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ABSTRACT

This dissertation focuses on auction theory, especially multi-unit auction, since bid-

der’s behaviour will differ a lot in multi-unit auctions than in single-unit auctions.

In Chapter II, “Multi-Unit Auction In Discrete Type Space”, we study a multi-unit

pay-as-bid auction where there are two discrete types of bidders and each type of bid-

der demands two units. We find closed-form solutions for symmetric Bayesian Nash

Equilibria for different proportions of types in the population and one main feature

is identical bidding behaviour, where one particular type of bidder will use identi-

cal bidding prices for both of the units. This chapter also finds that distributions

for mixed strategy equilibrium from different types will have overlapping support in

bidding spaces. These two features will lead to inefficient allocations. The identical

bidding behaviour is also reported in empirical literature studying treasury bill auc-

tions. We also compare expected revenue between formats of multi-unit auctions and

confirm that revenue equivalence does not hold in multi-unit settings with ambiguous

ranking between revenue from pay-as-bid and Vickrey auctions, while both dominate

uniform-price auction in expected revenue. We also show through examples that the

identical bidding behaviour can also be extended to higher-unit settings.

In Chapter III, “Package Bidding with Distinct Objects”, we study a combinatorial

auction where two discrete types of bidders are competing for two distinct objects.

In this chapter we assume different bidders will have different favoured objects. In

the setting of a combinatorial auction, we allow each bidder to propose an extra

price for the bundle, besides prices for each single object. In this chapter, we focus

on closed-form solutions for symmetric Bayesian Nash Equilibria with restriction to
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equilibria where bidders bid pure strategies on single objects and mixed strategies

on the bundle. We continue to study their performance in terms of welfare.

In Chapter IV, “Smooth Ambiguity Averse Level-k Auction”, we return to the context

of single-unit auction and re-examine the elimination process of dominated bids in

a first-price sealed bid auction. In particular, we study the first-price auction in a

discretized unit interval and construct the upper and lower bounds of feasible bids

in the process of elimination of implausible bids, with the help of smooth ambiguity

averse model proposed by Klibanoff, Marinacci and Mukerji (2005) which allows

bidders to aggregate smoothly over the support of subjective beliefs. We numerically

construct upper and lower bounds of feasible bids in each round of elimination as well

as the convergent stable bids for each type in discretized type and bidding spaces.

We compare our result of stable bounds with results from Bayesian Nash Equilibrium

for first price auctions. We also find that my approach is also similar to the level-k

theory.
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CHAPTER I

Introduction

This dissertation focuses on bidders’ behaviour in auctions, especially in multi-unit

auctions. Auction is a tool to allocate goods among consumers by presenting goods

to bidder who propose higher prices, and is also widely used in practice. The goal of

auction is usually to give the goods to buyers who value them the highest, since such

an allocation will achieve highest social welfare. Efficient allocation can be observed

in single-unit auctions but when multiple-units are being sold simultaneously both

empirical evidence and theoretical results would suggest that efficient allocations

could not be guaranteed primarily due to complicity of bidders’ strategies.

The first two chapters of the dissertation construct symmetric Bayesian Nash Equi-

libria for multi-unit auctions with two indivisible goods and further assume there are

no synergies between the goods nor the goods are substitutes. On consumer side,

we assume that the type space is binary and consumers have diminishing marginal

valuations toward the units. We study two formats of pay-as-bid multi-unit auctions

respectively in the next two chapters. The first auction only allows bidding prices

for single units and assume that all units being sold in the auction are identical.

The second auction is built upon the first model but with several subtle differences:

objects in auctions are distinct and different bidders have different favoured objects.

What’s more, the second auction permits each bidder to propose a price for the two

objects as a bundle, besides the two bidding prices for each single objects. The last

chapter, on the other hand, studies a completely different topic and focuses on why

bidders’ bidding strategy in real experiments of single-unit first-price auctions would

differ from predictions of Bayesian Nash Equilibrium. To validate experimental data,

we employ the smooth ambiguity averse model proposed by Klibanoff, Marinacci and
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Mukerji (2005).

In Chapter II, “Multi-Unit Auction In Discrete Type Space”, we construct closed-

form symmetric Bayesian Equilibrium for a full range of parameters as well as all

possible orderings of private values. One main feature of the theoretical results

is identical bidding behaviour. By observing bidders’ behaviour in this multi-unit

auction, this chapter is able to provide a detailed interpretation of identical bidding

behaviour: bidders understand that in this multi-unit auction their higher (lower)

bids are competing only against opponents’ lower (higher) bids. And accordingly,

a bidder would have incentive to decrease her higher bid to extract as high payoff

as possible, and raise her lower bid for a better chance of winning at the same time

until higher and lower bids from the same bidder are identical. Such identical bidding

behaviours are also observed in empirical literature studying treasury bill auctions.

Additionally, we find that distributions for mixed strategy equilibrium from different

types will have overlapping of support in bidding spaces. As long as equilibria feature

identical bidding and overlapping of support, the allocations are likely to be efficient.

We are also able to propose another equilibrium under a specific range of parameters

where both bidders are bidding pure bids equivalent to the private value of one

bidder’s less favoured objects. Such a result will guarantee efficient allocation.

We also compare expected revenue between pay-as-bid auction, Vickrey auction and

uniform-price auction, and confirm that revenue equivalence does not hold in multi-

unit auctions, and one main reason is that different formats of multi-unit auctions

lead to different allocations. We compute via numerical examples that ranking be-

tween revenue from pay-as-bid and Vickrey auctions would be ambiguous, which will

depend on value of parameters but uniform-price auction will always generate the

lowest revenue under our set-up. We continue to construct two examples by extend-

ing our theoretical results with two-unit into environment when there are four units.

Both examples are illustrations that identical bidding behaviour established by my

theorems can be approximations of empirical evidence.

In Chapter III, “Package Bidding with Distinct Objects”, we study a combinatorial

auction where two discrete types of bidders are competing for two distinct objects.

We assume different bidders will have different favoured objects. In the setting

of combinatorial auction, we allow each bidder to propose an extra price for the

2



bundle, with the requirement that prices for the bundle should be no smaller than

summation of prices for single objects. In this chapter, we focus on closed-form

solutions for symmetric Bayesian Nash Equilibria with restriction to equilibria where

bidders bid pure strategies on single objects and mixed strategies on the bundle. The

paper proposes two different Bayesian Nash Equilibria, with the first result featuring

bidding zero for all single units and the second result being similar to one main result

found in the previous chapter where pure bids are equivalent to a bidders’ private

valuation of the less favoured object. We continue to study their performance in

terms of welfare.

In Chapter IV, “Smooth Ambiguity Averse Level-k Auction”, we return to the context

of single-unit auction and re-examined the elimination process of dominated bidding

prices in a first-price single-unit auction. In particular, we study the first price

auction in a discretized unit interval and construct the upper and lower bounds of

feasible bids in the process of elimination of implausible bids, with the help of smooth

ambiguity averse model proposed in Klibanoff, Marinacci and Mukerji (2005). KMM

(2005) allows bidders to aggregate smoothly over the support of subjective beliefs. To

be more specific, this chapter proposes a new elimination process of implausible bids

by constructing upper and lower bounds of plausible bids. This chapter incorporates

KMM (2005) by assuming opponents are best responding to beliefs that each bidder

bid pure strategy and the pure bids are distributed uniformly over the range of

plausible bids. Model from KMM (2005) also includes an ambiguity averse coefficient,

and the paper will assume that bidders of each type share the identical range of

ambiguity averse attitudes. This chapter constructs opponent’s upper(lower) bounds

of plausible bids when opponent’s ambiguity aversion reaches highest (lowest).

We construct upper and lower bounds of feasible bids in each round of elimination as

well as the convergent stable bids for each type in discretized type and bidding spaces.

It turns out that the survival bids will display underbidding relative to Bayesian Nash

Equilibria since previous study finds out that the ambiguity averse coefficients for

almost every individual are very small. But if we raise the ambiguity aversion to

high values, overbidding is observed. We interpret such pattern with the help of

the utility function proposed by KMM (2005) and point out that bidders’ behaviour

will resemble bidders with maxmin preferences who focus on worst scenarios to bid

very high prices to avoid losing. This chapter concludes by comparing it with level-k

3



theory. This chapter is similar to how Level-1 responds to Level-0 in level-k theory,

but introduction of ambiguity aversion guarantees my model my model will end up

with a range of plausible bids in each round of elimination until convergence, while

for level-k theory the level 1 bidders will probably best response by single bids.

4



CHAPTER II

Multi-Unit Auction In Discrete Type Space

2.1 Introduction

In auction theory literature not too much attention has been given to multi-unit

pay-as-bid auctions, where the monetary payment for each unit is the winning price

for that unit. But in reality multi-unit auction is not rare: the sale of treasury bill

auction is an example of multi-unit auction with identical goods. Aalsmeer flower

auction is an example of multi-unit auctions for indivisible objects. Unlike

single-unit auctions where bidders need to propose a price higher than any other’s

bid for the win, a bidder does not need to outbid her opponent’s highest bid in

order to win her first unit in a multi-unit auction. On the contrary, a bidder will

get her first unit as long as her highest bid is higher than her opponent’s smallest

bid when there are two bidders competing for two units. The mechanism

underlying unit assignment mentioned above, is the main difference between

multi-unit and single-unit auctions for indivisible goods. Complications of

multi-unit auctions arise not only because we need to solve multiple optimal

bidding functions at the same time but also because bidders will have incentives to

decrease higher bids and increase their lower bids since all bidders understand that

their higher bids are competing with opponents’ lower bids and vice versa. And

such behaviours usually lead to inefficient allocations in terms of auction results.

We will be looking at a particular version of pay-as-bid multi-unit auction by

making the following assumptions: two identical and indivisible units are being sold

and two ax-ante identical bidders with multi-unit demand are participating the

auction; bidders’ type spaces are binary with diminishing marginal valuations;

5



bidders have incomplete information about each other’s types. Bidders are

risk-neutral and only care about monetary payoff. To be more precise, we focus on

case where ”high” type of bidders has private valuations v̄ = (v̄1, v̄2) and ”low”

type of bidders have private valuations v = (v1, v2), with value ordering

v̄1 > v1 > v2 > v̄2 ≥ 0. We will also report mixed strategy equilibria in cases where

ranking for private valuations is v̄1 > v1 > v̄2 > v2 ≥ 0 or v̄1 > v̄2 > v1 > v2 ≥ 0 but

results in those cases are far less complicated. We further assume bidders have

additive valuation, meaning each bidder’s value for the two units as a whole is

simply the summation of marginal values of the two units. So we will refer to result

where ordering for private valuations is v̄1 > v1 > v2 > v̄2 our main results. Both

bidders have a common prior that a low type opponent will appear with probability

p ∈ [0, 1] and a high type opponent will appear with probability 1− p.

We will construct symmetric mixed strategy equilibrium for these multi-unit

auctions. Our main results are that when high type has marginal valuations

v̄ = (v̄1, v̄2) with value ordering v̄1 > v1 > v2 > v̄2 ≥ 0:

1. as long as p is not too large (i.e. p <
v2
v1
), low type bidders’ equilibrium bids

are generally perfectly correlated (with a few exceptions);

2. when p is very small (i.e. p <
v2

v̄1+v2
), we expect high type to put atoms at the

lower bound of distribution of her first bid;

3. when p is large enough (i.e. p >
v2
v1
), we find equilibria where distributions of

first bid of both high and low types are degenerate on v2 while second bid of

low type is mixing strictly below v2.

One feature of our equilibrium result is that we always have a functional

(conditionally deterministic) relationship between two bids of low type. In most

cases, low type will be bidding identical bids so the functional relationship is

identical function. But we still have a few exceptions where two bids from low type

are distinct but connected by an increasing and differentiable function. Since our

results are mixed strategy equilibrium, overlapping of support for bids of low and

high types will be inevitable. Identical bids from bidders, together with overlapping

of support of high and low type leads to the next feature of our results: equilibrium

allocations tend to be inefficient. Intuitively speaking, inefficiency arises from the
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fact that bidders understand their higher bids are competing with opponents’ lower

bids and they will accordingly make their first bids lower in exchange for higher net

payoff. Given that bidders understand they will face lower higher bids from

opponents, they will respond by bidding higher second bids for a better chance of

winning. Efficiency is guaranteed in our equilibrium when p >
v2
v1

where higher bids

are equivalent to v2, the marginal valuation of second unit of low type. So low type

will be able to not get any positive expected payoff from her second bid and second

bids of low type will mix by distributions aggressively enough to prevent first bids

from deviating.

Maskin and Riley (1985) studied a single-unit first price-auction with private

valuation where high type had valuation vH and low type had valuation vL < vH .

Low type bidders would bid their private valuations and high type bidder would

use mixed strategy by randomizing over an interval between vL and vH . We treat

this single-unit private value model as the single-unit benchmark to our model

since we have binary types of bidders as well and we will also report mixed strategy

equilibria randomizing above the smallest marginal valuation v̄2. The equilibrium

strategy implies that our benchmark scenario will achieve efficiency.

Simultaneous auctions, where multiple single-unit auctions are run simultaneously,

are comparable to multi-unit auctions. Szentes (2007) and Szentes and Rosenthal

(2003) studied two identical bidders with three and two objects simultaneous

auctions respectively. Both auctions were complete information auctions with

discrete valuations where bidders had multi-unit demands. They also allowed for

complementarities (super-additive) or substitutes (sub-additive) among objects for

the bidders, while our model only consider additive valuation. Szentes (2007)

established conditions for symmetric mixed strategy equilibrium when goods are

substitutes or complements. Szentes and Rosenthal (2003) found symmetric mixed

strategy equilibrium, which was a probability measure with support being surfaces

of tetrahedron describing combinations of equilibrium bids. Results in those

scenarios were not necessarily efficient either since overlapping of support is

inevitable when symmetric bidders are bidding the same strategy. Gentry,

Komarovaz and Schiraldi (2020) studied empirical evidence of synergies in

pay-as-bid simultaneous auctions. They modeled simultaneous auctions of

heterogeneous objects with private valuations in Michigan Department of

7



Transportation highway procurement auctions, and their estimation found evidence

of cost reduction for highly complementary projects while increment in cost on the

other end of complementarities.

It is easy to find analogies of the 3 most frequently used forms of multi-unit

auctions in single-unit settings. Uniform-price auction in the multi-unit setting is

analogous to second-price auction in single-unit setting where winners pay the

highest rejected price as their prices, and the first-price auction in multi-unit realm

is usually called pay-as-bid auction or discriminatory auction. Vickrey auction and

2nd-price auction are identical for single unit auctions but are distinct when there

are multi-units. Ausbel et al. (2014) solved equilibrium strategy for uniform-price

auction, pay-as-bid auctions and Vickrey auctions with divisible goods when

demand is constant or downward sloping. They also compared efficiency (and

revenue) of pay-as-bid and uniform-price auctions with private and interdependent

valuations under many assumptions. They found conditions for pay-as-bid auctions

or uniform-price auction to achieve efficiency with perfectly divisible goods and

constant marginal valuations, although they also established in general ranking in

terms of efficiency was ambiguous under constant marginal valuations. Ausbel et

al. (2014) found that with diminishing linear demand and increasing linear supply,

expected revenue from linear equilibrium of pay-as-bid auctions were strictly higher

than that of uniform-price auctions, but none was able to achieve efficiency.

Branco (1996) showed that deterministic mechanism (i.e. sellers announced that

she would implement a specific allocation for sure) was efficient for multi-unit

demand pay-as-bid auction where (asymmetric) bidders with private and

interdependent valuations were competing for homogeneous indivisible objects.

Branco (1996) also proposed conditions (i.e. required minimum bids for kth unit

and bid monotonically w.r.t. signals) for some common single-demand auctions

(e.g. pay-as-bid, uniform price and sequential auctions) to be efficient by restricting

only to homogeneous bidders. Engelbrecht-Wiggans and Kahn (1998) studied a

pay-as-bid auction similar to our set-up. They assumed bidders with diminishing

marginal valuations competed for two objects in a pay-as-bid multi-unit auction as

well. They proposed a system of differential equations derived from first order

conditions from expected payment as equilibrium bids and constructed an example

of pure strategy equilibrium by using a specific marginal distribution, where the

8



optimal bid is a function of combinations of valuations. Engelbrecht-Wiggans and

Kahn (1998) established the existence of both pooling and separating equilibrium

in multi-unit auction, where pooling equilibrium describes the behaviour that one

bidder is bidding identically for both bids while separating equilibrium is that one

bids differently. Their paper differed from ours by the following aspects: they

assumed bidders’ valuation come from atomless distributions while we assumed

discrete distribution with binary types of bidders. Their results were more of a

characterization of equilibrium properties since they only showed that there will be

positive probability that the auction ends in a pooling equilibrium without solving

the general model. Anwar (2007) extended the affiliated model 1 from Milgrom and

Weber (1981) to multi-unit demand environment. Anwar (2007) assumed that a

bidder’s valuation is a non-decreasing function of her own private information

about the object, the highest information from other bidders and an additional

common signal about the object. The multi-unit auction studied in Anwar (2007)

is competition for k ≥ 2 objects. Anwar (2007) solved the unique pure strategy

equilibrium where bidders would bid identical bids for all objects with a

simplification by restricting to case of constant marginal valuations.

One characteristic of our findings, bids from low type are identical (i.e.

conditionally deterministic), can be found in literature. We can see pooling

equilibrium in multi-unit auctions from both Engelbrecht-Wiggans and Kahn

(1998) and Anwar (2007) as mentioned in the previous paragraphs. Empirical

evidence where bidders tend to bid identically can also be found. Hortaçsu and

McAdams (2010) studied bidding behaviour from Turkish Treasury auction market

and modelled the auction as multi-unit auction with indivisible but identical

objects. They found that bidders submitted bids as step-functions, indicating that

bidders used identical prices for certain ranges of quantities. Cassola, Hortaçsu and

Kastl (2013) also found out that bidders would bid by similar step-functions when

studying European banks’ demand for short-term funds before and after the 2007

subprime market crisis, although their model is to study multi-unit auction with

divisible objects.

We may also be able to derive other implications from the pooling equilibrium.

1Each bidder has private information that is positively correlated with the bidder’s value of the
good.
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Ausbel et al. (2014) mentioned differential bid-shading where bidders shaded bids

differently across units. Given that our model found pooling equilibrium for low

type, we can treat our pooling equilibrium as bidders shaded more for higher

marginal valuations. Besides the pooling equilibrium which prevails in majority of

our results, we are able to find some separating equilibrium for low type for some

small range of p. We get separating equilibrium by assuming that it is the interior

solution to maximization problem where low type maximizes her expected payoff

from second bid given any first bid in the support of joint bids, while we may

interpret pooling equilibrium as boundary solutions since first and second bids in

such equilibrium are at their extreme. We can conclude for separating equilibrium

that first and second bids of low type are related by an increasing function, which

is strictly smaller than the identity function.

Establishment of revenue equivalence theorem has always been a topic discussed in

auction literature. In fact we can compare revenue generated from our pay-as-bid

auction and a hypothetical uniform-price auction, where common monetary

payment for each unit is the highest losing bid. The pay-as-bid auction will

generate positive revenue by its own rule: the monetary payment for each unit in a

pay-as-bid auction is the winning price for that unit and it is highly unlikely for

bidders to win a unit by bidding zero. And accordingly we should expect winning

prices and expected revenue in pay-as-bid auction to be strictly positive. The

uniform-price auction, on the other hand, has an obvious equilibrium where bidders

are bidding truthfully for their first units and 0 for their second units. Such a

bidding strategy leads to zero revenue since the highest losing price is always 0. So

without any computation we can conclude that pay-as-bid auction will dominate

uniform-price auction in terms of revenue given our multi-unit setting and

accordingly we do not have a version of revenue equivalence. Besides, we can also

compare expected revenue from our pay-as-bid auction with Vickrey auctions,

where a bidder i who wins ki units will pay the highest losing ki bids from her

opponent. Truthful bidding is an equilibrium for Vickrey auction and each bidder

will win one unit and pay the marginal valuation of her opponent’s second unit.

Our comparison indicates an ambiguous relationship between expected revenue of

pay-as-bid and Vickrey auctions: Vickrey auction generates higher expected

revenue when p is relatively low but pay-as-bid auction will have higher revenue
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when p is high.

Our comparison above fits with consensus from literature: in multi-unit setting, the

revenue equivalence theorem prevalent from single-unit environment does not hold

in general. Revenue equivalence is possible when assignment from different auctions

turn out to be identical, with Engelbrecht-Wiggans (1988) being an good example

showing the result. And when different formats of auctions lead to different

assignment, revenue equivalence does not apply. Theoretical and empirical

literature draw different conclusions regarding revenue ranking among different

auction formats. Tenorio (1999) studied a two-agent three-unit multi-unit auction

where capacity of demand of identical bidders may be either two or three. Tenorio

(1999) proved revenue generated from different formats of auctions were equivalent

as long as bidders have the same units of demand, but revenue from auctions where

bidders’ demand is three-unit is higher than that where bidders’ demand is

two-unit. What’s more, as mentioned in the previous paragraphs, Ausbel et al.

(2014) showed that revenue ranking between uniform-price and pay-as-bid auctions

are ambiguous: when demand is flat they provided examples where each type of

auction dominated. When demand is downward sloping, they found that pay-as-bid

auctions would dominate in terms of revenue. Hortaçsu and McAdams (2010)

conducted counter-factual simulation to compute a hypothetical revenue if the

auction were switched to the format of uniform-price. But they could not reject the

hypothesis that the two formats (pays-as-bid and uniform-price) generated same

level of revenue.

2.2 Example

We will illustrate one numerical example of our results in this section before

showing any theoretical results. The auction we look into is a multi-unit auction

with two identical units. Any bidder will be a high or low type with probability 1
4

or 3
4
respectively. We suppose high type’s marginal valuation for the two units is

(3, 0) while low type’s marginal valuation is (2, 1). The format of the auction is

pay-as-bid, meaning that the monetary payment for each unit is the winning price

for that unit. We normalize high type’s marginal valuation to be zero so that high

type’s bid will only be one non-negative price. On the contrary, low type will be
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submitting two non-negative prices.

We report a mixed strategy equilibrium where a high type will be bidding by CDF

FH(x) =
x2

(1−x)(3−x)
on support [0, 3

4
]. In the meanwhile, a low type will be bidding

her two bids identically and mixing by a common CDF GL(x) =
3x
3−x

over the same

support. A good way to understand this equilibrium is to look at low type’s

expected payoff from her higher bid bl1, which is
1
4

3bl1
3−bl1

(2− bl1) +
3
4
(2− bl1) =

9(2−bl1)
4(3−bl1)

. It is not hard to notice that derivative with

respect to bl1 is negative, implying that the low type should pick the smallest

feasible price as her higher bid, and low type’s higher bid should be no smaller than

her lower bid. So a low type will be bidding identically due to monotonicity of

expected payoff from her marginal bid.

This numerical example highlights the main findings of our theorems: low type will

be bidding identically for her two bids. Another feature arises from the bidding

strategies is overlapping of support. With bidders mixing their bids in identical

support, it is likely that our result leads to inefficient allocation of units. A low

type may win both the units while efficient allocation is always to make each bidder

get one object regardless of type. Additionally, there are some cases where over

some region the low type may not choose to bid identically, but there will be a

conditionally deterministic relationship between bids of low type.

2.3 Model

There are two identical indivisible objects being auctioned off. Each of two bidders,

i = 1, 2, demand up to two units of the object. In particular, bidder i’s valuations

are given by (vi1, vi2), where vi1 indicates the bidder’s value of the first unit

obtained and vi2 indicates the bidder’s value of the second unit obtained. Note

vi1 > vi2 ≥ 0.

Bidders can be one of two types: high or low. The high type has valuations

v = (v1, v2) and the low type has valuations v = (v1, v2). Note,

v1 > v1 > v2 > v2 ≥ 0. So the high type has high-variance in their valuations and

the low type has low-variance in their valuations. Let V = {v, v} be the set of

possible valuations (or types). The bidders’ types are drawn independently from a
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common prior. And we denote p ∈ (0, 1) for the probability that bidder i is the low

type.

The objects are auctioned off in a multi-unit pay-as-bid auction: the bidders

simultaneously submit bids for both units of the object. In particular, bidder i’s

bid is given by a vector bi = (bi1, bi2), where bi1 ≥ bi2 ≥ 0. bi1 is bidder i’s first bid

(i.e., bid for the first unit) and bi2 is her second bid (i.e., bid for the second unit).

So, bi1 denotes i’s payment if she only gets one unit of the object and bi1 + bi2

represents her payment if she gets both units of the object. Furthermore, we let Bi

to be the set of possible bids of i, i.e., Bi = {(bi1, bi2) : (bi1, bi2) ∈ R2
+, bi1 ≥ bi2}.

The winner of the auction is determined by the profile of bids (b11, b12, b21, b22). If

bi1 > b−i1, the allocation is determined by comparing bidder i’s second bid bi2 to

bidder −i’s first bid b−i1. Each bidder wins exactly one unit if bi1 > b−i1 and

b−i1 > bi2. Bidder i wins both units if bi1 > b−i1 and b−i1 < bi2. Moreover, if

bi1 > b−i1 and b−i1 = bi2, bidder i wins the first with probability one and the players

split the second unit with .5 : .5 probability. Finally, if b11 = b21 then each bidder i

wins exactly one unit of the object.

The payoffs depend on the profile of bids and the type of the bidder. In particular,

the ex-post payoff function of a bidder of type (vi1, vi2) is given by

Πi(bi1, bi2, b−i1, b−i2 | vi1, vi2) =



vi1 + vi2 − bi1 − bi2 if bi1 > b−i1 and bi2 > b−i1

vi1 − bi1 +
1
2
(vi2 − bi2) if bi1 > b−i1 and bi2 = b−i1

1
2
(vi1 − bi1) if b−i1 > bi1 and b−i2 = bi1

vi1 − bi1 if bi1 = b−i1 or

bi1 > b−i2 and b−i1 > bi2

0 otherwise

Let ∆(Bi) be the set of probability distributions over Bi. A strategy for bidder i is

a mapping σi : V → ∆(Bi). So, σi(vi) is bidder i’s mixed bid when she is of type

vi = (vi1, vi2). It will be convenient to denote distribution of opponent’s mixed bid

(b−i1, b−i2) as P and to write Pσi(vi) as the distribution induced by mixed bid σi(vi).

Write EP[Πi(bi1, bi2, b−i1, b−i2 | vi)] for bidder i’s expected payoff from (bi1, bi2) given
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that her value is vi and the distribution induced by (b−i1, b−i2) is P, i.e.,
EP[Πi(bi1, bi2, b−i1, b−i2 | vi)] = P(b−i2 < bi1, b−i1 < bi2)(vi1+ vi2− bi1− bi2)+P(b−i1 <

bi1, b−i1 = bi2)(vi1−bi1+
1
2
(vi2−bi2))+P(b−i1 > bi1, b−i2 = bi1)

1
2
(vi1−bi1)+(1−P(b−i2 <

bi1, b−i1 < bi2)− P(b−i1 < bi1, b−i1 = bi2)− P(b−i1 > bi1, b−i2 = bi1))(vi1 − bi1).

With this, bidder i’s interim expected payoffs from bidding (bi1, bi2) given that her

value is vi and her opponent chooses σ−i is given by πi(bi1, bi2, σ−i | vi) =
pEPσ−i(v

)[Πi(bi1, bi2, b−i1, b−i2 | vi)] + (1− p)EPσ−i(v
)[Πi(bi1, bi2, b−i1, b−i2 | vi)].

The paper restricts to symmetric Bayesian Nash equilibria, (σ∗
1, σ

∗
2). So, we

always have σ∗
1 = σ∗

2 and, secondly for each i and each vi ∈ V , σ∗
i (vi) maximizes

πi(bi1, bi2, σ
∗
−i | vi).

2.4 Preliminary Results

2.4.1 Separation of Marginal Bidding Distributions

Consider a bidder i in the auction, who given his type, bids (bi1, bi2) with

bi1 ≥ bi2 ≥ 0. Suppose (b−i1, b−i2) are her opponent’s bids with b−i1 ≥ b−i2 ≥ 0.

Recall that we let P be the distribution induced by (b−i1, b−i2) in definition of

EP[Πi(bi1, bi2, b−i1, b−i2 | vi)]. We invent another notations with Bi1, Bi2 to be the

marginal CDFs for bids bi1, bi2 respectively, i.e. B−i1(x) = P(b−i1 ≤ x) and

B−i2(y) = P(b−i2 ≤ y). We will show in later subsections (without invoking result

in this subsection) that tie happens with zero probability when p <
v2
v1

or upper

bounds of support of distributions are below v2. And when both type bids v2 with

p >
v2
v1
, there is no tie since assignment rule will simply let each bidder get one unit.

So it is safe for us only to care about events {bi1 > b−i1, bi2 > b−i1} and

{bi1 > b−i2, b−i1 > bi2}, since all other events from our definition of ex-post payoff

are involved in ties and will be of zero probability.

We have simplified EP[Πi(bi1, bi2, b−i1, b−i2 | vi)] = P(b−i2 ≤ bi1, b−i1 ≤
bi2)(vi1 + vi2 − bi1 − bi2) + P ≤ bi1, b−i1 > bi2)(vi1 − bi1). Terms

P(b−i2 ≤ bi1, b−i1 ≤ bi2) and P(b−i2 ≤ bi1, b−i1 > bi2) are probabilities when one

bidder wins exactly 2 and 1 units, which associates with the joint distribution of

opponent’s bids. Notice also that by arguing ties happen at zero probability, we are

free to interchange between weak and strict inequalities for expressions in the
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probability notations.

If we want to look for equilibrium strategies, we could try to use first order

approaches. But first order partial derivative on the joint distribution function will

further complicate the computational process 2. But if we denote

B−i1(x) = P(b−i1 ≤ x) and B−i2(y) = P(b−i2 ≤ y), the following lemma essentially

shows that instead of focusing on joint distributions we are able to simplify our

computation by using only marginal distributions B−i1 and B−i2 in the

computation of expected payoff.

Lemma II.1

EP[Πi(bi1, bi2, b−i1, b−i2 | vi)] = B−i1(bi2)(vi2 − bi2) +B−i2(bi1)(vi1 − bi1).

Proof. Expected payoff of bidding bi1 ≥ bi2 is EP[Πi(bi1, bi2, b−i1, b−i2 | vi)] =
P(b−i2 ≤ bi1, b−i1 ≤ bi2)(vi1 + vi2 − bi1 − bi2) + P(b−i2 ≤ bi1, b−i1 > bi2)(vi1 − bi1).

Note that

P(b−i2 ≤ bi1, b−i1 ≤ bi2) = P((b−i2 ≤ bi1) ∩ (b−i1 ≤ bi2)) = P(b−i1 ≤ bi2)) = B−i1(bi2)

by the ordering of bi1, bi2 and b−i1, b−i2.

P(b−i2 ≤ bi1, b−i1 > bi2) = P((b−i2 ≤ bi1) ∩ (b−i1 > bi2))

= P(b−i2 ≤ bi1)− P((b−i2 ≤ bi1) ∩ (b−i1 ≤ bi2)) by Carathéodory’s criterion. And it

can be simplified to P(b−i2 ≤ bi1, b−i1 > bi2) = P(b−i2 ≤ bi1)− P(b−i1 ≤ bi2) or

equivalently B−i2(bi1)−B−i1(bi2).

So we can write the expected payoff as

πi = Bi1(b−i2)(vi1 + vi2 − bi1 − bi2) + (B−i2(bi1)−B−i1(bi2))(vi1 − bi1)

= B−i1(bi2)(vi2 − bi2) +B−i2(bi1)(vi1 − bi1).

Implication of this lemma is that in the multi-unit auction, for any bidder, her

second bid is competing with her opponent’s first bid and vice versa.

2Actually ∂
∂xFX,Y (x, y) =

y∫
−∞

fX,Y (x, t)dt =
y∫

−∞
fY |X(t|x)fX(x)dt

=
y∫

−∞
fY |X(t|x)dt× fX(x) = P(Y ⩽ y|X = x)fX(x)
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2.4.2 Second Bid From High Type

In the proof of lemma II.1, we are assuming no ties happen with positive

probability. And we will argue that it is safe to make such an assumption by

showing several results regarding atoms on distributions. But before we do the

proof, we can first simplify our analysis by showing second bid of low type will

never win in equilibrium. Before we do the proof, we can first simplify our analysis

by showing second bid of low type will never win in equilibrium. With lemma II.1

established, we always suppose FH1, FH2 are marginal distributions of high type’s

first and second bids respectively while GL1, GL2 are marginal distributions of low

type’s first and second bids in the following parts.

Theorem II.1 For any equilibrium distribution, a high type will win at most 1

object.

Proof. We will show an equivalent statement in order to prove this theorem: no

type will put lower bound of first bids lower than v̄2. So second bid of high type

will not outbid any first bid and accordingly high type will at most win one object.

If second bid of high type outbids another bid, it must be that at least one of high

and low types is putting positive probability on v̄2 or smaller values on support of

FH1 or GL1. Without loss of generality, we assume FH1 is putting positive

probability. If a high type is using (v̄+2 , v̄2) as her two bids, her expected payoff will

be no smaller than (1− p)(v̄1 − v̄2), since v̄+2 will definitely outbid second bid of

high type. And accordingly to support bids lower than v̄2, the expected payoff from

bids in that region must be no smaller than (1− p)(v̄1 − v̄2). In particular, high

type’s expected payoff from bidding at exactly her lower bounds, which are no

greater than v̄2 in this scenario, should be no smaller than (1− p)(v̄1 − v̄2) > 0. If a

high type gets positive payoff by breaking ties at v̄2, she will have incentive to

deviate to bid slightly higher than v̄2 and win higher payoff. For atoms at values

strictly lower than v̄2 and atomless distributions, there are two sources of this

positive payoff for high type:

1. When lower bounds of FH1, FH2 does not coincide and lower bound of FH2 is

lower than v̄2, lowest first bid of high type can outbid second bid of high type

with positive probability. But this indicates that
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(a) When lower bound of support from GL1 is no smaller than that from

FH2, high type will deviate her lower bound of FH2 to higher values for

strictly higher payoff since the current lower bound for FH2 is not able to

outbid any first bids.

(b) When lower bound of support from GL1 is smaller than that from FH2,

low type will deviate to higher lower bounds by a similar reason since

bidding at the current lower bound will not outbid any bids.

2. When lower bounds of FH1, FH2 coincide and lower bound of FH2 is lower

than v̄2, high type may get her positive payoff at her lowest bids

(a) by outbidding bids of low type with positive probability. But this means

low type will deviate her lower bounds to values no lower than that of

high type.

(b) if both FH1, FH2 put atoms at the lower bound of their supports. We

argue this arrangement of distributions is not an equilibrium distribution

since high type will have incentive to raise lower bound to break the tie

and get strictly higher payoff.

(c) or if only FH2 has an atom at lower bound. But high type will move the

atom at bottom of support from FH2 to higher values since by bidding at

the atom second bid of high type will outbid first bids of high and low

type with zero probability.

So we conclude that there will be no equilibrium when first bid of high type is

lower than v̄2 or FH1 has an atom at v̄2. For low type, bids no greater than v̄2 will

be dominated by (v̄+2 , v̄
+
2 ) by a similar reason.

The intuition is clear: with our set-up, marginal valuation of second good of high

type is the lowest. So first bid of both types will have strong incentive to bid at

least v̄2, which will guarantee a positive expected payoff as long as there is positive

probability of facing high-type opponents. This behaviour will incentivize second

bid from low type to put zero probability on values below v̄2 because otherwise she

will be ”wasting” probability on a unwinnable range. Such a theorem is in

consistent with with our single-unit benchmark (Maskin and Riley, 1985) where
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high type is randomizing between vL and vH , which makes it impossible for low

type to win.

With theorem III.1 established, we will normalize v̄2 = 0 to simplify our analysis.

With our existing tie-breaking rules, we will encounter several interesting scenarios:

when one bidder is bidding (0, 0), a high type can get 1.5 objects by bidding one

positive bid and one zero bid. But high type’s marginal valuation toward second

object is 0 so we want some new rules to get rid of the possibility that high type

will get more than one object. We can add a few new auction rules besides the

existing tie-breaking rules. And we will call the following rules assumption II.1:

Assumption II.1

1. Bidding (0, 0) is not allowed;

2. As long as some bidder submits a bid containing 0, she can get at most one

object;

The first rule requires a bidder to bid either a single zero or at least one positive

bid. The second rule has two implications: high type will not get an extra 0.5

object by bidding one positive price and one zero price when her opponent is

bidding zero. Low type will not be bidding zero when she submits two bids since it

is a weakly dominated strategy: under the new rule, by bidding zero low type is

essentially giving up one bid since the only object she can win is through her first

bid as her total win in the auction is capped at one. Similarly, we can conclude

that low type will always bid 2 prices. If she only bids one price, she is able to get

weakly better payoff by adding another bidding price as long as the new bidding

price is smaller than the marginal valuation of her less favoured unit. And hence

we conclude that for a low type bidding only one price is a weakly dominated

strategy. So high type should just submit one bid while low type should submit two

bids In all, our rules will solve the problem mentioned in the previous paragraph:

when two high types meet each will get one object regardless of bids and when one

low type bids zero, she is guaranteed to get one object when facing a high type.

We have a direct result from introduction of assumption II.1:

Lemma II.2 High type may put an atom at 0 while low type will never put an
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atom at 0.

The intuition for this result is that high type will automatically wins one object

when facing another high type, so bidding zero means high type will get a high net

surplus when she faces a high type with a trade-off of losing to low type with

certainty. On the other hand, low type can always get more payoff by submitting

two bids and will have incentive to do so.

2.4.3 No Ties Happen with Positive Probability

With v̄2, high type’s marginal valuation of second object, being normalized to 0, we

can do the proof mentioned in subsection 4.1 to show that no tie will happen with

positive probability when p <
v2
v1

or upper bounds of support of distributions are

below v2. Ties may happen when high type submits v2 and low type submits

(v2, v2) with p >
v2
v1
. But we will argue that our tie-breaking rule dictates that each

unit wins only 1 unit in this scenario, so the ”tie” in this scenario can be trivially

resolved.

Before checking atoms at positive values, we first take a look at gaps in support of

marginal distributions. It turns out we can make the following conclusions

regarding gaps on marginal distributions:

Lemma II.3

1. There can be no gaps of interval on marginal distribution of second bid for

low type.

2. If first bids of high and low types both have gaps in the support of

distributions, the gaps must have intersection with zero measure.

Proof. For the first point, suppose the gap from support of marginal distribution

of second bid of low type is interval (a, b) with a < b. Then first bids from high and

low types will put zero probability in interval (a, b) as well since bidding those

values will be dominated by bidding a while holding second bid constant. First we

assume low type does not put any atom at a. Mathematically speaking, we can

hold second bid constant and only compare the probability of winning any unit by

bidding a or x ∈ (a, b): P(b−i2 ≤ a, b−i1 ≤ bi2) = P(b−i2 ≤ x, b−i1 ≤ bi2) and
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P(b−i2 ≤ a, b−i1 ≥ bi2) = P(b−i2 ≤ x, b−i1 ≥ bi2). In a word, bidding in interval (a, b)

will give the same probability of winning as bidding a when facing second bids of

high and low types but one has to pay more. If low type puts an atom at a on her

marginal distribution of second bid, bidders of any type will prefer to bid (a+, x)

with x ≤ a than bid (a, x) or any bid (b1, b2) in intersection of joint support of one

bidder’s mixed strategy and set {(b1, b2) : b2 ≤ b1 ≤ a} 3. So putting an atom at a

on marginal distribution of second bid will lead to first bids of any bidder to bid no

lower than a. And hence we exclude possibility of interval [a, b).

If we look again at the comparison last paragraph, we know that bidding exactly at

or slightly higher than b is dominated by bidding a as well: by bidding in right

neighbourhood of b, when ϵ > 0 is sufficiently small bidding x ∈ (b, b+ ϵ) will give

almost the same probability of winning as bidding a, but bidders have to much

higher price when they win. We exclude possibility of interval [a, b) (i.e. atom at

{b}) for the following reason: if low type puts an atom at b on the marginal

distribution of her second bid, bidders will respond by putting a gap at singleton

set {b} on marginal distributions for first bids, since bidding slightly higher than b

will break the tie and generate strictly higher payoff than bidding at b. Knowing

this, a bid (x, b) with x > b for low type will be dominated by bidding (x, a), which

means low type will not put any positive probability at b at the first place. In all

we conclude that if second bid of low type is putting a positively measured gap in

the support, first bids from high and low type will respond by putting a larger gap

(a, b′) where b′ > b in the support.

Knowing this, second bid of low type will not bid at b since it is dominated by

bidding at a (while holding first bid constant) when she knows that distribution of

first bids will respond to put a larger gap. So we conclude we can not have an

equilibrium where low type puts a positively measured gap in the marginal

distribution of her second bid. And hence we have our first conclusion regarding

gaps in marginal distribution.

For the second point, assume that intersection of gaps in support of distributions of

first bids from high and low type is interval (c, d) with c < d. Low type will use

similar deviation method mentioned in the previous paragraphs, i.e. second bid of

3To support a mixed strategy equilibrium, a necessary condition would be bids in intersection
of support of bids for low type and set {(b1, b2) : b2 ≤ b1 ≤ a} generate identical payoff.
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low type will not bid in interval (c, d) or prices slightly higher than d since all bids

in that area are dominated by bidding c while holding first bid constant. Such a

behaviour by low type will lead to a gap in the support of distributions of second

bids from low type.

As long as we conclude that low type will not put any gap of interval on marginal

distribution of her second bid and gaps from distributions of first bids of high and

low type have zero-measured intersection, we can show some results regarding ties

and atoms in the multi-item auction.

Lemma II.4 No equilibrium distribution will put atoms at positive values smaller

than upper bound of support.

Proof. Suppose second bid of low type puts an atom at x, which is lower than the

upper bound. Lemma II.3 has established that at least one from marginal

distributions of first bids of high and low types will have support containing

neighbourhood of x. So we can look at deviations case by case. If support of

distribution for first bid of low type contains neighbourhood of x, we may consider

bids (x, b) where x is her first bid and b is her second bid. She will have incentive to

deviate her first bid to x+ while holding second bid constant. Such a deviation will

lead to strictly higher payoff for low type since it breaks the tie at x, where there is

an atom with positive measure. Note that to support a mixed strategy equilibrium,

a necessary condition would be bids in intersection of support of bids for low type

and set {(b1, b2) : b2 ≤ b1 ≤ x} generates identical payoff 4. Since bid

(x, b) ∈ {(b1, b2) : b2 ≤ b1 ≤ x} is dominated by (x+, b), bids in set

{(b1, b2) : b2 ≤ b1 ≤ x} will also be dominated by (x+, b). Similarly if distribution of

high type contains neighbourhood of x, it is easy to see that bidding x+ will

generate strictly higher payoff than bidding x− or x. And accordingly by a similar

reason bids lower than x will be dominated by bid x+.

If distribution of a high type or first bid of low type puts an atom at y, which is

smaller than the upper bound of bids, we will have a similar argument as the

previous paragraph since lemma II.3 shows that low type will not have a positively

measured gap. Suppose low type is bidding (b, y) (or (b, y−)) as her pair of bids

(b > y), and we will see that deviating the second bid to y+ generates higher payoff.

4(b1, b2) denote first and second bids for low type respectively.

21



When first bid of low type is already higher than y (i.e. b > y), we allow it to stay

at b, but when first bid of low type is no greater than y we can also increase it to

be y+. The slight increment in first bid will not change payment from first bid.

Lemma II.5 No equilibrium distribution will put atoms at upper bounds of support

when the upper bound is smaller than v2.

Proof. When upper bound of bids is smaller than v2 and some type chooses to put

an atom at the upper bound, an obvious deviation will be bidding slightly higher

than the upper bound. And by a similar reason discussed in the proof of lemma

II.4, such a behaviour will generate strictly higher payoff. Note that this argument

works for any p.

These three lemmata imply that equilibrium distributions will be atomless when

upper bound of support is smaller than v2 unless high type puts an atom at 0.

Since we normalize v̄2 to be 0, proof of lemma II.1 will only be restricted to low

type. And since low type is bidding positive bids and atom only happens at 0, ties

will not appear with positive probability in equations used in lemma II.1. What’s

more, distributions will have the same upper bound in this case since ties only

happen with zero probability.

Lemma II.6 When p <
v2
v1
, no equilibrium distribution will put atoms at upper

bounds of support when the upper bound is equal to v2.

Proof. With common upper bound being equivalent to v2, a high type will get

v̄1 − v2 when she bids at v2 and a low type will get v1 − v2 when both her bids are

at upper bound. Since we normalize marginal valuation of second object of high

type to zero, low type will get at least (1− p)v1 by deviating first (and second) bid

to slightly above 0. Given p <
v2
v1
, we have (1− p)v1 ≥ v1 − v2. So putting upper

bound of bids at v2 will not be an equilibrium strategy at the first place when

p <
v2
v1
.

Given the tie-breaking rules introduced previously, these four lemmas imply that

when p <
v2
v1

ties will not appear with positive probability in equations used in

lemma II.1: the only atom in this situation happens at 0 but low type is bidding

positive bids and high type only bids one bid. Such results imply that we do not

need to worry about ties in our proof of lemma II.1 when p <
v2
v1
.
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On the other hand, when p >
v2
v1
, a bidder may choose to set upper bounds on v2.

If one bidder puts upper bound at v2, we expect the upper bound of the other

bidder’s bids to be at v2 as well since otherwise this bidder will decrease her upper

bound to avoid wasting probability on a range that is too high. With this

observation, we consider the case where low type bidding (v2, v2) again: low type’s

expected payoff from second bid is 0 since v2 − v2 = 0. If distribution of high type

or first bid of low type puts non-zero probability on values lower than v2, low type

will be deviating her second bid to lower values in order for strictly higher payoff.

So we have to conclude that when p >
v2
v1
, to support bid (v2, v2) for low type, first

bids of low type and high type must put zero probability on values lower than v2,

i.e. the atom at v2 must be of size 1 5.

Results in the last paragraph indicate that for equation in lemma II.1, we have to

consider possible ties at v2 and 0 since there may be two atoms. Low type is

bidding positive bids so atom at 0 will not lead to ties. For atom at v2, our tie

breaking rules will dictate each bidder to get their first object when high type bids

v2 and low type bids (v2, v2), which seems to be in contradiction with equations in

lemma II.1. But note that low type’s marginal valuation of second object is v2.

Low type will not get any net surplus from her second bid in this scenario

regardless of winning the second object or not. So our equation in lemma II.1

works trivially for atoms at v2.

With lemmas established in this subsection, we may conclude common upper

bound for all cases.

Corollary II.1 Equilibrium distributions should have the common upper bound.

Proof. When upper bound is smaller than v2 or p <
v2
v1
, we know from lemmata in

this subsection that no ties happen with positive probability. And hence any bidder

can get the object with certainty by bidding at a common upper bound, while

bidding beyond the upper bound only implies paying strictly higher and getting

lower net payoff.

When upper bound is v2 and p >
v2
v1
, we know that ties happen when high type

bids v2 and low type bids (v2, v2). Tie breaking rules will assign each bidder one

5We will discuss this scenario in more detail in lemma II.8 and theorem II.10.
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object in this case. If low type raises her first bid, she still gets one object but she

pays more; if low type raises her both bid, she still gets two objects but she gets

less net payoff Since marginal valuation of low type’s second object is v2. In all, low

type will not want to increase her bids. High type will not raise her bids as well

since it only means she pay more as well.

2.4.4 Pure Strategy Equilibrium

Lemma II.7 Bidding the smaller marginal valuation for both bids is a pure

strategy equilibrium when p = 0 or 1.

Proof. If p = 0 (or 1), bidding 0 (or v2) for both objects will be an equilibrium.

Bidding at the marginal valuations of the second object guarantees each bidder

exactly one object. Increasing bids will decrease net payoff: firstly it would be a

strictly dominated strategy for low type to use a second bid higher than marginal

valuation of that object, and secondly increasing first bid will only mean the bidder

pays more for the only object she can win. Decreasing just one bid will not change

the allocation but decreasing both bids will lead to 0 payoff since the highest two

bids will both come from opponent.

We have mentioned that when p ≥ v2
v1
, high type may bid v2 and low type will bid

(v2, v2), and now we will formally show this is actually a pure strategy equilibrium:

Lemma II.8 For p ∈ (0, 1), there is a unique pure strategy symmetric equilibrium

in our multi-item auction when p ≥ v2
v1
.

Proof. First we suppose in this proof that high type is bidding non-negative

(bh1, bh2) with bh1 ≥ bh2 and low type is bidding non-negative (bl1, bl2) with bl1 ≥ bl2.

We propose bh1 = bl1 = bl2 = v2 and bh2 = 0 as the equilibrium strategy. Each type

is getting one object by the current pure strategy under our tie-breaking rule. If

high type increases her first bid, she still wins 1 object but she has to pay more. If

she decreases her first bid she will win nothing when facing a low type. Range of p

will indicate that her payoff will be (weakly) lower since v̄1 − v2 ≥ (1− p)v̄1, where

the right hand side is the highest payoff high type can get by bidding lower than v2
6. For a low type, decreasing only one bid does not change the allocation of

6If a high type bids lower than v2, she can only win when facing another high type. So a high
type would rather bid 0 when she is bidding below v2.
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auction. Decreasing both bids will strictly lower her payoff because when she faces

another low type she can not win and range of p guarantees v1 − v2 ≥ (1− p)v1.

Second bid of low type is exactly at the marginal valuation of her second object

and hence reason to eliminate increasing bids for low type is similar to the reason

used in lemma II.7.

We now move on to check uniqueness. We still assume the non-negative bids from

high type are bh1 ≥ bh2 and bids from low type are bl1 ≥ bl2. If bl2 = v2, tie-breaking

rule will predict bL1 will either be v2 (or slightly higher than v2
7). We can analyze

all possible cases:

1. If v̄1 − v2 ≥ (1− p)v̄1, or equivalently p >
v2
v̄1
, high type will bid v2 (or v2 + ϵ)

(a) if p >
v2
v1
, we are in the proposed equilibrium;

(b) if p ∈ (
v2
v̄1
,
v2
v1
), high type is glad to bid v2 (or v2 + ϵ) but low type will

want to deviate to bid close to 0 since bidding just above 0 will give

(1− p)v1, which is greater than v1 − v2 under this range of p. And high

type will consequently deviate to just outbid low type so that high type

could get an payoff close to v̄1.

2. If p <
v2
v̄1
, first bid of high type will be just above 0 since (1− p)v̄1 > v̄1 − v2.

Low type will have incentive to decrease her second bid to just outbid high

type. First bid of low type can either stay at v2 or be just above 0. The

former choice generates payoff v1 − v2 + (1− p)v2 for low type while the

second choice generates payoff of at least (1− p)(v1 + v2). Given p <
v2
v̄1

<
v2
v1

we have v1 − v2 + (1− p)v2 ≤ (1− p)(v1 + v2). So low type should also

deviate her first bid to just above 0. It is easy to check the deviating payoff

(1− p)(v1 + v2) ≥ v1 − v2 when p ≤ 2v2
v1+v2

. But note that
2v2

v1+v2
> (

v2
v1

>)
v2
v̄1
.

So as long as first bid of high type is close to 0, it it optimal for low type to

decrease her bids to slightly outbid high type.

Similarly, suppose bl2 < v2, we can still first conclude that b3 = bl2 or bl2 + ϵ

because of the tie-breaking rules and we want a symmetric equilibrium. We can

7If a low type knows another low type is bidding v2 + ϵ and v2 (ϵ > 0), she will respond by
bidding v2 + ϵ and v2 because she can only win 0.5 objects on average if her first bid is v2. If a low
type knows another low type is bidding v2 and v2, she will respond by bidding v2 and v2.
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still do a case-by-case analysis:

1. When p > bl2
v̄1
, bh1 = bl2 (or bl2 + ϵ as above) since v̄1 − bl2 > (1− p)v̄1. Low

type has incentive to raise second bid (and hence her first bid) slightly to

outbid bh1;

2. When p < bl2
v̄1
, bh1 is just above to 0. Low type will have incentive to decrease

her second bid. She has 2 choices for her first bid now: either stay at bl2 or

just be above 0. But bidding first bid at bl2 will generate lower payoff than

bidding first bid at 0: v1 − b4 + (1− p)v2 < (1− p)(v1 + v2) since

p < bl2
v̄1

< bl2
v1
. So low type will deviate her first bid to just above 0 as well.

Note that (1− p)(v1 + v2) ≥ v1 − b4 when p <
v2+bl2
v1+v2

. And it is easy to check
v2+bl2
v1+v2

> bl2
v̄1
. So it is optimal for low type to decrease both bids when high

type is bidding close to 0.

We will see later that this pure strategy equilibrium is just a specific case of the

mixed strategy equilibria.

Remark II.2 Note that pure strategy in this subsection is efficient since high and

low type each get one object.

2.5 Mixed Strategy Equilibrium

In this section, we will formally show the symmetric mixed strategy Bayesian Nash

Equilibrium by range of p, the probability of low type. With theorem III.1, we will

always assume that first bid of high type follows distribution FH and first and

second bids of low type follow distributions GL1 and GL2 respectively. High type

will bid bh1 where bh1 ≥ 0 and low type will bid by (bl1, bl2) with bl1 ≥ bl2 ≥ 0.

The mixed strategy equilibria will have two main features: support for bids of high

is a subset of support of bids for low types (i.e. overlapping support) and low type

will bid identically for two objects, where the first feature implies when high type

bids low and high types will share common support. As argued in introduction,

since bidders understand that their higher bids are competing with other’s lower

bids, they will have incentive to bid lower higher bids for higher net surplus. On

the other hand, knowing first bids will be lower, bidder will be submitting higher
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second bids for a better chance of winning. The overlapping support and identical

bids will make our mixed strategy equilibria inefficient since there will be positive

probability that one low type gets both objects. An efficient allocation should let

each bidder get exactly one object since we assume high type has valuation v̄1, v̄2

while low type has valuation v1, v2 with v̄1 > v1 > v2 > v̄2. The top two highest

marginal valuations will always come from each bidder’s highest valuation.

2.5.1 v̄1 ≥ v1 + v2

For p <
v2
v1
, we will introduce the mixed strategy equilibria by different range of

marginal valuations and by range of p.

2.5.1.1 when p ≤ v2

2v̄1−v1

We can summarize results in this subsection by a theorem:

Theorem II.3 Suppose v̄1 ≥ v1 + v2 and p ≤ v2
2v̄1−v1

. Low type will be bidding the

same price for her bids with distribution GL1(x) = GL2(x) =
(1−p)x
p(v̄1−x)

and high type is

bidding according to distribution FH(x) =
(v̄1−v1−v2+x)x

(v2−x)(v̄1−x)
+

v2−(2v̄1−v1)p

(v2−x)(1−p)
on common

support [0, v̄1p]

This theorem implies that when p is low or when a low type appears rarely, high

type will focus on getting a high net payoff when she wins. And high type will

accomplish this goal by putting an atom at 0. Lemma II.9 and II.10 will be dealing

with equilibrium distributions of low and high type respectively:

Lemma II.9 Low type will be bidding the same price for her bids with distribution

GL1(x) = GL2(x) =
(1−p)x
p(v̄1−x)

on support [0, v̄1p].

Proof. High type will be facing indifferent condition:

(1− p)[v̄1 − bh1] + p[GL2(bh1)(v̄1 − bh1)] = v̄1(1− p). Solving the indifferent

condition, we can get GL2(x) =
(1−p)x
p(v̄1−x)

. And GL2(x) = 1 when x = v̄1p.

With GL2(·) calculated, we now compute low type’s expected payoff of her first bid

(denoted as bl1):
(1−p)bl1
p(v̄1−bl1)

p(v1 − bl1) + (1− p)(v1 − bl1) =
v̄1

v̄1−bl1
(1− p)(v1 − bl1).

Note that first order derivative of low type’s expected payoff w.r.t. bl1 is negative,

which implies that low type’s expected payoff of her first bid is a decreasing
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function. If first and second bids for low type are (bl1, bl2) respectively, low type

should pick the smallest bl1 ≥ bl2. So for any given y, we must let bl1 = bl2 and

hence GL1(x) = GL2(x) =
(1−p)x
p(v̄1−x)

.

We now argue that low type will not deviate to bid differently: for a mixed strategy

equilibrium, a bidder will be having a fixed expected payoff for all bids that she is

randomizing with. We have computed that expected payoff for first bid for low

type is a decreasing function. Fixed expected payoff implies expected payoff for

second bid of low type must be an increasing function. If a bidder is bidding

identically by (bl1, bl2) = (x, x) currently for any positive and real x, she will not

want to deviate only one bid since derivative of expected payoff of first bid is

negative and derivative of expected payoff of second bid is positive. If the bidder

deviates both bids to (bl1, bl2) = (z1, z2) where z1 > x and z2 < x, we can treat this

scenario as deviating one bid from (bl1, bl2) = (z1, z1) or (z2, z2) to

(b′l1, b
′
l2) = (z1, z2). And hence our previous argument still works since the

monotone condition for expected payoff of first and second bid will give bidder

incentive to decrease her first bid and increase her second bid until they are

identical. No bidders will bid higher than the upper bound since biding exactly at

the upper bound means that a low type will win both objects with certainty. And

hence bidding above upper bound only indicates lower payoff.

We call results where the low type is bidding identical bids the perfectly

correlated equilibrium.

We now construct the distribution for high type’s first bid. Our tie-breaking rules

introduced in section 2 and the new auction rules discussed in subsection 3.2

guarantees high type to get one object when facing another high type. So high type

may choose to put an atom at 0 for high net surplus when there are high

probability that she faces another high type in the population.

Lemma II.10 High type is bidding according to distribution

FH(x) =
(v̄1−v1−v2+x)x

(v2−x)(v̄1−x)
+

v2−(2v̄1−v1)p

(v2−x)(1−p)
when p ≤ v2

2v̄1−v1
with support [0, pv̄1].

Proof. With GL1, GL2 computed, we look at low type’s indifferent condition to

compute high type’s distribution when p =
v2

2v̄1−v1
:

p[GL2(bl1)(v1−bl1)+GL1(bl2)(v2−bl2)]+(1−p)[(v1−bl1)+FH(bl2)(v2−bl2)] = v1(1−p).
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With bl1 = bl2, we have

(1− p)FH(bl1)(v2 − bl1) = (1− p)bl1 − p (1−p)bl1
p(v̄1−bl1)

(v1 + v2 − 2bl1)

= (1− p)bl1 − (1−p)bl1
(v̄1−bl1)

(v1 + v2 − 2bl1) =
v̄1−v1−v2+bl1

v̄1
(1− p)bl1. So

FH(x) =
(v̄1−v1−v2+x)x

(v2−x)(v̄1−x)
. When v̄1 ≥ v1 + v2, FH(x) is always positive. FH(x) = 1

when x =
v̄1v2

2v̄1−v1
. Comparing upper bounds for GL’s and FH , we conclude that

when p =
v2

2v̄1−v1
FH is an atomless distribution.

When p <
v2

2v̄1−v1
we have to put an atom with size T on FH . GL1 = GL2 is still

true since GL2 is computed from high type’s indifferent condition. So indifferent

condition for low type is

p[GL2(bl1)(v1 − bl1) +GL1(y)(v2 − bl2)] + (1− p)[(v1 − bl1) + FH(bl2)(v2 − bl2)] =

v1(1− p)+ (1− p)Tv2 with bl1 = bl2, we have FH(x) =
(v̄1−v1−v2+x)x

(v2−x)(v̄1−x)
+

Tv2
v2−x

. We need

to solve T . Let x = v̄1p, 1 =
Tv2

v2−v̄1p
+

(v̄1−v1−v2+v̄p)v̄1p

(v2−v̄p)v̄1(1−p)
; 1 =

Tv2
v2−v̄1p

+
(v̄1−v1−v2+v̄1p)p

(v2−v̄p)(1−p)
;

Tv2
v2−v̄1p

= 1− (v̄1−v1−v2+v̄1p)p

(v2−v̄1p)(1−p)
; Tv2 = (v2 − v̄1p)− (v̄1−v1−v2+v̄1p)p

1−p
; T =

v2−(2v̄1−v1)p

v2(1−p)
. So

FH(x) =
(v̄1−v1−v2+x)x

(v2−x)(v̄1−x)
+

v2−(2v̄1−v1)p

(v2−x)(1−p)
. It is easy to see that when x < pv̄1 < v2,

function FH is increasing. This FH function coincide with the distribution

computed last paragraph when p =
v2

2v̄1−v1
.

The high type will not bid above the upper bound since a high type can secure the

object by bidding v̄1p and bidding above that value only means paying more to get

the object.

Remark II.4 There will be a positive probability that one low type gets both objects

due to common support of mixed strategy equilibrium distributions. And the

equilibrium strategy is not necessarily efficient.

Graphical Illustration

We can illustrate the theorems in this subsection by showing plots of density

functions with v̄1 = 3, v1 = 2, v2 = 1. Let p = 1
5
, and probability density functions

will be with support being [0, 3
5
]. Note that there will be an atom of size 1

4
for

distribution of mixed strategy of high type at 0.
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Figure 2.1: Illustration of theorem II.3

2.5.1.2 v2

2v̄1−v1
< p < v2

v1

In this range of p, we show that high type is randomizing in interval [a1, a2] with

0 < a1 < a2 since low type is now appearing with a decent probability and high

type will have to bid higher to guarantee some wins. Both bids of low type are

randomized in interval [0, a1] ∪ [a1, a2]. If we denote bids from low type as (bl1, bl2),

We will have three different indifferent conditions for low type:

p[GL2(bl1)(v1 − bl1) +GL1(bl2)(v2 − bl2)] + (1− p)(v1 − bl1) = v1(1− p) when

bl2 ≤ bl1 ≤ a1, p[GL2(bl1)(v1 − bl1) +GL1(bl2)(v2 − bl2)] + (1− p)(v1 − bl1) = v1(1− p)

when bl2 ≤ a1 ≤ bl1, and

p[GL2(bl1)(v1−bl1)+GL1(bl2)(v2−bl2)]+(1−p)[(v1−bl1)+FH(bl2)(v2−bl2)] = v1(1−p)

when a1 ≤ bl2 ≤ bl1.

We call support of the three indifferent conditions R1, R2 and R3 respectively, i.e.

R1 = {(bl1, bl2) : bl2 ≤ bl1 ≤ a1}, R2 = {(bl1, bl2) : bl2 ≤ a1 ≤ bl1} and

R3 = {(bl1, bl2) : a1 ≤ bl2 ≤ bl1}.

First, we summarize results in this subsection via a theorem by ranges of bids and

probability low type appears in the population:

Theorem II.5 Suppose v̄1 ≥ v1 + v2 and
v2

2v̄1−v1
< p <

v2
v1
.

1. High type will bid by distribution FH(x) =
x

v2−x
− v̄1p−a2+(1−p)x

(1−p)(v̄1−x)(v2−x)
(v1 + v2 − 2x)

with support [a1, a2], where a2 =
pv1+v2

2
and a1 solves FH(a1) = 0.

2. In region R3 = {(bl1, bl2) : a1 ≤ bl2 ≤ bl1}, low type will bid by distributions

GL1(x) = GL2(x) =
pv̄1−a2+(1−p)x

p(v̄1−x)
with support [a1, a2] .

3. In region R1 = {(bl1, bl2) : bl2 ≤ bl1 ≤ a1}, letting
p∗ =

2v̄21v1−v̄1(v1+v2)
2+v2(v

2
1+v22)

−v31+2v̄21v2+v21v2+v1v
2
2+v32+2v̄1(v21−2v1v2−v22)
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−
√

(v̄1−v2)
2(−2v̄1+v1+v2)

2(−v21+v22)

−v31+2v̄21v2+v22v2+v1v
2
2+v32+2v̄1(v21−2v1v2−v22)

and

C =
(v̄1−v1)

2+v22+v1v2−2v̄1v2+p(v̄1v1−v21+v̄21−v̄1v2)

2p(−2v̄1+v1+v2)

+1
2

(v̄1−v1)
√

v̄21(1+p)2+v22(2−2p+p2)+2v1v2(1−p+p2)+v21(1−2p+2p2)−2v̄1[v2(2−p+p2)+v1(1−p+2p2)]

p(2v̄1−v1−v2)

(a) when
v2

2v̄1−v2
< p < p∗, low type will bid the same according to

GL1(x) = GL2(x) =
(1−p)x

p(v1+v2−2x)
;

(b) when p∗ < p <
v2
v1
, low type will bid her 1st bid according to

GL1(x) =
C

v2−x
and 2nd bid by GL2(y) =

(1−p)y−pC
p(v1−y)

on interval [a3, a1] for

C defined above. The two marginal distributions are related by

GL1(x) = GL2(h(x)) where h(x) =
Cp(v1+v2−x)

Cp+(1−p)v2−(1−p)x
. Low type will bid

identically by GL1(x) = GL2(x) =
(1−p)x

p(v1+v2−2x)
in [0, a3]. a3 < a1 solve

C
v2−x

= (1−p)x−pC
p(v1−x)

.

4. Region R2 = {(bl1, bl2) : bl2 ≤ a1 ≤ bl1} has zero probability under distributions

of bids for low type.

The first two points are shown in lemma II.11. Point 3.a comes from lemma II.12

and point 3.b is dealt in lemma II.13. Point 4 is a direct result of point 2. There

will be a positive probability that one low type gets both objects due to common

support of mixed strategy equilibrium distributions. And the equilibrium strategy

is not necessarily efficient.

Lemma II.11 High type will bid by distribution

FH(x) =
x

v2−x
− v̄1p−a2+(1−p)x

(1−p)(v̄1−x)(v2−x)
(v1 + v2 − 2x) with support [a1, a2]. In region

R3 = {(bl1, bl2) : a1 ≤ bl2 ≤ bl1}, low type will bid by distributions

GL1(x) = GL2(x) =
pv̄1−a2+(1−p)x

p(v̄1−x)
with support [a1, a2]. a2 =

pv1+v2
2

and

a1 =
−v̄1+v1+2v2−v̄1p−v2p+

√
(v̄1−v2−2v2+v̄1p+v2p)

2−(2−2p)(v1v2+v22−2v̄1v2p+v21p−2v̄1v2p+v1v2p)

1−p
.

Proof. For high type, the indifferent condition will be

(1− p)[v̄1 − bh1] + p[GL2(bh1)(v̄1 − bh1)] = (v̄1 − a1)(1− p) + p(v̄1 − a1)GL2(a1) ⇐⇒
GL2(x) =

1
p(v̄1−x)

[(1− p)(x− a1) + p(v̄1 − a1)GL2(a1)]. By GL2(a2) = 1 we have

GL2(a1) = 1 + a1−a2
p(v̄1−a1)

. Plugging GL2(a1) into high type’s indifferent condition and

it will become (1− p)[v̄1 − bh1] + p[GL2(bh1)(v̄1 − bh1)] = v̄1 − a2 ⇐⇒
GL2(x) =

pv̄1−a2+(1−p)x
p(v̄1−x)

.
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With GL2(x) =
pv̄1−a2+(1−p)x

p(v̄1−x)
, expected payoff for first bid of low type on region R3

will be

pGL2(bl1)(v1 − bl1) + (1− p)(v1 − bl1) =
pv̄1−a2+(1−p)bl1

(v̄1−bl1)
(v1 − bl1) + (1− p)(v1 − bl1)

= (v̄1p−a2)+(1−p)v̄1
v̄1−bl1

(v1 − bl1), which will have a negative derivative w.r.t bl1. So for

region R3 we will still have the perfectly correlated equilibrium for low type.

Plugging GL1(x) = GL2(x) into indifferent condition for low type on region R3, we

have (1− p)FH(bl2)(v2 − bl2) = (1− p)bl2 − p v̄1p−a2+(1−p)bl2
p(v̄1−bl2)

(v1 + v2 − 2bl2) and hence

FH(x) =
x

v2−x
− v̄1p−a2+(1−p)x

(1−p)(v̄1−x)(v2−x)
(v1 + v2 − 2x). We can solve a2 =

pv1+v2
2

by letting

FH(a2) = 1 and

a1 =
−v̄1+v1+2v2−v̄1p−v2p+

√
(v̄1−v1−2v2+v̄1p+v2p)

2−(2−2p)(v1v2+v22−2v̄1v1p+v21p−2v̄1v2p+v1v2p)

1−p
by

solving FH(a1) = 0.

Computation will show that FH(x) is an increasing function when FH(x) ≥ 0: we

need to check FH(x) is monotonically increasing when x > a1, i.e.
dFH(x)

dx
=

(2v̄1−v1−v2)[2x
2−2(pv1+v2)x+pv1(v̄1+v2)−v̄1v2+v22]

2(p−1)(v2−x)2(v̄1−x)2
> 0 when x > a1. We need

2x2− 2(pv1+ v2)x+ pv1(v̄1+ v2)− v̄1v2+ v22 < 0 when x > a1 given p ∈ (0, 1). Since

2x2 − 2(pv1 + v2)x+ pv1(v̄1 + v2)− v̄1v2 + v22 is decreasing when x <
pv1+v2

2
, we only

need 2x2 − 2(pv1 + v2)x+ pv1(v̄1 + v2)− v̄1v2 + v22 < 0 when x = a1. Computation

shows the condition we need is p ∈ (
v2

2v̄1−v1
,
v2
v1
) for any v̄1 > v1 > v2.

Since we have perfectly correlated equilibrium on region R3, we conclude that

region R2 will be at most zero-measure. We can omit R2 and look at R1:

Lemma II.12

When
v2

2v̄1−v1
< p <

2v̄21v1−v̄1(v1+v2)
2+v2(v

2
1+v22)

−v32+2v̄21v2+v21v2+v1v
2
2+v31+2v̄1(v21−2v1v2−v22)

−
√

(v̄1−v2)
2(−2v̄1+v1+v2)

2(−v21+v22)

−v31+2v̄21v2+v21v2+v1v
2
2+v31+2v̄1(v21−2v1v2−v22)

low type will bid according to

GL1(x) = GL2(x) =
(1−p)x

p(v1+v2−2x)
in region R1 = {(bl1, bl2) : bl2 ≤ bl1 ≤ a1}.

Proof. There is only low type with indifferent condition

p[GL2(bl1)(v1 − bl1) +GL1(bl2)(v2 − bl2)] + (1− p)(v1 − bl1) = v1(1− p). If we

assume bl1 = bl2 (i.e. perfectly correlated), GL1(x) = GL2(x) =
(1−p)x

p(v1+v2−2x)
. Then

expected payment for first bid of low type is

pGL2(bl1)(v1 − bl1) + (1− p)(v1 − bl1) =
(1−p)x(v1−bl1)

v1+v2−2bl1
+ (1− p)(v1 − bl1)

=
(1−p)(v1−bl1)(v1+v2−bl1)

v1+v2−2bl1
. Derivative of payoff w.r.t. first bid is
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(p−1)(2b2l1−2(v1+v2)bl1+v2(v1+v2))

(v1+v2−2bl1)2
. On the other hand, expected payoff of second bid

from low type is pGL2(bl2)(v2 − bl2) =
(1−p)bl2(v2−bl2)

v1+v2−2bl2
with derivative

(1−p)(2b2l2−2(v1+v2)bl2+v2(v1+v2))

(v1+v2−2bl2)2
, which is exactly the opposite of derivative of expected

payoff of first bid. It is straight forward to check that G functions in the lemma

will coincide with G functions in the previous lemma at exactly a1 as desired.

As long as payoff from first bid is decreasing, payoff from second bid will be

increasing. The common term on numerator of those derivatives is

2x2 − 2(v1 + v2)x+ v2(v1 + v2) and 2x2 − 2(v1 + v2)x+ v2(v1 + v2) > 0 is equivalent

to x <
v1+v2

2
−

√
v21−v22
2

. If FH(x) = 0 at a1, we want a1 ≤ v1+v2
2

−
√

v21−v22
2

to support

equilibrium bids in region R1, which generates range of p to be
v2

2v̄1−v1
< p <

2v̄21v1−v̄1(v1+v2)
2+v2(v

2
1+v22)

−v31+2v̄21v2+v21v2+v1v
2
2+v31+2v̄1(v21−2v1v2−v22)

−
√

(v̄1−v2)
2(−2v̄1+v1+v2)

2(−v21+v22)

−v31+2v̄21v2+v21v2+v1v
2
2+v31+2v̄1(v21−2v1v2−v22)

.

Given distributions on R1 and R3, we check high type will not deviate. If high type

bids below a1, she will get expected payoff

pGL2(bh1)(v̄1 − bh1) + (1− p)(v̄1 − bh1) =
(1−p)bh1

(v1+v2−2xbh1)
(v̄1 − bh1) + (1− p)(v̄1 − bh1)

=
(1−p)(v̄1−bh1)(v1+v2−bh1)

v1+v2−2bh1
with derivative

(p−1)(2b2h1−2(v1+v2)bh1−(v̄1−v1−v2)(v1+v2))

(v1+v2−2bh1)2
. We

want 2b2h1 − 2(v1 + v2)bh1 − (v̄1 − v1 − v2)(v1 + v2) to be negative for a positive first

order derivative. Note that 2b2h1 − 2(v1 + v2)bh1 − (v̄1 − v1 − v2)(v1 + v2) is

decreasing when bh1 <
v1+v2

2
. If v̄1 ≥ v1 + v2, we have a positive derivative: if we

plug bh1 = 0 into 2b2h1 − 2(v1 + v2)bh1 − (v̄1 − v1 − v2)(v1 + v2), it will become

−(v̄1 − v1 − v2)(v1 + v2) < 0. So we will see

(p− 1)(2b2h1 − 2(v1 + v2)bh1 − (v̄1 − v1 − v2)(v1 + v2)) is always positive.

We have argued in proof of lemma II.9 that a low type will not deviate within a

region when she is bidding identical bids. We can now eliminate ”across region

deviation”, which means low type deviates from bidding identically to put one bid

in region R1 and the other one in region R3. We have established that expected

payment for second bid for low type is increasing in region R1 and R3 and expected

payment for first bid is decreasing in region R1 and R3. If a low type deviates to

bid a (b′l1, b
′
l2) with b′l2 < a1 < b′l1, monotone condition for expected payoff for each

bid will require the low type to increase her second bid and decrease first bid.

Remark II.6 We assume that bids in region R1 will be as low as 0. We can
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eliminate situations where lower bound of bids is strictly positive since we normalize

v̄2 = 0. If lower bounds of both types’ bids are strictly positive, high type will deviate

to bid below b since bidding at the lower bound will generate a strictly lower payoff

than bidding 0 given that distributions of bids from low type are atomless.

In region R1, so far we have assumed bl1 = bl2 without any justification. Now we

move to check availability of non-identical bids in region R1:

Lemma II.13

When
2v̄21v1−v̄1(v1+v2)

2+v2(v
2
1+v22)

−v31+2v̄21v2+v21v2+v1v
2
2+v31+2v̄1(v21−2v1v2−v22)

−
√

(v̄1−v2)
2(−2v̄1+v1+v2)

2(−v21+v22)

−v31+2v̄21v2+v21v2+v1v
2
2+v31+2v̄1(v21−2v1v2−v22)

< p <
v2
v1
, first bid of low type follows distribution GL1(x) =

C
v2−x

and second bid of low

type follows GL2(x) =
(1−p)x−pC
p(v1−x)

in interval I = [a3, a4],

where C =
(v̄1−v1)

2+v22+v1v2−2v̄1v2+p(v̄1v1−v21+v̄21−v̄1v1)

2p(−2v̄1+v1+v2)

+1
2

(v̄1−v1)
√

v̄21(1+p)2+v22(2−2p+p2)+2v1v2(1−p+p2)+v21(1−2p+2p2)−2v̄1[v2(2−p+p2)+v1(1−p+2p2)]

p(2v̄1−v1−v2)
. And

low type will bid identically on [0, a3] by GL1(x) = GL2(x) =
(1−p)x

p(v1+v2−2x)
. What’s

more, endpoints of interval I = [a3, a4] are determined by C
v2−x

= (1−p)x−pC
p(v1−x)

with a4

being equivalent to a1 from lemma II.11.

Proof. In the previous lemma we have studied what if we assume low type bids

identically. We can now assume that for any given bl1, we have an optimal bl2 < bl1

such that (bl1, bl2) optimizes expected payoff for low type. We further assume I is

the first non-trivial (i.e. positive measure) interval where bl2 = h(bl1) (with

(h(bl1) < bl1) solves the first order condition on interior of interval I. We denote

a3 = inf
x∈I

I and a4 = sup
x∈I

I so I = [a3, a4]. By construction we have h(a3) = a3 and

h(a4) = a4. Indifferent condition in region R1 is

p[GL2(bl1)(v1 − bl1) +GL1(bl2)(v2 − bl2)] + (1− p)(v1 − bl1) = v1(1− p). If we take

derivative with respect to bl2 for any fixed bl1, we get

gL1(bl2)(v2 − bl2)−GL1(bl2) = 0, with g being derivative of G functions. Solving the

differential equation, we have GL1(x) =
C

v2−x
for some constant C, and hence

GL2(y) =
(1−p)y−pC
p(v1−y)

. We can formally define a3 < a4 to be solution to
C

v2−x
= (1−p)x−pC

p(v1−x)
.

Since (1−p)x−pC
p(v1−x)

= C
v2−x

at a3, a4, we can rearrange the equation above to

34



C
v2−x

= (1−p)x
p(v1+v2−2x)

at a3, a4. So we need to find out a3 < a4 such that

C = (1−p)a3
(v1+v2−2a3)

(v2 − a3) =
(1−p)a4

(v1+v2−2a4)
(v2 − a4). But we know that function

(1−p)x
(v1+v2−2x)

(v2 − x) is increasing when x <
v1+v2−

√
v1−v22

2
and decreasing when

x >
v1+v2−

√
v21−v22

2
by proof in the previous lemma. So to make equation

(1−p)a3
(v1+v2−2a3)

(v2 − a3) =
(1−p)a4

(v1+v2−2a4)
(v2 − a4) valid, we must make

a3 <
v1+v2−

√
v22−v22

2
< a4. What’s more, for the right neighbourhood of a4, we are in

the perfectly correlated equilibrium by construction. To support such an

equilibrium, our previous result requires that 2x2 − 2(v1 + v2)x+ v2(v1 + v2) > 0,

which is positive when x <
v1+v2−

√
v21−v22

2
or x >

v1+v2−
√

v21−v22
2

. So

right-neighbourhood of a4 must be greater than
v1+v2+

√
v21−v22

2
, which is impossible

since
v1+v2+

√
v21−v22

2
is already greater than v2. So we conclude a4 = a1. Although

we assume I to be the first interval where first and second bids of low type differ, it

is actually the only interval since it ends at endpoint of region R1.

Although we have a specific relation between first and second bid by bl2 = h(bl1), it

actually does not matter if low type deviates in the interval I, because payoff from

first and second bid of low type are constructed to be constant at respectively

v1(1− p)− pC and pC 8. If second bid of low type deviates downward to become

smaller than a3, the optimal deviating bid should be bidding at a3 because we know

that for values lower than a3 low type is bidding identically. And in such a perfectly

correlated equilibrium expected payment from second bid is strictly increasing.

Similarly if first bid of low type deviates upward to be higher than a4, the deviating

bid better be a4 = a1 since in region R3 low type will bid identically and first bid is

strictly decreasing. If high type deviates to bid below a1 in interval I, she will get

(1− p)(v̄1 − bl1) + p (1−p)bl1−pC
p(v1−bl1)

(v̄1 − bl1) = (v̄1 − bl1)[(1− p) + (1−p)bl1−pC
v1−bl1

] with

derivative
(v1−v̄1)[v1(−1+p)+pC]

(v1−bl1)2
. We require v1(−1 + p) + pC < 0 for a positive

derivative so that a high type would rather bid a1 instead of prices lower than a1. If

a high type further deviates to bid below a3, we use the argument in proof of lemma

II.12 to eliminate such a deviating possibility: derivative of high type’s expected

payoff will be increasing as long as her bid is lower than a1 so high type will bid a3

when she has to bid no greater than a3. But high type will then immediately bid

a4 = a1 since her deviating payoff is an increasing function on interval (a3, a4).

8pGL2(bl1)(v1 − bl1) + (1− p)(v1 − bl1) = v1(1− p)− pC and pGL1(bl2)(v2 − bl2) = pC
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To make the distributions consistent, we have to let
C

v2−x
= (1−p)x−pC

p(v1−x)
= v̄1p−a2+(1−p)x

p(v̄1−x)
when x = a4 = a1. The last expression is

distribution of low type’s bids on region R3 (when bl1 ≥ bl2 ≥ a1). Interpretation of

the equalities above is that since a4 = a1 and GL1(a1) = GL2(a1) on R3, we should

have the distribution at a1 on interval I to be identical to the distribution at a1 on

region R3. Condition satisfying equations above is
2v̄21v1−v̄1(v1+v2)

2+v2(v
2
1+v22)

−v31+2v̄21v2+v21v2+v1v
2
2+v31+2v̄1(v21−2v1v2−v22)

−
√

(v̄1−v2)
2(−2v̄1+v1+v2)

2(−v21+v22)

−v31+2v̄21v2+v21v2+v1v
2
2+v31+2v̄1(v21−2v1v2−v22)

< p <
v2
v1
. We actually have an expression for constant C by solving
C

v2−a1
= (1−p)a1−pC

p(v1−a1)
= v̄1p−a1+(1−p)a1

p(v̄1−a1)
:

C =
(v̄1−v1)

2+v22+v1v2−2v̄1v2+p(v̄1v1−v21+v̄21−v̄1v2)

2p(−2v̄1+v1+v2)

+1
2

(v̄1−v1)
√

v̄21(1+p)2+v22(2−2p+p2)+2v1v2(1−p+p2)+v21(1−2p+2p2)−2v̄1[v2(2−p+p2)+v1(1−p+2p2)]

p(2v̄1−v1−v2)
.

Our last task is to check condition supporting perfectly correlated equilibrium

holds when bl1 < a3 and bl2 < a3. Recall in proof of lemma II.12, we require

2x2 − 2(v1 + v2)x+ v2(v1 + v2) > 0 for a perfectly correlated equilibrium. Note

2x2 − 2(v1 + v2)x+ v2(v1 + v2) is a decreasing function when x <
v1+v2

2
, and hence

we need to guarantee that 2x2 − 2(v1 + v2)x+ v2(v1 + v2) is positive when x = a3.

Some computation will show that we need condition v1 +
√

(v21−v22)(1−p)2

p2
+ 2C ≤ v1

p
.

Adding this condition into C
v2−a1

= (1−p)a1−pC
p(v1−a1)

= v̄1p−a2+(1−p)a1
p(v̄1−a1)

, we still get the same

range of p and expression of C. What’s more, we need C
v2−x

= (1−p)x
p(v1+v2−2x)

at a3 to

support atomless distributions. And computation will show that solutions to this

equation are just a3 computed by solving C
v2−x

= v̄1p−a2+(1−p)a1
p(v̄1−x)

. This should not be

a surprising observation since we have argued in the second paragraph of this proof

that (1−p)x−pC
p(v1−x)

= C
v2−x

can be rearranged to C
v2−x

= (1−p)x
p(v1+v2−2x)

when x = a3.

Remark II.7 We have two remarks to make:

• a3 > 0 because otherwise GL1 will be just be 0.

• It is easy to exclude deviations above the common upper bound: all

distributions are atomless at upper bounds. So bidding (
pv1+v2

2
,
pv1+v2

2
) (

pv1+v2
2

is the upper bound in this scenario) will give low type two objects with

certainty and bidding
pv1+v2

2
will give high type one object with certainty. And

hence bidding above the upper bound will only decrease the expected payoff for

any type.
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For the two marginal distributions GL1, GL2 introduced in lemma II.13, since we

have computed distribution of second bid GL2 by solving first order condition to

maximize expected payoff for any given first bid, we are actually able to

characterize a functional relationship between distributions of first bid GL1 and

second bid GL2. We will compute a function h on interval I = [a3, a4] introduced in

lemma II.13 which relates GL1, GL2 by GL2(h(x)) = GL1(x). We are also able to

prove that h(x) < x in the interior of I:

Corollary II.2 h(x) < x in interval I = (a3, a4) and h(x) is an increasing

function as long as pC < v1(1− p).

Proof. We assume x, y evolve according to y = h(x) in interval I since we solve an

optimal y for any given x to maximize the expected payoff for low type in interval

I = [a3, a4]. We must have GL2(h(x)) = GL1(x) for all x in interval I by change of

variable technique. Using functional forms of GL1 and GL2, we have

h(x) =
Cp(v1+v2−x)

Cp+(1−p)v2−(1−p)x
, which will be an increasing function when pC < v1(1− p).

Note that this requirement is actually the identical condition to prevent high type

from deviating below a1 constructed in the proof of previous lemma.

If we want h(x) < x in the interior of I, we must have
Cp(v1+v2−x)

Cp+(1−p)v2−(1−p)x
< x, which

is equivalent to C <
(1−p)(v2−x)x

p(v1+v2−2x)
in the interior of I. Note that

C = (1−p)a3
(v1+v2−2a3)

(v2 − a3) =
(1−p)a4

(v1+v2−2a4)
(v2 − a4) with a3 <

v1+v2−
√

v21−v22
2

< a4.

Function
(1−p)(v2−x)x

p(v1+v2−2x)
is actually decreasing when x ∈ (

v1+v2−
√

v21−v22
2

,
v1+v2+

√
v21−v22

2
)

and increasing when x <
v1+v2−

√
v21−v22

2
. So we conclude that C <

(1−p)(v2−x)x

p(v1+v2−2x)
in the

interior of I as desired.

Remark II.8 We have two remarks to make:

1. By change of variable and h(x) < x, we now confirm that

GL2(x) > GL2(h(x)) = GL1(x).

2. bl2 = h(bl1) can be treated as an interior solution to the maximization problem

max
0≤bl2≤bl1

p[GL2(bl1)(v1 − bl1) +GL1(bl2)(v2 − bl2)] + (1− p)(v1 − bl1) since

bl2 = h(bl1) solves the first order condition: gL1(bl2)(v2 − bl2)−GL1(bl2) = 0.

The next question to ask is do we have an interior solution where

bl2 = h(bl1) = bl1? If so, we must have GL1(bl1) = GL2(bl1) =
(1−p)bl1

p(v1+v2−2bl1)
.
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First order condition to the maximization problem will become
(1−p)[2b2l1−2(v1+v2)bl1+(v1+v2)v2)]

p(v1+v2−2bl1)2
= 0. However, this equation only achieves 0 at 2

specific values of x, which is contradictory to our assumption of an interior

solution on an interval. So there is no interior solution generating the

perfectly correlated equilibrium.

Graphical Illustration

We graphically illustrate density functions proposed in lemma II.13 via:

Figure 2.2: Illustration of lemma II.13

We pick v̄1 = 3, v1 = 2, v2 = 1 and p = 1
3
. Two bids from low type will be different

in interval [ 1
12
(11−

√
13),

√
13−1
4

]. Note that corollary III.2 demonstrates that

GL1(x) = GL2(h(x)) in interval [ 1
12
(11−

√
13),

√
13−1
4

], where h(x) < x for values in

( 1
12
(11−

√
13),

√
13−1
4

) and h(x) = x for endpoints. The graph above reflects such a

property by assigning GL1 a flatter slope when x is small and steeper slope when x

is high.

We can also illustrate density functions of equilibrium distributions graphically:

We still select v̄1 = 3, v1 = 2, v2 = 1 and the first graph is when p = 1
3
, which covers

points 1,2, 3.b and 4 of theorem II.5, when there is an interval where first and

second bid of low type are different. Support for distributions of low type is [0, 5
6
]

and support for distribution of high type is [
√
13−1
4

, 5
6
]. The second graph is when

p = 0.3 where two bids of low type are always identical, as shown in points 1, 2, 3.a

and 4 of theorem II.5. Support for distributions of low type is [0, 4
5
] and support for

distribution of high type is [0.527, 4
5
].

If we take derivative on the distribution functions and compute pdfs of low type’s
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Figure 2.3: Illustration of points 1,2, 3.b and 4 of theorem II.5

Figure 2.4: Illustration of points 1,2, 3.a and 4 of theorem II.5

each bid are, we will have the following result at a1. We omit the proof since it is

just direct computation.

Corollary II.3 We have the following results for pdfs of low type’s distributions:

1. When
v2

2v̄1−v1
< p < p∗, left derivative of G functions in region R1 at a1 is

greater than right derivative of G functions in region R3 at a1;

2. When p∗ < p <
v2
v1
, left derivative will satisfy dGL1(x)

dx
> dGL2(x)

dx
at a1 and left

derivative dGL2(x)
dx

in region R1 at a1 will be greater than right derivative dG(x)
dx

in region R3 at a1.

We can also illustrate density functions for only low type only:

The pdfs only differ for bids in [ 1
12
(11−

√
13),

√
13−1
4

].
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Figure 2.5: Low type’s pdf

2.5.2 v̄1 < v1 + v2

With FH(x) in the form in lemma II.10, we should require FH(x) to be an

increasing function on (0, v̄1p).
dFH(x)

dx
=

(2v̄1−v1−v2)[x
2−2pv̄1x+pv̄1v2−v̄1v2+pv̄21 ]

(p−1)(v̄1−x)2(v2−x)2
. To make

FH(x) an increasing function, we need x2 − 2pv̄1x+ pv̄1v2 − v̄1v2 + pv̄21 to be

negative, which means maximum of x2 − 2pv̄1x+ pv̄1v2 − v̄1v2 + pv̄21 is negative.

And x2 − 2pv̄1x+ pv̄1v2 − v̄1v2 + pv̄21 is decreasing on (0, pv̄1) so we should require

pv̄1v2 + pv̄21 < v̄1v2 ⇐⇒ p <
v̄1v2

v̄1(v̄1+v2)
=

v2
v̄1+v2

. When v̄1 ≥ v1 + v2,
v2

v̄1+v2
≥ v2

2v̄1−v1

and we get an increasing FH for free. But if v̄1 < v1 + v2,
v2

v̄1+v2
<

v2
2v̄1−v1

. So

computation above indicates that when v̄1 < v1+ v2 we are missing some range of p.

What’s more, we can look at computation in lemma II.12 when v̄1 < v1 + v2 as

well. Recall in lemma II.12, we compute derivative of expected payoff of high type

if she deviates to bid below a1. If v̄1 < v1 + v2, the derivative of high type’s

deviating payoff 9 is negative when x <
v1+v2−

√
(2v̄1−v1−v2)(v1+v2)

2
and positive when

x >
v1+v2−

√
(2v̄1−v1−v2)(v1+v2)

2
. Computation will show that

a1 >
v1+v2−

√
(2v̄1−v1−v2)(v1+v2)

2
. So candidates for potential optimizers must be at

the endpoints. We compare v̄1 − a2 ≥ (1− p)(v̄1 − 0) ⇐⇒ p ≥ v2
2v̄1−v1

. Computation

above shows that when v̄1 < v1 + v2, to support results like lemma II.12, we just

need p >
v2

2v̄1−v1
.

Combining the previous two paragraphs, we miss to characterize equilibria when

p ∈ (
v2

v̄1+v2
,

v2
2v̄1−v1

) with v̄1 < v1 + v2.

When p ∈ (
v2

v̄1+v2
,

v2
2v̄1−v1

), our conjecture is that FH is mixture of the previous FH

9 (p−1)(2x2−2(v1+v2)x−(v̄1−v1−v2)(v1+v2))
(v1+v2−2x)2
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distributions for high type in theorem III.2 and III.3, i.e. support of FH has an

atom at 0, puts no probability on interval (0, a1) (i.e. gap on interval (0, a1)) and

put the remaining probability on interval [a1, a2]. As with the paragraph before

lemma II.10, high type will choose to put an atom at 0 since range of p, the

probability low type appears in the population, is still not that high. We will later

show there is no incentive for high type to deviate from bidding according to FH .

We still assume a to be the upper bound of distributions. Let R1, R2, R3 still be

defined as R1 = {(bl1, bl2) : bl2 ≤ bl1 ≤ a1}, R2 = {(bl1, bl2) : bl2 ≤ a1 ≤ bl1} and

R3 = {(bl1, bl2) : a1 ≤ bl2 ≤ bl1}.

As usual, we summarize our results into a theorem:

Theorem II.9 Suppose v̄1 < v1 + v2 and p ∈ (
v2

v̄1+v2
,

v2
2v̄1−v1

).

1. High type will bid by FH(x) =
x+Tv2
v2−x

− v̄1p−a2+(1−p)x
(1−p)(v̄1−x)(v2−x)

(v1 + v2 − 2x) with

support {0} ∪ [a1, a2]. a1 =
v1+v2−v̄1(1+T )

1−T
, T =

pv1+v2−2pv̄1
(1−p)v2

and a2 = v̄1p.

2. In region R3 = {(bl1, bl2) : a1 ≤ bl2 ≤ bl1}, low type will bid by

GL1(x) = GL2(x) =
v̄1p−a2+(1−p)x

p(v̄1−x)
with support [a1, a2].

3. In region R1 = {(bl1, bl2) : bl2 ≤ bl1 ≤ a1}, letting C =
(v̄1−v1−v2)(−v2+v̄1p)

v2p
,

(a) when v1 + v2 +
√

v21 − v22 ≤ 2v̄1, low type bids according to distribution

GL1(x) = GL2(x) =
(1−p)x+T (1−p)x
p(v1+v2−2x)

for all p ∈ (
v2

v̄1+v2
,

v2
2v̄1−v1

) in the region;

(b) When v1 + v2 +
√

v21 − v22 > 2v̄1,

i. when
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
< p <

v2
2v̄1−v1

, low type will bid her first bid

according to GL1(x) =
C

v2−x
− 1−p

p
T and second bid by

GL2(x) =
(1−p)x−pC+(1−p)Tv2

p(v1−x)
in interval [a3, a1] for C defined above.

The two marginal distributions are related by GL2(h(x)) = GL1(x)

where h(x) =
−v2(v2−p(2v̄1+C))(v2−x)+v21p(−v2+x)+v1(−v22(1+p)−2v̄1px+v2(2v̄1p+x+p(C+x)))

p(2v̄1(v2−x)+b(−v2+x)+c(−v2+C+x))
.

And low type will bid by GL1(x) = GL2(x) =
(1−p)x+T (1−p)x
p(v1+v2−2x)

in region

[0, a3]. a3 < a1 solve C
v2−x

− 1−p
p
T =

(1−p)x−pC+(1−p)Tv2
p(v1−x)

.

ii. when p <
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
, low type will bid according to
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GL1(x) = GL2(x) =
(1−p)x+T (1−p)x
p(v1+v2−2x)

in region R1.

4. Region R2 = {(bl1, bl2) : bl2 ≤ a1 ≤ bl1} has zero probability under distributions

of bids for low type.

The first two points are illustrated in lemma II.14. 3.a and 3.b.ii come from lemma

II.15 and 3.b.i is dealt in lemma II.16. Point 4 is a direct result of point 2. Similar

to previous cases, there will be a positive probability that one low type gets both

objects due to common support of mixed strategy equilibrium distributions. And

hence the equilibrium strategy is not necessarily efficient.

Lemma II.14 High type will bid by FH(x) =
x+Tv2
v2−x

− v̄1p−a2+(1−p)x
(1−p)(v̄1−x)(v2−x)

(v1 + v2 − 2x)

with support {0} ∪ [a1, a2]. In region R3 = {(bl1, bl2) : a1 ≤ bl2 ≤ bl1}, low type will

bid by GL1(x) = GL2(x) =
v̄1p−a2+(1−p)x

p(v̄1−x)
with support [a1, a2]. We express a2 = v̄1p

and a1 =
v1+v2−v̄1(1+T )

1−T
where T can be expressed as T =

pv1+v2−2pv̄1
(1−p)v2

.

Proof. In region R3, we still have GL2(x) =
v̄1p−a2+(1−p)x

p(v̄1−x)
as in lemma II.11 by

looking at high type’s indifferent condition in the region. And by similar argument

in region R3 low type must be bidding identical prices. In region R3 we have

indifferent condition for low type:

p[GL2(bl1)(v1 − bl1) +GL1(bl2)(v2 − bl2)] + (1− p)[(v1 − bl1) + FH(bl2)(v2 − bl2)] =

v1(1− p) + (1− p)Tv2. Plugging GL1, GL2 we have

(1− p)FH(x)(v2 − bl1) = (1− p)bl1 + (1− p)Hv2 −
v̄1p−a2+(1−p)bl1

v̄1−bl1
(v1 + v2 − 2bl1).

And we solve FH(x) =
x+Tv2
v2−x

− v̄1p−a2+(1−p)x
(1−p)(v̄1−x)(v2−x)

(v1 + v2 − 2x). Solving FH(a2) = 1

gives a2 =
pv1+v2

2
− T (1−p)v2

2
.

We should require FH(0) = T , which is only valid when a2 = v̄1p. So

T =
pv1+v2−2pv̄1

(1−p)v2
. T is an decreasing function of p. When p =

v2
2v̄1−v1

, T = 0. This

computation guarantees T ∈ (0,
v1+v2−v̄1

v̄1
) for p ∈ (

v2
v̄1+v2

,
v2

2v̄1−v1
). Another

requirement is FH(a1) = T , and we have a1 =
v1+v2−v̄1(1+T )

1−T
. It is easy to compute

expected payment for high type is (v̄1 − a1)(1− p) + p(v̄1 − a1)GL2(a1) = v̄1 − v̄1p.

To make sure FH(x) is increasing when x > a1, we need dFH(x)
dx

> 0 when

x ∈ (a1, a2). Plugging a2 = v̄1p, we have
dFH(x)

dx
=

x2(Tv2+v1−2v̄1)−2(T−1)v̄1v2x+v̄1v2(T v̄1−v1−v2+v̄1)

(v̄1−x)2(v2−x)2
> 0 when x ∈ (a1, a2). ⇐⇒

x2(Tv2 + v1 − 2v̄1) + 2(1− T )v̄1v2x+ v̄1v2(T v̄1 − v1 − v2 + v̄1) > 0 when

x ∈ (a1, a2). And we have to guarantee

42



x2(Tv2 + v1 − 2v̄1)− 2(T − 1)v̄1v2x+ v̄1v2(T v̄1 − v1 − v2 + v̄1) > 0 when x = a1.

Plugging a1 =
v1+v2−v̄1(1+T )

1−T
into the equation, we have

x2(Tv2 + v1 − 2v̄1)− 2(T − 1)v̄1v2x+ v̄1v2(T v̄1 − v1 − v2 + v̄1) =

a21(Tv2 + v1 − 2v̄1)− (T − 1)v̄1v2a1. And a21(Tv2 + v1 − 2v̄1)− (T − 1)v̄1v2a1 > 0

can be achieved when a1 ∈ (0,
−v̄1v2+T v̄1v2
−2v̄1+v1+Tv2

). Some computation will show that

a1 ∈ (0,
−v̄1v2+T v̄1v2
−2v̄1+v1+Tv2

) is satisfied as long as T ∈ (− v̄1−v1
v̄1−v2

,
v1+v2−v̄1

v̄1
), which contains

(0,
v1+v2−v̄1

v̄1
). So we confirm that as long as 0 < a1 <

−v̄1v2+Hv̄1v2
−2v̄1+v1+Hv2

, derivative is

positive when x = a1.

Note that x2(Tv2 + v1 − 2v̄1) + 2(1− T )v̄1v2x+ v̄1v2(T v̄1 − v1 − v2 + v̄1) is a

quadratic function with a negative coefficient on x2 term and positive coefficient on

x term. So such an expression will be increasing when x <
(T−1)v̄1v2

Tv2−2v̄1+v1
. Another fact

is that if we solve FH(a2) = 1 by plugging into a2 = v̄1p, we can get

a2 =
−v̄1v2+T v̄1v2
−2v̄1+v1+Tv2

10. So results above imply that derivative at a1 is positive and it is

the minimal value dFH(x)
dx

will achieve. And hence we can prove that dFH(x)
dx

> 0

when x > a1 by showing dFH(x)
dx

> 0 when x = a1.

When low type is bidding the same in region R3, we are able to conclude that R2

will at most be a zero-measure region. And hence we move on to look at region R1

and we propose similar solutions to lemma II.12. But condition to support the

lemma will be more complicated:

Lemma II.15 In region R1 = {(bl1, bl2) : bl2 ≤ bl1 ≤ a1},

1. If v1 + v2 +
√
v21 − v22 > 2v̄1 there is a perfectly correlated equilibrium where

low type bids according to distribution GL1(x) = GL2(x) =
(1−p)x+T (1−p)x
p(v1+v2−2x)

with

support [0, a1] when
v2

v̄1+v2
< p <

v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
.

2. If v1 + v2 +
√
v21 − v22 ≤ 2v̄1, perfectly correlated equilibrium can be supported

by all p ∈ (
v2

v̄1+v2
,

v2
2v̄1−v1

) with GL1(x) = GL2(x) =
(1−p)x+T (1−p)x
p(v1+v2−2x)

on support

[0, a1].

Proof. On region R1 we have indifferent condition for low type:

p[GL2(bl1)(v1 − x) +GL1(bl2)(v2 − bl2)] + (1− p)(v1 − bl1) + (1− p)T (v2 − bl2) =

10Expressions a2 = v̄1p =
−v̄1v2+T v̄1v2

−2v̄1+v1+Tv2
=

pv1+v2

2 − T (1−p)v2

2 are equivalent as long as T =
pv1+v2−2pv̄1

(1−p)v2
.
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v1(1− p) + (1− p)Tv2. Perfectly correlated equilibrium will give a result

GL1(x) = GL2(x) =
(1−p)x+T (1−p)x
p(v1+v2−2x)

. Note that GL1(0) = GL2(0) = 0. G functions on

R1 and G functions on R3 will coincide when x = a1. Expected payoff for first bid

of low type is p (1−p)x+T (1−p)bl1
p(v1+v2−2bl1)

(v1 − bl1) + (1− p)(v1 − bl1) with derivative

− (p−1)[2(T−1)b2l1−2(T−1)(v1+v2)bl1+(v1+v2)(Tv1−v2)]

(v1+v2−2bl1)2
. Expected payoff for second bid of low

type is p (1−p)bl2+T (1−p)bl2
p(v1+v2−2bl2)

(v2 − bl2) + (1− p)T (v2 − bl2) with derivative
(p−1)[2(T−1)b2l2−2(T−1)(v1+v2)bl2+(v1+v2)(Tv1−v2)]

(v1+v2−2bl2)2
which is exactly the negative of

derivative of expected payoff for first bid of low type.

So condition to make payment from first bid to be decreasing is still the same

condition to make payment from second bid to be increasing:

(p− 1)[2(T − 1)x2 − 2(T − 1)(v1 + v2)x+ (v1 + v2)(Tv1 − v2)] > 0, which is

equivalent to 2(1− T )x2 − 2(1− T )(v1 + v2)x− (v1 + v2)(Tv1 − v2) > 0. We know

that 2(1− T )x2 − 2(1− T )(v1 + v2)x− (v1 + v2)(Tv1 − v2) is decreasing when

x < a1 <
v1+v2

2
. We can compute that when x = a1 =

v1+v2−v̄1(1+T )

1−T
, the expression

above is positive for 2 conditions: if v1 + v2 +
√
v21 − v22 ≤ 2v̄1, we have perfectly

correlated equilibrium for all p ∈ (
v2

v̄1+v2
,

v2
2v̄1−v1

); and if v1 + v2 +
√
v21 − v22 > 2v̄1

perfectly correlated equilibrium exists as long as
v2

v̄1+v2
< p <

v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
.

Computation shows when v1 +
√
2v1 ≤ 2v̄1,

v2
v̄1+v2

< p <
v2

2v̄1−v1
is enough;

On the other hand, if v1 +
√
2v1 ≥ 2v̄1, computation generates

(v1 +
√
−4v̄21 + 4v̄1v1 + v21 + 2v2 ≤ 2v̄1) ∪ (2v̄1 +

√
−4v̄21 + 4v̄1v1 + v21 ≤ v1 + 2v2)

∪[(2v̄1 +
√

−4v̄21 + 4v̄1v1 + v21 > v1 + 2v2) ∩ (v1 +
√

−4v̄21 + 4v̄1v1 + v21 + 2v2 >

2v̄1) ∩ (p <
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
)]. To interpret this result, we denote

P1 = (v1 +
√

−4v̄21 + 4v̄1v1 + v21 + 2v2 ≤ 2v̄1),

P2 = (2v̄1 +
√

−4v̄21 + 4v̄1v1 + v21 ≤ v1 + 2v2) and A = (p <
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
). So

expression above is actually P1 ∪ P2 ∪ [Pc
1 ∩ Pc

2 ∩ A].

P1 ∪ P2 ∪ [Pc
1 ∩ Pc

2 ∩A] = [(P1 ∪ P2) ∪ (Pc
1 ∩ Pc

2)] ∩ [(P1 ∪ P2) ∪A] by distributive law

of set operations. Note that complement of P1 ∪ P2 is Pc
1 ∩ Pc

2, and accordingly

P1 ∪ P2 ∪ [Pc
1 ∩ Pc

2 ∩A] = (P1 ∪ P2) ∪A. To see what is P1 ∪ P2, we still compute its

complement and it turns out complement of P1 ∪ P2 is (2v̄1 < v1 + v2 +
√
v21 − v22).

So P1 ∪ P2 = (2v̄1 ≥ v1 + v2 +
√
v21 − v22). But it is straightforward to check

v1 + v2 +
√

v21 − v22 ≤ v1 +
√
2v1 since v2 < v1, which indicates that
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v2
v̄1+v2

< p <
v2

2v̄1−v1
when v1 + v2 +

√
v21 − v22 ≤ 2v̄1 < v1 +

√
2v1 and

v2
v̄1+v2

< p <
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
when 2v̄1 < v1 + v2 +

√
v21 − v22 are both feasible

solutions. (To be precise, the 2nd result should be
v2

v̄1+v2
< p <

v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
when

2v̄1 < v1 +
√
2v1, but v1 + v2 +

√
v21 − v22 ≤ v1 +

√
2v1 implies

2v̄1 < v1 + v2 +
√

v21 − v22 is a subset of condition 2v̄1 < v1 +
√
2v1).

In conclusion, when v1 + v2 +
√

v21 − v22 ≤ 2v̄1, perfectly correlated equilibrium

exists for
v2

v̄1+v2
< p <

v2
2v̄1−v1

while when 2v̄1 < v1 + v2 +
√
v21 − v22, perfectly

correlated equilibrium exists when
v2

v̄1+v2
< p <

v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
.

If high type bids below a1, she will get p
(1−p)bh1+T (1−p)bh1

p(v1+v2−2bh1)
(v̄1− bh1)+ (1− p)(v̄1− bh1)

=
(1−p)(v̄1−bh1)(v1+v2−bh1)

v1+v2−2bh1
+ T (1−p)bh1

v1+v2−2bh1
(v̄1 − bh1) =

v1+v2−bh1+Tbh1
v1+v2−2bh1

(1− p)(v̄1 − bh1) with

derivative
(1−p)[−2(1−T )b2h1+2(v1+v2)(1−T )x+(v1+v2)(T+1)v̄1−(v1+v2)

2]

(v1+v2−2bh1)2
. When bh1 = 0, the

numerator is (v1 + v2)(T + 1)v̄1 − (v1 + v2)
2 < (v1 + v2)(

v1+v2−v̄1
v̄1

+ 1)v̄1 − (v1 + v2)
2

= 0. So the numerator of derivative (a quadratic function) of deviating payoff will

be negative and may turn to positive afterwards since coefficient for term x2 is

negative while coefficient for term x is positive. In fact, if we plug

a1 =
v1+v2−v̄1(1+T )

1−T
into the derivative, the quadratic function in numerator is

[2v̄1(1+T )
1−T

− (v1 + v2)
1+T
1−T

][v1 + v2 − (1 + T )v̄1] > 0. So we just need to compare

deviating payments when high type bids 0 since computation above reveals that

derivative below a1 is initially negative and will eventually turn positive. We need

v̄1 − a2 ≥ (1− p)(v̄1 − 0). And it is satisfied by an equality since a2 = v̄1p. So we

know that high type will not deviate to bid anything below a1 unless she is bidding

0.

We propose lemma II.15 by simply assuming low type is bidding the same in region

R1. And we can check we have a result similar to lemma II.13 when

p ∈ (
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
,

v2
2v̄1−v1

).

Lemma II.16 When
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
< p <

v2
2v̄1−v1

and v1 + v2 +
√
v21 − v22 > 2v̄1,

low type will bid according to GL1(x) =
C

v2−x
− 1−p

p
T and

GL2(x) =
(1−p)x−pC+(1−p)Tv2

p(v1−x)
in interval I = [a3, a4], with GL2(h(x)) = GL1(x) where

h(x) =
−v2(v2−p(2v̄1+C))(v2−x)+v21p(−v2+x)+v1(−v22(1+p)−2v̄1px+v2(2v̄1p+x+p(C+x)))

p(2v̄1(v2−x)+b(−v2+x)+c(−v2+C+x))
. And low

type will bid by GL1(x) = GL2(x) =
(1−p)x+T (1−p)x
p(v1+v2−2x)

in interval [0, a3]. We express

T =
pv1+v2−2pv̄1

(1−p)v2
and C =

(v̄1−v1−v2)(−v2+v̄1p)

v2p
. What’s more, a4 = a1 introduced in
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lemma II.14.

Proof. Similar to lemma II.13, we still define I as the first non-trivial (i.e. positive

measure) interval where bl2 = h(bl1) solves the first order condition and h(bl1) < bl1

on interior of interval I. We denote a3 = inf
x∈I

I and a4 = sup
x∈I

I. By construction we

have h(a3) = a3 and h(a4) = a4.

Recall expected payoff for low type in region R1 is

p[GL2(bl1)(v1 − bl1) +GL1(bl2)(v2 − bl2)] + (1− p)(v1 − bl1) + (1− p)T (v2 − bl2) and

first order condition with respect to bl2 will be

p[gL1(bl2)(v2 − bl2)−GL1(bl2)]− (1− p)T = 0. We express GL1(x) =
C

v2−x
− 1−p

p
T

with some constant C to be determined. Plugging GL1(bl2) =
C

v2−bl2
− 1−p

p
T into the

indifferent condition of low type, which is

p[GL2(bl1)(v1 − bl1) +GL1(bl2)(v2 − bl2)] + (1− p)(v1 − bl1) + (1− p)T (v2 − bl2) =

v1(1− p) + (1− p)Tv2, we can solve GL2(x) =
(1−p)x−pC+(1−p)Tv2

p(v1−x)
. Similar to lemma

II.13, GL1(x) = GL2(x) at a3 < a4 so we have C
v2−x

− 1−p
p
T =

(1−p)x−pC+(1−p)Tv2
p(v1−x)

when x = a3 and x = a4. Rearranging equation above presents

C =
(1−p)x+(1−p)Hv2

p(v1+v2−2x)
(v2 − x) +

(1−p)T (v1−x)(v2−x)

p(v1+v2−2x)
=

(1−p)x(v2−x)

p(v1+v2−2x)
+

(1−p)T (v2−x)(v1+v2−x)

p(v1+v2−2x)

when x = a3 or a4. Taking derivative on C with respect to x will give us

(1− p)
2(1−T )x2−2(v1+v2)(1−T )x−(v1+v2)(Tv1−v2)

p(v1+v2−2x)2
. The derivative is positive when

x < 1
2
[v1 + v2 −

√
(1+T )(v21−v22)

1−T
] and x > 1

2
[v1 + v2 +

√
(1+T )(v21−v22)

1−T
]. By a similar

argument from lemma II.13, if we still denote a3 as left endpoint of I and a4 as

right endpoint of I, we must have a3 <
1
2
[v1 + v2 −

√
(1+T )(v21−v22)

1−T
] < a4 and that

a4 = a1. So we have equations C
v2−x

− 1−p
p
H =

(1−p)x−pC+(1−p)Hv2
p(v1−x)

= v̄1p−a2+(1−p)x
p(v̄1−x)

when x = a4, similar to lemma II.13. Solving this equation we get
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
< p <

v2
2v̄1−v1

and C =
(v̄1−v1−v2)(−v2+v̄1p)

v2p
as long as

2v̄1 < v1 + v2 +
√

v21 − v22.

We can also confirm that 2(1− T )x2 − 2(1− T )(v1 + v2)x− (v1 + v2)(Tv1 − v2) is

positive when x ≤ a3 given range of p and expression of C provided in the last

paragraph, which shows existence of perfectly correlated equilibrium for low type

when x ∈ R1 \ I = (0, a3). What’s more, solving GL2(h(x)) = GL1(x) gives us

h(x) =
−v2(v2−p(2v̄1+C))(v2−x)+v21p(−v2+x)+v1(−v22(1+p)−2v̄1px+v2(2v̄1p+x+p(C+x)))

p(2v̄1(v2−x)+b(−v2+x)+c(−v2+C+x))
with

derivative
v22C(v1+v2−p(2v̄1+C))

p((2v̄1−v1)(v2−x)+v2(−v2+C+x))2
. We need v1 + v2 − p(2v̄1 + C) > 0 for an

increasing function h(x). And this condition is consistent with the p, C expressions
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computed last paragraph.

Similar to argument in lemma II.13, payoff from first and second bid of low type

are constructed to be constant in interval I. If second bid of low type deviates

downward to become smaller than a3, the optimal deviating bid should be bidding

at a3 because we know that in perfectly correlated equilibrium payment from

second bid is strictly increasing. Similarly if first bid of low type deviates upward

to be higher than a4, the deviating bid better be bidding a4 = a1 since in perfectly

correlated equilibrium payment from first bid is strictly decreasing. If high type

deviates to bid below a1 and chooses to bid in I, her expected payoff will be

(1− p)(v̄1 − bh1) + p
(1−p)bh1−pC+(1−p)Tv2

p(v1−bh1)
(v̄1 − bh1) with derivative

−
v̄1(v̄1−v1)[

v̄1−v1+v2
v2

p−1]

(v1−bh1)2
. Given range of p,

1− v̄1−v1+v2
v2

p > 1− v̄1−v1+v2
v2

v2
2v̄1−v1

=
v̄1−v2
2v̄1−v1

> 0 and hence the derivative is positive.

So bidding in interior of I will be dominated by bidding at a1. Proof of lemma II.15

can be used to show that high type should not be bidding below a3.

It is easy to exclude deviations above the common upper bound: all distributions

are atomless at upper bounds. So bidding (v̄1p, v̄1p) (v̄1p is the upper bound in this

scenario) will give low type two objects with certainty and bidding v̄1p will give

high type one object with certainty. And hence bidding above the upper bound will

only decrease the expected payoff for any type.

Graphical Illustration

We will also demonstrate lemma II.16 separately since it shows situation where

bids from low type are distinct. We pick v̄1 = 7, v1 = 6, v2 = 3 and p = 0.37. Two

bids from low type will be different in interval [1.8, 1.892]. We still know that

GL1(x) = GL2(h(x)) in interval [1.8, 1.892] with h(x) < x for x ∈ (1.8, 1.892) and

h(x) = x at endpoints as in the graphical illustration in the last subsection.

We illustrate density functions of equilibrium distributions graphically:

The first graph is when v̄1 = 4, v1 = 3, v2 = 2 and p = 3
8
, which covers points 1,2,

3.a and 4 of theorem II.9. Support for distribution of high type is [2
3
, 3
2
] and

support for distributions of low type is [0, 3
2
]. Note that there will be an atom of

size 1
10

for distribution of mixed strategy of high type at 0.
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Figure 2.6: Illustration of lemma II.16

Figure 2.7: Iluustration of points 1,2, 3.a and 4 of theorem II.9

We continue to select v̄1 = 7, v1 = 6, v2 = 3 for the second and third graphs and the

second graph is when p = 0.37, which covers points 1,2, 3.b.i and 4 of theorem II.9,

when there is an interval where first and second bid of low type are different.

Support for distributions of low type is [0, 2.6] and support for distribution of high

type is [1.89, 2.6]. The third graph is when p = 0.35 where two bids of low type are

always identical, as shown in points 1,2 , 3.b.ii and 4 of theorem II.9. Support for

distributions of low type is [0, 2.45] and support for distribution of high type is

[1.43, 2.45]. Note that there will be an atom of size 0.021 for distribution of mixed

strategy of high type at 0.

We can also illustrate density functions for low type only:

The pdfs only differ with bids in [1.8, 1.89].

Analogous to corollary II.3, we have a similar result regarding pdf at a1:
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Figure 2.8: Illustration of points 1,2, 3.b.i and 4 of theorem II.9

Figure 2.9: Illustration of points 1,2, 3.b.ii and 4 of theorem II.9

Corollary II.4 For p ∈ (
v2

v̄1+v2
,

v2
2v̄1−v1

), we have the following results:

1. When v1 + v2 +
√

v21 − v22 ≤ 2v̄1 or v1 + v2 +
√

v21 − v22 > 2v̄1 but

p <
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
, left derivative of low type’s distribution at a1 will be

greater than right derivative of low type at a1

2. When v1 + v2 +
√

v21 − v22 > 2v̄1 but p >
v2(2v̄1−v1−v2)

2v̄21−2v̄1v1+v21−v22
, left derivative will

satisfy dGL1(x)
dx

> dGL2(x)
dx

at a1 and left derivative dGL2(x)
dx

in region R1 at a1

will be greater than right derivative dG(x)
dx

in region R3 at a1.

Corollary II.5 With v̄1 < v1 + v2, results in theorem III.2 are valid when

p <
v2

v̄1+v2
; results in theorem III.3 are valid when

v2
2v̄1−v1

< p <
v2
v1
. What’s more,

corollary ?? holds for v̄1 < v1 + v2 when
v2

2v̄1−v1
< p <

v2
v1
.

2.5.3 When p ≥ v2

v1

Theorem II.10 When p ≥ v2
v1

, high type will bid v2 and low type will be bidding v2

and by distribution GL2(x) =
(1−p)x+pv1−v2

p(v1−x)
in interval [0, v2) for her first and second
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Figure 2.10: Low type’s pdf

bid respectively.

Proof. Abusing notation, high type will not deviate to bid bh1 < v2 if

pGL2(bh1)(v̄1 − bh1) + (1− p)(v̄1 − bh1) ≤ v̄1 − v2 ⇐⇒ GL2(x) ≤ (1−p)x+pv̄1−v2
p(v̄1−x)

and

low type will not deviate to make her first bid bl1 < v2 for her first bid if

pGL2(bl1)(v1 − bl1) + (1− p)(v1 − bl1) ≤ v1 − v2 ⇐⇒ GL2(x) ≤ (1−p)x+pv1−v2
p(v1−x)

.

Some computation will show that
(1−p)x+pv1−v2

p(v1−x)
<

(1−p)x+pv̄1−v2
p(v̄1−x)

as long as x < v2.

If we let GL2(x) =
(1−p)x+pv1−v2

p(v1−x)
, with GL2(x) = 1 when x = v2, we can successfully

support bids from high type and first bid of low type to be degenerated on v2.

When x = 0, GL2(x) =
pv1−v2
pv1

. So as long as p ≥ v2
v1
, distribution GL2(x) is valid.

When p >
v2
v1
, the low type will put an atom with size

pv1−v2
pv1

for GL2 when x = 0.

The indifferent condition of first bid from low type is binding only when p =
v2
v1
,

which implies that both types strictly prefer bidding v2 with higher p. What’s

more, when p >
v2
v1

and high (low) type unilaterally deviates to bid 0, high (low)

type will only get half object on average when second bid of low type is 0, (because

deviating to bid 0 means first bid ties with opponent’s second bid which is strictly

smaller than opponent’s first bid), which leads to payoff strictly smaller than

v̄1 − v2 (v1 − v2). When high type and first bid of low type bid a pure strategy on

v2, second bid of low type will not win and will not generate any positive expected

payoff. A low type will be indifferent to any distribution on her second bid.

When p → 1, GL2(x) will also be degenerated on v2. And the equilibrium result

will converge to low type bidding 1 for both bids, and each bidder get exactly 1

object, i.e. the pure strategy equilibrium found in lemma II.7
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Remark II.11 This equilibrium is obviously not unique. We can pick any x > 0

on support of GL2 and construct an atom at x by truncate the probability for values

strictly below x to be exactly at x.

2.6 Other Cases

We have studied case where high type has marginal valuation (v̄1, v̄2) and low type

has marginal valuation (v1, v2) where v̄1 > v1 > v2 > v̄2. In this section, we will

show mixed strategy equilibrium of the other two cases. We continue to assume

that probability a low type appears in the population is p so probability a high

type appears in the population is 1− p. Additionally, we still assume that FH1, FH2

are marginal distributions of high type’s first and second bids respectively while

GL1, GL2 are marginal distributions of low type’s first and second bids.

2.6.1 Value Ordering v̄1 > v1 > v̄2 > v2

We can state the mixed strategy equilibrium when value ordering is

v̄1 > v1 > v̄2 > v2:

Theorem II.12 When p ≤ 1− v̄2
v1
, first bids of both type will be pure strategy at v2

and second bid of high type will follow FH2(x) =
(v1−v̄2)−p(v1−x)

(1−p)(v1−x)
.

Proof. High type will not deviate her first bid to bh1 < v̄2 when

(1− p)FH2(x)(v̄1 − bh1) + p(v̄1 − bh1) ≤ v̄1 − v̄2, which makes

FH2(x) ≤ (v̄1−v̄2)−p(v̄1−x)
(1−p)(v̄1−x)

. Low type will not deviate her first bid to bl1 < v̄2 when

(1− p)F2(bl1)(v1 − bl1)+ p(v1 − bl1) ≤ v1 − v̄2, which makes FH2(x) ≤ (v1−v̄2)−p(v1−x)

(1−p)(v1−x)
.

Computation will show that
(v1−v̄2)−p(v1−x)

(1−p)(v1−x)
≤ (v̄1−v̄2)−p(v̄1−x)

(1−p)(v̄1−x)
. So similar to the

previous result, we have a mixed strategy equilibrium where first bids of both type

are degenerate at v̄2 and second bid of high type follows distribution

FH2(x) =
(v1−v̄2)−p(v1−x)

(1−p)(v1−x)
with support [0, v̄2]. When x = 0, FH2(x) =

(1−p)v1−v̄2
(1−p)v1

. So

we should require (1− p)v1 − v̄2 ≥ 0 or equivalently p ≤ 1− v̄2
v1
.

We construct the distributions by making sure that first bids will not deviate to

lower values. If first bids deviate to higher values, bidders just pay more to get

lower payoff. When first bids are both at v̄2, second bid of high type will never get

positive payoff. So high type will have no incentive to deviate her first bid.
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Theorem II.13 When p > 1− v̄2
v1
, low type will mix by distribution GL1(x) =

T v̄2
v̄2−x

where T =
−v̄1+v̄2+v̄2p+

√
v̄21+v̄2(−1+p)(v̄2(−1+p)−4v1p)+2v̄1(−1+p)(v̄2+2v1p)

2v̄2p
with support

[0, a1]. In interval [0, a1] second bid of high type will follow distribution

FH2(x) =
px

(1−p)(v1−x)
. In interval [a1, a2] first and second bid of high type will mix by

distribution FH1(x) =
C

v̄2−x
− p

1−p
and FH2(x) =

v̄1+v̄2−2b−(1−p)C
(1−p)(v̄1−x)

− p
1−p

respectively.

We are able to express C =
−v̄1+v̄2+v̄2p+

√
v̄21+v̄2(−1+p)(v̄2(−1+p)−4v1p)+2v̄1(−1+p)(v̄2+2v1p)

2(1−p)
,

a1 = v̄2(1−H) and a2 = v̄2 − (1− p)C.

Proof. We suppose that GL1 will have support [0, a1], FH1 will have support

[a1, a2] and FH2 will have support [0, a2]. To be more precise, we require an

a3 ∈ (a1, a2) so that when first bid of high type is bidding in interval (a1, a3),

second bid of high type will be bidding in interval (0, a1). And when first bid of

high type is in interval (a3, a2), second bid of high type will be in interval (a1, a2).

Consider indifferent condition for low type, which is

p(v1 − bl1) + (1− p)FH2(bl1)(v1 − bl1) = pv1. So we have FH2(x) =
px

(1−p)(v1−bl1)
on

(0, a1). Note that px
(1−p)(v1−x)

= 1 when x = (1− p)v1. We require a1 < (1− p)v1

since upper bound of support for FH2 is a2 > a1.

Consider indifferent condition for high type when first bid of high type is in (a3, a2)

and second bid is in (a1, a2):

p(v̄1 + v̄2 − bl1 − bl2) + (1− p)[FH2(bl1)(v̄1 − bl1) + FH1(bl2)(v̄2 − bl2)] = v̄1 + v̄2 − 2a2.

By construction it is unlikely that bids from high type are perfectly correlated

(supports for first and second bids have different measure) and we need to

construct separating equilibrium. We assume a bidder is maximizing her expected

payoff by choosing the optimal second bid bl2 given any first bid bl1, so we have

−p+ (1− p)[fH1(bl2)(v̄2 − bl2)− FH1(bl2)] = 0 by taking first order derivative with

respect to y. Solving the differential equation, we have FH1(y) =
C

v̄2−y
− p

1−p
on

interval (a1, a2) with some constant C to be determined. (Note that we are looking

at symmetric mixed strategies.) Note that expected payoff for second bid of high

type is C(1− p), which is constant. And we solve FH2(x) =
v̄1+v̄2−2b−(1−p)C

(1−p)(v̄1−x)
− p

1−p

on interval (a1, a2). The two distribution functions should match when

FH1(a2) = FH2(a2) = 1 by construction. And we solve a2 = v̄2 + (−1 + p)C.

When first bid of high type is in (a1, a3) and second bid of high type is in (0, a1),
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indifferent condition for high type will become

p[v̄1 − bl1 +GL1(bl2)(v̄2 − bl2)] + (1− p)FH2(x)(v̄1 − bl1) = v̄1 + v̄2 − 2a2. Note that

expected payoff for second bid is pGL1(bl2)(v̄2 − bl2), which indicates that second

bid of high type is only possible to win from low type. We argue high type is

getting constant payoff from her second bid: if pGL1(bl2)(v̄2 − bl2) is not constant

and high type can get higher payoff by bidding at b∗l2 than any other bids, high type

will be always bidding such b∗l2 regardless of how she bids her first bid when she

faces the indifferent condition mentioned above. And hence high type will not be

randomizing in interval (0, a1). An additional requirement is that the constant

payoff high type is getting for her second bid is positive, which requires low type to

put an atom with size T at 0. So high type will get pGL1(bh2)(v̄2 − bh2) = pT v̄2

when her second bid bh2 is below a1 and we better require pT v̄2 = C(1− p) so that

high type will not want to deviate her second bid. So GL1(x) =
T v̄2
v̄2−x

, which reaches

1 when x = v̄2(1− T ). And we require a1 = v̄2(1− T ) < v1(1− p). We continue to

solve FH2(x) =
v̄1+v̄2−2b−(1−p)C

(1−p)(v̄1−x)
− p

1−p
on interval (a1, a3) since pT v̄2 = C(1− p). So

we have same expressions for FH2 on interval (a1, a3) and (a3, a2). When two

expressions of FH2 match at a1, we are able to solve another expression of a1, i.e.

a1 =
v̄1v1−v1v̄2−v̄1v1p+v1C−v1pC

v̄1−v̄2−v1p+C−pC
should also solve v̄1+v̄2−2b−(1−p)C

(1−p)(v̄1−x)
− p

1−p
= px

(1−p)(v1−x)
.

Additionally, since we know from indifferent condition of high type that

FH1(x) =
C

v̄2−x
− p

1−p
on interval (a1, a2), we are able to generate another version of

a1, which is a1 =
v̄2p−C+pC

p
by solving FH1(x) = 0. So letting

v̄2p−C+pC
p

=
v̄1v1−v1v̄2−v̄1v1p+v1C−v1pC

v̄1−v̄2−v1p+C−pC
, we solve an expression of the constant

parameter

C =
−v̄1+v̄2+v̄2p+

√
v̄21+v̄2(−1+p)(v̄2(−1+p)−4v1p)+2v̄1(−1+p)(v̄2+2v1p)

2(1−p)
, which is positive given

p > 1− v̄2
v1
. We solve T via pHv̄2 = C(1− p) and

T =
−v̄1+v̄2+v̄2p+

√
v̄21+v̄2(−1+p)(v̄2(−1+p)−4v1p)+2v̄1(−1+p)(v̄2+2v1p)

2v̄2p
. Similarly, as long as

p > 1− v̄2
v1
, T is guaranteed to be positive but smaller than 1 11. Note that we are

also able to express a1 = v̄2(1− T ). Some computation will show that

v̄2(1− T ) = v̄2p−C+pC
p

is equivalent to pHv̄2 = C(1− p) and hence all expressions of

a1 are consistent. What’s more, it is easy to see

a1 = v̄2(1− T ) < b = v̄2 + (−1 + p)C < v̄2 since pT v̄2 = C(1− p) for p ∈ (0, 1).

Note that we need a2 < v̄2 in this scenario since b is constructed to be upper bound

11H → 1 when p → 1 and T → 0 when p → 1− v̄2
v1
.
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of support for FH2 and a high type can not bid beyond v̄2 for her second bid.

By construction, expected payoffs for each bid of high type are constant, that is to

say, first and second bid of high type are always getting expected payoffs

v̄1+ v̄2−2a2− (1−p)C and C(1−p) respectively. So second bid of low type will not

have particular incentive to deviate. Similarly, expected payoff for first bid of high

type is constant, which makes a high type indifferent between bidding her first bid

above or below a as long as her first bid is higher than a1. If a high type puts both

her bids bh1 below a1 (i.e. first bid of low type is also below a1), expected payoff for

higher bid of high type is p(v̄1 − bh1) + (1− p) pbh1
(1−p)(v1−bh1)

(v̄1 − x) = p(v̄1 − x)
v1

v1−bh1
,

which is an increasing function of bh1. So high type would rather make her first bid

at a1. And we conclude high type will not deviate her bids. If low type deviates

and bids bl1 higher than a1, she gets expected payoff

p(v1− bl1)+ (1− p)[ v̄1+v̄2−2b−(1−p)C
(1−p)(v1−bl1)

− p
1−p

](v1− bl1) =
v1−bl1
v1−bl1

[v1+ v̄2− 2a2− (1− p)C],

which is decreasing in bl1. So for a low type bidding above a1 is dominated by

bidding exactly at a1. What’s more, no type will bid higher than a2 since all

marginal distributions contain no atoms at upper bound of support and bidding

(a2, a2) will guarantee high type two objects.

We introduce an a3 in indifferent conditions of high type and our last task is to

figure out what a3 should be. It turns out we only need to place a3 ∈ (a1, a2) since

both bids of high type are making the same constant payoffs under both indifferent

conditions. So it actually does not matter which value we select as a3 as long as it

is strictly smaller than a2 and strictly greater than a1. In other words, we do not

have the conditionally deterministic relationship between bids of the same type as

in case when ordering valuation is v̄1 > v1 > v2 > v̄2.

Graphical Illustration

We demonstrate theorem II.13 by picking v̄1 = 3, v1 = 2, v̄2 = 1 and p = 2
3
:

Pdf of low type’s mixed strategy is displayed in red, with support being [0, 0.586].

Second bid of high type has two parts: the blue curve in interval [0, 0.586] and

orange curve on interval [0.586, 0.724]. Pdf of first bid of high type is displayed by

the green curve with support being [0.586, 0.724]. Note that there will be an atom

of size 0.414 for distribution of mixed strategy of low type at 0.
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Figure 2.11: Illustration of theorem II.13

We plot an illustration of joint support of bids of high type in the graph above with

the same numerical values of v̄1, v̄2, v1 and p. We pick a3 at roughly 0.65 since by

our theorem the intermediate cutoff value a3 can be any real number between 0.586

and 0.724. When first bid is between a1 and a2, the second bid is below a1, which is

represented by the shaded rectangle in the plot. When first bid is between a3 and

a2, second bid of high type will be in (a1, a2). But we always have an implicit

condition that first bid should be no lower than second bid, so we introduce the

dashed 45-degree line and denote the trapezoid as the joint support.

Figure 2.12: Illustration of joint support
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2.6.2 Value Ordering v̄1 > v̄2 > v1 > v2

We will move on to show mixed strategy equilibria when value ordering becomes

v̄1 > v̄2 > v1 > v2. And we have a result similar to theorem II.13.

Theorem II.14 When p ∈ (0, 1), low type will mix by distribution GL1(x) =
Tv1
v̄2−x

where T = −−v̄1+v̄2(1+p)+
√

v̄21+(−1+p)(v̄2(v̄2(−1+p)−4v1p)+2v̄1(v̄2+2v1p)

2v̄2p
with support [0, a1].

In interval [0, a1], second bid of high type will follow distribution

FH2(x) =
px

(1−p)(v1−x)
. In interval [a1, a2], first and second bid of high type will mix by

distribution FH1(x) =
C

v̄2−x
− p

1−p
and FH2(x) =

v̄1+v1−2b−(1−p)C

(1−p)(v̄1−x)
− p

1−p
respectively.

We are able to express C = −−v̄1+v̄2(1+p)+
√

v̄21+(−1+p)(v̄2(v̄2(−1+p)−4v1p)+2v̄1(v̄2+2v1p)

2(−1+p)
,

a1 = v̄2(1−H) and a2 = v̄2 − (1− p)C.

Proof. We continue to assume the same structure of support as marginal

distributions in theorem II.13. So low type will face indifferent condition

p(v1 − bl1) + (1− p)FH2(bl1)(v1 − x) = pv1. So we solve FH2(x) =
px

(1−p)(v1−x)
on

interval [0, a1] with a1 < (1− p)v1.

Consider high type’s indifferent condition when her first bid bh1 is in (a, b) and

second bid bh2 is in (a1, a2):

p(v̄1+ v̄2− bh1− bh2)+(1−p)[FH2(bh1)(v̄1− bh1)+FH1(bh2)(v̄2− bh2)] = v̄1+ v̄2−2a2.

Similar to the previous theorem, we check separating equilibrium for high type: if

we assume a bidder is maximizing her expected payoff by choosing the optimal

second bid bh2 for any first bid bh1, so we have

−p+ (1− p)[fH1(bh2)(v̄2 − bh2)− FH1(bh2)] = 0 by taking first order derivative with

respect to bh2. Solving the differential equation, we have FH1(x) =
C

v̄2−x
− p

1−p
on

interval (a1, a2) with some constant C to be determined. Expected payoff for

second bid of high type is p(v̄2 − bh2) + (1− p)FH1(bh2)(v̄2 − bh2) = (1− p)C and we

can solve FH2(x) =
v̄1+v̄2−2a2−(1−p)C

(1−p)(v̄1−x)
− p

1−p
on interval (a3, a2). The two distribution

functions should match when x = a2 since we have FH1(a2) = FH2(a2) = 1 by

construction. And we solve a2 = v̄2 + (−1 + p)C.

When second bid of high type bh2 is below a1 and first bid bh1 is in interval (a1, a3),

indifferent condition for high type will become

p[v̄1 − bh1 +GL1(bh2)(v̄2 − bh2)] + (1− p)FH2(bh1)(v̄1 − bh1) = v̄1 + v̄2 − 2a2. We still

conclude the constant payoff for second bid of high type is positive, which requires
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low type to put an atom with size T at 0. So high type will get

pGL1(bh2)(v̄2 − bh2) = pHv̄2 when her second bid is below a1 and we better require

pT v̄2 = C(1− p) so that high type will not want to deviate her second bid. So

GL1(x) =
T v̄2
v̄2−x

, which reaches 1 when x = v̄2(1− T ). And we require

a1 = v̄2(1− T ) < v1(1− p). We continue to solve FH2(x) =
v̄1+v̄2−2b−(1−p)C

(1−p)(v̄1−x)
− p

1−p
on

interval (a1, a3) since pT v̄2 = C(1− p). So we have same expressions for FH2 on

interval (a1, a3) and (a3, a2). When two expressions of FH2 match, we solve another

expression of a1, i.e. a1 =
v̄1v1−v̄2v1−v̄1v1p+v1C−v1pC

v̄1+v̄2−v1p+C−pC
should also solve

v̄1+v̄2−2a2−(1−p)C
(1−p)(v̄1−x)

− p
1−p

= px
(1−p)(v1−x)

.

Additionally, solving FH1(x) = 0 we are able to generate another version of a1,

where a1 =
v̄2p−C+pC

p
. So letting v̄2p−C+pC

p
=

v̄1v1−v̄2v1−v̄1v1p+v1C−v1pC

v̄1+v̄2−v1p+C−pC
, we solve

C = −−v̄1+v̄2(1+p)+
√

v̄21+v̄2(−1+p)((v̄2(−1+p)−4v1p)+2v̄1(v̄2+2v1p)

2(−1+p)
, which is positive as long

as p ∈ (0, 1). We solve T via pT v̄2 = C(1− p) and

T = −−v̄1+v̄2(1+p)+
√

v̄21+(−1+p)(v̄2(v̄2(−1+p)−4v1p)+2v̄1(v̄2+2v1p)

2v̄2p
. Similarly to C, T is

guaranteed to be positive but smaller than 1 for all p ∈ (0, 1) 12.. What differs this

theorem from theorem II.13 is that in this scenario we only require

a2 = v̄2 + (−1 + p)C < v̄2 because marginal valuation of second object of high type

is now v̄2 and low type never bids above a1. (We will argue a1 < v1 later.) We may

move on to compute that the upper bound of support b is smaller than v1 if and

only if p ∈ (1
2
[
v̄1(−v̄2+v1)

(v̄1−v̄2)v1
+

√
(v̄2−v1)(4v̄2v

2
1−4v̄1v1(v̄2+v1)+v̄21(v̄2+3v1)

(v̄1−v̄2)v1
], 1), which indicates a

very intuitive result: when p, the probability of low type appearing in the

population is relatively large, high type will focus on outbidding low type and

hence a high type will not bid above v1, the highest marginal valuation a low type

will have; when probability of low type appearing in the population is relatively

small, a high type will focus on outbidding another high type, which indicates that

bids for high type will surpass v1 but not v̄2 since second bid of high type will never

be higher than v̄2. At the same time, to make sure that a1 = v̄2(1− T ) < v1(1− p),

we only need p ∈ (0, 1). Additionally, it is easy to see a1 < v1(1− p) < v1 and

a1 = v̄2(1− T ) < b = v̄2 + (−1 + p)C < v̄2 since we construct pT v̄2 = C(1− p).

By construction, expected payoffs for each bid of high type are constant, that is to

say, first and second bid of high type are always getting expected payoffs

12T → 1 when p → 1 and H → 0 when p → 0.

57



v̄1 + v1 − 2b− (1− p)C and C(1− p) respectively. So second bid of low type will

not have particular incentive to deviate. Similarly, expected payoff for first bid of

high type is constant, which makes a high type between indifferent bidding first bid

above or below a as long as her first bid is higher than a1. If a high type puts both

her bids below a1 (i.e. first bid of low type is below a1), expected payoff for higher

bid of high type is p(v̄1 − bh1) + (1− p) pbh1
(1−p)(v1−bh1)

(v̄1 − x) = p(v̄1 − bh1)
v̄2

v1−bh1
,

which is an increasing function of bh1. So high type would rather make her first bid

at a1. And we conclude high type will not deviate her bids. If low type deviates

and bid higher than a1, she gets

p(v1− bl1)+(1−p)[
v̄1+v1−2a2−(1−p)C

(1−p)(v̄1−bl1)
− p

1−p
](v1− bl1) =

v1−bl1
v̄1−bl1

[v̄1+v1−2a2− (1−p)C],

which is decreasing in bl1. So for a low type, bidding above a1 is dominated by

bidding exactly at a1. What’s more, no type will bid higher than a2 since the

marginal distributions will have no atoms at upper bound of support and bidding

(a2, a2) will guarantee high type two objects.

Note that our two indifferent conditions for high type indicate that when first bid

of high type is bidding below a threshold a3 < a2, second bid of high type will be

no greater than a1. But since we have established that FH1, the marginal

distribution of first bid of high type, will be following the same functional form in

both scenarios and that both bids of high type are making the same constant

payoffs in both scenarios, it actually does not matter which value we select as a3 as

long as it is strictly smaller than b and greater than a1.

In this subsection, we do not have an analogous result to theorem II.12, since

theorem II.12 in this scenario would require high type to bid (v1, v1) for both bids

and low type to mix in interval [0, v1]. However, in this scenario when a low type

faces another low type, she will want to bid 0 instead of mixing in any interval.

Graphical Illustration

We demonstrate theorem II.14 by picking v̄1 = 3, v̄2 = 2, v1 = 1 and p = 2
3
:

Pdf of low type’s mixed strategy is displayed in red, with support being [0, 0.149].

Second bid of high type has two parts: the blue curve in interval [0, 0.586] and

orange curve on interval [0.149, 0.766]. Pdf of first bid of high type is displayed by

the green curve with support being [0.149, 0.766]. Note that there will be an atom

of size 0.925 for distribution of mixed strategy of low type at 0, which is
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Figure 2.13: Illustration of theorem II.14

understandable since low type’s marginal valuation is only v1.

2.6.3 Explaining Bidding Behaviour

One of the most prominent feature we have for theorem III.2 and III.3 is that

realization of two bids for low type will typically be identical. Mathematically

speaking, we have argued that this is because expected revenue of each marginal

bid is monotone. And we can provide an intuitive explanation for the identical

bidding behaviour we found for theorem III.2 and III.3. We establish in lemma II.1

that her second bid of any bidder is competing with her opponent’s first bid and

vice versa. So for results like theorem III.2 and III.3, where low type’s both bids

usually have overlapping of support with high type’s bid, low type will understand

that her first bid is competing against her opponent’s second bid. We know that for

any bidder, the first bid is the higher bid while the second bid is the lower bid. Low

type will understand her first bid is competing against her opponent’s lower bid,

and her first bid will probably win. So low type will have incentive to decrease her

first bid for a higher net payoff. On the other hand, low type also understands that

her second bid is competing against her opponent’s higher bid, and low type needs

to raise her first bid in order to win and get some payoff. These two forces

described above will keep being effective until low type’s two bids are identical.

However, we do not have the identical bidding behaviour for theorem II.13 and

II.14. And we may still provide an intuitive explanation using implication of lemma

II.1. The most significant contrast between theorem II.13 and II.14 and theorem

III.2 and III.3 is that for theorem II.13 and II.14, distribution of high type’s two

bids do not have overlapping of support with distribution of low type’s bids. On

59



the contrary, as pointed out by theorem II.13 and II.14, support of equilibrium

strategy the low type will be using is [0, a1] while support of equilibrium strategy

the first and second bid the high type is using are respectively [a1, a2] and [0, a2].

We can look at high type’s behaviour on support [a1, a2]: by lemma II.1, high type

understands her second bid is competing with her opponent’s higher bid. But high

type also realizes that low type’s first bid is only distributed in interval [0, a1] and

accordingly high type will have incentive to decrease her second bid since second

bid of high type is guaranteed to win when distributing in interval [a1, a2] . On the

other hand, when facing first bid of another high type on support [a1, a2], high type

will have incentive to raise her second bid. So for scenarios like theorem II.13 and

II.14, we have contradicting forces for second bid of high type, and we can not tell

which force is dominating. And accordingly, we do not have identical bidding

behaviour for theorem II.13 and II.14.

2.7 More Than Two Units

In the Introduction, we highlight that bidding behavior in the Turkish Treasury

auction takes the form of a step-function. That is, there are quantities

q1 < · · · < qK , so that bids jump downward at each quantity qk but bids are

constant at all quantities between qk and qk+1. (See Hortaçsu and McAdams,

2010.) This section shows, by way of example, that bidding behavior in a

multi-unit auction can take the form of a step function.

To do so, we focus on the minimal environment that can distinguish a step function

from either a cutoff rule or a strictly negatively sloped bid function: an

environment with four units. We provide two examples in which the low type’s

bidding behavior is consistent with a step function. (The focus on the low type is

only for tractability.) The two examples differ in the qualitative nature of the step

functions: In the first example, the bids are same for the first two units; in the

second example, the bids are the same for the middle two units.

There are four identical units and two bidders that are ex-ante identical. The high

type (v̄) has marginal valuations (v̄1, v̄2, v̄3, v̄4) with v̄1 > v̄2 > 0 and v̄3 = v̄4 = 0.

The low type has marginal valuations (v1, v2, v3, v4), v1 > v2 > v3 ≥ v4 ≥ 0. The

probability of the low type (v) is p and the probability of the high type (v̄) is 1− p.
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Now a bid for i is a profile (bi1, bi2, bi3, bi4) ∈ R4
+ with bi1 ≥ bi2 ≥ bi3 ≥ bi4. We refer

to bin as bidder i’s nth bid. For a given strategy of bidder i, the marginal

distribution of the high type’s (v̄’s) nth bid is FHn and the marginal distribution of

the low type’s (v’s) nth bid is GLn.

Assume v̄1 > v̄2 > v1 > v2 > v3 = v4 > 0. Moreover, assume that the probability of

type v is some p =
v3
v2
. Then there exists an equilibrium that takes the following

form: Each type bids v3 for their first and second bids. The high type bids 0 for

their third and fourth bids. But, the low type mixes on the interval (0, v3) for their

third and fourth bids; in particular, the low type’s mixture is different for the third

and fourth bids. Under this equilibrium, if the pure-strategy (b1, b2, b3, b4) is in the

support of the equilibrium for the low type, then the pure strategy is a step function

that is constant on units 1 and 2, lower for the third unit and even lower for the

fourth unit. Such a realized pure-strategy is illustrated in the following plot:

Figure 2.14: Higher-unit example: realization of identical bidding at first two units

To understand why this is an equilibrium, note that under this strategy profile

both bidders receive 2 units for sure. There is no incentive to bid higher, since a

higher bid can only serve to pay a higher price and potentially get a third unit at

that higher price. But since v3 > v3, no bidder would want to get a third unit at a

higher price. Likewise, no bidder has an incentive to bid lower. This is because the

low type bids aggressively on the third and fourth bids—sufficiently aggressively to

ensure that the high type would not deviate downward. In particular, choosing

GL3(x) =
(1−p)x
p(v2−x)

and GL4(y) =
pv1−v3+(1−p)y

p(v1−y)
ensures that this constitutes an

equilibrium. What’s more, by restricting probability p to p =
v3
v2
, we are able to

construct a correlation (functional relationship) between third and forth bids bl3, bl4

of low type by bl4 = h(bl3) =
v3(v2−bl3)+v1(−v3+bl3)

v2−v3
. This correlation guarantees
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realization of bids for low type will be of the shape shown in the previous

paragraph with probability 1.

For the second set of examples, we assume the ordering of private valuation is

v1 > v̄1 > v̄2 > v2 > v3 > v4 > 0. We will show an example when p =
v3

2v̄2−v2
>

v4
v̄1
,

v̄2 > v2 + v3 and v̄2 =
v2v4

2v4−v3
. In this example, each bidder will use pure strategy at

v4 for first bids and accordingly is guaranteed to win her first unit. Observing this,

a type-v bidder knows that she can not win the fourth unit and hence the fourth

bid of type-v bidder will only mix to prevent first bids from deviating downward.

Type-v bidders understand that their second (third) bids are competing with

opponents’ third (second) bids, and hence bidders will have incentive to bid lower

(higher) prices for their second (third) bids, which makes second and third bids

identical since the lowest feasible bids for bidders’ to pick for second bids will be

the third bids and vice versa. First and fourth bids in this example is similar to our

result from theorem II.10, and argument for second and third bids are similar to

scenario described in theorem III.2. Mathematically speaking, first bid of type-v̄

will be a pure strategy at v4, and second bid of type-v̄ will be mixing in interval

(0, v4) by distribution FH2(x) =
x(x+v̄2−v2−v3)

(v̄2−x)(v3−x)
. First bid of type-v will be a pure

strategy at v4, second and third bids of type-v will be identical in interval (0, v4) by

distribution GL2(x) = GL3(x) =
(1−p)x
p(v̄2−x)

and fourth bid of type-v will follow

distribution GL4(x) =
pv̄1+(1−p)x−v4

p(v̄1−x)
in interval (0, v4). We particularly require

p =
v3

2v̄2−v2
and v̄2 =

v2v4
2v4−v3

to make the support of distributions above to have

identical endpoints. What’s more, to make GL4(x) and FH2(x) non-negative over

support (0, v4), we impose conditions p(=
v3

2v̄2−v2
) >

v4
v̄1

and v̄2 > v2 + v3
13. A

feasible example of private valuations can be v̄ = (6, 4, 0, 0) and v = (7, 2, 1.5, 1).

We can plot a possible realization of bids for type-v as well 14:

2.7.1 Construction of examples

Example 1 can be constructed in the following method:

13We pick the precise probability at
v3

2v̄2−v2
for simplicity since it leads to an atomless FH2(x)

distribution. and we may allow
v4

v̄1
< p <

v3

2v̄2−v2
by putting an atom at 0 with FH2(x) =

x(x+v̄2−v2−v3)
(v̄2−x)(v3−x) +

v3−2v̄2p+v2p
(1−p)(v3−x) , as with theorem III.2.

14There is a functional relationship h between third and fourth bids bl3, bl4 of type-v by bl4 =

h(bl3) =
v4(v̄2−bl3)+v̄1(−v4+bl3)

v̄2−v4
.
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Figure 2.15: Higher-unit example: realization of identical bidding at the second and
third units

Consider a new case where high type has private valuation v̄1 > v̄2 > v7 = v8 = 0

and low type has private valuation v1 > v2 > v3 = v4. We assume that bidders are

competing four identical objects where v̄1 > v̄2 > v1 > v2 > v3.

High type will not make one of her highest two bids lower than v3 with her

deviating bids denoted as x if

v̄1 + v̄2 − 2v3 ≥ (1− p)(v̄1 − v3 + v̄2 − x) + p[(v̄1 − v3) + (v̄2 − x)GL3(x)]

⇐⇒ GL3(x) ≤ pv̄2+(1−p)x−v3
p(v̄2−x)

. Similarly, low type will not make one of her highest

two bids lower than v3 with her deviating bids denoted as x if

v1 + v2 − 2v3 ≥ (1− p)(v1 − v3 + v2 − x) + p[(v1 − v3) + (v2 − x)GL3(x)]

⇐⇒ GL3(x) ≤ pv2+(1−p)x−v3
p(v2−x)

. We conclude GL3(x) ≤ pv2+(1−p)x−v3
p(v2−x)

since
pv2+(1−p)x−v3

p(v2−x)
≤ pv̄2+(1−p)x−v3

p(v̄2−x)
.

High type will not make both her highest two bids lower than v3 with her deviating

bids denoted as x ≥ y if

v̄1 + v̄2 − 2v3 ≥ (1− p)(v̄1 − x+ v̄2 − y) + p[GL4(x)(v̄1 − x) + (v̄2 − y)GL3(y)]

⇐⇒ GL4(x) ≤
pv̄1+pv̄2+(1−p)x−v3−pv2−(v̄2−v2)

pv2+(1−p)y−v3
v2−y

p(v̄1−x)
.

Abusing notation, low type will not make both her highest two bids lower than v3

with her deviating bids denoted as x ≥ y if

v1 + v2 − 2v3 ≥ (1− p)(v1 − x+ v2 − y) + p[GL4(x)(v1 − x) + (v2 − y)GL3(y)]

⇐⇒ GL4(x) ≤ pv1−v3+(1−p)x

p(v1−x)
. Note that we can rewrite

pv̄1+pv̄2+(1−p)x−v3−pv2−(v̄2−v2)
pv2+(1−p)y−v3

v2−y

p(v̄1−x)
=

p(v̄1−x)+pv̄2+x−v3−pv2−(v̄2−v2)
pv2+(1−p)y−v3

v2−y

p(v̄1−x)

= 1 +
pv̄2+x−v3−pv2−(v̄2−v2)

pv2+(1−p)y−v3
v2−y

p(v̄1−x)
= 1 +

p(v̄2−v2)−(v̄2−v2)
pv2+(1−p)y−v3

v2−y
+x−v3

p(v̄1−x)
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= 1 +
(v̄2−v2)[p−

pv2+(1−p)y−v3
v2−y

]+x−v3

p(v̄1−x)
= 1 +

x−v3
p(v̄1−x)

+
(v̄2−v2)[p−

pv2+(1−p)y−v3
v2−y

]

p(v̄1−x)

= 1 +
x−v3

p(v̄1−x)
+

(v̄2−v2)(v3−y)

p(v̄1−x)(v2−y)
. Since both x, y satisfy y ≤ x ≤ v3 ≤ v2 ≤ v̄2 ≤ v̄1, we

conclude that
(v̄2−v2)(v3−y)

p(v̄1−x)(v2−y)
is positive. We have

pv1−v3+(1−p)x

p(v1−x)
= 1+

x−v3
p(v1−x)

≤ 1 +
x−v3

p(v̄1−x)
≤ 1 +

x−v3
p(v̄1−x)

+
(v̄2−v2)(v3−y)

p(v̄1−x)(v2−y)
. So we conclude

that GL4(x) ≤ pv1−v3+(1−p)x

p(v1−x)
. And it is not hard to check

pv2+(1−p)x−v3
p(v2−x)

≤ pv1−v3+(1−p)x

p(v1−x)
. So if GL3(x) =

pv2+(1−p)x−v3
p(v2−x)

, it is feasible to pick

GL4(y) =
pv1−v3+(1−p)y

p(v1−y)
.

Similarly, example 2 can be constructed in the following method:

We suppose high type is bidding v4 for her first bid so she will be getting constant

payoff. We need to look at her indifferent condition:

pGL3(x)(v̄2 − x) + (1− p)(v̄2 − x) = (1− p)v̄2. And hence we have GL3(x) =
(1−p)x
p(v̄2−x)

.

A high type will not deviate to bid v4 > x ≥ y if

pGL3(y)(v̄2 − y) + (1− p)(v̄2 − y) + pGL4(x)(v̄1 − x) + (1− p)(v̄1 − x) ≤
pGL3(x)(v̄2 − x) + (1− p)(v̄2 − x) + v̄1 − v4. Note that

pGL3(y)(v̄2 − y) + (1− p)(v̄2 − y) = (1−p)y
(v̄2−y)

(v̄2 − y) + (1− p)(v̄2 − y) = (1− p)v̄2, so

we should have GL4(x) ≤ v̄1−v4−(1−p)(v̄1−x)

p(v̄1−x)
=

pv̄1−v4+(1−p)x

p(v̄1−x)
.

For a low type, we still assume her first bid is at v4. And a low type will not

deviate her first bid downward if expected payoff for her first bid is non-increasing:

i.e. (1− p)(v1 − x) + pGL4(x)(v1 − x) needs to have a non-decreasing derivative.
d
dx
[(1− p)(v1 − x) + pGL4(x)(v1 − x)] = − (v̄1−v1)(v̄1−v4)

(v̄1−x)2
and hence we need v1 > v̄1.

With first bids bidding a pure strategy at v4, fourth bid of low type will never win

positive expected payoff and hence indifferent condition for low type can be

simplified to

(1− p)[(v2 − x) + FH2(y)(v3 − y)] + p[GL3(x)(v2 − x) +GL2(y)(v3 − y)] = (1− p)v2.

Expected payoff for second bid for low type is (1− p)(v2 − x) + pG3(x)(v2 − x) and

will be a decreasing function for x. So second and third bid for low type should be

identical. And we solve FH2(y) =
y(y+v̄2−v2−v3)

(v̄2−y)(v3−y)
. To make right endpoints of the

distributions established above identical, we need pv̄2 = v4 =
v̄2v3

2v̄2−v2
. We need

p =
v3

2v̄2−v2
and v̄2 =

v2v4
2v4−v3

. With identical endpoints, it is not hard to check

G2(x) ≤ G4(x). A low type will not deviate any single bid by construction.

Expected payoff for first bid of low type is an increasing function so making first

bid at v4 is always a best response. Monotone conditions on second and third bids
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will imply identical bids. At last, a low type is willing to mix her fourth bid in

interval (0, v2) since first bids of any bidder will be v4 so fourth bid of low type will

never win.

2.8 Comparison of Expected Revenue

We are interested in comparing expected revenue for three common formats of

multi-unit auctions: pay-as-bid auction, uniform-price auction and Vickrey auction.

For uniform-price auction, winners in the auction will pay the highest losing price.

It is straightforward to check that the strategy where bidders bid truthfully for

their first units and bid 0 for their second units forms an equilibrium. So each

bidder wins exactly one unit but always pays zero, which leads to an expected

revenue of zero.

For Vickrey auction, any bidder i who wins ki units will be paying the highest ki

losing bids among her rivals. And accordingly, one equilibrium for Vickrey auction

in our multi-unit setting is that each bidder is bidding the marginal valuations

truthfully for every unit 15. So in this equilibrium, each bidder will win exactly one

unit and be paying 0 when facing a high type and v2 when facing a low type.

Expected payment for each bidder is pv2, which makes total revenue equivalent to

2pv2.

For pay-as-bid auction, we restrict to situation where private valuation satisfies

v̄1 > v1 + v2 and check all range of p. When p <
v2

2v̄1−v1
, both bidders will mix in

interval (0, v̄1p), as summarized by theorem III.2. There will be probability p2 two

low types meet, probability 2p(1− p) a high and a low type meet and probability

(1− p)2 two high types meet. Our approach for expected revenue is to establish is

the order statistics for highest and second highest bid and compute the expected

value.

First we consider the scenario when two high types meet. We denote B1, B2 as

non-zero bids for those two bidders and B1, B2 are independent. Since high type’s

valuation toward second unit is normalized to 0,

15Actually, equilibrium strategy mentioned in the previous paragraph also forms an equilibrium
in Vickrey auction, but it is traditional to look at the truthful reporting equilibrium for Vickrey
auction.
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F(2)(x) = P(B1 ≤ x,B2 ≤ x) = F 2
H(x) and

F(1)(x) = 1− P(B1 > x,B2 > x) = 1− (1− FH(x))
2 = 2FH(x)− F 2

H(x). Expected

value of highest two bids in this scenario will be

πHH =
∫ v̄1p

0
x dF 2

H(x) +
∫ v̄1p

0
y d[2FH(y)− F 2

H(y)]]. We now consider scenario when

two low types meet. In this scenario, bidders will propose four bids. We assume the

bids are B11, B12, B21, B22 with B11 = B12 and B21 = B22. What’s more, B1’s and

B2’s are independent. So F(3)(x) = F(4)(x) = P(B11 ≤ x,B12 ≤ x,B21 ≤ x,B22 ≤
x) = P(B11 ≤ x,B21 ≤ x) = G2

L(x) since B11 = B12 and B21 = B22. Expected value

of highest two bids in this scenario will be πLL = 2
∫ v̄1p

0
x d[G2

L(x)].

Now we consider the scenario when a high and a low type meet. Assume that high

type’s bid is BH , and low type’s bids are BL1, BL2 with BL1 = BL2. It is clear that

BH and BL’s are independent since they comes from different bidders who bid

independently. So the order statistics will be

P(B(1) ≤ x) = 1− P(BH ≥ x,BL1 ≥ x,BL2 ≥ x) = 1− P(BH ≥ x,BL1 ≥ x) since

we have BL1 = BL2.

P(B(2) ≤ x) = P(BH ≤ x,BL1 ≤ x,BL2 ≤ x) + P(BH > x,BL1 ≤ x,BL2 ≤ x)

= P(B(3) ≤ x) + P(BL1 ≤ x < BH).

P(B(3) ≤ x) = P(BH ≤ x,BL1 ≤ x,BL2 ≤ x) = P(BH ≤ x,BL1 ≤ x) by BL1 = BL2.

Note that 1− P(BH ≥ x,BL1 ≥ x),P(BH ≤ x,BL1 ≤ x) are just expressions for

order statistics when there are only two bids BH and BL1. And P(B(2) ≤ x)

happens when all bids are smaller than x or when only bids from low type are

smaller than x.

We can invoke the Bapat–Beg Theorem 16 to compute CDF of order statistics of

non-identical distributions when we only have BH , BL1. If we use FX(i)
to denote

distributions of order statistics when we have three bids BL1, BL2, BH and F(i) to

denote distributions of order statistics when we have two bids BL1, BH , our

argument above shows that FX(3)
(x) = F(2)(x) =

per

FH(x) FH(x)

GL(x) GL(x)


2!(2−2)!

= FH(x)GL(x)

with per being permanent of the given block matrix. And accordingly,

FX(2)
(x) = FH(x)GL(x) +GL(x)[1− FH(x)] = GL(x). Expected value of highest

two bids in this scenario will be πHL =
∫ v̄1p

0
x d[FH(x)GL(x)] +

∫ v̄1p

0
y d[GL(y)]].

16Theorem 4.2 from Bapat, Beg (1989), proved in Hande (1994).
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With order statistics established, we may compute expected valuation of the two

distributions which is also the monetary payment for the first and second unit

respectively, i.e. expected revenue of the pay-as-bid auction is

p2πLL + 2p(1− p)πHL + (1− p)2πHH . If we assume v̄1 = 3, v1 = 2, and v2 = 1,

expected revenue from pay-as-bid auction will dominate Vickrey auction when

p ∈ [0.125, 1
4
] 17. So our example indicates that revenue ranking between pay-as-bid

auction and Vickrey auction is ambiguous. We conclude that pay-as-bid and

Vickrey auction dominates uniform-price auction in terms of expected revenue but

ranking between pay-as-bid and Vickrey auction is ambiguous.

If we raise probability of p to range covered by theorem III.3, where distribution

function gets more complicated since for some subset of p low type may bid

differently, we can instead compute expected value of bids from high and low type.

Summation of any such two expected values should be no greater than the

summation of expected value of highest and second highest bids by construction.

However, we can report that expected value of any single bid from either type is

greater than p, which makes summation of expected values of any two bids greater

than 2p, the expected revenue of Vickrey auction. When p ∈ [
v2
v1
, 1], theorem II.9

indicates that each bidder will always bid v2 and accordingly expected revenue of

auction under theorem II.9 will be 2v2, which is higher than the expected revenue

of Vickrey auction as well. In all, we conclude that if we assume v̄1 = 3, v1 = 2, and

v2 = 1, Vickrey auction generates higher expected revenue when p < 0.125 and

pay-as-bid auction generates higher expected revenue when p > 0.125.

The last interesting result to notice is that despite having identical allocations

where each bidder wins one unit, our hypothetical uniform-price auction and

Vickrey auction generate different expected revenue. To validate the revenue

equivalence theorem for single-unit auction, one necessary condition is some type

should get same expected payoff from different formats of auctions. But payment

from Vickrey and uniform-price auctions are not identical as shown in the previous

paragraph. Another obvious violation in the establishment of revenue equivalence

theorem is that we need to integrate over the range from lowest type to some type

to construct payment, but we do not have such integration due to our discrete type

space.

170.125 is a decimal approximation of an irrational number starting with 0.1249595, not 1
8 .
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2.9 Conclusion and Discussion

We study a multi-item auction where there are two discrete types of bidders and

each type of bidder demands two objects. We always assume a high type will have

marginal valuations v̄1, v̄2 and low type will have marginal valuations v1, v2. But we

focus on case with ordering v̄1 > v1 > v2 > v̄2. After normalizing the smallest

marginal valuation (i.e. v̄2) to 0, we look at symmetric pure and mixed strategy

equilibria for different proportions of high and low types in the population. We find

out that high type may put an atom at 0 for distribution of first bid when

probability low type appears in the auction is small, and low type will bid

identically for both units in most mixed strategy equilibria (i.e. perfectly correlated

equilibrium). We find out empirical evidence which is consistent with the identical

bidding behaviour from our theoretical results and are able to extend some of our

results into higher-unit environment to show bidders would still bid identically for

several units when they bid for more units. We will have pure strategy equilibrium

when probability low type appears is relatively large and bidders are just bidding

v2, the marginal valuation of low type’s second object.

Given that private valuations in our auction are v̄1 > v1 > v2 > v̄2, an efficient

allocation should let each bidder get one object since whenever a high/low type

meets another high/low type, the highest two valuations always come from

valuations of first marginal valuation from different bidder. But in majority of our

results, we propose perfectly correlated equilibrium where low type bids identically.

What’s more, we have overlapping of supports when high and low types bid mixed

strategy. All the features above indicate that our equilibrium allocation is likely to

be inefficient by assigning both objects to one low-type bidder with positive

probability (i.e. misallocation). This inefficiency arises from the fact that bidders

understand their higher bids are competing with opponents’ lower bids and they

will have incentive to make their first bids lower for higher net payoff. But knowing

first bids will be generally low in price, bidders will consequently bid higher second

bids for a better chance of winning.

Using a terminology from auction literature, we conclude low types in our model

are displaying differential bid-shading behaviour: when two bids from a low type

are identical it must be that a low type is bid-shading more on her first bid. The
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differential bid-shading behaviour in our multi-item auction makes it impossible to

know the true types of bidders from auction results when both high and low types

share the identical support for their bids, as situations described in lemma II.11

and II.14.

Besides this inefficient allocation feature, our analysis finds a conditionally

deterministic relationship between two bids for low type, i.e. if we know the range

of p and what low type bids for her first bid bl1, we can compute her second bid bl2.

The most common case in our result is when low type bids identically i.e. bl2 = bl1.

Previous literature like Anwar (2007) and Engelbrecht-Wiggans and Kahn (1998)

also reported such type of pooling equilibrium. We also find out cases where first

(bl2) and second bid (bl2) of low type follow a functional relationship

bl2 = h(bl1) ≤ bl1 for all (bl1, bl2) in support [a3, a4]
2, as displayed in lemma II.13

and II.16. We may treat low type’s bids x, y as solution to an optimization problem

where low type is trying to compute her optimal second bid bl2 given every possible

first bid bl1 in the joint support of bids (bl1, bl2). And consequently situations where

bl2 = bl1 can be treated as corner solution to the optimization problem while

bl2 = h(bl1) ≤ bl1 is an interior solution.

We know that inefficiency comes from misallocation of objects since our symmetric

equilibria propose identical bids for low type and overlapping of support for

different types. To achieve efficiency under the private valuations in our model, each

bidder should just get one object. Our results always imply a positive probability

of inefficient allocations, although we have checked all possible combinations of high

and low types. However, we do not establish uniqueness of our mixed strategies,

and hence we can not exclude possibilities of efficient allocations through mixed

strategy equilibrium. Other potential solutions to this issue and future questions to

answer may include whether we can have efficient allocation if we implement

simultaneous auctions with the same valuation distribution introduced in

multi-item auction. It may be that in a simultaneous auction bidders propose their

higher bids toward different objects and each ends up getting one object.

We also compare expected revenue of several common formats of multi-unit

auction: pay-as-bid auction, uniform-price auction and Vickrey auction. We find

that uniform-price auction would give the lowest expected revenue among the three
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while ranking between pay-as-bid and Vickrey auction is ambiguous. Our

numerical example comparing revenue from pay-as-bid and Vickrey auction is

weakly monotone in p, which indicates that there is a cutoff p∗ so that pay-as-bid

auction dominated Vickrey auction if and only if p > p∗.

Our results when valuation ordering is v̄1 > v1 > v̄2 > v2 or v̄1 > v̄2 > v1 > v2 differ

from the main results discussed above in two features: we do not find perfectly

correlated equilibrium for any type and we do not have the conditional

deterministic relationship between two bids from same type. One common feature

is that we are not guaranteed to have efficient allocations in these cases either since

overlapping of support persists. which will lead to misallocation of objects.
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CHAPTER III

Package Bidding with Distinct Objects

3.1 Introduction

Consider two real estate firms whose headquarters locate respectively in the

western and eastern part of Michigan 1. They are competing to purchase two pieces

of lands, where each piece is located in a region near the headquarter of one firm.

The lands are located sufficiently distant so that even if a firm can grasp both

lands, it would be impossible to get any synergy from the real estates it can build.

It would be a straightforward prediction that each firm will bid high prices for the

land near to their headquarter since they both value such lands highly. But do

there exist conditions (e.g. a firm who locates in the western part of the state

values highly for land in the opposite side) or bidding strategies so that one firm

can take ownership of both lands?

We will be looking at an auction with both pieces of land being offered with a

permission of using package bidding by making the following assumptions: two

distinct and indivisible objects A and B are being sold and two bidders with

multi-unit demand are participating the auction; we always assume that bidder 1

values A higher than B and bidder 2 values B higher than A. To be more precise,

we focus on case where ”high” type of bidders has private valuations v̄ = (v̄1, v̄2)

and ”low” type of bidders have private valuations v = (v1, v2), with value ordering

1e.g. The Platform and Rockford Construction. The former is a Detroit-based firm focusing on
developing and redeveloping residential and mixed-use properties in Detroit while the latter puts
its headquarters in Grand Rapids, who focuses heavily on Western Michigan with business ranging
from urban redevelopment to new residential constructions.

71



v̄1 > v1 > v̄2 > v2 and normalizing v2 = 0. Bidders are risk-neutral and only care

about monetary payoff. We further assume bidders have additive valuation,

meaning each bidder’s value for the two units as a whole is simply the summation

of marginal values of the two units. Both bidders have a common prior that a high

type opponent will appear with probability p ∈ [0, 1] and a low type opponent will

appear with probability 1− p. Each bidder will propose bids for both single objects

with an extra bid for the bundle. And for each bidder, the bundle bid must be no

smaller than summation of bid for single objects.

To make our analysis tractable, we focus on equilibrium in which bidders are using

pure strategies for some of her bids for the single objects. We will propose two sets

of equilibria where both types of bidders are bidding pure strategies: in the first

equilibrium bidders of both types are bidding 0 for single objects while bundle bid

of high type is mixing in interval [0, p(v̄1 + v̄2)]. This equilibrium will hold for all

p ∈ (0, 1). And when p reaches 1, the model yields the same outcome as symmetric

Bertrand competition where each bidder just bids her marginal cost.

Our second set of equilibria is developed from the equilibrium where the high and

low type are bidding pure bids equivalent to v̄2 > 0 for their favoured objects with

high type mixing her bundle bid in interval [0,
v̄2(v̄2+v1(−2+p))+v̄1(v̄2−v1p)

v̄2−v1
]. After

showing this equilibrium, we return to examine no-deviating constraints and notice

that many of the constraints is binding. We realize that if distributions for bundle

bid make the equalities be strict inequalities and satisfy other indifferent conditions

for mixed strategy equilibrium, we can create more equilibrium distributions for the

bundle bid. What’s more, we also invent a simplified class of equilibria by only

using part of the no deviating conditions. Those equilibria satisfy properties that

upper bound of bundle is precisely 2v̄2, with an atom of positive size at 2v̄2 as well.

Efficient allocation is each bidder win one object regardless of types. The second

set of equilibria will perform better than the first set in terms of welfare since under

the first set of equilibrium a high type will either win both objects or none, while

when bundle bid is not too high each type will win one object in the second class of

equilibria.

Literature Review

Literature reports package bidding or combinatorial auction might be a key factor
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for promoting welfare or achieving higher revenue. Chernomaz and Levin (2012)

studied a multi-unit auction with one global bidder and two local bidders where

each local bidder only cares about the object in local market and the global bidder

is interested in both items. The auction is first-price auction, but they studied two

auction rules where the first one only allows bids for single items and the second one

allows the global bidder to propose not only bid for single item but also a bid for

the bundle. Chernomaz and Levin (2012) showed through simulations of auctions

that package bidding has a slight negative impact on efficiency when synergies are

absent, but a significantly positive impact when synergies are present. What’s more

when package bidding is banned, synergies have a minor negative effect, whereas

they have a markedly positive effect under package auction rules. Subramaniam

and Venkatesh (2009) compared revenue from second-price auctions with two

objects and multiple bidders under three types of mechanisms, selling separately,

selling as bundle and combinatorial auctions. They found that combinatorial

auctions perform better in terms of revenue than selling as bundle, and would be

the optimal option when two objects are substitute, strong complements or weak to

moderate complements when fewer than four bidders participate.

Many literature has studied combinatorial auction under numerous mechanisms.

For example, Bernheim and Whinston (1986) studied a first-price auction where

bidders propose a menu of actions to the auctioneer under the assumption that

bidders have complete information. The paper showed that for a certain refinement

of Nash Equilibrium, first-price menu auctions would implement efficient actions.

Although this paper is about first price auction, it is about complete information,

which is on the contrary to our incomplete information assumption. Ausubel and

Milgrom (2002) studied package bidding for ascending price auction when bidders

have quasi-linear utilities. The paper focused particularly on the ascending proxy

auction in which bid increments are negligibly small and ascending proxy auction

coule be treated as a version of “deferred acceptance algorithm” in the matching

theory. The paper showed that sincere reporting constitutes a Nash equilibrium,

which is efficient and in the core of the exchange game, when goods are substitutes.

Additionally, the ascending proxy would overcome some of the shortcomings of

Vickrey auction, such as generating higher revenues, and being more robust to shill

bidding (i.e. bidders can profit by submitting additional bids under false identities)
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and collusion.

Synergies between objects in auctions are also studied in simultaneous auctions,

where multiple single-unit auctions are run simultaneously. Szentes (2007) and

Szentes and Rosenthal (2003) studied two identical bidders with three and two

objects simultaneous auctions respectively. They considered complementarities or

substitutes (sub-additive) among objects. What’s more, Rosenthal and Wang

(1996) considered a simulataneous auction similar to Chernomaz and Levin (2012)

where there are both local bidders and global bidders. But in Rosenthal and Wang

(1996), number of local and global bidders are both higher than 1. Contrary to

Chernomaz and Levin (2012), Rosenthal and Wang (1996) assumed there would be

a certain probability bidders receiving signal that the objects are of high quality.

All the papers proposed symmetric mixed strategy equilibria. However, all

equilibria constructed by papers in simultaneous auctions mentioned above can not

guarantee efficient allocations.

The literature on simultaneous auctions with synergies has argued the exposure

problem would arise when complementary goods are sold individually. For

example, Goeree and Lindsay (2020) mentioned that in spectrum auction bidders

typically want consecutive blocks of spectrum within a specific band or a

combination of licenses that cover neighboring geographic areas. But bidders

hesitate to factor synergies into their bids with the fear of only being able to win a

portion of the desired combination if they participate into simultaneous auctions.

Combinatorial auctions, on the other hand, allow bidders to propose bids for a

combination of objects (i.e. package) in multi-unit auctions, which will alleviate

such exposure problems and may lead to higher welfare and revenue. Cramton,

Shoham and Steinberg (2006) mentioned another prominent example of package

bidding, the Estate auction: each item will be auctioned off separately at the first

place, which are followed by opportunities of auctioning off bundles of items. Items

will be sold as packages only if price for the package exceeds summation of prices of

individual items combined. In general, package bidding would be popular when

there are obvious synergies between objects, since bidders will offer a higher price

for the bundle when they can enjoy the complementarities from different objects.

In this model, exposure problem will not arise even if objects are sold in

simultaneous auctions since we do not assume synergies.
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3.2 Model

We assume that two distinct objects A and B are being auctioned in a pay-as-bid

auction. There are two bidders, bidder 1 and 2, and each of whom will demand up

to 2 objects. And it is always the case that bidder 1 values object A higher than B,

and bidder 2 values object B higher than A. We assume the type space is discrete,

and bidders can be one of two types: high or low.

A a high type will have private valuations v̄ = (v̄1, v̄2) and a low type will have

private valuations v = (v1, v2). In this paper, we focus on value ordering

v̄1 > v1 > v̄2 > v2 = 0. Let V = {v, v} be the set of possible valuations (or types).

The bidders’ types are drawn independently from a common prior. And we denote

p ∈ (0, 1) for the probability that bidder i is a high type. We continue to assume

the objects in the auction is additive-value, i.e. the value of the bundle is the

summation of marginal values. This assumption is mainly to avoid inventing

another function on the value of the bundle.

The objects are auctioned off in a multi-unit pay-as-bid auction: the bidders

simultaneously submit bids for both objects and the bundle. For any bidder i, we

assume she will bid a vector of three prices bi = (bi12, b
i
1, b

i
2) with bi12 being her bid

for the bundle and bi1, b
i
2 being her bid for each object, with requirement

bi12 ≥ bi1 + bi2 since otherwise the summation of bid for each single object is the real

bid for the bundle. 2 If we denote the two bidders‘ bid as (b112, b
1
1, b

1
2) and

(b212, b
2
1, b

2
2), by our assumption above b11 is the bid for bidder 1’s the favoured object

(i.e. object A ), while b22 is the bid for bidder 2’s the favoured object (i.e. object

B). We further require that b11 ≥ b12 but b22 ≥ b21, i.e. for any bidder, her bid for the

favoured object is no smaller than her bid for the less favoured object.

The auction is a pay-as-bid auction, and the winning bid in this auction will be

decided by max{b11 + b22, b
2
1 + b12, b

1
12, b

2
12}. That is to say, if bi1 + bj2 is the maximal,

each bidder will win one object and pay their bid in the winning bid for the two

objects. Note that the bundle bid is guaranteed to be no smaller than the

summation of single bid from the same bidder, and hence if bi1 + bj2 is the maximal,

it must come from different bidders, i.e. i ̸= j. Otherwise, one bidder will win both

2Due to the nature of different types, we can simplify by assuring that the low type only proposes
one single price for her favoured object.
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objects and pay her bundle bid.

Tie-breaking Rules In this paper, we will always assume that when tie

happens, the allocation will be the one leading to higher welfare.

Preliminary Analysis We will argue that given our assumption that for any

bidder, her bid for the favoured object is no smaller than her bid for the less

favoured object, b21 + b12 being the winning bid will not happen. Note that (x2 + y1

is the winning bid) = (b21 + b12 ≥ b112, b
2
1 + b12 ≥ b212, b

2
1 + b12 ≥ b11 + b22) is equivalent to

event (b21 ≥ b11, b
1
2 ≥ b22). But with our assumption b11 ≥ b12, b

2
2 ≥ b21, we have

b21 ≥ b11 ≥ b12 ≥ b22 ≥ b21, which indicates that bids for single objects from different

bidders are identical, i.e. b21 = b11 = b12 = b22. When this event happens, actually

b11 + b22 is also the winning bid. Since b11, b
2
2 are bids for the favoured objects, our

tie-breaking rule will give each bidder their favoured objects.

3.3 Bidding Equilibrium

The paper restricts to symmetric Bayesian Nash equilibria. In this section, we

denote distribution of low type’s bid as G1(·) and distribution of high type’s bundle

bid as F (·). Abusing notation, in this section, we will denote the bundle bid bidder

i uses as zi for bids following proposed strategies or z for deviating bids, while her

bid for favoured and less favoured object as xi, yi for bids following proposed

strategies or x, y for deviating bids. We first propose one benchmark equilibrium

which will work for full ranges of p.

3.3.1 Equilibrium with Bidding 0 on Single Objects

Theorem III.1 The following strategies form a Bayesian Nash Equilibrium: the

high and low type bid 0 for single object and the high type’s bundle bid will follow

distribution F (z1) =
(1−p)(v̄1+v̄2)
p(v̄1+v̄2−z1)

− 1−p
p

on support [0, p(v̄1 + v̄2)].

Proof. The F (·) function is constructed through the indifferent condition of a high

type: (1− p)(v̄1 + v̄2 − z1) + pF (z1)(v̄1 + v̄2 − z1) = (1− p)(v̄1 + v̄2).

We check no bidder will want to deviate: if the low type deviates and bid x > 0,

her expected payoff will be (1− p)(v1 − x) + pF (x)(v1 − x) =
(1−p)v̄2(v1−x)

v̄1+v̄2−x
( v̄1
v̄2

+ 1),
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which has a negative derivative w.r.t. x. So the low type should never deviate to

bid higher prices.

The high type should not deviate her bids either. The high type can choose to

deviate to bid positive prices x, y for the two objects respectively. When x+ y ≤ z,

the bundle bid is still the winning bid for the high type. If x+ y > z instead,

expected payoff for high type becomes

(1− p)(v̄1 + v̄2 − x− y) + pF (x+ y)(v̄1 + v̄2 − x− y) =

(1− p)(v̄1 + v̄2 − x− y) + p(v̄1 + v̄2 − x− y)[ (1−p)(v̄1+v̄2)
p(v̄1+v̄2−x−y)

− 1−p
p
] = (1− p)(v̄1 + v̄2). It

is straightforward to see that the high type will not deviate to make

x+ y > p(v̄1 + v̄2).

We can make some comments about this result: firstly this result is inefficient. The

structure of the equilibrium guarantees that as long as a high type shows up, she

will either get both objects or no objects. While the efficient allocation is always

that each bidder win one object regardless of type. Secondly this result works for a

full range of p. And we can point out its implication at the two extremes. When p

approaches 0, i.e. hardly any high type shows up in the population, the equilibrium

is that bidders will just bid 0 since the low type does not value her less favoured

object. On the other hand, when p approaches to 1, i.e. almost every individual in

the population is a high type, our equilibrium distribution F will converge to

indicator function at v̄1 + v̄2. This scenario is comparable to the symmetric

Bertrand competition where firms just price at their marginal cost.

Graphical Illustration of Theorem III.1

If we pick v̄1 = 3, v̄2 = 1, v1 = 2 and p = 1
5
, distribution used by high type will be

Figure 3.1: Illustration of theorem III.1
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3.3.2 Equilibrium with Bidding Positive Pure Bids on Single

Objects

We will report two more equilibria where achieving higher welfare is more

accessible. We start with a simpler equilibrium where bid for single objects are still

pure strategies:

Theorem III.2 When p ∈ ( v̄2
v1
, 1), the following strategies form a Bayesian Nash

Equilibrium: high and low type use pure bids equivalent to v̄2 for their favoured

objects and high type’s bid for the bundle will follow distribution

F (z1) =
1−p
p
[

(v̄1−v̄2)v1
(v1−v̄2)(v̄1+v̄2−z1)

− 1] when z ∈ [2v̄2, z̄] and F (z1) =
1−p
p

z1−v̄2
v1−z1+v̄2

when

z ∈ [v̄2, 2v̄2]. For the notation, z̄ =
v̄2(v̄2+v1(−2+p))+v̄1(v̄2−v1p)

v̄2−v1
.

Proof. We check the no-deviating condition. First we look at the low type:

If low type deviates to y < v̄2, her expected payoff will be

(1− p)(v1 − y) + p(v1 − y)F (v̄2 + y) = (1− p)(v1 − y) + p(v1 − y)1−p
p

y
v1−y

= (1− p)v1. But notice that equilibrium expected payoff is

(v1 − v̄2)(1− p) + p(v1 − v̄2)F (2v̄2) = (v1 − v̄2)(1− p) + p(v1 − v̄2)
1−p
p

v̄2
v1−v̄2

= (1− p)(v1 − v̄2) + (v1 − v̄2)(1− p) v̄2
v1−v̄2

= (1− p)(v1 − v̄2)
v1

v1−v̄2
= (1− p)v1. So

deviating downward generates the same expected payoff.

If low type deviates to y > v̄2, her expected payoff will be

(1− p)(v1 − y) + p(v1 − y)F (v̄2 + y)

= (1− p)(v1 − y) + p(v1 − y)1−p
p
[

(v̄1−v̄2)v1
(v1−v̄2)(v̄1+v̄2−v̄2−y)

− 1]

= (1− p)(v1 − y) + (1− p)(v1 − y)[
(v̄1−v̄2)v1

(v1−v̄2)(v̄1−y)
− 1] = (1− p)(v1 − y)[

(v̄1−v̄2)v1
(v1−v̄2)(v̄1−y)

].

The last expression is smaller than (1− p)v1 iff (v̄1 − v1)v̄2 < (v̄1 − v1)y, which is

correct since y > v̄2.

Now we shift to look at the high type:

First suppose z1 > 2v̄2. If a high type deviates her bid for the favoured object to

z1 − v̄2 > x > v̄2: the deviating expected payoff is

(1− p)(v̄1 + v̄2 − z1) + p(v̄1 + v̄2 − z1)F (z1), i.e. the equilibrium expected payoff.

When z1 − y1 > x > z1 − v̄2
3, the deviating expected payoff is

3y1 is the high type’s bid for the less favoured object
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(1− p)(v̄1 − x) + p(v̄1 − x)F (x+ v̄2)

= (1− p)(v̄1 − x) + p(v̄1 − x)1−p
p
[

(v̄1−v̄2)v1
(v1−v̄2)(v̄1+v̄2−v̄2−x)

− 1]

= (1− p)(v̄1 − x)[
(v̄1−v̄2)v1

(v1−v̄2)(v̄1+v̄2−v̄2−x)
] = (1− p)

(v̄1−v̄2)v1
v1−v̄2

, which is equivalent to the

expected equilibrium payoff. When x > z1 − y1, the summation x+ y1 becomes the

new bundle bid, and the deviating expected payoff will be equivalent to equilibrium

expected payoff unless x+ y1 > b, which will be guaranteed to have strictly lower

payoff. If the high type deviates to bid lower for her preferred object when z > 2v̄2,

the deviation will not impact any winning bids.

When z1 ≤ 2v̄2, but a high type deviates upward to z1 − y1 > x > v̄2: the deviating

expected payoff is (1− p)(v̄1 − x) + p(v̄1 − x)F (x+ v̄2)

= (1− p)(v̄1 − x) + p(v̄1 − x)1−p
p
[

(v̄1−v̄2)v1
(v1−v̄2)(v̄1+v̄2−v̄2−x)

− 1], an expression checked

previously 4. If a high type deviates downward to z1 − v̄2 < x < v̄2, the deviating

expected payoff is (1− p)(v̄1 − x) + p(v̄1 − x)F (x+ v̄2)

= (1− p)(v̄1 − x) + p(v̄1 − x)1−p
p

x
v1−x

= (1− p)(v̄1 − x)
v1

v1−x
. But the last expression

is maximized when x = v̄2. If a high type deviates to x < z1 − v̄2, the expected

deviating payoff will be

(1−p)(v̄1+v̄2−z1)+p(v̄1+v̄2−z1)F (z1) = (1−p)(v̄1+v̄2−z1)+p(v̄1+v̄2−z1)
1−p
p

z1−v̄2
v1−z1+v̄2

= (1− p)(v̄1 + v̄2 − z1) + (1− p)(v̄1 + v̄2 − z1)
z1−v̄2

v1−z1+v̄2

= (1− p)(v̄1 + v̄2 − z1)
v1

v1−z1+v̄2
. The last expression is an increasing function in z1

and will be maximized when z1 = 2v̄2. So we have deviating expected payoff

bounded above by (1− p)(v̄1 − v̄2)
v1

v1−v̄2
, which is the equilibrium expected payoff.

The high type will have no incentive to deviate her bid for the less favoured object

because she knows that her opponent’s bid for that object is at least v̄2, the

valuation of a high type has for her less favoured object. The restriction on p is

needed to make sure that upper bound of the bundle bid lies strictly in interval

(2v̄2, v̄1 + v̄2).

If a high type deviates to bid a bundle bid smaller than v̄2, bid for single objects

must also be smaller than v̄2. And hence deviating expected payoff will be

pF (x+ v̄2)(v̄1 − x) + (1− p)(v̄1 − x) = (v̄1 − x) (1−p)x
(v1−x)

+ (1− p)(v̄1 − x) =

(1− p)(v̄1 − x)
v1

v1−x
≤ (1− p)(v̄1 − v̄2)

v1
v1−v̄2

, i.e. the equilibrium expected payoff.

Lastly, if a high type deviates multiple bids, first we can restrict to the scenario

4If x > z1 − y1, x+ y1 is the new bundle bid, and such a scenario are also checked in the proof
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where z > x+ y since otherwise summation of bids for single objects is the new

bundle bid. When z > x+ v̄1, the bundle bid is the winning bid for the deviating

high type. But our computation in previous paragraphs reveal that deviating

expected payoff in those scenario can not surpass the equilibrium expected payoff.

When z < x+ v̄1, expected payoff from deviating is

(1− p)(v̄1 − x) + p(v̄1 − x)F (x+ v̄2). But we have checked all possible range of

x and z regarding this expression in the previous cases and conclude that deviating

expected payoff can not surpass equilibrium expected payoff.

Given this strategy, the allocation is efficient as long as bundle bid is below 2v̄2.

Inefficient allocation may happen but only if the high type bids a very high price

for the bundle. The equilibrium constructed in this theorem is similar to the

equilibrium in theorem III.1 in the sense that support is one interval whose lower

bound can go down all the way to zero. What’s more, upper bound for the bundle

will approach v̄1 + v̄2 when p reaches 1, as indicated by theorem III.1. However, if

we make some editions to theorem 2, we can construct a more complicated

equilibrium where the support of distribution for the bundle contains a gap, while

the distribution remains atomless.

We can actully make some modifications to theorem III.2 and generate a pure

strategy equilibrium:

Corollary III.1 When p > v̄2
v1
, there exists a pure strategy equilibrium when high

type bids (2v̄2, v̄2, v̄2) and low type bids v̄2.

Proof. Given the assumptions, the low type will always win one object and get

v1 − v̄2 as final payoff. She will not deviate since v1 − v̄2 > (1− p)v1 given range of

p.

For the high type, she also wins one object with payoff v̄1 − v̄2. If the high type

increases her bid for the favoured object, she gets two objects since her bundle bid

also increases to the summation of her new bids for single objects, but her payoff is

strictly smaller than v̄1 − v̄2. If the high type decreases her bid for the favoured

object, her payoff will only be p
2
(v̄1 − v̄2) + (1− p)(v̄1 − v̄2) < v̄1 − v̄2 because she

now wins with one-half probability by the tie of bundle bids when facing a high

type. If the high type decreases her bundle bid, her payoff win not change. If the

80



high type increases her bundle bid, her payoff decreases as argued previously.

If the high type decreases her bids for single objects and for the bundle

simultaneously, the maximal payoff will be (1− p)v̄1 since she will not win when

facing a high type, and she can get (1− p)v̄1 by making all her bids close to 0. But

given range of p, we still have (1− p)v̄1 < v̄1 − v̄2.

Graphical Illustration of Theorem III.2

If we pick v̄1 = 3, v̄2 = 1, v1 = 2 and p = 3
5
, CDF used by high type will be

Figure 3.2: Illustration of theorem III.2

Wider class of Equilibria

Noticing that theorem III.2 and corollary III.1 seem similar but are not directly

connected, we are curious about one extra question: whether there exists a class of

equilibria which contains theorem III.2 so that corollary III.1 is actually an extreme

or special case of such a class of equilibria.

Theorem III.3 When p ∈ ( v̄2
v1
, 1), strategies that satisfying the following

conditions form a class of Bayesian Nash Equilibrium:

• High and low type bid a pure strategy at price v̄2;

• The distribution of bundle bid used by high type F (·) satisfy conditions

– F (z) ≤ (1−p)(z−v̄2)
p(v1−z+v̄2)

for z ∈ (0, 2v̄2) ;

– F (z) ≤ (1−p)(v̄1−v̄2)v1
p(v1−v̄2)(v̄1+v̄2−z)

− 1−p
p

for z > 2v̄2 ;

– For z > 2v̄2, F (2v̄2) and F (z) should be related by equation

p(v̄1− v̄2)F (2v̄2)+(1−p)(v̄1− v̄2) = (1−p)(v̄1+ v̄2−z)+p(v̄1+ v̄2−z)F (z).
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Proof. We revisit the no-deviating conditions in theorem III.2: We denote low

type’s deviating bid as y and high type’s deviating bids for the bundle and for her

favoured objects and z, x respectively.

To prevent low type from deviating, we need conditions:

(1− p)(v1 − y) + p(v1 − y)F (v̄2 + y) < (1− p)v1 for all y ̸= v̄2. So we should have

F (v̄2 + y) < (1−p)y
p(v1−y)

for all y ̸= v̄2.

To prevent high type from deviating, we need the following conditions:

• When z1 > 2v̄2 and z1 − y1 > x >

z1 − v̄2, (1− p)(v̄1 − x) + p(v̄1 − x)F (x+ v̄2) ≤ (1− p)
(v̄1−v̄2)v1
v1−v̄2

;

• When z1 ≤ 2v̄2 and z1 − y1 > x > v̄2, (1− p)(v̄1 − x) + p(v̄1 − x)F (x+ v̄2) ≤
(1− p)

(v̄1−v̄2)v1
v1−v̄2

;

• When z1 − v̄2 < x < v̄2, (1− p)(v̄1 − x) + p(v̄1 − x)F (x+ v̄2) ≤ (1− p)
(v̄1−v̄2)v1
v1−v̄2

;

• When x < z1 − v̄2,

(1− p)(v̄1 + v̄2 − z1) + p(v̄1 + v̄2 − z1)F (z1) ≤ (1− p)
(v̄1−v̄2)v1
v1−v̄2

;

• When z < v̄2, (1− p)(v̄1 − x) + pF (x+ v̄2)(v̄1 − x) ≤ (1− p)
(v̄1−v̄2)v1
v1−v̄2

.

The first two conditions require F (x+ v̄2) ≤ (1− p)
(v̄1−v̄2)v1

p(v1−v̄2)(v̄1−x)
− 1−p

p
when x > v̄2.

Requirements 3 and 5 are also identical: F (x+ v̄2) ≤ (1− p)
(v̄1−v̄2)v1

p(v1−v̄2)(v̄1−x)
− 1−p

p

when x < v̄2. In addition, we need F (z1) < (1− p)
(v̄1−v̄2)v1

p(v1−v̄2)(v̄1+v̄2−z1)
− 1−p

p
for

z < 2v̄2 according to requirement 4. An observation is that when we replace z by

x+ v̄2, the last two inequalities are equivalent. So we only need to care about the

last inequality containing F (z1) since it is more general.

Direct computation shows that (1−p)(z−v̄2)
p(v1−z+v̄2)

≤ (1− p)
(v̄1−v̄2)v1

p(v1−v̄2)(v̄1+v̄2−z)
− 1−p

p
for all

z < 2v̄2 and z > v̄2 + v1. So we can claim that as long as distribution of bundle bid

satisfies F (z) ≤ (1−p)(z−v̄2)
p(v1−z+v̄2)

for z ∈ (0, 2v̄2) ∪ (v̄2 + v1, v̄1 + v̄2) and

F (z) ≤ (1− p)
(v̄1−v̄2)v1

p(v1−v̄2)(v̄1+v̄2−z)
− 1−p

p
for z ∈ (2v̄2, v̄2 + v1) the no-deviating

condition will continue to hold. However, notice that a low type will never propose

a bid surpassing v1, which means we do not need to worry about low type bidding

higher than v1 at the first place. So as long as distribution of bundle bid satisfies

F (z) ≤ (1−p)(z−v̄2)
p(v1−z+v̄2)

for z ∈ (0, 2v̄2) and F (z) ≤ (1− p)
(v̄1−v̄2)v1

p(v1−v̄2)(v̄1+v̄2−z)
− 1−p

p
for
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z ∈ (2v̄2, v̄2 + v̄1), there will be no deviation.

The last point we need to make sure is that high type gets identical expected payoff

by making bundle bids mixed for values higher than z1 > 2v̄2: i.e. F (2v̄2) and

F (z1) should be related by equation

p(v̄1 − v̄2)F (2v̄2) + (1− p)(v̄1 − v̄2) = (1− p)(v̄1 + v̄2 − z1) + p(v̄1 + v̄2 − z1)F (z1).

Knowing F (z1) ≤ (1− p)
(v̄1−v̄2)v1

p(v1−v̄2)(v̄1+v̄2−z)
− 1−p

p
, F (2v̄2) ≤ (1−p)v̄2

p(v1−v̄2)
, i.e. the

requirement we developed previously. If z further goes beyond v̄2 + v1, the

inequality relating F (2v̄2) and F (z1) will generate

F (2v̄2) ≤ (1− p)(v̄1 + v̄2 − z)
v1

(v̄2+v1−z)(v̄1+v̄2)
− 1−p

p
, and this expression will be

greater than (1− p)
(v̄1−v̄2)v1

p(v1−v̄2)(v̄1+v̄2−z)
− 1−p

p
.

If the high type only mixes her bundle bid in interval (0, 2v̄2), we can also borrow

part of the argument used in proof of theorem III.3 and provide a corollary:

Corollary III.2 When p ∈ ( v̄2
v1
, 1), strategies that satisfying the following

conditions form a class of Bayesian Nash Equilibria:

• High and low type bid a pure strategy at price v̄2;

• The distribution of bundle bid used by high type F (·) satisfy conditions :

– F (z) ≤ (1−p)(z−v̄2)
p(v1−z+v̄2)

for z ∈ (0, 2v̄2)

– The remaining probability mass of F (z) will be atom at 2v̄2.

Proof. Functional form of F (·) is determined via theorem III.3. (1−p)(z−v̄2)
p(v1−z+v̄2)

= 1

when z = v̄2 + pv1. And v̄2 + pv1 is greater than 2v̄2. So there will be an atom at

2v̄2 with size of at least 1− (1−p)v̄2
p(v1−v̄2)

. Our tie-breaking rule favors allocations that

generate higher welfare, which means bundle bid will not win under this corollary.

So high type will accept putting an atom at 2v̄2. What’s more, if the high type

raise bundle bid, her payoff will be strictly smaller than v̄1 − v̄2.

Bound for p is set for the extreme case, where F (z) = 0 for ∀z < 2v̄2. And this

corollary is studied in corollary III.1, i.e. the pure strategy equilibrium. It is

transformed by making F (z) = 0 for ∀z < 2v̄2.

In conclusion, corollary III.1 becomes an extreme case described by corollary III.2.
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3.4 Conclusion and Discussion

In the paper, we study a combinatorial auction with two bidders competing for two

distinct objects. To make our computation tractable, we make the following

assumptions on model and selection a certain criterion of equilibria: First we

assume the type space is discrete. We always assume a high type will have

marginal valuations v̄1, v̄2 and low type will have marginal valuations v1, v2. But we

focus on case with ordering v̄1 > v1 > v̄2 > v2, and normalize v2 to 0. Unlike usual

assumption of synergy for package bidding, we continue to assume the objects in

auctions are neither super-additive (complements) nor sub-additive (substitutes).

We display two different sets of equilibria, but all of the equilibria contains pure

strategies on bid for the favoured object. Focusing on pure strategies is another

method we apply to make our computation tractable. Given ordering of private

values, efficient allocation is each bidder win one object regardless of types. Among

the equilibria introduced in the paper, the second class of equilibria, i.e. theorem

III.2 and theorem III.3 will perform better in terms of welfare since they lead to

efficient allocations when bundle bid of high type is not too high. While for

theorem III.1, it it unlikely we achieve efficient allocation since a high type will

always get 0 or 2 objects.

We are also curious about the format of equilibria when more mixed strategies are

used by bidders. A conjecture that will lead to a slightly complicated equilibrium

would be that high type is using pure bid on favoured objects while low type is

mixing in an interval. Actually, if we assume the pure bid high type uses for her

favoured object (denoted as bH1 ) is higher than the upper bound of low type’s

mixed bids (denoted as bL) , we have to construct a gap in support of bundle bid

since bundle bid in interval (bL + bH1 , 2b
H
1 ) is (weakly) dominated by bundle bid at

precisely bL + bH1 . However, this conjecture will have a free-riding problem: the

high type will have incentive to decrease her bid for the favoured object to prices in

interval (bL, bH1 ) to free-ride the other high type’s pure bid due to the gap on

support of bundle bid. We can treat our second set of equilibria as an extreme case

of this conjecture in the way that bH1 = bL, and to adjust to the feature that

bH1 = bL we must let low type to bid pure bid. So our current computation seems to

suggest this conjecture is unlikely to be true. A more complicated conjecture is to
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assume that all bids are mixed strategies, but currently we can not exclude

possibilities of such a type of equilibrium nor have we succeeded in constructing

any equilibrium with just mixed strategies. One of our main task in the future is to

thoroughly study mixed strategy equilibrium by providing equilibria or showing

non-existence. Besides, it would also be a good practice if we can characterize what

equilibria would look like for other rankings of private values.
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CHAPTER IV

Smooth Ambiguity Averse Level-k Auction

4.1 Introduction

Auction theory predicts Bayesian Nash Equilibrium for 1st and 2nd price sealed bid

auctions with independent values. For a 1st-price auction with uniform distribution

of private values, the unique pure strategy Bayesian Nash equilibrium is half of

private valuation when there are two bidders while bidding truthfully is a (weakly)

dominant strategy in a 2nd-price auction. But experimental evidence presents

results deviating from theoretical equilibria from both directions. For example,

Goeree, Holt and Palfrey (2002) found that undergraduate student subjects tended

to overbid in first price auctions: they used low and high value treatments for the

bidders’ valuation and only reported the last 10 periods of experiment sessions to

avoid erratic behavior. GHP (2002) found that starting from period 5 subjects’

bids would be above theoretical equilibrium (i.e. half of valuation) in both

treatments. Underbidding is less common in literature but Cox, Smith, and Walker

(1988) found underbidding for low valuations and overbidding in higher valuation

in 1st-price auction in one of their experiments 1. What’s more, Garratt, Walker

and Wooders (2011) invited highly experienced users in eBay to participate in a

2nd-price auction experiment where values range from 25 to 125 usd uniformly.

38% of the bids were overbids and 41% were underbids. What’s more, if subjects

had experience of being sellers in the platform, underbid rate would increase to

51% and overbids rate would decrease to 32%.

1Figure 8 in page 84 (a group of 4 bidders)
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We might expect experienced bidders to make value bids in the 2nd-price auction

and student subjects deviate from theoretical results due to lack of auction

experience. And hence it might not be that surprising that undergraduate subjects

in GHP(2002) were not bidding according to Bayesnian Nash Equilibrium. But

result from GWW(2011) gave the result that over 80% of experienced bidders were

deviating from Bayesnian Nash Equilibrium. Such deviation obviously indicates

BNE strategies can not do a good job explaining the behaviors of real-life bidders.

And hence we will look into auctions via the approach of elimination of implausible

strategies: we assume bidders will eliminate prices that are implausible to bid given

their beliefs about the auction and publicly available knowledge, in particular, we

will assume all bidders know distribution of private values, full rationality of all

participants and range of plausible bids. Bidders will accordingly bid prices that

survive Iterated Elimination of Implausible prices.

One issue bidders could encounter when using iterated elimination approach is

uncertainty over types of opponent and ambiguity on what bidding prices their

opponents would be using. A plausible way to address these issues simultaneously

is to use the smooth ambiguity averse model proposed in Klibanoff, Marinacci and

Mukerji (2005), which enables bidders to impose subjective beliefs on how

opponents’ bid would distribute. We will look into a 2-individual first price auction

where both bidders believe their opponents would only use pure bids. Smooth

ambiguity averse model solves strategic ambiguity by allowing bidders to make

subjective beliefs on how opponents’ bid would distribute. For simplicity, we may

assume that bidders believe their opponents’ strategies are distributed uniformly

from their current ranges of plausible bids.

We compare the use of smooth ambiguity averse model by making comparison with

other approaches. The ∆-rationalizability approach by Battigalli and Siniscalchi

can not eliminate close-to-zero bids since such a price can be a ”best response” to

an extreme optimistic scenario where a bidder believes her opponent is also bidding

close to zero. So the most significant practical advantage of using ambiguity averse

model is the capability of eliminating such extremely small bids: our assumption

from the smooth ambiguity averse model where bidders believe the bids her

opponents are using distribute uniformly is able to avoid putting all weight on any

single (extreme) event. And accordingly we will not have a situation where a
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bidder believes her opponent is bidding a close-to-zero price with probability 1.

What’s more, Battigalli and Siniscalchi(2003) analyzed a first-price single-unit

auction with two bidders by employing their ∆-rationalizability model with ∆

being beliefs that bidding strategies are monotone w.r.t. private values and bidders

believe that a positive bid wins with positive probability. They proved that the

bids less than the BNE result are all rationalizable, which allows existence of

extremely small bids. We conclude that their results are consistent with the

empirical evidence, but do not make a strong prediction.

Another natural approach to address the strategic uncertainty would be

maximizing the worst case scenario, i.e. using the maxmin utility function.

However, individual with maxmin utility will bid very close to their true valuation,

which is also in contrast with empirical data. Battigalli and Siniscalchi’s

∆-rationalizability allows bidders to hold various belief on what their opponents

may be doing and one particular bids can be justify as long as it is best responding

to an allowed belief, regardless of how implausible that belief may seem to be.

Same issue occurs when we use the maxmin approach, since a belief that opponents

are bidding close to private value would also be quite implausible.

On the contrary, smooth ambiguity averse model is able to aggregate all possible

cases a bidder may encounter evenly through bidders’ subjective belief on how her

opponents’ bids might distribute, if we use a moderate range of ambiguity averse

attitudes. KMM(2005) used a concave function ϕ(x) = − 1
α
e−αx where α is the

coefficient to measure ambiguity averse attitude, with 0 being ambiguity neutral,

positive being ambiguity averse and negative being ambiguity loving. And hence

the moderate range of ambiguity averse attitudes indicates a positive but relatively

low value for α in function ϕ. KMM (2005)’s smooth ambiguity averse model

showed that Eµϕ(Eπu ◦ b)) could be used to measure the preferences over act b.

According to KMM(2005)’s explanation, π is probability measure on act space and

µ measure the bidder’s subjective relevance of a particular π as the right

probability. In our situation, π is a bidder’s belief that her opponent will only bid

pure strategies and µ is her subjective belief that her opponent’s plausible bids are

distributed uniformly over current range of plausible bids. Additionally, Denti and

Pomatto (2022) followed an alternative interpretation of KMM (2005) where µ is

”a prior over the true law” and π will denote as probability law that governs the
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true state. Our assumptions are a special subclass of these preferences. The

ambiguity over opponents’ bids can be identified since opponents’ actual bids would

reveal their bidding functions, thereby satisfying Denti and Pomatto (2022)’s

identifiable condition.

Recall that bidder will believe that uniform distribution of value types, rationality

for all participates in the auction as well as range of feasible bids are public

knowledge and will aggregate her ambiguity over opponent’s strategies based on

such public knowledge. We can now introduce our solution concept: each bidder

will construct new upper (lower) bounds by best responding to beliefs that her

opponents’ pure bids are distributed uniformly from the range of plausible bids

when opponents’ ambiguity averse attitude reaches the highest (smallest), since the

more ambiguity averse a bidder is, the higher bidding price she is likely to use. If θ

denotes the public belief that private value follows a uniform distribution when the

type space is [0, 1], our utility function should be Eθ(Eµϕ(Eπu ◦ b))). So the

maximizer of Eθ(Eµϕ(Eπu ◦ b))) when plugging the largest (smallest) ambiguity

averse coefficient α into ϕ will be new upper (lower) bounds of plausible bids. Any

current plausible price greater (smaller) than the newly computed upper (lower)

bound will be called implausible bids and hence will be eliminated. If it is public

knowledge that each bidder in the auction knows range of ambiguity averse

attitude across all types of bidders are identical, each bidder should be able to

compute range of plausible bids in each round recursively. And hence each

participant is able to repeat the elimination (optimization) process on the newly

computed range of plausible bids until upper and lower bounds converge.

We have constructed our elimination process via dealing with ambiguity averse

while we still need to solve some technical issue. Iterated Elimination of Implausible

Strategies in a continuum support always has a major drawback: the impossibility

to define the smallest increment/decrement. And hence for a 2-individual first price

auction with independent values, although people always know that bidder should

try to bid only ”epsilon” higher than their opponents’ highest feasible as upper

bound or bid only ”epsilon” higher than 0 as lower bound in the current round of

elimination of dominated bidding prices, it is practically unfeasible to find such an

increment in the bidding space. Battigalli and Siniscalchi (2003) is an example to

consider rationalizable bids in first price auction in continuum space. Battigalli and
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Siniscalchi (2003) assumed that bidders would construct upper bounds of feasible

bids by best responding to the case where bidders assumed their opponents would

bid their upper bounds from previous round of elimination. But they were only

able to eliminate bids from upward and left lower bounds constant at 0. The most

straightforward way to avoid the issue encountered in Battigalli and Siniscalchi

(2003) is to work on a discrete support. Dekel and Wolinsky (2003) studied an

k-individual first price auction with discrete bidding space. Incremental of available

discrete bids is d = 1
m

with m being number of grids in the bidding space. And

they succeeded to eliminate all bids except vi − d, due to their large number of

bidders and discrete type space assumption. Similar to Dekel and Wolinsky (2003),

we will simulate our computational process by computational software. We look at

a 2-player first price single-unit auction and discretizing the type space [0, 1] into n

grid points with equal grid margin 1
n
. We further assume type and bidding spaces

are identical. The available bids for participants in the auction is accordingly the n

discrete grid points. We will construct a lower and upper bound for each grid point

in the discretized space and compute the bids that survive iterated elimination. ??

Ahn, Choi, Gale and Kariv (2014) discovered that the range of ambiguity averse

coefficient is usually [0, 2], with more than 20% of the population being ambiguity

neutral and the 95% percentile of ambiguity averse coefficient being only 1.9 or less.

So we will be using 2 and 0 as our ambiguity averse coefficients for upper and lower

bounds respectively. With selection of range of α to be [0, 2], our model features

underbidding relative to BNE prediction, which matches observation of Cox, Smith,

and Walker (1988). We also try to increase the upper bound of ambiguity averse

coefficient to larger integers, and the result is higher stable bounds.

The assumption of a uniformly distributed bidding strategy in our model is just for

computational simplicity, but also makes our model very similar to the level-k

theory. Level-k theory in the context of an auction assumes that in the 1st round,

L0 participants will bid uniformly and randomly from a range between the highest

and lowest prices. While in the next rounds of actions, L1 participants will believe

that others will behave according to L0, and hence they will best respond to such

beliefs. A future Lk(k > 1) will iterate such type of best response k times, in

particular, L2 will believe others behaving like L1 and best respond to such a

belief. We say our model is extending the L1 response to L0 from the level-k
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theory. The extension we make from Crawford and Iriberri (2007b)’s level-k theory

is that bidders in our model construct new ranges of plausible bids by plugging

bounds of ambiguity averse coefficients into ϕ function in Eθ(Eµϕ(Eπu ◦ b))). So
each of our round is similar to how L1 is best responding to random L0 in level-k

theory: bidders in our model construct upper and lower bounds simultaneously

with subjective beliefs that opponents’ pure bidding prices distribute uniformly,

under the additional condition that bidders themselves have the highest and

smallest plausible ambiguity averse coefficients. In a word, our model is eliminating

implausible bids and leaving a range of plausible bids every round during the

elimination process while after L1 the level-k theory’s best response will just be

singleton sets. We can name our model ”Smooth Ambiguity Averse Level-k” since

our elimination process is similar to how L1 responds to L0 in level-k theory and

we use smooth ambiguity averse representation to study the elimination process.

Crawford and Iriberri (2007b) applied level-k theory into only stage L0, L1 and L2

while ours will solve the whole elimination process.

Section 2 introduces our ambiguity averse version of elimination of dominated

prices, and we may call it smooth ambiguity averse level-k to represent that it is a

hybrid of the famous smooth ambiguity averse model and level-k theory. We

present the numerical results in section and compare it with literature and BNE

result in section 3. The last section shows bidding function if we expand the range

of ambiguity averse coefficient and compares different solution concepts.

4.2 Model

We will formally introduce our model in this section. As mentioned, we consider a

sealed-bid first price auction with independent private values. We allow 2 ex-ante

identical participants in this auction and each player is informed with her private

value, vi, of an indivisible subject. Each bidder submits a price and the object is

rewarded to the bidder who bids a higher price. In case of ties, the object will be

rewarded equally with 50% probability between the 2 bidders. We further assume

that bidding space and value space are equivalent to the discretized unit interval

[0, 1]. The discretized values are from set V = {v1, v2, ...vn−1, vn} and every 2

consecutive grid points vk, vk+1 share the same grid margin 1
n
, i.e. vk+1 − vk =

1
n
for
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∀k. So v1 =
1
n
and vn = 1. We assume it is public knowledge that private values

have a uniform distribution on the discretized unit interval.

We employ and extend model from the smooth ambiguity averse model proposed in

in Klibanoff, Marinacci and Mukerji (2005), where a double expectation

Eµϕ(Eπu ◦ b) is used to measure preferences over acts. In our case, b is the pure bid

a bidder is using, and u is the material payoff from the first price single unit

auction. ϕ is an increasing transform which characterises altitude towards

ambiguity. KMM(2005) derived ϕ(x) = 1
α
e−αx as a function of constant ambiguity

averse with α being the constant absolute ambiguity averse coefficient. The higher

this α is, the higher ambiguity averse a bidder will become, which will indicate that

a bidder will be more likely to bid a higher price to avoid loss in the auction. We

will require the ambiguity averse coefficient α ∈ [0,∞]. If α = 0, we say the bidder

is ambiguity neutral while if α = ∞ KMM(2005) pointed out a bidder would

maxmin preference. We will modify our ϕ(x) to be ϕ(x) = 1
α
− 1

α
e−αx so as to

normalize ϕ(0) = 0. KMM(2005) defined µ to be a subjective probability over the

set of probability measures π that a decision maker thought were possible given her

subjective information. In terms of our construction of upper and lower bound, π

reflects a bidder’s belief that her opponent will be bidding a pure strategy and

hence should be a degenerate measure on single prices. µ will assign any possible

outcome a bidder finds possible a probability. We have assumed that bidders are

believing bidders’ pure strategy are distributing uniformly, which indicates that µ

is assigning probability uniformly to plausible pure bidding prices over range of

plausible bids. To be more precise, our model assumes that a bidder with private

value vi will believe her opponent whose private value is one element from the

{v1, v2, ...vn−1, vn} are bidding pure strategies which are uniformly distributed

between the current upper and lower bounds. We extend KMM(2005)’s smooth

ambiguity averse model by adding another expectation: π and µ only addresses the

scenario when a bidder believes her opponent’s valuation is one element from set V ,

but does not reflect how a certain value is selected from V . The expected utility

function will be complete when we introduce another expectation sign outside

Eµϕ(Eπu ◦ b). Eθ(Eµϕ(Eπu ◦ b)) with θ being the public belief that private

valuations are distributed uniformly on value space. We can restate our model from

the most external expectation to the most internal one: a bidder who believes that
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her opponent’s private valuation is uniformly distributed from set V will believe

her opponent’s bids are pure strategy distributing uniformly from current round of

plausible bids.

We should start the elimination process with each bidder (with private value vi)

treating v1 as the initial lower bound and vi−1 as the initial upper bound since

bidding the exact private value vi will not bring positive payoff. The exception here

is bidder with private value v1 who is only able to bid v1. We call this round 0. We

construct upper and lower bounds of feasible in round 1 by solving the following

question: a bidder with private vi will construct the new upper (lower) bound by

solving the maximizing question max
bi∈{v1,...,vi−1}

n∑
j=1

1
n

vj−1∑
v1

ϕ(u(bi, bj, vi, vj)
1

j−1
when she

plugs the highest (lowest) feasible ambiguity averse coefficient into her smooth

ambiguity averse representation ϕ. Round 1 will end when bidder with each private

value finishes solving these 2 questions. Problem to solve for remaining rounds will

be similar to that in round 1 with some change in notations. If we use lbm(vi) as

lower bound for private value vi after round m and ubm(vi) as upper bound for

private value vi after round m, and denote number of the feasible bids between

lbm(vi) and ubm(vi) as gapm,j, (i.e. gapm,j = n(ubm(vj)− lbm(vj)) + 1),

the maximization problem in round k will be looking like

max
bi∈{lbk−1(vi),...,ubk−1(vi)}

n∑
j=1

1
n

ubk−1(vj)∑
bj=lbk−1(vj)

ϕ(u(bi, bj, vi, vj)
1

gapk−1,j
. The remaining rounds

will continue recursively for every type value until its upper and lower bounds

coincide (or each type end up in stable interval of bids).

Ahn, Choi, Gale and Kariv (2014) discovered that the range of ambiguity averse

coefficient is usually [0, 2], and hence we will compute new upper (lower) bounds to

be the maximizers of Eθ(Eµϕ(Eπu ◦ b)) with α = 2(0) . When α = 0, the ϕ(x) will

just be x, which will simplify our work to some extent. Our goal is to construct the

process of eliminating implausible bids. And we will construct the process with the

help of computational software.
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4.3 Results

4.3.1 Stable Bids

Starting from section, we will use terminology ”stable bids” to describe the bids

that upper and lower bounds of plausible bids converge to after rounds of

elimination of implausible bids.

The graph of stable bids for n = 1000 is

Figure 4.1: Stable bids when n = 1000

Here is how we interpret the graph: the horizontal axis represents value of each

type while the vertical axis is the stable bids. A noticeable fact about the bidding

function is its significantly concave tail, which indicates bidders with higher private

values are underbidding much more than other types. Such fact is reasonable since

bidders with higher private values may think themselves have very small

probability of loss due to their high private valuations so they choose to decrease

their bids to some extent to reflect such confidence as well as to guarantee

themselves higher payoff when they win in the auction.

If we compare our results with BNE result (red line), it turns out that we find
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underbidding for all private values, which means our ambiguity averse reasoning

will generate similar result in terms of final bids as GWW(2011). This result

should not be surprising since the upper bound of α, 2, is not large. People with

small ambiguity averse coefficients would prefer bidding lower with higher net

payoff when winning the auction. And they will not weigh a lot on possible

situations where they lose the auction by bidding relatively low:

Figure 4.2: Comparing with BNE result

From the graph of stable bids when α ∈ [0, 2], it seems that we have a

close-to-linear bidding function until i reaches 0.800. If we show the graph of stable

bids when α ∈ [0, 6], we have:

It is clear from the graph when upper bound of α gets larger, the bidding function

will very close to be linear at first and become concave eventually. And hence our

conjecture regarding shape of bidding function is that the bidding function when

α ∈ [0, 2] should have the same shape but the magnitude is relatively small. Such a

guess can be checked by fitting the bidding function with polynomials and check

the concavity and convexity of the fitted function. And we will check the fitness in

the next subsection.

Finally we compare our model to the level-k theory. Our Round 1 is similar to

Crawford and Iriberri (2007b)’s random L0, where the latter assumes bidders just

95



Figure 4.3: Another range of α

bid uniformly from the range of feasible bids. But starting from Round 2 our model

drifts away from Crawford and Iriberri (2007b)’s setting where we continue to

assume that bidders only know the distribution of plausible bids and they are only

able to construct another range of feasible bids by assuming their opponents’

ambiguity averse coefficients are the highest or lowest since the more ambiguity

averse a bidder is, the more likely she is bidding higher prices. On the contrary,

Crawford and Iriberri (2007b) assumed that bidders would choose a strategy which

is best response to random L0. Our ambiguity averse elimination process ends after

round 6, which is surprisingly short but still longer than L2 (2 rounds) considered

in Crawford and Iriberri (2007b). Real participants of auction experiments may not

have a deep understanding of the auction and hence they are not able to think

their strategies beyond L2. Our model shows that the auctions with bidders who

fully understand the mechanism of the auctions will endure longer rounds.

4.3.2 Fitness

We can run several regressions up to the third power of i to fit the graph for

polynomials. The reason we only look at i up to the power of 3 is due to the small

absolute value of estimation: the coefficient for i3 is already 10−8 and will only get

smaller when we raise the power.
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Estimate Scenario 1 Scenario 2 Scenario 3 Scenario 4

i 0.4372475 *** 4.811e-01*** 4.679e-01*** 3.585e-01***
i2 -4.381e-05 *** 2.623e-04 ***
i3 -3.402e-08*** -2.039e-07***

Constant 2.7686066 -4.554e+00 -4.059e+00 5.700e+00
Adjusted R-squared 0.9976 0.9982 0.9985 0.9992

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 4.1: Approximation by polynomials

Despite the small absolute values in estimation, statistical significance makes us

confident to assert the stable bidding function is not a linear function. And we can

fit the bidding function by a polynomial which is slightly convex initially but

becomes convex eventually as shown in scenario 3 and 4. The fitness practice seems

to justify our conjecture in the last subsection regarding convexity and concavity of

the bidding function. If we approximate the bidding function by a polynomial with

coefficients computed from scenario 4, firstly it is straightforward to see that when

private value is small the bidding function is close-to-linear (actually it is slightly

convex). Secondly, we are able to conclude that the polynomial will have a negative

second order derivative when private valuation is greater than 0.428 and the second

order derivative becomes significantly larger as private valuations increase. This

discovery reflects the significantly concave tail we observe in plots of bidding

function.

What’s more, if we only run regression to approximate bidding functions for types

whose private valuations are smaller than 0.5, we have similar estimates for the

constant and parameters for i as in scenario 1. And this result confirms our

conjecture that the bidding function is close-to-linear when private valuation is

small.

4.4 Discussion

4.4.1 Selection of Ambiguity Averse Coefficient

We have illustrated stable bidding functions when upepr bound of α is 2. We can

now turn to comment cases with higher α’s. If we return to graph when α ∈ [0, 6]:
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Figure 4.4: Comparing with BNE result

where the black line is the stable bids from our model and red line is what the

Bayesian Nash equilibrium predicts.

We find underbidding for extremely low private values (i < 0.24) and overbidding

for all other values. This result satisfies our intuitive understanding of the

ambiguity averse coefficient: with large ambiguity averse coefficients, people tend to

fear that they may lose the auction when they could have won by bidding a higher

price. The underbidding case for extremely small private values are symmetric to

the ”significantly concave tail” phenomenon when α is small. Now bidders with

extremely small private values will find themselves next to impossible of winning

any auction and they would rather win with some higher payoff if their winning

somehow happened and they believe themselves unable to win even if they increase

their bids due to small private valuations. Such a finding is consistent with the

majority of literature like GHP(2002). The ”significantly concave tail” still exists

when α ∈ [0, 6] but shrinks a lot in magnitude, which reflects that when bidders are

more ambiguity averse they will not risk losing the auction by bidding relatively

lower unless their private values are extremely high. What’s more, our α ∈ [0, 6]

setting replicates figure 8 from CSW(1988)’s result where they also found
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Figure 4.5: Different ranges of α

underbidding when private values are small and overbidding when private values are

large, except that figure 8 from CSW(1988) was an experiment with 4 participants.

Furthermore, we can report bidding functions with upper bound of α being 2, 4 and

6 where the green, blue and red lines are bidding function when

α ∈ [0, 6], [0, 4], [0, 2] respectively.

Bidding function will increase for the same value type i as the highest feasible α

increases. And hence bidding function goes from underbidding to overbidding as

upper bound of α increases. The shape of bidding functions (firstly linear but

eventually concave) can be witnessed clearly from the graph. Another observation

is that the pivotal point for bidding function turning into concavity from convexity

decreases as upper bound of α increases.

Kirchkamp and Reiß (2004) and (2019) studied bidders’ behavior in a 2-bidder

first-price auction via experiments and one of the auctions had private values

distribute uniformly between [0, 50] and only permitted non-negative bids, which

was called as ”0+” treatment. The ”0+” treatment is the traditional first-price

auction, which is also consistent with our setting except for the continuum support.
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Figure 4.6: Difference between stable bids and BNE

”0+” experiment 2 found overbidding for all types of private values and the highest

type would overbid the BNE result by 10, which is about 20% of the total range of

private values. We can roughly approximate such a result using our model by

restricting the ambiguity averse coefficient α to be [8, 12]. We can show the

difference between stable bidding prices and BNE result in the graph below:

The lower bound α = 8 will make sure the low private value types are not

underbidding and the upper bound α = 12 makes sure the highest overbidding

percentage is only 20% of the total range of values.

4.4.2 Comparison with other solution concepts

In this subsection, we want to re-illustrate and emphasize the differences and

connections between our model and some existing solution concepts in the

literature. The most common solution concept used to study auction is

(symmetric) Bayesian Nash Equilibrium. Our approach is obviously not the BNE

approach since bids in our model reach stable state (equilibrium) after bidders

gradually eliminate bidding prices that are implausible to be best responses, which

makes our model very similar to Iterated Elimination of Dominated Strategies

2We look at figure 6 in Kirchkamp and Reiß (2004) and 50% quantile line of 0+ treatment
(median amount of overbidding) in Fig. 7 in Kirchkamp and Reiß (2019)
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under some restrictions on beliefs like Dekel and Wolinsky (2003). But the main

difference is that we define upper (lower) bound of plausible strategies as best

response to subjective belief that opponents’ pure bids are distributing uniformly

when having the highest (smallest) ambiguity averse coefficient while the latter

theory eliminates strategies that are never best responses to any belief. Our model

and iterated elimination of dominated strategies justify beliefs differently since the

latter essentially allows existence of beliefs that assigns probability 1 to opponent

bidding extremely small bids, which is rare and implausible. On the other hand,

our approach aggregates every possible scenario evenly by imposing an uniform

subjective belief on what opponents’ bids could be. It would be much easier to

eliminate extremely small (and high) bids in our model since to support such bids

as best response bidders usually need to come up with a rare event with probability

1.

Maxmin approach is to maximize the smooth ambiguity averse representation

under the worst possible scenario and in terms of auction the worst scenario usually

means bidders believe that opponents are bidding their highest feasible bids.

Interestingly, KMM(2005) pointed out that the maxmin preference is a special case

of ambiguity averse model where bidders’ ambiguity averse attitudes rise to infinity.

Intuitively speaking, the higher the ambiguity averse coefficients, the more likely it

is for bidders to focus on cases where where they could have won if they had

increased their bids. (Bidders with small or mild ambiguity averse coefficients do

not fear of the case above and hence they will bid smaller prices than bidders who

are more ambiguity averse.) And hence such bidders will tend to bid close to

private values to avoid potential losses when they are extremely ambiguity averse.

If we simulate maxmin preference in smooth ambiguity averse model, we can plug

very high ambiguity averse coefficients α into the ϕ function and let bidders believe

opponents are bidding the upper bounds of plausible bids. We should expect to see

extremely high bidding prices. For example, the highest bid will be 88% of private

values if we pick α ∈ [40, 50] and be higher than 90% if we pick α ∈ [90, 100].

Majority (more than 75%) of stable bids will be higher than 75% of private value if

α ∈ [40, 50] and higher than 80% of private value if α ∈ [90, 100].

We show the two bidding functions in graphs below, The first graph is when

α ∈ [40, 50] and the second is when α ∈ [90, 100]. The black lines represent stable
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bids predicted by our model while the red lines represent bidding 75% and 80% of

private valuations respectively in each plot.

Figure 4.7: High range of α
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Figure 4.8: Even Higher range of α

But such close-to-private-value bidding prices are never observed in experiments

and neither do participants in real experiments own extremely high ambiguity

averse attitudes . Ahn, Choi, Gale and Kariv (2014) discovered that the range of

ambiguity averse coefficient is only [0, 2]. In conclusion, we do not select maxmin

utility since literature finds it very rare for real individuals to have extreme

ambiguity averse attitudes.

The last solution concept we want to compare is level-k theory. We have mentioned

in the introduction section that the main difference between our model and level-k

is that we introduce a range of ambiguity averse coefficients so that we are able to

construct upper and lower bounds by using the highest and lowest ambiguity averse

coefficient. We can accordingly treat Crawford and Iriberri (2007b)’s level-k theory

as an extreme case of our smooth ambiguity averse level-k model where the upper

and lower bound of ambiguity averse coefficients are set to be identical at 0. If

α = 0, ϕ(x) is easily proved to be identity function, which makes ϕ ◦ u the material

payoff function used in Crawford and Iriberri (2007b). An L0 bidder is defined to

bid uniformly from the plausible set of prices and L1 is best responding to L0,

which is similar to our first round of elimination of implausible bids where bidders

believe opponents’ definitive bids are distributing uniformly. But Lk’s best

response to L(k-1) for any k ≥ 1 will only be a singleton set of bidding prices since
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level-k theory is essentially that the upper and lower bound of ambiguity averse

coefficient are both 0. According to the description above, we may view level-k

theory as a very specific case of our smooth ambiguity averse level-k model. A

difference between our model and level-k theory in Crawford and Iriberri (2007b),

however, is that they stopped their study at L2, which is only 2nd round since they

thought that experiment subjects may not be able to think beyond that level. Ours

will not stop until equilibrium is reached.
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Variables”, Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), Vol.

56, No. 2 (Jun., 1994), pp. 365-368.
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