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ABSTRACT

Economic events and advancements in technology have drastically transformed the financial sys-

tem over the past 20 years. This includes the implementation of new policies post-2008 financial

crisis, as well as new methods for customers to engage with the system from cryptocurrency to

faster processing payments. This system is a complex network, vital for connecting individuals,

businesses, and financial institutions for the purposes of monetary transactions. Thus, it is impor-

tant to carefully consider how changes may impact and transform the system in the future. This

dissertation applies a computational approach to study strategic decisions that arise from economic

and technological changes in financial networks. I introduce the extended financial credit network

model capable of expressing diverse financial scenarios and enabling the creation of agent-based

models for studying strategic interactions. To study the strategic decisions of agents within the

model, I apply methods from empirical game-theoretic analysis to identify equilibrium behavior.

I apply these methods to four case studies of strategic behavior in financial networks. First,

I analyze portfolio compression, a method for eliminating cycles of debt, as a strategic decision.

Compressing cycles offers both potential benefit and harm to the network, and banks must weigh

both possibilities carefully. I find that the compression decision is best made using simple, local

information available to banks. Further, I note the importance of the recovery rate of insolvent

banks in the perceived affect of cycles on systemic risk. Second, I investigate the strategic use of

costly fraud detection systems by banks. I observe the behavior of banks is subject to the relative,

not specific, capabilities of their fraud detectors. In particular, those with strong detectors are

better able to adjust their behavior in response to rising costs due to the existence of weaker banks

in the system. The third study addresses bank allowance of real-time payments by customers.

Customer overdrafts pose a potential credit risk to banks, who assume short-term liability, and lead
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to strategic decisions regarding which customers should be allowed use of these new payments. My

analysis shows banks choose to allow most, though not all, customers to send real-time payments. I

discover the strategic choice of banks will not lead to the socially optimal outcome in this scenario.

Lastly, I extend the previous two works to study banks’ strategic mitigation of fraud risk in real-

time payments. In particular, I focus on the strategic trade-off banks make between restricting

customer access to these payments and investing in costly fraud detection. I find banks value the

ability to control customer access, though they never invoke overly strict restrictions. Instead, they

balance some constraints with the use of fraud detection. I observe these strategic measures limit

the negative effects from fraudulent actors with minimal disruption to customers.

Broadly, this dissertation demonstrates the effectiveness of agent-based modeling and empirical

game-theoretic analysis to gain insight into strategic interactions in financial networks. It also

illustrates the flexibility of the extended financial credit network model, which is employed in all

four studies. Finally, I establish the new strategic feature gains assessment, a method for assessing

the benefit of strategies in the strategy space. The assessment uncovers valuable insights into

strategic behavior in the studies on portfolio compression and fraud risk in real-time payments.

xv



CHAPTER 1

Introduction

1.1 Motivation

The financial system is a vast, complicated network connecting individuals, businesses, and finan-

cial institutions (e.g., banks) through monetary transactions. The network itself is composed of a

web of underlying subsystems and services, each designed to meet various financial needs (e.g.,

payments, investments). In today’s global economy, the financial system plays an increasingly

critical role in connecting people and businesses. It is also constantly evolving as economic and

technological forces impact the behavior of participants and the services offered by the system.

Economic pressures may lead network participants to alter their behavior and adopt new prin-

ciples to guide their interactions. In the wake of the 2008 recession, many financial institutions

adjusted how they conducted their business, seeking better ways to manage their risk [Yellen,

2013, Schuldenzucker and Seuken, 2021]. This included implementing new measures designed to

decrease their exposure to other network participants and limit systemic risk. More recently, the

COVID-19 pandemic was a source of global economic distress [Susskind and Vines, 2020, Padhan

and Prabheesh, 2021]. Health and safety concerns forced mass reliance on card and digital-based

payments, which may prove to be a permanent shift [Toh and Tran, 2020, Jonker et al., 2022].

As these changes are reactions to specific events, it is important to analyze how such behavioral

changes will continue to affect the financial system in the future.

Advancements in technology have also been responsible for driving significant changes, es-
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pecially in the payments landscape. The once popular cash and checks are increasingly being

replaced by card-based methods of transaction [Board of Governers of the Federal Reserve Sys-

tem, 2023]. Mobile wallets, block-chain based payments, and faster processing payments are

revolutionizing the system by offering new ways to complete transactions. Technological innova-

tions also lead to improvements in existing infrastructure. For example, increased automation has

lead to great improvements in timing and accuracy of bank fraud detection systems. These new

technologies warrant further study to better understand how they complement and transform the

existing financial system.

1.2 Studying Financial Networks

Studying the ever-evolving financial system, however, poses several challenges. Often security

and privacy concerns lead to limited availability of real-world financial data for research outside

of financial institutions. Absent of such concerns, data to address new or hypothetical scenarios

may be limited or non-existent. Consider the goal of stress testing for a yet unseen economic

shock or exploring the entrance of a new payment service. Historical data will only contain past

behavior of participants and will not include how such changes may influence future behavior. In

such situations, employing simulation-based methods to conduct the analysis may offer a solution.

Agent-based modeling is a computational approach that leverages simulation to study complex

interactions. It can be a particularly effective method when relevant data is difficult to obtain,

scarce, or non-existent and when the phenomena of interest are especially complex. Agent-based

modeling has been used to simulate and study a variety of social systems including the spread of

epidemic diseases in populations [Chopra et al., 2023, Hoertel et al., 2020], school choice [Diaz

et al., 2019], and financial markets [Cheng and Wellman, 2017, Wellman and Wah, 2017, Wang

et al., 2021]. This computational approach can also serve as a valuable complement to data-driven

analyses that construct mathematical models of systems, when both approaches are feasible. In an

agent-based model, one or more agents interact within an environment according to some defined
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sets of rules and actions. From these interactions, macro-level behaviors organically emerge which

are studied to better understand how complex systems form and operate.

It may be that these behaviors are the result of strategic decisions made by the agents, which

should be considered in the model. Complicating the analysis, the strategic decision made by one

participant is often dependent on the strategic decisions of other participants. Game theory offers

a mathematical framework for analyzing such strategic interactions. It defines an environment in

which strategic players interact according to sets of strategies that govern their behaviors. The

players derive utility based on personal preferences over outcomes that occur as a result of the

strategic choices. Analyzing the environment involves identifying a stable point in which each

player is employing the best strategy given the environment’s circumstances and player beliefs

about other participants’ strategic decisions, referred to as an equilibrium. Unfortunately, classical

game-theoretic reasoning requires an analytical model of the environment and interactions, which

may be intractable when studying large, complex systems such as financial networks. For such

applications, a method known as empirical game-theoretic analysis may be better suited. Empiri-

cal game theoretic-analysis employs simulation of strategies in an agent-based model to obtain a

mapping of strategies to utility for outcomes, referred to as payoffs. The agents in the model are

equivalent to players in a game theoretic-game and results of simulation are used to identify the

game’s equilibrium.

This dissertation combines methods from agent-based modeling and empirical game-theoretic

analysis to gain insights into strategic decisions arising from economic and technological changes

in financial networks. I extend the financial credit network model with the addition of financial

node types allowing the model to differentiate between the behaviors of various types of network

participants (e.g., banks, customers). This results in a more expressive model capable of capturing

a wider variety of financial scenarios. The extended financial credit network enables the creation of

agent-based models, by serving as an environment in which strategic agents may interact according

to behavior defined by heuristic strategies. I employ methods from empirical game-theoretic anal-

ysis to identify the equilibrium behavior of these agents with the goal of addressing the following
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questions:

1. What factors drive the strategic decisions of financial network participants?

2. How do the decisions of strategic participants affect outcomes for the entire network?

More specifically, I analyze the equilibrium strategies to determine the information most ben-

eficial to an agent making the strategic decision and how variation in environmental parameters

may play a role. Once the equilibrium is identified, I seek to understand how agents following this

behavior affects the network as a whole, as well as any non-strategic participants. I address these

questions as they pertain to strategic debt compression, fraud detection, and real-time payments.

An overview of the remaining chapters within this dissertation follows.

1.3 Dissertation Overview

Chapter 2 outlines the representations and methods employed for modeling and analyzing finan-

cial networks, as well as provides the necessary background information for understanding these

methods. Section 2.1 explains the financial credit network model and introduces the extended fi-

nancial credit network with financial node types. I provide details on game theoretic-reasoning and

empirical game-theoretic analysis in Section 2.2. The particular method for conducting empirical

game-theoretic analysis employed, Subgame Search, is discussed in Section 2.2.3. Finally, Sec-

tion 2.3 introduces a new methodology for assessing the value provided by subsets of the strategy

space referred to as the strategic feature gains assessment.

The next four chapters demonstrate use of the extended financial credit network and empirical

game-theoretic analysis in four case studies of strategic decision-making in financial networks.

Chapter 3 explores portfolio compression, a method for eliminating cycles of debt in a network,

as a strategic decision made by banks. Bank nodes strategically vote to accept or reject a potential

compression, which is performed only if nodes on the cycle vote unanimously in favor. I find that

the compression decision is best made using strategies based on simple, local network information
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rather than simply unconditionally accepting or rejecting a proposal. Furthermore, as measured by

several metrics, a strategic compression vote does not negatively impact the network. By perform-

ing the strategic feature gains assessment, I uncover an important link between the recovery rate of

insolvent nodes and the way banks perceive the potential effects of a cycle on systemic risk. The

work reported in this chapter appears in the proceedings of the International Conference on AI in

Finance [Mayo and Wellman, 2021].

Chapter 4 investigates strategic use of costly fraud detection systems for credit card payments.

Bank nodes strategically determine if a payment should be flagged and sent to the fraud detector,

while malicious actors attempt fraudulent payments by strategically exploiting weaknesses in the

bank nodes. The analysis shows a strategic dependency between equilibrium behavior and a bank

node’s relative fraud detection capabilities. Banks with weaker fraud detection systems (weak

banks) flag most payments regardless of fraud detection costs, while banks with stronger detection

capabilities (strong banks) will take into account the rising costs of fraud detection. Strong banks

flag most payments when costs are low, but switch to flagging only highly suspicious payments

when costs rise. Malicious actors will always frequently attempt high value fraudulent payments.

Analyzing the breakdown of costs experienced by banks shows that strong banks are better off

when flagging strategically, while weak banks should flag all payments. Part of the contents of

this chapter was presented at the AAAI workshop on Modeling Uncertainty in the Financial World

[Mayo et al., 2023].

Chapter 5 studies banks’ strategic allowance of real-time payments use by customers at risk of

overdrafts. Bank nodes strategically set minimum thresholds on deposit holdings required for a

customer to qualify to send these new payments. Analyzing the results, I note that banks select

thresholds that allow most, though not all, customers to send real-time payments. Banks tend to

increase allowance as the processing delay of standard payments increases or the likelihood of

customer overdrafts decreases. I observe both customers and banks are better off, as measured by

several outcomes, when all customers are allowed to send real-time payments. Thus, I conclude

the strategic outcome in this situation is not socially optimal. The work presented in this chapter
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appears in the proceedings of the International Conference on AI in Finance [Mayo et al., 2021].

Chapter 6 extends work from the previous two chapters by focusing on banks’ strategic al-

lowance of real-time payments given the risk of fraud. Bank nodes strategically select maximum

thresholds on payment values above which a payment cannot be sent in real time. Malicious actors

attempt fraudulent payments in the network for which banks may be liable. My analysis finds

bank nodes maintain high thresholds, but balance this with high investment in fraud detection

when liable for fraud. The use of the strategic feature gains assessment highlights the importance

of thresholds as a risk mitigation technique for banks. The malicious actors strategically exploit

banks where they have historically been most successful committing fraud and generally attempt

fraud using any payment type. I find the measures employed by banks to alleviate fraud risk drasti-

cally affect fraudulent payments with little disruption to customers. A portion of the work reported

in this chapter will appear in the proceedings of the International Joint Conference on Artificial

Intelligence [Mayo et al., 2024].

Chapter 7 concludes the dissertation with a summary of contributions and discussion.
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CHAPTER 2

Network Representations and Methods for Analysis

This chapter describes the financial network representation and methods for analysis employed in

this dissertation. First, I discuss the modeling of financial networks as a set of nodes connected by

directed edges leading to the financial credit network (FCN) model. I introduce an extension to this

FCN model by defining financial node types and illustrate how they allow for a more expressive

model capable of capturing a wider variety of financial relationships. Then, I explain the main

analysis method, empirical game-theoretic analysis (EGTA), and its connection to agent-based

modeling. Finally, I introduce a novel use of EGTA to assess the benefit of strategies in a strategy

space, which I refer to as the strategic feature gains assessment.

2.1 Financial Network Modeling

2.1.1 Financial Credit Networks

The credit network formalism was introduced as a way to represent a trust relationship between

individuals in a network [DeFigueiredo and Barr, 2005, Ghosh et al., 2007, Dandekar et al., 2011]

modeled as a graph. The nodes in the graph represent individuals participating in the network.

Nodes are connected by directed edges referred to as credit edges representing the willingness of

a node to accept IOUs from another node in the network. The weight on each edge represents

the capacity for trust in terms of how many IOUs the node is willing to accept. An example of a

relationship between two nodes, A and B, in a network is shown in Figure 2.1. Node A is willing
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to accept up to 60 IOUs from node B, while B is willing to accept up to 100 IOUs from A. The

respective credit edges are represented in the figure as solid red arrows.

Figure 2.1: An example of a simple credit network with two nodes and two credit edges represented
by the solid, red arrows.

This establishment of trust allows the nodes to call in favors from one another, such as the

procurement of goods or rendering of services, in exchange for IOUs. For example, node A may

give node B 10 IOUs in exchange for B providing some service to A. After the exchange, node A

is now willing to do 10 additional IOUs worth of favors for node B in the future. We represent this

transaction as an increase in the value on the credit edge from A to B of 10 IOUs. On the other

hand, since A has called in 10 IOUs worth of favors, B is now willing to do 10 IOUs fewer favors

in the future for A. This is captured by the decrease in the value on the credit edge from B to A by

the 10 IOUs. After this exchange, the network appears as in Figure 2.2.

Figure 2.2: An example of a simple credit network after a transaction of 10 IOUs from node A to
node B.

Such an exchange of IOUs represents a transaction in which one party incurs a debt of IOUs

for a service (favor) with a party they trust to complete the transaction. For this reason, the credit

network formalism offers a way to model and study various financial relationships. General prop-

erties of credit networks have been studied by Dandekar et al. [2011, 2015]. Credit networks have

previously been used to study recommender systems [DeFigueiredo and Barr, 2005], multi-unit

auctions [Ghosh et al., 2007], and informal borrowing [Karlan et al., 2009].
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The credit network model was first expanded by Cheng et al. [2016] with the inclusion of

interest rates on the network edges, creating the financial credit network. Similar to the credit

network formalism, a credit edge in an FCN represents willingness of one node to transact with

another. In a financial network, this willingness is often due to the potential to charge interest rates.

An FCN credit edge is specified by its capacity, the amount of credit extended, and its interest rate,

the minimum rate demanded for drawing on the line of credit. An example of an FCN with solid

red credit edges is shown in Figure 2.3. In this example, node A extends 50 units of credit to B

with an interest rate of at least 10%. Meanwhile, C extends 60 units of credit to A with an interest

rate of at least 20%.

Figure 2.3: An example of credit edges in a financial credit network.

To incorporate interest rates, it is necessary for FCNs to distinguish between willingness to

transact and existing transactions accomplished with the introduction of debt edges. A transaction

takes place in the network when a node draws upon credit, creating a debt owed from one node

to another. This debt is represented by a debt edge which specifies a value of the debt and the

interest rate incurred. Continuing the FCN example, consider the scenario in which B borrows 20

units from node A. This is feasible due to the credit edge from A to B, though recall A demands an

interest rate of at least 10%. Assume A and B agree to the minimum interest rate, drawing on the

credit now means B owes a debt of 20 units with an interest rate of 10% to A in the future. This

is modeled by the dashed blue debt edge from B to A of 20 units and an interest rate of 0.1 shown

in Figure 2.4. Since B has drawn on some of the credit A is willing to extend, the additional credit

A is willing to extend to B in the future must decrease by the amount already transacted. This is

represented by the decrease in the capacity on the credit edge from A to B from 50 to 30 units.
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Figure 2.4: An example of node B drawing on 20 units of credit at an interest rate of 10% creating
a debt from B to node A.

This simple example demonstrates the FCN’s ability to deliver a richer model of financial inter-

actions than the simpler credit network formalism. The inclusion of interest rates and separation

of credit and debt edges allow for the modeling of credit cards, loans, and other such financial

transactions. Thus, a simple addition to the credit network model greatly expands the modeling

capabilities to increasingly complex financial relationships.

2.1.2 Extending FCNs with Financial Node Types

I introduce a new extension to the functionality of FCNs by including node types. A node’s type

defines its behaviors and edge connections in the network, further expanding modeling capabilities.

In this work I will introduce three types of nodes: bank nodes, customer nodes, and fraudster

nodes; however the model can support additional node types. The edges in the network will be

as described in the FCN model, but by assuming identical interest rates throughout the network

interest rates can be omitted to simplify edge specification. A credit edge is defined as (A, B,

credit, v) denoting A extending v units of credit to node B and will be depicted in figures as a solid

red arrow connecting nodes. An edge (A, B, debt, v) denotes a debt edge with node A owing v

units to node B. Debt edges will be depicted in figures as a dashed blue arrow connecting nodes.

I refer to the set of all edges within the network as E. The inclusion or exclusion of specific node

types and directionality of edges allows the model to express varied financial scenarios as I will

now describe.
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2.1.2.1 Bank Nodes

Bank nodes represent banks and other financial institutions. The credit relationships between

banks forms the interbank network, allowing banks to transact with one another on behalf of

themselves and their customers, creating debts. In the models presented here, banks are fully

connected by credit edges representing a willingness by every bank to transact in some capacity

with every other bank in the network. I refer to the set of bank nodes in the network as B =

{B1, . . . , Bb}. An example of an interbank network is shown in Figure 2.5. In this example, the

amount of credit B1 extends to B2 is equal to the amount of credit B2 extends to B1 (40 units).

This creates two credit edges, (B1, B2, credit , 40) and (B2, B1, credit , 40), which is condensed to

a double sided arrow between the two nodes to simplify the diagram. Similarly, B1 extends 60

units of credit to B3 and is extended 60 units of credit in return. Such equal relationships are

not necessary, however, as demonstrated by the relationship between B2 and B3. Bank node B2

extends B3 60 units of credit, while B3 extends B2 only 50 units.

Just as in the FCN example, a node in this network can transact with any other trusted node in

the network, represented by the existence of a credit edge. Transactions create debt edges between

nodes, as described below in Section 2.1.2.3.

Figure 2.5: An example of an interbank network of three bank nodes fully connected by credit
edges. In this example, a double sided arrow describes two bank nodes extending an equal amount
of credit to one another.

2.1.2.2 Customer Nodes

Customer nodes represent customers, either individuals or businesses, and allow the model to

explicitly distinguish between specific financial retail relationships. I refer to the set of all customer
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nodes in the network as C = {C1, . . . , Cn}. In financial networks, customers interact with one

another through various financial institutions rather than directly, such as through the use of a

credit card. Thus, customer nodes are restricted to direct edge connections with bank nodes only,

relying on the interbank network to conduct business with other customer nodes. The manner in

which these edge connections are defined allow for the expression of different customer and bank

relationships.

For example, Figure 2.6 models a customer node C1 with 100 units deposited in an account at

bank B1. The deposits are modeled as a debt edge from the bank to the customer with the value

on the edge symbolizing that C1 may withdraw some or all those deposits at any time, at which

point B1 is obligated to return them. A customer also has a willingness to hold additional deposits

in their account, subject to FDIC insurance limits or personal preferences. I model this as credit

extended by the customer to the bank creating a credit edge from C1 to B1 with a value equal to

the amount of additional deposits, in this case 50 units. Together with the current deposit holdings,

this forms an upper bound on the total amount of deposits a customer is willing to hold in this

account at any given time. In this example, C1 is willing to hold up to 150 units in its account at

any given time.

Figure 2.6: An example of a customer node C1 with 100 units deposited in an account at bank
node B1 and a willingness to hold up to 150 units in the account at any given time.

On the other hand, the relationships between banks and customers could be reversed. Figure 2.7

depicts a debt owed by customer node C1 to bank node B1, who has issued credit to C1. Such a

relationship arises when the bank issues credit to the customer, such as through a loan or credit

card, which the customer draws on creating a debt. A credit edge represents the future willingness

of the bank to extend credit to the customer, while the debt edge represents credit already drawn

on by the customer. Using the capacity on the edges, it can be concluded that B1 originally offered

200 units of credit to C1 of which C1 has already drawn 100 units. Thus, B1 is willing to extend
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up to 100 units of credit to C1 in the future.

Figure 2.7: A customer node C1 with a line of credit (e.g., credit card) issued by bank node B1. The
customer has drawn on 100 units previously to make payments and 100 additional units remain on
the credit line.

In these examples, only one relationship between a bank and customer node is represented at a

time. However, this is not a requirement and multiple relationships between banks and customers

may be expressed in the same model.

2.1.2.3 Transactions

Transactions may occur in this extended FCN network in many forms between the various parties.

In this section, I will describe two types of transactions captured in this model: bank–to–bank and

customer–to–customer. Both transaction types utilize the interbank network.

Banks transact with each other on behalf of themselves or their customers. A bank–to–bank

transaction is modeled by the creation of a debt edge between the two transacting nodes and an

adjustment to the value on the accompanying credit edge. An example of B1 transacting 10 units

with B2 is shown in Figure 2.8. A debt edge from B1 to B2 is created with value 10 units and the

value on the credit edge from B2 to B1 has decreased by 10 units. The credit edge from B1 to B2

would remain unaffected by this transaction, and has been omitted from the figure for simplicity.

Recall that, by definition, all bank nodes are willing to transact with all other bank nodes in the

network.

When the transaction takes place between two customers, it is referred to as a payment. The

customer making the payment is the sender, while the customer accepting the payment is the

receiver. Senders may draw on credit, such as a loan or credit card, or on deposits in a bank account

to make a payment. In either case, the process unfolds over a series of defined steps referred to as

initialization, clearing, and settlement. First, the sender declares the intended recipient and amount
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Figure 2.8: A transaction of 10 units from B1 to B2 within the interbank network shown in Fig-
ure 2.5.

of the payment to its bank. From there, the sender’s bank will confirm payment detail validity and

exchange messages with the receiver’s bank. Finally, funds will be transferred between parties,

ending with the final receipt of funds by the receiver. These steps are incorporated into the extended

FCN model as a series of updates to the edges connecting the payment sender, sender and receiver

banks, and the receiver.

An example of before and after a payment is made in a small network of two customer and

two bank nodes is shown in Figure 2.9. Customer node C1 is as described in Figure 2.6. A

second customer node, C2, has an account at bank node B2 with 150 units currently deposited and

a willingness to hold 100 additional units. Consider the case where C1 makes a payment of 10

units to C2 by drawing on its current deposit holdings. C1 withdraws 10 units from its account

to make the payment, decreasing the value on the debt edge from B1 to C1 by the value of the

payment. With 10 units fewer in its account, C1’s willingness to hold additional deposits increases

by the value of the amount withdrawn. This is reflected in an increase in the credit edge from C1

to B1 by 10 units. In this case, the payment receiver’s account is at a different bank requiring B1

to transact through the interbank network on behalf of its customer. Note that if the sender and

receiver belonged to the same bank, this step would be omitted. As described above, B1 routes

the payment through the interbank network resulting in creation of a debt edge and a change to the

credit edge according to the value of the payment. Finally, B2 deposits the funds into the receiver’s

account, increasing C2’s deposits by 10 units as captured by the increase on the debt edge from B2

to C2. With 10 additional units in its account, C2’s willingness to hold additional deposits must

decrease by the same amount reflected with a decrease in the value on the credit edge from C2 to
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B2 by 10 units. These steps complete a payment made using funds held in a bank account from

customer node C1 to C2.

Figure 2.9: An example payment of 10 units between customer node C1 and customer node C2 in
a model of customer nodes with bank deposits.

If instead the sender were to draw on a line of credit to make a payment, the change would be

reflected in a decrease on the credit edge and an increase in the debt edge. The receiver, however,

would still receive the payment as an increase in debt from the bank to the receiver and the inter-

bank transaction would be unchanged. A detailed description of payments using credit is saved for

Chapter 4. The timing of the edge updates described may also be varied to allow for the distinction

between different payment types, as presented in Chapter 5 and Chapter 6.

2.1.2.4 Fraudster Nodes

The model may also incorporate malicious actors committing fraudulent payments within the net-

work. Such actors are represented by the fraudster node type, while their actions are expressed

with the addition of the fraud edge. A fraud edge (F1, C1, fraud , v) is a non-directed edge con-

necting F1 and C1 representing F1 committing v units of fraud using C1’s account. In this case,

customer node C1 is referred to as the victim. A fraudster may draw on either a customer’s bank

account or credit line, depending on the financial scenario modeled, to commit fraud. Figure 2.10

shows an example of fraudster node F1 after committing 10 units of fraud using customer node

C1’s bank account as reflected by the fraud edge between F1 and C1.

When a fraudster makes a fraudulent payment in the network, the processing and outcome

remain the same as in the non-fraudulent case. Thus, the only change in the edge updates is the
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Figure 2.10: An example of the relationship between a malicious actor, the fraudster, and a cus-
tomer in which the fraudster has committed 10 units of fraud using the customer node’s account.

creation of the fraud edge connecting the fraudster and the victim. An example of the full effect

of fraudster node F1 making a payment of 10 units to customer node C2 using C1’s account is

shown in Figure 2.11. Note this payment is similar to the payment shown in Figure 2.9 with

the modification of a fraudster, rather than customer initializing the payment. As can be seen

in the figure, the edge updates between the victim, banks, and receiver appear the same as the

non-fraudulent case.

Figure 2.11: The result of fraudster node F1 making a payment of 10 units using customer node
C1’s account. Note with the exception of the fraud edge, the resulting model appears the same as
Figure 2.9.

2.1.2.5 Summary

The extended FCN model with node types introduced in this section provides greater flexibility for

expressing financial scenarios than previous financial network models. This is achieved through

the inclusion or exclusion of specified node types and the defined connections between nodes,

allowing for different versions of the model. As I will demonstrate in later chapters, these versions

along with the definitions of their mechanics and evolution will serve as the environments for

studying strategic interactions. By studying these environments with game-theoretic analysis as

described below, I seek to understand strategic decision-making within financial networks and the

effects of those decisions on network outcomes.
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2.2 Empirical Game-Theoretic Analysis

This section discusses the main methods for performing strategic analysis on the extended FCN

model. I describe empirical game-theoretic analysis, which achieves game-theoretic reasoning

with the use of simulation in agent-based models, and the specific analysis method Subgame

Search. I also introduce the novel strategic feature gains assessment which employs EGTA to

assess the benefit of strategies in the strategy space for making strategic decisions.

2.2.1 Game Theory Concepts

Many interactions between individuals are governed by underlying strategic behaviors. This is

perhaps obvious in games such as chess or poker, but also present in a range of other areas from

finance (e.g., auctions, financial markets) to politics (e.g., voting, diplomacy). Economics provides

the game theory framework to analyze such strategic interactions between individuals.

A game Γ = (P, (Sp), (up)) consists of P players indexed by p, each having a non-empty

strategy set Sp. The strategies available to a player define how it behaves and interacts with other

players and the environment in which they exist. Each player has a payoff function, up : ΠpSp →

R, which quantifies the utility player p receives for outcomes resulting from the strategic choices

of all players in the game.

If all P players in the game have the same strategy sets and payoff functions, we say they are

interchangeable and the game is referred to as a symmetric game. Symmetric games allow for

more concise representations. For example, we can simply refer to the strategy set of all players S

and the utility function u. In some games, the players can be partitioned into two or more groups

with symmetry holding within the groups. These groups are referred to as roles and the games as

role symmetric. For a role symmetric game, we define a set of strategies and a utility function for

each role. In this dissertation, I deal with symmetric or role-symmetric games and will introduce

the remaining definitions for symmetric games.

We define a mixed-strategy profile σ as a probability distribution over the strategy set S as-
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signing the probability a player employs each strategy. The payoff a player p receives for playing

according to σ is up(σ), while the payoff to some player p for deviating to strategy s while the

remaining players play according to σ is up(σ−p, s). Comparison between strategy profiles can be

measured using regret, the maximum gain a player p receives for unilaterally deviating from σ to

another strategy s written:

REGRET(σ) = max
s∈S

up(σ−p, s)− up(σ) (2.1)

Recall, we are studying symmetric games in which players are interchangeable and thus any player

p may be chosen to deviate without loss of generality.

There exist several game-theoretic solution concepts, but for the purposes of this work I focus on

Nash equilibrium. A Nash equilibrium is a strategy profile σ∗ from which no single player is better

off unilaterally deviating, or REGRET(σ∗) = 0. An equilibrium is referred to as a pure-strategy

Nash equilibrium if it assigns a single best strategy and a mixed-strategy Nash equilibrium if it

assigns a probability distribution over the strategy space.

Classical game theory studies an analytical, mathematical model of the game to reason about the

decisions of rational agents. However, for complex environments constructing an analytical model

may not always be possible. It can be difficult to completely define the outcomes of interactions

for a large number of players or for a large strategy space. Furthermore, there may be complexity

in the environment such as the effects of uncertain events (e.g., a stock market crash) that may

also disproportionately affect players. Fortunately, analysis of such complex interactions may be

achieved with a computational method known as empirical game-theoretic analysis [Wellman

et al., 2024]. EGTA combines agent-based modeling, multi-agent simulation, and equilibrium

computation to reason about complex strategic decision-making.
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2.2.2 EGTA Concepts

EGTA employs agent-based models to simulate the behavior of agents interacting in an environ-

ment and uses data gathered from the simulations to conduct a game-theoretic analysis [Wellman,

2016]. In an agent-based model, agents adopt strategies that define their behaviors and interactions

within the model. These strategies can range from simple rule-based heuristics to those incorpo-

rating more complex implementation such as deep learning. Agents receive a payoff as a result of

the performance of their strategies in the environment defined by a payoff function. Thus, it may

be understood that an agent-based model possesses the necessary definitions of a game-theoretic

game Γ(P, S, u). Specifically, it defines a set of players (agents), a set of strategies for players,

and payoff functions mapping outcomes to valuations for each player. By defining the agent-based

model as a game, the model may be used to conduct game-theoretic analysis. Since the game is

induced from simulation, the resulting game model is referred to as an empirical game model.

To construct the empirical game model, payoff data is gathered for strategies using simulation

in the agent-based model. The agent-based model is considered a black-box oracle O mapping a

strategy profile to payoffs for each agent. Simulating a strategy profile in the agent-based model

is referred to as applying O to the strategy profile. To account for uncertainty in the environment,

for example variation in agents’ private information (e.g., asset holdings), O is applied to a given

profile multiple times. Thus, the payoff for each strategy profile is calculated as the sample average

of payoffs observed in each application of O. The general EGTA process is shown in Figure 2.12.

As the number of agents and/or strategies increases, the number of strategy profiles grows

exponentially large and only a fraction can be practically evaluated. For example, the game with

10 symmetric agents and 16 strategies described in Chapter 3 has over 3.2 million distinct profiles.

Fortunately, EGTA methodology is generally able to identify and confirm approximate equilibria

far short of an exhaustive evaluation of the profile space [Fearnley et al., 2015]. This is often

achieved by careful implementation of search criteria determining which payoff data to gather. In

my experiments, I employ the Subgame Search method and describe its iterative strategy profile

search procedure below.
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Figure 2.12: An overview of the iterative EGTA process. The analysis method identifies Nash
equilibria and determines additional strategy profiles data to gather. The oracle maps strategy
profiles to payoffs using simulation in an agent-based model, which is used to induce the empirical
game.

2.2.3 Subgame Search

Subgame Search employs selective simulation to incrementally construct the empirical game

model with the goal of identifying Nash equilibria [Cassell and Wellman, 2013]. It does so by

continually constructing and searching maximal subgames. A subgame is defined as a game re-

stricting agents to a subset of the strategies from the full strategy set S and for which there exists

payoff data for all strategy profiles in the subgame. Conversely, the full game is the game allowing

agents to play any strategy in S. Subgame Search begins by analyzing small subgames restricting

agents to a few available strategies before potentially moving on to larger subgames. The search is

guided by a required games queue specifying the subgames yet to be evaluated, which is initialized

with subgames limited to all singleton strategies {s}∀s ∈ S.

For each initial subgame in the queue, evaluation consists of the following: removal of a sub-

game from the queue, gathering of payoff data, and analysis of the subgame. Payoff data for all

strategy profiles in the subgame is gathered by applying oracleO to each profile. Since each initial

subgame is a singleton set, only one strategy profile exists in each subgame constituting all agents

playing only the given strategy. In the analysis phase, a Nash equilibrium of the subgame, σc,

is identified and considered a candidate equilibrium for the full game. To confirm or refute this

candidate, O is applied to all one-player deviation profiles from the candidate to strategies outside
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of the subgame. In a one-player deviation profile from σ, a single deviating agent deviates to a

different strategy while the remaining agents play according to σ.

These deviating profiles are evaluated to determine if any beneficial deviations from the candi-

date exist. A beneficial deviation, b, is a strategy providing a higher payoff to the deviating agent

than playing according to the candidate equilibrium. In other words, the candidate equilibrium has

non-zero regret, as defined in Equation 2.1. If a candidate has no beneficial deviations, the regret

is 0, and by definition it can be confirmed as an equilibrium of the full game.

Simulation-based games often gather noisy payoff data and to account for this, Subgame Search

considers ϵ-Nash equilibrium. An ϵ-Nash equilibrium is a strategy profile with regret less than ϵ,

considered an approximate Nash equilibrium of the game. Thus, as long as the regret is less than ϵ,

Subgame Search will consider the candidate a confirmed equilibrium of the full game. Otherwise,

the candidate equilibrium and the beneficial deviations are used to create new subgames to be added

to the required games queue. The support of a strategy profile, supp(σ), is the set of strategies

assigned a non-zero probability of being played. The strategy offering the largest payoff gain, the

most beneficial deviation, is defined as b∗ and the set of all additional beneficial deviations is B.

Then new subgames are created and added to the queues as follows:

• Add subgame formed by supp(σc) ∪ b∗ to the required games queue.

• Add subgames formed by supp(σc) ∪ b ∀b ∈ B to the back-up queue.

The processing of subgames added to the required games queue follows the same steps outlined

for the initial subgames. Payoff data collected while processing a given subgame is stored and

accessible throughout the search process, making later processing more efficient. When gathering

the payoff data for new subgames, O only needs to be applied to profiles not previously encoun-

tered in the search process. The remaining profiles’ data can be accessed in the stored data base

for the analysis step. Similarly, O is only applied to new one player deviation profiles. Thus,

as exploration continues, the number of profiles required to simulate for evaluation of subgames

decreases.
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Subgame Search terminates when at least one Nash equilibrium of the full game has been

identified and the required games queue is empty. In the event an equilibrium has not yet been

found and the queue is empty, the search process proceeds by pulling subgames from the back-up

games queue. The search process is designed to minimize the number of strategy profiles required

to search and thus is not guaranteed to return multiple Nash equilibrium if more than one exists.

The complete steps of the Subgame Search process are outlined in Figure 2.13. These steps can be

contextualized within the general EGTA framework according to the color of their outline. Steps

outlined in purple perform calls to the oracle, while those outlined in black perform analysis on the

constructed game model.

Figure 2.13: The Subgame Search process iteratively evaluates subgames to identify candidate
Nash equilibria and confirms or refutes them as Nash equilibria of the full game. Steps are out-
lined in color corresponding to their context within the general EGTA framework presented in
Figure 2.12.

2.3 Strategic Feature Gains Assessment

EGTA also serves as the basis for a novel method of assessing the strategy space I introduce as the

strategic feature gains assessment. Often, we wish to analyze a strategic context beyond simply

identifying strategic choices of rational agents in equilibrium. In particular, we may wish to quan-
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titatively assess and compare the suitability of strategies for making the strategic decision. Such

an analysis may provide additional context to the strategic selection, a ranking of the strategies, or

help constructing new strategies.

A Nash equilibrium may provide some measure of answering such questions, though it is rather

limited providing at best a binary partition of the strategy space. In particular, strategies in the

support may be considered beneficial for making the strategic decision, while the remaining strate-

gies are deemed not beneficial. While the probability assigned to strategies in equilibrium may

be seen as a natural ranking, this may prove a problematic comparison. In particular, under such

an interpretation all strategies outside the support are considered equally ranked. To illustrate the

problem, consider such a strategy S1 that always performs poorly against any other strategy in the

set. A so called dominated strategy would never logically be selected and its poor performance

should result in a very low ranking. However, by using probabilities assigned in equilibrium, such

a strategy would be ranked similarly to a non-dominated strategy outside the support. Therefore,

Nash equilibrium alone does not necessarily provide sufficient meaningful comparison of individ-

ual strategies.

Prior works address analysis of the strategy space with several approaches. Shearer et al. [2023]

compares an outcome of interest, specifically total and market profits, under different strategies for

manipulating financial benchmarks. In other cases, the focus is not on individual strategies but

rather on groups or types of strategies categorized by similarities such as the basis for strategic

decision-making. Such analyses compare the usefulness of different categories in equilibrium

[Mayo and Wellman, 2021, Wang et al., 2021], as well as comparing outcomes based on the inclu-

sion or exclusion of particular strategy groups [Brinkman and Wellman, 2017, Wang et al., 2021].

Finally, Jordan [2010] introduces the concept of NE-Regret to measure the benefit of a strategy

calculated by the regret to a player for deviating from the equilibrium to a given strategy. This leads

to the NE-response ranking which can be used to rank strategies according to the benefit they pro-

vide for strategic decision-making. NE-Regret has been applied to studying poker bots [Jordan,

2010], auction bidding strategies [Wellman et al., 2012], and graph security games [Nguyen et al.,
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2017]. Balduzzi et al. [2018] introduces a similar method for ranking agents and single-agent tasks

called Nash averaging.

I present the strategic feature gains assessment to understand the benefit to a player in a game

provided by the inclusion of a specified set of strategies, deemed the deviation set. The deviation

set is defined such that the encompassing strategies are united by commonalities such as the basis

for decision making or their effect on agent behavior. The assessment quantifies benefit to players

as the maximum payoff gain achieved by deviating to strategies in the deviation set from a Nash

equilibrium of a base set identified using the Subgame Search procedure described above.

The assessment is defined for a symmetric game Γ = (P, S, u) with P players indexed by p, a

strategy set S, and a utility function u. The deviation set is defined as a set of strategies, ∆ ⊂ S, to

be assessed. The set of initial strategies players may access is the base set Ω ⊂ S, which is disjoint

from ∆.

The assessment steps are as follows:

1. Define the sets ∆ and Ω to be used for the assessment

2. Obtain σ∗(Ω) using Subgame Search

3. Calculate the gain of ∆ as maxs∈∆∪Ω ui(σ
∗
−i, si)− ui(σ

∗)

If a game is role symmetric with the assessment performed on only one role, players of the

non-assessed role retain use of their full strategy sets throughout the assessment. Performing the

assessment with different base and deviation sets provides a point of comparison between different

scenarios or information sets. This allows for a broader understanding of the important factors in

player decision making.

2.4 Summary

In this chapter, I describe the methodological components employed in this dissertation. The ex-

tended financial credit network model with node types introduces a flexible environment for ex-
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pressing a variety of financial situations. With the addition of rules governing node interaction,

strategy sets, and payoff functions, the model fits the definition of an agent-based model and al-

lows for the application of empirical game-theoretic analysis with nodes as players in a game.

Subsequent chapters will specify these additions for analysis of specific financial scenarios. Em-

pirical game-theoretic analysis is performed using Subgame Search to identify Nash equilibria in

these financial network games.
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CHAPTER 3

Portfolio Compression

3.1 Introduction

The idea of portfolio compression is to simplify a web of financial obligations by canceling a cycle

of debt, leaving each party’s net position the same. Consider the situation in Figure 3.1 where bank

A owes money to bank B, B owes a like amount to bank C, and C owes the same amount to A.

Furthermore, suppose the debt contracts comprising the cycle over these institutions have the same

interest rates and maturity dates. Intuitively, canceling the three debts leaves all parties in the same

net position, while simplifying their balance sheets. If all banks on a cycle are solvent and able

to pay their debts when due, the operation of compressing portfolios by canceling the debts has

no effect and the compression decision is of little interest. With risk of default, however, portfolio

compression is not generally neutral and may affect stability in the network.

Figure 3.1: A simple example of a debt cycle.

For instance, if bank A in Figure 3.1 turns out to be insolvent, then B would be better off had

the compression occurred than had it not. C might similarly be better off if B’s ability to pay
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its debts depends on receiving payment from A. Thus, compression may serve to limit contagion

in financial networks by removing paths of default propagation. This potential to limit financial

contagion while simplifying balance sheets is the reason compression has gained prominence since

the 2008 financial crisis.

Figure 3.2: An example where insolvency in the network leads to harmful compression effects in
the network [Schuldenzucker and Seuken, 2021].

On the other hand, portfolio compression can also impede the ability for parts of the network to

absorb losses from an insolvent bank, thus enabling spread that may have been avoided. Schulden-

zucker and Seuken [2021] present an example, shown in Figure 3.2, where eliminating a cycle

causes previously solvent institutions to become insolvent. The network starts with a cycle like the

one described above with the addition of two edges: B owes money to D and D owes money to E.

Each bank holds some quantity of external assets outside of the network. Suppose the cycle were

compressed and then B experiences a shock that reduces its external assets to zero. In this scenario,

B would have no assets to pay its remaining creditor, D. To absorb the loss from B’s insolvency, D

must hold enough external assets to pay E, otherwise D would also default. In contrast, suppose

this cycle were not compressed prior to the shock reducing B’s external assets to zero. If C’s exter-

nal asset holdings are sufficiently large, C could absorb the loss from B’s insolvency and prevent

its spread to A. In turn, A would pay B the full debt amount. B would then use its internal assets to

make a partial payment to its creditors, which could prevent D from being insolvent. Note that the

realization of this outcome depends on the value of the partial payment made by B. In this case, the

cycle cushions the shock and so compression has the harmful effect of allowing default to spread

elsewhere.
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Although compression in this case is harmful to the network, the optimal outcome of rejecting

the compression may not be realized. In this example, bank C would prefer compression, while A

and B’s indifference towards compression may result in their acceptance of the proposal. However,

imagine a slight modification to the network so there is a liability from D to A. If D’s ability to

pay its liabilities depends on receiving a payment from B, compression would allow insolvency to

spread to A. In this case, A would no longer be indifferent about the compression. Thus, we can

see that the qualitative effects of compression are dependent on characteristics of the network.

Some of the prior work on compression has focused on analyzing which characteristics of a

network determine whether a compression will be harmful or not. One important factor is the

recovery rate: the fraction of assets an insolvent node is able to recover and use to pay back

creditors, with the remaining assets being lost to default. Veraart [2019] finds that when recovery

rates are nonzero, portfolio compression may be harmful to the network. Schuldenzucker and

Seuken [2021] build on these results by studying a broader range of network aspects to determine

when financial institutions are incentivized to perform compression and when compression is a

Pareto improvement.

These analyses illuminate the interplay of network structure and effects of compression from

an ex-post perspective where details of the external shock are known. In practice, decisions about

whether to compress debts are made by institutions with a limited view of the network and prior

to resolution of uncertain financial events. Evaluation of compression decisions, therefore, neces-

sitates a model accounting for uncertainty and incomplete information on the state of the network.

Further, prediction of what these firms would decide should also consider strategic effects, recog-

nizing that optimal policies generally depend on how the other firms make their decisions.

To analyze the broader context of compression decisions, I frame portfolio compression as a

strategic decision made by individual agents with incomplete information in an extended FCN

model. I define a one-shot game played by bank nodes strategically deciding to accept or decline

a proposed compression. I consider a variety of heuristic strategies based on the information

available to nodes about the network, which may provide useful indications of potential negative
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effects of compression to the voting node. These strategies are evaluated under different insolvent

node recovery rates using EGTA to identify Nash equilibria. Additionally, I apply the strategic

feature gains assessment to identify the value of local information for making the compression

decision. Finally, I conduct an analysis of the effects of compression as a strategic decision on the

network, including quantifying systemic risk. Bank nodes in the network make the compression

decision according to the Nash equilibria identified through EGTA and various outcomes in the

network are measured. Systemic risk is calculated three ways using measures of total equity and

number of insolvent nodes.

From these experiments I find evidence that for an individual node, the optimal policy is gen-

erally conditional on features of the local network and the individual’s balance sheet. Through

the strategic feature gains assessment, I find that at higher recovery rates, nodes perceive a greater

potential for cycles to cushion shocks in the network. When the compression decision is made

strategically, the likelihood of a given cycle being compressed is lower than in the social opti-

mum. Compression decisions generated by strategic consensus may be better or worse than no

compression. However, the price of anarchy of a strategic compression is high for all recovery

rates.

3.2 Related Work

Eisenberg and Noe [2001] pioneered the modeling of financial debt networks as a set of nodes

representing banks, with directed edges forming interbank liabilities, for the purpose of studying

systemic risk. Rogers and Veraart [2013] expand the representation by adding recovery rates to the

network, allowing insolvent banks to recover part of their assets to pass onto creditors. Resolution

of debts in such a network is defined by a clearing vector specifying payments required by each

node. The authors present an iterative algorithm for deriving clearing vectors consistent with the

debt obligations and recovery rates applied to insolvent nodes. They use their expanded model

of the financial debt network and clearing algorithm to study the rescue of failing banks in the
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network through mergers with solvent banks. The authors find that solvent banks do not always

have both the means and incentives to rescue insolvent banks in the network.

Studies of contagion and systemic risk in financial networks have emphasized the impact of

network structure [Acemoglu et al., 2015, Elliott et al., 2014, Glasserman and Young, 2015]. These

works do not specifically address the issue of debt compression. Kanellopoulos et al. [2023] study

debt transfers, which also operate on the premise of debt cancellation, however the cancellation is

not necessary cyclic in nature. Zhou et al. [2024] analyze a strategic prepayments game, in which

insolvency and cycles in the network may incentivize a prepayment. A prepayment is made when

a bank pays a liability in full before its maturity date, clearing the debt from the network. While

multiple prepayments may occur, they will not necessarily eliminate a cycle of debt in the network.

Prior studies of compression tend to focus on algorithms for identifying candidate compres-

sions, rather than the decision of whether to compress particular candidates [D’Errico and Roukny,

2019, O’Kane, 2017]. For example, D’Errico and Roukny [2019] use transaction data on over-the-

counter derivatives called credit default swaps (CDSs) to study efficiency of different types of

portfolio compression. A CDS is a contract that enables a creditor to hedge the risk of a debt obli-

gation with another member of the network. Efficiency of a compression method is determined by

the amount of the excess–the total amount eligible for compression–the resulting compression is

able to eliminate. Of the types of compression analyzed, conservative and hybrid compression are

the most efficient at removing excess from the network.

Veraart [2019] analyzes the effect of portfolio compression on systemic risk, specifically fo-

cusing on the relationship between systemic risk and recovery rate. Systemic risk is defined by

the set of banks that become insolvent with compression compared to the set in the same network

without any compression. Compression is defined as beneficial when the set of banks defaulting

with compression is a strict subset of the banks defaulting without compression, weakly beneficial

when beneficial or the two sets are the same, and harmful if some node defaults under compression

which would not have defaulted without compression. They prove that when the recovery rate is

nonzero, compression can be harmful to the network. Conversely, compression with a zero recov-
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ery rate is always weakly beneficial. Furthermore, when no nodes on the cycles become insolvent,

the network is indifferent to compression.

Schuldenzucker and Seuken [2021] study compression from the ex-post perspective, analyzing

the relationship between a variety of network characteristics and the effects of compression on

systemic risk. The analysis focuses on whether a compression is beneficial, either in a Pareto

or social welfare sense. For example, they establish a connection between homogeneity of the

network and compression being a Pareto improvement.

These analyses of portfolio compression have demonstrated the potential benefits of compres-

sion both quantitatively and qualitatively, as well as potential harm to systemic risk. Given that

compression has the potential to have a positive or negative effect on the financial network, it seems

worthwhile to consider how financial institutions faced with a potential compression should make

their decision.

3.3 Compression Model and Definitions

I define the compression model as an instance of the interbank network described in Sec-

tion 2.1.2.1. The model consists of a set of bank nodes B = {B1, . . . , Bb} and a set of edges

E between them. In this section I will introduce additional terminology for specifically discussing

interbank debt and compression.

I refer to an edge (Bi, Bj, debt , v) as a liability of v units Bi owes to Bj . This same edge

represents an asset for Bj and since it is within the network it is referred to as an internal asset.

A bank node in this model may owe multiple liabilities to another node, arising from multiple

contracts, and thus I denote the total liability owed by node Bi to Bj as:

lBiBj
=

∑
(Bi,Bj ,debt ,v)∈E

v.

Then I can define a given node, Bi’s total liability in the network by:
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LBi
=

b∑
j=1

lBiBj

Each node is also endowed with some external assets e and I define a node Bi’s total assets

ABi
as the sum of external and internal assets:

ABi
= eBi

+
b∑

j=1

lBjBi
.

A bank node is considered insolvent when ABi
− LBi

< 0.

Using these definitions, I can formally define a portfolio compression. Given a cycle c =

(Bc, Ec) with Bc ⊆ B and Ec ⊆ E, let µc = min
(Bi,Bj ,debt ,v)∈Ec

v denote the smallest liability on the

cycle. Then a compression of a cycle c is defined by the revised set of liabilities for edges on the

cycle:

∀(Bi, Bj, debt , v) ∈ Ec. vc = v − µc.

It can be seen that compression reduces the assets and liabilities of the nodes on the cycle while

maintaining their net positions. An example of a potential cycle and its subsequent compression

can be seen in Figure 3.3. Note credit edges between the bank nodes are omitted for clarity, though

would exist between nodes to support the creation of debt. The cycle c consists of nodes B1, B2,

and B3 and the set of edges: [(B1, B2, debt , 3), (B2, B3, debt , 2), (B3, B1, debt , 5)]. The µc value

is 2. In this example, compressing the cycle allows node B3 to eliminate its exposure to node B2

and decreases the liabilities of B1 and B3.

An interbank network as the one described is also associated with recovery rate parameters

α, β ∈ [0, 1], which govern payments of an insolvent node when its debts reach maturity. The α

parameter denotes the fraction of an insolvent node’s external assets that are recovered. β controls

the fraction of an insolvent node’s internal assets that are recovered. The assets not recovered are

lost to default costs. The total assets recovered by an insolvent node Bi are:
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Figure 3.3: A simple debt cycle before and after compression by two units.

αeBi
+ β

b∑
j=1

lBjBi
.

I make several simplifying assumptions for this current analysis. As presented in Sec-

tion 2.1.2.1, nodes in the interbank network are fully connected representing established trust

between all parties for transacting. The first simplification is all credit edges have infinite value,

allowing for credit edges to be omitted from the discussion. Additionally, all debts in the network

have the same maturity date and interest rate. 1 We also assume a financial institution never has

a liability to itself, lBiBi
= 0. Finally, we assume that α = β, and refer to α as the parameter

controlling the fraction of an insolvent bank node’s total assets that are recovered in the event of a

default.

3.4 Compression Game

Adopting the ex-ante perspective, we introduce a compression game where b bank nodes in an in-

terbank network decide whether to agree to a given compression proposal using heuristic strategies

based on local information. If all accept, the cycle is compressed. After a negative external asset

shock, nodes receive a payoff based on the resolution of liabilities in the network.

1Under this assumption we can also limit each ordered pair of nodes to at most one debt edge.
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3.4.1 Initialization

The network is initialized with b bank nodes, each with a random endowment of external assets

eBi
∼ U{10, . . . , 20}. Liabilities between bank nodes are randomly generated according to the

following procedure:

• Randomly select two nodes Bi and Bj .

• If lBiBj
= 0 and eBj

> 0, create edge (Bi, Bj, debt , v) in E with v ∼ U{1, . . . , eBj
}.

• Update the external assets of both nodes: eBi
← eBi

+ v; eBj
← eBj

− v.

This procedure repeats until the network contains at least one cycle of three or more edges. Note

that throughout, all nodes in the network remain solvent by construction. During the initialization

process, nodes also select their chosen strategy from those described below.

3.4.2 Heuristic Strategies

The decision of interest for my analysis is a node’s choice to accept or reject a proposal to com-

press a given debt cycle. In principle, nodes may take into account anything they know about

the network. For this study, I define a set of heuristic strategies that consider different forms of

information about a node’s situation and the network, including various measures of assets and

liabilities both total and associated with particular nodes. Each strategy maps this information to

general agreement or disagreement with a proposed compression. I then analyze the strategic inter-

action of nodes in the network by their selection from among the available heuristics. Table 3.1 lists

all strategies, defined as the condition under which node Bi chooses to accept the proposed com-

pression. Several of the strategies reference a single node Bj in the decision context. This should

be understood to be the bank node directly preceding Bi on the cycle (Bj, Bi, debt , v) ∈ Ec)

in the case of the Internal Ratio strategy and its negation. For the Liability Ratio and Rela-

tive Liability strategies and their negations, Bj is the node directly following Bi on the cycle

((Bi, Bj, debt , v) ∈ Ec).
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Strategy Name Vote ”yes” iff

YES Always

NO Never

Asset Ratio
∑b

j=1 lBjBi

ABi
> 0.5

Neg Asset Ratio
∑b

j=1 lBjBi

ABi
≤ 0.5

Expected Internal 0.5× (
∑b

j=1 lBjBi
)− LBi

< 0

Neg Expected Internal 0.5× (
∑b

j=1 lBjBi
)− LBi

≥ 0

External eBi
− LBi

< 0
Neg External eBi

− LBi
≥ 0

Internal Ratio
lBjBi

−µc∑b
j=1 lBjBi

> 0.5

Neg Internal Ratio
lBjBi

−µc∑b
j=1 lBjBi

≤ 0.5

Internal (
∑b

j=1 lBjBi
)− LBi

< 0

Neg Internal (
∑b

j=1 lBjBi
)− LBi

≥ 0

Liability Ratio
lBiBj

−µc

LBi
> 0.5

Neg Liability Ratio
lBiBj

−µc

LBi
≤ 0.5

Relative Liability
lBiBj

−µc

lBiBj
≥ LBi

−µc

LBi

Neg Relative Liability
lBiBj

−µc

lBiBj
<

LBi
−µc

LBi

Table 3.1: A complete list of heuristic strategies denoting the conditions under which node Bi

accepts compression proposals.

The first strategy listed in Table 3.1 is the unconditional acceptance, a strategy I label YES.

This is meant to cover as a baseline the common practice of simply accepting any compression

proposed. The tendency to agree may be due to a number of factors, including a desire to simplify

balance sheets or to comply with regulation [Schuldenzucker and Seuken, 2021]. For symmetry I

also include its complement, the unconditional reject strategy NO. The remaining heuristic strate-

gies are defined by inequalities over assets and liabilities in various ways. The complements are

defined by simple negation, or flipping the inequality. For example, the Asset Ratio strategy,∑b
j=1 lBjBi

ABi
> 0.5 has a negation Neg Asset Ratio,

∑b
j=1 lBjBi

ABi
≤ 0.5. This collection of strate-

gies is far from exhaustive, but is designed to cover a variety of strategically relevant features.
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Understanding the relative usefulness of different network features is the main object of applying

game-theoretic analysis.

3.4.3 Game Steps and Payoffs

The game then proceeds with a compression vote. For cycle c, the Bc nodes independently cast

their vote for the proposed compression cycle using their selected strategy. A compression is

performed if and only if all Bc nodes vote in favor of the compression. If a network contains more

than one cycle, they are addressed in sequence. I consider compression on cycles with |Bc| ≥ 3

before cycles with |Bc| = 2. Cycles within these size classes are ordered randomly. The order

is relevant, as decisions for a given cycle may be affected by the outcome of compressing cycles

considered earlier in the sequence.

As the goal is to understand the effect of strategic compression on systemic risk, I follow the

compression decision with a financial stress event. Absent an insolvent node on the cycle, com-

pression has no effect on systemic risk [Veraart, 2019, Theorem 3.10]. I therefore subject the

network to a shock on external assets, designed to throw some nodes into insolvency. This asset

shock is modeled as the failed realization of outside investments. Nodes invest their external assets

that remain after liability creation in one of two ways based on whether they are part of a cycle or

not. Nodes not on a cycle are randomly assigned to either one of two investments, or to not make

an investment, each with probability 1/3. Conversely, nodes on a cycle are randomly assigned to

one of the two investments, each with probability 1/2. This process is designed to increase the

likelihood that a non-empty subset of nodes on a cycle become insolvent. In the final step, the

external shock is triggered by uniformly randomly choosing an investment option to fail. When an

investment fails, nodes assigned to that investment do not recoup any of their investment.

The network is then resolved by forcing all nodes to pay off their debts. Solvent nodes pay in

full and insolvent nodes pay creditors from their recovered assets proportional to their respective

liabilities. Following the algorithm by Rogers and Veraart [2013], I define a proportional liability

matrix Π with entries ΠBiBj
=

lBiBj

LBi
. A payment p made by an insolvent bank node Bi to one of
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its creditors Bj is then given by:

pBiBj
= α

(
eBi

+
b∑

k=1

pBkBi

)
ΠBiBj

.

At the end of the game, the payoff to node Bi for playing the selected strategy is its remaining

asset holdings after resolving all liabilities. Nodes that become insolvent receive a payoff of zero.

3.5 Empirical Game-Theoretic Analysis

3.5.1 Identifying Nash Equilibria

I analyze the compression decision using EGTA to identify Nash equilibria in games with b = 10

bank nodes and 16 heuristic strategies. Payoff data for strategy profiles is gathered by repeated

simulation of profiles in the compression game described above. I test multiple configurations of

the game defined by the recovery rate parameter α ∈ {0, 0.1, 0.3, 0.5, 0.7, 1.0}. Each of these

games has over 3.2 million distinct profiles, but employing the Subgame Search methodology

necessitates only evaluating a fraction of these. Table 3.2 presents the extent of simulation required

for the Nash equilibrium computation across the game configurations.

α Min # runs/profile # profiles

0 1.5M 12,109
0.1 1.0M 78,247
0.3 1.5M 25,665
0.5 2.5M 62,517
0.7 1.5M 51,746
1.0 2.0M 63,538

Table 3.2: Simulation effort for EGTA applied to six games. For each game, I tabulate the mini-
mum number of runs per profile (M=million) and the number of profiles evaluated.

This analysis attempts not to emphasize the use of specific strategies, but to identify local infor-

mation most useful for making the compression decision. To this end, I group strategies sharing

similar characteristics into four sets referred to as features. The assets feature includes strate-
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gies that base the compression decision on a node’s asset positions, while the liabilities feature

includes strategies focusing on a node’s liabilities. The dynamic feature strategies consider possi-

ble changes that may occur in the network. Finally, the unconditional set includes only the YES

and NO strategies that do not use any network information to inform decision making. A list of

the features, their descriptions, and encompassing strategies can be found in Table 3.3.

I report the results of the Nash equilibrium search in the context of the feature sets. The total

weight assigned to a feature in equilibrium is the sum of the probabilities assigned in equilibrium

to strategies belonging to the feature. Feature weights are normalized such that if a game configu-

ration has multiple equilibria, the average feature weights across equilibrium profiles is reported.

The weight of all features in equilibrium is reported in Figure 3.4. Note that features may

comprise overlapping sets of strategies allowing total weights across features to exceed one for

some games. Generally speaking, I find that strategies employing simple, local network informa-

tion are preferred to the unconditional strategies by nodes making the compression decision. The

clear exception occurs when α = 0, for which YES is a pure strategy Nash equilibrium, aligning

with the theorem stating compression cannot be harmful with a zero recovery rate [Veraart, 2019].

Strategies belonging to the assets or dynamic features are assigned the majority of the weight

in equilibrium for games with α > 0. This indicates anticipating network changes and assessing

asset holdings may be most informative when faced with a compression decision.

3.5.2 Strategic Feature Gains Assessment

Aside from understanding the strategic choices in equilibrium, I also wish to evaluate the heuristic

strategy space to further understand the benefit of different features for making the compression

decision. To conduct this analysis, I employ the strategic feature gains assessment. In particular

I perform four assessments on each game configuration to analyze the effects of including or ex-

cluding features. Note that the α = 0 case is omitted as the Nash equilibrium in that case is to not

use local information, rending an exploration of strategies using such information trivial. The first

three assessments (A1, A2, A3) measure the benefit of access to a given feature when previously
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Figure 3.4: When α ̸= 0, voting based on asset holdings or how a negative shock or compression
might affect the network is often most helpful.

nodes only had access to all other strategies. The last assessment, A4, uses only the unconditional

strategies as the base set and measures deviation to all features. This assessment is designed to

uncover the strategy offering the most gains to a node previously unable to use local information

to make the compression decision. The base and deviation sets for each assessment are outlined in

Table 3.4. Note that when performing the assessments, the membership for strategies belonging to

multiple features is overridden in favor of the base set. For example, a strategy S1 belonging to a

feature in the base set and deviation set will only be used in the base set.

Assessment name Base set Deviation set

A1 Liabilities, Dynamic, Unconditional Assets
A2 Assets, Dynamic, Unconditional Liabilities
A3 Assets, Liabilities, Unconditional Dynamic
A4 Unconditional Assets, Liabilities, Dynamic

Table 3.4: The four strategic feature gains assessments reported as the features belonging to each
assessment set.

Figure 3.5 displays the results from assessments A1, A2, and A3, reporting the respective devi-

ation sets in parentheses. From these results, it can be seen that allowing strategies that use asset

holdings (assets feature) or strategies that consider possible changes to the network (dynamic
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feature), offer the largest gains. This aligns with the equilibrium weight findings, further demon-

strating the importance of such local information in the compression decision.

Figure 3.5: An agent experiences the most benefit when allowed to use asset information or infor-
mation about how a negative shock or compression might affect the network in the compression
decision.

For assessment A4 I report the strategy offering the greatest gains and its feature categorization

for each game configuration. The results in Table 3.5 show that generally the feature assets

provides the most gains. I also find that as α increases, the strategies with the maximum gain in

payoff switch from preferring compression if asset holdings are strictly greater than liabilities to

preferring compression if asset holdings are smaller than liabilities. This may be because a larger

α value allows insolvent nodes to recover a larger portion of their assets, which they can pass on

to their creditors. Therefore, when α is smaller, nodes place a higher premium on compression’s

benefit of limiting contagion. But when α is larger, nodes may tend to view the cycle as a means of

cushioning shocks. At α = 0.5, a strategy that belongs to both the liabilities and dynamic feature

is the most useful.

In comparing the results of the feature assessments, I find that in the cases of α ∈ {0.1, 0.7, 1},

using the asset feature provided the greatest gains in all analyses. When α = 0.3 the most ben-

eficial feature depends on what other information nodes previously had available to them. Nodes

with prior access to other local information gain the most from using the dynamic feature. Start-
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α Feature with max gain Strategy with max gain

0.1 Assets Internal
0.3 Assets External
0.5 Liabilities/Dynamic Neg Relative Liability
0.7 Assets Neg External
1.0 Assets Neg Internal

Table 3.5: The most useful feature to an agent making the compression decision is Assets.

ing from no local information (A4), nodes gain the most by using the assets feature. A similar

situation holds for α = 0.5.

3.6 Effects of Strategic Compression

3.6.1 Compression Occurrence

I introduce an experiment designed to understand how compression as a strategic decision affects

how often compression is performed. For each game configuration, nodes play according to the

identified Nash equilibrium in 10,000 random instances of the game described in Section 3.4. To

measure the impact of a strategic decision on compression, I track several metrics over the many

random instances: number of cycles, number of cycles compressed, length of cycles, number of

insolvent nodes, total equity, and number of nodes on a cycle voting in favor of compression.

If the equilibrium for a given configuration is mixed, the heuristic strategy is randomly selected

from a weighted sample of the strategies in the support. When a game configuration has multiple

equilibria, each equilibrium is tested separately and results are reported as an average over the

equilibria.

Table 3.6 shows the impact of allowing a strategic decision on the number of compressions

performed. Schuldenzucker and Seuken [2021] note that in practice, banks presented with a com-

pression proposal generally agree to perform compression. The reason for this may be that banks

are following the YES policy due to regulation or a desire to simplify balance sheets. However,
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α % cycles compressed % “YES“ when no compression

0 100 –
0.1 32 53
0.3 56 62
0.5 12 41
0.7 30 39
1.0 36 53

Table 3.6: When α ̸= 0 and the compression decision is made strategically, the percentage of
cycles compressed remains low.

these findings show that when the nodes in this network use local information to make the com-

pression decision, the majority of possible compressions are not performed. This may be because

nodes put a higher premium on keeping the cycle to absorb possible losses than compressing to

limit exposure to insolvent nodes.

Compression is performed only when the cycle nodes vote unanimously in favor; one dissenting

vote vetoes the proposal. Therefore, I questioned whether the number of performed compressions

remained low because the majority consensus was against compression or because compression

was perceived as harmful by only a small subset of the voting nodes. From my results, it can be

seen that even though on average the majority of voting nodes agree to compression, it is often not

a strong majority and in several cases the majority on average do not want compression.

3.6.2 Systemic Risk

Additionally, I explore the impact of strategic compression on all banks by measuring systemic risk

using the information gathered above. I will introduce three methods by which systemic risk can

be measured in these networks using total equity and the set of insolvent nodes. For this analysis,

I gather the described data under three scenarios: nodes follow the Nash equilibrium to decide

compression, cycles are universally compressed, and cycles are never compressed.

The first measure of systemic risk is the price of anarchy. I define total equity in the network

as the sum of equity for all network participants:
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Ê =
b∑

i=1

[
eBi

+
b∑

j=1

lBjBi
− LBi

]
.

I also define the optimal choice as the decision for a given cycle (compress or not compress)

yielding the greatest total equity:

Ê∗ = max{Êc, Ênc},

where Êc is the total equity in the network where cycle c is compressed and Ênc is the total

equity in the network where c is not compressed. Then the price of anarchy can be defined as:

PoA =
Ês

Ê∗
,

where Ês is the total equity in the network where the decision to compress cycle c comes from

a strategic vote.

The results of the price of anarchy computation for all game configurations is shown in Fig-

ure 3.6. It can be seen that the average price of anarchy is high and in fact close to 1 for all

configurations. Thus, the strategic choice is often the optimal one for the network and becomes

closer to optimal as the recovery rate of insolvent nodes increases. When α = 0 the price of an-

archy is 1, since the optimal strategy is to always compress and compression in this case is never

harmful.

Another method for analysis categorizes strategic compression as beneficial, neutral, or harmful

to the network. A beneficial compression reduces systemic risk. Thus, the relative number of cases

in which compression is not harmful may serve as an indicator for strategic compression’s effect

on systemic risk. I will introduce two possible methods for distinguishing between a beneficial,

neutral, or harmful case.

The first method classifies these cases in accordance with the definitions of Veraart [2019]. Let

SC be the set of nodes that become insolvent in the network with a strategic compression decision,

and NC be the set of nodes that become insolvent in the same network without compression. The
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Figure 3.6: The average price of anarchy of the Nash equilibria is high for all α values.

strategic decision is beneficial and reduces systemic risk if SC ⊊ NC ; neutral if SC ⊆ NC , and

harmful if SC \ NC = ∅.

The second method, following Schuldenzucker and Seuken [2021], defines social benefit in

terms of total equity in the network instead of the set of defaulting nodes. As above, let Ês be

the total equity in the network when compression is decided by strategic vote and Ênc be the total

equity in the same network with no compression. The strategic decision is beneficial is Ês > Ênc ,

neutral if Ês = Ênc , and harmful if Ês < Ênc .

The results of categorizing each network’s resulting compression by effects on systemic risk can

be seen in Figure 3.7. When using the resulting set of insolvent nodes as the metric for effects on

systemic risk, most of the strategic decisions had a neutral effect. In these cases, either compression

did not affect the set of banks becoming insolvent or the strategic vote resulted in no compression.

When the strategic vote resulted in compression with an effect on the network, in very few cases

was this effect negative. However, when looking at the total equity remaining in the system after

resolving the network as the metric for systemic risk, the number of cases where the strategic

compression is beneficial or harmful to the network increases. Although in most situations the

same set of nodes are becoming insolvent, the amount of equity in the system varies.

I further examine the difference in the number of networks where strategic compression was
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(a) categorizing by set of insolvent nodes (b) categorizing by total equity

Figure 3.7: The number of networks where the result of the strategic compression decision was
beneficial or harmful depends on the metric used for categorization.

considered beneficial by total equity to those considered beneficial by the set of insolvent nodes.

It must be the case that there are networks where the effect is beneficial by total equity, but not by

the set of insolvent nodes. Though note that not every network where the effect was beneficial by

insolvent nodes is beneficial by total equity.

The results in Table 3.7 show that such networks are overwhelmingly classified as neutral by

the set of insolvent banks. Thus, while compression is changing the amount of equity in the

system, it is often not affecting the set of nodes that become insolvent. Performing some amount

of compression in the network, while not saving insolvent nodes from defaulting, is able to increase

the amount of equity among the remaining nodes. This may be due to a decrease in exposure of

the remaining nodes to the insolvent ones as a result of compression.

α Beneficial Neutral Harmful

0 1216 6167 0
0.1 500 3469 0
0.3 590 4814 8
0.5 90 1544 12
0.7 234 2629 27
1.0 22 359 14

Table 3.7: When a network is classified as beneficial by total equity, it is generally classified as
neutral by the set of insolvent nodes.
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3.7 Summary

This study examines the strategic decision facing nodes in a financial network presented with op-

portunities to remove cycles of debt by a process of debt compression. I focus on the implications

for financial contagion, anticipating how compression may insulate or expose an institution to the

effects of an asset shock. Taking a perspective ex-ante to the potential shock, I ask what types

of strategies nodes with imperfect information should use to make such a decision. This model

captures uncertainty regarding the shock and the financial situation of other nodes in the network.

I compare strategies that use different types of local information that may be available to an indi-

vidual node.

From my results, it can be confirmed that adopting a heuristic strategy based on privately held

information is often better than unconditionally agreeing or disagreeing for an individual node. In

particular, features related to the asset holdings of a node are found to be most useful. When these

heuristics are employed, compression proposals are often declined. While based on a stylized

model, these results suggest that accepting compression proposals based solely on simplifying

balance sheets should be questioned, as institutions may have sufficient basis to account for risks

as well as benefits of compression.

I also illustrate the use of the strategic features gains assessment for further analyzing the im-

portance of features in the heuristic strategy space. This analysis revealed an interesting pattern

as I varied a key environmental parameter, the recovery rate. In particular, I found that for higher

recovery rates, the potential for cycles to cushion shocks was increased, and as a result the com-

pression decision was more inclined to hinge on variables that evaluated this potential.

My experiments also show the effects of a strategic compression decision on systemic risk. I

find that while strategic compression can be harmful to the network, it is more often beneficial

compared to unconditional acceptance. Furthermore, I can compare the strategic choice to the

optimal decision and see that the price of anarchy remains high. In other words, allowing com-

pression to be a decision made strategically by nodes in the network does not substantially increase

systemic risk.
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As noted, this model is an oversimplification of true financial networks. While it effectively

demonstrates unconditional acceptance is not the best strategy for banks, an assessment of addi-

tional information available in the true decision context may be necessary to directly inform policy.

Further elaborations of the model could account for varieties in debt terms, regulatory constraints,

and other realities. Additional types of contracts and instruments, such as credit default swaps,

could also be incorporated into the network model [Schuldenzucker et al., 2020]. The analysis ap-

proach presented here could likewise be applied in the more elaborated setting, to inform decision

making and regulation in specific scenarios.

My analysis in this study treats the compression decision as a one-shot game. An interesting

direction for future work would be to extend this model in time, considering a sequence of com-

pression opportunities, asset shock events, debt network evolution, and so on. By extending the

model in this way, I could capture signals nodes in the network may be able to gather over time

about the stability of the other nodes, similar to a bank’s ability to use past payment information to

make borrowing and lending decisions.
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CHAPTER 4

Flagging Payments for Fraud Detection

4.1 Introduction

Credit card fraud occurs when a malicious party, the fraudster, makes unauthorized purchases

using a credit card that does not belong to them. The fraudster may obtain the card’s details in

a variety of ways such as physically stealing the card, or through electronic database breeches.

While a historically notorious problem, increases in online transactions as a result of the COVID-

19 pandemic have exacerbated fraud [Stripe, 2023a]. In 2022, $33.45 billion was lost worldwide to

payment card fraud, which included credit card fraud [Nilson Report, 2023]. Losses are expected

to increase in the future with projected losses of $39.60 billion in 2026.

The majority of these fraud losses are borne by card issuers. As a result, many banks have

enacted a myriad of fraud prevention measures. This includes the development of systems, called

fraud detectors, for detecting attempted fraudulent charges. Much current research focuses on the

development and improvement of these detectors, the latter of which is often focused on increasing

the role of automation. My work complements this by seeking to understand the decision context

and broader effects of fraud detection on the payment system. Specifically, noting that fraud detec-

tion often carries a cost for human and/or technical capital. Spending on financial crime prevention,

including fraud prevention, in 2023 was $22.1 billion [Maynard, 2023], while projected spending

on artificial intelligence based detection methods for online payments is projected to reach $11.3

billion by 2025. Given this, I am interested in studying how such costs might impact the adoption
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of fraud detection technology and the resulting effect on patterns of fraud in the network.

I define payment flagging as a bank action sending a credit card payment to the fraud detector.

This introduces the bank’s flagging problem which is, in an environment in which invoking the

fraud detector is costly, to decide decide which payments to send to the detector. I investigate

this problem in a variant of the extended FCN model where fraudster and customer nodes route

payments through a banking network. Each bank node in the model has access to its own fraud

detector, which is treated as a black box defined only by its accuracy and cost characteristics.

Banks are characterized by the capabilities of their fraud detection systems. A bank node with

high fraud detection accuracy is referred to as a strong bank, while a bank node with lower fraud

detection accuracy is a weak bank. However, the costs incurred by both bank types remain the

same. Within this model, I define a flagging game played by strategic bank and fraudster nodes.

Bank nodes decide which payments to flag, trading off costs of missing a fraudulent payment and

of using the detector. Fraudster nodes decide the value of attempted fraudulent payments and how

often to attempt fraud. I analyze the strategic behavior of bank and fraudster nodes in this game

using EGTA.

From my experiments, I find that high costs for using the fraud detector deter strong bank

nodes from flagging many payments, but this is not the case for weak bank nodes. This aligns

with results from an analysis of the costs experienced by bank nodes as a result of fraudulent

payments in the environment. For strong bank nodes, these costs tend to be balanced between

liability for undetected fraud and costs of fraud detection. On the other hand, weak bank nodes’

primary costs are the losses from undetected fraud. When banks flag all payments, I find slightly

more customer nodes are victims of attempted fraud than if banks strategically flag payments.

4.2 Related Work

Several prior works attempt to categorize instances of fraud by the origin or manner of fraudulent

actions [Delamaire et al., 2009, Sakharova, 2012, Onwubiko, 2020]. Beals et al. [2015] introduce
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a classification framework for describing instances of financial fraud, including payments fraud,

to allow for reporting in the National Crime Victimization Survey. In the general fraud detection

space, prior work notes the challenges of detection such as concept drift, imbalanced data sets, and

timeliness of detection [Abdallah et al., 2016].

The majority of prior work in the fraud detection space, however, focuses on developing systems

for detecting fraud more quickly and accurately than human auditors. These systems have evolved

from primarily rule-based to statistical data mining and machine learning based techniques. Su-

pervised learning has often been used to train models to discern fraudulent from non-fraudulent

payments. However, the challenge of accessing labeled data has made unsupervised methods re-

lying on techniques such as anomaly detection also popular [Ryman-Tubb et al., 2018, West and

Bhattacharya, 2016]. Recent literature focuses on leveraging the power of deep neural networks

to learn patterns of fraudulent behavior and identify potentially fraudulent payment attempts [Roy

et al., 2018, Lin et al., 2021, Zheng et al., 2020]. Several prior works implement a cost sensitive

approach for misclassification in the credit card fraud detection case to account for bank liability

for fraud [Sahin et al., 2013, Bahnsen et al., 2016]. To my knowledge, these works do not generally

address constraints that might limit the use of these systems.

In contrast, Dervovic et al. [2021] study fraud detection as a constrained resources problem.

Financial institutions have a limited number of payments they are able to review for fraudulent

activity in a given time window. Such constraints may be caused, for example, by a limit in the

number of auditors available to review payment information. Thus, institutions must decide as

payments are processed, whether to select a given payment for review. Each payment carries a re-

ward for being selected and the goal is to maximize the total reward received. The authors propose

the Non-parametric Sequential Allocation Algorithm to address this problem and demonstrate its

effectiveness for selecting the most valuable transactions using a public fraud data set. By exam-

ining a hard constraint, this work can be seen as addressing short-term constraints in resources. I

extend such a problem to the long-term in which costs are the primary constraint.
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4.3 The Credit Card Network Model

I define the credit card network model within an extended FCN with fraudster, customer, and bank

nodes. The set of bank nodes B = {B1, . . . , Bb}, set of customer nodes C = {C1, . . . , Cn}, and

set of fraudster nodes F = {F1, . . . , Fm} are defined such that m ≪ b ≪ n. Within the network,

banks issue credit cards to customers represented by a credit edge extended from a bank node to a

customer node as shown in Figure 2.7. Customers draw on their credit cards to make payments to

other customers in the network through the interbank network.

An example payment of 10 units from customer node C1 to C2 is shown in Figure 4.1. Drawing

on the credit card issued by B1 to make the payment results in a decrease in C1’s available credit

for future payments. This is reflected by a decrease in the value on the solid red credit edge from

B1 to C1 by the value of the payment. By using some credit, C1 increases the debt it owes to bank

B1 by the value of the payment captured by an increase in the value on the dashed blue debt edge

from C1 to B1. The payment is routed to the receiver through the interbank network as described

in Section 2.1.2.3, creating a debt from B1 to B2. Finally, B2 provides the funds from the payment

to C2 as a debt owed from B2 to C2 equal to the payment value. Note the credit edge from B1 to

B2 and the debt edge from C2 to B2 remain unchanged as a result of the payment and have been

omitted from the updated network for clarity.

Figure 4.1: Customer C1 makes a payment of 10 units to customer C2 by drawing on the line of
credit issued as a credit card by bank B1.

When it is a fraudster initiating the payment, there is only a slight variation in the payment

modeling. Figure 4.2 shows a 10 unit payment to C2 originating with fraudster F1. A fraudulent

payment creates a fraud edge as explained in Section 2.1.2.4 between the fraudster and its victim.
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Figure 4.2: The result of a fraudster drawing on C1’s credit card to make a payment of 10 units
to customer C2. With the exception of the fraud edge, the resulting edge updates are the same as
those shown in Figure 4.1.

Otherwise, the payment steps remain unchanged and the result of the payment for the remaining

parties is the same as the non-fraudulent case.

To simplify the model, I assume bank nodes have infinite willingness to engage with each other

on behalf of their customers. Thus, the model is implemented with arbitrarily large values on the

credit edges forming the interbank network.

4.4 Game Initialization and General Behavior Overview

The game begins with the initialization of the bank, customer, and fraudster nodes described along

with general behaviors below. After node initialization, the customer and fraudster nodes are

organized into the initial payments queue.

4.4.1 Bank Nodes

Bank nodes in the model belong to one of two types, strong or weak, which help define their

capabilities in the network. When initializing the game the number of bank nodes that should be

assigned to each type is taken as input. Banks are then randomly assigned to a type in accordance

with this parameter.

The fraud detection capabilities of each bank node are set according to the bank’s type during

initialization and remain for the entirety of the game. Recall the fraud detectors for each bank

are defined as black boxes represented by their parameters. Let γtp
Bi

denote the probability a bank

node Bi’s fraud detector accurately labels a fraudulent payment. That is, if a payment is truly

fraudulent, Bi’s fraud detector labels it fraudulent with probability γtp
Bi

and as non-fraudulent with
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probability 1− γtp
Bi

. Likewise, define γtn
Bi

as the probability Bi’s fraud detector accurately labels a

non-fraudulent payment as not fraudulent. For this analysis, I will simplify the parameters such that

γtp
Bi

= γtn
Bi

and will simply refer to the probability Bi’s fraud detector correctly labels a payment

relative to its true label as γBi
. The γBi

value for each bank node is set by a random draw from

γBi
∼ U [0.75, 0.9] if Bi is a strong bank and γBi

∼ U [0.5, 0.65] otherwise.

4.4.2 Customer Nodes

The behavior of customer nodes in the network is calibrated from the JP Morgan AI Research

(JPMAIR) payments data for fraud detection synthetic data set 1. A variety of information is

available for each payment in the data set including its time step, sender, receiver, value, and

whether it is fraudulent or not. Since this set is used only to define customer behavior, I limit use

to the non-fraudulent payments resulting in a data set of 47,570 transactions.

During initialization, each customer node is assigned a sender identification number, datasetID,

from the data set by a uniform random draw without replacement. For example, customer node

C5 in the network may be assigned datasetID = 127352 which is used to establish the credit

line and customer payment patterns in the network. Upon initialization, a customer node will be

uniformly randomly assigned to a bank node at which point the bank Bi extends a line of credit to

the customer creating a credit edge from the bank to the customer. The value on the edge is equal

to 2P where P equals the total value of payments the assigned datasetID sends in the JPMAIR data

set. Each customer will attempt payments with a frequency following a Poisson distribution defined

by frequency parameter λ. Customer node Ci’s λCi
parameter is calculated during initialization

using the number of payments sent by Ci’s datasetID, relative to the total number of time steps in

the data set.

Customer nodes may experience attempted fraud using their credit lines over the course of the

game. It is assumed the means by which fraudsters obtain credit card details does not deter the

customer from continuing to use their card. For example, card details could unknowingly have

1This publication includes or references synthetic data provided by J.P. Morgan.
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been leaked from a database breach while the customer maintains physical possession of their

card.

4.4.3 Fraudster Nodes

This model assumes it is equally possible for a fraudster to compromise the credit card information

of any given customer node in the network with negligible cost. Thus, a fraudster is not motivated

to exploit the credit lines of any one particular customer. Fraudster nodes do, however, differentiate

between bank nodes in terms of their ability to successfully commit fraud. To that end, each

fraudster is initialized with an empty history of successful attempts at each bank node which will

be updated throughout the game. At the start of the game when there is no recorded history,

fraudster nodes will randomly select their victim uniformly from the set of all customer nodes.

As the history is updated, fraudsters may make more informed selections of bank nodes to target

with fraud attempts. It is assumed fraudsters also have negligible cost access to customers’ bank

nodes assignments and will often favor targeting any customer belonging to a bank where they

have historically been most successful. Fraudsters’ targeting behavior will be described in more

detail in Section 4.6.

Fraudster nodes are also particularly inclined to make payments to a certain subset of cus-

tomer nodes in the network, who may be more vulnerable to fraud as a result of business prac-

tices [Stripe, 2023b]. This set of customers, the suspicious set, is initialized by a uniform ran-

dom draw of the customer set during initialization. The size of the set, |TS |, is drawn such that

|TS | ∼ U{10, . . . , 20}. While the true identity of the suspicious set members is unknown to banks,

it is assumed they know such a group exists and have a noisy estimate of its size. Such information

could have been obtained through previous analysis of payment history conducted by the bank.

Each bank node maintains its own estimates of the suspicious set, referred to as a bank’s perceived

set. Bank node Bi’s perceived set is noisy with respect to both size and membership. The size of

the perceived set PSBi
is randomly drawn such that |PSBi

| ∼ U{|TS | + 1, . . . , |TS | + 5}. Each

customer in the suspicious set is included in Bi’s perceived set with independent probability 0.9
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if Bi is a strong bank and 0.6 otherwise. The remaining spots in the perceived set are filled by a

random draw of customer nodes in the network who are not members of TS.

4.4.4 Payments Queue

The final step of initialization is the creation of the payments queue, which schedules payment

attempts in the network. Each slot in the queue is equivalent to a single time step in the game

amounting to a length of T. Thus, sequentially processing the queue moves the game forward in

time. The queue is initialized by placing customer and fraudster nodes in time slots, referred to as

their arrival times. For a customer node, this is calculated from the Poisson distribution using its

frequency parameter λ. A fraudster’s payment frequency is determined by its selected strategy, and

ultimate placement in the queue further determined by the calculated arrival time. In particular,

the T time steps are comprised of alternating, equal length time periods. An active time period is

one in which fraudsters are more likely to be active. Conversely, a non-active time period is one in

which fraudsters are less likely to be active. If the calculated arrival time for a fraudster is during

an active period, the fraudster will be added to the queue in this slot. Otherwise, with probability

0.2 the fraudster will arrive in this slot and with probability 0.8 a later time slot is calculated. In

the case any node’s calculated arrival slot is already occupied, the node will be inserted in the next

available time slot. After all customer and fraudster nodes’ initial arrival times are calculated, the

queue is fully initialized.

4.5 Strategies

After initialization, banks and fraudsters select their strategies from their respective sets defined

below.
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4.5.1 Bank Strategies

The strategic decision for a bank node in the network is determining which payments to flag when

invoking the fraud detector is costly. The flagging process is considered a quick review of surface-

level details of payments and thus does not use customer-specific information such as the sender’s

average behavior, which is often used for a more in-depth analysis by the fraud detector. The

strategies of the bank nodes are modeled as logistic functions calculating the probability of flag-

ging based on attributes of the payment. The probability that a bank node flags a payment, ρ, is

determined by:

ρ =
1

1 + e−k(v−(cx))
(4.1)

where v is the value of the payment being evaluated, k is a game configuration parameter, and

x is determined by the bank’s strategy.

In particular, when determining whether a payment may warrant flagging, the payment’s value

may be an important indicator. If a payment’s value is high, the bank node may prefer it be

reviewed by the fraud detector, since banks are liable for fraud that occurs. Consider c = 1 in

Equation 4.1 for now. The value of x in the equation determines the tipping point, absent other

information, at which payments are considered high and should be more likely to be flagged. Bank

nodes will consider three possible values for x:

• 500: the average of possible payment values in the model

• pay avg: the average payment value of all customers of the given bank node

• credit est: an estimated average payment value calculated from the average ratio of payment

value to initial credit line

In addition to its value, two other factors may help indicate whether a payment warrants flag-

ging: the receiver and timing of the payment. Bank nodes use their perceived sets to determine
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if they believe a payment’s receiver is suspicious, and thus more likely to receive fraudulent pay-

ments than other members of the network. In this model, bank nodes also know when fraudsters

are more likely to attempt fraud. During these so-called active periods, bank nodes may be more

interested in flagging payments.

Active period = T Active period = F

Receiver in PS = T c = 0.001 c = 0.5
Receiver in PS = F c = 0.5 c = 1

Table 4.1: The reg matrix increases the likelihood of flagging a payment as more suspicious mark-
ers are present.

Active period = T Active period = F

Receiver in PS = T c = 0.001 c = 0.001
Receiver in PS = F c = 0.001 c = 0.001

Table 4.2: The most suspicion matrix is very likely to flag any payment.

Active period = T Active period = F

Receiver in PS = T c = 2 c = 2
Receiver in PS = F c = 2 c = 2

Table 4.3: The rare matrix, is unlikely to flag most payments and does not consider attributes other
than value.

Active period = T Active period = F

Receiver in PS = T c = 0.001 c = 2
Receiver in PS = F c = 2 c = 2

Table 4.4: The rare sus matrix is unlikely to flag payments unless timing and receiver are suspi-
cious, and the value is considered high.

While any of these discussed conditions—high payment values, suspicious receivers, and higher

risk timing—may warrant flagging, as more of these characteristics appear in a payment it is more

likely banks may wish to flag it. This notion grounds the creation of suspicion matrices, which

assign different c values for different combinations of these suspicious events. As a result, the

logistic function is shifted allowing for increased or decreased likelihood of flagging. For exam-

ple, Table 4.1 shows a matrix where the number of suspicion markers present for a payment of
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value v determines the likelihood it is flagged. As more markers appear, a payment of value v is

increasingly likely to be flagged. I refer to this suspicion matrix as the reg matrix, and define three

additional matrices. The most matrix is listed in Table 4.2, the rare matrix in Table 4.3, and the

rare sus matrix in Table 4.4. These four matrices can be summarized by their general behavior in

the presence of suspicious conditions:

• most: sends the majority of payments to the detector and only considers payment value

• reg: as more suspicious conditions are present, it becomes increasingly likely a payment

goes to the detector

• rare sus: sends only payments with a high degree of suspicion to the detector

• rare: has a low probability of sending any payment to the detector and only considers pay-

ment value

Thus, the matrices control the use of bank fraud detectors based on both general desires for

fraud detector use and payment characteristics.

To illustrate the general difference in outcomes under these matrices, consider a payment of

800 units sent to a member of the bank’s perceived set during an active period. The most, reg,

and rare sus matrices all return a very high probability of flagging this payment because there are

three suspicion markers present. On the other hand, the rare matrix returns a very low probability.

Now consider a similar payment of 800 units sent to a receiver who is not a member of the bank’s

perceived set during a non-active period. The most matrix is still very likely to flag the payment

and the rare is still very unlikely to flag the payment. However, with only a suspiciously high

value, the reg matrix flags this payment with probability less than in the original example. The

absence of other suspicion markers results in the rare sus matrix returning a low probability for

flagging this payment. Finally, if the payment was sent to a member of the perceived set or during

an active period, only the reg matrix’s results would change. With only one suspicious condition

true, the payment would be sent the detector with a likelihood between the outcomes in the two

previous examples.
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A bank node’s strategy is a combination of one x value and one suspicion matrix for a total of

12 possible strategies for bank nodes. Strategies are referred to in the form [x, matrix], for example

[500, reg] refers to a strategy in which the bank node considers a payment value high, absent other

information, if it is greater than 500 and calculates the probability of flagging by considering all

suspicious conditions.

4.5.2 Fraudster Strategies

Fraudsters aim to maximize the total amount of fraud they commit in the network. To achieve this,

fraudsters may use a number of strategies from attempting to evade detectors to taking advantage

of their less than perfect accuracy. In the former case, for example, if a fraudster knows larger

payment values attract greater scrutiny they may keep payment values below a certain amount.

And in the latter, they may exhibit bolder behavior, attempting a high number of payments to

increase the odds of success.

To model this, fraudster nodes in this game select from a set of strategies comprised of two

components defining fraudster payment attempts: frequency and value. Each component is defined

as an interval of possible values from which a fraudster node’s behavior is drawn. The frequency

with which a fraudster attempts payments is characterized as either low or high and maps to an

interval of values from which to draw the λ parameter, shown in Table 4.5. Recall, the λ parameter

defines the arrival rate of a node according to the Poisson distribution. After a strategy is selected,

this λ is drawn and remains the fraudster’s frequency for the duration of the game. There are four

possible characterizations for the payment value, defined as:

• low: an interval of low values

• high: an interval of high values

• random: an interval containing all low and high values

• alternating: alternates attempts between a value from low and a value from high
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Each time a fraudster payment is made, the value of the payment is randomly selected from the

interval defined by the value component of the selected strategy. The mapping of payment value

options to their respective intervals is listed in Table 4.6.

In total, there are eight possible fraudster strategies combining the frequency and payment value

choices. Fraudster strategies will be referred to in the format [frequency, value]. For example, [low,

high] refers to the strategy with infrequent payment attempts of high value.

Frequency Interval

low U ∼ [200, 1000]
high U ∼ [10, 100]

Table 4.5: A mapping of the frequency component of the fraudster strategy to the interval from
which the fraudster’s λ parameter is drawn. This parameter is set at the beginning of the game and
remains the fraudster’s frequency for the duration of the game.

Value Interval

low U ∼ {1, . . . , 400}
high U ∼ {600, . . . , 1000}

random U ∼ {1, . . . , 1000}
alternate v1 = U ∼ {1, . . . , 400}; v2 = U ∼ {600, . . . , 1000}

Table 4.6: The corresponding intervals from which to draw payment value based on the value
component of the fraudster’s strategy. This interval is randomly drawn from each time the fraudster
makes a payment.

4.6 Fraud Flagging Game Steps

After initialization and strategy selection, the game unfolds over T time steps. Each time step

follows the same procedure:

1. The next payment sender is removed from the queue.

2. A payment is generated according to whether the sender is a customer or a fraudster as

described below.
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3. The sender’s bank processes the payment by first ensuring its validity. A valid payment must

be less than or equal to the sender’s current available credit line and an invalid payment is

canceled. Processing of valid payments continues with the following steps:

(a) The bank uses its strategy to calculate the probability of flagging the payment, ρ. If the

payment is flagged:

• The bank correctly labels the payment relative to its true label with probability γ,

as described in Section 4.4.1.

• A payment labeled as fraudulent by the detector is canceled regardless of the true

label.

(b) Payments that continue processing are used to update the network as described in Sec-

tion 4.3.

4. The sender’s next arrival time is calculated as outlined for customers and fraudsters respec-

tively below.

4.6.1 Customer Payments

Customer node payments are generated by a noisy draw from the JPMAIR data set. For a sender

Ci, a payment by Ci’s datasetID is randomly selected from the data set. The value for the customer

node’s payment, v, is then drawn from the normal distribution v ∼ N(vds, 10), where vds is the

value of the drawn payment. To create the network, only a subset of the datasetIDs are selected and

thus the payment receiver in the data set is not guaranteed to be present in the network. Therefore,

I obtain an index in the network for the receiver by applying a hashing function to the receiver’s

ID listed in the data set. Specifically, the receiver index is calculated as datasetID mod n, with n

equal to the number of customers in the network. For example, a payment received by datasetID =

128372 would be routed to customer node C172 in a network of 200 customers. After attempting a

payment, the customer is reinserted into the queue at a new arrival time calculated similarly to the

process described during initialization.
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With this method, customer node behavior is calibrated from the data set under the assump-

tion customers tend to follow similar payment patterns over time, though with some variation.

While not strictly necessary as the JPMAIR data set is itself synthetic, this method is useful for

maintaining patterns in the data while preserving privacy of individuals in the actual data set.

4.6.2 Fraudster Payments

Fraudsters attempt payments according to their selected strategies as described in Section 4.5. The

value of the payment is determined by a uniform draw from the strategy’s payment value interval.

While fraudsters may be more likely to make payments to those in the suspicious set, there may

be instances in which payments are sent to others. Thus, the receiver of a fraudster’s payment will

be a member of the suspicious set with probability 0.8, and otherwise a non-member. Among the

customers belonging to the selected set, one will be uniformly randomly selected.

If the payment is not canceled at any point in the processing steps, it is used to update the net-

work as described for the fraudulent payment case. Then, the fraudster will increment its number

of historical successes at the current victim’s bank. To aid in payoff calculations at the end of the

game, the total value of these undetected fraudulent payments are recorded for each bank node.

On the other hand, if the payment attempt is canceled for any reason, the fraudster node will select

a new victim. As mentioned previously, fraudsters target bank nodes and do not differentiate be-

tween individual customer nodes. The fraudster will target the bank where it has historically been

most successful in the past with probability 0.7 and otherwise target any other bank. Once a target

bank has been selected, the fraudster will uniformly randomly select its new victim from among

the customer nodes of that bank.

The fraudster’s next arrival time will be calculated using its payment frequency as described in

Section 4.4.4. If the next arrival time is in an active period the fraudster will be added to the queue

at that time step. If the next arrival time is in a non-active period, the fraudster is added to the

queue at that time step with low probability and otherwise a new arrival time is calculated.
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4.6.3 Payoffs

At the end of T time steps, the fraudster and bank nodes receive payoffs based on the performance

of their selected strategies. Fraudster node payoffs are equal to the total amount of fraud they

successfully commit in the network. For a given fraudster node Fi the payoff is calculated as:

n∑
j=1

∑
(Fi,Cj ,fraud ,v)∈E

v

The payoff for a bank node in the network, regardless of its type, is the sum of costs it is

subject to given the presence of fraudsters in the network, with the best strategy minimizing these

costs. The costs for the presence of fraudsters is two-fold. First, banks are liable for undetected

fraud that occurs in the network. This is simply the total value of undetected fraud the bank node

experiences over the course of the game, which I refer to as FC. The second cost is due to the

employment of fraud detection measures. In particular, this decomposes into two sub-costs, the

first of which is the cost of sending payments through the fraud detector. I model this cost as

a flat fee, β, for each flagged payment similar to the fee structure of several third-party fraud

detection management services [Amazon AWS, 2024, Microsoft, 2024, Stripe, 2024]. The total

number of payments flagged by a given bank node throughout the course of the game is NFD.

Fraud detection technology is also imperfect with a side effect of erroneously labeling payments

as fraudulent. These false positives are the second sub-cost to banks in the form of lost transaction

fees and inconvenience to customers, which could translate to a loss of business to the bank. To

capture this additional cost, I define α1 as the cost for lost transaction fees, modeled as a percentage

of the payment’s value the bank node would have received if the payment attempt had not been

terminated [Shy and Wang, 2010]. The inconvenience to customer nodes is modeled as a flat cost

per terminated payment, α2. The total value of a bank’s false positive payments is written VFP

and the total number of false positive payments is written NFP. Thus, for a bank node Bi their

payoff is calculated as:
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−FCBi
− α1VFPBi

− α2NFPBi
− βNFDBi

(4.2)

4.7 Experiments Overview

The flagging game is analyzed using EGTA to identify the Nash equilibrium for bank and fraudster

nodes. I analyze networks with n = 200 customer nodes, b = 4 banks nodes, and m = 1

fraudster node. There are two bank nodes of each type in the network. The game is played over

T = 4, 320 time steps and the active and non-active periods last for A = 72 time steps. For the bank

strategy logistic functions, I set k = 0.002. The transaction fee bank nodes could have obtained for

routing payments marked as false positives is α1 = 0.01. Experiments are conducted on nine game

configurations defining varying costs to all bank nodes for employing fraud detectors. In particular,

I test: α2 = {0.5, 1, 2} and β = {0.1, 1, 2}. The lowest value for β is set to be smaller than α2 to

cover the case where fraud detection is quite cheap due to increased automation or other methods,

leading the chief cost for banks to be customer satisfaction. A summary of these parameters can

be found in Table 4.7.

Parameter Setting

n 200
b 4 (2 strong, 2 weak)
m 1
T 4,320
A 72
k 0.002
α1 0.01
α2 {0.5, 1, 2}
β {0.1, 1, 2}

Table 4.7: A list game parameters and their settings used in experiments.

After identifying the equilibria, I conduct an additional experiment to understand the effects

of the equilibrium decisions on outcomes in the network. In particular, on the fraudster success

rate, number of customers experiencing attempted fraud, and the relative costs banks incur. First, I
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measure these outcomes when bank and fraudster nodes must play according to their equilibrium

strategies in each game configuration. In the event of a mixed strategy equilibrium, nodes are

randomly assigned to play a pure strategy by a weighted draw according to the probability distri-

bution defined by the equilibrium. For each game configuration, 100 random network instances

are simulated and the results are averaged over all runs. If a configuration has multiple equilibria,

the results are also averaged across the equilibria. Second, the same methodology is followed in

the case where bank nodes flag all payments with probability ρ = 1. This reflects a scenario in

which all bank nodes may elect, or be forced by policy or regulation, to send all payments through

fraud detection. In this case, the fraudster still exhibits strategic behavior and an additional EGTA

analysis is conducted to determine its equilibrium strategy in this case for each game configuration.

4.8 Experiment Results

4.8.1 Nash Equilibria

4.8.1.1 Bank Nodes

I present an analysis of the equilibrium of bank nodes separately by strategy component, that is the

selected x value and suspicion matrix. First, I find that all bank nodes, regardless of type, tend to

choose x = 500 in equilibrium. Thus, absent other information, as payment values become greater

than 500, there is an increased likelihood of flagging. It is possible the other values, which focus

on historical averages, are less useful if present payment behaviors deviate enough from the past.

In particular, it should be noted fraudster activity is not included in the historical averages. Addi-

tionally, from a bank’s perspective, minimizing fraud liability often requires gauging the relative

risk of the payment by its value. In this environment, the bounds on the value of the payment are

known. Thus, the notion of a high payment value may be easily measured relative to the possible

payment values rather than requiring additional metrics.

Second, in analyzing the selected suspicion matrices I identify an equilibrium dependence on
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bank node type. Weak bank nodes almost always select the most suspicion matrix for all game

configurations. Strong bank nodes, as shown in Figure 4.3, select the most matrix when β < 2

and tend towards limited detector use when β = 2. That is, when costs are lower all bank nodes

flag most payments for review. However, when costs increase, strong bank nodes become more

selective and only flag very suspicious payments. Simply put, a better fraud detector is used less

frequently than a weaker one when costs for invoking fraud detection are high.

(a) α = 0.5 (b) α = 1 (c) α = 2

Figure 4.3: When detector costs are low, strong bank nodes select strategies that flag most pay-
ments with high probability. However, when costs rise they tend to favor strategies that result in
few flags.

The contrast in behavior of strong and weak banks is explained by the behavior of the fraudster

node. Recall, the fraudster node has a tendency to target bank nodes where it has historically been

most successful committing fraud. Other things being equal, this will be a weak bank due to its

poorer fraud detection capabilities. As a result, strong banks are less often the targets of attempted

fraud. With less of a concern for fraud and rising costs of detectors, these banks lower their use of

fraud detection in an effort to limit their overall costs. In this case, the behavior of fraudsters and

existence of banks with worse fraud detection capabilities in the network allow strong bank nodes

to adjust their strategic behavior.

4.8.1.2 Fraudster Nodes

In all game configurations, the fraudster’s equilibrium strategy is [high, high]. Under this strategy,

the fraudster will very frequently attempt payments of high value using customer nodes’ funds. In

67



doing so the fraudster node is hoping to take advantage of the inability for imperfect fraud detectors

to identify all its payment attempts. The fraudster is playing the odds and making it worthwhile

with large payment values

To aid in the analysis of outcomes in the network, I obtain the fraudster’s equilibrium in the

case when all banks flag all payments. I find in this case the fraudster’s equilibrium remains the

[high, high] strategy. Even though all payments are flagged, fraud detectors remain imperfect and

thus the fraudster is continuing to exploit this as explained previously.

4.8.2 Impact on Network Outcomes

My analysis of fraudster outcomes identifies an average success rate of 38% across all game con-

figurations when nodes play according to the Nash equilibria. Despite this, the fraudster is still able

to commit an average of 23,083 units of fraud by attempting very frequent, high value payments.

Thus, the fraudster’s gamble with the imperfect nature of fraud detectors pays off. When banks flag

all payments with probability 1, the average success rate drops to 28% with 18,051 units of fraud

committed. Thus, while increased flagging prevents some fraud, it will not completely eliminate it

since fraudsters can continue to gamble with imperfect detection.

Fraudsters target less than 10% of their payment attempts at strong bank nodes, providing

quantitative evidence for the intuition behind weak banks’ strategic behavior. Given the fraud-

ster’s proclivity for targeting such banks, their desire to flag most payments is logical. The pres-

ence of fraudsters in the network does not widely impact customer nodes. On average, only 17%

of customers fall victim to attempted fraud when nodes follow the equilibrium strategies. This

average increases slightly to 20% when banks flag all payments as a result of fraudster behavior.

Recall, the fraudster will switch victims anytime its payment attempt is canceled. In my earlier

analysis, I determined that the success rate of the fraudster is lower when banks flag all payments.

Thus, the fraudster experiences more canceled payments resulting in increased victim switching

and a greater number of customers experiencing attempted fraud. The increase indicates banks

and customers may be slightly more inconvenienced when banks take a stricter approach to fraud
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detection. In the real world, when a fraud attempt is discovered it usually triggers the bank to issue

new credit cards to the victim. This introduces a cost to banks for issuing the new cards, and for

customers in time delay to receive new cards and begin to use them (e.g., updating automatic pay-

ments). Generally speaking, this may introduce a potential trade-off between customer experience

and fraud liability for banks. These fraudster and customer outcomes are summarized in Table 4.8.

NE All

Fraudster success rate 38% 28%
Total fraud committed (units) 23,083 18,051

Proportion of customers who are victims 0.17 0.2

Table 4.8: Outcomes for fraudster and customer nodes in the network when nodes play according
to equilibrium (NE) and when banks flag all payments (All).

The total cost to bank nodes for the presence of fraudsters in the network is three-fold: liability

for undetected fraud, cost of using the detector, and the cost of possible false positives. I explore

the distribution of these costs experienced by bank nodes, both under equilibrium and in the case

all payments are flagged, in Figure 4.4. From this analysis, two important conclusions can be

drawn. First, comparing the cost break down for strong and weak banks provides strong evidence

for the intuition behind banks’ strategies in equilibrium. It can be seen in Figure4.4c, liability

for undetected fraud is by far the largest proportion of costs experienced by weak bank nodes.

Logically, this follows from the findings that fraudsters are much more likely to attempt fraud at

these banks and the knowledge that their fraud detection capabilities are poor. With fraud posing a

much greater threat to weak banks, they are less inclined to take the rising cost of fraud detection

into consideration when strategically flagging. Thus, they opt to flag most payments, regardless

of the current cost of fraud detection. In contrast, strong bank nodes experience more balanced

costs, as shown in Figure 4.4a, and so rising fraud detection costs influence the strategic flagging

process.

Second, I find strong bank nodes are better off when strategically flagging. The total costs for

these banks in almost all game configurations are less under Nash equilibrium (Figure 4.4a) than
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when all payments are flagged (Figure 4.4b). This is especially evident further along the x-axis

where the cost of fraud detection is highest. When strong banks flag all payments, the majority of

the cost is attributed to fraud detection for all but the lowest detection cost. Strategically flagging

allows strong banks to redistribute their costs in a more favorable way and decrease overall costs.

Weak banks, as favored targets of fraudsters, are better off flagging all payments with probability

1 as evidenced by the slightly lower costs in this case compared to under the Nash equilibria.

Note, while the most matrix has a higher likelihood of flagging payments, it will still take into

consideration payment value and not all payments will be flagged.

(a) Strong banks, NE (b) Strong banks, All

(c) Weak banks, NE (d) Weak banks, All

Figure 4.4: A breakdown of the average bank costs when banks play according to the Nash equi-
librium (NE) and when they flag all payments (All).
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4.9 Summary

In this chapter, I propose the flagging problem in which banks incur a non-negligible cost for

invoking credit card fraud detectors. As a result, banks may wish to strategically flag payments

for review by detectors so as to balance the cost of using the detector with potential losses from

fraudulent payments. To analyze the flagging problem’s affect on the adoption of detectors and

patterns of fraud, I introduce the flagging game played by fraudster and bank nodes in the extended

FCN. The bank nodes in the model differ in their detection capabilities, but all experience the

same costs for use of their detectors. Bank nodes consider these costs when selecting a strategy

that determines the probability a given payment is flagged. Fraudster nodes, with the singular goal

of maximizing the amount of fraud they can commit, select a strategy defining the frequency and

value of their payment attempts.

My experiments show fraudster nodes always prefer to frequently attempt payments of high

value, likely to take advantage of the imperfect fraud detectors employed by bank nodes. An

analysis of outcomes in the network finds this strategy generally pays off for the fraudster, who is

able to successfully commit fraud in the network.

All bank nodes flag most payments when detector costs are low. However, when costs become

high, strong bank nodes become more selective with their flagging and weak bank nodes continue

to flag most payments. This deviation in behavior is attributed to the fraudster’s more frequent

targeting of weak bank nodes. As a result, weak banks are primarily concerned with the costs

from fraud liability and rising detection costs do not factor into their strategic decision. Strong

banks nodes experience more balanced costs and find the threat of fraud to be minor compared

to the incurred costs of invoking the detector. Therefore, when detection costs are high, strong

banks benefit from the existence of weak banks in the system and the tendency for fraudster

nodes to target such banks. This behavior demonstrates the importance of considering other banks’

capabilities when making fraud-related strategic decisions.

This model demonstrates, to my knowledge, the first known attempt at explicitly capturing the

strategic interaction between banks and fraudsters. The results indicate there are useful insights
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to be gained from studying the fraud problem in this manner and further expansions of the model

could broaden our understanding of these interactions. For example, including additional dimen-

sions along which the flagging and fraudster decisions are made, expanding the study to different

cost schemes for banks, and adding a cost for fraudsters to acquire customer card details. The cur-

rent model assumes equal accuracy on fraudulent and non-fraudulent payments, which could be

relaxed to better reflect the realities of learning fraud detection from imbalanced data sets. Simply

reducing the accuracy of detectors on non-fraudulent payments may not greatly effect the results of

this work, as it is likely to simply increase the successful fraud at weak banks due to the behavior

of the fraudster node. However, expanding the specifications of fraud detectors may be useful in

understanding the strategic implications for bank nodes employing different overall goals for de-

tection (e.g., stressing recall over precision). The model could also be extended from the black box

fraud detectors to more sophisticated implementations, and could even support comparing specific

fraud detection models. Such an analysis may provide greater insight into interactions between

systems deployed in the real world.
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CHAPTER 5

Adoption of Real-Time Payments with Credit Risk

5.1 Introduction

The distinction between a standard payment and real-time payment lies in its speed and availabil-

ity. Standard payments often experience a processing delay in the clearing and settlement steps

as a result of batch processing and interbank messaging protocols [Committee on Payments and

Market Infrastructures, 2016]. This leads to delays in payment receivers’ access to funds, which

can range from a couple of hours to several days. These delays can be particularly significant for

payments initiated outside of business hours. Conversely, a real-time payment (RTP) is charac-

terized by immediate receipt of the funds by the receiver [Committee on Payments and Market

Infrastructures, 2016]. This immediacy is guaranteed even when the payment is initialized outside

of regular business hours.

Many RTP systems are in use today around the world, including the Faster Payments Services

(FPS) in the United Kingdom, the Real-Time Clearing (RTC) system in South Africa, Swish in

Sweden [Committee on Payments and Market Infrastructures, 2016], and FedNow in the United

States [Federal Reserve Board, 2021]. While these systems are required to provide immediate

receipt of funds, their implementation of clearing and settlement may vary. This work particularly

focuses on real-time payments with deferred settlement, the method employed by the FPS and

RTC systems. In the case of deferred settlement, an irrevocable credit of funds to the receiver’s

account occurs before the clearing and settlement steps complete [Committee on Payments and
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Market Infrastructures, 2016]. The clearing and settlement steps themselves often occur in batches

similar to standard payments. An illustration of a standard payment versus an RTP with deferred

settlement is shown in Figure 5.1. In the standard processing case, a payment is initiated in time

step t = 0, followed by processing, and the final receipt of the payment in time step t = 24h.

Conversely, the RTP with deferred settlement is initiated in t = 0 and results in receipt of payment

in t = 10, followed by processing time akin to a standard payment.

(a) standard payment

(b) real-time payment with deferred settlement

Figure 5.1: A depiction of the standard payment and RTP with deferred settlement timelines from
initiation to final receipt of funds. The standard payment’s funds are not received until processing
completes, but an RTP releases the funds immediately and finishes processing the payment in a
time frame similar to a standard payment.

The increasing provision of these systems is predominantly driven by customer demand, espe-

cially in developing countries [Mastercard, 2020]. The immediacy of RTPs offers a great benefit

to customers. In an emergency or otherwise sensitive situation, knowledge of immediate receipt

can provide the sender peace of mind. Even in non-emergency scenarios, payment senders can

benefit from RTPs. Consider an ecommerce merchant who insists on receiving funds before the

purchased goods will be shipped. An RTP allows the customer to receive their goods in a more

timely fashion, while also benefiting the merchant who gains the opportunity to immediately em-

ploy the funds back into their business. RTPs are not without risks, however, especially for banks.

The expediency of these payments may make it difficult to catch potential problems, for instance

due to fraud or other errors, before payment processing begins. The deferred settlement case, in

particular, necessitates banks assume a credit risk and potential liability in the event problems arise.
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I seek to understand how credit risk might impact bank adoption of RTP systems with deferred

settlement. In particular, which customers will be offered real-time payment options. To this end,

I implement the extended FCN model with customer and bank nodes, and the ability to distinguish

between standard and real-time payments. Customer nodes in the network have a general prefer-

ence for sending RTPs and will prefer to conduct business at a bank that offers them. On occasion,

customer nodes in the model will initiate a payment with a value exceeding their deposit holdings

at the time of settlement. So called overdrafts in this case are a byproduct of the deferred settle-

ment mechanism and introduce a credit risk for banks, who extend short-term credit to senders

enabling these payments. As a result, short-term liability is assumed by banks. Within this model,

a game is played by bank nodes who must decide which customers, if any, should be allowed to

send RTPs in the network. This is handled by selecting from strategies that set the prerequisite

minimum threshold of initial deposits required for customers to be allowed to send RTPs over the

course of the game. When selecting their threshold, banks must strategically balance the benefits

of offering RTPs, including the ability to attract customers, with the cost of potential exposure to

overdrafts.

I analyze the game using EGTA to identify the Nash equilibrium for various model parame-

ter settings controlling customer behavior and standard payment delays. Outcomes when banks

follow the equilibria are compared to the case when all customers are allowed to send RTPs to

understand the impact of strategic choices on the network. I find that banks in the model tend to

select strategies that set positive, but low thresholds on the initial deposit holdings required to send

RTPs. As a result, most—but not all—customers have access to the service. In aggregate, banks

are generally better off when all customers are allowed RTPs, as it increases the overall volume

of successful payments and decreases overdrafts. Nevertheless, individual banks are generally un-

willing to assume a level of risk to grant all their customers the use of RTPs leading to the sub

optimal outcome instead.
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5.2 Related Work

Bech [2008] employ game theory to study liquidity in the real-time gross settlement (RTGS) sys-

tem, which handles settlement of wholesale payments between banks. The study analyzes bank

management of intraday liquidity under different credit policies of the central bank. The authors

find this scenario leads to two well-known games: the prisoner’s dilemma and the stag hunt. John-

son et al. [2004] specifically study liquidity in the deferred settlement instance of the RTGS system

by using historical data from the US Federal Reserve’s Fedwire Funds Service.

To better understand adoption of RTPs, two prior works analyze related proxy systems. Bech

et al. [2017] identify parallels in the adoption of RTGS systems and RTPs, particularly noting both

experienced a 15-year gap between first introduction and prominent worldwide up-take. Hayashi

and Toh [2020] note the importance of mobile banking as a gateway for accessing RTPs and iden-

tify gaps in usage that will need to be addressed to promote wide adoption of RTPs.

Much prior literature on the topic of RTPs provides introductions to these relatively new addi-

tions to the payments space. Such works tend to focus on their distinction from standard payments

and explain benefits and risks for participants [Committee on Payments and Market Infrastruc-

tures, 2016, Hartmann et al., 2019, Santamarı́a, 2019]. In particular, several works focus on the

potential increased liquidity demand these payments may place on banks [Galbiati and Soramaki,

2008, Hellqvist and Korpinen, 2021]. There also exist several studies focusing on the design of

RTP systems [Guo et al., 2015, Kulk, 2021, Guo and Ma, 2023], including proposing blockchain

implementations [Arshadi, 2019, Zhong et al., 2019].

Several authors provide analyses of the effects of existing RTP systems on the broader payments

ecosystem. A study of the FPS in the United Kingdom finds heavy use of RTPs for standing

orders and credit card bills, but almost no effect on point-of-sale transactions [Greene et al., 2014].

Another study comparing the adoption of RTP systems in six countries finds the greatest impact

of RTPs is on traditional credit transfers and the use of checks [Hartmann et al., 2019]. It also

identifies the most important factors for successful adoption of RTPs.

To my knowledge, none of the existing literature specifically address how banks might decide
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who can use RTP systems. Given the potential risk to banks, it is worth exploring how they may

place a limitation on customer use and explore how such a limitation may be chosen.

5.3 Payment Model

The payment model employed is an extended FCN consisting of a set of bank nodes B =

{B1, . . . , Bb} and customer nodes C = {C1, . . . , Cn}. Bank nodes in the network hold deposits on

behalf of customer nodes as shown in Figure 2.6, who draw on those deposits to make payments to

other customers in the network. Customers may have the opportunity to make one of three types

of payments: standard, real time, or overdraft. The latter, as I will explain, is a special case of

a real-time payment in this model. To differentiate between standard and real-time payments, I

must introduce time more explicitly into transactions within the payment model. All payments

will follow the same edge updates as detailed in Section 2.1.2.3. However, the order and timing

of the updates will be defined to reflect characteristics unique to each payment type. This will be

aided by the use of a payments queue, Q, for each bank node. In this case, the queue will store

payments sent by customers of a given bank node that have yet to finish processing.

5.3.1 Standard Payments

Standard payments are subject to batch processing, introducing a time delay. To capture this,

standard payments sent in the model will not be used to update the edges in the network until

a later time period. Until then, the payment is stored in the sender bank’s payments queue. At

regularly scheduled intervals, referred to as the clearing period, all queues are cleared by removing

all payments from the queues and using them to update the appropriate edges in the network.

An example of this process is shown in Figure 5.2. Time step t = 0 shows the network before a

payment is initiated. In time step t = 1, customer node C1 initiates a standard payment of 10 units

to customer node C2. Note, this is the same payment modeled in Figure 2.9. At this point, nothing

in the network changes and the payment is stored in B1’s payments queue, QB1 . It is not until the
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next clearing period in time step t = X that the payment is removed from the queue and used to

update the network. After the edge updates, the network appears the same as in Figure 2.9.

Figure 5.2: An example of a standard payment of 10 units initiated at time step t = 1 by customer
node C1. The network remains unaffected by the payment until processing finishes in the next
clearing period.

5.3.2 Real-Time Payments with Deferred Settlement

Real-time payments with deferred settlement are characterized by both immediate receipt of pay-

ment and the use of batch processing. To capture immediate receipt of payment, the edges between

the receiver and its bank are updated in the same time step in which the payment is initiated. De-

ferred settlement is modeled by adding the remaining payment steps to the sender bank’s payments

queue. As in the standard payment case, the payment is removed and used to update the network

during the next clearing period.

An example of customer node C1 making an RTP of 10 units to customer node C2 is shown

in Figure 5.3. When the payment is initiated in time step t = 1, the edges between B2 and C2

are immediately updated to reflect C2 receiving the payment funds. The remaining edge updates,

however, do not occur until the next clearing period t = X to reflect deferred settlement between

the remaining payment parties. Note that after the clearing period, standard and real-time payments

have the same effect on the network.
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Figure 5.3: Customer node C1 makes a real-time payment of 10 units to customer node C2. The
payment creates an immediate change to the edges between the receiver and its bank, but the
remaining payment steps are not implemented until the next clearing period.

Figure 5.4: An example overdraft payment of 30 units from customer node C1 to customer node
C2. In this instance, bank node B1 supplies the remainder of the payment value to allow the
payment to process.

5.3.3 Overdraft Payments

On occasion, a customer may make a payment whose value exceeds the sender’s current account

holdings referred to as an overdraft [Parrish and Frank, 2011]. When overdrafts occur, banks

supply the difference to allow the payment to process. Banks are willing to engage in this practice

in the short term. However, in the long term, liability is passed back to customers through overdraft

fees.

In the payments model, overdrafts are a byproduct of the expediency of RTPs, which do not

allow bank nodes time to conduct thorough checks on the customer’s account. Such payments
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occur when the value of a customer’s RTP exceeds its deposit holdings during settlement. When

an insufficient payment occurs in the model, the sender’s bank will supply the difference to allow

the payment to process. The total difference supplied by bank nodes on behalf of their customers

is called the overdraft coverage.

Figure 5.4 shows an example of customer node C1 making an RTP of 30 units. C1’s current

deposit holdings are 20 units, which is insufficient to cover the payment amount. Since the payment

is sent in real time, the receipt of the payment occurs in the time step in which it was initiated as

in the previous RTP example. However, when the payment finishes processing during the next

clearing period, there are some differences. In an overdraft situation, the sender’s bank node will

take the sender’s remaining deposits for the payment. In this case, the dashed blue debt edge from

B1 to C1 will now have a value of 0 units. With 20 fewer units in its account, C1’s willingness

to hold additional deposits increases by the value removed from the account. Bank node B1 will

supply the remaining 10 units to the payment and pass on the full value, 30 units, to the receiver’s

bank. Thus, an overdraft creates an asymmetry in the settlement amounts between the sender and

its bank, and the sender and receiver banks.

5.4 Payments Game

The payments game is played by bank nodes in the extended FCN described above. Bank nodes

must decide which of their customer nodes, if any, are allowed to send RTPs by selecting from

one of six available strategies. After payments are made in the network over T time steps, banks

receive a payoff for the performance of their chosen strategy.

5.4.1 Initialization

During the initialization phase, bank and customer nodes are created to form the financial network.

As part of their initialization, bank nodes will select their strategy for allowing customer access to

RTPs which is also used to initially attract customers to their bank.
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5.4.1.1 Customer Nodes

Customer node Ci is initialized with a random amount of initial deposits IDCi
, drawn from an

exponential distribution with average IDa. As a result, the majority of the customers in the net-

work will start with approximately average deposit holdings while a minority will be part of very

wealthy group of individuals. Each customer node is also assigned uniformly randomly to a pref-

erence for receiving payments. Either a customer will be willing to accept any kind of payment

(Any) or will only wish to accept RTPs (RTP-only). Lastly, customer nodes are initialized with an

attentiveness representing the likelihood a customer node checks for the possibility of an overdraft

when initializing an RTP. The attentiveness of customer nodes is a game configuration parameter

in the range of a ∈ [0, 1] which applies to all customer nodes equally. In the event the customer

identifies a possible overdraft, it will adjust its payment as described in Section 5.4.2.

5.4.1.2 Bank Nodes

Bank nodes are initialized to form the interbank network with infinite willingness to route pay-

ments on behalf of customer nodes. Upon initialization, each bank node selects its strategy to

determine which customers will be allowed to send RTPs. Each strategy sets a different minimum

threshold on initial deposit holdings a customer node must have to be allowed to send RTPs. Strat-

egy thresholds are referenced relative to the average initial deposits held by customer nodes in the

network (IDa). They range from requiring initial deposit holdings below average to those requir-

ing greater than average deposits, as well as including all and no customer allowance scenarios. A

list of all bank strategies can be found in Table 5.1. As discussed, bank nodes are liable in the short

term for any overdrafts that occur. On the other hand, bank nodes can use the promise of RTPs to

attract business from customers. Thus, the strategic real-time payments decision for bank nodes is

to select a strategy balancing the benefits of RTPs with the credit risk banks assume in the event of

overdrafts.
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Strategy name Customer Ci allowed to send RTPs if:

0% all customers allowed
25% IDCi

> 0.25× IDa

50% IDCi
> 0.5× IDa

100% IDCi
> IDa

200% IDCi
> 2× IDa

infinity no customers allowed

Table 5.1: A mapping of bank strategy name to the minimum threshold of initial deposits it requires
to allow customer node Ci the use of RTPs.

5.4.1.3 Network

Customer nodes are assigned to bank nodes under the assumption that they prefer banks that allow

them to send RTPs, but do not further differentiate between banks in any way. It is further assumed

that the selected strategies of bank nodes are public knowledge at the time of assignment. The

specific assignment procedure is as follows:

• If no bank would allow a customer to send RTPs, the customer is uniformly randomly as-

signed to any bank.

• If there exists one or more banks that would allow the customer to send RTPs, the customer

is uniformly randomly assigned to any such bank.

Upon assignment, a debt edge is created representing the customer depositing their initial de-

posits into an account at the bank. I assume customers have an infinite willingness to hold addi-

tional deposits in their accounts, creating a credit edge from the newly assigned customer to its

bank of an arbitrarily high value. These assignments last for the duration of the game.

5.4.2 Game Steps

The game then unfolds over T discrete time steps. Each time step begins by checking if it is a

clearing period and if so, clearing all payments from the bank queues to update the network as
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described in Section 5.3. Clearing periods occur every χ time steps. Next, η new payments are

created in the network in the following manner:

1. Randomly select the sender from the customers in the network.

2. Randomly select the receiver from the remaining customers in the network.

3. Draw the payment value, v, from a uniform v ∼ U{1, . . . , 100}.

4. Determine if the payment is sent as a standard payment or RTP by the receiver’s preference

such that:

• If the sender can send RTPs, it is sent in real time.

• If the receiver is RTP-only and the sender cannot send RTPs, the payment attempt is

terminated.

• Otherwise the payment is sent as a standard payment.

To aid with payment calculations, I define customer node Ci’s available funds (ACi
) as its

current deposit holdings minus the value of any pending payments Ci has sent in the network.

When an attempted payment’s value is greater than the sender’s available funds (v > ACi
), I

consider it a potential overdraft. This is only a potential overdraft because it is possible for the

sender to receive enough funds between its initiation and final settlement to render this payment

valid. However, if it were sent in the present time step, there would be insufficient funds to cover

the full amount. Bank nodes in the network will cancel a potential overdraft attempted as a standard

payment, but a potential overdraft RTP can only be caught by the customer. With probability

equal to customer node attentiveness, a customer node sending an RTP will check its payment

information before sending. If customer node Ci checks a potential overdraft RTP, it will adjust the

value to be v = max(0, ACi
). A payment value of 0 triggers termination of the payment attempt.

Any payment attempts not canceled during the creation phase will be processed as described in

Section 5.3.
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The final time step consists of only the queue clearing step and no new payments are created.

After the game concludes, bank nodes will receive a payoff for the performance of their strategies.

5.4.3 Payoffs

Bank payoffs consider the benefits of RTPs and the short-term liability for overdraft payments. In

particular, the deposits a bank holds for its customers may be viewed as a representation of the

bank’s ability to conduct business. However, the deposits themselves are a liability that must be

paid upon demand. I model the utility a bank node receives from attracting the initial deposits of

all its customer nodes (ID) as a fraction of their total value. Similarly, the utility a bank derives

from routing payments in real time for its customers is modeled as a fraction of the payment’s

value representing customer satisfaction and bank benefits such as fees that could be charged for

routing these special payments [Deloitte, 2019]. Under this payoff scheme, customers are assumed

to derive slightly more satisfaction or are willing to pay slightly more in fees for the ability to send

a 100 unit payment in real time than a 5 unit payment. I refer to the total value of RTPs routed

by bank Bi as RBi
. Finally, the loss to bank nodes in the game is equal to the total overdraft

coverage required (OC) from credit provided to customers to allow for the processing of overdraft

payments. In the short term, banks hold full liability for these payments, even if they are able to

transfer liability to customers in the long run.

Thus, for a bank node Bi, the payoff is:

αIDBi
+ βRBi

−OCBi
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5.5 Empirical Game-Theoretic Analysis

5.5.1 Model Parameters and Game Configurations

I analyze different configurations of the payments game using the EGTA methodology to identify

Nash equilibrium strategies employed by bank nodes. My experiments are conducted on games

with n = 225 customer nodes and b = 3 bank nodes. Customer nodes have an average initial

deposit holding of IDa = 1, 000. All games are played over T = 720 time steps with η = 45

payments attempted in each. The game configurations are differentiated by the parameter setting

for the clearing period length and customer attentiveness. I run experiments with χ ∈ {4, 6, 12, 24}

and a ∈ {0, 0.25, 0.5, 0.75} for a total of 16 different configurations. Bank payoffs are calculated

using α = 0.5 and β = 0.02. These parameter settings are listed in Table 5.2.

Parameter Setting

n 225
b 3
T 720
η 45
χ {4, 6, 12, 24}

IDa 1,000
a {0, 0.25, 0.5, 0.75}
α 0.5
β 0.02

Table 5.2: A list of parameter settings for the payments game.

5.5.2 Nash Equilibria

To aid in analyzing the equilibria, I sort the bank strategies into four groups describing their al-

lowance of RTPs. The all group contains only the strategy that allows all customers to send RTPs,

while the none group contains the strategy that does not allow RTPs to any customers. Strategies in

the low group require fewer than the average amount of initial deposits to send RTPs. Conversely,

strategies in the high group require greater than average initial deposits.
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The total probability assigned in equilibrium to playing strategies from each group is reported in

Figure 5.5 for each game configuration. The results show that as the clearing period and customer

attentiveness increases, banks nodes are more likely to adopt lower thresholds. And when customer

attentiveness is 0.75, bank nodes allow all customers the use of RTPs. Intuitively, as customer

nodes are more likely to confirm validity of their payments, the number of required overdrafts

decreases. Thus, bank nodes may be more willing to allow broader use of RTPs. On the other

hand, a shorter clearing period creates a shorter delay for processing of standard payments. The

difference between an RTP and a standard payment becomes smaller for customers. In such a case,

it may not be as worthwhile for bank nodes to provide as many customers with RTP use.

(a) a = 0 (b) a = 0.25

(c) a = 0.5 (d) a = 0.75

Figure 5.5: The total probability bank nodes employ each strategy group under Nash equilibrium
for each game configuration.
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5.6 Comparison of Impact on the Network

5.6.1 Experiment Overview

I aim to understand how the bank node equilibria affect outcomes in the network. To study this,

bank nodes in the network play according to the equilibrium identified in the EGTA analysis in

1,000 random instances for each payment game configuration. For mixed-strategy equilibria, the

bank nodes are assigned to play a pure strategy in the support according to a weighted draw based

on the probability assigned to each strategy in equilibrium. Over the many runs of each game

configuration, I measure customer nodes’ access to RTPs, the success of payment attempts, and

metrics related to overdraft payments.

To further understand the impact of the Nash equilibria, I compare these results to two additional

cases. In the first case, all bank nodes allow all customers to send RTPs regardless of initial

deposits, equivalent to all bank nodes selecting the 0% strategy. This represents a situation in

which banks might be required, for instance by federal regulation, to allow everyone access to

RTPs. Conversely, in the second case, bank nodes do not allow any customer nodes to send RTPs,

representing the status quo before RTP systems were introduced. Note, some customers in the

network will still be initialized to demand RTPs-only. In this case, such a preference can be

viewed as an unwillingness to accept payments through the banking system without an RTP system

in place. I will refer to these cases as the all and none cases respectively.

5.6.2 Impact Experiment Results

First and foremost, the strategies available to bank nodes may lead to limited customer access

of RTPs. To investigate the impact of the equilibria on customers, I examine the proportion of

customers allowed to send RTPs in each game configuration. The results are shown in Figure 5.6.

I find that no fewer than 90% of customer nodes have access to RTPs in the configurations tested

and in a few cases, all customer may send RTPs. Furthermore, the proportion tends to increase

as the clearing period lengths increase and customers become more attentive to RTPs. Logically,
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these trends align with patterns in the equilibrium selection of bank nodes. As both the clear period

and customer attentiveness increase, bank nodes become more likely to select strategies with lower

threshold requirements for RTP use. This leads to an increased number of customer nodes meeting

the qualifications for sending RTPs, as reflected in the increasing proportions shown. The exception

to these trends occur when customer attentiveness is 0.75 and the pure strategy Nash equilibrium

is to allow all customers RTP access for all clearing period lengths.

Figure 5.6: The proportion of customer nodes allowed to send RTPs in the network tends to in-
crease as the clearing period and customer attentiveness increases. This trend aligns with patterns
in the Nash equilibrium of the bank nodes.

An additional measure of the impact on customer nodes is the success of payment attempts in

the network. Recall, issues with customer compatibility and deposit holdings may lead to early

termination of a payment attempt. I analyze the proportion of payment attempts that do not expe-

rience early termination, deemed successful, for all game configurations. For comparison, I also

gather the results for the all and none cases as well. I calculate the total expected number of

payment attempts from the T and η game parameters. Figure 5.7 shows the results for all game

configurations following the Nash equilibrium and the all case.

The results show that payment attempts in the network experience high success rates regardless

of whether banks play by the Nash equilibrium or allow all customers use of RTPs. In the case

of Nash equilibrium, the success of payments tends to slightly increase as the clearing period
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Figure 5.7: Customer nodes experience high success with payment attempts in both the Nash
equilibrium and all cases. However, for all game configurations, success is greatest when all
customers can send RTPs.

increases. At lower clearing periods, bank nodes tend to allow fewer customer nodes access to

RTPs which may lead to cases of sender and receiver incompatibility. Such cases would increase

the number of unsuccessful payments. However, more attentive customers allows banks to set

lower thresholds which increase RTP use. As a result, compatibility issues would decrease leading

to more successful payments.

On the other hand, in the all case, increases in attentiveness or clearing period length slightly

decrease the success of payments. This can be attributed to an increased likelihood of insufficient

funds for making payments. As the clearing period increases, the number of payments left un-

processed between clearing periods increases. As a result, a customer node is more likely to have

insufficient available funds for a new payment. When this customer is also very attentive, it is more

likely to catch the insufficiency and cancel the attempt due to a lack of funds.

In comparing the success rates for the Nash equilibrium and all cases, I find that allowing all

customers to send RTPs leads to more successful payments in almost all configurations. The only

exception is when the Nash equilibrium is the all case. This aligns with the analysis of the trends

in success rates above. Under the equilibria, success rates are affected by customer incompatibility

and deposit value issues. When all customers are allowed to send RTPs, incompatibility is no
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longer an issue and the only risk to success comes from rare deposit issues. I also find the average

proportion of successful payments across all configurations in the none case to be 0.32, well below

the success in the other two cases. This highlights the importance of allowing RTPs to promote

customer liquidity. The best outcomes occur when all customers are allowed RTPs, however, even

allowing access to only some participants appears to promote increased participation in the banking

system.

Bank nodes select their strategies to balance customer experience with their exposure to credit

risk from overdrafts. I evaluate the impact of the Nash equilibria on bank nodes by measuring the

portion of their RTPs that are overdrafts and, when a overdraft occurs, the portion of the payment

covered by the bank node. Figure 5.8 shows these outcomes when bank nodes play according to

the Nash equilibria and in the all case for each game configuration. In the none case, overdrafts in

the model are caught and terminated before processing and their prevalence and required coverage

are 0.

(a) Proportion of RTPs that are overdrafts (b) Proportion of overdraft coverage

Figure 5.8: Bank nodes tend to see few overdraft payments, but are often required to cover the
majority of such payments. Allowing all customers the use of RTPs tends to result in slightly
fewer overdrafts and requires less coverage.

The results show several interesting trends in overdraft payments mirrored in both the Nash

equilibrium and all cases. First, few RTP attempts result in overdrafts, however, when they occur

bank nodes tend to cover the majority of the payment. This trend is evident regardless of whether
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bank nodes adopt the equilibrium strategies or allow all customer nodes to send RTPs. Second,

as customer nodes become increasingly attentive, both the number of overdrafts and required cov-

erage tend to decrease. A more attentive customer is more likely to check and correct a payment

value, which decreases the possibility of an overdraft occurring.

Notably, as the clear period length increases, the two overdraft measures trend in different di-

rections. In particular, the number of overdrafts tends to show a slight decrease, while the required

coverage shows a slight increase. To explain this phenomenon, consider customer nodes as both

payment senders and receivers. A more frequent clearing period length provides fewer opportu-

nities for a given customer node to receive funds before the next clearing period. Now, when the

next clearing period occurs, this customer has accumulated fewer deposits to use when settling

payments for which it is a sender than they might have if the clearing period were longer. Thus,

there is an increase in the number of instances in which an RTP’s value is strictly larger than the

sender’s deposit holdings at the time of settlement. On the other hand, a more frequent clearing

period also limits the number of payments a customer node may send before the next clearing pe-

riod. With fewer opportunities to make payments between clearing periods, the total amount owed

in payments of a given customer node at the next clearing period will be smaller with a clearing

period length of 4 than 24. Thus, while there may be an increase in the number of payments for

which a customer node does not have enough deposits, the amount of deposits a customer node

does have tends to be closer to the total value of payments made.

The case with customer attentiveness of 0.75 diverges from this trend. In this instance, both

the number of overdrafts and the required coverage slightly decrease as the clearing period length

increases. Similar to the logic described above, a longer clearing period length provides more

opportunities for a customer to receive payments between clearing periods. When the attentiveness

is high, customer nodes are more likely to check and correct a potential overdraft payment. By

definition, a correction will decrease the value of the payment relative to its original value. As a

result, it is more likely the sender has the required funds during settlement.

Finally, I also note the number of overdrafts and the overdraft coverage required in the all case
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is slightly less than, or in some cases equal to, the results under the Nash equilibrium. However,

since bank nodes still choose to implement some limits on RTP usage in equilibrium, it appears

these slight differences are enough to affect the bank nodes’ decision.

In comparing these various network outcomes in the Nash equilibrium and all cases, I uncover

an important friction between strategic choice and optimal network outcomes. From the analysis,

it can be seen that all parties involved tend to be better off when all customer nodes are able to send

their payments in real time. This is evident across all measured outcomes. Customer nodes are

always more successful attempting payments in the network when all sending RTPs. Bank nodes

tend to see fewer overdrafts, and when they do, cover a slightly smaller amount of the payment.

However, an individual bank node playing the payments game is often more likely to play a strategy

that limits the number of customers with access to RTPs. I conclude that, while bank nodes may

be better off when all customers in the network are allowed to send RTPs, a strategic bank node

would prefer not to assume the individual risk required to realize this outcome.

5.7 Summary

In this chapter, I analyze the effect of credit risk on the adoption of real-time payments with de-

ferred settlement by banks. I introduce a payment model that supports customer nodes sending

both standard and real-time payments with deferred settlement through the interbank network.

Credit risk experienced by bank nodes is modeled as overdraft payments, which occur when the

value of an RTP is greater than the deposit holdings of the sender during settlement and result

in the inability for proper checks to occur before payment processing of an RTP begins. When

overdrafts occur, bank nodes extend temporary credit to customers to continue processing the pay-

ment. In this way, bank nodes become liable for the difference between the customer’s deposits

and the payment’s value. Such a scenario captures both the risks of the expediency of RTPs and

the risk borne by banks in the deferred settlement case. I ask which customers banks should allow

to send RTPs in this scenario by capturing the decision in a strategic game played by bank nodes.
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Bank nodes select a strategy setting a minimum threshold of initial deposits a customer must have

to qualify for RTP use. The strategic decision for bank nodes requires balancing the benefits of

attracting customers with RTPs and a desire to limit their resulting liability.

The results show that while bank nodes never choose strategies with high thresholds, the like-

lihood of allowing all customers to send RTPs is dependent on game configuration parameters.

When customer nodes are less likely to have overdrafts, bank nodes are willing to allow all, or

nearly all, customers the use of RTPs. However, if customer nodes may be at a higher risk of over-

drafts, bank nodes become more likely to select a strategy imposing a non-zero threshold. Bank

nodes also tend to prefer to set thresholds when the clearing period is lower and standard payments

become similar to RTPs. In this case, it is less worthwhile for bank nodes to risk allowing as many

customers the use of RTPs.

I also analyze the effects of bank nodes employing the Nash equilibria to various outcomes in

the network and compare them to cases in which banks allow everyone or allow no one RTPs. The

results of this analysis show that both bank and customer nodes are better off when all customers

are allowed to send RTPs. This is evident in the success of payment attempts in the network, the

number of overdrafts, and the coverage required by overdraft payments. However, the Nash equi-

librium in many situations for banks in the game is to select a strategy that may place a limitation

on RTPs. From these results, I infer that although outcomes for banks are more favorable when

all customers send RTPs, strategic banks are unwilling to assume the necessary liability risk to

provide all their own customers with RTPs.

While this work offers some insights into the strategic decision faced by banks in the real-time

payments space and the effects on the broader network, it is important to note this model is rather

simplistic. Indications from the current work imply that regulation or mandate may be necessary

to force bank nodes to reach the optimal outcome for this scenario. However, modeling additional

externalities in future work may explore how other factors affect the RTP decision. For example,

customers may be endowed with additional features that would impact their payments, the network

may include more than just customers and banks, and issues with payments could stem from other
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scenarios such as fraud. I begin to address the question of fraud in the next chapter and continuing

to address these and other potential additions should help paint a more complete picture of the

real-time payments landscape.
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CHAPTER 6

Mitigating Fraud Risk in Real-Time Payment

Systems

6.1 Introduction

In the previous chapter, the risk to banks for allowing customers to engage in RTPs was attributed

to unintentional consequences of the speed of these payments. However, risks extend beyond such

innocent errors. Explicitly malicious behavior such as the fraudulent activity in Chapter 4 remains

a threat in real-time payment systems. Drawing on aspects of the previous two chapters, I turn my

attention to analyzing strategic behavior related to fraud in real-time payments. I study the case

of RTPs with real-time settlement, in which the clearing and settlement steps also occur almost

immediately [Committee on Payments and Market Infrastructures, 2016] as shown in Figure 6.1.

The payment steps occur in the same sequence as a standard payment, however over a much shorter

period of time. The total processing time from initiation to final receipt of funds for these RTPs is

about 10 seconds [Diadiushkin et al., 2019, European Central Bank, 2023].

Fraudsters target these payments with the intention of exploiting the limited ability of fraud

detection systems to handle the speed necessary for real-time settlement. A survey of payment

service providers finds current manual review processes for fraud detection average 5 to 10 minutes

[Diadiushkin et al., 2019], too slow for RTPs. Thus, fraud detection for RTPs necessitates reliance

on fully automated quick reviews, which tend to be less accurate. A study of the Faster Payment

Service in the United Kingdom (UK) found a 132% increase in fraud the year FPS was introduced,
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(a) standard payment

(b) real-time payment

Figure 6.1: A comparison of the clearing and settlement processing steps for a standard and real-
time payment with real-time settlement.

though numbers for FPS alone were not available. RTPs also attract authorized push payments

(APP) fraud, wherein a customer is tricked into authorizing a fraudulent payment. APP fraud

is difficult to detect because of the direct involvement of the lawful account holder and was the

second largest type of payments fraud in the UK in 2018 [Taylor and Galica, 2020].

Given the demonstrated risk of fraud in RTPs, I seek to understand how banks may strategically

mitigate their fraud risk while providing this beneficial payments service to customers. I study this

question in a variant of the extended FCN model capturing interactions between customers, banks,

and fraudsters. The model distinguishes between real-time payments with real-time settlement

and standard payments when updating the edges in the network. Within this model, I define an

RTP fraud game played by bank and fraudster nodes. To mitigate risks—-including fraud risk—of

RTPs, maximum threshold values above which a payment cannot be sent in real time have been

found to be useful tools for banks [Weyman, 2016]. Thus, bank nodes in the game make strategic

choices regarding threshold value setting and investment in RTP fraud detection. Fraudsters in the

game make strategic decisions determining targets of their fraudulent payment attempts.

The game is analyzed using EGTA to identify the Nash equilibria for various game configura-

tions. To evaluate the benefit provided by the inclusion of each risk mitigation technique, I apply

the strategic feature gains assessment as described in Section 2.3. Finally, I study outcomes in the
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network under strategic equilibrium to understand the impact on network participants.

I find that as bank liability for RTP fraud increases, banks adopt both threshold values and

fraud detection with higher probability. When banks utilize both mitigation techniques, fraudsters

switch from attempting fraud only with RTPs to considering any payment type. In selecting banks

to target, fraudsters tend to heavily rely on historical success as a basis for decision making. The

strategic feature gains assessment highlights the importance of controlling the bank threshold value

for mitigating initial fraud risk. By analyzing equilibrium outcomes, I find that bank strategies are

effective at disrupting fraudsters with minimal negative impact to customers.

6.2 Related Work

As this chapter is an extension of the previous two, the related works introduced in those chapters

remain relevant here. Prior literature in real-time payments is discussed in Section 5.2 and work

related to fraud detection can be found in Section 4.2.

Diadiushkin et al. [2019] focus specifically on applying fraud detection in the real-time pay-

ments space, noting the challenges required by the short processing time. Additional works intro-

duce methods for faster fraud detection procedures applicable to the general payments space [John

et al., 2016, Said and Hajami, 2021, Madhuri et al., 2023]. While not all of these works are moti-

vated by RTPs, the benefits of exploring faster fraud detection methods have clear benefits in the

RTP space. There also exist several works discussing various concerns in RTP systems which may

affect fraudulent activity. These concerns include difficulties with performing maintenance and

repair due to their availability [Weyman, 2016] and with verifying customer identity [Dugauquier

et al., 2023].
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Figure 6.2: Customer node C1 sends an RTP of 10 units to C2 in time step t = 1, leading to an
immediate update to the values on the edges of all payment participants.

6.3 RTP Fraud Model

6.3.1 Bank and Customer Nodes

The RTP fraud model is an extended FCN with a set of bank nodes, B = {B1, . . . , Bb}, and a

set of customer nodes, C = {C1, . . . , Cn}. Each customer node owns deposits held in an account

at a bank node and draws on them to make payments to others in the network as described in

Section 2.1.2. Bank nodes are responsible for routing these payments, which may be standard or

real-time payments, on behalf of customers through the interbank network. I assume in this model

banks have an infinite willingness to route such payments for customers.

6.3.1.1 Real-Time Payments

As in Chapter 5, I will differentiate between payment types by the timing of the edge updates

representing the payment. In a real-time settlement setting, all payment steps from initiation to final

receipt of funds are executed immediately. I model this by updating all edges between payment

participants in the network during the same time step in which the payment is initiated as shown

Figure 6.2. Time step t = 0 reflects the network before the payment is made. At time step t = 1,

customer node C1 makes a payment of 10 units to C2 which is immediately reflected in changes to

all edges between the two nodes.
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Figure 6.3: An example of customer node C1 making a standard payment of 10 units to C2. A stan-
dard payment updates only the edges between the sender and its bank initially, with the remaining
edges updating during the next clearing period.

6.3.1.2 Standard Payments

Standard payments, as mentioned in the previous chapter, are subject to batch processing which

leads to delays. To model batch processing, each bank node will have a payments queue for

storing unprocessed payments. When a standard payment in initiated, only the credit and debt

edges between the sender and its bank are updated before the payment is placed in the sender

bank’s payments queue. Note, this diverges from the standard payment modeling in the previous

chapter. At a later time period, the clearing period, the bank queues are cleared and the remaining

edge updates reflecting the payment are applied to the network. The same payment of 10 units

from C1 to C2 is shown in Figure 6.3, this time as a standard payment. The edges between C1 and

B1 are updated at time step t = 1 to represent the beginning of payment processing. However, it

is not until the clearing period t = X that the edges between the two bank nodes and the receiver

and its bank are updated. After the clearing period, both the standard and real-time payment have

the same effect on the network.

6.3.2 Fraudster Nodes and Fraudulent Payments

As in Chapter 4, fraud is committed in the network by fraudster nodes. Importantly, fraud may

occur with any payment type. A fraudster draws on the deposits of a customer node, the victim, to
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make payments in the network. When this occurs, a fraud edge is created connecting the fraudster

and its victim as described in Figure 2.10. Other nodes in the network are generally unaware of

the payment’s fraudulent nature, leaving the remaining payment steps as described for the non-

fraudulent cases above. In particular, a fraudulent RTP will immediately create the fraud edge

and update all edges between victim and receiver in the same time step the fraudster initiates the

payment. On the other hand, when a fraudulent standard payment is initiated, only the fraud edge,

and edges between the victim and its bank are updated immediately. The remaining edge updates

representing the payment are reflected in the network after the next clearing period.

6.4 RTP Fraud Game Initialization

In this section, I describe the initialization of all nodes, the strategy sets available to strategic

nodes, and the formation of the initial payments model. As the game unfolds, the initial network

will dynamically update as a result of behavior described in Section 6.5.

6.4.1 Customer Nodes

The n customer nodes are initialized with deposits drawn from an exponential distribution with an

average value of 10,000. Each customer node is also initialized with its own preference for RTP

usage as both a sender and receiver. A given customer node will only be willing to receive RTPs

(RTP-only) or be willing to accept any type of payment (Any). This is initialized as a random draw

with probabilities λ and 1−λ respectively. Furthermore, some customers may also have an aversion

to utilizing a new, unfamiliar technology to send payments. However, I assume that customers are

aware others may demand payments in real time and thus are always willing to engage to some

degree with RTPs. To capture this, each customer node has its own personal threshold for payment

values above which they are unwilling to send in real time. Customer thresholds are uniformly

randomly chosen during initialization from CT ∈ {200, 400, 600, 800, 1000}. The maximum

payment value in the model is 1,000, so a customer with threshold CT = 1, 000 has no restrictions
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on willingness to send RTPs.

Lastly, I note that customers may not necessarily always desire to send an eligible payment in

real time due to personal preference and payment requirements [Greene et al., 2014, Hartmann

et al., 2019]. I capture this with the urgency parameter (u), such that with probability u an eligible

payment is sent in real time and with probability 1−u it is sent as a standard payment. The urgency

parameter universally applies to all customer nodes.

6.4.2 Bank Nodes

A set of b bank nodes is initialized to form the interbank network and with their own payments

queues. Each bank node has access to two fraud detectors, one for each type of payment. Since

the focus of this work is to understand the use, rather than emphasize a particular method of fraud

detection, I abstract away implementation details by modeling both detectors as black boxes as

in Chapter 4. A given detector is characterized only by the probability γ it correctly labels a

payment as fraudulent or not fraudulent relative to its true label. In this instance, I again consider

the detection abilities for fraudulent and non-fraudulent payments equal and simply refer to one γ

value for a given payment type. Bank node Bi’s standard payments fraud detector γS
Bi

is initialized

with a random draw from U ∼ [0.8, 0.9] and its RTP detector γR
Bi

by the bank node’s chosen

strategy as described below.

6.4.2.1 Bank Strategy Set

During initialization, each bank node selects a strategy from a set of two-part strategies controlling

RTP usage and fraud detection. The first part of the strategy establishes the bank’s threshold

BTBi
∈ {0, 200, 400, 600, 800, 1000}, which is the maximum payment value bank node Bi will

allow a customer to send in real time. A threshold of BT = 0 is equivalent to prohibiting any

RTPs, a threshold of BT = 1000 allows unrestricted RTPs, and the remaining choices offer varying

degrees of limitation. The threshold choice of bank nodes is assumed to be public information that

might attract customers to the bank.
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The second part of the strategy is the bank’s chosen investment level in fraud detection for RTPs

(FDI). The investment level determines the bank node’s RTP fraud detection capabilities for the

duration of the game and incurs a one-time cost. A higher investment allows for a more accurate

fraud detector (higher γR), but at a higher cost to the bank. To capture the challenges of speed,

fraud detection accuracy for RTPs at every investment level is strictly less than that of standard

payments. Table 6.1 maps the investment level choices to one-time cost and γR setting, which is

derived relative to the bank’s standard payment fraud detection capabilities. The strategy set for

bank nodes contains all 24 combinations of threshold choices and investment levels.

FDI level Cost (units) γR =

none 0 –
low 1,000 0.65× γS

high 3,000 0.9× γS

Table 6.1: A mapping of RTP fraud detection investment level to one-time incurred cost and de-
tection capability (γR) relative to the bank’s standard payment fraud detector (γS). The detection
capability of a bank remains set for the duration of the game.

6.4.3 Fraudster Nodes and Strategy Set

The network is initialized with m fraudster nodes. Each fraudster node maintains a history of its

success committing fraud at each bank node, which is used to inform its strategic behavior. Before

the game begins, fraudsters select their strategies. Each strategy determines the rules the fraudster

will follow for selecting a bank and payment type to target for fraudulent activity. I assume given

the opportunity, fraudster nodes will always prefer to attempt RTPs to exploit the limits of fraud

detection in the quicker payment scheme. However, it may be beneficial for fraudsters to consider

attempting standard payments as well. If banks severely restrict RTPs, fraudsters may wish to

gamble on the imperfect nature of standard payment fraud detection rather than completely miss

an opportunity to attempt fraud. Thus, fraudsters in the game will choose between one of two

rules: attempt RTPs only (RTP-only) or be willing to attempt a standard payment if an RTP is not

possible (Any).
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Fraudsters in the game target bank nodes at which to commit fraud, but do not differentiate

between customer nodes of a targeted bank. I assume information regarding customer and bank

relationships is accessible to fraudsters at negligible cost. A fraudster node selects the bank node

to target using their strategy, and randomly selects a victim from customers with accounts at the

target bank. Whenever a fraudster’s payment attempt is caught, it will switch to a new victim node

by following the same procedure of first selecting the bank target and then a random customer of

that bank. Note depending on the rule, the target bank may change over the course of the game.

There are two types of targeting rules fraudsters may choose from: threshold and success.

The threshold rule simply targets the bank with the highest bank threshold, argmaxBi
BTBi

. The

success rule selects the bank at which the fraudster has been most successful in the past, modeled

as a multi-armed bandit problem and implemented using the Upper Confidence Bound algorithm

[Auer et al., 2002].

Specifically, the target bank bt is calculated by:

argmax
Bi

∑t
s=1 Ibs=Bi

XBi
(s)

NBi
(t)

+ ρ×

√
log(t)

NBi
(t)

,

where t is the current time step and NBi
(t) is the number of times bank Bi has been targeted

prior to t. I set XBi
, the reward gained by targeting Bi, to 1 if the payment attempt was successful

and 0 otherwise. A larger value of ρ indicates greater exploration of bank nodes than exploitation.

I test three variants of this strategy defined by ρ ∈ {0.2, 1, 2}, which are referred to as successρ.

Following both rules may result in more than one bank node fitting the target criteria. In this case,

one such bank is uniformly randomly chosen as the target each time.

I also include the random targeting rule, which randomizes over threshold and success rules

each time a new bank target is selected. I test two variants of this rule defined by the ρ value used

for the success rule. In particular, I test ρ ∈ {0.2, 2} and refer to them as randomρ.

Overall, there are two possible payment targeting rules and six possible bank targeting rules. A

single strategy is a combination of one payment and one bank targeting rule creating 12 possible

strategies available to fraudster nodes in the game.
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6.4.4 Network Formation

The initial network is formed by assigning each customer node to a bank node on the assumption

that customers prefer banks that allow them to send RTPs. If possible, a given customer node Ci

is assigned to the bank node that allows the customer to send RTPs at or above Ci’s desired level.

That is, a bank Bj such that CTCi
≤ BTBj

. If no such bank exists, the customer is assigned to the

bank node offering the highest possible threshold (argmaxBj
BTBj

). In the event multiple banks

fit the criteria, one such bank will be randomly selected. Upon assignment to a bank, the customer

deposits all its initial funds in an account creating a debt edge from the bank node to the customer

as outlined in Section 6.3. For simplicity, I assume customer nodes in the game have an infinite

willingness to hold additional deposits in their account.

6.5 RTP Fraud Game

The fraud game unfolds over T time steps. Each time step t follows the same procedure:

1. Check if t is a clearing period and if so, clear all bank queues and use the unprocessed

payments to update the network as described in Section 6.3.1.

2. Generate η new payments in the network as described below in Section 6.5.1.

3. All payments are sent through the respective sender bank’s fraud detector and update the

network accordingly.

After the last time step, all payment queues are cleared for the final time, and bank and fraudster

nodes receive a payoff for the performance of their selected strategies.

6.5.1 Payment Creation

During the payment creation phase, η payment senders are randomly selected from the network

without replacement. With probability µ, one of these η senders is a fraudster. The value of a given
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payment is drawn from U ∼ {1, . . . ,min(1000, d)}, where d is the amount of deposits currently

held in the sender’s account. A payment receiver is obtained by randomly selecting from the other

customer nodes in the network. Whether the payment is sent in real time or not is determined by

the sender, its bank, and the value of the payment as described below.

6.5.1.1 Customer Node Payment Type

Consider a payment of value v sent by customer node Ci with an account at bank Bj . This payment

is only eligible to be sent in real time if v ≤ CTCi
and v ≤ BTBj

. That is, if the sender is willing

and able, respectively, to send it in real time. If the receiver only accepts RTPs, the payment

must be sent in real time. Payment attempts ineligible for real time transmission are terminated in

this case due to incompatibility and considered a missed opportunity for a transaction within the

network. If the receiver is wiling to accept any type of payment and the payment is ineligible for

real time, it is sent as a standard payment. Otherwise, a payment eligible to be sent in real time will

be sent as an RTP subject to the sender’s urgency as described in Section 6.4.1. This determination

process is summarized in Figure 6.4.

Figure 6.4: A flow chart determining the payment type for a payment sent by customer node Ci

belonging to bank Bj of value v. A customer’s payment type is determined by the value of the
payment, the sender’s bank, the receiver, and customer urgency.
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6.5.1.2 Fraudster Node Payment Type

Unlike customer nodes, fraudsters are only constrained by bank thresholds and always prefer RTPs

when possible. A fraudster making a payment of v units using a victim with an account at Bj will

attempt an RTP if v ≤ BTBj
. When the payment’s value exceeds Bj’s threshold, the receiver’s

preference and fraudster’s strategy determine the course of action. If the receiver is willing to

accept any payment type and the fraudster is following the Any rule, a standard payment is at-

tempted. Otherwise, the payment attempt is terminated, at which point the fraudster selects a new

victim following the outlined procedure. Figure 6.5 summarizes the determination process.

Figure 6.5: A flow chart determining the payment type for a fraudster’s payment of value v using
a victim belonging to bank Bj .

6.5.2 Fraud Detection and Network Updates

All payment attempts not terminated during the creation phase undergo fraud detection. Bank

node Bi will invoke its black box fraud detector for the corresponding payment type as described

in Section 6.4.2. A standard payment will be correctly labeled with respect to its true label with

probability γS
Bi

and an RTP with probability γR
Bi

. Any payment labeled fraudulent is canceled re-

gardless of its true label. The remaining payments update the network as outlined in Section 6.3.1.
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6.5.3 Payoffs

A bank’s payoff is composed of the effects of RTP services offered and the effects of invoking

fraud detection. By offering RTPs, a bank attracts some total amount of initial customer deposits,

ID. Though the deposits themselves are a bank liability, they represent partial assets in the form

of continued business from customers, which is modeled as a fraction of the deposit value. Bank

nodes route some total value of payments in the network on behalf of their customers, denoted

VA, on which banks may be able to charge a small fee δ2. When fraud occurs, bank nodes are

liable for the full amount for standard payments (VSF) and may hold some liability for RTPs

(VRF) as described in Section 6.6.1. Choosing to invest in fraud detection results in a one-time

cost to banks (Table 6.1) denoted by RFI. Lastly, imperfect fraud detectors may lead to erroneous

labeling of some customer payments and their subsequent cancellation. So called false positives

represent missed opportunities for routing and may lead to frustration and less frequent business

by customers. To account for this potential cost, I define VFP as the total value of false positive

payments and use β to account for these potential costs.

Thus, bank node Bi receives the following payoff:

δ1IDBi
+ δ2VABi

− αVRFBi
− VSFBi

− RFIBi
− βVFPBi

.

A fraudster node, on the other hand, seeks only to maximize their success committing fraud.

This is reflected in their payoff, which is simply the total value of fraudulent payments the fraudster

commits across all banks and payment types during the game. For a given fraudster node, Fi, this

value is calculated as:

n∑
j=1

∑
(Fi,Cj ,fraud ,v)∈E

v
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6.6 Experiments Overview

6.6.1 Identifying Nash Equilibria

I employ EGTA to identify Nash equilibrium strategies for bank and fraudster nodes in games with

n = 200 customers, b = 4 banks, and m = 1 fraudster. The game is played over T = 2, 880 time

steps, with clearing periods occurring every χ = 96 time steps. In each time step, η = 20 payments

are generated with probability µ = 0.7 one of the payments is made by a fraudster node. A

customer will send an eligible payment in real time with urgency u = 0.5. When calculating bank

payoffs, the value of initially attracted deposits is scaled by δ1 = 0.5, the fee for routing payments

is set to δ2 = 0.01 [Deloitte, 2019], and the cost of false positives is β = 0.2. To understand

the effect of network attributes on the Nash equilibrium, I perform the analysis on nine different

configurations of the RTP fraud game defined by customer demand for RTPs and bank liability

for RTP fraud. Customer demand for RTPs is controlled by the number of customers willing to

receive only RTPs, which is determined by the probability a given customer is initialized as such.

I test three different probabilities, λ ∈ {0.25, 0.5, 0.75}. I run experiments for the cases where

banks have no liability, partial liability, and full liability for RTP fraud captured by α = {0, 0.5, 1}

respectively. These parameter settings are summarized in Table 6.2. Each strategy profile selected

for simulation is simulated in 3,000 random instances of the RTP fraud game.

6.6.2 Strategic Feature Gains Assessment

To better assess the benefit to bank nodes of each fraud risk mitigation technique, I employ the

strategic feature gains assessment introduced in Section 2.3. In particular, I seek to understand

the individual and relative benefit of controlling RTP fraud detection investment and payment

thresholds for banks.

I perform the four assessments listed in Table 6.3 on the nine configurations of the RTP fraud

game described in Section 6.6.1. Assessments A1 and A2 measure the gains a bank node ex-

periences from accessing both mitigation techniques after initially only controlling one: either
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Parameter Setting

n 200
λ {0.25, 0.5, 0.75}
u 0.5
b 4
m 1
T 2,880
η 20
χ 96
µ 0.7
α {0, 0.5, 1}
δ1 0.5
δ2 0.01
β 0.2

Table 6.2: A list of the parameter settings used for an EGTA analysis of the RTP fraud game.

threshold setting or investment in fraud detection. The base set of A1, BT only, contains strategies

controlling the RTP threshold, but that always set the fraud detection investment level to none.

The deviation set contains the remaining strategies in the bank strategy set. For assessment A2,

the strategies in the base set, FDI only, control the level of fraud detection investment, but set the

threshold to BT = 1, 000. Again, the deviation set contains the remaining bank node strategies.

Note, I consider control over a technique to include the choice to not invoke it. Thus, controlling

the threshold includes the option to set BT = 1, 000 and control of fraud detection investment

includes the option to choose none.

The last two assessments, A3 and A4, address the scenario where banks begin without control

over any mitigation measures to see which single technique they will employ first, when forced to

choose only one. Both assessments contain only one strategy in their base set, neither of which

allows investment in fraud detection. However, A3’s strategy sets BT = 0 to represent the no RTPs

case and A4 sets BT = 1, 000 to represent the unrestricted RTPs case. Both deviation sets contain

the strategies which control only one of the mitigation techniques. That is, if a strategy employs

a threshold, the investment level must be none and if it invests in RTP fraud detection it must set

BT = 1, 000. The analysis of this assessment will emphasize the technique employed by the
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strategy offering the greatest gains. A full list of the strategies included in each base and deviation

set can be found in Table 6.6. Note, while some of the assessments share the same description of

the deviation set, the membership will vary slightly. This is because the exact membership of the

deviation set is relative to the base set, as the assessment requires the two sets be disjoint.

Assessment name Base set Deviation set

A1 BT only BT and FDI
A2 FDI only BT and FDI
A3 no RTPs FDI or BT
A4 BT = 1000, FDI = none FDI or BT

Table 6.3: A list of each assessment performed, described by the strategies in the base and deviation
sets. BT denotes threshold setting and FDI denotes fraud detection investment setting.

6.6.3 Effects on the Network

Finally, I analyze the effects of bank and fraudster nodes following the equilibrium strategies on

the network. I measure various outcomes for customer and fraudster nodes over 1,000 runs of each

game configuration. In the event of a mixed-strategy equilibrium, nodes are assigned to play a pure

strategy from a weighted draw according to the equilibrium distribution. I compare the outcomes

under Nash equilibrium to two additional settings: when banks do not offer RTPs and when bank

nodes do not restrict RTPs, nor invest in fraud detection.

6.7 Experiment Results

6.7.1 Nash equilibria

Figure 6.6 shows the Nash equilibria of bank nodes in the RTP fraud game, with each component

of the strategy shown separately. The results are presented as the total probability assigned to

playing each component of the strategy according to the equilibria for all game configurations.
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Note, bank nodes never select a threshold below BT = 600, and so for simplicity I omit those

lower thresholds from the figure.

I find that bank nodes in the RTP fraud game select strategies with high thresholds, but often

balance this with the use of fraud detection when bank are liable for RTP fraud. Specifically,

when banks are not liable for RTP fraud, they do not restrict customer access to RTPs, nor do they

employ fraud detection. With partial liability, bank nodes begin to set thresholds and invoke fraud

detection. Interestingly, analysis of the equilibria shows a strategic trade-off between customer

access to RTPs and the cost of fraud detection in this setting. Bank nodes tend to either invoke fraud

detection to avoid restricting customer RTP usage or set a threshold value instead of incurring the

cost for fraud detection. When bank nodes become liable for the full amount of RTP fraud, they

exhibit a higher probability of both setting a threshold and investing in good fraud detection. In this

case, the trade-off between fraud detection costs and customer RTP restriction is only seen when

customer demand for RTPs is low. We find that customer demand has a smaller effect on bank

equilibria than RTP fraud liability, with greater customer demand resulting in only slight increases

in threshold values selected.

In response to the banks’ strategic decisions, fraudsters in the network tend to target banks

based on historical success, either with the success or random strategies, with a high degree of

exploitation. Fraudsters will prefer to target RTP-only unless bank nodes implement both fraud

mitigation measures, invoking fraud detection and setting a threshold value. In this case, more

barriers to successful RTP fraud force the fraudster to adopt the Any strategy.

The identified equilibria show that bank nodes will begin invoking at least one fraud risk miti-

gation technique when only liable for half the value of the fraud that occurs. This begs the question

of whether bank nodes will tolerate any level of fraud liability before invoking such measures. To

answer this, I also conducted the EGTA analysis when bank liability for fraud is non-zero, but

low (α = 0.25). At this level of liability and even with low customer demand, there does exist an

equilibrium in which bank nodes do not restrict customer real-time payment use, nor invoke fraud

detection. Thus, I determine that bank nodes are willing to take on a non-zero amount of liability
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(a) BT, λ = 0.25 (b) BT, λ = 0.5 (c) BT, λ = 0.75

(d) FDI, λ = 0.25 (e) FDI, λ = 0.5 (f) FDI, λ = 0.75

Figure 6.6: The total probability assigned to each component of a bank node’s strategy in equi-
librium for all game configurations. BT denotes RTP thresholds and FDI indicates RTP fraud
detection investment.

for fraudulent RTPs before they worry about potential fraud.

6.7.2 Strategic Feature Gains Assessment

While both mitigation techniques often appear in the equilibria of bank nodes, the strategic feature

gains assessment highlights the particular importance of control over customer RTP use. The

results from A1 and A2, shown in Figure 6.7, demonstrate greater gains to bank nodes when

starting by setting a threshold (BT) and gaining the ability to invest in RTP fraud detection (FDI)

compared to the reverse scenario. There are no gains from any strategies in the deviation set

when α = 0 because the pure strategy Nash equilibrium occurs in the base sets of both A1 and

A2. When thresholds are set first, the addition of FDI allows banks to deviate to a strategy with

a higher threshold value, expanding RTP usage. Conversely, starting with FDI results in a later

restriction of RTP usage and a lower payoff gain for banks. Though it should be noted bank nodes

almost always benefit from the ability to use both mitigation techniques, with the exception of the
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cases where the equilibrium is to not restrict RTPs nor offer fraud detection.

Figure 6.7: The results from A1 and A2 show that a bank node benefits the most by gaining
the ability to control fraud detection investment level (FDI) after initially controlling only the
threshold value (BT).

The importance of initial threshold setting is further supported by the results of A3 and A4.

In both cases I find a bank node in all game configurations will choose to deviate to a strategy

controlling the threshold value when given the option to choose only one mitigation technique.

When banks initially do not offer RTPs, the best deviation is to allow real-time payments with a

threshold of BT = 200 if banks hold some liability for fraud and BT = 1000 otherwise. The low

threshold allows a bank node to enjoy the benefits of offering customers RTPs without assuming

too great of a risk from fraud. On the other hand, if banks begin with unrestricted RTPs, the first

restriction they would place if they hold liability for fraud is setting the threshold to BT = 800.

This is a small limitation on customers, so bank nodes are not overly penalized, but helps keep the

amount of fraud manageable.

Figure 6.8 shows the payoff gains for assessments A3 and A4. The results show the payoff

gains in the no RTPs scenario are much higher than the gains in the unrestricted case. And in fact,

are also larger than those gains experienced in assessments A1 and A2. These results indicate that

bank nodes in the model benefit greatly from beginning to offer RTPs to their customers, in spite

113



of the potential risks from fraud.

Figure 6.8: The payoff gains for deviating to a strategy in the deviation set for assessments A3 and
A4 show the largest gains occur when a bank node begins to offer RTPs, even at a low threshold.

6.7.3 Network Effects

When nodes play according to the Nash equilibria, all bank nodes are targeted by the fraudster

over the course of the game and at least 1/3 of customer nodes are victims of the fraudster. The

number of victims increases as bank nodes become more concerned with fraud and implement

stricter mitigation measures. This leads to less success by the fraudster and forces it to change

customers more often to accomplish its goal. In these cases, up to 80% of customer nodes become

victims.

Theoretically, the fraud risk mitigation techniques employed by banks could negatively impact

customers’ ability to successfully make payments in the network. Thresholds could increase cus-

tomer incompatibility issues, while fraud detection could result in some false positives. To explore

these effects in practice, I compare the customer nodes’ rate of successful payment attempts under

the Nash equilibria to the case when bank nodes do not restrict RTPs, nor use fraud detection. In

addition, I report the same measure for the fraudster node. Figure 6.9 shows the results of this
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comparison, reported as the difference between the success with no RTP restrictions and the out-

come under Nash equilibrium for each game configuration. The results show only a small gain in

success for customer nodes when bank nodes switch to unrestricted RTPs without fraud detection

and a much larger gain for fraudsters. This indicates the strategic choices of banks greatly reduce

fraudster success with minimal interruptions to customers.

Figure 6.9: The gain in success rate for fraudsters and customers when banks allow unrestricted
RTPs compared to under equilibrium. Fraudsters experience a much larger gain, indicating the
strategic choice of banks effectively mitigates fraud risk with limited impact on customers.

6.8 Preliminary Analysis of Strategic Customer Nodes

Within the current RTP fraud game, customer nodes exhibit non-strategic behavior and their prefer-

ences are selected during initialization by a simple stochastic process. It should be noted, however,

that customers may also have strategic preferences with respect to RTP use. In this section, I offer

a preliminary analysis of customer nodes’ strategic preferences for sending and receiving RTPs in

the context of the RTP fraud game. The experiments presented here analyze customer decision

making in isolation, but offer some preliminary commentary on customers’ strategic choices.
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6.8.1 Receiver Preferences

The first study examines customers in their role as payment receivers. Customer nodes in the model

may choose to accept RTPs only (RTP-only) or be willing to accept any type of payment (Any).

When making this decision, customer nodes may make trade-offs between flexibility and liquidity.

A willingness to accept any payment type allows a customer node to engage with all other cus-

tomers in the network. On the other hand, the immediacy of RTPs offers customers a high degree

of liquidity. To understand how customer nodes make these trade-offs, I introduce a simplified

version of the RTP fraud game and analyze it using EGTA to identify the Nash equilibrium.

6.8.1.1 Receiver Experiment Overview

The receiver experiment model contains only bank and customer nodes. Since the RTP fraud game

does not model recovery of fraudulent funds, the presence of a fraudster does not affect customer

demand as payment receivers. Banks nodes are initialized as members of the interbank network

and with payments queues as described in Section 6.4.2. Customers nodes are initialized with some

initial deposit holdings following the same distribution reported in Section 6.4.1. Each customer

node will be initialized with an unrestricted ability to send RTPs with probability k and will be

unable to send any RTPs with probability 1 − k. During initialization, each customer node will

also select its strategy from {RTP-only, Any}. Customer nodes in the network are also defined by

an urgency parameter, which operates in the same manner as in the RTP fraud game. The network

is formed by uniformly randomly assigning customers to bank nodes.

The receiver game is played over T time steps, with each time step creating η new payments.

For each payment the sender, receiver, and value are randomly selected as in the original RTP

fraud game. The payment type is determined with a simple modification to the RTP fraud game

procedure. If the receiver demands RTP-only, the sender must sent a real time payment and if

unable, the payment attempt is terminated. If the sender cannot send RTPs and the receiver is

willing to accept any payment type, the payment is sent as a standard payment. Otherwise, if the

sender can send RTPs and the receiver is willing to accept any payment, the customer urgency
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determines the payment type as described in Section 6.4.1.

After the T time steps, customer nodes receive a payoff for the performance of their strategy.

The payoff to customer node Ci is:

δVSRCi
+ VRRCi

with VSRCi
representing the total value of standard payments and VRRCi

representing the

total value of RTPs received by Ci over the course of the game. As mentioned, customer nodes

value the immediacy provided by real-time payments and place a premium on receiving RTPs over

standard payments. This is modeled with the δ cost attributed to the delay of standard payments.

The parameters of the receiver game follow the settings of the RTP fraud game except for those

listed in Table 6.4. In particular, this game is played with only n = 10 customer nodes and b = 2

bank nodes. Each time step creates only η = 2 payments and bank payoffs are calculated with

δ = 0.7. Customer nodes’ strategic decision for receiving payments must factor in the availability

of RTPs for payment senders. If no customer can send RTPs, it would not be logical for a customer

node to demand payment in only RTPs. Thus, I conduct the receiver experiment for three settings

of k, the probability a customer node is assigned unrestricted access to RTPs.

Parameter Setting

n 10
b 2
m 0
η 2
k {0.25, 0.5, 0.75}
δ 0.7

Table 6.4: The parameter settings employed for the receiver game. Relevant parameters not listed
follow the same settings as the RTP fraud game.
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6.8.1.2 Receiver Nash Equilibrium

My experiments find that receivers in this game always choose to accept any payment type. Thus,

customer nodes prefer flexibility and are not overly concerned with liquidity. These results indicate

that simply considering these two factors alone are not enough to sway a customer node to only

conduct business in RTPs. If there is reason for a customer to choose RTPs only, it is likely due to

addition reasons unaccounted for in this model.

It is worth noting that in the existing game, a receiver following the Any strategy will receive

RTPs subject to the customer urgency parameter. Future experiments may test different settings

for this parameter, as the likelihood of a sender unnecessarily engaging in RTPs may affect the

receiver’s strategic choice.

6.8.2 Sender Preferences

In some scenarios of the RTP fraud game, bank nodes hold limited or no liability for fraud that

occurs. Instead, liability is assumed by the victim node. Naturally, this potential liability may affect

customer nodes’ willingness to engage with RTPs. To study this, I introduce the sender game, in

which customers may strategically select their personal thresholds, CT . Customer thresholds in

this case are imposed at the account level and apply to customer and fraudster nodes making

payments from the account equally. When setting their thresholds, customers balance the demand

of receivers with potential liability for fraud. I explore the strategic choices of customer nodes in

the sender game described below by applying EGTA in several game configurations.

6.8.2.1 Sender Experiment Overview

Bank nodes are initialized as described in Section 6.4.2, however, bank investment in RTP fraud

detection is handled with a slight modification. Rather than a strategic choice, the investment

level of bank nodes is treated as a game configuration parameter applied to all bank nodes in the

model. Thus, all bank nodes will invest the same amount in RTP fraud detection. The initialization
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of their fraud detectors follows the same procedure as the RTP fraud game, so there still exists

some variation in detection capability between bank nodes. Customer node initialization follows

the RTP fraud game steps, with the exception of customer RTP thresholds. Each customer node

will strategically select its threshold from CT = {0, 200, 400, 600, 800, 1000}. In the RTP fraud

game, all customer nodes preferred to send RTPs and thus no customers were assigned a threshold

CT = 0. I relax this assumption in the sender model to allow strategic customers this choice. All

customers abide by the same urgency parameter as described in the RTP fraud game. Fraudsters in

this model do not follow any particular strategies and randomly select their victim from a uniform

draw of the customer nodes.

The sender game is played very similarly to the RTP fraud game, unfolding over T time steps.

In each time step, η payments are made, with probability µ one of these payments is made by

a fraudster node. Each payment is randomly generated as outlined in the RTP fraud game. The

payment’s type is determined similarly to the RTP fraud game case, but eliminates the need to

check the bank threshold. A payment sent by customer Ci of value v is eligible to be sent as an

RTP if v ≤ CTCi
. An eligible payment is automatically sent in real time if the receiver demands

real-time payments. If the receiver is willing to accept any payment type, customer urgency is used

to determine its type. When a payment is not eligible to be sent in real time, it will be sent as a

standard payment if the receiver allows. However, if the receiver demands RTPs, the attempt must

be terminated. These same payment type rules apply to the fraudster node when its victim is Ci.

After the T time steps, each customer node receives a payoff for the performance of its threshold

strategy. The payoff is determined by the total value of payments of any type sent in the network

by the customer (VS) and the customer’s liability for fraudulent real-time payments. The latter is

calculated from the total value of fraudulent RTPs sent from the customer’s account, VRF. The

payoff for customer node Ci is:

VSCi − αVRFCi

I apply EGTA to identify equilibria for games with n = 10 customer nodes, b = 2 bank
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nodes, and m = 1 fraudster node. The experiments are conducted for several settings of bank

fraud detection investment level and customer liability for fraud to understand how these factors

affect customers’ strategic choices. I test α = {0.5, 1} and FDI = {none, high} for a total of four

game configurations. The settings for the remaining game parameters are listed in Table 6.5. Any

unlisted parameter retains its setting from the RTP fraud game.

Parameter Setting

n 10
b 2
m 1
α {0.5, 1}

FDI {none, high}

Table 6.5: A list of the parameter settings employed for the sender game. Unlisted parameters
follow the settings outlined for the RTP fraud game.

6.8.2.2 Sender Nash Equilibrium

The Nash equilibria show that customers tend to adopt an all–or–nothing approach to real-time

payments. All equilibria are pure strategy equilibria either selecting CT = 0 or CT = 1000.

From these findings, I conclude that customers nodes are not likely to only partially adopt RTPs

(e.g., 0 < CT < 1000) as a reaction to the threat of fraud. It is likely if a customer were to do this,

there would be other intrinsic motivations, assuming the customer were behaving rationally.

Customer nodes with partial liability for fraud are still willing to engage with real-time pay-

ments, especially if bank nodes employ fraud detection. However, if customers nodes are fully

liable, their willingness to use RTPs depends on the measures banks take to protect them. Specifi-

cally, customers will only send RTPs if banks employ a high level of fraud detection. This behavior

was confirmed by analyzing the FDI = low setting when α = 1 as well. Comparing these results

to findings from the RTP fraud game suggest it may be reasonable for banks and customers to share

liability for RTP fraud. Customer nodes in the sender model are willing to take on some, though

not all, liability for fraud. Likewise, in the RTP fraud game, I note bank nodes appear willing to
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assume a small amount of liability for RTP fraud before they begin to limit customer access to

those payments. However, it is unlikely banks would be able to force customers to assume full

liability and still expect customers to engage with RTPs. In the sender model, customers demand a

high investment in RTP fraud detection when customers assume full liability for RTP fraud. Unfor-

tunately, in the RTP fraud model, banks do not implement any fraud detection measures for RTPs

when they have no liability for fraud occurring with these payments.

While these initial observations yield some interesting insights into RTP fraud liability, further

exploration is necessary to confirm these results. It is likely, the strategic choices of bank nodes

may be altered by interaction with strategic customer nodes. Further work exploring strategic

decisions as a result of liability assignment should employ a single model accounting for strategic

behavior of both banks and customers.

6.9 Summary

In this chapter, I explore banks’ strategic mitigation of fraud risk in RTPs, balancing benefit to

customers with vulnerability to fraud. To maintain this balance, banks often supplement the use

of fraud detection with restrictions to RTP use. I investigate how banks may strategically trade-off

between the use of these two mitigation methods and the strategic response of fraudsters.

I study this problem in an extended FCN modeling a payment system in which an RTP fraud

game is played among banks and fraudsters. The game is analyzed using EGTA to identify Nash

equilibria for nine game configurations defined by bank liability for RTP fraud and customer de-

mand for RTPs. The results indicate that with no liability, bank nodes are willing to allow un-

restricted access to RTPs and do not invoke fraud detection. However, as banks take on more

liability, they become more likely to employ higher fraud detection measures and place restrictions

on RTP use. In response, fraudster nodes must adjust from targeting only RTPs to a willingness

to commit fraud with any payment type. I further study the strategic decision of bank nodes by

employing the strategic feature gains assessment to gauge the relative and individual importance of
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each risk mitigation technique. The results of the assessments identify the importance of initial re-

strictions to RTPs for mitigating fraud risk. By exploring outcomes for network participants, I find

bank strategic decisions in equilibrium effectively lower fraud risk with little impact on customer

outcomes.

Lastly, I acknowledge that customer nodes may also approach their use of real-time payments

strategically. I introduce a preliminary analysis of strategic customers which studies customers

separately as payment senders and receivers. The Nash equilibria from these experiments show

customer nodes in these models are willing to accept Any type of payment and when willing

to engage with RTPs, do so without personal limitations. Comparing the preliminary customer

analysis to results from the RTP fraud game indicate it may be possible for customers and banks to

share liability for fraud without major disruptions to RTP use. Confirming this behavior in a model

incorporating both strategic banks and customers is left for future work.
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CHAPTER 7

Conclusion

The financial system plays a vital role in connecting customers and financial institutions for the

purposes of financial transactions. This system is ever-evolving as economic and technological

changes impact the system’s various subsystems and services. Often, these changes introduce

strategic decisions for network participants such as whether or not to embrace a new service. Such

changes and ensuing strategic choices require careful analysis to understand how they may affect

and transform the existing system. This dissertation employs computational methods to study the

effects of strategic decision-making in the financial system. I capture the complex interactions of

financial network participants in agent-based models and apply empirical game-theoretic analysis

to identify equilibrium agent behavior. Analysis of the equilibrium and outcomes when agents play

according to it provide an understanding of strategic choices and their impacts on the network. I

demonstrate the effectiveness of these methods for gaining insight into strategic decision-making

in four case studies of the financial network. As each study employs the extended FCN as a basis

for the agent-based model, these studies also illustrate its capacity to capture diverse financial

scenarios.

7.1 Portfolio Compression

In this work, I study compression as a strategic decision made by bank nodes in the extended FCN

model. Compression is decided with a vote by bank nodes on the cycle and performed only when

all nodes unanimously vote in favor of the compression. I find that banks nodes confronted with
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a compression decision prefer strategies that use simple, local information to the unconditional

accept or reject strategies. When bank nodes make the compression decision strategically, the

network rarely experiences an increase in systemic risk. The analysis also discovers a connection

between the recovery rate of insolvent banks and the perceived role of debt cycles in systemic risk.

When insolvent banks recover few assets, banks see cycles as modes for propagating systemic risk

within the network. On the other hand, when insolvent banks recover a larger portion of their

assets, banks view cycles as beneficial for cushioning the network from potential negative shocks.

This analysis—the first study of compression from the ex-ante perspective—demonstrates the ben-

efit of strategic compression for bank nodes and the importance of the insolvent bank recovery rate

in this decision.

7.2 Flagging Payments for Fraud Detection

This work addresses strategic use of fraud detection by bank nodes in an extended FCN model

when invoking the fraud detector may be costly. Bank nodes strategically flag payments for review

by their detectors, attempting to balance the incurred cost with potential liability for fraud. My

analysis finds strong bank nodes are able to take rising costs into account, switching from flagging

most payments to only highly suspicious payments when detector costs become high. Weak banks,

on the other hand, are concerned only with liability for fraud and always flag most payments. This

is further supported by examining the breakdown of costs experienced by bank nodes. Strong

banks are better off when strategically flagging, but outcomes for weak banks are best when all

payments are flagged. These findings demonstrate the importance of considering relative ability in

strategic decision-making. Strong banks do not make their strategic choice on their fraud detection

capabilities alone, but with the knowledge that banks with weaker capabilities exist in the network.
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7.3 Adoption of Real-Time Payments with Credit Risk

In this work, I analyze the adoption of real-time payments when there is risk of customer overdrafts.

Bank nodes in an extended FCN model strategically allow customers the ability to send RTPs

by setting minimum thresholds on deposit holdings required for RTP access. I find that bank

nodes set thresholds that allow most, but not all, customers to send RTPs. In particular, banks are

more likely to adopt lower thresholds when standard payments face longer processing delays and

customer overdrafts are less likely. I also discover that all network participants tend to be better off

when RTPs have no restrictions compared to the outcomes under equilibrium. Thus, if unrestricted

access to sending RTPs is a desirable outcome, additional incentives must be provided for banks

to reach this decision or it must come in the form of a mandate.

7.4 Mitigating Fraud Risk in Real-Time Payments Systems

This work extends the previous studies of fraud detection and real-time payments to investigate

fraud risk in real-time payment systems. I employ the extended FCN model to study bank nodes

attempting to limit their vulnerability to fraudsters by strategically investing in fraud detection and

controlling allowance of RTP use by customers. Bank nodes in this scenario set high thresholds,

but generally also invest highly in fraud detection. This behavior drives fraudsters to follow strate-

gies defined by willingness to attempt any payment type and high exploitation of banks based on

historical success rates. I identify threshold setting as an important technique for banks in the fight

against fraud. By adopting measures to mitigate fraud, banks could negatively impact customer

experience in the network. However, I find this is not the case, as the equilibrium of bank nodes

drastically impacts fraudsters with minimal disruption to customers. These results offer a timely

analysis of fraud prevention in this newer payments space.
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7.5 Strategic Feature Gains Assessment

I introduce the strategic feature gains assessment as a method for further analyzing the strategy

space and illustrate its ability to contribute to our understanding of strategic interactions in two

works. As a methodology, the strategic feature gains assessment offers two particular advantages

over other methods such as NE-regret [Jordan, 2010]. First, the assessment focuses on the benefit

provided by a group of strategies, rather than individual strategies. In some cases, this may align

better with the goals of the analysis. For example, consider performing the assessment to inform

new strategy generation. In this case, one might test groups of strategies united by common ele-

ments, determine which are most useful, and generate new variations of those beneficial strategies

for future experiments. Note, however, that the assessment is still capable of measuring gains for

individual strategies by defining singleton strategy deviation sets. Second, the strategic feature

gains assessment provides greater control of the analysis by defining disjoint base and deviation

sets. In doing so, the assessment effectively compares two different scenarios: one before and the

second, after access to a group of strategies is granted. Furthermore, the union of these disjoint

sets need not be the full strategy set. This allows the assessment to calculate benefit with respect

to specific hypothetical contexts of interest. For example, calculating the benefit to banks when

real-time payments are introduced to a system previously devoid of such payments. When apply-

ing NE-regret, the comparison point is the Nash equilibrium of the game with the full strategy set.

Thus, we can not necessarily completely omit strategies meeting a specific criteria if one or more

are in the support of the Nash equilibrium.

7.6 Discussion

This dissertation lays the foundations for studying potential changes in financial networks using

agent-based modeling and empirical game-theoretic analysis. Future directions may address some

of the limitations present in this work to continue providing valuable understanding of strategic

decision-making in financial networks. First, all of these works employ simplified models of the
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network and expanding these models may uncover additional factors for strategic decision-making.

However, additional complexity will increase the parameter space of these models, perhaps beyond

what is computationally feasible to analyze using the current methods. For such analysis, methods

employing deep learning to learn agent payoffs may be more suitable. Gatchel and Wiedenbeck

[2023] learns payoffs over a range of possible game parameters using a single neural network,

demonstrating such methods can be quite data efficient. Second, the agent-based models in this

work do not incorporate real-world data, which was unavailable for this work. Design decisions

are instead grounded in real-world observations and logic. Though if possible, future work might

consider calibrating these models using real-world data. The use of a synthetic data set in Chapter 4

may provide an example of how such calibration can be achieved.
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