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ABSTRACT

Deep reinforcement learning (RL) is a general-purpose computational framework for learning
sequential decision-making agents, with the promise that agents can learn useful behaviors and solve
the task through trial-and-error by maximizing rewards. One key fundamental problem in deep RL
is representation learning — discovering and extracting useful or task-relevant information from
raw data (e.g., observations and agent’s actions) that can make solving downstream tasks more
efficient and tractable. In this dissertation, I propose and discuss several methods and principles
pertaining to representation learning for RL, with a focus on state and temporal abstraction, enabling
more efficient exploration, skill discovery, and learning of goal-conditioned policies for hierarchical
agents.

First, I begin with a self-supervised approach to learn a state representation using the idea of
contingency-awareness: the agent’s knowledge about which aspect of the environment is control-
lable. I present a novel attentive dynamics model that identifies controllable elements of the en-
vironment which can efficiently abstract the search space for exploration, and show that it enables
strong exploration performance in difficult, hard-exploration Atari game environments featuring
sparse rewards. Next, I discuss a novel perspective and foundation that unifies goal-conditioned
RL and variational empowerment methods for unsupervised skill discovery based on the princi-
ple of mutual information maximization into a single family of methods. The proposed framework,
variational goal-conditioned RL, allows us to interpret variational empowerment methods as a prin-
cipled approach for learning latent goal representations and goal-reaching reward functions, while
also enabling practical techniques and improvements brought from each other. Finally, I present
another instance of skill learning for temporal abstraction: entity-centric skill learning in continu-
ous control environments with multiple entities. By utilizing a structured goal representation and a
novel intrinsic reward based on counterfactual reasoning and dynamics models, I demonstrate that
one can learn pairwise object interaction behaviors without relying on any external rewards. Over-
all, this dissertation contributes to the advancement of deep RL by addressing state representation
learning and skill learning problems, which can help build more autonomous systems for real-world
problems with less human supervision.

xi



CHAPTER 1

Introduction

Reinforcement learning (RL) provides a general-purpose computational framework to learn an
agent that can make sequential decisions to maximize cumulative rewards, through trial-and-error
and the agent’s own experiences by interacting with the environment. Deep reinforcement learning
(Deep RL) makes use of deep neural networks as non-linear function approximators to parametrize
policy and value functions, enabling the handling of complex raw observations such as images and
raw sensory information, which cannot be easily dealt with by tabular RL methods. As such, one
promise of deep RL is its ability to automatically learn useful behaviors from the agent’s experi-
ence involving complex and high-dimensional observations, when trained in an end-to-end manner
to maximize reward, without requiring extensive supervision such as manually extracting high-level
features or the use of human domain-specific knowledge.

Despite the great progress and advances in deep RL and successful applications in the past few
years (Mnih et al., 2015; Silver et al., 2017; Andrychowicz et al., 2020), training an intelligent
RL agent for real-world problems still faces many practical challenges and difficulties. In many
real-world problems and applications, tasks can be long-horizon and provide only sparse reward
signals — the agent would receive meaningful (non-zero) feedback only after taking an appropriate
sequence of actions over an extended period of time. In such settings, agents will struggle to learn
any meaningful behaviors or representations, as the lack of intermediate rewards makes it extremely
difficult for the agent to effectively adapt the behavior from the environment’s feedback.

One key fundamental problem in deep RL is representation learning. In general, representa-
tion learning refers to the process of discovering and extracting useful information from raw data
(such as states, observations, or agent’s own experience including actions) to form a new ontol-
ogy of learned representations that can be beneficial for solving downstream tasks or improving the
learning of agents. In many RL problems, the state space of the environment can be highly complex,
and involve high-dimensional data such as pixels in image observations or a robot’s proprioceptive
and sensory information without knowing which dimensions are important. Representation learn-
ing helps to compress or transform such complex data into a more compact space with succinct,
low-dimensional representations that are easier to handle. Ideally, learned representations should
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capture the most essential features of the environment or the high-level information in the agent’s
state that is directly relevant to decision-making, so as to facilitate tractable and efficient solutions
for downstream RL problems such as prediction, exploration, planning, and learning hierarchical
agents.

1.1 Representation Learning as Abstraction

Learning representations in RL is essentially the process of abstraction. Abstraction refers to the
process of simplifying complex systems by focusing only on relevant aspects while hiding unnec-
essary details (Giunchiglia et al., 1997; Abel, 2022). Abstraction is a fundamental and foundational
concept that permeates various disciplines, including human cognitive process, developmental psy-
chology, programming, computer science, and artificial intelligence. One can hypothesize that an
intelligent agent, by filtering out irrelevant details and focusing solely on essential parts only, can
concentrate on the core elements that are crucial for solving a problem. Indeed, cognitive and in-
telligent agents (such as humans) are capable of doing abstractions at multiple levels for problem
solving. In the context of deep RL and decision-making AI systems, abstraction via representation
learning can be categorized into two broad categories: state abstraction and temporal abstraction.

State Abstraction. On the one hand, state abstraction involves simplifying or distilling com-
plex states or observations into more compact state representations, or identifying which aspect of
the environment will be relevant and important, allowing the agent to ignore task-irrelevant details
(Singh et al., 1994; Li et al., 2006; Abel et al., 2016). This process often leads to learning a new
level of ontology or hierarchy of features and information about the world, such as recognizing
entities and objects (Modayil & Kuipers, 2007, 2008), and understanding their properties and rela-
tionships, going beyond describing the world using already known concepts (e.g., pixel-level ontol-
ogy like pixel-wise classification or semantic segmentation, or creating a cognitive map or simple
re-description of the world where the constituting elements and concepts are already known).

For example, consider an ATARI game called Freeway (Figure 2.1), where the player controls
a chicken sprite attempting to cross multiple lanes of traffic without being hit by vehicles. When
the agent needs to decide its next action, the location of the chicken is likely the most important and
crucial information, while nearby objects (moving vehicles) are somewhat important, and other
background objects are barely important. Also, consider a robotics agent navigating a complex
labyrinth as another example. The agent’s intelligence spans multiple hierarchies: at a low-level,
the agent needs to handle low-level controls, such as dodging nearby pitfalls and precisely managing
motor torques for locomotion and stable posture; at a high-level, the agent will need to focus more
on longer-term planning or behavioral decisions, such as determining velocity and direction, or
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navigation goals towards finding the optimal path so as to maximize the given rewards. However,
during high-level planning, low-level control of motors would be less important details that the
agent would not need to be concerned with immediately, as they mostly are a computational burden.
Given a raw observation, if such a compact high-level state representation can be learned, agents can
effectively utilize this information for guiding their decisions or even directly solving the problem
within the new representation space. These approaches would reduce computational complexity
and make the learning process more efficient.

Temporal Abstraction. On the other hand, temporal abstraction (action abstraction) concerns
building and composing higher-level actions that consist of multiple low-level actions spanning
multiple time steps (Precup, 2000). This enables building hierarchical agents capable of strategic
and semantic decision-making against long-horizon tasks, in contrast to flat agents making deci-
sions on which actions to take at every time step, which can be myopic and inefficient for learning
long-term behaviors (Parr & Russell, 1997; Vezhnevets et al., 2017; Nachum et al., 2019).

In the literature, learning of higher-level actions abstracted over time is formalized with the
framework of Options (Precup & Sutton, 2000) or Skills (Konidaris & Barto, 2007), usually im-
plemented in the form of goal-conditioned RL (Kaelbling, 1993a). These frameworks typically
involves learning of a goal-conditioned policy π(a|s, g), i.e. a policy conditioned on a goal g rather
than a flat, single-task policy π(a|s). However, there are major challenges and difficult problems
involved in goal-conditioned RL: (1) goal representation learning — how to choose a proper rep-
resentation space G for subgoals (called the goal space); and (2) goal policy learning — how to
efficiently learn the goal-conditioned policies through proper and effective learning signals. A com-
mon approach is to implement a goal achievement reward function r(s, g) that a goal-conditioned
policy π(a|s, g) can maximize. However, reward functions may not be readily available as it de-
pends on the choice of goal space G.

Without goal representation learning, one might have to choose a goal spaceG with some domain
knowledge, such as choosing the location of the robot (x, y) coordinates. However, this reliance
on pre-defined, domain-specific knowledge would limit the general applicability of hierarchical
RL. At the other extreme, one might simply choose the goal space G to be the same as the state
representation, but then it still remains unclear how to specify a good reward function that can
tell whether a goal is achieved or not, as state/goal representations can be high-dimensional (e.g.,
comparing two images in the pixel space). Even if the goal representation is assumed to be pre-
defined and designed by humans, designing proper reward functions would be highly expensive as
they require significant effort and extensive tuning by practitioners and domain experts to provide
the agent with a learning signal that is rich enough rather than too sparse.

As such, we will need better principles to learn the abstract goal representation space, as well
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as practical algorithms and techniques to learn temporally-abstracted behaviors. It is crucial to
find a good balance between the ease of learning goal representation and the ease of learning goal-
conditioned policies under the representation, which can contribute towards building hierarchical
agents that can be genuinely autonomous and intelligent. In this dissertation, I focus on skill learn-
ing which aims at learning useful macro-actions (Chapters 3 and 4) while simultaneously learning
(intrinsic) reward functions to learn skills, and connect them from the goal representation learning
perspective (Chapter 3).

Self-supervised Learning. Ideally, learning representations should be done without much super-
vision or reliance on (external) task rewards, because task rewards can be sparse, and they solely
might not provide enough learning signals. In RL, since it is possible to obtain data from agent’s
experiences through interaction with the environment (state transitions and actions), an agent can
make use of its experience to learn a useful internal knowledge about the environment and/or the
task. Dominant approaches for this is to optimize auxiliary learning objectives in addition to the
standard RL objective — such as reconstruction of the observation (Jaderberg et al., 2017; Nair
et al., 2018; Pong et al., 2019), learning forward or inverse dynamics models (Oh et al., 2015;
Pathak et al., 2017; Burda et al., 2019a; Choi et al., 2019), maximizing mutual information (Mo-
hamed & Rezende, 2015; Eysenbach et al., 2019; Hjelm et al., 2019; Choi et al., 2021; Zhao et al.,
2021), etc. This learning paradigm is called as self-supervised learning (Gui et al., 2023), since a
RL agent can generate its own learning signals or supervisory signals from its interaction with the
environment, rather than relying on external supervision, rewards, or predefined labels.

1.2 Thesis Outline and Contributions

The goal of this dissertation is to discuss, propose, and study techniques and principles that can
advance the problem of learning representations in RL. In particular, I study and propose methods
in the field of learning state and temporal abstractions that can make it easier to tackle sparse-
reward, long-horizon RL tasks, through exploration in a setting where extrinsic supervision (i.e.,
task reward) is limited.

More specifically, Chapter 2 discusses a self-supervised approach to discover and identify task-
relevant information out of high-dimensional input and observations (e.g., images) for efficient
exploration, as an instance of state representation learning. Chapter 3 discusses present a novel
unification of unsupervised skill discovery methods and goal-conditioned RL as a principled frame-
work for learning goal representations in goal-conditioned and hierarchical RL, as an instance of
state and temporal representation learning. Chapter 4 discusses an intrinsic reward approach based
on counterfactual reasoning to learn object-object interaction skills, as temporal abstraction against
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entity-centric environments. Chapter 5 summarizes the contribution of this dissertation and dis-
cusses future research directions.

Chapter 2: Contingency-Aware Exploration in Reinforcement Learning

The first chapter of the dissertation considers state representation learning for exploration to
deal with sparse-reward, long-horizon RL problems (Choi et al., 2019). We adopt the idea of
contingency-awareness and to learn and identify controllable aspects of an environment in a self-
supervised setting, which can lead to efficient exploration in sparse-reward settings.Specifically,
we develop a novel attentive dynamics model (ADM) that discovers controllable aspects of the en-
vironment (contingent regions). This forms a new object-level ontology that concisely represents
the identification and localization of a controllable entity within a visual observation, without the
need for discovering and extracting full object/entity information from the scene. We then use
this contingency-awareness information as a part of the state representation for exploration pur-
poses, such as in combination with count-based exploration. We empirically show that learning
such information about controllable dynamics can help achieve strong exploration performance in
sparse-reward, long-horizon settings without external annotations or supervision. This approach
allowed to achieve state-of-the-art performance on notoriously difficult hard-exploration ATARI
environments including Montezuma’s Revenge (Choi et al., 2019; Guo et al., 2020).

Chapter 3: Variational Empowerment as Representation Learning for Goal-
Conditioned Reinforcement Learning

The next chapter of the dissertation considers representation learning for goal-conditioned RL, as an
instance of temporal abstraction and skill discovery (Choi et al., 2021). As introduced in Section 1.1,
one important problem for goal-conditioned RL is how to learn a good representation for goals (as
macro-actions) and a goal-conditioned policy to fulfill the goal without external supervision or
domain-specific knowledge (e.g., specifying the x, y locations in robotics control).

In this work, we present a novel foundation and perspective that unifies variational empowerment
RL methods for unsupervised skill discovery methods (Mohamed & Rezende, 2015; Eysenbach
et al., 2019), and classical goal-conditioned RL (GCRL) (Kaelbling, 1993a) into a single family of
methods sharing the unified optimization objective. Variational empowerment methods are based
on the MI-max (maximizing mutual information) principle (Appendix B.1), or more specifically,
aim at maximizing the mutual information between the latent representation or the goal space and
the state the agent reaches by executing the goal. Starting from a simple observation that the objec-
tive of the standard GCRL can be seen as a special case of variational MI with a fixed hard-coded
variational posterior distribution, We can view empowerment-based RL methods as a principled
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representation learning framework for goal-conditioned RL. The framework provides a principle
way to represent latent goals and to learn a reward function for measuring goal fulfillment, in a
challenging unsupervised RL setting where external rewards are lacking.

Chapter 4: Unsupervised Object Interaction Learning with Counterfactual
Dynamics Models

The next chapter of the dissertation studies entity-centric unsupervised skill discovery focusing on
object interaction, as an instance of temporal abstraction and improving exploration via intrinsic
motivation (Choi et al., 2024).

Real-world tasks often consist of multiple entities, or objects: for example, household robots
should use household items, and factory robots should manipulate multiple objects and tools to
accomplish complex tasks. In the literature, there are many advances in learning object-centric
representations from visual inputs and leveraging them to facilitate more efficient reinforcement
learning, but still many of the existing approaches often rely on learning monolithic functions or
representations that would produce a single high-dimensional vector for representing sub-goals. For
example, most of the prior skill discovery and option learning methods (Eysenbach et al., 2019; Choi
et al., 2021; Park et al., 2022) rely on monolithic goal representation, which makes it challenging
to specify skills centered around specific entities and their interactions because all the information
entities would have to be fused in a single vector representation.

With such a motivation, we propose to use a structured goal representation that can query and
scope which objects to interact with, which can serve as a basis for solving more complex down-
stream tasks. Our particular choice is a pair of objects (A,B), namelyA andB (amongN objects),
whose semantic meaning is that two objects A and B should have an interaction (or some mutual
effects) as a consequence of the agent’s skill. We design a novel intrinsic reward that determines and
induces object interactions based on counterfactual reasoning and inference, called COIL (Counter-
factual Object Interaction Learning). We show that an agent can learn object interaction behaviors
(e.g., attaching or stacking one block to another) in entity-centric control environments (Magnetic
Block and Stacking Box) without any external rewards or additional domain-specific knowledge.
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CHAPTER 2

Contingency-Aware Exploration in Reinforcement
Learning

This paper investigates whether learning contingency-awareness and controllable aspects of an en-
vironment can lead to better exploration in reinforcement learning. To investigate this question, we
consider an instantiation of this hypothesis evaluated on the Arcade Learning Element (ALE). In
this study, we develop an attentive dynamics model (ADM) that discovers controllable elements of
the observations, which are often associated with the location of the character in Atari games. The
ADM is trained in a self-supervised fashion to predict the actions taken by the agent. The learned
contingency information is used as a part of the state representation for exploration purposes. We
demonstrate that combining actor-critic algorithm with count-based exploration using our repre-
sentation achieves impressive results on a set of notoriously challenging Atari games due to sparse
rewards. For example, we report a state-of-the-art score of >11,000 points on Montezuma’s Re-
venge without using expert demonstrations, explicit high-level information (e.g., RAM states),
or supervisory data. Our experiments confirm that contingency-awareness is indeed an extremely
powerful concept for tackling exploration problems in reinforcement learning and opens up inter-
esting research questions for further investigations.

2.1 Introduction
The success of reinforcement learning (RL) algorithms in complex environments hinges on the way
they balance exploration and exploitation. There has been a surge of recent interest in developing
effective exploration strategies for problems with high-dimensional state spaces and sparse rewards
(Schmidhuber, 1991b; Oudeyer & Kaplan, 2009; Houthooft et al., 2016; Bellemare et al., 2016;
Osband et al., 2016; Pathak et al., 2017; Plappert et al., 2018b; Zheng et al., 2018). Deep neural
networks have seen great success as expressive function approximators within RL and as powerful
representation learning methods for many domains. In addition, there have been recent studies on
using neural network representations for exploration (Tang et al., 2017; Martin et al., 2017; Pathak
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et al., 2017). For example, count-based exploration with neural density estimation (Bellemare et al.,
2016; Tang et al., 2017; Ostrovski et al., 2017) presents one of the state-of-the-art techniques on
the most challenging Atari games with sparse rewards.

Despite the success of recent exploration methods, it is still an open question on how to construct
an optimal representation for exploration. For example, the concept of visual similarity is used for
learning density models as a basis for calculating pseudo-counts (Bellemare et al., 2016; Ostrovski
et al., 2017). However, as Tang et al. (2017) noted, the ideal way to represent states should be
based on what is relevant to solving the MDP, rather than only relying on visual similarity. In
addition, there remains another question on whether the representations used for recent exploration
works are easily interpretable. To address these questions, we investigate whether we can learn a
complementary, more intuitive, and interpretable high-level abstraction that can be very effective
in exploration by using the ideas of contingency awareness and controllable dynamics.

The key idea that we focus on in this work is the notion of contingency awareness (Watson,
1966; Bellemare et al., 2012) — the agent’s understanding of the environmental dynamics and
recognizing that some aspects of the dynamics are under the agent’s control. Intuitively speaking,
this can represent the segmentation mask of the agent operating in the 2D or 3D environments (yet
one can think of more abstract and general state spaces). In this study, we investigate the concept of
contingency awareness based on self-localization, i.e., the awareness of where the agent is located
in the abstract state space. We are interested in discovering parts of the world that are directly
dependent on the agent’s immediate action, which often reveal the agent’s approximate location.

For further motivation on the problem, we note that contingency awareness is a very impor-
tant concept in neuroscience and psychology. In other words, being self-aware of one’s location
is an important property within many observed intelligent organisms and systems (Moser et al.,
2015; Kuipers, 2000; Durrant-Whyte & Bailey, 2006). For example, recent breakthroughs in neu-
roscience, such as the Nobel Prize winning work on the grid cells (Moser et al., 2015; Banino et al.,
2018), show that organisms that perform very well in spatially-challenging tasks are self-aware of
their location. This allows rats to navigate, remember paths to previously visited places and im-
portant sub-goals, and find shortcuts. In addition, the notion of contingency awareness has been
shown as an important factor in developmental psychology (Watson, 1966; Baeyens et al., 1990).
We can think of self-localization (and more broadly self-awareness) as a principled and fundamental
direction towards intelligent agents.

Based on these discussions, we hypothesize that contingency awareness can be a powerful mech-
anism for tackling exploration problems in reinforcement learning. We consider an instantiation of
this hypothesis evaluated on the Arcade Learning Element (ALE). For example, in the context of 2D
Atari games, contingency-awareness roughly corresponds to understanding the notion of control-
lable entities (e.g., the player’s avatar), which Bellemare et al. (2012) refer to as contingent regions.
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Figure 2.1: Left: Contingent region in Freeway; an object in a red box denotes what is under the
agent’s control, whereas the rest is not. Right: A diagram for the proposed ADM architecture.

More concretely, as shown in Figure 2.1, in the game Freeway, only the chicken sprite is under
the agent’s control and not the multiple moving cars; therefore the chicken’s location should be an
informative element for exploration (Bellemare et al., 2012; Pathak et al., 2017).

In this study, we also investigate whether contingency awareness can be learned without any ex-
ternal annotations or supervision. For this, we provide an instantiation of an algorithm for automat-
ically learning such information and using it for improving exploration on a 2D ALE environment
(Bellemare et al., 2013). Concretely, we employ an attentive dynamics model (ADM) to predict the
agent’s action chosen between consecutive states. It allows us to approximate the agent’s position in
2D environments, but unlike other approaches such as (Bellemare et al., 2012), it does not require
any additional supervision to do so. The ADM learns in an online and self-supervised fashion with
pure observations as the agent’s policy is updated and does not require hand-crafted features, an
environment simulator, or supervision labels for training.

In experimental evaluation, our methods significantly improve the performance of A2C on hard-
exploration Atari games in comparison with competitive methods such as density-based exploration
(Bellemare et al., 2016; Ostrovski et al., 2017) and SimHash (Tang et al., 2017). We report very
strong results on sparse-reward Atari games, including the state-of-the-art performance on the no-
toriously difficult Montezuma’s Revenge, when combining our proposed exploration strategy
with PPO (Schulman et al., 2017), without using expert demonstrations, explicit high-level infor-
mation (e.g., RAM states), or resetting the environment to an arbitrary state.

We summarize our contributions as follows:

• We demonstrate the importance of learning contingency awareness for efficient exploration
in challenging sparse-reward RL problems.
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• We develop a novel instance of attentive dynamics model using contingency and controllable
dynamics to provide robust localization abilities across the most challenging Atari environ-
ments.

• We achieve a strong performance on difficult sparse-reward Atari games, including the state-
of-the-art score on the notoriously challenging Montezuma’s Revenge.

Overall, we believe that our experiments confirm the hypothesis that contingency awareness is an
extremely powerful concept for tackling exploration problems in reinforcement learning, which
opens up interesting research questions for further investigations.

2.2 Related Work

Self-Localization. The discovery of grid cells (Moser et al., 2015) motivates working on agents
that are self-aware of their location. Banino et al. (2018) emphasize the importance of self-
localization and train a neural network which learns a similar mechanism to grid cells to perform
tasks related to spatial navigation. The presence of grid cells is correlated with high performance.
Although grid cells seem tailored to 2D or 3D problems that animals encounter in their life, it is
speculated that their use can be extended to more abstract spaces. A set of potential approaches to
self-localization ranges from ideas specific to a given environment, e.g., SLAM (Durrant-Whyte &
Bailey, 2006), to learning high-level spatial representation for cognitive maps (Kuipers, 2000), and
to other types of methods with potential generalizability (Mirowski et al., 2017; Jaderberg et al.,
2017; Mirowski et al., 2018).

Self-supervised Dynamics Model and Controllable Dynamics. Several works have used for-
ward and/or inverse dynamics models of the environment (Oh et al., 2015; Agrawal et al., 2016;
Shelhamer et al., 2017). Pathak et al. (2017) employ a similar dynamics model to learn feature
representations of states that captures controllable aspects of the environment. This dense repre-
sentation is used to design a curiosity-driven intrinsic reward. The idea of learning representations
on relevant aspects of the environment by learning auxiliary tasks is also explored in (Jaderberg
et al., 2017; Bengio et al., 2017; Sawada, 2018). Our presented approach is different as we fo-
cus on explicitly discovering controllable aspects using an attention mechanism, resulting in better
interpretability.

Exploration and Intrinsic Motivation. The idea of providing an exploration bonus reward de-
pending on the state-action visit-count was proposed by Strehl & Littman (2008) (MBIE-EB), orig-
inally under a tabular setting. Later it has been combined with different techniques to deal with
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high-dimensional state spaces. Bellemare et al. (2016) use a Context-Tree Switching (CTS) den-
sity model to derive a state pseudo-count, whereas Ostrovski et al. (2017) use PixelCNN as a state
density estimator. Martin et al. (2017) also construct a visitation density model over a compressed
feature space rather than the raw observation space. Alternatively, Tang et al. (2017) propose a
locality-sensitive hashing (LSH) method to cluster states and maintain a state-visitation counter
based on a form of similarity between frames. We train an agent with a similar count-based explo-
ration bonus, but the way of maintaining state counter seems relatively simpler in that key feature
information (i.e., controllable region) is explicitly extracted from the observation and directly used
for counting states.

Another popular family of exploration strategies in RL uses intrinsic motivation (Schmidhuber,
1991b; Singh et al., 2004; Oudeyer & Kaplan, 2009; Barto, 2013). These methods encourage the
agent to look for something surprising in the environment which motivates its search for novel states,
such as surprise (Achiam & Sastry, 2017), curiosity (Pathak et al., 2017; Burda et al., 2019a), and
diversity (Eysenbach et al., 2019), or via feature control (Jaderberg et al., 2017; Dilokthanakul et al.,
2017).

2.3 Approach

2.3.1 Discovering Contingency via Attentive Dynamics Model

To discover the region of the observation that is controllable by the agent, we develop an instance of
attentive dynamics model (ADM) based on inverse dynamics finv. The model takes two consecutive
input frames (observations) st−1, st ∈ S as input and aims to predict the action (at−1 ∈ A) taken
by the agent to transition from st−1 to st:

ât−1 = finv(st−1, st). (2.1)

Our key intuition is that the inverse dynamics model should attend to the most relevant part of the
observation, which is controllable by the agent, to be able to classify the actions. We determine
whether each region in a H ×W grid is controllable, or in other words, useful for predicting the
agent’s action, by using a spatial attention mechanism (Bahdanau et al., 2015; Xu et al., 2015). An
overview of the model is shown in Figure 2.1.

Model. To perform action classification, we first compute a convolutional feature map ϕst =

ϕ(st) ∈ RH×W×K based on the observation st using a convolutional neural network ϕ. We es-
timate a set of logit (score) vectors, denoted et(i, j) ∈ R|A|, for action classification from each grid
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cell (i, j) of the convolutional feature map. The local convolution features and feature differences
for consecutive frames are fed into a shared multi-layer perceptron (MLP) to derive the logits as:

et(i, j) = MLP
([
ϕst(i, j)− ϕst−1(i, j); ϕ

s
t(i, j)

])
∈ R|A|. (2.2)

We then compute an attention mask αt ∈ RH×W corresponding to frame t, which indicates the
controllable parts of the observation st. Such attention masks are computed via a separate MLP
from the features of each region (i, j), and then converted into a probability distribution using
softmax or sparsemax operators (Martins & Astudillo, 2016):

αt = sparsemax(α̃t) where α̃t(i, j) = MLP
(
ϕst(i, j)

)
, (2.3)

so that
∑

i,j αt(i, j) = 1. The sparsemax operator is similar to softmax but yields a sparse attention,
leading to more stable performance. Finally, the logits et(i, j) from all regions are linearly combined
using the attention probabilities αt:

p(ât−1 | st−1, st) = softmax
(∑

i,j αt(i, j) · et(i, j)
)
∈ R|A|. (2.4)

Training. The model can be optimized with the standard cross-entropy loss Laction(a
∗
t−1, ât−1)

with respect to the ground-truth action a∗t−1 ∈ A that the agent actually has taken. Based on this
formulation, the attention probabilityαt(i, j) should be high only on regions (i, j) that are predictive
of the agent’s actions. Our formulation enables learning to localize controllable entities in a self-
supervised way without any additional supervisory signal, unlike some prior work (e.g., Bellemare
et al. (2012)) that adopts simulators to collect extra supervisory labels.

Optimizing the parameters of ADM on on-policy data is challenging for several reasons. First,
the ground-truth action may be unpredictable for given pairs of frames, leading to noisy labels. For
example, actions taken in uncontrollable situations do not have any effect (e.g., when the agent is
in the middle of jumping in Montezuma’s Revenge). Second, since we train the ADM online
along with the policy, the training examples are not independently and identically distributed, and
the data distribution can shift dramatically over time. Third, the action distribution from the agent’s
policy can run into a low entropy1, being biased towards certain actions. These issues may prevent
the ADM from generalization to novel observations, which hurts exploration. Generally, we prefer
models that quickly adapt to the policy and learn to localize the controllable regions in a robust
manner.

To mitigate the aforementioned issues, we adopt a few additional objective functions. We en-
courage the attention distribution to attain a high entropy by including an attention entropy regular-

1We note that an entropy regularization term (e.g., Eq.(A.4)) is used when learning the policy.
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ization loss, i.e., Lent = −H(αt). This term penalizes over-confident attention masks, making the
attention closer to uniform whenever action prediction is not possible. We also train the logits cor-
responding to each grid cell independently using a separate cross-entropy loss: p(âi,jt−1 | et(i, j)) =
softmax(et(i, j)). These additional cross-entropy losses, denoted Li,jcell, allow the model to learn
from unseen observations even when attention fails to perform well at first. The entire training
objective becomes:

LADM = Laction +
∑

i,j L
i,j
cell + λentLent (2.5)

where λent is a mixing hyperparameter.

2.3.2 Count-based Exploration with Contingent Regions
One natural way to take advantage of discovered contingent regions for exploration is count-based
exploration. The ADM can be used to localize the controllable entity (e.g., the agent’s avatar)
from an observation st experienced by the agent. In 2D environments, a natural discretization
(x, y) = argmax(j,i) αt(i, j) provides a good approximation of the agent’s location within the
current observation2. This provides a key piece of information about the current state of the agent.

Inspired by previous work (Bellemare et al., 2016; Tang et al., 2017), we add an exploration
bonus of r+ to the environment reward, where r+(s) = 1/

√
#(ψ(s)) and #(ψ(s)) denotes the

visitation count of the (discrete) mapped state ψ(s), which consists of the contingent region (x, y).
We want to find a policy π that maximizes the expected discounted sum of environment rewards
rext plus count-based exploration rewards r+, denotedR = Eπ

[∑
t γ

t (β1r
ext(st, at) + β2r

+(st))
]
,

where β1, β2 ≥ 0 are hyperparameters that balance the weight of environment reward and explo-
ration bonus. For every state st encountered at time step t, we increase the counter value #(ψ(st))

by 1 during training. The full procedure is summarized in Algorithm A.1 in Appendix A.1.

2.4 Experiments

In the experiments below we investigate the following key questions:

• Does the contingency awareness in terms of self-localization provide a useful state abstraction
for exploration?

• How well can the self-supervised model discover the ground-truth abstract states?
• How well does the proposed exploration strategy perform against other exploration methods?

2To obtain more accurate localization by taking temporal correlation into account, we can use exponential smoothing
as αt(i, j) = (1− ωt)αt−1(i, j) + ωtαt(i, j), where ωt = max(i,j){αt(i, j)}.
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Figure 2.2: Learning curves on several Atari games: A2C+CoEX and A2C. The x-axis represents
total environment steps and the y-axis the mean episode reward averaged over 40 recent episodes.
The mean curve is obtained by averaging over 3 random seeds, each shown in a light color.

2.4.1 Experiments with A2C

We evaluate the proposed exploration strategy on several difficult exploration Atari 2600 games
from the Arcade Learning Environment (ALE) (Bellemare et al., 2013). We focus on 8 Atari games
including Freeway, Frostbite, Hero, PrivateEye, Montezuma’s Revenge, Qbert,
Seaquest, and Venture. In these games, an agent without an effective exploration strategy
can often converge to a suboptimal policy. For example, as depicted in Figure 2.2, the Advantage
Actor-Critic (A2C) baseline (Mnih et al., 2016) achieves a reward close to 0 on Montezuma’s
Revenge, Venture, Freeway, Frostbite, and PrivateEye, even after 100M steps of train-
ing. By contrast, our proposed technique, which augments A2C with count-based exploration with
the location information learned by the attentive dynamics model, denoted A2C+CoEX (CoEX
stands for “Contingency-aware Exploration”), significantly outperforms the A2C baseline on six
out of the 8 games.

We compare our proposed A2C+CoEX technique against the following baselines:3

• A2C: an implementation adopted from OpenAI baselines (Dhariwal et al., 2017) using the
default hyperparameters, which serves as the building block of our more complicated base-
lines.

• A2C+Pixel-SimHash: Following (Tang et al., 2017), we map 52×52 gray-scale observations
3In Section 2.4.6, we also report experiments using Proximal Policy Optimization (PPO) (Schulman et al., 2017)

as a baseline, where our PPO+CoEX achieves the average score of >11,000 on Montezuma’s Revenge.
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Method Freeway Frostbite Hero Montezuma PrivateEye Qbert Seaquest Venture

A2C 7.2 1099 34352 13 574 19620 2401 0

A2C+Pixel-SimHash 0.0 829 28181 412 276 18180 2177 31

A2C+CoEX 34.0 4260 36827 6635 5316 23962 5169 204

A2C+CoEX+RAM∗ 34.0 4418 36765 6600 24296 24422 6113 1100

Table 2.1: Performance of our method and its baselines on Atari games: maximum mean scores
(averaged over 40 recent episodes) achieved over total 100M environment timesteps (400M frames)
of training, averaged over 3 seeds. The best entry in the group of experiments without supervision
is shown in bold. ∗ denotes that A2C+CoEX+RAM acts as a control experiment, which includes
some supervision. More experimental results on A2C+CoEX+RAM are shown in Appendix A.3.

to 128-bit binary codes using random projection followed by quantization (Charikar, 2002).
Then, we add a count-based exploration bonus based on quantized observations.

As a control experiment, we evaluate A2C+CoEX+RAM∗, our contingency-aware exploration
method together with the ground-truth location information obtained from game’s RAM. It is
roughly an upper-bound of the performance of our approach.

2.4.2 Implementation Details

For the A2C (Mnih et al., 2016) algorithm, we use 16 parallel actors to collect the agent’s expe-
rience, with 5-step rollout, which yields a minibatch of size 80 for on-policy transitions. We use
the last 4 observation frames stacked as input, each of which is resized to 84 × 84 and converted
to grayscale as in (Mnih et al., 2015, 2016). We set the end of an episode to when the game ends,
rather than when the agent loses a life. Each episode is initialized with a random number of no-ops
(Mnih et al., 2015). More implementation details can be found in Appendix A.1 and A.2.

For the ADM, we take observation frames of size 160 × 160 as input (resized from the raw
observation of size 210×160).4 We employ a 4-layer convolutional neural network that produces a
feature map ϕ(st) with a spatial grid size ofH×W = 9× 9. As a result, the prediction of location
coordinates lies in the 9× 9 grid.

In some environments, the contingent regions within the visual observation alone are not suf-
ficient to determine the exact location of the agent within the game; for example, the coordinate
cannot solely distinguish between different rooms in Hero, Montezuma’s Revenge, and Pri-
vateEye, etc. Therefore, we introduce a discrete context representation c ∈ Z that summarizes
the high-level visual context in which the agent currently lies. We use a simple clustering method

4In some games such as Venture, the agent is depicted in very small pixels, which might be hardly recognizable in
rescaled 84× 84 images.
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Method #Steps Freeway Frostbite Hero Montezuma PrivateEye Qbert Seaquest Venture

A2C+CoEX (Ours) 50M 33.9 3900 31367 4100 5316 17724 2620 128

A2C+CoEX (Ours) 100M 34.0 4260 36827 6635 5316 23962 5169 204

DDQN+ 25M 29.2 - 20300 3439 1880 - - 369

A3C+ 50M 27.3 507 15210 142 100 15805 2274 0

TRPO-AE-SimHash 50M 33.5 5214 - 75 - - - 445

Sarsa-ϕ-EB 25M 0.0 2770 - 2745 - 4112 - 1169

DQN-PixelCNN 37.5M 31.7 - - 2514 15806 5501 - 1356
Curiosity-Driven 25M 32.8 - - 2505 3037 - - 416

Table 2.2: Performance of our method and state-of-the-art exploration methods on Atari games.
For fair comparison, we report the maximum mean score achieved over the specific number of
timesteps during training, averaged over 3 seeds. The best entry is shown in bold. Baselines (for ref-
erence) are: DDQN+ and A3C+ (Bellemare et al., 2016), TRPO-AE-SimHash (Tang et al., 2017),
Sarsa-ϕ-EB (Martin et al., 2017), DQN-PixelCNN (Ostrovski et al., 2017), and Curiosity-Driven
(Burda et al., 2019a). The numbers for DDQN+ were taken from (Tang et al., 2017) or were read
from a plot.

similar to (Kulis & Jordan, 2012), which we refer to as observation embedding clustering that clus-
ters the random projection vectors of the input frames as in (Tang et al., 2017), so that different
contexts are assigned to different clusters. We further explain this heuristic approach more in detail
in Appendix A.4.

In sparse-reward problems, the act of collecting a reward is rare but frequently instrumental for
the future states of the environment. The cumulative reward Rt =

∑t−1
t′=0 r

ext(st′ , at′) from the
beginning of the episode up to the current step t, can provide a useful high-level behavioral context
because collecting rewards can trigger significant changes to the agent’s state and as a result the
optimal behavior can change as well. In this sense, the agent should revisit the previously visited
location for exploration when the context changes. For example, in Montezuma’s Revenge, if
the agent is in the first room and the cumulative reward is 0, we know the agent has not picked up
the key and the optimal policy is to reach the key. However, if the cumulative reward in the first
room is 100, it means the agent has picked up the key and the next optimal goal is to open a door
and move on to the next room. Therefore, we could include the cumulative reward as a part of state
abstraction for exploration, which leads to empirically better performance.

To sum up, for the purpose of count-based exploration, we utilize the location (x, y) of the con-
trollable entity (i.e., the agent) in the current observation discovered by ADM (Section 2.3.1), a
context representation c ∈ Z that denotes the high level visual context, and a cumulative environ-
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Figure 2.3: Performance plot of ADM trained using on-policy samples from the A2C+CoEX agent.

ment rewardR ∈ Z that represents the exploration behavioral state. In such setting, we may denote
ψ(s) = (x, y, c, R).

2.4.3 Performance of Count-Based Exploration

Figure 2.2 shows the learning curves of the proposed methods on 8 Atari games. The performance
of our method A2C+CoEX and A2C+CoEX+RAM as well as the baselines A2C and A2C+Pixel-
SimHash are summarized in Table 2.1. In order to find a balance between the environment reward
and the exploration bonus reward, we perform a hyper-parameter search for the proper weight of
the environment reward β1 and the exploration reward β2 for A2C+CoEX+RAM, as well as for
A2C+CoEX. The hyper-parameters for the two ended up being the same, which is consistent with
our results. For fair comparison, we also search for the proper weight of environment reward for
A2C baseline. The best hyper-parameters for each game are shown in Table A.2 in Appendix A.2.

Compared to the vanilla A2C, the proposed exploration strategy improves the score on all the
hard-exploration games. As shown in Table 2.1, provided the representation (x, y, c, R) is perfect,
A2C+CoEX+RAM achieves a significant improvement over A2C by encouraging the agent to visit
novel locations, and could nearly solve these hard exploration games as training goes on.

Furthermore, A2C+CoEX using representations learned with our proposed attentive dynam-
ics model and observation embedding clustering also outperforms the A2C baseline. Especially
on Freeway, Frostbite, Hero, Montezuma’s Revenge, Qbert and Seaquest, the per-
formance is comparable with A2C+CoEX+RAM, demonstrating the usefulness of the contigency-
awareness information discovered by ADM.

Comparison to other count-based exploration methods. Table 2.2 compares the proposed
method with previous state-of-the-art results, where our proposed method outperforms the other
methods on 5 out of 8 games. DQN-PixelCNN is the strongest alternative achieving a state-of-the-
art performance on some of the most difficult sparse-reward games. We argue that using Q-learning
as the base learner with DQN-PixelCNN makes the direct comparison with A2C+CoEX not com-
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Figure 2.4: Curves of ARI score during training of A2C+CoEX, averaged over 100 recent obser-
vations.

pletely adequate. Note that the closest alternative count-based exploration method to A2C+CoEX
would be A3C+ (Bellemare et al., 2016), which augments A3C (Mnih et al., 2016) with exploration
bonus derived from pseudo-count, because A2C and A3C share a similar policy learning method.
With that in mind, one can observe a clear improvement of A2C+CoEX over A3C+ on all of the 8
Atari games.

2.4.4 Analysis of Attentive Dynamics Model

We also analyze the performance of the ADM that learns the controllable dynamics of the envi-
ronment. As a performance metric, we report the average distance between the ground-truth agent
location (x∗, y∗) and the predicted location (x, y) within the 9× 9 grid: ∥(x, y)− (x∗, y∗)∥2. The
ground-truth location of the agent is extracted from RAM5, then rescaled so that the observation
image frame fits into the 9× 9 grid.

Figure 2.3 shows the results on 4 Atari games (Montezuma’s Revenge, Seaquest, Hero,
and Venture). The ADM is able to quickly capture the location of the agent without any su-
pervision of localization, despite the agent constantly visiting new places. Typically the predicted
location is on average 1 or 2 grid cells away from the ground-truth location. Whenever a novel
scene is encountered (e.g., the second room in Montezuma’s Revenge at around 10M steps),
the average distance temporarily increases but quickly drops again as the model learns the new
room. We provide videos of the agents playing and localization information as the supplementary
material.

2.4.5 Analysis of Observation Embedding Clustering

To make the agent aware of a change in high-level visual context (i.e., rooms in Atari games) in
some games such as Montezuma’s Revenge, Venture, Hero, and PrivateEye, we obtain

5Please note that the location from RAM is used only for analysis and evaluation purposes.
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a representation of the high-level context and use it for exploration. The high-level visual contexts
are different from each other (different layouts, objects, colors, etc.), so the embedding generated
by a random projection is quite distinguishable and the clustering is accurate and robust.

For evaluation, given an observation in Atari games, we compare the discrete representation (i.e.,
which cluster it is assigned to) based on the embedding from random projection to the ground-truth
room number extracted from RAM. The Adjusted Rand Index (ARI) (Rand, 1971) measures the
similarity between these two data clusterings. The ARI may only yield a value between 0 and 1,
and is exactly 1 when the clusterings are identical.

The curves of the Adjusted Rand Index are shown in Figure 2.4. For Montezuma’s Revenge
and Venture, the discrete representation as room number is roughly as good as the ground-
truth. For Hero and PrivateEye, since there are many rooms quite similar to one another, it
is more challenging to accurately cluster the embeddings. The samples shown in Figure A.2 in
Appendix A.4 show reasonable performances of the clustering method on all these games.

2.4.6 Additional Experiments with PPO

We also evaluate the proposed exploration algorithm on Montezuma’s Revenge using the sticky
actions environment setup (Machado et al., 2017) identical to the setup found in (Burda et al.,
2019b). In the sticky action setup, the agent randomly repeats the previous action with probability of
0.25, preventing the algorithm from simply memorizing the correct sequence of actions and relying
on determinism. The agent is trained with Proximal Policy Optimization (PPO) (Schulman et al.,
2017) in conjunction with the proposed exploration method using 128 parallel actors to collect the
experience. We used reward normalization and advantage normalization as in (Burda et al., 2019a).

The method, denoted PPO+CoEX, achieves the score of 11,618 at 500M environment steps
(2 billion frames) on Montezuma’s Revenge, when averaged over 3 runs. The learning curve
is illustrated in Figure 2.5. Since the vanilla PPO baseline achieves a score near 0 (our runs) or
1,797 (Burda et al., 2019b), this result is not solely due to the benefits of PPO. There is another
approach "Exploration by Random Network Distillation" (Burda et al., 2019b) concurrent with
our work which achieves similar performance by following a slightly different philosophy.

2.4.7 Discussions and Future Work

This paper investigates whether discovering controllable dynamics via an attentive dynamics model
(ADM) can help exploration in challenging sparse-reward environments. We demonstrate the ef-
fectiveness of this approach by achieving significant improvements on notoriously difficult video
games. That being said, we acknowledge that our approach has certain limitations. Our currently
presented instance of state abstraction method mainly focuses on controllable dynamics and em-
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Figure 2.5: The learning curve of PPO+CoEX on several Atari games with sticky actions setup.
The x-axis represents the total number of environment steps and the y-axis the mean episode reward
averaged over 40 recent episodes. The mean curve is obtained by averaging over 3 random seeds,
each shown in a light color.

Method #Steps Freeway Frostbite Hero Montezuma PrivateEye Qbert Seaquest Venture

PPO 500M 34.0 7340 36263 29 942 19980 2806 1875

PPO+CoEX 500M 34.0 9076 36664 11618 11000 22647 11794 1916

Table 2.3: Performance of PPO and PPO+CoEX: maximum mean scores (average over 40 recent
episodes) achieved over total 500M environment steps (2B frames) of training, averaged over 3
seeds.

ploys a simple clustering scheme to abstract away uncontrollable elements of the scene. In more
general setting, one can imagine using attentive (forward or inverse) dynamics models to learn an
effective and compact abstraction of the controllable and uncontrollable dynamics as well, but we
leave this to future work.

Key elements of the current ADM method include the use of spatial attention and modelling of
the dynamics. These ideas can be generalized by a set of attention-based dynamics models (ADM)
operating in forward, inverse, or combined mode. Such models could use attention over a lower-
dimensional embedding that corresponds to an intrinsic manifold structure from the environment
(i.e., intuitively speaking, this also corresponds to being self-aware of (e.g., locating) where the
agent is in the abstract state space). Our experiments with the inverse dynamics model suggest
that the mechanism does not have to be perfectly precise, allowing for some error in practice. We
speculate that mapping to such subspace could be obtained by techniques of embedding learning.

We note that RL environments with different visual characteristics may require different forms
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of attention-based techniques and properties of the model (e.g., partial observability). Even though
this paper focuses on 2D video games, we believe that the presented high-level ideas of learning
contingency-awareness (with attention and dynamics models) are more general and could be appli-
cable to more complex 3D environments with some extension. We leave this as future work.

2.5 Conclusion

We proposed a method of providing contingency-awareness through an attentive dynamics model
(ADM). It enables approximate self-localization for an RL agent in 2D environments (as a specific
perspective). The agent is able to estimate its position in the space and therefore benefits from a
compact and informative representation of the world. This idea combined with a variant of count-
based exploration achieves strong results in various sparse-reward Atari games. Furthermore, we
report state-of-the-art results of >11,000 points on the infamously challenging Montezuma’s Re-
venge without using expert demonstrations or supervision. Though in this work we focus mostly
on 2D environments in the form of sparse-reward Atari games, we view our presented high-level
concept and approach as a stepping stone towards more universal algorithms capable of similar
abilities in various RL environments.
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CHAPTER 3

Variational Empowerment as Representation
Learning for Goal-Based Reinforcement Learning

Learning to reach goal states and learning diverse skills through mutual information (MI) maxi-
mization have been proposed as principled frameworks for self-supervised reinforcement learning,
allowing agents to acquire broadly applicable multi-task policies with minimal reward engineering.
Starting from a simple observation that the standard goal-conditioned RL (GCRL) is encapsulated
by the optimization objective of variational empowerment, we discuss how GCRL and MI-based
RL can be generalized into a single family of methods, which we name variational GCRL (VGCRL),
interpreting variational MI maximization, or variational empowerment, as representation learning
methods that acquire functionally-aware state representations for goal reaching. This novel perspec-
tive allows us to: (1) derive simple but unexplored variants of GCRL to study how adding small
representation capacity can already expand its capabilities; (2) investigate how discriminator func-
tion capacity and smoothness determine the quality of discovered skills, or latent goals, through
modifying latent dimensionality and applying spectral normalization; (3) adapt techniques such
as hindsight experience replay (HER) from GCRL to MI-based RL; and lastly, (4) propose a novel
evaluation metric, named latent goal reaching (LGR), for comparing empowerment algorithms with
different choices of latent dimensionality and discriminator parameterization. Through principled
mathematical derivations and careful experimental studies, our work lays a novel foundation from
which to evaluate, analyze, and develop representation learning techniques in goal-based RL.

3.1 Introduction

Reinforcement learning (RL) provides a general framework for discovering optimal behaviors for
sequential decision-making. Combined with powerful function approximators like neural networks,
RL can be used to learn to play computer games from raw pixels (Mnih et al., 2013) and acquire
complex sensorimotor skills with real-world robots (Gu et al., 2017a; Kalashnikov et al., 2018;
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Haarnoja et al., 2018). Neural networks show best performance, generalization, and reusability
when they are trained on large and diverse datasets (Krizhevsky et al., 2012; Devlin et al., 2018).
However, a critical limitation in RL is that human experts often need to spend considerable efforts
designing and fine-tuning reward functions per task, making it hard to scale and define a huge set
of tasks in advance. If we have agents that can interact with the world without rewards, build up a
body of knowledge autonomously, and utilize this knowledge to accomplish new tasks efficiently,
then we can greatly scale up task and skill learning to achieve similar level of generalization and
performance for RL as what neural networks have enabled for other domains.

Several works have tried to find a single generalizable task-agnostic reward function which can
potentially be used across several environments. The use of such intrinsic reward functions has been
motivated as exploration heuristics such as curiosity and novelty (Schmidhuber, 1991a; Oudeyer
& Kaplan, 2009; Bellemare et al., 2016; Pathak et al., 2017), as optimizing mutual information
(MI) (Gregor et al., 2017; Eysenbach et al., 2019; Sharma et al., 2020b,a) or as empowerment (Klyu-
bin et al., 2005; Jung et al., 2011; Mohamed & Rezende, 2015). Classically, goal-conditioned
RL (GCRL) has shown success in learning diverse and useful skills in concurrence to MI-based
methods. GCRL optimizes a stationary and interpretable reward for goal-reaching, but when the
goal space is high-dimensional, how does the agent know which part of the space is relevant and
which part can be ignored? In such cases, prior GCRL works frequently rely on manual defini-
tion (Andrychowicz et al., 2017) or off-the-shelf representation learning (Nachum et al., 2018; Nair
et al., 2018; Wu et al., 2018) optimized prior to or separately from reinforcement learning. Mean-
while, MI or empowerment-based RL offers a clear objective for representation learning through
reinforcement learning, but the properties of the learned behaviors are often unclear due to lack of a
proper evaluation metric. Prior works use qualitative inspections of learned behaviors, variational
bound estimates, or downstream task performances of a skill-utilizing high-level policy (Eysenbach
et al., 2019; Sharma et al., 2020b), but these heuristics are costly or indirect measures and make
objective comparisons and analyses of various mathematically-similar MI-based algorithms diffi-
cult (Florensa et al., 2017; Eysenbach et al., 2019; Achiam et al., 2018; Warde-Farley et al., 2019;
Hansen et al., 2020; Sharma et al., 2020b). To recover a more direct metric, an important question
is: what do these MI-based objectives learn representations for?

In this work, we interpret MI and empowerment-based RL as a principled framework for rep-
resentation learning in goal-conditioned RL. Starting from a simple observation that the objective
of the standard GCRL can be seen as a special case of variational MI with a fixed hard-coded
variational posterior, our analysis provides a unification of these ideas and explicitly reframes skill
discovery via mutual information maximization (Gregor et al., 2017; Eysenbach et al., 2019) as a
combination of representation learning and goal-conditioned reinforcement learning, where both
the space of goals and the skills to reach those goals are learned jointly via a MI-based objective.
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While the connections between representation learning, mutual information estimation, and goal-
conditioned RL have been explored in a number of previous works (Gregor et al., 2017; Warde-
Farley et al., 2019; Gupta et al., 2018), our exact mathematical formulation and granular analyses
enable new perspectives and synergies between GCRL and MI-based RL:

1. [MI to GCRL] We propose simple but novel variants of GCRL – adaptive-variance and linear-
mapping GCRL – to study how adding small representation capacity can already expand the
capabilities of GCRL.

2. [MI to GCRL] We show that a proper representation regularization from generative modeling,
such as spectral normalization (Miyato et al., 2018), can improve the quality of latent goals
discovered (and the stability of MI-based algorithms).

3. [GCRL to MI] We adapt hindsight experience replay (HER) (Andrychowicz et al., 2017) from
GCRL to more general MI-based objectives and show posterior HER (P-HER) consistently pro-
vides substantial performance gains in MI-based RL algorithms.

4. [GCRL to MI] We propose the latent goal reaching (LGR) metric as an intuitive, task-oriented,
and discriminator-agnostic metric for objectively evaluating empowerment algorithms.

3.2 Related Work

Reward engineering has been a bottleneck to broad application of RL. Some of the prior attempts
to alleviate this problem have sought introduce human supervision in alternative, easier forms, such
as demonstrations (Ng et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008; Ho & Ermon, 2016; Fu
et al., 2017; Ghasemipour et al., 2019) or preferences (Hadfield-Menell et al., 2017; Christiano et al.,
2017). However, since these methods still rely on non-negligible amounts of human interventions,
they cannot automatically scale to solving thousands of new environments and tasks.

Empowerment and reward-free RL. Task-agnostic reward functions have been proposed to en-
courage exploration in environments using notions of curiosity or novelty (Schmidhuber, 1991a;
Oudeyer & Kaplan, 2009; Schmidhuber, 2010; Bellemare et al., 2016; Pathak et al., 2017; Colas
et al., 2018). In a similar vein, some methods maximize the state-visitation entropy (Hazan et al.,
2018; Pong et al., 2019; Lee et al., 2019a; Ghasemipour et al., 2019). These approaches can en-
able solutions to otherwise hard exploration sparse-reward problems. Some of the recent work has
emphasized on empowerment or option/skill discovery through optimization of mutual informa-
tion based intrinsic reward functions. Classically, empowerment measures the ability of an agent
to control the environment (Salge et al., 2014; Klyubin et al., 2005; Jung et al., 2011), which was
scaled up by Mohamed & Rezende (2015); Karl et al. (2017). The concept of mutual information,
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which is also at the heart of empowerment based methods, has been further used to motivate several
objectives for skill discovery (Florensa et al., 2017; Eysenbach et al., 2019; Achiam et al., 2018;
Warde-Farley et al., 2019; Hansen et al., 2020; Sharma et al., 2020b; Campos et al., 2020). Recent
works have shown that skills learned through mutual information can be meaningfully combined to
solve downstream tasks (Eysenbach et al., 2019; Sharma et al., 2020b), even on real robots (Sharma
et al., 2020a).

Goal-conditioned RL. Goal-conditioned RL (Kaelbling, 1993b; Pong et al., 2018; Andrychow-
icz et al., 2017; Schaul et al., 2015) provides a framework for enabling agents to reach user-specified
goal states. The behaviors learned via GCRL can be interpretable and easy to analyze in terms
of the goal-reaching function. However, GCRL assumes that a goal-reaching function has been
specified in addition to goal states, which precludes broader application for the same reasons as
those for reward engineering. To overcome such limitations, some prior works have used varia-
tional inference (Rudner et al., 2021) or mutual information in the GCRL framework (Pong et al.,
2019; Warde-Farley et al., 2019) to learn. However, these works use the MI optimization as an
unsupervised scheme to generate and achieve goals. On the other hand, our work studies skill-
discovery/empowerment methods and provides an explicit reinterpretation within the GCRL frame-
work, combining the representation learning perspective with the goal-reaching behavior of GCRL.

3.3 Background

In this section, we briefly review mutual information (MI)-based objectives for skill discovery,
focusing on variational approaches introduced in (Mohamed & Rezende, 2015; Gregor et al., 2017;
Eysenbach et al., 2019; Sharma et al., 2020b), and goal-conditioned RL (GCRL).

We denote a Markov decision process (MDP)M = (S,A, p, r), whereS denotes the state space,
A denotes the action space, p : S × S × A → [0,∞) denotes the underlying (possibly stochastic)
transition dynamics of the environment with the initial state distribution p0 : S → [0,∞), and a
reward function r : S×A → R. The goal of the RL optimization problem is to learn a policy π(a |
s) which maximizes the return Ep,π [

∑∞
t=0 γ

tr(st, at)] = Es∼ρπ ,a∼π [r(s, a)] , for a discount factor
γ ∈ [0, 1) where ρπ is an unnormalized γ-discounted state visitation density. Importantly, once we
write an objective in the form of Eρπ ,π [r(s, a)], we can apply the policy gradient theorem (Sutton
et al., 2000) to derive a practical RL solver, as done in (Kakade, 2002; Silver et al., 2014; Schulman
et al., 2015; Gu et al., 2017b; Ciosek & Whiteson, 2018), or learn it with Q-learning (Watkins
& Dayan, 1992). For simplicity of our notations, we omit the discount factor γ in the following
sections and derivations.
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3.3.1 Mutual Information Maximization and Empowerment

MI maximization in RL such as empowerment generally means maximizing the mutual information
between (some representations of) actions and (some representations of) future states following
those actions (Klyubin et al., 2005; Mohamed & Rezende, 2015). The goal is to learn a set of
actions that can influence future states to be diverse, but also be predictable if we know what action
is taken. In this work we focus on learning abstract representation z ∈ Z , which is an additional
input to the policy π(a|s, z) and defines a set of empowered actions. The latent code z (either
discrete or continuous) can be interpreted as a macro-action, skill or goal (Eysenbach et al., 2019;
Sharma et al., 2020b).

We discuss two variants of MI objectives in RL: state-predictive MI (Sharma et al., 2020b),
which maximizes I(s′; z | s), and state-marginal MI (Eysenbach et al., 2019), which maximizes
I(s; z). Due to page limit, we discuss these variants more in detail in Appendix B.1. In this work,
we focus on state-marginal MI, whose optimization objective is:

I(s; z) = Ez∼p(z),s∼ρπ(s|z)[log p(z | s)− log p(z)]

≥ Ez∼p(z),s∼ρπ(s|z)[log qλ(z | s)− log p(z)] (3.1)

where qλ(z|s) is a variational approximation to the intractable posterior p(z|s), often called a (skill)
discriminator (Eysenbach et al., 2019).

Given a parameterized policy πθ(a|s, z), Eq. 3.1 gives a joint maximization objective (a varia-
tional lower bound) with respect to πθ and qλ:

F(θ, λ) = Ez,s∼πθ [log qλ(z|s)− log p(z)] . (3.2)

A simple iterative RL procedure can be derived to optimize this lower bound, assuming a parame-
terized policy πθ(a|s, z), where at iteration i,

λ(i) ← argmaxλ Ez,s∼π(i−1) [log qλ(z|s)− log p(z)] (3.3)
θ(i) ← argmaxθ Ez,s∼πθ [log qλ(i)(z|s)− log p(z)] . (3.4)

Eq. 3.3 is a simple supervised regression (e.g., maximum likelihood) on on-policy samples. Eq. 3.4
has the same form of standard RL, and therefore can be optimized using any RL algorithm (Gregor
et al., 2017; Eysenbach et al., 2019).
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3.3.2 Goal-Conditioned RL

Goal-conditioned RL (Kaelbling, 1993b; Schaul et al., 2015) (GCRL) is a standard, stationary-
reward problem where we aim to find a policy π(a|s, g) conditional on a goal g ∈ G by maximizing

F (π) = Eg∼p(g),s∼πθ [−d(s, g)] , (3.5)

where p(g, s) = p(g)ρπ(s|g), p(g) defines the task distribution over goals, and d(s, g) is a distance
metric between state s and goal g, such as an Euclidean distance. The main challenges for goal-
conditioned RL lie in defining the goal space and the goal-reaching reward function−d(s, g), which
often requires task-specific knowledge or careful choices of goal space (Plappert et al., 2018a).

In off-policy learning, hindsight experience replay (HER) (Kaelbling, 1993b; Andrychowicz
et al., 2017) has shown to improve learning of goal-conditioned policy significantly. The key insight
is that for a given exploration episode {g, s0:T}, one can relabel the goal with an actually achieved
goal S(s0:T ), derived by a strategy function S(·). A typical choice is to relabel the goal as g̃ =

S(s0:T ) = sT , which can be seen as self-supervised curriculum learning (Andrychowicz et al.,
2017; Lynch et al., 2019).

3.4 Expressivity Tradeoffs in Variational Empowerment

Interestingly, the simple objective in Eq. 3.2, which we term Variational Goal-Conditioned RL
(VGCRL), encapsulates most of the prior MI-based algorithms (Eysenbach et al., 2019; Warde-
Farley et al., 2019; Hansen et al., 2020) with the only differences being goal space Z , prior p(z),
and discriminator qλ(z|s), as detailed in Table 3.1. For example, when z is a discrete variable, this
reduces to DIAYN (Eysenbach et al., 2019) or VALOR (Achiam et al., 2018).

If z is continuous, a natural choice for qλ is a Gaussian, i.e. N (µ(s),Σ(s)), where both µ and
Σ may be parameterized using any function approximators with a range of expressivities, from
identity functions to deep neural networks. Throughout the rest of the paper, we show how various
simple choices for qλ lead to algorithms with different properties.

Goal-Conditioned RL as a Coarse Variational Approximation. A simple observation is that
if we choose a fixed variational distribution, such as N (s, σ2I) with σ as a fixed hyperparameter
and the goal space identical to the observation space (Z = S), the RL objective in Eq. 3.4 becomes
(see Appendix B.2 for mathematical details):

F(π) = Ez,s∼πθ
[
− 1
σ2 ∥z − s∥2

]
+ constant. (3.6)
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Method Goal space qλ(z|s) Learnable λ Learning πz

GCRL (Kaelbling, 1993b) Continuous (Rd) N (s, σ2I) - (HER)

aGCRL (ours) Continuous (Rd) N (s,Σ) Σ HER

linGCRL (ours) Continuous (Rd) N (As, σ2I) A P-HER

InfoGAIL∗ (Li et al., 2017) Discrete Categorical qλ -

DIAYN (Eysenbach et al., 2019) Discrete Categorical qλ -

DIAYN (continuous) Continuous (Rd) N (µ(s),Σ(s)) µ(·) -

DISCERN (Warde-Farley et al., 2019) = S (e.g. image) Non-parametric Embedding(·) HER

VISR (Hansen et al., 2020) Continuous (Rd) vMF(µ(s), κ) µ(·) SF

VGCRL Any Any Any P-HER or SF

Table 3.1: A summary of algorithms, all are optimized with the single objective in Eq. 3.2. vMF
stands for von Mise-Fisher distribution. DIAYN (Eysenbach et al., 2019), DISCERN (Warde-Farley
et al., 2019), VISR (Hansen et al., 2020) can be seen as special cases. For InfoGAIL (Li et al.,
2017)∗, we focus on the MI regularization objective LI(π,Q) only. Since they are under the same
objective, learning techniques for goal-conditioned policy πz such as successor features (SF) (Bar-
reto et al., 2017) and hindsight experience replay (HER) (Andrychowicz et al., 2017) can be adapted
for more general settings within the VGCRL objective.

It is straightforward to see that this recovers the objective of GCRL in Eq. 3.5 exactly (up to a
constant), where the distance function uses a squared loss. This provides a novel interpretation for
GCRL algorithms as a variational empowerment algorithm with a hard-coded and fixed variational
distribution. Given that no qλ parameters are adapted, this generally provides a very loose bound on
MI; however, prior work on GCRL shows that this RL objective, unlike empowerment-based, learns
useful goal-reaching skills stably (Kaelbling, 1993b; Andrychowicz et al., 2017; Pong et al., 2018)
thanks to a stationary reward function. This suggests that GCRL and prior variational empowerment
methods represent two ends of a spectrum, corresponding to the expressivity of the variational
distribution used to approximately maximize mutual information, and neither of the two is perfect,
with their own pros and cons. Varying expressivity — through the choices of Z and qλ — and
evaluating the qualities of learned goal spaces is a central theme of the next section.

3.5 Goal-Conditioned RL as Variational Empowerment

In this section, we discuss GCRL with representation learning, through the lens of variational em-
powerment: how the representation capacity leads to algorithms with different properties. We first
derive two “lost relatives” of GCRL that only add minimal representation capacities but still result
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in interesting learning behaviors while keeping the stability of GCRL, and then discuss how we can
study representation capacity in more general settings through varying smoothness constraints.

3.5.1 Adaptive Variances for Relevance Determination

Given the observation in Section 3.4, a straightforward modification to GCRL is to allow the vari-
ances to be learned, while keeping µ(s) = s. If we assume a global learned covariance, i.e.,
qλ(z|s) = N (s,Σ), λ = {Σ}, Eq. 3.2 gives us a novel variant of GCRL, which we call adaptive
GCRL (aGCRL). The intuition behind this algorithm is the following: let us assume a simple diago-
nal covariance matrix; during learning, this algorithm will quickly shrink σ for the goal dimensions
that the agent can reliably reach, and will expand variances for the dimensions that the agent has a
hard time to; it therefore can identify and prioritize goal-reaching in feasible directions, discount-
ing unfeasible ones, resembling properties of automatic relevance determination (ARD) (Wipf &
Nagarajan, 2008).

Experiment: Automatic Controllability Determination on Windy PointMass. We design a
simple Windy PointMass environment to study adaptive behaviors, which is simulated in Mu-
joco (Todorov et al., 2012). We assume a point mass in N -dimensional space (Figure 3.1a), where
some dimensions have random force perturbations and therefore are difficult to control. Such per-
turbations are often studied in the risk-sensitive RL literature (Fox et al., 2015; Maddison et al.,
2017); however, in our experiments, they serve to create different levels of controllability. Our goal
is to have GCRL automatically ignore dimensions that are not controllable and prioritize dimen-
sions that are easy to control. More details can be found in Appendix B.3.

We evaluated goal-conditioned RL with an adaptive global diagonal variance term in Figure 3.1.
Our results show that this simple modification to goal-based RL can accurately identify control-
lable dimensions in the state space. For example, in a 2-dimensional windy pointmass environ-
ment, aGCRL recovered a smaller variance for the first dimension, σx = 0.368, and a larger
variance for the second dimension, σy = 1.648, which corresponds to having a reward function
r(s, z) = ∥x − gx∥/0.368 + ∥y − gy∥/1.648 where (x, y) is the position of the point mass and
z = (gx, gy) is the goal location. A benefit of such adpative variance is that we can prioritize goal
reaching in controllable dimensions; in Figure 3.1c, we can observe that aGCRL can reach goals in
the controllable dimension (e.g., dim 0) more quickly than the standard constant-variance GCRL
baseline on the 10-dimensional Windy PointMass environment, showing the effectiveness of such
automatically learned reward functions that can ignore nuisance dimensions.
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(a) Windy PointMass.
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(b) Learned variances (10D).
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(c) Goal reaching performance in the controllable dimension (dim 0) and the uncon-
trollable dimension (dim 9). The y-axis denotes the mean squared error between the
goal location and achieve location.

Figure 3.1: Adaptive-variance GCRL. The learned variance is clearly smaller for the easier (noise-
less) dimension, which makes goal reaching in controllable dimensions more focused than in un-
controllable ones.

3.5.2 Adaptive Mean with Varying Expressivity

The aGCRL variant adapts variances but fixes the mean µ(s) to be s. By using more expressive
parameterizations, such as neural networks (Eysenbach et al., 2019), the algorithm can theoretically
optimize a tighter lower-bound to MI. However, as it gains more expressivity, interpretability and
learning stability might be reduced. We study a linear case, i.e. qλ(z|s) = N (As,Σ) where λ =

{A} along with identity and NN cases, and carefully evaluate this design choice.

Experiment: Recovering Intrinsic Dimensions of Variations with Linear GCRL. In this
study, we design a simple 2D point mass with a random projection applied to the observation.
We use an affine transformation W to generate the agent’s observation o = Ws from a physics
simulator’s state s. For example, when a raw state in 2D point mass (Figure 3.2) includes the (x, y)
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location of the point mass, the agent will instead receive an entangled, obfuscated observation:
o = (w11x+w12y, w21x+w22y, . . .) which does not align with the action space. We see whether a
variant of VGCRL where q(z|o) = N (Ao,Σ), called linGCRL, can recover the inverse of an under-
lying projection A = W−1 when we use a rectangle-shaped 2D uniform prior p(z). This resembles
PCA discovering principal components in and underlying true dimensionalities.

Figure 3.2 shows an example where a unknown 2 × 2 random projection W is applied. The
arena of the 2D point mass environment and two example trajectories are visualized: the space
of true state s (left), observation o = Ws (middle), and goal z = (A · W )s. We can see two
intrinsic, orthogonal dimensions are recovered by the learned matrix A such that the posteriors z
from marginal states match the prior distribution, but up to rotation and reflection. This was also
possible with more complex (e.g., W ∈ R10×2) random projections. We show that linGCRL can
recover intrinsic dimensionalities of the state from random projections.

3.5.3 Spectral Normalization

If the variational posterior (“discriminator”) qλ(z|s) has high expressive power, for example when
it is represented by a neural network, it can easily achieve maximum discriminability. However,
this can lead to a very suboptimal solution for the policy. Because the marginal states as a result of
latent goal and state pairs produced by the latent-conditioned policy are almost random and of poor
quality in the early stage of training, the discriminator might easily overfit to such a near-random
distribution of (s, z), where s ∼ πθ(·|·, z). This usually happens when in general qλ(z|s) is much
easier to fit (especially given a high capacity of neural networks) than the policy πθ. Figure 3.3(a)
shows a motivating example of qλ(z|s) learned on a toy 2D point mass environment: the landscape
of q(z|s) is highly non-smooth, which can hinder learning latent-conditioned skills due to a ill-

Figure 3.2: linGCRL on 2D point mass. Left: the underlying physics space. Middle: An agent’s
observation after a random linear projection. Right: A goal space recovered by µ = Ao. The
orange/green cross marks denote sampled goals z ∼ p(z), and blue dots are initial locations.
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(a) Without SN. (b) With SN.

Figure 3.3: Visualization of the decision boundary of q(z|s) on 2D point mass environment with
|G| = 20 (See §3.5.3).

posed reward structure.
One way to alleviate this issue is to regularize the discriminator using Spectral Normaliza-

tion (Miyato et al., 2018), which has been very effective in stablizing Generative Adversarial Net-
works (GAN). Intuitively speaking, spectral normalization enforces the discriminator to be a smooth
function by satisfying the Lipschitz continuity.

Experiment: Spectral Normalization. We study the behavior of variational empowerment al-
gorithms on a toy 2D point mass environment, for a purpose of simple analysis. To simplify the
analysis, we used µ(s) = (x, y), and a simple 2-layer MLP (with 128 hidden units). Figure 3.3
shows the decision boundary of the discriminator qλ(z|s), without and with Spectral Normaliza-
tion (SN), where the dimension of z is 20 (or the number of skills). We can observe that, even
though in both cases the empowerment objective F has converged to near-optimum value with a
reasonably good discriminability (Table 3.2: top-1 accuracy of qλ(z|s) is > 90%), the decision
boundary is much more smooth with Spectral Normalization and closer to interpretations of em-
powerment (Eysenbach et al., 2019; Mohamed & Rezende, 2015). Without Spectral Normalization,
the discriminator had to learn a highly non-smooth decision boundary that is over-fit to near-random
data generated the premature policy πz, which would make joint optimization of πz and qλ(z|s) and
discovery of meaningful behaviors difficult.

Furthermore, spectral normalization can improve the performance of variational empowerment
algorithms in more challenging control tasks, as will be discussed in Section 3.6.3. These results
confirm that high expressivity does not necessarily mean better performance, and therefore that in-
ductive biases or proper regularizations on the posterior qλ(z|s) are important for the performance

32



2D
Pointmass

SN? F LGR(z)

|G| = 10
- -0.38 0.94

✔ -0.14 0.96

|G| = 20
- -0.86 0.91

✔ -0.24 0.96

|G| = 50
- -1.02 0.83

✔ -1.15 0.78

Table 3.2: DIAYN v.s. DIAYN + Spectral Normalization (SN) on 2D PointMass (See Figure 3.3).
Please refer to Section 3.6.3 for details of the metrics and discussions.

of the algorithm and the quality of the goal representation learned.

3.6 Variational Empowerment as Goal-Conditioned RL
We have seen that goal-conditioned RL can be viewed as a special case of the unified optimization
objective in Equation 3.2. A natural question that follows is whether training methods that work
well for GCRL can also be used within the more general VGCRL framework. We answer in the
affirmative, deriving an extension to a goal-relabeling technique (HER) and an evaluation metric
for variational empowerment algorithms. We present some techniques that are helpful for learning
VGCRL.

3.6.1 P-HER: Posterior Hindsight Experience Replay
As discussed in Section 3.3.2, Hindsight Experience Replay (HER) (Andrychowicz et al., 2017)
substantially improves off-policy learning of goal-conditioned policies and value functions. In-
spired by the mathematical connection to GCRL, we can derive an equivalent of HER or goal
relabeling in the context of VGCRL. Specifically, we relabel z for fitting the policy πθ(a|s, z) with
the relabeled goal S(s0:T ) derived from the final state sT :

S(s0:T ) ∼ qλ(z | sT ). (3.7)

We call this relabeling technique Posterior HER (P-HER), as it can be seen as an application of
posterior sampling (Hausman et al., 2018; Rakelly et al., 2019) to HER. Since qλ is non-stationary,
we always use the up-to-date estimate of qλ(z|sT ) with the latest parameter λ of posterior qλ. This
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(b) Humanoid-v3 (Discrete, |G| = 200)
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(c) HalfCheetah-v3 (Gaussian, |G| = 5)
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(d) Ant-v3 (Gaussian, |G| = 5)

Figure 3.4: Learning curves (selected) of variational empowerment methods with discrete ((a)-(b),
see Table 3.3) and continuous ((c)-(d), see Table 3.4) goal spaces. We can see that Posterior HER
(P-HER) makes optimization of the MI objective faster and more stable, especially when the goal
space is large and/or goal-conditioned policy is difficult to learn. The use of spectral normalization
(SN, Section 3.5.3) provides performance gains for VGCRL with Gaussian discriminators. The
higher LGR(z) is, the better in discrete cases (accuracy; (a)-(b)); the lower LGR(z) is, the better
in continuous cases (distance; (c)-(d)). Learning curves are averaged over 3 random seeds. More
plots can be found in Appendix B.5.

is the biggest difference to the vanilla HER where the goal mapping function is fixed. We note that
other state sampling distributions of HER, e.g., uniform over s0:T or st>k can also be trivially sup-
ported. For fitting the discriminator qλ(z|s), we do not relabel the goal. Similarly to HER in GCRL,
this technique can be viewed as a curriculum for enabling parameterized policy optimization to fo-
cus on high-reward regions. This technique can accelerate optimization steps for πθ (Equation 3.4)
in the same spirit of HER when latent goal reaching is non-trivial, especially in high-dimensional
state spaces and with immaturely-shaped reward functions.

3.6.2 Latent Goal Reaching: A Metric for MI-Based Empowerment Algo-
rithms

One limitation in mutual information-based RL (Eysenbach et al., 2019; Sharma et al., 2020b) is
lack of objective evaluation metrics. Previous works directly evaluate qualitative results of learned
behaviors, but quantitative metrics are limited to discriminator rewards (i.e., E[log q(z|s)− p(z)])
which can saturate and do not always correspond to the quality of learned behaviors, or downstream
task evaluations such as exploration bonus and pre-trained primitives for hierarchical RL (Florensa
et al., 2017; Eysenbach et al., 2019; Sharma et al., 2020b; Hansen et al., 2020).

34



Algorithm 3.1: Latent Goal Reaching Metric: LGR(s)

Input: Target states s1:N , trained πθ(a|s, z), qλ(z|s)
Output: Average distance d̄ to goal states
for i← 1 to N do

Embed target state into a goal: zi ← E
[
qλ(·|si)

]
Run π(·|·, zi) for T time steps, observe final state siT
Compute d(si, siT ) (e.g., squared distance)

end
Report the average over N episodes: d̄ =

∑
i d(s

i, siT )/N

By contrast, goal-conditioned RL has a clear metric: define a sample of goals and evaluate
average goal-reaching performance. Since we demonstrated how MI-based RL is closely related
to GCRL, we propose Latent Goal Reaching (LGR) as a new metric for evaluating MI-based al-
gorithms such as DIAYN or DADS. The procedure is described in Algorithm 3.1. It allows us to
evaluate MI-based RL as just another goal-reaching problem: we measure how accurately the goal-
conditioned policy can reach the given goal states of interest. This metric measures the quality of
both the discriminator (i.e., goal representation) and the goal-conditioned policy. We note the range
of this metric is not dependent on the choice of distribution family of q(·), allowing comparison
across different types of q(z|s).

The value of LGR(s) metric depends on the choice of target states. In locomotion control
tasks (Brockman et al., 2016), we would often want to discover and learn behaviors where the robot
can walk or move (Eysenbach et al., 2019; Sharma et al., 2020b). To evaluate this, one can generate
diverse target states of moving in different directions and at different velocities from expert policies.
In such cases we can compute the distance d(si, siT ) between target and achieved states with respect
to velocity dimensions (e.g., velocity in x and y axis). We call this variant of the LGR metric as
LGRv(s). Details of target state generation used in our experiments are given in Appendix B.3.

We also consider the LGR(z) metric which measures the goal reaching performance in the
latent goal space. For discrete z, this simply can be the top-1 accuracy of the discriminator
q(z|s) with respect to the true goal z ∼ p(z). For continuous z, LGR(z) is the squared distance
∥z−argmax q(z|s)∥2 between the goal and the mode of the discriminator argmax q(z|s). We note
that this metric agrees the state distance metric used in Laplacian embedding (Wu et al., 2018), i.e.,
∥ϕ(s) − ϕ(h−1(z))∥, with a state embedding ϕ(s) := argmaxz q(z|s), where h−1(z) is defined
to be an arbitrary state s that is associated with latent z, which is in our case the marginal state
from the latent-conditioned policy πθ. A difference is that Wu et al. (2018) use contrastive learning
whereas VGCRL maximizes likelihood to learn the representation q.
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Method HalfCheetah Ant Humanoid

|G| F LGRv(s) LGR(z) F LGRv(s) LGR(z) F LGRv(s) LGR(z)

10 DIAYN 1.608 0.800 0.963 -0.835 0.529 0.806 1.261 0.523 0.922

DIAYN + P-HER 1.372 1.424 0.934 -0.049 0.486 0.889 1.856 0.312 0.953

20 DIAYN 1.732 1.125 0.920 -1.308 0.610 0.763 0.713 0.315 0.768

DIAYN + P-HER 1.852 1.214 0.891 -1.288 0.515 0.823 2.251 0.183 0.922

50 DIAYN 1.475 0.673 0.827 -3.812 0.402 0.523 -1.158 0.268 0.549

DIAYN + P-HER 1.699 0.704 0.834 -2.171 0.637 0.750 2.848 0.545 0.891

200 DIAYN 2.854 0.698 0.801 -8.450 0.396 0.113 -4.396 0.208 0.337

DIAYN + P-HER 3.357 0.814 0.844 -7.047 0.555 0.263 3.448 0.866 0.766

1000 DIAYN -8.286 1.156 0.176 -16.795 0.434 0.005 -8.914 0.325 0.101

DIAYN + P-HER -4.424 0.510 0.361 -10.941 0.322 0.028 3.395 1.569 0.762

Table 3.3: Evaluation of Latent Goal-Reaching Metric on MuJoCo control suites, after a total of
10M environment steps of training. F is the (average) empowerment reward,F = Ez[log qλ(z|s)−
p(z)]. LGRv(s) is the squared error in observation space (the lower, the better) with respect to ve-
locity dimensions between the marginal state and the target state, and LGR(z) denotes the accuracy
of top-1 classification of the discriminator qλ(z|s) (the higher, the better, max 1.0).

3.6.3 Experiments: Posterior HER and Latent Goal Reaching
In this section, we evaluate the performance of several variants of VGCRL on standard locomotion
tasks (Brockman et al., 2016). We consider both a discrete latent space, analogous to that used
by DIAYN (Eysenbach et al., 2019), and a continuous latent space, where the variational poste-
rior qλ(z|s) chosen to be a Gaussian posterior (VGCRL-Gaussian), with either learnable or fixed
variances, or Gaussian Mixtures (VGCRL-GMM). To evaluate the performance, we report the fol-
lowing metrics: (1) the empowerment objective F = Ez[log q(z|s)− p(z)], (2) LGR(z): the latent
goal reaching metric, and (3) LGRv(s): the latent goal reaching metric with respect to velocity
dimensions (Section 3.6.2).

We first observe that P-HER can accelerate and improve learning (Figure 3.4, Tables 3.3 and 3.4).
Such improvements are significant in high-dimensional goal spaces (e.g., |G| = 200) and more
difficult control tasks such as Ant or Humanoid with high dimensionalities, in which both the dis-
criminator and the latent-conditioned policy are difficult to learn. Because an optimization of goal-
conditioned policy (Eq. 3.4) is more difficult than discriminators (Eq. 3.3), relabeling of goal can
greatly accelerate RL, which also results in better discriminability. As shown in Tables 3.4 and B.1,
P-HER can improve not only the optimization objective but also other metrics such as discrimina-
tor’s accuracy and goal reaching performance across different design choices and environments.
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qλ(z|s) P-HER? SN?
HalfCheetah Ant Humanoid

F LGRv(s) LGR(z) F LGRv(s) LGR(z) F LGRv(s) LGR(z)

|G
|=

5

N (µ(s),fixed2)
- - 0.932 1.005 0.159 -0.590 1.005 0.382 0.239 1.461 0.202
✔ - -0.142 1.273 0.360 0.140 2.449 0.300 0.020 1.452 0.244

N (µ(s),Σ(s)2)

- - -0.731 1.251 0.172 -18.490 0.306 0.427 -3.597 0.538 0.147
✔ - -2.161 1.132 0.289 -0.108 2.423 0.303 1.207 0.206 0.074
- ✔ 5.856 0.604 0.019 2.548 0.925 0.091 4.509 0.460 0.040
✔ ✔ 5.803 1.352 0.017 4.349 0.463 0.039 5.203 0.203 0.026

GMM (K = 8)
- - -2.646 0.766 0.325 -16.196 0.367 0.486 -3.576 0.231 0.198
✔ - -3.091 1.065 0.404 -2.874 2.794 0.325 3.526 0.581 0.043

Table 3.4: Comparison of continuous variants of VGCRL, where the dimension of the goal space
is |G| = 5. SN denotes Spectral Normliazation (Section 3.5.3). LGR(z) is the goal reaching
performance in the latent space (the lower, the better). A full table containing more comprehensive
comparison and corresponding plots can be found in Appendix B.5 (Table B.1).

Moreover, when Spectral Normalization (Section 3.5.3) is applied, we observe a significant im-
provement in terms of the learning progress and evaluation metrics (Figure 3.4, Table 3.4). As
shown in Figure 3.4, while there are some progress with vanilla VGCRL-Gaussian (or VGCRL-
GMM), the optimization objective F as well as evaluation metrics do not improve as much as the
one with SN, despite the bigger expressivity due to no constraint on qλ(z|s). We can also see that
with SN (and P-HER as well), the distance between achieved and desired goal is much lower. More
experimental results and discussions can be found in Appendix B.5.

3.7 Conclusion
Our variational GCRL (VGCRL) framework unifies unsupervised skill learning methods based on
variational empowerment (Eysenbach et al., 2019; Gregor et al., 2017; Sharma et al., 2020b) with
goal-conditioned RL (GCRL) methods, allowing us to transfer techniques and insights across both
types of approaches. Viewing GCRL as variational empowerment, we derive simple extensions
of goal-based methods that exhibit some representation learning capability of variational methods,
e.g., disentangle underlying factors of variations and automatically determine controllable dimen-
sions, while keeping the learning stability of GCRL. Viewing variational empowerment as GCRL,
we can transfer popular optimization techniques such as relabeling from GCRL to variational em-
powerment algorithms, and propose latent goal-reaching (LGR) as a more objective, performance-
based metric for evaluating the quality of skill (latent goal) discovery. We hope that these insights
can lay the ground for further developments of more capable and performant algorithms for unsu-
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pervised reinforcement learning in future work.
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CHAPTER 4

Unsupervised Object Interaction Learning with
Counterfactual Dynamics Models

We present COIL (Counterfactual Object Interaction Learning), a novel way of learning skills of
object interactions on entity-centric environments. The goal is to learn primitive behaviors that can
induce interactions without external reward or any supervision. Existing skill discovery methods
are limited to locomotion, simple navigation tasks, or single-object manipulation tasks, mostly not
inducing interaction between objects. Unlike a monolithic representation usually used in prior skill
learning methods, we propose to use a structured goal representation that can query and scope which
objects to interact with, which can serve as a basis for solving more complex downstream tasks. We
design a novel counterfactual intrinsic reward through the use of either a forward model or successor
features that can learn an interaction skill between a pair of objects given as a goal. Through
experiments on continuous control environments such as Magnetic Block and 2.5-D Stacking Box,
we demonstrate that an agent can learn object interaction behaviors (e.g., attaching or stacking one
block to another) without any external rewards or domain-specific knowledge.

4.1 Introduction

Reinforcement learning (RL) has achieved remarkable progress at many application domains such
as playing games (Mnih et al., 2013; Vinyals et al., 2019), and robotics control (Andrychowicz et al.,
2020), etc. Very often RL agents are trained to specific tasks, with access to task-specific extrinsic
rewards. A major drawback of task-specific training is that a proper reward function needs to be
given, designed, and tuned so as to achieve desired behaviors, which can be often time-consuming
and limits scalability in practice. It is important to be able to solve the task with a very sparse reward
signal upon completion/failure of the task, or even without any external task rewards. Unsupervised
RL such as task-agnostic exploration or pre-training of skills, aiming at learning interesting or useful
behaviors without the use of task rewards or offline data, can provide better initialization or useful
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macro-actions (skills or options) for building a hierarchical agent to solve more complex and difficult
tasks (Eysenbach et al., 2019; Zhang et al., 2021). Unsupervised learning often enables faster
learning and achieves better generalization performance when multiple tasks are given after the
skill acquiral or pre-training phase.

Despite a number of successes in unsupervised skill discovery (Eysenbach et al., 2019; Sharma
et al., 2020b; Park et al., 2022) or task-agnostic exploration based on state-entropy maximization or
diversity (Pathak et al., 2017; Burda et al., 2019b), relatively only a few attempts have been made on
environments and tasks with multiple entities (e.g. objects in robotics manipulation). In the context
of robotics manipulation or (discrete) entity-centric environments other than locomotion or maze
navigation environments, exploration can be quite challenging because of this nature of multiple
entities. One limitation of novelty-seeking exploration methods in the reward-free context is that
exploration would easily converge to a low-hanging fruit behavior where exploration mostly focuses
on one particular entity. For instance, in robotics manipulation environments, diversification or
novelty seeking of the entire state can be easily dominated by that of the embodied agent itself
(i.e., proprioceptive states) or some easy-to-control objects only, as observed and reported in (Zhao
et al., 2021; Gu et al., 2021; Park et al., 2022). More interesting primitive behaviors would be
interactions between many objects, for more realistic and challenging multi-object tasks such as
block stacking (Lee et al., 2021; Sancaktar et al., 2022) or furniture assembly (Lee et al., 2019b;
Ghasemipour et al., 2022). Notably, some recent works including (Sancaktar et al., 2022; Cho et al.,
2022) present reward-free exploration and skill learning in multi-object manipulation tasks.

In this work, we focus on learning a set of primitive skills that enable interaction between dif-
ferent objects in a task-agnostic, unsupervised fashion. Roughly speaking, interaction between two
objects can be described as an action or event that occurs when two objects have a (mutual) effect
on each other. Our work leverages an inductive bias that an interaction between objects learned
in a task-agnostic manner can be a useful event and hence a useful primitive behavior for solving
downstream tasks. Such object-object interactions (as well as agent-object interactions) are usually
sparse and difficult to reach with naive exploration, but at the same time can be useful bottleneck
states an agent would want to explore and visit often to achieve bigger tasks. In the kitchen, for
instance, an interaction between a knife and various ingredients by slicing them with a knife can
be one of the basic steps necessary for cooking; when assembling smaller building blocks to build
a complex object like furniture, car, or electronic device, connecting matching pieces to form a
composite body would be another type of indispensable interaction. As such, it will be important
to learn skills or primitive behaviors that would induce object-object interactions, in the promise
that a hierarchical control that acts upon the interaction skills (Zhang et al., 2021) or chaining of
skills in sequence (Bagaria & Konidaris, 2020) should solve complex tasks much faster than flat
RL agents.
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We study how to learn object interaction skills in a very challenging, online, reward-free setting
while minimizing the use of domain and task-specific knowledge or task-agnostic offline data, which
can be difficult to obtain. More specifically, we learn a goal-conditioned policy where a goal denotes
an interaction of which objects is to be made. To enable this by learning a reward function (Zheng
et al., 2020), we design a novel intrinsic reward that is computed by counterfactual reasoning on
the dynamics model (forward model and successor features)as will be explained in Section 4.2.2,
which we call Counterfactual Object Interaction Learning (COIL).

The concept of counterfactual reasoning, i.e., “what if...?” — predicting or inferring the outcome
if something had happened differently (Mesnard et al., 2020; Gajcin & Dusparic, 2022) — naturally
aligns with an intuitive interpretation of interaction: interaction is when an object’s future state
would have been different if it were not for the presence of the other object. In the experiments, we
show that the intrinsic reward derived by counterfactual reasoning on object states can efficiently
induce the interaction of objects and enable an RL agent to learn such interaction behaviors without
extrinsic rewards.

Our contribution can be summarized as follows:

• We study a setting of representing goals in terms of entities and objects to interact with, in
the context of unsupervised skill-based and goal-conditioned RL.

• We present a novel intrinsic reward algorithm COIL (Counterfactual Object Interaction
Learning) in a reward-free unsupervised exploration setting, which uses counterfactual rea-
soning on forward model or successor features. We show COIL can learn skills that make
the goal objects interact with each other.

• We show that such an entity-centric interaction skill is generalizable to unseen, more object
settings.

4.2 Approach

4.2.1 Preliminaries and Notations

Throughout the paper, we consider the task as an MDPM = (S,A,P ,R, γ), where S is a state
space, A is an action space, P is a transition probability, R is a (extrinsic) task reward function,
and 0 ≤ γ < 1 is a discount factor. Our goal is task-agnostic, unsupervised skill learning with no
extrinsic rewards. We assume that the state space S can be explicitly factorized as the Cartesian
product (Sobject)

N × Sagent where N is the number of objects, Sobject is the object state space, and
Sagent is the agent state space. We also assume the joint object space is permutation-invariant, i.e.,
{o1, · · · , oN} is a set (where oi ∈ Sobject). Such a structural representation is common in robotics
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Figure 4.1: (i) Suppose an interaction was made, then a counterfactual intervention on object B
(e.g., putting it aside or change the object state randomly) would have made the future state of object
A different. (ii) If no interaction was made, object A would remain in the same state regardless of
the counterfactual intervention. (iii) We measure the discrepancy of object A with and without the
counterfactual intervention, which becomes the intrinsic reward for interaction.

control (Keramati et al., 2018; Zhao et al., 2021; Sancaktar et al., 2022) and is a mild assumption.
However, our method is not necessarily limited to state-based control only, as one could combine
with existing entity-centric representation learning methods from pixel observations (Watters et al.,
2017; Greff et al., 2019; Xu et al., 2019; Veerapaneni et al., 2020; Locatello et al., 2020).

Goal representation. Skills are usually modeled in the form of goal-conditioned policies,
π(a|s, g), where g ∈ G represents a goal. Common choices for goal g include full state obser-
vation, a handcrafted goal with domain knowledge, or latent variables. Our particular choice is a
pair of objects, namely A and B (among the N objects). A semantic meaning for this goal repre-
sentation would be that two objects A and B should have an interaction (or some mutual effects)
as a consequence of agent’s actions. In our settings, for the sake of simplicity, we assume the refer-
ence to objects are simply categorical indices (or pointers), i.e., A,B ∈ [N ] = {0, 1, · · · , N − 1},
respectively. However, more in general (e.g., for image observations), the goal representation for
target objects can be replaced with a continuous vector to represent a reference to an arbitrary
object in the current state, e.g., g = (oA, oB) where oA, oB ∈ Sobject, which we leave as a future
work.

4.2.2 Learning Interaction Skills with Counterfactual Forward Model
(COIL-Forward)

How can we learn interaction skills for two given objects, and how can we learn a reward function
that would incentivize interactions between two objects? Our goal is to simultaneously learn such
a reward function and object-object interaction skills in a reward-free setting.

Our main idea is to use a counterfactual reasoning; i.e., predict what would have happened
instead if other objects involved in an interaction were not there or were in a different state. We
argue that this form of inductive bias can provide us with a useful learning signal for interaction
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learning without relying on an external task reward.
Given a trajectory of observations as object states, we want to identify whether an interaction

between two objects happened or not. Roughly speaking, we can say a (physical) interaction occurs
between two objectsA andB if and only if there exists a counterfactual state forB that would change
the future state of A (and vice versa). (Case I) When an interaction between A and B happened,
these two objects would have affected each other’s state. In other words, the future state of an
object would have been different without a specific configuration of the other object, provided that
an interaction happened. (Case II) On the contrary, when there was no interaction between them,
the future state of an object would remain almost the same or not dramatically different regardless
of the counterpart object. A motivating example is depicted in Figure 4.1.

We can formalize this idea as follows. Consider a MDP transition observed by an agent,
(st, at, st+1) where st = {oAt , oBt , · · · } and st+1 = {oAt+1, o

B
t+1, · · · } (without the loss of gener-

ality) for a pair of objects A and B given as a goal g. We would want to tell whether an interaction
was made in this transition.

(Case I) Suppose an interaction between objectA andB happened, whereA got affected byB in
the interaction (without the loss of generality). Then, if we made an counterfactual intervention on
the object B, i.e., changing the object state oBt randomly with õBt to obtain an intervened state s̃t =
{oAt , õBt , · · · }, the same action at applied on s̃t would have resulted in a different (counterfactual)
next state õAt+1 of objectA than its (factual) next state oAt+1. In other words, the discrepancy between
the factual next state oAt+1 and the counterfactual next state õAt+1 will be high.

(Case II) On the other hand, when there was no interaction happened between the two in this
transition, we can expect that oAt+1 would remain the same regardless of the intervention õB on
B, i.e., it would be that õAt+1 = oAt+1. To put together, the difference between oAt+1 and õAt+1 (e.g.,
∥oAt+1 − õAt+1∥2) can quantize the degree of an interaction between objects A and B.

However, the counterfactual next state s̃t+1 is not observable by an agent. So we can instead
predict the object A’s next state by learning a forward dynamics model:

ôAt+1 = fforward(o
A
t , õ

B
t , at, s

t \ {oAt , oBt }) (4.1)

This gives us a counterfactual interaction reward function: computationally, we first make a random
intervention õBt on object B, and plug it to the forward model to predict the next state õAt+1 of ob-
jectA. Intervention on the objectB can be implemented in many ways, such as random perturbation
of the state vector by adding Gaussian noises, but an easy yet effective way to yield in-distribution
randomization is to randomly sample an object state from the replay buffer.

Finally, we define the counterfactual interaction reward rCOIL-Forward(st, at, st+1) = ∥oAt+1 −
ôAt+1∥2, which can be maximized by any underlying RL method (e.g., SAC or DQN) with a si-
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multaneous learning of the forward model and the goal-conditioned policy π. We call this resulting
algorithm COIL (Counterfactual Object Interaction Learning) and specifically this variant of using
forward model COIL-Forward.

4.2.3 Learning Interaction Skills with Counterfactual Successor Features
(COIL-SF)

In this section, we will present an improvement to COIL-Forward, called COIL-SF. One down-
side of the COIL-Forward (Section 4.2.2) is that it assumes the counterfactual intervention would
have an immediate, easily distinguishable change within a single-step transition. In many realistic
environments, the effect and consequence of interaction is delayed to be discernible enough; the
change actually exists in the true world state but an observer would not be able to recognize the
subtle difference until a few time step has elapsed. Therefore, it is practically important to take
long-term futures into consideration so as to correctly evaluate the consequence of counterfactual
interventions.

One natural way to deal with this problem would be to learn a multi-step, recurrent forward
dynamics model (Oh et al., 2015). However, learning such a forward model can be challenging due
to high uncertainty and the quick accumulation of prediction errors over a long horizon (Moerland
et al., 2020; Lutter et al., 2021). Instead of learning a multi-step forward model, we propose to use
the successor features (SF) (Dayan, 1993; Barreto et al., 2016) to incorporate long-term futures that
can still derive a reward signal for interaction learning.

A successor feature Ψπ(s, a) of a state s with respect to a policy π is an expected discounted
sum of the feature of future states to be visited when starting from the state s and the action a, and
following the policy π thereafter:

Ψπ(s, a) = Eπ

[
∞∑
t=0

γtΦ(st)

∣∣∣∣ s0 = s, a0 = a

]
. (4.2)

where Φ(st) is called the cumulant, which is the feature of future states to accumulate. Successor
features can be seen as an instance of generalized value functions (GVF) (Sutton et al., 2011) that
predicts the future and summarize what will happen in the future for a state s in some specific form,
which can be easier than directly predicting the next states accurately. Successor features can be
learned using simple TD learning methods like Q-learning (Dayan, 1993).

To derive a reward function that tells whether an interaction is made or not, let’s again consider
two objects A and B given as a goal g, and focus on the future of object A when a counterfactual
intervention is made on the object B. For this, we consider an entity-centric successor feature with
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an object cumulant function ϕ : Sobject → Rd for the target object oA in the state observation s :

Ψπ
A(s, a) = Ψπ

A({oA, oB, · · · }, a) = Eπ

[
∞∑
t=0

γtϕ(oA)

∣∣∣∣ s0 = s, a0 = a

]
(4.3)

for a query state s = {oA, oB, · · · }. The SF Ψπ
A(s, a) ∈ Rd summarizes the future state of object

A with respect to the policy π. In general, one could learn the object representation ϕ(·) with
some auxiliary objectives (e.g., in pixel-based control), use some prior domain knowledge, or use
a fixed random function as in (Zhang et al., 2019), but in a state-based control one can simply set
ϕ(oA) = oA without an extra need to learn the cumulant feature function.

The reward function can be derived as in COIL-Forward: let’s suppose we make a counterfactual
intervention on object B at timestep t to get the intervened object state õB from oB. Denoting
s̃ = {oA, õB, · · · }, the reward function for interaction can be written as

rCOIL-SF(s, a, s
′) = ∥Ψπ

A(s, a)−Ψπ
A(s̃, a)∥2. (4.4)

We call this variant of using successor features for learning interactions COIL-SF. This reward
also can be explained as follows: (Case II) When there was no interaction happened between objects
A and B, the entity-centric successor features Ψπ

A will be the same regardless of the intervention,
in which case rCOIL-SF would be 0. Note that, in practice, rewards for non-interaction transitions
might be slightly bigger than 0 due to the epistemic uncertainty of the model. (Case I) On the other
hand, if the future state of the object A would have changed much due to the intervention on object
B, the SF values Ψπ

A(s, a) and Ψπ
A(s̃, a) will be different, in which rCOIL-SF will evaluate to a higher

scalar value. Section 4.4.5 presents an analysis of the learned reward function for different types of
transitions (e.g., a high reward is indeed given when interaction happens). Learning of COIL-SF
also involves a simultaneous optimization of SF and policy;

4.3 Related Work

Object-Oriented RL. Object-oriented RL (Diuk et al., 2008) aims at improving data efficiency
and generalization by leveraging representation of multiple objects and their relations. C-SWM
(Kipf et al., 2019) proposes a GNN-based network to learn the world model of the object-based task
using contrastive learning. Compared to models based on pixel reconstruction, C-SWM provides a
rich representation of objects. CEE-US (Sancaktar et al., 2022) utilizes the epistemic uncertainty
of structured world model (Kipf et al., 2019) as an intrinsic reward and uses it to gather data for
the world model training. The world model is then used for planning to solve downstream tasks.
The behavior that emerges during world model training is mostly object manipulation rather than
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interactions between objects and their algorithm can learn object-object interaction only when an
extrinsic reward is provided.

Exploration. Cho et al. (2022) proposed a mutual-information (MI) based exploration algorithm
to induce interactions between the agent and an object, which combines the MUSIC objective (Zhao
et al., 2021), i.e., MI between agent and object, and the diversity term similar to DADS (Sharma
et al., 2020b) for the object’s future state. Seitzer et al. (2021) used object-centric causal action-
influence as an intrinsic reward. However, interactions between different objects are not considered,
and the skills are limited to simple control of a single target object specified by the task. Very
recently, Sancaktar et al. (2022) proposed curiosity-based exploration algorithm that learns a GNN-
based world model, with the intrinsic reward being the epistemic uncertainty through ensemble
disagreement (Pathak et al., 2019). This work is the closest to our work, but despite GNN’s ability
to generalize to multiple objects during planning, their monolithic skill representation is limited to
be useful for hierarchical learning or planning.

Several papers have proposed exploration methods using successor features (SF). Zhang et al.
(2019) use the difference of SF between consecutive states as an intrinsic reward to efficiently ex-
plore bottleneck states. Machado et al. (2020) propose an inverse of the L1-norm of the SF as a
variant of count-based exploration. Hoang et al. (2021) utilize SF to define the distance function
between states and learn a goal-conditioned policy to drive exploration. However, to the best of our
knowledge, SF has not been used in object-centric environments and has not been combined with
counterfactual reasoning.

Counterfactual Reasoning in RL. Buesing et al. (2018) use a structural causal model in POMDP,
which generates counterfactual trajectories for background planning, leading to a better sample
efficiency and smaller bias of the prediction in guided policy search. Sharma & Kroemer (2020)
utilize an inductive bias that, in similar scenes, if similar action has been taken it would give similar
results. They utilize contrastive learning in object-centric tasks to acquire an object relation model,
which is subsequently utilized in real-world precondition learning tasks. Counterfactual Credit
Assignment (Mesnard et al., 2020) utilizes counterfactual reasoning on action to achieve unbiased,
low variance credit assignment. Most approaches do counterfactual inference on the agent’s action,
i.e., concerns what would have happened if the agent made a different decision (i.e., action or goal);
our approach differs in the sense that our counterfactual intervention is made on the object states
instead of the agent’s action.
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4.4 Experiments

4.4.1 Environments

In the experiments, we test our proposed approach on multi-object continuous control environ-
ments: a toy environment (StackingBox) and more challenging environment (Magnetic Blocks).

Stacking Box. Stacking Box is a 2.5-D continuous control environment in which a cursor agent
and multiple box-shaped objects of the same size are randomly spread throughout a fixed arena.
The agent can move in any direction within the xy plane and can grab an object that overlaps with
the agent. If the agent moves towards an object while holding another object, the object being held
and moved will be placed on top of any other existing object. We assume that the height of each
object is quantized to integer values (such as 0, 1, 2, . . .). The process of stacking one object onto
another occurs instantly in a single MDP transition.

Magnetic Blocks. Magnetic Blocks is a continuous control environment in which an embodied
cursor agent can interact with square-shaped block objects. The agent has a continuous action space
that includes movement (translation), rotation, and grabbing through control of the joint’s torque.
The agent can move freely within the arena and can grab an adjacent object by slightly lifting up and
moving around the object, or rotating it along with the agent. When the agent moves a held object
close enough to another object such that the two objects become parallel, they will be connected by
magnetic force. If the edges are not parallel, one object will push the other. A distinctive interaction
in this environment is observed when two objects become connected through magnetic forces and
then move together.

4.4.2 Implementation Details

The full network architecture for the policy and the model is shown in Figure ??. Taking the fac-
torized state representation into consideration, we use a network with scaled dot-product attention
architecture (Vaswani et al., 2017) to transform object states into desired outputs (actor, critic, and
forward/successor models). We note that the shared parameters for key and value matrices on the
N − 2 objects other than the goal objects allows the network to be permutation-invariant over their
ordering, and that such an architecture allows generalization to a different number of objects(see
Section 4.4.6).

COIL alternatingly updates the policy (actor and critic) and the model (forward model or succes-
sor features); for RL algorithm, we use SAC (Haarnoja et al., 2018) although COIL can be combined
with any RL algorithms.
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Figure 4.2: Progress of the success rate on the Stacking Box and the Magnetic Blocks environment.
Runs are averaged over 5 random seeds. See Section 4.4.3 for analyses and interpretation of the
result.

4.4.3 Performance of Learning Object Interaction Skills: Quantitative Re-
sults

We first study how well the proposed approach (COIL) can learn object interaction skills in a reward-
free setting, with a comparison to strong exploration methods. At the beginning of every episode,
a goal g = (A,B) is chosen randomly to specify which objects should interact.

Baselines. (1) Sparse-GT: A SAC agent trained to maximize the sparse ground-truth interaction
reward, where the per-step reward is 1 if a correct interaction between the target objects is made
(e.g., stacking or magnetic connection) or 0 otherwise, which is the same as the success metric.
(2) Forward-Curiosity: this maximizes the prediction error of the forward model for object A as
an intrinsic reward: ∥oAt+1 − fforward(st, at, gt)∥2. (3) SID (Zhang et al., 2019): this maximizes the
“successor feature control” reward: ∥Ψ(oAt+1) − Ψ(oAt )∥2. (4) RND (Burda et al., 2019b): this
maximizes the prediction error of a randomly initialized network’s feature representation of the
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target object’s state as an intrinsic reward: ∥frandom(o
A
t+1)− f(oAt+1)∥2.

For object-centric tasks, interactions can lead to significant changes in the object’s state, making
it desirable to employ curiosity-based exploration methods as baselines. RND is a state-of-the-
art exploration method that seeks novel states, and Forward-Curiosity and SID are curiosity-based
exploration techniques that use the Forward Model and Successor Feature, respectively.

Quantitative Results. The success rate of the algorithms is displayed in Figure 4.2, based on the
evaluation episodes. Successful outcome is defined as the stacking of one object on the other in
Stacking Box and the connection of the two selected goal blocks in Magnetic Blocks.

Stacking Box. COIL agents converge to a success rate of approximately 1.0, while curiosity-
based exploration methods show limitations with upper bounds in their performance. One thing to
note is that COIL-Forward outperforms COIL-SF in Stacking Box with 4 objects. In the Stacking
Box environment, interactions occur instantaneously, enabling the 1-step forward model of COIL-
Forward capture the occurrence of the interaction. This is supported by an analysis of the error
of the dynamics model. (see Figure C.4). Transitions involving interactions exhibit a significantly
higher ratio of the counterfactual prediction error (i.e., the prediction error when counterfactual
intervention is made) to epistemic uncertainty, compared to transitions without events. On the
other hand, Forward-Curiosity, SID, and RND are limited to manipulating individual objects without
learning interaction stably (see Figure C.2).

Magnetic Blocks. COIL-SF is the only algorithm that successfully learns interaction skills be-
tween objects. Despite leveraging domain knowledge regarding the occurrence of interactions,
Sparse-GT fails to learn even the basic task of grabbing an object (see Figure C.3). Forward-
Curiosity, SID, and RND can learn how to grab an object but interaction between the objects barely
happen. This suggests that learning to induce interactions between objects in Magnetic Blocks is a
challenging exploration problem, unlike the Stacking Box environment.

We find COIL-Forward is not effective enough to learn interactions in Magnetic Blocks, which
accords with the motivation discussed in Section 4.2.3. In this environment, interactions make only
a subtle difference in the object’s state during a single-step transition and can be better discerned
only in longer-term future; we verify this by analyzing the dynamics model errors (see Figure C.5).
When interactions occur, the counterfacutal prediction error is not significantly higher than the epis-
temic uncertainty in the forward model (in COIL-Forward). However, the counterfactual prediction
error of the successor feature (in COIL-SF), is significantly higher than the epistemic uncertainty
despite the counterfactual intervention, so the interaction reward could lead to learning interactions.
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4.4.4 Qualitative Results

In Stacking Box, a typical interaction behavior for g = (A,B) that COIL learns is to stack object
A on object B. Note that A should be on top of B (i.e., bigger z coordinate) to say interaction
happened. If the B were on top of A, changing or perturbing the state of B would not affect the
A’s state. An interesting finding was that the agent repeatedly stacked and unstacked the boxes,
resulting in multiple interactions within a single episode.

In Magnetic Blocks, the interaction behavior is to grab object A and connect it to object B by
making some movements and rotations as needed. Note that the agent needs to rotate objects accu-
rately to connect the blocks, which makes the environment require some good exploration strategies
to successfully learn object-object interactions. We present snapshots of COIL-SF’s typical behav-
iors in Magnetic Blocks in Appendix (Figure C.1). Typically, the agent grabs the object A and
approaches the object B to make these two objects connected to each other, and pushing them
further to move the compound around.

4.4.5 Analysis of COIL-SF Reward

To analyze what reward function COIL-SF has learned, we labeled each state with the following 7
categories on the Magnetic Blocks environment with 4 objects.

• Grab-A: the agent is grabbing the object A.
• Grab-B: the agent is grabbing the object B.
• Connect-AB: the objects A and B correctly connected. Note that when A and B are con-

nected, the object A will be highly likely to be be affected by the object B, i.e., interaction
occurs.

• Connect-AB-Only: a subset of Connect-AB states, excluding states where objects other than
A and B are connected as well.

• Connect-AX: the object A is connected to a wrong object (X), i.e., anything but to B. This
is a falsy interaction that does not conform to the goal given to the agent.

• Connect-BX: the object B is connected to a wrong object (X), i.e., anything but to A. This
is also a falsy interaction that does not conform to the goal given to the agent.

• No-Event: all other states not included in the above 6 categories (e.g., the agent wanders
around and does nothing)

Table 4.1 shows an average reward given to states with each label, for a successful instance
of COIL-SF. Among the 7 labels, Connect-AB-Only receives the highest rewards. Connect-AB
receives a slightly lower reward than Connect-AB-Only. Considering that Connect-AX or Connect-
BX receive small rewards, we assume that a small portion of Connect-AB states are the states where
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State Labels Average Reward Relative Ratio

No-Event 0.7 0.040

Grab-A 14.21 0.803

Grab-B 10.7 0.604

Connect-AB 17.3 0.977

Connect-AB-Only 17.7 1.0
Connect-AX 0.51 0.029

Connect-BX 1.8 0.101

Table 4.1: Average COIL-SF reward given to the 7 types of states on the Magnetic Blocks envi-
ronment. COIL-SF gives the highest reward to Connect-AB-Only.
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Figure 4.3: Progress of the success rate when fine-tuning from a COIL-SF agent pre-trained on
the 4 objects (object size 100%) setting in Magnetic Blocks environment. Runs are averaged over
3 random seeds. See Section 4.4.6.

objects other than A and B are also connected, and those states have small rewards. Grab-A and
Grab-B receive high rewards compared to Connect-AX, Connect-BX, or No-Event. This may be
due to Grab-A having an intersection with Connect-AB-Only, which is a set of states where objects
A and B are connected and the agent is grabbing the object A.

4.4.6 Generalization to More/Unseen objects

We evaluate the object interaction skills learned by COIL-SF, testing whether they can be applied
to environments with more and unseen objects. First, the policy and successor feature networks are
pre-trained on Magnetic Blocks with 4 objects for 10 million steps and perform fine-tuning for 1
million additional steps. For each setup, the performance of COIL-SF fine-tuned from pre-trained
networks is compared to that of COIL-SF trained from scratch for (10+1) million steps, ensuring a
fair comparison. We tested the generalization ability on 4 different setups with varying object sizes
and numbers: (a) 4 objects, 33% object size, (b) 4 objects, 66% object size, (c) 6 objects, 100%
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object size, and (d) 6 objects, 66% object size.

Unseen objects: (a), (b) To test the generalization ability of COIL-SF on unseen objects, we
varied the scale (size) of the objects by 33% or 66%. Figure 4.3 (a-b) show the performance of
COIL-SF fine-tuned on pre-trained networks. When tested on the 66% scale, COIL-SF gets a high
success rate even without any training. When tested on the 33% scale, the initial performance of
COIL-SF is poor, but the performance improves rapidly within 1 million steps of further training
while learning COIL-SF from the scratch fails.

More and Unseen objects: (c), (d) To test the generalization ability of COIL-SF on a different
number of objects, we conducted experiments with more objects and varying scales (66%, 100%).
Figure 4.3 (c-d) show the performance of COIL-SF. Surprisingly COIL-SF fined-tuned on pre-
trained networks performs better even in more and unseen objects settings indicating that skills
learned from COIL-SF can be used as task-agnostic skills.

Overall, the successful learning of task-agnostic skills with COIL-SF has implications for future
research, as these skills could potentially be incorporated into hierarchical reinforcement learning
for more complex tasks.

4.5 Conclusion

In this paper, we introduce COIL (Counterfactual Object Interaction Learning), a novel approach
to learning object-object interaction skills using intrinsic rewards, and the concept of counterfac-
tual dynamics. Our results demonstrate that COIL can effectively learn to interact with objects
in challenging continuous, object-centric environments outperforming all the baselines including
Sparse-GT, which incorporates task-specific knowledge. We also showed a generalization ability
of interaction skills learned by COIL.

Given the complexity and diversity of real-world tasks such as furniture assembly or complex
robotics object manipulation, we believe that unsupervised learning of object-object interactions
is important, and COIL presents a significant step towards this challenging goal. We note that
COIL has some limitations that the method currently relies on a factorized state representation, and
do not consider diverse modes of interaction skills. Considering that the real-world tasks contain
multiple modes of interaction and complex state representation, combining diverse skill learning
(Eysenbach et al., 2019; Sharma et al., 2020b; Park et al., 2022) and object-centric representation
learning methods (Locatello et al., 2020) will be an interesting future work.
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CHAPTER 5

Conclusion

5.1 Summary of Contributions

The main thesis of this dissertation is that learning representations can facilitate more efficient
exploration and goal-conditioned reinforcement learning, including skill discovery. In this disser-
tation, I focused on two main aspects of representation learning: state abstraction and temporal
abstraction for learning skills and goal representations.

Chapter 2 explores an instance of state representation learning to extract task-relevant infor-
mation, investigating whether discovering controllable elements through the idea of contingency-
awareness can lead to efficient exploration. I presented the attentive dynamics model (ADM) that
can be trained using the agent’s online experience under a very simple self-supervised training
objective without external supervision, and can infer the controllable regions as a proxy to task-
relevant state information. As empirically demonstrated, this can lead to strong exploration per-
formance (state-of-the-art at the time) on difficult hard-exploration Atari games featuring a sparse
reward.

Chapter 3 and Chapter 4 focused on learning goal-conditioned policies or skills as a way of
temporal abstraction: how to learn a goal representation that can assign a meaningful behavior, and
how to learn a corresponding goal-conditioned policy in an unsupervised fashion, either by learning
either a reward function itself or by using some inductive bias to derive intrinsic rewards. Chapter 3
presents a unified view of variational empowerment (MI maximization) methods and classic goal-
conditioned RL, enable a principled way to learn the goal representation and the reward function for
goal-reaching behavior. The variational GCRL framework also has enabled discovering a missing
variant of goal-conditioned RL that identifies controllable dimensions while ignoring nuisance, un-
controllable dimensions in a continuous control setting, which is also closely connected to the idea
of contingency-awareness (Chapter 2). Other practical findings and algorithmic contributions, such
as the idea of P-HER similar to hindsight experience replay (Andrychowicz et al., 2017) for unsu-
pervised skill discovery, and the use of spectral normalization have also motivated and contributed
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to several follow-up works (Park et al., 2022) for discovering useful skills and interesting goal rep-
resentations towards building hierarchical agents. In Chapter 4, I presented COIL, another instance
of learning skills and temporally-abstracted behaviors in a reward-free, unsupervised RL setting.
The proposed framework makes use of an idea of counterfactual reasoning, and efficiently leverages
dynamics model to learn pairwise object interaction behaviors in entity-centric continuous control
environments without any external reward.

Overall, this dissertation contributes to the advancement of deep RL and self-supervised learning
by addressing state representation learning, goal representation learning, and skill learning prob-
lems which can help build more autonomous systems for real-world problems with less human
supervision in the absence of external rewards and human supervision.

5.2 Discussion and Future Directions

Scalability of self-supervised RL methods and applications to real-world problems. Self-
supervised methods are useful and motivated by mathematical principles that are generally applica-
ble across different domains, but they are also inherently difficult to scale due to the interdependency
between exploration and exploitation as well as the agent’s data being non-stationary. Initially, an
agent without prior knowledge would exhibit random exploratory behaviors and cover only a small
portion of the entire state space. As the agent’s policy evolves to learn more non-trivial behav-
iors, there must be some positive feedback signal (e.g., rewards) to incentivize and reinforce these
infrequently achieved behaviors. The effectiveness and accuracy of the feedback usually depend
on the quality of the auxiliary components and the representations learned alongside the agent’s
policy, such as the dynamics model as discussed in this dissertation (e.g., the less error they have,
the more accurate the reward for discriminating between good and bad behaviors). This is also
often called the chicken-and-egg problem: effective exploration requires good representations, and
learning effective representations requires sufficient exploratory data (Liu et al., 2021; Tam et al.,
2022). Therefore, the model has to generalize and extrapolate very well to the unseen data that the
agent will encounter in the future. In addition, as reinforcement learning based on trial and error
would require a significant amount of data, use of a more efficient exploration algorithm or hybrid
approaches combined with hierarchical learning, planning, curriculum learning, etc. will be bene-
ficial for improving the sample efficiency of self-supervised-based representation learning methods
and for successfully tackling complex real-world problems such as dexterous robotic manipulation,
autonomous driving, and assistant agents for automating household and business tasks, etc.

Balancing between unsupervised and human-supervised RL. While the scope of the works
in this dissertation mainly concerns algorithmic perspectives for unsupervised RL (reward-free or
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sparse reward settings) towards building fully autonomous and general intelligent systems, it is
admitted that such approaches alone will not scale up enough for the most difficult, practical real-
world tasks. Therefore, the use of human supervision, domain knowledge, and/or offline data (e.g.,
expert demonstrations) could also be incorporated to build more performant agents to some extent
at a manageable level. While it can be prohibitive to collect gathering human supervision (such
as high-quality demonstration data and reward engineering), finding a good balance between fully
unsupervised and human-supervised reinforcement learning (RL) will be an important problem to
develop practically useful and efficient agents. Also, unsupervised skill discovery methods are ex-
pected to find a set of good solutions as specified by the optimization objective and inductive biases
applied, but there is no guarantee that they will necessarily learn behaviors that are useful to hu-
mans for downstream tasks rather than simple state-diversifying behaviors the learning algorithm
would easily converge to. Hence, it will be useful to have some moderate level of weak supervi-
sion (e.g., few-shot labels) or prior knowledge that can be easily integrated into the model. Many
techniques and approaches will have to be discovered to make this process more efficient and more
tractable. One category of recently emerging approaches that appear to be promising is human-in-
the-loop (Christiano et al., 2017; Wu et al., 2022; Mosqueira-Rey et al., 2023): by allowing humans
to provide feedback during training, the agent’s performance can be significantly enhanced.

Integrating RL with LLM (Large Language Models). Although the proposed methods can
discover some kind of good state and goal representations, those are usually represented in an ab-
stract form that is difficult for human to interpret or interface with. For instance, the latent goal
space learned by unsupervised skill discovery methods (Choi et al., 2021; Eysenbach et al., 2019;
Park et al., 2022) are parametric, have no particular literal meaning on their own without an asso-
ciated mapping. In addition, the mapping between the latent space and the skill’s actual semantics
can be under-specified: it may converge to different solutions depending on initialization. Even
if the skill discovery methods and exploration techniques (with some representation learning) lead
to successful learning of powerful and versatile low-level behaviors, it will still be challenging to
leverage these abstractions and representations without connecting them to a universal interface
that is consistent and agreed upon by humans.

A more intuitive way for humans to interact with an AI agent is through language. Large lan-
guage models (LLM), trained over a large set of corpora of human languages, can predict the next
words given some context in the form of sentences. LLMs are known to possess commonsense
knowledge about the world around humans and have strong reasoning capabilities (Raffel et al.,
2020; OpenAI et al., 2024). As language by itself possesses abstraction and structure that can al-
low humans to provide AI agents instructions or feedback on which behaviors were good or bad and
why, an effective use of LLM in conjunction with reinforcement learning can provide a convenient
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interface between humans and AI agents.
One promising and interesting research problem will be how to use language to specify a goal.

While there has been some remarkable work to align language and the agent’s behavior (Jiang et al.,
2019; Prakash et al., 2022; Yu et al., 2023), I plan to explore more advances to combine with the
art of representation learning and skill discovery methods to learn language-conditioned skills that
would allow discovering more diverse and novel behaviors. However, this is a challenging problem
because one would need to build a paired dataset of language descriptions and corresponding states
of fulfilled goals; there remain several challenges including, but not limited to: determining what
would be a good reward function (that is not too sparse) to align the language goal and ‘good’ states
discovered by an exploratory agent, and what would be a principled learning signal (not necessarily
reward maximization) to learn them effectively, while requiring less strong supervision.
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APPENDIX A

Appendix: Contingency-Aware Exploration in
Reinforcement Learning

A.1 Summary of Training Algorithm

The learning objective LADM is from Equation (2.5). The objective LA2C of Advantage Actor-
Critic (A2C) is as in (Mnih et al., 2016; Dhariwal et al., 2017):

LA2C = E(s,a,r)∼E

[
LA2C

policy +
1

2
LA2C

value

]
(A.1)

LA2C
policy = − log πθ(at|st)(Rn

t − Vθ(st))− αHt(πθ) (A.2)

LA2C
value =

1

2

(
Vθ(st)−Rn

t

)2
(A.3)

Ht(πθ) = −
∑

a πθ(a|st) log πθ(a|st) (A.4)

where Rn
t =

∑n−1
i=0 γ

irt+i + γnVθ(st+n) is the n-step bootstrapped return and α is a weight for the
standard entropy regularization loss term Ht(πθ). We omit the subscript as θ = θA2C when it is
clear.

A.2 Architecture and Hyperparameter Details

The architecture details of the attentive dynamics model (ADM), the policy network, and hyper-
parameters are as follows.
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Algorithm A.1: A2C+CoEX

Initialize parameter θADM for attentive dynamics model fADM
Initialize parameter θA2C for actor-critic network
Initialize parameter θc for context embedding projector if applicable (which is not trainable)
Initialize transition buffer E ← ∅
for each iteration do
▷ Collect on-policy transition samples, distributed over K parallel actors
for each step t do
st ← Observe state
at ∼ πθ(at|st)
st+1, r

ext
t ← Perform action at in the environment

▷ Compute the contingent region information
αt+1 ← Compute the attention map of st+1 using fADM
c(st+1)← Compute the observation embedding cluster of st+1 (Algorithm A.2)
▷ Increment state visitation counter based on the representation
ψ(st+1)← (argmax(i,j) αt+1(i, j), c(st+1), ⌊

∑t
k=0 r

ext
k ⌋)

#(ψ(st+1))← #(ψ(st+1)) + 1
r+t ← 1√

#(ψ(st+1))

Store transition E ← E ∪
{
(st, at, st+1, β1clip(r

ext
t ,−1, 1) + β2r

+
t )
}

end for
▷ Perform actor-critic using on-policy samples in E
θA2C ← θA2C − η∇θA2CLA2C

▷ Train the attentive dynamics model using on-policy samples in E
θADM ← θADM − η∇θADMLADM

Clear transition buffer E ← ∅
end for
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Hyperparameters Value

Policy and Value Network Architecture Input: 84x84x1
- Conv(32-8x8-4) /ReLU
- Conv(64-4x4-2) /ReLU
- Conv(64-3x3-1) /ReLU
- FC(512) /ReLU
- FC(|A|), FC(1)

ADM Encoder Architecture Input: 160x160x3
- Conv(8-4x4-2) /LeakyReLU
- Conv(8-3x3-2) /LeakyReLU
- Conv(16-3x3-2) /LeakyReLU
- Conv(16-3x3-2) /LeakyReLU

MLP Architecture for et(i, j) FC(1296,256) /ReLU
- FC(256,128) /ReLU
- FC(128,|A|)

MLP Architecture for α̃t(i, j) FC(1296,64) /ReLU
- FC(64,64) /ReLU
- FC(64,1)

λent for Loss 0.001

A2C Discount Factor γ 0.99
Learning Rate (RMSProp) 0.0007
Number of Parallel Environments 16
Number of Roll-out Steps per Iteration 5
Entropy Regularization of Policy (α) 0.01

PPO Discount Factor γ 0.99
λ for GAE 0.95
Learning rate (Adam) 0.00001
Number of Parallel Environments 128
Rollout Length 128
Number of Minibatches 4
Number of Optimization Epochs 4
Coefficient of Extrinsic and Intrinsic reward β1 = 2, β2 = 1

Entropy Regularization of Policy (α) 0.01

Table A.1: Network architecture and hyperparameters.
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Figure A.1: Learning curves on several Atari games: A2C, A2C+CoEX, and A2C+CoEX+RAM.

Games β1 in A2C+CoEX β2 in A2C+CoEX β1 in A2C τ for clustering

Freeway 10 10 10 -
Frostbite 10 10 10 -
Hero 1 0.1 1 0.7
Montezuma’s Revenge 10 10 10 0.7
PrivateEye 10 10 10 0.55
Qbert 1 0.5 1 -
Seaquest 1 0.5 10 -
Venture 10 10 10 0.7

Table A.2: The list of hyperparameters used for A2C+CoEX in each game. For the four
games where there is no change of high-level visual context (Freeway, Frostbite, Qbert and
Seaquest), we do not include c in the state representation ψ(s), hence there is no τ . The same
values of τ are used in PPO+CoEX.

A.3 Experiment with RAM Information

In order to understand the performance of exploration with perfect representation, we extract the
ground-truth location of the agent and the room number from RAM, and then run count-based
exploration with the perfect (x, y, c, R). Figure A.1 shows the learning curves of the experiments;
we could see A2C+CoEX+RAM acts as an upper bound performance of our proposed method.
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A.4 Observation Embedding Clustering

We describe the detail of a method to obtain the observation embedding. Given an observation of
shape (84, 84, 3), we flatten the observation and project it to an embedding of dimension 64. We
randomly initialize the parameter of the fully-connected layer for projection, and keep the values
unchanged during the training to make the embedding stationary.

For the embedding of these observations, we cluster them based on a threshold value τ . The
value of τ for each game with change of rooms is listed in Table A.2. If the distance between the
current embedding and the center mean(c) of a cluster c is less than the threshold, we assign this
embedding to the cluster with the smallest distance and update its center with the mean value of all
embeddings belonging to this cluster. If the distance between the current embedding and the center
of any cluster is larger than the threshold, we create a new cluster and this embedding is assigned
to this new cluster.

Algorithm A.2: Observation Embedding Clustering

Initialize parameter θc for context embedding projector if applicable (which is not trainable)
Initialize threshold τ for clustering
Initialize clusters set C ← ∅
for each observation s do
▷ Get embedding of the observation from the random projection
v ← fθc(s)
▷ Find a cluster to which the current embedding fits, if any
Find a cluster c ∈ C with smallest ∥mean(c)− v∥ ≤ τ , or NIL if there is no such
if c ̸= NIL then
c← c ∪ v

else
▷ if there’s no existing cluster that v should be assigned to, create a new one
C ← C ∪ {v}

end if
end for

In Figure A.2, we also show the samples of observation in each cluster. We could see obser-
vations from the same room are assigned to the same cluster and different clusters correspond to
different rooms.
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Figure A.2: Sample of clustering results for Venture, Hero, PrivateEye, and Montezuma’s
Revenge. Each column is one cluster, and we show 3 random samples assigned into this cluster.
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APPENDIX B

Appendix: Variational Empowerment as
Representation Learning for Goal-Based

Reinforcement Learning

B.1 Background: Mutual Information Maximization

We provide a detailed discussion about mutual information objectives as promised in Section 3.3.1.

State-predictive MI: Given a generative model of the form pπ(z, s, s′) = p(z)ρπ(s|z)pπ(s′|s, z)
where pπ(s′|s, z) =

∫
π(a|s, z)p(s′|s, a)da, we define the state-predictive MI as,

I(s′; z | s) = H(s′ | s)−H(s′ | z, s) (B.1)

= E(z,s,s′)∼pπ(z,s,s′) [log p
π(s′ | s, z)− log pπ(s′ | s)] (B.2)

This is closer to the classic empowerment formulation as in (Klyubin et al., 2005; Jung et al., 2011).
Variational bounds can be derived with respect to actions (Mohamed & Rezende, 2015; Gregor
et al., 2017) or to future states (Sharma et al., 2020b). While this objective enables learning state-
conditioned skills, we decide to focus on the other variant in this paper.

State-marginal MI: Similarly, given a generative model of the form pπ(z, s) = p(z)ρπ(s|z),
the MI can be written as,

I(s; z) = H(z)−H(z|s) (B.3)

= Ez∼p(z)[− log p(z)] + Ez,s∼pπ(z,s)[log p(z | s)] (B.4)

= Ez∼p(z),s∼π(z)[log p(z | s)− log p(z)] (B.5)

≥ Ez∼p(z),s∼π(z)[log qλ(z | s)− log p(z)], (B.6)
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where Eq. B.6 is a common variational bound for MI (Barber & Agakov, 2003) with a variational
posterior qλ(z|s) approximating the intractable posterior pπ(z|s). DIAYN (Eysenbach et al., 2019)
optimizes for this state-marginal MI objective in a entropy-regularized RL setting, trained with
the SAC algorithm (Haarnoja et al., 2018). We note that an alternative lower bound of I(s; z) (a
“forward” form of MI, i.e.,H(s)−H(s|z)) is also possible (Campos et al., 2020).

B.2 Equivalence between GCRL and Gaussian VGCRL

Full Covariance Gaussian. The Gaussian discriminator (or the variational posterior) qλ(z|s)
should take the following form:

qλ(z|s) = N (z;ϕ(s),Σ(s)) (B.7)

=
1√

(2π)|G||Σ|
exp

(
−1

2
(z − ϕ(s))⊤Σ−1(z − ϕ(s))

)
(B.8)

Diagonal-Covariance Gaussian. If we assume a diagonal covariance Σ(s) = diag(σ2(s)), the
discriminator will have the following form:

qλ(z|s) =
1√

(2π)|G|
∏

i σi
exp

(
−
∑
i

1

2σ2
i

(zi − µi)2
)
, where µi = [ϕ(s)]i, σi = [σ(s)]i

(B.9)

log qλ(z|s) = −|G| log(
√
2π) +

∑
i

− log(σi) +
∑
i

(
− 1

2σ2
i

(zi − µi)2
)

(B.10)

As discussed in Section 3.4, the intrinsic reward function for training a goal-conditioned policy for
a fixed goal z is given by r(s) = log qλ(z|s)− log p(z).

Equivalence to GCRL. It is straightforward to see that for a fixed value of σi (say σi = 1.0),
Equation B.10 further reduces to

log qλ(z|s) = Const +
∑
i

(
−1

2
(zi − µi)2

)
(B.11)

up to a constant factor. This can be interpreted as a smooth reward function for reaching a goal
z ∈ G, or the squared distance ∥z− µ(s)∥22 between µ(s) and z in the goal space G. A special case
of this is when the goal space is set same as the state space (G = S) and a natural identity mapping
µ(s) = s is used, where the smooth reward function in standard goal-conditioned RL (GCRL) is
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recovered.

B.3 Details of Environments

B.3.1 Windy PointMass

Figure B.1: Windy PointMass (10-dimensional).

The (windy) point mass environment is a N -dimensional continuous control environment. The
observation space is 2N -dimensional, each of which describes the position and the velocity per
dimension. Each point mass, one per dimension, can move left and right independently within
the arena of range (−1.5, 1.5). The action space is N -dimensional, each of which denoting the
amount of velocity acceleration on each dimension. This generalizes common 2D (planar) point
mass environments (Brockman et al., 2016; Tassa et al., 2018); indeed, it is exactly equivalent to the
2D point mass environments when N = 2. The positions of point masses are initialized randomly
at each episode. Figure B.1 shows a target goal location in overlaying transparent spheres (note that
in the experiment we assumed the goal G to be a N -dimensional vector, same as the observation
space) with µ(s) = s.

For the windy point mass used in the experiment, we apply a random external force sampled
from an uniform distribution U(−Ri, Ri) to the point mass on dimension i, at every time step. The
range of external force gets higher as the dimension index i increases; we use a profile ofRi = 11×i
for N = 10 (i.e., R0 = 0 or no force on dimension 0, and R9 = 99 for the last dimension i = 9)
and [R0, R1] = [0, 40] for N = 2. With such a large external force, the point mass on dimension
i = 9 is almost uncontrollable, mostly bouncing around the external perturbation.

65



B.3.2 Expert State Generation

To generate target states s1:N in the latent goal reaching metric Section 3.6.2, we collected states
(observations) randomly sampled from an expert policy’s rollout trajectory. Expert policies are
SAC agents successfully trained on the task with multiple target velocities rather than the stan-
dard task (i.e., only moving forward in HalfCheetah, Ant, Humanoid-v3, etc.). Similar to Ope-
nAI gym’s locomotion tasks (Brockman et al., 2016), we use a custom reward function rx =

HuberLoss(target x velocity − achieved y velocity) and a similar one for ry to let the robot move
in some directions with the desired target velocities. The set of target velocities (vx, vy) were con-
structured from the choices of (−2,−1,−0.5, 0, 0.5, 1, 2). We used the SAC implementation from
(Guadarrama et al., 2018) with a default hyperparameter setting to train expert policies. We sam-
ple 6 random states from each expert policy, yielding a total of 72 × 6 = 294 (or 7 × 6 = 42 for
HalfCheetah) target states for each environment. Altogether, this dataset provides a set of states
where the agent is posing or moving in diverse direction.

B.4 Implementation Details

For training the goal-conditioned policy, we used Soft Actor-Critic (SAC) (Haarnoja et al., 2018)
algorithm with the default hyperparameter setting. To represent the discriminator q(z|s) with a
neural network, we simply used a 2-layer MLP with (256, 256) hidden units and ReLU activations.
The heads µ(s) and log σ(s) are obtained through a linear layer on top of the last hidden layer.
For Gaussian VGCRLs, we employed an uniform prior p(z) = [−1, 1]|G| and also applied tanh

bijections to the variational posterior distribution qλ(z|s) to make the domain of z fit [−1, 1]|G|. We
also clipped the output of log σ(s) with the clip range [log(0.3), log(10.0)] for the sake of numerical
stability, so that the magnitude of posterior evaluations (and hence the reward) does not get too large.

For spectral normalization, we swept hyperparameters σ that control the Lipschitz constant over
a range of [0, 0.5, 0.95, 2.0, 5.0, 7.0], and chose a single value σ = 2.0 that worked best in most
cases. The number of mixtures used in Gaussian Mixture Models is K = 8. The heads µ(s),
log σ(s), mixture weights α(s) are obtained through a linear layer on top of the last hidden layer.

B.5 More Experimental Results

In this section, we present additional results for Section 3.6.3. Table B.1 extends Table 3.4, showing
the evaluation metrics for variants of VGCRL where continuous goal spaces of various dimensions
are used. Figure B.2 and Figure B.3 show learning curve plots for the VGCRL variants with cate-
gorical and Gaussian posterior, respectively.
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qλ(z|s) P-HER? SN? HalfCheetah Ant Humanoid
F LGRv(s) LGR(z) F LGRv(s) LGR(z) F LGRv(s) LGR(z)

|G
|=

2

N (µ(s),fixed2) - - 0.305 0.900 0.166 -0.128 0.398 0.242 -0.047 2.394 0.199
✔ - 0.339 0.837 0.139 -0.110 0.678 0.306 -0.082 1.505 0.194

N (µ(s),Σ(s)2)

- - 0.830 1.177 0.063 -4.669 0.478 0.265 0.677 0.393 0.080
✔ - 0.403 0.720 0.079 -4.575 0.289 0.263 2.019 0.910 0.027
- ✔ 2.653 1.017 0.011 2.060 0.453 0.038 2.511 0.225 0.012
✔ ✔ 2.724 1.074 0.009 2.352 0.511 0.023 2.549 0.199 0.012

GMM (K = 8) - - 0.883 0.707 0.188 -4.344 0.640 0.360 1.141 1.637 0.072
✔ - 1.183 2.032 0.181 -3.436 0.432 0.356 2.076 0.993 0.026

|G
|=

5

N (µ(s),fixed2) - - 0.932 1.005 0.159 -0.590 1.005 0.382 0.239 1.461 0.202
✔ - -0.142 1.273 0.360 0.140 2.449 0.300 0.020 1.452 0.244

N (µ(s),Σ(s)2)

- - -0.731 1.251 0.172 -18.490 0.306 0.427 -3.597 0.538 0.147
✔ - -2.161 1.132 0.289 -0.108 2.423 0.303 1.207 0.206 0.074
- ✔ 5.856 0.604 0.019 2.548 0.925 0.091 4.509 0.460 0.040
✔ ✔ 5.803 1.352 0.017 4.349 0.463 0.039 5.203 0.203 0.026

GMM (K = 8) - - -2.646 0.766 0.325 -16.196 0.367 0.486 -3.576 0.231 0.198
✔ - -3.091 1.065 0.404 -2.874 2.794 0.325 3.526 0.581 0.043

|G
|=

10

N (µ(s),fixed2) - - -0.145 0.855 0.346 -1.719 0.674 0.508 0.246 0.704 0.237
✔ - -0.825 0.866 0.407 -0.276 2.309 0.330 0.125 0.708 0.239

N (µ(s),Σ(s)2)

- - -3.688 1.381 0.384 -6.709 0.745 0.425 -3.399 0.313 0.221
✔ - -3.582 0.640 0.388 -0.190 3.989 0.324 -3.618 0.244 0.111
- ✔ 3.840 1.175 0.180 0.721 0.974 0.240 8.134 1.275 0.061
✔ ✔ 4.975 0.874 0.162 2.467 0.674 0.184 6.349 0.262 0.072

GMM (K = 8) - - -5.137 1.250 0.404 -25.121 0.307 0.534 1.885 1.543 0.238
✔ - -6.162 0.835 0.399 -3.582 2.396 0.348 3.267 0.422 0.082

|G
|=

2
0

N (µ(s),fixed2) - - -2.024 0.901 0.438 -3.206 0.486 0.498 -0.656 0.622 0.320
✔ - -1.848 0.953 0.422 -0.527 3.038 0.331 -0.295 0.461 0.295

N (µ(s),Σ(s)2)

- - -3.754 0.481 0.377 -2.662 0.958 0.353 1.705 2.115 0.274
✔ - -4.704 1.648 0.385 -2.813 1.000 0.352 2.149 0.731 0.246
- ✔ -0.176 1.054 0.318 -1.624 0.716 0.355 7.176 1.666 0.191
✔ ✔ 0.727 1.066 0.294 -0.503 0.496 0.320 -0.350 0.460 0.340

GMM (K = 8) - - -6.294 1.254 0.394 -11.060 0.805 0.370 1.579 2.280 0.298
✔ - -10.647 1.725 0.397 -13.392 1.340 0.377 2.339 1.740 0.284

Table B.1: An extended version of Table 3.4. We present a VGCRL-Gaussian variant where the
variance is not learned but kept constant (fixed, e.g.log σ = 0) and a variant where the variance is
learned as a function of state s. VGCRL-GMM is when a Gaussian Mixture Model is used for the
discriminator instead of a Gaussian distribution, where means, covariances, and mixture weights
are learned through the neural network.
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(b) Ant-v3 (|G| = 10)
0M 2M 4M 6M 8M 10M

0.0

0.5

1.0

1.5

2.0

Average Empowerment Reward

DIAYN
DIAYN + P-HER

0M 2M 4M 6M 8M 10M

0.70

0.75

0.80

0.85

0.90

0.95

1.00
LGR(z): Top-1 Accuracy

(c) Humanoid-v3 (|G| = 10)
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(d) HalfCheetah-v3 (|G| = 20)
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(e) Ant-v3 (|G| = 20)
0M 2M 4M 6M 8M 10M

2

1

0

1

2

3
Average Empowerment Reward

DIAYN
DIAYN + P-HER

0M 2M 4M 6M 8M 10M
0.4

0.5

0.6

0.7

0.8

0.9

1.0
LGR(z): Top-1 Accuracy

(f) Humanoid-v3 (|G| = 20)
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(g) HalfCheetah-v3 (|G| = 50)
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(h) Ant-v3 (|G| = 50)
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(i) Humanoid-v3 (|G| = 50)
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(j) HalfCheetah-v3 (|G| = 200)
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(k) Ant-v3 (|G| = 200)
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(l) Humanoid-v3 (|G| = 200)
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(m) HalfCheetah-v3 (|G| = 1000)
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(n) Ant-v3 (|G| = 1000)
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Figure B.2: Extension to Figure 3.4: Learning curves for VGCRL when discrete, categorical goal
spaces are used. The dashed line denotes the maximum possible reward, achieved when the discrim-
inator q(z|s) is perfect at every time step. Overall, we can see P-HER improves the learning process
of variational empowerment consistently across different environments and the dimensionality of
the goal space.
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0M 2M 4M 6M 8M 10M

4

2

0

2

4

6

Average Empowerment Reward

0M 2M 4M 6M 8M 10M
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
LGR(z): |z (s)|2

(d) HalfCheetah-v3 (|G| = 5)
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(f) Humanoid-v3 (|G| = 5)
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(g) HalfCheetah-v3 (|G| = 10)
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(h) Ant-v3 (|G| = 10)
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Figure B.3: Extension to Figure 3.4: Learning curves for VGCRL when continuous goal spaces
and a family of Gaussian distribution is used for the variational posterior.
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APPENDIX C

Appendix: Unsupervised Object Interaction
Learning with Counterfactual Dynamics Models

C.1 Details of Implementation and Experiments

C.1.1 Stacking Box

The state of the agent is denoted by its (x, y) coordinates, while each object is represented by
(x, y, z, held), where the binary value of held indicates whether the object is in the grasp of the
agent or not. The action space is three-dimensional and includes the variables ∆x, ∆y, and grab.
The range of values for each variable is from -1 to 1, where ∆x and ∆y denote the displacement
of the agent’s movement and grab indicates whether to make a grab. If the value of grab is 0 or
greater, the agent will grab the object; otherwise, it will release it. We use the episode length of
200 by default.

C.1.2 Magnetic Blocks

The state of the agent and each object are 9-dimensional vectors: (x, y, z, cos θ, sin θ, vx, vy, vz, ω)
where cos θ and sin θ represent a 2D Euler rotation, v is the velocity, and ω is the angular velocity
with respect to the joint. The action space is four-dimensional and includes the variables Fx, Fy, τ ,
and grab. The range of values for each variable is from -1 to 1, where Fx and Fy denote the motor
translation torques, τ the rotation torque, and grab indicates whether to make a grab. If the value
of grab is 0 or greater, the agent will grab the object that overlaps with the agent; otherwise, it will
release it. We use the episode length of 200 by default.

C.1.3 Implementation details

We discuss more noteworthy implementation details in addition to Section 4.4.2.
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Optimization: RL. For the particular RL algorithm choice, we use SAC (Haarnoja et al., 2018)
though COIL can be combined with any RL algorithms. The size of the replay buffer is one million
(1M) and we start updating the policy after 10 000 steps to fill the replay buffer. We use soft target
update with the ratio of τ which stabilizes the optimization of the policy and the model.

Optimization: Forward Model. To update the forward model fforward, we minimize the stan-
dard squared L2 error

∥∥∥ôAt+1 − fforward(o
A
t , õ

B
t , at, s

t \ {oAt , oBt })
∥∥∥2 with SGD (Adam optimizer with

learning rate 3× 10−4), using the data uniformly and randomly sampled from the replay buffer (the
same one as in SAC). Note that the use of off-policy batch samples prevents a significant overfitting
to the current policy, because the model is agnostic to a policy. We also apply L2 regularization
with coefficient α = 0.001.

Optimization: Successor Features. To update the successor feature Ψπ
A(s, a), we minimize the

TD (Temporal-Difference) error, which is a standard way of learning SF (Dayan, 1993; Barreto
et al., 2016) using the off-policy data sampled from the replay buffer shared with SAC. We use
the n-step TD loss (n = 5), which works better than the 1-step TD loss. We did not use any data
augmentation techniques.

Hyperparameters. We searched over the hyperparameter range as denoted in Table C.1 for Stack-
ing Box and Table C.2 for Magnetic Blocks. The hyper-parameters that give the highest AUC (area
under the curve) in the success rate for each task are chosen as the best hyper-parameters.

C.1.4 Computing resources

To train a single instance of COIL with SAC, we used a single GPU NVIDIA Titan X (consumes
around 2GB of VRAM per job), a couple of CPU cores (Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz) and a few GiBs of RAM on a typical x86_64 Linux workstation. Training for 10M
environment steps (on the Magnetic Block environment) usually took around 24 hours.
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COIL-Forward / Forward Curiosity

Hyperparameters Sweep range n=4 n=6

Actor learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Critic learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Actor-Critic network hidden dimensions [64,64], [256,256] [256,256] [256,256]
Initial temperature 0.001, 0.01, 0.1, 0.3, 1 0.1 0.1
τ for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01 0.01 / 0.001
Forward model learning rate 1e-5, 3e-5, 1e-4 3e-5 3e-5
Forward model hidden dimensions [64,64], [256,256] [256,256] [256,256]
Reward scale 10, 100, 1000 10 10

COIL-SF / SID

Hyperparameters Sweep range n=4 n=6

Actor learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Critic learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Actor-Critic network hidden dimensions [64,64], [256,256] [256,256] [256,256]
Initial temperature 0.001, 0.01, 0.1, 0.3, 1 0.1 0.1
τ for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01 / 0.001 0.001
SF model learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
SF model hidden dimensions [64,64], [256,256] [256,256] [256,256]
SF model target update period 1, 5, 10 5 5
SF model discount factor - 0.8 0.8
τ for SF target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01 / 0.001 0.001
Reward scale 1, 10, 100 10 10

Sparse GT-SAC / RND

Hyperparameters Sweep range n=4 n=6

Actor learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Critic learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Actor-Critic network hidden dimensions [64,64], [256,256] [256,256] [256,256]
Initial temperature 0.001, 0.01, 0.1, 0.3, 1 0.1 0.1
τ for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01 0.001
Reward scale 10, 100, 1000 10 / 100 10 / 100

Table C.1: Hyperparameters swept over and the final values used in Stacking Box. n denotes the
number of objects.
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COIL-Forward / Forward Curiosity

Hyperparameters Sweep range n=4 n=6

Actor learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Critic learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Actor-Critic network hidden dimensions [64,64,64,64], [256,256] [256,256] [256,256]
Initial temperature 0.001, 0.01, 0.1, 0.3, 1 0.01 0.01
τ for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.3 0.1 / 0.3
Forward model learning rate 1e-5, 3e-5, 1e-4 3e-5 3e-5
Forward model hidden dimensions [64,64,64,64], [256,256] [256,256] [256,256]
Reward scale 10, 100, 1000 10 10

COIL-SF / SID

Hyperparameters Sweep range n=4 n=6

Actor learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Critic learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Actor-Critic network hidden dimensions [64,64,64,64], [256,256] [256,256] [256,256]
Initial temperature 0.001, 0.01, 0.1, 0.3, 1 0.01 0.3 / 0.01
τ for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01 / 0.1 0.01 / 0.2
SF model learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
SF model hidden dimensions [64,64,64,64], [256,256] [64,64,64,64] [64,64,64,64]
SF model target update period 1, 5, 10 5 5
SF model discount factor - 0.8 0.8
τ for SF target update 0.001, 0.01, 0.1, 0.2, 0.3 0.01 / 0.1 0.01 / 0.2
Reward scale 1, 10, 100 10 10

Sparse GT-SAC / RND

Hyperparameters Sweep range n=4 n=6

Actor learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Critic learning rate 3e-4, 1e-3, 3e-3 3e-4 3e-4
Actor-Critic network hidden dimensions [64,64,64,64], [256,256] [256,256] [256,256]
Initial temperature 0.001, 0.01, 0.1, 0.3, 1 0.01 0.01
τ for SAC target update 0.001, 0.01, 0.1, 0.2, 0.3 0.1 0.3
Reward scale 10, 100, 1000 10 / 100 10 / 100

Table C.2: Hyperparameters searched over and the final values in Magnetic Blocks. n denotes the
number of objects.
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C.2 Qualitative Examples

Figure C.1 shows an qualitative example of the interaction behavior learned by COIL-SF on the
Magnetic Blocks environment.

(a) t = 0, r = 0.36 (b) t = 2, r = 0.24 (c) t = 4, r = 2.01 (d) t = 6, r = 15.30

(e) t = 17, r = 13.19 (f) t = 29, r = 22.82 (g) t = 134, r = 18.68 (h) t = 167, r = 17.03

Figure C.1: Snapshots of COIL-SF in Magnetic Blocks. In this episode, A is the yellow object
and B is the blue object. (a) Initial state, (b) Agent heads towards A, (c) Agent grabs A, (d) Agent
heads towards B while holding A, (e) Agent rotates A to align two objects, (f) Agent connects A
and B (a successful interaction), (g-h) Agent pushes B to somewhere near the wall. The amount
of reward rCOIL-SF the agent receives is shown in the caption of each episode; we can see that the
per-step reward is highest when a correct interaction (magnetic connection between the objects in
the specified goal) is made.

C.3 Additional Plots

We provide additional plots for further analysis of COIL algorithms. Figure C.2 and Figure C.3
support the quantitative result that COIL learns to make interactions while curiosity-based methods
are limited to grabbing the objects.
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Algorithm C.1: Learning of COIL-SF (Off-policy learning based on SAC)

1: Initialize the replay buffer D
2: while not converged or up to a training budget do
3: Initialize an episode: Sample an uniform random goal g ← (A,B), and observe s0.
4: for t = 1 .. until the end of episode do
5: Determine the action at ∼ πθ(a | st, g).
6: Observe st+1 ← Env(st, at).
7: Add the experience (st, at, st+1; g) to the replay buffer D.
8: if needs to update (e.g., periodically) then
9: Sample a batch DB from D

10: Evaluate the intrinsic reward rCOIL-SF for DB, using the current estimate of ψπA.
11: Run an update step of the policy πθ with DB and the reward rCOIL-SF using SAC.
12: Run an update step of the SF ψπA with DB, minimize the TD loss.
13: end if
14: end for
15: end while
16: return solution
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(b) Stacking Box: 6 objects.

Figure C.2: The ratios of the states visited during the episodes for each label in Stacking Box.
Runs are averaged over 3 random seeds. (1) No events: States without any grabbing or stacking
event, (2) Grab-A: States in which the agent grabs A, (3) Grab-B: States in which the agent grabs
B, (4) Stack: States in which A is stacked on B.
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(b) Magnetic Blocks: 6 objects.

Figure C.3: The ratios of the states visited during the episodes for each label in Magnetic Blocks.
Runs are averaged over 5 random seeds. (1) No events: States without any grabbing or connecting
event, (2) Grab-A: States in which the agent grabs A, (3) Grab-B: States in which the agent grabs
B, (4) Connect: States in which A and B are connected.
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Figure C.4: The ratio of counterfactual prediction error to epistemic uncertainty of dynamics mod-
els for each label in COIL, Stacking Box. Runs are averaged over 3 random seeds. (1) No events:
States without any grabbing or stacking event, (2) Grab-A: States in which the agent grabs A, (3)
Grab-B: States in which the agent grabs B, (4) Stack: States in which A is stacked on B. Higher
ratio means that a higher reward rCOIL will be given.
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(a) COIL-Forward, Magnetic Blocks: 4 objects.
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(b) COIL-SF, Magnetic Blocks: 4 objects.

Figure C.5: The ratio of counterfactual prediction error to epistemic uncertainty of dynamics mod-
els for each label in COIL, Magnetic Blocks. Runs are averaged over 5 random seeds. (1) No events:
States without any grabbing or connecting event, (2) Grab-A: States in which the agent grabsA, (3)
Grab-B: States in which the agent grabs B, (4) Connect: States in which A and B are connected.
Higher ratio means that a higher reward rCOIL will be given.
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