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Abstract 

Almost all eukaryotic organisms, from microscopic algae to humans, are host to closely 

associated communities of microorganisms, called microbiomes, that are important for host 

health. Host-microbiome interactions constitute a critical ecological process that impacts the 

functions of both the host and the microbial community, yet much remains to be learned about 

the nature, mechanisms, and impacts of these interactions. This dissertation aims to extend the 

current understanding of how host-microbiome interactions influence microbiome assembly by 

using phytoplankton as a model host system. It does so by dissecting the effects of innate host 

selection and host-microbiome feedback on phytoplankton microbiome assembly. Innate host 

selection implies that the microbiome is formed solely based on the phytoplankton-produced 

dissolved organic matter (DOM) composition as innately produced by the host in function of 

host species or physiological state. Conversely, host-microbiome feedback refers to how the 

microbiome's presence modifies host DOM production, thereby influencing ecological selection 

applied by the host on the microbiome. Throughout this dissertation, I utilized the freshwater 

microalga Chlorella sorokiniana and its associated microbiome as a model system. In Chapter 2, 

focusing on the overall microbiome impacts, I found that innate host selection and host-

microbiome feedback led to divergent microbiome compositions while collectively maintaining 

microbiome richness. However, the host-microbiome feedback reduced microbiome evenness. 

These findings inspired the hypothesis that the two effects selected for different microbes: innate 

host selection favored passive symbionts thriving on host-derived DOM, whereas the host-



 xi 

microbiome feedback favored active symbionts capable of triggering direct host-microbe 

interactions to their advantage. To test this hypothesis, Chapter 3 identified two bacterial species 

from C. sorokiniana's microbiome that thrived better under different treatments: (i) solely innate 

host selection, representing passive symbionts, and (ii) in the presence of host-microbiome 

feedback, representing active symbionts. Further analysis of metabolic dynamics revealed that 

the active symbiont adjusted its metabolic status significantly between treatments, potentially 

synthesizing chemical signals to facilitate direct interactions with the host. Additionally, the 

host's gene expression profile indicated a higher expression of metabolic functions related to the 

biosynthesis of plant-microbe mutualistic interaction compounds (e.g., flavonoids) only when 

co-cultured with the active symbiont. In Chapter 4, expanding into environmental factors, I 

investigated how nutrient supply affects the impacts of innate host selection and host-

microbiome feedback on microbiome assembly using a microbiome of seven phytoplankton-

associated bacteria. The results showed divergent microbiome compositions between the two 

effects and among different nitrogen supplies. Particularly, the presence of host-microbiome 

feedback revealed a specific bacterium hindering host growth, resulting in only two bacterial 

species establishing the microbiome at the lowest nitrogen level. However, this antagonistic 

bacterium was suppressed by the host at the highest nitrogen level, allowing for a more diverse 

microbiome (six species). Overall, this dissertation demonstrated that microbiome assembly is 

shaped by both host selection and host-microbiome feedback, with the two effects selecting for 

different microbiomes that can be influenced by the external nitrogen supply levels.
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Chapter 1 : Introduction 

Most eukaryotic organisms harbor a specific collection of microbes that is distinct from 

the microbial communities in their surrounding environment. Emerging studies have shown a 

strong association between microbiome composition and host fitness in response to changing 

environments and competition, underscoring how the shaping of the microbiome would 

influence the health and survival of the host (Bjorbækmo et al. 2020; Apprill 2017; Hou et al. 

2022; Voolstra et al. 2024; Cirri and Pohnert 2019). Host-microbiome interaction contribute to 

the biodiversity in natural ecosystems by creating unique ecological niches that sustain microbes 

with diverse symbiotic strategies and functions (Seabloom et al. 2023; Weiland-Bräuer 2021). 

This helps address classic ecological questions such as "How do ecosystems harbor diverse 

species?" and "How do species coexist?" (Sutherland et al. 2013; Kremer and Klausmeier 2013). 

From an evolutionary perspective, the co-evolution between hosts and specific microbes results 

in the species-specific association that determines host selection on its microbiome (Koskella and 

Bergelson 2020; O’Brien et al. 2019). Therefore, understanding how host-microbiome 

interactions shape the microbiome contributes to ecological and evolutionary studies, as well as 

applications for promoting and maintaining the health of most eukaryotic organisms. However, 

our understanding of host-microbiome interactions in microbiome assembly remains limited, 

especially for host organisms beyond humans and animals. 

 

The important role of phytoplankton microbiome 
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My dissertation focuses on the host-microbiome system of phytoplankton. Phytoplankton 

are the foundation of aquatic ecosystems by being the principal primary producers (Field et al. 

1998). Phytoplankton house their microbiomes in an area surrounding their cell(s), either 

attached or not, and this habitat is called the phycosphere. The dissolved organic matter (DOM) 

phytoplankton are known to release and serves as a rich nutrient and energy source for these 

microbes (Dow 2021; Seymour et al. 2017). In addition to its implicit importance, the 

phytoplankton-microbiome system can also serve as a model to understand host-microbiome 

systems in which the microbiome is shaped through host secretions, and where the microbiome 

is exposed to an open environment. Examples are plant microbiomes, skin microbiomes, and 

coral microbiomes (Voolstra et al. 2024; Byrd, Belkaid, and Segre 2018; Müller et al. 2016).  

Contrasting bacteria-free phytoplankton to the same phytoplankton with a microbiome 

recruited from natural bacterial communities has shown that the microbiome affects 

phytoplankton competition fitness (Jackrel et al. 2020), growth rate and carrying capacity (Lian, 

Baker et al. 2022), adaptation to the changing environment (Ahern et al. 2021; Costas-Selas et al. 

2024; Astafyeva et al. 2022) , and the chemical compounds of phytoplankton cells (Fuentes et al. 

2016; Krohn et al. 2022) exemplifying the significant influence of microbiomes on their 

phytoplankton hosts. Given their important role in natural ecosystems and ease of use in 

laboratory and field experiments, phytoplankton has a long history as a model system in ecology, 

including for understanding how the microbiome affects host physiology (Olofsson et al. 2022; 

Costas-Selas et al. 2024) and interactions between hosts (Jackrel et al. 2020). Considering the 

important role of phytoplankton in food web and nutrient cycle functioning (Field et al. 1998; 

Litchman, Edwards, and Klausmeier 2015), and the impact of the microbiome on phytoplankton 

functioning, a better understanding of what shapes phytoplankton microbiome composition is 
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important. Such insights may also have practical implications as phytoplankton are used as a 

feed source, biofuel precursor, potential medicine source, and agent in wastewater treatment. 

Indeed, a variety of studies have pointed out the impact of the microbiome on outcomes in 

industrial applications (Lian et al. 2018; Krohn et al. 2022; Morris et al. 2022). 

 

Phytoplankton-bacteria interactions and its impact on phytoplankton microbiome assembly 

The center of phytoplankton-bacteria interaction is the exchange of metabolites. 

Phytoplankton fix carbon dioxide from the atmosphere and release part of the biomolecules they 

synthesize in the form of DOM to the environment. There it serves as a critical carbon and 

energy resource for microbes (Seymour et al. 2017). In return, bacteria inhabiting the 

phycosphere and using DOM, can re-mineralize phytoplankton waste products, regenerating CO2 

and dissolved nutrients in a form available for phytoplankton uptake. In addition, bacteria can 

provide a range of growth factors such as vitamins and growth hormones, antibiotics to suppress 

other bacteria, as well as factors that negatively impact the host (Cirri and Pohnert 2019; 

Ramanan et al. 2016). The composition of the DOM determines which microbial groups can be 

established in the phytoplankton microbiome based on bacterial ability to import and metabolize 

the DOM. Phytoplankton DOM composition varies among species and genotypes (Ahern et al. 

2021; Cordone et al. 2022; Jackrel et al. 2021a; Becker et al. 2014) and can change during 

different growth phases and environmental stressors (Thornton 2014; McNabney et al. 2023; 

Aigner et al. 2022). Emphasizing the importance of DOM composition for microbiome 

assembly, varying microbiome composition was also found to be associated with these 

phytoplankton biological properties (Sison-Mangus et al. 2016; Costas-Selas et al. 2024). These 
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studies suggest that intrinsic host factors dominate the process of microbiome assembly to 

support the host’s needs.  

However, the microbiome itself can impact microbiome composition as well. 

Specifically, the presence of some specific microbes often plays a disproportionate impact on the 

microbiome composition. The most explicit evidence of microbiome-directed microbiome 

assembly came from examples in which the presence of a microbiome triggered the 

phytoplankton host to alter its physiology and select beneficial bacteria over other microbial 

members (Shibl et al. 2020; Blifernez-Klassen et al. 2021). This suggests that some microbes can 

alter host-mediated selection of the microbiome. In the phytoplankton-bacteria system, these 

specific microbes may include members with the ability to synthesize plant growth hormones, 

cofactors (e.g., siderophores and vitamins), or other chemical signaling molecules (Dow 2021; 

Droop 2007; Seymour et al. 2017; Zhu et al. 2022; Cirri and Pohnert 2019). These microbes do 

not rely on phytoplankton DOM that is innately produced by the host in the absence of bacteria, 

the composition of which depends solely on phytoplankton biological properties. Instead, these 

groups of microbes exhibit a direct interaction with the phytoplankton with signaling molecules, 

triggering the emergence of host-microbiome feedback, which leads to a modified composition 

of the microbiome to their benefit (Shibl et al. 2020; Olofsson et al. 2022). 

While studies focused on both innate host control and to a lesser extent host-microbiome 

feedback have been carried out, we lack studies dissecting their impact on microbiome assembly 

simultaneously. It is important to understand the interplay between these two effects, because 

they appear to select for different functional groups of microbes that can lead to different 

microbiome compositions and functions. Moreover, each effect may respond differently to a 

changing environment and thus a better understanding of the various forces shaping microbiome 
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assembly is important to predict the implications of a changing environment. By contrasting 

these two forces in microbiome assembly, we can start to understand the mechanisms that 

underpin host-microbiome interactions, which opens the door to better ways to manage 

microbiomes and their impacts on their hosts. We presume that innate host selection would favor 

bacteria able to consume innately produced host DOM while the host-microbiome feedback 

effect would select for those microbes with the ability to synthesize secondary metabolites (e.g., 

hormone and vitamins) and other signaling chemicals to interact with the phytoplankton host. 

Taking advantage of the planktonic feature of phytoplankton, innate host selection can be 

separated from host-microbiome feedback by separating bacteria-free phytoplankton cells from 

their spent medium that is rich in the phytoplankton-produced DOM. This can be challenging in 

the other systems for which our system serves as a model. 

Finally, most host-microbiome interaction studies focus either on specific pairwise host-

microbe interactions with detailed physiological and metabolic understanding, or on the broader 

impact of various factors on the whole microbiome taxonomic composition but often without 

delving into the underlying mechanisms (Mars Brisbin et al. 2022; Droop 2007; Dow 2021). 

Integrated studies that bridge the linkage between populations and complex communities, as well 

as between selection on microbiome taxonomy and functions are needed. 

 

The conditional host-microbe interactions 

Determining how host and microbe interact is one of the keys to understanding its impact 

on microbiome formation; however, host-microbe interactions can be context-dependent (Gould 

et al. 2018; Sharp and Foster 2022). That is, the kind of host-microbe interactions (e.g., 

mutualistic, agnostic, or commensalism) and the strength and tightness of the interactions can be 
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altered by other factors, such as the physiological state of the partners (Wang et al. 2015), and 

the change in environmental conditions (Cheng, Zhang, and He 2019; Ahn and Hayes 2021). 

This increases the challenge of predicting the microbiome composition, especially in dynamic 

natural systems. Studies on the impact of environmental change on host-microbiome interactions 

and microbiome formation are merging, particularly in the context of human-caused global 

change. In the phytoplankton microbiome system, some research suggests that elevated 

temperatures enhance the mutualistic relationship between phytoplankton and bacteria (Arandia-

Gorostidi et al. 2022). Conversely, other studies indicate that warming disrupts these mutualistic 

indications due to nutrient limitations caused by increased algal bloom formation under warmer 

conditions (Cordone et al. 2022). Nutritional status also plays a critical role in shaping 

phytoplankton-bacteria interactions. Mutualistic phytoplankton-bacteria relationships are 

ubiquitous in oligotrophic environments, where such interactions confer higher fitness for 

survival (Hernandez et al. 2009; Gonzalez and Bashan 2000). Conversely, limited nutrition can 

lead to competition between phytoplankton and bacteria (Cao et al. 2020; Bertrand et al. 2015), 

while strong mutualistic interactions are observed under high-nutrient conditions (Danger et al. 

2007; Ramanan et al. 2016). The environmentally triggered shift in phytoplankton-bacteria 

interaction could therefore have different impacts on innate host selection and host-microbiome 

feedback, and how each of them shapes the microbiome composition under changing 

environmental conditions. Namely, innate host selection would be more affected by the direct 

environmental effect on the host and its produced DOM composition, while the host-microbiome 

feedback involves shifts in the resulting intrinsic host selection, shifts in the composition of the 

environmental microbiome, and shifts in the biotic interactions in function of changing 

environmental conditions. 
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Overview of dissertation 

My dissertation explored the impact of two host-microbiome interaction effects on both 

whole microbiome assembly and selection on specific functional groups of bacteria, as well as 

considering their impact in the context of a variable environment.  

In Chapter II, I investigated whether innate host selection and host-microbiome 

feedback effects exhibit the same or different impact on microbiome assembly. Specifically, I 

exposed the phytoplankton microbiome to varying degrees of the relative impact of these two 

effects and examined the consequences of microbiome taxonomic composition and diversity. In 

Chapter III, I focuses on the interactions of phytoplankton hosts and two bacterial symbionts 

with distinct growth patterns under innate host selection and host-microbiome feedback effect. I 

examined both phytoplankton and bacteria physiological (growth) and metabolic status (gene 

expression) to explore evidence for the underlying mechanism of each effect selected for the 

different functional groups of microbes. Finally, in Chapter IV, I investigated the impact of the 

interplay between nutrient supply and two host-microbiome interaction effects on shaping the 

composition of a synthetic microbiome, which was composed of seven phytoplankton-associated 

bacteria, as well as how community-level dynamics could be predicted by either the fitness of the 

individual bacteria or their individual fitness effect on the host.   
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Chapter 2 : Dissecting Host-microbiome Interaction Effects on Phytoplankton Microbiome 

Composition and Diversity1      

Abstract 

Phytoplankton and their associated microbiomes of heterotrophic bacteria are 

foundational to primary production, energy transfer, and biogeochemical cycling in aquatic 

systems. While it is known that these microbiomes are shaped by host-released dissolved organic 

matter (DOM), the extent to which dynamic phytoplankton-bacteria interactions shape bacterial 

community assembly remains to be examined. Here, we investigated the effects of two 

mechanisms in host-microbiome interactions on phytoplankton bacterial microbiome formation: 

(i) innate host selection and (ii) host-microbiome feedback. For the former, phytoplankton-

produced DOM composition is based solely on the host’s properties (species or physiological 

state); for the latter, the presence of the microbiome modifies host DOM production. The 

microbiome of Chlorella sorokiniana was extracted and exposed to six ratios of the two effects. 

We found that microbiome composition changed along with the six host-microbiome feedback 

versus innate host selection ratios, with the highest compositional distance between communities 

under the strongest and the weakest ratio of the two effects. This indicates that each mechanism 

selects for different bacterial species. In addition, our findings showed that when both selective 

 
1Published as: Yang JW, Denef VJ. Dissecting host‐microbiome interaction effects on 

phytoplankton microbiome composition and diversity. Environ Microbiol 2024; 26(2):e16585. 
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forces were applied, it led to a higher community richness, while host-microbiome feedback 

alone reduces community evenness due to its strong species-specific selection. 

 

Introduction 

Host-microbiome interactions are ubiquitous and critical to both host health and the 

functioning of the associated bacterial microbiome. In terrestrial systems, evidence is mounting 

that bacterial microbiomes can fundamentally change plant or animal host fitness (Lau and 

Lennon 2012; Rosshart et al. 2017), physiology and behavior (Coleman-Derr and Tringe 2014; 

Sampson and Mazmanian 2015), and even competitive and trophic interactions (Oliver, Smith, 

and Russell 2014; Siefert et al. 2018). In the aquatic systems we focus on, bacterially dominated 

microbiomes of phytoplankton are a key system of interest as they modify phytoplankton 

productivity, competitive interactions, and survival (Cirri and Pohnert 2019; Jackrel et al. 2021; 

Schmidt et al. 2020; Seymour et al. 2017). It is important to consider the impact of interactions 

between phytoplankton and their microbiomes on plankton community assembly as (1) the role 

of phytoplankton as primary producers means effects of host-microbiome interactions on host 

community dynamics can cascade through the ecosystem, and (2) bacteria are the main driver of 

decomposition, nutrient dynamics, and energy flow (Azam et al. 1983), and as such any effects 

from phytoplankton-bacteria interactions on bacterial community assembly could lead to 

ecosystem-level impacts.  

Across all systems, while bacterial community assembly has been extensively focused on 

(Nemergut et al. 2013), our understanding of the impact of host-microbiome interactions on 

microbiome assembly remains limited, which we aim to address using phytoplankton-bacteria 

symbioses as our study system. At the center of the interactions between phytoplankton species 
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and their bacterial microbiomes is the exchange of metabolites. Phytoplankton produce and 

release dissolved organic matter (DOM) that sustains its microbiome as well as parts of the 

bacterioplankton community. Bacterial community composition shifts associated with changes in 

phytoplankton community composition, species, genotypes, and bloom phase (Tada et al. 2017; 

Zhou et al. 2018; Pinhassi et al. 2004; Kimbrel et al. 2019) have been suggested to relate to 

differences in phytoplankton-produced DOM availability. These field observations have been 

supported by laboratory experiments that showed a bacterial community composition shift upon 

the introduction of different phytoplankton species or different phytoplankton-produced 

compounds (Tada et al. 2017; Fu et al. 2020; Kieft et al. 2021; Kimbrel et al. 2019). 

While host control is critical in shaping the bacterial community, it is also well-known 

that the bacterial microbiome can influence the production and composition of phytoplankton-

produced DOM. As indirect evidence, phytoplankton symbiotic bacteria were found to promote 

phytoplankton growth through synthesizing growth-promoting factors (e.g., siderophores, 

vitamins, and hormones) and increase phytoplankton nutrient availability via nutrient 

remineralization (Ramanan et al. 2016; Mühlenbruch et al. 2018). More direct evidence for this 

idea is that the presence of phytoplankton-associated bacterial isolates or a natural bacterial 

community can trigger a change in phytoplankton metabolism and the composition of DOM that 

they produce (Bruckner et al. 2008; Seyedsayamdost et al. 2011; Sison-Mangus et al. 2016; 

Uchimiya et al. 2022). Such changes in phytoplankton DOM composition also led to the 

selection of beneficial bacteria (Shibl et al. 2020). In this case, a feedback loop between the host 

and the microbiome changes what the innately produced DOM’s effect on microbiome 

community assembly would otherwise have been. These results suggest that microbiomes may 

alter the ecological selection of their own community by interacting with the phytoplankton host.  
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Although both host selection that depends on the biological properties of the host (e.g. 

host species, genotypes, or growth phase) and the host-microbiome feedback (resulting from 

host-bacteria interactions) are often mentioned as important mechanisms in phytoplankton 

bacterial microbiome formation, we lack explicit tests examining the impact from each 

mechanism simultaneously. As a first step to address this question, we exposed a phytoplankton-

associated bacterial community, after dissociation from its host, to culture conditions at six 

degrees of initial host-microbiomes feedback effect relative to innate host selection (hereafter 

feedback-to-innate index) and investigated the consequences on the composition and diversity of 

the phytoplankton microbiome community. We used Chlorella sorokiniana and its microbiome 

as a model study system due to C. sorokiniana rapid growth, ease of cultivation, and extensive 

use for ecological and industrial research (Steichen et al. 2020; Ziganshina et al. 2022). We 

hypothesized that host-microbiome feedback and host-innate selection select different bacterial 

species, resulting in the phytoplankton microbiome having a different community composition in 

function of the feedback-to-innate index applied. This is because host-microbiome feedback 

would select for bacterial taxa that influence the host-produced DOM composition through direct 

host-microbe interactions, creating a feedback loop that alters bacterial composition, while host-

innate selection would favor strong competitors on the innately produced phytoplankton DOM. 

Furthermore, we aimed to identify the key phytoplankton-associated taxonomic groups that were 

more or less favored by the two ecological selection mechanisms. Finally, we predicted a higher 

alpha-diversity (richness, Shannon diversity, and evenness) under intermediate feedback-to-

innate indices as a result of a higher possibility of coexistence and more even composition for 

different bacterial functional groups (host-DOM influencer versus strong competitors on innate 

host-DOM).  
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Materials and Methods 

Feedback-to-innate manipulation experiment 

The axenic and xenic Chlorella sorokiniana culture (UTEX 2805) were rendered from 

2017 (Schmidt et al. 2020) and in 2018 (Jackrel et al. 2021), respectively. The first step was to 

extract the microbiome from the xenic C. sorokiniana culture we generated above (Step 1 in 

Figure 2.1). The starting xenic C. sorokiniana culture was subsampled and collected for 16S 

rRNA gene sequencing as the original phytoplankton microbiome (two replicates). Then, the 

extracted microbiome was inoculated to culture with six feedback-to-innate indices. To create six 

feedback-to-innate indices (Figure 2.1 Step 2), an axenic C. sorokiniana culture was separated 

into the axenic host (resuspended in fresh culture medium) and host-produced DOM (without 

phytoplankton cells). We then created six feedback-to-innate indices by mixing 0-ml and 50-ml, 

2.5-ml and 47.5-ml, 12.5-ml and 37.5-ml, 25-ml and 25-ml, 37.5-ml and 12.5-ml, and 50-ml and 

0-ml of the host cells only and the host DOM only medium, respectively; which represented the 

0%, 5%, 25%, 50%, 75%, and 100% feedback-to-innate index, respectively. The 100 % indicates 

the ratio relative to the strongest host-microbiome feedback (the highest initial host density) that 

we can create in this experiment. This is with an assumption that, with a given microbiome 

density, a higher axenic host density would lead to a stronger host-microbiome feedback effect 

due to a higher host-bacterial encounter rate (a higher host-bacteria density ratio). All treatments 

were conducted in five replicates. After microbiomes (extracted in Step 1) were inoculated into 

six feedback-to-innate indices (which were created in Step 2), we prevented the effects from 

accumulated metabolites, nutrient depletion, and ensured phytoplankton remained in the 

exponential growth phase during incubation, by transferring 5% of 2-day-old cultures to fresh 

medium with the same feedback-to-innate indices every other day until day 12 (Figure 2.1 Step 
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3). Fresh axenic C. sorokiniana cultures were prepared for creating fresh media at each of the six 

feedback-to-innate indices for each transfer to avoid any effects of DOM or cell storage. We note 

that in an effort to maintain the intended ratio of selective effects we reset media conditions 

every two days and set the initial phytoplankton density low enough so that phytoplankton 

remained in the exponential growth phase and did not reach steady state during the two-day 

period between condition resets (Figure SI 2.1). However, we acknowledge that consumption of 

innately produced DOM and phytoplankton growth likely increased host-microbiome feedback 

effects in the two days between condition resets. Similarly, some accumulation of DOM in the 

5% of the old culture that is used as the inoculum for the transfer, means we cannot achieve a full 

100% initial host-microbiome effect after the start of the experiment. Nonetheless, a gradient of 

effect ratios is maintained through the experiment. A total of 187 microbiome samples were 

collected, including the original xenic C. sorokiniana culture (before dissociation of the 

microbiome), a microbiome sample from each of the six feedback-to-innate indices at day 0, and 

180 samples from day 2 to day 12 (six feedback-to-innate indices with five replicates and 6 

collections). The detailed protocol of this experiment is provided in Appendix A: Supplementary 

information for Chapter 2.   

 

Sequencing and bioinformatics 

Each pellet was resuspended in 90-μl 1x PBS (0.2-μm filtered and autoclaved). We added 

5-μl lysozyme solution (50 mg/ml) and 100-ul Qiagen ATL buffer and incubated at 37 °C for 30 

min, followed by the protocol of the Qiagen DNeasy Blood & Tissue Kit Qiagen, Hilden, 

Germany). The extracted DNA samples were sent to the University of Michigan Center for 

Microbial Systems to carry out 16S rRNA gene library preparation and sequencing. The V4 
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region of the 16S rRNA gene was amplified with 515F/806R primers (Walters et al. 2016) and 

sequenced on a 2 x 250 Illumina MiSeq v2 run. RTA V1.17.28 and MCS V2.2.0 software were 

used to generate data. Raw fastq files were uploaded on NCBI sequence read archive with 

BioProject number PRJNA941033.  

Raw sequences were processed with DADA2 (Callahan et al. 2016) (with q2-dada2 

v1.20.0) by using the Quantitative Insights Into Microbial Ecology 2 (QIIME 2 v2021.11) 

pipeline (Bolyen et al. 2019). The primers were removed (the forward and reverse primers were 

trimmed at position 19 and 20, respectively), forward and reverse reads were trimmed at 

positions 220 and 160, respectively, where the mean quality score start to drop below 30, 

followed by errors correction, merging read pairs (at least 12 bases overlapped), removing 

possible PCR chimeras (consensus method), and generating the ribosomal amplicon sequence 

variants (ASVs) representative sequences and tables. We assigned taxonomy with a pre-trained 

Naive Bayes classifier that was trained on Silva 138 99% OTUs from 515/F806R region of 

sequences (Quast et al. 2013; Bokulich et al. 2018; Robeson et al. 2020). ASVs classified as 

“Bacteria_unclassified”, chloroplast, and mitochondrion were removed. The filtered 

representative sequences were then blasted against the NCBI database (blast+ v2.12.0; (Camacho 

et al. 2009)) and removed ASVs containing the keywords chlorella, mitochondrion, and 

chloroplast in the NCBI descriptions. Finally, we removed microbiomes with fewer than 2,000 

bacterial reads to ensure a robust analysis of community composition (for the majority of 

samples, the number of ASVs levels off at the 2,000-read cut-off in the rarefaction curve; Figure 

SI 2.2). This left 178 communities to be used in the subsequent analyses. 
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Statistical analysis 

The principal coordinate analysis based on Bray-Curtis distance across all microbiome 

communities was used to reveal microbiome composition change along the feedback-to-innate 

indices and times. The ASV table was subsampled 100 times at 2,000 reads to calculate the mean 

Bray-Curtis distances between each pair of communities. The first two axes of the Principal 

Coordinates Analysis (PCoA) ordination based on the Bray-Curtis distance were calculated, 

where the microbiomes of each sampling day were plotted in separate panels (Figure 2.2). The 

analyses above were calculated by using the “vegan” version 2.6-1 R package (Oksanen et al. 

2022). This allowed us to evaluate how microbiome compositional distance among different 

feedback-to-innate indices changed with time. To identify potential key bacterial species in the 

host-microbiome interactions, the Pearson’s correlation coefficient with Bonferroni correction on 

p-values between each ASV’s relative abundance versus increasing feedback-to-innate indexes 

was conducted. In the main results, we only included ASVs that were found in the original 

microbiome, with a significant response (Pearson’s correlation coefficient, p < 0.05) and more 

than 1% of total reads across 30 microbiomes collected on Day 12 after rarefaction at 2,000 

reads (equivalent to > 600 reads). Finally, for estimating community alpha diversity, the ASV 

table was rarefied at 2,000 reads to measure observed richness, evenness, and Shannon diversity 

indices. Richness was calculated by summing the number of ASVs for each sample. Evenness 

was calculated by dividing the inverse Simpson index by richness. The first and second 

polynomial regressions were conducted to evaluate the relationships of each diversity index 

versus the feedback-to-innate index. The first and second polynomial regression, Pearson 

correlation coefficient analysis were conducted by using the “stats” version 4.2.2 R package (R 
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Core Team, 2022). R scripts and data are provided online 

(https://github.com/jinnyyang/Feedback-Innate-exp). 

 

Additional experiment assessing the assumption made in the feedback-to-innate manipulation 

experiment 

An additional experiment was conducted due to two concerns from the feedback-to-

innate manipulation experiment. Firstly, increasing the feedback-to-innate index, which was 

manipulated by increasing the relative volume of washed phytoplankton host resuspended in the 

fresh medium to innate host DOM, not only increased the host-microbiome feedback effect but 

also the dilution of innate host DOM by fresh medium. Thus, any changes in microbiome 

composition may not be driven by the relative impact of the two tested mechanisms (host-

microbiome feedback versus innate host selection) but simply due to the dilution of innate host 

DOM. Therefore, we tested if microbiome assembly showed a divergent response to the dilution 

on innate host DOM with fresh medium versus increasing feedback-to-innate index. The 

microbiome was extracted from a xenic C. sorokiniana culture, inoculated into the following 

treatments, and followed by semi-continuous incubation (collected and transferred every two 

days): (i) 100% innate host DOM, (ii) two degrees of dilution on innate host DOM with fresh 

medium (50%-to-50% and 95%-to-5% of fresh medium-to-innate host DOM), and (iii) two 

feedback-to-innate indices (50%-to-50% and 95%-to-5% of washed phytoplankton-to-innate host 

DOM).  

Secondly, we used the original microbiome associated with our cultures of C. 

sorokiniana as a proxy of the microbiome when under natural host-microbiome interaction 

conditions. This was based on the assumption that the original microbiome, even after being 

https://github.com/jinnyyang/Feedback-Innate-exp
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dissociated from its host and growing under semi-continuous incubation, can return to its original 

assembly of the microbiome in the presence of an originally axenic C. sorokiniana culture. To 

test this assumption, we inoculated the microbiome extracted from the xenic C. sorokiniana 

culture into axenic C. sorokiniana and maintained it using the same semi-continuous incubation 

procedure as the main experiment to mimic regular host-microbiome interaction conditions. This 

means that every two days, 5 % of the culture was transferred to axenic C. sorokiniana growing 

in COMBO medium, but without the steps separating the phytoplankton from the innately 

produced DOM. An illustration of this additional experiment is shown in Figure SI 2.8.  

 

Results 

Phytoplankton microbiome compositional distance under six feedback-to-innate indices 

In Figure 2.1, the compositional distance between different feedback-to-innate indices 

increased with time and stabilized at Day 6, where the community composition showed a 

continuous change in the function of increasing feedback-to-innate indices, with a largest 

compositional distance between communities subjected to 100% and 0% feedback-to-innate 

indices. This pattern remained consistent at the end of the experimental period on Day 12. When 

comparing the microbiome compositional differences among feedback-to-innate indices on Day 

12, pairwise PERMANOVA showed no significant difference between microbiomes under 0% 

and 5% as well as 50% and 75% feedback-to-innate indices (pairwise PERMANOVA p-values = 

0.27 and 0.12, respectively; Table SI 2.1). In addition, we found significant differences between 

microbiomes between 25% and 50%, as well as between 25% and 75% feedback-to-innate 

indices (pairwise PERMANOVA p-value = 0.007 and 0.009, respectively; Table SI 2.1). When 

taking the original microbiome into account, we found that it was significantly different from 
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0%, 5%, and 100% feedback-to-innate indices (pairwise PERMANOVA p-value = 0.046, 0.045, 

and 0.042, respectively; Table SI 2.1) but not significant difference from microbiomes under 

25%, 50% and 75% feedback-to-innate indices (pairwise PERMANOVA p-value = 0.059, 0.053, 

and 0.059, respectively; Table SI 2.1). We acknowledge the potential effect of other 

photoautotrophs (e.g., cyanobacteria) on our findings. However, we only found a very small 

portion of reads from Cyanobacteria (only 5 reads across all samples after 2,000-read 

rarefaction). Hence, we assumed little impact from these photoautotrophs in our study. 

 

Identifying key taxa of the phytoplankton microbiome that were favored by host-microbiome 

feedback versus innate host selection 

Firstly, we analyzed the original xenic C. sorokiniana microbiome composition on the D5 

level classification based on the SILVA database (genus level). The top 10 taxa (summing across 

multiple ASVs with the same taxonomic classification) in the original host-associated 

microbiome after rarefaction at 2,000 reads were Ottowia (occupied 26.9% of reads), 

Sphingobacteriales NS11-12 marine group (13.9%), Novosphingobium (12.4%), 

Chitinophagaceae (8.2%),  Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium (hereafter 

A-N-P-R; 7.4%), Bacillales (7.1%), Methylophilus (4.4%), Cyclobacteriacea (3.7%), Neoasaia 

(2.6%), and Alphaproteobacteria (2.4%; Figure 2.3). 

Secondly, we analyzed relative abundance changes in function of the feedback-to-innate 

index at Day 12 for each ASV; we focused on ASVs that were in the original microbiome and 

with a significant response to feedback-to-innate index, which occupied an average of 37% reads 

in the original C. sorokiniana microbiome. ASVs of which the relative abundance showed a 

significant positive correlation (Pearson’s correlation coefficient adjusted p-value < 0.05) with 
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higher feedback-to-innate indices and with > 1% of total reads across 30 microbiomes belonged 

to the genus Inquilinus, Methylophilus, family Chitinophagaceae, and class Bacteroidia (ranked 

by Pearson’s correlation coefficient = 0.51, 0.48, 0.87, and 0.56 respectively; Figure 2.4 and 

Table S2.1). ASVs that had a relative abundance that showed a significant negative correlation 

with higher feedback-to-innate indices and with > 1% of total reads across 30 microbiomes 

belonged to the Chryseobacterium and Ottowia (ranked by Pearson’s correlation coefficient = -

0.85 and -0.55, respectively; Figure 2.4 and Table S2.1). Finally, A-N-P-R and 

Novosphingobium included ASVs that either significantly increased or decreased with higher 

feedback-to-innate indices (Figure 2.4 and Table S2.1).  

 

Phytoplankton microbiome alpha-diversity under six feedback-to-innate indices 

We focused on the diversity of the phytoplankton microbiome on Day 12, which 

represented quasi-equilibrium conditions existing from day 6 to 12 and, being the final day of the 

experiment, represented the longest selection by the various host-microbiome feedback vs innate 

host selection effects. The relationship between each diversity index (richness, evenness, and 

Shannon diversity) in the function of the feedback-to-innate index was evaluated by the first and 

second-order polynomial regressions (Figure 2.5). We found that different diversity properties 

showed different relationships with the feedback-to-innate index. Richness showed no significant 

linear relationship (Figure 2.5a; with p-value > 0.1), but a significant hump-shape relationship 

with the feedback-to-innate index (with p-value <0.001). Secondly, evenness linearly decreased 

with a higher host-microbiome feedback effect (Figure 2.5b; with p-value < 0.001). The 

assumptions of this linear regression were satisfied (Figure SI 2.9). Finally, Shannon diversity 

decreased with the initial host-microbiome feedback effect (Figure 2.5c; with linear regression p 



 24 

< 0.001). In addition, their relationship also fit the second-order polynomial regression which 

indicates the intermediate feedback-to-innate index showed a higher Shannon diversity (with p-

value <0.001). Correlations on other days were provided in Figure SI 2.10, in which we found 

consistent correlations on Day 10 but less pronounced correlations on other days which may be 

due to the microbiome being in a transitional state. 

 

Results from the additional experiment validating our assumptions 

In the additional experiment, a large compositional distance was found between 95%-to-

5% Feedback-to-DOM versus 95%-to-5% medium-to-DOM treatments based on the first axis of 

PCoA starting on Day 4 (Figure IS 2.11). This indicated that our experiment, rather than just 

diluting the innate host DOM, did manipulate the host-microbiome feedback effect on 

microbiome composition. In addition, the microbiome that grew with the C. sorokiniana culture 

under semi-continuous incubation became more similar to the original phytoplankton 

microbiome with time and overlapped on Day 10 (Figure IS 2.11). This indicated that the 

original microbiome can be returned to its original assembly under regular host-microbiome 

interaction conditions after being disassociated from the host and grown under semi-continuous 

incubation. 

 

Discussion 

Interactions between hosts and bacteria are important for the community assembly of the 

microbiome, but questions remain about the underlying mechanisms (Coyte, Schluter, and Foster 

2015; Zimmermann-Kogadeeva 2021). We focused on the phytoplankton microbiome system as 

it is a system of high relevance considering the foundational role of phytoplankton in aquatic 
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food webs (Field et al. 1998; Smriga et al. 2016) and as it has been used extensively as a model 

system in ecology (Litchman et al. 2007; Cardinale et al. 2009; Behrenfeld et al. 2021). Central 

to our work was addressing the extent to which host factor-based selection is strictly innate, i.e. 

based on intrinsic host traits, or dynamically altered by interactions with the microbiome, 

meaning the microbiome would be involved in its own community assembly.  

 

Host-microbiome feedback and innate host selection exert significant but different impacts on 

phytoplankton microbiome formation 

By manipulating the feedback-to-innate index and investigating its impact on the 

phytoplankton microbiome, we found diverging selection when only host DOM produced under 

axenic conditions was provided (innate host selection) compared to when the live host was 

present (and host-microbiome feedback effects could occur). This indicates that both host-

microbiome feedback and innate host selection are adequate to affect microbiome assembly, and 

each mechanism is enriching for different taxa. Since close feedback-to-innate indices sometimes 

result in similar microbiome composition (e.g., 0% versus 5% and 50% versus 75%), there are 

thresholds of phytoplankton host density to exert enough strength of host-microbiome feedback 

effect to be reflected in the microbiome composition. As we found that the original 

phytoplankton microbiome composition (16S rRNA gene sequencing of the xenic phytoplankton 

culture) was closer to the intermediate, instead of 100% feedback-to-innate index, where 

accumulating DOM is removed every two days, the phytoplankton microbiome appears to be 

shaped by a mixture of these two mechanisms.  

Our findings, which highlight the differential impact on microbiome composition and 

diversity resulting from innate host selection and host-microbiome feedback effects, are 
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consistent with previous studies suggesting host control on microbiome assembly and that such 

control can be modified by host-microbiome interactions (Mühlenbruch et al. 2018; Shibl et al. 

2020). When considering host control, which we tested by manipulating innate host selection 

microbiome bacterial community composition and diversity are known to change in function of 

the phytoplankton species, genotypes, bloom phase, and phytoplankton community composition 

indicates a potential role for phytoplankton host selection on their bacterial microbiome in 

natural systems (Zhou et al. 2018; Sison-Mangus et al. 2016; Krohn-Molt et al. 2017; Cordone et 

al. 2022). Further, phytoplankton metabolites composition varies between growth stages, where 

the exponential growth phase is marked by the presence of free amino acids while during the 

early stationary phase sugar alcohols, mono- and disaccharides are more abundant (Kuhlisch et 

al. 2020). These changes in phytoplankton-derived metabolites can potentially affect its bacterial 

microbiome formation as well, as direct experimental evidence has shown that bacterial 

community composition can be predicted by the mixture of known phytoplankton 

exometabolites (Fu et al. 2020). When considering what is known about how host-microbiome 

interactions can modify bacterial community assembly, which tested by manipulating the host-

microbiome feedback effect in the current study, shifts in phytoplankton physiology, 

metabolism, and thus exudate composition is often found after introducing the bacterial 

community to an axenic host (Bruckner et al. 2008; Seymour et al. 2017; Sison-Mangus et al. 

2016; Uchimiya et al. 2022). The most direct support for this idea was found in the observation 

of a transcriptional and metabolic shift in a diatom after introducing the natural bacterial 

community. This triggered the diatom to secrete unique secondary metabolites that favored 

beneficial bacteria and hindered the growth of opportunistic bacteria in the microbiome (Shibl et 

al. 2020). Our study built on this previous work by providing another explicit test of the idea that 
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both innate host control and host-microbiome feedback simultaneously shape microbiome 

assembly. 

 

Identifying key bacterial taxa in host-microbiome interactions 

We found 10 ASVs belonging to 8 different genera within the original C. sorokiniana 

microbiome were favored by host-microbiome feedback or innate host selection (Figure 2.3 and 

2.4). Among them, we found that Inquilinus, Methylophilus, and Chitinophagaceae included 

bacterial taxa that were enriched by host-microbiome feedback (Figure 2.4), suggesting that 

these bacteria are likely the main driver of or somehow benefited from host-microbiome 

feedback. Although the mechanisms that allowed these taxa to be favored by host-microbiome 

feedback remain to be resolved, Azospirallales (Inquilinus), and Methylobacteriaceae 

(Methylophilus) are potential nitrogen fixers that could drive the positive feedback loop by 

directly providing nutrients to the host (Chen et al. 2019; Miyamoto, Kawahara, and 

Minamisawa 2004; de Lajudie et al. 2019). Furthermore, Chitinophagaceae are known for their 

ability to degrade the complex organic matter of roots and plant exudates (Hester et al. 2018; 

Rosenberg 2014). By contrast, Chryseobacterium and Ottowia were enriched with higher innate-

host selection (Figure 2.4). This would indicate these bacteria were favored by the innate 

phytoplankton exudates, possibly due to their ability to use a variety of DOM. Finally, we found 

that Novosphingobium and A-N-P-R contained ASVs with not only significant but divergent 

responses to increasing the feedback-to-innate index (Figure 2.4). Specifically, members of A-

N-P-R are well-known drivers in plant-soil feedback that can provide nutrients and hormones 

that are essential for plant growth, and some have been shown to defend their plant host against 
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pathogens (Angel et al. 2016; Hester et al. 2018; Rosenberg 2014; Cernava et al. 2017; 

Upadhyay et al. 2022; Ochieno et al. 2021). 

 

The effect of the interplay between host-microbiome feedback and innate host selection on 

phytoplankton bacterial microbiome diversity 

 Considering the fact that innate host selection can be modified by host-microbiome 

feedbacks and that each mechanism exerts divergent selection on bacterial taxa, we argue that 

the relative strength of each mechanism can result in different phytoplankton microbiome 

diversity. We expected higher diversity when both mechanisms were applied assuming that 

bacterial species favored by each mechanism would be more likely to coexist. Indeed, we found 

a higher richness under intermediate feedback-to-innate indices; yet, the pattern was weak 

(Figure 2.5a). In addition, an unexpected decrease of evenness with an increasing feedback-to-

innate index was perhaps caused by a strong species-specific selection from the host-microbiome 

feedback effect alone (Figure 2.5b). 

To our knowledge, it remains unclear how stronger host-microbiome interactions, which 

may relate to higher host density, affect bacterial community diversity as conflicting results have 

been found. In field observations, bacterial richness showed no significance (Berry et al. 2017) 

or a positive relationship with phytoplankton density (Zhou et al. 2018; Woodhouse et al. 2016). 

Simpson diversity was found to decrease during a phytoplankton bloom (Zhou et al. 2018). 

Moreover, divergent responses in diversity to increasing phytoplankton host density among 

bacterial taxa have been reported. For example, the Simpson diversity of Alphaproteobacteria 

displays a hump-shaped relationship while Betaproteobacteria and Bacteroidetes showed a 

positive relationship with increasing phytoplankton density (Berry et al. 2017). In our case, we 
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found that Alphaproteobacteria richness showed a consistent hump-shaped relationship while 

Gammaproteobacteria richness showed a negative relationship with increasing feedback-to-

innate index. As for evenness, only Bacteroide evenness consistently decreased with the 

feedback-to-innate index (Figures SI 2.12 and 2.13).  

 

Beyond the phytoplankton-microbiome system 

Using a phytoplankton-microbiome system, our study showed how different mechanisms 

in host-microbiome interactions shape bacterial community assembly differently, and how host-

microbiome feedback can modify innate host control to affect bacterial community composition 

and diversity. As both the composition and diversity of the microbiome affect bacterial 

microbiome functions (Jasinska et al. 2020; Hooper et al. 2005), this may in turn affect how the 

microbiome impacts its host. Our findings suggest that the interplay between innate host control 

and host-microbiome feedback should be considered to understand microbiome assembly. We 

posit that this is true regardless of the host-microbiome system of interest. For skin microbiomes, 

coral microbiomes, and the plant rhizosphere, host secretions are the main carbon and energy 

source, and potential host-microbiome feedback effects on host secretion composition have been 

observed (Boxberger et al. 2021; Oppen and Blackall 2019; Chen, Fischbach, and Belkaid 2018). 

Hence, there likely are strong analogies to the host-microbiome interactions we observed in the 

phytoplankton-microbiome system. For example, skin microbiome composition is highly 

associated with the gender, age, and area of the host, indicating the impact of innate host control 

on microbiome composition; on the other hand, microbiomes are important to host skin 

homeostasis, immune system maintenance, and wound repair, which may indicate host-

microbiome feedbacks (Boxberger et al. 2021). In contrast, our findings likely do not translate 
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well to digestive tract microbiomes, where diet is the dominating factor shaping microbiome 

assembly (Valdes et al. 2018). Despite this limitation, the planktonic nature of phytoplankton and 

bacteria and their short generation times make them an ideal system for experimental validation 

of ecological and evolutionary theories relevant to complex host-microbiome systems (Litchman 

et al. 2007; Cardinale et al. 2009). 

 

Caveats and limitations 

Here, we acknowledge some limitations of our study. First, we are aware that by their 

nature as unicellular organisms, phytoplankton, unless they grow in a colonial form, lack the 

extensive physical structure to harbor bacteria in a similar way as animal or plant phyllosphere or 

rhizosphere microbiomes do. In addition, phytoplankton hosts likely respond to bacterial 

microbiomes faster than multicellular organisms do due to their shorter generation time and a 

higher host-to-bacteria abundance ratio. Potential weaker host control and more active and 

frequent host-microbiome interactions could occur in the phytoplankton-bacteria symbiosis than 

in animal- or/and plant-microbiome systems. 

Second, symbiont phenotypes may vary under different environmental conditions and 

with different phytoplankton strains/species. For example, obligate mutualistic interaction can 

become weaker outside of the adapted temperature range (Zhang et al. 2019; Kishimoto et al. 

2020). In addition, a nutrient-limited condition would foster different mutualistic interactions in 

comparison to the nutrient-rich conditions we used; for example, it has been reported that 

phytoplankton abandons its nitrogen-fixing partner when environmental nitrogen is abundant 

(Hay et al. 2004). Furthermore, the composition of the phytoplankton microbiome was observed 

to be host-specific, even when selected from the same natural bacterial community source 
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(Jackrel et al., 2021). Moreover, different phytoplankton species can vary in their metabolic 

capacities and phenotype (e.g., mixotrophic versus autotrophic growth; Piasecka et al. 2020). 

Together, these facts suggest that host-microbe interactions and their phenotypes may vary 

among different phytoplankton species. This in turn may influence the selection of bacterial taxa 

and the relative importance of host selection versus host-microbiome feedback effects on 

microbiome assembly. In our study, experiments were conducted at one temperature in a 

nutrient-rich medium with a specific phytoplankton species. Hence, results may diverge under 

nutrient-limited conditions, different temperatures and diverse phytoplankton species/strains.  

Third, we did not distinguish the response of the particle-associated and free-living 

bacterial communities, which have been found to differ in the assemblages in nature (Allgaier 

and Grossart 2006). Instead, we looked at the community as a whole. A focus on particle-

associated bacteria may be warranted as they play an important role in the remineralization of 

organic matter, which is one of the potential forces to drive the bacteria-phytoplankton 

mutualistic interaction (Parveen et al. 2013). Particle-associated bacteria also exert a more direct 

interaction with their host due to their physical attachment to the phytoplankton surface, as has 

been suggested before (Schweitzer-Natan et al. 2019; Ahern et al. 2021; Arandia-Gorostidi et al. 

2022). Consequently, particle-associated bacteria may have a stronger association with host-

microbiome feedback effects compared to free-living bacterial communities. However, it is 

worth noting that free-living and particle-associated communities (based on sequential filtration 

on 3 and 0.22-micron filters) in laboratory cultures showed similar responses and significant 

overlap in the microbiome in composition in the microbiome recruitment study that generated 

the microbiomes that we used here (Jackrel et al. 2021). 
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Finally, there is a possibility that the observed host-microbiome feedback effects resulted 

from phytoplankton-microbiome competition for nutrients. However, such competitive 

interactions are typically triggered by limited nutrient conditions (Ratnarajah et al. 2020), 

whereas we refreshed our cultures with nutrient-rich COMBO media every two days. 

Nevertheless, further examination of nutrient levels during culture incubations would be required 

to confirm our assumption. 

 

Conclusion and outlook 

We showed how the interplay between host-microbiome feedback and innate host 

selection influences phytoplankton microbiome formation. Each mechanism showed different 

impacts on microbiome community composition by favoring different species. As for the impact 

on microbiome community diversity, bacterial richness was higher with the presence of both 

mechanisms while evenness decreased with increasing host-microbiome effect. In addition, the 

original phytoplankton microbiome was most similar to the microbiome when both mechanisms 

were applied, indicating that the natural phytoplankton microbiome is shaped by both forces 

rather than host-microbiome feedback or innate host control alone. Together, our results suggest 

that comprehending the factors and mechanisms involved in phytoplankton microbiome 

formation requires awareness of the distinct impacts arising from innate host control and 

feedback loops driven by the microbiome, given that each has significant but distinct impacts on 

microbiome composition and diversity. Knowing that these two effects are at play allows us to 

evaluate whether they respond similarly or differently to extrinsic driving factors, for example a 

changing temperature. We already know microbiome composition affects phytoplankton host 

fitness, and our work generates a practical and theoretical framework to understand and predict 
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phytoplankton responses to a changing world. In addition, our findings provide valuable insights 

extending beyond the phytoplankton microbiomes, as host-microbiome interactions are likely to 

shape microbiome community assembly across any system where host secretions play an 

important role in microbiome assembly. 
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Figure 2.1 Illustration of feedback-to-innate manipulation experiments. 

 

Step 1: Phytoplankton microbiome communities were detached from a xenic C. sorokiniana 

culture and inoculated into media with six indices of initial host-microbiome feedback vs. innate 

host selection effects. Step 2: to create six feedback-to-innate indices, axenic phytoplankton 

hosts and host-produced DOM were separated by centrifuging the axenic C. sorokiniana culture. 

The supernatant that contains host-produced DOM (with 1.2-µm filtration) is for exerting the 

host-innate selection. The pellets that contain axenic C. sorokiniana were washed and 

resuspended in fresh medium and used for exerting the host-microbiome feedback. Washed 

axenic hosts and host-produced DOM were mixed with different ratios to create six degrees of 

feedback-to-innate indices with a total volume of 50 ml for each in five replicates. Step 3: Two 

days after C. sorokiniana microbiome inoculation, 5% of each culture was transferred to a fresh 

medium with the same feedback-to-innate effect. In addition, each microbiome community was 

collected from the remaining 95% culture by centrifugation into a pellet (supernatant removed) 

for later DNA extraction and 16S rRNA gene sequencing. A total of five transfers were 

conducted in a 12-day experimental period.

  

Sampling for high-throughput 16S rDNA sequencing

Step 2: Create six feedback-to-innate indices Step 3: Incubation and bi-daily transfer
Feedback-to-innate 

indices

Washed  

axenic host

Step 1: Microbiome extraction
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Figure 2.2 Principal Coordinates Analysis (PCoA) ordination based on Bray-Curtis 

dissimilarities between phytoplankton microbiome communities in the function of feedback-to-

innate index and time. 

Symbols represent the microbiome communities under 0% (yellow open circles), 5% (orange 

closed triangles), 25% (red open triangles), 50% (brown closed triangles), 75% (blue open 

squares), and 100% feedback-to-innate index (close green square), respectively. Star symbols 

represent the original bacterial microbiome communities at Day 0 (microbiome prior to 

detachment procedure from C. sorokiniana). Variance explained was 21.9% and 14.1% for the 

first two PCoA axes. 
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Figure 2.3 The mean of original xenic C. sorokiniana and Day 12 microbiome compositions. 

Each block represents an ASV. 

Blocks enclosed by solid lines represent ASVs show a significant (positive or negative) response 

in relative abundance to an increasing feedback-to-innate gradient (as shown in Figure 4) and 

with > 1% total number of reads across all 30 2,000-read rarefied microbiome samples (60,000 

of total reads). Blocks enclosed by dotted represent no response in relative abundance to an 

increasing feedback-to-innate gradient. ASVs with the same color were the same Genus, which 

in the legend were annotated with Genus/Family/Class levels. The communities were rarefied at 

2,000 reads. A-N-P-R refers to the genus Allorhizobium-Neorhizobium-Pararhizobium-

Rhizobium. UA refers to the genus uncultured anaerobic ammonium-oxidizing bacterium. 
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Figure 2.4 Correlation coefficient relationship between each ASV’s relative abundance with 

initial host-microbiome feedback effect on day 12, grouped based on their genus-level 

classification (with Family and Class levels in parentheses).  

All 30 microbiome samples were rarefied at 2,000 reads before the analysis. ASVs with 

significant positive correlations with the feedback-to-innate gradient would suggest an 

association with host-microbiome feedback processes; conversely, ASVs with significant 

negative correlations would indicate their role as a strong competitor on innate phytoplankton 

DOM. The green and orange points represent ASVs that increased and decreased with increasing 

feedback-to-innate indices, respectively. Only ASVs with significant responses (with Pearson’s 

correlation coefficient, adjusted-p value < 0.05; Table S2), with > 1% total number of reads 

across all 30 2,000-read rarefied microbiome samples (60,000 of total reads). A-N-P-R refers to 

the genus Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium.  
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Figure 2.5 The relationship between phytoplankton bacterial microbiome diversity versus 

feedback-to-innate index at Day 12.  

Day 12 was included as it was the final day of the experiment, representing the longest selection 

by the various feedback-to-innate indices. The linear and non-linear lines are the first (p1) and 

the second (p2) degree polynomial regression, respectively. Significant p-values (p < 0.05) were 

shown in bold. 
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Supplementary Information for Chapter 2 

 

Materials and Methods details 

Study model species and sources 

A unialgal Chlorella sorokiniana culture (UTEX 2805) was obtained from the University 

of Texas Culture Collection of Algae in 2011 and maintained on agar slants at 30 μmol · m−2 · 

s−1 at 15°C on COMBO medium (Jackrel et al. 2021; Kilham et al. 1998). The culture was 

rendered axenic in 2017 (Schmidt et al. 2020). In 2018, we generated xenic C. sorokiniana 

cultures through a recolonization experiment that allowed complex microbial communities from 

pond water from the University of Michigan’s E. S. George Reserve (ESGR; Pinckney, MI, 

USA) to colonize the axenic C. sorokiniana culture (Jackrel et al. 2021). In this previous study, 

we used three different source communities (triplicates for each source) to obtain three xenic 

cultures shaped by the C. sorokiniana host and to lesser extent the source community. Both 

axenic and xenic C. sorokiniana cultures were maintained in laboratory slant cultures under a 

light intensity no higher than 30 μmol · m−2 · s−1 at 15°C on COMBO agar medium and be 

reinoculated to fresh medium every four to six months. Our experiments were carried out 

between July 10 and August 6, 2021. 

 

Extracting microbiomes and preparing the initial xenic phytoplankton culture 

Axenic and the three xenic C. sorokiniana cultures from different source bacterial 

communities (triplicates from the same community source were combined into a single 

community) were inoculated into 100-ml liquid COMBO medium from agar slant cultures and 

incubated on a table shaker set to a continuous 80 RPM with 16:8 light/dark cycle with a light 

intensity of 80 μmol · m−2 · s−1 at 20 °C. After 10 days, we extracted the microbiomes from the 

three xenic C. sorokiniana cultures, combined and reintroduced them into a 100-mL fresh axenic 

C. sorokiniana culture (as the original phytoplankton culture), and allowed reassociation and 

growth for 10 days as the starting xenic C. sorokiniana culture. The microbiomes were extracted 

by sonicating 35-ml of each xenic C. sorokiniana culture in a water bath twice at 120 W for 30 

seconds, with a 60 second interval. Next, we filtered the culture through a 1.2-µm pore-size filter 

to remove the phytoplankton hosts. The filtrate (containing the microbiome) was then 

centrifuged at 2,500 x g for 10 min, the supernatant was mostly removed with the remaining ~1-

ml liquid containing the concentrated microbiome. Three ~1-ml concentrated microbiomes (from 

three different source bacterial communities) were then combined and inoculated in a 100-ml 

fresh axenic C. sorokiniana culture (with ~ 5 x 104 cells/mL at the exponential growth phase). 

The sonication conditions were selected based on a preliminary test using a range of conditions 

as it resulted in the highest levels of cell detachment from the phytoplankton host while 

minimizing lethal effects on bacteria by screening for the highest number of colonies that can 

grow on the R2A (Teknova, USA) agar plates after extraction (Figure SI 2.14). 

  

Extracting the microbiome for the main experiment 

The first step of the main experiment was to extract the microbiome from the xenic 

culture we generated above (Step 1 in Figure 2.1). The 100-mL starting xenic C. sorokiniana 

culture was inoculated to 1,800-mL of fresh COMBO medium and grown to a density of ~2 x 

105 cells/mL. Two ~50 mL of the culture were collected for 16S rRNA gene sequencing as the 

original phytoplankton microbiome (two replicates) by centrifuging at 2,500 x g for 15 min into 

a pellet, removing the supernatant, and storing the pellets at -20°C for later DNA extraction. 
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Then, the microbiome was extracted and collected from the remaining (~1,700 mL) culture 

following the microbiome extraction protocol described in the previous section. The extracted 

microbiome was washed with fresh COMBO medium to remove remaining metabolites by 

centrifuging at 2,500 x g for 10 min, removing the supernatant, and resuspending the pellet in 1-

mL sterile COMBO medium. This washing process was conducted twice. Overall, the whole 

microbiome extraction and washing processes were repeated six times, processing ~280-mL 

starting xenic culture per time, to create six washed microbiome pellets to set up the main 

experiment. The remaining culture was streaked onto two agar slant tubes (made with COMBO 

medium) as storage and grew under no higher than 30 μmol · m−2 · s−1 at 15°C, which were later 

used for the additional experiment described below. 

  

Manipulation of host-microbiome feedback versus host-innate selection effect (feedback-to-

innate manipulation experiment) 

The second step was to create six feedback-to-innate indices (Figure 2.1 Step 2). An 

axenic C. sorokiniana culture was centrifuged at 900 x g for 5 min to separate the axenic host 

and host-produced DOM. The supernatant was 1.2-µm filtered to obtain algal DOM secretions 

produced in the absence of a microbiome, to be used as the material for innate host selection. For 

manipulating the host-microbiome feedback effect, the axenic algal pellets were washed twice by 

resuspending in fresh COMBO medium, centrifuging and removing the supernatant. The washed 

pellet was then resuspended with a total of ~1,300-ml fresh COMBO medium to obtain axenic 

host cells without algal-secreted DOM, with density ~2 x 105 cells/mL. We created six feedback-

to-innate indices by mixing 0-ml and 50-ml, 2.5-ml and 47.5-ml, 12.5-ml and 37.5-ml, 25-ml and 

25-ml, 37.5-ml and 12.5-ml and 50-ml and 0-ml of the host cells only and the host DOM only 

medium, respectively; which represented the 0%, 5%, 25%, 50%, 75%, and 100% feedback-to-

innate index, respectively. The % indicates the ratio relative to the strongest host-microbiome 

feedback (the highest host density) that we can create in this experiment. This is with an 

assumption that, with a given microbiome density, a higher axenic host density would lead to a 

stronger host-microbiome feedback effect due to a higher host-bacterial encounter rate (a higher 

host-bacteria density ratio). All treatments were conducted in five replicates, incubated on a table 

shaker set to a continuous 80 RPM with 16:8 light/dark cycle under a light intensity of ~ 80 

μmol · m−2 · s−1 at 20 °C. 

After microbiomes (extracted in Step 1) were inoculated into six feedback-to-innate 

indices (which were created in Step 2), we prevented the effects from accumulated metabolites, 

nutrient depletion, and ensured phytoplankton remained in the exponential growth phase during 

incubation, by transferring 5% (2.5 ml) of 2-day-old cultures to fresh medium with the same 

feedback-to-innate indices every other day until day 12 (Figure 2.1 Step 3). Fresh axenic C. 

sorokiniana cultures were prepared for creating fresh media at each of the six feedback-to-innate 

indices for each transfer to avoid any effects of DOM or cell storage. To maintain the fresh 

axenic C. sorokiniana culture at exponential growth phase (a density of ~ 2 x 105 cells/mL; 

Figure S2.6), it was diluted 5 % by adding fresh COMBO medium every two days. In addition, 

the axenic C. sorokiniana culture was observed by epifluorescence microscopy to check for 

contamination and health conditions before being used. A total of 187 microbiome samples were 

collected, including the original xenic C. sorokiniana culture (before dissociation of the 

microbiome), a microbiome sample from each of the six feedback-to-innate indices at day 0, and 

180 samples from day 2 to day 12 (six feedback-to-innate indices with five replicates and 6 

collections). Microbiome samples were collected by centrifuging the remainder (~ 47.5 mL) of 
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each culture at 2,500 x g for 10 min into a pellet, with the supernatant removed and the pellets 

stored at -20 °C until DNA extraction. 
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Table SI 2.1 Statistical results of pairwise permutational multivariate analysis of variance 

(PERMANOVA).  

p-values shown in boldface indicate the two comparing microbiomes were significantly 

compositional different. “Original” indicates the original xenic C. sorokiniana microbiome. 999 

times permutation was conducted. 

SEE NEXT PAGE  
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Pairwise comparison between feedback-to-innate indices Sum Of Squares R2 p-value 

0%-5% 0.04 0.14 0.269 

0%-25% 0.20 0.44 0.011 

0%-50% 0.42 0.66 0.008 

0%-75% 0.47 0.65 0.012 

0%-100% 0.72 0.78 0.007 

5%-25% 0.14 0.50 0.006 

5%-50% 0.31 0.75 0.009 

5%-75% 0.34 0.71 0.008 

5%-100% 0.53 0.85 0.009 

25%-50% 0.09 0.43 0.007 

25%-75% 0.13 0.43 0.009 

25%-100% 0.28 0.70 0.007 

50%-75% 0.03 0.18 0.123 

50%-100% 0.08 0.51 0.012 

75%-100% 0.06 0.34 0.014 

Original-0% 0.52 0.75 0.046 

Original-5% 0.43 0.87 0.045 

Original-25% 0.37 0.81 0.059 

Original-50% 0.38 0.89 0.053 

Original-75% 0.36 0.81 0.059 

Original-100% 0.39 0.91 0.042 
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Table SI 2.2 Pearson’s correlation coefficient between ASV’s relative abundance and increasing 

feedback-to-innate indexes based on microbiome collected on Day 12.  

A total of 30 microbiomes and rarefied at 2,000 reads (6 feedback-to-innate treatments with 5 

replicates and a total number of 60,000 reads) were collected on Day 12. Only ASVs with 

significant correlation are shown. A-N-P-R indicates Genus Allorhizobium-Neorhizobium-

Pararhizobium-Rhizobium. P-values were adjusted by Bonferroni correction (Adjusted p-value). 

*We excluded ASVs in the main result (Figure 4) that were not found in the original microbiome 

likely cross-contamination at the microbiome core (ASV5, ASV12, ASV13, and ASV14), and 

ASVs with <600 read counts (1% total number of reads) to reduce overinterpreting patterns that 

may have been due to stochastic effects (ASV4, ASV5, ASV8, ASV9, ASV11, ASV12, AS13, 

ASV14, ASV15, ASV16, ASV19 and ASV20). **ASV number of reads across 30 samples 

collected on Day 12 after rarefaction at 2,000 reads. 

SEE NEXT PAGE  
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  Genus Family Order Class 
Correlation 

coefficient 

Adjusted 

p-value 

**Number of 

reads 

ASV1 uncultured Chitinophagaceae Chitinophagales Bacteroidia 0.87 <0.001 17189 

ASV2 A-N-P-R Rhizobiaceae Rhizobiales Alphaproteobacteria 0.751 <0.001 1152 

ASV3 Novosphingobium Sphingomonadaceae Sphingomonadales Alphaproteobacteria 0.733 <0.001 5009 

*ASV4 A-N-P-R Rhizobiaceae Rhizobiales Alphaproteobacteria 0.717 <0.001 207 

*ASV5 Clostridioides Peptostreptococcaceae Clostridiales Clostridia 0.589 0.001 177 

ASV6 Unclassified Unclassified Unclassified Bacteroidia 0.547 0.002 1662 

ASV7 Inquilinus Inquilinaceae Azospirillales Alphaproteobacteria 0.512 0.004 1193 

*ASV8 Unclassified NS11-12 marine group Sphingobacteriales Bacteroidia 0.51 0.005 39 

*ASV9 A-N-P-R Rhizobiaceae Rhizobiales Alphaproteobacteria 0.504 0.005 124 

ASV10 Methylophilus Methylophilaceae Betaproteobacteriales Gammaproteobacteria 0.484 0.007 1981 

*ASV11 Sphingomonas Sphingomonadaceae Sphingomonadales Alphaproteobacteria 0.481 0.007 18 

*ASV12 Escherichia-

Shigella 
Enterobacteriaceae Enterobacteriales Gammaproteobacteria 0.479 0.007 84 

*ASV13 Staphylococcus Staphylococcaceae Bacillales Bacilli 0.436 0.016 99 

*ASV14 Flavobacterium Flavobacteriaceae Flavobacteriales Bacteroidia -0.365 0.047 321 

*ASV15 uncultured Burkholderiaceae Betaproteobacteriales Gammaproteobacteria -0.405 0.027 27 

*ASV16 A-N-P-R Rhizobiaceae Rhizobiales Alphaproteobacteria -0.473 0.008 195 

ASV17 Ottowia Burkholderiaceae Betaproteobacteriales Gammaproteobacteria -0.549 0.002 2407 

ASV18 Novosphingobium Sphingomonadaceae Sphingomonadales Alphaproteobacteria -0.554 0.002 2379 

*ASV19 Ottowia Burkholderiaceae Betaproteobacteriales Gammaproteobacteria -0.695 <0.001 166 

*ASV20 Neoasaia Acetobacteraceae Acetobacterales Alphaproteobacteria -0.762 <0.001 162 

ASV21 A-N-P-R Rhizobiaceae Rhizobiales Alphaproteobacteria -0.839 <0.001 2575 

ASV22 Chryseobacterium Weeksellaceae Flavobacteriales Bacteroidia -0.852 <0.001 7150 
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Figure SI 2.6 Xenic phytoplankton growth. Three 50-ml Xenic Chlorella sorokiniana cultures 

were established. 

Two 10-μL aliquots were subsampled every two days from each 50-ml C. sorokiniana culture 

and algal cells were counted using a hemocytometer (average of duplicate count for each 

sample). The results demonstrated that the phytoplankton was in the exponential growth phase 

within the four-day period spanning from Day 2 to Day 6, reaching a density ranging from ~ 2 to 

8 x 105 phytoplankton cells/mL. Therefore, to maintain the phytoplankton at an exponential 

growth phase throughout the two-day incubation period in the feedback-to-innate manipulation 

experiment, we began our cultures with the highest phytoplankton density (100% feedback-to-

innate index) with an initial concentration of ~ 2 x 105 phytoplankton cells/mL on Day 0 and at 

every transfer that occurred at two-day intervals between Day 2 and 12. The boxes represented 

the Interquartile range between the 1st and 3rd quartiles. The horizontal lines in the boxes 

represent the median. The dotted lines out of the boxes represent the range of estimates between 

the minimum (bottom) and maximum (top) values, excluding the outlier.  
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Figure SI 2.7 Rarefaction plot before (a) and after (b) 2,000 reads rarefaction. 

The plots encompass data from 187 microbiome communities used in the current study.  
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Figure SI 2.8 Illustration of the additional experiment. 

The phytoplankton microbiome was detached from a xenic C. sorokiniana culture and inoculated 

into media with 100 % innate phytoplankton DOM, two mixtures of innate phytoplankton DOM 

with the washed host (~2 x 105 cells/mL) or with fresh medium, or an axenic phytoplankton 

culture. 50 ml volume cultures with three replicates were conducted for each treatment. Two 

days after C. sorokiniana microbiome inoculation, 5% of each culture was transferred to a fresh 

medium with the same DOM-to-host, DOM-to-medium medium, or axenic culture. In addition, 

each microbiome community was collected from the remaining culture by centrifugation into a 

pellet (supernatant removed) for later DNA extraction and 16S rRNA gene sequencing. A total 

of four transfers were conducted in a 10-day experimental period. 
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Figure SI 2.9 Linear regression assumptions test.  

We tested if the relationship between microbiome evenness and feedback-to-innate indices on 

Day 12 satisfied the linear regression assumptions. Three assumptions were tested: (i) No 

relationship between residuals-fitted values, (ii) the mean of residuals is zero and (iii) residuals 

are independent from each other (not autocorrelated).  Durbin Watson test (D-W) was conducted 

to test the third assumption by using the R package “car” (Reference: Fox, J. (2016) Applied 

Regression Analysis and Generalized Linear Models, Third Edition. Sage.). Our results satisfied 

all three assumptions: (i) no relationship between residuals and fitted values, (ii) the mean of 

residuals is ~ 0, and (iii) no significant autocorrelation was detected (D-W test p-value > 0.05). 
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Figure SI 2.10 The relationship between phytoplankton bacterial microbiome diversity versus 

initial host-microbiome feedback effect.  

The black and blue lines are the first (p1) and the second (p2) degree polynomial regression, 

respectively. The solid and the dash lines indicate the significant (p < 0.05) and non-significant 

(p > 0.05) regression,  

  

x

y

5

10

15

20

25

30

35

40 p1 : p - value = 0.38

p2 : p - value = 0.019

x

y

p1 : p - value = 0.6

p2 : p - value = 0.31

x

y

p1 : p - value = 0.8

p2 : p - value = 0.16

x
y

p1 : p - value = 0.048

p2 : p - value = 0.15

x

y

p1 : p - value = 0.1

p2 : p - value = 0.036

x

y

p1 : p - value = 0.49

p2 : p - value = <0.001

x

y

0.07

0.17

0.27

0.37

0.47 p1 : p - value = <0.001

p2 : p - value = 0.062

x

y

p1 : p - value = 0.0014

p2 : p - value = 0.0095

x

y

p1 : p - value = <0.001

p2 : p - value = 0.33

x

y

p1 : p - value = <0.001

p2 : p - value = 0.064

x
y

p1 : p - value = <0.001

p2 : p - value = 0.66

x

y

p1 : p - value = <0.001

p2 : p - value = 0.59

x

y

0.9

1.4

1.9

2.4

p1 : p - value = 0.048

p2 : p - value = 0.92

0% 25% 50% 75% 100%
5%

x

y

p1 : p - value = 0.023

p2 : p - value = <0.001

0% 25% 50% 75% 100%
5%

x

y

p1 : p - value = <0.001

p2 : p - value = <0.001

0% 25% 50% 75% 100%
5%

x

y

p1 : p - value = <0.001

p2 : p - value = 0.015

0% 25% 50% 75% 100%
5%

x

y

p1 : p - value = 0.0013

p2 : p - value = <0.001

0% 25% 50% 75% 100%
5%

x

y

p1 : p - value = <0.001

p2 : p - value = <0.001

0% 25% 50% 75% 100%
5%

Feedback−to−Innate index

R
ic

h
n
e

s
s

E
v
e
n
n
e
s
s

S
h
a
n
n

o
n
 i
n
d
e
x

Day2 Day 4 Day 6 Day 8 Day 10 Day 12



 58 

Figure SI 2.11 Principal Coordinates Analysis (PCoA) ordination based on Bray-Curtis 

dissimilarities among microbiome communities in the additional experiment.  

Feedback-to-DOM indicates the volume ratio of washed C. sorokiniana versus innate host DOM 

(which is the same as feedback-to-innate index). Medium-to-DOM indicates the ratio of the 

volume of fresh COMBO medium versus innate host DOM. Symbols represent the microbiome 

communities under 95%-to-5% Feedback-to-DOM (black squares), 50%-to-50% Feedback-to-

DOM (grey squares), 95%-to-5% Medium-to-DOM (black triangles), 50%-to-50% Medium-to-

DOM (grey triangles), and 100% DOM (open triangles). Star symbols represent the original 

microbiome communities at Day 0 (microbiome prior to detachment from C. sorokiniana) and 

the open circles represent the microbiome that grew under regular host-microbiome interaction 

conditions (inoculated in axenic C. sorokiniana culture). Except for the original microbiome, all 

treatments were grown under semi-continuous incubation (process of collecting and transferring 

cultures every two days). Variance explained was 38.4% and 13.8% for the first two PCoA axes.  
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Figure SI 2.12 The relationship between phytoplankton bacterial microbiome richness versus 

feedback-to-innate index in function of select phyla on day 10 and 12.  

The black and blue lines are the first (p1) and the second (p2) degree polynomial regression, 

respectively. The solid and the dash lines indicate the significant (p < 0.05) and non-significant 

(p > 0.05) regression.  
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Figure SI 2.13 The relationship between phytoplankton bacterial microbiome evenness versus 

feedback-to-innate index in function of select phyla on day 10 and 12.  

The black and blue lines are the first (p1) and the second (p2) degree polynomial regression, 

respectively. The solid and the dash lines indicate the significant (p < 0.05) and non-significant 

(p > 0.05) regression. 
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Figure SI 2.14 Percentage of living bacteria detached from C. sonokiniana under different 

sonication conditions.  

Xenic C. sorokiniana cultures were treated under eight different sonication conditions and the 

extracted bacteria were collected by 1.2-µm filtration to remove phytoplankton host cells. The 

number of extracted and living bacteria was quantified using spread plates with R2A agar 

(Teknova, USA) and counting the number of colony-forming units (CFU). The percentage of 

living bacteria detached under each sonication treatment was calculated by: ((Number of CFU 

with sonication - Number of CFU without sonication) / Number of CFU without sonication) x 

100. Eight sonication treatments were tested: 30 seconds for 1-, 2-, or 5-times sonication, and 60 

seconds for 1-, 3-, 6-, 10- or 15-times sonication. All with a 60-second rest interval between each 

sonication. The boxes represented the Interquartile range between the 1st and 3rd quartiles. The 

horizontal lines in the boxes represent the median. The dotted lines out of the boxes represent the 

range of estimates between the minimum (bottom) and maximum (top) values, excluding the 

outlier (e.g., one estimate from treatment 30 seconds x1 time). 
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Chapter 3 : Dissecting the Population Dynamics and Gene Expression Patterns of Two 

Contrasting Modes of Host-microbe Interaction 

Abstract 

Most eukaryotic species host a microbiome that comprises a diversity of microbial 

symbionts marked by varying modes of interaction with the host. While some microbial 

symbionts are selected based on one-way, passive interactions in which bacteria obtain resources 

from the host or its diet (innate host selection), others establish two-way or active interactions 

that alter host physiology (host-microbe feedback). Here, we aim to obtain a detailed 

understanding of these two interaction modes from both a physiological (growth patterns) and 

metabolic (gene expression and functions) perspective. The green microalga host, Chlorella 

sorokiniana, and two associated bacteria were used as the study system. A Curvibacter sp. grew 

best when provided with the spent medium of axenic C. sorokiniana (innate host selection); by 

contrast, a Roseomonas sp. grew best in the presence of live cells of C. sorokiniana (host-

microbe feedback condition). Hence, Curvibacter sp. was a passive symbiont, as its growth 

depends on exudates the host released in absence of bacteria, and Roseomonas sp. was an active 

player due to its ability to enhance its fitness through interacting with the host. These 

observations aligned with much larger shifts in gene expression between innate vs. host-microbe 

feedback conditions for Roseomonas sp. compared to Curvibacter sp. Furthermore, we found 

that function of the biosynthesis and metabolism of secondary metabolites, that potentially 

inferring the bi-directional phytoplankton-bacteria interactions, were relatively more expressed 



 63 

in Roseomonas sp. and in C. sorokiniana when they were co-cultured, contrasting with co-

culturing with Curvibacter sp. 

 

Introduction 

Most eukaryotic species host a microbiome that is essential to the survival and health of 

the host organism (Bjørrisen 1988; Apprill 2017; Kinross, Darzi, and Nicholson 2011; Hou et al. 

2022; Voolstra et al. 2024). Research has been revealing intrinsic host-microbiome interactions 

and a strong correlation between microbiome taxonomic composition and the biology of the host 

(Costas-Selas et al. 2024; Kembel and Mueller 2014; Gould et al. 2018; Ahern et al. 2021; Gupta 

and Nair 2020; Arandia-Gorostidi et al. 2022). This highlights the important role of host-

microbiome interactions in determining which microbial taxa can persist within the microbiome. 

However, it remains a subject of debate whether the taxonomic composition of the microbiome 

directly impacts the functions it provides to the host (Robinson, Bohannan, and Young 2010; 

Neu, Allen, and Roy 2021). Here, we focus on the selection of microbiome members based on 

their interaction modes during host-microbiome interactions. The host itself often serves as the 

dominant driving force of microbiome formation (Ferrer-González et al. 2021; Barak-Gavish et 

al. 2023). Additionally, beyond the unidirectional selection from the host on the microbiome, 

several studies have observed dynamic feedback interactions between the host and its 

microbiome, leading to the microbiome itself impacting how the host shapes microbiome 

composition (Yang and Denef 2024; Shibl et al. 2020; Olofsson et al. 2022). The different 

selection impacts from these uni- and bi-directional host-microbiome interactions (host control 

versus feedback driven by specific microbes) act together to maintain microbiome composition 

and diversity (Yang and Denef 2024). This diversity, in turn, ensures the stability and resilience 
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of microbiome functional contributions to the host (Lozupone et al. 2012). Yet, our 

understanding of how uni- and bi-direction host-microbiome interactions differ from each other 

remains limited. 

In this study, we used a phytoplankton species and two members of its microbiome as a 

model system to contrast uni- and bi-directional host microbiome interactions. Phytoplankton 

house their microbes within the outer layer of cells, enveloped by a concentrated zone of 

phytoplankton-produced dissolved organic matter (DOM) an area known as the phycosphere 

(Kilham et al. 1998; Cirri and Pohnert 2019; Seymour et al. 2017) . Phytoplankton-microbiome 

systems therefore can serve as a model to understand host-microbiome systems that shape 

microbiomes through host secretion, such as plant microbiomes, skin microbiomes and coral 

microbiomes (Müller et al. 2016; Voolstra et al. 2024; Byrd, Belkaid, and Segre 2018). 

Phytoplankton have a long history as a model system in ecology, including for understanding 

how the microbiome affects host physiology (Olofsson et al. 2022; Costas-Selas et al. 2024) 

interactions between hosts (Jackrel et al. 2020). Considering the important role of phytoplankton 

for food web and nutrient cycle functioning (Field et al. 1998; Litchman et al. 2007), and the 

impact of the microbiome on phytoplankton functioning, a better understanding of what shapes 

phytoplankton microbiome composition is important. Moreover, DOM produced by 

phytoplankton is key in shaping the environmental microbial community not directly associated 

with phytoplankton hosts, and any host-microbiome interactions that affect the production of 

DOM will affect the entire microbial community and the biogeochemical cycles they drive 

(Bertrand et al. 2015). Finally, for industrial applications, where phytoplankton is used as feed 

source, biofuel precursor, and potential medicine source, a variety of studies have pointed out the 

impact of the microbiome on outcomes (Lian et al. 2018; Morris et al. 2022). 
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Recent studies have highlighted the two contrasting modes of interaction between a 

phytoplankton host and bacterial species in their microbiome. On the one hand, microbiomes can 

be passively selected by the DOM composition that is determined by the host's innate genetic 

make-up and growth state. For example, in field observations, the composition of microbiomes is 

often found correlated to phytoplankton species/genotype and physiological status (e.g., growth 

phase, under a changing environment, under stress and competition fitness (Steinrücken et al. 

2023; Baker et al. 2022; Ahern et al. 2021). The central role of DOM in shaping phytoplankton 

microbiome composition revealed how composition can be altered and even predicted based on 

added phytoplankton metabolites (Tada et al. 2017; Kieft et al. 2021; Fu et al. 2020; Kimbrel et 

al. 2019). On the other hand, while phytoplankton innately produce a mixture of DOM molecules 

in absence of a microbiome, some microbes in the phycosphere are able to actively interact with 

the host and modify host physiological status and the metabolites released into the phycosphere. 

For instance, exposing axenic phytoplankton to natural bacterial communities or certain 

microbial species were found to change the phytoplankton gene expression and DOM 

composition (KleinJan et al. 2023; Frischkorn et al. 2017). This leads to a feedback effect that 

selects for a microbiome distinct from what host originally selected. The most direct evidence 

supporting this idea was a study that showed how microbiome-triggered metabolites produced by 

a diatom host favored mutualistic over algicidal bacteria in the microbiome (Shibl et al. 2020). In 

summary, how host-microbiome interactions shape the phytoplankton microbiome involves the 

interplay between two interaction modes, (i) a unidirectional interaction mode, where the 

microbiome is shaped passively by innately produced host DOM, and (ii) a bidirectional 

interaction mode where some microbiome members can actively interact with the host, altering 

host physiology and the produced DOM composition to their benefit. However, there are only a 
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limited number of studies that have characterized these two interaction modes. In addition, most 

relevant studies characterize the two selection modes at a community scale, with limited insight 

into the different modes of interactions underlying the community-level effects. 

In a previous study, we showed how “innate host selection” (microbiome selected by 

spent medium from an axenic algal culture) and “host-microbiome feedback effects” (presence 

of live algal cells) led to different microbiome compositions (Yang and Denef 2024), inspiring a 

hypothesis of the existence of trade-offs between microbes being favored by either effect. 

Building upon this study, we designed the current study to contrast, at a population dynamic and 

gene expression level, the selection process by uni- and bi-directional interaction modes, using 

two bacterial populations isolated from the host with distinct interaction modes with the host. We 

hypothesized that, (i) the symbiont with the uni-directional interaction mode would be favored 

by innate host selection and have limited impacts on host gene expression as it prefers to use 

DOM that the host innately produced and is unable to modify host produced DOM through direct 

host-microbe interactions. On the contrary, (ii) the symbiont with the bidirectional interaction 

mode would be favored by host-microbiome feedback conditions and would alter host gene 

expression more. We also hypothesized that different sets of gene, which referring potential 

different function be exhibited, will be expressed in presence of host cells vs. DOM only for the 

symbiont with the two-way interaction mode. The rationale is that the active symbiont possesses 

the ability to directly interact with the host; for example, by synthesizing chemical signals, to 

trigger the host to synthesize and release different DOM that promote its growth or hinder the 

growth of its competitors.  

To test our hypothesis, we used the Chlorella sorokiniana as the host model system 

(Bashan et al. 2016). The bacteria were isolated from a C. sorokiniana microbiome that was 
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recruited from natural pond bacterial communities. From a subset of isolates tested, we selected 

the two bacterial isolates with the most distinct growth patterns under innate host selection 

versus host-microbiome feedback effects, to have one representative of each symbiont type 

(passive and active, respectively). Host and bacterial growth responses were examined in 

presence of axenically produced DOM (bacteria only) and live host cells, and gene expression 

profiles were compared to identify the extent of gene expression reprogramming and the 

prioritized metabolic pathways in host and bacterial symbionts.  

 

Methods 

Bacterial and microalgal growth dynamics experiments 

C. sorokiniana (UTEX 2805) was rendered axenic in 2011 (Jackrel et al. 2020) and 

maintained on COMBO media slants (Kilham et al. 1998) under a light intensity no higher than 

30 μmol · m-2· s-1 at 15°C and be reinoculated to fresh medium every four to six months since 

then. Microbiomes were recruited to this axenic culture from natural ponds in 2018 (Jackrel et al. 

2021b). The xenic culture we obtained isolates from in this study was generated in 2021 from 

those initial microbiomes and was also used in our previous experiments to identify the innate 

and feedback selective effects (Yang and Denef 2024). In search for bacteria representative of 

passive and active symbiosis, we selected six bacteria isolated from xenic C. sorokiniana on 

R2A solid media (Teknova, Hollister, CA, USA) based on their distinctive colony morphology 

(to enable easy tracking of growth of each culture when in co-culture) and tested their growth 

response under innate host selection (Treatment Innate) or host-microbiome feedback (Treatment 

Feedback). To create two treatments, axenic C. sorokiniana was harvested during exponential 

growth phase (~2 x 105 cells/mL) in COMBO medium, and centrifuged at 900 x g for 5 min. The 
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supernatant was collected and filtered through 1.2-um pore-size filters to remove any remaining 

cells. This filtered spent medium was used for Treatment Innate, which contains only dissolved 

organic matter (DOM) innately produced by the host without any direct microbe-host 

interactions. For creating Treatment Feedback, the pelleted C. sorokiniana cells were washed in 

fresh COMBO medium to remove remaining spent medium and resuspended in fresh COMBO 

medium at ~2 x 105 cells/mL. This medium contains only axenic host cells without any initial 

DOM. To minimize the impact of remnants of the liquid R2A medium, which the bacterial 

isolates were grown in, on the microalgal host, each 1 mL bacterial R2A culture was washed 

twice by centrifuged at 2,500 x g for 10 min, spent medium removed, and resuspended in 1 mL 

fresh COMBO medium. The final resuspended bacterial isolates were inoculated into each 

treatment after 1,000 times dilution into five 1-ml replicate cultures using 48-well plates (Fisher 

Scientific, Hampton, NH, USA). The plates were cultured under a continuous 80 RPM rotation 

with a 16:8 light/dark cycle under a light intensity of ~ 80 μmol · m-2· s-1 at 20 °C in a Minitron 

incubator (Infors HT, Bottmingen, Switzerland). To track bacterial growth, 10-µl of each 

replicate was sampled at Day 0, 2, 4, 6, 8, 10, and 12. Colony forming units (CFU) were counted 

using drop plate technique (Herigstad, Hamilton, and Heersink 2001), where each 10-µl 

subsample was 10-2, 10-3 and, 10-4 diluted using R2A liquid medium, and three 10-µl replicate 

drops of each dilution were dropped on R2A agar plates. The plates were incubated at room 

temperature in the dark.  

After two representative bacterial symbionts were identified, we repeated the experiment 

with a larger culture volume that would be needed to obtain sufficient RNA for transcriptomic 

analysis. We grew the Curvibacter sp. and Roseomonas sp. in Treatment Innate and Treatment 

Feedback following the aforementioned procedure in 100-mL volume in 125-mL glass 
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erlenmeyer flasks in triplicate. In addition to mono-bacterial cultures, we also grew mixed-

bacteria cultures in each treatment condition to investigate potential effects on bacterial growth 

patterns from microbe-microbe interactions. In the larger volume experiments 10-ul of each 

culture were collected on day 0, 5, 8, 12, and 19 after inoculation to track bacterial growth. In 

addition, to examine host response to either bacterial symbiont, triplicate controls of the axenic 

microalga without initial DOM were grown in fresh COMBO medium. To track C. sorokiniana 

population dynamics, 1-mL of each culture from Treatment Feedback and the control treatment 

were collected and the relative fluorescence intensity unit (RFU) of Chlorophyll-a (with the 

excitation and emission wavelengths of 465 and 680 nanometers) were measured as a proxy of 

microalgal density using a Synergy H1 microplate reader (Bio Tek, Winooski, VT, USA).  

 

Sample collection, RNA and DNA extraction, library preparation, and sequencing 

The taxa of the six tested bacterial isolates were identified using Sanger sequencing of the 

16S rRNA gene. For DNA extraction, each isolated colony was resuspended in 90-μL 1× PBS 

(0.2-μm filtered and autoclaved) and lysed by adding 5-μL lysozyme solution (50 mg/mL) and 

100-μL Qiagen ATL buffer and incubated at 37°C for 30 min, followed by the protocol of the 

Qiagen DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany). The 16S rRNA gene was 

amplified using primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-

TACGGYTACCTTGTTACGACTT-3') (Weisburg et al. 1991a). 1-ul of template DNA was 

mixed with 10-ul of NEBNEXT 2X Master Mix (New England Biolabs, Ipswich, MA, USA) and 

9 ul of Nuclease Free water. The PCR cycling condition consisted of an initial denaturation at 

95°C for 5 minutes, 25 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 

seconds, and extension at 72°C for 1 minute, and a final extension step at 72°C for 5 minutes. 
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The PCR products are stained with GelRed GelRed (Biotium, Fremont, CA, USA) and examined 

with gel electrophoresis using a 1% agarose gel. The qualified PCR products were sent out for 

PCR purification, quantification, and Sanger sequencing (Eurofins, Louisville, KY, USA). The 

low-quality base-pair was trimmed and taxonomic classification was obtained using blastn 

(Altschul et al., 1990) against the nucleotide collection (nr/nt) database available from National 

Center for Biotechnology Information (NCBI), with the best hit taxon used.  

After ensuring the two representative symbionts exhibited consistent growth patterns in 

large volume compared to those identified in the initial small volume experiments, the large 

volume experiment was repeated for transcriptomic analysis. This time, without subsampling at 

different times to track cell growth, the whole each 100-ml culture was collected after 5 days of 

incubation in Treatment Innate and 12 days of incubation in Treatment Feedback (Figure 3.1). 

The incubation time was selected to capture optimal gene expression that can reflect the 

distinctive growth pattern of different interaction modes while also maintaining a sufficiently 

high cell density to yield enough RNA samples for sequencing. The collected cultures were 

filtered through 0.2 um pore-size PES filters (Sigma Millipore, Burlington, MA, USA). For RNA 

extraction, in brief, cells were washed down from the filter and homogenized using QiaShredder 

Kits (Qiagen, Hilden, Germany). RNAs were extracted and purified using the RNeasy Micro Kit 

(Qiagen, Hilden, Germany) following the standard kit protocol. We quantified RNA using the 

Qubit RNA Broad Range Assay kit (Thermo Fisher Scientific, Waltham, MA, USA). The pure 

RNA samples were sent to the University of Michigan Center for Advanced Genomic core to 

carry out library preparation, including rRNA depletion using QIAseq FastSelect 5S/16S/23S Kit 

and rRNA Plant Kits (Qiagen, Hilden, Germany) for samples containing bacteria and 

microalgae, respectively. Samples were sequenced using the NovaSeq S4 x 300 cycle platform 



 71 

(Illumina, San Diego, CA, USA) with 12.5% of the flow cell used, evenly distributed across all 

15 samples.  

To obtain a bacterial genomic reference for identifying genes and mapping RNA 

transcripts to, whole genome sequencing was conducted on the Curvibacter sp. and Roseomonas 

sp. isolates. Each isolated colony was resuspended in 90-μL 1× PBS (0.2-μm filtered and 

autoclaved) and lysed by adding 5-μL lysozyme solution (50 mg/mL) and 100-μL Qiagen ATL 

buffer and incubated at 37°C for 30 min, followed by the protocol of the Qiagen DNeasy Blood 

& Tissue Kit Qiagen, Hilden, Germany). The extracted DNA was sent to the University of 

Michigan Center for Microbial Systems to carry out library preparation using plexWell Plus 24 

Library Preparation Kit (seqWell, USA) and sequenced using an Illumina MiSeq 2x150 V2 flow 

cell with 30X coverage yield. Raw fastq files of RNA and whole genome sequencing were 

uploaded on NCBI sequence read archive with BioProject number XXXX. 

 

Bioinformatics 

For bacteria, the whole genome sequences of Curvibacter sp. and Roseomonas sp. were 

used as genome reference for RNA-sequences mapping. To prepare the genome reference, the 

reads were examined with fastqQC v0.12.1 (Andrews, 2010) and the adapters and low-quality 

base-pair (<20Q) were trimmed using Trimmomatics v0.39 (Bolger, Lohse, and Usadel 2014) 

with parameter “LEADING:3 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:36”. The 

trimmed whole genome sequences were de novo assembled using SPAdes v3.13.5 (Bankevich et 

al. 2012) followed by gene prediction using Prodigal (Hyatt et al. 2010). Functional annotation 

was assigned using Hidden Markov Models (HMMs)-based searches against Pfam (Finn et al. 

2016) and using Diamond (Buchfink, Xie, and Huson 2015) to search against Clusters of 
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Orthologous Groups ( COG; Tatusov et al. 2003) databases using the Anvi’o pipeline (v8, Eren 

et al. 2013). The predicted gene calls were used for RNA mapping. The raw RNA seq were 

trimmed with aforementioned criteria and mapped using STAR (Dobin et al. 2013), followed by 

creating and visualizing gene count tables using SAMtools (Danecek et al. 2021) and BEDtools 

(Quinlan and Hall 2010).  

For C. sorokinana, RNA reads from all treatments and replicates were de novo assembled 

and used as the transcript reference for RNA mapping. The raw RNA-sequences were trimmed 

with aforementioned criteria, de novo assembled using Trinity (Grabherr et al. 2011)and genes 

predicted using TransDecoder (Haas et al. 2013). The potential contaminants and non-coding 

regions were eliminated, where we only kept transcripts with translated amino acid sequences 

that hit to the “Green algae” (NCBI:txid3041) in non-redundant protein sequences database 

available on NCBI using blastp (Altschul et al., 1990). These transcripts were used for transcript 

reference for mapping trimmed RNA reads using Bowtie2 (Langmead and Salzberg 2012) with 

default parameters. For functional annotation, KOfamScan (Aramaki et al. 2020) were used to 

search against the KEGG database (Kanehisa et al. 2016), respectively.  

In Yang and Denef 2024, the whole microbiome was exposed to 6 degrees of Feedback-

to-Innate effect, where the microbiome composition was revealed by the high-throughput 

sequencing on 16S rRNA gene V4 region. To identify representative ASVs to the Curvibacter sp 

and Roseomonas sp tested in the current study, we used blastn to align the ASV sequences to the 

V1-V9 regions of 16S rRNA gene sequences obtained from Sanger sequencing of the two 

isolates. 

 

Data analysis 



 73 

To examine the compositional distance of the gene expression profiles between 

treatments, a principal component (PC) analyses using variance stabilizing transformed transcript 

count tables were conducted separately for each species. The differentially expressed genes were 

also identified using DEseq2 (Love, Huber, and Anders 2014) by comparing gene expression 

between Treatment Feedback relative to Treatment Innate for bacteria. In this case, the log2 Fold 

Change (LFC) of each gene represents their relative expression level between treatments, where 

positive values indicate genes that were relatively more expressed under Treatment Feedback, 

and negative value refers to genes that were relatively more expressed under Treatment Innate. 

The differentially expressed genes (DE genes) were genes with LFC > 1 or < -1 and adjusted p-

value <=0.05. For microalgae, the LFC values were calculated to compare the gene expression 

profiles of algae co-cultured with either bacterium relative to the axenic microalgal condition. 

Positive LFC values indicate that gene expression was higher when co-cultured with the bacteria, 

and negative LFC values indicate that gene expression was higher in the axenic state. The DE 

transcripts were transcripts with > 1 or < -1 LFC and adjusted p-value <=0.05. 

For functional analysis, for bacteria, in addition to the general COG categories that 

including annotations in the COG database and the Pfam Gene Ontology (GO) category, we also 

investigated the function of DOM-related transporter using a curated list of DOM transporters 

based on COG annotations (Poretsky et al., 2010). The Pfam annotation was mapped to GO 

terms using the R package “ragp” (Dragićević et al. 2020) and manually assigned to COG 

categories. For microalgae, we focus on annotation results from the KEGG database and the KO 

accession numbers were assigned to subcategories using the R package “clusterProfiler”  (Wu et 

al. 2021). Fisher’s exact test (with <= 10 gene annotations) and Chi-square test (with > 10 gene 

annotations) were conducted to identify over- or under-expressed functions using the R package 
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“state”. All analyses were carried out using the R program (version 4.3.2, R Core Team, 2022). 

The R scripts, original data and all annotation results are provided on Github: XXXX. 

Results 

 Bacterial and microalgal population dynamics in batch culture 

We selected six bacteria isolated from C. sorokiniana based on their distinctive colony 

morphology to enable easy tracking of growth of each culture when in co-culture and tested their 

growth response under Treatment Innate (with host innate DOM but no host cells) and Treatment 

Feedback (with host cells after removal of previously produced host innate DOM). Among them, 

we found that a Curvibacter sp. and Roseomonas sp. showed the most distinct growth patterns 

under these two treatments (Figure SI 3.1). The Curvibacter sp. grew relatively fast under 

Treatment Innate but with a longer lag time to achieve the same density under Treatment 

Feedback. On the contrary, a Roseomonas sp. did not grow much under Treatment Innate but 

grew much faster and achieved higher density under Treatment Feedback. We therefore took 

Curvibacter sp. to represent a passive symbiont with one-way interaction mode and Roseomonas 

sp. to represent an active symbiont with two-way interaction mode. We grew Curvibacter sp. and 

Roseomonas sp. under two treatments again, but this time with both mono-culture and mixed 

culture conditions in a larger volume (100-mL). We again found that the two symbionts showed 

distinct growth patterns between two treatments, where Curvibacter sp. dominated under 

Treatment Innate and Roseomonas sp. dominated the Treatment feedback, regardless of the 

mono- or mixed-culture condition (Figure 3.1). For C. sorokiniana, there was no difference 

between axenic status and a co-culture with Curvibacter On the other hand, when co-cultured 

with Roseomonas sp. or the mix of both bacterial species, C. sorokiniana leveled off at lower 

density compared to the axenic status. 
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The relative abundance of two tested bacteria under degree of Feedback-to-Innate effect in Yang 

and Denef 2024 

We also examined the dynamic of Curvibacter sp. and Roseomonas sp. relative 

abundance at the whole microbiome level using results from our previous study. We found three 

and two ASVs that represent the Curvibacter sp. and Roseomonas sp., with > 97% identity. We 

found that the Curvibacter sp. showed a hump-shape, while Roseomonas sp. decreased with the 

increasing Feedback-to-Innate effect (Figure SI 3.6). 

 

Changes in bacterial and microalgal host gene expression profiles  

Firstly, we explored the variability in gene expression profiles of both bacterial 

symbionts and microalgal hosts across treatments by conducting a Principal Component Analysis 

on the variance-stabilized transformed transcript count table. We found a clear clustering based 

on Treatment Innate and Feedback for both bacteria, with 89% and 98% variance explained by 

the first PC axis for Curvibacter sp. and Roseomonase sp, respectively (Figures 3.2a and 3.2b). 

In addition, we found that the gene compositional distance between two clusters was 

significantly higher in Roseomonase sp. than in Curvibacter sp. (Figure SI 3.6). For C. 

sorokiniana, the gene expression profiles of the axenic condition were more similar when co-

cultured with Curvibacter sp. than when co-cultured with Roseomonas sp., although the distance 

difference was small (Figure 3.2c and Figure SI 3.6). In addition, we found that when co-

cultured with Curvibacter sp. C. sorokiniana showed a higher number of transcripts that were 

also detected in axenic condition (1694 transcripts) compared to when co-cultured with 

Roseomonas sp. (800 transcripts; Figure 3.2d). There was also a higher number of unique 
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transcripts detected when co-cultured with Curvibacter sp. (2314 transcripts) than Roseomonas 

sp. (2031 transcripts). 

Secondly, for bacteria, we compared the number of differentially expressed (DE) genes 

between Treatment Innate and Treatment Feedback. For Curvibacter sp., 7,870 genes were 

identified in the genome and 334 DE genes were more highly expressed under Treatment Innate 

while only 13 DE genes were more highly expressed under Treatment Feedback (Table 3.1). For 

Roseomonas sp., among a total of 6,345 genes identified in the genome, 1,572 and 1,402 of DE 

genes were more highly expressed under Treatment Innate and Treatment Feedback, respectively 

(Figure 3.3b). For C. sorokiniana, a total of 23,510 transcripts remained after filtering the de 

novo assembly. When comparing its relative transcript levels when co-cultured with either 

bacteria to its axenic state, we found 3,024 and 2,390 DE transcripts were more highly expressed 

when co-cultured with Curvibacter sp. and Roseomonas sp., respectively. Transcripts only 

detected in one treatment made up the largest proportion of these DE transcripts. When 

comparing the relative transcripts levels for C. sorokiniana when co-cultured with Curvibacter 

sp. vs. with Roseomonas sp., we observed 3,171 and 2,447 more highly expressed DE 

transcripts, respectively, again including uniquely detected transcripts in each condition. 

 

Functional annotation of DE genes 

For functional analysis, we focus on selected DE genes (DE genes with PC loading > 

0.01 or <-0.01). For the 347 DE Curvibacter sp. genes 146 (42.1 %) were annotated by either 

Pfam (77) and/or COG (111). For Roseomonas sp, among 2,974 DE genes, 1,517 (51.0 %) were 

annotated by either Pfam (763) and/or COG databases (1,040). For C. sorokiniana, where the 

KEGG database had the highest annotation rate, out of a total of 2,685 selected DE genes, 2,247 
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were annotated when co-cultured with Curvibacter sp. (83.7%); and out of a total of 2,394 

selected DE genes, 2,037 were annotated when co-cultured with Roseomonas sp. (85%). 

 

Functional expression of bacteria and microalgal host  

Here, we focus on functions with fraction of DE genes that were significantly higher 

under each treatment in Roseomonas sp relative to their proportion in the reference genome 

(Figure 3.3). Functions with significantly higher gene expression levels were: “Transporter” 

(3.27 % and 4.18% for Treatment Feedback and Innate), “Translation, ribosomal structure and 

biogenesis” (9.19% and 8.86% for Treatment Feedback and Innate), and “Energy production and 

conversion” (11.71 % and 12.35 % for Treatment Feedback and Innate). Functions that were 

only more expressed under Treatment Feedback were “Transcription” (3.27 %) and “Secondary 

metabolites biosynthesis, transport and catabolism” (3.27 %). Functions that were only more 

expressed under Treatment Innate were “Nucleotide transport and metabolism” (3.29%) ,” 

General function prediction only” (8.17%), and “Cell wall/membrane/envelope biogenesis” 

(9.26%). 

For C. sorokiniana, we found 8 functions were significantly more and less expressed 

under both treatments (Figure 3.4), including “Xenobiotic biodegradation and metabolism”, 

“Nucleotide metabolism”, “Metabolism of terpenoids and polyketides”, “Metabolism of amino 

acids”, “Metabolism of cofactors and vitamins”, “Lipid metabolism”, “Glycan biosynthesis and 

metabolism”, and “Biosynthesis of other secondary metabolites”. While functions “Nucleotide 

metabolism” (2.1 %) were only more expressed when co-cultured with Rosoemonas sp. 

Functions “Membrane transport” (0.3%) were only more expressed when co-cultured with 

Curvibacter sp.   
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Discussion 

Host-microbiome interactions play a critical role in microbiome community assembly, 

determining which functional groups of microbiota can establish within the microbiome as well 

as the functions that the microbiome provides to the host organism (Mohamed et al. 2023; Song 

et al. 2020; Gupta and Nair 2020). Our study aimed to explore in detail two contrasting modes of 

interaction occurring between individual microbes and their host: (i) a uni-directional interaction 

mode in which the symbiont is passively selected by the host, and (ii) a bi-directional interaction 

mode in which the symbiont actively interacts with the host, which in turn affects the selective 

forces by which the host shapes its microbiome. We previously showed how these two 

interaction modes lead to different microbiome compositions at the community level and act 

simultaneously in sustaining microbiome diversity (Yang and Denef 2024). However, the 

underlying mechanisms remain unclear, which led us to seek insights from single microbial 

symbiont-host interactions to characterize these two interaction modes between host and microbe 

populations in more detail. 

From a collection of isolates, we selected those with the most contrasting modes of 

interaction: where a Curvibacter sp. outcompeted the Roseomonas sp. in Treatment Innate and 

the Roseomonas sp. outcompeting the Curvibacter sp. in Treatment Feedback. Despite of the fact 

that one is outcompeting the other under either effects, they were co-occurred in the microbiome 

of C. sorokiniana that they were isolated from. While this would appear to be contradictory data, 

we showed in our previous study that both innate and feedback selection are acting 

simultaneously to explain coverall community composition (Yang and Denef, 2024), and 

together lead to more species being able to coexist than when one selective force is acting alone. 

Hence, their co-occurrence in the microbiome is not that surprising. In addition, in a more 
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complex community context, indirect effects can affect coexistence as well  (Daskin and Alford 

2012; Davitt, Chen, and Rudgers 2011). The distinctive growth patterns between these two 

bacteria are also consistent with our hypothesis stemming from this previous study that a 

microbiome is formed by some bacteria that are passively selected by uni-directional interaction 

by the host (the passive symbiont, Curvibacter sp.), whereas some bacteria drive bi-directional 

interaction modes that “engineer” host physiology and thus the produced DOM composition (the 

active symbiont, Roseomonas sp.).  

To understand what underpins these different interaction modes, we applied 

transcriptomic analyses to the host and its symbionts. Based on the observed population 

dynamics of each bacterium in each treatment, we found a significant different gene expression 

profile for both bacterium between treatment. Specifically, the gene expression profile difference 

for Roseomonas sp. is larger than for Curvibacter sp. (Figure 3.2 and SI 3.6). These findings 

were in line with the idea of two different modes of bacterial-host interactions, with Roseomonas 

sp. experienced a more significant change in gene expression than Curvibacter sp. What was less 

expected is that we only found a slightly larger distance between axenic host gene expression 

and when co-cultured with Roseomonas sp. than with Curvibacter sp (Figure SI 3.6). While this 

finding is consistent with our expectation that Roseomonas sp. as an active player would trigger a 

larger difference on the host, but the effect was weak. 

Even more surprising was that we found a lower number of DE transcripts relative to the 

axenic condition when co-cultured with Roseomonas sp. (2,390 DE genes) than Curivabcter sp. 

(3,024 DE genes). To seek a possible reason for the unexpected findings, we examined the 

number of genes overlapped among different co-cultured conditions in C. sorokiniana (Figure 

3.2d). While there were a higher number of genes overlapped between axenic conditions and co-
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cultured with Curivabcter sp. compared to Roseomonas sp., which contribute to a smaller gene 

expressed profile distance between them. This was driven primarily by the higher number of 

transcripts that were only detected (and hence labeled as DE transcripts) when co-cultured with 

Curvibacter sp. (2,314 genes) compared to Roseomonas sp. (2,031 genes). Potentially, this may 

indicate that the host tries to exert an antagonistic effect on Curvibacter sp, which suppresses 

Curvibacter sp. growth (Figure 3.1), as the Curvibacter sp. did not grow as well as on axenically 

produced DOM even though there should have been a steady supply of host DOM released into 

the media. The underlying mechanism remains unclear.  

To investigate the potential metabolites exchange between active symbiont and host that 

drive the bi-dirctional interaction, we investigated which functions of DE genes were more 

prioritized in Roseomonas sp. when under uni- than bi-directional host-microbiome interactions, 

as well as in C. sorokiniana when co-cultured with Roseomonas sp than Curvibacter sp. We 

found that functions related to secondary biosynthesis metabolites were significantly more 

expressed in Roseomonas sp. under Treatment Feedback than Treatment Innate, as well as in C. 

sorokiniana when co-cultured with Roseomona sp. relative to the axenic condition (Figures 3.1 

and 3.4). Consistent with our expectation that, during the bi-directional interactions, bacteria 

would produce signal chemicals (Dow 2021; Amin et al 2015) and host growth hormones (Cirri 

and Pohnert 2019) that trigger a change in host physiological and metabolic status. For example, 

we found that “Flavonoid biosynthesis” and “Isoflavones biosynthesis” were only significantly 

more expressed when co-cultured with Roseomonas sp. (Figure S3.8), where the flavonoid is 

one of the most studied metabolites class that stimulates plant growth promoting rhizobacteria  

(Ghitti et al. 2024). Furthermore, we found that functions that were more expressed when co-

cultured with Curivabcter sp. were all related to antibiotic and toxin biosynthesis (Figure S4). 
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This was in line with the aforementioned finding of host agnostic effect on the growth of 

Curvibacter sp. However, we noticed many of these functions were bacterial-specific functions 

(e.g., the biosynthesis of staurosporine, novobiocin, monobactam, and aflatoxin), which a follow-

up check on the filtration step on green algae transcripts and KEGG database will be conducted.  

Our study used controlled experiments to demonstrate the physiological and 

transcriptomic dynamic in microalgae and bacterial symbionts under uni- and bi-directional host-

microbiome interactions. However, we notice some caveats regarding our findings. Firstly, the 

growth phase affects gene expression status (Veselovsky et al. 2022; Rolfe et al. 2012). To 

capture a time point during growth where we observed clear effects of the bacterial symbionts on 

host growth meant that we collected the Curvibacter sp. cells during different growth phases 

between treatments, where Treatment Innate was collected at the exponential to stationary phase, 

while Treatment Feedback was collected at stationary to death state (Figure 3.1). We, therefore, 

acknowledge a divergence in gene expression profile between treatments can potentially be 

influenced by the growth phase difference. But we also notice that we found relatively few DE 

genes in Curvibacter sp. when contrasting the two treatments, which indicated that the impact of 

growth phase on gene expression was small. Secondly, the host-microbiome interactions can 

vary under different environments (Chen et al. 2019; Ochieno et al. 2021). However, our 

experiments were only conducted under a constant environmental condition with a high nutrient 

supply. We acknowledge potential distinct results when the environment changes.  

Finally, we observed discrepancies between results obtained from mono-culture 

experiments and those at the microbiome level. For example, our monoculture of Roseomonas 

sp. exhibited enhanced growth due to a host-microbiome feedback effect. However, in the 

microbiome, we noted a decrease in the relative abundance of Roseomonas sp. with increasing 
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Feedback-to-Innate index (Yang and Denef 2024). Furthermore, we observed partially consistent 

findings with Curvibacter sp. In the microbiome, its relative abundance decreased from moderate 

to high Feedback-to-Innate indices, aligning with our observation in mono-culture experiments; 

however, its relative abundance decreased when at the highest innate host effect, contrasting to 

our mono-culture result that it is favored by host innate DOM. This contrasting outcome 

underscores the complexity of microbial interactions within the microbiome, where the findings 

from mono-culture settings are not representative enough to predict outcomes in complex 

community contexts. Nevertheless, we also found consistent patterns between the mono-culture 

and complex microbiome levels. Specifically, Curvibacter sp. exhibited rapid growth and higher 

abundance, whereas Roseomonas sp. was characterized as a slow grower and relatively rare 

within the microbiome. Despite these caveats, our study does contribute to gaining a deeper 

understanding of what underpins contrasting modes of host-microbe interactions. 

Our study demonstrates how two types of effects—innate host selection and host-

microbiome feedback—favor bacteria with different symbiotic functions (passive and active 

symbionts). This provides an example of how host-microbiome interactions shape and maintain 

microbiome composition and diversity. While not representative of all host-microbiome systems, 

the phytoplankton microbiome is a particularly good model for microbiomes that are shaped by 

host secretions, such as in plant, skin, and coral microbiomes (Boxberger et al. 2021; Voolstra et 

al. 2024; Müller et al. 2016). The planktonic feature and interaction via metabolic exchanges 

allowed us to manipulate and examine the separate effects of two interaction modes on the 

microbiome, which is challenging to conduct in other systems. Our observation brought up the 

idea of the trade-off between functional groups of bacteria being selected by each host-

microbiome interaction mode. For example, while Curvibacter sp. was favored by DOM that the 
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host innately produced, it comes with a lack of ability to drive bi-directional host-microbiome 

interaction to increase its fitness. On the contrary, albeit Roseomonas sp. was a weak symbiont 

under uni-directional interactions, it was able to shift the competition outcome with Curvibacter 

sp. under the bi-directional interaction modes. We observe a different strategy allocation between 

Curvibacter sp. with fast-growing features and genes set central nutrition utility versus 

Roseomonas sp. being slow-growing but with the ability to express functionally diverse genes 

that involve both utilizing host DOM and synthesizing chemical signals to interact with hosts. 

This negative relationship between growth ability and gene expression diversity aligned with the 

trade-offs between growth and bet-hedging suggested by previous studies (Kim et al., 2020; 

Groot et al. 2023). 
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Table 3.1 Number of total genes and DE genes in bacteria and microalgae under different 

treatments.  

Number of total genes and DE genes (with adjusted p-value <0.05 and abs(log2FoldChange) >= 

1 for bacteria and >= 5 for C. sorokiniana) that are relatively upregulated under different 

treatments.  

 

Organisms 
# of total 

genes/transcripts 
Comparison Treatments 

# of DE 

genes/transcripts 

that were more 

highly expressed  

Curvibacter 

sp. 
7870 Treatment Innate  

versus  

Treatment 

Feedback 

Innate 334 

Feedback 13 

Roseomonas 

sp. 
6345 

Innate 1572 

Feedback 1402 

C. sorokiniana 23510 

+Curvibacter sp. 

versus  

Axenic control 

+Curvibacter sp. 3024 

Axenic 15 

+Roseomonas sp. 

versus  

Axenic control 

+Roseomonas 

sp. 
2390 

Axenic 45 

+Curvibacter sp. 

versus  

+Roseomonas sp.  

+Curvibacter sp. 3171 

+Roseomonas 

sp. 
2447 
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Figure 3.1 Bacterial and microalgal host growth dynamics.  

 

Bacterial growth in Treatment Feedback in (a) monoculture and (b) mixed culture and in 

Treatment Innate in (c) monoculture and (d) mixed culture, and (e) microalgal host growth when 

co-cultured with either bacterium, both bacteria, and without bacteria (axenic state). The vertical 

blue dashed lines indicate the sampling time for RNA sequencing. The bacteria were counted by 

plate counts (CFU) and microalgal growth was measured based on Chlorophyll-a fluorescence 

(RFU). In the bacterial growth curves, the black and pink points and lines present the growth of 

Curvibacter sp. and Roseomonas sp. In the microalgal host growth curve, the black, pink, brown, 

and green points and lines indicate the growth of microalga co-cultured with, Curvibacter sp., 

Roseomonas sp., mixed of two bacterium and axenic control. 
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Figure 3.2 Principal component (PC) analysis revealing the gene expression profile differences 

between treatments for (a) Curvibacter sp., (b) Roseomonas sp. and (c) C. sorokiniana, and (d) 

transcript overlap analysis of C. sorokiniana.  

For both bacteria, green and yellow points indicate gene expression profiles under Treatment 

Feedback and Treatment Feedback, respectively. For microalgae, the green, pink, and black 

points represent the axenic state, the co-culture with Roseomonas sp., and the co-culture with 

Curvibacter sp. The percentages in the X and Y axis labels show the proportion of variation 

explained by the first and second PC. The number in the gene overlap analysis indicates the 

number of gene that were presence each category, with a total number of 23,510 genes. 
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Figure 3.3 Roseomonas sp. gene expression of function related to host-microbiome interaction 

and DOM-related transporter of reference database and DE genes that are more expressed under 

Treatment Feedback and Treatment Innate.  

The % showed the fraction of genes hit to each category, with the exact number of counts in the 

brackets. The asterisk indicates significant over-expression functions (p <0.05) based on Fisher’s 

extract test or Chi-square test. 

 

 
  



 94 

Figure 3.4 The fraction of DE transcripts annotation to function in C. sorokiniana co-cultured 

with Roseomonas sp. or Curvibacter sp. relative to the axenic condition. 

The  (+) and (-) symbols indicate over- or under-expressed functions and with an asterisk 

indicates the expression was significant (p <0.05) based on Fisher’s extract test or Chi-square 

test. Only pathways with significant over- or under-expression that were more expressed when 

co-cultured with Curvibacter sp. or Roseomonas sp. relative to axenic conditions were shown. 
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Supplementary information for Chapter 3 

 

Figure SI 3.5 Growth dynamic of six selected bacteria isolated from C. sorokiniana under  

Treatment Innate and Treatment Feedback.  
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Figure SI 3.6 The dynamic of Roseomonas sp. and Curvibacter sp. relative abundance in the 

microbiome when incubated under degree of Feedback-to-innate index from Yang and Denef, 

2024. 
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Figure SI 3.7. The Euclidean distance on variance stabilizing transformed gene/transcript count 

tables of (a) Bacteria between Treatment Innate and Feedback and (b) C. sorokiniana when co-

culture with Curvibacter sp. (CC), Roseomonas sp. (CR) and axenic condition (C).  

Each treatment with three replicates. The red letters above boxplot are groups with significantly 

different Euclidean distance between comparisons. It was determined by Kruskal-Wallis test 

followed by the pairwise T test. The Bonferroni correction method was used for adjusting P-

values. The height of the box represents the middle 50% of the data, the whiskers extend to 1.5 

times the interquartile range from the first or third quartile, the middle line in each box is the 

medium.  
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Figure SI 3.8 The fraction of DE transcripts annotation to function category “metabolism of 

secondary metabolites” in C. sorokiniana co-cultured with Roseomonas sp. or Curvibacter sp. 

relative to the axenic condition.  

The (+) and (-) symbols indicate over- or under-expressed functions and asterisks indicates the 

expression was significant (p <0.05) based on Fisher’s extract test.  
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Chapter 4 : Dissecting Interplays of Host-Microbiome Interactions and Nitrogen Supply on 

Phytoplankton Microbiome Composition 

Abstract 

Microbiomes are shaped by innate host properties, host-microbiome feedback, and 

environmental conditions, influencing their composition and function provided to the host. 

Previous studies identified two forms of host selection effects on algal microbiomes that lead to 

distinct microbiome composition: innate host selection via host-produced dissolved organic 

matter (DOM) and host-microbiome feedback where microbes affect how the host shapes the 

microbiome. It is also known that individual host-microbe interactions can shift with 

environmental conditions. However, it remains unclear how these individual changes in 

interactions affect overall microbiome composition and impacts on host fitness. We used the 

green alga C. sorokiniana and a synthetic microbiome of seven associated bacteria as a host-

microbiome model system. We examined microbiome composition, and how it relates to 

individual bacterial growth rates and host fitness effects under two host-microbiome interaction 

modes across three nitrogen supply levels. Our findings show distinct microbiome composition 

under innate host selection versus host-microbiome feedback, and in function of nutrient supply. 

These shifts were more pronounced when host-microbiome feedback was present. At lower 

nitrogen levels, we observed strong competition between phytoplankton and bacteria, whereas at 

high nitrogen levels, these antagonistic bacteria were suppressed, allowing for more bacteria to 

establish in the microbiome. We observed a positive relationship between monoculture growth 

rates and bacterial density in the microbiome only when under high nutrients. Similarly, the 
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relationship between bacterial impact on host fitness and microbiome density was negative under 

low nutrient conditions but weakened or disappeared under higher nutrient supplies. Notably, 

these shifts in relationships were more pronounced under host-microbiome feedback compared 

to innate host selection. These findings highlight how host-microbiome feedback can amplify 

competitive effects under lower nutrient conditions and alleviate the competition effect under 

higher nutrient levels that allow more bacteria to coexist in the microbiome. 

 

Introduction 

Microbes that are harbored by eukaryotic organisms are collectively called microbiomes. 

A variety of studies have indicated a strong association between having specific microbes in the 

microbiome and its effect on host growth and competitive fitness, highlighting the potential 

impact of microbiome composition on host health and survival (Lau and Lennon 2012; Rosshart 

et al. 2017; Coleman-Derr and Tringe 2014; Sampson and Mazmanian 2015; Oliver, Smith, and 

Russell 2014; Siefert et al. 2018). The composition of the microbiome, along with the functions 

it potentially provides to the host, is dynamically shaped by host selection (Xiong et al. 2021; 

Davitt, Chen, and Rudgers 2011; Arandia-Gorostidi et al. 2022), host-microbe interactions (Cirri 

and Pohnert 2019; Seymour et al. 2017), and the external environment (Ahn and Hayes 2021; 

Chong-Neto, D’amato, and Rosário Filho 2022). In the context of human-caused global change, 

interest has been growing in how aquatic nutrient concentration, temperature, and CO2 levels 

influence microbiome assembly. In addition, emerging studies have revealed shifts in host 

selection on microbiome (Trivedi et al. 2022), and changing environment can alter the host-

microbe interaction types (e.g., shift to antagonistic or mutualistic interactions) (Rogalski et al., 

2021; Paull, LaFonte, and Johnson 2012) and strength (e.g., stronger associated or disrupted) 
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(Ramanan et al. 2016; Courboulès et al. 2022). These would indicate that besides direct 

environmental effects on the microbiome (e.g., changing microbiome growth rate and strength of 

competition), the shift in host-microbe interactions can shift the microbiome composition and 

functioning.  

For the phytoplankton system we focus on, released dissolved organic matter (DOM) 

serves as a nutrient and energy source for microbes. Consequently, phytoplankton attract and 

harbor a microbiome attached to and in the boundary layer surrounding phytoplankton cells (Fu 

et al. 2020; Cirri and Pohnert 2019). As these microbiomes are exposed to the open environment 

environmental factors may influence the interaction between phytoplankton and bacteria, albeit 

with varying outcomes. For instance, some research suggests that elevated temperatures enhance 

the mutualistic relationship between phytoplankton and bacteria by increasing metabolites 

exchange between them (Arandia-Gorostidi et al. 2022). Conversely, other studies indicate that 

warming disrupts these mutualistic indications due to nutrient limitations caused by increased 

algal bloom formation under warmer conditions (Courboulès et al. 2022). Nutritional status also 

plays a critical role in shaping phytoplankton-bacteria interactions. Mutualistic phytoplankton-

bacteria relationships are ubiquitous in oligotrophic environments, in which such interactions 

confer higher fitness for survival (Hernandez et al. 2009; Gonzalez and Bashan 2000). 

Conversely, limited nutrition can lead to competition between phytoplankton and bacteria (Cao 

et al. 2020; Ratnarajah et al. 2021), whereas strong mutualistic interactions are observed under 

high-nutrient conditions (Danger et al. 2007; Ramanan et al. 2016). These inconsistent findings 

can be attributed to the net cost and benefit for the host gain from these interactions, which 

depends on the tightness of species association (e.g., obligate or facultative mutualistic 

interactions; Hale and Valdovinos 2021; Leftwich, Edgington, and Chapman, 2020) and the 
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presence of other biological interactions (e.g., pathogens; (Cao et al. 2020; Ratnarajah et al. 

2021) 

In previous studies, we demonstrated that innate host selection (host control on the 

microbiome with innately produced DOM) and host-microbiome feedback effect (host-

microbiome feedback altering the DOM composition that the host produces) during host-

microbiome interactions selected for distinct groups of bacteria, favoring those either influenced 

by innate host-derived DOM or by direct interaction with the host (Yang and Denef, in 

preparation). These interaction modes collectively contribute to maintaining overall microbiome 

diversity (Yang and Denef 2024). Counterintuitively, we observed that certain bacteria that had 

negative fitness effects on the host were favored under the host-microbiome feedback effect 

(Yang and Denef, in preparation). As these experiments were conducted under conditions of 

high-nutrient medium and stable incubation temperatures, reducing nutrient supply to levels 

closer to those found in natural environments may yield different results, either the host selecting 

for beneficial bacteria, or fitness effects on the host of certain bacterium shifting in function of 

nutrient supply. Alternatively, bacteria favored by the host-microbiome feedback effect may be 

parasitic, driving the host to select for them despite these negative fitness effects.  

Under innate host selection, the influence of nutrient supply is primarily determined by 

its effect on the composition and amount of phytoplankton-derived DOM. Nutrient limitation 

may result in lower production of DOM by the host with lower nutritional value and diversity 

(Thornton 2014; Livanou et al. 2017), such as a reduction in the release of nitrogen-rich 

compounds. Thus, we hypothesize that favored bacteria under each nutrient can be determined 

by their growth rate (which is shaped by nutrient acquisition capacities) in monoculture on the 

same DOM, in part based on previous studies that showed that bacterial community composition 
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was associated with the composition of host metabolites (Ferrer-González et al. 2021; Fu et al. 

2020). In contrast, the host-microbiome feedback effect with bi-directional host-microbe 

interaction relies more on the tightness of species associations and the net cost and benefit gained 

from the host. Limited nutrient supply triggers competition between the host and microbiome. As 

nutrient supply increases mutualistic interactions can be promoted, up to a point where surplus 

nutrients may lower the host benefits gained from the mutualistic interaction. We, therefore, 

expect that nutrient levels will lead to a shift in microbiome composition, one that is larger when 

the host is present than when the microbiome is merely supplied with DOM produced by the 

axenic host under different nutrient supplies. We also expected the nature of the interactions to 

change in function of nutrient supplies, with the most positive impacts on the host at 

intermediary nutrient concentrations.  

To test these hypotheses, we used Chlorella sorokiniana as a host model system. Each 

bacterium was isolated from a C. sorokiniana culture with a microbiome that was originally 

recruited from a natural pond. While phosphorus is more often limiting in freshwater systems 

(Correll 1999), we focused on nitrogen (N) as the limiting nutrient in this study as we have 

previously shown N resource limitation to be more affected by the presence of a microbiome  

(Baker et al. 2022), and N being central to many secondary metabolites involved in interspecies 

interactions (Singh and Singh 2018). For Treatment Innate, the synthetic microbiome was 

inoculated into spent medium of C. sorokiniana that contains the rich DOM it produced innately, 

and after all host cells were removed so as to establish only unidirectional host-microbiome 

interactions (microbiome consuming host DOM). For Treatment Feedback, the microbiome was 

inoculated into fresh medium with washed C. sorokiniana cells without initial DOM to set up 

allow for bi-directional host-microbiome interactions to shape microbiome selection. In addition, 
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the growth rate of each bacterium in monoculture was determined under Treatment Innate and 

Feedback, as well as the impact of each bacterium on C. sorokiniana growth rate and carrying 

capacity. We evaluated how microbiome composition and the extent to which monoculture 

growth dynamics and impacts on host growth could predict microbiome composition under each 

treatment in function of nitrogen supply. 

 

Methods 

Microalgae and bacterial source, bacterial isolation, and species identification 

C. sorokiniana (UTEX 2805) was rendered axenic in 2011 (Jackrel et al. 2020) and 

maintained on COMBO media slants (Kilham et al. 1998) under a light intensity no higher than 

30 μmol · m-1 · s-1 at 15°C and reinoculated to fresh medium every four to six months since then. 

Microbiomes were recruited to this axenic culture from natural ponds in 2018 (Jackrel et al. 

2021b). The xenic culture we obtained isolates from in this study was generated in 2021 from 

those initial microbiomes and was also used in our previous experiments identifying the innate 

and feedback selective effects (Yang and Denef, 2024).  

Seven bacterial isolates with distinctive colony morphology were chosen to enable easy 

tracking of growth of each culture when in a synthetic microbiome. To identify bacterial species 

by sequencing, for DNA extraction, each isolated colony was resuspended in 90-μL 1× PBS 

(0.2-μm filtered and autoclaved) and lysed by adding 5-μL lysozyme solution (50 mg/mL) and 

100-μL Qiagen ATL buffer and incubated at 37°C for 30 min, followed by the protocol of the 

Qiagen DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany). The 16S rRNA gene was 

amplified using primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-

TACGGYTACCTTGTTACGACTT-3') (Weisburg et al. 1991b). 1-ul of template DNA was 
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mixed with 10-ul of NEBNEXT 2X Master Mix (New England Biolabs, Ipswich, MA, USA) and 

9 ul of Nuclease Free water. The PCR cycling conditions consisted of an initial denaturation at 

95°C for 5 minutes, 25 cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 

seconds, and extension at 72°C for 1 minute, and a final extension step at 72°C for 5 minutes. 

The PCR products were stained with GelRed (Biotium, Fremont, CA, USA) and examined with 

gel electrophoresis using a 1% agarose gel. The qualified PCR products were sent out for PCR 

purification, quantification, and Sanger sequencing (Eurofins, Louisville, KY, USA). Low 

quality base-pairs were trimmed and taxonomic classification was obtained using blastn 

(Altschul et al., 1990) against the nucleotide collection (nr/nt) database available from National 

Center for Biotechnology Information (NCBI), with the best hit taxon used.  

 

Semi-continuous experiment with synthetic microbiome and each bacterium 

Seven bacterial isolates were mixed and exposed to Treatment Innate (with host innate 

DOM but no host cells) and Treatment Feedback (with host cells after removal of previously 

produced host innate DOM) in function of three nitrate supplies, followed by a semi-continuous 

incubation. Axenic C. sorokiniana was first grown in full nitrate supplied (12.6 N mg/L) 

COMBO medium until exponential growth phase, then harvested at exponential growth phase 

(~2 x 105 cells/mL) and 1-ml of culture was transferred to 100-ml of COMBO medium with 

0.14, 0.98 and 4.2 N mg/L of nitrate supply, which represent the oligotrophic, eutrophic and 

polluted environment (Quirós 2003). To deplete the extra nitrogen from the original full nitrate 

supply COMBO medium in the medium and stored in C. sorokiniana cells, 30% of these cultures 

was transferred to fresh medium at matching nitrate supply levels after two days of incubation. 

This process was conducted three times.  
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To create two host selection treatments, each axenic microalga culture was harvested and 

centrifuged at 900 x g for 5 min. The supernatant was collected and filtered through 1.2-um pore-

size filters to remove any remaining cells. This filtered spent medium was used for Treatment 

Innate, which contained only dissolved organic matter (DOM) innately produced by the host 

without any direct microbe-host interactions. For creating Treatment Feedback, the pelleted C. 

sorokiniana cells were washed in fresh COMBO medium to remove remaining spent medium 

and resuspended in fresh COMBO medium at ~2 x 105 cells/mL. This medium contained only 

axenic host cells without any initial DOM.  

For preparing the bacterial isolates culture, each bacterium was incubated in liquid R2A 

medium to exponential growth. To minimize the impact of remnants of the liquid R2A medium 

on the microalgal host, each 1 mL bacterial R2A culture was washed twice by centrifuging at 

2,500 x g for 10 min, removing the spent medium, and resuspension in 1 mL fresh COMBO 

medium (at each nitrogen supply level). The final resuspended bacterial isolates were mixed and 

inoculated into each treatment after 1,000 times dilution into six 1-ml replicate cultures using 48-

well plates (Fisher Scientific, Hampton, NH, USA). The plates were cultured under a continuous 

80 RPM rotation with a 16:8 light/dark cycle under a light intensity of ~ 80 μmol · m−2 · s−1 at 

20 °C in a Minitron incubator (Infors HT, Bottmingen, Switzerland). After two days of initial 

incubation, we conducted six daily 30 % (300-µl) transfer of old cultured into 700-µl of fresh 

medium for Treatment Feedback at each nitrogen level or to 700-µl of fresh filtered C. 

sorokiniana spent medium from the axenic C. sorokiniana culture at each nitrogen level. 

To track growth of C. sorokiniana in Treatment Feedback, relative fluorescence intensity 

units (RFU) of Chlorophyll-a (with the excitation and emission wavelengths of 465 and 680 nm) 

were measured as a proxy of microalgal density using a Synergy H1 microplate reader (Bio Tek, 
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Winooski, VT, USA). To reveal the microbiome composition, three 10-µl replicates of each 

culture were sampled at Day 6 (with three replicates; Figure SI 4.5) and 9 (final day, with all six 

replicates; Figure 4.1). Colony forming units (CFU) were counted using drop plate technique 

(Herigstad, Hamilton, and Heersink 2001), where each 10-µl subsample was 10-2, 10-3and, 10-

4diluted using R2A liquid medium, and three 10-µl replicate drops of each dilution were dropped 

on R2A agar plates. The plates were incubated at room temperature in the dark.  

 

Bacterial direct effect on algal fitness 

To examine how each bacterium affects microalgal growth rate during the semi-

continuous experiment, the aforementioned semi-continuous experiment was repeated but with 

each isolate inoculated separately, only Chlorophyll-a were measured, and with five replicates. 

To quantify bacterial effect on microalgal carrying capacity, axenic microalgae across three 

nitrogen supplies were exposed to each bacterium, after washing and diluting the culture 1,000 

times, followed by eight days of incubation during which growth was tracked using Chlorophyll-

a measurements. Five replicates were conducted. All cultures were incubated under the same 

conditions as the experiment with the synthetic community.  

 

Bacterial growth rate in monoculture 

The preparation of bacterial isolates, Treatment Innate and Feedback across three 

nitrogen supplies used the same protocols as the other experiments. To provide time for 

microalgae-bacteria reassociation, bacterial inoculation was followed by allowing the cultures to 

grow for 48 hours, followed by two 30% daily transfers (to fresh algal DOM for Treatment 

Innate and to fresh COMBO medium for Treatment Feedback). After incubation for 24 hours 
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after the second transfer, 10 % (100-uL) of the cultures were transferred to fresh host DOM 

(Treatment Innate) or COMBO medium (Treatment innate) for the actual experiment. Bacterial 

density was measured at the start and after 48-hours, using the aforementioned drop plate 

technique.  

 

Statistical analysis 

The microbiome composition was differentiated with ANOSIM and PERMANOVA, and 

variation across samples was visualized with PCoA plots based on Bray-Curtis dissimilarity. For 

bacterial effect on host fitness, we picked the microalgal growth at the final transfer in the semi-

continuous experiment with each bacterium inoculated separately. The host growth rate was 

calculated with an equation based on the cultures being in the exponential growth phase: ln(24 

hours growth/initial density)/24 hours (Fernández-Martínez, Javelle, and Hoskisson 2024). The 

carrying capacity was estimated by fitting a logistic model to microalgal growth in a 8-day batch 

incubation experiment using R package “growthcurve” package (Petzoldt et al. 2022). To test if 

bacteria have significant impact on microalgal host fitness, the growth rate and carrying capacity 

of the host when co-cultured with each bacterium were compared with an axis condition with 

ANOVA and the Tukey test for paired comparisons. The correlation between bacterial density in 

microbiome versus bacterial growth rate in monocultures or bacterial direct effect on host fitness 

were analyzed with a linear-mixed model (LMM), with the former as the dependent variable, the 

latter as independent variables and bacterial species as random effect. To investigate the 

correlation based on the relative response or impact among seven bacterial isolates, the values 

were scaled across different bacteria before the LMM analysis. When investigating the above 

two relationships within one nutrient supply level, the Pearson’s correlation coefficient and its p-
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value were calculated. All above statistical analyses were conducted using R package “vegan” 

(Oksanen et al. 2022) and ”stats” (R Core Team 2023). 

 

Results 

Microbiome composition in Treatment Innate and Treatment Feedback in function of three 

different nitrogen supply levels 

We found clear clusters of microbiome composition under Treatment Innate and 

Treatment Feedback and across three different nitrogen supply levels at Day 6 (after 3 daily 

transfer) and final day (Figure 4.1 and SI 4.5), with both PERMONOVA p-value <0.05 for all 

pairwise comparison (Table SI 4.1). In Treatment Feedback at the two lower nutrient levels, we 

observed that the microalgae exhibited a reduction in growth across transfers (Figure SI 4.6). In 

order to identify which bacteria drove this, we repeated the semi-continuous incubation 

experiment but with each isolate inoculated separately, and we found one bacteria, Curivibacter 

sp., showed a negative effect on host growth under 0.14 and 0.98 N mg/L nitrogen supplies 

(Figure S4.7). It was one of the two bacteria that were observed in the microbiome at the lowest 

nitrogen supply level (Figure 4.1). As for the impact on microbiome diversity, we found that the 

number of bacteria establishing the microbiome from low to high nutrient supply (0.14, 0.98 and 

4.2 N mg/L) was two, four and six bacterial species in Treatment Feedback, and five, six, and 

five bacterial species in Treatment Innate (Figure 4.1).  

 

The relationship between bacterial relative growth rate in monoculture and relative density in 

microbiome  
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Base on LMM analysis, setting bacteria as random effect, we found a significant positive 

relationship between bacterial relative growth rate in monoculture and relative density in a 

microbiome when under both Treatment Feedback and Innate (Correlation coefficient of fixed 

effect: 0.27 and 0.15, respectively and both p-value <0.001). However, when we investigated the 

relationship within the same nitrogen supply, this significant positive relationship was absent 

when with 0.14 and 0.98 N mg/L supplies under Treatment Feedback, and 0.14 N and 4.2 N 

mg/L under Treatment Innate (with Pearson’s correlation coefficient all p-value > 0.08, Figure 

S4.7). 

 

Bacterial impact on algal growth and its relationship with relative density in microbiome  

Among seven tested bacteria, we only found Curvibcater sp. significantly reduced 

microalgal growth rate under 0.14 N and 0.98 N mg/L nutrient supply and carrying capacity 

under all nutrient supply (Figure 4.2), compared to microalgal axenic conditions. Microalgal 

host inoculated with Emiticicia sp. Erythrobacter sp. Hydrigebiphaga sp. Parahrinhrimera sp., 

Roseomonas sp., and Sphingomonas sp. showed no significant difference in carrying capacity 

and growth rate from the axenic condition, regardless of nitrogen level. Nevertheless, I noticed 

that Erythrobacter sp. and Sphingomonas sp. showed relatively more positive effects on 

microalgal host carrying capacity, especially under a higher nitrogen supply.  

We found that bacterial effect on microalgal growth rate was negatively correlated to 

bacterial relative density in the microbiome under both Treatment Feedback and Treatment 

Innate (Correlation coefficient of fixed effect: -0.38 and -0.28, respectively; both p-value < 

0.001; Figure 4.4). However, this relationship was absent when under the highest nitrogen 
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supplies, 4.2 N mg/L, under both Treatment Feedback and Innate (Peason’s correlation 

coefficient (r) = 0.11 and 0.12, respectively, with both p-value > 0.05; Figure SI 4.8). 

In addition, we also found that bacterial effect on microalgal carrying capacity was 

negative correlated to bacterial relative density in the microbiome under both Treatment 

Feedback and Treatment Innate (Correlation coefficient of fixed effect: -0.60 and -0.55,  

respectively; both p-value < 0.001; Figure 4.4). This time, the negative relationship remains but 

becomes weaker with increasing nitrogen supplies. The correlation coefficient was shifted from -

0.76, to -0.55, to -0.34 from low to high nitrogen supply under Treatment Feedback, and from -

0.62, to -0.42, to -0.39 from low to high nitrogen supply under Treatment Innate (with p-value all 

<0.001; Figure SI 4.9). 

 

Discussion   

Microbiome assembly is shaped by innate host control, host-microbe feedback effects, 

and abiotic environmental conditions, including temperature and nutrient levels (Davitt, Chen, 

and Rudgers 2011; Arandia-Gorostidi et al. 2022; Cirri and Pohnert 2019; Seymour et al. 2017; 

Ahn and Hayes 2021; Chong-Neto, D’amato, and Rosário Filho 2022). While each of these three 

factors is important in shaping microbiome composition, it remains unclear what the impacts of 

their interplay are. In addition, most studies focus on either the whole microbiome or specific 

host-bacteria pairs (Yang and Denef 2024; Fu et al. 2020; Shibl et al. 2020), and studies at 

intermediate levels of complexity using synthetic consortia are lacking, despite their utility to 

gain insights into how pairwise interactions translate to higher levels of complexity (Chang and 

Baji 2023). Here, we investigated the compositional shift of a synthetic microbiome of 7 

bacterial members of the C. sorokiniana microbiome when exposed to Treatment Innate (innate 
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host control) and Feedback (presence of host-microbiome feedback effects) in function of three 

different nitrogen supply levels. Furthermore, to investigate the link between the population and 

community levels, we estimated bacterial growth in monoculture conditions and tested if it 

related to the composition of the microbiome. Finally, we examined the impact of each 

bacterium on the algal host, and examined if it is related to the microbiome composition, to 

establish the extent to which host impacts drive how the host selects its microbiome under 

different nitrogen supply levels.  

We found that host control by innately produced DOM and host-microbiome feedback 

effects led to distinct microbiome (Figure 4.1) and that composition changed in function of 

nitrogen supply levels, a shift that was more pronounced under host-microbiome feedback effect 

conditions. When nitrogen supply was low, competition for resources strongly dominated 

microbiome assembly, as there were only two fast-growing bacterial species, Curvibacter sp. and 

Hydrogenophaga sp., establishing the microbiome. The role of competition, primarily by 

Curvibacter sp., was further demonstrated by the microalgal host growth being so negatively 

affected that the growth rate was lower than the semi-continuous dilution rate when under the 

two lower nutrition supplies (Figure SI 4.6 and SI 4.7). This indicated a strong microbe-microbe 

and host-microbe competition resulting in strong bacterial competitors dominating the 

community. On the other hand, when the nitrogen supply was high, there was a higher number 

(6) of bacteria establishing the microbiome and a relatively consistent microalgal growth rate 

was observed during the semi-continuous experiment, regardless of mixed or mono-culture 

inoculation (Figure SI 4.6 and SI 4.7). This indicated that sufficient nutrition can lower the 

competition stress allowing for a higher diversity of species to coexist in the microbiome.  
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While the ability to sustain more diversity with increased nitrogen supply may simply be 

due to relieving ecological selection, host-microbiome feedback may play a role as well in the 

higher levels of diversity at higher nitrogen levels. This was based on our findings when 

comparing the microbiome composition and diversity between Treatment Feedback and Innate. 

The abundance of Curvibacter sp. increased with nutrient supply in the Innate Treatment, 

whereas its density remained constant in the Feedback Treatment, while other bacteria increased 

in abundance, suggesting an antagonistic effect on Curvibacter sp. growth when the presence of 

the host. In this context, it is also interesting to note that the microalgal growth-promoting effect 

by beneficial bacteria increased with increasing nutrition supply. This was particularly true for 

Sphingomonas sp., for which we observed the highest positive effect on host fitness, and which 

only established in the microbiome when in the presence of the host under the highest two 

nutrition supply levels (Figure 1 and Figure 3). In contrast, at low nutrient supply levels, we 

observed fewer bacterial species coexisting under the Feedback Treatment compared to the 

Innate Treatment. This again indicates that the host plays a role in excluding other bacteria, 

including beneficial bacteria, from the microbiome, as competition for limited resources 

(nitrogen in this case) dominated community interactions at low nitrogen supply levels. Our 

findings are in line with studies that observed that lower nutrient levels trigger host-microbe 

competition (Cao et al., 2020; Liu et al., 2012) while higher nutrient levels can sustain more solid 

mutualistic interaction (Danger et al., 2007; Ramanan et al., 2016). Our study extended the 

results from these previous studies by showing that this phenomenon is primarily driven by shifts 

in host-microbiome feedback effects in the function of nutrient supply levels, rather than solely 

by the host's response to environmental changes without effects from the microbiome itself, seen 
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that higher levels of diversity could be maintained at low nutrient levels when the grown on 

axenic host-produced DOM in absence of the host. 

We found that the predictive power of bacterial growth rate in mono-culture on the final 

microbiome composition varied under two host-microbiome interaction effects and at different 

nitrogen supply levels. Although we found a positive relationship when considering all data 

together (Figure 4.2) when considering each nutrient level separately we found no relationship 

under the lowest and intermediate nitrogen supply levels in the host-microbiome feedback effect 

treatment, and the lowest and highest nitrogen supply in the innate host selection treatment 

(Figure SI 4.7). When nutrients are not limiting, it makes sense that the fastest-growing species 

is more dominant. When nutrients are limited, ecological theory predicts the species with the 

lowest R⋆, the concentration at which the net growth rate reaches zero, to prevail (Tilman 1981). 

Hence, the absence of a relationship between monoculture growth rate and relative abundance in 

the mixed community at the lower nutrient levels is logical, again pointing to the important role 

of competitive interactions in shaping community composition. Again, the contrast between 

treatment feedback and innate indicates that when the host is present, competitive interactions 

are more pronounced at low nutrient concentrations, but less so when nutrients are bountiful, 

potentially due to host-microbiome feedback effects lessening competition. 

We found that bacterial effects on host fitness also correlated with the microbiome 

composition (Figure 4.4). However, this relationship was opposite to what we may have 

expected when assuming that the host can select for species it favors, as bacteria with more 

negative effect on host fitness resulted in a higher density in the microbiome. Again, this 

supports the idea that competition for resources is central to microbiome community assembly, at 

least under the conditions and with the set of species that we included in this study. However, we 
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also found that this negative relationship was absent (host growth rate as fitness) or weaker (host 

carrying capacity as fitness) with an increasing nitrogen supply (Figure SI 4.9 and SI 4.10). 

Notably, the degree of shift in this relationship across different nitrogen supplies was larger 

under host-microbiome feedback effect than innate host selection, again pointing at an ability for 

host-microbiome feedback effects to add to the factors that shape microbiome assembly. This 

aligns with the aforementioned findings that host-microbiome feedback intensifies competition 

exclusion under limited nutrients but mitigates competition effects when nutrient supply is 

sufficient.  

 

Caveats 

Culturing and laboratory experiments allow us to test and isolate the specific impacts of 

each host presence/absence and nutrient supply; however, it was limited in its ability to represent 

reality and the complexity of the natural environment. Firstly, most of the microbes in the 

microbiome are challenging to culture. Although the microbiome we used was originally from 

the natural pond water, we did not necessarily work with bacterial species with dominant roles in 

the host-microbiome interactions. Secondly, our experiments did not capture many factors in the 

complex nature, such as dynamic abiotic factors (e.g., changing nutrient, temperature and light 

intensity), a massive microbial diversity pool from which species can continuously be recruited 

to the microbiome, and the presence of other interactions such as competition, predation, and 

viral infection on both phytoplankton and microbes, all of which can potentially affect the host-

microbiome interactions. For example, the more stress and dynamic environment with the 

combination of reducing competition effect from strong competitor microbe on the 

phytoplankton (e.g., due to massive microbial pool and predation selection on fast-growing 
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microbial species), the relative benefit from mutualistic interaction for the phytoplankton would 

become greater and a more solid mutualistic interaction would be established. Future work on 

incorporating higher-order levels of complexity is needed. This can be achieved by diversifying 

the range of microbial isolates used and exploring a broader spectrum of environmental factors. 

Additionally, conducting experiments in natural settings with phytoplankton and bacterial 

communities under in situ incubation setups will provide a more realistic understanding of how 

the two host-microbiome interaction effects shape the microbiome and their response under 

changing environments.  

 

Conclusion 

Our study showed that different host-microbiome interactions displayed different 

responses to a changing nutrient supply on microbiome composition and diversity. Specifically, 

we found that the host-microbiome feedback effect amplified the impact of competitive 

exclusion when nutrients were limited, while it helped alleviate competition effects when 

nutrient supply was high, presumably by suppressing the dominant bacteria and sustaining a 

higher diversity of bacteria to establish the microbiome. Under conditions where bacterial 

growth rate as monocultures (under the same conditions) was predictive, the relationship was 

positive, while the impact on host fitness was negatively correlated, together indicating that 

competitive interactions dominated the factors that shaped community assembly. These findings 

provide insights into how microbiomes are shaped by host-microbiome interactions under 

varying environmental conditions and are the foundation for more extensive work that 

determines the influence of human activity-induced global change within ecosystems. The 

understanding of the ecological interactions that shape microbiome community assembly is also 



 117 

of value to understanding general principles of what shapes microbiome community assembly 

across systems, particularly for systems where host secretions are key and in environments where 

microbiomes are exposed to external environmental factors (Boxberger et al. 2021; Mohamed et 

al. 2023; Davitt, Chen, and Rudgers 2011). 
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Table 4.1 Microbiome composition under Treatment Feedback and Innate across three nitrogen 

levels. 

 (A) Bar chart displaying the natural log-transformed density of each bacterial species within the 

microbiome under Treatment Feedback and Innate across three nitrogen levels. Each bar 

represents the mean density, with error bars indicating the standard error of the mean. (B) 

Principal Coordinates Analysis (PCoA) plot illustrating the microbiome composition based on 

Bray-Curtis distance under Treatment Feedback and Innate across three nitrogen levels. 
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Figure 4.1 Relationship between bacterial relative growth rate in monoculture and bacterial 

relative final density in microbiome across two treatments and three nitrogen supplies.  

The relative growth rate is the growth rate scaled across bacterial species under the same 

treatment and nitrogen supply, and the relative density in microbiome is the bacterial density in 

microbiome scaled across seven bacteria under the same treatment and nitrogen supply. Each 

point on the scatter plot represents the mean of bacterial growth rate and final density, with error 

bars indicating standard deviation. Linear Mixed Effects Model (LMM) analysis was performed 

with bacterial species specified as a random effect. 

 

 
 

  



 124 

Figure 4.2 Host relative growth rate and carrying capacity with different inoculation under 

different nitrogen supplies.  

The growth rate and carrying capacity of microalgae were scaled across eight different 

inoculations (axenic and inoculated with each bacteria) as relative growth rate and carrying 

capacity. The box spans from the first to third quartile, representing the middle 50% of the data. 

The whiskers extend from the edges of the box to the minimum and maximum values. The 

asterisk indicates a significant different from axenic control based on Tukey’s test.  
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Figure 4.3 The relationship between the effect of bacterial species on algal host growth and their 

relative density within the microbiome.  

All variables were scaled across seven bacterial species under the same treatments and nitrogen 

supplies. Each point on the scatter plot represents the mean of bacterial growth rate and final 

density, with error bars indicating standard deviation. Linear Mixed Effects Model (LMM) 

analysis was performed with bacterial species specified as a random effect. 
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Supplementary information for Chapter 4 

 

Table SI 4.2 Statistical results of pairwise permutational multivariate analysis of variance 

(PERMANOVA) on microbiome under Treatment Feedback and Innate across three nutrient 

supplies.  

999 times permutation was conducted. “F” and “I” refers to microbiome under Treatment 

Feedback and Innate, respectively. The number indicates different nitrogen supplies, where 1: 

0.14, 2: 0.98, and 3: 4.2 N mg/L. For example, F1 refers to microbiome under Treatment 

Feedback with 0.14 N mg/L supplies.  

 

Comparison 

between 

treatments 

Sum Of 

Squares 
R2 F p-value 

F1 F2 0.77 0.66 19.5 0.005 

F1 F3 2.36 0.87 64.591 0.003 

F1 I1 0.97 0.92 113.21 0.003 

F1 I2 1.83 0.86 63.536 0.002 

F1 I3 1.98 0.96 238.13 0.003 

F2 F3 1.53 0.7 23.831 0.002 

F2 I1 1.89 0.48 52.209 0.002 

F2 I2 2.32 0.8 40.934 0.003 

F2 I3 1.03 0.74 28.58 0.002 

F3 I1 2.6 0.87 78.318 0.005 

F3 I2 2.63 0.83 49.126 0.001 

F3 I3 1.81 0.84 54.946 0.006 

I1 I2 0.5 0.66 19.625 0.003 

I1 I3 2.69 0.98 541.22 0.006 

I2 I3 2.74 0.92 108.45 0.005 
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Table SI 4.3 Results of linear-mixed model (LMM) analysis with bacteria specified as a random 

effect.  

GR refers to bacteria or microalgal host growth rate and K refers to microalgal host carrying 

capacity.  

 

Independent 

variables 

Dependent 

variables: 

relative 

density in 

microbiome Estimate 

Std. 

Error 

Degree 

of 

freedom t value P-value AIC BIC 

Bacterial GR in 

Treatment Innate 

in Treatment 

Innate 0.15 0.05 376 3.03 <0.001 1061.47 1077.21 

Bacterial GR in 

Treatment 

Feedback 

in Treatment 

Feedback 0.27 0.05 376 5.41 <0.001 1042.33 1058.07 

Host K 

in Treatment 

Feedback -0.60 0.03 752 -19.17 <0.001 1919.81 1938.32 

Host GR 

in Treatment 

Feedback -0.38 0.03 754 -10.98 <0.001 2057.07 2075.58 

Host K 

In Treatment 

Innate -0.55 0.03 752 -16.70 <0.001 1981.96 2000.47 

Host GR 

In Treatment 

Innate -0.28 0.04 754 -8.01 <0.001 2107.40 2125.91 
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Figure SI 4.4 The composition of synthetic microbiome at initial (Day 0) and after three 30% 

daily transfers (Day 6) in a semi-continuous experiment across different nitrogen supplies.  

Bar chart displaying the natural log-transformed density of each bacterial species within the 

microbiome under Treatment Feedback and Innate across nitrogen levels. Each bar represents the 

mean density, with error bars indicating the standard error of the mean.  

 

 

  



 129 

Figure SI 4.5 Growth of C. sorokiniana during semi-continue experiment inoculated with 

synthetic microbiome over seven 30% daily transfers (T1-T7) across three nitrogen supplies.  

The relative fluorescence intensity units (RFU) of Chlorophyll-a was measured as a proxy of 

microalgal density. Lines are the linear regression lines. 
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Figure SI 4.6 Growth of C. sorokiniana during semi-continue experiment inoculated with each 

bacterial isolates over seven 30% daily transfers (T1-T7) across three nitrogen supplies.  

The relative fluorescence intensity units (RFU) of Chlorophyll-a was measured as a proxy of 

microalgal density. Different colors of points and lines indicate different bacterial inoculated and 

regression lines. There was accidently over-diluted on the second transfer (T2), therefore, we 

grew 48 hours after the 3rd transfer. Nevertheless, it remained enough to show each bacterial 

effect on microalgal growth.  

 
 
 

  



 131 

Figure SI 4.7 Relationship between bacterial growth rate in monoculture and bacterial density in 

microbiome under each nitrogen level.  

Both variables were scaled across seven bacterial species under the same treatments and nitrogen 

supplies. The values are Pearson's correlation coefficient (r) and p-value (p). Each point on the 

scatter plot represents the mean of bacterial growth rate and final density, with error bars 

indicating standard deviation.  
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Figure SI 4.8 Relationship between bacterial effect on host growth rate and bacterial density in 

microbiome under each nitrogen level.  

 

Both variables were scaled across seven bacterial species under the same treatments and nitrogen 

supplies. The values are Pearson's correlation coefficient (r) and p-value (p). Each point on the 

scatter plot represents the mean of bacterial growth rate and final density, with error bars 

indicating standard deviation.  
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Figure SI 4.9 Relationship between bacterial effect on host carrying capacity and bacterial 

density in microbiome under each nitrogen level.  

 

Both variables were scaled across seven bacterial species under the same treatments and nitrogen 

supplies. The values are Pearson's correlation coefficient (r) and p-value (p). Each point on the 

scatter plot represents the mean of bacterial growth rate and final density, with error bars 

indicating standard deviation. 
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Chapter 5 : Conclusion 

Reflection 

In my dissertation, I used laboratory approaches to manipulate the impact of innate host 

selection and host-microbiome feedback on the microbiome assembly of C. sorokiniana. I 

investigated the consequences on microbiome composition and diversity, the selection of 

different functional groups of bacterial populations, and how nutrient supply alters their selection 

on the microbiome. The goal of my dissertation was to resolve how the complex host-

microbiome interactions shape the microbiome and to bridge (a) the linkage between population 

and community levels and (b) the stable laboratory environment and dynamic environment 

conditions in natural systems. 

In Chapter II, I exposed the microalgal microbiome to degrees of the relative effect of 

innate host selection and host-microbiome feedback effect and examined the dynamic of 

microbiome community composition and diversity. I found that the two effects result in different 

microbiome composition and diversity, and together maintain the coexistence of diverse species 

in the microbiome. The findings suggested that the two effects select for different functional 

groups of bacteria, where I hypothesized innate host selection would favor passive symbionts 

that targeted phytoplankton innate DOM but did not directly interact with the host, and the host-

microbiome feedback effect favored active symbionts that have the ability to trigger the host to 

modify its produced DOM to its the symbiont’s benefit. 
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In Chapter III, I tested the hypothesis inspired by Chapter II. I focused on a system of 

the host and two bacterial populations representing the two symbiont types and investigated their 

dynamic in physiological (growth pattern) and metabolic status (gene expression) between innate 

host selection and host-microbiome feedback effect. Comparing growth and gene expression 

between the two effects, I found a passive symbiont grew better under innate host selection and 

showed a smaller shift in gene expression shift than the active symbiont. The active symbiont 

grew better under the host-microbiome feedback effect condition and displayed a larger shift in 

gene expression profile, along with a significantly higher functional expression of biosynthesis 

and metabolism of secondary metabolites under the host-microbiome feedback effect. The 

phytoplankton host also showed a larger gene expression profile shift when co-cultured with an 

active player than a passive player relative to the axenic condition. Although both symbionts 

induced significant expression of secondary metabolites biosynthesis in the phytoplankton, co-

cultured with the passive symbiont only led to antibiotic biosynthesis, while co-cultured with the 

active symbiont resulted in the biosynthesis of compounds (flavonoid and isoflavones) that could 

be involved in promoting associated microbes. The shift in phytoplankton host gene expression 

profile and metabolic functions that associated with the co-cultured bacteria’s ability on 

triggering the bi-directional host-microbiome feedback effect matches to how host-microbiome 

feedback affect result in different selection on microbiome from the innate host selection. This 

strong species-specific mode of host-microbe interaction supports the idea of intricate levels of 

coevolution between the host and specific microbiome members. 

Finally in Chapter IV, I further considered the impact of nutrient supply on how the two 

host-microbiome interactions shape the microbiome composition. This time, I used a synthetic 

microbiome of seven phytoplankton-associated bacteria and measured the composition of the 
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microbiome and the growth of the individual bacteria under innate host selection and host-

microbiome feedback effect across three different nitrogen supply levels. The impact on host 

fitness by each bacteria was also examined. This allowed us to test to what extent microbiome 

composition was more driven by host selection in function of the benefit each bacterium confers 

or the ability of the individual bacteria to acquire and compete for resources. In line with 

Chapter II, I found that the two host-microbiome interaction effects led to a distinct microbiome 

composition. This composition was strongly affected by nitrogen supply levels, and the impact 

of nutrient supply levels was larger when host-microbiome feedback effects shaped the 

microbiome than when microbes competed for the innately produced DOM in absence of host 

cells. At lower nitrogen levels, we observed strong competition between phytoplankton and 

bacteria, while at high nitrogen levels, these antagonistic bacteria were suppressed, allowing a 

more diverse microbiome to be established. Monoculture growth rates correlated best with 

bacteria relative density in the microbiome under innate host selection conditions. These findings 

support the hypothesis that host-microbiome interactions shift with changing nutrient supplies, 

influencing microbiome composition differently from when solely shaped by DOM innately 

produced by the host. 

 

Some unknowns and potential limitations 

My studies were confined to the laboratory and culturing experiments. This allowed a 

relatively easy manipulation approach and quantification on host and microbiome response at 

both community and population levels. However, I acknowledge two main limitations in this 

experimental setting. Firstly, most of the microbes are not readily culturable. Although the 

microbiome I used was originally from the natural pond water, I did not necessarily work with 
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bacterial species with dominant roles in the host-microbiome interactions. Secondly, while 

experimental control allowed me to test and isolate the specific impacts of the two host selection 

modes under varying nitrogen supply levels, it was still limited in its ability to represent the 

complexity of the natural environment. Factors I was not able to include were dynamic abiotic 

factors (e.g., changing nutrient, temperature and light intensity), a massive microbial diversity 

pool from which species can continuously be recruited to the microbiome, and the presence of 

other interactions such as competition, predation, and viral infection on both phytoplankton and 

microbes, all of which can potentially affect the host-microbiome interactions.  

Hence, future work should focus on incorporating higher-order levels of complexity. This can be 

achieved by diversifying the range of microbial isolates used and exploring a broader spectrum 

of environmental factors. Additionally, conducting experiments in natural settings with 

phytoplankton and bacterial communities under in situ incubation setups will provide a more 

realistic understanding of how the two host-microbiome interaction effects shape the microbiome 

and their response under changing environments.  

 

Synthesis 

Many microbiome studies have focused on understanding how environment vs. host 

effects shape microbiome composition. While my studies add to this understanding, my 

dissertation went beyond what typically has been done by dissecting host selection into innate 

host selection and host-microbiome feedback effects. These two effects turned out to enact 

contrasting selective forces on the microbiome, favoring distinct species. Moreover, by 

comparing with the community assembled after long-term ecological selection without the 

experimental manipulations I carried out, the community composition indicated that both effects 
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act simultaneously and together maintain a higher diversity of species in the microbiome relative 

to each force independently. This provides an example of the mechanisms by which a large 

diversity of microbes can coexist in a microbiome, adding a response to the classic ecological 

question of “Why can some many species coexist in a community?”. My work provides a new 

line of evidence of the presence of bacterial species-specific host-microbe co-evolutionary 

dynamics that can influence overall microbiome assembly. Specifically, I showed how host-

microbiome feedback effects can exert a strong species-specific selection and how specific 

bacteria have the ability to trigger these feedback effects through a bi-directional host-microbe 

interaction versus other bacteria that merely consume what the host innately provides. Finally, 

the shift of host-microbe interactions across different nutrient supply levels indicated the 

importance of considering conditions more in line with natural environmental conditions to more 

fully understand which forces shape microbiome assembly. While competitive interactions were 

predominating community assembly at low nutrient levels more in line with gradients found in 

nature, the degree of community shift in function of nutrient levels was larger under host-

microbiome feedback effect than innate host selection. This indicated that the microbiome's 

response to a changing environment is driven not only by direct impacts of the environment on 

DOM produced by the host and competitive interactions between microbiome species, but also 

by shifts in microbe-microbe interactions mediated by the host. My findings provide valuable 

insights for future studies that want to assess and model the effects of environmental change on 

host-microbiome interactions and their impact on microbiome assembly and potentially the 

functions microbiomes provide to their hosts and the ecosystem.  
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