
Adaptive Techniques for Scale-Resolving Turbulence Simulations Using
Super-Resolution Reconstruction

by

Miles J. McGruder

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2024

Doctoral Committee:

Professor Krzysztof J. Fidkowski, Chair
Dr. Gary Coleman, NASA Langley Research Center
Professor Karthik Duraisamy
Professor Eric Johnsen

Miles J. McGruder

mmcgrude@umich.edu

ORCID iD: 0009-0009-4097-8138

© Miles J. McGruder 2024

Acknowledgments

I would like to start by thanking my advisor, Professor Krzysztof Fidkowski. He has has

been a huge influence in my life. He is the one who got me started in fluid dynamics during

his fall 2017 aerodyanmics class. It was really at that point that college got interesting for

me, and it is safe to say I have stayed a bit longer than I expected. I would also like to thank

Professor Duraisamy, Professor Johnsen, and Dr. Coleman for serving on my committee. It

is only with their constructive feedback that I have been able to finish this thesis.

Countless students have made FXB home over the years. My old lab mates Devina, Yifan,

Gary, Gustavo, and Vivek really got me started in the department before the pandemic. Nick,

Fabian, and Logan went out of their way to connect with me as a new student. Studying for

prelims with Alex and Rahul really kept me going while sitting at my parents’ dining room

table. Playing squash with Hoang and Guodong was my first real exercise in years. Thanks

again to Nick for hosting game nights and F1 watch parties where I met Chris, Jasmin, and

other members of the CASLAB. Thanks to Rakesh and Marco for being great roommates.

Thanks to Alex for being a great office mate over the years, it is always fun to have someone

around as excited about CFD as I am. I have loved talking to our office neighbors Sebastian,

Elliot, and Ral about numerical methods. The MDO lab has shaped my post-pandemic

experience in the most positive way. Huge thanks to Eytan, Hannah, and Alex for biking

with me so often. Thanks to Sabet and Kleb for teaching me to solve nonlinear systems.

Thanks to Ella, Ali, and Feriel for all the insightful discussions over the years. Of course, a

huge thank you to Bernardo for keeping me gonig while writing this thesis. Finally, thank

ii

you to my family for supporting me every step of the way. I couldn’t have done it without

all of you.

Thank you to NASA for funding the work in this thesis under the support of NASA Coop-

erative Agreement 80NSSC18M0149.

iii

Table of Contents

Acknowledgments ii

List of Figures vi

List of Tables x

Abstract xi

Chapter 1 Introduction 1
1.1 Large-Eddy Simulation . 2
1.2 Error Estimation . 3
1.3 Mesh Adaptation . 5
1.4 Machine Learning for Adaptation . 7
1.5 Objective and Contributions . 8
1.6 Outline . 10

Chapter 2 Discretization Techniques 12
2.1 Introduction . 12
2.2 Discontinuous Galerkin Finite-Element Method 12

2.2.1 eddy . 14
2.3 Kuramoto-Sivashinsky (KS) Equation . 15

2.3.1 Nonlinear Term . 15
2.3.2 Anti-diffusive Term . 17
2.3.3 Fourth-Order Diffusion Term . 19

2.4 KS Equation Solver Implementation . 20
2.4.1 Verification . 21

2.5 Summary . 26

Chapter 3 Super-Resolution of the 1D Kuramoto-Sivashinsky Equation 27
3.1 Introduction to Super-Resolution Reconstruction 27
3.2 Super-Resolution Reconstruction . 30

3.2.1 KS Reconstruction Across Equation Parameterizations 34
3.2.2 Influence of Network Size . 42

3.3 Summary . 45

Chapter 4 Super-Resolution Reconstruction in Higher Dimensions 46
4.1 Super-Resolution in Two Dimensions . 46

iv

4.1.1 Methodology . 46
4.1.2 Results . 51

4.2 Super-Resolution in Three Dimensions . 58
4.2.1 Methodology . 58
4.2.2 Network Design . 60
4.2.3 Network Sizing Study . 63
4.2.4 Influence of Training set and Reynolds Number 66

4.3 Summary . 70

Chapter 5 Super-Resolution Adaptation in 3D 78
5.1 Introduction . 78
5.2 Super-Resolution-Based Error Indicators . 79

5.2.1 State Difference . 79
5.2.2 Entropy-Adjoint-Weighted-Residual 80
5.2.3 The Entropy Adjoint . 81

5.3 Adaptation Strategy . 83
5.4 Unbiased Channel Test Cases . 85

5.4.1 Geometry . 85
5.4.2 State Difference Error Indicator . 87
5.4.3 Entropy-Adjoint-Weighted-Residual Error Indicator 96

5.5 Comparison With Velocity Gradient Error Indicator 108
5.6 Periodic Hill Test Case . 112

5.6.1 Geometry and Case Setup . 112
5.6.2 Adapted Results . 113

5.7 Trailing Edge Cooling Slot Test Case . 123
5.7.1 Differences in Network Design . 123
5.7.2 Error Indicator . 124
5.7.3 Data Generation and Network Training 125
5.7.4 Cooling Slot Test Case . 125
5.7.5 Results . 127

5.8 Summary . 128

Chapter 6 Conclusions 136
6.1 Summary . 136
6.2 Contributions . 139
6.3 Research Outlook . 139
6.4 Future Work for Super-Resolution-Based Indicators 141

Bibliography 142

v

List of Figures

2.1 The primal form may be converted to a useful form for implementation by
specifying one of the two elements in the jump terms as the element of interest. 18

2.2 Second-order term achieves optimal ? + 1 convergence rate. 23
2.3 Fourth-order term achieves optimal ? + 1 convergence for orders except ? = 2

where suboptimal convergence is expected. 23
2.4 Bifurcation regimes for DG solutions of the KS equation. 26

3.1 G − C diagrams for reconstruction testing on KS equation data. 32
3.2 ? = 3 to ? = 7 reconstruction comparison for network trained on a = 0.02

data only. 35
3.3 ? = 3 to ? = 7 reconstruction comparison for network trained on a = 0.01

data only. 37
3.4 ? = 3 to ? = 7 reconstruction comparison for network trained on a = 0.02 and

a = 0.01 data. Testing on unseen data at the training parameterizations. . . 39
3.5 ? = 3 to ? = 7 reconstruction comparison for network trained on a = 0.02 and

a = 0.01 data. Testing on unseen data at unseen parameterizations. 41
3.6 ? = 3 to ? = 7 reconstruction comparison for a large network trained on

a = 0.02 and a = 0.01 data. Testing on unseen data at the training parame-
terizations. 43

3.7 ? = 3 to ? = 7 reconstruction comparison for a large network trained on
a = 0.02 and a = 0.01 data. Testing on unseen data at unseen parameterizations. 44

4.1 x (streamwise direction) momentum contours of an original channel flow snap-
shot used for training and testing. High-order ? = 15 element boundaries are
shown. 47

4.2 ? = 1 to ? = 3 super-resolution of element “c” using neighboring element
data. Dots indicate Lagrange node positions for each degree of freedom. . . . 47

4.3 Examples of fully connected and incremental super-resolution architectures.
Black boxes represent fully connected networks labelled [hidden layers x neu-
ron count]. Orange boxes represent input and output state at the indicated
order. Direct connections from input to output represent the addition of the
original state to the network output. 49

4.4 Training and testing sample slice locations in turbulent channel data. 49
4.5 Example training histories. 50

vi

4.6 ? = 1 to ? = 3 super-resolution test on 32 x 32 elements with a single hidden
layer fully connected network of 128 neurons. Streamwise velocity contours
at H+ ≈ 247. 52

4.7 Streamwise and spanwise energy spectra for ? = 1 to ? = 3 super-resolution
on 32 x 32 elements. 53

4.8 Comparison of single-shot and incremental super-resolved fields with the input
and target fields. Streamwise velocity contours at H+ ≈ 247. 54

4.9 Streamwise and spanwise energy spectra comparison for ? = 1 to ? = 7 super-
resolution. 55

4.10 Spectral progression of ? = 1 to ? = 7 incremental super-resolution. 56
4.11 Qualitative comparison of incremental super-resolution against the true solu-

tion at each reconstruction step. The left column is the truth at each incre-
mental reconstruction step, the right column is the reconstruction. Streamwise
velocity contours at H+ ≈ 247. 57

4.12 The network takes state from a coarse space and approximates the solution
in a fine space. 60

4.13 Complex geometry curvature information is reduced to a single tensor in this
simple model. 61

4.14 Example network architectures for sizing study. Each network is fully con-
nected with two hidden layers. Input and output layers are in orange, hidden
layers are in grey. Hidden layer size varies by orders of magnitude. 64

4.15 Spectra for network sizing study at various wall distances. All data are col-
lected on '4g = 395 turbulent channel data. 65

4.16 Streamwise turbulent energy spectrum reconstruction comparisons for a tur-
bulent channel data set at '4g = 395. 67

4.17 Streamwise turbulent energy spectrum reconstruction comparisons for a tur-
bulent channel data set at '4g = 950. 68

4.18 Selected snapshot reconstruction where a network trained on '4g = 395 tur-
bulent channel flow data is used to reconstruct an '4g = 395 turbulent channel
flow-field. 71

4.19 Selected snapshot reconstruction where a network trained on '4g = 950 tur-
bulent channel flow data is used to reconstruct an '4g = 395 turbulent channel
flow-field. 72

4.20 Selected snapshot reconstruction where a network trained on mixed turbulent
channel and periodic hill data is used to reconstruct an '4g = 395 turbulent
channel flow-field. 73

4.21 Selected snapshot reconstruction where a network trained on '4g = 395 tur-
bulent channel flow data is used to reconstruct an '4g = 950 turbulent channel
flow-field. 74

4.22 Selected snapshot reconstruction where a network trained on '4g = 950 tur-
bulent channel flow data is used to reconstruct an '4g = 950 turbulent channel
flow-field. 75

vii

4.23 Selected snapshot reconstruction where a network trained on mixed turbulent
channel and periodic hill data is used to reconstruct an '4g = 950 turbulent
channel flow-field. 76

5.1 Uniform channel element outline. All elements are identical shape and aspect
ratio. 85

5.2 Error indicator and element order plots for an '4g = 395 uniformly spaced
channel using the state difference indicator. 88

5.3 Turbulent statistics comparing two iterations of the state difference error in-
dicator with uniform refinement at '4g = 395. 91

5.4 Error indicator and element order plots for an '4g = 590 uniformly spaced
channel using the state difference indicator. 93

5.5 Turbulent statistics comparing two iterations of the state difference error in-
dicator with uniform refinement at '4g = 590. 95

5.6 Error indicator and element order plots for an '4g = 950 uniformly spaced
channel using the state difference indicator. 97

5.7 Turbulent statistics comparing two iterations of the state difference error in-
dicator with uniform refinement at '4g = 950. 98

5.8 Error indicator and element order plots for an '4g = 395 uniformly spaced
channel using the adjoint weighted residual error indicator. 99

5.9 Turbulent statistics comparing two iterations of the entropy-adjoint-weighted-
residual error indicator with uniform refinement at '4g = 395. 101

5.10 Error indicator and element order plots for an '4g = 590 uniformly spaced
channel using the adjoint weighted residual error indicator. 103

5.11 Turbulent statistics comparing two iterations of the entropy-adjoint-weighted-
residual error indicator with uniform refinement at '4g = 590. 104

5.12 Error indicator and element order plots for an '4g = 950 uniformly spaced
channel using the adjoint weighted residual error indicator. 106

5.13 Turbulent statistics comparing two iterations of the entropy-adjoint-weighted-
residual error indicator with uniform refinement at '4g = 950. 107

5.14 Element order plots for an '4g = 395 uniformly spaced channel using a velocity
gradient based indicator. 108

5.15 Turbulent statistics comparing two iterations of the state difference error in-
dicator with two iterations of a velocity gradient indicator at '4g = 395. . . . 110

5.16 Periodic hill geometry. Elements are cubic to comply with spline geometry
definition. 112

5.17 Various averaged statistical profiles relative to the DNS of Breuer et al. at
G/ℎ = 0.05. 115

5.18 Various averaged statistical profiles relative to the DNS of Breuer et al. at
G/ℎ = 2.0. 116

5.19 Various averaged statistical profiles relative to the DNS of Breuer et al. at
G/ℎ = 4.0. 117

5.20 Various averaged statistical profiles relative to the DNS of Breuer et al. at
G/ℎ = 7.0. 118

viii

5.21 Element orders and indicated error for two adaptation iterations of the peri-
odic hill using the state difference indicator. 120

5.22 Element orders and indicated error for two adaptation iterations of the peri-
odic hill using the adjoint weighted residual indicator. 121

5.23 Skin friction coefficient comparison between uniformly refined and adapted
periodic hills. DNS separation and reattachment points from Balakumar [7]
are shown as dots. 122

5.24 Simplified 2D super-resolution neural-network model from ? = 1 to ? = 3. . . 124
5.25 Element boundaries for the primary domain of the trailing edge cooling slot

case. Turbulent inflow auxiliary domains are to the left, perfectly matched
layer outflow domains are to the top and right. 126

5.26 Mixed ? = 3, 5, 7 adapted order distribution and reference velocity field. . . . 128
5.27 Normalized velocity profiles for the slot case at various downstream stations.

From top left to bottom right the stations are G/H2 = 4, G/H2 = 10, G/H2 =
20 and G/H2 = 30. 129

5.28 High-order slot case statistics compared with uniform refinement at G/H2 = 4. 130
5.29 High-order slot case statistics compared with uniform refinement at G/H2 = 10.131
5.30 High-order slot case statistics compared with uniform refinement at G/H2 = 20.132
5.31 High-order slot case statistics compared with uniform refinement at G/H2 = 30.133
5.32 High-order slot case statistics compared with uniform refinement at G/H2 = 50.134

ix

List of Tables

5.1 Approximate grid spacing in wall units for uniformly spaced channel mesh at
'4g = 395. 86

5.2 Adapted degrees of freedom relative to uniform refinement for various cases
of the uniform '4g = 395 channel case. 87

5.3 Adapted degrees of freedom relative to uniform refinement for various cases
of the uniform '4g = 590 channel case. 92

5.4 Adapted degrees of freedom relative to uniform refinement for various cases
of the uniform '4g = 950 channel case. 94

5.5 Adapted degrees of freedom relative to velocity gradient-based refinement for
various cases of the uniform '4g = 395 channel case. 109

5.6 Degrees of freedom for various '41 = 2800 periodic hill cases. 119
5.7 Slot case degree of freedom counts in primary computational domain. The

adapted result has undergone two adaptive iterations. 127

x

Abstract

Accurate prediction of turbulent flow phenomena is an area of keen engineering interest. Pre-

dicting these phenomena, such as flow separation, remains difficult after decades of research.

The Reynolds averaged Navier-Stokes (RANS) equations are commonly used, but rely on

empirical models that can fail to accurately predict interesting phenomena like separation.

Direct numerical simulation (DNS) would solve all the shortcomings of the RANS equations,

but it is not practical on modern machines at Reynolds numbers of engineering interest.

Large-eddy simulation (LES) is a crucial middle ground that is becoming increasingly useful

as computational power grows. LES relies on empirical models for small-scale flow features

that are computationally expensive to capture, but still resolves larger turbulent features.

While small-scale modeling brings practical turbulence simulations just within reach of mod-

ern machines, these simulations remain expensive. Adaptation can increase the practicality

of LES by further reducing its computational cost.

This dissertation implements an adaptive method for LES in a discontinuous Galerkin (DG)

context. The core of the adaptation process is a neural-network that predicts fine scales in

a given flow-field. Preliminary testing in 1D shows reconstruction is accurate with a simple

neural-network. Reconstruction remains accurate in two and three dimensions using simple

network architectures. Preliminary testing on more sophisticated network architectures in-

dicates significant gains in reconstruction accuracy are possible. A single super-resolution

network trained on a variety of data is used to reconstruct various flows during adaptation.

Two error indicators are proposed based on super-resolution reconstruction. One is based

on the magnitude of the network’s fine scale correction and the other on an entropy-adjoint

xi

weighted residual. The error indicators are tested by adapting a variety of turbulent flow

problems.

The adaptive method outperforms uniform refinement given a poor initial mesh. The adap-

tive methods are tested on a channel flow problem where no initial mesh refinement is

assumed. The simple correction magnitude error indicator returns the expected error pat-

tern across Reynolds numbers. Adaptation with this indicator proceeds as expected, placing

the most resolution near the channel walls, while leaving the channel center unrefined. The

entropy-adjoint weighted residual indicator shows more noise using the same averaging pro-

cess. The extra noise decreases as Reynolds number increases. Adaptation with the correc-

tion magnitude indicator generally outperforms uniform refinement on this case, achieving

similar performance to uniform refinement at approximately 25% fewer degrees of freedom.

The correction magnitude indicator is then tested against a mean velocity gradient indicator.

Testing on a periodic hill geometry shows similar results between the error indicators. The

indicators show high error near the center of the domain, as opposed to the already refined

domain edges. Adaptation performance is more similar to uniform refinement on this case.

Finally, a modified version of the simple correction magnitude indicator is tested on a geom-

etry intended to mimic a trailing edge cooling slot in turbomachinery. A tendency toward

wake refinement continues from the periodic hill test case. Once again, the adapted results

are in line with, or slightly better than uniform refinement on a degree of freedom basis. Sug-

gestions are made to improve the performance of the weighted residual error indicator with

different averaging techniques. Suggestions are also made for impactful alternative research

directions.

xii

Chapter 1

Introduction

Today, the engineering design process is governed primarily by low-fidelity models. A deep

knowledge of physical principles informing low-fidelity models and a thoughtful engineer can

work wonders. Rather than replace these processes, computational fluid dynamics (CFD)

seeks to provide precise answers to questions that cannot be answered by simple models.

These more difficult questions often involve viscous phenomena, such as flow separation

and drag prediction. Developing accurate models of viscous phenomena has been an active

research area for decades. The difficulty stems from the complexity of solutions to the

Navier-Stokes equations.

The Navier-Stokes equations have proved to be an extremely accurate macroscopic model

of fluid flow. Accuate solutions to these equations would answer most analysis questions of

engineering interest. Unfortunately, these equations admit turbulent solutions at sufficiently

high Reynolds numbers. These solutions exhibit a wide range of spatial and temporal scales,

making the equations extremely difficult to solve.

In a world of infinite computing capacity, direct numerical simulation (DNS) would be the

ubiquitous solution. DNS simply resolves all spatial and temporal scales of the solution. The

only requirement is a computational grid able to resolve the Kolmogorov microscales and a

1

time step to match. In this reality, engineers could move high-fidelity analysis forward in

the design process. Costly design mistakes due to the inevitable inaccuracies of low-fidelity

models would be avoided. Unfortunately, despite rapid advances in parallel computing over

the last decade, DNS remains out of reach for all but moderate Reynolds numbers and the

simplest goemetries.

The Reynolds-averaged Navier-Stokes equations have become common in practical engineer-

ing applications. These equations rely on the Reynolds decomposition, where flow-field vari-

ables are separated into time-averaged and fluctuating components. The relevant equations

are therefore a time-averaged version of the Navier-Stokes equations. Thankfully, most phe-

nomena of engineering interest are statistically stationary so a time-averaged set of equations

may be applied. These equations would be perfect were it not for the nonlinear Reynolds

stress term in the equations, which must be modeled empirically.

To increase accuracy, a higher-fidelity method is required that remains short of DNS. Large-

eddy simulation (LES) fits this role nicely.

1.1 Large-Eddy Simulation

LES [83, 62, 102, 82] aims to resolve scales of interst, that is, those larger than the compu-

tational grid resolution. Smaller scales are handled by subgrid-scale models that mimic the

effects of fine scale turbulence on the larger scales. Instead of averaging field quantities over

time, LES typically applies a low-pass filter to scales smaller than the grid resolution itself.

These filtered equations then require a subgrid-scale model to close.

LES accepts subgrid-scale modeling errors for the sake of vastly reduced computational

cost relative to DNS. Turbulence is a chaotic phenomenon. Any solution error will grow

exponentially as it propagates through time. Eventually, the resulting solution will bear

no resemblance to the initial condition. This may make LES sound useless at first, except

2

we are interested in time-averaged flow properties, not the exact time evolution. LES is

perfectly capable of producing nearly correct time-averaged fields, even if the instantaneous

eddy positions are incorrect.

LES is typically performed with an explicit subgrid-scale model, for example the Smagorinsky

model [108]. An explicit subgrid-scale model is not required to perform LES. Plenty of

examples exist of LES performed without subgrid-scale models in finite-volume [59] and

finite-element [115, 28, 91, 90, 11, 9, 53] settings. These approaches are called implicit large-

eddy simulation (ILES). In this case, the dissipation of the method itself acts as the subgrid-

scale model. One could consider these techniques under-resolved DNS because the only

difference between running ILES and DNS is grid resolution. Increasing the grid resolution

of on ILES until it can resolve the Kolmogorov microscales results in a DNS solution.

1.2 Error Estimation

Despite advances in computational power and modeling small flow-field scales, LES remains

too computationally expensive for most practical situations. We could further reduce costs

by concentrating mesh resolution only where necesary in the computational domain. This

process can be performed manually, but takes additional time, effort, and can still result in

a sub-optimal grid. It would be much easier and more effective to automatically concentrate

resources where required in the domain. For this, we need a form of error-estimation for

chaotic turbulent flows.

Adjoint-based error-estimation [45, 40] has proved worthwhile on steady and some unsteady

flow problems. The adjoint method is output-based, meaning that error in scalar quantities

of interest computable from the flow-field variables, such as drag, is estimated. The technique

can do so because the adjoint itself is a linear sensitivity measurement between the output

of interest and the residual. This error estimate is localizable since the error estimate for the

full domain reduces to a sum over elements. Taking the element contributions separately

3

and, commonly, taking the absolute value of each one yields a local error indicator.

Ideally we would compute error relative to the exact differential equation solution. Of course,

obtaining the exact solution would be prohibitively expensive and defeat the entire purpose

of the error-estimation exercise. When computing an adjoint-based indicator we instead

settle for two finite-dimensional discretization levels. Computing the error estimate requires

an adjoint approximation in the finer discretization level. Solving the adjoint equation in the

fine space could be computationally expensive. Solving for the adjoint requires the solution

of a linear-system whose size is the same as the system of discretized equations we are trying

to solve. Approximate solutions are appropriate in this context, since the error estimate is

not an error bound.

While the adjoint can be used in some laminar unsteady settings, chaotic adjoints have

fundamental difficulties. The adjoint is a linear relationship between residuals and outputs.

The fundamental characteristic of a chaotic system is that the future state of the system is

extremely sensitive to initial conditions. This means that any adjoint sensitivity will become

meaningless over a relatively short time span. This causes solutions to the adjoint equation

to diverge, or at least return inaccurate results. While the adjoint equation alone cannot

serve our purpose, an approximate reconstruction route remains available.

An alternative to the traditional output adjoint is the entropy-adjoint proposed by Fidkowski

and Roe [47]. They showed that the entropy variables are an adjoint for a particular output

functional related to spurious entropy generation in the computational domain. The spurious

entropy generation is closely related to under-resolution in the domain. While the entropy

output cannot target outputs as precisely as an output adjoint, adaptation with the entropy-

adjoint correlates well with outputs of interest [43]. The entropy-adjoint approach extends

to unsteady simulations [71]. Crucially, the entropy-adjoint is a route to adaptation for

chaotic fields [10]. Since no solution of the adjoint equations is required, only a variable

transformation, the entropy-adjoint is readily accessible.

4

Alternative appraches for chaotic sensitivity analysis have been developed. The ensemble

adjoint method [78, 37] involves averaging sensitivities computed over many system realiza-

tions. In practice, the method converges too slowly to be practical. Another approach is

the least-squares-shadowing technique proposed by Wang et al. [117]. Finding the shadow

trajectory requires solving a, generally large, constrained optimization problem [15, 14]. On

problems of practical size, the method computes accurate sensitivities but computational

cost is high [16]. The non-intrusive least-squares-shadowing approach has been developed

by Ni and Wang [94] to address the cost issues of the previous method. Testing in a discrete

adjoint setting by Blonigan [13] shows that the method remains expensive. An alternative

cost reduction approach based on reduced order modeling has been proposed by Shimizu

and Fidkowski [104, 105].

Other simple strategies for adaptive sensors in chaotic flows include an indicator based on

the ratio of resolved to total kinetic energy proposed in [24]. Kinetic energy present at

fine scales can also be used to generate an anisotropic error indicator [112]. Discretization

and modeling error in LES have been considered separately in a finite element framework

by Hoffman in [64]. Previous work by Bassi et al. [8] has considered a combined error

indicator based on pressure jumps [76], and modal coefficient decay [98]. Simple gradient-

based indicators [6, 60, 97] have been shown to miss key flow features [118]. Venditti and

Darmofal [116] showed that output-based indicators ensure key flow features are captured

and therefore outperform gradient-based indicators.

1.3 Mesh Adaptation

Localized error indicators are typically formed element-wise. The element local error in-

dicator says nothing about the way the mesh should be adapted, leading to a variety of

techniques. One option is hanging-node adaptation, used in [12, 70, 100, 30, 106, 25]. In a

typical computational mesh, each face on each element meets a single face on an adjacent

5

element. This restriction is not strictly necessary, since the integration over a face that

informs the residual contribution in finite-volume and discontinuous finite-element methods

can be broken up. An element face could then abut faces of two different elements, as long

as integration is handled accordingly. This is the idea behind hanging-node meshes. Now,

given an element-local error estimate, a high-error element may simply be split into several

smaller elements without remeshing the nearby region.

In a discontinuous finite-element context, a local error indicator can be used to alter the

element’s polynomial approximation order. This order, or “p”, adaptation has been used in

several previous works [10, 114, 92]. The method is simple to implement. The most complex

requirement is a finite-element code that supports variable polynomial order. This is mostly

a matter of having sufficiently sophisticated book-keeping structures. One must also ensure

that integration on element faces is handled correctly on faces where adjacent elements have

different orders. Like the hanging-node case, the independence of the elements makes this

relatively straightforward.

For more precise control over the mesh, some sort of remeshing should be employed. Smooth

remeshing avoids abrupt resolution changes in the computational domain. Remeshing also

facilitates element-shape optimization. Yano and Darmofal [123, 124] developed a framework

to produce an optimal mesh for a given number of degrees of freedom. This framework allows

anisotropic-mesh optimization using only element-local error indicators.

Mesh adaptation is possible not only in space, but also time [46, 41]. Even anisotropic-mesh

generation in higher dimensions is possible. For example, Caplan et al. [22, 21] perform

anisotropic-mesh optimization in four dimensions. This allows optimal mesh construction

not only through space, but also time. This work requires a solver able to handle space and

time discretization simultaneously. Fortunately, the discontinuous Galerkin finite-element

method can be extended to cover time and space simultaneously, providing an appropriate

setting for these optimizations.

6

In adaptive LES, Ims and Wang [68] recently reviewed several efforts. The first method

is based on an unsteady residual indicator originally used in [51]. The second indicator is

the spectral decay indicator mentioned earlier [98], and also used by Bassi et al. in [8].

The third indicator, developed by Toosi and Larsson [112], is an anisotropic indicator based

on the energy in the smallest resolved scales. They use this indicator to predict optimal

grid anisotropy. Toosi and Larsson extend their previous work with an error indicator that

measures the dependence of the solution on the LES filter width [113]. Bassi et al. [10]

have performed LES adaptation with an entropy-adjoint-weighted-residual error indicator in

a ?-adaptive setting. Abbà et al. [1] also use a ?-adaptive framework for their high-order

LES adaptation.

1.4 Machine Learning for Adaptation

Machine-learning techniques based on artificial neural networks have become increasingly

common over the past decade. The dual tail winds of increasing computational power and

widely available data have led to the widespread usefulness of these machine-learning tech-

niques. The mid 2000s saw an explosion in parallel computing as CPU clock speed scaling

began to slow. Researchers began using graphics processing units (GPU) for more general

and highly parallel computing tasks. Early GPU work by machine-learning researchers, [77]

for example, have lead to the explosion we see today.

This proliferation has extended to CFD, and mesh adaptation in particular. For example,

Fidkowski and Chen [44] present a machine-learning technique to determine adapted mesh

anisotropy. The method compares well against the framework introduced by Yano mentioned

earlier. Chen and Fidkowski [26] also propose a convolutional neural network for error-

estimation. The goal is to use the network as a surrogate model for the error estimate and

adaptive flagging based on readily available flow features. In a similar vein, Bohn and Feischl

[17] show that a recurrent neural network can be trained to optimally estimate error and flag

7

elements for a variety of differential equations. Some other recent works learn an adaptation

policy directly using a reinforcement learning framework [121, 48]. Fidkowski [42] uses field

inversion and machine learning (FIML) [95, 107, 65, 63] to perform output-based adaptation

of chaotic flow. FIML is used to correct a RANS model to match time averaged unsteady

data. Output-adjoint-based adaptation methods can then be applied on the corrected RANS

equations. Tlales et al. [111] use machine learning to differentiate laminar from turbulent

flow regions in a technique that does not require tunable parameters.

Another way to use machine learning for adaptation is to perform reconstruction. In re-

cent years, machine learning has become the dominant tool for super-resolution [122, 4].

Super-resolution is a classical computer vision task where a low-quality image is restored

to a high-quality baseline using an upscaling model [39, 96]. In a fluid dynamics context,

Liu et al. [84] proposed an approach for spatio-temporal super-resolution using multiple

convolutional paths, each handling different time ranges. Fukami et al. [50] proposed an

alternative temporal super-resolution architecture built on their previous single-image work

[49]. The generative adversarial approach of Deng et al. [29] successfully resolves large wake

fields with 4x and 8x upscaling factors. In finite elements, Pradhan and Duraisamy [99]

have introduced a variational-multiscale-consistent network architecture for the discovery of

Galerkin discretization closures. We can take inspiration from their work to develop models

able to perform adaptation on turbulent flow problems.

1.5 Objective and Contributions

An output-based error estimation technique, like the adjoint-weighted-residual, would be

ideal when adapting turbulent flows. However, we know that computing an output adjoint is

reliant on sensitivity analysis that fails in a turbulent setting. An entropy-adjoint-weighted-

residual approach could be used instead, so that only a variable transformation is required

[47]. A fine-space adjoint is still required for an error indicator, it can be found by recon-

8

struction from neighboring states [45]. This approach was taken by Bassi et al. in [10], using

a simple interpolation procedure on the time-averaged state of neighboring elements for the

adjoint reconstruction. The reconstruction procedure does not explicitly attempt to resolve

fine-scale flow features. To the knowledge of the author, reconstruction techniques that gen-

erate fine-scale turbulent features have not been used to create error indicators for turbulent

adaptation. Our objective is to introduce such a fine-scale reconstruction technique to the

adaptation of turbulent flows. We will select an appropriate reconstruction model, generate

error indicators based on that model, and perform adaptation on various turbulent problems.

The main contributions of this dissertation are:

1. Introduced error indicators based on super-resolution reconstruction. One

indicator is based on the magnitude of the correction requested by the super-resolution

reconstruction model. The other indicator uses the reconstruction model in an entropy-

adjoint-weighted-residual framework.

2. Demonstrated that a single reconstruction model trained on a variety of

flows is sufficient for adaptation. In one dimension, we show that reconstruction

is nearly exact on unseen test snapshots when training and test snapshots are of the

same parameterization. In two dimensions, reconstruction quality degrades slightly

and modifications to the network architecture are introduced to further improve re-

construction quality. In three dimensions, a reconstruction model trained at a variety

of flow Reynolds numbers maintains high reconstruction quality relative to more spe-

cialized counterparts.

3. Implemented reconstruction-based adaptation in a high-order discontinu-

ous Galerkin code. We use NASA’s eddy for all 3D adaptations. Super-resolution

training, reconstruction, and error indicators, have been added to eddy.

4. Performed super-resolution-based adaptation on several chaotic flow prob-

lems. The first problem is a turbulent channel where no initial grid refinement has

9

been assumed. Error indicators show high error near channel walls in the region of high

turbulent kinetic energy. The next problem is a periodic hill, a canonical case of flow

separation. Adaptation focuses on the separation wake downstream of the hill. Finally,

a geometry designed to mimic a cooling slot in turbomachinery is tested. Adaptation

concentrates in the wake region behind a bluff body above the cooling slot.

1.6 Outline

In Chapter 2 we briefly discuss the discontinous Galerkin finite-element method. Two equa-

tion sets are used in this dissertation. The Kuramoto-Sivashinsky (KS) equation is used for

preliminary reconstruction testing while the Navier-Stokes equations are used for final tur-

bulent adaptive testing. Both are discussed with an emphasis on the Kuramoto-Sivashinsky

equation because it has relatively little discussion elsewhere.

Chapter 3 deals with reconstruction testing in one dimension. It introduces super-resolution

reconstruction, a canonical computer vision problem that will be repurposed in this disserta-

tion for the reconstruction of finite-element states. A high-order KS-equation implementation

is verified. High-order data is required since network training and testing is projection based.

Basic reconstructin is tested establishing the plausibility of super-resolution reconstruction

as the core of an error indicator. Reconstruction is shown to generalize well to unseen data

for the same equation parameterization and mesh. Moving across parameterizations is shown

to be more challenging, but training on a variety of data largely alleviates this issue.

Chapter 4 moves into higher dimensions. This chapter shows that the reconstruction quality

from 1D testing does deteriorate in higher dimensions. However, the reconstruction is always

directionally correct, as measured by energy spectra. It is also shown that reconstruction

quality can be significantly improved with simple changes to network architecture. Leaving

that aside and moving forward with a simpler architecture, we determine appropriate network

size and training set information. A single network trained on a variety of data is chosen for

10

adaptive use.

Chapter 5 finishes the results by applying the previously gained reconstruction knowledge

to adaptation. Two error indicators are introduced. One measures the state correction

predicted by the network, while the other attempts an entropy-adjoint-weighted-residual ap-

proach. Spatial and temporal averaging techniques are discussed. Adaptation is then sanity

tested on a turbulent channel case with uniformly distributed elements at a variety of friction

Reynolds numbers for both error indicators. This adaptation is then tested on a periodic

hill geometry at low Reynolds number. Finally, a large-scale test case with significant wake

flow is included.

11

Chapter 2

Discretization Techniques

2.1 Introduction

In this chapter we discuss the discretizations and solvers used in this work. The Navier-

Stokes equations are introduced in compact form. We use eddy, a high-order DG code from

NASA Ames Research Center, to solve the Navier-Stokes equations. Discussion is included

of eddy ’s many useful capabilities. We then move on and discretize the 1D Kuramoto-

Sivashinsky equation. This equation is a canonical case of turbulence in 1D. The fourth

order term makes its DG discretization challenging.

2.2 Discontinuous Galerkin Finite-Element Method

This work uses the discontinuous Galerkin finite-element method throughout. Two equation

sets are discretized and used: the Navier-Stokes equations and the Kuramoto-Sivashinsky

equation. We will begin by discussing Navier-Stokes, then move on to Kuramoto-Sivashinsky.

Parts of this chapter appear in or are adapted from our previously published papers [86, 85].

12

In compact form the Navier-Stokes equations are

mu

mC
+ ∇ ·

⃗⃗⃗
F(u) − ∇ ·

⃗⃗ ⃗⃗
G(u,∇u) = 0, (2.1)

where u ∈ RB is the rank B state vector,
⃗⃗ ⃗
F is the inviscid flux, and

⃗⃗ ⃗⃗
G is the viscous flux.

DG splits a computational domain Ω into a tessellation Tℎ of non-overlapping elements, each

covering a volume Ω4. The state is represented as a linear combination of basis functions

u =
#4∑
4

#1∑
8

U4,8q4,8, (2.2)

where #4 is the number of elements, #1 is the number of basis functions on element 4, U4,8 is

basis function coefficient 8 on element 4 and q4,8 is the 8th basis function on element 4. Each

set of basis functions has support over only a single element. We can formally consider each

state uℎ to be a member of a solution-approximation space Vℎ = [Vℎ]B with Vℎ defined as

Vℎ = {D ∈ !2 (Ω) : D |Ω4 ∈ P ?4 ∀Ω4 ∈ Tℎ}, (2.3)

where P ?4 is the set of polynomials of order ?4 on element 4. To discretize and solve the

system of equations, we first find the weak form of the Navier-Stokes equations. To do

so we multiply Equation 2.1 by test functions, integrate by parts, and couple elements via

numerical fluxes:∫
Ω4

w)ℎ
mu

mC
dΩ −

∫
Ω4

∇w)ℎ ·
[⃗⃗ ⃗
F (uℎ) −

⃗⃗ ⃗⃗
G (uℎ,∇uℎ)

]
dΩ +∫

mΩ4

w)ℎ

[
F̂

(
u+ℎ, u

−
ℎ

)
− Ĝ

(
u+ℎ, u

−
ℎ ,∇u

+
ℎ,∇u

−
ℎ

)]
· ®= d(−∫

mΩ4

(
u+ℎ − {uℎ}

)) ⃗⃗ ⃗⃗
G

(
u+ℎ,∇w

+
ℎ

)
· ®= d(= 0, ∀wℎ ∈ Vℎ.

(2.4)

the quantity mΩ4 represents the element boundary, and on that boundary, (·)+ and (·)− rep-

resent quantities taken from the current and neighboring element, respectively. Approximate

13

numerical fluxes are denoted by (̂·), {·} represents a face average or boundary value, and

®= is the outward pointing normal vector. Time evolution consists of solving the unsteady

residual equation R′
ℎ
(Uℎ) at each time step. The equation is

R′ℎ (Uℎ)︸ ︷︷ ︸
unsteady residual

≡ Mℎ︸︷︷︸
mass matrix

3Uℎ

3C
+ Rℎ (Uℎ)︸ ︷︷ ︸

steady residual

= 0, (2.5)

where Mℎ is a mass matrix resulting from the combination of basis and test functions from

the unsteady time term.

2.2.1 eddy

To create our Navier-Stokes training and testing data we use eddy, a DG solver from NASA

Ames Research Center [31, 33]. eddy is designed to be efficient at very high polynomial

orders, for example ? = 15. It uses a matrix free Newton-Krylov solver to alleviate Jacobian

storage requirements on large systems. The Newton-Krylov solver is combined with an

alternating-direction-implicit (ADI) preconditioner developed for space-time tensor product

elements [34]. These features make the solver efficient for large-scale, high-order problems.

In addition to supporting high-order elements, eddy also supports variable order elements.

This is crucial, since we intend to perform order adaptation with our newly developed error

indicators.

When performing order adaptation, the initial mesh will consist of large elements result-

ing in a poorly resolved flow-field. Sufficient under-resolution could destabilize the solver.

Thankfully, eddy is designed around an entropy variable formulation [33], ensuring nonlinear

stability. Some test cases in Chapter 5 begin severely under-resolved. We have observed

that other solvers cannot successfully evolve the initial under-resolved flow-fields. We also

use the multi-physics capabilities of eddy for turbulent inflow generation [23], and perfectly

matched layer (PML) far field conditions [52].

14

Modern CPUs support vector instructions, allowing many, e.g. 8, floating point operations

to be performed in a single instruction. Efficient use of vector instructions is required to

reach the full compute capacity of any modern CPU. eddy is designed with support for vector

instructions in mind. It uses a combination of optimized linear algebra routines and compiler

vectorization to achieve high-performance with vector instructions. As a result, eddy is most

efficient when ? + 1 is a power of two. The optimization for specific orders can turn into a

down side for ?-adaptation, our version of eddy only supports odd ?.

2.3 Kuramoto-Sivashinsky (KS) Equation

We intend to test the fundamentals of super-resolution adaptation in a p-adaptive finite-

element framework. To this end, we need to choose a discontinuous Galerkin finite-element

discretization of the KS equation. We discretize the KS equation in the form

DC + DDG + DGG + aDGGGG = 0. (2.6)

Only the viscosity coefficient, a, on the fourth-order diffusion term is varied. Increasing

or decreasing a is sufficient to explore the range of possible solutions, from steady-state

to chaos. Boundary conditions are always periodic except in particular cases which we

will discuss later. We proceed by discussing the discretization of each term individually,

beginning with the spatial terms.

2.3.1 Nonlinear Term

The nonlinear term, DDG, promotes mixing of scales as the solution evolves in time. This can

be intuited from the fact that this term is identical to the nonlinear term in Burger’s equation.

In the exact solution to Burger’s equation, wave speed is identical to the state at any given

place and time. This causes flow features to “collapse” into each other creating shocks. In

our case, the “collapse” only causes mixing since diffusion prevents sharp discontinuities.

15

For the discontinuous Galerkin discretization of first-order terms, we need to multiply by

test functions and integrate over the domain. Note that test and basis functions only have

support over a single element, so this integration reduces to integration over individual

elements ∫
Ω:

E:,8

(
mD

mC
+ m 5
mG

)
dG = 0 (2.7)

where Ω: is the interior of element :, E:,8 is the 8th test function on element :, D is a (scalar)

state, and 5 = 1
2D

2 is the flux. After an intermediate integration by parts we get

∫
Ω:

E:,8
mD

mC
dG −

∫
Ω:

mE:,8

mG
5 dG +

[
E:,8 5̂

]G:+1/2
G:−1/2

= 0, (2.8)

where 5̂ is an approximate numerical flux to be defined below, and : + 1/2 and : − 1/2 are

the right and left sides of the element, respectively.

Knowing the above DG discretization, we need to find appropriate fluxes for the nonlinear

term. First we will convert the term to flux form via the simple transformation

DDG =

(
1

2
D2

)
G

=⇒ 5 =
1

2
D2. (2.9)

With our analytical flux in hand, we can handle inter-element discontinuities with an ap-

proximate numerical flux. A nonlinear upwind flux is selected with the form

�̂ =
1

2

(
5 9
��
9+1/2 + 5 9+1

��
9+1/2

)
− 1

2

��0̂ 9+1/2�� (D 9+1�� 9+1/2 − D 9 �� 9+1/2) , (2.10)

where (·) | 9+1/2 denotes quantities evaluated at the interface between elements, (·) 9 denotes

a quantity from the left element, and (·) 9+1 denotes a quantity from the right element. The

choice of wave speed at the interface, 0̂ 9+1/2, determines the numerical scheme. In this work

16

we have used

0̂ 9+1/2 =


5 9+1− 5 9
D 9+1−D 9

���
9+1/2

when D 9
��
9+1/2 ≠ D 9+1

��
9+1/2

5

(
D 9

��
9+1/2

)
when D 9

��
9+1/2 = D 9+1

��
9+1/2 .

(2.11)

The choice
5 9+1− 5 9
D 9+1−D 9 is consistent with the design of Roe schemes.

2.3.2 Anti-diffusive Term

The anti-diffusive term, DGG, promotes growth in the solution. In the absence of the diffusive

term DGGGG, the solution would simply blow up. For this anti-diffusion term we use the

classical second-order interior-penalty method [36].

Finite-element methods are often presented in a general bilinear form, involving state and

test components, over a full computational domain. For the purpose of implementation, it

is useful to restrict this general formulation to an element-specific residual calculation. In

the nomenclature of Arnold et al. in [5], the former is the primal form and the latter is the

flux form of the discretization.

We begin by defining the relevant trace operators, the average, {·}, and jump [·] on the

interface of elements 1 and 2. The average and jump are defined as

{@} = 1

2
(@1 + @2) , [@] = @1=1 + @2=2, (2.12)

where @ is any given quantity, and = is the outward pointing normal from the indicated

element. Literature will typically at this point define the same trace operators for vector

quantities. In our case, we are restricting ourselves to the 1D KS equation, which is scalar,

so the vector trace operators reduce to their scalar versions.

With the trace operators introduced, the bilinear form for the classical second-order interior-

17

12 2
n n

x

Figure 2.1: The primal form may be converted to a useful form for implementation by
specifying one of the two elements in the jump terms as the element of interest.

penalty method is

� (D, E) =
∫
Ω

DGEG dG −
∫
Γ

[D]{EG} + {DG}[E] dB +
∫
Γ

[

ℎ
[D] [E] dB, (2.13)

where Γ is the set of all element interfaces in the domain, [is a positive number, and ℎ is

a measure of element size normal to the face. The final term is separated for emphasis; it

is the jump penalization term responsible for keeping the method stable as long as [is set

sufficiently high. In this work, [= 8 has been used, and ℎ is set to the element length.

While the primal form is useful for proving convergence properties of the method, it does not

provide a residual contribution corresponding to each test function on each element. Next

we will lay out the necessary assumptions to convert the primal form into the flux form for

implementation.

Conversion from the primal to flux form can be performed by following Figure 2.1. When

we expand the primal form with the trace operators, we will assume that element 1 is our

element of interest, and element 2 is any adjacent element. Further assuming the mesh is

water tight, we know that =2 = −=1. We denote quantities from the element of interest with

(·)+, and quantities from adjacent elements with (·)−. We restrict the computational domain

Ω, to the domain of element :, Ω: , and the set of edges Γ, to the element’s edges Γ: . Finally,

we know that test functions have only local support over each element, so all test function

values from neighboring element elements are simply zero. These operations result in the

18

discrete residual

' (:, 8) +=
∫
Ω:

mD

mG

mE:,8

mG
dG −

∫
Γ:

E:,8

mG

1

2

(
D+ − D−

)
= dB −∫

Γ:

E:,8

[
1

2

(
mD+

mG
+ mD

−

mG

)
− [
ℎ

(
D+ − D−

)
=

]
= dB,

(2.14)

for test function 8 on element :, where = is the outward facing normal, in our case simply -1

or 1. With these operations we have recovered the same form as the nonlinear term.

2.3.3 Fourth-Order Diffusion Term

Fourth-order interior-penalty discretizations have been discussed in several publications in-

cluding [109, 56, 57]. Working from the bilinear forms derived in these papers, we can follow

the same process as the second-order term to find the flux form for implementation. For this

solver, we begin from the bilinear form listed in [57]

� (D, E) =
∫
Ω

m2D

mG2

m2E

mG2
dG +∫

Γ

({
m3D

mG3

}
[E] +

{
m3E

mG3

}
[D] −

{
m2D

mG2

} [
mE

mG

]
−

{
m2E

mG2

} [
mD

mG

]
+ f [D] [E] + g

[
mD

mG

] [
mE

mG

])
dB,

(2.15)

where there are two new stabilization constants f and g. They penalize the state and

gradient across each interface respectively. These constants must be set sufficiently high to

ensure the stability of the method. In this work f is set to ?6 for ? ≤ 3 and 729 otherwise,

while g is set to ?2 for ? ≤ 3 and 9 otherwise. Proceeding with our substitution process, we

19

find the flux form appropriate for implementation:

' (:, 8) +=
∫
Ω:

m2D

mG2

m2E:,8

mG2
dG +∫

Γ:

m3E:,8

mG3

1

2

(
D+ − D−

)
= + E:,8

1

2

(
m3D+

mG3
+ m

3D−

mG3

)
= − m

2E:,8

mG2

1

2

(
mD+

mG
− mD

−

mG

)
=−

mE:,8

mG

1

2

(
m2D+

mG2
+ m

2D−

mG2

)
= + fE:,8

(
D+ − D−

)
=2 + g mE:,8

mG

(
mD+

mG
− mD

−

mG

)
=2 dB.

(2.16)

2.4 KS Equation Solver Implementation

The present implementation needs to be able to support high-order elements for the gener-

ation of training data. To this end, the solution and test bases are Lagrange polynomials

using Chebyshev node spacing. This will prevent spurious oscillations at element edges and

resulting poor numerical conditioning.

Since the KS equation is fourth-order, it is expected to be extremely stiff. Explicit time

stepping with such an equation quickly becomes computationally infeasible. Instead, we

perform Newton’s method at each time step to solve the unsteady system of equations. The

linear solver uses the Generalized Minimal Residual Method (GMRES) [103]. This is an

iterative solution technique that incrementally builds an orthonormalized Krylov subspace

for the full system’s Jacobian. At each iteration, the minimal residual solution in the partial

Krylov subspace is found by QR decomposition. The QR decomposition is also performed

incrementally via Givens rotations.

In GMRES, the full residual Jacobian matrix is not required, only the matrix-vector product.

Our 1D DG method will form a large block tri-diagonal Jacobian that would be inefficient to

form and store. For more practically sized problems, it is even infeasible to store the Jacobian

in a sparse representation. These motivations lead to a class of finite-difference methods to

compute the matrix-vector product [75, 20, 19]. Since the Jacobian matrix represents the

20

derivative of each residual entry with respect to each state, the matrix-vector product is a

directional derivative. This leads naturally to a finite-difference technique, where the step is

taken in the direction of the vector to approximate the matrix-vector product.

It has been observed that a first-order finite-difference is sufficient to accurately compute the

matrix-vector product in most situations [75]. However, at least for the KS equation with

our discretization, we observe this assertion is heavily dependent on the chosen step size.

As opposed to the matrix-vector product with already orthonormalized Kyrlov vectors that

form the Krylov subspace in GMRES, choosing a step size for full linear residual evaluation

is more tricky. In this work we have used the step size presented by Yildirim et al. in [125].

This method is a variant of the one used by Brown and Saad in [20] which provides accurate

results for differently scaled input vectors.

2.4.1 Verification

At this point the solver should be verified to ensure the output data are accurate. We

will perform this verification in two ways. The first is to use the method of manufactured

solutions to enforce an exact solution on the system using a source term. This method will

test the convergence rate of the second- and fourth-order terms, since their implementation

is relatively error prone. The second method will reproduce a series of bifurcations in the

solution based on the parameterization of the equation. Specifically, the coefficients on all

terms except the fourth-order diffusion term are held constant while the diffusion term is

slowly weakened, leading to chaotic behavior.

In the method of manufactured solutions, the test equation is augmented with a source term

B,

DC + DDG + DGG + aDGGGG + B = 0. (2.17)

21

We can then assume a solution, which we take to be the Gaussian function

D = exp
(
−2 (G − c)2

)
(2.18)

on the domain [0, 2c]. Substituting Equation 2.18 into Equation 2.17 yields the necessary

source term B. Plugging this source term back into Equation 2.17 gives an equation that has

Equation 2.18 as its solution. We can then compare any numerical solution to the modified

equation against the exact analytical solution to determine convergence.

In order to specify the solution, we require Dirichlet boundary conditions at either end of

the domain. In the present implementation, these boundary conditions are weakly enforced

by fixing the state and necessary derivatives outside the domain and calculating all fluxes

normally. For the second-order term, only the state on either side is required to define the

solution. For the fourth-order term the state and gradient on either side of the domain are

required. Since we have the analytical solution to the modified equation, we can simply set

these values to the exact solution at the boundaries. Higher derivatives are simply set to

match the interior value.

Beginning with the second-order anti-diffusive term, for any polynomial order ? we expect

to converge at order ? + 1 with mesh refinement [101]. For each test we measure the error

with a continuous !2-norm over each element and sum over all elements. Integration is

performed using a 16-node Gauss-Legendre quadrature rule. Since convergence rates are

only guaranteed asymptotically as mesh size approaches zero, we measure the convergence

rate between the two finest meshes in each test. Applying the method of manufactured

solutions we get the result in Figure 2.2. To two significant digits the expected convergence

rate is achieved at each order. ? = 0 is not tested because it is inconsistent under this

discretization.

Moving on to the fourth-order diffusion term, we expect the convergence rates demonstrated

by Georgoulis and Houston in [56]. The ? = 2 discretization should converge at order 2, while

22

1/231/241/251/261/271/28

h/2

10 9

10 7

10 5

10 3

10 1

||u
u e

xa
ct

|| 2

p = 1, rate = 2.0
p = 2, rate = 3.0
p = 3, rate = 4.0
p = 4, rate = 5.0

Figure 2.2: Second-order term achieves optimal ? + 1 convergence rate.

? > 2 solutions should converge at the optimal rate ?+1. ? = 0 and ? = 1 are not considered

because they are not consistent for this discretization. Testing proceeds identically to the

second-order term, resulting in Figure 2.3. We can see the convergence rates are, once again,

as expected to two significant digits.

1/231/241/251/261/27

h/2

10 8

10 6

10 4

10 2

||u
u e

xa
ct

|| 2

p = 2, rate = 2.0
p = 3, rate = 4.0
p = 4, rate = 5.0

Figure 2.3: Fourth-order term achieves optimal ? + 1 convergence for orders except ? = 2
where suboptimal convergence is expected.

Next, we perform a more stringent test on the behavior of the full KS equation implementa-

23

tion. We will attempt to reproduce the series of bifurcations demonstrated by Hyman and

Nicolaenko in [67]. The character of KS equation solutions varies wildly with small changes

in its parameterization. These solutions range from constant, to sinusoidal fixed points, to

chaotic, based on the strength of the diffusion term.

While [67] simulates an equation with different time scaling, the character of the solutions

should remain constant through the change. For this series of tests we only vary the strength

of the fourth-order diffusion term. Since we want to be sure high-order solutions are correct

for super-resolution model training, we perform this test at a relatively high order, ? = 7,

with only 16 elements. The domain is [0, 2c], which makes the translation from Hyman

and Nicolaenko’s bifurcation parameter to the fourth-order viscosity coefficient convenient.

The time stepping method is BDF2 with a time step of 10−2. This level of time accuracy

has proven able to capture and maintain the expected bifurcations, even at high spatial

orders. Each test is run for 10,000 iterations for a simulation time of 100 units. (The three-

stage, fourth-order diagonally implicit Runge-Kutta method of Crouzeix was attempted for

these problems [27, 2], but little gain in computational time was observed relative to BDF2.

Perhaps the implementation could be improved, or a better method chosen, for example the

methods explored in [72].) The initial condition for all tests is D0(G) = sin(G) + cos(G) +

sin(2G) + cos(2G).

An example G − C diagram for each bifurcation regime is shown in Figure 2.4. At the chosen

spatial and temporal resolution, we are able to recover each bifurcation region at a viscosity

setting within the expected range. It was observed that resolving the boundaries of each

region is difficult at the chosen resolution. For example, the unstable bimodal fixed piont

may decay to the stable fixed point too early. This behavior is expected; a quick exploration

is not expected to resolve all bifurcation region boundaries exactly.

24

(a) a = 2:
global attractor at zero

(b) a = 0.4:
unimodal fixed point

(c) a = 0.2:
unstable bimodal fixed point

(d) a = 0.16:
stable bimodal fixed point

(e) a = 0.08:
oscillatory behavior

(f) a = 0.06̄:
trimodal fixed point

25

(g) a = 0.04̄:
chaotic behavior

(h) a = 0.04:
quadrimodal fixed point

(i) a = 0.02:
chaotic behavior

Figure 2.4: Bifurcation regimes for DG solutions of the KS equation.

2.5 Summary

In this chapter we have presented governing equation discretizations. The Navier-Stokes

equations will be used in Chapters 4 and 5 for training data generation and turbulent adap-

tation. A DG discretization for the KS equation was chosen. Extra time was spent to

convert higher order terms from bilinear form into flux form for easy implementation. A DG

KS equation implementation was developed and verified by checking the convergence of the

implemented terms and reproducing the expected bifurcation regimes. The solver will be

used for reconstruction testing in Chapter 3.

26

Chapter 3

Super-Resolution of the 1D

Kuramoto-Sivashinsky Equation

3.1 Introduction to Super-Resolution Reconstruction

Super-resolution has been an active area of computer vision research for several decades,

typically operating on digital image data. The goal is to reconstruct a high-resolution output

from a low-resolution or distorted input. The down-scaling is typically posed as

u� =M (uℎ) , (3.1)

where M is a, generally unknown, down-scaling operator that reduces the high-resolution

input uℎ to the low resolution output u� . Here, uℎ and u� represent field quantities over

the spatial domain, e.g. a velocity in a CFD simulation. In super-resolution we seek an

up-scaling model M−1 that approximates the original image as

ûℎ =M−1 (u�) , (3.2)

27

where ûℎ is the reconstructed image. Super-resolution is an ill-posed inverse mapping prob-

lem. Since exact solutions are generally impossible, we seek a solution that minimizes up-

scaling error. Classical algorithms dominated in super-resolution for decades [39, 96]. With

recent advances in compute capability and data availability, artificial neural networks have

surpassed the performance of classical algorithms for super-resolution [122, 4]. Hence, they

will also be the focus of this thesis.

Super-resolution is well-studied in the literature, with various network architectures tuned

for different applications [122, 4]. A few of these architectures are most commonly used in

super-resolution for fluids and are discussed here. Convolutional neural networks [80, 79]

achieved state-of-the-art up-scaling performance when Dong et al. [35] formulated classical

ideas in the form of a single convolutional neural network. Ledig et al. [81] increased

performance by applying a generative adversarial framework to the problem [58]. Previous

super-resolution work [38, 69] has also used residual networks [61], where a network stage

does not learn the final output, but a correction to the input. These residual networks serve

as the primary inspiration for the super-resolution reconstruction in this thesis.

Super-resolution in a fluid-dynamics context is typically applied not to a set of images, but

to downsampled turbulent velocity fields. Fukami et al. [49] tested a hybrid convolutional

neural network architecture on DNS data using max and average pooling for downsampling.

Liu et al. [84] proposed an approach for spatio-temporal super-resolution using multiple

convolutional paths, each handling different time ranges. Fukami et al. [50] proposed an

alternative temporal super-resolution architecture built on their previous single-image work.

Generative adversarial approaches have also been applied to super-resolution. Xie et al.

[119] include an additional temporal discriminator during training to ensure the output’s

temporal coherence. Deng et al. [29] successfully resolve large wake fields with 4x and 8x

upscaling factors using their generative adversarial approach.

Pradhan and Duraisamy [99] explored super-resolution for turbulent flows projected to dis-

28

continuous finite-elements. They showed remarkable reconstruction accuracy at relatively

low polynomial orders. Xu, Pradhan, and Duraisamy [120] augmented the previous model

by altering a hidden layer’s weights with a trainable function of an input parameter. The

excellent reconstruction of the baseline model was further improved.

Super-resolution, even in a fluids context, will typically use a down-sampling operator that

convolves the input flow-field with a down-sampling kernel,

u� =M (uℎ) = uℎ ⊗ K, (3.3)

where ⊗ is a convolution operator and K is a blurring kernel. Our down-sampling model in

DG is quite different. To down-sample a solution from a fine approximation space uℎ, we

seek a solution in a coarse approximation space u� that minimizes the difference between

the two

u� = arg min
u�

∫
Ω

|uℎ − u� |2 dΩ. (3.4)

This is a least-squares projection problem. After reducing this continuous form to a particular

basis we find that our final down-sampling operation is

U� =M−1� M�
ℎ Uℎ, (3.5)

where Uℎ are the basis-function coefficients of state uℎ, and U� are the basis function

coefficients of state u� . The matrices M� and M�
ℎ

contain the integrals of each of the

products of the (?� + 1) test functions multiplied by each of the (?� + 1) and (?ℎ + 1)

basis-functions, respectively. This down-sampling operator returns a least-squares optimal

u� in the form of its basis-function coefficients. The solution restriction is dependent on the

input and target orders. In addition, there is little information about the original solution

remaining. For example, a ? = 3 solution with a tensor product basis has only four data

points in each direction. Additional information from neighboring elements should help

29

alleviate this relative lack of data about the original projected state.

In the remainder of this chapter we will use the high-order DG implementation of the

Kuramoto-Sivashinsky equation duscussed in Chapter 2 to generate data. High order data,

at ? = 15, is used to resolve the fine scales we are trying to reconstruct on relatively few

elements. The coarse mesh resolution ensures projected solutions are poor, stressing the

reconstruction technique. We will then move on to super-resolution reconstruction in Sec-

tion 3.2.1. This section explores how super-resolution models behave when presented with

various training and test datasets. We also show accurate reconstruction is possible with a

relatively small model in 1D. This bodes well for the feasibility of the technique in higher

dimensions.

3.2 Super-Resolution Reconstruction

Our ultimate goal is to perform mesh adaptation of statistically steady chaotic flows by vary-

ing element approximation order. We will use the KS equation solver to explore some prop-

erties of reconstruction and ensure the reconstruction technique is suitable for adaptation.

KS equation solutions to chaotic parameterizations result in high-wavenumber variations in

the solution. These variations can be accurately captured with a high-order discretization.

When projected to lower orders, some variation will be lost and inter-element discontinuities

will be introduced. This error in low-order states will provide ample opportunity to test

reconstruction quality in one dimension before moving forward to more difficult reconstruc-

tions.

The data in this section will be used for both training and testing. The source data uses a high

polynomial order, ? = 15, to facilitate training and testing by projection to lower orders. The

use of Chebyshev Lagrange nodes in the matrix-free nonlinear solver allows it to efficiently

evolve the high-order discretization without spurious oscillations. Each dataset uses an

identical spatial and temporal discretization; only the strength of the diffusion parameter is

30

varied. That spatial discretization is 32 evenly spaced elements at ? = 15 over a domain of

size 8c. This domain is four times larger than that of the bifurcation series in Figure 2.4

in order to improve low-wavenumber resolution in the spectral plots introduced later. Each

dataset is evolved for 10,000 iterations with time step 10−2 using a BDF2 time discretization.

The relatively low-order time-stepping scheme should lead to sub-optimal solver efficiency,

however the temporal resolution is sufficient to generate and maintain solutions with the

expected wavenumber variation. The G − C diagrams of each dataset are shown in Figure 3.1.

It is easy to see a significant wavenumber increase as the strength of the diffusion parameter

is reduced. These wavenumber variations will be used to test the reconstruction model’s

ability to generalize across parameterizations, or lack thereof.

For the reconstruction model, we will train and test a fully connected artificial neural net-

work. In the computer-vision field, neural networks have proven to be the tool of choice for

super-resolution reconstruction in recent years [122, 4]. Here we will apply the technique

directly to finite-element states by training a model to directly manipulate basis-function co-

efficients. The choice to act directly on basis-function coefficients means that the network is

not basis independent. We will ensure this network architecture provides reasonable adapta-

tions in Chapter 4. Alternative approaches, where the model effectively forms its own basis,

are common in computer vision. Since data in computer vision are typically pixel values,

finding the basis with the model makes sense. In our case we believe we have a reasonable

basis to begin with and have not pushed the models further.

The model reconstructs one element at a time, taking neighboring element coefficients as

input to ensure reasonable reconstruction continuity between elements. The input basis-

function coefficients are normalized by subtracting the mean and dividing by the root-mean-

square value of the element of interest. In our 1D case, the normalized input to the network

�BA is

�BA

(
*�,; − D<,2
Drms,2

,
*�,2 − D<,2
Drms,2

,
*�,A − D<,2
Drms,2

)
, (3.6)

31

(a) a = 0.02 (b) a = 0.15

(c) a = 0.01 (d) a = 0.005

Figure 3.1: G − C diagrams for reconstruction testing on KS equation data.

32

where each *�,∗ is the set of coarse (not reconstructed) basis-function coefficients for the

left, ;, center, 2, and right, A, elements. The normalizing values are defined as:

D<,4 =
1

‖Ω4‖

∫
Ω4

D4 dG Drms,4 =

√
1

‖Ω4‖

∫
Ω4

(
D4 − D<,4

)2
dG, (3.7)

where Ω4 is the domain of element 4, and D4 is its state. Instead of predicting output basis-

function coefficients directly, the network predicts the required correction to the coefficients

on the element of interest. Putting all this information together, the reconstructed state is

found by

*ℎ,2 = �BA

(
*�,; − D<,2
Drms,2

,
*�,2 − D<,2
Drms,2

,
*�,A − D<,2
Drms,2

)
Drms,2 +*�

ℎ,2, (3.8)

where *ℎ,2 are the high-order reconstructed basis-function coefficients, and *�
ℎ,2

are the fine-

space basis-function coefficients representing the coarse state. This input normalization is

based on the work of Pradhan and Duraisamy in [99].

The network is trained in a supervised setting. Both network inputs and target outputs

are generated by least-squares projection of the original ? = 15 data to lower orders. 1024

training samples are used from each dataset. This includes 32 solution snapshots with 32

elements each. Testing indicates more training samples than this have little influence on the

final reconstruction quality. Since the samples need to cover a variety of conditions, it makes

no sense to use states at adjacent time steps for training. Training snapshots are selected

from every 25th iteration starting at iteration 1000 in each dataset. Training proceeds using

full dataset batches, the Adam optimizer [74], and a learning rate of 10−3. Mini-batches

were attempted to avoid local minima but showed little influence on final results. Additional

validation samples are used to monitor the training process. Training proceeds until the

validation loss stagnates or rises. This typically takes on the order of 1000 epochs.

Each test performs reconstruction on iterations 3000 to 10000 of the relevant dataset. This

is to exclude the first 1000 iterations used to wash out the initial condition, the next 1000

33

iterations used for training, and a final set of 1000 iterations used to separate training

and test data. Performing inference on all 7000 states facilitates accurate averaged-energy

spectra. The spectrum is computed using the Fourier transform of the two-point spatial

autocorrelation function. Each spectrum is normalized by the value of the second mode to

place to the approximately flat low-wavenumber region at approximately 1.

3.2.1 KS Reconstruction Across Equation Parameterizations

Our first reconstruction will be the simplest possible test of generalization. We train a

network on the a = 0.02 dataset and test on unseen the a = 0.02 data from a much later time

in the same simulation. The network is small, with only two hidden layers of 32 neurons

each. Initial testing will be performed on this small network, additional testing with a larger

network will follow. We will test reconstruction from ? = 3 to ? = 7. The results are shown

in Figure 3.2. They consist of direct state comparisons between the network input, network

target, and reconstruction. It also includes spectral comparisons between these three states.

When training and testing on the same equation parameterization, reconstruction is ex-

tremely accurate. The sample state comparison shows a nearly perfectly accurate recon-

struction. The spectral result is also nearly perfect until it trails off in the high wavenum-

bers. The extra energy in the high wavenumbers comes from inter-element discontinuities.

Performing a Fourier transform on these discontinuities is similar to the same operation on

a square wave. Resolving corners requires the summation of ever higher wavenumbers. The

results show those high wavenumbers have significantly decreased, approaching the correct,

rapidly decaying, energy profile.

Figure 3.2 also tests the same network on higher wavenumber data, the a = 0.01 dataset.

Visually comparing the reconstructed state with the target reveals more error than the

previous case, when training and testing at the same viscosity. The reconstructed state

clearly deviates from the network target throughout the snapshot. Including a wide range of

34

0 5 10 15 20 25
x

20

10

0

10

20
u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(a) a = 0.02, sample state reconstruction

0 5 10 15 20 25
x

20

0

20

u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(b) a = 0.01, sample state reconstruction

100

wavenumber

10 4

10 3

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(c) a = 0.02, average
spectrum

100

wavenumber

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(d) a = 0.01, average
spectrum

Figure 3.2: ? = 3 to ? = 7 reconstruction comparison for network trained on a = 0.02 data
only.

35

snapshots in the spectral comparison shows that the reconstruction attempt is approximately

correct, but significantly off. Low wavenumbers move only slightly toward the target state.

While high wavenumbers notably decrease, they do not follow the decay trend of the target

state.

It is possible that the poor generalization of the network trained on low-wavenumber data

to high-wavenumber data is directional. Meaning, a network trained on high-wavenumber

data may generalize to low-wavenumber data, but not the other way around. We test this

in Figure 3.3, where we train a network on a = 0.01 data and test on the same two datasets.

Once again, the network is the same size, with two hidden layers of size 32.

It appears that there is no generalization going in the other direction. The reconstructed

a = 0.01 sample state is nearly exact, while the spectral reconstruction is also nearly exact.

The exactness of the reconstruction at the same viscosity is even better than last time,

except a spike in the very high-wavenumbers. This could simply be a coincidence due to

random model weight initialization during training. Nonetheless, we get the expected result

of accurate reconstruction when the parameterization of training and testing data match.

Moving back to the lower wavenumber a = 0.02 data is a completely different story. This

time the reconstruction over-predicts nearly all wavenumbers. Note that the influence of the

reconstruction only begins at the point where the network input and network target diverge.

This is because the network is only designed to correct the input state, not reconstruct a

new state from scratch. With this in mind, we can see in the a = 0.02 wavenumber plot that

reconstruction deviation to the high side is immediate. Since the network was trained to

expect higher wavenumbers, it appears to impose this expectation on the low-wavenumber

data.

At this point we can be relatively sure that, at least under the current network input pa-

rameterization, the network will not generalize to unseen flow conditions. We should instead

expect to train on a variety of equation parameterizations to expect accurate reconstruction

36

0 5 10 15 20 25
x

20

10

0

10

20
u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(a) a = 0.02, sample state reconstruction

0 5 10 15 20 25
x

20

0

20

u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(b) a = 0.01, sample state reconstruction

100

wavenumber

10 4

10 3

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(c) a = 0.02, average
spectrum

100

wavenumber

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(d) a = 0.01, average
spectrum

Figure 3.3: ? = 3 to ? = 7 reconstruction comparison for network trained on a = 0.01 data
only.

37

on those parameterizations. Next, we will train on multiple parameterizations and check

reconstruction performance on each.

In Figure 3.4, the same small network is trained on a = 0.02 and a = 0.01 data. We are

looking to see if the network is able to perform accurate reconstruction on unseen data of

the same equation parameterization for which it was trained. The same, small, 32 neuron,

two hidden layer network architecture is used. Note that the training datasets have simply

been appended, so this network is trained on twice the data used in the previous examples.

The number of training samples from each set remains the same.

Figure 3.4 shows accurate reconstruction on both datasets. The sample state reconstructions

are nearly identical to the target state in both cases. The spectra are accurate as well, though

slightly off in both cases. Notably, the low-wavenumber a = 0.02 case is off by more than

the high-wavenumber a = 0.01 case. This could be due to the same phenomenon that

lead to slightly more accurate reconstruction in Figure 3.3 than Figure 3.2. Also notable,

once again, is the directional bias in reconstruction wavenumber. The low-wavenumber data

reconstructs at a slightly too high-wavenumber. This may be expected due to the reduction of

inter-element discontinuities as seen previously. But the high-wavenumber data reconstructs

at a wavenumber that is consistently too low. This suggests that the reconstruction is

somewhat biased toward a mix of the two wavenumbers on which it was trained. The two

phenomena, reducing without eliminating spurious high wavenumbers and bias toward the

average training data wavenumber, are consistent with the error magnitude between the

two test sets. The low-wavenumber test set appears to exhibit higher error because the

network is biased to reconstruct higher wavenumbers and inter-element discontinuities were

not fully eliminated. The high-wavenumber test set appears to exhibit lower error because

the tendency to produce lower wavenumber output cancels the tendency to not fully eliminate

high-wavenumber errors.

Next we will take the same network, trained on a = 0.02 and a = 0.01 data and move

38

0 5 10 15 20 25
x

20

10

0

10

20
u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(a) a = 0.02, sample state reconstruction

0 5 10 15 20 25
x

20

0

20

u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(b) a = 0.01, sample state reconstruction

100

wavenumber

10 4

10 3

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(c) a = 0.02, average
spectrum

100

wavenumber

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(d) a = 0.01, average
spectrum

Figure 3.4: ? = 3 to ? = 7 reconstruction comparison for network trained on a = 0.02 and
a = 0.01 data. Testing on unseen data at the training parameterizations.

39

on to unseen viscosities. The first test dataset contains a = 0.015 data, with intermediate

wavenumvers between the training sets. The second test set contains a = 0.005 data, result-

ing in much higher wavenumbers than either of the training datasets. The first dataset is

intended to test interpolation performance, and the second intended to test extrapolation

performance.

We should expect the interpolated parameterization to perform quite well. It has already

been observed that the network appears to do some sort of interpolation between its training

sets. This is because it reconstructs the low wavenumbers slightly too high, and the high

wavenumbers slightly too low. Based on results we have already seen, we should expect the

extrapolation to perform quite poorly, despite increased training data. Training on a single

dataset and testing on another has performed poorly no matter which dataset was used for

training.

The results of the parameterization interpolation and extrapolation test are shown in Figure

3.5. As expected, the a = 0.015 dataset reconstructs quite well. The spectral plot shows

a slight high-wavenumber bias as seen in previous results. The qualitative comparison of

reconstructed state appears nearly exact to the naked eye. On the other hand, the a = 0.005

dataset reconstructs rather poorly. Low-wavenumber reconstruction is relatively successful,

matching the peak wavenumber of the target dataset. Beyond this point, the reconstructed

wavenumber is too low relative to the target output. The sample state comparison also shows

that the reconstruction is unable to capture the peaks and valleys of the target solution.

These results lay out that a super-resolution neural network, under the current input pa-

rameterization and architecture, should be able to accurately reconstruct multiple equation

parameterizations. That is, as long as it has seen them in training, or the parameterization

is interpolated by training data. This means that down the line, we should be able to use

a single network across Reynolds numbers, and potentially across meshes. We will test that

this observation holds in later chapters.

40

0 5 10 15 20 25
x

20

0

20
u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(a) a = 0.015, sample state reconstruction, interpolated parameterization

0 5 10 15 20 25
x

40

20

0

20

40

60

u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(b) a = 0.005, sample state reconstruction, extrapolated parameterization

100

wavenumber

10 3

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(c) a = 0.015, aver-
age spectrum, interpo-
lated parameterization

100

wavenumber

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(d) a = 0.005, aver-
age spectrum, extrapo-
lated parameterization

Figure 3.5: ? = 3 to ? = 7 reconstruction comparison for network trained on a = 0.02 and
a = 0.01 data. Testing on unseen data at unseen parameterizations.

41

3.2.2 Influence of Network Size

A variable we have not changed so far is the size of the network. Thus far, we have stuck to

a relatively small network of only 1,768 parameters. Even this small size has been able to

produce accurate reconstructions on unseen data. This makes sense, given that the network

input and output sizes for these ? = 3 to ? = 7 tests have been 13 and 8, respectively. 13

comes from four normalized basis-function coefficients on three elements, and a viscosity

parameter. 8 comes from the 8 normalized coefficients of the ? = 7 output. Regardless, we

should test the performance of a larger network to see if we can improve the results. We will

continue to enforce some regularization via early stopping to ensure the larger network does

not over fit the training data. The test network will once again have two hidden layers, this

time of 512 neurons each. This leads to a total of 273,928 parameters. The training set will

be the mixed a = 0.02 and a = 0.01 datasets. The amount of training data is the same as for

the smaller network. We repeat the mixed data tests with the small network.

In Figure 3.6, we repeat the tests in Figure 3.4. The network is tested on unseen data

with the same parameterization as its training set. We see that the character of the results

remain the same, reconstruction is of high quality in both instances. That being said, the

reconstruction quality for the larger network is clearly an improvement. The a = 0.01 data is

nearly an exact match, while the a = 0.02 data is only slightly off. The error in the a = 0.02

data is still significantly larger than the a = 0.01 data, as it was with the smaller network.

This could be due to the two phenomena mentioned previously, where the data averages its

training set and high-wavenumber content from discontinuities is not completely removed.

Moving on to the extrapolation test in Figure 3.7, we see similar results to those in Figure 3.5.

Reconstruction on the a = 0.015 dataset is perhaps only slightly improved. The a = 0.005

dataset shows almost no change at all with the larger network.

It appears the network size in the previous study was sufficient to capture phenomena of

interest and set expectations for more strenuous reconstruction. This network architecture is

42

0 5 10 15 20 25
x

20

10

0

10

20
u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(a) a = 0.02, sample state reconstruction

0 5 10 15 20 25
x

20

0

20

u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(b) a = 0.01, sample state reconstruction

100

wavenumber

10 4

10 3

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(c) a = 0.02, average
spectrum

100

wavenumber

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(d) a = 0.01, average
spectrum

Figure 3.6: ? = 3 to ? = 7 reconstruction comparison for a large network trained on a = 0.02
and a = 0.01 data. Testing on unseen data at the training parameterizations.

43

0 5 10 15 20 25
x

20

0

20
u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(a) a = 0.015, sample state reconstruction, interpolated parameterization

0 5 10 15 20 25
x

40

20

0

20

40

60

u

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(b) a = 0.005, sample state reconstruction, extrapolated parameterization

100

wavenumber

10 3

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(c) a = 0.015, aver-
age spectrum, interpo-
lated parameterization

100

wavenumber

10 2

10 1

100

101

en
er

gy

network input (projected, p = 3)
network target (projected, p = 7)
reconstructed (p = 7)

(d) a = 0.005, aver-
age spectrum, extrapo-
lated parameterization

Figure 3.7: ? = 3 to ? = 7 reconstruction comparison for a large network trained on a = 0.02
and a = 0.01 data. Testing on unseen data at unseen parameterizations.

44

sufficient to reconstruct unseen data at the same equation parameterizaiton. We can expect

reconstructing data at unseen parameterizations to have poor performance. As long as the

test data interpolates the training set, we should expect a single network to perform accurate

reconstructions on unseen data on parameterizations across its training set.

3.3 Summary

In this chapter we have implemented and verified a solver for the KS equation. This solver

is designed to support high-order elements. Training data at ? = 15 was generated to per-

form various tests of super-resolution reconstruction. It was shown that the reconstruction

models perform well on data outside of their training set. This only applies when the un-

derlying data was generated at a similar equation parameterization. Changing the equation

parameterization significantly changes the character of the solution causing reconstruction to

fail. Adding training data at a variety of viscosities fixed this problem for the KS equation.

Testing on data between the training set viscosities showed promise. Extrapolating beyond

the training parameterizations proved futile.

45

Chapter 4

Super-Resolution Reconstruction in

Higher Dimensions

4.1 Super-Resolution in Two Dimensions

4.1.1 Methodology

Data for training and testing is projected from a high-resolution turbulent channel flow

large-eddy simulation (LES). We simulate a '4g ≈ 395 plane turbulent channel flow using

eddy. An example snapshot is shown in Figure 4.1. The channel dimensions are 2c x 2 x c

in the streamwise, wall-normal, and spanwise directions, respectively. The setup follows that

of Moser, Kim, and Mansour [89]. A constant streamwise body force maintains turbulent

flow at the specified Reynolds number. eddy is efficient at high-orders, and only 8 x 12 x

8 elements at ? = 15 are required for a well-resolved LES. This simulation data could be

projected directly to lower orders to form the training and testing data. Such a decision

would, however, limit the size and flexibility of our tests to a single element distribution and

size. For this paper we also restrict our focus to 2D elements, so some sort of projection will

Parts of this chapter appear in or are adapted from our previously published paper [85].

46

Figure 4.1: x (streamwise direction) momentum contours of an original channel flow snapshot
used for training and testing. High-order ? = 15 element boundaries are shown.

x

y

Fsr

cw e

n

s

nw ne

sesw

c

Figure 4.2: ? = 1 to ? = 3 super-resolution of element “c” using neighboring element data.
Dots indicate Lagrange node positions for each degree of freedom.

be required from the originally 3D elements. We have chosen to sample the channel flow

at a regular grid of 512 x 256 x 512 points in the streamwise, wall-normal, and spanwise

directions, respectively. We use these data to perform least-squares projection to 2D DG

data at any chosen slice and mesh resolution. Our elements use tensor-product Lagrange

polynomials with Chebyshev node spacing.

Our networks directly input and output DG basis function coefficients. In general, the

network could use the entire flow domain to predict state on a single element, but this is

not computationally feasible. Instead, we focus on a neighborhood of elements around the

47

super-resolution target element as shown in Figure 4.2. We restrict our attention to only

momentum coefficients in the streamwise and spanwise directions. Since our flow is nearly

incompressible, the density is nearly constant at one, and the momenta are nearly identical

to velocities. Testing proves that the basis function coefficients must be normalized for

performance. We follow Pradhan and Duraisamy [99] for our normalization by defining the

mean and root mean square (r.m.s.) values on an element for each rank as

u<,4 =

∫
Ω4

u4 dΩ

|Ω4 |
(4.1)

and

urms,4 =

√√∫
Ω4

(
u4 − u<,4

)2
dΩ

|Ω4 |
(4.2)

where u4 is the state of the streamwise and spanwise momentum components on element 4

and |Ω4 | is the volume of element 4. The mean and r.m.s. quantities are used to normalize

each rank of the input basis function coefficients. The final network input is formed by

concatenating the normalized coefficients of the central element with its neighbors

�BA

(
U�,2 − u<,2

urms,2
,
U�,= − u<,2

urms,2

)
(4.3)

where (·)2 denotes central element quantities and (·)= denotes quantities on all neighboring

elements. Note that neighboring elements are still normalized by the central element’s mean

and r.m.s. values. This is because the mean and r.m.s. can vary significantly from one element

to the next, so that normalizing by different values causes unnecessary discontinuities in the

input data.

Our networks do not predict a final output state. Instead they predict the correction to

the input central state normalized by the input r.m.s. value. This setup ensures that the

network predicts only velocity differences, which has proved an effective technique for models

in domains from semantic segmentation to super-resolution. The final network input and

48

p = 1

p = 7

2 x 1024

(a) Example fully connected single-shot
network architecture to super-resolve
? = 1 to ? = 7.

p = 1
p = 3

p = 5

p = 7

1 x 128

1 x 512

1 x 1024

(b) Example incremental network to
super-resolve ? = 1 to ? = 7 with up-
scaling to intermediate resolutions ? = 3
and ? = 5.

Figure 4.3: Examples of fully connected and incremental super-resolution architectures.
Black boxes represent fully connected networks labelled [hidden layers x neuron count].
Orange boxes represent input and output state at the indicated order. Direct connections
from input to output represent the addition of the original state to the network output.

1

2π

Train Data Slices

Test Data Slices

Figure 4.4: Training and testing sample slice locations in turbulent channel data.

output are then

Uℎ,2 = �BA

(
U�,2 − u<,2

urms,2
,
U�,= − u<,2

urms,2

)
urms +U�

ℎ,2 (4.4)

where U�
ℎ,2

denotes the coarse state on the central element projected into the fine space. We

assume the fine space contains the coarse space making the projection operation lossless.

The prolongation operation is simply Equation 3.5 with the fine and coarse spaces reversed

with the appropriate modification to the number of test functions.

To form the �BA network, the most obvious option is to construct a fully connected artificial

neural network as shown in Figure 4.3a. We construct this network with ReLU activation

49

0 20 40 60 80 100
epoch

100

2 × 100

3 × 100

4 × 100

M
SE

 lo
ss

training loss
validation loss

(a) History for single shot ? = 1 to ? = 7
network.

0 100 200 300 400 500
epoch

10 3

10 2

10 1

100

101

M
SE

 lo
ss

p1 to p3 training loss
p1 to p3 validation loss
p3 to p5 training loss
p3 to p5 validation loss
p5 to p7 training loss
p5 to p7 validation loss

(b) History for each network used in ? =
1 to ? = 7 super-resolution.

Figure 4.5: Example training histories.

functions on all layers except the last [93]. This option performs well for small jumps in

polynomial reconstruction order. However, we find that for large order jumps, performance

is poor. To fix this issue we propose a second network architecture where the reconstruction

over large order jumps is incremental as shown in in Figure 4.3b. Effectively, we use several

independently trained fully connected networks, each network trained for a particular order

jump. Each network computes a normalized correction to the input state as described above,

so each incremental network will predict increasingly finer flow features.

Each network, for both single-shot and incremental designs, is trained in a supervised frame-

work with input / output pairs each projected from the original LES data at different orders.

Training and testing data are taken from a region relatively close to the center of the channel.

This ensures the character of the flow is nearly homogeneous isotropic with few wall effects.

We will treat the generalization to near-wall flows in future work. The regions covered by

training and testing are shown in Figure 4.4. While we have 256 sampled planes in the

wall-normal direction, we do not use every subsequent plane for training and testing. There

is an eight plane gap between each training and testing plane to ensure the data are not too

similar between planes. We use the top side of the channel to gather training data and the

bottom side for testing. We take care to ensure data near the center are not used for training

or testing because the input data would be similar between those parts of the training and

50

testing sets. Training data are split 80%, 20% into training and validation sets, respectively.

Training uses the Adam optimizer [74], a mean squared error loss, and a learning rate of

1 × 10−4 until the validation loss stops decreasing. This usually takes on the order of 100

epochs. Example training and validation loss histories are shown in in Figure 4.5.

4.1.2 Results

Our testing framework can choose any resolution less than or equal to the sampled LES

resolution for testing. For all tests that follow, the mesh resolution, in terms of elements per

direction, is chosen such that the number of degrees of freedom per direction is the same

as the original simulation. This keeps the tests roughly in line with the classical notion of

super-resolution, where one attempts to resolve the “true” image from a distorted or down-

scaled image. Note that because we are working with DG, holding the number of degrees of

freedom per direction constant is not quite sufficient to recover the original flow-field. This

is because high-order elements are able to represent a solution more accurately with fewer

degrees of freedom and the original simulation was run at a relatively high-order ? = 15.

As a result, the target values in the following tests will deviate from the original spectral

content at high-frequencies.

Our primary target in the following tests will be to recover the spectral content of the target

flow-field. When looking at a solution’s spectral content, one will typically neglect the

relatively low-energy high-frequency modes. In our situation, those high-frequency modes

are beyond the frequencies representable by the polynomial solution on the elements. Instead,

the high-frequency content is a result of discontinuities between elements. An accurate per-

element up-scaling of a complete DG flow-field should take into account each element’s

neighbors and not introduce spurious discontinuities between elements. To this end we seek

to reduce low and high-frequency spectral errors in the following tests. To approximately

distinguish between the two frequency regimes, we define a Nyquist spatial frequency 5=@,3

51

(a) Original, ? = 1 (b) Target, ? = 3

(c) Super-resolved, ? = 3

Figure 4.6: ? = 1 to ? = 3 super-resolution test on 32 x 32 elements with a single hidden
layer fully connected network of 128 neurons. Streamwise velocity contours at H+ ≈ 247.

for each direction 3 as

5=@,3 =
1

2

#4,3 (? + 1)
!3

(4.5)

where #4,3 is the dumber of elements in direction 3, all elements are of polynomial order ?,

and !3 is the domain length in the 3 direction. This cutoff will be marked by a vertical bar

in the spectral plots.

We begin by super-resolving a projected ? = 1 field to ? = 3. The network is a single

hidden layer fully connected network with hidden layer size 128, similar to Figure 4.3a with

different size parameters. We use 10 LES snapshots and 8 planes from each snapshot for

training. Discretizing each plane into 32 x 32 elements and reserving 20% of the sample for

validation leaves 65,536 training samples. Testing uses three planes from the opposite side

of the channel. A spectrum is taken for each test plane on each snapshot, the spectra are

then averaged over the 10 snapshots to reduce noise. The results are shown in Figures 4.6

and 4.7. The super-resolved flow-field is qualitatively almost identical to the target field.

The spectral content shows identical low frequencies, and nearly matching middle and high-

52

100 101

wavenumber

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

en
er

gy

LES
coarse projection, p=1
fine projection, p=3
super-resolved, p=3

(a) Streamwise spectrum

100 101

wavenumber

10 6

10 5

10 4

10 3

10 2

10 1

100

en
er

gy

LES
coarse projection, p=1
fine projection, p=3
super-resolved, p=3

(b) Spanwise spectrum

Figure 4.7: Streamwise and spanwise energy spectra for ? = 1 to ? = 3 super-resolution on
32 x 32 elements.

frequency content for the streamwise spectrum. The spanwise spectrum is somewhat less

accurate but still a significant improvement over the input state.

With the apparent success of ? = 1 to ? = 3 super-resolution with a relatively small network,

we are able to increase the difficulty. We repeat the experiment for ? = 1 to ? = 7 super-

resolution, once again with a fully connected neural network, this time with hidden layer

size 512. Once again we use the same 10 snapshots, 8 planes each for training, 3 planes

for testing. Since we are using the same amount of input data with a higher target order,

we have more information per sample and the number of samples decreases. Instead of

projecting to 32x32 elements, we project each slice to 16x16 elements. This results in a total

of 16,384 training samples, once again with 20% having been reserved for validation. With

this harder problem the results have degraded significantly. Qualitatively, the resulting field

lacks high-frequency content and maintains some inter-element discontinuities as shown in

Figure 4.8c. These observations are backed up by the spectral content shown in Figure 4.9.

Increasing the width and depth of the single-shot network fails to improve the solution in

testing, indicating that the original network is sufficiently sized.

We repeat the ? = 1 to ? = 7 test once again, this time with the incremental super-resolution

network. The training and test samples are exactly the same as in the single-shot case. The

53

(a) Original, ? = 1 (b) Target, ? = 7

(c) One shot, ? = 7 (d) Incremental, ? = 7

Figure 4.8: Comparison of single-shot and incremental super-resolved fields with the input
and target fields. Streamwise velocity contours at H+ ≈ 247.

successive networks each contain a single hidden layer with sizes 128, 512, and 1024. Just

as in the single-shot network case, each network is trained until its validation loss stagnates.

Immediately, we see a qualitative improvement in the results of Figure 4.8: the flow has

more high-frequency content while also reducing inter-element discontinuities. The spectral

content in Figure 4.9 confirms the qualitative observations. The spectral improvement also

holds across testing planes, this should be expected, since we are far from the walls of the

channel, the flow should be of similar character at all test planes. The spanwise spectral

content does not appear to be as improved as the streamwise spectral content. This may

be due to the fact that the input data has the same number of degrees of freedom in the

streamwise and spanwise directions despite the streamwise direction being twice as long.

The spanwise direction is therefore able to represent higher frequencies which may be more

difficult to capture.

Since the incremental super-resolution method computes increasingly high-order corrections

as a state makes its way through the network, it may be of interest to see which spectral

frequencies are affected by each step. To this end, in the case of ? = 1 to ? = 7 super-

resolution with order increments of two, one would expect the lowest frequencies to be

54

100 101

wavenumber

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

en
er

gy

LES
input (p = 1)
target (p = 7)
one shot super-resolution (p = 7)
incremental super-resolution (p = 7)

(a) Streamwise spectrum, H+ ≈ 247

100 101

wavenumber

10 6

10 5

10 4

10 3

10 2

10 1

100

en
er

gy

LES
input (p = 1)
target (p = 7)
one shot super-resolution (p = 7)
incremental super-resolution (p = 7)

(b) Spanwise spectrum, H+ ≈ 247

100 101

wavenumber

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

en
er

gy

LES
input (p = 1)
target (p = 7)
one shot super-resolution (p = 7)
incremental super-resolution (p = 7)

(c) Streamwise spectrum, H+ ≈ 222

100 101

wavenumber

10 6

10 5

10 4

10 3

10 2

10 1

100

en
er

gy

LES
input (p = 1)
target (p = 7)
one shot super-resolution (p = 7)
incremental super-resolution (p = 7)

(d) Spanwise spectrum, H+ ≈ 222

100 101

wavenumber

10 6

10 4

10 2

100

en
er

gy

LES
input (p = 1)
target (p = 7)
one shot super-resolution (p = 7)
incremental super-resolution (p = 7)

(e) Streamwise spectrum, H+ ≈ 198

100 101

wavenumber

10 6

10 5

10 4

10 3

10 2

10 1

100

en
er

gy

LES
input (p = 1)
target (p = 7)
one shot super-resolution (p = 7)
incremental super-resolution (p = 7)

(f) Spanwise spectrum, H+ ≈ 198

Figure 4.9: Streamwise and spanwise energy spectra comparison for ? = 1 to ? = 7 super-
resolution.

55

100 101

wavenumber

10 6

10 5

10 4

10 3

10 2

10 1

100

en
er

gy

input (p = 1)
target (p = 7)
increment 1 (p = 1 to p = 3)
increment 2 (p = 3 to p = 5)
increment 3 (p = 5 to p = 7)

(a) Streamwise spectrum

100 101

wavenumber

10 6

10 5

10 4

10 3

10 2

10 1

100

en
er

gy

input (p = 1)
target (p = 7)
increment 1 (p = 1 to p = 3)
increment 2 (p = 3 to p = 5)
increment 3 (p = 5 to p = 7)

(b) Spanwise spectrum

Figure 4.10: Spectral progression of ? = 1 to ? = 7 incremental super-resolution.

handled first, then increasingly high frequencies as the network progresses. Figure 4.10 shows

the spectral progression through the iterations of super-resolution for the streamwise and

spanwise spectra. In the streamwise case it appears that the initial hypothesis is roughly

true below 5=@ of the ? = 7 state. It also appears that each increment reduces the level

of inter-element discontinuity as shown by the decreasing energy content above 5=@. The

spanwise spectrum is once again less impressive than its streamwise counterpart but the

general character of our observations holds.

Figure 4.11 shows the progression of fields predicted by incremental super-resolution cor-

responding to the spectra in Figure 4.10. Each row compares the least-squares projected

target state with the reconstruction at the corresponding stage. The overall spectral features

shown in Figure 4.10 are apparent. While inter-element discontinuities are clearly noticeable

in the initial condition, they are mostly removed by the second incremental reconstruction.

Lower frequency content is also clearly added at each step, but some details are revealed

that are masked by the averaging of the spectral plots. In the first reconstruction step, the

noise added appears very similar to the truth case, though the result is clearly lacking some

higher-frequency content. By the second reconstruction step, while the reconstruction re-

mains mostly coherent, oscillations are apparent in some elements. This oscillatory behavior

appears to carry through and increase in the third iteration. These oscillations add middling

56

(a) projected ? = 1, input

(b) projected ? = 3 (c) incremental reconstruction 1

(d) projected ? = 5 (e) incremental reconstruction 2

(f) projected ? = 7 (g) incremental reconstruction 3

Figure 4.11: Qualitative comparison of incremental super-resolution against the true solution
at each reconstruction step. The left column is the truth at each incremental reconstruction
step, the right column is the reconstruction. Streamwise velocity contours at H+ ≈ 247.

57

frequency content, but they are clearly of a different character than the turbulence in the

projected snapshots.

The deviation in the character of the oscillations from true projected turbulence may come

down to the loss function. The loss function for all training in this paper is the mean squared

error between actual and predicted basis function coefficients. Nothing in this loss encodes

turbulent structures, potentially causing the spurious oscillations we see in the final super-

resolved output. Also, since we use basis function coefficients as input and output, the results

are dependent on the choice of basis.

4.2 Super-Resolution in Three Dimensions

In this section we will determine if super-resolution reconstruction continues to function in

three dimensions. Since flow-field parameters increase exponentially with dimension, it is not

immediately obvious that reconstruction performance will be retained. In fact, we expect

performance to degrate, but for adaptation we simply need a method that is directionally

correct in its reconstruction. We will propose a network architecture able to capture, at

least approximately, three dimensional geometry variation. We will also explore the required

model sizing under simple architecture, input, and training assumptions. Finally, as in

the previous chapter, we will explore the performance of the resulting networks across flow

conditions to determine their suitability for adaptation.

4.2.1 Methodology

We will begin by discussing out primary evaluation technique, which remains spectral com-

parison. For the sake of simplicity, we will generate our spectra on turbulent channels at

various Reynolds numbers. The turbulent channel has two statistically homogeneous di-

rections, making it a natural choice for the generation of spectra. Each turbulent energy

spectrum is computed as a set of one dimensional discrete Fourier transforms on 200 sam-

58

pled points of the streamwise velocity mean deviation in the streamwise direction. While

the super-resolution network makes predictions for all velocities, we will use accuracy in the

streamwise direction as a proxy for overall network accuracy. For a fixed wall distance, the

energy spectrum is sampled at 40 evenly spaced spanwise locations on each snapshot. The

spanwise averaged spectra from 20 snapshots are then combined for the final energy spec-

trum. This process significantly reduces noise in the final result. The time averaging process

also serves the dual purpose of minimizing out of plane effects. Since the reconstruction

operates on 3D elements but the spectral sampling is only in 2D, low frequency energies may

not match when taking only a single snapshot. However, this effect is eliminated by time

averaging since flow properties along a plane will converge over time.

Training data is generated from four cases. The first three are turbulent channels at '4g =

395, '4g = 590, and '4g = 950. Each is run at ? = 15, this high order ensures the data

can be projected down to multiple lower orders for network training. The '4g = 395 case

uses 768 elements, the '4g = 590 case uses 1400 elements, and the '4g = 950 case uses

1600 elements. Each mesh uses smaller elements near the channel walls, providing some cell

Reynolds number variation in that direction. The final training set is a periodic hill with

1024 elements, this adds some geometry curvature to the training set. For each case and

each network order, 50 snapshots are used to generate training data.

Testing data comes from three turbulent channel simulations at the same Reynolds numbers

as the training data: '4g = 395, '4g = 590, and '4g = 950. The meshes used are also the

same, but the case is different. This time, a ? = 7 case is used. This ensures the test data

is not part of the training set. As with the 1D case, we ensure testing occurs on the same

meshes for reconstruction accuracy, this will continue through to adaptation.

The training technique is kept consistent to ensure a fair comparison between the various

networks. Each network is trained with batched gradient descent with a batch size of 256.

The Adam optimizer is used [74] with a learning rate of 10−3. Training uses early stopping,

59

proceeding until loss on the validation set stagnates or rises. The number of training samples

varies significantly depending on data set selection, ranging from 30,720 when only the

'4g = 395 set is used, to 191,680 when all data sets are employed.

4.2.2 Network Design

Fsr(UH,c, ...)

UH,cUH,l UH,r

UH,t

UH,b

Uh

Figure 4.12: The network takes state from a coarse space and approximates the solution in
a fine space.

The super-resolution network computes a state correction one element at a time. For each

element the state on a subset of neighboring elements is also considered for input. In this

work this subset is the set of elements directly across a face from the element of interest. This

comes to a total of seven elements for the three dimensional networks. The super-resolution

neural-network input consists of normalized basis function coefficients with auxiliary scaling

and rotation information. Only normalized momentum basis function coefficients are input

to the network. Since the flow is nearly incompressible, the density is nearly constant and

the flow momentum effectively reduces to velocity.

As in previous network setups, we draw heavily from Pradhan and Duraisamy’s [99] vari-

ational multiscale super-resolution network. In order to generalize the network across flow

conditions, the basis function coefficients are normalized by removing the mean velocity

value from each component and dividing out the root mean square variation of the central

60

element. The mean and root mean square normalizing values are defined as

u<,4 =

∫
Ω4

u4 dΩ

|Ω4 |
urms,4 =

√√∫
Ω4

(
u4 − u<,4

)2
dΩ

|Ω4 |
, (4.6)

where Ω4 is the domain of element 4, and u4 is the continuous velocity vector field over

element 4.

M = J−T J−1

x

y
h1

h2

Figure 4.13: Complex geometry curvature information is reduced to a single tensor in this
simple model.

The approximate size and orientation of an element is measured by computing the mesh

implied metric tensor [124] at a single arbitrary point within the element. The metric tensor

provides a yard-stick for measuring distance over a field. This serves our purposes because

we can learn how an element is stretched and warped by computing the mesh implied metric

tensor. Distance under the metric ;M between two points 0 and 1 is defined as

;M
(−→
01

)
=

∫ 1

0

√
−→
01)M

(
0 + −→01B

) −→
01 3B. (4.7)

The mesh implied metric tensor is that which would have ;M = 1. This tensor is computed

by using information from the reference space to global space transformation on that ele-

ment. In finite-elements we use a reference space, ®b, for integration that is common between

61

all elements. Physical space, ®G, elements are defined relative to this reference space by a

transformation function ®G = G
(
®b
)
. The derivative of this transformation � = m®G/m ®b is a

Jacobian matrix useful for integration and differentiation. In a super-resolution context we

use the Jacobian matrix to compute the mesh implied tensor using a relationship from Yano

[124]

M = �−) �−1. (4.8)

The final network uses the information from the metric tensor in two ways. The eigenvectors

of the metric tensor are principal stretching directions. A diagram of these directions is

shown in Figure 4.13. The root mean square vector Drms is rotated to align with the principal

stretching directions and used to compute a cell Reynolds number roughly aligned with the

element. The logarithm of this value is used to keep input scaling order one. We also

include rotational information from the off diagonal components of the logarithm of the

metric tensor. The final calculation for the reconstructed state looks like

Uℎ,2 =

�BA

(
U�,2,3 − D<,3

Drms,3
,
U�,=,3 − D<,3

Drms,3
, log10

ℎ3Drms,3

a
, log10MA≠2

)
Drms,3 +U�

ℎ,2∀3 ∈ D, = ∈ N ,

(4.9)

where the basis function coefficients on the fine space for the central element Uℎ,2 are re-

constructed by addition of the network �BA output to the central element’s prolonged coarse

space state U�
ℎ,2

. D is the set of ranks used in the network, one for each direction in this

case. N is the set of all neighboring elements, this set consists of six elements, one across

each face. U�,2,3 denotes the full state vector U restricted to the central element 2 and rank

3. Likewise U�,=,3 denotes the full state vector restricted to neighbor = and rank 3.

Thus far, element neighbors have only spanned periodic boundaries so no boundary handling

was required. In three dimensions we will encounter walls across which there is no other state.

We assume all walls are no slip and simply set the full neighboring state in the network input

62

to zero during training and testing.

4.2.3 Network Sizing Study

For the present tests of super-resolution reconstruction in three dimensions the network ar-

chitecture is a simple fully connected network. Fully connected networks should be sufficient

to model any function, including our super-resolution problem. However, one should expect

a relatively poorly conditioned loss landscape from fully connected networks. We will see

some of this difficulty when testing for appropriate network size. In this study, each net-

work will have two hidden layers, Figure 4.14 shows the architecture. This is to increase

the number of connections in the network relative to a single hidden layer, while not adding

too much depth for this simple architecture. We will vary the hidden layer size by orders of

magnitude to roughly find an appropriate network size.

For training and testing data we restrict our attention to the '4g = 395 turbulent channel.

Training data is run at ? = 15 and projected to the test orders ? = 3 and ? = 5. Testing

data is from a separate simulation run at ? = 7 on the same computational mesh. Training

of each network proceeds as described in Section 4.2.1.

Testing focuses on four hidden layer sizes chosen to span a range of magnitudes: 32, 128,

512, and 2048. This leads to models with 65,672, 273,032, 1,286,792, 8,290,952 parameters

respectively. The training data set is identical for each case consisting of 30,720 samples.

7,680 validation samples are tested during training.

Spectral reconstruction results are shown in Figure 4.15. The story remains remarkably

consistent at the tested wall distances. It appears the network with size 32 hidden layers

performs quite poorly. This can be explained by the extremely restricted predictive power

of the network. The next two networks with size 128 and 512 hidden layers perform nearly

identically at all stations. Performance once again degrades in the case of the largest network.

This performance degradation can be entirely explained by the inability to train the network.

63

(a) Small network, e.g. size 32 layers

(b) Large network, e.g. size 2048 layers

Figure 4.14: Example network architectures for sizing study. Each network is fully connected
with two hidden layers. Input and output layers are in orange, hidden layers are in grey.
Hidden layer size varies by orders of magnitude.

64

100

wave number

10 3

10 2

10 1

en
er

gy
source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (width = 32, p = 5)
reconstruction (width = 128, p = 5)
reconstruction (width = 512, p = 5)
reconstruction (width = 2048, p = 5)

(a) H+ ≈ 356

100

wave number

10 3

10 2

10 1

100

en
er

gy

source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (width = 32, p = 5)
reconstruction (width = 128, p = 5)
reconstruction (width = 512, p = 5)
reconstruction (width = 2048, p = 5)

(b) H+ ≈ 198

100

wave number

10 2

10 1

100

en
er

gy

source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (width = 32, p = 5)
reconstruction (width = 128, p = 5)
reconstruction (width = 512, p = 5)
reconstruction (width = 2048, p = 5)

(c) H+ ≈ 40

Figure 4.15: Spectra for network sizing study at various wall distances. All data are collected
on '4g = 395 turbulent channel data.

65

Despite using batched gradient descent, training loss stalls very quickly and drops little

relative to the other networks. This story holds as expected with the validation loss. Perhaps

the loss landscape of the large network is sufficiently poor that the present training technique

fails. This failure indicates much better reconstruction performance may be possible with

differences in network architecture and training.

For now, we will accept the current reconstruction quality and proceed with further testing.

The choice now is between the size 128 and 512 networks. Going forward we will use the

larger size 512 network for testing and adaptation. This decision is justified by a couple ob-

servations. First, we have kept the training set for this test relatively small at around 30,000

samples, this will grow when considering more data sets and a larger network should have

more capacity to model this size increase. Second, we are already employing early stopping

to prevent overfitting, so a larger network should not present an over fitting difficulty.

4.2.4 Influence of Training set and Reynolds Number

Similar to the first chapter, we will explore reconstruction quality across various Reynolds

numbers for various training sets. In the 1D setting we observed excellent reconstruction

performance, but poor extrapolation across Reynolds numbers. We also observed relatively

poor translation of a network trained on a single viscosity to data at different viscosities.

The purpose of running these tests in 3D is to determine the appropriate architecture for

adaptation. Ideally it would be best to use a single network across data sets, but this may

prove infeasible if reconstruction performance significantly breaks down. In that situation it

may be best to keep flow conditions consistent for each network and use a different network

for each adapted case.

For the network parameterization we will use the results of the network sizing study. In

that study we observed a network with two hidden layers of size 512 to be both reasonable

and somewhat over sized for reconstruction from ? = 3 to ? = 5. We will continue to test

66

100

wavenumber

10 3

10 2

10 1

en
er

gy
source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (395 training, p = 5)
reconstruction (950 training, p = 5)
reconstruction (mixed training, p = 5)

(a) H+ ≈ 356

100

wavenumber

10 3

10 2

10 1

100

en
er

gy

source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (395 training, p = 5)
reconstruction (950 training, p = 5)
reconstruction (mixed training, p = 5)

(b) H+ ≈ 198

100

wavenumber

10 2

10 1

100

en
er

gy

source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (395 training, p = 5)
reconstruction (950 training, p = 5)
reconstruction (mixed training, p = 5)

(c) H+ ≈ 40

Figure 4.16: Streamwise turbulent energy spectrum reconstruction comparisons for a turbu-
lent channel data set at '4g = 395.

67

100

wavenumber

10 4

10 3

10 2

10 1

en
er

gy
source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (395 training, p = 5)
reconstruction (950 training, p = 5)
reconstruction (mixed training, p = 5)

(a) H+ ≈ 855

100

wavenumber

10 3

10 2

10 1

en
er

gy

source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (395 training, p = 5)
reconstruction (950 training, p = 5)
reconstruction (mixed training, p = 5)

(b) H+ ≈ 475

100

wavenumber

10 2

10 1

100

en
er

gy

source data (p = 7)
network input (projected, p = 3)
network target (projected, p = 5)
reconstruction (395 training, p = 5)
reconstruction (950 training, p = 5)
reconstruction (mixed training, p = 5)

(c) H+ ≈ 95

Figure 4.17: Streamwise turbulent energy spectrum reconstruction comparisons for a turbu-
lent channel data set at '4g = 950.

68

reconstruction between ? = 3 and ? = 5, but this time we will include more data and use

the fact that the network is over sized to account for the additional data. Training set sizes

are held fixed for each Reynolds number and training data is only altered one set at a time

for simplicity.

As usual, we will explore two performance measures: spectral and qualitative comparison.

Spectrum will once again use streamwise velocity reconstruction quality as a proxy for overall

network performance. Qualitative comparison of reconstructed snapshots is more difficult in

3D since the required reconstruction deltas have proved relatively small, but the comparisons

are nonetheless provided for completeness.

Spectral comparisons are shown in Figures 4.16 and 4.17. Each figure shows network input,

target output, and reconstructed profiles. Each network performing reconstruction is trained

on a different set of data. These sets are '4g = 395 data only, '4g = 950 data only, and

mixed '4g = 395, '4g = 590, '4g = 950, and periodic hills data. It is important to note the

number of training samples does increase for each of these data sets. The number of training

samples is 30,720, 64,000, and 191,680 respectively. This should give an advantage to the

fully mixed data set, but it is not yet clear that the additional data will sharpen or degrade

the network.

In both figures and for all reconstructions, performance significantly degrades approaching

the wall. This is expected, since the flow-field is significantly more complex near the wall.

The spread between each reconstructed data set is also very small for each test case, this may

be for several reasons. Baseline reconstruction quality is significantly worse than the 1D case.

Since all reconstructions are reasonably distant from the target state, the small differences

between them matter less than if they were nearly exact. It is also possible the constant

network size is hampering performance, especially of the fully mixed data set. This could

indicate that the oversizing of the network is insufficient to handle the increased training set

size.

69

It appears that reconstruction quality for the network trained with exclusively '4g = 950 data

is consistently worse than the other networks. This difference holds even on the '4g = 950

test set which is not expected. The difference is not large but consistent. This may be due

to the relatively high-frequency state of that data set combined with relatively few samples,

at least compared to the fully mixed data set. Likewise the fully mixed data set appears

to perform slightly better than the others across the board. This could indicate that the

network, still at fixed size, generalizes quite well with increased data. The good performance

of the '4g = 395 trained network on the '4g = 950 test set is an encouraging result for net-

work generalization. If that generalization holds for training at different Reynolds numbers,

it would explain some of the performance of the fully mixed network.

Qualitative comparisons are shown in Figures 4.18, 4.20, 4.20, and 4.21. While differences

are relatively difficult to see, they are included for completeness. Increased frequencies are

observable in the reconstructed (middle) states while the overall character of the coarse

solution is retained as expected. It also appears that inter-element discontinuities decrease

for the reconstructed states. This is visual corroboration for the reduced high frequencies

seen for the reconstructed profiles in the spectral plots.

4.3 Summary

We begun this chapter by testing super-resolution reconstruction in two dimensions. High

order turbulent channel data was sliced along wall normal planes, and projected to 2D DG

state. While initial reconstruction quality was good, it could be improved by performing

reconstruction incrementally. It is shown that better reconstruction results can be achieved

performing a series of small reconstructions that a single large one. This observation rein-

forces the idea that improved network architectures can significantly improve reconstruction

quality.

We then moved on to three dimensional reconstruction. A simple fully connected network

70

(a) input state, ? = 3

(b) reconstructed state, ? = 5

(c) target state, ? = 5

Figure 4.18: Selected snapshot reconstruction where a network trained on '4g = 395 turbu-
lent channel flow data is used to reconstruct an '4g = 395 turbulent channel flow-field.

71

(a) input state, ? = 3

(b) reconstructed state, ? = 5

(c) target state, ? = 5

Figure 4.19: Selected snapshot reconstruction where a network trained on '4g = 950 turbu-
lent channel flow data is used to reconstruct an '4g = 395 turbulent channel flow-field.

72

(a) input state, ? = 3

(b) reconstructed state, ? = 5

(c) target state, ? = 5

Figure 4.20: Selected snapshot reconstruction where a network trained on mixed turbulent
channel and periodic hill data is used to reconstruct an '4g = 395 turbulent channel flow-
field.

73

(a) input state, ? = 3

(b) reconstructed state, ? = 5

(c) target state, ? = 5

Figure 4.21: Selected snapshot reconstruction where a network trained on '4g = 395 turbu-
lent channel flow data is used to reconstruct an '4g = 950 turbulent channel flow-field.

74

(a) input state, ? = 3

(b) reconstructed state, ? = 5

(c) target state, ? = 5

Figure 4.22: Selected snapshot reconstruction where a network trained on '4g = 950 turbu-
lent channel flow data is used to reconstruct an '4g = 950 turbulent channel flow-field.

75

(a) input state, ? = 3

(b) reconstructed state, ? = 5

(c) target state, ? = 5

Figure 4.23: Selected snapshot reconstruction where a network trained on mixed turbulent
channel and periodic hill data is used to reconstruct an '4g = 950 turbulent channel flow-
field.

76

architecture was used for this testing. Auxiliary information about element orientation was

introduced to the network, now that elements can be arbitrarily rotated in three dimensions.

This network architecture was tested at various sizes leading to a selection for further test-

ing. Networks were then trained and tested on various sets of data to determine network

generalizability. It was concluded that a single network for a variety of cases is appropriate

as long as it has been exposed to similar data in training.

77

Chapter 5

Super-Resolution Adaptation in 3D

5.1 Introduction

In this chapter, two error indicators are introduced. One simply measures the predicted state

correction by the super-resolution network. The second uses super-resolution reconstruction

in an adjoint weighted residual setting. Both indicators are tested on a contrived channel

problem where all elements are identically shaped. The state correction indicator is then

tested against another error indicator that uses the mean velocity gradient with the same

refinement strategy. Both super-resolution-based indicators are then tested on a periodic

hill geometry. A slightly modified version of the state difference indicator is then tested on

the trailing edge cooling slot problem presented in [54].

Parts of this chapter appear in or are adapted from our previously published paper [86].

78

5.2 Super-Resolution-Based Error Indicators

5.2.1 State Difference

We have a super-resolution model that predicts a normalized correction to the input state

in terms of basis function coefficients. A first temptation is to simply use the magnitude of

the output as the error indicator. This would be a reasonable choice were it not for the fact

that the magnitude of the error indicator would depend on a discrete norm. Each order will

have a different number of basis function coefficients, making the value of this indicator basis

dependent. Specifically, it would tend to over estimate the error at higher orders, which is

contrary to expectations. To remove the basis dependence, we can instead use an indicator

based on the state represented by the basis function coefficients, instead of the coefficients

themselves.

The super-resolution model predicts the correction required to the velocity field within an

element. To change the state of the full element, the density is held constant, and internal

energy is set such that pressure is held constant. With this information we are able to

compute the super-resolved set of basis function coefficients, UBA . We are then able to

compute the continuous super-resolved state by linear combination with the set of basis

functions on each element

uℎ,BA =
=∑
8=1

((
UBA,8 +U�

ℎ,8

)
∗ DA<B

)
qℎ,8, (5.1)

where U�
ℎ,8

is the original element state injected into the fine approximation space, and qℎ,8

is the 8th fine basis function coefficient for the element. With this super-resolved state in

mind, the state difference error indicator on element : is

e:,B =

∫
Ω:

(
uℎ,BA,:,B − u�ℎ,:,B

)2
dΩ 4: =

∑
B

e:,B, (5.2)

79

where the final indicator is the sum of indicators for each rank B. This equation is simply the

two-norm of the difference between the reconstructed and original states for each state rank.

The error indicator is at that point a vector, each entry of this vector is summed to find the

final error indicator. No absolute value is necessary since all outputs of the two-norm are

non-negative.

5.2.2 Entropy-Adjoint-Weighted-Residual

For the derivation of the adjoint weighted residual error indicator, we follow Fidkowski and

Darmofal [45]. For any discrete system Rℎ (Uℎ) = 0 with scalar output �, we can define an

adjoint vector 7 as the sensitivity of � with respect to residual perturbations

X�ℎ ≡ �ℎ (Uℎ + XUℎ) − �ℎ (Uℎ) ≡ 7)ℎXRℎ (5.3)

where Xuℎ satisfies

mRℎ

mUℎ

XUℎ + XRℎ = 0. (5.4)

If the equation set and outputs are differentiable we have

X�ℎ =
m�ℎ

mUℎ

XUℎ = 7)ℎXRℎ = −7)ℎ
mRℎ

mUℎ

XUℎ, (5.5)

rearranging yields the adjoint equation

(
mRℎ

mUℎ

))
7ℎ +

(
m�ℎ

mUℎ

))
= 0. (5.6)

Returning to the adjoint definition

X�ℎ ≡ 7)ℎXRℎ, (5.7)

80

we can replace the X quantites with a difference of two discretization levels to find an error

indicator. Assuming we are working from a solved state removes one residual entry resulting

in the error estimate

�ℎ

(
U�
ℎ

)
− �ℎ (Uℎ) = −7)ℎRℎ

(
U�
ℎ

)
. (5.8)

If we define the adjoint perturbation as X7 ≡ 7�
ℎ
− 7ℎ we can rearrange Equation 5.8 as

X� ≈ −
(
7�ℎ

))
Rℎ

(
U�
ℎ

)
+

(
X7ℎ

))
Rℎ

(
U�
ℎ

)
. (5.9)

The first term is zero for discontinuous Galerkin, so the final form of the error estimate we

will use with entropy variables is

X� ≈
(
X7ℎ

))
Rℎ

(
U�
ℎ

)
. (5.10)

5.2.3 The Entropy Adjoint

The Navier–Stokes equations admit an entropy function for which the corresponding entropy

variables symmetrize both the inviscid and viscous terms [66]. This entropy function can be

uniquely defined (up to additive and multiplicative constants) as

* = −d(/', (= 2E ln ? − 2? ln d, (5.11)

where ? is the pressure (not to be confused with the order; the meaning will be clear from

the context), d is the density, and 2E and 2? denote the specific heat capacities at constant

volume and pressure, respectively. Differentiating with respect to the conservative state

u = [d, d ®+, d�]) yields the entropy variables,

v = *)u =

[
W

W − 1
− B

'
− 1

2

d‖ ®+ ‖2
?

,
d ®+
?
,− d
?

])
. (5.12)

81

The entropy function is conserved in the computational domain, with the corresponding

entropy flux defined as ®�B (*) = ®+* = −Bd ®+/'.

For a specific choice of the entropy function, the corresponding entropy variables symmetrize

the governing equation and therefore satisfy the unsteady adjoint equation for one specific

output [47],

� =

∫
mΩ

®�B · ®=3(−
∫
Ω

v)∇ · (K∇u)3Ω. (5.13)

This output is an entropy balance statement for the computational domain: the first term

represents the net outflow of the entropy through the boundary, while the second term

denotes the total generation (dissipation) of the entropy inside the domain. Since the output

� originates from integrating the adjoint equation, an integral form for the conservation of

entropy, it measures the total entropy rate of change in time. For steady-state systems,

it should be strictly balanced, � = 0; while for unsteady systems, � should be directly

tied to the physical entropy changes. However, in a discrete sense, � often suffers from

discretization errors, which cause spurious entropy generation in the computational domain.

Hence, adapting on � targets areas where the physical entropy production is not correctly

approximated.

There are several advantages of the entropy-adjoint over the standard output adjoint. First

of all, the entropy-adjoint is a function of the primal state, which is readily available without

solving the adjoint equations. This is especially efficient for unsteady systems, as the back-

ward time integration is not required for the unsteady entropy-adjoint. Furthermore, the

entropy-adjoint is well-conditioned and stable as long as the state solution is stable, making

it applicable to turbulent flow simulations.

We use an adjoint error indicator with the same form as Equation 5.10. The output adjoint

q is replaced by the entropy-adjoint E. The fine space adjoint component is computed

using a super-resolution neural network. The reconstructed state is simply transformed

directly into entropy variables for use in the adjoint. Our solver for these cases, eddy, uses

82

discontinuous Galerkin for temporal evolution in addition to spatial resolution. The solver is

structured in time such that states take the form of four dimensional time slabs, with three

spatial dimensions and one temporal dimension. Our super-resolution networks are trained

to reconstruct single snapshots one element at a time. For this indicator, we reconstruct

a full time slab by reconstructing the state at each time Lagrange node individually. We

also use the unsteady residual for the temporal evolution of that time slab R′
ℎ
. The final

indicator is

4: =

����(vℎ (
UBA,ℎ,:

)
− vℎ

(
U�
ℎ,:

)))
R′ℎ (U

�
ℎ,:)

���� . (5.14)

The absolute value is taken to ensure a positive indicator for the time slab, otherwise can-

cellation is allowed.

5.3 Adaptation Strategy

In the context of ILES, as no explicit sub-grid scale model is employed, the discretization

error and the modeling error are tightly coupled. Refining the mesh, which reduces the

discretization error and hence the modeling error, would yield asymptotically a DNS solution.

However, for effective LES modeling, only scales that are large enough to affect our quantities

of interest, e.g., mean drag values, need to be well-resolved, while the smaller scales should

be modeled. Therefore, effective adaptive LES should be targeting areas that are most

important for accurate output predictions.

Since we are using a finite-element method, each element represents the solution with basis

polynomials of a specified order. It is not necessary to hold this polynomial order constant

across the computational domain. A sufficiently general code will allow the polynomial order

to vary across elements, this can be used as a form of mesh adaptation. While increasing

the polynomial approximation order for high-error elements will decrease error overall, this

method is not perfect. Adapting order causes discontinuous jumps in the discretization

resolution leading to artifacts in the final flow-field. Nevertheless, it is a simple and easy to

83

use adaptation technique enabled by high-order elements.

Our error indicators are set up to approximate the error on each element of a turbulent

flow-field snapshot or time slab. In theory, we could adapt by increasing the order of the

worst elements after sampling only a single snapshot. However, practice indicates the error

indicators are quite noisy. We employ spatial and temporal averaging to mitigate the noise

and ensure adaptation is concentrated in consistently high error regions. First, temporal

error indicator averaging is applied. The indicator is computed for each element on each

snapshot, the indicators on each element are then averaged over time. Second, spatial

averaging is applied over known statistically homogeneous directions. For example, in a

turbulent channel, the streamwise and spanwise directions are statistically homogeneous.

Therefore, slabs of elements at constant wall normal position are aggregated and the groups

with the lowest error are adapted. We use the fact that the mesh is structured to ease the

definition of these element groups. This technique ensures the adapted regions remain as

stable as possible.

For each error indicator at each adaptation iteration, we will compute the error at each

element and select approximately 20% of the elements with the worst error for adaptation.

If there are known statistically homogeneous directions, elements in these directions are

aggregated, their errors are summed, and compared with other sets of elements. For each

test case, we have used structured grids with faces aligned in statistically homogeneous

directions where applicable. This makes the definition of element groups simple and easy

to implement. Since the super-resolution models operate on basis function coefficients, a

different model is used for each input order. Since the input order of the network is fixed on

both the element of interest and its neighbors, each neighboring element must be projected

to the network’s expected input order regardless of its original order.

We test both error indicators for two adaptive iterations on several test cases. The time

integration order is held constant at 4, along with the time step for all cases. Each case

84

begins with ? = 3 elements. We find that ? = 3 is a good starting point for both low mesh

resolution and reasonable starting accuracy. Adaptations average the error indicator over 20

iterations. Each adaptive iteration increments the order of the worse elements by two. After

the adaptive iterations, we should be able to observe significant improvement in turbulent

statistics using relatively few degrees of freedom.

We perform two adaptation iterations for each case. The number of adaptation iterations is

limited by two main factors. The first is the ability of the network to accurately reconstruct

flows at ever higher orders. We saw in Chapter 4 that as network size is increased, recon-

struction quality plateaus and then declines. This limitation is due to the simple architecture

of the network. As the input order is increased, the network’s input size grows polynomially,

and reconstruction quality will ultimately degrade. The second factor is that our code only

supports odd polynomial orders, so the adapted order must increase by at least two at each

iteration.

5.4 Unbiased Channel Test Cases

5.4.1 Geometry

Figure 5.1: Uniform channel element outline. All elements are identical shape and aspect
ratio.

In a turbulent channel mesh resolution will typically be focused near the walls where turbu-

85

lent kinetic energy is highest [88]. In addition, the chosen channel size should keep two-point

velocity correlations at half domain distance in the periodic directions small [88, 73]. For our

cases we have chosen to follow Moser et al. [89] with a domain measuring 2cX in the stream-

wise direction and cX in the spanwise direction, where X is the channel half height. Instead of

biasing resolution toward the walls in our adapted cases, we have chosen to begin adaptation

on a mesh with uniformly spaced elements in all directions. Starting with uniform elements

allows the adaptation algorithm to determine a resolution distribution we can compare to

prior knowledge of resolution requirements. Considering the '4g = 395 case and comparing

Table 5.1 to recommended wall-resolved LES resolutions in [55], the uniform channel meshes

should be reasonably well resolved in the streamwise and spanwise directions but element

spacing at and near the wall should be extremely lacking. These are approximate spacings

found by dividing element size in wall units by the number of one dimensional degrees of

freedom for that element.

Table 5.1: Approximate grid spacing in wall units for uniformly spaced channel mesh at
'4g = 395.

ΔG+ ΔI+ ΔH+

N = 4 78 39 12
N = 8 39 20 6

The initial condition is a uniform velocity field with sine wave variation of various frequencies

in all velocities and in all directions. This field is integrated forward in time until a linear

profile of total shear stress,
(
D′E′ − `mD̄/mH

)
, is achieved as discussed in [73]. Averaging

over the streamwise and spanwise directions is employed to accelerate convergence of the

statistical profiles. Once a low-order solution has reached statistically steady-state it is

used to seed high-order solutions which undergo the same process with an improved initial

condition. Each initial # = 4 solution is adapted for two iterations with approximately 20%

of elements incremented by two polynomial approximation orders each iteration. While the

error indicator is computed for each element, the adaptation takes advantage of the statistical

streamwise homogeneity, spanwise homogeneity, and center-line mirror of the channel case.

86

This means all elements at a particular wall normal distance are aggregated when determining

adaptation groups.

5.4.2 State Difference Error Indicator

State Difference Indicator at '4g = 395

case degrees of freedom
uniform ? = 3 65,536
uniform ? = 5 221,184
uniform ? = 7 524,288
adapted, state difference, iteration 1 104,448
adapted, state difference, iteration 2 161,792
adapted, weighted residual, iteration 1 104,448
adapted, weighted residual, iteration 2 161,792

Table 5.2: Adapted degrees of freedom relative to uniform refinement for various cases of
the uniform '4g = 395 channel case.

Let us begin by discussing the '4g = 395 results. The trends discussed here will largely

generalize to the higher Reynolds number versions of this case. Error indicator values for

each adaptation iteration along with the resulting order distribution for each iteration are

shown in Figure 5.2. Selected turbulent statistics for uniform refinement, adaptation, and

DNS data from literature, are reported in Figure 5.3.

Turning attention to the velocity profile in the top left of Figure 5.3, the uniform ? = 3

solution has a bump at about H+ = 50. This bump marks the end of the first element, such

is the extreme under-resolution of this case near the wall. We expect that the adaptive

technique will detect this under-resolution and correct it. Looking at the indicated error for

the first adaptive iteration in Figure 5.2, we see that the most error is indicated near the wall.

This high error then quickly and smoothly drops off toward the center of the channel. This

pattern is consistent with the order distribution we expect from a properly set up channel

case, this is a good sign. There appears to be a bias in indicated error toward the bottom

of the channel. This has no influence on the adapted results since we are using the fact that

87

(a) Error indicator, first iteration

(b) Error indicator, second iteration

(c) Order distribution, first iteration

(d) Order distribution, second iteration

Figure 5.2: Error indicator and element order plots for an '4g = 395 uniformly spaced
channel using the state difference indicator.

88

this case is mirrored over the center line, so the elements on the top and bottom wall are

adapted as a single group. The effect may simply be due to the fact that each plot in Figure

5.2 is a slice and not necessarily indicative of error at all spanwise locations. It may also be

due to element orientation considerations.

Element orientation is a property of the mesh connectivity. Orientation information tells us

how adjacent elements are rotated relative to the element of interest. During training and

testing, we rely on a constant element orientation assumption. This has the downstream

consequence that, for instance, if training on turbulent channel data, walls always occur on

particular element faces. Velocity profile variation also only occurs in particular directions.

There could be some slight bias in the indicated error since the network is not strictly

direction agnostic. Nonetheless, we achieve reasonable results with the current setup.

With the error estimate decided for the first iteration, the adaptation routine targets the

first two layers. Once again, this is expected behavior. For the second adaptation iteration,

indicated error has significantly decreased overall. This is evidence corroborating some of

the work in Chapters 3 and 4. In Chapter 3 we saw that a simple version of the state

difference indicator does show decreasing indicated error as the initial solution resolution is

increased. Without this property, the algorithm could unnecessarily adapt high-resolution

flow-field regions. The convergence property holds in so far as reconstruction is accurate.

In Chapter 4, we saw reconstruction quality deteriorate relative to Chapter 3. The drop in

indicated error during adaptation could indicate reconstruction quality is still sufficient for

adaptation.

For the second iteration, error remains high near the wall. Given the poor statistics shown

in Figure 5.3, this appears to be a reasonable choice. Error remains low at the second layer

off the wall, likely due to the adpatation in that region despite relatively low error to begin

with. The third layer off the wall has relatively high error. This layer received no adaptation

in the first iteration, so this pattern makes sense. After adapting again, the element order

89

next to the wall is moved to ? = 7 with the next two layers at ? = 5.

Now that we have seen reasonable adaptation patterns from the proposed process, we will

take a look at the resulting statistics. The velocity profile in the upper left of Figure 5.3

shows the adapted cases moving in the correct direction toward the high-order results. Flow

velocity in the center of the channel remains low relative to the ? = 7 case. The source term

driving the channel is constant for all cases. The unrefined region near the center of the

channel should produce higher numerical dissipation than the near wall regions resulting in

the velocity deficit. While the “bump” at the end of the first element in the ? = 3 velocity

profile is removed after the first adaptive iteration, the second iteration only slightly improves

the velocity profile. This could be because after removing the extreme under-resolution near

the wall, the primary error is the unrefined center region that cannot be removed without

many adaptive iterations.

The extremely noisy first element is clearly visible in the streamwise root mean square profile

in the upper right of Figure 5.3. The primary influence of adaptive and uniform refinement is

simply controlling the wild variation in this element. Beyond the first element, the adaptive

pattern is somewhat visible by kinks in the adapted profile. The first adapted profile has a

kink at about H+ ≈ 100 and the second adapted profile has one at H+ ≈ 150. These kinks

correspond to the edge of the adapted regions shown in Figure 5.2. The adapted profiles

move relatively close to the ? = 7 profile, but remain extremely noisy.

The wall normal root mean square profile is much better behaved than its streamwise coun-

terpart. No significant noise is observed, just significant undershoot for the initial ? = 3

solution. The first adaptation iteration significantly reduces the undershoot in the region

below H+ ≈ 100, where the mesh has been adapted. While the near wall region shows im-

provement, the remainder of the profile shows more undershoot than the baseline solution.

The second adaptation iteration shows the same effect. The near wall region is improved

while far from the wall the profile degrades. This degradation could be another example of

90

10 1 100 101 102

y +

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
+

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.2

0.4

0.6

0.8

1.0

v′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
w
′2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 50 100 150 200 250 300 350 400
y +

1.5

1.0

0.5

0.0

0.5

u′
v′

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

Figure 5.3: Turbulent statistics comparing two iterations of the state difference error indi-
cator with uniform refinement at '4g = 395.

91

jarring resolution changes within the computational domain hindering the accuracy of the

solution.

The spanwise root mean square profile continues themes in the previous profiles. The adapted

region is clearly visible, with the adapted profiles showing an almost “stepped” character

moving from left to right. After the adapted region, we once again see degradation in the

profile relative to the initial solution. The adaptation clearly controls the extreme error in

the first element as expected. It does not reach the same accuracy as uniform refinement

near the wall despite having the same order of accuracy in that region, showing the negative

influence of unadapted central channel regions.

Finally, the Reynolds shear stress is the easiest statistic to capture. Even the initial profile is

nearly perfectly accurate, but for the first element. The increased order at the first element

for the adapted cases cleans up the first element error nicely. The adapted profiles are similar

to the uniformly refined ? = 7 profile.

State Difference Indicator at '4g = 590

case degrees of freedom
uniform ? = 3 65,536
uniform ? = 5 221,184
uniform ? = 7 524,288
adapted, state difference, iteration 1 104,448
adapted, state difference, iteration 2 161,792
adapted, weighted residual, iteration 1 104,448
adapted, weighted residual, iteration 2 161,792

Table 5.3: Adapted degrees of freedom relative to uniform refinement for various cases of
the uniform '4g = 590 channel case.

In this section we test adaptation on the uniform channel at '4g = 590. Error indicators

and element order distributions for the two adaptation iterations are shown in Figure 5.4. It

appears running the same case at this higher Reynolds number has not changed the results

at all. The error indicator for the first iteration still shows high error near the wall with

92

(a) Error indicator, first iteration

(b) Error indicator, second iteration

(c) Order distribution, first iteration

(d) Order distribution, second iteration

Figure 5.4: Error indicator and element order plots for an '4g = 590 uniformly spaced
channel using the state difference indicator.

93

smooth drop off toward the center of the channel. For the second iteration, the error indicator

shows the same pattern with high error near the wall, a drop where the elements have been

adapted, and a rise once again where the elements have not been altered. The element order

distribution also remains identical to the '4g = 395 case.

The similarity in these results is probably a good sign. Nothing fundamentally changes about

the character of the channel solution between '4g = 395 and '4g = 590. The most difficult

to resolve region is still just off the wall, and the center of the channel is easy to capture

with relatively large eddies.

The statistics in Figure 5.5 also tell a similar story. The bump anomaly in the first element

is eliminated after adaptation. Interestingly, it takes both adaptation iterations to recover

performance near the center of the channel after eliminating the velocity profile bump. Two

adaptation iterations easily eliminate the error in the streamwise root mean square profile.

The solution becomes roughly consistent with ? = 7 uniform refinement on this metric using

about 70% fewer degrees of freedom, referencing Table 5.3. The other two root mean square

profiles show less accuracy than their streamwise counterpart. The edges of the adapted

region are also clearly visible on these plots. Reynolds shear stress is also easily captured,

seeing as almost all error resides in the first element of the wall and that element is heavily

adapted.

State Difference Indicator at '4g = 950

case degrees of freedom
uniform ? = 3 65,536
uniform ? = 5 221,184
uniform ? = 7 524,288
adapted, state difference, iteration 1 104,448
adapted, state difference, iteration 2 161,792
adapted, weighted residual, iteration 1 104,448
adapted, weighted residual, iteration 2 161,792

Table 5.4: Adapted degrees of freedom relative to uniform refinement for various cases of
the uniform '4g = 950 channel case.

94

10 1 100 101 102

y +

0

5

10

15

20

u
+

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 100 200 300 400 500 600
y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 100 200 300 400 500 600
y +

0.0

0.2

0.4

0.6

0.8

1.0

v′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 100 200 300 400 500 600
y +

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
w
′2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 100 200 300 400 500 600
y +

2.0

1.5

1.0

0.5

0.0

0.5

1.0

u′
v′

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

Figure 5.5: Turbulent statistics comparing two iterations of the state difference error indi-
cator with uniform refinement at '4g = 590.

95

Once again we run the same adaptive iterations on the same turbulent channel with no

preexisting element refinement pattern. The adapted error indicators and order distributions

are shown in Figure 5.6. The relatively high error on the lower wall for the first adaptation

iteration is persistent, even in this case. Since the same network has been used for each

adaptation, this probably confirms that this network has a bias. The adapted pattern once

again remains exactly the same as the '4g = 395 and '4g = 590 cases.

Despite a lack of DNS data for the '4g = 950 case, we can still compare the adapted

results against uniform refinement. Overall, the profiles after two adaptation iterations

compare favorably with uniform refinement at ? = 5. Once again that is at fewer degrees

of freedom according to Table 5.4. The velocity and streamwise root mean square profiles

show promising results, each comparing quite close to the ? = 7 solution. The root mean

square profiles in the other directions are less favorable, once again repeating trends seen

previously. The noise in all profiles has significantly increased, this is expected on the same

mesh at higher Reynolds number. This accounts for the persistent noise in the Reynolds

shear stress profile, ? = 7 on the first element is not sufficient to capture the profile under

either uniform or adapted refinement.

5.4.3 Entropy-Adjoint-Weighted-Residual Error Indicator

Entropy-Adjoint-Weighted-Residual Indicator at '4g = 395

The adjoint weighted residual indicator behaves completely differently than the state differ-

ence indicator. For the '4g = 395 case, error indicator and adapted order plots are shown

in Figure 5.8. Focusing on the error indicator plot for the first adaptive iteration, it is much

noisier than the state difference version. The regions of high indicated error are generally

concentrated near the walls, but the signal is not nearly as strong as the other indicator.

The spatial averaging will help with this noise to some degree when adapting the mesh.

We see that the order distribution after adapting one time brings two layers to ? = 5, but

96

(a) Error indicator, first iteration

(b) Error indicator, second iteration

(c) Order distribution, first iteration

(d) Order distribution, second iteration

Figure 5.6: Error indicator and element order plots for an '4g = 950 uniformly spaced
channel using the state difference indicator.

97

10 1 100 101 102 103

y +

0

5

10

15

20

u
+

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 200 400 600 800
y +

0

1

2

3

4

u′
2

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 200 400 600 800
y +

0.0

0.2

0.4

0.6

0.8

1.0

v′
2

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 200 400 600 800
y +

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

w
′2

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 200 400 600 800
y +

2

1

0

1

u′
v′

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 1
adapted, state difference, iteration 2

Figure 5.7: Turbulent statistics comparing two iterations of the state difference error indi-
cator with uniform refinement at '4g = 950.

98

(a) Error indicator, first iteration

(b) Error indicator, second iteration

(c) Order distribution, first iteration

(d) Order distribution, second iteration

Figure 5.8: Error indicator and element order plots for an '4g = 395 uniformly spaced
channel using the adjoint weighted residual error indicator.

99

misses the first element on the wall. Previously, we established that the error on the elements

adjacent to the wall is extremely high. This test case is even designed to ensure that the

error near the wall is extremely high. This oversight should be a serious miss on the part of

this indicator, we will confirm this when discussing the statistics.

The error indicator for the second adaptive iteration shows a similar noisy pattern to the

first iteration. The focus continues to be near the walls, but the noise is extremely high.

The mid point of the noise pattern is also clearly somewhat off the wall. This results in the

first layer of the wall remaining unrefined for a second iteration in a row. Once again, this

should bode poorly for the statistical results.

Focusing on the velocity profile in the upper left of Figure 5.9, our suspicions based on the

adapted orders are confirmed. We observe a degradation in the velocity profile for both

adapted cases. It is clear that targeting the first element is critical. This makes sense

considering that in the channel, the only geometry is the wall. Resolution errors near the

wall will propagate throughout the flow domain, hence the necessity to refine near channel

walls. The slight velocity profile degradation, as opposed to simple stagnation, may be due

to the effect of jarring resolution change in the computational domain.

The streamwise root mean square profile shows the same story. The unrefined first layer

allows little improvement in the overall profile. The extreme noise of the initial ? = 3

solution only slightly changes with refinement focused farther into the channel.

The wall normal root mean square profile is a little more interesting. Once again, we can

roughly see the adaptation pattern in the locations where undershoot is most reduced. The

first adapted profile has a bump between H+ ≈ 50 and H+ ≈ 150 while the second adapted

profile peaks between H+ ≈ 50 and H+ ≈ 200. We continue to see degradation in the profile

for the remainder of the channel. The real failing here appears to be the inability to capture

the peak around H+ ≈ 60 correctly without adapting the first element.

The spanwise root mean square profile continues to be the statistic where the adapted pattern

100

10 1 100 101 102

y +

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
+

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.2

0.4

0.6

0.8

1.0

v′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
w
′2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 50 100 150 200 250 300 350 400
y +

1.5

1.0

0.5

0.0

0.5

u′
v′

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

Figure 5.9: Turbulent statistics comparing two iterations of the entropy-adjoint-weighted-
residual error indicator with uniform refinement at '4g = 395.

101

is easiest to see. Even the ? = 7 peak in the order distribution after two adaptations is visible

in the profile. The region near the wall improves slightly with help from adaptation elsewhere,

but error remains very high.

The Reynolds shear stress plot fundamentally does not change. Almost all the error, even

in the initial ? = 3 solution, is in the first element. Since that element is not touched, the

adapted profiles are effectively unchanged from the initial profile.

Entropy-Adjoint-Weighted-Residual Indicator at '4g = 590

While the adapted results were poor at '4g = 395, they could still improve at higher Reynolds

numbers. The error indicator and adaptation patterns are shown in Figure 5.10. While the

error distribution in the first element appears similar to the '4g = 395 case, this time the

first element off the wall is adapted. This may simply be due to slight differences in the noise

pattern tipping the balance in favor of the first element off the wall instead of the third. It

is also possible that the region of high indicated error has truly shifted closer to the wall.

The error indicator pattern for the second iteration may lend some credibility to this idea.

This time, the error distribution has clearly tightened near the wall relative to the '4g = 395

distribution. Highest error is indicated just off the wall, leading to the same pattern seen

for '4g = 395 shifted one element toward the wall.

While the statistics in Figure 5.11 do show some improvement this time, they are far from the

results of the state difference indicator. The velocity profile performs well close to the wall,

but falls away shortly thereafter. Root mean square profiles are also improved. The wall

normal direction shows the most promise, where the peak is nearly matched by the adapted

result. The spanwise results continue to show the stepped adaptation pattern. While the

character is the same as in the '4g = 395 results, the steps in the profile have shifted toward

the wall, reflecting the change in the adaptation pattern. The Reynolds shear stress shows

increased accuracy as expected from refinement near the wall.

102

(a) Error indicator, first iteration

(b) Error indicator, second iteration

(c) Order distribution, first iteration

(d) Order distribution, second iteration

Figure 5.10: Error indicator and element order plots for an '4g = 590 uniformly spaced
channel using the adjoint weighted residual error indicator.

103

10 1 100 101 102

y +

0

5

10

15

20

u
+

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 100 200 300 400 500 600
y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 100 200 300 400 500 600
y +

0.0

0.2

0.4

0.6

0.8

1.0

v′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 100 200 300 400 500 600
y +

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
w
′2

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 100 200 300 400 500 600
y +

2.0

1.5

1.0

0.5

0.0

0.5

1.0

u′
v′

DNS (Moser et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

Figure 5.11: Turbulent statistics comparing two iterations of the entropy-adjoint-weighted-
residual error indicator with uniform refinement at '4g = 590.

104

The '4g = 590 results appeared to show a trend where higher error is indicated near the

walls relative to the initial '4g = 395 test cases. It appears that the '4g = 950 test cases

continue the same trend. The error indicator and adapted element patterns are shown in

Figure 5.12. While still very noisy, the indicated error in the first iteration is beginning to

look more like the state difference error indicator. As in the '4g = 590 case, the first two

elements off the wall are adapted. The error indicator for the second iteration appears to

continue the trend where error is indicated increasingly close to the wall. It is not yet close

enough to adapt the first element off the wall a second time, instead the second iteration has

the same adapted order pattern as the '4g = 590 case.

Entropy-Adjoint-Weighted-Residual Indicator at '4g = 950

Statistical profiles for the '4g = 950 test cases are shown in Figure 5.12. Results are broadly

similar to the '4g = 590 versions, but with significantly more noise due to under-resolution.

This is to be expected since the adaptation pattern is the same in both cases.

The relatively poor performance of the entropy-adjoint-weighted-residual is unexpected since,

at least on the surface, it is the more sophisticated of the two. Several observations from

present and prior testing may shed light on its performance. In the definition of the weighted

residual error indicator, the absolute value is taken after all residual weighting has taken

place for the entire element. This means that cancellation internal to an element is allowed.

Past versions of the state difference error indicator that allowed internal cancellation also

exhibited noisy patterns of indicated error. If we assume that the residual is relatively

constant over the element, cancellation from the adjoint difference may be contributing to

the excess noise. This idea may be backed up by the fact that the super-resolution network

only predicts corrections to the baseline state. This correction likely has a mean near zero,

which could explain the noisy indicated error pattern.

The averaging behavior may also be to blame, or at least exasperate the possible cancellation

issue. Previous works, such as that of Bassi et al. in [10], have averaged the entropy-adjoint

105

(a) Error indicator, first iteration

(b) Error indicator, second iteration

(c) Order distribution, first iteration

(d) Order distribution, second iteration

Figure 5.12: Error indicator and element order plots for an '4g = 950 uniformly spaced
channel using the adjoint weighted residual error indicator.

106

10 1 100 101 102 103

y +

0

5

10

15

20

u
+

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 200 400 600 800
y +

0

1

2

3

4

u′
2

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 200 400 600 800
y +

0.0

0.2

0.4

0.6

0.8

1.0

v′
2

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 200 400 600 800
y +

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

w
′2

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

0 200 400 600 800
y +

2

1

0

1

u′
v′

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, weighted-residual, iteration 1
adapted, weighted-residual, iteration 2

Figure 5.13: Turbulent statistics comparing two iterations of the entropy-adjoint-weighted-
residual error indicator with uniform refinement at '4g = 950.

107

and residual over time before attempting to compute the error indicator. That is, as opposed

to computing the error on each snapshot and only then averaging over time. Switching to

this averaging strategy could yield much improved results.

We observe that the region of highest indicated error moves increasingly close to the wall as

Reynolds number increases for the weighted residual indicator. The most plausible expla-

nation for this trend could be the influence of the residual on the error indicator. As the

Reynolds number increases, the solution becomes effectively increasingly under-resolved as

long as the mesh stays the same. This would lead to a higher residual when the projected

coarse space is evaluated, possibly explaining the trend.

5.5 Comparison With Velocity Gradient Error Indica-

tor

(a) Order distribution, first iteration

(b) Order distribution, second iteration

Figure 5.14: Element order plots for an '4g = 395 uniformly spaced channel using a velocity
gradient based indicator.

With the success of the state difference indicator on the channel test case, it can now be tested

108

against a more reasonable procedure than uniform refinement. For this, we have chosen a

simple gradient-based indicator that uses the average flow velocity. Using the average flow

velocity, we can reason about the adaptation pattern without implementing it in the form

of an element-wise error indicator. Since the turbulent channel flow is homogeneous in the

streamwise and spanwise directions, the average velocity gradient in those directions is zero.

This leaves the wall-normal direction with non-zero average velocity gradient. We know that

the channel walls are no slip, so the velocity there must be zero. We also know that velocity

near the channel center is relatively constant, so there must be a rapid rise in velocity near

the walls. It is reasonable, then, that the regions of highest velocity gradient will be near

the walls, with regions of low velocity gradient near the center of the channel. If we assume

a 20% fixed fraction adaptation strategy where all statistically homogeneous directions are

adapted together, we can conclude that the first two layers will be adapted at each iteration.

This adaptation pattern is shown in Figure 5.14.

case degrees of freedom
uniform ? = 3 65,536
adapted, velocity gradient, iteration 1 104,448
adapted, velocity gradient, iteration 2 180,224
adapted, state difference, iteration 1 104,448
adapted, state difference, iteration 2 161,792

Table 5.5: Adapted degrees of freedom relative to velocity gradient-based refinement for
various cases of the uniform '4g = 395 channel case.

Figure 5.15 shows comparison of turbulent statistics between two adaptations of the gradient

indicator, and the state difference indicator. Each adaptation begins from the solution with

? = 3 everywhere. The first adaptation iteration for both indicators is identical, therefore

the results in the statistics only differ in their averaging. Each indicator handles the second

adaptation iteration differently. The difference indicator spreads the adapted region by

refining the third layer of elements off the wall to ? = 5, while only taking the element on

the wall to ? = 7. In contrast, the gradient based indicator always refines the first two layers

off the wall, leading to two layers at ? = 7. This means the gradient based indicator uses

109

10 1 100 101 102

y +

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
+

DNS (Moser et al.)
uniform, p = 3, initial mesh
adapted, gradient-based, iteration 1
adapted, gradient-based, iteration 2
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
adapted, gradient-based, iteration 1
adapted, gradient-based, iteration 2
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.2

0.4

0.6

0.8

1.0

v′
2

DNS (Moser et al.)
uniform, p = 3, initial mesh
adapted, gradient-based, iteration 1
adapted, gradient-based, iteration 2
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 50 100 150 200 250 300 350 400
y +

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
w
′2

DNS (Moser et al.)
uniform, p = 3, initial mesh
adapted, gradient-based, iteration 1
adapted, gradient-based, iteration 2
adapted, state difference, iteration 1
adapted, state difference, iteration 2

0 50 100 150 200 250 300 350 400
y +

1.5

1.0

0.5

0.0

0.5

u′
v′

DNS (Moser et al.)
uniform, p = 3, initial mesh
adapted, gradient-based, iteration 1
adapted, gradient-based, iteration 2
adapted, state difference, iteration 1
adapted, state difference, iteration 2

Figure 5.15: Turbulent statistics comparing two iterations of the state difference error indi-
cator with two iterations of a velocity gradient indicator at '4g = 395.

110

more degrees of freedom as seen in Table 5.5.

Identical velocity profile results in the first adaptation iteration are followed by nearly iden-

tical results in the second. It appears the difference in near-wall refinement pattern makes

little difference on this case, the fact that the wall is refined is enough. The streamwise

root-mean-square profile also shows little difference in the second adaptation iteration. Both

methods control the severe near-wall under-resolution. Differences appear in the wall-normal

and spanwise root-mean-square profiles. These have been the profiles where the details of

the adapted patterns are easiest to see, and this case is no exception. The gradient-based

indicator shows better results near the wall as expected from the adapted pattern, but worse

results closer to the channel center where it has not refined. The root-mean-square plot once

again has all error in the first element, this error is controlled by high-order near the walls

for both indicators.

The performance of the state difference and gradient-based indicators has been nearly iden-

tical. The refinement pattern for both indicators is similar, focusing on the near-wall region.

Adapted patterns differ on the second iteration, where the gradient-based indicator continues

to concentrate resolution closer to the wall. The fixed-fraction adaptation strategy means

that the gradient-based indicator’s consistent concentration of resolution near the wall leads

to increased cost. Based on these results, we may think of the super-resolution-based error

indicators as a type of feature indicator. The regions of high velocity gradient and high re-

construction correction overlap significantly. It is more efficient however to spread resolution

over a larger area as is the case in the super-resolution-based adaptation.

111

5.6 Periodic Hill Test Case

5.6.1 Geometry and Case Setup

Figure 5.16: Periodic hill geometry. Elements are cubic to comply with spline geometry
definition.

Almeida et al. [3] experimentally investigated flow over periodic hills in the early 1990s.

The geometry was subsequently modified for a streamwise periodic computational setting

by Mellen et al. [87]. Subsequent LES and DNS numerical investigations of the geometry

at various Reynolds numbers have been conducted by Temmerman and Leschziner [110],

Breuer et al. [18], Balakumar [7], and many others. The geometry used in the present study

is shown in Figure 5.16. It consists of a single hill split at the streamwise periodic boundary

of the computational domain. The hill is curved, defined as a spline between several lower

surface points. The geometry is spanwise periodic, and both the upper and lower surfaces

are no slip walls. This geometry is a classical case of flow separation and recirculation, which

occurs after the first hill.

The mesh used for the present test cases is the low resolution mesh used by Diosady and

Murman [32] for their DNS of the case for '41 = 10, 595. The resolution is 16×8×8 elements

in the streamwise, spanwise, and wall normal directions respectively. At this resolution the

geometry definition is inexact. An exact definition would use third order curved elements

and place element boundaries exactly at spline interpolation points. However, the inaccuracy

112

incurred should be extremely small, much smaller than the error due to under-resolution

before adaptation. We have chosen this relatively low resolution to give poor results at the

? = 3 initial order, and reasonably accurate results at ? = 7. This will give adaptation the

opportunity to show a significant improvement in turbulent statistics.

While the resolution is fixed by the mesh, we still need to set the Reynolds number to define

the case. Periodic hill cases are driven by a body force. We maintain a constant body force,

and this body force must be chosen correctly to achieve the correct flow condition. Periodic

hill cases are defined by their bulk Reynolds number '41, where the length scale is the hill

height and the velocity scale is the bulk velocity D1, the average velocity at G/ℎ = 0. In our

case, we have fixed the kinematic viscosity and vary the body force to achieve the correct

D1 and '41. This forcing study was done on a mesh with double the test mesh’s element

count in each dimension (32 × 16 × 16 elements) and polynomial order 7. While not a DNS

resolution, this higher resolution ensures dissipation does not skew the forcing parameter to

overcome the higher dissipation of a lower resolution case.

For all uniformly refined and adapted cases, the strength of the forcing parameter remains

constant at the value discovered from the high-resolution simulation. In doing so, we will

be able to see the effects of dissipation clearly. Low resolution simulations will have lower

velocities than their higher resolution counterparts and refinement should monotonically ap-

proach DNS results. This will make visual distinction between more and less dissipative cases

clear in the statistical profiles. When presenting statistical profiles they are also typically

normalized using D1. For all profiles presented below, the same normalizing D1 = 0.2 value

will be used, once again to preserve intuitive convergence behavior in the final plots.

5.6.2 Adapted Results

Following are results for the state difference and entropy-adjoint-weighted-residual error

indicators. Each indicator is run for two adaptive iterations on the '41 = 2800 turbulent

113

channel with 16× 8× 8 elements. Each adaptation begins from a uniform ? = 3 solution and

ends with mixed ? = 3, ? = 5, and ? = 7 elements. Adaptations are compared with a series

of uniform refined cases at ? = 3, ? = 5, and ? = 7. Turbulent statistics at various stations

are presented compared with DNS data from Breuer et al. [18]. For each adaptive order

change, a burn time of approximately 50 flow through times is used to approach statistical

steady-state before averaging begins. Turbulent statistics are then averaged over a further

50 flow through times for all cases. Statistics are then averaged in the spanwise direction to

produce the final statistical profiles at each station.

Statistical profiles at various stations are shown in Figures 5.17, 5.18, 5.19, and 5.20 for G/ℎ

equal to 0.05, 2, 4, and 7 respectively. It should be noted from the beginning that there is

some error incurred in the calculation of higher order statistics, especially at low resolutions.

This may be noticed in small deviations from zero at the walls for the higher order statistics.

This is because the calculation used assumes the fluctuating velocity component averages out

to exactly zero, which is not strictly the case with finite averaging time. There could also be

some influence of weakly enforced boundary conditions in busy flow-field areas. Nonetheless,

there is strong agreement with the DNS results of Breuer et al. [18] provided on all plots,

and only small deviations are observed at the walls.

A glace at each velocity profile shows the expected convergence behavior with increasing res-

olution. The lower resolution cases are more dissipative, leading to lower averaged velocities

for the same body force. The uniformly refined ? = 7 solution does not match the DNS data

exactly, but this should be expected since it it still severely under-resolved. There is a large

jump in accuracy between the ? = 3 and ? = 5 solutions, and a relatively small jump from

? = 5 to ? = 7. This is also expected, since we are effectively observing the convergence

in linear scale, when error should decrease exponentially with increasing order. Focusing

only on the velocity profiles, it appears the weighted residual indicator is performing better

after two adaptive iterasions. It consistently approaches close to the ? = 5 solution using

114

0.0 0.2 0.4 0.6 0.8 1.0
u/Ub

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.02 0.04 0.06 0.08
u′u′/U2

b

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
v′v′/U2

b

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.014 0.012 0.010 0.008 0.006 0.004 0.002 0.000 0.002
u′v′/U2

b

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00
y

/ h
DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.01 0.02 0.03 0.04 0.05 0.06
k/U2

b

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

Figure 5.17: Various averaged statistical profiles relative to the DNS of Breuer et al. at
G/ℎ = 0.05.

115

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
u/Ub

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.02 0.04 0.06 0.08 0.10
u′u′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.01 0.02 0.03 0.04 0.05
v′v′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.04 0.03 0.02 0.01 0.00
u′v′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0
y

/ h
DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.02 0.04 0.06 0.08 0.10
k/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

Figure 5.18: Various averaged statistical profiles relative to the DNS of Breuer et al. at
G/ℎ = 2.0.

116

0.0 0.2 0.4 0.6 0.8 1.0
u/Ub

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.02 0.04 0.06 0.08
u′u′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.01 0.02 0.03 0.04 0.05
v′v′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.035 0.030 0.025 0.020 0.015 0.010 0.005 0.000 0.005
u′v′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0
y

/ h
DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.02 0.04 0.06 0.08 0.10
k/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

Figure 5.19: Various averaged statistical profiles relative to the DNS of Breuer et al. at
G/ℎ = 4.0.

117

0.0 0.2 0.4 0.6 0.8 1.0
u/Ub

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.01 0.02 0.03 0.04 0.05
u′u′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.000 0.005 0.010 0.015 0.020 0.025 0.030
v′v′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.020 0.015 0.010 0.005 0.000
u′v′/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0
y

/ h
DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

0.00 0.01 0.02 0.03 0.04 0.05 0.06
k/U2

b

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y
/ h

DNS (Breuer et al.)
uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

Figure 5.20: Various averaged statistical profiles relative to the DNS of Breuer et al. at
G/ℎ = 7.0.

118

about 40% fewer degrees of freedom. A look at Table 5.6 shows that the weighted residual

indicator has used about 5,000 more degrees of freedom than the state difference indicator.

This may explain some of the performance discrepancy.

case degrees of freedom
uniform ? = 3 65,536
uniform ? = 5 221,184
uniform ? = 7 524,288
adapted, state difference, iteration 1 97,152
adapted, state difference, iteration 2 131,072
adapted, weighted residual, iteration 1 97,152
adapted, weighted residual, iteration 2 136,832

Table 5.6: Degrees of freedom for various '41 = 2800 periodic hill cases.

Moving on to the higher-order statistics seems to show a different story. Through most

stations, the adaptation pattern produced by the state difference error indicator appears to

outperform the weighted residual version. Looking closely, the difference is most clear near

the bottom of the channel, but the top is not so clear. This difference is explained by the

adaptation patterns shown in Figures 5.21 and 5.22. The difference indicator has focused

more on lower parts of the channel in regions of high Reynolds stress. It is also apparent that

the difference indicator used fewer high-order elements, preferring to spread the adaptation

instead. The tendency to spread the adaptation pattern is made clear by the error indicator

plots in Figure 5.21. The state difference indicator indicates significantly reduced error in

the adapted region, causing the adapted region to expand to coarser regions on the next

iteration. On the other hand, the weighted residual indicator does not show the same neat

drop in indicated error. This is likely do to the noisy nature of the reconstruction, and the

fact degrees of freedom are allowed to cancel when taking the difference between the fine

and coarse space adjoints before taking the absolute value. This is the same issue observed

above in the channel cases.

Figure 5.23 shows a skin friction comparison between uniform refinement and the second

adaptation iteration for each error indicator. The “waves” in the skin friction profile are

119

(a) Element orders, iteration 1

(b) Element orders, iteration 2

(c) Element error indicator, iteration 1

(d) Element error indicator, iteration 2

Figure 5.21: Element orders and indicated error for two adaptation iterations of the periodic
hill using the state difference indicator.

120

(a) Element orders, iteration 1

(b) Element orders, iteration 2

(c) Element error indicator, iteration 1

(d) Element error indicator, iteration 2

Figure 5.22: Element orders and indicated error for two adaptation iterations of the periodic
hill using the adjoint weighted residual indicator.

121

0 2 4 6 8
x / h

0.01

0.00

0.01

0.02

0.03

0.04
c f

uniform, p = 3, initial mesh
uniform, p = 5
uniform, p = 7
adapted, state difference, iteration 2
adapted, weighted residual, iteration 2

Figure 5.23: Skin friction coefficient comparison between uniformly refined and adapted
periodic hills. DNS separation and reattachment points from Balakumar [7] are shown as
dots.

likely element effects. They are consistent between cases, as expected, since each case is run

on the same mesh. The adapted solutions predict the separation and reattachment points

approximately as well as the ? = 7 solution. Though, it is possible some of this is due to

large element effects.

The error indicators on this case perform reasonably well, though perhaps only slightly better

than uniform refinement. In that respect it is possible the performance has degraded moving

to a more complex test case. The entropy-adjoint-weighted-residual error indicator does not

show the same performance deficit that it showed on the unbiased channel test case. It did

show some consistent themes though, such as relatively weak indicated error reduction from

one iteration to the next. The state difference indicator continued to show strong reduction

in indicated error. These differences could be due to the cancellation issues discussed in the

channel section.

122

5.7 Trailing Edge Cooling Slot Test Case

5.7.1 Differences in Network Design

The trailing edge cooling slot test case used a previous version of the state difference error

indicator. That indicator is described below.

For the model to generalize well on unseen data, a nondimensionalization process, or in the

machine-learning perspective, a data pre-processing procedure, is applied before the network

training. The resulting model has the form

Uℎ,2 = �
==
BA

(
U�,2,B − u<,B

urms,B
,
U�,=,B − u<,B

urms,B
, log

(
+rms,2,3Δ3

a

))
Drms,B +U�

ℎ,2 ∀3 ∈ D, = ∈ N , B ∈ S

(5.15)

where the reconstructed state Uℎ,2 is formed by adding the super-resolution model output

to the prolonged coarse state U�
ℎ,2

, both on the central element 2. D is the set of coordinate

directions, N is the set of neighboring cells, and S is the full set of state ranks. U�,2,B

is the full state vector * restricted to element 2 and rank B. Likewise U�,=,B is the same

for each neighbor state. u< and urms are the mean and the root mean square of the state

solution, and +rms,2,3 is the root mean square velocity on element 2 in direction 3. The last

input feature in Equation 5.15 is the elemental Reynolds number, which is an indicator of

the under-resolution present in the local element. Due to the wide range of the elemental

Reynolds number, a logarithm is taken to help the model training.

In this work, we consider DG solutions on hexahedral meshes using tensor-product nodal

basis functions. The network is then trained on three-dimensional rectangular meshes. A

simplified two dimensional version of the proposed network structure for super-resolving

one state component from ? = 1 to ? = 3 is sketched in Figure 5.24. A final input data

permutation step generates additional samples by rotating a given training sample through

all positive volume rotational symmetries of a cube to remove directional bias in the trained

model.

123

x

y

Fsr

cw e

n

s

nw ne

sesw

c

Figure 5.24: Simplified 2D super-resolution neural-network model from ? = 1 to ? = 3.

5.7.2 Error Indicator

Since the super-resolution model estimates the difference between a coarse state and a fine

state, the magnitude can be used as an error indicator. Specifically, we have chosen to take

the discrete !1 norm of the super-resolution output on each element :.

4: = ‖�==BA (U�,:)Urms,: ‖1 (5.16)

The element-wise indicator allows localized element adaptation. The per-element indicator

may be averaged over statistically constant regions, such as wall normal layers in a turbu-

lent channel, to reduce noise in the indicated error. We also average the error indicator

over many snapshots to further reduce noise for statistically steady flows. This is a fairly

straightforward error indicator that will simply show error where under-resolution is present

but not necessarily indicate the cause.

124

5.7.3 Data Generation and Network Training

Training data for the super-resolution neural-network are generated by capabilities we have

added to NASA’s eddy code[31, 33]. All training and test cases use hexagonal elements

with tensor-product basis functions. For super-resolution, the network input neighborhood

consists of the central element of interest and all elements directly across a face for a total

of seven elements. The length scale used for element Reynolds number generation is the

length of the axis-aligned bounding box in each dimension. The training data are generated

by projecting cases simulated at high-order down to the relatively low-orders required for

super-resolution. We have generated training data by sampling an '4g = 950 turbulent

channel case. Once we have adapted an initial constant order solution there will be multiple

solution orders in the same domain. This situation is handled by training a separate neural-

network for each potential order. When training data are generated, neighboring elements

are always projected down to a coarse order based on the solution order of the central

element. We use the same core code for training and adaptation, the only difference being

when training, the input data are generated by projecting a high-order solution to low-order

and when online, the input data to the network are generated by the present simulation

state.

5.7.4 Cooling Slot Test Case

To demonstrate our method, we have chosen a turbulent mixing test case meant to mimic a

cooling slot in turbomachinery, presented in [54]. This case uses auxiliary domains to pro-

duce a turbulent boundary condition at the inlet. The upper auxiliary domain is a one-way

coupled periodic boundary layer simulation where boundary layer thickness is maintained

by a specialized forcing field. Source terms are added to the Navier-Stokes equations corre-

sponding to the mean gradient of each state according to a log-law and wake profile. The

lower auxiliary domain is a one-way coupled turbulent channel driven by a simple constant

body force. The lower auxiliary domain connects directly to the cooling slot of height H2.

125

Figure 5.25: Element boundaries for the primary domain of the trailing edge cooling slot
case. Turbulent inflow auxiliary domains are to the left, perfectly matched layer outflow
domains are to the top and right.

Inflow from the auxiliary domains is initially separated by a small lip in the main computa-

tional domain before mixing, as shown in the lower left of each domain in Figures 5.25 and

5.26. The end of the lip is positioned at G/H2 = 0.

Each adaptation iteration refines approximately 20% of elements. Since the problem is sta-

tistically homogeneous in the spanwise direction by construction, elements sharing spanwise

faces are grouped and adaptation is performed in an effectively two dimensional space with

these element groups. Only elements with a downstream distance less than approximately

G/H2 = 32 are adapted to ensure there is no excessive downstream refinement.

The flow-through time scale for the main computational domain is C = 80H2/*∞. In all cases,

averaging is started after waiting at least 50.6C from the initial condition and averaging takes

place for at least 10.1C, all at a time step of approximately 5 × 10−4C. This integration time

exceeds that of [54], which used 2 − 3C. This ensures that the difference between the profile

at half averaging time and full averaging time is small relative to the difference between

profiles for different simulations. The profile at each station is generated from the average

of 20 spanwise velocity samples and all simulations of this case use the same high resolution

126

(p = 7) inlet regions.

5.7.5 Results

The adapated order distribution after two iterations next to a reference snapshot is shown

in Figure 5.26. Adaptation has focused in the wake region of the blunt body separating the

channel and boundary layer inflows. The adaptation pattern appears strongest in the region

of the most intense vortex shedding. The region immediately after the blunt body has little

adaptation save for a few elements near its corners. Lower orders are also present further

downstream, indicating they were not the regions of maximum indicated error. While the

most complex vortex shedding region has been highlighted by the indicator, some key flow

features could probably use more adaptation. The corners of the blunt body off of which

the vortices are shedding should be influential in the down stream shedding effect. They

are captured by one adaptive iteration, but are not raised to the maximum order possible,

? = 7.

Table 5.7: Slot case degree of freedom counts in primary computational domain. The adapted
result has undergone two adaptive iterations.

p = 3 adapted p = 5 p = 7
592,640 1,313,600 2,000,160 4,741,120

Velocity profiles at several stations are showin in Figure 5.27. Where available, these profiles

have comparisons with much higher resolution results from [54]. We see that the adpated

result performs slightly worse at each station than the uniform ? = 5 solution. The adpated

solution uses approximately 34% fewer degrees of freedom than the ? = 5 solution as shown

in Table 5.7. This places the performance of the adapted indicator roughly in line with

uniform refinement. The result is consistent with observations from the periodic hill case

earlier.

Higher order statistical profiles are provided at various stations in Figures 5.28, 5.29, 5.30,

5.31, 5.32. These figures also include comparison with Garai et al. [54] where available.

127

Figure 5.26: Mixed ? = 3, 5, 7 adapted order distribution and reference velocity field.

Overall, despite lacking the ? = 5 data on these plots, the story remains roughly consistent.

The adaptive method appears to perform roughly consistently with uniform refinement on

large test cases. Specific stations are of note. Reynolds shear stress variation at G/H2 = 10

is extreme. This is because this station is near the center of the heavy vortex region. We

also saw in Figure 5.26 that this is the most heavily adapted region. Therefore, the extreme

shear stress profile is well resolved by the adapted solution, at least relative to uniform

refinement. Even the ? = 7 solution is significantly off the true solution, but the case is still

under-resolved at that resolution.

5.8 Summary

In this chapter mesh adaptations have been performed using various super-resolution based

error indicators on turbulent flow problems. A 20% fixed fraction adaptation strategy was

employed. We began with a channel case with no initial mesh refinement. This is meant

128

0.0 0.2 0.4 0.6 0.8 1.0
u/u

0

1

2

3

4

y/
y c

Garai et al.
N = 4
N = 6
N = 8
adapted

0.0 0.2 0.4 0.6 0.8 1.0
u/u

0

1

2

3

4

y/
y c

Garai et al.
N = 4
N = 6
N = 8
adapted

0.0 0.2 0.4 0.6 0.8
u/u

0

1

2

3

4

y/
y c

N = 4
N = 6
N = 8
adapted

0.0 0.2 0.4 0.6 0.8
u/u

0

1

2

3

4

y/
y c

N = 4
N = 6
N = 8
adapted

Figure 5.27: Normalized velocity profiles for the slot case at various downstream stations.
From top left to bottom right the stations are G/H2 = 4, G/H2 = 10, G/H2 = 20 and G/H2 =
30.

129

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

u′u′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.05 0.10 0.15 0.20 0.25

v′v′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.02 0.04 0.06 0.08 0.10 0.12

w′w′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.010 0.005 0.000 0.005 0.010
u′v′/U2

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

Figure 5.28: High-order slot case statistics compared with uniform refinement at G/H2 = 4.

130

0.00 0.02 0.04 0.06 0.08 0.10 0.12

u′u′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

v′v′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.02 0.04 0.06 0.08 0.10

w′w′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.003 0.002 0.001 0.000 0.001
u′v′/U2

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

Figure 5.29: High-order slot case statistics compared with uniform refinement at G/H2 = 10.

131

0.00 0.02 0.04 0.06 0.08 0.10

u′u′ /U

0

1

2

3

4

y/
y c

uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.02 0.04 0.06 0.08 0.10

v′v′ /U

0

1

2

3

4

y/
y c

uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.02 0.04 0.06 0.08

w′w′ /U

0

1

2

3

4

y/
y c

uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.0035 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 0.0000
u′v′/U2

0

1

2

3

4

y/
y c

uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

Figure 5.30: High-order slot case statistics compared with uniform refinement at G/H2 = 20.

132

0.00 0.02 0.04 0.06 0.08 0.10

u′u′ /U

0

1

2

3

4

y/
y c

uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.02 0.04 0.06 0.08

v′v′ /U

0

1

2

3

4

y/
y c

uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

w′w′ /U

0

1

2

3

4

y/
y c

uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.0035 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 0.0000
u′v′/U2

0

1

2

3

4

y/
y c

uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

Figure 5.31: High-order slot case statistics compared with uniform refinement at G/H2 = 30.

133

0.00 0.02 0.04 0.06 0.08 0.10 0.12

u′u′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

v′v′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

w′w′ /U

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

0.0025 0.0020 0.0015 0.0010 0.0005 0.0000
u′v′/U2

0

1

2

3

4

y/
y c

Garai et al.
uniform, p = 3, initial mesh
uniform, p = 7
adapted, iteration 2

Figure 5.32: High-order slot case statistics compared with uniform refinement at G/H2 = 50.

134

to promote severe under-resolution in the near-wall region. The state difference indicator

returns favorable results on this case. It always adapts the near-wall region, while simultane-

ously adapting farther from the wall when necessary. The weighted residual error indicator

performs poorly on this case, missing the first element off the wall at low Reynolds numbers.

This error improves at higher Reynolds numbers, where the near-wall region is captured.

The poor performance of the weighted residual version could be due to the averaging be-

havior. While mathematically sound, averaging the resulting indicators from the entropy

adjoint weighted residual is suboptimal relative to averaging the inputs [10]. The state dif-

ference indicator was also compared against a velocity-gradient-based indicator using the

same adaptation strategy. The tendency of the super-resolution-based indicator to expand

the adapted region is encouraging. Overall results are similar between the two indicators.

It is possible the state difference indicator should be thought of as a feature-based error

indicator that indicates where gradients are high.

Moving on to problems with initially refined meshes shows less favorable results. Testing on

the periodic hill shows similar results between the error indicators. These results are each

more in line with uniform refinement than previous results on the channel case. Results

appear to deteriorate on more complex meshes with reasonable initial refinement patterns.

This trend continues on the trailing edge cooling slot case, where a modified version of

the state difference indicator is tested. The initial mesh has heavy refinement in the most

interesting flow region downstream of the cooling slot. Results are once again in line with

the uniformly refined variants. It appears that, overall, the technique is successful for a

sufficiently poor initial mesh. Super-resolution-based indicators are unable to hone in on

fine flow features that control the flow, such as separation points.

135

Chapter 6

Conclusions

In this chapter we will present a summary of the work performed in this thesis and dis-

cuss the contributions. Suggestions are made for impactful research directions in turbulent

adatpation. Finally, future work for the improvement of super-resolution-based indicators is

discussed.

6.1 Summary

On a sufficiently poor initial mesh, super-resolution-based error indicators can perform quite

well. We saw this with the state difference indicator on the channel flow problem. Moving

to the more complex test cases, performance deteriorated until it was in line with, or only

slightly better than, uniform refinement. The more complex test cases have reasonable initial

mesh refinement patterns. The periodic hill mesh is refined near the wall, and the cooling slot

mesh is refined in the wake of the slot. With these initial refinements, the indicators are asked

to move from predicting regions of general activity, to specific regions relevant to the flow. We

have seen that, at this point, the indicators fail to focus refinement further. The periodic hill

and cooling slot cases both feature flow separation. Capturing the separation point and the

relevant upstream regions should be crucial for accurate flow prediction. However, neither

136

error indicator is able to do this. This is not surprising, considering the error indicators have

no mechanism to derive such information from the flow. These results reinforce the need for

truly output-based indicators.

In Chapter 3, a high-order KS equation solver was used to test the strengths and limitations

of the chosen network architecture. It was shown that the network is capable of nearly perfect

reconstruction of unseen data in the same mesh and of the same equation parameterization.

Checking if training on one parameterization generalized to another, we found that it does

not. This lack of generalization does not depend on the frequencies of the training and

test states. Both training on low-wavenumber data with testing on high-wavenumber data

and training on high-wavenumber data with testing on low-wavenumber data result in poor

generalization. Mixing training data with the same network recovers most of the performance

of the individual training sets, but allows generalization. Some bias was observed toward

the mean of the training sets during this testing.

Chapter 4 continues the work of Chapter 3 in higher dimensions. It is shown that the baseline

reconstruction of velocities on two dimensional finite-element states is of high quality. The

quality can be further improved by modifying the network architecture to perform a series of

simpler reconstruction problems. The importance of controlling inter-element discontinuities

is emphasized. The discontinuities can be observed in energy spectra as excess energy in

high-wavenumber regions. We continue on to experiment with the quality of reconstruction

in three dimensions. The simple fully-connected network architecture is carried forward for

testing in 3D. We saw the reconstruction quality degrade further, but significant spectral

correction remains present. A variety of network sizes were tested, leading to a final, slightly

over-sized, network choice. The generalizability of this network across turbulent channel

Reynolds numbers was then tested, similar to the tests in Chapter 3. A network trained on a

mixed data set showed similar reconstruction performance to networks tailored to individual

data sets. This single mixed network was chosen for use in the adaptations in Chapter 5.

137

Chapter 5 presents two error indicators based on super-resolution reconstruction. Those

indicators were then used on several test cases ranging from sanity-check to large-scale.

We began with the turbulent channel test cases, where the mesh was not refined near the

wall. This allowed the adaptive indicators to demonstrate their “preferred” element order

distribution. The simple state difference indicator performed well on this test. It showed a

smooth initial error indication over the channel, with appropriate adjustments after the first

iteration of refinement. The indicated error also significantly decreased overall, as expected,

without ignoring the under-resolved wall. In comparison, the performance of the weighted

residual indicator was puzzling. The indicated error, while biased toward the walls, was

significantly noisier than the state difference version. This led to failure to adapt the first

element off the wall at the lowest Reynolds number and significantly degraded performance

as a result. This problem decreased somewhat at higher Reynolds numbers. One possible

culprit for this behavior is cancellation in the adjoint calculation. Another is averaging the

error indicator itself instead of the adjoints and residual separately.

Chapter 5 continued with the periodic hill test case. This test is a canonical case of flow

separation and recirculation, making it an ideal case for our testing. The difference between

the indicators was less stark with this case. Similar performance was achieved on both

error indicators, with the weighted residual indicator favoring the top of the domain and the

difference indicator favoring the bottom. Each network performed roughly in line with, or

slightly favorably, relative to uniform refinement on a degree of freedom basis. The trailing

edge cooling slot test case used a slightly older version of the state difference error indicator.

Performance of this indicator is consistent with the current version on the uniformly refined

channel test case. On a variety of turbulence statistics, the adapted mesh performs roughly

similarly to the periodic hill case, in line with uniform refinement.

Performance of these new methods is encouraging on simple test cases, but performance

appears to degrade as the cases become more complex. A variety of possible improvements

138

are discussed below.

6.2 Contributions

The major contributions of this dissertation are:

1. Introduced error indicators based on super-resolution reconstruction. The

simple state difference indicator tended to perform better than the entropy adjoint

weighted residual version. This could be because the chosen averaging technique was

suboptimal for the weighted-residual indicator.

2. Demonstrated that a single reconstruction model trained on a variety of

flows is sufficient for adaptation. Reconstruction performance from a single model

on various flows matched or exceeded the performance seen from more specially trained

models.

3. Implemented reconstruction-based adaptation in a high-order discontinuous

Galerkin code. The adaptive framework incorporates super-resolution reconstruction

by directly modifying an existing DG code.

4. Performed super-resolution-based adaptation on several chaotic flow prob-

lems. The turbulent channel tested the ability of the super-resolution-based error

indicators to refine an extremely poor initial mesh. The periodic hill test case demon-

strated their performance for separated flows. The trailing edge cooling slot provided

another flow separation test case at larger scale.

6.3 Research Outlook

In engineering, we are interested in computing time-averaged outputs, e.g. drag, from tur-

bulent flows. We are also interested in safety-critical phenomena like flow separation. We

139

would like our mesh adaptation methods to capture these phenomena to facilitate the design

process by reducing cost for a given accuracy. We may break mesh adaptive techniques into

a couple major forms. The first uses features of the flow to refine the mesh. These features

may be Mach number jumps, pressure gradients, vorticity, and many more. Adapting on

these features can lead to suboptimal results, since they do not directly capture outputs

of interest. The second form of adaptive technique measures the sensitivity of the output

of interest, like drag, to the discretized equations. This form finds an optimal mesh for a

given output, one that computes the output at the highest possible accuracy for a fixed

cost. Super-resolution-based indicators fall in the first category. On a sufficiently poor ini-

tial mesh, a reconstruction-based indicator is able to outperform uniform refinement. The

indicator will show where there is activity in the flow, and where there is not. The indicators

are not able to concentrate on detailed flow features within a turbulent regime.

To solve this problem, and turbulent adaptation generally, indicators using super-resolution

reconstruction are not sufficient. A viable method for chaotic sensitivity analysis is needed

instead. Least squares shadowing has proven able to perform chaotic sensitivity analysis,

albeit at high computational cost. The cost has come down over time with the development of

methods like non-intrusive least squares shadowing. Additional research effort in this general

direction may yield an output-based indicator for chaotic flows at practical computational

cost.

It appears that truly output-based indicators will be needed for large, e.g. orders of magni-

tude, efficiency gains in the simulation of turbulent flows. If this is the case, another useful

research direction to pursue in the meantime is the efficiency of solvers themselves. Modern

computer hardware tends to be rich in compute performance and relatively poor in memory

bandwidth. This means that only algorithms that require a large number of floating point

operations per memory access are able to fully use the available hardware. These algorithms

are said to be compute-bound. In contrast, relatively low-order or non-compact schemes, like

140

finite-volume, tend to be memory-bound. That is, their speed is limited by the processor’s

ability to access memory, not the speed of the processor itself. High-order, compact stencil

finite element methods provide a possible route to compute-bound solvers on modern archi-

tectures. The computation in these methods boils down to matrix-matrix multiplication and

similar operations. Matrix-matrix multiplication is a known compute-bound problem, if the

matrices are sufficiently large. This means that finite element methods are candidates to take

full advantage of modern hardware when run at high-orders. Research in this direction will

also require work on nonlinear solvers to deal with the stiffness of high-order finite element

methods.

6.4 Future Work for Super-Resolution-Based Indica-

tors

• Experiment with Weighted Residual Indicator Averaging

The error indicator averaging technique is mathematically sound, but better techniques

could be used in practice. Averaging the reconstructed adjoint could expose consistent

directional bias within an element and prevent the possible adjoint cancellation and

additional noise. Ideally this averaging could be used to avoid reconstructing the

state at each snapshot, saving computational resources. Perhaps a network could be

generated to reconstruct an averaged state instead of an instantaneous state. As it

stands however, the instantaneous snapshots would need to be computed.

• Improve Super-Resolution Reconstruction Architectures for DG

Chapter 4 showed that improved reconstruction architectures are possible. More ac-

curate reconstruction could help the accuracy of the error indicators and therefore

the quality of adaptaion. DG basis function coefficients are a type of input distinct

from most machine-learning literature on super-resolution, which usually deals with

pixel data. This could mean that some novel architectures become interesting for this

141

purpose.

• Implement Remeshing Techniques

p-adaptation is a fairly restrictive form of adaptation. The mesh cannot change, only

the order with which the elements are represented. This could mean that small but

significant flow features are missed by the adaptation. Anisotropic adaptation will be

critical to capture important features of turbulent flows. Combining anisotropic mesh

adaptation with order adaptation will yield the best results.

• Improve 1D Testing

The 1D testing on the KS equation could be more extensive than at present. With

support for variable element sizes and orders, contrived adaptation patterns could be

set up with exact solutions. This could also be a test bed for more sophisticated

adaptation strategies where an optimal mesh is found for a given cost, likely under

some other restriction to prevent the obvious uniform distribution.

142

Bibliography

[1] Antonella Abbà, Alessandro Recanati, Matteo Tugnoli, and Luca Bonaventura. Dy-

namical p-adaptivity for LES of compressible flows in a high order DG framework.

Journal of Computational Physics, 420:109720, 2020.

[2] Roger Alexander. Diagonally implicit Runge–Kutta methods for stiff ODE’s. SIAM

Journal on Numerical Analysis, 14(6):1006–1021, 1977.

[3] GP Almeida, DFG Durao, and MV Heitor. Wake flows behind two-dimensional model

hills. Experimental Thermal and Fluid Science, 7(1):87–101, 1993.

[4] Saeed Anwar, Salman Khan, and Nick Barnes. A deep journey into super-resolution:

A survey. ACM Computing Surveys (CSUR), 53(3):1–34, 2020.

[5] Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Donatella Marini. Unified

analysis of discontinuous Galerkin methods for elliptic problems. SIAM journal on

numerical analysis, 39(5):1749–1779, 2002.

[6] Timothy J Baker. Mesh adaptation strategies for problems in fluid dynamics. Finite

Elements in Analysis and Design, 25(3-4):243–273, 1997.

[7] Ponnampalam Balakumar and George Ilhwan Park. DNS/LES simulations of separated

flows at high Reynolds numbers. In 45th AIAA Fluid Dynamics Conference, page 2783,

2015.

143

[8] F Bassi, A Colombo, A Crivellini, M Franciolini, A Ghidoni, G Manzinali, and Gi-

anmaria Noventa. Under-Resolved Simulation of Turbulent Flows Using a p-adaptive

Discontinuous Galerkin Method. In iTi Conference on Turbulence, pages 157–162.

Springer, 2018.

[9] Francesco Bassi, L Botti, Alessandro Colombo, Andrea Crivellini, Antonio Ghidoni,

and F Massa. On the development of an implicit high-order discontinuous Galerkin

method for DNS and implicit LES of turbulent flows. European Journal of Mechanics-

B/Fluids, 55:367–379, 2016.

[10] Francesco Bassi, Alessandro Colombo, Andrea Crivellini, Krzysztof J Fidkowski, Mat-

teo Franciolini, Antonio Ghidoni, and Gianmaria Noventa. Entropy-adjoint p-adaptive

discontinuous Galerkin method for the under-resolved simulation of turbulent flows.

AIAA Journal, 58(9):3963–3977, 2020.

[11] Andrea D Beck, Thomas Bolemann, David Flad, Hannes Frank, Gregor J Gassner,

Florian Hindenlang, and Claus-Dieter Munz. High-order discontinuous Galerkin spec-

tral element methods for transitional and turbulent flow simulations. International

Journal for Numerical Methods in Fluids, 76(8):522–548, 2014.

[12] Marsha J Berger and Antony Jameson. Automatic adaptive grid refinement for the

Euler equations. AIAA journal, 23(4):561–568, 1985.

[13] Patrick J Blonigan. Adjoint sensitivity analysis of chaotic dynamical systems with

non-intrusive least squares shadowing. Journal of Computational Physics, 348:803–

826, 2017.

[14] Patrick J Blonigan, Pablo Fernandez, Scott M Murman, Qiqi Wang, Georgios Rigas,

and Luca Magri. Toward a chaotic adjoint for LES. arXiv preprint arXiv:1702.06809,

2017.

[15] Patrick J Blonigan, Steven A Gomez, and Qiqi Wang. Least squares shadowing for

144

sensitivity analysis of turbulent fluid flows. In 52nd Aerospace Sciences Meeting, page

1426, 2014.

[16] Patrick J Blonigan, Qiqi Wang, Eric J Nielsen, and Boris Diskin. Least-squares shadow-

ing sensitivity analysis of chaotic flow around a two-dimensional airfoil. AIAA Journal,

56(2):658–672, 2018.

[17] Jan Bohn and Michael Feischl. Recurrent neural networks as optimal mesh refinement

strategies. Computers & Mathematics with Applications, 97:61–76, 2021.

[18] Michael Breuer, Nikolaus Peller, Ch Rapp, and Michael Manhart. Flow over peri-

odic hills–numerical and experimental study in a wide range of Reynolds numbers.

Computers & Fluids, 38(2):433–457, 2009.

[19] Peter N Brown. A local convergence theory for combined inexact-Newton/finite-

difference projection methods. SIAM Journal on Numerical Analysis, 24(2):407–434,

1987.

[20] Peter N Brown and Youcef Saad. Hybrid Krylov methods for nonlinear systems of

equations. SIAM Journal on Scientific and Statistical Computing, 11(3):450–481, 1990.

[21] Philip Claude Caplan, Robert Haimes, David L Darmofal, and Marshall C Galbraith.

Four-dimensional anisotropic mesh adaptation. Computer-Aided Design, 129:102915,

2020.

[22] Philip Claude Delhaye Caplan. Four-dimensional anisotropic mesh adaptation for

spacetime numerical simulations. PhD thesis, Massachusetts Institute of Technology,

2019.

[23] Corentin Carton de Wiart, Laslo T Diosady, Anirban Garai, Nicholas K Burgess,

Patrick J Blonigan, Dirk Ekelschot, and Scott M Murman. Design of a modular

monolithic implicit solver for multi-physics applications. In 2018 AIAA Aerospace

Sciences Meeting, page 1400, 2018.

145

[24] IB Celik, ZN Cehreli, and I Yavuz. Index of resolution quality for large eddy simula-

tions. 2005.

[25] Marco Ceze and Krzysztof J Fidkowski. Drag prediction using adaptive discontinuous

finite elements. Journal of Aircraft, 51(4):1284–1294, 2014.

[26] Guodong Chen and Krzysztof J Fidkowski. Output-based adaptive aerodynamic sim-

ulations using convolutional neural networks. Computers & Fluids, 223:104947, 2021.

[27] Michel Crouzeix. Sur l’approximation des équations différentielles opérationnelles

linéaires par des méthodes de Runge-Kutta. PhD thesis, Université de Paris VI Thèse,

1975.

[28] C Carton De Wiart, Koen Hillewaert, Laurent Bricteux, and Grégoire Winckelmans.

Implicit LES of free and wall-bounded turbulent flows based on the discontinuous

Galerkin/symmetric interior penalty method. International Journal for Numerical

Methods in Fluids, 78(6):335–354, 2015.

[29] Zhiwen Deng, Chuangxin He, Yingzheng Liu, and Kyung Chun Kim. Super-resolution

reconstruction of turbulent velocity fields using a generative adversarial network-based

artificial intelligence framework. Physics of Fluids, 31(12), 2019.

[30] Ph Devloo. A fully automatic hp-adaptivity. Journal of Scientific Computing, 17:117–

142, 2002.

[31] Laslo T Diosady and Scott M Murman. Design of a variational multiscale method for

high reynolds number compressible flows. In 21st AIAA Computational Fluid Dynam-

ics Conference, page 2870, 2013.

[32] Laslo T Diosady and Scott M Murman. DNS of flows over periodic hills using a discon-

tinuous Galerkin spectral-element method. In 44th AIAA Fluid Dynamics Conference,

page 2784, 2014.

146

[33] Laslo T Diosady and Scott M Murman. Higher-order methods for compressible tur-

bulent flows using entropy variables. In 53rd AIAA Aerospace Sciences Meeting, page

0294, 2015.

[34] Laslo T Diosady and Scott M Murman. Tensor-product preconditioners for higher-

order space–time discontinuous Galerkin methods. Journal of Computational Physics,

330:296–318, 2017.

[35] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution

using deep convolutional networks. IEEE transactions on pattern analysis and machine

intelligence, 38(2):295–307, 2015.

[36] Jim Douglas and Todd Dupont. Interior penalty procedures for elliptic and parabolic

Galerkin methods. In Computing Methods in Applied Sciences: Second International

Symposium December 15–19, 1975, pages 207–216. Springer, 2008.

[37] Gregory L Eyink, Tom WN Haine, and Daniel J Lea. Ruelle’s linear response formula,

ensemble adjoint schemes and Lévy flights. Nonlinearity, 17(5):1867, 2004.

[38] Yuchen Fan, Honghui Shi, Jiahui Yu, Ding Liu, Wei Han, Haichao Yu, Zhangyang

Wang, Xinchao Wang, and Thomas S Huang. Balanced two-stage residual networks

for image super-resolution. In Proceedings of the IEEE conference on computer vision

and pattern recognition workshops, pages 161–168, 2017.

[39] Sina Farsiu, Dirk Robinson, Michael Elad, and Peyman Milanfar. Advances and chal-

lenges in super-resolution. International Journal of Imaging Systems and Technology,

14(2):47–57, 2004.

[40] Krzysztof J Fidkowski. Output-based error estimation and mesh adaptation for steady

and unsteady flow problems. 38thAdvanced CFD Lectures Series, pages 14–16, 2015.

[41] Krzysztof J Fidkowski. Output-based space–time mesh optimization for unsteady flows

using continuous-in-time adjoints. Journal of Computational Physics, 341:258–277,

147

2017.

[42] Krzysztof J Fidkowski. Output-based error estimation and mesh adaptation for un-

steady turbulent flow simulations. Computer Methods in Applied Mechanics and En-

gineering, 399:115322, 2022.

[43] Krzysztof J Fidkowski, Marco A Ceze, and Philip L Roe. Entropy-based drag-error

estimation and mesh adaptation in two dimensions. Journal of aircraft, 49(5):1485–

1496, 2012.

[44] Krzysztof J Fidkowski and Guodong Chen. Metric-based, goal-oriented mesh adapta-

tion using machine learning. Journal of Computational Physics, 426:109957, 2021.

[45] Krzysztof J Fidkowski and David L Darmofal. Review of output-based error estimation

and mesh adaptation in computational fluid dynamics. AIAA journal, 49(4):673–694,

2011.

[46] Krzysztof J Fidkowski and Yuxing Luo. Output-based space–time mesh adaptation

for the compressible Navier–Stokes equations. Journal of Computational Physics,

230(14):5753–5773, 2011.

[47] Krzysztof J Fidkowski and Philip L Roe. An entropy adjoint approach to mesh refine-

ment. SIAM Journal on Scientific Computing, 32(3):1261–1287, 2010.

[48] Corbin Foucart, Aaron Charous, and Pierre FJ Lermusiaux. Deep reinforcement learn-

ing for adaptive mesh refinement. Journal of Computational Physics, 491:112381, 2023.

[49] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution reconstruction of

turbulent flows with machine learning. Journal of Fluid Mechanics, 870:106–120, 2019.

[50] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Machine-learning-based spatio-

temporal super resolution reconstruction of turbulent flows. Journal of Fluid Me-

chanics, 909:A9, 2021.

148

[51] Haiyang Gao and ZJ Wang. A residual-based procedure for hp-adaptation on 2-d

hybrid meshes. In 49th AIAA Aerospace Sciences Meeting including the New Horizons

Forum and Aerospace Exposition, page 492, 2011.

[52] Anirban Garai, Laslo Diosady, Scott M Murman, and Nateri K Madavan. Development

of a Perfectly Matched Layer Technique for a Discontinuous-Galerkin Spectral-Element

Method. In 54th AIAA Aerospace Sciences Meeting, page 1338, 2016.

[53] Anirban Garai, Laslo T Diosady, Scott M Murman, and Nateri K Madavan. Scale-

resolving simulations of bypass transition in a high-pressure turbine cascade us-

ing a spectral element discontinuous Galerkin method. Journal of Turbomachinery,

140(3):031004, 2018.

[54] Anirban Garai, Scott M Murman, and Nateri K Madavan. Scale-Resolving Simulations

of a Fundamental Trailing-Edge Cooling Slot Using a Discontinuous-Galerkin Spectral-

Element Method. In Turbo Expo: Power for Land, Sea, and Air, volume 58578, page

V02CT41A023. American Society of Mechanical Engineers, 2019.

[55] Nicholas J Georgiadis, Donald P Rizzetta, and Christer Fureby. Large-eddy simula-

tion: current capabilities, recommended practices, and future research. AIAA journal,

48(8):1772–1784, 2010.

[56] Emmanuil H Georgoulis and Paul Houston. Discontinuous Galerkin methods for the

biharmonic problem. IMA journal of numerical analysis, 29(3):573–594, 2009.

[57] Emmanuil H Georgoulis, Paul Houston, and Juha Virtanen. An a posteriori error

indicator for discontinuous Galerkin approximations of fourth-order elliptic problems.

IMA journal of numerical analysis, 31(1):281–298, 2011.

[58] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Ad-

vances in neural information processing systems, 27, 2014.

149

[59] Fernando F Grinstein, Len G Margolin, and William J Rider. Implicit large eddy

simulation, volume 10. Cambridge university press Cambridge, 2007.

[60] Wagdi G Habashi, Julien Dompierre, Yves Bourgault, Djaffar Ait-Ali-Yahia, Michel

Fortin, and Marie-Gabrielle Vallet. Anisotropic mesh adaptation: Towards user-

independent, mesh-independent and solver-independent CFD. Part I: General prin-

ciples. International Journal for Numerical Methods in Fluids, 32(6):725–744, 2000.

[61] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[62] JR Herring, D Schertzer, M Lesieur, GR Newman, JP Chollet, and M Larcheveque.

A comparative assessment of spectral closures as applied to passive scalar diffusion.

Journal of Fluid Mechanics, 124:411–437, 1982.

[63] Joel Ho and Alastair West. Field Inversion and Machine Learning for turbulence

modelling applied to three-dimensional separated flows. In AIAA aviation 2021 forum,

page 2903, 2021.

[64] Johan Hoffman. Computation of mean drag for bluff body problems using adaptive

dns/les. SIAM Journal on Scientific Computing, 27(1):184–207, 2005.

[65] Jonathan R Holland, James D Baeder, and Karthik Duraisamy. Towards integrated

field inversion and machine learning with embedded neural networks for RANS mod-

eling. In AIAA Scitech 2019 forum, page 1884, 2019.

[66] Thomas JR Hughes, Leopaldo P Franca, and Michel Mallet. A new finite element

formulation for computational fluid dynamics: I. Symmetric forms of the compressible

Euler and Navier-Stokes equations and the second law of thermodynamics. Computer

methods in applied mechanics and engineering, 54(2):223–234, 1986.

150

[67] James M Hyman and Basil Nicolaenko. The Kuramoto-Sivashinsky equation: a bridge

between PDE’s and dynamical systems. Physica D: Nonlinear Phenomena, 18(1-

3):113–126, 1986.

[68] Jeremy Ims and Zhi J Wang. A comparison of three error indicators for adaptive high-

order large eddy simulation. Journal of Computational Physics, 490:112312, 2023.

[69] Jianbo Jiao, Wei-Chih Tu, Shengfeng He, and Rynson WH Lau. Formresnet: Format-

ted residual learning for image restoration. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages 38–46, 2017.

[70] Hans Johansen and Phillip Colella. A Cartesian grid embedded boundary method for

Poisson’s equation on irregular domains. Journal of Computational Physics, 147(1):60–

85, 1998.

[71] Steven Kast, Krzysztof Fidkowski, and Philip Roe. An unsteady entropy adjoint ap-

proach for adaptive solution of the shallow-water equations. In 20th AIAA Computa-

tional Fluid Dynamics Conference, page 3694, 2011.

[72] Christopher A Kennedy and Mark H Carpenter. Diagonally implicit Runge-Kutta

methods for ordinary differential equations. A review. Technical report, 2016.

[73] John Kim, Parviz Moin, and Robert Moser. Turbulence statistics in fully developed

channel flow at low Reynolds number. Journal of fluid mechanics, 177:133–166, 1987.

[74] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[75] Dana A Knoll and David E Keyes. Jacobian-free Newton–Krylov methods: a survey

of approaches and applications. Journal of Computational Physics, 193(2):357–397,

2004.

151

[76] Lilia Krivodonova, Jianguo Xin, J-F Remacle, Nicolas Chevaugeon, and Joseph E Fla-

herty. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic

conservation laws. Applied Numerical Mathematics, 48(3-4):323–338, 2004.

[77] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. Advances in neural information processing sys-

tems, 25, 2012.

[78] Daniel J Lea, Myles R Allen, and Thomas WN Haine. Sensitivity analysis of the climate

of a chaotic system. Tellus A: Dynamic Meteorology and Oceanography, 52(5):523–532,

2000.

[79] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip

code recognition. Neural computation, 1(4):541–551, 1989.

[80] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[81] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,

Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.

Photo-realistic single image super-resolution using a generative adversarial network. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages

4681–4690, 2017.

[82] Marcel Lesieur. Turbulence in fluids: stochastic and numerical modeling. NASA

STI/Recon Technical Report A, 91:24106, 1990.

[83] Marcel Lesieur and Olivier Metais. New trends in large-eddy simulations of turbulence.

Annual review of fluid mechanics, 28(1):45–82, 1996.

[84] Bo Liu, Jiupeng Tang, Haibo Huang, and Xi-Yun Lu. Deep learning methods for

super-resolution reconstruction of turbulent flows. Physics of Fluids, 32(2), 2020.

152

[85] Miles J McGruder and Krzysztof Fidkowski. Incremental Super-Resolution Recon-

struction for Turbulent Flow on High-Order Discontinuous Finite Elements. In AIAA

SCITECH 2024 Forum, page 1983, 2024.

[86] Miles J McGruder, Aniruddhe Pradhan, and Krzysztof Fidkowski. A Neural-Network

Based Adaptive Discontinuous Galerkin Method for Turbulent Flow Simulations. In

AIAA SCITECH 2023 Forum, page 1802, 2023.

[87] CP Mellen, J Fröhlich, and W Rodi. Large eddy simulation of the flow over periodic

hills. In 16th IMACS world congress, pages 21–25. Lausanne, Switzerland, 2000.

[88] Parviz Moin and John Kim. Numerical investigation of turbulent channel flow. Journal

of fluid mechanics, 118:341–377, 1982.

[89] Robert D Moser, John Kim, and Nagi N Mansour. Direct numerical simulation of

turbulent channel flow up to Re g= 590. Physics of fluids, 11(4):943–945, 1999.

[90] Rodrigo Costa Moura, Gianmarco Mengaldo, Joaquim Peiró, and Spencer J Sher-

win. On the eddy-resolving capability of high-order discontinuous Galerkin approaches

to implicit LES/under-resolved DNS of Euler turbulence. Journal of Computational

Physics, 330:615–623, 2017.

[91] Rodrigo Costa Moura, Spencer J Sherwin, and Joaquim Peiró. Linear dispersion–

diffusion analysis and its application to under-resolved turbulence simulations us-

ing discontinuous Galerkin spectral/hp methods. Journal of Computational Physics,

298:695–710, 2015.

[92] Fabio Naddei, Marta de la Llave Plata, Vincent Couaillier, and Frédéric Coquel. A com-

parison of refinement indicators for p-adaptive simulations of steady and unsteady flows

using discontinuous Galerkin methods. Journal of Computational Physics, 376:508–

533, 2019.

153

[93] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine learning

(ICML-10), pages 807–814, 2010.

[94] Angxiu Ni and Qiqi Wang. Sensitivity analysis on chaotic dynamical systems by

Non-Intrusive Least Squares Shadowing (NILSS). Journal of Computational Physics,

347:56–77, 2017.

[95] Eric J Parish and Karthik Duraisamy. A paradigm for data-driven predictive modeling

using field inversion and machine learning. Journal of computational physics, 305:758–

774, 2016.

[96] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-resolution image recon-

struction: a technical overview. IEEE signal processing magazine, 20(3):21–36, 2003.

[97] Jaime Peraire, Morgan Vahdati, Ken Morgan, and Olgierd C Zienkiewicz. Adap-

tive remeshing for compressible flow computations. Journal of computational physics,

72(2):449–466, 1987.

[98] Per-Olof Persson and Jaime Peraire. Sub-cell shock capturing for discontinuous

Galerkin methods. In 44th AIAA aerospace sciences meeting and exhibit, page 112,

2006.

[99] Aniruddhe Pradhan and Karthik Duraisamy. Variational multiscale super-resolution:

A data-driven approach for reconstruction and predictive modeling of unresolved

physics. International Journal for Numerical Methods in Engineering, 124(19):4339–

4370, 2023.

[100] Rolf Rannacher. Adaptive Galerkin finite element methods for partial differential equa-

tions. Journal of Computational and Applied Mathematics, 128(1-2):205–233, 2001.

[101] Béatrice Rivière, Mary F Wheeler, and Vivette Girault. A priori error estimates for

finite element methods based on discontinuous approximation spaces for elliptic prob-

154

lems. SIAM Journal on Numerical Analysis, 39(3):902–931, 2001.

[102] Robert S Rogallo and Parviz Moin. Numerical simulation of turbulent flows. Annual

review of fluid mechanics, 16(1):99–137, 1984.

[103] Youcef Saad and Martin H Schultz. GMRES: A generalized minimal residual algorithm

for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical

computing, 7(3):856–869, 1986.

[104] Yukiko S Shimizu and Krzysztof Fidkowski. Output error estimation for chaotic flows.

In 46th AIAA Fluid Dynamics Conference, page 3806, 2016.

[105] Yukiko S Shimizu and Krzysztof Fidkowski. Output-based error estimation for chaotic

flows using reduced-order modeling. In 2018 AIAA Aerospace Sciences Meeting, page

0826, 2018.

[106] SUN Shuyu and Mary F Wheeler. Mesh adaptation strategies for discontinuous

Galerkin methods applied to reactive transport problems. 2004.

[107] Anand Pratap Singh, Shivaji Medida, and Karthik Duraisamy. Machine-learning-

augmented predictive modeling of turbulent separated flows over airfoils. AIAA jour-

nal, 55(7):2215–2227, 2017.

[108] Joseph Smagorinsky. General circulation experiments with the primitive equations: I.

The basic experiment. Monthly weather review, 91(3):99–164, 1963.

[109] Endre Süli and Igor Mozolevski. hp-version interior penalty DGFEMs for the bihar-

monic equation. Computer methods in applied mechanics and engineering, 196(13-

16):1851–1863, 2007.

[110] Lionel Temmerman and Michael A Leschziner. Large eddy simulation of separated flow

in a streamwise periodic channel constriction. In Second Symposium on Turbulence and

Shear Flow Phenomena. Begel House Inc., 2001.

155

[111] Kenza Tlales, Kheir-Eddine Otmani, Gerasimos Ntoukas, Gonzalo Rubio, and Esteban

Ferrer. Machine learning mesh-adaptation for laminar and turbulent flows: applica-

tions to high-order discontinuous Galerkin solvers. Engineering with Computers, pages

1–23, 2024.

[112] Siavash Toosi and Johan Larsson. Anisotropic grid-adaptation in large eddy simula-

tions. Computers & Fluids, 156:146–161, 2017.

[113] Siavash Toosi and Johan Larsson. Towards systematic grid selection in les: Identifying

the optimal spatial resolution by minimizing the solution sensitivity. Computers &

Fluids, 201:104488, 2020.

[114] Matteo Tugnoli, Antonella Abbà, Luca Bonaventura, and Marco Restelli. A locally p-

adaptive approach for Large Eddy Simulation of compressible flows in a DG framework.

Journal of Computational Physics, 349:33–58, 2017.

[115] A Uranga, P-O Persson, M Drela, and Jaime Peraire. Implicit large eddy simulation

of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin

method. International Journal for Numerical Methods in Engineering, 87(1-5):232–

261, 2011.

[116] David A Venditti and David L Darmofal. Grid adaptation for functional outputs: appli-

cation to two-dimensional inviscid flows. Journal of Computational Physics, 176(1):40–

69, 2002.

[117] Qiqi Wang, Rui Hu, and Patrick Blonigan. Least squares shadowing sensitivity analysis

of chaotic limit cycle oscillations. Journal of Computational Physics, 267:210–224,

2014.

[118] GARY WARREN, Wit Anderson, JAMES THOMAS, and Sherrie Krist. Grid conver-

gence for adaptive methods. In 10th Computational Fluid Dynamics Conference, page

1592, 1991.

156

[119] You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. tempoGAN: A temporally coher-

ent, volumetric GAN for super-resolution fluid flow. ACM Transactions on Graphics

(TOG), 37(4):1–15, 2018.

[120] Jiayang Xu, Aniruddhe Pradhan, and Karthikeyan Duraisamy. Conditionally param-

eterized, discretization-aware neural networks for mesh-based modeling of physical

systems. Advances in Neural Information Processing Systems, 34:1634–1645, 2021.

[121] Jiachen Yang, Tarik Dzanic, Brenden Petersen, Jun Kudo, Ketan Mittal, Vladimir

Tomov, Jean-Sylvain Camier, Tuo Zhao, Hongyuan Zha, Tzanio Kolev, et al. Re-

inforcement learning for adaptive mesh refinement. In International Conference on

Artificial Intelligence and Statistics, pages 5997–6014. PMLR, 2023.

[122] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, and Qing-

min Liao. Deep learning for single image super-resolution: A brief review. IEEE

Transactions on Multimedia, 21(12):3106–3121, 2019.

[123] Masayuki Yano and David L Darmofal. An optimization-based framework for

anisotropic simplex mesh adaptation. Journal of Computational Physics, 231(22):7626–

7649, 2012.

[124] Masayuki Yano et al. An optimization framework for adaptive higher-order discretiza-

tions of partial differential equations on anisotropic simplex meshes. PhD thesis, Mas-

sachusetts Institute of Technology, 2012.

[125] Anil Yildirim, Gaetan KW Kenway, Charles A Mader, and Joaquim RRA Martins.

A Jacobian-free approximate Newton–Krylov startup strategy for RANS simulations.

Journal of Computational Physics, 397:108741, 2019.

157

	Acknowledgments
	List of Figures
	List of Tables
	Abstract
	Introduction
	Large-Eddy Simulation
	Error Estimation
	Mesh Adaptation
	Machine Learning for Adaptation
	Objective and Contributions
	Outline

	Discretization Techniques
	Introduction
	Discontinuous Galerkin Finite-Element Method
	eddy

	Kuramoto-Sivashinsky (KS) Equation
	Nonlinear Term
	Anti-diffusive Term
	Fourth-Order Diffusion Term

	KS Equation Solver Implementation
	Verification

	Summary

	Super-Resolution of the 1D Kuramoto-Sivashinsky Equation
	Introduction to Super-Resolution Reconstruction
	Super-Resolution Reconstruction
	KS Reconstruction Across Equation Parameterizations
	Influence of Network Size

	Summary

	Super-Resolution Reconstruction in Higher Dimensions
	Super-Resolution in Two Dimensions
	Methodology
	Results

	Super-Resolution in Three Dimensions
	Methodology
	Network Design
	Network Sizing Study
	Influence of Training set and Reynolds Number

	Summary

	Super-Resolution Adaptation in 3D
	Introduction
	Super-Resolution-Based Error Indicators
	State Difference
	Entropy-Adjoint-Weighted-Residual
	The Entropy Adjoint

	Adaptation Strategy
	Unbiased Channel Test Cases
	Geometry
	State Difference Error Indicator
	Entropy-Adjoint-Weighted-Residual Error Indicator

	Comparison With Velocity Gradient Error Indicator
	Periodic Hill Test Case
	Geometry and Case Setup
	Adapted Results

	Trailing Edge Cooling Slot Test Case
	Differences in Network Design
	Error Indicator
	Data Generation and Network Training
	Cooling Slot Test Case
	Results

	Summary

	Conclusions
	Summary
	Contributions
	Research Outlook
	Future Work for Super-Resolution-Based Indicators

	Bibliography

