offers a framework for constructing 

Pourbaix diagrams, its advantages are counterbalanced by the complexities associated with 

handling numerous redox reactions, making it challenging to apply efficiently in multicomponent 

systems. 

3.5.2 Pourbaix diagrams from Grid-based free energy minimization 

Recognizing the challenges associated with enumerating all redox reactions, developing a 

new approach to constructing Pourbaix diagrams based on materials, rather than reactions, is a 

promising direction. Huang et al.54 introduced a methodology that involves the work of pH (WpH) and 

E (WE) applied on the material, G = G0 + WpH + WE. This formulation facilitates the calculation of a 

new free energy value for each phase, allowing for direct manipulation of materials. Subsequently, a 

grid-based energy minimization technique is employed. This technique entails generating a dense 

numerical grid within a specified range of 𝐸𝐸 and pH values. For each small grid, the phase with 
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the lowest free energy under the given electrochemical conditions is determined. This process is 

repeated for all grids to systematically construct the entire Pourbaix diagram. 

 

Figure 3.8: Pourbaix diagram for the Mn-O-H system obtained through a grid-based free energy minimization 
approach. a) Free energy of various phases across pH values when E = 0.5V. Dots of the same color represent identical 
phases. The final Pourbaix diagram highlights phases with the lowest free energy. b) the corresponding E-pH Pourbaix 
diagram. 

Figure 3.8 shows the Pourbaix diagram of the Mn-O-H system constructed using the grid-

based approach. The E – pH space, spanning a range of E from -2 to 2 V and pH from 0 to 14, is 

divided into a 50 * 50 grid. Within each grid, the free energy of various Mn phases is computed, 

with the phase possessing the lowest free energy representing the corresponding equilibrium phase. 

For example, Figure 3.8a illustrates the free energy of each grid at a fixed E value. Through 
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iterative calculations of the free energy across all grids for different phases, we generate the 

Pourbaix diagram as shown in Figure 3.8b.  

Compared to Pourbaix diagrams from the Nernst equation, this method provides several 

advantages. Firstly, researchers can directly assess the stability of materials under varying 

electrochemical conditions, bypassing the need to enumerate individual redox reactions, which 

simplifies computations to some extent. Additionally, it allows for the estimation of the 

metastability of materials within the system, offering valuable insights into their stability by 

comparing to the equilibrium phases under the given electrochemical conditions.  

However, despite these advantages, this method still presents challenges. The 

computational demands of material-based free energy minimization do not easily scale with the 

size of the grid, particularly when additional natural variables, controlled in experiments besides 

pH and E, are considered. As the system complexity increases, the number of grids grows 

exponentially, leading to longer computation times and increased resource requirements. For 

example, when considering an additional axis such as particle radius (1/R), the grid size increases 

from 50*50 to 50*50*50. In addition, at each grid point, the energies for all materials must be 

calculated, also resulting in a significant computational burden. 

Furthermore, accurately determining phase boundaries can pose a challenge, as 

demonstrated by the phase boundary in Figure 3.8b. Despite the potential improvement in 

accuracy with an increased number of grids, achieving perfect calculation of a phase boundary 

using the grid approach is unattainable. Consequently, this method becomes progressively more 

laborious and resource-intensive, particularly in high-dimensional systems. 

In summary, while the material-based free energy minimization approach offers 

advantages such as versatility and simplified conceptualization, its computational demands and 
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scalability limitations pose significant challenges, particularly in complex systems. Further 

advancements in computational techniques and algorithms may help mitigate these challenges and 

unlock the full potential for constructing Pourbaix diagrams. 

3.5.3 Pourbaix diagrams from the Half-space intersection method 

To extend the Pourbaix diagram to high-dimensional systems, efficient computational 

algorithms have been deployed to expedite the calculation process, often by introducing simplified 

assumptions. As discussed in Chapter 2, when traditional thermodynamic potentials become less 

convenient, the Legendre Transformation can be employed to consider additional forms of work 

and define a new thermodynamic potential. Sun et al.36 have implemented Legendre 

Transformation to define a new Pourbaix potential, denoted as Ψ, which incorporates both 

chemical and electrical work: 

0 µ µΨ = − − −H H O OG N N EQ                                                                                             Eq. 3.5.2  

Here, μ represents the chemical potential, Q is the charge number, and N is the particle number. 

Considering the aqueous nature of the system, the authors accounted for the hydrogen dissociation 

reaction (H ↔ H+ + e-) and the water-oxygen equilibrium (H2O ↔ 2H+ + 1/2 O2 + 2e-). By 

incorporating these reactions, the relationship between μH, μO, pH, and E can be established as 

follows: μH = μH+ – E, μO = GH2O – 2μH+ + 2E, where μH+ is related to pH by μH+ = –RT∙ln(10)∙pH, 

and GH2O is the formation energy of water. 

Substituting the aforementioned equations into the Eq. 3.5.2, the free energy Ψ can be 

expressed as a function of pH and E, resulting in a planar equation in Ψ-pH-E space for each phase: 

( )2

1 ( ) ln(10)(2 ) H (2 )bulk O H O O H O H
m

G N RT N N p N N Q E
N

µΨ = − − − − − +  
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where N is the number of atom of certain element, Gbulk is the formation energy of the phase of interet. 

By plotting all the phase planes in this space, a lower envelope is formed, known as the half-space 

intersection. This envelope reveals the phases with the lowest free energy, thereby indicating their 

stability at the corresponding pH and E values. Figure 3.9 illustrates a Pourbaix diagram in the Ψ-

pH-E space for the Mn-O-H system. The upper free energy surface displays the half-space 

intersection, depicting phases with the lowest grand potential formed by different energy planes of 

phases. 

 

Figure 3.9: Pourbaix diagram of Ψ-pH-E space for Mn-O-H space using Half-space intersection method. 

Similarly, Patel et al.55 also utilized half-space intersection method. They employed the 

duality relationship between extensive and intensive space to construct a Pourbaix diagram for 

binary metal element systems. Their approach involved defining boundary conditions that account 

for closure versus metal element exchange and fixing the metal composition ratio. Subsequently, 

the half-space intersection method was utilized to generate the Pourbaix diagram. 
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Compared to the previous grid-based method, the half-space intersection technique 

represents a more efficient optimization approach, as it circumvents the computationally intensive 

task of comparing the energies of every material at each grid (Figure 3.8a). Instead, it traverses 

through each phase only once and utilizes a linear programming algorithm to identify the half-

space intersection – identifying the phases with the lowest free energy, thereby significantly 

reducing the computational burden. This approach expedites the construction of high dimensional 

Pourbaix diagrams with additional natural variables, preparing for a more thorough exploration of 

electrochemical behavior in complex systems. 

When the Half-space intersection method computationally enables the existence of high-

dimensional Pourbaix diagrams, the Legendre Transformation provides a physically grounded 

thermodynamic foundation for effectively incorporating additional thermodynamic works into the 

Pourbaix potential, Ψ. While the conventional interpretation of the Pourbaix potential views it 

solely as a function of pH and E, its scope can be broadened by integrating other thermodynamic 

works, such as surface energy multiplied by surface area or chemical work in Chapter 3.4. This 

expansion enables the construction of size-dependent or composition dependent Pourbaix 

diagrams, offering valuable insights into materials' electrochemical behavior under diverse 

conditions. 

Although the efficiency of Half-space intersection method, it operates under the 

linearization assumption (Chapter 2.3.4.1) that the free-energy of substances is usually modeled 

as stoichiometric line-compounds, whereas in reality, individual phases may exhibit their own 

composition domain and free energy curve. Another important drawback is that, the current 

derivation is limited to aqueous systems due to its reliance on the water-oxygen equilibrium, 

thereby restricting its applicability to other solvent systems, such as supercritical ammonia, or 
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organic solvents. Despite these limitations, leveraging the Legendre Transformation and 

integrating additional thermodynamic works into the Pourbaix potential can significantly enhance 

our understanding of electrochemical behavior across various materials and systems. Numerous 

studies have also demonstrated that linearization assumption is still possible to simulate real-life 

synthesis conditions and predict the stability of materials.  

3.5.4 Pourbaix diagram as a slice of chemical potential diagram 

Certain materials exhibit limited solubility or reactivity in aqueous environments, 

necessitating the use of alternative solvents for their synthesis. Inorganic syntheses often require 

organic solvents like ethanol, ether, dimethylformamide, etc. The choice of solvent can profoundly 

influence reaction kinetics and thermodynamics, leading to variations in the resulting products. 

For example, altering the solvent composition or polarity can affect the solvation of reactants and 

intermediates, thereby modulating the energy landscape of the reaction pathway. Furthermore, 

solvent environments can serve as reactive media, participating directly in chemical 

transformations to facilitate product formation. The synthesis of technologically important 

materials, such as gallium nitride (GaN) semiconductors, often relies on specialized solvent 

systems like supercritical ammonia, where the high chemical potential environment of ammonia 

enhances the growth and crystallization processes. Despite the extensive utilization of complex 

solvent systems in modern synthesis strategies, the lack of comprehensive phase diagrams or 

Pourbaix diagrams tailored to these solvent environments poses a challenge in effectively guiding 

and optimizing material synthesis. Integrating solvent-specific thermodynamic data and 

computational phase diagram framework could provide valuable insights into solvent-mediated 

reactions, enabling more informed design and control of material synthesis processes. 
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In this fourth derivation of Pourbaix diagram, we present a novel approach for deriving the 

Pourbaix diagram as a cross-section slice of the broader chemical potential landscape, a 

perspective not previously explored in literature. By leveraging the Legendre transformation 

equation in Eq. 3.5.2, with respect to chemical potentials and redox potential, we are able to 

construct a comprehensive 3D chemical potential diagram. This diagram, defined by axes 

representing the chemical potentials of oxygen (μO), hydrogen ions (μH+ or pH), and redox potential 

(E), a distinct chemical potential perspective on electrochemical reactions compared to the 

Pourbaix diagram (Figure 3.10a). Each material is represented as a 3D polytope in this diagram, 

offering a visual encapsulation of its energetic state within the given conditions.  

 

Figure 3.10: a) Chemical potential diagram of Mn system with μO, pH, E as axis. b) Water oxygen equilibrium slice 
on the chemical potential diagram. c) Projection of the slice information into E and pH dimension – the traditional 
Pourbaix diagram. 

Then in aqueous solutions, we delve into the equilibrium between water and oxygen, a 

fundamental aspect of many electrochemical processes. Expressing this equilibrium relationship 

as μO = GH2O – 2μH+ + 2E elucidates a planar function within the μO-pH-E space. This function 

serves as a pivotal construct, delineating a slice of the chemical potential diagram that characterizes 

the water-oxygen equilibrium (Figure 3.10b). Furthermore, projecting this equilibrium slice onto 

the E-pH space extracts the traditional Pourbaix diagram in Figure 3.10c. 

 This fourth derivation, which involves constructing the Pourbaix diagram as a slice of the 

chemical potential diagram, inherits all the advantages of the half-space intersection method. By 
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embedding it within the broader context of the chemical potential landscape, we gain deeper 

insights into the thermodynamic underpinnings of electrochemical reactions. More importantly, 

another significant advantage of this approach lies in its adaptability to diverse solvent systems 

beyond aqueous environments. While the traditional Pourbaix diagram primarily addresses 

aqueous electrochemistry, our method extends its applicability to organic solvents and beyond. By 

incorporating the redox reactions of different solvents – the different slices within the chemical 

potential diagram, we can systematically derive other solvothermal Pourbaix diagrams. 

3.5.5 Ethanol Pourbaix diagram 

The fourth derivation of the Pourbaix diagram offers a method for constructing the 

Pourbaix diagram in various solvents. The key requirements encompass two aspects: a) the ability 

to identify a suitable equilibrium reaction within the respective solvent to derive a slice from the 

chemical potential diagram, and b) familiarity with the ion energies and solvent energies specific 

to the corresponding solvent. In this study, our objective is to analyze and present potential 

equilibrium reactions for the construction of phase diagram framework, deferring the calculation 

of thermodynamic data in different solvents to be addressed by others.  

3.5.5.1 Identifying electrochemical equilibrium reaction for ethanol 

Most literature on ethanol electrolysis focuses on aqueous ethanol solutions, typically with 

a 0.1M ethanol concentration. As demonstrated in Ahmed's56 and Rakan's57 paper, major products 

in the electrolysis of ethanol include CO2, acetic acid, and acetaldehyde. The yield of these three 

products can be adjusted by varying the metal concentration in catalysts or by altering the redox 

potential E. CO2 can become the major product with a high concentration of Pt catalyst, while 

acetic acid can dominate when PtRu is used as the catalyst. Acetaldehyde is rarely the major 

product, because in the presence of H2O, CH3CHO is easily oxidized to CH3COOH. Table 3.8 
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below presents the electrochemical reactions and the corresponding chemical potential equilibrium 

for these three products. 

Table 3.8: Electrochemical reactions of ethanol and corresponding chemical potential equilibrium. 

Electrochemical reaction Chemical potential equilibrium 

CH3CH2OH + 3H2O → 2CO2 + 12e- + 12 H+ GC2H5OH + 3GH2O = 2GCO2 – 12E + 12μH+ 

CH3CH2OH → CH3CHO + 2e- + 2H+ GC2H5OH = GCH3CHO – 2E + 2μH+ 

CH3CH2OH + H2O → CH3COOH + 4e- + 4H+ GC2H5OH + GH2O = GCH3COOH – 4E + 4μH+ 

 

In a pure ethanol solvent, there is no influence from water, rendering the electrochemical 

reaction singular. In Daisuke’s 58  paper, 1,1-diethoxyethane (DEE) is selectively synthesized 

through the electrolysis of pure ethanol in a proton-exchange membrane (PEM) reactor. The 

synthesis mechanism includes electrochemical and non-electrochemical components. The 

electrochemical part involves the oxidation of ethanol to acetaldehyde, while the non-

electrochemical part entails the reaction between acetaldehyde and ethanol to form DEE. 

Consequently, when choosing the electrochemical reaction for pure ethanol, it's essential to 

consider using CH3CH2OH → CH3CHO + 2e- + 2H+, with the corresponding chemical potential 

equilibrium expressed as GC2H5OH = GCH3CHO – 2E + 2μH+. This choice is made because the 

subsequent non-electrochemical part is not influenced by the redox potential and pH. 

Using this electrochemical equilibrium of ethanol, we construct an ethanol Pourbaix 

diagram. Our aim is to compare it to the aqueous Pourbaix diagram to glean insights into the 

experimental results of the solvothermal synthesis of Cu- and Co-oxide. 

In the aqueous Pourbaix diagram, the associated equilibrium is the water-oxygen 

equilibrium, defined by ΔGH2O = 1/2 μO – 2E + 2μH+. The formation energy of water, ΔGH2O, is -

2.4583 eV/atom under standard atmospheric conditions and room temperature (298.15K), as 

reported by Sun36 and Persson59. Similarly, in ethanol, the electrochemical potential equilibrium 
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equation is expressed as ΔGC2H5OH = ΔGCH3CHO – 2E + 2μH+. This necessitates the calculation of 

the formation energies of C2H5OH and CH3CHO at the same temperature and pressure conditions. 

However, formation energy data for C2H5OH and CH3CHO directly from the literature is not 

available. 

Table 3.9: Formation enthalpy, absolute entropy and calculated formation energy of H2O, C2H5OH, CH3CHO. 

 ΔH (KJ/mol) S (J/mol*K) ΔG (KJ/mol)  
at 298.15 K 

ΔG (eV/atom)  
at 298.15 K 

H2O -285.83 69.95 -237.14 -2.458 
C2H5OH -276 159.86 -172.71 -1.790 
CH3CHO -196.4 117.3 -198.99 -2.062 

C 0 5.833 – – 
H2 0 130.68 – – 
O2 0 205.152 – – 

 

ΔGH2O can be calculated using the equation ΔG = ΔH – TΔS, where ΔH represents the 

formation enthalpy and ΔS represents the formation entropy, which refers to the change in enthalpy 

or entropy of the product relative to elemental reference states. If the ΔH – TΔS calculation yields 

the accurate value for ΔGH2O, then we can utilize the same source data to compute ΔGC2H5OH and 

ΔGCH3CHO. The formation enthalpy (ΔH) and absolute entropy (S) data are accessible on the NIST 

website. Table 3.9 shows the corresponding ΔH, S, and ΔG values for various materials. Notably, 

the calculated ΔGH2O using data from the NIST website aligns closely with the reported value of -

2.458 eV/atom. Therefore, I posit that it is reasonable to utilize the values of ΔGC2H5OH = -1.790 

eV/atom and ΔGCH3CHO = -2.062 eV/atom. 

3.5.5.2 Ethanol Pourbaix Diagram for Cu- and Co- oxides 

The comparison between the aqueous and ethanol Pourbaix diagrams aims to elucidate the 

synthesis pathways of Cu- and Co- oxides. To streamline the analysis, the assumption is made that 
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the energy of solid in ethanol equals that in aqueous systems. Given the current constraints in 

calculating ion energies within organic solvents, the adoption of aqueous ion energies is chosen 

for simplicity. The consideration is restricted to simple ions such as Cu+, Cu2+, Co2+, Co3+. It is 

assumed that in organic solvents, the reduced solubility of metal oxides leads to the absence of 

complex off-stoichiometric ions. For the aqueous Pourbaix diagram, all ions, including complex 

ones (CuO22-, CuHO2-, CuOH+, CoHO2-), are still considered. 

It is observed that copper-containing nitrate precursors in water yield CuO, while in ethanol, 

they result in the formation of Cu2(OH)3NO3, Cu2O, and ultimately Cu. 60  Comparing these 

findings to the aqueous Pourbaix diagram depicted in Figure 3.11a, it becomes evident that the 

stability region of CuO is considerably diminished in the ethanol Pourbaix diagram shown in 

Figure 3.11b. Conversely, Cu2O exhibits a larger stability region across a broader pH range in 

ethanol. This disparity elucidates why CuO, which is observed to form in aqueous solutions, does 

not manifest in ethanol, with Cu2O emerging instead. Notably, the Cu stability region (depicted in 

yellow) in Figure 3.11b predominates, indicating that Cu2O formed in ethanol ultimately 

transitions to Cu. 

For Co system, it forms Co3O4 in aqueous solution, whereas in ethanol, Co3O4 initially 

forms and eventually undergoes transformation to CoO at higher temperatures.60 Despite Co3O4 

not being represented in either the aqueous Pourbaix or ethanol Pourbaix diagrams (Figure 3.11c 

and 3.11d), the distance of a phase from the Pourbaix slice plane serves as a crucial indicator of 

the feasibility of its synthesis. Remarkably, the aqueous Pourbaix slice exhibits a much closer 

proximity to the Co3O4 region compared to the ethanol Pourbaix slice. This observation explains 

the experimental transformation of Co3O4 to CoO in ethanol, but the stable existence of Co3O4 in 

aqueous solutions.  
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Figure 3.11: Comparison between aqueous and ethanol Pourbaix diagram. a) Cu aqueous Pourbaix diagram. b) Cu 
ethanol Pourbaix diagram. c) Co aqueous Pourbaix diagram. d) Co ethanol Pourbaix diagram. 

3.5.6 Ammonia Pourbaix diagram 

The synthesis of GaN in supercritical ammonia has garnered significant attention, because 

it offers advantages such as improved mass transport, reduced defect density, and enhanced control 

over crystal morphology, leading to the production of high-quality GaN materials.61 While the 

synthesis of gallium nitride (GaN) in supercritical ammonia holds promise for advanced 

semiconductor development, it also presents significant challenges. One of the primary obstacles 

is the complex interplay of parameters required to achieve optimal crystal growth and quality under 

supercritical conditions. Balancing factors such as temperature, pressure, precursor concentration, 

and reaction kinetics is crucial for controlling nucleation and growth processes. However, the 
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literature lacks phase diagram tools to provide a deeper understanding of the chemical processes 

involved in GaN synthesis.  

To overcome this challenge, we construct an ammonia Pourbaix diagram using our fourth 

derivation. Similar with the ethanol Pourbaix diagram, we operate under the assumption that the 

solid energy remains consistent across different solvents. Collaborating with my lab-mate, Joonsoo 

Kim, we can calculate the ion energy based on solubility and the Born model. In this dissertation, 

we present ion thermodynamic data in tabular form without delving into specific calculation details 

(Table 3.10). Then, the equilibrium between ammonia and nitrogen can be represented in a manner 

similar with the water-oxygen equilibrium. Table 3.11 illustrates the electrochemical reactions 

and the corresponding chemical potential equilibrium. 

Table 3.10: Formation energies of Ga3+ in different temperature of 100MPa supercritical ammonia. The energies are 
referenced to solid DFT energies in Materials Project 

Temperature (K) 
∆G𝒇𝒇°𝐆𝐆𝐆𝐆𝟑𝟑+ [kJ/mol], 

pK offset = -14 

693 -172.714 

743 -195.935 

793 -261.986 

803 -273.642 

848 -307.135 

873 -324.023 

 

Table 3.11: Electrochemical reactions of water and ammonia and corresponding chemical potential equilibrium. 

Electrochemical reaction Chemical potential equilibrium 

H2O ⇌ 2H+ + ½ O2 + 2e-  GH2O = 2μH+ + μO – 2E 

NH3 ⇌ 3H+ + ½ N2 + 3e- GNH3 = 3μH+ + μN – 3E  
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Figure 3.12: Ammonia Pourbaix diagram. a) Chemical potential diagram of Ga system with μN, pH, E as axis. b) 
Ammonia nitrogen equilibrium slice on the chemical potential diagram. c) Ammonia Pourbaix diagram with grand 
Pourbaix potential Ψ. d) Projection of the slice information into E and pH dimension – ammonia Pourbaix diagram. 

By leveraging the Legendre transformation, we can define a ammonia Pourbaix potential 

Ψ, with respect to chemical potentials and redox potential, where 

1 ( )N N H H
Ga

G N N Eq
N

µ µψ = − − −   

Figure 3.12a depicts the corresponding μN-pH-E chemical potential diagram, with GaN, Ga3+, and 

Ga represented as 3D stability regions within the specified conditions. Based on the equilibrium 

between ammonia and nitrogen in supercritical ammonia, μN = GNH3 – 3μH+ + 3E, providing the 

slice of the chemical potential diagram in Figure 3.12b. Figure 3.12c presents the slice 

information along with additional Pourbaix potential, illustrating the lower half-space intersection 

in free energy space. In Figure 3.12d, the projection of the slice into E-pH space reveals that with 

an increase in temperature from 693K to 793K, the relative stability of GaN decreases while the 
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stability region of Ga3+ expands. This observation aligns with the finding that GaN will dissolve 

at higher temperatures. 

3.6 Outlook 

In Chapter 2, we construct high dimensional diagrams with axes of intensive variables.62,63 

Since high-dimensional objects are so far removed from our everyday experience, phase diagram 

can be difficult to navigate even when they are constructed. It can also be laborious and expensive 

to build high-dimensional phase diagrams in full, as for each axis we need all the thermochemical 

properties of each phase.64  

Our goal here was to explore more the properties of phase boundaries, which again, are the 

key geometric objects on a phase diagram. Importantly, the gradient of a phase boundary is enough 

to evaluate relative stability, such that one does not necessarily need to characterize all the 

thermochemical data in a system. This transforms us from a ‘thermodynamic assessment’ process, 

where we construct the full phase diagram at once, to a more flexible framework that is quicker to 

implement in real-world engineering situations. One only has to characterize the experimentally-

obtained phase, and then use concepts of relative stability to shift the applied experimental 

conditions towards the direction of the phase we desire. As more undesired phases are observed, 

one can iteratively build towards a full description of the high-dimensional phase boundaries 

between a target phase and all its competing phases. This offers a practical (and practicable) 

pathway to optimize the synthesis or operation conditions of target functional materials.  

Additionally, while Chapter 2 delves into solid-state systems, this chapter concentrates on 

the solvothermal synthesis of inorganic materials, thoroughly exploring Pourbaix diagrams. We 

discuss four derivations of Pourbaix diagrams, illustrating how they become progressively more 

powerful by leveraging the advantages of previous derivations and overcoming their limitations. 
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Finally, we extend Pourbaix diagram exploration to non-aqueous environments, enabling 

researchers, for the first time, to utilize phase diagrams tailored specifically for supercritical 

ammonia and ethanol to guide their synthesis endeavors.
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Chapter 4 Navigating Phase Diagram Complexity to Guide Robotic Synthesis  

4.1 Challenges in designing efficient synthesis recipes 

There is currently a poor scientific understanding of how to design effective and efficient 

synthesis recipes to target inorganic materials. 1 , 2 , 3  As a result, synthesis often becomes a 

bottleneck in the scalable manufacturing of functional materials,4 as well as in the laboratory 

realization of computationally-predicted materials.5,6 DFT-calculated thermodynamic stability or 

metastability can often approximate materials synthesizability, 7 , 8 , 9  but finding an optimal 

synthesis recipe—including temperatures, times and precursors—still requires extensive trial-and-

error experimentation. The recent emergence of robotic laboratories 10- 12 presents an exciting 

opportunity for high-throughput experiments and sequential-learning algorithms to autonomously 

optimize materials synthesis recipes. 13 - 21  However, there remains a poor fundamental 

understanding of how changing a synthesis recipe affects the underlying thermodynamics and 

kinetics of a solid-state reaction. Without this scientific foundation, it is difficult to build physics-

informed synthesis planning algorithms to guide robotic laboratories,22 meaning that parameter 

optimization via high-throughput experiments can end up being unnecessarily resource-intensive 

and wasteful. 

Multicomponent oxides represent an important and challenging space for targeted 

synthesis. These high-component materials are key to various device technologies—including 

battery cathodes (Li(Co,Mn,Ni)O2), oxygen evolution catalysts (Bi2Sr2Can−1CunO2n+4+x), high-

temperature superconductors (HgBa2Ca2Cu3O8), solid-oxide fuel cells (La3SrCr2Mn2O12), and 
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more.23 Multicomponent oxides are usually synthesized by combining and firing the constituent 

binary oxide precursors in a furnace. However, this often yields impurity byproduct phases, which 

arise from incomplete solid-state reactions. From a phase diagram perspective, precursors start at 

the corners of a phase diagram and combine together towards a target phase in the interior of the 

phase diagram. If the phase diagram is complicated, i.e. with many competing phases between the 

precursors and the target, undesired phases may form, consuming thermodynamic driving force 

and kinetically trapping the reaction in an incomplete non-equilibrium state.  

High-component oxides reside in high-dimensional phase diagrams and can be synthesized 

from many possible precursor combinations. Here we present a thermodynamic strategy to 

navigate these multidimensional phase diagrams—identifying precursor compositions that 

circumvent kinetically-competitive byproducts while maximizing the thermodynamic driving 

force for fast reaction kinetics. We test our principles of precursor selection using a robotic 

inorganic materials synthesis laboratory, which automates many tedious aspects of the inorganic 

materials synthesis workflow—such as powder precursor preparation, ball milling, oven firing, 

and X-ray characterization of reaction products. With our robotic platform, a single human 

experimentalist can conduct powder inorganic materials synthesis in both a high-throughput and 

reproducible manner. Using a diverse target set of 35 quaternary Li-, Na- and K- based oxides, 

phosphates and borates, which are relevant chemistries for intercalation battery cathodes24,25 and 

solid-state electrolytes, 26  we show that precursors identified by our thermodynamic strategy 

frequently outperform traditional precursors in synthesizing high-purity multicomponent oxides. 

Our work demonstrates the utility of robotic laboratories not only for advanced materials synthesis 

and manufacturing, but also as a platform for large-scale hypothesis validation over a broad and 

diverse chemical space.   
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4.2 Principles of precursor selection 

Recently, we showed that solid-state reactions between three or more precursors initiate at 

the interfaces between only two precursors at a time.27 The first pair of precursors to react will 

usually form an intermediate byproduct, which can consume much of the total reaction energy and 

leave insufficient driving force to complete a reaction.28 Figure 4.1 illustrates this multi-step 

reaction progression for an example target compound LiBaBO3, whose simple oxide precursors 

are B2O3, BaO, and Li2CO3. Because Li2CO3 decomposes to Li2O upon heating, we can examine 

the competing chemical reactions29 geometrically upon a pseudo-ternary Li2O-B2O3-BaO convex 

hull. Although the overall reaction energy for Li2O + BaO + B2O3  LiBaBO3 is large at ΔE = -

336 meV/atom, there are many low-energy ternary phases along the binary slices Li2O-B2O3 

(Figure 4.1b, blue) and BaO-B2O3 (Figure 4.1b, green). In the initial pairwise reactions between 

Li2O + BaO + B2O3, we anticipate that stable ternary Li-B-O and Ba-B-O oxides–such as Li3BO3, 

Ba3(BO3)2 or others—will form rapidly due to large thermodynamic driving forces of ΔE ~ –300 

meV/atom. Should these low-energy intermediates form, the ensuing reaction energies to the target 

become miniscule, e.g. Li3BO3 + Ba3(BO3)2  LiBaBO3 has only ΔE= –22 meV/atom, (Figure 

4.1e, orange). 

Instead of allowing the reactions to proceed between the three precursors all at once, we 

suggest to first synthesize LiBO2, which can serve as a high-energy starting precursor for the 

reaction. Figure 4.1g (purple) shows that LiBaBO3 can be formed directly in the pairwise reaction 

LiBO2 + BaO  LiBaBO3 with a substantial reaction energy of ΔE = -192 meV/atom. Moreover, 

along this reaction isopleth there is a low likelihood of forming impurity phases, as the competing 

kink of Li6B4O9 + Ba2Li(BO2)5 has relatively small formation energy (ΔE = -55 meV/atom) 

compared to LiBaBO3. Finally, the inverse hull energy of LiBaBO3, which we define as the energy 
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below the neighboring stable phases on the convex hull30, is substantial at ΔEinv = -153 meV/atom, 

suggesting that the selectivity of the target LiBaBO3 phase should be much greater than any 

potential impurity byproducts along the LiBO2-BaO slice.  

Figure 4.1i compares the energy progression between these two precursor pathways. 

Although both pathways share the same total reaction energy, synthesizing LiBaBO3 from three 

precursors is likely to first produce low-energy ternary oxide intermediates (Figure 4.1a), leaving 

little reaction energy to drive the reaction kinetics to the target phase.28 By first synthesizing a 

high-energy intermediate (LiBO2), we retain a large fraction of overall reaction energy for the last 

step of the reaction, promoting the rapid and efficient synthesis of the target phase. We confirm 

this hypothesis experimentally (Figure 4.1j), where we find that solid-state synthesis of LiBaBO3 

from the traditional precursors Li2CO3, B2O3 and BaO do not result in any XRD signal of the target 

phase, whereas LiBO2 + BaO produces LiBaBO3 with high phase purity. 

From this instructive LiBaBO3 example, we propose five principles to select effective 

precursors from a multicomponent convex hull: 1) Reactions should initiate between only 2 

precursors if possible, minimizing the chances of simultaneous pairwise reactions between 3 or 

more precursors. 2) Precursors should be relatively high-energy (unstable), maximizing the 

thermodynamic driving force and thereby the reaction kinetics to the target phase. 3) The target 

material should be the deepest point in the reaction convex hull, such that the thermodynamic 

driving force for nucleating the target phase is greater than all its competing phases. 4) The 

composition slice formed between the two precursors should intersect as few other competing 

phases as possible, minimizing the opportunity to form undesired reaction byproducts, and 5) If 

byproduct phases are unavoidable, the target phase should have a relatively large inverse hull 
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energy—in other words, the target phase should be substantially lower in energy than its 

neighboring stable phases in composition space.  

When there were multiple precursor pairs that could be used to synthesize the target 

compound, we ranked the ‘best’ precursor pair by first prioritizing Principle 3, where the target 

compound was at the deepest point of the convex hull. This ensures that the thermodynamic driving 

force for nucleation of the target compound is greater than the driving forces to all other competing 

phases. We next prioritized Principle 5, where the target compound has the largest inverse hull 

energy. A reaction having a large inverse hull energy supersedes both Principle 2, as a large 

reaction driving force is not a sufficient criterion for synthesis; for example, in Figure 4.2b, where 

the magnitude of the driving force of Li2O + Zn2P2O7 → LiZnPO4 is large but selectivity may be 

weak compared to ZnO + Li3PO4. A large inverse hull energy also supersedes Principle 4, as a 

large inverse hull energy means that even if intermediate phases form, there would still be a large 

driving force for a secondary reaction to form the target compound. 
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Figure 4.1: Comparison between the traditional reaction (Li2O, B2O3, and BaO) process and our designed reaction 
(LiBO2 and BaO) process for LiBaBO3. a–e) are for the traditional reaction. f–h) are for the predicted reaction. a,f) 
Schematic of pairwise reactions process, showing the phase evolution from precursors to the target. b,d,g) are pseudo-
ternary Li2O-B2O3-BaO convex hulls, where reaction convex hulls between precursor pairs are illustrated by colored 
slices. c,e,h) 2-dimensional slices of the binary reaction convex hulls. Grey arrows show the reaction energy of the 
corresponding reaction. i) Free energy change in a reaction progress, where a relatively high-energy intermediate state 
saves more energy for the final step in forming the target. j) XRD of the solid-state synthesis of LiBaBO3, where red 
and blue curves are raw XRD data for traditional and predicted precursors, respectively, and the black curve is the fit 
produced by the Rietveld refinement. 

On Figure 4.2, we interpret these precursor design principles for an example LiZnPO4 

target in the pseudo-ternary Li2O-P2O5-ZnO phase diagram. If we first synthesize Zn2P2O7 to 

combine with Li2O (Figure 4.2a,b blue), the deepest point in the reaction convex hull is not 
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LiZnPO4 but rather is ZnO + Li3PO4, suggesting a kinetic propensity to form these undesired 

byproducts. If we start from Zn3(PO4)2 + Li3PO4 (Figure 4.2c,d, orange), LiZnPO4 is located at 

the deepest point along the convex hull; however Li3PO4 is a low-energy starting precursor, 

meaning there is a small driving force (ΔE = -40 meV/atom) left to form LiZnPO4, likely leading 

to slow reaction kinetics. We suggest that LiPO3 + ZnO (Figure 4.2e,f, purple) are the ideal 

precursors for LiZnPO4. LiPO3 has a relatively high energy along the Li2O-P2O5 binary hull, 

resulting in a large driving force to the target phase of ΔE = -106 meV/atom. Additionally, there 

are no competing phases along the LiPO3 + ZnO slice, minimizing the possibility of impurity 

byproduct phases.  

In Chapter 4.2.2, we further interpret our precursor selection principles from the dual 

perspective of chemical potential diagrams, and interpret the inverse hull energy with respect to 

the ‘chemical potential distance’ as proposed by Todd et al.31 Here, we chose a convex hull 

approach since it graphically constrains stoichiometrically-balanced pairwise reactions better than 

chemical potential diagrams. Additionally, in Chapter 4.2.3 we show that our predicted precursors 

generally differ from those predicted by the algorithms of McDermott et al.,29 and Muratahan et 

al.32 Although all our works share the same goal of predicting inorganic synthesis recipes, the 5 

principles that guide our precursor selection algorithm are based on our recent insights into the 

importance of pairwise reactions,27,28 which was not considered in the PIRO algorithm by 

Muratahan et al. PIRO therefore predicts the optimal precursors for BaLiBO3 to be 0.5 Ba + 0.5 

Ba(BO2)2 + Li + 0.5 O2 → BaLiBO3—which likely proceeds through intermediates in this multi-

precursor reaction. Our approach of maximizing driving force also differs slightly than the cost 

function of McDermott et al, whose ideal predicted reaction is Ba3(BO3)2 + Li3BO3 → BaLiBO3, 

which as we discussed earlier, has a small driving force. As deeper fundamental understanding of 
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solid-state reactions is achieved, we anticipate that new principles will be need to be developed 

and included into our algorithms for the overarching ambition of predictive solid-state synthesis.  

 
Figure 4.2: Comparison of three pairwise reactions for the synthesis of LiZnPO4 on the pseudo-ternary Li2O-P2O5-
ZnO convex hull. a,c,e The blue, red, and purple slice planes correspond to Zn2P2O7 + Li2O, Zn3(PO4)2 + Li3PO4, and 
LiPO3 + ZnO binary reaction convex hulls, respectively. b,d,e are the corresponding 2-dimensional slices. 

When there were multiple precursor pairs that could be used to synthesize the target 

compound, we ranked the ‘best’ precursor pair by first prioritizing Principle 3, where the target 

compound was at the deepest point of the convex hull. This ensures that the thermodynamic driving 

force for nucleation of the target compound is greater than the driving forces to all other competing 

phases. We next prioritized Principle 5, where the target compound has the largest inverse hull 

energy. A reaction having a large inverse hull energy supersedes both Principle 2, as a large 

reaction driving force is not a sufficient criterion for synthesis; for example, in Figure 4.2b, where 

the magnitude of the driving force of Li2O + Zn2P2O7 → LiZnPO4 is large but selectivity may be 

weak compared to ZnO + Li3PO4. A large inverse hull energy also supersedes Principle 4, as a 



 118 

large inverse hull energy means that even if intermediate phases form, there would still be a large 

driving force for a secondary reaction to form the target compound. 

In Chapter 4.2.2, we further interpret our precursor selection principles from the dual 

perspective of chemical potential diagrams, and interpret the inverse hull energy with respect to 

the ‘chemical potential distance’ as proposed by Todd et al.33 The main advantage for a convex 

hull approach is that it geometrically constrains stoichiometrically-balanced pairwise reactions 

better than chemical potential diagrams. Additionally, in Chapter 4.2.3 we show that our predicted 

precursors generally differ from those predicted by the algorithms of McDermott et al.,29 and 

Muratahan et al.34 Although all our works share the same goal of predicting inorganic synthesis 

recipes, the 5 principles that guide our precursor selection algorithm are based on our recent 

insights into the importance of pairwise reactions,27,28 which was not considered in the PIRO 

algorithm by Muratahan et al. PIRO therefore predicts the optimal precursors for BaLiBO3 to be 

0.5 Ba + 0.5 Ba(BO2)2 + Li + 0.5 O2 → BaLiBO3—which likely proceeds through intermediates 

in this multi-precursor reaction. Our approach of maximizing driving force also differs slightly 

than the cost function of McDermott et al, whose ideal predicted reaction is Ba3(BO3)2 + Li3BO3 

→ BaLiBO3, which as we discussed earlier, has a small driving force. As deeper fundamental 

understanding of solid-state reactions is achieved, we anticipate that new principles will be need 

to be developed and included into our algorithms for the overarching ambition of predictive solid-

state synthesis.  
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4.2.1 Computation of precursor selection algorithm 

The code used to predict precursors for more efficient synthesis is open-sourced at 

https://github.com/dd-debug/synthesis_planning_algorithm. The code is built in python, and 

leverages the Materials Project Application Programming Interface (API) and the pymatgen code 

base, specifically, pymatgen.analysis.phase_diagram and pymatgen.analysis.interface_reactions 

modules. Compositions and energies of various materials systems were retrieved from the 

Materials Project using the REST API in December 2020. 

To determine the precursors predicted using our design principles, we first collect all 

quaternary oxides with Li-, Na-, and K- cations, including quaternary oxides that have complex 

phosphate (PO4)3- and borate (BO3)3- anions. For a given A-B-C-O quaternary oxide convex hull, 

for each quaternary oxide, we enumerate all pairwise precursor combinations that can form these 

candidate target phases. In this study, we only considered candidate targets that fall on an isopleth 

between a pair of precursors. It is not generally the case that two precursors will be available for 

each target oxide. We exclude reactions that consider elemental O2 as a precursor. In the convex 

hull, each pairwise reaction corresponds to the slice plane between the pairwise precursors, which 

intersects the target. This approach determines all compositionally feasible pairwise reactions for 

the formation of all candidate quaternary oxide targets. 

The list is the further sieved by identifying reactions where the target material is the deepest 

point in the reaction convex hull (as calculated from the interface_reactions module). We also 

evaluate the inverse hull energy of each phase, defined as the energetic extent by which the target 

phase is below its neighboring stable phases in the convex hull. The Inverse Hull Energy is 

illustrated in Figure 4.3 for the target Li3Sc2(PO4)3 phase from the precursors LiPO3 + Sc2O3. Of 

the two possible reactions that could form Li3Sc2(PO4)3, which are 3LiPO3 + Sc2O3 → Li3Sc(PO4)3 

https://github.com/dd-debug/synthesis_planning_algorithm
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and 2ScPO4 + Li3PO4 → Li3Sc2(PO4)3, we hypothesize that 3LiPO3 + Sc2O3 will be the best 

precursors, due to its large inverse hull energy.  

 

Figure 4.3: Reaction compound convex hull of Li3Sc2(PO4)3. Left.) the convex hull of P2O5, Sc2O3, and Li2O, where 
two kinks (green stars) represent the decomposition reactions that might happen at given compositions. The 
equilibrium phase is a 2-phase coexistence. The green slice plane corresponds to Right.) LiPO3|Sc2O3 convex hull. 

The inverse hull energy is computed using the reaction convex hull from 

interface_reactions, where we identify the kinks in the convex hull that compete with the target 

compound. Because this is a 1-dimensional compositional intersection with a 3-dimensional 

quaternary phase diagram, the intersection can include critical compositions that correspond to 

single phases, or tie lines between 2 phases. If the intersected tie line is the deepest point in the 

reaction convex hull, we anticipate the reaction will form the terminal phases of the tie line, such 

as green stars will decompose to Li4P2O7 + LiScP2O7 and Li3PO4 + LiScP2O7 in Figure 4.3.  

In executing this algorithm over the Li-, Na- and K- containing quaternary oxides, borates 

and phosphates, we identified 3104 reactions. We then determined the minimum set of precursors 

that would maximize the number of potential candidate reactions, whilst also considering the 

available precursors available on hand at Samsung. This process led to the target materials and 

precursor selections presented in this work. When there were multiple precursor pairs that could 

be used to synthesize the target compound, we chose the final precursor pair by first prioritizing 

Principle 3, where the target compound was at the deepest point of the convex hull—this ensures 
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that the thermodynamic driving force for nucleation of the target compound is greater than the 

driving forces to all other competing phases. We next prioritized Principle 5, where the target 

compound has the largest inverse hull energy. A reaction having a large inverse hull energy 

supersedes both Principle 2, the reaction energy (as illustrated by the discussion around Figure 2a) 

and Principle 4, number of competing phases – as the number of competing phases may not matter 

so much if the driving force to the target was much more significant than to the competing phases.   

When there were multiple precursor pairs that could be used to synthesize the target 

compound, we chose the final precursor pair by first prioritizing Principle 3, where the target 

compound was at the deepest point of the convex hull. This ensures that the thermodynamic driving 

force for nucleation of the target compound is greater than the driving forces to all other competing 

phases. We next prioritized Principle 5, where the target compound has the largest inverse hull 

energy. A reaction having a large inverse hull energy supersedes both Principle 2, the reaction 

energy and Principle 4, number of competing phases. A large reaction driving force is not a 

sufficient criterion for synthesis; for example, in Figure 4.2b where the magnitude of the driving 

force of Li2O + Zn2P2O7 → LiZnPO4 is large but selectivity may be weak compared to ZnO + 

Li3PO4. On the other hand, a large inverse hull energy means that the driving force from the 

competing phases to the target phase would be large, meaning that the relative driving force to the 

target phase is large, and even if competing phases did form, there would be a large driving force 

for a secondary reaction to form the target compound from any intermediate phases.  
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4.2.2 Precursor selection principles using chemical potential diagrams 

In Todd et al.,33 chemical potential diagrams are 

used to assess the selectivity of phases during solid-state 

synthesis. Here, we interpret our precursor selection 

principles, which are built from a convex hull 

representation, from the perspective of a chemical 

potential diagram, which was also discussed in Chapter 

2 and 3. 35,36,37 

The chemical potential diagram is a dual 

representation of the convex hull, meaning it offers an 

alternative perspective on the same geometric object (similar to how real space and reciprocal 

space are dual of each other). The chemical potential diagram can be built from the convex hull 

using the intercept rule, produced by tilting a tangent plane underneath a ternary convex hull, as 

illustrated in Figure 4.4. Figure 4.5 shows for the Li-Zn-P-O system the convex hull, as well as 

its corresponding chemical potential diagram on μLi, μZn, μP axes (with fixed μO = 0, corresponding 

to oxygen gas at ambient conditions). The phases that appear on the convex hull exactly correspond 

to the phases on the chemical potential diagrams. The three-phase coexistence triangles on the 

convex hull correspond to the three-phase coexistence points on the chemical potential diagram, 

while the single-phase points on the convex hull correspond to the single-phase polygons in the 

chemical potential diagram.  

 

 
Figure 4.4: Schematic figure illustrating 
how to determine the elemental chemical 
potential domain for a target material 
through intercepts of the corresponding 
tangent plane. 
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Figure 4.5: Comparison between convex hull and chemical potential diagram. Same phase is marked in the same 
color. Left) ZnO-P2O5-Li2O compound convex hull. Right) P-Zn-Al chemical potential diagram when μO is fixed at -
2 eV/atom.  

Figure 4.6 uses a model A-B system to show that the inverse hull energy of a phase is 

directly proportional to the size of its stability window on a chemical potential diagram. In Figure 

4.6a we constructed a convex hull with a relatively deep inverse hull energy for A3B4, and a smaller 

inverse hull energy in Figure 4.6c; with the formation energies of all other phases held the same. 

This larger inverse hull energy from 4.6a corresponds to a wider chemical potential stability 

window for A3B4 in both μA and μB, as shown by the intercept rule. In Figures 4.6b,d we show the 

size of the stability domain for A3B4 on a chemical potential diagram. For the large inverse hull 

energy in 4.6a, we see a correspondingly larger chemical potential stability window for A3B4 in 

4.6b; and vice versa a smaller inverse hull energy in 4.6c results in a smaller chemical potential 

window in 4.6d. This size of the chemical potential window is similar to the ‘chemical potential 

distance’ metric presented in Todd et al.1 In this sense, our selection of the inverse hull energy 

metric is comparable to the arguments from Todd et al., in that both approaches indicate a stronger 

tendency for the target phase to form. 
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Figure 4.6: The relationship between inverse hull energy and chemical potential stability window of A3B4. The convex 
hull of A-B system with a) large, c) small inverse hull energy of A3B4, and the corresponding chemical potential 
diagram of A-B system with b) large, d) small inverse hull energy of A3B4. Larger inverse hull energy corresponds to 
larger size of chemical potential window. 

One disadvantage of chemical potential diagrams is that it is not straightforward to 

graphically illustrate stoichiometrically-balanced pairwise reactions on a chemical potential 

diagram. Take for example the Li2O + Zn2P2O7 → LiZnPO4 reaction from Figures 4.2a and 4.2b. 

It is very clear on the convex hull that there are 5 stoichiometrically-balanced reaction products on 

the Li2O | Zn2P2O7 isopleth, including the phase-separated products ZnO + Li3PO4—which is in 

fact the product pair with the largest reaction energy. This fact is not very obvious on the chemical 

potential diagram from Figure 4.5 above—where even though ZnO and Li3PO4 have very large 

stability regions by themselves, on the chemical potential diagram their 2-phase coexistence is 

represented only by a phase boundary line, which looks like any other phase-boundary line on the 

chemical potential diagram.  
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 For this reason, we elected to conduct our analyses from the convex hull perspective. By 

using the inverse hull energy metric, we capture the size of a stability region from a chemical 

potential diagram, however we also have the advantage of directly visualizing stoichiometrically-

balanced reactions, as well as the driving force to form multi-phase mixtures.  

4.2.3 Comparison against other synthesis prediction algorithms 

Recently, Muratahan et al. 32 devised a synthesis route prediction algorithm named PIRO, 

which is grounded in the principles of nucleation barrier assessment for the target phase on reactant 

surfaces, as well as the enumeration of competing phase occurrences. A lower nucleation barrier 

coupled with a reduced number of competing phases signifies an increased likelihood of the 

formation of the target phase. PIRO addresses a Pareto optimization problem to minimize the 

nucleation barrier and mitigate the competition from parasitic phases. In the case of BaLiBO3, 

PIRO suggests the best following reaction: 0.5 Ba + 0.5 Ba(BO2)2 + Li + 0.5 O2 → BaLiBO3. Our 

predicted precursors, BaO + LiBO2 → BaLiBO3, is ranked as the 72nd best option in PIRO, and is 

accompanied by a nucleation barrier of 2.37 atomic units (64.49 eV) which is relatively large 

compared to other precursors. The main qualitative difference between PIRO and our algorithm is 

we impose a constraint on pairwise reactions, since reactions from multiple elementary precursors 

can often get kinetically trapped in low-energy intermediate reaction products.  
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McDermott et al.29 developed a graph-based 

network for the prediction of chemical reactions, where 

the graph data structure was constructed using a 

combination of phases within the convex hull as nodes, 

and reaction-energy-based descriptors as the weights of 

edges. Subsequently, pathfinding algorithms were 

employed to identify the lowest ‘cost’ from precursor 

nodes to target nodes, thereby predicting reaction 

pathways. For BaLiBO3, the optimal reaction 

recommended by McDermott et al., is Ba3(BO3)2 + 

Li3BO3 → BaLiBO3, (green slice in Figure 4.7). The reaction energy and inverse hull energy values for 

this reaction is ΔGrxn = ΔGinv = -0.04 eV/atom. On the other hand, our predicted reaction BaO + LiBO2 → 

BaLiBO3 has reaction energy and inverse hull energy values of ΔGrxn = -0.192 eV/atom, ΔGinv = -0.153 

eV/atom.  

4.3 Validation with a robotic ceramic synthesis laboratory 

To test our precursor selection hypotheses, we designed a large-scale experimental 

validation effort based in the quaternary Li-, Na-, and K-based oxides, phosphates and borates, 

which are representative chemistries for intercalation battery materials.24,26 We survey the 

Materials Project38 for all known quaternary compounds in this space, then we use our selection 

principles to predict optimal precursors from the DFT-calculated convex hulls. We also determine 

the traditional precursors for these reactions, which we previously text-mined from the solid-state 

synthesis literature.39 To efficiently maximize the coverage of our experimental validation, we 

Pareto-optimized our reaction list to select the fewest number of precursors that maximize the 

 

Figure 4.7: Ternary compound convex hull of 
Li2O, B2O3, and BaO. The green and purple 
slices show two different reactions to the target 
phase LiBaBO3 

 



 127 

number of candidate reactions—resulting in 28 unique precursors for 35 target materials that span 

27 elements.  

Figure 4.8: Automated Synthesis Testing and Research Augmentation (ASTRAL) Lab at Samsung’s Advanced 
Materials Lab in Cambridge, Massachusetts. a) A robot-enabled inorganic materials synthesis workflow—from 
powder precursor preparation to ball milling, to oven firing, to X-ray characterization of reaction products; b) picture 
of the ASTRAL Lab c) Robotic chemists enable a paradigm of large-scale exploration of synthesis hypotheses over a 
broad chemical space, which normally would have to be undertaken by multiple experimentalist groups. d) Human 
experimentalists have a trade-off between throughput and reproducibility, whereas robotic chemists can achieve both 
high reproducibility and throughput simultaneously.  

We then compare the phase purity of target materials synthesized from our predicted 

precursors versus from traditional precursors. We perform this large-scale validation effort using 

a robotic inorganic materials synthesis laboratory named ASTRAL (Automated Synthesis Testing 

and Research Augmentation Lab), located at the Samsung Advanced Institute of Technology in 

Cambridge, Massachusetts. As shown in Figure 4.8, ASTRAL uses a robotic arm to automate 

sample handling throughout a full ceramic synthesis workflow—from powder precursor 

preparation to ball milling, to oven firing, to X-ray characterization of reaction products. Three 

trays of 24 samples can pass sequentially through the ASTRAL workflow every 72 hours. The 

throughput of ASTRAL is bottlenecked by powder dispensing and processing, as each 24-sample 
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tray is prepared serially, whereas the firing and characterization steps can, in principle, be run in 

parallel.  

ASTRAL automates inorganic materials synthesis from powder precursors, as opposed to 

previous robotic laboratories that rely on solution-based precursors,15,16,17,40 inkjet printing18 or 

combinatorial thin-film deposition.14,19 Although it is easier to dose precursor concentrations using 

these other methods, the resulting products are typically only produced at milligram scale. Powder 

synthesis, on the other hand, can yield grams of material, which is needed to create ceramic pellets 

or electrodes for functional property characterization. Moreover, high-temperature powder 

synthesis is the primary synthesis method of ceramic oxides, so recipes determined from ASTRAL 

can be upscaled for industrial manufacturing. We overcame major practical challenges in powder 

precursor processing, which arise primarily from flowability differences between different 

powders due to varying particle sizes, hardness, hygroscopicity, and compaction. In Table 4.1 we 

summarize the challenges in working with powder precursors, as well as our solutions to these 

challenges. 

In total, we conducted 224 synthesis reactions over 35 target materials, calcined at 

temperatures from 600°-1000°C. For a target space this diverse, traditional validation of our 

precursor selection principles would likely have required an extensive experimental effort, 

comprised of multiple human experimentalists working over many years. Once the robotic 

laboratory is set up, we can comprehensively survey this broad crystal chemistry space in a single 

experimental campaign (Figure 4.8c). Moreover, a large-scale human effort will inevitably require 

trade-offs between throughput and reproducibility. Meanwhile, a robotic laboratory produces 

single-source experimental data with high reproducibility, meaning we can systematically 

compare synthesis results while minimizing human variability and error (Figure 4.8d). Altogether, 



 129 

the robotic laboratory offers a new platform for data-driven empirical synthesis science, where 

hypotheses can be investigated rapidly, reproducibly, and comprehensively over diverse crystal 

chemistries.  

Table 4.1: Problems of powder ceramic synthesis for automated laboratory and our solutions. 

Challenges Solutions 
Powders are difficult to 
handle for automated 
dispensing due to varying 
size and physical properties 

The ASTRAL platform using a Quantos powder dispenser supplied by Mettler 
Toledo, which uses gravimetric dispensing to dose precursor powders with high 
accuracy.  To accommodate broad variety of powder types needed for synthesis 
experiments, each precursor powder is assigned one of three models of dosing 
heads for reliable dispensing. 

Hygroscopic precursors For handling hygroscopic precursors, we use the Quantos dosing heads for 
short-term storage, tightly sealed to minimize moisture infiltration.  Hygroscopic 
powders are replaced on a schedule to maintain the quality of the dispensed 
precursors.  

Powders are much more 
difficult to mix than liquid 
precursors 

Successful synthesis requires that precursors are mixing intimately and 
homogeneously before heat treatment to produce a uniform and consistent 
product. 
 
The ASTRAL platform accomplishes mixing of powders using a high-throughput 
ball milling system, consisting of the following components: 

• High-throughput dispensing of mixing balls 
• Automated addition of milling solvent 
• High-throughput milling holders 
• Magnetic mixing ball extraction 
• High-throughput powder transfer to crucibles using funnel plate 

Powders react and/or fuse 
with crucibles during high 
temperature heat treatment 

During high-temperature calcination, many precursors or reaction products may 
become molten, and react with the alumina crucible, resulting in contamination 
with aluminum and/or fusing of the sample to the crucible walls. 
 
We apply a boron nitride coating to the alumina crucibles for materials that are 
susceptible to this behavior.  The boron nitride coating is highly non-reactive and 
resists wetting by most molten oxides, minimizing reactivity and fusing between 
the samples and crucibles. 

Difficulties in preparing and 
mounting powders for XRD 
characterization 

It is challenging to automate preparation of powders for characterization, due to 
varying physical properties and lack of a solvent to assist with dispersal. 
 
To address this, the ASTRAL platform performs characterization using a high-
throughput system for XRD measurement, consisting of: 

• Custom magnetic sample stubs for XRD measurements 
• High-throughput mounting of powders onto XRD stubs by full plate 
• Fully automated robotic XRD loading and measurement execution 

 

4.3.1 Robotic laboratory setup and procedures 

ASTRAL employs a comprehensive robotic system, consisting of a 7-axis Panda robotic 

arm (Franka Emika) and a linear rail (Vention.io), to facilitate the transportation of samples 

between various stations. The integration of the Panda arm with the linear rail extends the system's 
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manipulation capabilities, enabling precise laboratory operations over a sizable 1.7m × 4m area. 

The central rail system is surrounded by specialized stations dedicated to inorganic materials 

synthesis tasks.  

These stations include mechanisms for dispensing solid powder precursor chemicals and 

liquid dispersants, a mechanical ball mill for effective mixing, a furnace for the calcination and 

reaction of precursors, and X-ray diffraction for characterizing synthesis outcomes. The synergy 

between these stations enables a seamless workflow in the synthesis. 

The dispensing of precursor powders is carried out sequentially using a Quantos powder 

dispenser (Mettler Toledo). Sample vials and powder dosing heads are efficiently exchanged using 

the robotic arm. Subsequently, a Freedom EVO 150 liquid handling robot (Tecan Life Sciences) 

dispenses 1mL of ethanol into each vial. The samples then undergo rotary ball milling for 15 hours 

at 100rpm to achieve a homogeneous and fine mixture of precursor powders. Alumina crucibles 

(Advalue Technology) are employed to contain the mixed precursors. 

Following the ball-milling process, samples are heated to 80°C for 2 hours under vacuum 

to eliminate residual ethanol. Subsequently, they are transferred to a furnace and subjected to 

calcination in an air atmosphere for 8 hours at temperatures ranging from 600°C to 1000°C. The 

resulting powders are meticulously characterized using powder X-ray diffraction (Rigaku Miniflex 

600).  

For further details regarding the robotic infrastructure, additional insights can be found in 

the Supplementary Information of Jiadong Chen's paper.41 However, as the robotic lab is not the 

primary focus of this thesis, we will not delve into further detail here. 
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4.3.2 Automated XRD analysis 

X-ray diffraction is the primary characterization method used by the ASTRAL platform to 

determine the outcome of synthesis experiments. Standard methods used for XRD analysis require 

two steps: (1) identification of phases present in the sample, and (2) pattern fitting through methods 

such as Rietveld refinement to quantify the lattice parameters and weight percent of the phases.  

The traditional method for phase identification is to compare collected XRD patterns to a database 

of reference structures such as the Inorganic Crystal Structure Database (ICSD), most often using 

a search-match algorithm to compare peak positions and determine likely matches. While this 

approach is very effective at detecting matches to known structures, it requires a human to review 

candidate structures to exclude false positives and select true matches.  More recently, several 

research groups have presented machine learning algorithms that can be trained on a set of 

reference structures to identify phases in experimental XRD [Manuscript References 36, 37]. 

These machine learning approaches offers great potential for improving automated phase 

identification, but requires additional steps to construct an appropriate training data set consistent 

with the characteristics of the experimental setup and chemical spaces. The training of these 

machine-learning methods is also reported in Ref 36 to take up to 20 hours for a system, also 

requiring GPU-accelerated machines.  

Given the 35 systems that we are investigating here, we were not able to use these machine-

learning methods to fully quantify all impurity phases detected in XRD for all samples processed 

on the ASTRAL platform.  However, some quantification of synthesis outcomes is necessary to 

efficiently analyze trends over large data sets. Therefore, we have adopted a semi-quantitative 

approach to evaluating synthesis outcomes, based on Rietveld refinement of the XRD using only 

the crystal structure of the target material. 
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Rietveld refinement of data is accomplished using the BGMN kernel, with python scripts 

used for the automated generation of the necessary input files, execution of the Rietveld refinement 

via the command line, and extraction of the fitting data from the output files. The target structure 

is used as the sole input phase for the BMGN kernel, and as such, in an ideal case, the Rietveld 

refinement will split the XRD signal into components associated with the target phase, background, 

and residual.  The fraction of the target phase can then be estimated by dividing the integrated 

intensity of the target phase by the combined intensity of the target phase and residual, 

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/(𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). In this work we considered values greater than 0.5 to be high purity, 

between 0.2 and 0.5 moderate purity, and less than 0.2 considered low purity.  

For samples of low purity, where the peaks corresponding to the target phase are small in 

magnitude, the integration of co-aligned peaks for small peak heights can be difficult to ascribe 

precisely to the target phase (as opposed to noise). Therefore, the phase fraction characterized from 

our XRD result should primarily be interpreted quantitatively for purity greater than 0.2  

To minimize the excess residual, for each sample the algorithm supplies a background 

XRD pattern taken on an empty sample holder, to increase the effectiveness of the BGMN 

background fitting.  As the background differs slightly for different sample holders, this procedure 

is repeated for each of 16 XRD patterns for empty sample holders, and the lowest residual is used 

as the final value for the calculation. 

The primary limitations of this method are: (1) it neglects the different scattering factors of 

the target and impurity phases, (2) it can underestimate phase fraction due to any components of 

the residual that are not associated with impurity phases, and (3) it can overestimate phase fraction 

due to incorrect fitting of peaks for the target phase to impurity peaks.  Due to the possibility of 

false positives due to (3), a value of 0.2x106 counts is used as a detection threshold, so the target 
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phase is considered not detected for any samples where the target phase intensity is lower than this 

value.   

Despite these potential limitations, we validated that our procedure produces adequate 

results on a wide range of data, and is suitably accurate for detecting successful or failed synthesis 

outcomes in the great majority of cases.  To perform this validation, we used a set of 255 

previously-obtained experimental XRD patterns collected using the ASTRAL platform for which 

all impurity phases were identified. We then compared our approach of calculating 

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/(𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), versus the fully Rietveld refined XRD phase fractions.  

Figure 4.9 shows a comparison of the XRD quantification results using both our semi-

quantitative method described above and full quantitative Rietveld refinement. The color of the 

dots correspond to the weighted R-factor Rwp/Rexp returned by the BGMN kernel as a goodness-

of-fit metric, with higher values indicating greater discrepancy between the theoretical and 

experimental curves.  The semi-quantitative method produced an estimated phase fraction that was 

on average 22.9% lower than the full quantitative refinement, but otherwise the two measures 

produced good agreement with a root mean squared difference of 4.6%.  Therefore, we consider 

that the phase purity estimates produced by the semi-quantitative method are likely to be 

conservative, but generally effective for discriminating synthesis outcomes within 10% accuracy. 
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Figure 4.9: Comparison between semi-quantitative XRD analysis (x-axis) and full quantitative Rietveld refinement 
(y-axis) on a test data set of 255 samples synthesized on the ASTRAL platform.  The size of the points is determined 
by the integrated XRD signal, while the color of the dots are determined by the quality-of-fit metric (Rwp/Rexp) output 
by BGMN for the full Rietveld refinement. 

4.4 Synthesis results and comparison with traditional recipes 

For the 35 materials selected, Figure 4.10a shows the relative yield of the target phase 

starting from computationally-designed versus traditional precursors. Figure 4.10b shows the 

reaction temperatures attempted, and Figure 4.10c shows the relative performance of the predicted 

versus traditional precursors. A full list of targets, precursors and reaction results are listed in 

Table 4.2. For 32 out of 35 compounds (91%), the predicted precursors successfully produce the 

target phase. In 15 targets, the predicted precursors achieve at least 20% higher phase purity than 

the traditional precursors (green), and 6 of these 15 target materials could only be synthesized by 

the predicted precursors (dark green). For 16 reactions the precursors have similar target yields 

(light green), and only in 4 systems do the traditional precursors perform better than the predicted 

precursors (red). However, we note that even in these 4 systems, the predicted precursors also 

produce the target materials with moderate to high purities.  
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Table 4.2: Traditional and predicted precursors for different targets. The colors in the first four columns represent 
shows how much better the predicted precursors over traditional, where green means predicted precursors perform 
better, light green means they perform similarly, and red means traditional precursors perform slightly better. The 
color in the “Best predicted Synthesis” column represents what is the best phase purity the predicted precursors can 
get, where green means high phase purity, light blue means moderate purity, yellow means low purity, and gray 
means both traditional and predicted precursors failed with no XRD signal. The “Best Temperature” column shows 
the reaction temperature to get the best synthesis results using predicted precursors. The last two columns show the 
inverse hull energies and reaction energies for predicted precursors.  

 Target Traditional Precursors Predicted 
Precursors 

Best 
Predicted 
Synthesis 

Best 
Temperature 

(C) 

For predicted 
precursors (eV/atom) 

Inverse hull 
energy 

Reaction 
Energy 

1 BaLiBO3 Li2CO3, B2O3, BaO BaO, LiBO2 

High 
purity 

800 -0.153  -0.192  
2 K2Zr(PO4)2 K2CO3, NH4H2PO4, ZrO2 KPO3, ZrO2 800 -0.068  -0.068  
3 Li3Pr2(BO3)3 Li2CO3, B2O3, Pr6O11 LiBO2, Pr6O11 600 -0.015  -0.057  
4 KNiPO4 K2CO3, NH4H2PO4, NiO KPO3, NiO 800 -0.050  -0.050  
5 Li3Sc2(PO4)3 Sc2O3, Li2CO3, NH4H2PO4 Sc2O3, LiPO3 900 -0.034  -0.102  
6 LiGeBO4 Li2CO3, B2O3, GeO2 LiBO2, GeO2 800 -0.026  -0.040  
7 KLi(PO3)2 Li2CO3, K2CO3, NH4H2PO4 LiPO3, KPO3 Moderate  800 -0.009  -0.009  
8 LiNbWO6 Li2CO3, Nb2O5, WO3 LiNbO3, WO3 Low purity 700 0.000  0.000  
9 LiZnBO3 Li2CO3, ZnO, B2O3 LiBO2, ZnO 

High 
purity 

700 0.000  0.000  
10 K3Fe2(PO4)3 K2CO3, NH4H2PO4, Fe2O3 KPO3, Fe2O3 700 -0.042  -0.042  
11 KMgPO4 K2CO3, NH4H2PO4, MgO MgO, KPO3 800 -0.123  -0.123  
12 K3Bi2(PO4)3 K2CO3, NH4H2PO4, Bi2O3 Bi2O3, KPO3 700 -0.079  -0.079  
13 K3LiP2O7 Li2CO3, NH4H2PO4, K2CO3 LiPO3, K3PO4 700 -0.035  -0.071  
14 Na2Al2B2O7 Na2CO3, Al2O3, B2O3 Al2O3, NaBO2 700 -0.014  -0.024  
15 K3Al2(PO4)3 K2CO3, NH4H2PO4, Al2O3 KPO3, Al2O3 700 -0.063  -0.067  
16 Li2CuP2O7 Li2CO3, NH4H2PO4, CuO LiPO3, CuO 700 -0.036  -0.036  
17 LiNbGeO5 GeO2, Li2CO3, Nb2O5 GeO2, LiNbO3 1000 -0.024  -0.024  
18 Li3Fe2(PO4)3 Li2CO3, NH4H2PO4, Fe2O3 LiPO3, Fe2O3 700 -0.008  -0.048  
19 SrLiBO3 Li2CO3, B2O3, SrO LiBO2, SrO 600 -0.119  -0.149  
20 KNbWO6 K2CO3, Nb2O5, WO3 WO3, KNbO3 800 -0.024  -0.042  
21 LiMgPO4 Li2CO3, NH4H2PO4, MgO LiPO3, MgO 800 -0.032  -0.143  
22 LiZnPO4 Li2CO3, NH4H2PO4, ZnO LiPO3, ZnO 800 -0.106  -0.106  
23 KBaPO4 K2CO3, NH4H2PO4, BaO KPO3, BaO 700 -0.316  -0.316  
24 KTiPO5 K2CO3, NH4H2PO4, TiO2 TiO2, KPO3 800 -0.057  -0.057  
25 LiMnPO4 Li2CO3, NH4H2PO4, MnO LiPO3, MnO 700 -0.061  -0.132  
26 KTa2PO8 K2CO3, NH4H2PO4, Ta2O5 KPO3, Ta2O5 

Low purity 
700 -0.015  -0.036  

27 Li3Y2(BO3)3 Li2CO3, Y2O3, B2O3 LiBO2, Y2O3 700 -0.014  -0.038  
28 KTiNbO5 K2CO3, TiO2, Nb2O5 TiO2, KNbO3 700 -0.006  -0.013  
29 BaNaBO3 Na2CO3, BaO, B2O3 BaO, NaBO2 Not 

detected 

600 -0.172  -0.172  
30 Li3V2(PO4)3 Li2CO3, NH4H2PO4, V2O3 LiPO3, V2O3 900 -0.024  -0.062  
31 NaSiBO4 Na2CO3, SiO2, B2O3 SiO2, NaBO2 600 -0.008  -0.022  
32 Li2TiGeO5 GeO2, Li2CO3, TiO2 GeO2, Li2TiO3 High 

purity 
1000 -0.008  -0.036  

33 Li2TiSiO5 SiO2, TiO2, Li2CO3 SiO2, Li2TiO3 1000 -0.026  -0.026  
34 NaSrBO3 Na2CO3, SrO, B2O3 SrO, NaBO2 Moderate  

700 -0.118  -0.118  
35 LiSi2BO6 Li2CO3, SiO2, B2O3 LiBO2, SiO2 700 -0.004  -0.010  
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Figure 4.10: Robotic synthesis results of target materials from traditional versus predicted precursors. a) Table of the 
phase purity of 35 targets obtained from predicted precursors using the highest phase purity from various firing 
temperatures, compared to traditional precursors. Color of “Precursor comparison” column compares purity from 
predicted precursors versus traditional, where green means predicted precursors achieve >10% better purity, light 
green means they have purities within ±10%, and red means traditional precursors achieve >10% better purity. Targets 
with blue color star are metastable materials. Same color scheme is used in b, c, d. b) Heatmap of phase purity of 
predicted precursors at different calcination temperatures. c) shows the target phase purity from predicted precursors 
versus traditional precursors. d) Reaction energies and inverse hull energies for all targets. Marker shape corresponds 
to best phase purity of predicted precursors, where diamonds are high purity, circles are moderate and low purity, and 
crosses with red outline means both predicted precursors and traditional precursors failed. The dashed line represents 
when inverse hull energy equals reaction energy. Inset: Convex hull illustrating the reaction energy and the inverse 
hull energy.   
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We also examined the robotic solid-state synthesis of 4 metastable compounds with mild 

energies above the convex hull7—LiNbWO6 (10 meV/atom), LiZnBO3 (8 meV/atom), KTiNbO5 

(1 meV/atom), and Li3Y2(BO3)3 (39 meV/atom), indicated by blue asterisks in Figure 4.10. These 

metastable compounds formed in our solid-state reactions, although generally with low phase 

purity. However, we still found that our predicted precursors would yield these target metastable 

phases with similar or better relative purity than when starting from traditional precursors (see 

Chapter 4.4.1). A recent work by Zeng et al. suggests that by tuning the thermodynamic driving 

forces from the precursors, it may be possible to selectively form desired stable or metastable 

phases based on their calculated nucleation barriers. 42  Finally, in 3 systems, neither sets of 

precursors resulted in the target material, which for NaBSiO4 was due to glass formation,43 for 

Li3V2(PO4)3 a more reducing atmosphere was needed,44 and for NaBaBO3 the published reaction 

temperature45 was very precise at 790°C, suggesting that perhaps a rounded number like 800°C 

may be too high. As discussed further in Chapter 4.4.3, these potential failure modes represent 

important considerations in future robotic laboratory design for solid-state synthesis.  

Figure 4.10c shows that our predicted precursors tend to synthesize target materials with 

higher purity than traditional simple oxide precursors. Many of our predicted ternary oxide 

precursors are unusual, such as LiPO3, LiBO2, LiNbO3 and more in Table 4.2—as these precursors 

do not appear from our previously text-mined database of 19,488 solid-state synthesis recipes.46 

Machine-learning algorithms for synthesis prediction trained on literature datasets would therefore 

be unlikely to predict our suggested precursors here. This highlights the limitations of machine-

learning algorithms in predicting new opportunities in synthesis parameter space, outside the 

constraints of our anthropogenic biases in chemical reaction data.47,22  
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Our results show that the success of a reaction was not correlated to the crystal structure or 

chemistry of the target material—rather, it was primarily determined by the geometry of the 

underlying convex hull, as well as the magnitude of the thermodynamic driving force. The success 

of our precursor selection principles is somewhat surprising, considering we evaluate precursor 

selection using only the DFT-calculated convex hull—which does not account for temperature-

dependent effects such as vibrational entropy or oxide decomposition; neglects kinetic 

considerations such as diffusion rates and nucleation barriers,32 and has known errors in DFT-

calculated formation energies.48  

Here we rationalize with order-of-magnitude energy arguments why, despite many 

simplifying assumptions, the DFT-calculated thermodynamic convex hull retains predictive power 

in identifying effective precursors. (Chapter 4.4.2) First, entropic contributions can generally be 

neglected because the ΔG of an oxide synthesis reaction is usually dominated by the ΔH 

contribution, rather than the TΔS contribution. Figure 4.11 compiles a list of 100 experimental 

ternary oxide reaction energies, and shows that at 1000K the magnitude of |ΔG| for reactions are 

~200 meV/atom, whereas the |TΔS| contribution is only ~15 meV/atom. In 60% of the reactions, 

|TΔS|/|ΔG| < 10%, except in cases where |ΔG| <100 meV/atom, in which case TΔS can be 

comparable in magnitude to ΔH. We validate these arguments in Figure 4.12, showing that 

temperature-dependent free-energies are negligibly different than reaction enthalpies. 49  The 

dominance of ΔH over TΔS in oxide synthesis reactions is due to the irreversible exothermic nature 

of reactions of the form A + B → AB; as opposed to first-order phase transitions like melting or 

polymorphic transformations, where ΔH ~ TΔS. This assumption relies on both the reactants and 

products being solid phases—for reactions that evolve gases the reaction entropy is approximately 
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ΔS = 1 eV/atom/1000K; meaning that higher temperature largely favors the reaction direction with 

more moles of gas.  

Second, ternary convex hulls are often skewed such that certain hull directions are much 

deeper than others, such as the Li2O-B2O3 and BaO-B2O3 directions illustrated on the Li2O-BaO-

B2O3 convex hull in Figure 4.1 (more examples in supplementary information of Jiadong Chen’s 

paper41). On a high-dimensional phase diagram, there are many combinations of precursor pairs 

that can slice through a target phase. Even an approximate convex hull, with systematic DFT 

formation energy errors of 25 meV/atom,48,8 can largely capture the relative depths of the convex 

hull in various compositional directions, as well as the complexity of the hull arising from 

competing phases. Importantly, DFT is well-poised to capture the very stable phases, which are 

low-energy thermodynamic sinks to be avoided when designing the reaction isopleths between 

pairs of precursors.  

Finally, although we do not explicitly calculate kinetics here, the magnitude of the 

thermodynamic driving force is a good proxy for phase transformation kinetics, as ΔGreaction 

appears in the denominator of the classical nucleation barrier, as supersaturation in the JMAK 

theory of crystal growth, and as dμ/dx in Fick’s first law of diffusion.50 Because we aim to evaluate 

the relative reaction kinetics of different precursors, rather than absolute kinetics, we can usually 

compare thermodynamic driving forces between different precursor sets without explicitly 

calculating diffusion barriers51 or surface energies for nucleation and growth analyses.52,53.  

However, there are limits to this assumption. Figure 4.10d shows the reaction energy and 

inverse hull energy for all 35 reactions using predicted precursors, among which 3 of the 

unsuccessful syntheses are marked with a cross, and 4 red markers indicate conditions where the 

traditional precursors outperformed the predicted precursors. In cases where our predicted 
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precursors were less successful (red box in Figure 4.10d), the reaction energy landscapes were 

shallow with ΔEreaction > -70 meV/atom, and inverse hull energies of ΔEIH > -50 meV/atom. 

Because these driving forces are on the order of kBT at solid-state synthesis temperatures (~1000K), 

unanticipated kinetic processes may become rate-limiting and disqualify our thermodynamic 

driving force arguments. These counterexamples provide valuable ‘failed synthesis’ results54 to 

quantify bounds where our precursor selection principles offer less certainty of success, and can 

serve as soft cutoff energies for future algorithms for solid-state precursor prediction—although 

we note that many reactions within this energy cutoff can still be successful as shown in our 

experiments. 

Finally, additional opportunities to design large ΔGreaction include leveraging metathesis 

reactions,31,29 for example of the form 2 NaCrS2 + MgCl2  MgCr2S4 + 2 NaCl;55 where reactions 

can be thermodynamically driven by the formation of a stable salt byproduct. Because there are a 

wide variety of opportunities to select potential byproduct phases, metathesis reactions represent 

a rich design space to enhance the thermodynamics, and thereby the kinetics, of solid-state 

reactions. 

4.4.1 Metastable materials synthesis efficacy 

In this work, we also considered 4 target materials that are calculated in DFT to be 

metastable relative to the convex hull, meaning they have an energy above the hull. These 

metastable materials are listed in Table 4.3. We aimed to investigate if the materials were 

calculated to be metastable, if they were still synthesizable using predicted precursors. We chose 

LiZnBO3, which is calculated in DFT to be metastable with respect to our predicted precursors 

ZnO + LiBO2. We also chose LiNbWO6, KTiNbO5, and Li3Y2(BO3)3, which are metastable with 

respect to decomposition products that are not our precursors. We hypothesized that by starting 
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with precursors that are in a different ‘compositional direction’, we might be able to synthesize 

these metastable phases. To determine the predicted precursors for these metastable compounds, 

we constructed artificial entries for these compositions, but with an energy slightly smaller than 

the existing convex hull energy at that composition. For this work, we chose an arbitrary value of 

ΔEhull = –0.01 eV. 

Of these four systems, we obtained a reasonably high target yield for LiZnBO3, whereas 

the three metastable targets received low yields from both the predicted and traditional precursors. 

All three metastable materials were synthesized with low sample purity, ostensibly within the noise 

of the XRD characterization method. This illustrates that our algorithm is better suited to predict 

precursors for target materials that are convex hull stable, rather than metastable.  

Table 4.3: Target materials that are not thermodynamic stable on the convex hull. 

Target Energy above hull 
(meV/atom) Decomposition products 

Target phase fraction 
From predicted 

precursors 
From traditional 

precursors 
LiZnBO3 8 1/3 ZnO + 2/3 LiBO2 0.52 0.15 
LiNbWO6 10 LiNb3O8 + Li2WO4 + WO3 0.17 0.05 
KTiNbO5 1 K4Nb6O17 + K2Ti6O13 0.18 0.27 

Li3Y2(BO3)3 39 19/34 Li6Y(BO3)3 + 15/34 YBO3 0.17 0.12 
 

4.4.2 Comparison of energy contribution between TΔS and ΔH 

In this section, we compared the magnitude of the entropy contribution, TΔS, to the overall 

ΔG of a reaction.  We used experimental thermochemical data queried through Materials Project 

API in the ‘Experimental Data’ field. This experimental thermochemical data originated from 

NIST JANAF, 56  Materials Thermochemistry, 57  and the CODATA Key Values for 

Thermodynamics.58 We collected entropy (S) and formation enthalpy (Hf) data at 298K for all 

convex hull stable binary and ternary oxides among 49 common metal elements. Then, using the 

selected binary metal oxides as precursors, we generated all possible pairwise combination 

https://materialsproject.org/materials/mp-2133
https://materialsproject.org/materials/mp-14232
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reactions for the formation of the selected ternary oxides, resulting in exactly 100 reactions total. 

The energy contributions of TΔS, ΔHf, reaction formation energy ΔG, are plotted in Figure 4.11a, 

4.11b, and 4.11c, respectively. The ratio of the magnitude of the entropy contribution to total 

reaction energy magnitude (|TΔS / ΔG|) was also calculated for each individual reaction, shown in 

Figure 4.11d.  

 Altogether, Figure 4.11 indicates that for the majority of reactions, the energy contribution 

of entropy at 1000K is considerably smaller in magnitude than the total reaction energy. By 

choosing a characteristic synthesis temperature of 1000K, the distribution peak of |TΔS| term is 

~15 meV/atom, while that of ΔH term is -185 meV/atom. Specifically, 60% of reactions have |TΔS 

/ ΔG| values less than 0.1. Among the remaining 40% of reactions where |TΔS / ΔG| values are 

greater than or equal to 0.1, approximately half have a relatively low reaction formation energy 

ΔG (~100 meV/atom). Therefore, in the context of oxide synthesis reactions, entropic 

contributions are usually negligible due to the dominant contribution of the enthalpy ΔH to the 

free energy ΔG. 

 

Figure 4.11: Histograms of a. |TΔS|, b. ΔH, c. ΔG, d. |TΔS/ΔG| of 100 reactions which uses binary metal oxides as 
reactants to synthesize ternary metal oxides in Materials Projects database. The entropy and enthalpy data we use is 
experimental data in room temperature (298K). The synthesis temperature T we choose is 1000K. 
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To explicitly illustrate that the temperature-dependent reaction free energies are negligible, 

Figure 4.12 shows the candidate pairwise reaction free-energies for LiZnPO4, BaLiBO3, and 

SrLiBO3 as a function of temperature. BaLiBO3 and LiZnPO4 are the systems from Figures 1 and 

2 of the manuscript. These free-energy calculations were conducted utilizing the 

GibbsStructureComputedEntry module within the Pymatgen package, where Bartel et al. 

[Manuscript Reference 45] developed a physical descriptor to predict temperature-dependent 

Gibbs free energy using the SISSO (Sure Independence Screening and Sparsifying Operator) 

machine-learning approach. This module takes both materials structure and temperature as input 

parameters, and calculates the temperature-dependence of the free energy.  

Figure 4.12 shows that as the temperature elevates from 0 to 1000K, the free energy of 

these solid-state reactions deviate from the reaction enthalpy by less than 10%. The magnitude of 

the TΔS contribution is much smaller than the difference in reaction enthalpies between the 

different precursors. Our result here reinforces the dominance of the enthalpy contribution in 

overall reaction energy, and supports the validity of our assumption in not accounting for the 

temperature-dependent free-energy in this study. 

 

Figure 4.12: The relationship between reaction energy and temperature for three distinct pairwise reactions of 
LiZnPO4 system. 

We note that this assumption is relevant in because we have specifically chosen reactions 

in this study where the reactants and products are solids. When volatile gases are involved in a 
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solid-state reaction, the temperature dependence of the reaction is largely dominated by whether 

the reactant or product side has more moles of gas, which contribute an entropy of approximately 

ΔS = 1 eV/atom/1000K. (Note that by this normalization, 1 molecule of O2 gas contributes 2 

eV/atom at 1000K). 

4.4.3 Failed synthesis: Summary/discussion 

For a number of compounds, neither set of precursors produced an XRD signal matching 

the target crystal structure, and as such these synthesis attempts are classified as failures based on 

the XRD quantification method used in this study. While it is often not possible to determine the 

exact reason for an unsuccessful synthesis, there are several common factors that can result in 

failed synthesis even for a thermodynamically stable target: 

1) Insufficient synthesis temperature 

• If the calcination temperature is insufficient, some of the precursors may not fully 

decompose and react, and as a result does not form a uniform product. 

• Likely applies to KTiNbO5 and Li3Y2(BO3)2 in the present study. 

2) Evaporation of precursors 

• Some precursors have significant vapor pressure and are prone to being lost to evaporation 

during calcination, resulting in deficiency of the affected components. 

• Well known to occur with Li, P, B precursors. 

• The great majority of studies on Li-oxide synthesis for example add excess Li precursor, 

most often 10%, to hedge against evaporation.  We did not do this here, since it was difficult to 

apply this uniformly over such a broad chemical space, including Na- and K- based compounds.  

• It is hard to determine a prioi which samples evaporation could apply to here – usually this 

will affect purity more than overall success/failure, but it can be very impactful in cases where (a) 
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formation of the target phase requires high temperature and/or longer times, or (b) there is a small 

composition window for the target phase. 

3) Excessive oxidation during synthesis 

• For all ASTRAL synthesis experiments presented in this study, calcination was performed 

in ambient air, and as such each element will attain the most energetically favorable oxidation state 

based on reaction with oxygen gas at high temperature. 

• For materials containing transition metals, this can result in incorrect oxidation states 

during synthesis, preventing formation of the target phase. 

• Likely applies to Li3V2(PO4)3 – in the literature report, a reducing atmosphere (Ar + H2) is 

used for the final synthesis reaction. Also, V has many available oxidation states (+2, +3, +4, +5), 

and for the target material we need V3+, so it is reasonable to suspect that V5+ formation could be 

the cause of the failure. 

4) Amorphous synthesis products 

• ASTRAL classifies synthesis outcomes based on powder XRD, and so any amorphous 

phases present are not detected or used for quantification.  This can result in an apparently failed 

synthesis, even in cases where the sample has formed a homogeneous mixture of the correct 

composition. 

• For such glass forming compositions, successful crystallization requires controlled cooling, 

typically with a period of annealing at an appropriate temperature to nucleate and grow crystals. 

• Likely applies to KLi(PO3)2 and NaSiBO4 in the present study, as each (1) contains a high 

proportion of glass-forming elements, (2) each formed fully fused samples with a glassy 

appearance, and (3) despite adequate yield of reaction product, almost no crystalline peaks were 

observed on XRD. 
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4.5 Outlook 

Synthesis science is poorly understood, but new theories can be developed by examining 

falsifiable predictions through empirical validation. In this work, we hypothesized several 

principles to identify superior precursors for high-purity synthesis of multicomponent oxides. We 

argued that in high-dimensional phase diagrams with skewed energy landscapes, there is an 

opportunity to find precursors that are both high in energy and have compositions that circumvent 

low-energy undesired kinetic byproducts. Using a robotic synthesis laboratory, we validated this 

hypothesis over 35 target materials with diverse crystal chemistries, producing in this one study as 

many experimental results as a typical review paper might survey.  

This work heralds a new paradigm of data-driven experimental synthesis science, where 

the high throughput and reproducibility of robotic laboratories enable a more comprehensive 

interrogation of synthesis science hypotheses. This exciting robotic platform can be directed to 

investigate further fundamental questions, such as the role of temperatures and reaction times in 

ceramic oxide synthesis. As we use these robotic laboratories to verify human-designed hypotheses, 

we will deepen our fundamental understanding of the interplay between thermodynamics and 

kinetics during materials formation. Simultaneously, this scientific understanding will drive the 

development of physically-informed AI synthesis planning frameworks to enable truly 

autonomous materials processing and manufacturing. 
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Chapter 5 Conclusion and Outlook 

Materials design, discovery, and optimization have been significantly accelerated by high 

throughput computation techniques such as density functional theory, molecular dynamics, Monte 

Carlo simulation, phase field simulation, machine learning, artificial intelligence, data mining, and 

big data analytics. The rapid analysis and computation of large volumes of data using computer 

technology facilitate the utilization of these advanced computational tools. However, looking back 

to 150 years ago, during an era devoid of such powerful computational resources, Gibbs and 

Maxwell constructed the first volume-entropy-Helmholtz free energy phase diagram manually, 

laying the groundwork for thermodynamics as the cornerstone of materials science. Now is an 

opportune moment to integrate classic thermodynamics more with modern computational 

resources, leveraging their capabilities to advance the field further. 

We conclude this dissertation by re-iterating Gibbs’ first sentence in thermodynamics: 

“Although geometrical representations of propositions in the thermodynamics of fluids are in 

general use, and have done good service in disseminating clear notions in this science, yet they 

have by no means received the extension in respect to variety and generality of which they are 

capable.” Despite a rich 150-year-old history, equilibrium thermodynamics still has many exciting 

opportunities for fundamental development.  

Altogether, this dissertation provides a foundation to construct, navigate, and interpret new 

varieties of phase diagrams, with thermodynamic axes beyond temperature, pressure, and 

composition, with as many axes as needed to capture all the essential physics of the thermodynamic 
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system. We have explored chemical potentials, pH, redox potential, particle size, impurity 

composition, and ion concentration, in the contexts of both solid-state and solvothermal synthesis 

across different solvent types, as well as for single-phase stability regions and relative stability 

across phase boundaries. 

As is often the case with thermodynamics, it is not strictly necessary to have perfect 

thermochemical data before we can derive meaningful scientific insights, or formulate promising 

engineering decisions. Most importantly, one needs a robust understanding of the geometric 

structure of thermodynamics. If one can visualize and anticipate the underlying geometry of free 

energy surfaces, as well as the conditions of heterogeneous equilibrium, we will altogether 

eliminate confusion and strengthen our intuition for materials design. Hopefully, this will enable 

us to better exercise our creativity to design the complex functional materials that drive modern 

technology.  

While the thermodynamic framework presented in this thesis holds promise for tackling a 

wide range of material synthesis challenges, there remain numerous unresolved questions that fall 

outside the purview of this dissertation. Addressing these inquiries would necessitate further 

methodological or theoretical advancements. Below, I outline several of these systems: 

- Materials’ extensive molar quantities are typically not fixed values; instead, they are often 

related to conjugate or other intensive variables. For example, in real life, metal oxides usually 

have a range of compositions, and the magnetic moment of a material can change in response 

to externally applied magnetic fields. The half-space intersection method that used in this 

dissertation is inadequate for handling this complex conjugate relationship. Is there a 

computationally efficient way to incorporate this complex relationship into high-dimensional 

phase diagrams? 



 152 

- In Chapter 4, while we optimize the selection of precursors to increase phase purity, the 

determination of reaction temperature remains a trial-and-error process. What is the underlying 

mechanism behind the effect of reaction temperature on material formation? Can we predict 

the optimal reaction temperature and enhance our understanding of material science, rather 

than relying solely on machine learning algorithms? 

- The computation of thermodynamic data in different solvents remains a significant challenge 

in constructing phase diagrams for solvothermal synthesis in non-aqueous solvents. Currently, 

most solubility and formation energy data are available primarily for aqueous systems. The 

experimental data and computational tools needed to calculate ion and solid energies in non-

aqueous systems are either underdeveloped or still in need of further development. 

- In experiments, how can we better control intensive variables, such as the chemical potential 

of metal elements or high magnetic fields? Our calculations indicate that most magnetic 

materials do not respond effectively until exposed to magnetic fields of hundreds of Teslas. 

However, achieving a 10 Tesla magnetic field in experiments is already considered very high. 

- What new insights do automated labs bring to science? Without a deeper understanding of 

material formation, automated labs might simply accelerate the trial-and-error process, 

potentially leading to inefficient use of resources. 
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